$P \neq NP$, Propositional Proof Complexity, and Resolution Lower Bounds for the Weak Pigeonhole Principle

Ran Raz*

Abstract

Recent results established exponential lower bounds for the length of any Resolution proof for the weak pigeonhole principle. More formally, it was proved that any Resolution proof for the weak pigeonhole principle, with n holes and any number of pigeons, is of length $\Omega(2^n\epsilon)$, (for a constant $\epsilon = 1/3$). One corollary is that certain propositional formulations of the statement $P \neq NP$ do not have short Resolution proofs. After a short introduction to the problem of $P \neq NP$ and to the research area of propositional proof complexity, I will discuss the above mentioned lower bounds for the weak pigeonhole principle and the connections to the hardness of proving $P \neq NP$.

2000 Mathematics Subject Classification: 68Q15, 68Q17, 03F20, 03D15.
Keywords and Phrases: Lower bounds, Proof theory, Resolution, Pigeonhole principle.

1. Propositional logic

The basic syntactic units (atoms) of propositional logic are Boolean variables $x_1, \ldots, x_n \in \{0, 1\}$, where the value 0 represents False and the value 1 represents True. The propositional variables are combined with standard Boolean gates (also called connectives), such as, AND (conjunction), OR (disjunction), and NOT (negation), to form Boolean formulas. Recall that in propositional logic there are no quantifiers.

A literal is either an atom (i.e., a variable x_i) or the negation of an atom (i.e., $\neg x_i$). A clause is a disjunction of literals. A term is a conjunction of literals. A formula f is in conjunctive-normal-form (CNF) if it is a conjunction of clauses. A formula f is in disjunctive-normal-form (DNF) if it is a disjunction of terms. Since there are standard ways to transform a formula to CNF or DNF (by adding new variables), many times we limit the discussion to CNF formulas or DNF formulas.

*Department of Computer Science, Weizmann Institute for Science, Rehovot 76100, Israel. E-mail: ranraz@wisdom.weizmann.ac.il
A Boolean formula $f(x_1, ..., x_n)$ is a \textit{tautology} if $f(x_1, ..., x_n) = 1$ for every $x_1, ..., x_n$. A Boolean formula $f(x_1, ..., x_n)$ is \textit{unsatisfiable} if $f(x_1, ..., x_n) = 0$ for every $x_1, ..., x_n$. Obviously, f is a tautology if and only if $\neg f$ is unsatisfiable.

Given a formula $f(x_1, ..., x_n)$, one can decide whether or not f is a tautology by checking all the possibilities for assignments to $x_1, ..., x_n$. However, the time needed for this procedure is exponential in the number of variables, and hence may be exponential in the length of the formula f.

2. $P \neq NP$

$P \neq NP$ is the central open problem in complexity theory and one of the most important open problems in mathematics today. The problem has thousands of equivalent formulations. One of these formulations is the following:

\begin{center}
Is there a polynomial time algorithm A that gets as input a Boolean formula f and outputs 1 if and only if f is a tautology?
\end{center}

$P \neq NP$ states that there is no such algorithm.

A related open problem in complexity theory is the problem of $NP \neq \text{co-NP}$. The problem can be stated as follows:

\begin{center}
Is there a polynomial time algorithm A that gets as input a Boolean formula f and a string z, and such that: f is a tautology if and only if there exists z s.t.:
\begin{enumerate}
 \item The length of z is at most polynomial in the length of f.
 \item $A(f, z) = 1$.
\end{enumerate}
\end{center}

$NP \neq \text{co-NP}$ states that there is no such algorithm. Obviously, $NP \neq \text{co-NP}$ implies $P \neq NP$.

It is widely believed that $P \neq NP$ (and $NP \neq \text{co-NP}$). At this point, however, we are still far from giving a solution for these problems. It is not clear why these problems are so hard to solve.

3. Propositional proof theory

Propositional proof theory is the study of the length of proofs for different tautologies in different propositional proof systems.

The notion of \textit{propositional proof system} was introduced by Cook and Reckhow in 1973, as a direction for proving $NP \neq \text{co-NP}$ (and hence also $P \neq NP$) [6]. A propositional proof system is a polynomial time algorithm $A(f, z)$ such that a Boolean formula f is a tautology if and only if there exists z such that $A(f, z) = 1$ (note that we do not require here that the length of z is at most polynomial in the length of f). We think of the string z as a proof for f in the proof system A. We say that a tautology f is \textit{hard} for a proof system A if any proof z for f in the proof system A is of length super-polynomial in the length of f.

Many times we prefer to talk about unsatisfiable formulas, rather than tautologies, and about refutation systems, rather than proof systems. A \textit{propositional
refutation system is a polynomial time algorithm \(A(f, z) \) such that a Boolean formula \(f \) is unsatisfiable if and only if there exists \(z \) such that \(A(f, z) = 1 \). We think of the string \(z \) as a refutation for \(f \) in the refutation system \(A \). We think of a refutation \(z \) for \(f \) also as a proof for \(\neg f \) (and vice versa).

It is easy to see that \(\text{NP} \neq \text{co-NP} \) if and only if for every propositional proof system \(A \) there exists a hard tautology, that is, a tautology \(f \) with no short proofs. It was hence suggested by Cook and Reckhow to study the length of proofs for different tautologies in stronger and stronger propositional proof systems. It turns out that in many cases these problems are very interesting in their own right and are related to many other interesting problems in complexity theory and in logic, in particular when the tautology \(f \) represents a fundamental mathematical principle.

For a recent survey on the main research directions in propositional proof theory, see [2].

4. Resolution

Resolution is one of the simplest and most widely studied propositional proof systems. Besides its mathematical simplicity and elegance, Resolution is a very interesting proof system also because it generalizes the Davis-Putnam procedure and several other well known proof-search procedures. Moreover, Resolution is the base for most automat theorem provers existing today.

The Resolution rule says that if \(C \) and \(D \) are two clauses and \(x_i \) is a variable then any assignment (to the variables \(x_1, \ldots, x_n \)) that satisfies both of the clauses, \(C \lor x_i \) and \(D \lor \neg x_i \), also satisfies the clause \(C \lor D \). The clause \(C \lor D \) is called the resolvent of the clauses \(C \lor x_i \) and \(D \lor \neg x_i \) on the variable \(x_i \).

Resolution is usually presented as a propositional refutation system for CNF formulas. Since there are standard ways to transform a formula to CNF (by adding new variables), this presentation is general enough. A Resolution refutation for a CNF formula \(f \) is a sequence of clauses \(C_1, C_2, \ldots, C_s \) such that:

1. Each clause \(C_j \) is either a clause of \(f \) or a resolvent of two previous clauses in the sequence.
2. The last clause, \(C_s \), is the empty clause.

We think of the empty clause as a clause that has no satisfying assignments, and hence a contradiction was obtained.

We think of a Resolution refutation for \(f \) also as a proof for \(\neg f \). Without loss of generality, we assume that no clause in a Resolution proof contains both \(x_i \) and \(\neg x_i \) (such a clause is always satisfied and hence it can be removed from the proof). The length, or size, of a Resolution proof is the number of clauses in it.

We can represent a Resolution proof as an acyclic directed graph on vertices \(C_1, \ldots, C_s \), where each clause of \(f \) has out-degree 0, and any other clause has two edges pointing to the two clauses that were used to produce it.

It is well known that Resolution is a refutation system. That is, a CNF formula \(f \) is unsatisfiable if and only if there exists a Resolution refutation for \(f \). A well-known and widely studied restricted version of Resolution (that is still a refutation
system) is called Regular Resolution. In a Regular Resolution refutation, along any path in the directed acyclic graph, each variable is resolved upon at most once.

5. Resolution as a search problem

As mentioned above, we represent a Resolution proof as an acyclic directed graph G on the vertices C_1, \ldots, C_s. In this graph, each clause C_j which is an original clause of f has out-degree 0, and any other clause has two edges pointing to the two clauses that were used to produce it. We call the vertices of out-degree 0 (i.e., the clauses that are original clauses of f) the leaves of the graph. Without loss of generality, we can assume that the only clause with in-degree 0 is the last clause C_s (as we can just remove any other clause with in-degree 0). We call the vertex C_s the root of the graph.

We label each vertex C_j in the graph by the variable x_i that was used to derive it (i.e., the variable x_i that was resolved upon), unless the clause C_j is an original clause of f (and then C_j is not labelled). If a clause C_j is labelled by a variable x_i we label the two edges going out from C_j by 0 and 1, where the edge pointing to the clause that contains x_i is labelled by 0, and the edge pointing to the clause that contains $\neg x_i$ is labelled by 1. That is, if the clause $C \lor D$ was derived from the two clauses $C \lor x_i$ and $D \lor \neg x_i$ then the vertex $C \lor D$ is labelled by x_i, the edge from the vertex $C \lor D$ to the vertex $C \lor x_i$ is labelled by 0 and the edge from the vertex $C \lor D$ to the vertex $D \lor \neg x_i$ is labelled by 1. For a non-leaf node u of the graph G, define,

$$\text{Label}(u) = \text{the variable labelling } u.$$

We think of $\text{Label}(u)$ as a variable queried at the node u.

Let p be a path on G, starting from the root. Note that along a path p, a variable x_i may appear (as a label of a node u) more than once. We say that the path p evaluates x_i to 0 if $x_i = \text{Label}(u)$ for some node u on the path p, and after the last appearance of x_i as $\text{Label}(u)$ (of a node u on the path) the path p continues on the edge labelled by 0 (i.e., if u is the last node on p such that $x_i = \text{Label}(u)$ then p contains the edge labelled by 0 that goes out from u). In the same way, we say that the path p evaluates x_i to 1 if $x_i = \text{Label}(u)$ for some node u on the path p, and after the last appearance of x_i as $\text{Label}(u)$ (of a node u on the path) the path p continues on the edge labelled by 1 (i.e., if u is the last node on p such that $x_i = \text{Label}(u)$ then p contains the edge labelled by 1 that goes out from u).

For any node u of the graph G, we define $\text{Zeros}(u)$ to be the set of variables that the node u “remembers” to be 0, and $\text{Ones}(u)$ to be the set of variables that the node u “remembers” to be 1, that is,

$$\text{Zeros}(u) = \text{the set of variables that are evaluated to 0 by every path } p \text{ from the root to } u.$$

$$\text{Ones}(u) = \text{the set of variables that are evaluated to 1 by every path } p \text{ from the root to } u.$$

Note that for any u, the two sets $\text{Zeros}(u)$ and $\text{Ones}(u)$ are disjoint.
The following proposition gives the connection between the sets \(\text{Zeros}(u) \), \(\text{Ones}(u) \) and the literals appearing in the clause \(u \). The proposition is particularly interesting when \(u \) is a leaf of the graph.

Proposition 1 Let \(f \) be an unsatisfiable CNF formula and let \(G \) be (the graph representation of) a Resolution refutation for \(f \). Then, for any node \(u \) of \(G \) and for any \(x_i \), if the literal \(x_i \) appears in the clause \(u \) then \(x_i \in \text{Zeros}(u) \), and if the literal \(\neg x_i \) appears in the clause \(u \) then \(x_i \in \text{Ones}(u) \).

6. The weak pigeonhole principle

The *Pigeonhole Principle* (PHP) is probably the most widely studied tautology in propositional proof theory. The tautology \(\text{PHP}_n \) is a DNF encoding of the following statement: There is no one to one mapping from \(n + 1 \) pigeons to \(n \) holes. The *Weak Pigeonhole Principle* (WPHP) is a version of the pigeonhole principle that allows a larger number of pigeons. The tautology \(\text{WPHP}_m^n \) (for \(m > n + 1 \)) is a DNF encoding of the following statement: There is no one to one mapping from \(m \) pigeons to \(n \) holes. For \(m > n + 1 \), the weak pigeonhole principle is a weaker statement than the pigeonhole principle. Hence, it may have much shorter proofs in certain proof systems.

The weak pigeonhole principle is one of the most fundamental combinatorial principles. In particular, it is used in most probabilistic counting arguments and hence in many combinatorial proofs. Moreover, as observed by Razborov, there are certain connections between the weak pigeonhole principle and the problem of \(P \neq NP \) [12]. Indeed, the weak pigeonhole principle (with a relatively large number of pigeons) can be interpreted as a certain encoding of the following statement: There are no small DNF formulas for \(SAT \) (where \(SAT \) is the satisfiability problem). Hence, in most proof systems, a short proof for certain formulations of the statement *There are no small formulas for \(SAT \)* can be translated into a short proof for the weak pigeonhole principle. That is, a lower bound for the length of proofs for the weak pigeonhole principle usually implies a lower bound for the length of proofs for certain formulations of the statement \(P \neq NP \). While this doesn’t say much about the problem of \(P \neq NP \), it does demonstrate the applicability and relevance of the weak pigeonhole principle for other interesting problems.

Formally, the formula \(\text{WPHP}_m^n \) is expressed in the following way. The underlying Boolean variables, \(x_{i,j} \), for \(1 \leq i \leq m \) and \(1 \leq j \leq n \), represent whether or not pigeon \(i \) is mapped to hole \(j \). The negation of the pigeonhole principle, \(\neg \text{WPHP}_m^n \), is expressed as the conjunction of \(m \) pigeon clauses and \(\binom{m}{2} \cdot n \) hole clauses. For every \(1 \leq i \leq m \), we have a pigeon clause,

\[
(x_{i,1} \lor \ldots \lor x_{i,n}),
\]

stating that pigeon \(i \) maps to some hole. For every \(1 \leq i_1 < i_2 \leq m \) and every \(1 \leq j \leq n \), we have a hole clause,

\[
(\neg x_{i_1,j} \lor \neg x_{i_2,j}),
\]

which states that hole \(j \) is not mapped to by both pigeons \(i_1 \) and \(i_2 \).
stating that pigeons i_1 and i_2 do not both map to hole j. We refer to the pigeon clauses and the hole clauses also as pigeon axioms and hole axioms. Note that $\neg WPHP^m_n$ is a CNF formula.

Let G be (the graph representation of) a Resolution refutation for $\neg WPHP^m_n$. Then, by Proposition 1, for any leaf u of the graph G, one of the following is satisfied:

1. u is a pigeon axiom, and then for some $1 \leq i < m$, the variables $x_{i,1}, \ldots, x_{i,n}$ are all contained in $Zeros(u)$.
2. u is a hole axiom, and then for some $1 \leq j \leq n$, there exist two different variables $x_{i_1,j}, x_{i_2,j}$ in $Ones(u)$.

7. Resolution lower bounds for the weak pigeonhole principle

There are trivial Resolution proofs (and Regular Resolution proofs) of length $2^n \cdot \text{poly}(n)$ for the pigeonhole principle and for the weak pigeonhole principle. In a seminal paper, Haken proved that for the pigeonhole principle, the trivial proof is (almost) the best possible [7]. More specifically, Haken proved that any Resolution proof for the tautology PHP^m_n is of length $2^{O(n)}$. Haken’s argument was further developed in several other papers (e.g., [18, 1, 4]). In particular, it was shown that a similar argument gives lower bounds also for the weak pigeonhole principle, but only for small values of m. More specifically, super-polynomial lower bounds were proved for any Resolution proof for the tautology $WPHP^m_n$, for $m < c \cdot n^2 / \log n$ (for some constant c) [5].

For the weak pigeonhole principle with large values of m, there do exist Resolution proofs (and Regular Resolution proofs) which are much shorter than the trivial ones. In particular, it was proved by Buss and Pitassi that for $m > c \sqrt{n} \log n$ (for some constant c), there are Resolution (and Regular Resolution) proofs of length $\text{poly}(m)$ for the tautology $WPHP^m_n$ [3]. Can this upper bound be further improved? Can one prove a matching lower bound? A partial progress was made by Razborov, Wigderson and Yao, who proved exponential lower bounds for Regular Resolution proofs, but only when the Regular Resolution proof is of a certain restricted form [17].

The weak pigeonhole principle with large number of pigeons has attracted a lot of attention in recent years. However, the standard techniques for proving lower bounds for Resolution failed to give lower bounds for the weak pigeonhole principle. In particular, for $m \geq n^2$, no non-trivial lower bound was known until very recently.

In the last two years, these problems were completely solved. An exponential lower bound for any Regular Resolution proof was proved in [8], and an exponential lower bound for any Resolution proof was finally proved in [9]. More precisely, it was proved in [9] that for any m, any Resolution proof for the weak pigeonhole principle $WPHP^m_n$ is of length $\Omega(2^{\epsilon n})$, where $\epsilon > 0$ is some global constant ($\epsilon \approx 1/8$).

The lower bound was further improved in several results by Razborov. The first result [13] presents a proof for an improved lower bound of $\Omega(2^{\epsilon n})$, for $\epsilon = 1/3$. The second result [14] extends the lower bound to an important variant of the
pigeonhole principle, the so called weak functional pigeonhole principle, where we require in addition that each pigeon goes to exactly one hole. The third result \[15\] extends the lower bound to another important variant of the pigeonhole principle, the so called weak functional onto pigeonhole principle, where we require in addition that every hole is occupied.

For a recent survey on the propositional proof complexity of the pigeonhole principle, see \[16\].

8. Lower bounds for \(P \neq NP \)

Propositional versions of the statement \(P \neq NP \) were introduced by Razborov in 1995 \[10\] (see also \[11\]). Razborov suggested to try to prove super-polynomial lower bounds for the length of proofs for these statements in stronger and stronger propositional proof systems. This was suggested as a step for proving the hardness of proving \(P \neq NP \). The above mentioned results for the weak pigeonhole principle establish such super-polynomial lower bounds for Resolution.

Let \(g : \{0, 1\}^d \rightarrow \{0, 1\} \) be a Boolean function. For example, we can take \(g = SAT \), where \(SAT : \{0, 1\}^d \rightarrow \{0, 1\} \) is the satisfiability function (or we can take any other \(NP \)-hard function). We assume that we are given the truth table of \(g \). Let \(t \leq 2^d \) be some integer. We think of \(t \) as a large polynomial in \(d \), say \(t = d^{1000} \).

Razborov suggested to study propositional formulations of the following statement (in the variables \(\bar{Z} \)):

\[
\bar{Z} \text{ is (an encoding of) a Boolean circuit of size } t \implies \\
\bar{Z} \text{ does not compute the function } g.
\]

Note that since the truth table of \(g \) is of length \(2^d \), a propositional formulation of this statement will be of length at least \(2^d \), and it is not hard to see that there are ways to write this statement as a DNF formula of length \(2^d \) (and hence, its negation is a CNF formula of that length). The standard way to do that is by including in \(\bar{Z} \) both, the (topological) description of the Boolean circuit, as well as the value that each gate in the circuit outputs on each input for the circuit.

In \[12\], Razborov presented a lower bound for the degree of Polynomial Calculus proofs for the weak pigeonhole principle, and used this result to prove a lower bound for the degree of Polynomial Calculus proofs for a certain version of the above statement. Following this line of research, it was proved in \[9, 15\] (in a similar way) that if \(t \) is a large enough polynomial in \(d \) (say \(t = d^{1000} \)) then any Resolution proof for certain versions of the above statement is of length super-polynomial in \(2^d \), that is, super-polynomial in the length of the statement.

In particular, this can be interpreted as a super-polynomial lower bound for Resolution proofs for certain formulations of the statement \(P \neq NP \) (or, more precisely, of the statement \(NP \not\in P/poly \)).

It turns out that the exact way to give the (topological) description of the circuit is also important in some cases. This was done slightly differently in \[9\]
and in [15]. In [9], \tilde{Z} was used to encode a Boolean circuit of unbounded fan-in, whereas [15] considered Boolean circuits of fan-in 2. It turns out that for the stronger case of unbounded fan-in, the lower bound for the weak pigeonhole principle is enough [9], whereas for the weaker case of fan-in 2 one needs the lower bound for the weak functional onto pigeonhole principle [15] (in fact, this was one of the main motivations to consider the onto functional case). Otherwise, the proof seems to be quite robust in the way the Boolean circuit is encoded.

Acknowledgement. I would like to thank Toni Pitassi for very enjoyable collaboration that lead to the results in [8, 9].

References

