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Organisation of the Congress

M. S. Raghunathan, President of the ICM 2010

The National Board for Higher Mathematics (NBHM) is an organisation con-
stituted by the Government of India to oversee the development of mathematics
in the country. The initiative to make a bid to hold the International Congress
of Mathematicians (ICM) 2010 came from NBHM. A Provisional Organising
Committee (POC) was formed and a subcommittee – the Bid Committee was
given the job of preparing the Bid Document. Delhi was proposed as the venue.

The bid document gave background
information on the current state of
mathematics and its organisation in the
country. There was also a brief write-
up about the city of Delhi and India
as a tourist destination. Letters of sup-
port for holding the Congress received
from institutions from all over the coun-
try were part of the documentation.
The Department of Atomic Energy of
the Government of India pledged (infor-
mally) support to the tune of 40 million
rupees (approximately $800,000 at the then exchange rate). This informal letter
was also part of the bid-document. A copy of a letter from the Prime Minis-
ter of India, Dr Manmohan Singh addressed to the President (John Ball) of
IMU welcoming the holding of the ICM in India, was one of the important
components of the bid-document.

A 3-member site-inspection team (consisting of John Ball, Ma Zhi Ming
and Ragni Piene) constituted by the IMU EC visited Delhi and were given the
details of the organisational plans by the POC. However during some deliber-
ations of the POC held after this visit, it was brought to the attention of the
committee that an excellent convention centre had recently opened in the city
of Hyderabad which, with its state-of-the-art facilities, would be ideally suited
for holding the Congress. The POC visited Hyderabad in late 2004 to examine
the feasibility of holding the ICM there instead of in Delhi. The Hyderabad
International Convention Centre (HICC) was indeed found to be an excellent
place for holding the Congress. However there was some concern about the
availability of other infra-structural facilities in the city of Hyderabad such as
adequate number of hotel rooms of good quality. The Committee however was
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reassured by local people consulted on this issue that the requisite facilities were
available. The city of Hyderabad was reasonably well connected with Europe
as well as America.

It was therefore decided to revise the bid making Hyderabad, rather than
Delhi, the venue. The POC informed the IMU EC of their intention to modify
the bid making Hyderabad the venue. John Ball visited Hyderabad on behalf
of the IMU EC, inspected the available facilities and told the Indian POC to
go ahead with the proposed modification of the bid. The POC also fixed 19 -
27 August 2010 as the dates for the ICM (with August 23 as the “off” day).
The POC also devised a logo for ICM 2010. The logo represents the standard
fundamental domain with the famous Ramanujan Conjecture written out along
the rim of the unit circle.

The Indian bid was formally presented at the 2006 IMU General Assembly
held at Santiago de Compostela (in Spain) by the Indian Delegation (which
consisted of S. G. Dani, R. Hans-Gill, S. Kesavan and G. Misra). The IMU EC
recommended acceptance of the Indian bid (there was only one other bid – from
Canada) to the General Assembly which endorsed the EC’s recommendation.

With the acceptance of the bid, the POC was renamed (Local) Organising
Committee (OC). The OC was a rather large body and for ensuring efficient
functioning, a more compact body the “Executive Organising Committee” was
formed. Its members were: M. S. Raghunathan (Chair) and S. G. Dani (Vice
Chair) (both of Tata Institute of Fundamental Research, Mumbai), Rajat Tan-
don (Secretary), T. Amaranath (Treasurer) and S. Kumaresan (all of the Uni-
versity of Hyderabad), Gadadhar Misra and G. Rangarajan (both of Indian
Instiutute of Science, Bangalore), S. Kesavan (Institute of Mathematical Sci-
ences, Chennai), Rahul Roy (Indian Statistical Institute, Delhi), R. N. Puri (In-
dia Convention Promotion Bureau, Delhi) and Joint Secretary (R&D), DAE.
At a later point the committee was expanded to include R. Balasubramanian
(Institute of Mathematical Sciences, Chennai), V. Rao Aiyagiri (Department
of Science and Technology) and Dinesh Singh (University of Delhi).

The EOC’s first action was to take steps to ensure adequate funding for the
ICM and related activities. Towards this end, the Chair wrote to the Depart-
ment of Science and Technolgy of the Goverment of India requesting that the
department make a provision of the order of 20 million rupees for supporting
travel, registration and subsistence of about 1000 Indian participants and for
the conduct of some 20 satellite meetings which were expected to be proposed.
The EOC also submitted a formal detailed project proposal to the DAE titled
“Intenational Congress of Mathematicians 2010” seeking 60 million rupees as a
grant for the project. The proposal to the DAE suggested that the organisation
of the ICM would be undertaken as a project by the University of Hyderabad.
S. E. Hasnain, Vice Chancellor of the University wrote to the DAE that the
university would be willing to undertake the project with the EOC overseeing
its implementation. DAE accepted the proposal and formally agreed to provide
the 60 million rupees asked for to the University of Hyderabad for implementing
the project.
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In response to the request for support, the DST wanted a formal project
proposal with a much wider scope for the promotion of mathematics, incorpo-
rating the specific requests for support of activities connected with the ICM.
Such a proposal was drafted by S. Kesavan and M. Krishna of the Institute
of Mathematical Sciences, Chennai (IMSc) and submitted to the DST. In the
meanwhile the EOC made an announcement inviting applications from Indian
mathematicians who wanted to participate in the ICM and needed support . To
ensure a fair geographic distribution of the delegates to be supported, the EOC
divided the country into five regions and formed a committee for each region
to scrutinise applications and select candidates for support. The recommenda-
tions of the committees were to be passed on to S. Kesavan and M. Krishna
who would instruct IMSc to reimburse the selected candidates out of the funds
to be provided by DST.

The EOC formed also a committee chaired by M. S. Narasimhan to which
those desirous of organising satellite meetings could apply for funds. Once again
the recommendations of this committee would be passed on to IMSc. S. Kesavan
was the Secretary-Convenor of the committee.

The next important step taken by EOC was to make firm the hiring of the
Hyderabad International Convention Centre for the Congress. This was done
after protracted negotiations conducted largely by Rajat Tandon (Secretary
EOC). A contract was entered into with HICC with a payment schedule drawn
up and clear commitments on the part of HICC concerning the facilities to be
provided.

It was decided at an early meeting of the EOC to hire the services of a
professional conference organiser (PCO). The PCO was to be entrusted the
responsibility for (on-line) registration of delegates, accommodation and trans-
port arrangements for the delegates during the Congress, arrangements for tours
and travels, assistance with the organisation of cultural programmes and the
opening and closing functions. They were also to act as liaison between the
EOC and HICC. The EOC called for tenders from the various Conference
Organisers in the country. A committee chaired by S. Reghunathan, Retired
Chief Secretary, Delhi scrutinised the applications and after several meetings
and interviews with representatives of some short-listed companies chose K. W.
Conferences for the organisation of the ICM.

A website (www.icm2010.org.in) was created in January 2007. The website
furnished information about India in general and more detailed information on
the city of Hyderabad. It also started a page called Mathematical Miscellany
which carried miscellaneous information relating to mathematics, especially
things connected with India. In May 2009 a site for pre-registration was created
by the PCO (K. W. Conferences) and a link provided to this site from the ICM-
2010 website. In January 2010 a site for on-line registration was also created and
the Registration Fee was fixed at 16,000 rupees for working mathematicians,
8,000 rupees for graduate students, and 3,000 rupees for accompanying persons
provided the fees were paid by April 15. This date was later extended to June
15. Higher rates were charged for those who registered after this date. The
website also provided information on securing visas to India. In March 2010, K.



6 Organisation of the Congress

W. Conferences set up webpages for hotel reservations and also for registration
for tours.

In March 2009 H. W. Lenstra, the
Chair of the Programme Committee ap-
pointed by the IMU EC, provided the
EOC with the list of invited plenary
and sectional speakers as well as the
participants in various panels. Invita-
tions were sent out to all the invitees
by M. S. Raghunathan (Chair EOC) in
April 2009. All invited sectional speak-
ers were offered free registration and
were requested to submit abstracts and
texts of their talks by March 15, 2010.
The plenary speakers and panelists were
requested to submit abstracts by that
date and manuscripts by May 15, 2010.
About ten invitees declined and were
replaced by other names by the Pro-

gramme Committee. The IMU EC also added two more lectures to the pro-
gramme: the Abel Lecture sponsored by the Norwegian Academy to be given
by S. R. S. Varadhan, the 2006 Abel Laureate, and the Noether Lecture to be
given by Idun Reiten and these were included in the programme.

The organisation “European Women in Mathematics” approached the EOC
asking for support to organise a 2-day meeting focussing on contributions of
women to mathematics to be held just ahead of the ICM in Hyderabad. The
EOC responded favourably to the request and formed a Local Organising Com-
mittee chaired by Shobha Madan of IIT Kanpur for the purpose. The EOC also
extended financial support of 2 million rupees for organising the meeting which
was given the name International Congress of Women Mathematicians 2010. It
was scheduled for August 16-18, 2010 at the University of Hyderabad.

The EOC formed several subcommittees which were assigned specific tasks.
Each of the subcommittees was chaired by a member of the EOC with the
exception of the Editorial Committee for the Proceedings of the ICM, which
was chaired by Rajendra Bhatia of ISI Delhi. These committees were to liaise
with the PCO and supervise the PCO’s work. The Chair of each subcommittee
was given the primary responsibility for the committee’s work. S. Kumaresan
was to oversee registration of delegates and the accommodation arrangements
for participants supported by the EOC. T Amaranath (Treasurer) supervised
transport arrangements. Rajat Tandon (Secretary) was charged with the re-
sponsibility of arranging cultural programmes. S. Kesavan was in charge of
scheduling of lectures and other events. M. S. Raghunathan had the responsi-
bility of securing funds. Gadadhar Misra was to handle all matters relating to
the General Assembly (held at Bengaluru during 16-17 August) with the assis-
tance of G. Rangarajan. R Balasubramanian was to liaise with the Department
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of Science and Technology, while Dinesh Singh and Rahul Roy were to liaise
with other government departments in Delhi and the President’s Secretariat.

Apart from the funding obtained from the Indian government, the IMU
provided funds of the order of 5 million rupees. In addition the IMU also funded
the travel of about 100 delegates from developing countries. Further support
was obtained from private sources in India. Shri R. Thyagarajan of Chennai
made a generous donation of 6 million rupees while Shri N. R. Narayana Murthy
of Infosys gave 2 million rupees. Infosys also made available 300 rooms in their
excellent guest-house in Hyderabad free of cost for the delegates to the Congress.
Microsoft India was also among the donors.

The EOC approached the Honourable President of India Shrimathi Pratibha
Devisingh Patil with the request that she inaugurate the ICM on August 19,
2010 and give away the prizes. The President accepted the EOC’s invitation
and the inaugural function was held at 11 AM on August 19, 2010.

The President was received on her arrival at the venue by S. E. Hasnain,
László Lovász (President, IMU) and M. S. Raghunathan and led to the dais by
them. Seated on the dais were the two other special guests, the Governor and the
Chief Minister of Andhra Pradesh, Martin Grötschel (Secretary, IMU), László
Lovász, M. S. Raghunathan, S. E. Hasnain, Louis Nirenberg (the recipient of
the Chern Prize) and Rajat Tandon.

The proceedings began with the playing of the national anthem. Raghu-
nathan welcomed the President, other dignitaries and the delegates to the
Congress. Lovász then addressed the gathering as the President of the IMU.
This was followed by the President giving away the prizes: Grötschel announced
the composition of the prize committees followed by the names of the prize
winners and the citations. The prize winner then went up to the President and
received the medal from her. After that the prize winner received the prize
cheque from a representative of the sponsor. Altogether seven prizes were given
away: four Fields Medals, Nevanlinna Prize, Gauss Prize and Chern Prize. The
President then addressed the gathering. She spoke of India’s long engagement
with mathematics and its active role in international cooperation. She offered
congratulations to the prize winners and welcomed the delegates wishing them
a pleasant and fruitful stay in India. The Chief Minister also extended his wel-
come to the delegates. Rajat Tandon proposed the vote of thanks. The function
ended with the playing of the national anthem again. The programme was com-
pered by Chandna Chakraborty.

After the President left the inaugural function continued. Lovász and
Grötschel briefed the delegates about the various initiatives connected with
the ICMs taken by the EC since the previous Congress in Spain in 2006. The
passing away of V. Arnold and H. Cartan, who were both involved with IMU
activities in the past, and of K. Itô was condoled. Raghunathan was named
President of ICM 2010 by Lovász. The meeting ended with a brief reply by
Raghunathan.

In the afternoon there were laudations of the Fields Medallists: H. Fursten-
berg was the laudator for E. Lindenstrauss, J. Arthur for Ngô Bao Châu, H.
Kesten for S. Smirnov and H. T. Yau for C. Villani. This was followed by the lau-
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dation for the Nevanlinna Prize winner D. Spielman by G. Kalai. The academic
programme for the day ended with the Abel Lecture by S. R. S. Varadhan. K.
R. Parthasarathy was in the chair. In the evening the EOC hosted a dinner in
honour of the prize-winners and invited speakers.

On the second day, in the morning there were special sessions (9 AM to 12:30
PM) devoted to the Gauss and Chern Prizes. There was a talk on the work of
Yves Meyer, the Gauss Prize winner, by Ingrid Daubechies. The session on the
Chern Prize – which was being given for the first time – was more elaborate.
There was a talk about Chern’s work and a video film on him was also shown.
May Chu, Chern’s daughter spoke about her father. Yan Yan Li spoke on the
work of Louis Nirenberg, the Chern Prize winner.

In the evening, there was an Indian classical dance programme by
Nrityashree a dance troupe led by a renowned Bharata Natyam dancer, Profes-
sor C. V. Chandrasekhar. The dance-drama titled Panchamahabhutham was a
depiction through dance of the functioning of the five bhutas – bhumi (earth),
jalam (water), akasha (sky), vayu (air) and agni (fire). Later in the evening, the
EOC hosted a dinner for all delegates and accompanying persons. The venue
of the dinner was the Shilpa Kala Vedika.

From the third day on, each day, there were four plenary lectures during
9 AM to 2:45 PM with a break for lunch. The 1:45 PM - 2:45 PM slot was
reserved for lectures by the Fields Medallists and the Nevanlinna Prize winner.
As many as 8 parallel sessions were held for the sectional talks; there were also at
the same time parallel sessions for the contributed papers. Two poster sessions
were held on 21 August and about 115 posters were displayed. A total of 167
sectional talks of 45-minute duration were held during 3:00 PM to 6:30 PM.
There were 19 plenary talks and 7 special lectures. Plenary talks and sectional
talks were chaired by distinguished mathematicians, mostly from India. There
were several panel discussions, all of which were held during the late afternoons

The EOC organised a chess event on 24 August. Viswanathan Anand, the
world chess champion played simultaneous chess against 40 delegates. Except
for a solitary draw by a 14-year old, Anand won all the other games. All players
received a box of chess men and the board on which they had played, auto-
graphed by Anand. Other spectators could also collect Anand’s autographs
after the event.

Another cultural event organised by the EOC was the perfomance of the play
“A Disappearing Number” by the well known theatre company, Complicite of
London. The play was performed at the Global Peace Auditorium on two days,
21 and 22 August. The play was also open to the general public of Hyderabad.

On 25 August, there was a Classical Hindustani music concert by Ustad
Rashid Khan, one of India’s great exponents. EOC organised two lectures on
music appreciation by Sunil Mukhi on 22 and 24 August, for the benefit of
delegates who may be unfamiliar with Indian music.

In June 2010 the EOC instituted a one-time international prize called the
“Leelavati Prize” (of the value 1 million rupees) for public outreach work
for mathematics. Nominations for the prize were sought from mathematical
societies around the world, as also from mathematics departments of many
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universities and research institutions. The Prize committee chaired by M. S.
Narasimhan awarded the prize to Simon Singh, citing among other things,
the book as well as the documentary film he had produced on Fermat’s Last
Theorem. Singh gave a public lecture on the making of the documentary on
August 25.

Idun Reiten gave the Emmy Noether Lecture in the morning of the 27th.
Claire Voisin chaired this lecture.

The Closing Ceremony was held on August 27 in the afternoon. It was
conducted by Dinesh Singh. At this ceremony, on behalf of the International
Commission on History of Mathematics, Kim Plofker handed over the 2009 Ken-
neth O’May Prize for History of Mathematics to R. C. Gupta. Lovász handed
over the Leelavati Prize to Simon Singh. Lovász also announced that Ingrid
Daubechies will take over from him as President of the IMU from January
2011. It was also announced that a stable office for the IMU was being set up
in Berlin. It was announced that the Republic of Korea would host the 2014
Congress at Seoul. The Korean delegation was congratulated by those on the
dais and the Korean delegation extended a warm welcome to all present to ICM
2014. The Closing Ceremony ended with a vote of thanks by Rajat Tandon.

Several embassies held receptions during the Congress. The U. S. National
Committee, the London Mathematical Society, and the Indo-French Institute
for Mathematics also hosted receptions. These were mainly in honour of the
prize winners and invited speakers. People involved in the organisation of the
ICM were among the invitees.

About 3000 delegates attended the Congress of which roughly 1500 were
from India. Of these about 1000 received support from the Department of Sci-
ence and Technology of the Goverment of India. IMU funded the travel of some
100 delegates from developing countries whose local hospitality was taken care
of by the EOC. In addition the EOC funded the travel as well as local hospi-
tality for another 50 delegates from countries neighbouring India and offered
local hosptality to about 150 delegates from outside India.

The EOC and IMU EC cooperated closely in the organisation of the ICM
at Hyderabad. For the Indian mathematical community hosting the Congress
was a great experience.
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I. Local Organizing Committees

• National Advisory Committee

M. S. Narasimhan, Tata Institute of Fundamental Research, Bangalore,
Chair

M. S. Raghunathan, Tata Institute of Fundamental Research, Mumbai,
Secretary

Seyed E. Hasnain, University of Hyderabad
Anil Kakodkar, Atomic Energy Commission, Government of India
T. Ramasami, Department of Science and Technology, New Delhi
P. Rama Rao, International Advanced Research Centre for Powder Met-
allurgy and New Materials, Hyderabad.
C. S. Seshadri, Chennai Mathematical Institute, Chennai.

• Executive Organizing Committee

M. S. Raghunathan, Tata Institute of Fundamental Research, Mumbai,
Chair

R. Tandon, University of Hyderabad, Hyderabad, Secretary

T. Amaranath, University of Hyderabad, Hyderabad, Treasurer

R. Balasubramanian, Institute of Mathematical Sciences, Chennai
S. G. Dani, Tata Institute of Fundamental Research, Mumbai
S. Kesavan, Institute of Mathematical Sciences, Chennai
S. Kumaresan, University of Hyderabad, Hyderabad
G. Misra, Indian Institute of Science., Bangalore
R. M. Puri, India Convention Promotion Bureau, New Delhi
G. Rangarajan, Indian Institute of Science, Bangalore
Rahul Roy, Indian Statistical Institute, New Delhi
Dinesh Singh, University of Delhi, New Delhi
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Executive Organising Comittee

• Finance Committee

M. S. Raghunathan, Tata Institute of Fundamental Research, Mumbai,
Chair

T. Amaranath, University of Hyderabad, Hyderabad
S. G. Dani, Tata Institute of Fundamental Research, Mumbai
R. Tandon, University of Hyderabad, Hyderabad
A. K. Kulkarni, Member-Secretary, National Board for Higher Mathemat-
ics,
Finance Officer, University of Hyderabad, Hyderabad

• PCO Liaison Committee

R. Tandon, University of Hyderabad, Hyderabad, Chair

T. Amaranath, University of Hyderabad, Hyderabad
S. Kumaresan, University of Hyderabad, Hyderabad
G. Misra, Indian Institute of Science, Bangalore
G. Rangarajan, Indian Institute of Science, Bangalore
Rahul Roy, Indian Statistical Institute, New Delhi

• Website Management Committee

G. Misra, Indian Institute of Science, Bangalore, Chair

Pablo Arés Gastesi, Tata Institute of Fundamental Research, Mumbai
Madhavan Mukund, Chennai Mathematical Institute, Chennai
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G. Rangarajan, Indian Institute of Science, Bangalore
K. Vishnu Namboothiri, University of Hyderabad, Hyderabad

• Programme Committee

S. Kesavan, Institute of Mathematical Sciences, Chennai, Chair

T. Amaranath, University of Hyderabad, Hyderabad
Rajendra Bhatia, Indian Statistical Institute, New Delhi
G. Rangarajan, Indian Institute of Science, Bangalore
R. Tandon, University of Hyderabad, Hyderabad

• Cultural Events Committee

R. Tandon, University of Hyderabad, Hyderabad, Chair

J. Anuradha, University of Hyderabad, Hyderabad
S. Kesavan, Institute of Mathematical Science., Chennai
M. S. Raghunathan, Tata Institute of Fundamental Research, Mumbai

• Publicity Committee

M. S. Raghunathan, Tata Institute of Fundamental Research, Mumbai,
Chair

S. Kesavan, Institute of Mathematical Science, Chennai
R. Ramachandran, ‘The Hindu’, New Delhi
G. Rangarajan, Indian Institute of Science, Bangalore
Rahul Roy, Indian Statistical Institute, New Delhi
R. Tandon, University of Hyderabad, Hyderabad

• General Assembly Committee

G. Misra, Indian Institute of Science, Bangalore, Chair

Tirthankar Bhattacharyya, Indian Institute of Science, Bangalore
Shobha Madan, Indian Institute of Technology, Kanpur
Mythily Ramaswamy, Tata Institute of Fundamental Research, Bangalore
G. Rangarajan, Indian Institute of Science, Bangalore
T. S. S. R. K. Rao, Indian Statistical Institute, Bangalore
I. S. Shivakumara, Bangalore University, Bangalore

• Publications Committee

Rajendra Bhatia, Indian Statistical Institute, New Delhi, Chair

Pablo Arés Gastesi, Tata Institute of Fundamental Research, Mumbai
Arup Pal, Indian Statistical Institute, New Delhi
G. Rangarajan, Indian Institute of Science, Bangalore
V. Srinivas, Tata Institute of Fundamental Research, Mumbai
M. Vanninathan, Tata Institute of Fundamental Research, Bangalore
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II. IMU Committees for ICM 2010

• Program Committee ICM 2010

Hendrik W. Lenstra, Universiteit Leiden, Netherlands, Chair

Jeanine Daems, Universiteit Leiden, Netherlands, Assistant to the Chair

Louis H. Y. Chen, National University of Singapore, Singapore

José Antonio de la Peña, Universidad Nacional Autónoma de México,
Mexico
Etienne Ghys, CNRS – École Normale Supérieure de Lyon, France
Ta-Tsien Li, Fudan University, Shanghai, China
Dusa McDuff, Barnard College, Columbia University, New York, U. S. A.
Alfio Quarteroni, École Polytechnique Fédérale de Lausanne, Switzerland
and Politecnico di Milano, Italy
S. Ramanan, Chennai Mathematical Institute, India
Terence Tao, University of California, Los Angeles, U. S. A.
Eva Tardos, Cornell University, Ithaca, U. S. A.
Anatoly Vershik, St. Petersburg Branch of Steklov Mathematical Insti-
tute, St. Petersburg, Russia

• Sectional Panels of the Programme Committee

Panel 1, Logic and foundations

Theodore Slaman, University of California, Berkeley, U. S. A., Chair

Alain Louveau, Université de Paris VI, France
Ehud Hrushovski, Hebrew University, Jerusalem, Israel
Alex Wilkie, University of Manchester, U. K.
W. Hugh Woodin, University of California, Berkeley, U. S. A.

Panel 2, Algebra

R. Parimala, Emory University, Atlanta, U. S. A., Chair

David Eisenbud, University of California, Berkeley, U. S. A.
Maxim Kontsevich, Institut des Hautes Études Scientifiques, Bures-sur-
Yvette, France
Gunter Malle, Universität Kaiserslautern, Germany
Alexander S. Merkurjev, University of California, Los Angeles, U. S. A.
Vladimir L. Popov, Steklov Institute, Moscow, Russia
Raphael Rouquier, University of Oxford, U. K.
Michel Van den Bergh, Universiteit Hasselt, Belgium

Panel 3, Number Theory

Ramachandran Balasubramanian, Institute of Mathematical Sciences,
Chennai, India, Chair

Bas Edixhoven, Universiteit Leiden, Netherlands
Eduardo Friedman, Universidad de Chile, Santiago, Chile
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Ben Green, University of Cambridge, U. K.
Michael Harris, Université de Paris VII, France
Gérard Laumon, Université de Paris XI, Orsay, France
David Masser, Universität Basel, Switzerland
Noriko Yui, Queen’s University, Kingston, Canada
Shou-Wu Zhang, Columbia University, New York, U. S. A.

Panel 4, Algebraic and Complex Geometry

Claire Voisin, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette,
France, Chair

Lawrence Ein, University of Illinois at Chicago, U. S. A.
Barbara Fantechi, International School for Advanced Studies, Trieste,
Italy
Jun-Muk Hwang, Korea Institute for Advanced Study, Seoul, Korea
Grigory Mikhalkin, University of Toronto, Canada
Madhav Nori, University of Chicago, U. S. A.
Burt Totaro, University of Cambridge, U. K.

Panel 5, Geometry

Harold Rosenberg, Instituto Nacional de Matemática Pura e Aplicada,
Rio de Janeiro, Brazil, Chair

Dmitri Burago, Pennsylvania State University, University Park, U. S. A.
Ursula Hamenstädt Rheinische Friedrich-Wilhelms-Universität Bonn,
Germany
Michael Kapovich, University of California, Davis, U. S. A.
John Morgan, Columbia University, New York, U. S. A.
Brian White, Stanford University, U. S. A.
Weiping Zhang, Nankai University, Tianjin, China

Panel 6, Topology

Karen Vogtmann, Cornell University, Ithaca, U. S. A., Chair

Ian Agol, University of California, Berkeley, U. S. A.
Eleny Ionel, Stanford University, U. S. A.
Haynes Miller, Massachusetts Institute of Technology, Cambridge,
U. S. A.
Shigeyuki Morita, University of Tokyo, Japan
Peter Ozsvath, Columbia University, New York, U. S. A.
Ulrike Tillmann, University of Oxford, U. K.

Panel 7, Lie Theory and Generalizations

David Vogan, Massachusetts Institute of Technology, Cambridge, U. S.
A., Chair

Victor Ginzburg, University of Chicago, U. S. A.
Masaki Kashiwara, Kyoto University, Japan
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Jian-Shu Li, Hong Kong University of Science and Technology, Hong Kong
Elon Lindenstrauss, Princeton University, U. S. A. and Hebrew Univer-
sity, Jerusalem, Israel
Madabusi S. Raghunathan, Tata Institute of Fundamental Research,
Mumbai, India
Ernest Borisovich Vinberg, Moscow State University, Russia

Panel 8, Analysis

Alberto Grünbaum, University of California, Berkeley, U. S. A., Chair

Kari Astala, University of Helsinki, Finland
David Bekollé, University of Ngaoundere, Cameroun
Ewa Damek, University of Wrocław, Poland
Stanislav Smirnov, Université de Genève, Switzerland
Xavier Tolsa, Universitat Autónoma de Barcelona, Spain
Alexander Veselov, Loughborough University, U. K.

Panel 9, Functional Analysis and Applications

Sorin Popa, University of California, Los Angeles, U. S. A., Chair

Claire Anantharaman-Delaroche, Université d’Orléans, France
Marek Bożejko, University of Wrocław, Poland
Nigel Higson, Pennsylvania State University, University Park, U. S. A.
Bernard Maurey, Université de Paris VII, France

Panel 10, Dynamical Systems and Ordinary Differential Equations

Albert Fathi, École Normale Supérieure de Lyon, France, Chair

Shrikrishna Gopalrao Dani, Tata Institute of Fundamental Research,
Mumbai, India
Vadim Kaloshin, University of Maryland, College Park, U. S. A.
Bryna Kra, Northwestern University, Evanston, U. S. A.
Mary Rees, University of Liverpool, U. K.
José Antonio Seade Kuri, Universidad Nacional Autónoma de México,
Cuernavaca, Mexico
Dmitry Treschev, Steklov Mathematical Institute, Moscow, Russia

Panel 11, Partial Differential Equations

Patrick Gérard, Université de Paris XI, Orsay, France, Chair

Luigi Ambrosio, Scuola Normale Superiore, Pisa, Italy
Vladimir S. Buslaev, St. Petersburg State University, Russia
Mónica Clapp, Universidad Nacional Autónoma de México, Mexico
Miguel A. Herrero, Universidad Complutense, Madrid, Spain
Jiaxing Hong, Fudan University, Shanghai, China
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Opening Ceremony, 19 August 2010

M. S. Raghunathan, Chairman of the Executive Organizing
Committee

Respected Rashtrapatiji, Honourable Governor of Andhra Pradesh, Honourable
Chief Minister of Andhra Pradesh, delegates to the Congress, ladies and gen-
tlemen,

It gives me great pleasure to extend to you all a warm welcome to this
inaugural function. We are grateful to the honourable President of India for
kindly agreeing to be the Chief Guest and to inaugurate this function today.
We are also greatly honoured by the presence of the Honourable Governor, Shri
E. S. L. Narasimhan and the Honourable Chief Minister, Shri K. Rosaiah on
this occasion. I extend them all a warm welcome.

The International Congress of Mathematicians has more than a hundred
year old history and it is, by far, the most important, prestigious and biggest
international gathering of mathematicians, which takes place once every four
years. It is for the first time that India is hosting this event. It is, thus, a
really historic landmark in the annals of Indian mathematics. On behalf of
the Indian mathematical community, I would like to thank the International
Mathematical Union for giving us this opportunity to hold this Congress and
welcome mathematicians from all over the world to India, and to Hyderabad,
the venue of the Congress. This is really a great opportunity for the Indian
community to interact with the finest mathematical minds from all over the
world, an opportunity which we are very grateful for.

The Programme Committee, chaired by Professor H. W. Lenstra, is offering
us a veritable mathematical feast. I am sure the delegates will have a very
fruitful and enjoyable time during the Congress. I extend a special welcome to
the invited speakers and the prize winners and also offer my congratulations to
them. Thank you.

László Lovász, President of the In-
ternational Mathematical Union

Madam President, Honourable Gover-
nor, Honourable Chief Minister, ladies
and gentlemen,

The International Congress of Math-
ematicians is a very old tradition, more
than a century old. And it has been the
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lynchpin holding together the community of mathematicians internationally. It
gives us a chance to award our main prizes. It gives us a possibility to survey
recent developments in all fields of mathematics. It also gives the forum for
discussions of important issues in mathematical life.

There is, usually, quite a competition for the right to organize this Congress
which takes place every fourth year. This time, India has won the competition
and this is, indeed, justified because India has a very long tradition in mathe-
matics. Without going into details, I can mention Bhaskara, the development
of our number system, Ramanujan, whose work is still an inspiration in a large
number of branches of mathematics, and our colleagues in India and of Indian
origin all over the world who are doing outstanding research in mathematics
and also in related fields like computer science.

This event should contribute to further development of mathematical re-
search and mathematical education not only in India but also, indeed, all over
the world. I wish you an inspiring, pleasant and fruitful stay in Hyderabad and
I hope that you will go home with a feeling that you have taken part in some-
thing which is a unique event – it happens every fourth year, it happened for
the first time in India; and that this event will give you inspiration for the next
four years. Thank you.

The Chief Minister of Andhra Pradesh, Shri Konijeti Rosaiah

I am happy to be here at the inauguration of this important mathematical
event. I extend a warm welcome to all the delegates to Hyderabad. It is a
cosmopolitan city steeped in history and has a composite culture drawing from
diverse traditions. It is a striking contrast between the old and the new.

Hyderabad hosts many educational and research institutions. The Univer-
sity of Hyderabad is among the top universities in the country. It has been
rated as number 1 in India by Scopus based on the impact factor of its publica-
tions. There are eleven other universities in the city, Osmania being the oldest
with a history of over a hundred years. The Centre for Cellular and Molecular
Biology, The National Geophysical Research Institute and the Centre for DNA
Fingerprinting and Diagnostics are among the leading institutes for scientific
research in the country. The city offers stiff competition to Bangalore as a hub
for the IT industry. This conference is located in an area of the city which is
popularly known as Cyberabad.

In Andhra we have always had a great regard for mathematicians. There is
a famous Telugu proverb which says:

Lakke lunna varu nijamaina managaadu

meaning

One who is good at calculations is a great man.

Amaravati in our state was an ancient seat of learning particularly famous
for Buddhist studies. The study of logic was very much a part of Buddhist
philosophical studies and was connected intimately with foundational issues in
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mathematics. In recent years many mathematicians from Andhra Pradesh have
distinguished themselves. Professor C. R. Rao ranks among the leading inter-
national figures in Statistics. Professor S. Minakshisundaram’s contributions to
the study of the Heat Equation are well known to the mathematical community.
Professor K. Chandrasekharan was the architect of the School of Mathemat-
ics of the Tata Institute of Fundamental Research in Mumbai. Professor K. G.
Ramanathan, who helped Chandrasekharan build that school, taught at Osma-
nia University. We are indeed proud of the contributions of these outstanding
mathematicians from Andhra Pradesh.

We recognise the importance of mathematics as a discipline as well as a tool
in science and technology, and in many other practical matters. The Congress
will focus public attention on mathematics even if your deliberations are beyond
ordinary people. Raising awareness of mathematics among people is important
and the Congress will do that. I find that the organisers have arranged two talks
aimed at high school and college students in the city. I am happy to see this
initiative in the midst of a busy programme concerned with high level research.

We are happy that Hyderabad was chosen to host the Congress by the In-
dian organisers and their bid was accepted by the International Mathematical
Union. My government has always encouraged the promotion of top level aca-
demic interaction between scientists. We have given unstinted support to the
Congress. I wish the delegates a very fruitful conference. I urge you to take this
opportunity to explore the diverse touristic attractions that the state of Andhra
Pradesh, in general, and this great city, in particular, have to offer. You will
not be disappointed.

Martin Grötschel, Secretary of the International Mathematical
Union

Honourable President of India, ladies and gentlemen, dear fellow mathemati-
cians,

I have the great honor and particular pleasure to announce this year’s Fields
Medalists. As you have already heard, the Fields Medals carry the highest pres-
tige of all awards in mathematics. This prestige does not derive from the value
of the cash award, but from the superb mathematical qualities of the previ-
ous Fields Medal awardees. They all have become monuments of mathematics
and are recorded in our history books. The work of the Fields Medalists 2010
belongs to this category. The medals will be handed out by the honorable Pres-
ident of India, IMU President László Lovász will present the cash awards and
diplomas, and the Medalist citations will be read by me.

The Fields Medal Committee was chaired by László Lovász, President of
IMU, as is the tradition. The committee members were Corrado de Concini,
Yakov Eliashberg, Peter Hall, Timothy Gowers, Ngaiming Mok, Stefan Müller,
Peter Sarnak and Karen Uhlenbeck. The work of this committee is very hard
because contributions of mathematicians aged below 40 have to be judged,
which are not necessarily well-known yet across all of mathematics.
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The Fields Medals were first awarded in 1936 and recognize outstanding
mathematical achievement for existing work and for the promise in future. The
medals themselves are about 6 cm in diameter and are made of 14-carat gold.
You will rarely have the occasion to touch them, so you can see photos of both
sides of the medal on the screen.

Martin Grötschel and the Fields Medalists

The first medalist, in alphabetic order, is Elon Lindenstrauss of Hebrew
University, Jerusalem, Israel and Princeton University, Princeton, NJ, USA.
The brief citation reads: “For his results on measure rigidity in ergodic theory,

and their applications to number theory.” You will hear more about Elon’s work
and the work of the three other medalists this afternoon.

The second Fields Medalist, in alphabetic order, is Ngô Bao Châu, from
the Université Paris-Sud, Orsay, France, but as you can infer from his name,
Ngô Bao Châu was born and raised in Vietnam. The short citation is: “For his

proof of the Fundamental Lemma in the theory of automorphic forms through

the introduction of new algebro-geometric methods.”
The third winner of the Fields Medal is Stanislav Smirnov. He is at the

Université de Genéve in Switzerland, but Stanislav Smirnov is of Russian ori-
gin, as you can guess from his name. The brief citation that the Fields Medal
Committee phrased is:“For the proof of conformal invariance of percolation and

the planar Ising model in statistical physics.”
The fourth Fields Medalist is Cédric Villani. Cédric is from the Institut

Henry Poincaré, Paris, France. His citation reads: “For his proofs of nonlinear

Landau damping and convergence to equilibrium for the Boltzmann equation.”
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Ravindran Kannan, Chairman of the Rolf Nevanlinna Prize Com-
mittee

Honourable President,

These are the members of the committee and I want to thank them for all the
hard work they put in – Stanley Osher, Olivier Pironneau, Madhu Sudan and
Emo Welzl. And now, we are ready to announce the winner of the Nevanlinna
Prize. First, we will show you the medal (screen display). As Martin said, may
be you will not get to hold it but you can see it. The candidate must be forty
or under to get this prize.

And now, I am ready to announce the winner of the Nevanlinna Prize,
and the winner is Daniel Spielman. And the brief citation reads: “For smooth

analysis of linear programming algorithms and algorithms for graph based codes,

applications of graph theory to numerical computing.”

Wolfgang Dahmen, Chairman of the Carl Friedrich Gauss Prize Com-
mittee

Honourable President, dear colleagues,

As the chairman of the Gauss Prize committee, I have the pleasure now to
announce the Gauss Prize. Let me briefly introduce the committee. The mem-
bers were Rolf Jeltsch, Servet Martinez Aguilera, and William R. Pulleybank.

A brief word on the Gauss Prize itself. As you know, the name Gauss stands
for a unique fusion between fundamental contributions in mathematics in so
many areas and concrete applications. The back side of the medal shows one
such example, namely, the little circle you see there is the small asteroid Ceres.
Gauss had developed a new method to predict its re-appearance, and as a by-
product, he developed the least squares method which you could view as the
father of all statistical estimators symbolised by the little square in the medal
that you see. In that very spirit, the award is for outstanding mathematical con-
tributions with a significant and lasting impact on applications, in particular,
outside mathematics.

The person to be awarded has been, in the true sense of the word, in fact, in
a double sense in this case, in the centre of some activities nicely indicated by
this picture (screen display) from a conference that had taken place in 1992 in
Oberwolfach. It is now my great pleasure to reveal the identity of this person:
the prize is going to be awarded to Professor Yves Meyer. The brief citation
is: IMU and DMV (Deutsche Mathematiker Vereinigung) jointly awarded this
prize for his fundamental contributions to those results at the interface between
harmonic analysis, number theory and operator theory that finally culminated
in the new paradigm referred to as multi-resolution analysis with wavelet bases
as the focal point. This paradigm really revolutionized modern methodologies in
signal processing but had also strong impact far beyond on other application ar-
eas such as non-parametric statistical estimation, and even to pre-conditioning
systems of equations that appear in large scale numerical simulation. He re-
ally created a new way of multi-resolution thinking which convinced the Gauss
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committee that Professor Meyer is an outstanding candidate in the very spirit
of the award.

Robert Bryant, Chern Medal Committee

It is my honour and pleasure to be invited to announce the award of the first
Chern Prize. As a member of the committee, I should say just a word about
the committee members. Our chair was Professor Phillip Griffiths; the members
consisted of myself, Gerd Faltings, Fanghua Lin, and Wendelin Werner.

The Chern Medal is named for and is in honour of Professor Shiing-Shen
Chern who devoted his life to mathematics, both in active research and edu-
cation and in nurturing the field whenever the opportunity arose. He obtained
fundamental results in the area of differential geometry and introduced many
students to mathematical research. The medal is to be awarded to an individual
whose lifelong outstanding achievements in the field of mathematics warrant the
highest level of recognition. It is our pleasure to announce the recipient of this
award, Professor Louis Nirenberg. Professor Nirenberg is the principal founder
of the modern field of nonlinear elliptic equations, which occupies a central
role across mathematics. Professor Nirenberg’s broad and fundamental contri-
butions to our field exemplify the qualities recognized by the Chern Medal.

The award will now be presented. I should say, since it is a new award,
many people may not realize – the award is made possible by the generosity
of the Simons Foundation and the Chern Foundation. It consists of two parts:
250,000 dollars that go to the recipient and 250,000 dollars to be donated to
mathematical causes that the recipient chooses.

Louis Nirenberg after receiving the Chern Prize, Smirnov and Spielman are
behind him
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The President of India, Shrimati Pratibha Devisingh Patil

Ladies and Gentlemen,

It gives me great pleasure to inaugurate the International Congress of Math-
ematicians, which has a history of over a hundred years, in this beautiful city
of Hyderabad. This Conference convened every four years, under the aegis of
the International Mathematical Union, is an opportunity for mathematicians
from all over the world to discuss developments and advances in this discipline.

First of all, I would like to congratulate the Prize winners. I wish the young
Fields Medalists and the Nevanlinna Prize Winner many more years of high
mathematical achievement. Those who have been conferred the Gauss Prize and
the Chern Prize deserve, apart from our congratulations, our deep appreciation
for the service they have rendered to human progress through their profound
mathematical work.

To be here, in the midst of outstanding mathematical scholars, is an exhil-
arating experience. Though I must confess that I am no mathematician, but
belonging to a country that has a rich mathematical heritage, and where it has
been accorded a primary position among intellectual pursuits, I feel proud that
this Conference is being held here. India’s engagement with mathematics goes
back some three thousand years. An ancient Sanskrit verse states:
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which means:-

Like the crest of the peacock and the jewel of the serpent

Mathematics stands at the helm of all sciences.

Mathematics appears to have acquired an independent identity as an intel-
lectual discipline early in human history. India has been at the forefront in
contributing to innovations in arithmetic, algebra and geometry at different
periods. The Pythagoras Theorem finds a place in Baudhayana Sulva Sutra,

a work dating back to 8th century BC. The concept of zero or shunya origi-
nated from India. Pierre Simon Laplace, a French mathematician, said in the
19th century that, “it is India that gave us the ingenious method of express-
ing all numbers by the means of ten symbols, each symbol receiving a value
of position, as well as an absolute value; a profound and important idea.” The
contributions of Aryabhata and Brahmagupta to the development of algebra
and astronomy in the 6th and 7th centuries are well recognised. In the 12th
century there was Bhaskaracharya. His work ’Leelavati’ was the main source in
medieval India for learning algebra and arithmetic. The book formulates math-
ematical problems in verse form addressed to Leelavati, Bhaskara’s daughter.
It was through scholars from the Middle East that renaissance Europe became
acquainted with these Indian developments. However, until the twentieth cen-
tury, the West seems to have been unaware of Madhava, a mathematician of
the 15th century who anticipated the essentials of Calculus. It is only in recent
years that the work of the ‘Kerala School’ has attracted considerable attention
from historians of mathematics.

After a somewhat dormant period of almost half a millennium, revival of
mathematical activity in India was triggered by the advent of the extraordinary
figure of Srinivasa Ramanujan in the early 20th century. Ramanujan’s achieve-
ments were a source of inspiration for succeeding generations. I hope that, in
the midst of your busy schedule, you get an opportunity to see the play titled
“A Disappearing Number”, being staged during the course of this Conference.
It has, I am informed, references to the relationship between Ramanujan and
G.H. Hardy.

Ever since our independence, India has recognised the importance of sci-
ence as a vehicle for human progress. Mathematics, the language of science and
its advancement, is an integral part of India’s science policy. Mathematics is
a science, but nevertheless stands a little apart from other sciences. Yet, it is
mathematical intervention that decisively confers the label ‘science’ to any in-
tellectual discipline. Mathematics, hence, permeates all sciences. Mathematics
has had a big role in the development of Computer Science and Information
Technology. There are myriad applications of mathematics in technology; and
the mathematics used there is reaching higher and higher levels of sophisti-
cation. It is hard, for example, to conceive of any aircraft, any robot, or any
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future technology, to be produced without a high level of mathematical preci-
sion. In recent years, the influence of mathematics in other fields has also grown
enormously. Economics and social sciences, once impervious to mathematics,
are coming increasingly under its influence. The need for understanding mathe-
matics is necessary for people in all walks of life– whether engineers or scientists,
or those working in the world of industry, finance or social sciences. Its role in
other human endeavours apart, we also recognise the profound cultural dimen-
sion that the study of mathematics has. There is an aesthetic component to
its pursuit, and it inculcates the habit of rational thought and promotes what
our first visionary Prime Minister Jawaharlal Nehru called “scientific temper”.
It is important that study of mathematics is promoted amongst the young
generation.

The International Mathematical Union, under whose auspices the Mathe-
matical Congress is being held for the last 50 years has, I am told, initiated
many programmes for the promotion of mathematics in developing countries.
I wish them great success in such initiatives. I am also happy that mathemati-
cians from India have been contributing to the work of the IMU and are hosting
this Conference.

I congratulate all those who have extended support to the Conference. The
Department of Atomic Energy and the Department of Science and Technology
of the Government of India, in particular, have made this event – the ICM –
possible. I understand that many individuals and corporate entities have also
extended generous support. My congratulations go also to the University of
Hyderabad, its Vice Chancellor and its Mathematics Faculty in particular, for
their role in the organisation of this event.

I extend a warm welcome to all the delegates who have assembled here.
To the foreign delegates who have come here, I extend a cordial welcome to
India. Many of you, I hope, will find time to savour the rich cultural her-
itage of our country. The organisers have planned some programmes that would
give you glimpses of our country’s rich culture. One interesting event is where
Viswanathan Anand, the current World Chess Champion is going to play simul-
taneously against 40 mathematicians. Chess is a game of moves and strategy. It
will now be facing the combined calculated moves of mathematics. I wish you
all good luck in this challenge!

In conclusion, I wish you all a very fruitful meeting. This is a great op-
portunity for the mathematical community to interact. I once again wish the
Congress great success.

Thank You. Jai Hind!
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Rajat Tandon, Secretary of the Executive Organizing Committee

Honourable President of India, Honourable Governor of Andhra Pradesh, Hon-
ourable Chief Minister of Andhra Pradesh, Vice Chancellor of the University
of Hyderabad, dignitaries in the audience and fellow mathematicians,

We are grateful to you, Madam President, for sparing your time to grace
this occasion. We are aware that you must be pressed for time, with much more
important affairs of state, and we are grateful that you could find the time to
come all the way from Delhi to be among us for this function.

I thank our honourable Gov-
ernor too, for being here. He is
the Rector of my university and
we know he takes a keen interest
in matters academic. Thank you
Sir, for the interest that you have
shown in our Congress. Thanks
are due to our honourable Chief
Minister for the unstinted support
that his government has given the
organizers. Without the support
of his government, the conduct of

this event would just not have been possible. We particularly thank the police
department for their co-operation.

One of the most enthusiastic supporters of this International Congress has
been our Vice Chancellor, Dr Hasnain. The number of ways he has helped our
Congress is countless. It would perhaps not be an exaggeration to say that the
entire university was put at the disposal of the conference organizers. I thank
you Sir, for your infectious enthusiasm and support.

I would like to thank the Department of Atomic Energy for providing funds
for the Congress as well as the Department of Science and Technology for
supporting many of the delegates who are present here today. Thanks are due
to the International Mathematical Union for supporting our bid to hold the
Congress and for constantly helping us in the organization of the Congress. The
Prime Minister’s office has helped us in many ways and deserves thanks too. I
would like to thank the Press for their continuous coverage of events leading up
to the Congress, particularly The Hindu, which has provided coverage of not
only the Congress but mathematics in general.

I would like to thank all the private donors to our Congress. Special mention
must be made of Mr R. Thyagarajan, Chairman of the Sriram Group of Com-
panies, and Infosys Technologies Limited and its Chairman Mr N. R. Narayana
Murthy, for their extraordinary generosity. We thank also Microsoft, Reliance
Capital, and Dr Anji Reddy for their support.

I would like to thank the London based theatre group Complicite for timing
their visit to India with that of ICM, so that the play would be available for
viewing of the delegates. Thanks are also due to the two artists who will be
performing before all of you assembled here, Professor C. V. Chandrasekhar
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and his troupe and Ustad Rashid Khan. I must also make a mention of Grand
Master Viswanathan Anand, who has found time for us in between two of his
tournaments.

I profusely thank all the plenary and invited speakers and special speakers
who have given their time and effort to speak at this Congress. I thank all the
delegates for choosing to come to India and to attend this Congress, and I hope
they find their time in India most enjoyable. All our volunteers deserve special
thanks for working tirelessly night and day.

Lastly, on a more personal note, I thank my colleagues in the Organizing
Committee, my colleagues in my department and my office staff. They have
worked relentlessly for the last two years. The organization of a conference of
this kind is an incredible team effort. There are a large number of workers whose
contribution is crucial to the running of the Congress. I would not be able to
thank them all. For this, I beg their forgiveness. However, they can rest assured
that in spite of this, we are truly grateful to them. Thank you.

(The President of India leaves)

László Lovász

Ladies and gentlemen,
The inaugural function in the presence of the Indian President has now

finished, but we have some traditional functions to perform. And so, I would
like to ask you to bear with me a little bit. There are some things we have to
do.

One of these traditions is that we commemorate those of our colleagues
worldwide who passed away during the last four years. In this case, there are
three losses which are particularly severe. During the last four years, Henri
Cartan, great mathematician who was the President of the IMU from 1967 to
1970, passed away. Vladimir Arnold, who was the Vice President of IMU from
1999 to 2002, passed away. And Kiyosi Itô, who was the winner of the Gauss
Prize just four years ago, passed away. I propose that we stand up for a minute
in their memory, and also of all of our colleagues worldwide who died.

Another important step is to reveal our Program Committee. The ICM pro-
gram has been put together by a committee chaired by Hendrick Lenstra. And
all, except the name of the committee chair, has not been made public until
this moment in order to protect the committee from undue influence. The mem-
bers of the Program Committee were Louis Chen, Dusa McDuff, Etienne Ghys,
Ta-Tsien Li, José Antonio de la Peña, Alfio Quarteroni, S. Ramanan, Terence
Tao, Eva Tardos and Anatoly Vershik. I think that among the many very hard
tasks connected with organizing the Congress, the Program Committee has one
of the hardest and perhaps, one of the most important. We see the result of
their work. We have a list of invited speakers – I personally think that it is
a great list. We are looking forward to a very high level and very interesting
mathematical program. And this is due to the fantastic work of this Program
Committee. So, let us give them applause.
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Another step that I would like to propose is, that as is the tradition, we
elect a President of the Congress. The President of the Congress is elected
by acclamation. I propose that we elect Professor M. S. Raghunathan for this
function.

As you all know, the General Assembly of the IMU has had its session just
before the Congress. And, during that session, a lot of important decisions have
been made. The tradition is that these decisions are discussed in detail at the
Closing Ceremony. Nevertheless, I think that there are three of these which,
perhaps, are best announced now. First of all, we have a new President, Ingrid
Daubechies. She will start her term next January, and I am very glad that
she accepted this job, and that she is present here. She is the first woman to
be President of the International Mathematical Union. The General Assembly
decided that the site of the next ICM will be in Seoul, South Korea, and again,
at the Closing Ceremony, you will have much more to hear about this. One of
the most important decisions of the General Assembly was to decide that the
IMU should have a permanent office. The permanent office will be in Berlin.
You will learn more about this. Congratulations, and thanks to all colleagues
who made this possible.

For obvious reasons we have left vague some points in this afternoon’s pro-
gram. There will be laudations for the prize winners, for the Fields medalists and
the Nevanlinna Prize winner. Harry Furstenberg will be the laudator for Elon
Lindenstrauss, Jim Arthur will speak about the work of Ngô Bao Châu, Harry
Kesten will speak about Stanislav Smirnov, Horng-Tzer Yau will speak about
Cédric Villani, and Gil Kalai will speak about Daniel Spielman. Tomorrow, we
have a special occasion; because the Chern Prize is new, we also inaugurate this
new prize. The winner, Louis Nirenberg, has received the prize but laudation
on his work by Yan Yan Li will happen tomorrow. Ingrid Daubechies will speak
about the work of Yves Meyer, the Gauss Prize winner.

Let me call your attention to the fact that you will find more about the
prize winners on the home page of the ICM after 12:30 today. Also, talks by
the Fields medalists and by the Nevanlinna prize winner are scheduled for the
period 13:45 to 14:45 on the next five working days of the Congress.

While these are the announcements you have been waiting for with excite-
ment, there are other prizes that are connected to the IMU or to this ICM.
There is the Leelavati Prize, which is a new prize. At the moment, it is a one-
time prize by the Indian government for popularization of mathematics, and it
is named after a twelfth century Indian mathematical text. It will be awarded
at the Closing Ceremony. I want to mention the other prize which is given by
the Abel Foundation, but the IMU nominates members to the prize committee.
Here are the winners of the last four Abel Prizes – Srinivasa Varadhan in 2007,
John Thompson and Jacques Tits in 2008, Mikhail Gromov in 2009 and John
Tate in 2010. There is an Abel Prize Lecture by Srinivasa Varadhan scheduled
for this afternoon. I propose that we congratulate the prize winners.

There is one more prize which is especially important for us this is the Ra-
manujan Prize. It is given by the ICTP and is financed by the Abel Foundation.
The IMU appoints members to the prize committee, and we cooperate with the
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ICTP in many other respects connected with this prize. This year’s prize has
not yet been announced. In 2006 Ramdorai Sujatha, in 2007 Jorge Lauret, in
2008 Enrique Pujals and in 2009 Ernesto Luperico received this prize. Again,
let us congratulate them.

And finally, I would like to inaugurate the Hyderabad Intelligencer, edited
by S. G. Dani, and I hope that you enjoy reading this publication. Now I ask
Martin Grötschel to make some other presentations about the IMU.

Martin Grötschel

From what you have heard before, it may look like IMU is only awarding prizes
and electing officers. No, IMU does much more. The IMU Executive Committee
and the other IMU commissions and committees are working hard on many
aspects of mathematics. It is not possible to present here all of ICMI’s work for
mathematical education, such as the ICMI studies, or the CDE/DCSG activities
for mathematics in the developing world, like the report on Mathematics in
Africa: Challenges and Opportunities,and so on.

I take this occasion to point to only a few topical items and I do hope that
they are of interest for you. The work I will mention is mainly due to CEIC,
IMU’s Committee on Electronic Information and Communication.

This committee has produced a number of reports that can be downloaded
from IMU’s homepage. CEIC has written various recommendations on informa-
tion and communication for mathematical authors, librarians and publishers.
Valuable sources of information are the reports on Best Practices for Retrodig-

itization and the Vision for the Future of Digital Mathematics Libraries.

I want to invite you to read the document Citation Statistics that deals with
impact factors and the like and analyzes the use and misuse of citation data
in the assessment of scientific research. Many universities around the world,
especially the administrators, are trying to rate the work of mathematicians by
the impact factor or variants thereof. The Citation Statistics report reveals that
the impact factor does not suit as a proper measure to rate the scientific quality
of an individual person or department, not even a journal. And it shows how
one can manipulate these bibliometric data which are claimed to be “simple and
objective”. But this judgment is unfounded. Douglas N. Arnold and Kristine K.
Fowler have recently written the paper Nefarious Numbers in which they report,
among other things, on some spectacular cases of misuse. In fact, impact factors
and the like can now be viewed not as a matter of statistics, but of game theory.
You play against the statistics and try to improve your rating. IMU is making
an attempt to provide you with arguments against those administrators who
believe that they can rank you and your work and compare your achievements
with colleagues in other fields by computing some citation statistics.

At the meeting of the IMU General Assembly two days ago in Bangalore,
the GA delegates endorsed a document called Best Current Practices for Jour-

nals that discusses journal related issues such as quality control, dissemination,
archiving, transparency of the editing process, integrity of the persons involved,
and professionalism. This document will be uploaded today on IMU’s Web
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page.It will help you make decisions about buying or subscribing to mathemat-
ical journals, about submitting papers to journals, or about getting involved as
editors of journals.

Some words concerning ICM issues. You know that the series of our Interna-
tional Congresses started in 1897. Two members of the current IMU Executive
Committee, Salah Baouendi and Ragni Piene, did very careful and exhaustive
work to collect the names of all persons who have ever spoken at an ICM as
a plenary or invited speaker or in a particular function. Now, this collection of
speakers is available and searchable on the IMU Web page.

My last activity on this stage today is to inaugurate a new Web page,which
is the page where the digital versions of all ICM Proceedings of all time can be
found. It contains all articles published in these proceedings in various formats.
The whole collection is searchable in several ways. I now try to make a live
search. I type “Hilbert”, a name you probably all have heard of, into the search
field. Let’s see what happens: Yes, this is live, more than 20 entries appear,
among them five papers by Hilbert himself. And now I click on the Hilbert
paper in the second line entitled Sur les problèmes futurs des Mathèmatiques.

It is downloaded from the IMU server in Berlin, and here it is.
The paper I just downloaded is probably the most famous paper ever pub-

lished in the Proceedings, one of the most important mathematical articles of
all time.It is the paper in which David Hilbert outlined the 23 problems he con-
sidered of highest importance in the year 1900. This open problems collection
influenced the development of mathematics very significantly throughout the
last century.

Of course, putting together such a collection with all its functionalities is a
major piece of work which usually is not done automatically and for free. That
the use of this collection is completely free of charge for everyone is due to the
fact that all publishing houses involved have granted IMU the right to digitize
these books and that IMU engaged two volunteers, R. Keith Dennis of Cornell
University, Ithaca, USA and Ulf Rehmann, Universität Bielefeld, Germany, who
did all the digitization for love of mathematics. Thank you Keith and Ulf, and
please give them a really big applause.

This finishes my brief presentation about what IMU is doing. IMU does a
lot more, but there is not enough time to report about that here today.

Thank you very much.

M. S. Raghunathan

I welcome you all again in my new capacity as President of the ICM. I do not
know how it is different from being the Chairman of the Organizing Committee
but anyway, let me extend you a welcome. I hope you will find the Congress
very fruitful, and all organization satisfactory. Thank you.



Ngô Bau Châ receiving the Fields

Medal from the President of India

Cédric Villani, Dan Spielman and

Yves Meyer, pleased with the prizes

Stanislav Smirnov and Cédric Vil-

lani checking whether they have

their own medals

Elon Lindenstrauss and Ngô Bau

Châu



Cédric Villani, the best dressed man at the Congress

Elon Lindenstrauss showing his medal



Etienne Ghys and Artur Avila Claire Voisin and Vikram Mehta

Harry Kesten and Jacob Palis S. R. S. Varadhan



Dance at the Congress



Closing Ceremony, 27 August 2010

Dinesh Singh, University of Delhi (anchor person)

All good things have to end and it looks like a very good thing is about to end.
It has been a delight, it has been a learning experience for all of us and it is
something that reinforces our beliefs as mathematicians.

All such conferences require enormous planning, but more than that, they
call for boldness of vision, dynamism of effort and steadfastness of purpose. We
were fortunate to have them all in our Organising Committee, and particularly
so in its Chairman, Professor M. S. Raghunathan.

M. S. Raghunathan

Professor Hasnain, delegates to the Congress, ladies and gentlemen,
I am very happy to welcome you all to this closing function of the ICM 2010.

It has been a great experience organizing this. As you all know, it is a collabo-
rative effort of the International Mathematical Union and the Local Organizing
Committee. I must add to that the University of Hyderabad, whose Vice Chan-
cellor is present here today. The University of Hyderabad has extended every
possible help to us. Many of their staff have worked hard for this Congress.
As I said, the IMU and the Local Organizing Committee are partners in this
effort, and I have had a very enjoyable collaboration with the IMU Executive
Committee. Despite the fact that I am a somewhat laid-back person and the
Secretary personifies all thoroughness and efficiency, we did work together very
well. And I am very thankful to the EC for their support.

I would also like to take this opportunity to congratulate the prize winners
who will be felicitated today and awarded their prizes today: Professor R. C.
Gupta for his work on history of mathematics, and Dr. Simon Singh for his
work on public outreach for mathematics.

My congratulations to Professor Ingrid Daubechies for taking over as the
next President of the IMU, and to Professor Hyungju Park for having won the
bid to hold the next Congress – I wish him every success.

The last item on the agenda of the meeting today is the vote of thanks. This
is a somewhat quaint business. You hear the person who does the most work
for the Congress thank everybody else, and he does not get thanked himself. I
would like to extend my thanks to Professor Rajat Tandon for all the immense
work he has put in for the Congress.
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Dinesh Singh

The Executive Organizing Committee of the ICM was seized of the importance
of mathematics reaching out to the public. Towards this end, it has instituted
a one-time international prize of one million Indian rupees for outstanding
contribution to public outreach for mathematics by an individual. The prize is
named the Leelavati Prize. Leelavati is a twelfth century mathematical treatise
by the Indian mathematician Bhaskaracharya. In the book, the author poses a
series of mathematics problems as challenges to one Leelavati and follows them
up with indications of solutions. The problems are in verse form, but not the
solutions. This work was the main source for learning mathematics in medieval
India. The work was also translated into Persian and was influential in the
Middle East.

The Leelavati Prize has been awarded to Dr Simon Singh and it is my
pleasant duty on this occasion to read the formal citation: on the occasion of
the International Congress of Mathematicians 2010, the Department of Atomic
Energy of the Government of India and the Executive Organizing Committee
for ICM 2010 are pleased to confer on Dr Simon Singh the Leelavati Prize for
outstanding contributions to public outreach for mathematics. Dr Singh has
been recognized for his outstanding contributions to the public understanding
of mathematics and science and in their promotion in schools, and in building
links between universities and schools. His efforts to reach out to the public,
both through print and television, have been enormously successful. His book
entitled Fermat’s Last Theorem was a best-seller for several months and was
televised to make a hugely popular documentary. Dr Singh has also written
The Code Book, describing the impact of cryptography on history. This also
was converted to a popular five-part serial as a television documentary. More
recently, Dr Singh has produced for radio and television A further five numbers

dealing with five specific numbers of scientific or historical interest. No other
author in recent times has caught the public imagination in painstakingly and
accurately explaining recent developments in mathematics to them. The Exec-
utive Organizing Committee is honoured to confer the Leelavati Prize on Dr
Simon Singh.

(Presentation of the award to Dr. Simon Singh.)

Dr Simon Singh

Thank you very much. It is a genuine honour to be receiving this award, the first
prize of its kind. I just want to say a few very brief things. One is that the most
exciting moments I have had at the Conference have been people come up to
me and say that when they read my book as a teenager, it helped inspire their
interest in mathematics. And that is a real buzz for me because that is part of
the reason that I write my books. Secondly, I think that it is worth mentioning
that Martin Gardner passed away earlier this year, and I know many people in
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this room have been inspired by Martin’s writing, and I myself was very much
inspired by his writing.

Two other points I just make very briefly – one is that my parents emigrated
from India in 1950, and I think one of the reasons they went to England was to
try and benefit my education, and I learnt a great deal in English schools and
became fascinated by mathematics and by science and benefitted from Britain’s
long tradition of excellent education. But having come back to India recently
in the last ten years, it is very clear that Indian education is inspiring a new
generation of young mathematicians and that is very exciting for me. Sadly, I
think English education at the highest level is falling back. So, though I am
very proud of the fact that India was moving forward rapidly in this area, it
is a shame that in Britain and perhaps in Europe and in America, our schools
are not pushing the best and brightest students as far as they possibly could.

Finally, it is an interesting point that my background is really in physics
and I write about science and I write about mathematics. Though my first love,
was physics when I was a student, now I love mathematics very much too, and
I write as much about mathematics as I do about anything else.

Seyed E. Hasnain, Vice Chancellor of the University of Hyderabad

Distinguished mathematicians, members of the Press, dear friends,

I remember about three years ago, our Mathematics Department head came
to me saying that they would like to host the ICM in India, they will get support
from the Government of India, and they want the University of Hyderabad to
host it. They asked me to agree and I agreed right away. And today, three years
down the road, we see a runaway success. I have been in this hall many times. I
have never seen a Congress – a prolonged meeting of nine days, in which the hall
is full on the last day. This is a tribute to mathematicians. I salute all of you.
Three thousand delegates, eighty five countries, the whole mandate of this ICM
was to promote interaction, and I must say the ICM Secretariat must be very
happy. It indeed must have fostered lot of interactions, lot of collaborations. I
am sure there would be future Fields medallists who would be inspired, who
would have been inspired by this meeting.

This meeting was also very unique in having several firsts. It is the first time,
of course, it was held in India. It was the first time that a world chess champion,
Grand Master Viswanathan Anand, played forty simultaneous matches and he
could defeat everybody but had to draw with one small boy, an Indian boy.

We also had Dr Simon Singh receive the Leelavati award instituted by the
Government of India, and we will make all efforts to ensure that this award
joins the ranks of other prestigious awards and is awarded every four years.

I understand a lot of cultural programmes were organized by groups from
my university. The Essence School of Performing Arts had some programmes
here. And a newsletter Reflexions reported everyday about happenings in the
conference. That just goes to show how much involved the entire University of
Hyderabad family was in the ICM 2010.
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Let me conclude by congratulating all the award winners and thanking the
IMU for holding the meeting here in India, in Hyderabad, and requesting the
University of Hyderabad to be the host for this meeting. I would also like
to thank all my colleagues at the University of Hyderabad, particularly the
Secretary EOC, Rajat Tandon.

Dinesh Singh

Thank you, Professor Hasnain.
The International Commission on the History of Mathematics has insti-

tuted the Kenneth O. May Prize for outstanding contributions to the field. For
the year 2009, this prize has been awarded jointly to Professor Ivor Grattan-
Guinness and Professor R. C. Gupta. Professor R. C. Gupta is present here
amidst us. He could not receive the prize at Budapest at the ICHM in 2009.

Kim Plofker, International Commission on the History of
Mathematics

On behalf of the International Commission on the History of Mathematics of
the IMU, I am very happy and greatly honoured to present the 2009 Kenneth
O. May Prize to Professor R. C. Gupta. The May Prize is regarded as the
highest honour in the field of History of Mathematics, and has been awarded to
an eminent senior scholar every four years since its establishment in 1989. This
occasion represents the first time it has been bestowed on an Indian historian, or
a historian of Indian mathematics, among whom one of the most distinguished
examples is Professor R. C. Gupta.

Radha Charan Gupta was born in Jhansi in 1935, and received his B. Sc.
from Lucknow University in 1955. He was the first place medalist in the M.
Sc. Mathematics examination in Lucknow in 1957, and earned a Ph. D. in the
history of mathematics from Ranchi University in 1971. He did his disserta-
tion work at Ranchi with the renowned historian of Indian mathematics T.
A. Saraswathi Amma, author of Geometry in Ancient and Medieval India, in
honour of whom he later endowed the annual memorial lecture of the Kerala
Mathematical Association. After serving as a lecturer at Lucknow Christian
College in 1957-58, he joined the Faculty of Mathematics of Birla Institute of
Technology in Ranchi. He became a professor at BIT in 1982 and emeritus
professor at the mandatory retirement age of 60 in 1995. He currently conducts
his extensive and varied research and service activities under the aegis of the
Ganita Bharati Institute, Jhansi.

Since the late 1960s, Professor Gupta’s research work has focussed on the
history of mathematics in India, particularly the development of trigonome-
try including interpolation rules and infinite series for trigonometric functions.
Among his ground-breaking works in this field are his analysis of Parameswara’s
third order series approximation for the sine function in the fifteenth century
and his examination of the eighth century methods of Govindaswami for inter-
polating sine tables. Professor Gupta’s recent publications, the whole corpus
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of which now totals over five hundred items, include chapters on historiogra-
phy of mathematics in India, area of a bow figure in India, and a little known
nineteenth century study of Ganitasarasangraha. Besides skillfully analyzing
many hitherto unknown ingenious mathematical formulas in elliptical Sanskrit
verses, Professor Gupta has published several key papers on the remarkable
mathematical discoveries of the Jaina tradition, many of which had been al-
most inaccessible to anyone except specialists in the Jaina cannon in Prakrit.

This bridge building approach has characterized Professor Gupta’s research
in general, whether explaining Sanskrit algorithms for a modern mathematical
audience, surveying the twentieth century Indian doctoral research on history
of mathematics, tracing the influence of Indian mathematical discoveries in for-
eign traditions, or expounding Jaina, Buddhist or Hindu cosmological theories
in the context of early Indian work on transfinite quantities. He has combined
scrupulous textual scholarship and expert mathematical exegesis with clear and
comprehensive exposition, serving the needs of general audience and specialist
researcher alike. No scholar in the twentieth century has done more to advance
widespread understanding of the development of Indian mathematics. Profes-
sor Gupta has added to his research and teaching, a long record of professional
service, expanding awareness of the history of mathematics in general and of In-
dian mathematics in particular. In 1991, he was elected a Fellow of the National
Academy of Sciences, India and in 1994, he became President of the Association
of Mathematics Teachers of India. He became a Corresponding Member of the
International Academy of History of Science in February 1995 and was more
recently elected Effective Member. In 1979, he began his decades long service
as Founding Editor of the journal Ganita Bharati meaning ‘Indian mathemat-
ics’, in which he has published scores of articles and reviews under his own
name and the pen name Ganitanand, the joy of mathematics. His pedagogical
publications and lectures in English and Hindi, as well as his sponsorship of
numerous endowed lectures have greatly increased the prominence of history of
mathematics in Indian mathematics education and scholarship. Today, we are
very pleased and honoured to recognize Radha Charan Gupta with the Ken-
neth O. May Prize and Medal, awarded for lifetime scholarly achievement and
commitment to the field.

(Award to Professor R. C. Gupta)

Radha Charan Gupta

Dear colleagues,
I am really very happy at this occasion to receive this prize, not only because

it has ultimately recognized my work but also because it is associated with
the memory of late Professor Kenneth O. May with whom I had contact as
early as 1968. When he founded the International Commission on History of
Mathematics, he took me as a member to represent South Asia. In 1974, when
he started the international journal Historia Mathematica, I played a role in
spreading the message of that journal and did its work in India.
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When I became the Editor of the Ganita Bharati I played a double role. I
brought a world perspective on history of mathematics to Indian scholars and,
on the other hand, I facilitated publications on history of Indian mathematics
for world scholars. I am happy to see that things have worked.

I hope that this prize, which has come for the first time to India, will en-
courage Indian scholars to do more work. Thank you.

Lásló Lovász

Ladies and gentlemen,
As President of the IMU, I have two more functions to perform here. Let

me start with the first one. I have to report, in a bit more detail, about the
main decisions taken by the General Assembly in Bangalore right before this
Congress. Let me start with the new Executive Committee which will begin
to function next January. Ingrid Daubechies is already introduced to you at
the opening ceremony as the new President, Martin Grötschel will stay on as
Secretary. Two new Vice Presidents have been elected – Christiane Rousseau
and Marcelo Viana. Manuel de León, Yiming Long, Cheryl Praeger, Vasudevan
Srinivas, John Francis Toland and Wendelin Werner will be members-at-large. I
will have the privilege to stay for four more years ex-officio as the past President
and I am happy to have this chance to work. I wish the new President and the
new Executive Committee a successful term.

A new Commission for Developing Countries was elected by the General
Assembly. José Antonio de la Peña will be the President, Herbert Clemens
will be Secretary of Policy, Srinivasan Kesavan will be Secretary for Grants,
Hoang Xuan Phu will represent Asia, Wandera Ogana will represent Africa
and Carlos Cabrelli will represent Latin America in this Commissison. Again,
congratulations to them and I wish them successful work.

The General Assembly also elected two persons to be delegated to the Inter-
national Commission on the History of Mathematics – they are Jesper Lützen
and Kim Plofker. Congratulations.

I would like to express my thanks at this point to the retiring Executive
Committee, even though we still have a hard four months in front of us with all
the work around the stable office, to which I will come in a minute. I would like
to extend my thanks to those members who are retiring – Zhi-Ming Ma and
Claudio Procesi as Vice Presidents, Salah Baouendi, Ragni Piene and Victor
Vassiliev as members-at-large. It was great to work with them and I really feel
that this Executive Committee was a great team and I wish the next one also
has such a spirit. I especially thank John Ball, the Past President, for his help
throughout. Without that this Committee could not have functioned. He was
always tireless and ever ready to take on any kind of job. Thank you John, and
thanks to all the other members.

In connection with the new Commission for Developing Countries, there
were two committees which have ceased to exist. They were merged and their
functions were combined. One of them was the Commission for Development
and Exchange, whose President was Shrikrishna Dani and Secretary-Treasurer
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was Gérard Gonzalez-Sprinberg. Graciela Boente, Paulo Cordaro, Jean-Pierre
Gossez, Mary Teuw Niane, Marta Sanz-Sole and Jiping Zhang were members.
I thank them all for their work over the last term. And we also had a Devel-
oping Countries Strategy Group, which was chaired by Herbert Clemens, and
consisted of Jill Adler, Hajer Bahouri, John Ball, Shrikrishna Dani, Jean-Pierre
Gossez, Andreas Griewank, Jacob Palis, Lê Dung Trang, Peter Pang Yu Hin,
Michel Jambu, Sheung Tsun Tsou. I thank all members of this group for doing
outstanding work.

This was my first task, and now I would like to ask Ingrid Daubechies to
say a few words.

Ingrid Daubechies, President elect of the International Mathematical
Union

As was said at the start of the ceremony how things must end. This is the end
of this ICM which I enjoyed hugely, and as you can see (pointing to her new
Indian costume) I enjoyed not only the mathematics!

As you have heard from Laci,
IMU not only organizes ICMs al-
though that is one of its very
important functions, but it also
stands for helping developing coun-
tries build viable mathematical
communities, and for strengthen-
ing links between mathematicians
who devote their lives to teach-
ing mathematics to younger gen-
erations and research mathemati-
cians. I would encourage those of

you who are curious about these other roles of the IMU, or curious about how
an ICM gets organized, to visit the website of IMU. And if you would like to get
involved, if you would like to contribute, contact the delegates of your country
or write to the Executive Committee. We prefer constructive comments to hate
mail. But of course, one of IMU’s major functions is to organize the next ICM.
As I said I enjoyed this one hugely, I have learnt, I have met many new people
and I will be working hard on making the next one equally enjoyable.

Hyungju Park, Chair of the Seoul ICM 2014 Organizing Committee

I will start by showing the invitation from the President of the Republic of
Korea. The President’s office in Korea was involved in this endeavour, in our
bidding efforts, from the very beginning and has been very supportive. Not
many of you have been to Korea and may not know about it. So I will start
by telling you what Korea is like. By the way, you may know the expression
‘the land of the morning calms’ – this expression was used in a poem. It was
a poem written by a well-known Indian poet named Tagore. In this poem he
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described Korea as the land of morning calm, apparently he meant Korea was
a quiet hidden country. And so, that was then.

Now Korea is considered a leader in the information age. So we have come a
long way. And one thing I want to emphasize here is that scholarship is valued
very highly in Korea. Illiteracy rate in Korea is close to zero, virtually zero,
and often education is the highest priority in any Korean family. And I think
that was the principal reason for any progress that we might have made. A
few years ago, Korea was the eleventh largest economy in the world. Starting
from the ashes of Korean Civil War, that was quite a progress that we made.
Unfortunately because of some Asian financial problems, we are now, I think,
down to thirteenth probably, in terms of size of the economy. But still we are
there, we are vibrant.

And Korea is very accessible. Of course, some people joke that everybody
seems to place their country in the centre of the world, well I did! So, Seoul is
not far. It takes about twelve hours from Los Angeles, twelve hours from Paris,
twelve hours from Rome, and it takes about nine hours from here. So, it is not
too far. And we have ‘no visa’ agreements with one hundred and sixty countries.
So, many of you will be able to come to Korea without having to worry about
visas. And we wanted to make sure that everybody, every registered participant
of ICM, could come visit us in Korea. So, we talked to the Ministry of Foreign
Affairs and they wrote that they will do this.

Of course, I have to tell you about the mathematics in Korea. And the
expression that I used was ‘a long journey’. We have 192 four-year universities
and colleges in Korea and 42 of them have Ph.D. programmes in mathematics
and mathematics education. The Korean Mathematical Society has about 2700
individual members, of which about 1200 are professors of mathematics. We
joined the IMU in 1981 and now we are a Group IV member.

Rapid growth is observed over a broad spectrum. On one end, highest level
of mathematical research; on the other end, popularization of mathematics
and education. Korea ranked eleventh in terms of number of publications in
2008. Not only quantity of course, but quality research is being carried out
and is highly valued and respected in Korea. For example, we have five invited
speakers in ICMs, two this time.

In 1981, the number of research papers published by mathematicians based
in Korea was three. So we came from three to where we are in less than thirty
years. And I think that took a lot of effort from our side and also a lot of
support and help from the international community. And this is something we
want to remember for long, and want to actually show the world that we have
done this and we now want to make another jump.

And as I said rapid growth is observed over a broad spectrum, not only just
in research but also in terms of popularization of mathematics and public out-
reach. For example, that includes the public’s growing interest in mathematics.
In IMO, International Mathematical Olympiad, Korea has been ranking third
or fourth consistently, implying that young students in Korea are genuinely
interested in mathematics. And by the way, about 60 to 70 percent of these
IMO medalists do choose mathematics as their college major. And many of
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them do even end up getting Ph.D. in mathematics. I think this is a singular
phenomenon in the world. And also, there are many mathematical research
institutes in Korea, and the government is supporting it. We have two main
research institutes—KIAS and NIMS, and we have several institutes located
at universities. And numerous meetings are being hosted, the most recent one
being a joint meeting with the American Mathematical Society.

There is a pledge that we made during our bidding efforts. We offered to
invite one thousand mathematicians from developing countries to Korea, all
expenses paid. The morale, the rationale, is simple. We came to where we are
by the support of the international mathematical community, and we believe
that we can return the favour. And we wish to acknowledge the gracious and
friendly support from the international mathematical community. I have heard
from my own teachers, my college teachers, their experience about being a
single Korean participant in ICM, and that was made possible by an IMU travel
grant. The professors came back with all the stories to tell, and that excited
me and my fellow students. And I am hoping that the same thing can happen
in many other countries. This Seoul ICM travel fellowship programme will be
prepared in consultation with IMU, especially the newly created Commission
for Developing Countries.

I most cordially invite all of you to Seoul.

Rajat Tandon

Professor Hasnain, Professor Lovász, Professor Raghunathan, Professor
Daubechies, Professor Park and fellow mathematicians,

A project started four years ago is about to come to an end. I would like
to take this opportunity to acknowledge the person who first mooted the idea
of bringing the Congress to India: Mr R. M. Puri of the Indian Convention
Promotion Board.

Let me begin by thanking our Vice-Chancellor, Professor Seyed Hasnain. In
him we found our most ardent supporter. He always backed us to the hilt. I
thank the Finance Department of the University of Hyderabad for their support
in making the financial processes work as smoothly as possible; the Public
Relations Department and our PRO for their help in handling the local media.

Thanks are due to the Executive Committee of the IMU, for constantly
supporting us and advising us. A particular word of thanks to Professor Lenstra
and the entire Program Committee for providing us with an academic program
of the highest standards and widest interest. I thank the invited speakers for
their contribution to the Congress.

A word of gratitude for the state and central government departments, and
the Prime Minister’s Office for helping us when matters came to a crunch.
A special word of gratitude for Mr R. Thyagarajan and Mr N. R. Narayana
Murthy for their generous support to the Congress.

The cultural items were a great success. I would like to thank Professor
J. Anuradha and the students of the Dance Department at the University of
Hyderabad. I am thankful to Professor Sunil Mukhi for two excellent lectures
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on the appreciation of Hindustani classical music. The London based theatre
group Compliate came all the way to Hyderabad, and gave us a wonderful
play. I thank the producer Judith Dimant, the director Simon McBurney, their
manager Cathy Binks and the Prithvi Theatre of Mumbai. I am grateful to
grandmaster Viswanathan Anand for the match he played with forty partici-
pants. The participants themselves were thrilled, and chess lovers were rewarded
with a matchless performance.

The two public lectures were a great success. Both Professors Bill Barton and
Gunter Ziegler who gave the lectures were inundated by questions and mobbed
like film stars. I was frankly jealous. Profuse thanks to both the speakers.

I would like to take this opportunity to thank my colleagues. Our chairman,
Professor Raghunathan, held us all together – his contribution was invaluable.
My colleague Professor Amaranath and I were like brothers for the last four
years.

Let me not forget to thank the entire HICC team for their support, and the
team of KW Conferences for being the second face of the Organizing Commit-
tee. My own department staff, Chandrasekhar and Gangaji in particular, have
burnt the midnight oil on several occasions. I salute them. FinalIy I thank all
the volunteers who have worked tirelessly for the last ten days.

Fellow delegates, I realize that there were many glitches along the way, that
there were problems in logistics, and that sometimes the arrangements were
not perfect. To those who have been inconvenienced in any way I offer a sincere
word of apology.

Thank you once again for coming to Hyderabad, and making this Congress
a great success.

Thank you.



Preface

The Proceedings of the International Congress of Mathematicians 2010 (ICM
2010) consist of four volumes. As is customary, Volumes 2-4 containing texts
of invited sectional talks were ready in August 2010 before the Congress took
place. Volume 1 has been prepared after the Congress.

This volume is divided into five parts. The first part consists of a report on
the organisation of the Congress, the speeches at the Opening and the Clos-
ing ceremonies including the presentation of the Fields Medals, the Nevanlinna
Prize, the Gauss Prize and the Chern Prize. The second part contains lauda-
tiones for the prizes. These are descriptions of the work of the prize winners
presented by leading authorities. The third part – the main body of the volume
– consists of texts of Plenary Talks at the Congress. In the fourth part are pre-
sented texts of two special lectures – the Abel Lecture and the Emmy Noether
Lecture – and presentations by the Fields Medalists. (One of the winners of the
Fields Medal Ngô Bao Châu was also a plenary speaker, and Daniel Spielman,
the winner of the Nevanlinna Prize was an invited speaker in Section 15. Their
articles appear in the respective sections.) Part five of the volume consists of
summaries of panel discussions organised at the Congress, and articles by some
of the panelists.

Breaking from tradition, all participants at the ICM 2010 have received a
copy of these Proceedings on compact disks. Printed volumes are available on
special order. An online version will become available after a few months.

Besides my able co-editors Arup Pal, G. Rangarajan, V. Srinivas, M. Vanni-
nathan and Pablo Gastesi, my colleague Ajit Iqbal Singh has provided valuable
support in the tedious jobs of editing, proof-reading and compiling the material.
Anil Shukla has handled the large correspondence and records with diligence
and competence.

It is a pleasure to thank all the authors for their contribution and their
cooperation, the publishers Hindustan Book Agency for their magnificent work
in producing these volumes, and the Executive Organising Committee of ICM
2010 for their unstinted support.

Rajendra Bhatia
January, 2011 Chair

Publications Committee of ICM 2010



Editor’s Note

The following plenary and invited talks at the Congress are not included in
these Proceedings as the speakers did not send their articles.

Plenary Lectures

Peter W. Jones

Eigenfunctions and coordinate systems on manifolds

Stanley Osher

New algorithms in image science

Nicolai Reshetikhin

On mathematical problems in quantum field theory

Invited Talks

T. Januszkiewicz (Section 5)
Simplicial nonpositive curvature

A. Schnirelman (Section 11)
Long-time behaviour of fluid flows

Y. Last (Section 12)
Stability of absolutely continuous spectrum under decaying perturbation: a
review of recent developments

P. Chaudhuri (Section 13)
On quantiles in finite and infinite dimensional spaces

S. Sheffield (Section 13)
How do you divide your (two-dimensional) time?

D. Aharonov (Section 15)
Quantum computation and mathematics

P. A. Parrilo (Section 17)
Semidefinite programming and complex algebraic geometry

B. Van Dalen (Section 20)
Islamic astronomical handbooks and their transmission to India and China
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The work of Elon Lindenstrauss

Harry Furstenberg

I’ve been asked to describe some of the achievements of Elon Lindenstrauss -

our Fields medalist. Elon Lindenstrauss’s work continues a tradition of interac-

tion between dynamical systems theory and diophantine analysis. This tradition

goes back at least to the year 1914 - when Hermann Weyl published a paper

entitled “An application of number theory to statistical mechanics and the the-

ory of perturbations.” In that paper Weyl used what we would call Kronecker’s

Theorem to show the validity of the ergodic hypothesis in certain situations. In

the meantime the roles have been reversed, with dynamical systems theory and

ergodic theory providing the tools for answering questions in number theory.

The number theoretical issues arising in the work of Lindenstrauss have to

do with so-called diophantine approximation - in which one asks whether in-

equalities having real solutions have integer solutions. In this area we encounter

a phenomenon which is reminiscent of ergodic behavior. It can be described

crudely by saying that whatever is not excluded for some good reason and can

happen in principle, will eventually happen - at least approximately. There is

a good reason that

−ε < x2 − (1 +

√

2)
2y2 < ε

cannot be solved for small ε (this would imply that
√

2 is well approximable).

But this doesn’t apply to the three variable inequality:

−ε < x2 − (1 +

√

2)
2y2 − αz2 < ε (α 6= 0 arbitrary)

and indeed by the relatively recently established Oppenheim conjecture, for any

positive ε, this has a solution in integers (x, y, z) not all 0.

An important advance has come about by enlarging the scope of dynamics

to include what will be referred to as “homogeneous dynamics”. Every since

Poincaré dynamical theory had broken out of the shackles of Ordinary Dif-

ferential Equations and a dynamical system comes about whenever we have

a 1-parameter group {Tt} — think of t as time — of transformations acting

in a space X, which we identify as the phase space of the system. We have

homogeneous dynamics when X is a homogeneous space of a Lie group; we can

write X = G/Γ. For any 1-parameter subgroup {g(t)} ⊂ G we can set Tt(gΓ) =
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g(t)gΓ. Homogeneous dynamics allows one further abuse of the term “dynam-

ics”, extending the action from a 1-parameter subgroup of G to an arbitrary

Lie subgroup H ⊂ G, so that the time parameter can be higher dimensional.

This liberalization of viewpoint has been quite fruitful in the recent application

of dynamics to number theory.

One particular homogeneous space has been the focus of activity in this

work, it is a space that appears implicitly in Minkowski’s geometry of numbers.

Namely, for a dimension d, we consider the space Ωd of unimodular lattices

spanned by d independent vectors in Rd
. The group SL(d,R) acts transitively

on this space in a natural way: Ωd
∼= SL(d,R)/SL(d,Z). There is a measure

on Ωd invariant under the action of the group and the measure of Ωd is finite.

Nonetheless the space Ωd is non-compact in its natural topology. This is impor-

tant, as is Mahler’s criterion for a set Σ ⊂ Ωd to have compact closure. Namely,

Σ̄ is compact unless there is a sequence {σn} ⊂ Σ and vectors vn ∈ σn with

‖vn‖ → 0.

There is a broad spectrum of problems for which this is relevant. Namely,

let Φ(x1, x2, . . . , xd) be a homogeneous polynomial and we ask if for arbitrarily

small ε > 0 one can solve |Φ(x1, x2, . . . , x1)| < ε in integers not all 0. (This

would in fact imply that the range of Φ on Zd
is dense in either R+,R−

, or

both). Now define the subgroups

HΦ ⊂ G = SL(d,R) by HΦ = {h ∈ G : Φ(hv̄) = Φ(v̄) for all v̄ ∈ Rd
}.

In general for a non-compact group H, one expects orbits Hx to be unbounded,

and then Mahler’s criterion will come into play. If we take x0 ∈ Ωd to be the

lattice Zd
, then if HΦx0 is unbounded, this will imply that there exist h ∈ HΦ

and ~v ∈ Zd
with ‖h~v‖ arbitrarily small which means that Φ(~v) is arbitrarily

small. This was the strategy leading to the solution of the Oppenheim conjec-

ture in the 80’s by Margulis. Here Φ(x1, x2, x3) = αx21 − βx22 − γx23 and HΦ

has the property investigated by Marina Ratner motivated by conjectures of

Raghunathan and Dani - of being generated by unipotent subgroups. (A linear

transformation is unipotent if 1 is its unique eigenvalue.) By this theory one

can classify all the closed HΦ-invariant subsets of Ω3 and in particular, one sees

that an HΦ-orbit has compact closure only if it is already compact. Margulis

shows that this can happen to the orbit of x0 = Zd
only if α, β, γ are commen-

surable. Otherwise this orbit is unbounded which leads to the conclusion that

|Φ(x1, x2, x3)| < ε has integer solutions.

Another notorious diophantine approximation problem is Littlewood’s con-

jecture: for all pairs of real number α, β, if for x real we denote by ‖x‖ the

distance of x to the nearest integer, then

lim inf
n→∞

n‖nα‖ ‖nβ‖ = 0.

This fits into the framework just discussed for the polynomial

ψ(x1, x2, x3) = x1(αx1 − x2)(βx1 − x3)
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where we disallow x1 = 0. A linear transformation carries this to

Θ(X,Y, Z) = XY Z

and HΘ is (locally) just the diagonal subgroup
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has no non-trivial unipotent subgroups; and the Ratner theory does not apply.

Nonetheless, Margulis has conjectured that a bounded orbit forHθ is necessarily

compact and this conjecture, as in the foregoing discussion, has the Littlewood

conjecture as a consequence.

We have here a contrast of unipotent homogeneous dynamics with what

might be called — with Katok — higher rank hyperbolic dynamics. The former

is “tame”: neighboring points separate at a polynomial rate, whereas in hyper-

bolic dynamics they can separate at an exponential rate. Thanks largely to the

work of Ratner, the unipotent theory may be said to be largely understood,

whereas the hyperbolic theory is in a less satisfactory shape.

The earliest confirmations of Raghunathan’s conjectures for unipotent ac-

tions came from the case d = 2 with results regarding the horocycle flow

which corresponds to the subgroup

{(

1 t

0 1

)}

. The hyperbolic counterpart,

{(

et 0

0 e−t

)}

, leads to the geodesic flow which is the prototypical example of

chaotic dynamics. This would lead one to expect that the higher dimensional

cases of diagonal group actions can only get worse, thus leaving little hope for

a dynamical approach to the Littlewood conjecture.

Among those who spearheaded the initiative to understand the phenomenon

of rigidity in the hyperbolic framework was Anatole Katok, who, in a paper with

Ralph Spatzier gave conditions for a rigidity result in the hyperbolic setup. In

this paper the importance of the acting group being of rank ≥ 2 is underscored.

An analogy is drawn to a phenomenon I have studied; namely the paucity of

closed subsets of the group R/Z invariant under two endomorphisms x → px

(mod 1)and x → qx (mod 1), provided {pnqm} is not contained in some {rn}.

(That is to say log p/ log q is irrational). The only closed sets are R/Z itself

and finite sets of rationals. It is an open question whether the only invariant

measures are correspondingly the obvious ones: Lebesgue measure and atomic

measures supported on rational and combinations of these. This example has

been instructive for the following reason. Namely if one adds the condition that

one or the other transformation, x → px or qx (mod 1) has positive entropy

with respect to the invariant measure in question, then the measure must have

a Lebesgue component. This result of Dan Rudolph which partially answers our

query regarding ×p,×q suggests that for diagonal homogeneous actions, posi-

tive entropy will also play a significant role. This is the case already in the paper

of Katok and Spatzier where other hypotheses are necessary. The state-of-the-

art theorem in this regard is due to Einsiedler, Katok and Lindenstrauss and
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it depends heavily on new ideas of Lindenstrauss, requiring only positive en-

tropy along some 1-parameter subgroup to conclude that an invariant measure

is of an algebraic character. This theorem provides the crucial step to proving

a modified version of Littlewood’s conjecture - a version representing the first

significant advance on the Littlewood problem: for all but a set of dimension 0

of pairs α, β of real numbers, lim infn→∞ n‖nα‖ ‖nβ‖ = 0.

One of the seminal contributions of Lindenstrauss to this realm is his broad-

ening of the notion of recurrence of a measure to a wide variety of situations,

in particular, to situations where the measure is not invariant under a certain

set of transformations. Quoting Lindenstrauss, “the only thing which is really

needed is some form of recurrence which produces the complicated orbits which

are the life and blood of ergodic theory.”

This brings us to what is possibly the most exciting work of Elon Linden-

strauss; namely the solution of the Quantum Unique Ergodicity question in the

arithmetic case. From the mathematical standpoint the issue is whether eigen-

functions of the Laplace operator on a negatively curved manifold tend to be

more and more evenly spread over the space as the eigenvalue tends to nega-

tive infinity. In the special case of arithmetic hyperbolic surfaces, the so-called

Hecke operators come into the picture and they act on the limiting measure

arising from such a sequence of eigenfunctions. This action is recurrent and the

tools developed by Lindenstrauss become applicable to this situation at hand,

and lead elegantly to a solution of the problem.

Solving the so-called arithmetic quantum unique ergodicity conjecture of

Rudnick and Sarnak is exciting if for no other reason than that the conjecture

has been established provisionally, based on the generalized Riemann hypoth-

esis. While this doesn’t bring us closer to a solution of this famous question,

this connection does testify to the depth of the mathematics involved.

I close my introductory remarks by mentioning one of the corollaries of Elon

Lindenstrauss’s handling of the arithmetic QUE conjecture; namely replacing

reals by adèles and integers by rationals, we can speak of the adelic analogue of

geodesic flow: namely, the action of the diagonal of SL2(A) on SL2(A)/SL2(Q).

The striking statement is that the adelic geodesic flow is uniquely ergodic.

I think it is fair to say that there is both power and beauty in the mathe-

matical work of Elon Lindenstrauss.
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Abstract

Ngô Bao Châu has been awarded a Fields Medal for his proof of the fundamental

lemma. I shall try to describe the role of the fundamental lemma in the theory

of automorphic forms. I hope that this will make it clear why the result will be

a cornerstone of the subject. I will also try to give some sense of Ngô’s proof.

It is a profound and beautiful argument, built on insights mathematicians have

contributed for over thirty years.

Mathematics Subject Classification (2000). Primary 11F55; Secondary 14D23.

Keywords. Fundamental lemma, trace formula, Hitchin fibration, affine Springer

fibres, stabilization.

The Formal Statement

Here is the statement of Ngô’s primary theorem. It is taken from the beginning

of the introduction of his paper [N2].

Théorème 1. Soient k un corps fini à q éléments, O un anneau de valuation

discrète complet de corps résiduel k et F son corps des fractions. Soit G un

schéma en groupes réductifs au-dessus de O dont le nombre de Coxeter multiplié

par deux est plus petit que la caractéristique de k. Soient (κ, ρκ) une donnée

endoscopique de G au-dessus de O et H le schéma en groupes endoscopiques

associé.

On a l’égalité entre la κ-intégrale orbitale et l’intégrale orbitale stable

∆G(a)O
κ

a(1g, dt) = ∆H(aH)SOaH
(1h, dt) (1)

associées aux classes de conjugaison stable semi-simples régulières a et aH de

∗Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4 Canada.
E-mail: arthur@math.toronto.edu
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g(F ) et h(F ) qui se correspondent, aux fonctions caractéristiques 1g et 1h des

compacts g(O) et h(O) dans g(F ) et h(F ) et où on a noté

∆G(a) = q−val(DG(a))/2 et ∆H(aH) = q−val(DH(aH))/2

DG and DH étant les fonctions discriminant de G et de H.

In §1.11 of his paper, Ngô describes the various objects of his assertion

in precise terms. At this point we simply note that the “orbital integrals” he

refers to are integrals of locally constant functions of compact support. The

assertion is therefore an identity of sums taken over two finite sets. Observe

however that there is one such identity for every pair (a, aH) of “regular or-

bits”. As a approaches a singular point, the size of the two finite sets increases

without bound, and so therefore does the complexity of the identity. Lang-

lands called it the fundamental lemma when he first encountered the problem

in the 1970’s. It was clearly fundamental, since he saw that it would be an

inescapable precondition for any of the serious applications of the trace for-

mula he had in mind. He called it a lemma because it seemed to be simply

a family of combinatorial identities, which would soon be proved. Subsequent

developments, which culminated in Ngô’s proof, have revealed it to be much

more. The solution draws on some of the deepest ideas in modern algebraic

geometry.

Ngô’s theorem is an infinitesimal form of the fundamental lemma, since it

applies to the Lie algebras g and h of the groups G and H. However, Wald-

spurger had previously used methods of descent to reduce the fundamental

lemma for groups to its Lie algebra variant [W3]. Ngô’s geometric methods

actually apply only to fields of positive characteristic, but again Waldspurger

had earlier shown that it suffices to treat this case [W1].
1
Therefore Ngô’s

theorem does imply the fundamental lemma that has preoccupied mathemati-

cians in automorphic forms since it was first conjectured by Langlands in the

1970’s.

I would like to thank Steve Kudla for some helpful suggestions.

Automorphic Forms and the Langlands

Programme

To see the importance of the fundamental lemma, we need to recall its place

in the theory of automorphic forms. Automorphic forms are eigenforms of a

commuting family of natural operators attached to reductive algebraic groups.

The corresponding eigenvalues are of great arithmetic significance. In fact, the

1Another proof of this reduction was subsequently established by Cluckers, Hales and
Loeser, by completely different methods of motivic integration.
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information they contain is believed to represent a unifying force for large parts

of number theory and arithmetic geometry. The Langlands programme summa-

rizes much of this, in a collection of interlocking conjectures and theorems that

govern automorphic forms and their associated eigenvalues. It explains pre-

cisely how a theory with roots in harmonic analysis on algebraic groups can

characterize some of the deepest objects of arithmetic. There has been sub-

stantial progress in the Langlands programme since its origins in a letter from

Langlands to Weil in 1967. However, its deepest parts remain elusive.

The operators that act on automorphic forms are differential operators

(Laplace-Beltrami operators) and their combinatorial p-adic analogues (Hecke

operators). They are best studied implicitly in terms of group representations.

One takes G to be a connected reductive algebraic group over a number field

F , and R to be the representation of G(A) by right translation on the Hilbert

space L2
(

G(F )\G(A)
)

. We recall that G(A) is the group of points in G with

values in the ring A = AF of adèles of F , a locally compact group in which

the diagonal image of G(F ) is discrete. Automorphic forms, roughly speaking,

are functions on G(F )\G(A) that generate irreducible subrepresentations of R,

which are in turn known as automorphic representations. Their role is similar

to that of the much more elementary functions

einx, n ∈ Z, x ∈ Z\R,

in the theory of Fourier series. We can think of x as a geometric variable,

which ranges over the underlying domain, and n as a spectral variable, whose

automorphic analogue contains hidden arithmetic information.

The centre of the Langlands programme is the principle of functoriality. It

postulates a reciprocity law for the spectral data in automorphic representa-

tions of different groups G and H, for any L-homomorphism ρ :
LH →

LG

between their L-groups. We recall that
LG is a complex, nonconnected group,

whose identity component ̂G can be regarded as a complex dual group of G.

There is a special case of this that is of independent interest. It occurs when

H is an endoscopic group for G, which roughly speaking, means that ρ maps

̂H injectively onto the connected centralizer of a semisimple element of ̂G.

The theory of endoscopy, due also to Langlands, is a separate series of con-

jectures that includes more than just the special case of functoriality. Its pri-

mary role is to describe the internal structure of automorphic representations

of G in terms of automorphic representations of its smaller endoscopic groups

H. The fundamental lemma arises when one tries to use the trace formula

to relate the automorphic representations of G with those of its endoscopic

groups.
2

2Endoscopic groups should actually be replaced by endoscopic data, objects with slightly
more structure, but I will ignore this point.
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The Trace Formula and Transfer

The trace formula for G is an identity that relates spectral data with geometric

data. The idea, due to Selberg, is to analyze the operator

R(f) =

∫

G(A)

f(y)R(y) dy

on L2
(

G(F )\G(A)
)

attached to a variable test function f on G(A). One ob-

serves that R(f) is an integral operator, with kernel

K(x, y) =
∑

γ∈G(F )

f(x−1 γy), x, y ∈ G(A).

One then tries to obtain an explicit formula by expressing the trace of R(f) as

the integral
∫

G(F )\G(A)

∑

γ∈G(F )

f(x−1 γx) dx

of the kernel over the diagonal. The formal outcome is an identity

∑

{γ}

∫

Gγ(F )\G(A)

f(x−1 γx) dx =

∑

π

tr
(

π(f)
)

, (2)

where {γ} ranges over the conjugacy classes in G(F ), Gγ(F ) is the centralizer

of γ in G(F ), and π ranges over automorphic representations.

The situation is actually more complicated. Unless G(F )\G(A) is compact,

a condition that fails in the most critical cases, R(f) is not of trace class,

and neither side converges. One is forced first to truncate the two sides in a

consistent way, and then to evaluate the resulting integrals explicitly. It becomes

an elaborate process, but one that eventually leads to a rigorous formula with

many new terms on each side [A1]. However, the original terms in (2) remain

the same in case π occurs in the discrete part of the spectral decomposition of

R, and γ is anisotropic in the strong sense that Gγ is a maximal torus in G

with Gγ(F )\Gγ(A) compact. If γ is anisotropic, and f is a product of functions

fv on the completions G(Fv) of G(F ) at valuations v on F , the corresponding

integral in (2) can be written

∫

Gγ(F )\G(A)

f(x−1 γx) dx

=vol
(

Gγ(F )\Gγ(A)
)

∫

Gγ(A)\G(A)

f(x−1 γx) dx

=vol
(

Gγ(F )\Gγ(A)
)

∏

v

∫

Gγ(Fv)\G(Fv)

fv(x
−1
v γxv) dxv.
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The factor

Oγ(fv) = Oγ(fv, dtv) =

∫

Gγ(Fv)\G(Fv)

fv(x
−1
v γ xv) dxv

is the “orbital integral” of fv over the conjugacy class of γ in G(Fv). It depends

on a choice of Haar measure dtv on T (Fv) = Gγ(Fv), as well as the underlying

Haar measure dxv on G(Fv), and makes sense if γ is replaced by any element

γv ∈ G(Fv) that is strongly regular, in the sense that Gγv
is any maximal torus.

The goal is to compare automorphic spectral data on different groups G and

H by establishing relations among the geometric terms on the left hand sides

of their associated trace formulas. This presupposes the existence of a suitable

transfer correspondence f → fH
of test functions from G(A) to H(A). The idea

here is to define the transfer locally at each completion v by asking that the

orbital integrals of fH
v match those of fv. Test functions are of course smooth

functions of compact support, a condition that for the totally disconnected

group G(Fv) at a p-adic place v becomes the requirement that fv be locally

constant and compactly supported. The problem is to show for both real and

p-adic places v that fH
v , defined only in terms of conjugacy classes in H(Fv),

really is the family of orbital integrals of a smooth function of compact support

on H(Fv).

The transfer of functions is a complex matter, which I have had to oversim-

plify. It is founded on a corresponding transfer mapping γH,v → γv of strongly

regular conjugacy classes over v from any local endoscopic group H for G to G

itself. But this only makes sense for stable (strongly regular) conjugacy classes,

which in the case of G are defined as the intersections of G(Fv) with conju-

gacy classes in the group G(F v) over an algebraic closure F v. A stable orbital

integral of fv is the sum of ordinary orbital integrals over the finite set of con-

jugacy classes in a stable conjugacy class. Given fv, H and γH,v, Langlands

and Shelstad set SOγH,v
(fH

v ) equal to a certain linear combination of orbital

integrals of fv over the finite set of conjugacy classes in the stable image γv of

γH,v. The coefficients are subtle but explicit functions, which they introduce

and call transfer factors [LS]. They then conjecture that as the notation sug-

gests, {SOγH,v
(fH

v )} is the set of stable orbital integrals of a smooth, compactly

supported function fH
v on H(Fv).

We can at last say what the fundamental lemma is. For a test function

f =
∏

v

fv on G(A) to be globally smooth and compactly supported, it must

satisfy one further condition. For almost all p-adic places v, fv must equal

the characteristic function 1Gv
of an (open) hyperspecial maximal compact

subgroup Kv of G(Fv). The fundamental lemma is the natural variant at these

places of the Langlands-Shelstad transfer conjecture. It asserts that if fv equals

1Gv
, we can actually take fH

v to be an associated characteristic function 1Hv

on H(Fv). It is in these terms that we understand the identity (1) in Ngô’s

theorem. We of course have to replace 1Gv
and 1Hv

by their analogues 1gv
and

1hv
on the Lie algebras g(Fv) and h(Fv) of G(Fv) and H(Fv), and the mapping
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γH,v → γv by a corresponding transfer mapping aH,v → av of stable adjoint

orbits. The superscript κ on the left hand side of (1) is an index that determines

an endoscopic group H = Hκ
for G over Fv by a well defined procedure. It also

determines a corresponding linear combination of orbital integrals (called a κ-

orbital integral) on g(Fv), indexed by the G(Fv)-orbits in the stable orbit av.

The coefficients depend in a very simple way on κ, and when normalized by the

quotient ∆G( · )∆H( · )
−1

of discriminant functions, represent the specialization

of the general Langlands-Shelstad transfer factors to the Lie algebra g(Fv). The

term on the left hand side of (1) is a κ-orbital integral of 1gv
, and the term on

the right hand side is a corresponding stable orbital integral of 1hv
.

The Hitchin Fibration

We have observed that local information, in the form of the Langlands-Shelstad

transfer conjecture and the fundamental lemma, is a requirement for the com-

parison of global trace formulas. However, it is sometimes also possible to go in

the opposite direction, and to deduce local information from global trace for-

mulas. The most important such result is due to Waldspurger. In 1995, he used

a special case of the trace formula to prove that the fundamental lemma im-

plies the Langlands-Shelstad transfer conjecture for p-adic places v [W1]. (The

archimedean places v had been treated by local means earlier by Shelstad. See

[S].) The fundamental lemma would thus yield the full global transfer mapping

f → fH
. It is indeed fundamental!

Ngô had a wonderful idea for applying global methods to the fundamental

lemma itself. He observed that the Hitchin fibration [H], which Hitchin had

introduced for the study of the moduli space of vector bundles on a Riemann

surface, was related to the geometric side of the trace formula. His idea applies

to the field F = k(X) of rational functions on a (smooth, projective) curve X

over a finite field of large characteristic. This is a global field, which combines

the arithmetic properties of a number field with the geometric properties of

the field of meromorphic functions on a Riemann surface, and for which both

the trace formula and the Hitchin fibration have meaning. Ngô takes G to be

a quasisplit group scheme over X. His version of the Hitchin fibration also

depends on a suitable divisor D of large degree on X.

The total space of the Hitchin fibration M → A is an algebraic (Artin)

stack
3

M over k. To any scheme S over k, it attaches the groupoid

M(S) of Higgs pairs (E, φ), where E is a G-torsor over X × S, and

φ ∈ H0
(

X × S, Ad(E)⊗OX(D)
)

is a section of the vector bundle Ad(E) ob-

tained from the adjoint representation of G on its Lie algebra g, twisted by the

line bundle OX(D). Ngô observed that in the case S = Spec(k), the definitions

3I am little uncomfortable discussing objects in which I do not have much experience. I
apologize in advance for any inaccuracies.



The work of Ngô Bao Châu 63

lead to a formal identity

∑

ξ





∑

{a}

∫

G
ξ
a(F )\Gξ(A)

fD
(

Ad(x)−1 a
)

dx



 = |{M(k)}|, (3)

whose right hand side equals the number of isomorphism classes in the groupoid

M(k) [N1, §1]. On the left hand side, ξ ranges over the set ker
1
(F,G) of locally

trivial elements inH1
(F,G), a set that frequently equals {1}, and Gξ

is an inner

twist of G by ξ, equipped with a trivialization over each local field Fv, with Lie

algebra gξ. Also, {a} ranges over the Gξ
(F ) orbits in gξ(F ), and Gξ

a(F ) is the

stabilizer of a in Gξ
(F ), while

fD =

⊗

v

fD,v,

where v ranges over the valuations of F (which is to say the closed points of X)

and fD,v is the characteristic function in gξ(Fv) of the open compact subgroup

$
−dv(D)
v gξ(Ov).

The expression in the brackets in (3) is the analogue for the Lie algebra gξ

of the left hand geometric side of (2). It is to be regarded in the same way as

(2), as part of a formal identity between two sums that both diverge. On the

other hand, as in (2), the sum over the subset of orbits {a} that are anisotropic

actually does converge.

The base A of the Hitchin fibration is an affine space over k. As a functor,

it assigns to any S the set

A(S) =

r
⊕

i=1

H0
(

X × S, OX(eiD)
)

,

where e1, . . . , er are the degrees of the generators of the polynomial algebra of

G-invariant polynomials on g. Roughly speaking, the set A(k) attached to S =

Spec(k) parametrizes the stable G(A)-orbits in g(A) that have representatives

in g(F ), and intersect the support of the function fD. The Chevalley mapping

from g to its affine quotient g/G determines a morphism h from M to A over

k. This is the Hitchin fibration. Ngô uses it to isolate the orbital integrals

that occur on the left hand side of (3). In particular, he works with the open

subscheme A
ani

of A that represents orbits that are anisotropic over k. The

restriction

hani
: M

ani
−→ A

ani, M
ani

= h−1
(A

ani
) = M×A A

ani, (4)

of the morphism h to A
ani

is then proper and smooth, a reflection of the fact

that the stabilizer in G of any anisotropic point a ∈ g(F ) is an anisotropic torus

over the maximal unramified extension of F . (See [N2, §4].)
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Affine Springer Fibres

The Hitchin fibration can be regarded as a “geometrization” of a part of the

global trace formula. It opens the door to some of the most powerful techniques

of algebraic geometry. Ngô uses it in conjunction with another geometrization,

which had been introduced earlier, and applies to the fibres Ma of the Hitchin

fibration. This is the interpretation of the local orbital integral

Oγv
(1gv

) =

∫

Gav (Fv)\G(Fv)

1gv

(

Ad(xv)
−1 av

)

dxv

in terms of affine Springer fibres.

The original Springer fibre of a nilpotent element N in a complex semisimple

Lie algebra is the variety of Borel subalgebras (or more generally, of parabolic

subalgebras in a given adjoint orbit under the associated group) that contain N .

It was used by Springer to classify irreducible representations of Weyl groups.

The affine Springer fibre of a topologically unipotent (regular, semisimple) el-

ement av ∈ g(Fv), relative to the adjoint orbit of the lattice g(Ov), is the

set

Mv(a, k) =
{

xv ∈ G(Fv)/G(Ov) : Ad(xv)
−1 av ∈ g(Ov)

}

of lattices in the orbit that contain av. Suppose for example that av is

anisotropic over Fv, in the strong sense that the centralizer Gav
(Fv) is com-

pact. If one takes the compact (abelian) groupsGav
(Fv) and g(Ov) to have Haar

measure 1, one sees immediately that Oav
(1gv

) equals the order |Mv(a, k)| of

Mv(a, k). (Topologically unipotent means that the linear operator ad(av)
n
on

g(Fv) approaches 0 as n approaches infinity. In general, the closer av is to

0, the larger is the set Mv(a, k), and the more complex the orbital integral

Oav
(1gv

).)

Kazhdan and Lusztig introduced affine Springer fibres in 1988, and estab-

lished some of their geometric properties [KL]. In particular, they proved that

Mv(a, k) is the set of k-points of an inductive limit Mv(a) of schemes over k.

(It is this ind-scheme that is really called the affine Springer fibre.) Their results

also imply that if av is anisotropic over the maximal unramified extension of

Fv, Mv(a) is in fact a scheme.

The study of these objects was then taken up by Goresky, Kottwitz and

MacPherson. Their strategy was to obtain information about the orbital inte-

gral |Mv(a, k)| from some version of the Lefschetz fixed point formula. They

realized that relations among orbital integrals could sometimes be extracted

from cohomology groups of affine Springer fibres Mv(a) and Mv(aH), for the

two different groups G and H. Following this strategy, they were able to estab-

lish the identity (1) for certain pairs (av, aH,v) attached to unramified maximal

tori [GKM]. Goresky, Kottwitz and MacPherson actually worked with certain

equivariant cohomology groups. Laumon and Ngô later added a deformation

argument, which allowed them to prove the fundamental lemma for unitary
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groups [LN]. However, the equivariant cohomology groups that led to these

results are not available in general.

It was Ngô’s introduction of the global Hitchin fibration that broke the

impasse. He formulated the affine Springer fibre Mv(a) as a functor of schemes

S over k, in order that it be compatible with the relevant Hitchin fibre Ma

[N2, §3.2]. He also introduced a third object to mediate between the two kinds

of fibre. It is a Picard stack P → A, which acts on M, and represents the

natural symmetries of the Hitchin fibration. Ngô attached this object to the

group scheme J over A obtained from the G-centralizers of regular elements

in g, and the Kostant section from semisimple conjugacy classes to regular

elements.

The stack P plays a critical role. Ngô used it to formulate the precise relation

between the Hitchin fibre Ma at any a ∈ A
ani

(k) with the relevant affine

Springer fibres Mv(a) [N2, Proposition 4.15.1]. Perhaps more surprising is the

fact that as a group object in the category of stacks, P governs the stabilization

of anisotropic Hitchin fibresMa. Ngô analyses the characters {κ} on the abelian

groups of connected components π0(Pa). He shows that they are essentially the

geometric analogues of objects that were used to stabilize the anisotropic part

of the trace formula.

Stabilization

Could one possibly establish the fundamental lemma from the trace formula?

Any such attempts have always foundered on the lack of a transfer of unit func-

tions 1Gv
to 1Hv

by orbital integrals. In some sense, however, this is exactly

what Ngô does. It is not the trace formula for automorphic forms that he uses,

but the Grothendieck-Lefschetz trace formula of algebraic geometry. Moreover,

it is the “spectral” side of this trace formula that he transfers from g to h (the

Lie algebras of G and H), in the form of data from cohomology, rather than

its “geometric” side, in the form of data given by fixed points of Frobenius

endomorphisms. This is in keeping with the general strategy of Goresky, Kot-

twitz and MacPherson. The difference here is that Ngô begins with perverse

cohomology attached to the global Hitchin fibration, rather than the ordinary

equivariant cohomology of a local affine Springer fibre.

Stabilization refers to the operation of writing the trace formula for G, or

rather each of its terms I(f), as a linear combination

I(f) =
∑

H

ι(G,H)SH
(fH

) (5)

of stable distributions on the endoscopic groups H of G over F . (A stable

distribution is a linear form whose values depend only on the stable orbital

integrals of the given test function. The resulting identity of stable distributions

for any given H, obtained by induction on dim(H) from (5) and the trace
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formula for G, is known as the stable trace formula.) The process is most

transparent for the anisotropic terms
4

Iani(f) =
∑

{γ}

vol
(

Gγ(F )\Gγ(A)
)

·

∏

v

(

Oγ(fv)
)

, (6)

in which {γ} ranges over the set of anisotropic conjugacy classes in G(F ). It

was carried out in this case by Langlands [L] and Kottwitz [K2], assuming

the existence of the global transfer mapping f → fH
(which Waldspurger later

reduced to the fundamental lemma). This is reviewed by Ngô in the first chapter

(§1.13) of his paper [N2].

The idea for the stabilization of (6) can be described very roughly as fol-

lows. One first groups the conjugacy classes {γ} into stable conjugacy classes

{γ}st in G(F ), for representatives γ attached to anisotropic tori T = Gγ . The

problem is to quantify the obstruction for the contribution of {γ}st to be a

stable distribution on G(A). For any v, the set of G(Fv)-conjugacy classes in

the stable conjugacy class of γ in G(Fv) is bijective with the set

ker
(

H1
(Fv, G) −→ H1

(Fv, T )
)

of elements in the finite abelian group H1
(Fv, T ) whose image in the Galois

cohomology set H1
(Fv, G) is trivial. Let me assume for simplicity in this de-

scription that G is simply connected. The set H1
(Fv, G) is then trivial for

any p-adic place v, and becomes a concern only when v is archimedean. The

obstruction for {γ}st is thus closely related to the abelian group

coker

(

H1
(F, T ) −→

⊕

v

H1
(Fv, T )

)

.

The next step is to apply Fourier inversion to this last group. According to

Tate-Nakayama duality theory, its dual group of characters κ is isomorphic

to ̂TΓ
, the group of elements in the complex dual torus ̂T that are invariant

under the natural action of the global Galois group Γ = Gal(F\F ). On the

other hand, each κ ∈
̂TΓ

maps to a semisimple element in the complex dual

group ̂G, which can be used to define an endoscopic group H = Hκ
for G. One

accounts for the local archimedean sets H1
(Fv, G) simply by defining the local

contribution of a complementary element in H1
(Fv, T ) to be 0. In this way, one

obtains a global contribution to (6) for any κ. It is a global κ-orbital integral,

whose local factor at almost any v appears on the left hand side of the identity

in the fundamental lemma.

One completes the stabilization of (6) by grouping the indices (T, κ) into

equivalence classes that map to a given H. The corresponding contributions to

4This expression only makes sense if the split component AG of G is trivial. In general,
one must include AG in the volume factors.
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the right hand side of (6) become the summands of H in (5). Notice that the

summands with κ = 1 correspond to the endoscopic group H with ̂H = ̂G (a

quasisplit inner form G∗
of G). Like all of the other summands, they are defined

directly. This is in contrast to the more exotic parts I(f) of the trace formula

[A1, §29], where the contribution of H = G∗
(known as the stable part Ist(f)

of I(f) in case G = G∗
is already quasisplit) can only be constructed from (5)

indirectly by induction on dim(H).

The heart of Ngô’s proof is an analogue of the stabilization of (6) for the ge-

ometrically anisotropic part (4) of the Hitchin fibration.
5
This does not depend

on the transfer of functions, and is therefore unconditional. Ngô formulates it

as an identity of the {κ}-component ( · )κ of an object attached to G with the

stable component ( · )st of a similar object for the corresponding endoscopic

group. I will only be able to describe his steps in the most general of terms.

Since M
ani

is a smooth Deligne-Mumford stack, the purity theorems of [D]

and [BBD] can be applied to the proper morphism hani
in (4). They yield an

isomorphism

hani
∗

Q`
∼=

⊕

n

pHn
(hani

∗
Q`) [−n], (7)

whose left hand side is a priori only an object in the derived category Db
c(A)

of the bounded complexes of sheaves on A with constructible cohomology, but

whose right hand summands are pure objects in the more manageable abelian

subcategory of perverse sheaves on A. Ngô then considers the action of the

stack P
ani

over A
ani

on either side. Appealing to a homotopy argument, he

observes that this action factors through the quotient π0(P
ani

) of connected

components, a sheaf of finite abelian groups on A
ani

. As we noted earlier, an

analysis of this sheaf then leads him to the dual characters {κ} that were

part of the stabilization of (6), and relative to which one can take equivariant

components
pHn

(fani
∗

Q`)κ of the summands in (7). On the other hand, if H

corresponds to κ, we have the morphism ν from AH to A that comes from the

embedding ̂H ⊂
̂G of two dual groups of equal rank. It provides a pullback

mapping of sheaves from A to AH . Ngô’s stabilization of (4) then takes the

form of an isomorphism

ν∗

(

⊕

n

pHn
(hani

∗
Q)κ [2r] (r)

)

∼=

⊕

n

pHn
(hani

H,∗ Q`)st, (8)

for a degree shift [2r] and Tate twist (r) attached to a certain positive integer

r = rG
H
(D). (See [N2, Theorem 6.4.2].)

5Recall that the left hand side of (3) differs from that of (2) in having a supplementary
sum over ξ ∈ ker1(F,G). This is part of the structure of the Hitchin fibration. But it also
actually leads to a slight simplification of the stabilization of (6) by Langlands and Kottwitz.
(See [N2, §1.13].)
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Ngô’s “geometric stabilization” identity (8) , whose statement I have over-

simplified slightly,
6
is a key theorem. In particular, it leads directly to the fun-

damental lemma. For it implies a similar identity for the stalks of the sheaves

at a point aH ∈ AH (with image a ∈ A under ν). After some further analysis,

the application of a theorem of proper base change reduces what is left to an

endoscopic identity for the cohomology of affine Springer fibres. This is exactly

what Goresky, Kottwitz and MacPherson had been working towards. Once it

is available, an application of the Grothendieck-Lefschetz trace formula gives a

relation among points on affine Springer fibres, which leads to the fundamental

lemma. (See [LN, §3.10] for example.)

However, it is more accurate to say that the (global) stabilization identity

(8) is parallel to the (local) fundamental lemma. Ngô actually had to prove

the two theorems together. In a series of steps, which alternate between local

and global arguments, and go back and forth between the two theorems, he

treats special cases that become increasingly more general, until the proof of

both theorems is at last complete. Everything of course depends on the original

divisor D on X, which in Ngô’s argument is allowed to vary in such a way

that its degree approaches infinity. The main technical result that goes into the

proof of (8) is a theorem on the support of the sheaves on the left hand side.

As I understand it, this is highly dependent on the fact that these objects are

actually perverse sheaves.

Further Remarks

I should also mention two important generalizations of the fundamental lemma.

One is the “twisted fundamental lemma” conjectured by Kottwitz and Shelstad,

which will be needed for any endoscopic comparison that includes the twisted

trace formula. Waldspurger [W3] had reduced this conjecture to the primary

theorem of Ngô, together with a variant [N2, Théorème 2] of (1) that Ngô

proves by the same methods. Another is the “weighted fundamental lemma”,

which applies to the more general geometric terms in the trace formula that are

obtained by truncation. It is needed for any endoscopic comparisons that do

not impose unsatisfactory local constraints on the automorphic representations.

Once again, Waldspurger had reduced the conjectural identity to its analogue

for a Lie algebra over a local field of positive characteristic. Chaudouard and

Laumon have recently proved the weighted fundamental lemma for Lie algebras

by extending the methods of Ngô to other terms in the trace formula [CL].

This has been a serious enterprise, which requires a geometrization of analytic

truncation methods in order to deal with the failure of the full Hitchin fibration

M → A to be proper. In any case, all forms of the fundamental lemma have

6The isomorphism is between the semisimplifications of the graded perverse sheaves. More-
over, ν, hani and h

ani

H
should be replaced by their preimages ν̃, h̃ani and h̃

ani

H
relative to certain

finite morphisms.
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now been proved, including the most general “twisted, weighted fundamental

lemma”.

I have emphasized the role of transfer in the comparison of trace formulas.

This is likely to lead to a classification of automorphic representations for many

groups G, beginning with orthogonal and symplectic groups [A2], according to

Langlands’ conjectural theory of endoscopy. The fundamental lemma also has

other important applications. For example, its proof fills a longstanding gap in

the theory of Shimura varieties. Kottwitz observed some years ago that the key

geometric terms in the Grothendieck-Lefschetz formula for a Shimura variety

are actually twisted orbital integrals [K1]. The twisted fundamental lemma

now allows a comparison of these terms with corresponding terms in the stable

trace formula. (See [K3].) This in turn leads to reciprocity laws between the

arithmetic data in the cohomology of many such varieties with the spectral

data in automorphic forms.

This completes my report. It will be clear that Ngô’s proof is deep and dif-

ficult. What may be less clear is the enormous scope of his methods. The many

diverse geometric objects he introduces are all completely natural. That they

so closely reflect objects from the trace formula and local harmonic analysis,

and fit together so beautifully in Ngô’s proof, is truly remarkable.
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Énoncés cohomologiques, preprint.

[D] P. Deligne, La conjecture de Weil II, Publ. Math. de I.H.E.S. 52 (1980),

137–252.

[GKM] M. Goresky, R. Kottwitz, and R. MacPherson, Homology of affine Springer

fibres in the unramified case, Duke Math. J. 121 (2004), 509–561.

[H] N. Hitchin, Stable bundles and integrable connections, Duke Math. J. 54

(1987), 91–114.

[KL] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds,

Israel J. Math. 62 (1988), 129–168.

[K1] R. Kottwitz, Shimura varieties and twisted orbital integrals, Math. Ann. 269

(1984), 287–300.

[K2] R. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275

(1986), 365–399.



70 James Arthur

[K3] R. Kottwitz, Shimura varieties and λ-adic representations, in Automorphic

Forms, Shimura Varieties and L-functions, vol. I, Academic Press, 1990,

161–209.
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Endoscopy Theory of Automorphic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Jean-Michel Coron
On the Controllability of Nonlinear Partial Differential Equations . . . . . . . 238

Irit Dinur
Probabilistically Checkable Proofs and Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Hillel Furstenberg
Ergodic Structures and Non-conventional Ergodic Theorems. . . . . . . . . . . . . 286

Thomas J.R. Hughes
Isogeometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Carlos E. Kenig
Recent Developments on the Global Behavior to Critical Nonlinear

Dispersive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

R. Parimala
Arithmetic of Linear Algebraic Groups over Two-dimensional Fields . . . . . 339

A.N. Parshin
Representations of Higher Adelic Groups and Arithmetic . . . . . . . . . . . . . . . . 362

Shige Peng
Backward Stochastic Differential Equation, Nonlinear Expectation and

Their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Kim Plofker
“Indian” Rules, “Yavana” Rules: Foreign Identity and the Transmission

of Mathematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Richard Schoen
Riemannian Manifolds of Positive Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Claire Voisin
On the Cohomology of Algebraic Varieties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

W. Hugh Woodin
Strong Axioms of Infinity and the Search for V . . . . . . . . . . . . . . . . . . . . . . . . . . 504

Special Lectures

Elon Lindenstrauss (Fields Medal)
Equidistribution in Homogeneous Spaces and Number Theory . . . . . . . . . . . 531

Idun Reiten (Emmy Noether Lecture)
Cluster Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Stanislav Smirnov (Fields Medal)
Discrete Complex Analysis and Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595



Contents ix

S.R.S. Varadhan (Abel Lecture)
Large Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

Cédric Villani (Fields Medal)
Landau Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Special Activities

W.T. Gowers
A Continuous Path from School Calculus to University Analysis . . . . . . . . . 657

Carlos Bosch
Relations between the Discipline and the School Mathematics in Latin

American and Caribbean Countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

R. Ramanujam
Live Mathematics and Classroom Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

Heinz Steinbring
Mathematical Knowledge in Processes of Teaching and Learning at

School - Its Specific Nature and Epistemological Status . . . . . . . . . . . . . . . 680

Ole Skovsmose
Symbolic Power and Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

Günter M. Ziegler
Communicating Mathematics to Society at Large. . . . . . . . . . . . . . . . . . . . . . . . 706

Christiane Rousseau
The Role of Mathematicians in Popularization of Mathematics . . . . . . . . . . 723

J. M. Ball
Round Table: The Use of Metrics in Evaluating Research . . . . . . . . . . . . . . . . 739

Stephen Huggett
Mechanisms for Strengthening Mathematics in Developing Countries . . . . 757

Other Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767

List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

Author Index for Volumes II, III, and IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

Author Index for Volume I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803



72

Stanislav Smirnov

Graduation from St. Petersburg State University, 1992;

Ph.D., California Institute of Technology, 1996.

Positions held

Gibbs Instructor at the Yale University, 1996-1999;

short-term positions at MPI Bonn and IAS Princeton, 1997-1998;

Researcher at the Royal Institute of Technology in Stockholm, 1998-2001;

Professor at the Royal Institute of Technology in Stockholm, from 2001;

Researcher at the Swedish Royal Academy of Sciences 2001-2004;

Professor at the University of Geneva, 2003-.



Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

The work of Stanislav Smirnov

Harry Kesten∗

Mathematics Subject Classification (2000). 60F05; 60K35

Keywords. Fields medal, Conformal Invariance, Cardy’s formula, crossing probabil-

ities

Stanislav (Stas for short) Smirnov is receiving a Fields medal for his ingenious
and astonishing work on the existence and conformal invariance of scaling limits
or continuum limits of lattice models in statistical physics.

Like many Fields medalists, Stas demonstrated his mathematical skills at
an early age. According to Wikipedia he was born on Sept 3,1970 and was
ranked first in the 1986 and 1987 International Mathematical Olympiads. He
was an undergraduate at Saint Petersburg State University and obtained his
Ph.D. at Caltech in 1996 with Nikolai Makarov as his thesis advisor. Stas has
also worked on complex analysis and dynamical systems, but in these notes we
shall only discuss his work on limits of lattice models. This work should make
statistical physicists happy because it confirms rigorously what so far was only
accepted on heuristic grounds. The success of Stas in analyzing lattice models
in statistical physics will undoubtedly be a stimulus for further work.

Before I start on the work for which Stas is best known, let me mention
a wonderful result of his (together with Hugo Duminil-Copin, [21]) which he
announced only two months ago. They succeeded in rigorously verifying that the
connective constant of the planar hexagonal lattice is

√

2 +
√

2. The connective

constant µ of a lattice L is defined as limn→∞[cn]
1/n, where cn is the number of

self-avoiding paths on L of length n which start at a fixed vertex v. It is usually
easy to show by subadditivity (or better submultiplicativity; cn+m ≤ cncm)

that this limit exists and is independent of the choice of v. However, the value
of µ is unknown for most L. Thus this result of Stas is another major success
in Statistical Physics.
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1. Percolation

Since the result for which Stas is best known deals with percolation, it is ap-
propriate to describe this model first. The first percolation problem appeared
in Amer. Math Monthly, vol. 1 (1894), proposed by M.A.C.E. De Volson Wood
([9]). He proposes the following problem: “An equal number of white and black
balls of equal size are thrown into a rectangular box, what is the probability
that there will be contiguous contact of white balls from one end of the box
to the opposite end? “As a special example, suppose there are 30 balls in the
length of the box, 10 in the width, and 5 (or 10) layers deep.” Apart from an
incorrect solution by one person who misunderstands the problem, there is no
reaction and we still have no answer. Next there is a hiatus of almost 60 years to
1954 when Broadbent ([1]) asks Hammersley at a symposium on Monte-Carlo
methods a question which I interpret as follows: Think of the edges of Zd as
tubes through which fluid can flow with probability p and are blocked with
probability 1− p. Alternatively we assign the color blue or yellow to the edges
or call the edges occupied or vacant.) p is the same for all edges, and the edges
are independent of each other. If fluid is pumped in at the origin, how far can
it spread? Can it reach infinity? Physicists are interested in the model since it
seems to be one of the simplest models which has a phase transition. In fact
Broadbent and Hammersley ([1, 2]) proved that there exists a value pc, strictly
between 0 and 1, such that ∞ is reached with probability 0 when p < pc, but
can be reached with strictly positive probability for p > pc. pc is called the
critical probability. The percolation probability θ(p) is defined as the probability
that infinity is reached from the origin (or from any other fixed vertex).

Let E be a set of edges. Say that a point a is connected (in E ) to a point
b if there is an open path (in E) from a to b. One can then define the open

clusters as maximal connected components of open edges in E. By translation
invariance, the Broadbent and Hammersley result shows that on Zd, for p < pc,
with probability 1 all open clusters are finite, while it can be shown for p > pc,
that with probability 1 there exists a unique infinite open cluster (see [3] for
uniqueness). We can do the same thing when we replace Zd by another lattice.
We can also have all edges open, but the vertices open with probability p and
closed with probability 1− p. In obvious terminology we talk about bond and
site percolation. Site percolation is more general than bond percolation, in the
sense that any bond percolation model is equivalent to a site percolation model
on another graph, but not vice versa. For Stas’ brilliant result we shall consider
exclusively site percolation on the 2-dimensional triangular lattice. See Figure 1.

We would like to have a global (as opposed to microscopic) description of
such systems. Can we tell what θ(p,L) is? And similarly, what is the behavior
of the “average cluster size” and some other functions. We have a fair under-
standing of the system for p 6= pc fixed. For instance, if p < pc, then (with
probability 1) there is a translation invariant system of finite clusters, and the
probability that the volume of the cluster of a fixed site exceeds n decreases
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—— = G, the triangular lattice,
– – – = Gd, the hexagonal lattice.

Figure 1.

exponentially in n (see [10], Theorem 6.75). If p > pc, then there is exactly one
infinite open cluster. Also, if C denotes the open cluster of the origin, then for
some constants 0 < c1(p) ≤ c2(p) < ∞,

c1n
(d−1)/d

≤ − log
[

Pp{|C| = n}
]

≤ c2n
(d−1)/d.

For d = 2 we even know that

0 < − lim
n→∞

n−(d−1)/d
log

[

Pp{|C| = n}
]

< ∞,

i.e., for some 0 < c(p) < ∞,

Pp{|C| = n} = exp
[

− (c+ o(1))n(d−1)/d
]

(see [10], Section 8.6). For these reasons the most interesting behavior can
be expected to be for p equal or close to pc. We have here a system with a
function θ(p,L), which has a phase transition, but, at least in dimension 2, is
continuous. I am told that physicists have been successful in analyzing such
systems by making an extra assumption, the so-called scaling hypothesis: for
p 6= pc there is a single length scale ξ(p), called the correlation length, such
that for p close to pc, at distance n the picture of the system looks like a single
function of n/ξ(p). More explicitly, it is assumed that many quantities behave
like T

(

n/ξ(p)
)

for some function T which is the same for a class of lattices L.
What happens when p = pc where there is no special length scale singled out
(other than the lattice spacing)? The correlation length is assumed to go to
∞ as p → pc. Therefore, investigating what happens as p → pc automatically
entails looking at a piece of our system which is many lattice spacings large. For
convenience we shall think of looking at our system in a fixed piece of space, but
letting the lattice spacing go to 0. We shall call this “taking the scaling limit”
or “taking the continuum limit.” We shall try to explain Stas’ result that this
limit exists and is conformally invariant if we consider critical site percolation
on the triangular lattice in the plane.
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2. The Scaling Limit

What do we expect or hope for? One hopes that at least the cluster distribution
and the distribution of the curves separating two adjacent clusters converge in
some sense in the scaling limit. Since there is no special scale, one expects
scale invariance of the limit. If L has enough symmetry you can also hope for
rotational symmetry of the scaling limit. In dimension two, scale and rotation
invariance together should give invariance under holomorphic transformations.
If one believes in scale invariance, then one can expect power laws, i.e., that
certain functions behave like a power of n or |p − pc| for n large or p close to
pc. E.g., if we set R = R(p) = the radius of the open cluster of the origin, then
scale invariance at p = pc would give that

Ppc
{R ≥ xy}

Ppc
{R ≥ y}

→ g(x) (2.1)

for some function g(x), as y → ∞ and x ≥ 1 fixed. This, in turn, would imply
g(xy) = g(x)g(y) and g(x) = xλ for some constant λ. Necessarily λ ≤ 0, since
(2.1) is less than or equal to 1 for x ≥ 1. Now let ε > 0 and (1 + ε)k ≤ t ≤

(1 + ε)k+1. Then

Ppc
{R ≥ t} ≤ Ppc

{R ≥ (1 + ε)k} = Ppc
{R ≥ 1}

k
∏

j=1

Ppc
{R ≥ (1 + ε)j}

Ppc
{R ≥ (1 + ε)(j−1)

}

.

(2.2)
Since

Ppc
{R ≥ (1 + ε)j}

Ppc
{R ≥ (1 + ε)(j−1)

}

→ g(1 + ε) = (1 + ε)λ as j → ∞,

we obtain
Ppc

{R ≥ t} ≤ tλ+o(1) as t → ∞.

By replacing k by k+1 and reversing the inequality in the lines following (2.2)
we see that

Ppc
{R ≥ t} = tλ+o(1) as t → ∞ or lim

t→∞

logPpc
{R ≥ t}

log t
= λ. (2.3)

Of course we did not prove (2.1) here, nor did we obtain information about λ.
The complete proof of (2.3) and evaluation of λ in [15] is much more intricate.

An example of a different but related kind of power law which one may
expect says

log
[

θ(p)
]

log(p− pc)
→ β as p ↓ pc.

Exponents such as λ and β are called critical exponents. It is believed that all
these exponents can be obtained as algebraic functions of only a small number
of independent exponents. Physicists have indeed found (non-rigorously) that
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various quantities behave as powers. Still on a heuristic basis, they believe that
these exponents are universal, in the sense that they depend basically on the
dimension of the lattice only. In particular they should exist and be the same
for the bond and site version on Z2 and the bond and site version on the
triangular lattice. For the planar lattices physicists even predicted values for
these exponents.

The pathbreaking work of Stas and Lawler, Schramm, Werner has made it
possible to prove some power laws for various processes such as site percolation
on the triangular lattice, loop erased random walk, or processes related to
the uniform spanning tree. Nevertheless, there still is no proof of universality
for percolation, because the percolation results so far are for one lattice only,
namely site percolation on the triangular lattice. As stated by Stas in his lecture
at the last ICM ([20],p. 1421), “The point which is perhaps still less understood
both from mathematics and physics points of view is why there exists a universal
conformally equivalent scaling limit.” From now on, all further results tacitly

assume that we are dealing with site percolation on the triangular lattice. As far
as I know no other two dimensional percolation results have been proven. For
this lattice pc equals 1/2.

Somehow, the knowledge and guesses about other similar systems convinced
people that it would be helpful to prove that the scaling limit for percolation
at pc in two dimensions exists and is conformallly invariant. This is still vague
since we did not specify what it means that the scaling limit exists and is
conformally invariant. It seems that M. Aizenman (see [13], bottom of p. 556)
was the first to express this as a requirement about the scaling limit of crossing

probabilities.
A crossing probability of a Jordan domain D with boundary the Jordan

curve ∂D is a probability of the form

P{∃ an occupied path in D from the arc [a, b] to the arc [c, d]},

where D = closure of D, and a, b, c, d are four points on ∂D such that one
successively meets these points as one traverses ∂D counterclockwise, and the
interiors of the four arcs [a, b], [b, c], [c, d] and [d, a] are disjoint. We may also re-
place “occupied path” by “vacant path” in this definition. It seems reasonable to
require that each crossing probability converges to some limit if our percolation
configuration converges. As we shall see soon that this is indeed the case in the
Stas’ development. However, see [6] and [7] for a stricter sense of convergence.

To be more specific, let D be a Jordan domain in R2 with a smooth boundary
∂D. Also let τ = exp(2π/3) and consider three points of ∂D and label these
A(1), A(τ), A(τ2) as one traverses ∂D counterclockwise. (More general D should
be allowed, but we don’t want to discuss technicalities here.) As shown by Stas,
there then exist three functions

h(A(α), A(τα), A(τ2α), z), α ∈ {1, τ, τ2},
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which are the unique harmonic solutions of the mixed Dirichlet-Neumann prob-
lem

h(A(α), A(τα), A(τ2α), z) = 1 at A(α),

h(A(α), A(τα), A(τ2α), z) = 0 on the arc A(τα), A(τ2α),

∂

∂(τν)
h(A(α), A(τα), A(τ2α), z) = 0 on the arc A(α), A(τα),

∂

∂(−τ2ν)
h(A(α), A(τα), A(τ2α), z) = 0 on the arc A(τ2α), A(α),

(2.4)

where these functions are regarded as functions of z, and ν is the counterclock-
wise pointing unit tangent to ∂D. The harmonic solution to these boundary
conditions (2.4) is unique, and hence its determination is a conformally invari-
ant problem. More specifically, let Φ be a conformal equivalence between D and
a domain ˜

D, and for simplicity assume that the equivalence extends to ∂D. Let
˜h be the harmonic solution of the boundary problem (2.4) with A replaced by
˜A = Φ(A). Then the uniqueness of the solution implies that

h(A(α), A(τα), A(τ2α), z) = ˜h

(

Φ(A(α),Φ(A(τα),Φ(A(τ2α),Φ(z)

)

.

In shorter notation,
h = ˜h ◦ Φ. (2.5)

Thus, the solution of (2.4) is a conformal invariant of the points
A(1), A(τ), A(τ2), z and the domain D. By the Riemann mapping theorem we
may choose Φ such that ˜

D has a simple form and then use (2.5) to obtain h

on D. Carleson observed that if we take ˜

D to be an equilateral triangle, then
the solution ˜h(A(α), A(τα), A(τ2α), z) is just a linear function which is 1 at the
vertex A(α), and 0 on the opposite side (A(τα), A(τ2α)), and similarly when
α is replaced by τα or τ2α. For Stas this elegant form made the problem that
much more attractive to work on.

Stas achieves his main result by making the following choices: On the trian-
gular lattice, let A(1) = (2/

√

3, 0), A(τ) = (1/
√

3, 1), A(τ2) = the origin. These
are the vertices of an equilateral triangle D of height 1 and one vertex at the
origin. One further takes z on the arc [A(τ2), A(1)] = [(0, 0), A(1)]. Actually
we are cheating a bit because the points A(1), A(τ), A(τ2) and z may not lie
in δL, but we shall ignore this difficulty here and on several places below. For
α ∈ {1, τ, τ2}, and z ∈ [(0, 0), A(1)], define

Qδ

α(z) = there exists in D a simple, occupied path, from the

arc [A(α), A(τα)] to the arc [A(τ2α), A(α)], and this

path separates z from the arc [A(τα), A(τ2α)],

(2.6)

and
Hδ

(A(α), A(τα), A(τ2α), z) = P{Qδ

α(z)}. (2.7)
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A(τ)

A(1)

A(τ2)

A(τ)

Qδ

τ2(z)

A(τ2) = (0, 0) z A(1)

Figure 2.

Stas then formulates his main result as follows: For percolation on δL, with L

the triangular lattice, as δ → 0,

Hδ
(A(α), A(τα), A(τ2α), z) → h(A(α), A(τα), A(τ2α), z), uniformly on D.

(2.8)
The basic structure of the argument is now well known. It is shown that the
Hδ are Hölder continuous, so that every sequence δn → 0 has a further subse-
quence δ∗n along which the functions Hδ

∗

n converge. Moreover the limit along
this subsequence has to be harmonic and to satisfy the boundary conditions
(2.4). The limit is therefore unique and independent of the choice of the sub-
sequence δ∗n. Thus limδ→0 H

δ exists and is harmonic and conformally invariant
(because the solution h to the problem (2.4) is conformally invariant). Note
that this proof also yields the convergence of crossing probabilities to a com-
putable limit. Indeed, it follows directly from the definitions that Qδ

τ2(z) is just
the event that there exists a crossing in D from the arc [A(τ), A(τ2)] to the
arc [z,A(1)]. It then follows from (2.8) that the probability of the existence of
such a crossing converges, (as δ → 0) to h(A(τ2), A(1), A(τ), z1) = 1− z1

√

3/2,
where ‖z− (z1, 0)‖ → 0. The value 1− z1

√

3/2 comes from the fact that h(z) is
linear on the segment from A(τ2) to A(1) and that z → (z1, 0) as δ → 0.

Stas’ proof is quite ingenious. Quite apart from the clever introduction of
the variable z, there are steps which one would never expect to work. It uses
estimates which rely on quite unexpected cancellations. The principal part of
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the argument is to show that any subsequential limit (as δ → 0 through some
subsequence δn) of the Hδ is harmonic. In turn, this relies on the Hδ being
approximations to discrete harmonic functions. Rather than trying to prove
harmonicity locally from properties of a second derivative, Stas shows that
certain contour integrals of Hδ tend to zero as δ ↓ 0 and applies Morera’s
theorem.

Thus these crossing probabilities have limits, which can be computed ex-
plicitly. These limits agree with Cardy’s formula ([8]). This shows that certain
finite collections of crossings of (suitably oriented equilateral) triangles converge
weakly and that their probabilities behave as expected, or desired. But much
more can be said. [6, 7], and later [4, 23], show that in “the full scaling limit”
there is also weak convergence of the occurrence of loops, and loops inside loops
or touching other loops, etc. As stated in the abstract of [5]: “These loops do
not cross but do touch each other-indeed, any two loops are connected by a
finite ‘path’ of touching loops.”

3. Schramm-Loewner Evolutions (SLE)

A short time before Smirnov’s paper, Schramm had tried to find out how con-
formal invariance could be used (if shown to apply) to study also other models
than percolation. Loewner introduced his evolutions when he tried to prove
Bieberbach’s conjecture. Roughly speaking, Loewner represented a family of
curves (one for each z ∈ H) by means of a single function Ut. Here H is the
open upper halfplane, Ut is a given function, and after a reparametrization, gt
is a solution of the initial value problem

∂

∂t
gt(z) =

2

gt(z)− Ut

, g0(z) = z. (3.1)

Let

Tz = sup{s : solution is well defined for t ∈ [0, s) with gs(z) ∈ H}

and Ht := {z : Tz > t}. Then gt is the unique conformal transformation from
Ht onto H for which gt(z) − z → 0 as z → ∞ (see [14], Theorem 4.6). The
gt arising in this way are called Loewner chains and {Ut} the driving function.
See [14], Theorem 4.6. The original Loewner chains were defined without any
probability concepts. In particular the driving function {Ut} was deterministic.
[16] raised the question whether a random driving function could produce some
of the known random curves as Loewner chain {gt}. Schramm showed in [16]
that if the process {gt} has certain Markov properties, then one can obtain this
process as Loewner chain only if the driving function is

√

κ × Brownian motion,
for some κ ≥ 0. The processes which have such a driving function are called
SLE’s (originally this stood for “stochastic Loewner Evolution”, but is now
commonly read as Schramm-Loewner evolution). When a chain is an SLEκ (in
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obvious notation) new computations become possible or much simplified. In
particular, the existence and explicit values of most of the critical exponents
have now been rigorously established (but see questions Q2 and Q4 below). Stas
has made major contributions to these determinations in [15, 22].In particular
he provided essential steps for showing that a certain interface between occupied
and vacant sites in percolation is an SLE6 curve.

The SLE calculations confirm predictions of physicists, as well as a conjec-
ture of Mandelbrot. As a result, the literature on SLEκ has grown by leaps and
bounds in the last few years, and the study of properties of SLE is becoming
a subfield by itself. SLEκ processes with different κ can have quite different
behavior. A good survey of percolation and SLE is in [17], and [14] is a full
length treatment of SLE.

4. Generalization and Some Open Problems

I don’t know of any lattice model in physics which has as much independence
built in as percolation. It is therefore of great significance that Stas has a way to
attack problems concerning the existence and conformal invariance of a scaling
limit for some models with dependence between sites, and in particular for the
two-dimensional Ising model. This is perhaps the oldest lattice model, and the
literature on it is enormous. I am largely ignorant of this literature and have
not worked my way through Stas’ papers on these models. Nevertheless I am
excited by the fact that Stas is seriously attacking such models.

For the people who are new to this, the Ising model again assigns a random
variable (usually called a spin) to each site of a lattice L. Denote the spin at
a site v by σ(v). Again σ(v) can take only two values, which are usually taken
to be ±1. The interaction between two sites u and v is J(u, v)σ(u)σ(v) and in
the simplest case

J(u, v) =

{

J if u and v are neighbors

0 otherwise.

We restrict ourselves to this simplest case, which takes J ≥ 0 constant. However,
in order to discuss boundary conditions we also need another constant, ˜J say.
For any finite set Λ ⊂ L we consider the probability distribution of the spin
configuration on Λ. This configuration is of course the vector {σ(v)}v∈Λ, and
so can also be viewed as a point in {−1, 1}Λ. For any fixed σ̃ and Λ we define

H(σ, σ̃) = HΛ(σ, σ̃) = −

∑

u,v∈Λ

Jσ(u)σ(v)−
∑

u∈Λ,v /∈Λ

˜Jσ(u)σ̃(v), (4.1)

and the normalizing constant (also called partition function)

Z = Z(Λ, β, σ̃) =
∑

σ

exp

[

− βHΛ(σ, σ̃)

]

.
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Here the sum over σ runs over {−1, 1}Λ, the collection of possible spin con-
figurations on Λ. β ≥ 0 is a parameter, which is usually called the “inverse
temperature.”

Let σ̃ be fixed outside Λ. Then, given the boundary condition σ(v) = σ̃(v)

for v /∈ Λ, the distribution of the spins in Λ is given by

P{σ(u) = τ(u) for u ∈ Λ | σ(v) = σ̃(v), v /∈ Λ} = [Z(Λ, β, σ̃)]
−1

exp

[

− βHΛ(τ, σ̃)

]

.

This defines a probability measure for the spins in a finite Λ. A probability
distribution for all spins simultaneously has to be obtained by taking a limit as
Λ ↑ L. The second sum in the right hand side of (4.1) shows the influence of
boundary conditions. At sufficiently low temperature there can be two extremal
states, obtained by taking Λ ↑ L under different boundary conditions. It now
becomes unclear how to deal with boundary conditions when one wants to take
a continuum limit.

To conclude, here are some problems on percolation. These also have ap-
peared in other lists, (see in particular [17]),but you may like to be challenged
again.

Q1 Prove the existence and find the value of critical exponents of perco-
lation on other two-dimensional lattices than the triangular one and establish
universality in two dimensions.

This seems to be quite beyond our reach at this time. Probably even more
so is the same question in dimension > 2.

Q2 Prove a power law and find a critical exponent for the probability that
there are j disjoint occupied paths from the disc {z : |z| ≤ r} to {z : |z| > R}.
For j = 1 this is the one-arm problem of [15]. For j ≥ 2, the problem is solved,
at least for the triangular lattice, if some of the arms are occupied and some are
vacant (see Theorem 4 in [22]), but it seems that there is not even a conjectured
exponent for the case when all arms are to be occupied or all vacant.

More specific questions are
Q3 Is the percolation probability (right) continuous at pc? Equivalently, is

there percolation at pc? This is only a problem for d > 2. The answer in d = 2

is that there is no percolation at pc;
Q4 Establish the existence and find the value of a critical exponent for the

expected number of clusters per site. This quantity is denoted by

κ(p) =

∞
∑

n=1

1

n
Pp{

∣

∣C
∣

∣ = n}

in [10], p. 23. The answer is still unknown, even for critical percolation on the
two-dimensional triangular lattice. It is known that κ(p) is twice differentiable
on [0, 1], but it is believed that the third derivative at pc fails to exist; see [12],
Chapter 9. This problem is mainly of historical interest, because there was an
attempt to prove that pc for bond percolation on Z2 equals 1/2, by showing
that κ(p) has only one singularity in (0, 1).
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5. Conclusion

I have been amazed and greatly pleased by the progress which Stas Smirnov
and coworkers have made in a decade. They have totally changed the fields of
random planar curves and of two dimensional lattice models. Stas has shown
that he has the talent and insight to produce surprising results, and his work has
been a major stimulus for the explosion in the last 15 years or so of probabilistic
results about random planar curves.

As some of the listed problems here show, there still are fundamental, and
probably difficult, issues to be settled. I wish Stas a long and creative career,
and that we all may enjoy his mathematics.

Figure 3.
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1. Introduction

The starting point of Cédric Villani’s work goes back to the introduction of

entropy in the nineteenth century by L. Carnot and R. Clausius. At the time,

entropy was a vague concept and its rigorous definition had to wait until the

fundamental work of L. Boltzmann who introduced nonequilibrium statistical

physics and the famous H functional. Boltzmann’s work, though a fundamental

breakthrough, did not resolve the question concerning the nature of entropy

and time arrow; the debate on this central question continued for a century

until today. J. von Neumann, in recommending C. Shannon to use entropy

for his uncertainty function, quipped that entropy is a good name because

“nobody knows what entropy really is, so in a debate you will always have the

advantage”.

The first result of Villani I will report on concerns the fundamental connec-

tion between entropy and its dissipation. In this work, we will see that rigorous

mathematical analysis is not just a display of powerful analytic skill, but also

leads to deep insights into nature. Based on this work, Villani has developed

a general theory, hypercoercivity, which applies to broad systems of equations.

In a separate direction, entropy was used by Villani as a fundamental tool in

optimal transport and the study of curvature in metric spaces. Finally, I will

describe Villani’s work on Landau damping, which predicts a very surprising

decay (and thus the word damping) of the electric field in a plasma without

particle collisions, and therefore without entropy increase. This is in sharp con-

trast with Boltzmann’s picture that the time irreversibility comes from collision

processes.

2. Boltzmann Equation

The Boltzmann equation was derived by L. Boltzmann in 1873 based on

his physical intuition of collision processes. The most striking feature of the

∗Partially supported by NSF grants DMS-0757425, 0804279.
Department of Mathematics, Harvard University, Cambridge MA 02138.

E-mail: htyau@math.harvard.edu
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Boltzmann equation, the time irreversibility, contradicts the reversibility of the

Newton equations. This fact is most concisely expressed via the Boltzmann

H-theorem stating that the entropy

S = −

∫∫

f log f dv dx

is always nondecreasing. Furthermore, the entropy production vanishes if and

only if the state is spatially homogeneous and Maxwellian in the velocity vari-

able. The Boltzmann H-theorem is semi-rigorous in the sense that if the solu-

tion to the Boltzmann equation is sufficiently smooth then the original proof

of Boltzmann is rigorous. The mathematical study of the Boltzmann equation

started perhaps from T. Carleman and H. Grad in the middle of the last century.

Despite decades of intensive research, most fundamental questions concerning

the Boltzmann equation remain open, e.g., 1. Are solutions of the Boltzmann

equation smooth if the initial data are sufficiently smooth? 2. The Boltzmann

H-theorem states that the entropy increases, but what is the rate? Or, more

generally, how fast do solutions to the Boltzmann equation approach the equi-

librium (Maxwellian) states?

The first question, the regularity of the Boltzmann equation, is only un-

derstood for small perturbation of equilibrium measures. There is a general

framework of renormalized solutions developed by R. DiPerna and P.-L. Lions

[16], but precise estimates on the solutions remain elusive. The second question,

the decay to equilibrium for the Boltzmann equation, is where Villani made his

fundamental contribution. Before we describe Villani’s work in some detail,

several important recent results concerning the Boltzmann equation should be

mentioned here. This incomplete list includes the well-posedness and the ap-

proach to equilibrium for small perturbation data by Y. Guo [24], and the

recent extension of this approach to long-range interactions and soft potentials

by P. Gressman and R. Strain [23], the weak shock solutions by S.-H. Yu [52],

the derivation of incompressible Navier-Stokes equations from the Boltzmann

equation by C. Bardos, F. Golse, D. Levermore and L. Saint-Raymond [5, 17].

The Boltzmann equation is given by

∂tf + v∇xf = Q(f, f)

where f(t, x, v) is the probability density in the phase space at the time t. The

nonlinear term Q is the collision operator

Q(f, f) =

∫∫

[f(v′)f(v′
∗
)− f(v)f(v∗)]B(v − v∗, σ) dv∗ dσ,

where v, v∗ are the incoming velocities, v′, v′
∗
the outgoing velocities, σ the

collision angle and B is the scattering kernel depending on the details of the

microscopic interactions. The Boltzmann H-functional (negative of the entropy)

is defined by

H(f) =

∫

R3

∫

R3

f(x, v) log f(x, v) dx dv
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and the Boltzmann H-theorem states that

∂tH(f(t)) = −D(f(t)) ≤ 0, D(f) =
1

4

∫∫∫

[f(v)f(v∗)

−f(v′)f(v′
∗
)] log

f(v)f(v∗)

f(v′)f(v′
∗
)
dσ dv dv∗. (2.1)

The dissipation D vanishes if and only if the state is Maxwellian:

D(f) = 0 if and only if f = Mρ,u,T := ρ(x)
e
−

|v−u(x)|
2

2T (x)

(2πT (x))3/2
(2.2)

where M is any local equilibrium state of the Boltzmann equation with density

ρ, velocity u and temperature T which can depend on the space variable. If

ρ, u, T are independent of the space variables, M is called a global equilibrium.

To understand the approach to equilibrium via the Boltzmann H-theorem,

we first consider the spatially homogeneous case, i.e., the function f(x, v) de-

pends only on v. C. Cercignani in 1983 [11] conjectured that, under suitable

assumptions on the collision kernel B, there is a constant K such that

D(f) ≥ K(f)H(f |M), H(f |M) :=

∫∫

dx dv f log
f

M
(2.3)

where M is a global equilibrium and H(f |M) is the entropy of f relative to a

global equilibrium M . The Cercignani conjecture is similar to the logarithmic

Sobolev inequality for the diffusion process, but the dissipation operator D is

nonlinear in the function f . If the Cercignani conjecture holds, then the decay

to global equilibrium would be exponentially fast. Through counterexamples,

A.V. Bobylev and C. Cercignani [7] proved that this conjecture is false if the

constant K depends on the function f only through finite Sobolev norms and

moments. On the other hand, it was shown by E. Carlen and M. Carvalho [12]

that D(f) ≥ Θf (H(f |M)), where the function Θ is not explicit but depends on

f only through its moments and some derivatives. The conjecture was finally

settled in a joint work by G. Toscani and Villani [45] and the subsequent work

by Villani [47]. The conclusion is as surprising as it is beautiful: The Cercignani

conjecture is in general false, but it is always almost correct in the following

sense.

Theorem 2.1. For a reasonable physical scattering kernel B, if f is smooth

and with certain decay property in high momentum regime, then for any ε > 0

we have

D(f) ≥ Kε(f)H(f |M)
1+ε

where Kε(f) depends on the smoothness and moments of f .

This inequality then implies that the entropic convergence rate is faster than

Cε(f0) t
−1/ε

for any initial smooth data f0. This is a much deeper inequality
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than the logarithmic Soblev inequality, as the operator D is nonlinear and the

inequality fails for ε = 0 except in certain nonphysical situations, such as when

the collision kernel is quadratic at large velocities.

Villani’s next project in this direction is the very ambitious extension of this

theorem to the spatially inhomogeneous case. One’s immediate reaction to this

question is that this is beyond reach since there is no global existence theory for

the Boltzmann equation. The key physical question, however, is to understand

the mechanism that leads to relaxation in the space variable. If we assume

that good smooth solutions are given, the intrinsic difficulties are immediately

visible: The identity D(f) = 0 implies that f is a local Maxwellian, but not

necessary a global one, i.e., the density, temperature, and velocity parameters

in the Maxwellian (2.2) depend on the space variable. Therefore, the relaxation

to the global Maxwellian requires an additional mechanism different from the

consideration of the entropy production. The only control on the space variable

in the Boltzmann equation is the first order operator v · ∇x. Now we have a

formidable problem: It is analogue of a hypoelliptic problem, but the elliptic

part is a nonlinear integral operator! Numerically, the entropy does decay very

fast in the spatially inhomogeneous case, but the entropy production is far

from monotonic. The main result in this direction is the following theorem by

L. Desvillettes and Villani [15].

Theorem 2.2. Suppose that ft(x, v) is a regular solution to the Boltzmann

equation and ft satisfies some lower bound estimate in the large velocity region.

Under some assumptions on the collision kernel B, for any ε > 0 there is a Cε

such that

H(ft|M) ≤ Cε(f0) t
−1/ε

where f0 is the initial value of the Boltzmann equation.

This result assumes that the regularity of ft(x, v) is given, but is a large

data theorem in the sense that there is no smallness condition on the initial

function f0. With a smallness condition, i.e., if the initial data is near a global

Maxwellian, the assumptions of Theorem 2.2 can be verified, see, e.g., [24, 25].

Furthermore, significant progress was made in this direction for soft and long

range potentials [23] and the decay rates can be exponentially fast for certain

collision operators [22]. The method introduced to prove Theorem 2.2 is a very

powerful one; Villani later developed a general theory, hypocoercivity [50], to

estimate the large time asymptotics of a general class of hypoelliptic operators.

This program was also continued by younger mathematicians, in particular

in the series of papers by C. Mouhot, C. Baranger, R. Strain, M. Gualdani

and S. Mischler, on the spectral gap for the linearized Boltzmann operator

[6, 34] and on the matching of the nonlinear convergence to equilibrium with

the linearized theory, in a homogeneous setting [33] and in an inhomogeneous

hypocoercive setting [19].

Finally, we mention that Villani’s other work related to the Boltzmann

equation includes a series of papers on the influence of grazing collisions, mainly
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with L. Desvillettes and R. Alexandre: existence of renormalized solutions (with

defect measure) for the Boltzmann equation without cutoff [2], the rigorous

derivation of the Fokker–Planck–Landau equation from the Boltzmann equation

in the grazing collision limit [46, 3], and sharp regularity bounds associated with

entropy production [1].

3. Optimal Transportation and Curvature

The optimal transport problem, also known as Monge-Kantorovich problem,

is an ancient engineering problem seeking to minimize the cost to transport

mass. For our purpose, the initial and final mass distributions are given by two

probability measures µ and ν on a compact measurable metric space X. The

goal is to find a measurable map T : X → X with T#µ = ν to minimize the

transportation cost
∫

c(x, T (x)) dµ(x). (3.1)

The square root of the minimal transportation cost with the squared distance

transportation cost function c(x, y) = d(x, y)2 is called the 2-Wasserstein dis-

tance, W2, between these two measures. The minimizer T is called the optimal

transport map. The existence and uniqueness of the optimal transport map

was proved in the Euclidean space by Y. Brenier [9] and in the Riemannian

manifolds by R. McCann [32].

The probability measures on the metric space X with the Wasserstein

distance constitute a compact metric space, called the Wasserstein space

(P (X),W2) =: P2(X) on X. We now take X to be a compact manifold M

with metric tensor g which in turns generates a geodesic distance d and the

normalized volume measure ν = dvolM/volM. The information (negative of

the entropy) H(µ) of a measure µ = ρ ν absolutely continuous w.r.t. ν is

defined by

H(µ) =

∫

ρ log ρ dν.

In a study of nonlinear heat equations, F. Otto [38] defined a formal Riemannian

structure on P2(M) and interpreted these equations as gradient flows on the

Wasserstein space P2(M) with this formal Riemannian structure. Subsequently,

Otto and Villani [39] found the remarkable property that the entropy, viewed as

a functional on the Wasserstein space P2(M), is concave if the Ricci curvature

of the manifold M is nonnegative. This provided the first link between the

concavity of entropy on the Wasserstein space and the Ricci curvature of the

underlying manifold. This relation was subsequently established rigorously in

[13], partly motivated by the earlier work [31]. Otto and Villani [39] also argued

that the converse should hold, and it was rigorously established in [41].

If we replace the convexity of entropy by a lower bound K on the Hessian of

entropy on P2(M), the corresponding condition on the Ricci curvature becomes
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the lower bound

Ric ≥ Kg.

Furthermore, the volume measure can be generalized to the weighted volume

measure e−Φ
dvol provided the Ricci curvature is replaced by the Bakry-Émery

tensor

Ric∞ := Ric + Hess (Φ) ≥ Kg.

Using this heuristic idea, Otto and Villani [39] then provided a unified ap-

proach to a wide range of inequalities in analysis and geometry including the

logarithmic Sobolev inequality and Talagrand’s concentration inequality.

If P2(M) is a regular Riemannian manifold, a lower bound K on the Hessian

of the entropy functional is equivalent to the displacement convexity inequality

H(µt) ≤ (1− t)H(µ0) + tH(µ1)−K
t(1− t)

2
W2(µ0, µ1)

2
(3.2)

for any Wasserstein geodesic µt. Notice that this definition depends only on

the concept of geodesic on the Wasserstein space which can be defined on any

metric space. There is no need for a Riemannian structure on M if we take (3.2)

as the definition that the Ricci curvature on a metric space X is bounded below

by K. With this definition of a lower bound on the Ricci curvature, J. Lott and

Villani [36] proved the fundamental stability result that the lower bound on the

Ricci curvature is stable under the Gromov-Hausdorff convergence. A closely

related definition of Ricci curvature lower bounds, and similar stability results

were obtained independently by K.-T. Sturm [43, 44]. The main statement of

Lott-Villani’s results can be stated as follows.

Theorem 3.1. Let {(Xi, di, νi)} be a sequence of compact measured length

spaces and limi→∞(Xi, di, νi) = (X, d, ν) in the measured Gromov-Hausdorff

topology. If the Ricci curvature of (Xi, di, νi) is bounded below by K then the

Ricci curvature of (X, d, ν) is also bounded below by K.

This theorem demonstrates the robustness of this definition of Ricci cur-

vature lower bounds. On the other hand, the definition is also a very effective

notion since it allows one to generalize many theorems in Riemannian geom-

etry to the setting of metric spaces, including the Bishop-Gromov theorem,

logarithmic Sobolev inequality and Bonnet-Myers theorem. Moreover, the def-

inition can easily be discretized [8]. We note that there are other notions and

definitions of curvatures on metric spaces or graphs. This includes the work of

Y. Ollivier [37] and F. R. Chung and S.-T. Yau’s definitions of curvatures on

graphs [18, 28].

To summarize, Villani has brought the tools of entropy and its time-

evolution from the study of convergence to equilibrium in the Boltzmann equa-

tion to a geometric setting involving the Wasserstein space. In addition to the

Ricci curvature, Villani has explored connections with other geometric or an-

alytic problems, such as the Sobolev inequality, for which he has provided a
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new proof based on optimal transport and entropy-type functionals, in collab-

oration with D. Cordero-Erausquin and B. Nazaret [14]. Like [36], this paper

was a starting point for other developments, including the work of A. Figalli,

F. Maggi and A. Pratelli [21] on quantitative anisotropic isoperimetric inequal-

ities. Villani also wrote a series of papers with A. Figalli, G. Loeper and L.

Rifford relating the smoothness of optimal transport with the shape of the cut

locus in Riemannian geometry [30, 20].

4. Landau Damping

The last theorem of Villani I will describe is a rigorous proof of Landau damping

in the nonlinear setting. The fundamental equation governing plasma dynamics

is the Vlasov-Poisson equation, which, for periodic data is given by

∂tf + v∇xf + E∇vf = 0, f(t, x, v) ≥ 0

where f(t, x, v) is the density of charged particles with velocity v ∈ R3
at

x ∈ T3
, the unit torus in R3

. The electric field E is related to the density of

charged particles ρ(t, x) =
∫

f(t, x, v)dv via the Poisson equation

E := E[ρ] := −∇φ, −∆φ = ρ(x)− 1

where the constant 1 is the density of background charges normalized to be one.

This equation describes the dynamics of galaxies if we make a sign change in the

electric field due to the sign difference between the Coulomb and gravitational

forces. The result I will describe is valid with both signs, but I will use the

language of plasma physics.

The Vlasov-Poisson equation describes collisionless dynamics and is time

reversible. It is well known that dissipative dynamics often approach equilib-

rium exponentially fast, but for reversible dynamics the state ft at any given

time carries the same information as the initial data and decay to equilibrium

can only be valid after certain averaging. On the other hand, fast relaxation

to equilibrium in nature is ubiquitous even for systems governed by Newtonian

dynamics. The common explanation has been that the relaxation is due to colli-

sion processes which produce dissipation. In 1946, L. Landau [27] revolutionized

this common belief by arguing that the electric field in the Vlasov-Poisson equa-

tion, which is a collisionless equation, decays exponentially fast. He computed

this rate of convergence for the linearized Vlasov-Poisson equation. This as-

tonishing discovery is thus termed Landau damping. Despite intensive studies,

the understanding of Landau damping for the Vlasov-Poisson equation is very

limited.

The Vlasov-Poisson equation has infinitely many stationary solutions. In

fact, any density g(v) satisfying the normalization condition
∫

g(v)dv = 1 is

a stationary solution. The stability analysis of the linearized Vlasov-Poisson

equation was mainly due to the work of O. Penrose [40] in the sixties. It states
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that f0
is stable if for any σ ∈ S2

and fσ(v) =
∫

vσ+σ⊥
f0

(z) dz, then for any w

such that f ′

σ(w) = 0 one has

∫

f ′

σ(v) dv

v − w
dv < 1.

The Landau damping for the linearized Vlasov-Poisson was already understood

in the sixties by the work of A. Saenz [42]; for the quasi-linear case only nonrig-

orous results were available. On the other hand, it was pointed out by G. Backus

[4] that the linear approximation is not expected to be valid for the full nonlin-

ear equation in the large time regime. For the nonlinear Landau damping, the

only partial results available were examples of solution to the Vlasov-Poisson

equation that exhibit Landau damping [10, 26]. Last year Mouhot and Villani

[35] proved that, for any analytic data near an analytic linearly stable station-

ary state, the electric field decay exponentially fast. Notice that the analyticity

assumption is not an artifact of the proof, it is in fact necessary [29]. This re-

solves the long standing problem of Landau damping. We will not be able to

state their theorem precisely nor in its general form, but the following limited

version in the physical dimension d = 3 gives a flavor of the depth of the full

theorem.

Theorem 4.1 (nonlinear Landau damping for general interaction). There is

an analytic norm ‖ · ‖a on functions of the phase space such that the following

holds: Let f0
: Rd

→ R+ be an analytic stationary state satisfying Penrose’s

linear stability criterion. Suppose the initial profile fi ≥ 0 is near the analytic

stationary state in the sense that

‖fi − f0
‖a ≤ ε, (4.1)

for some ε sufficiently small. Then there are analytic profiles f+∞(v), f−∞(v)

such that

f(t, · )
t→±∞

−−−−→ f±∞ weakly

exponentially fast. Furthermore, the marginal density of the unique solution of

the nonlinear Vlasov equation with initial value f(0, · ) = fi converges expo-

nentially fast as time t → ±∞, i.e., there exists ρ∞ and λ > 0 such that for all

integer r we have

∥

∥ρ(t, · )− ρ∞
∥

∥

Cr(T3)
≤ C e−λ|t|, t → ±∞, (4.2)

where Cr denotes the L∞ norm of the derivatives up to order r.

Since the Vlasov-Poisson equation is time reversible, the profiles ft keep

the memory of the initial datum for all time. The fast relaxations in Mouhot-

Villani’s theorem only refer to averaged quantities such as density in the posi-

tion space or in the weak sense. This is due to the fact that weak convergence

preserves only the information of low frequency modes; the information at low
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frequencies was transferred to high frequencies to “maintain the constant to-

tal information for all times”. Although ft carries all information of the initial

data for all time, more and more information is stored at high frequency modes.

Hence if we only look at low frequency modes (such as weak convergence), there

is a loss of information and this is responsible for the fast relaxation of vari-

ous averaged quantities. This resembles the phenomena in turbulence and it

requires very precise understanding of this transfer of information to yield a

mathematical proof. Mouhot-Villani’s theorem is the first rigorous result to

establish a fast decay to equilibrium, a time irreversible behavior, in confined

collisionless time-reversible dynamics.

5. Conclusion

In Villani’s work, we have seen not only rigorous mathematical analysis provid-

ing deep insights into physical behavior, but also important new mathematics

emerging from the study of natural phenomena, in the spirit of Maxwell and

Boltzmann. Besides his research articles, Villani has written extensive surveys

and books [48, 50, 49, 51], and, through these, as well as the insights of his

work, he has inspired a generation of young mathematicians with deep, rich,

physically motivated mathematical questions. We are witnessing the beginning

of Villani’s spectacular career and influence in shaping the directions of analysis

and mathematics.
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interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146, no.

2, 219–257 (2001).

[14] Cordero-Erausquin, D.; Nazaret, B. and Villani, C.: A mass-transportation ap-

proach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182

(2004), no. 2, 307–332.

[15] Desvillettes, L. and Villani, C.: On the trend to global equilibrium for spatially

inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 245–

316 (2005).

[16] DiPerna, R. J., and Lions, P.-L.: On the Cauchy problem for Boltzmann equa-

tions: global existence and weak stability. Ann. of Math. (2) 130, 2 (1989), 321–

366.

[17] Golse, F. and Saint-Raymond, L.: The Navier-Stokes limit of the Boltzmann

equation for bounded collision kernels. Invent. Math. 155 (2004), no. 1, 81–161.

[18] Chung, F. R. K. and Yau, S.T.: Logarithmic Harnack inequalities Math. Res.

Lett. 3 (1996), no. 6, 793–812.

[19] Gualdani M.; Mischler S., Mouhot C.:Factorization for non-symmetric operators

and exponential H-theorem, arXiv:1006.5523

[20] Figalli, A., Rifford, L. and Villani, C.: Nearly round spheres look convex. Preprint

(2009).

[21] Figalli, A.; Maggi, F.; Pratelli, A.: A mass transportation approach to quantita-

tive isoperimetric inequalities, to appear in Invent. Math.

[22] Gressman, P. and Strain, R.: Global strong solutions of the Boltzmann equation

without angular cut-off, arXiv:0912.0888v1

[23] Gressman, P. and Strain, R.: Global Classical Solutions of the Boltzmann Equa-

tion with Long-Range Interactions and Soft Potentials, arXiv:1002.3639.

[24] Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an

angular cutoff. Arch. Ration. Mech. Anal. 169 (2003), no. 4, 305–353.

[25] Guo, Y.: The Landau equation in a periodic box. Comm. Math. Phys. 231 (2002),

no. 3, 391–434.

[26] Hwang, J.-H. and Velazquez, J.: On the existence of exponentially decreasing

solutions of the nonlinear Landau damping problem. Indiana Univ. Math. J. 58,

no. 6, 2623–2660 (2009).



The work of Cédric Villani 97

[27] Landau, L.: On the vibration of the electronic plasma. J. Phys. USSR 10 (1946),

25.

[28] Lin, Y. and Yau, S.T.: Ricci curvature and eigenvalue estimate on locally finite

graphs. Math. Res. Lett. 17 (2010), no. 2, 343–356.

[29] Lin, Z. W., Zeng, C. C.: Small BGK waves and nonlinear Landau damping,

arXiv:1003.3005

[30] Loeper, G. and Villani, C.: Regularity of optimal transport in curved geometry:

the nonfocal case. To appear in Duke Math. J.

[31] McCann, R. J.: A convexity principle for interacting gases. Adv. Math. 128

(1997), no. 1, 153–179

[32] McCann, R. J.: Polar factorization of maps on Riemannian manifolds. Geom.

Funct. Anal., 11, no. 3, 589-608 (2001).

[33] Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous

Boltzmann equation with hard potentials. Comm. Math. Phys. 261, no. 3, 629–

672 (2006).

[34] Mouhot, C.; Strain, R.: Spectral gap and coercivity estimates for linearized Boltz-

mann collision operators without angular cutoff. J. Math. Pures Appl. 87, no. 5,

515–535 (2007).

[35] Mouhot, C., and Villani, C.: On Landau damping. arXiv:0904.2760, (2009).

[36] Lott, J. and Villani, C.: Ricci curvature via optimal transport. Ann. Math. 169

(2009), 903–991

[37] Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal.

256 (2009), no. 3, 810–864.

[38] Otto, F.: The geometry of dissipative evolution equations: the porous medium

equation. Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174.

[39] Otto, F. and Villani, C.: Generalization of an inequality by Talagrand and links

with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000), no. 2, 361-

400.

[40] Penrose, O.: Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids

3, 258–265 (1960).

[41] von Renesse, M.-K. and Sturm, K.-T.: Transport inequalities, gradient estimates,

entropy, and Ricci curvature. Comm. Pure Appl. Math. 58 (2005), no. 7, 923–

940.

[42] Saenz, A. W.: Long-time behavior of the electric potential and stability in the

linearized Vlasov theory. J. Mathematical Phys. 6 (1965), 859–875.

[43] Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196

(2006), no. 1, 65–131.

[44] Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196

(2006), no. 1, 133–177.

[45] Toscani, G. and Villani, C.: Sharp entropy dissipation bounds and explicit rate

of trend to equilibrium for the spatially homogeneous Boltzmann equation. Com-

mun. Math. Phys. 203, 667–706 (1999)



98 Horng-Tzer Yau

[46] Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltz-

mann and Landau equations. Arch. Rational Mech. Anal. 143, no. 3, 273–307

(1998).

[47] Villani, C.: Cercignani’s conjecture is sometimes true and always almost true.

Comm. Math. Phys. 234, 3, 455–490 (2003).

[48] Villani, C.: A review of mathematical topics in collisional kinetic theory. In Hand-

book of mathematical fluid dynamics, Vol. I. North-Holland, Amsterdam, 2002,

pp. 71-305.

[49] Villani, C.: Topics in optimal transportation, vol. 58 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 2003.

[50] Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc. 202, no. 950 (2009).

[51] Villani, C.: Optimal transport, vol. 338 of Grundlehren der Mathematischen Wis-

senschaften. Springer-Verlag, Berlin, 2009.

[52] Yu, S. H.: Nonlinear wave propagations over a Boltzmann shock profile, J. Amer.

Math. Soc., (2010).



100

Rolf Nevanlinna Prize

Daniel Alan Spielman

B.A. in Mathematics and Computer Science, Yale University, 1992,

Ph.D. in Applied Mathematics, Massachusetts Institute of Technology, 1995.

Positions held

Assistant Professor of Applied Mathematics, Massachusetts Institute of Tech-
nology, 1996 - 2002.

Associate Professor of Applied Mathematics, Massachusetts Institute of Tech-
nology, 2002 to 2005.

Professor of Applied Mathematics and Computer Science, Yale University,
2005 -



Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

The work of Daniel A. Spielman

Gil Kalai∗

Dan Spielman has made groundbreaking contributions in theoretical computer

science and mathematical programming and his work has profound connec-

tions to the study of polytopes and convex bodies, to error-correcting codes,

expanders, and numerical analysis. Many of Spielman’s achievements came with

a beautiful collaboration spanned over two decades with Shang-Hua Teng. This

paper describes some of Spielman’s main achievements.

Section 1 describes smoothed analysis of algorithms, which is a new

paradigm for the analysis of algorithms introduced by Spielman and Teng.

Section 2 describes Spielman and Teng’s explanation for the excellent practical

performance of the simplex algorithm via smoothed analysis.

Spielman and Teng’s theorem asserts that the simplex algorithm takes a

polynomial number of steps for a random Gaussian perturbation of every linear

programming problem.

Section 3 is devoted to Spielman’s works on error-correcting codes and in

particular his construction of linear-time encodable and decodable high-rate

codes based on expander graphs. Section 4 describes other directions: spec-

tral graph theory, sparsifiers, graph partitioning, numerical analysis, and linear

equation solvers.

1. Smoothed Analysis of Algorithms

I will introduce the motivation for smoothed analysis by quoting Dan Spielman

himself:

“Shang-Hua Teng and I introduced smoothed analysis to provide a

means of explaining the practical success of algorithms and heuris-

tics that have poor worst-case behavior and for which average-case

analysis was unconvincing. The problem of explaining the success

of heuristics that ‘work in practice’ has long plagued theoreticians.

Many of these have poor worst-case complexity. While one may gain

some insight into their performance by demonstrating that they have

low average-case complexity, this analysis may be unconvincing as

∗Hebrew University of Jerusalem and Yale University. E-mail: kalai@math.huji.ac.il
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an average-case analysis is dominated by the performance of an al-

gorithm on random inputs, and these may fail to resemble the inputs

actually encountered in practice.”

Smoothed analysis is a hybrid of worst-case and average-case analyses that

inherits advantages from both. The smoothed complexity of an algorithm is

the maximum over its inputs of the expected running time of the algorithm

under slight random perturbations of that input. The smoothed complexity

is then measured as a function of both the input length and the magnitude

of the perturbations. If an algorithm has low smoothed complexity, then it

should perform well on most inputs in every neighborhood of inputs. Smoothed

analysis makes sense for algorithms whose inputs are subject to slight amounts

of noise in their low-order digits, which is typically the case if they are derived

from measurements of real-world phenomena.

The most important example of an algorithm with poor worst-case com-

plexity and excellent practical behavior is the simplex algorithm for linear pro-

gramming. We will discuss linear programming in the next section. Following

Spielman and Teng, the smoothed complexity of quite a few other algorithms,

of geometric, combinatorial, and numeric nature, were studied by various au-

thors, see [48] for a survey. Some highlights are: k-means and clustering [5];

integer programming [7]; superstring approximation [30]; Smoothed formulas

and graphs [26].

2. Why is the Simplex Algorithm so Good?

2.1. Linear programming and the simplex algorithm. In

1950 George Dantzig (see [10]) introduced the simplex algorithm for solving

linear programming problems. Linear programming and the simplex algorithm

are among the most celebrated applications of mathematics. See [37, 53].

A linear programming problem is the problem of finding the maximum of

a linear functional (called a linear objective function) on d variables subject to

a system of n inequalities. The set of solutions to the inequalities is called the

feasible polyhedron and the simplex algorithm consists of reaching the optimum

by moving from one vertex to a neighboring vertex of the feasible polyhedron.

The precise rule for this move is called the pivot rule. What we just described is

sometimes called the second phase of the algorithm, and there is a first phase

where some vertex of the feasible polyhedron is reached.

Understanding the complexity of linear programming and of the simplex

algorithm is a major problem in mathematical programming and in theoretical

computer science.

Early thoughts. The performance of the simplex algorithm is extremely good

in practice. In the early days of linear programming it was believed that the
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common pivot rules reach the optimum in a number of steps that is polynomial

or perhaps even close to linear in d and n. As we will see shortly, this belief

turned out to be false.

A related conjecture by Hirsch asserts that for d-polytopes (bounded poly-

hedra) defined by n inequalities in d variables there is always a path of length

at most n − d between every two vertices. The Hirsch conjecture was recently

disproved by Francisco Santos [36]. The known upper bound for diameter of

graphs of polytopes is quasi-polynomial in d and n [22]. (Of course, an upper

bound for the diameter of the graph of the feasible polyhedron does not guar-

antee a similar bound for the number of pivots for an effective simplex type

algorithm.)

The Klee-Minty example and worst-case behavior. Klee and Minty

[24] found that one of the most common variants of the simplex algorithm is

exponential in the worst case. In fact, the number of steps was quite close to

the total number of vertices of the feasible polyhedron. Similar results for other

pivot rules were subsequently found by several authors. No efficient pivot rules

for linear programming is known which requires a polynomial number of pivots

or even a sub-exponential number of pivot steps for every LP problem. There are

randomized algorithms which requires in expectation a sub-exponential number

of steps exp(K
√

log nd) [19, 34]. Even for randomized algorithms a polynomial

number of steps is a distant goal.

LP ∈ P , the ellipsoid method and interior points methods. What can

explain the excellent practical performance? In 1979 Khachian [18] proved that

LP ∈ P ; namely, there is a polynomial time algorithm for linear programming.

This had been a major open problem since the complexity classes P and NP were

described in the late sixties, and the solution led to the discovery of polynomial

algorithms for many other optimization problems [15]. Khachian’s proof was

based on Nemirovski and Shor’s ellipsoid method, which is not practical. For

a few years there was a feeling that there is a genuine tradeoff between being

good in theory and being good in practice. This feeling was shattered with

Karmarkar’s 1984 interior point method [20] and subsequent theoretical and

practical discoveries.

Average case complexity. We come now to developments that are most

closely related to Spielman and Teng’s work. Borgwardt [8] and Smale [38]

pioneered the study of average case complexity for linear programming. It turns

out that a certain pivot rule first introduced by Gass and Saaty called the

shadow boundary rule is most amenable to average-case study. Borgwardt was

able to show polynomial average-case behavior for a certain model that exhibits

rotational symmetry. In the mid-80s, three groups of researchers [1, 2, 52] were
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able to prove quadratic upper bound for the simplex algorithm for very general

random models that exhibit certain sign invariance.

2.2. Smoothed analysis of the simplex algorithm. We start

with a linear programming (LP) problem:

max < c,x >, x ∈ Rd

subject to Ax ≤ b

Here, A is an n by d matrix, b is a column vector of length n, and c is a

column vector of length d.

Spielman and Teng considered a Gaussian perturbation of the matrix A

where a Gaussian random variable with variance σ is added independently to

each entry of the matrix A.

Theorem 2.1 (Spielman and Teng [43]). For the shadow-boundary pivot rule,

the average number of pivot steps required for a random Gaussian perturbation

of variance σ of an arbitrary LP problem is polynomial in d, n, and σ−1.

Spielman and Teng’s proof [43] is truly a tour de force. It relies on a very

delicate analysis of random perturbations of convex polytopes.

Let me mention two ingredients of the proof: The shadow-boundary method

can be described geometrically as follows. Consider an orthogonal projection of

the feasible polytope to two dimensions such that the starting vertex and the

optimal vertex are mapped to vertices of the projection. The walk performed

by the algorithm (in phase I) is a pre-image of walking along the boundary in

the projection. An important step in the proof is to show that the number of

vertices
1
in the projection is only polynomial in d, n, and σ−1

.

A crucial part of the proof is explaining what a random perturbed polytope

looks like. In particular, it is required to prove that the angles at vertices of

these polytopes are not “flat.” Every vertex corresponds to a solution of d linear

equations in d variables and the angle at the vertex is described by a certain

algebraic parameter of the linear system called the condition number.

The study of condition numbers of random matrices is crucial to Spielman

and Teng’s original results as well as to many subsequent developments.

2.3. Further developments.

Smoothed analysis of interior point methods. For interior point methods

there is also an unexplained exponential gap between the practical and proven

1The whole difficulty of linear programming consists in on the fact that the number of
vertices of the feasible polytope can be exponential in d.
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number of iterations. Renegar [35] proved an upper bound of O(
√

nL) for the

number of iterations required for an interior point method to reach the opti-

mum. Here, L is the number of bits in the binary description of the problem.

His analysis strongly relies on the notion of condition number we mentioned

above. (In fact, Renegar’s result gives the upper bound O(
√

nR) where R is

the logarithm of the condition number.) Practical experience tells us that in

real-life problems the number of iterations is logarithmic in n. Can smoothed

analysis explain this as well?

Dunagan, Spielman, and Teng [11] proved that the expectation of R, the

log of the condition number of any appropriately scaled linear program subject

to a Gaussian perturbation of variance σ2
is at most O(log nd/σ) with high

probability. This may offer some explanation for the fast convergence practically

observed by various interior point methods.

Improvements, extensions, and simplifications. Spielman and Teng

themselves, Vershynin [55], Tao and Vu [51], and others over the years have

introduced significant improvements to the polynomials estimates, simplifica-

tions of various parts of the original proof, and extensions, to more general

classes of perturbations. The best-known bound for the polynomial in the the-

orem that was proved by Vershynin is max(d5 log
2
n, d9 log

4
d, d3σ−4

).

The framework of smoothed analysis can be rendered more and more con-

vincing by restricting the families of perturbations to more closely model the

noise one would actually expect in a particular problem domain. For certain

parts of the smoothed analysis, Tao and Vu [51] and Rudelson and Vershynin

were able to replace the Gaussian noise by various more general and arguably

more realistic types of noise.

Towards a strongly polynomial algorithm for linear programming.
One of the outstanding open problems in computational complexity is that

of finding a “strongly polynomial algorithm for linear programming” [32, 39].

This roughly means an algorithm that requires a polynomial number of arith-

metic operations in terms of d and n which do not depend on L, the number of

bits required to present the inequalities. The number of arithmetic operations

required by the simplex algorithm depends exponentially on d but does not

depend on L. One can hope that a strongly polynomial algorithm for linear

programming will be achieved by some clever pivot rule for the simplex algo-

rithm. The most significant result in this direction is by Tardos [50] and takes

an entirely different route. She proved that the polynomial algorithms that are

in general not strongly polynomial are strongly polynomial for a large family

of linear programming problems that arise in combinatorial optimization.

Based on the smoothed analysis ideas, Kelner and Spielman [23] found a

randomized polynomial-time simplex algorithm for linear programming. Find-

ing such an algorithm was a goal for a long time and the result may be a step

towards a strongly polynomial simplex algorithm.
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3. Linear-time Decodable and Encodable High

Rate Codes

3.1. Codes and expanders

Codes. The construction of error-correcting codes [54] is also among the most

celebrated applications of mathematics. Error-correcting codes are eminent in

today’s technology from satellite communications to computer memories.

A binary code C is simply a set of 0-1 vectors of length n. The minimal

distance d(C) is the minimal Hamming distance between two elements x, y ∈

C. The same definition extends when the set {0, 1} is replaced by a larger

alphabet Σ. When the minimal distance is d the code C is capable of correcting

[d/2] arbitrary errors. The rate of a code C of vectors of length n is defined

as R(C) = log |C|/n. Codes have important theoretical aspects. The classical

geometric problem of densest sphere packing is closely related to the problem

of finding error-correcting codes. So is the classical question of constructing

“block design,” which arose in recreational mathematics and later resurfaced

in the design of statistical tests.

Error-correcting codes have important applications in theoretical computer

science, which have enriched both areas. Codes are crucial in the area of “Hard-

ness of approximations and PCP,” and quantum analogs of error correcting

codes are expected to be crucial in the engineering and building of quantum

computers.

Expanders. Expanders are special types of graphs. Roughly speaking, a graph

with n vertices is an expander if every set A of vertices |A| ≤ n/2 has at least

εn neighbors outside A. While the initial motivation came from coding theory,

expanders quickly found many applications and connections in mathematics

and theoretical computer science. See [13] for a comprehensive survey. Pinsker

gave a simple probabilistic proof of expander graphs with bounded degree. The

first explicit construction was given by Margulis [31]. There are important con-

nections between the expansion properties, spectral properties of the graph’s

Laplacian [4, 3], and random walks [16]. Number theory enables the construc-

tion of a remarkable optimal class of expanders called “Ramanujan graphs” [28].

3.2. From expanders to codes. An important class of codes are those

of minimal distance αn errors α < 1/2. Finding the largest rate of these codes

is a famous open problem. Probabilistic constructions due to Gilbert and Var-

shamov give the highest known rates for binary codes with minimal-distance

αn. The first explicit construction for codes with positive rate that correct

a positive fraction of errors (for large n) was achieved by Justesen [17] and

was one of the major discoveries of coding theory in the seventies.
2
A major

2Later, constructions based on algebraic geometry were found which give, for large alpha-
bets, even higher rates than the Gilbert-Varshamov bound.
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open problem was to find such codes which admit a linear time algorithm for

decoding and for encoding.

In the early sixties Gallager [14] described a method to move from graphs

to codes. Michael Sipser and Spielman [49] were able to show that codes that

are based on expander graphs (thus called expander codes) have positive rate,

correct a positive fraction of errors, and have a simple decoding algorithm. A

remarkable subsequent result by Spielman is

Theorem 3.1 (Spielman 1995, [40]). There is a construction of positive rate

linear codes which correct a positive fraction of errors and which admit a linear

time algorithm for decoding and for encoding.

Spielman’s full result is quite difficult and requires a substantial extension

of Gallager’s original construction which is similar to the construction of “su-

perconcentrators” from expanders. Let me explain how Sipser and Spielman

were able to construct high-rate codes via expanders.

Start with an expander bipartite graph G with two unbalanced sides A and

B. Suppose that vertices in A have degree c and vertices in B have degree d

and that d > c. (Thus, |A|d = |B|c; put |A| = n.) The code C will consist

of all 0,1 vectors indexed by vertices in A such that for every vertex b of B

the coordinates indexed by the neighbors of b sum up to zero. This gives us a

linear code (namely, C is a linear subspace of {0, 1}|A|
) of dimension |A| − |B|.

The minimum distance between two vectors of C is simply the minimal number

of ones in a vector in C. Now enters the expansion property. Assume that for

every set B′
of vertices in B such that |B| ≤ α|B| the number of its neighbors

in A is at least δ|B′
|, where δ = εc/d. This implies that every vector in the code

C has at least εn ones.

3.3. Tornado codes. Dan Spielman has made other important contribu-

tions to the theory of error-correcting codes and to connections between codes

and computational complexity. Some of his subsequent work on error-correcting

codes took a more practical turn. Spielman, together with Michael G. Luby,

Michael Mitzenmacher and M. Amin Shokrollahi constructed [29] codes that

approach the capacity of erasure channels. Their constructions, which are now

called tornado codes, have various practical implications. For example, they can

be useful for compensating for packet loss in Internet traffic.

4. Fast Linear-system Solvers and Spectral

Graph Theory

Spielman recently focused his attention to one of the most fundamental prob-

lems in computing: the problem of solving a system of linear equations. Solving

large-scale linear systems is central to scientific and engineering simulation,

mathematical programming, and machine learning.
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Inspired by Pravin Vaidya’s work on iterative solver that uses combinatorial

techniques to build preconditioners, Spielman and Teng were able to settle an

open problem raised by Vaidya in 1990:

Theorem 4.1 (Spielman and Teng [46]). There is a nearly linear time algo-

rithm for solving diagonally dominant linear systems.

Their solver incorporates basic numerical techniques with combinatorial

techniques including random walks, separator theory, and low-stretch spanning

trees. This endeavor have grown into a body of interdisciplinary work, and in

the process

• Numerically motivated combinatorial concepts such as spectral sparsifiers

were introduced.

• Efficient graph-theoretic algorithms for constructing sparsifiers were

found and applied to matrix approximation.

• Nearly linear-time clustering and partitioning algorithms for massive

graphs were developed with the guidance of spectral analysis.

A recent practical fruit is the development of an asymptotically and prac-

tically efficient nearly-linear time algorithm by Koutis, Miller and Peng [25],

which incorporates Spielman and collaborators’ constructions of low-stretch

spanning trees [12] and of sparsifiers [45].

In the rest of this section we will describe three themes in this endeavor, but

let me first make a remark about the relation of Spielman’s work with numerical

analysis. Numerical analysis may well deserve the title of “queen of applied

mathematics” and thinking numerically often gives a whole new dimension to

mathematical understanding. Algorithms discovered in numerical analysis and

scientific computing are among the most important and most useful algorithms

known to mankind. Many of the notions and results discussed in Section 1

and in this section are related to numerical analysis. Spielman and Teng [43]

proposed smoothed analysis as a framework for the theoretical study of certain

numerical algorithms and Spielman’s recent endeavor have built new bridges

between numerical analysis and discrete mathematics.

The following themes are heavily entangled in Spielman’s work, but I will

describe them separately. For more, see Spielman’s article in these proceed-

ings [41].

Sparsifiers. What is a sparsifier? Very roughly, given a graph G (typically

dense, with a quadratic number of edges in terms of the vertices), a sparsifier

H is a sparse graph with a linear or nearly linear number of edges that captures

(in a sense that needs to be specified) structural properties of G. So expanders

can be thought of as sparsifiers of the complete graph.

Spielman and Teng [45] gave a spectral definition of sparsifiers and this

definition turned out to be very fruitful. Recent works by Spielman with several
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coauthors [6, 42] give answers to the following questions: How are sparsifiers

constructed? What are they good for? If sparsifiers are analogs of expanders

what are the analogs of Ramanujan graphs? One of the major new results is

nearly linear-time algorithms to construct sparsifiers.

Graph partitioning via spectral graph theory. Splitting graphs into a

structured collection of subgraphs is an important area in pure and applied

graph theory. A tree-like structure is often a goal. And the Lipton-Tarjan sep-

arator theorem [27] for planar graphs is an early graph-partitioning result that

often serves as a role model.

By bounding the eigenvalue of the Laplacian of bounded-degree planar

graphs, Spielman and Teng [45] gave an algebraic proof of the Lipton-Tarjan’s

theorem and its extensions, providing an explanation of why the spectral parti-

tioning works on practical graphs including finite-element meshes and planar-

like graphs.

Solvers for linear systems of equations based on graph Laplacians.
In a series of papers Spielman and his coauthors considered systems of linear

equations based on Laplacian matrices of graphs. This may look rather special

but it is a fascinating class of linear systems and various others systems of linear

equations can be reduced to this case. See [41].

Conclusion. The beautiful interface between theory and practice, be it in

mathematical programming, error-correcting codes, the search for Ramanujan-

quality sparsifiers, the analysis of algorithms, computational complexity theory,

or numerical analysis, is characteristic of Dan Spielman’s work.
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Abstract

Yves Meyer has made numerous contributions to mathematics, several of which

will be reviewed here, in particular in number theory, harmonic analysis and

partial differential equations.

His work in harmonic analysis led him naturally to take an interest in

wavelets, when they emerged in the early 1980s; his synthesis of the advanced

theoretical results in singular integral operator theory, established by himself

and others, and of the requirements imposed by practical applications, led to

enormous progress for wavelet theory and its applications. Wavelets and wavelet

packets are now standard, extremely useful tools in many disciplines; their suc-

cess is due in large measure to the vision, the insight and the enthusiasm of

Yves Meyer.

Keywords. Harmonic analysis, wavelets, signal analysis, images, quasicrystals,

Navier-Stokes

We start by reviewing the work by Yves Meyer chronologically, after which

we comment on the many ways in which his work has had an impact outside

mathematics.

1. Early work: Harmonic Analysis and Number

Theory (1964–1973)

Although the Mathematics Genealogy Project lists Jean-Pierre Kahane as his

Ph.D. advisor, Yves Meyer was essentially already an independent researcher

when he wrote his PhD thesis, in which he solved a problem raised by Lennart

Carleson about “strong Ditkin sets” [1].

After his Ph.D., Meyer moved on to number theory, more precisely to Dio-

phantine approximations. One of his early results was the construction of an

∗218 Fine Hall, Princeton University, Washington Road, Princeton NJ 08540, USA.
E-mail: ingrid@math.princeton.edu
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increasing sequence of integers (kn)
n∈N

such that for any t ∈ R, the sequence

(t kn )
n∈N

is equidistributed modulo 1 if and only if t is transcendental [2]. This

result preluded the characterization by Gérard Rauzy of normal sets. Meyer

also became interested in Pisot numbers and found a new approach to a the-

orem by Raphaël Salem and Antoni Zygmund concerning sets of uniqueness

of trigonometric expansions, proving in particular that certain types of Cantor

sets have the property of spectral synthesis.

Insights gained while working on these early results then led to the first

major contribution of Yves Meyer: the theory of model sets, which paved the

road to the mathematical theory of quasicrystals.

A set Λ ⊂ Rn is a model set if it is uniformly discrete (i.e. ∃ r > 0 such

that ∀λ 6= λ′ ∈ Λ , |λ− λ′| ≥ r ) and if there exist a finite set F ⊂ Rn and a

constant C > 0 such that (1) Λ − Λ ⊂ Λ + F , and (2) infλ∈Λ |x−λ| ≤ C for all

x ∈ Rn. Meyer proved the following theorem: if Λ is a model set and if θΛ ⊂ Λ

then θ is a Pisot or a Salem number. The following converse is also true: for

each Pisot or Salem number, there exists a model set Λ such that θΛ ⊂ Λ . This

and many other properties of model sets are established in [3], relating them

to the theory of mean-periodic functions developed by Jean Delsarte and Jean-

Pierre Kahane. It was later realized that some non-periodic patterns observed

in chemical alloys, now generally known as quasicrystals, could be identified

with specific model sets. It is worth noting that these fundamental discoveries

by Yves Meyer predated the first constructions of Penrose tilings.

2. Singular Integral Operators: the Calderón

Program (1974–1984)

Alberto Calderón proposed to construct an improved pseudodifferential calcu-

lus, with minimal smoothness assumptions on the “symbol”; he introduced this

generalization so as to

obtain stronger estimates and to prepare the ground for application

to the theory of quasilinear and nonlinear differential operators.

In particular, these new operators had to include singular integral operators, of

which the archetypical examples are the Hilbert transformH (in one dimension),

H(f)(x) =
1

π
lim
ε→0

∫

y∈R, |x−y|>ε

1

x− y
f(y) dy ,

and the Riesz transforms Ri (in higher dimensions),

Ri(f)(x) =
1

π ωn−1

lim
ε→0

∫

y∈Rn, |x−y|>ε

xi

|x− y|n+1
f(y) dy ,
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where ωn−1 is the volume of the unit ball in Rn, n > 1. More generally, a

singular integral operator T in Caldéron-Zygmund theory is associated with a

kernel function K : Rn × Rn → R in the following way:

for arbitrary smooth functions f , g, both compactly supported, and with dis-

joint supports,

∫

Rn

g(x)T (f)(x) dx =

∫

Rn

∫

Rn

g(x)K(x, y) f(y) dy dx ,

where K must satisfy some decay and cancellation conditions that nev-

ertheless allow singular behavior of K(x, y) as y approaches x. (More

precisely, the decay conditions require that |x − y|n |K(x, y)| be uni-

formly bounded, and that, for some δ > 0, and some C ∈ R+,

[min (|x− y|, |x′ − y|)]
n
|K(x, y) − K(x′, y)| ≤ C

(

|x−x
′

|

|x−y|+|x′
−y|

)δ

, again

uniformly in x, x′ and y for x 6= y 6= x′, with a symmetric condition on

K(x, y) − K(x, y′). The cancellation conditions exist in several versions, and

are more subtle.)

The most famous examples of such operators are given by the Cauchy in-

tegral on a Lipschitz curve or the double layer potential on a Lipschitz sur-

face. Together with Ronald Coifman and Alan McIntosh, Yves Meyer [4] ob-

tained a breakthrough result in this framework, proving the boundedness of

these Calderón-Zygmund operators for arbitrary Lipschitz curves or surfaces.

This breakthrough opened the door for further fundamental results, such as

the solution of the Dirichlet problem in arbitrary Lipschitz domains by the

method of layer potentials [5], the celebrated T (1) theorem of Guy David [6],

proving boundedness of general Calderón-Zygmund operators under minimal

conditions (generalized even further by David, Journé and Semmes [7]), and

the solution of Kato’s conjecture about the square root of accretive differential

operators [8].

One of the technical tools used repeatedly in the analysis of Calderón-

Zygmund operators consists in integral formulas of the type

Qs(f)(x) = sn
∫

Rn

f(x− y) q(sy) dy ,

with a function q : Rn → R defined in several ways in different papers, one of the

easiest of which is q(x) = 2
n ϕ(2x)−ϕ(x), for some well-localized and smooth

“bump function” ϕ on Rn (i.e. a smooth function with fast decay and integral

1), often picked radially symmetric for simplicity. One then easily checks that

the following resolution of the identity holds, at least in the weak sense, and

for reasonable f ,
∫

∞

0

Qs(Qs(f))
ds

s
= Cϕ f ,
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where Cϕ depends on the choice of ϕ, but not on f . The integral over the

scaling parameter s can then be written as a sum of integrals over subsets of

R+, carving up f into components at different scales.

3. Signal and Image Processing: Wavelets

(1983–1993)

Wavelet theory finds its origin in the recurrent need to develop a localized ver-

sion of Fourier analysis, inasmuch as is possible within the Heisenberg principle

constraint.

Early attempts to obtain time-frequency representations for arbitrary

(bounded) functions f : R → C, via linear and bilinear transforms, were moti-

vated at least in part by the desire to study the correspondence between clas-

sical and quantum mechanics: coherent state representations (already implicit

in some of Schrödinger’s work; introduced more explicitly by Gabor in 1945)

which can be viewed as short-time Fourier transforms or windowed Fourier

transforms,

Sw(f)(t, ω) =

∫

R

f(t+ τ) eiωτ w(τ) dτ

(where w is typically smooth and has compact support or fast decay), or the

Wigner transform,

W (f, g)(t, ω) =

∫

R

f(t+ τ) g(t− τ) e2iωτ dτ ;

in this last case, W (f, f) (in which g = f) is called the Wigner or Wigner-

Ville distribution of f , first introduced in the 1930s. Figure 1 illustrates these

time-frequency representations for one particular f .

In the windowed Fourier transform the extent of “time” or “frequency”

localization is fixed in advance by the choice of the window function w. For

instance, in Figure 1, the constant frequency component f1 is clearly delineated

in the windowed Fourier transform with wide window wwide, and much less

so when wnarrow is chosen; on the other hand, the temporal start of f2 can

be identified with greater accuracy in the windowed Fourier transform with

wnarrow than with wwide. One easily checks that, for a wide range of choices of

f , g, including all f, g ∈  L
2
(R),

∫

R×R

Sw(g)(t, ω)Sw(f)(t, ω) dt dω = 2π

[ ∫

R

|w(s)|2 ds

] ∫

R

g(τ) f(τ) dτ ;

writing out explicitly the integrals in Sw(g), one finds that this can be inter-

preted (in the weak sense) as

f(τ) = (2π)
−1

∫

R×R

Sw(f)(t, ω)w(τ − t) e−iωτ dt dω ,



The work of Yves Meyer 119

0 5 10

0

2

4

time

da
ta

0 5 10
0

20

40

60

80

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

2 4 6 8 10
0

20

40

60

80

time

fr
eq

ue
nc

y

2 4 6 8 10
0

20

40

60

80

time

fr
eq

ue
nc

y

2 4 6 8 10 12
0

20

40

60

80

time

sc
al

e

0 5 10
2

4

6

8

Figure 1. Examples of time-frequency representations. Top row left: the sig-

nal f(t) = f1(t) + f2(t) defined by f1(t) = .5t + cos(20t) for 0 ≤ t ≤ 5π/2,

and f2(t) = cos
(

4

3
[(t− 10)3 − (2π − 10)3] + 10(t− 2π)

)

for 2π ≤ t ≤ 4π ; mid-

dle: the “instantaneous frequency” for its two components: for f1, ω(t) = 20 for

0 ≤ (t− 10)2 ≤ 5π/2, and for f2, ω(t) = 4t2 + 10 for 2π ≤ t ≤ 4π; right: the Wigner-

Ville distribution of f . Bottom row left: the (absolute value of a) continuous windowed

Fourier transform of f(t), with a window wwide with a wide (compact) support in t;

middle: same, but now with a window wnarrow with a less wide (compact) support in

t; right: the (absolute value of a) continuous wavelet transform of f(t), where ψ is the

Morlet wavelet (essentially a modulated Gaussian).

The quadratic nature (in f) of the Wigner-Ville distribution causes “interference”

terms in the time-frequency representation, avoided in linear time-frequency methods

such as the windowed Fourier transforms.

The two windowed Fourier transforms show how the choice of the window influ-

ences the corresponding time-frequency representation; in the wavelet transform the

fine scale at high frequencies, and the wider time support at lower frequencies make it

possible to identify both the frequency of f1 and the onset of f2 with greater accuracy

than in either of the windowed Fourier transform representations.

where we assume
∫

R
|w(s)|2 ds = 1 for simplicity. With judicious choices of the

window w and of parameters t0, ω0, there exist similar decomposition formulas

using discrete sums rather than integrals, i.e.

f(τ) = (2π)
−1

∑

m,n∈Z

Sw(f)(mt0, nω0)w(τ −mt0) e−inω0τ .

The Gabor transform is exactly of this type, with a Gaussian window w. These

integrals or sums can be viewed as ways to write f as a superposition of “atoms”

w[t,ω](τ) := w(τ − t) e−iωτ that are each well localized in time and frequency

around their label [t, ω]; note that each w[t,ω] is obtained from the “generating”
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atom w by simple translation in time and in frequency. These decompositions

suffer, however, from the shortcoming illustrated by Figure 1: the choice of the

window fixes the trade-off between precision in time and frequency localization,

which then remains the same throughout the time-frequency plane.

This shortcoming led Jean Morlet, a seismological engineer, to introduce

a new integral transform based on time-scale atoms, generated by translates

and dilates of an atom ψ, i.e. ψ[a,t]
(τ) := Na ψ

(

τ−t

a

)

, where the normalization

constant Na can be adapted to the application at hand; often Na = a−1/2

is selected, ensuring a constant L2
(R)-norm for the ψ[a,t]

. Typically one picks

ψ smooth, with fast decay; it is essential that it also satisfy
∫

R
ψ(t) dt = 0.

Analogously to the windowed or short-time Fourier transform Sw(f)(t, ω) =
∫

f(τ)wt,ω(τ) dτ , one then defines the wavelet transform Tψ(f) by

Tψ(f)(a, t) =

∫

R

f(τ)ψ[a,t](τ)) dτ .

The bottom right panel of Figure 1 illustrates that Tψ(f) does provide a time-

frequency representation with high resolution in time for high frequency com-

ponents, and high resolution in frequency for low frequency components.

The main theoretical properties of this transform were studied by math-

ematical physicist Alex Grossmann, in collaboration with Jean Morlet. They

showed in particular that, in the same way as for the windowed Fourier trans-

form, (and with the choice Na = a−1/2
)

∫

R×R

Tψ(g)(a, t) Tψ(f)(a, t) dt a−2da = 2π

[∫

R

|ξ|−1
|
̂ψ(ξ)|2 dξ

] ∫

R

g(τ) f(τ) dτ,

where ̂ψ is the Fourier transform of ψ. Again, this can be interpreted as

f(τ) = (2π)
−1

∫

R×R

Tψ(f)(a, t)ψ[a,t]
(τ) dt a−2da ,

with
∫

R
|ξ|−1

|
̂ψ(ξ)|2 dξ = 1 for simplicity; judicious choices of ψ and of pa-

rameters t0, a0 lead to a similar discrete decomposition formula,

f = (2π)
−1

∑

m,n∈Z

Tψ(f)(an0 , m an0 t0)ψ[a
n
0
,m a

n
0
t0] .

These decomposition formulas for f turn out to be exactly the same as the

formula at the end of the previous section (restricted to dimension 1): the in-

tegral over the parameter s corresponds here to the integral over the dilation

parameter a, and the integral over t is just an explicit writing-out of the con-

volution inherent to the “outer” Qs; the “inner” Qs is subsumed in the wavelet

transform Tψ(f).

Yves Meyer was the first to notice this similarity, and to realize that the

wavelet transform proposed by Grossmann and Morlet was related to the very
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rich and powerful Calderón-Zygmund theory. He soon established that, in con-

trast to the windowed Fourier transform, the wavelet transform allows for dis-

crete versions in which the ψ[a
n
0
,m a

n
0
t0] constitute an orthonormal basis for

L2
(R). Several new families of bases, constructed by Meyer and by his student

Pierre-Gilles Lemarié-Rieusset, as well as by the mathematical physicist Guy

Battle, soon joined the two already existing constructions, by Alfred Haar and

Jan-Olov Stromberg respectively, all featuring dyadically scaled functions of

the type ψj,k(t) = 2
j/2 ψ(2

jt − k), with j, k ranging over Z. In collaboration

with Stéphane Mallat, Meyer constructed a general framework, multiresolution

analysis, that not only provided the right setting to construct further wavelet

bases, but also allowed the seamless integration of the new wavelet point of

view with the existing Calderón-Zygmund theory. In particular, Meyer showed

in his celebrated book [9] that these wavelet bases are unconditional bases for

a host of classical function spaces; this is a key feature in many applications of

wavelets, for instance in data compression and statistical estimation.

The work of Yves Meyer paved the way to the construction of orthonormal

bases of compactly supported wavelets [10] and their subsequent biorthogonal

generalization [11], corresponding to subband filtering algorithms with finite

filters. The biorthogonal wavelet filters of [11] were selected as the filters of

choice in the JPEG2000 image compression standard, recently adopted for the

digital movies presently reaching movie theaters worldwide.

Wavelets have many more applications to science and technology, including

denoising algorithms, adaptive numerical approximation of PDEs, medical and

astronomical imaging, turbulence and genomic analysis; a beautiful description

of different perspectives can be found in the book [12] by Yves Meyer, Stéphane

Jaffard and Robert Ryan. These applications are reflected by a large number

of industrial patents, workshops, conference sessions and publications devoted

to these applications.

In order to satisfy the requirements for an applications to astrophysics,

Meyer, in collaboration with Ronald Coifman, extended the construction of

wavelet bases to wavelet packet bases, which have since been used in numerous

applications as well.

4. Navier-Stokes Equations (1994–1999)

Yves Meyer’s interest in Navier-Stokes equation was inspired by a series of

talks and papers by Marie Farge, as well as by a paper by Guy Battle and Paul

Federbush, suggesting that wavelet transforms might yield better results than

pseudo-spectral algorithms for the numerical approximation of turbulent flow.

This belief was grounded by the observation that turbulence involves a cascade

of energy across a large range of scales and that wavelets provide a natural tool

to identify the different scales and to analyze their interaction.

This led Yves Meyer to launch a research program on the Navier-Stokes

equation, in collaboration with his students Marco Cannone, Fabrice Planchon
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and Pierre-Gilles Lemarié-Rieusset. It turned out that it is in fact more efficient

to stick to Littlewood-Paley decompositions than to use wavelet expansions

for the analysis of Navier-Stokes equations; using these decompositions they

proved global existence of the solution in the space C(R+, L
3
(R3

)) when the

initial condition u0 is oscillating in the sense that it belongs to a Besov space

of negative order; this was an improvement on the earlier Fujita-Kato theorem.

A uniqueness result was later established by Pierre-Gilles Lemarié.

Another famous contribution of Yves Meyer to partial differential equations

is an improved div-curl lemma, stating that if E and B are two square integrable

vector fields such that ∇·E and ∇×B vanish, then E ·B belongs to the Hardy

space H1
. This remarkable result, first suggested by Pierre-Louis Lions, was

proved by Yves Meyer and his collaborators in [13].

5. Recent Work (2000–2008)

The results obtained by the group of Yves Meyer in nonlinear evolution equa-

tions led him to believe that there might be a functional norm governing the

eventual blow-up of the solution to the Navier- Stokes equation. This endeavor

ultimately led to dramatically improved Gagliardo-Nirenberg inequalities in-

volving negative-regularity spaces, explaining why the solution of the Navier-

Stokes equation does not blow up when the initial condition is oscillating. The

study of these oscillatory patterns also led Yves Meyer back to the arena of

image processing. A classical problem in image analysis is the separation of ge-

ometric features and texture. The algorithm proposed by Yves Meyer is based

on a minimization procedure which involves the BV-norm to measure the geo-

metric (or “cartoon”) content and a negative smoothness norm to measure the

oscillatory texture. This strongly improves on a celebrated algorithm proposed

by Stanley Osher and Leonid Rudin. A comprehensive mathematical synthesis

explaining the role of oscillation in both nonlinear partial differential equations

and image processing was given by Yves Meyer in [14].

Most recently, Yves Meyer has been active in the field of compressed sens-

ing. This very active field studies the extent to which one can exploit the inher-

ent low-dimensional nature of an object or feature under study, when taking

measurements in a high dimensional setting, when the identity of the “active”

components is unknown. Based on abstract results from functional analysis and

approximation theory from the 1960s, the fundamental estimates recently gar-

nered an explosive amount of interest, after the work of Emmanuel Candès,

Terrence Tao, David Donoho and many others who constructed concrete algo-

rithms and illustrated their promise in applications.

A fundamental limitation in most approaches was that the best results were

obtained with measurement matrices generated by probabilistic methods; typ-

ically deterministic constructions are less efficient. Yves Meyer gave the first

deterministic construction of an optimal sensing system, based on the theory

of model sets that he introduced at the start of his career, as well as a concrete
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algorithm for signal recovery from the measurements obtained by this system;

in his approach the randomness is replaced by the pseudo-periodic structure

generated by the model set.

6. Conclusions

The scientific life of Yves Meyer combines deep theoretical achievements in

harmonic analysis, number theory, partial differential equations and operator

theory, with a constant quest for a truly interdisciplinary exchange of ideas and

the development of relevant and concrete applications.

This is illustrated most notably by his leading role in the development of

wavelet theory, in which his research in harmonic analysis and operator theory

led him naturally to the development of the computational multiscale methods

that are at the heart of numerous applications of wavelets and wavelet packets

in information science and technology.

His pioneering role is clear from the record. But to all his students and

collaborators, Yves Meyer also stands out by other characteristics, maybe less

tangible in the written record – his insatiable curiosity and drive to under-

stand, his openness to other fields, his boundless enthusiasm and energy that

inspired many young scientists, not all of them mathematicians, and the selfless

generosity with which he untiringly promoted their work.
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The work of Louis Nirenberg

YanYan Li∗

Louis Nirenberg is one of the most outstanding analysts of the twentieth cen-

tury. For more than half a century, he has been a world leader in partial differen-

tial equations – a master of inequalities and regularity theory – with fundamen-

tal contribution in geometry, complex analysis, and fluid dynamics. Nirenberg

is a household name in these fields. In addition to the depth and its basic im-

portance, his work also has enormous influence on others. In each of the last

10 years, top 15 cited papers in mathematics include at least 2 of Nirenberg
′
s,

according to the MathSciNet. Working with others has been an essential part

of Nirenberg
′
s research — more than 90% of his research are joint works.

1. Geometry

In 1953 Nirenberg published 4 papers. The first two papers ([1] and [2]) solved

two long standing open problems, the Weyl problem and the Minkowski prob-

lem, in differential geometry, and, in partial differential equations, gave basic

estimates to solutions of nonlinear second order elliptic equations in dimension

two. His solution of the Weyl and Minkowski problem was a pioneering work in

the study of geometry problems using nonlinear partial differential equations,

and a milestone in global geometry. These were established in his Ph.D. thesis

in 1949. He was slow in rewriting the thesis for publication. His thesis adviser

was J.J. Stoker, himself a student of Heinz Hopf.

The Weyl problem, raised by H. Weyl in 1916, is the following: Given a

smooth metric g of positive Gauss curvature on the sphere S2
, is there an

embedding X : S2
→ R3

such that the metric induced on S2
by this embedding

is g? Such an embedding (S2, g) → R3
is called isometric, and satisfies the

following system of nonlinear partial differential equations:

∇iX · ∇jX = gij .

Such an isometric embedding, if it exists, is unique up to rigid motion. H.

Lewy proved in 1938 the existence part under the assumption that the metric

∗Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway,
NJ 08854, USA. E-mail: yyli@math.rutgers.edu
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g is analytic, using theorems he developed concerning analytic Monge-Ampère

equations. Nirenberg gave a beautiful solution of the Weyl problem, using the

method of continuity and the strong apriori estimates he established for nonlin-

ear elliptic equations in two dimension. The Weyl problem was independently

solved by A.V. Pogorelov using a different method.

Given a closed smooth strictly convex surface M in the Euclidean space R3
,

the Gauss map ν : M → S2
, mapping a point P on M to the unit outer normal

of M at P , is a diffeomorphism. The Gauss curvature KM of M , identified as

a function on S2
through ν, satisfies

∫

S2

x

KM (ν−1(x))
= 0,

where x = (x1, x2, x3) is the coordinate function on S2
.

The Minkowski problem concerns the converse: Given a smooth positive

function K on S2
satisfying

∫

S2

x

K(x)
= 0,

is there a closed smooth strictly convex surface M in R3
whose Gauss curvature

KM is given by KM (P ) = K(ν(P ))? Nirenberg gave an affirmative answer to

the question.

Consider a nonlinear partial differential equation of second order

F (x, u,∇u,∇2u) = 0 in B1,

where B1 is a unit ball of Rn
.

We assume that F is uniformly elliptic: F is a smooth function of its argu-

ments satisfying, for some positive constant Λ,

1

Λ
|ξ|2 ≤

∂F

∂Mij

(x, s, p,M)ξiξj ≤ Λ|ξ|2, ∀ ξ ∈ Rn, ∀ (x, s, p,M).

A problem of basic importance is whether there exists a bound of some

Hölder norm of the Hessian ∇
2u in half of the ball in terms of the L∞

norms of

|u|, |∇u| and |∇
2u| in B1. Nirenberg established such an estimate in dimension

n = 2 as mentioned above. On the other hand, such an estimate does not hold

in dimension n ≥ 12, as shown recently by N. Nadirashvili and S. Vladut, while

the problem remains open in dimension 3 ≤ n ≤ 11.

With P. Hartman [11], Nirenberg studied spherical image maps where Jaco-

bian do not change sign. In particular it was shown that if u is a real function

on R2
with the determinant of its Hessian equal to zero, then its graph is a

cylinder.

Nirenberg proved in [13] rigidity of a class of surfaces in R3
which have

handles. There is still the open problem of whether a smooth closed surface in
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R3
can be deformed continuously, in an isometric way. Namely, as E. Calabi

expressed it, is there Nature
′
s accordion?

In a work with C. Loewner [24], Nirenberg solved a nonlinear problem com-

ing from geometry which involves treating some nonlinear partial differential

equations invariant under conformal or projective transformations and finding

solutions which become infinite on the boundary.

There is a famous result of A.D. Alexandrov that a connected compact

smooth hypersurface embedded in the Euclidean space with constant mean cur-

vature is a sphere. With Y.Y. Li, Nirenberg proved in [57], a paper dedicated

to the memory of S.S. Chern, a generalization of this, replacing the constancy

by a monotonicity condition, and proving symmetry of the hypersurface about

a hyperplane under some conditions. Open questions still remain, in particular,

about possible extension of Hopf Lemma for elliptic operators. They also stud-

ied in [56] the regularity of the distance function to the boundary, in Finsler

geometry, and applied it to the study of singular set of viscosity solutions of

Hamilton-Jacobi equations.

2. Linear Partial Differential Equations

One of the 4 papers Nirenberg wrote in 1953 is [3] in which he proved the strong

maximum principle for parabolic operators extending the classical results for

elliptic operators. This has been a standard reference.

In 1956 Nirenberg settled in [4] a long standing open problem about regu-

larity of elliptic boundary value problems up to the boundary. He did this for

equations of arbitrary order.

Much of Nirenberg
′
s work concerns estimates for solutions of elliptic bound-

ary value problems. With S. Agmon and A. Douglis he gave in [10, 16] a com-

prehensive treatment of linear elliptic partial differential equations of any order

with general boundary conditions which include the extension of Schauder and

Lp
theory for second order elliptic partial differential equations with Dirichlet

boundary condition to this generality. These fundamental results are used ev-

ery day by researchers in partial differential equations, fluid dynamics, material

sciences, and many other fields.

With C.B. Morrey, Nirenberg proved in [6] the analyticity of solutions of

general linear elliptic systems with analytic coefficients.

In [15], a long paper with Agmon, Nirenberg investigated solutions of or-

dinary differential equations in Banach space with applications to asymptotic

expansion as t → ∞ for solutions of elliptic equations in a cylinder. These re-

sults have been used by others as the basis for the study of elliptic equations

in domains with corners: behavior of the solutions near the corners. The paper

with Agmon was later generalized by A. Pazy to consider equations with co-

efficients depending on t. Pazy′s result was used much later by H. Berestycki

and Nirenberg in their study of traveling fronts in cylinder in flame propagation

problems.
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A basic problem in complex analysis is the so-called ∂̄ Neumann problem.

It was solved by J.J. Kohn. Nirenberg and Kohn then extended the regularity

result to a wide class of noncoersive boundary value problems. This involves

the loss of some derivatives. In order to do this they found it necessary to

extend the Calderon-Zygmund theory of singular integral operators, to make

an algebra of such operators. They introduced in [17], in 1965, the theory of

pseudo-differential operators. This is a basic tool which has led to much further

development in microlocal analysis and in partial differential equations. They

also studied in [18] degenerate elliptic-parabolic equations.

There was a famous example by Hans Lewy of an operator of the form

3
∑

j=1

aj
∂u

∂xj

= f in R3
(1)

with complex coefficients {aj(x)}, showing that there is no complex solution.

The construction was motivated by complex analysis in C2
. With Trèves [14],

Nirenberg discovered the general condition under which the equation is solv-

able. In later work [21] and [22] they treated general linear partial differential

operators and formulated a condition Φ for local solvability. For pseudo dif-

ferential operators they introduced a more general condition Ψ. They proved

sufficiency of Ψ in the analytic case. Sufficiency of Φ for partial differential op-

erators was proved by R. Beals and C. Fefferman. Necessity of Ψ was proved

by R.D. Moyer in dimension two and by L. Hörmander in general. Only a few

years ago was sufficiency of Ψ proved by N. Dencker.

Later, Nirenberg considered again in [25] the equation (1) with f = 0, and

constructed an operator L for which the only solution of Lu = 0 is u =constant.

This gave a surprising solution to a problem of Hans Lewy. This is, as mentioned

earlier, connected with complex analysis in C2
. The corresponding question in

Cn+1
, or in R2n+1

, was taken up by M. Kuranishi who proved that for n ≥ 3

the system had solutions. The case n = 2 is still open.

With H. Berestycki and S.R.S. Varadhan [49], Nirenberg proved the exis-

tence of principal eigenvalue (necessarily real), and derived improved form of

the maximum principle for general linear second order elliptic operators in gen-

eral domains. The work is considered a classic. Many people continue to refer

to it.

3. Inequalities

Inequalities play a central role in almost all of Nirenberg
′
work. He proved basic

interpolation inequalities and embedding inequalities, which are used every day.

In [9], lectures in partial differential equations, one of the lectures established

general interpolation inequalities between functions and their derivatives, in-

volving Lp
spaces. These are called the Gagliado-Nirenberg inequalities. Gagli-

ado derived them at the same time. These results are used all the time.
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With F. John, Nirenberg introduced in [12] the space of functions of bounded

mean oscillation (BMO): those are locally integrable functions f on Rn
satis-

fying, for some constant C,

1

|B|

∫

B

|f(x)− fB |dx ≤ C, for all balls B,

where fB = |B|
−1

∫

B
f denotes the mean value of f over the ball. This is a new

class of functions between Lp
and L∞

. They established a deep basic estimate

for BMO functions: If f is in BMO, then u has exponential integrability, i.e.,

for some positive constant a,

∫

B

ea|f(x)−fB |dx < ∞, for all balls B.

This seminal result has become a central element in analysis and is much used

in partial differential equations, harmonic analysis, and probability theory.

With H. Brezis, Nirenberg extended in [50] and [51] degree theory to maps,

between manifolds, which are merely in VMO (have vanishing mean oscilla-

tion), a refinement due to D. Sarason of the class BMO. The maps need not

be continuous. The need for having a degree for such maps, with the useful

properties, arose in problems coming from harmonic maps, Ginzburg-Landau

equations, among others.

4. Complex Analysis

With A. Newlander, Nirenberg solved in [5] the problem on integrability of al-

most complex structures. In fact it was suggested to Nirenberg by A. Weil and

S.S. Chern. This was a basic problem in higher dimensional complex analysis:

When can one reduce a given system of n first order linear partial differen-

tial equations in R2n
to the Cauchy-Riemann equations in Cn

, after a smooth

change of coordinates? Necessary conditions were long known. Here their suf-

ficiency was proved. This was extended by Nirenberg in [8] to a complex form

of the classical Frobenius Theorem about differential forms. The Newlander-

Nirenberg theorem reminds me of a meeting with S.S. Chern some years ago at

the Chern Institute in Tianjin during which he gave me an envelope containing

a mathematics manuscript and a letter to Nirenberg, and asked me to bring it

to Nirenberg. He told me that the envelope was not sealed in case I wanted to

make a copy, which I did. I remember that his whole manuscript had only two

references, one of them is the paper [5].

With K. Kodaira and D. Spencer, Nirenberg proved in [7] the existence of

deformation of complex structure on complex manifolds. The more general form

of this result was later obtained by M. Kuranishi.

Nirenberg wrote one paper [19] with S.S. Chern (together with H.I. Levine).

It introduced intrinsic norms on the homology groups of a complex manifold.
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In [20] Nirenberg gave a rather simple proof of the Malgrange extension of

the Weisstrass preparation theorem.

In [23] he proved an abstract form of the Cauchy-Kowalewski Theorem. This

was later improved by T. Nishida, and applied to fluid dynamics.

With Caffarelli, J.J. Kohn and Spruck, Nirenberg solved in [36] the Dirichlet

problem for degenerate complex Monge-Ampère equations and some uniformly

elliptic ones.

5. Nonlinear Partial Differential Equations and

Applications

With D. Kinderlehrer and J. Spruck, Nirenberg wrote a series of papers ([27]-

[29]) on regularity of free boundaries, in the obstacle and other problems, in-

cluding generalization of a result of Hans Lewy. With H. Berestycki and L.

Caffarelli he wrote a deep paper [42] on uniform estimates for regularization of

free boundary problem.

With B. Gidas and W.-M. Ni, Nirenberg wrote two papers [30, 32] on sym-

metry and monotonicity of positive solutions of various second order elliptic

problems. They used the method of moving planes, due originally to A.D.

Alexandrov and then used by J. Serrin. Since then, this method has found

surprising applications to a wide variety of problems including derivation of

a priori estimates. Later with H. Berestycki, Nirenberg gave in [45] a signifi-

cant modification to the argument so that it applies to domains whose boundary

maybe irregular, and also introduced the sliding method to prove monotonicity.

In all these, the maximum principle plays a crucial role. Many of Nirenberg
′
s

papers rely on the maximum principle, in one form or another. As he said, with

his ever-present sense of humor, “I have made a living from the maximum

principle”.

Nirenberg wrote a paper with L. Caffarelli and R. Kohn in fluid dynam-

ics [33] in 1982, on incompressible Navier-Stokes equation in three space di-

mensions. The equations describe the motion of an incompressible fluid in

R3
(or a domain of it), which are satisfied by unknown velocity function

u(x, t) = (u1
(x, t), u2

(x, t), u3
(x, t)) and pressure function p(x, t), defined for

position x ∈ R3
and time t ≥ 0. They take the form (with zero external force

and unit viscosity — for simplicity)

∂ui

∂t
+

3
∑

j=1

uj
∂ui

∂xj

−∆ui
+

∂p

∂xi

= 0, x ∈ R3, t ≥ 0,

3
∑

i=1

∂ui

∂xi

= 0, x ∈ R3, t ≥ 0,

and

u(x, 0) = u0(x),
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where u0(x) is a given smooth divergence-free vector valued function with com-

pact support.

In order to find smooth solutions u and p, one tries to first establish the

existence of solutions in weak sense and then prove regularity of weak solutions.

For physically reasonable solutions, |u|2 should satisfy suitable growth property.

J. Leray proved in 1934 the existence of weak solutions with suitable growth

property. Nirenberg, in the joint work with Caffarelli and Kohn, proved that the

1−dimensional Hausdorff measure of the singular set of physically reasonable

weak solutions, if singularities arise, is zero (so it can not contain a curve

in space-time). Up to now this result has not been improved. The question

of whether singularities can occur is a basic open problem in analysis and

partial differential equations, and is one of the seven Clay Mathematics Institute

Millennium Prize Problems.

With H. Brezis, Nirenberg proved deep existence and nonexistence results

in [34] on semi-linear elliptic equations with critical exponent. This work has

inspired many researchers working on problems with lack of compactness, and

has led to much research activity in calculus of variations and in partial differ-

ential equations. The paper is referred to constantly. Beside this, they wrote

a large number of joint papers, some are on semi-linear equation and critical

point theory (e.g. [26], [31], [46] and [47], one with J.M. Coron).

With Caffarelli and Spruck, Nirenberg wrote a series of papers ([35]-[41],

one with J.J. Kohn) on fully nonlinear elliptic equations, such as the Monge-

Ampere equations and derived new existence theories, some with applications

in differential geometry. All these papers involve deep, intricate estimates, and

use the maximum principle. These works have led to much outstanding research

in fully nonlinear partial differential equations.

Berestycki and Nirenberg wrote a series of papers on traveling fronts in

cylinder (e.g. [43] and [44]), and with Caffarelli they wrote several papers ([48],

[52], [53]-[54]) on properties of solutions of equations in unbounded domains,

using the method of moving planes and the sliding method, and they obtained

existence for solutions.

With Y.Y. Li, Nirenberg also wrote a large number of papers on differ-

ent topics; one [55] involves estimates for elliptic systems (such as equations

of elasticity) coming from composite material. With L. Caffarelli and Y.Y. Li,

Nirenberg is writing a series of papers ([58]-[60]) on singular solutions of non-

linear elliptic equations.

Nirenberg has shared with mathematicians all over the world his knowledge,

his wisdom and his friendship. He transmitted to generations of young mathe-

maticians his love for mathematics, gave them guidance, taught them to think

and do research. He has supervised 45 Ph.D. students.

Among his many honors and awards, he received in 1959, the Bôcher Prize

of the American Mathematical Society; in 1982, the Crafoord Prize which was

established by the Royal Swedish Academy of Sciences in areas not covered
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by the Nobel Prizes; in 1994, the Steele Prize for Lifetime Achievement of the

AMS; and in 1995, the National Medal of Sciences of the United States.

We draw attention to an interview of Nirenberg [Interview with Louis Niren-

berg, Notices of the AMS, April 2002], and articles on the works of Nirenberg

written by L. Caffarelli and J.J. Kohn [Louis Nirenberg receives National Medal

of Science, Notices of the AMS, October 1996].
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1. Exchangeability and de Finetti’s Theorem

A common verbal statement of de Finetti’s theorem is

An infinite exchangeable sequence is distributed as a mixture of

i.i.d. sequences.

For readers who don’t work in Probability Theory let me try to explain what

this means, starting with a very elementary story and reminding you of the

jargon of random variables and probability measures.

Dice are an over-used icon for randomness; for our purpose darts (aimed at

the center of a target) are better, because different people have different accu-

racy. So the following three scenarios, which would be mathematically equiva-

lent for dice, are different for darts.

• Pick a person with known accuracy; ask the person to throw dart repeat-

edly.

• Pick a random person in audience; ask the person to throw dart 1 time.

Repeat indefinitely.

• Pick a random person in audience; ask the person to throw dart repeat-

edly.

We are assuming a natural model for dart throwing

• For each person there is a probability measure µ on R2
; the chance their

dart lands in a region A equals µ(A).

• When this person throws repeatedly, the landing points X1, X2, . . . are

independent random variables with distribution µ.

Recall independence is formalized by the product rule

P (X1 ∈ A1 and X2 ∈ A2) = µ(A1)× µ(A2)

or equivalently product measure

dist(X1, X2) = µ⊗ µ dist(X1, X2, X3, . . .) = µ⊗∞.

The three scenarios give three different distributions for the infinite sequence

(X1, X2, . . .) of dart hits. With a 500-person audience with distributions

(µk, 1 ≤ k ≤ 500), one of which is the known distribution µ, the distributions

are

• µ⊗∞

• ν⊗∞
where ν(·) = 1

500

∑

k
µk(·)

•
1

500

∑

k
µ⊗∞

k

In the first two cases, the different throws are independent, but in the third

they’re not. Jargon: in the first two cases the distribution is IID (independent
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and identically distributed), but the third case is a mixture of IID. This last

notion is what arises in de Finetti’s theorem.

Some measure theory background. Let me try to give an intuitive feeling

for basic measure-theoretic probability terms, and a particular technical fact,

neither of which is easily found in textbooks. View a probability measure (PM)

as like a recipe or a plan – something you might do – and a random variable

(RV) as an instance of actually doing it. RVs can take values in an (essentially)

arbitrary space S. That is, for essentially any kind of complicated mathematical

object you can imagine, then you can also imagine a random such object. An S-

valued RV X has a distribution dist(X), the induced PM on S. Many definitions

in Probability Theory are formally about PMs but we phrase them using RVs.

In particular, when we talk about symmetry properties we are talking about

an underlying PM not the realizations of RVs.

Now imagine an idealized random number generator (RNG) that gives a

random number ξ distributed uniformly on [0, 1]; repeated calls to the RNG give

independent ξ1, ξ2, . . .. Given an arbitrary (measurable) function f : [0, 1] → S

for a “nice” space S, we can use f(ξ) as a S-valued RV with some distribution

µ. Different f might give the same µ.

An under-emphasized Theorem in measure theory says that every µ arises

as dist(f(ξ)) for some f . Any time we do a computer simulation of a proba-

bility model we are implicitly using this fact (if it were false then there would

be measures that were in principle impossible to sample computationally). So

any IID S-valued sequence can be represented as (f1(ξ1), f1(ξ2), . . .) where the

(ξ1, ξ2, . . .) – which we view as calls to a RNG – are IID uniform[0, 1], and where

f1 : [0, 1] → S is some function.

The phrase “a mixture of IID S-valued sequences” means a PM on S∞
of

the form

∫

µ⊗∞
Ψ(dµ), for some PM Ψ on P(S) := {PMs on S}.

As a corollary of the representation above, any such PM has a representation

as the distribution of

f2(α, ξ1), f2(α, ξ2), f2(α, ξ3), . . . (1)

for some function f2 : [0, 1]×[0, 1] → S. Here α is one more independent uniform

[0, 1] RV. The proof of (1) relies on the insight that the action of picking a PM

at random can be implemented as a function of α, because any random pick of

any type of object can be implemented that way.

Exchangeability. A finite permutation π of {1, 2, 3, . . .} induces a map π̃ :

S∞
→ S∞

, mapping (si) to (sπ(i)).

Definition. A PM on S∞
is exchangeable if it is invariant under the action

of each π̃ (with the analogous definition for finite products).
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Intuitively: “a sequence of RVs is exchangeable if the order does not matter”.

This is a strong symmetry condition. Note it is obvious that any (finite or

infinite length) mixture of IID sequences is exchangeable. de Finetti’s theorem

is the non-obvious converse.

Theorem 1 (de Finetti). Each infinite exchangeable sequence is distributed as

a mixture of IID sequences

. . . . . . and so in particular has a representation in form (1).

de Finetti’s Theorem plays a conceptually fundamental role in Bayesian

Statistics, which I won’t explain in this talk. The theorem appears in many

first-year-graduate level probability textbooks. The next material is somewhat

deeper.

2. Structure Theory for Partially Exchangeable

Arrays

Write N := {1, 2, 3, . . .} and write N(2) for the set of unordered pairs {i, j} ⊂ N.

Consider a random array

X = (X{i,j}, {i, j} ∈ N(2)).

(Essentially a random infinite symmetric matrix). We want to study the the

partially exchangeable property

X
d
= (X{π(i),π(j)}, {i, j} ∈ N(2)) for each finite permutation π. (2)

Because not every permutation of N(2) is of the form {i, j} → {π(i), π(j)}, this

is a weaker property than exchangeability of the countable family X.

We can create such a partially exchangeable array by starting with our IID

uniform[0, 1] RVs (ξ1, ξ2, . . .) and applying a function g2 : [0, 1]2 → R which is

symmetric in the sense g2(x, y) = g2(y, x), to get

X{i,j} = g2(ξi, ξj).

This is the “interesting” construction of an array with the partially ex-

changeable property. But also there are the arrays

• with IID entries

• where all entries are the same RV.

We can combine these ideas as follows. Take a function f : [0, 1]4 → S such

that f(u, u1, u2, u12) is symmetric in (u1, u2), and then define

X{i,j} := f(U,Ui, Uj , U{i,j}) (3)
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where all the RVs in the families U, (Ui, i ∈ N), (U{i,j}, {i, j} ∈ N(2)) are IID

uniform(0, 1). The array X = (X{i,j}) is partially exchangeable.

As with de Finetti’s theorem, the converse is true but far from obvious.

Theorem 2 (Partially Exchangeable Representation Theorem). An array X
which is partially exchangeable, in the sense (2), has a representation in the

form (3).

There is a (technically complicated) uniqueness property - roughly, f is

unique up to measure-preserving transformations of the U ’s.

The specific property (2) is really just a prototype of a whole family of

“partially exchangeable” properties, and Theorem 2 is a prototype of a corre-

sponding family of structure theorems for variations and specializations of

(2). Such results go back to Hoover [8] and Aldous [1] and appear in the 1984

survey [2]. They were subsequently extended systematically by Kallenberg, both

for arrays and analogs such as exchangeable-increments continuous-parameter

processes, and rotatable matrices, during the late 1980s and early 1990s. The

whole topic of representation theorems is the subject of Chapters 7–9 of Kallen-

berg’s 2005 monograph [9]. Not only does this monograph provide a canonical

reference to the theorems, but also its introduction provides an excellent sum-

mary of the topic.

The original motivation for this theory was in part “mathematically natural

conjectures”, in part Bayesian statistics. I won’t explain the original motivation

in this talk, because more recent uses are more interesting.

3. A General Program for Continuum Limits of

Discrete Random Structures

This is a “general program”, where “general” 6= “always works” but instead

means “works in various settings that otherwise look different”. Let’s start

with a rather obvious idea:

One way of examining a complex mathematical structure equipped

with a PM is to sample IID random points and look at some form

of induced substructure relating the random points

which assumes we are given the complex structure. In contrast, here is a less

obvious idea:

We can often use exchangeability in the construction of complex

random structures as the n → ∞ limits of random finite n-element

structures G(n).

What’s the point of such an indirect method? Well, it is available for use

when there’s no natural way to think of each G(n), as n varies, as taking values

in the same space.
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To expand the idea:

Within the n-element structure G(n) pick k IID random elements,

look at an induced substructure on these k elements – call this

S(n, k) – taking values in some space S(k) that depends on k but

not n. Take a limit (in distribution) as n → ∞ for fixed k, any

necessary rescaling having been already done in the definition of

S(n, k) – call this limit Sk. Within the limit random structures

(Sk, 2 ≤ k < ∞), the k elements are exchangeable, and the distri-

butions are consistent as k increases and therefore can be used to

define an infinite structure S∞.

Where one can implement this program, the random structure S∞ will, for

many purposes, serve as a n → ∞ limit of the original n-element structures.

Note that S∞ makes sense as a rather abstract object, via the Kolmogorov

extension theorem, but in concrete cases one tries

• to identify S∞ with some more concrete construction

• to characterize all possible limits of a given class of finite structures.

3.1. Continuum random trees. Trees fit nicely into the “substruc-

ture” framework. Vertices v(1), . . . , v(k) of a tree define a spanning (sub)tree.

Take each maximal path (w0, w1, . . . , w`) in the spanning tree whose interme-

diate vertices have degree 2, and contract to a single edge of length `. Applying

this to k independent uniform random vertices from a n-vertex tree Tn, then

rescaling edge-lengths by the factor n−1/2
, gives a tree we’ll call S(n, k). We

visualize such trees as below, vertex v(i) having been relabeled as i.

3

6

2

1

7

5

4

Figure 1. A leaf-labeled tree with edge-lengths. Trees are “abstract”, not

embedded in R2.

For suitable models of random n-vertex tree Tn, there is a limit [3]

S(n, k)
d
→ S(k) as n → ∞ with fixed k

with the limit distribution described below.
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(i) The state space is the space of trees with k leaves labeled 1, 2, . . . , k and

with unlabeled degree-3 internal vertices, and where the 2k − 3 edge-lengths

are positive real numbers.

(ii) For each possible topological shape, the chance that the tree has that

particular shape and that the vector of edge-lengths (L1, . . . , L2k−3) is in

([li, li + dli], 1 ≤ i ≤ 2k− 3) equals s exp(−s2/2)dl1 . . . dl2k−3, where s =
∑

i
li.

From the “sampling” construction (recall the general program) the distribu-

tions of the S(k) must be consistent as k varies, and so (following the general

program) the family (S(k), k < ∞) determines a distribution of a random tree

with a countable infinite number of leaves k = 1, 2, 3, . . .. Finally take a closure

to get what is now called the (Brownian) continuum random tree (CRT).

In this context there is in fact a simple explicit rule (the line-breaking con-

struction [3]) for how to add a new edge to S(k) to get S(k+1), so the scheme

above becomes an explicit construction.

Moreover there is an alternative general way to construct such real (con-
tinuum) trees, observed by Aldous [3] and Le Gall [10]. Consider a continuous

excursion-type function f : [0, 1] → [0,∞) with f(0) = f(1) = 0 and f(x) > 0

elsewhere. Use f to define a continuum tree as follows. Define a pseudo-metric

on [0, 1] by:

d(x, y) = f(x) + f(y)− 2min(f(u) : x ≤ u ≤ y), x ≤ y.

The continuum tree is the associated metric space. Applying this construction

with f = standard Brownian excursion (scaled by a factor 2) gives the Brownian

CRT [3].

Our focus in this talk is on the initial construction – getting a limit object via

induced substructures on sampled vertices – but the CRT illustrates the general

goal of identifying such limit objects with more concrete representations.

4. Three Recent “pure math” Developments

Over 2004-8 there were three independent rediscoveries of the basic structure

theory, motivated by “pure math” questions in different fields and leading in

novel directions. I’ll say (only) a few words about each.

4.1. Isometry classes of metric spaces with probability
measures.

Question: Can we characterize a “metric space with probability

measure” up to measure-preserving isometry? That is, can we tell

whether two such spaces (S1, d1, µ1) and (S2, d2, µ2) have a measure-

preserving isometry?
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The analog is difficult for “metric space” but easy for “metric space with prob-

ability measure”. Given (S, d, µ), take i.i.d.(µ) random elements (ξi, 1 ≤ i < ∞)

of S, form the array

X{i,j} = d(ξi, ξj); {i, j} ∈ N(2)

and let Ψ be the distribution of the infinite random array. It is obvious that,

for two isometric “metric spaces with probability measure”, we get the same

Ψ, and the converse is a simple albeit technical consequence of the uniqueness

part of structure theory, implying:

Theorem 3 (Vershik [12]). “Metric spaces with probability measure” are char-

acterized up to isometry by the distribution Ψ.

4.2. Limits of dense graphs. Being a probabilist, I visualize the un-

derlying “size n” structures as being random, but one can actually apply our

“general scheme” to some settings where they are deterministic. (Recall we
introduce randomness via random sampling). Here’s the simplest interesting

case.

Suppose that for each n there is a graph Gn on n vertices, but we don’t see

the edges of Gn. See Figure 2: the ◦ are the vertices. Instead of seeing all edges,

we can sample k random vertices and see only the induced subgraph on the

sampled vertices. In Figure 2 we sampled k = 5 vertices and saw which edges

between them are present.

3

4

1

5

2

Figure 2. Induced subgraph S(n, k) on k of the n vertices of Gn.

One sense of “convergence” of graphs Gn is that for each fixed k the random

subgraphs S(n, k) converge in distribution to some limit S(∞, k).

This fits the “general program” setup of section 3, as follows. For each n

let (Un,i, i ≥ 1) be i.i.d. uniform on the vertex-set of Gn. Consider the infinite
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{0, 1}-valued matrix Xn
:

Xn

i,j = 1((Un,i, Un,j) is an edge of Gn).

When n � k2 the k sampled vertices (Un,1, . . . , Un,k) of Gn will be distinct

and the k×k restriction of Xn
is the incidence matrix of the induced subgraph

S(n, k) on these k vertices. Suppose there is a limit random matrix X:

Xn d
→ X as n → ∞ (4)

in the usual product topology, that is

(Xn

i,j , 1 ≤ i, j ≤ k)
d
→ (Xi,j , 1 ≤ i, j ≤ k) for each k.

As background to this supposition:

• By compactness there is always a subsequence in which such convergence

holds.

• For a non-trivial limit we need the dense case where

(number of edges of Gn)/
(

n

2

)

→ p ∈ (0, 1).

Now each Xn
has the partially exchangeable property (2), and the limit X

inherits this property, so we can apply the representation theorem to describe

the possible limits. In the {0, 1}-valued case we can simplify the representation.

First consider a representing function of form (3) but not depending on the first

coordinate – that is, a function f(ui, uj , u{i,j}). Write

q(ui, uj) = P(f(ui, uj , u{i,j}) = 1).

The distribution of a {0, 1}-valued partially exchangeable array of the special

form f(Ui, Uj , U{i,j}) is determined by the symmetric function q(·, ·), and so for

the general form (3) the distribution is specified by a probability distribution

over such symmetric functions.

This all fits our “general program”. From an arbitrary sequence of finite

deterministic graphs we can (via passing to a subsequence if necessary) extract

a “limit infinite random graph” S∞ on vertices 1, 2, . . ., defined by its incidence

matrix X in the limit (4), and we can characterize the possible limits.

What is the relation between S∞ and the finite graphs (Gn)? In probability

language it’s just

the restriction Sk of S∞ to vertices 1, . . . , k is distributed as the n → ∞

limit of the induced subgraph of Gn on k random vertices. (5)

A recent line of work in graph theory, initiated by Lovász and Szegedy [11],

started by defining convergence in a more combinatorial way, by counting num-

ber of subgraphs of Gn homomorphic to fixed graphs. But this is equivalent

(see Diaconis and Janson [7] for details) to our notion (5) of Gn converging
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to S∞. The structure theorem, rediscovered in this setting in [11], has subse-

quently been used to develop new and interesting results in graph theory, and

this remains an active topic.

4.3. Further uses in finitary combinatorics. The remarkable re-

cent survey by Austin [5] gives a more sophisticated treatment of the theory

of representations of jointly exchangeable arrays, with the goal of clarifying

connections between that theory and topics involving limits in finitary combi-

natorics.

In particular, Austin [5] describes connections with the “hypergraph regu-

larity lemmas” featuring in combinatorial proofs of Szemerédi’s Theorem, and

with the structure theory within ergodic theory that Furstenberg developed for

his proof of Szemerédi’s Theorem.

Subsequently Austin and Tao [6] apply such methods to the topic of hered-

itary properties of graphs or hypergraphs being testable with one-sided error;

informally, this means that if a graph or hypergraph satisfies that property “lo-

cally” with sufficiently high probability, then it can be modified into a graph

or hypergraph which satisfies that property “globally”.

5. Continuum Spatial Random Networks

Take (say) 7 addresses in the U.S. and find (e.g. via an online map service) the

road route between each pair. These routes form a sub-network of the entire

U.S. road network, as illustrated in the figure.

Figure 3. A subnetwork spanning 7 points of a large spatial network.

Imagine the 7 positions marked on a transparency and positioned randomly over

a (real-world) road map. The sub-network (as drawn on the transparency) is
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now a random network linking the 7 positions. Scale-invariance is the property

that the distribution of such a subnetwork does not depend on the scale of the

map, i.e. is the same whether the region in the figure has width of 10 miles

or 50 miles or 250 miles. Obviously such a mathematical property cannot be

exactly true for real road networks, but there is some evidence it is a reasonable

approximation over scales of interest.

Question: How can we formulate the concept of a scale-invariant

random spatial network (SIRSN) as a well-defined mathematical

object?

A loose analogy is with (mathematical) Brownian motion, used as a model

for many phenomena (physical Brownian motion, stock prices, white noise)

even though its scale-invariance in not true for the real phenomenon on all

scales. Analogously, in a model we want a SIRSN to be exactly scale-invariant.

Note this forces us to work in the continuum. We will need to have routes

R(z1, z2) between (almost) all pairs of points in the plane, not just between

some discrete set of points. Defining such a process directly, one faces technical

issues in handling an uncountable number of random variables.

The general program from section 3 suggests an alternative approach. If we

were given a SIRSN then we could sample random points in the plane, pre-

cisely a Poisson point process Ξ(λ) of mean λ per unit area, then consider the

subnetwork S(λ) of routes between pairs of points in Ξ(λ). The natural “inclu-

sion coupling” of the point processes (Ξ(λ), 0 < λ < ∞) implies an inclusion

coupling of the subnetworks (S(λ), 0 < λ < ∞), and scale-invariance for the

SIRSN implies a certain scaling property for the subnetworks.

Now the conceptual point is that we can reverse the line of thought above,

and take these properties of a family (S(λ), 0 < λ < ∞) as the starting point

for a definition of a SIRSN, thereby finessing the technical issues above.

5.1. Examples of SIRSNs. There seems no construction of a SIRSN

that is both simple and natural, but here is the simplest artificial construction

we know. Start with a square grid of roads, but impose a “binary hierarchy of

speeds”: a road meeting an axis at a point ((2i+ 1)2
s, 0) or (0, (2i+ 1)2

s
) has

speed γs
for a parameter 1 < γ < 2. Define routes between grid points to be the

“shortest-time” routes. The construction is consistent under binary refinement

of the lattice, so can be used to define (by continuity) routes between points in

R2
, and is invariant under scaling by 2. We can obtain a process with further

invariance properties by using external randomization, as follows.

• Apply large-spread random translation, take weak limits, to get transla-

tion invariance.

• Apply a random rotation to get rotation-invariance.

• Applying a random scaling with appropriate distribution on [1, 2] gives

full scaling invariance.
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Figure 4. Thicker lines indicate faster roads.

5.2. Properties of SIRSNs. Roughly speaking, we view the SIRSN as

the λ → ∞ limit of the family (S(λ), 0 < λ < ∞) of sampled subnetworks.

Here is one interesting aspect of such processes.

Let E(λ, r) ⊂ S(λ) be the positions z in edges of S(λ) such that z is in the

route R(ξ, ξ′) for some points ξ, ξ′ of Ξ(λ) such that min(|z − ξ|, |z − ξ′|) ≥ r.

In words, the road sections used in some route for which both starting and

ending points are at distance at least r from the section. Let p(λ, r) be the

mean length-per-unit-area of E(λ, r). Then λ → p(λ, r) is increasing. Suppose

the limit

p(r) := lim
λ→∞

p(λ, r)

is finite. Then scale-invariance implies

p(r) = p(1)/r, 0 < r < ∞.

Of course p(r) is the mean length-per-unit-area of E(∞, r) := limλ→∞ E(λ, r).

Now in a real world road network there is a spectrum of “sizes” of road, from

“major roads” to “minor roads”. One could model a network via some specific

and explicitly hierarchical model. Instead, for the general class of SIRSN models

we can interpret E(∞, r) as the roads of “size ≥ r”; the size spectrum emerges

from scale-invariance without being explicitly assumed.
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Abstract

It is a remarkable characteristic of some classes of low-dimensional dynamical

systems that their long time behavior at a short spatial scale is described by an

induced dynamical system in the same class. The renormalization operator that

relates the original and the induced transformations can then be iterated, and

a basic theme is that certain features (such as hyperbolicity, or the existence of

an attractor) of the resulting “dynamics in parameter space” impact the behav-

ior of the underlying systems. Classical illustrations of this mechanism include

the Feigenbaum-Coullet-Tresser universality in the cascade of period doubling

bifurcations for unimodal maps and Herman’s Theorem on linearizability of

circle diffeomorphisms. We will discuss some recent applications of the renor-

malization approach, focusing on what it reveals about the dynamics at typical

parameter values.
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1. Introduction

The concept of renormalization arises in many forms through mathematics and

physics. Our aim here is to discuss its incarnation as a tool in the analysis of

certain classes of dynamical systems. More particularly, we will be interested in

situations where renormalization gives rise to a non-trivial dynamical system

in parameter space.

Inducing is a common technique to try to understand the dynamics of a map

f (possibly partially defined) on some space X, restricted to a certain region

Y ⊂ X. An inducing procedure gives rise to a new map g on Y which at each

point coincides with some iterate of f , i.e., g(x) = fn(x)
(x) for some positive
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integer n(x), at each x ∈ Y for which g is defined. The most usual choice of

inducing procedure (and essentially the only one we will need to consider) is

to take g simply as the first return map, so that n(x) is the smallest positive

integer such that fn(x)
(x) ∈ Y . Naturally, this induced map may look quite

different from the original one.

It is a remarkable characteristic of certain classes of dynamical systems that

an inducing procedure can be defined which produces maps in the same class.

An example, to which we will come back to later, is the map f(x) = 3.5x(1−x)

on X = [0, 1]. The second iterate of f can be seen to restrict to a self-map of a

subinterval Y around the critical point 1/2. Both f and g = f2
: Y → Y belong

to the class of unimodal maps of an interval, whose distinguishing feature is the

presence of a single turning point.

When an inducing procedure can be defined, acting on a certain class of

dynamical systems, it can be of course iterated, which will produce a sequence

of induced maps on successively smaller regions of space. A renormalization

operator is defined by considering the induced dynamics after a suitable coor-

dinate change (just affine rescaling in all situations we will consider), so that

all dynamics considered occur at a fixed spatial scale. This allows the renor-

malization operator to have interesting dynamics in itself, e.g., it might admit

a fixed point.

The actual implementation of the renormalization technique is naturally

quite dependent of the systems at hand, so most of this paper will be dedicated

to describing how it is applied in a few specific situations. We will focus on how

features of the renormalization dynamics have concrete repercussions on the

behavior or renormalized systems, and how this leads to the solution of very

natural problems.

The variations in the implementation of renormalization should not mask

the several underlying common themes in the cases of succesful application of

the renormalization approach:

1. The renormalizable dynamics is usually low-dimensional. This can be

thought of as a conformality issue: in large dimensions, the distinct in-

trinsic scales of the different directions may be rather difficult to account

for.

2. Renormalizable dynamical systems are not chaotic, i.e., iteration does

not produce too much complexity. This is because each unit of time, after

renormalization, represents several units of time of the original dynamics.

So if the Lyapunov exponent lim
1

n
ln |Dfn

(x)|, which measures the expo-

nential rate of growth of the derivative, is positive, then it will increase

under renormalization. A similar consideration applies to entropy. It is

thus clear that in these situations the successive renormalizations must

diverge, and no interesting renormalization dynamics can take place.

3. Renormalization of non-linear dynamical systems takes place in an infinite

dimensional functional space, so identifying a renormalization attractor
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plays a crucial role: it basically constrains the possibilities of the small

scale behavior of the original dynamics.

4. Contrary to the renormalizable dynamics, the renormalization attractor

tends to display hyperbolicity: thus renormalization acts very chaotically.

A lot of the effectiveness of the renormalization approach is indeed due

to the fact that moderate disorder is usually more complicated to analyze

than large disorder (which, for instance, can bring into play very effective

probabilistic techniques).

While our focus here will be on nonlinear maps, renormalization can also

be a useful concept in the absence of nonlinearity. One example is given by

interval exchange transformations, i.e., bijections of an interval I with a finite

“singular set” and which restrict to translations on each interval not intersecting

the singular set. Once the size of the singular set is fixed, the renormalization

dynamics takes place in a finite (but large if the singular set is large) dimensional

parameter space, and is related to the Teichmüller flow in moduli spaces of

Abelian differentials [M], [V1], [V2]. In this case, the chaotic properties of the

renormalization dynamics lead to a particularly precise stochastic modeling,

and plays a key role in the description of the behavior of typical maps (see the

survey [A4] and references therein). Here we will only discuss the very particular

case where the singular set consists of exactly one point: in this case the interval

exchange transformation gives (after gluing the extremes of the interval) a rigid

rotation of the circle.

The case of rigid rotations is interesting for us since some natural classes

of nonlinear dynamics can be considered as nonlinear deformations of it. Here,

renormalization can be used as a way to reduce the amount of nonlinearity:

in terms of the dynamics of the renormalization operator, this corresponds to

showing that the finite dimensional subset of linear systems is an attractor. The

analysis of the renormalization dynamics is of course much simplified by the fact

that we already know from the beginning what is the “candidate attractor”,

and the only problem is in establishing that it indeed attracts orbits. However,

even in this simple situation, we will be able to identify an important theme,

which is the key role of a priori bounds, or precompactness of renormalization

orbits (which usually takes the form of a rough estimate on the nonlinearity).

In other words, before worrying about convergence to an attractor, we should

establish non-divergence.

If the nonlinearity is too large, renormalization can not hope to decrease

it, and a central problem is then the construction of the attractor itself. We

will discuss a recently developed approach to convergence of renormalization

in such a setting, in which the attractor is produced naturally by “iteration in

parameter space” (given suitable a priori bounds).

1.1. Outline of the remaining of the paper. The sections in this

paper are arranged roughly according to “increasing nonlinearity”.
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We start by quickly going through the case of rigid rotations in §2, as a

preamble to addressing circle diffeomorphisms in §3. Our focus will be on Her-

man’s celebrated work on linearization. Essentially, renormalization admits a

global attractor corresponding to the locus of rigid rotations, and this allows

one to obtain global results by reducing to the “local case” of nearly linear

systems.

We next consider the setting of one-frequency cocycles, where one “adds

nonlinearity” to rigid rotations through a projective extension in §4. Here a

“linear attractor” still exists, but it is no longer a global one, and understanding

the nature of the obstruction to convergence has important repercussions.

We then discuss a bit about the role of renormalization in the analysis of

the boundary of the basin of attraction of the linear attractor §5. For one-

frequency cocycles, this regards the (still poorly understood) “onset of diver-

gence” of renormalization, while for circle diffeomorphisms one just allows for

some degeneration, in the form of critical points of inflection type.

This is followed by a much more detailed treatment of the renormalization

theory of unimodal maps, with a critical point of turning type, in §6, which

was first developed in connection with the Feigenbaum-Coullet-Tresser univer-

sality phenomenon. A key issue we will explore is the need to construct the

renormalization attractor using the renormalization dynamics itself.
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2. Rigid Rotations

In this section, we will consider translations on R/Z, that is, f(x) = x+α where

we may assume that 0 ≤ α < 1. In this case, one can define a renormalization

operator based on the classical continued fraction algorithm, and hence to the

Gauss map G(x) = {x−1
} = x − [x−1

] (where {·} and [·] denote, respectively,

the fractional and the integer parts of a real number) as follows. Let us assume

for definiteness that α is irrational, so α has an infinite continued fraction

expansion

α =
1

a1 +
1

a2 + · · ·

, (1)

with ai positive integers. Consider also the continued fraction approximants

pn/qn, given inductively by the formulas p0 = 0, q0 = 1, p1 = 1, q1 = a1, and

for n ≥ 2, pn = anpn−1 + pn−2, qn = anqn−1 + qn−2. We recall that pn/qn
approximate α from alternate sides, so that βn = (−1)

n
(qnα − pn) > 0. Then
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αn = βn/βn−1 are irrational numbers in (0, 1) obtained by applying successively

the Gauss map: αn = Gn
(α).

The first return map to [0, α) = [0, β0) has the form f ′
(x) = x+(a+1)α−1

for x ∈ [0, β1) and f ′
(x) = x + aα − 1 on [β1, β0). This discontinuous map

on an interval can be seen as a continuous map on the circle by “gluing the

extremal points” 0 and α, via the translation x 7→ x + α. Since the gluing

map is a translation, the “new” circle has an Euclidean structure and can be

identified with the original one of R/Z (this encodes the rescaling part of the

renormalization procedure). It is easy to see that in the new coordinates the

first return map is again a rigid translation by ±α1, the sign depending on

whether the identification does or does not reverse orientation. Here it will be

most convenient to take an identification that reverses orientation, so that the

renormalization of x 7→ x+α is x 7→ x+α1, so that the renormalization operator

acting on rigid irrational translations is just the Gauss map α 7→ G(α) acting

on the parameter space (0, 1) ∩Q.

The Gauss map is of course a classical example of a chaotic dynamical sys-

tem [Man]. It preserves the probability measure dµ =
1

ln 2

dx

1+x
, with respect to

which it has a positive Lyapunov exponent. The strong mixing properties of the

Gauss map have of course many applications in the analysis of the distribution

of continued fraction coefficients.

3. Diffeomorphisms of the Circle

The rigid rotations of the circle we discussed in the previous section form a

finite dimensional subset in the infinite dimensional space of orientation pre-

serving smooth diffeomorphisms of the circle. To what extent do the dynamics

of nonlinear diffeomorphisms behave as a linear one?

The answer to this question begins with the combinatorial theory of Poincaré

[MS]. Any orientation preserving homeomorphism of the circle f has a well

defined rotation number ρ(f) (defined up to an integer), which captures the

speed in which orbits “go around the circle”. This is most easily defined as the

reduction modulo 1 of the translation number lim(Fn
(x)−x)/n of an arbitrary

lift F : R → R of f (capturing this time the drift of F -orbits), which is readily

seen to exist.
1
Notice that for a rigid rotation f : x 7→ x+α we have ρ(f) = α.

For an arbitrary homeomorphism, we have:

1. f has a periodic orbit (of period q) if and only if ρ(f) is rational (of the

form p/q with (p, q) = 1). In this case, every f -orbit is asymptotic to a

periodic orbit.

1Letting mn and Mn be the minimum and maximum of F

n(x) − x for x ∈ R/Z (or
which is the same, for x ∈ [0, 1], since F

n(x + k) = F

n(x) + k for each k ∈ Z), we see that
0 ≤ Mn − mn ≤ 1. Since mn is supperadditive and Mn is subadditive, the limits of mn/n

and Mn/n must exist and coincide.
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2. If ρ(f) is irrational then the orbits of f have the same combinatorial

structure of the orbits of the translation x 7→ x + ρ(f): for each n, the

cyclic order of (fk
(x))n−1

k=0
is the same as that of (kρ(f))n−1

k=0
.

We will from now on restrict our attention to the most interesting case

when ρ(f) is irrational. Let I stand for the set of diffeomorphisms of the circle

with irrational rotation number. In this case, it emerges from the combinatorial

description of the orbits that there is a semi-conjugacy to the linear model, i.e.,

a continuous surjective map h : R/Z → R/Z satisfying h(f(x)) = h(x) + ρ(f)

(h is essentially unique, the only freedom available being postcomposition with

arbitrary rigid rotations). The natural question is whether the orbit structure

is the same also from the topological point of view: is f actually conjugated to

the linear model, i.e., is h in fact a homeomorphism? This is answered quite

satisfactorily by Denjoy’s topological theory. At the level of homeomorphisms, it

is easy to find counterexamples: one can blow up an orbit of a rigid rotation with

irrational rotation number to create so-called wandering intervals (an interval

which is disjoint of all positive iterates but does not lie in the basin of attraction

of a periodic orbit). Carrying out this construction more carefully, one gets

C1 Denjoy counterexamples, but Denjoy proved that there are no C2
Denjoy

counterexamples: every C2
diffeomorphism with irrational rotation number is

topologically conjugated to a rigid rotation [MS].
2

3.1. Renormalization dynamics. Recall that if f is a rigid rotation,

the n-th renormalization of an irrational rotation of the circle f : x 7→ x + α

can be obtained by taking the first return map to an interval [x, fqn−1(x)] with

endpoints identified. We would like to extend this definition to an arbitrary

smooth diffeomorphism with rotation number α, but we must be careful with

the gluing procedure: just gluing with a translation (which generates a circle

with Euclidean structure) is not natural here and will in general not produce

a diffeomorphism, but only a homeomorphism. The natural way to glue is to

use the dynamics itself, i.e., the map fqn−1 , to generate a “smooth circle”, on

which the first return map indeed acts smoothly.

Unfortunately there is no canonical way to identify the smooth circle with

the canonical one (R/Z), so this procedure does not really yield a renormaliza-

tion operator acting on I. This issue can be resolved by considering Z2
-actions

as the basic object to be renormalized. Without going into details of this defi-

nition, we shall say that the renormalizations become more and more linear if

after rescaling (by an affine map [x, fqn−1(x)] → [0, 1]), both the gluing map

and (each of the two smooth branches of) the first return map converge to

translations (say, in the C∞
-topology if one is dealing with smooth maps).

A simple feature of the renormalization dynamics is that since the combina-

torics of the renormalized map only depend on the combinatorics of the orbits

of the original one, it is clear that the rotation number transforms as for the

2See also [Y1] and [DKN] for more recent results on absence of wandering intervals.
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renormalization of rigid translations, i.e., via the Gauss map. Thus renormal-

ization can be seen as fibering over the Gauss map, and if global convergence

of renormalization is established the fibers will thus be identified with stable

manifolds. We shall see similar situations later, where the existence of a good

“candidate stable manifold” will turn out to be central to the analysis of con-

vergence in some more nonlinear situations.

Let us describe the parts of the strategy in the proof of convergence of renor-

malization (assuming sufficient smoothness) which are perhaps most significant

in getting an idea of why global convergence takes place.

The first step in most proofs of convergence of renormalization involves the

proof on non-divergence (in the form of establishing suitable a priori bounds).

For circle diffeomorphisms, the crucial such bound comes from the Denjoy-

Koksma inequality. It gives an estimate on distortion which implies, in par-

ticular, that Dfqn is bounded for all n (this already prevents the existence

of wandering intervals, and hence gives Denjoy’s Theorem on topological lin-

earizability). It was a remarkable discovery of Herman [H1] that iteration always

leads to cancellations of high order derivatives of fqn , and thus to global conver-

gence of renormalization. After subsequent work of Yoccoz [Y2], this mechanism

was understood in terms of the chain rule for the Schwarzian derivative,

Sf =
D3f

Df
−

3

2

(

D2f

Df

)2

, (2)

which gives

Sfn
=

n−1
∑

k=0

(Sf ◦ fk
)(Dfk

)
2. (3)

The control of distortion coming from the Denjoy-Koksma inequality gives

Dfk
(x) ∼ C

ln(f
k
(x))

ln(x)
, 0 ≤ k ≤ qn − 1, (4)

where ln(y) is the length of the interval [y, fqn(y)]. This allows one to control

the term (Dfk
)
2
: indeed the intervals (fk

(x), fk+qn(x)) are disjoint for 0 ≤ k ≤

qn − 1, so that
∑qn−1

k=0
ln(f

k
(x)) ≤ 1 and

|Sfqn(x)| ≤ C max
0≤k≤qn−1

ln(f
k
(x))

ln(x)
2

, (5)

Since the Schwarzian derivative has order 2, rescaling kills the large term

1/ln(x)
2
. Using that limn→∞ supy ln(y) = 0 (by Denjoy’s Theorem giving topo-

logical conjugacy with irrational rotations), one gets that, after rescaling, the

Schwarzian derivative of both the gluing map and the first return map is indeed

going to 0.

Convergence to a linear attractor can be immediately used as a ways of

“global to local” reduction. We will now discuss the most famous example of

such an application.
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3.2. Linearization. Let us continue our discussion of how the dynamics

of circle diffeomorphisms resemble that of rigid rotations, assuming enough reg-

ularity to guarantee that f is topologically linearizable. The next step is to ask

whether the local geometry of the orbit structure is also the same. For instance,

given three nearby points in the same orbit, are the ratios between distances

close to those for the rigid rotation? This (properly quantified) property is ac-

tually equivalent to C1-linearizability, that is, to h being a C1
diffeomorphism.

It is easy to see that no condition on the regularity of f will be sufficient

to guarantee C1
-linearizability. Indeed, if f is any nonlinear diffeomorphism of

the circle whose lifts extend holomorphically to an entire map C → C there

exists θ ∈ R such that fθ : x 7→ f(x) + θ has irrational rotation number but is

not C1
-linearizable. This can be seen as follows:

1. θ 7→ ρ(fθ) is a continuous non-decreasing map R/Z → R/Z of degree 1,

2. It follows that ρ(fθ) ∈ Q/Z for a dense countable subset of the closure

Kf of {θ ∈ R/Z, ρ(fθ) ∈ RrQ}.

3. If θ is such that ρ(fθ) = p/q, then every orbit of fθ is asymptotic to one

of finitely many periodic orbits.
3
In particular,

inf
n≥1

inf
x∈R/Z

Dfn

θ (x) = 0 (6)

for any such θ.

4. A Baire category argument shows that (6) holds in fact for generic θ ∈ Kf ,

which implies that fθ is not C
1
-conjugate to a rigid translation. (Note that

for generic θ ∈ K(fθ), we do have ρ(fθ) /∈ Q/Z.)

What we wanted to highlight by giving the above argument is that in it one

clearly sees that a source of trouble to C1
-linearizability comes from “conta-

gion” from rational rotation numbers. It turns out that positive results can be

obtained if, besides regularity, one assumes that the rotation number is badly

approximable by rational numbers.

3.3. The KAM Theorem. Let us consider first the local version of the

linearizability problem, where one restricts considerations to circle diffeomor-

phisms close to linear. It can be attacked by a fast iteration scheme (KAM,

after Kolmogorov, Arnold and Moser), first introduced by Kolmogorov in the

treatment of a considerably more complicated conjugacy problem [Kol]. We will

restrict ourselves to give an idea of the setup. Let us assume that we can write

f : x 7→ x+ ρ(f) + εv(x), with v regular and ε small, and let us try to solve for

3Here we use that f

q

θ
(x) = x has at most finitely many solutions, which follows from the

hypothesis on the holomorphic extension of the lift.
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some regular conjugacy close to the identity, h : x 7→ x+ εw(x) between f and

some x 7→ x+ β. Writing the conjugacy equation, one gets

x+ ρ(f) + εv(x) + εw(f(x)) = x+ εw(x) + ρ(f), (7)

i.e.

v(x) = w(x)− w(f(x)). (8)

Since f is close to the translation by ρ(f), it is reasonable to approximate (8)

by the cohomological equation v(x) = w(x)− w(x+ ρ(f)). To solve it we must

assume that v has average 0 (integrate both sides), in which case a smooth

solution w always exists provided v is smooth and ρ(f) is Diophantine in the

sense that rational approximations can be only polynomially good (in terms of

the denominators of the continued fraction approximations, this gives ln qn+1 =

O(ln qn)), as can be seen by considering the Fourier series expansion. Since f(x)

is assumed to have rotation number exactly ρ(f), it can be shown that the

average of v is close to 0, so following this procedure we get an approximate

solution of (8). With such a solution in hand, we can obtain an approximate

conjugacy between f and the rigid translation (in this one step, we only manage

to conjugate f with another nonlinear map, but which is closer to the linear

model). Iterating this process again, we should obtain a sequence of conjugacies

hn between f and maps with decreasing nonlinearity, the desired conjugacy

appearing only as the limit of the hn.

We are of course skipping the core of the argument here, which is that there

is loss of regularity which is apparent when solving the cohomological equation.

The full treatment was given by Arnold [Ar] in the case where f is analytic

(the obtained conjugacy is analytic as well in this case), the smooth case is due

to Moser, see, e.g., [H1].

3.4. The Herman-Yoccoz Theorem. While the hypothesis that f

be close to a rigid rotation is obviously important in the argument above,

Arnold advanced the daring conjecture that his linearizability theorem should

also hold in general. This later became the Herman-Yoccoz Theorem [Y2]:

Theorem 1. Let f be a smooth (respectively, analytic) orientation preserv-

ing diffeomorphism of the circle with Diophantine rotation number. Then f is

smoothly (respectively, analytically) conjugated to a rigid rotation.

A weaker version of this theorem was first proved by Herman [H1], as-

suming a stricter (but still full measure) condition on the rotation number.

Following the lucid account of Sullivan [S3], we will focus on this version since

it is the one that illustrates most transparently the importance of convergence

of renormalization (more precise results can be associated with an estimate on

the rate of convergence), taking only a few lines. Indeed, let f be a smooth

diffeomorphism with Diophantine rotation number. Its renormalizations are

becoming closer and closer to rigid rotations. Assume first that the rotation
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number of f is fixed by the Gauss map (for instance, it is the golden mean).

Then it is clear that at some point the renormalizations belong to the “do-

main of convergence of the KAM algorithm”, so the renormalization will be

linearizable. It follows f itself is linearizable: Since linearizability concerns the

local geometry of orbits (c.f. the beginning of §3.2), it must be invariant under

renormalization. In general the rotation number does change under renormal-

ization, and while the Diophantine class is invariant under the Gauss map, the

“Diophantineness” (measured in the quantification of the Diophantine condi-

tion ln qn+1 = O(ln qn)) may degenerate at each step, and with it the size of the

region where the KAM algorithm works. But at least for almost every rotation

number, there will be infinitely many times for which the renormalized rotation

numbers satisfy a fixed Diophantine condition (e.g., ln qn+1 ≤ 10 ln qn): this is

immediate from the ergodicity of the Gauss map. For such rotation numbers,

we do not need to worry about trying to hit a moving target (comparing the

speed of convergence of renormalization with the possible decrease in range of

the KAM method), thus global linearizability follows.

Remark 3.1. As Sullivan notes in [S3], Herman did not use the renormalization

language, though his work fitted perfectly into it. The full renormalization

formalism was implemented in this context by Khanin-Sinai [SK].

4. One-frequency Cocycles

We now consider a situation where renormalization presents a finite-dimensional

local attracting set (again corresponding to setting the nonlinearity to zero) but

which clearly can not be a global attractor. It is the precise understanding of

the obstructions to convergence of renormalization that plays an important role

in establishing a global theory.

4.1. The local character of linearizability in two dimen-
sions. A few years after establishing the global nature of linearizability of

diffeomorphisms of the circle satisfying suitable arithmetic conditions, Herman

wrote another seminal paper [H2]. According to the title, it is about both “a

method to minorate Lyapunov exponents” and “some examples showing the

local character of the Arnold-Moser Theorem in dimension 2”.

The examples discussed by Herman are analytic diffeomorphisms of T2
that

are isotopic to the identity, fiber over a rigid irrational rotation, and act pro-

jectively in the second coordinate. They can be written as a skew-product, or

cocycle, (α,A) : (x,w) 7→ (x + α,A(x) · w) where A : R/Z → SL(2,R) is an

analytic map homotopic to a constant. The iterates of a cocycle have the form

(α,A)n = (nα,An) with An(x) = A(x+(n−1)α) · · ·A(x). A class of particular

interest consists of one-frequency Schrödinger cocycles, where

A = A(E−v)
=

(

E − v −1

1 0

)

, (9)
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with v an analytic map R/Z → R and E some real constant. Schrödinger

cocycles are relevant to the analysis of one-frequency Schrödinger operators

H = Hα,v. These are bounded self-adjoint operators on `2(Z) of the form

(Hu)n = un+1 + un−1 + v(nα)un, (10)

since a formal solution of Hu = Eu satisfies

(

un

un−1

)

= An(0)

(

u0

u−1

)

.

Just as for diffeomorphisms of the circle, one can define a rotation vector

(as the reduction modulo 1 of the drift in R2
of a lift). The first coordinate

of the rotation vector is obviously α, while the second is called the fibered ro-

tation number. For Schrödinger cocycles, there is a beautiful reinterpretation

[AS] of the fibered rotation number of (α,A(E−v)
), as 1−N(E) where N is the

integrated density of states of the operator Hα,v, which gives the limiting pro-

portion of eigenvalues of restrictions of Hα,v (to intervals of increasing length)

that lie in (−∞, E]. In particular, for fixed v, any rotation vector (α, β) can be

realized by choosing E appropriately.

In [H2], Herman discusses how the Arnold-Moser (KAM) Theorem gives

a local linearization theorem in this setting: If the rotation vector satisfies a

Diophantine condition then analytic linearizability holds, provided A is suf-

ficiently close to a constant. (The use of KAM methods in connection with

quasiperiodic Schrödinger operators was pioneered by Dinaburg-Sinai [DS].)

On the other hand, [H2] also introduces Herman’s famous “subharmonicity

method” to minorate the Lyapunov exponent

L = lim
1

n

∫

ln ‖An(x)‖dx. (11)

For Schrödinger cocycles, it implies that if v is a non-constant trigonometric

polynomial
∑

|k|≤m
ake

2πikx
with |am| > 1 then L > 0.

The positivity of the Lyapunov exponent is incompatible with even topo-

logical linearizability, since it implies in particular that the dynamics of

(α,A) is not distal (if sup ‖An(x)‖ = ∞ then there exist y 6= y′ such that

inf d(An(x) · y,An(x) · y
′
) = 0). Thus by choosing v and E appropriately one

obtains a non-linearizable cocycle which neverthless has a Diophantine rotation

vector.

Remark 4.1. Even near constants, there are uniformly hyperbolic cocycles, for

which ‖An(x)‖ grows exponentially fast uniformly on x, and in particular have

positive Lyapunov exponents. The locus of uniformly hyperbolic cocycles is

open and quite simple to analyze, much like the complement of the closure

of circle diffeomorphisms with irrational rotation number. The examples con-

structed by Herman have a rather different nature, since the rotation vector of a

uniformly hyperbolic cocycle is linearly dependent over the rationals. Cocycles

with a positive Lyapunov exponent but which are not uniformly hyperbolic are

called nonuniformly hyperbolic.
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4.2. The basin of the renormalization attractor. Just as in the

case of circle diffeomorphisms, one can try to define a renormalization operator

acting on cocycles by considering the first return map to the annulus [x0, x0 +

qnα]×R/Z, where we identify the boundary circles via (x, y) 7→ (x+qnα,Aqn
(x)·

y). We will again omit the details of the formalized definition in terms of Z2
-

actions.

As usual, if the Lyapunov exponent is positive then renormalization mag-

nifies it, so the renormalization orbits can not converge to any attractor (recall

the second theme listed in the introduction). Starting with a cocycle with Dio-

phantine rotation vector which is sufficiently close to linear, so that the KAM

Theorem applies, the successive renormalizations become increasingly linear.

Thus the locus of linear cocycles behaves as a local, but not global (since it

misses the Herman’s examples), attractor for cocycles with Diophantine rota-

tion vectors.
4

What is in fact the basin of the renormalization attractor? Naturally, it is

contained in the locus of zero Lyapunov exponents. Since the basin of a local

attractor is by nature open, and the locus of zero Lyapunov exponents is closed

(this is a deep result of Goldstein-Schlag [GoSc] and Bourgain-Jitomirskaya

[BJ]), the inclusion is in fact strict. In [AK1], [AK2], it is shown that there is,

however, equality “modulo 0”. For simplicity, we state the result for Schrödinger

cocycles:

Theorem 2. Let α ∈ R r Q and v : R/Z → R be analytic. Then for almost

every E ∈ R, if the Lyapunov exponent of (α,A(E−v)
) is zero then the successive

renormalizations of (α,A(E−v)
) become increasingly linear.

A much more detailed analysis of the “critical set” separating converging

and diverging orbits of the renormalization operator has been carried out more

recently as a part of a program to produce a global theory of one-frequency

Schrödinger operators [A1], [A2], [A3]. It shows that (for fixed Diophantine α),

the critical set is not only of zero measure, but it has zero measure inside a

codimension one subset. This more precise description is important because the

analysis of a single Schrödinger operator depends on a one-parameter family of

cocycles: it allows us to make statements about every energy E in the spectrum

of almost every potential.

5. Hitting the Limits of Linear Attractors

In the analysis of one-frequency cocycles, it is clear that the renormalization

dynamics is not going to be governed by a nice attractor once the nonlinearity is

4The analysis can be extended considerably beyond Diophantine rotation vectors, but the
arguments are not as simple as just applying the KAM Theorem.
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so large that the Lyapunov exponent becomes positive.
5
A more subtle problem

concerns the renormalization of critical cocycles, at the onset of nonuniform

hyperbolicity (see Remark 4.1). Their renormalizations can no longer converge

to linear cocycles, but they could still be governed by an attractor. One reason

to hope for it is the way renormalization acts on the Lyapunov exponent of

complexifications: for critical cocycles one has, for ε > 0 small,

lim
n→∞

1

n
ln ‖An(x+ εi)‖ = 2πωε, (12)

where ω is a positive integer called the acceleration (this “quantization” prop-

erty was only recently discovered, in [A1]). This simple dependence behaves

perfectly under renormalization, so that a renormalized critical cocycle is a

critical cocycle with the same acceleration. Thus the acceleration measures an

irreducible amount of nonlinearity of critical cocycles (since cocycles close to a

constant must have zero acceleration), which contrary to a positive Lyapunov

exponent does not grow with renormalization.

However, since it is known that if the matrix products An(x) remain

bounded for all times, then renormalization must converge to the linear at-

tractor [AK2], it seems unrealistic to expect for renormalization to converge

in the traditional sense. Maybe it might be necessary to modify the definition

of the renormalization operator, perhaps by introducing nonlinear changes of

coordinates? Let us note that a very different kind of renormalization mecha-

nism [HS] has been previously considered in the analysis of some features of

criticality, in the particular case of the critical Almost Mathieu Operator (with

potential v(x) = 2 cos 2πx). This especially symmetric (under so-called Aubry

duality [GJLS]) model has the remarkable property that the associated cocy-

cles are critical for all energies in the spectrum, and because of (numerically)

observed self-similarity in the spectrum, it is very tempting to imagine that

there is a renormalization attractor somewhere in the picture. The situation

here may be related to the (even less understood) breakdown of KAM behavior

in area-preserving maps (discussed, e.g., in [McK]).

A similar (but much more well understood) situation concerns the case of

analytic circle maps. Diffeomorphisms of the circle form an open set where

renormalization acts quite nicely, but what about the critical circle maps in its

boundary? Those are still homeomorphisms, and so have a well defined rota-

tion number, but the critical points introduce an irreducible (conserved under

renormalization) amount of nonlinearity. There is a well-developed renormaliza-

tion theory in this case, particularly about the main component of the bound-

ary of diffeomorphisms, consisting of critical circle maps with a single critical

5It might be still possible to obtain results describing the asymptotics of the diverging
renormalization orbits, but currently there is nothing more than interesting heuristics in this
direction.
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point: as it turns out, there exists a renormalization attractor, and this lies

behind fundamental rigidity results (see [FM1], [FM2], [Ya1], [Ya2], [KT]).
6

If one goes beyond critical circle maps, one starts dealing with non-invertible

maps of the circle. We will however go in a slightly different direction, and

discuss next non-invertible maps of the interval, focusing on the particular

class for which much of the renormalization theory was developed.

6. Analytic Unimodal Maps

Let f : I → I be an analytic unimodal map. Thus f has a unique critical

point, which is of turning type (maximum or minimum) and located in intI.

By an affine change of coordinates, we may normalize it so that the critical

point is at the origin and f(x) = f(0) + xd
+ O(xd+1

) for some even integer

d ≥ 2, called the degree. Basic examples of analytic unimodal maps are given

by the (appropriate restrictions of) unicritical polynomials x 7→ xd
+ c (for

the suitable range of c ∈ R for which an invariant interval exists). The precise

domain of definition of a unimodal map is not of too much importance, since

it only concerns trivial aspects of the dynamics.

A unimodal map is called renormalizable if there is an interval I ′ ⊂ I

around 0 and an integer n > 1 such that fn
(I ′) ⊂ I ′ but f j

(I ′) ∩ intI ′ = ∅ for

1 ≤ j ≤ n − 1. Then f ′
= fn

: I ′ → I ′ is again unimodal. The set of possible

values of n form a finite or infinite sequence n1 < n2 < ..., such that nj |nk for

j < k. The normalization of (the appropriate restriction) of fnj is called the j-

th renormalization. The renormalization operator R takes each renormalizable

map f to its first renormalization Rf , and the j-th renormalization is obtained

by iterating it j-times. If Rjf is renormalizable for every j ∈ N, f is called

infinitely renormalizable.

The renormalization period of f is n = n1, while the renormalization com-

binatorics of f is the permutation of π : {0, ..., n− 1} → {0, ..., n− 1} such that

π(j) < π(k) if and only if f j
(0) < fk

(0). All integers n ≥ 2 do arise as the

renormalization periods of some unimodal map. The renormalization combina-

torics is not, in general, determined by the period. We let Σ be the countable

set of all possible renormalization combinatorics.

The existence of a critical point has the important consequence that all

renormalizations have an “irreducible nonlinearity”. While in the situations

considered in §3 and §4 we could readily define an invariant set which was a

candidate to be a renormalization attractor, proving any kind of convergence

6Particularly Khanin-Teplinsky show (using exponential convergence of renormalization)
that for analytic circle homeomorphisms with a single critical point of fixed odd degree d ≥ 3,
any two maps with the same irrational rotation number must be C1-conjugate. This is in stark
contrast with the situation for circle diffeomorphisms, as no kind of Diophantine condition is
necessary.
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of renormalization for unimodal maps will involve constructing the attractor in

the process.

Important aspects of the dynamics of unimodal maps are impacted by the

degree, and most especially by whether d = 2 (the quadratic case) or d > 2

(the higher degree case). The ultimate source of this difference lies in a specific

“decay of geometry” property valid in the quadratic case but not in the higher

degree case, which diminishes the importance of nonlinearity in small scales

before the first renormalization. This impacts, in particular, the analysis of

attractors of the unimodal dynamics: in the quadratic case, Milnor’s notion

of topological and measure-theoretical attractor coincide [L1],
7
but this is not

true, in general, in sufficiently high degree [BKNS].

6.1. Feigenbaum-Coullet-Tresser phenomenon. Renormaliza-

tion of unimodal maps is most well known for its role in the understanding of

universality in the period doubling bifurcation. Considering, say, the quadratic

family pc(x) = x2
+ c, which define unimodal maps for c ∈ [−2, 1/4], one sees

that for c close to 1/4, the iterates of the critical point are asymptotic to a

fixed point. This persists as one decreases the parameter c, until a moment c0
at which the so-called saddle-node bifurcation takes place. Just below it, the

fixed point becomes repelling, but a nearby period 2 cycle emerges, which still

attracts the critical orbit. This again persists until another moment c1, where

another saddle-node bifurcation takes place and a period 4-cycle emerges. Pro-

ceeding in this way, one defines the sequence of period-doubling bifurcation

moments ck (at which a 2
k
-cycle gives birth to a 2

k+1
-cycle). The remarkable

fact is that ck converges at a geometric rate, so that

ck − ck+1

ck+1 − ck+2

→ 4.669... (13)

(this limit is called the Feigenbaum constant). But the big surprise is that

if one considers another family of analytic unimodal maps fc with quadratic

critical point (say, close to the quadratic one, to avoid transversality issues),

one gets a very different sequence of bifurcation moments c̃k, but which still

converge geometrically with the same rate. The Feigenbaum constant is a uni-

versal quantitative feature of the cascade of period doubling bifurcations for

unimodal maps with a quadratic critical point. For fixed higher degree d,

the same phenomenon occurs (with a “Feigenbaum constant” associated to

each d).

Dynamics of the renormalization operator comes into play because the lim-

iting parameter of the cascade of period doubling bifurcations corresponds

to an infinitely renormalizable unimodal map f , with nj = 2
j
. According to

7By definition, an attractor should have a large basin (of points which are asymptotic to
the attractor). If largeness is understood in terms of Baire category one gets the topological
notion, while if it is understood in terms of Lebesgue measure one gets the measure-theoretical
one.
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the Renormalization Conjectures, advanced by Feigenbaum and Coullet-Tresser

([F], [TC]), the renormalizations Rnf should converge to a universal (for each

fixed degree) unimodal map f∗, a solution of the Feigenbaum-Cvitanovic equa-

tion f2
∗
(λx) = λf∗(x). Moreover, in some suitable functional space, the deriva-

tive of renormalization at f∗ should be hyperbolic, and its spectrum outside the

unit disk should consist of a single simple eigenvalue: In other words, f∗ should

be an hyperbolic fixed point with one-dimensional unstable direction. One can

show that the Renormalization Conjectures imply that the cascade of period

doubling bifurcations undergone by a generic (i.e., satisfying a transversality

condition) family does indeed converge geometrically at a rate given precisely

by the value of the eigenvalue of DRf∗ which lies outside the unit disk.

There is a long history to the Renormalization Conjectures, which were

initially addressed in a formal computer assisted proof of Lanford [La] (dealing

with the existence and hyperbolicity of a renormalization fixed point in the

quadratic case), see [L4] and references therein.

6.2. Role in the measure-theoretical analysis of parame-
ters. While beautiful, the theory of the period doubling bifurcation only con-

cerns the most ordered part of the dynamics of unimodal maps. Through the

whole cascading process, one only faces dynamics displaying attracting periodic

orbits, and only at the limit of the cascade one gets something more compli-

cated (the attractor is no longer a periodic orbit, but the suitable limit of pe-

riod 2
k
-orbits, i.e., a Cantor set restricted to which the dynamics is conjugate

to translation by one in the ring of 2-adic integers).

On the other side of the parameter space (c = −2 for the quadratic family),

one gets a very different situation. The map x 7→ x2
− 2, also called the Ulam-

Neumann map, possesses an invariant probability measure which is equivalent

to the restriction of Lebesgue measure to [−2, 2]. This measure is ergodic and

so Lebesgue almost every orbit is equidistributed with respect to it.

The Ulam-Neumann map shows that unimodal dynamics is consistent with

chaos (the invariant measure has a positive Lyapunov exponent), but looks quite

unstable. Indeed, Lyubich [L2] and Graczyk-Swiatek [GS] proved that in the

quadratic family there exists an open and dense set of parameters correspond-

ing to regular unimodal maps (for which the critical point is asymptotic to an

attracting periodic orbit). However Jakobson [J] showed that there is a positive

measure set of parameters c (near −2) corresponding to stochastic unimodal

maps (with an absolutely continuous invariant probability measure with pos-

itive Lyapunov exponent). Thus while only regular behavior is “topologically

robust”, both regular and stochastic behaviors are “measure-theoretically ro-

bust”. Such results extend to more general analytic unimodal maps, the density

of regular behavior being however much harder in higher degree [KSS].

With these preliminaries, we can now present the main result on the

measure-theoretic dynamics of unicritical polynomials (in the quadratic case,

it is due to Lyubich [L5]).
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Theorem 3 ([AL1], [AL2]). Almost every unicritical polynomial xd
+c is either

regular or stochastic.

What about infinitely renormalizable maps? Those are neither regular nor

stochastic, so to get to Theorem 3 one must show in particular that infinitely

renormalizable parameters correspond to a zero Lebesgue measure set of param-

eters.
8
While the explanation of the Feigenbaum-Coullet-Tresser phenomenon

lies in understanding the dynamics of the renormalization operator of period 2

(governed by a single hyperbolic fixed point), here we will need to understand

the full renormalization dynamics, incorporating all renormalization combina-

torics.

It follows from the density of regular parameters that the set of infinitely

renormalizable parameters in the unicritical family (with d fixed) is homeo-

morphic to the set of irrational numbers in (0, 1). Indeed, the combinatorics of

successive renormalization behaves much like the digits in the continued fraction

expansion of an irrational number: Any sequence of renormalization combina-

torics is realized by a unique parameter value. This hints to the fact that “along

the direction of the unicritical families” the dynamics of renormalization should

resemble to some extent the shift on NN
.

If instead of specifying the full renormalization combinatorics one merely

specify the the combinatorics of the first n renormalizations, one obtains an

interval (or renormalization window) of parameters. The idea of the measure-

theoretic analysis of infinitely renormalizable parameters is that the renormal-

ization window is a distorted copy of the full parameter space. Corresponding,

e.g., to the tame end of the parameter space consisting of regular dynamics,

one finds accordingly a region of regular parameters inside the renormalization

window. If we can control the distortion involved in the renormalization pro-

cess, we will conclude that there are “definite gaps” in arbitrarily small scales

around any infinitely renormalizable parameter. Thus the set of infinitely renor-

malizable parameters has no Lebesgue density point, and must thus have zero

Lebesgue measure.

The control of the dynamics of renormalization needed in the argument lies

behind a deep generalization of the Renormalization Conjectures. A program in

this direction was initially advanced by Sullivan [S1] in the case of bounded com-

binatorics, in the sense that one restricts considerations to infinitely renormal-

izable maps f such that the renormalization periods of Rkf is bounded (inde-

pendently of k) by some fixed (but arbitrary) constant. In this setting, Sullivan

[S2] (see also [MS]) constructed a global renormalization attractor (homeomor-

phic to the Cantor set FZ
for a finite part F ⊂ Σ), McMullen [McM] proved

exponential convergence to the attractor, and Lyubich proved that the renor-

malization attractor is hyperbolic (a Smale horseshoe) with one-dimensional

unstable direction [L4]. The hyperbolicity of the full renormalization operator

8Of course, the proof of Theorem 3 involves a substantial understanding of non-infinitely
renormalizable dynamics [MN], [L3], [AKLS], [ALS], which we will not go through here.
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was proved by Lyubich in the quadratic case [L5]. In this tour de force, the

analysis of exponential contraction depends on special fine geometry features

of the complex dynamics of quadratic polynomials [L2].

We should note that it is quite important to choose an appropriate func-

tional setting to study the dynamics of the renormalization operator. Following

Douady-Hubbard [DH], it is natural to consider the action of renormalization

in spaces of polynomial-like germs: These may be thought of as obtained from

unicritical polynomials by suitable hybrid deformations of the complex struc-

ture of the Riemann sphere (by Douady-Hubbard’s Straightening Theorem).

In this setting, the hybrid classes provide natural candidate stable manifolds

of renormalization, being easily seen to be forward invariant under renormal-

ization. Establishing that the hybrid classes are actually stable manifolds is a

crucial step in the construction of the renormalization attractor.

6.2.1. Convergence of renormalization. One central point of [AL1] is that

convergence along the candidate stable manifolds can be derived from beau a

priori bounds (a concept introduced by Sullivan). This is a rough geometric

control that is known to hold in general and translates to universal precom-

pactness of the renormalization orbits, by exploiting the global dynamics of the

renormalization operator. While it is beyond the point of this paper to discuss

how the necessary a priori bounds (due to [LS] and [LY]) are obtained, we can

give some ideas about how they lead to convergence.

The candidate stable manifolds can be endowed with a complex structure,

which is respected by renormalization. It is important to note that we only get

this complex structure by allowing deformations which are not real symmetric,

and hence do not correspond to actual unimodal maps, and the beau a priori

bounds only concern, in principle, the real-symmetric deformations.

The hybrid classes are all equivalent to a same functional space E , hence

the action of the renormalization operator along the family of all hybrid classes

of infinitely renormalizable maps corresponds to the action of a certain “renor-

malization groupoid” R acting holomorphically on E . Naturally, R respects the

real trace E
R
⊂ E corresponding to legitimate unimodal deformations.

Using a version of the Schwarz Lemma, one obtains non-expansion of the

renormalization groupoid, which together with the beau a priori bounds in

E
R
implies that R is almost periodic. An abstract analysis of almost periodic

groupoids shows that either the renormalization groupoid is uniformly con-

tracting or the lack of contraction is detected by a non-constant holomorphic

idempotent P in its limit set ω(R).

We want to show that any holomorphic idempotent in ω(R) is non-constant.

By holomorphicity, it is enough to show non-constancy along E
R
. The beau a

priori bounds imply that P (E
R
) is a compact set, and since P is a sufficiently

regular idempotent, it must be a manifold. As expected from a deformation

space, E
R
turns out to be contractible, so its image by an idempotent is con-

tractible as well. Since the only contractible compact manifold is a point, we
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conclude that P |E
R
must be indeed constant. This implies, by contradiction,

that the renormalization groupoid is uniformly contracting, as desired.

Remark 6.1. The argument above uses only a few properties of the renormal-

ization groupoid (holomorphicity, real-symmetry, and appropriate precompac-

ness along E
R
), and can be used to establish uniform contraction of any other

groupoid with those properties. In particular, finer geometric properties of in-

finitely renormalizable maps (that tend to be quite dependent on the combina-

torics and degree) can play no role. In previous, more restricted, approaches,

contraction was always ultimately obtained as a consequence of such less robust

features.
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Partly owing to the legend of Ramanujan, generations of Indian mathematicians

after him have been fascinated with analytic number theory. We provide an

account of the varied Indian contribution to this subject from Ramanujan to

relatively recent times.

Mathematics Subject Classification (2010). Primary 11Mxx; Secondary 01A32.

Keywords. Ramanujan, Indian mathematics, analytic number theory

1. Introduction

The story of Srinivasa Ramanujan (1887–1920) is perhaps the most striking

episode in modern Indian mathematics. The beauty of his results, the mark of

originality in his methods, his short life and its tragic end never fail to make

an impression. It is only natural that the influence of such a remarkable life

should extend well beyond its time and indeed this was the case. For instance,

the distinguished astrophysicist S. Chandrasekhar tells us that the facts of

Ramanujan’s life were “more than enough for aspiring young Indian students

to break their bonds of intellectual confinement and perhaps soar the way that

Ramanujan did” ([13], page 4).

Our purpose in the present article is to trace the broad influence of Ra-

manujan on Indian mathematics roughly from the year of his death (1920) to

relatively recent times, that is, the decade of the 1980s. In doing this we hope to

highlight for the present and preserve for the future, an account of mathematics

in India, however limited in scope, in the decades surrounding India’s indepen-

dence in 1947. We believe this was a period during which much was done but

about which very little has been written. Moreover, the highly composite con-

tribution to mathematics from this period was largely made without the aid of

support structures commonly available to professional mathematicians today.
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In undertaking our task we have set ourselves certain limits. We end our

coverage with the 1980s because much of the mathematics done in India from

the mid 1980s and thereafter is by mathematicians who are still active. Also,

we restrict our trace of Ramanujan’s influence to mathematicians who worked

in analytic number theory, for the reason that our own research interests lie

in this subject. With these explicitly imposed limits, and many others implicit

and somewhat arbitrary, the present article is certainly not a thorough study.

It is meant, and we believe it is necessary, to provoke a genuinely scholarly

enquiry into its subject.

We begin our account with Professor K. Ananda Rau, India’s first analyst

of repute.

2. An Inspiring Teacher

If Ramanujan’s influence in India is the tree whose branches we describe in

the following pages then K. Ananda Rau is its root. Indeed, as our narrative

unfolds, the reader will not fail to notice that students of Ananda Rau and

their mathematical descendants are the protagonists of much of what we have

to say.

Krishnaswami Ananda Rau was born in 1893 into a well-connected fam-

ily in Chennai (then Madras), where he grew up. He attended first the Hindu

High School and then the Presidency College of the University of Madras, both

among the best institutions in India at that time. Throughout his studies he

evidently took care to maintain an excellent academic record, for we find him

doing very well at every important examination that came his way ([57], page

1). In 1914, and incidentally only a few months after Ramanujan, Ananda Rau

sailed for England where he entered King’s College, Cambridge. In the two

years that followed, Ananda Rau prepared for and took the Cambridge Mathe-

matical Tripos examinations, finishing in 1916 with a first class honours in both

parts of this exam ([11], page 260). Ananda Rau was subsequently elected a fel-

low of King’s College and soon after came under the influence of G.H. Hardy,

whose encouragement and guidance initiated Ananda Rau into mathematical

research.

By 1918 Ananda Rau had published his first paper, a note in the Proceed-

ings of the London Mathematical Society [59], and won the Smith prize for

an essay written the previous year, partially advised by Hardy. Ananda Rau

arrived at the subject of the note [59] through a paper of Hardy’s [36] on (λ, k)

summability. Let us recall this notion. When λ1, λ2, . . . , λn, . . . is an increasing

sequence of real numbers ≥ 0 with λn → +∞ as n → +∞ and k a positive real

number, a sequence c1, c2, . . . , cn, . . . is said to be (λ, k) summable to C if we

have

lim
x→+∞

1

xk

∑

λn≤x

(x− λn)
kcn = C . (1)
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In [36], Hardy shows that if the sequence c1, c2, . . . , cn, . . . is (λ, k) summable

and cn satisfies the side condition cn = O(
λn−λn−1

λn
) then in fact

∑

cn is conver-

gent. In his note [59], Ananda Rau begins by informing the reader that Hardy’s

argument is not complete. He remarks that while Hardy’s argument does show,

given the side condition, that (λ, k) summability implies (λ, 1) summability

when k is an integer, to which case we may confine the entire discussion, it

does not prove that (λ, 1) summability implies
∑

cn is convergent. Ananda

Rau then states that he intends to fill this gap by supplying this last step and

swiftly modifies Hardy’s argument to achieve his goal. The note [59] is short

and its contents relatively straightforward from today’s perspective. But then,

Ananda Rau was writing in 1918 and he was less than 24 when he communi-

cated his note. What plainly stands out in [59], however, is the clarity of the

author’s exposition and his attention to detail – qualities that Ananda Rau

came to be admired for later as a teacher.

In his Smith prize essay, Ananda Rau took up a different theme, also related

to summability. He obtains in this essay a number of results for generalised

Dirichlet series that generalise what was known, due to Hardy and Littlewood,

on the abscissae of summability of ordinary Dirichlet series. We learn from the

footnote on page 4 of [57] that he decided to publish results from his essay on

learning accidentally that Marcel Riesz, to whom he had earlier communicated

the entire essay, had referred to one of his results. A part of his essay in slightly

modified form [60] finally appeared in 1932 in the Proceedings of the London

Mathematical Society.

Ananda Rau, it appears, first met Ramanujan in England though it is en-

tirely possible that he may have at least known of Ramanujan earlier. Indeed, R.

Ramachandra Rao, to whom Ramanujan presented some of his work in 1910 and

who remained, in Hardy’s words, a “most devoted friend” of Ramanujan([41],

page xxi), was a relative of Ananda Rau’s ([11], page 260). At any rate, Ananda

Rau and Ramanujan became good friends while at Cambridge and Ananda Rau

has written that Ramanujan “was quite sociable, very polite and considerate

to others. He was a man full of humour and a good conversationalist, and it

was always interesting to listen to him” ([13], page 2). Ananda Rau returned

to India from Cambridge in 1919 and was appointed Professor of Mathematics

at his former college, the Presidency College, at the age of 26.

Among the first few papers that Ananda Rau authored upon returning to

Chennai is the article [61] that has the Riemann zeta function for its subject.

A fundamental property of the Riemann zeta function is the canonical factor-

ization of the entire function (s− 1)ζ(s) given by the relation

(s− 1)ζ(s) = eP (s)
∏

n≥1

(

1 +
s

2n

)

e−
s
2n

∏

ρ

(

1−
s

ρ

)

e
s
ρ , (2)

where P (s) is the linear polynomial A + Bs with A = ζ(0), B = −
ζ
′

(0)

ζ(0)
and

ρ varies over the zeros of ζ(s) that are not real. The relation (2) is usually
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obtained by applying Hadamard’s theorem on the canonical factorisation of

entire functions of finite order on noting that (s−1)ζ(s) is an entire function of

order 1. Indeed, an easy application of Jensen’s formula taking into account the

order of growth of (s − 1)ζ(s) shows that
∑

1

|ρ|2
converges. Consequently, the

product on the right hand side of (2) converges and defines an entire function

with the same zeros, counted with multiplicity, as (s − 1)ζ(s). The principal

difficulty in the proof of (2) lies in showing that P (s) is a linear polynomial.

Within arguments leading to Hadamard’s theorem this is often done by first

obtaining an appropriate lower bound for the canonical factors on the right

hand side of (2) in the complement of the union of small discs centered at the

zeros of these factors. In [61], Ananda Rau gives an elegant proof of (2) that

does not depend on any direct consideration of the canonical factors but relies

on additional properties of ζ(s). The principle of his method is to use an integral

representation for the difference of the logarithmic derivatives of the two sides

of (2). More precisely, he notes that when s 6= 1, the Cauchy residue theorem

applied to the boundary ∂C of a rectangular region C containing 0 and 1 and

such that no zero of ζ(s) lies on ∂C gives

1

2πi

∫

∂C

ζ ′(z)

ζ(z)

dz

z(z − s)
=

1

s

ζ ′(s)

ζ(s)
+

1

s− 1
−

1

s

ζ ′(0)

ζ(0)
+

∑

x∈C

1

x(x− s)
, (3)

where x varies over zeros of ζ(s) lying in C. By means of the Borel-Caratheodory

theorem applied to ζ(s), Ananda Rau constructs a sequence of rectangular

regions Cm with sides all going to infinity with m and such that integral on the

left hand side of (3) taken along ∂Cm in place of ∂C tends to 0 as m tends to

infinity. On applying (3) to Cm, passing to the limit and rearranging the terms

of the resulting relation, Ananda Rau then completes his derivation of (2). It

has been shown by K. Chandrasekharan ([14], pages 43-45) that Ananda Rau’s

idea of starting from an integral representation of the form (3) may in fact be

adapted to give a simple proof of Hadamard’s theorem in its full generality.

In the literature one also finds variants of such an argument, for example it

is possible to start from the Jensen-Poisson formula in place (3) ([49], page

26). Chandrasekharan remarks that his method can be extended to obtain

R. Nevanlinna’s factorisation theorem for meromorphic functions as well ([14],

page 56).

Perhaps on account of his early work on summability and the importance

that Hardy attached to this topic, Ananda Rau remained attracted to this

theme for a number of years. His work, and that of his many distinguished

students, in summability and the closely related Tauberian theory, gained his

school a formidable international reputation. In the later part of his career,

Ananda Rau turned to questions on Elliptic functions and then to the rep-

resentation of integers as sums of squares and finally to Waring’s problem,

publishing in all 24 papers, the last of which appeared posthumously.

By all accounts, Ananda Rau was an excellent teacher. We have it from V.

Ganapathy Iyer that “as a student I used to feel that his exposition of any topic
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was so clear and impressive that I need not study the topic again” ([57], page 2).

C.T. Rajagopal, the author of [57] and a doctoral student of Ananda Rau tells

us that Ananda Rau’s “way with research workers was to encourage them and

expect them to formulate their own problems and then to discuss the problems

with them”. All of T. Vijayaraghavan, S.S. Pillai, K. Chandrasekharan and S.

Meenakshisundaram, who later became famous for his work on the spectral

theory of the Laplacian, were mentored by Ananda Rau.

Ananda Rau retired from the Presidency College in 1948 at the age of 55,

then the normal retirement age, after 29 years of distinguished service for which

he was awarded, already in 1937, the title of “Rao Bahadur” - equivalent to an

O.B.E. - by the Government of India of that time. Retirement did not however

ebb his enthusiasm for mathematics, and he continued working on his interests

almost to the end of his life. Ananda Rau died in 1966, aged 73.

3. Pillai, Sathe and Integers with k Prime

Factors

We now turn to a problem that arose from the work of Hardy and Ramanujan

on the “rarity of round numbers” and that led to the introduction by Selberg

of an important method in analytic number theory for estimation of partial

sums of Dirichlet series with singularities that are not poles. Our focus shall, of

course, be on the key contributions to this problem from S.S. Pillai, a student of

Ananda Rau, and L.G. Sathe, who was a student of S.S. Pillai. Our account here

is based on a recently discovered unpublished manuscript [54] of S.S. Pillai titled

“Report on Sathe’s Solution of a Problem of Hardy’s” that will now appear in

the collected works of Pillai [10].

Let us set up our backdrop by reviewing a result from the famous paper of

Hardy and Ramanujan [38] on the normal number of prime factors of natural

numbers. We are told by G.H. Hardy ([41], page 48) that both Ramanujan and

himself observed the phenomenon that round numbers, that is, natural numbers

with a considerable number of comparatively small prime factors, are very rare.

This is somewhat paradoxical since one may expect in fact the opposite to be

true. In [38] Hardy and Ramanujan provide mathematical explanations for this

phenomenon by showing, among other results, that almost all natural numbers

n have log log n distinct prime divisors. More precisely, they show that if ω(n)

is the number of distinct prime divisors of n and f(x) is any function that

increases to +∞ as x increases to +∞ then we have that

Card

{

n | 1 ≤ n ≤ x and |ω(n)− log log n| ≥ f(n)
√

log log n

}

= o(x) . (4)

The above relation marks the genesis of what is now called Probabilistic Number

Theory – the application of probability theory to problems in analytic number

theory. In effect, it suggests that the numbers ω(n) are well-distributed and



Highly Composite 181

therefore that (ω(n)− log log n)/
√

log log n should have a distribution function,

a hope that was eventually realised, following the works of Turán and Kubilius,

in a famous theorem of Erdös and Kac which shows the required distribution

function to be the Gaussian.

Hardy and Ramanujan motivate the results of their paper [38] by means of

the following heuristic. For any positive real number x, let us write πk(x), for

k ≥ 1, to denote the number of integers n ≤ x such that n has k distinct prime

factors. Thus, for example, π1(x) is nothing but π(x), the counting function of

the primes. With this notation we have the relation

[x] = 1 +

∑

k≥1

πk(x) . (5)

On the other hand, we have the obvious relation

x =
x

log x
elog log x

=

∑

k≥1

x(log log x)k−1

(k − 1)! log x
. (6)

Since [x] is rather close to x, one may look upon the above relations as sug-

gesting a term wise comparison of the terms in the sums over k in (5) and (6).

This heuristic is supported by the fact that a well-known theorem of E.Landau,

that is relatively easily proved starting from π1(x) ∼
x

log x
(the prime number

theorem) and an induction on k, tells us that for any given k ≥ 1 we have

πk(x) ∼
x(log log x)k−1

(k − 1)! log x
(7)

as x → +∞. The main step in the proof of (4) given by Hardy and Ramanujan

is to show that the contribution from the tail of the sum over k in (5) is small

and for this they replace the asymptotic relation (7) with an inequality of the

shape

πk(x) ≤
Ax(C + log log x)k−1

(k − 1)! log x
(8)

where A and C are both independent of k and x.

It is easily seen by comparing successive terms of the sum over k in (6) that

the largest terms in this sum correspond to k around log log x. Moreover, the

major contribution to this sum comes from the terms around the largest terms.

It is then natural to ask, taking account of the aforementioned heuristic, if

Landau’s asymptotic relation (7), which is stated for a fixed integer k, remains

valid with k = [log log x]. Hardy posed this as a problem to his class while he

was at Oxford, which he was from 1919 to 1931. T. Vijayaraghavan, whom we

will meet in the following section, was at Oxford from 1925 to 1928 working

with Hardy and learnt of this problem. He then transmitted this problem to

S.S. Pillai, according to [54].

Dr. Subbayya Pillai Sivasankaranarayana Pillai, to give S.S. Pillai his full

name, was, together with his friend and collaborator Sarvadaman Chowla, one
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of the two greatest Indian number theorists to emerge in the era immediately

after Ramanujan; a mathematician whose contributions may well have been

much greater were his life not repeatedly visited by misfortune. S.S. Pillai was

born on 5 April, 1901 in Vallam, a small town in present day Tamilnadu, where

his father was a contractor for the government. Pillai, however, lost both his

parents before he completed his High School, his mother passing away within

a year of his birth. Nevertheless, with the aid of a scholarship and financial

assistance from a teacher at high school who recognised the talent in young

Pillai, he persevered. He first went to the Scott Christian College at Nagercoil in

Tamilnadu and then to Maharaja’s College at Thiruvananthapuram in Kerala,

where he obtained his B.A.

On being awarded a stipendiary research studentship from the Univer-

sity of Madras, he moved to Chennai around 1927. It was at the University

of Madras that Pillai’s talents blossomed under the inspiring guidance of T.

Vaidyanathaswamy and Ananda Rau, influenced, by the reason of his mathe-

matical interests, more by the latter than the former. Through his time at this

university, Pillai wrote a number of papers, three of which constituted his thesis

for a Master’s degree, and met a number of his contemporaries including Vija-

yaraghavan, from whom, as we have already said, he learnt of Hardy’s problem

of obtaining the asymptotic of Landau for k = [log log x].

In 1929, Pillai was appointed a lecturer at Annamalai University, Chi-

dambaram in Tamilnadu. In the same year Pillai [53] announced an important

breakthrough on Hardy’s problem. He was able to show that the inequality

πk(x) >
Hx(log log x)k−1

(k − 1)! log x
(9)

holds for any k < e log log x and a constant H. Moreover, that Landau’s asymp-

totic relation holds for all k with k = o(log log x). These results enabled him to

easily deduce that πk(x) > Cx/(log log x)1/2, for k = [log log x] and a positive

C, a result also conjectured by Hardy and obtained, independently, by Paul

Erdös ([37], page 56). For reasons that are not clear, Pillai did not publish a

detailed proof of these results.

Pillai remained at Annamalai University for 12 years following his appoint-

ment. In the course of these years Pillai was awarded the degree of D.Sc. by the

University of Madras, the first to be awarded by this University in Mathemat-

ics ([15], page 2), and carried out some of his best work, including much of his

remarkable researches on Waring’s problem that we summarize in Section 6.

Pillai himself tells us in [54] that he also continued to work at Hardy’s problem

off and on. In 1941, Pillai moved to Travancore from Chidambaram and left in

the following year to take up a position at Calcutta University.

In Calcutta (now Kolkata) Pillai met the brilliant L.G. Sathe, who became

his student. In 1943, Pillai suggested Hardy’s problem to Sathe and put at

Sathe’s disposal all of his manuscripts on this problem. In the course of less than

two years, L.G. Sathe produced a monumentally complex induction argument,
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that ran into 134 printed pages when published, and that did much more than

solve Hardy’s problem. In particular, and for the first time, Sathe was able

to show that Landau’s asymptotic remained valid for k < e log log x. When

finally published in 1954, Sathe’s result would supercede a theorem of Erdös

[33], which appeared in 1948 and which solves Hardy’s problem by obtaining

Landau’s asymptotic for k in an interval of length about
√

log log x around

log log x.

The sequence of events leading to publication of Sathe’s work, however,

remain somewhat unclear. It is clear, though, that Sathe submitted his work

to the Transactions of American Math. Society (see [15], page 2) and, from

the footnote on the first page of [72], that Selberg’s comments on this work

were sought by the editors of the Transactions. Finally, however, Sathe’s work

appeared in the Journal of Indian Mathematical Society, of which K. Chan-

drasekharan was the editor at that time, in four parts, the first part in 1953

and the last in 1954 [71]. Selberg’s observations on this work, originally pre-

pared for the Transactions of the American Math. Society, were written up in

the form of a note titled “Note on a paper of L.G. Sathe” that follows the last

part of Sathe’s paper in the Journal of the Indian Math. Society.

Selberg begins his note [72] by telling us that while the results of Sathe’s

paper are “very beautiful and highly interesting” the proof is a “rather compli-

cated and involved one, and this by necessity since a proof by induction starting

from the case k = 1 presents overwhelming difficulties in keeping track of the

estimates of the remainder terms..”. Selberg then goes on to give a simple an-

alytic proof of a stronger version of Sathe’s result by considering the complex

powers of ζ(s). For a modern expert’s account of Selberg’s method we refer to

[73], Chapters II. 5 and II.6.

Pillai’s good fortune in having Sathe’s association did not, unfortunately,

last long. Shortly after his work on Hardy’s problem, Sathe was struck by a

cruel illness that incapacitated him ([15], page 2). The final twist in Pillai’s

life occurred on August 31, 1950 when the plane carrying him to the United

States crashed near Cairo, killing all on board. Pillai was on his way to the

I.C.M. of 1950 at Harvard and was to spend the following year at the Institute

for Advanced Studies at Princeton. Dr. S.S. Pillai was 49 years old when he

died.

4. Chowla-Pillai Correspondence and

Vijayaraghavan

Sarvadaman Chowla was, as his biographical sketch [45] puts it, one of the

best-known number theorists from India to have followed in the tradition of

Ramanujan. Sarvadaman Chowla was an extraordinarily productive mathe-

matician and authored around 350 papers through a span of 60 years. It is

difficult, as the authors of [50] suggest, to survey in one sweep the full breadth
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of his vast contributions. On account of Chowla’s collected papers [44] being

available, prefaced by a number of first hand accounts of his life and an elegant

summary of his work [50], we shall be brief in our coverage here, meaning only

to supplement [45] and [50].

Born in London in 1907, Chowla was brought up in Lahore from where he

eventually went for his doctoral studies to Cambridge in 1929 and completed

his dissertation in 1931 under the supervision of J.E. Littlewood. On his re-

turn to India, he was appointed a lecturer at St. Stephen’s College, Delhi and

subsequently taught at the Benares Hindu University and the Andhra Univer-

sity, Waltair before returning to a professorship once held by his father at the

Government College in Lahore in 1936. He remained in this position till 1948,

when he emigrated to the United States. Following a stay at the Institute for

Advanced Studies, Princeton, he took up appointments at Kansas, Boulder and

finally Pennsylvania State University in 1963. Professor Chowla died in 1995,

aged 88.

Starting in the late 1920s, and up to one month before his death, S.S. Pil-

lai and Sarvadaman Chowla maintained a regular correspondence for about 20

years. Through the years they corresponded, Chowla and Pillai published five

joint papers and met numerous times at the conventions of the Indian Mathe-

matical Society, of which both were very active members. Their correspondence

is very revealing for the insight it gives us, as one may expect, into the mathe-

matics and the friendship of Chowla and Pillai. The earliest letter from Chowla

available in the papers left behind by Pillai is dated 8 January, 1929. This letter

discusses, among a number of questions, the number 175,95,9000, the smallest

integer that is expressible as a sum of two positive cubes in three different ways.

The letter ends with Chowla expressing the hope that they will soon “begin

proper work”. This in fact did happen and by the middle of 1929 they were

well on their way to their first joint paper (paper number 25 in [44]), which

appeared in 1930. In this paper, Chowla and Pillai obtain for E(x) defined by

the relation

∑

1≤n≤x

φ(n) =
3

π2
x2

+ E(x) , (10)

where φ(n) is the Euler function, an asymptotic for its mean and an Ω-result.

An Ω-result is an expression of the form f(x) = Ω(g(x)), where g(x) > 0 for

sufficiently large x, and means that there is an A > 0 such that |f(x)| > Ag(x)

for an unbounded sequence of real numbers x. Chowla and Pillai showed that
∑

1≤n≤x
E(n) ∼ 3

2π2x
2
and that E(x) = Ω(x log log log x). In his letter to Pillai

postmarked 29 April 1929 Chowla discusses a preliminary form of their mean

value result and says that he thinks very likely that E(x) changes sign infinitely

often. This suggestion is interesting because Sylvester, who made tables of the

left hand side and the first term on the right hand side of (10) upto 1000, had

in fact conjectured just the opposite, that E(x) is always positive. It turned

out, however, that Sylvester missed noticing that E(820) < 0, a fact observed
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in 1936, seven years after Chowla’s letter, by M.L.N. Sarma [52]. Chowla’s

conjecture was proved to be correct in 1951 by Erdös and Shapiro [33]. For

the details on this matter, including a copy of Chowla’s letter, we refer to [1].

Chowla and Pillai followed up their study of E(x) with a study (paper number

26 in [44]) of analogous questions in the case when φ(n) is replaced by σ(n),

the sum of the divisors of n.

The second theme that Pillai and Chowla worked together on was a problem

that has its roots in Indian mathematics from the first millennium. Given a

natural number N , it is of interest in the solution of the so-called Pell equation

x2
− Ny2 = 1 to determine the length L of period of the continued fraction

representation for
√

N . It is relatively easy to show that this length is ≤ 2N . T.

Vijayaraghavan [78] showed in 1927 that in fact this length is ≤ C
√

N logN ,

for an explicitly determined constant C > 0, whose value Chowla subsequently

improved in 1929 (paper 20 in [44]). In 1931 Chowla and Pillai (paper 36 in [44])

improved this bound to L = O(
√

N log logN) under the Riemann hypothesis

for the Dirichlet L-functions. Thereafter, their joint works related to topics

around Waring’s problem, a theme that was of great interest to both Pillai and

Chowla, and to which we will turn in Section 6. The last letter from Chowla to

Pillai is dated June, 1950 and in it Chowla tells Pillai that he may not be in

Princeton when Pillai arrives – which, as we saw at the end of the last section,

did not happen.

Tirukkannapuram Vijayaraghavan, whom we have had occasion to mention

in the preceding paragraph and in Section 2, was born in 1902 in what is now

Tamilnadu. He schooled at a number of places and did well. He then went to

Pachaiyappa’s College in Madras (now Chennai) for his honours degree but

this time did not do well enough to obtain his degree. Fortunately, however,

his talent came to the attention of K. Ananda Rau, who arranged to have him

admitted into the Presidency College. Vijayaraghavan published his first math-

ematical works even before he completed his college studies. In an early note

in 1924 [79] he showed that rational numbers of the form φ(n)/n, where φ(n)

is the Euler function, are dense in [0, 1]. Around 1921, Vijayaraghavan began

sending his work to G.H. Hardy, much in the fashion of Ramanujan, whose

story was by now well-known. Hardy, it appears, did not respond immediately

this time but when he did, he urged the University of Madras to provide Vi-

jayaraghavan a scholarship so that Vijayaraghavan could visit him. This was

done and Vijayaraghavan worked with Hardy through the years 1925 to 1928.

Vijayaraghavan was a problem solver in the best sense of the phrase. Not one

to be confined to a particular branch of mathematics, he worked on any problem

that interested him. While the most important parts of his work fall in the area

of summability and Diophantine approximations – the Pisot -Vijayaraghavan

numbers bear his name – he returned to questions in analytic number theory

from time to time, on account of his close friendship with Pillai and Chowla.

Chowla and Vijayaraghavan collaborated on three papers, the last of which

appeared the year Chowla left for the United States. Professor Vijayaraghavan
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died in 1955, at the age of 53. For more extensive biographies of Vijayaraghavan

we refer to [16], which is our source, and to [28].

Chowla’s lasting contribution to Indian mathematics has been through the

number of young persons of his time that he encouraged and taught. R.P.

Bambah, F.C. Auluck, Abdul Majid Mian and the great physicist Abdus Salam,

were all taught by Chowla. Professor Bambah vividly describes his time with

Chowla on page xxxi of [44], that led among a number of other results, to their

famous argument showing that for any ε > 0 there is a sum of two squares in

the interval [x, x + 2
√

2 + εx
1

4 ] for all sufficiently large x (paper 167 in [44]).

After his time with Chowla in Lahore, Bambah himself went to Cambridge,

where he worked with Mordell, and thereafter set up the famous school in the

Panjab University, Chandigarh, on Geometry of Numbers. The reader will find

a summary, authored by Professor Hans-Gill, of some of the key results of this

school in the notes to Chapter 24 of [42].

5. TIFR and Ramachandra

With the departure of Chowla to the United States in 1948 and the death

of Pillai in 1950, we leave the first epoch of development of analytic number

theory in India and enter the second. The influence of Ramanujan continued to

abide even as the emphasis shifted to themes related to the more analytic and

modular parts of his work. If a single event can be said to mark the beginning

of this epoch, it is the emergence of the school of mathematics at the Tata

Institute of Fundamental Research (TIFR), Mumbai under the guidance of K.

Chandrasekharan.

Komaravolu Chandrasekharan was born in 1920 at Machillipatnam in

Andhra Pradesh. After his schooling in Bapatla, Andhra Pradesh he left for

Madras (now Chennai) to study at the Presidency College from where he ob-

tained his M.A. and came under the influence of K. Ananda Rau. In 1942

Chadrasekharan obtained his Ph.D. from the University of Madras for a the-

sis written under the supervision of Ananda Rau. For a few years after his

Ph.D., Chandrasekharan taught at the Presidency College. Around 1947, Chan-

drasekharan left for a term at the Institute for Advanced Studies in Princeton.

Chandrasekharan’s early work, following the trend in Ananda Rau’s school,

was in the area of Summability theory, a topic to which his research remained

connected throughout the 1940s. Indeed, by 1950 he had authored an impor-

tant monograph with S. Meenakshisundaram on Riesz’s Typical Means [17]. In

Princeton, and working jointly with Salomon Bochner, he also took up a num-

ber of issues in Fourier Transform theory, on which he published in 1948 a now

well-known book with Bochner. Nevertheless, throughout this period we see in

his papers an undercurrent of analytic number theory that eventually surfaced

in his later work with Bochner and in the long series of papers with Raghavan

Narasimhan. In 1949 Chandrasekharan moved to the TIFR on the invitation

of its founder Homi J. Bhabha, who met him that year on a visit to Princeton.
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The crucial role that Chandrasekharan has played in transforming TIFR into a

centre of excellence in mathematical research has been described by Professor

M.S. Raghunathan in ([62], page 536), to which we refer the reader. It would

be, however, very remiss for us not to mention here the important contribution

Chandrasekharan has made through his well-known expository books on ana-

lytic number theory, the first books by an Indian author on this topic. These

books have served a number of mathematicians after him, such as the author,

as elegant introductions to their subjects. Professor Chandrasekharan retired

from the TIFR in 1965 and moved to Zürich, Switzerland, where he now resides.

In his efforts at building the school of mathematics at TIFR, Chandrasekha-

ran was ably aided by K.G. Ramanathan, who joined this school in 1951. Kol-

lagunta Gopalaiyer Ramanathan was born in Andhra Pradesh (at Hyderabad)

in 1920, only eight days before Chandrasekharan and he too eventually went

to the University of Madras from which he obtained his M.A. and worked for

some time as a research scholar. Like Chandrasekharan, he then visited the

Institute for Advanced Studies, Princeton. At Princeton, he was an assistant

to Hermann Weyl and became an admirer of Siegel’s mathematics. Siegel, who

at that time, was visiting the IAS made a deep impression on Chandrasekha-

ran and Ramanathan and, through them, and his own visits to the TIFR,

greatly influenced the problems in number theory that the TIFR school took

up. Ramanathan was an “illustrious and colourful personality” ([70], page 4)

and energetically guided the study of number theory at the TIFR. For a fuller

biography of Professor K.G. Ramanathan, who died in 1992, we refer to [70].

With Chandrasekharan and Ramanathan for its helmsmen, the fledgling

TIFR school did not take long to make a mark in number theory. By 1965,

very significant results in number theory were obtained in at least three di-

rections – the works of K. Chandrasekharan and Raghavan Narasimhan on O

and Ω-results for Riesz means, mean values of error terms for the summatory

functions of a wide class of arithmetical functions [18],[19], [21] and on approxi-

mate functional equations [20], the work of C.P. Ramanujan on cubic forms [66]

and his solution of Siegel’s conjecture on Waring’s problem for number fields

[67], and K. Ramachandra’s thesis [63] on applications of the Kronecker limit

formula.

Raghavan Narasimhan, who is now famous for his contributions to func-

tion theory, joined TIFR as a student in 1957. Chandrasekharan’s works with

Raghavan Narasimhan were the first major works done in the theory of zeta

functions in India after Chowla. The above cited papers are a selection from

a long series of papers in which Chandrasekharan and Narasimhan undertook

to obtain for a wide class of Dirichlet series satisfying a functional equation

resembling that of the Riemann zeta function, a number of key properties that

were at that time known essentially only for the Riemann zeta function. By

means of their results they were easily able to deduce, for example, that if

p = (p1, p2, . . . , pn) is any point in Rn
, for some integer n ≥ 1, and if for any

x > 0, N(x, p) denotes the number of lattice points in the ball of radius x
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centered at p and V (x, p) is its volume then

N(x, p)− V (x, p) = Ω±(x
n−1

2 ). (11)

This result, given in [22] as an illustration of the results in [19] and [18], vastly

generalises what was originally known only for the case of circle in the plane,

by Hardy.

The bare sketch of the life of C.P. Ramanujam reads, sadly, like that of his

namesake Srinivasa Ramanujan – a highly original mind and a tragic death at a

young age. His works mentioned above are his earliest, after which, he turned to

Algebraic Geometry. The problems considered in [66] and [67] were suggested

to Ramanujam by K.G. Ramanathan. Since we cannot hope to substitute for

the moving account of Ramanujam’s life and the elegant summary of his papers

[66] and [67] written by K.G. Ramanathan in ([65], pages 1 to 7), we refer the

reader to this source.

Kanakanahalli Ramachandra was born in 1933 and after his studies at the

Central College, Bangalore where he obtained his B.Sc.(Hons) and M.Sc. de-

gree, Ramachandra joined the TIFR as a student in 1958. In the following

year, he attended the famous course given by Siegel [76] at the TIFR centered

on the Kronecker limit formula, and, at the suggestion of K.G. Ramanathan,

subsequently took up the questions addressed in [63]. In this paper Ramachan-

dra makes a remarkable application of Kronecker’s second limit formula to the

theory of complex multiplication, to the construction of a certain maximally

independent set of units in a given class field of an imaginary quadratic field

and to the evaluation of a certain elliptic integral, originally given by Chowla

and Selberg and also by Ramanujan. The units constructed by Ramachandra in

[63] have come to be known as Siegel-Ramachandra-Robert units or, sometimes,

elliptic units.

Starting about the end of the 1960s, Ramachandra’s interests turned to the

theory of the Riemann zeta function and to Baker’s method in transcendental

number theory. The intense passion with which he pursued these subjects have

made him synonymous with their development in India. His work attracted a

number of students and associates some of whom are Professor T.N. Shorey,

who is renowned for his contributions to the applications of Baker’s theory,

and the distinguished mathematicians the brothers Professors Ram and Kumar

Murty, whose own role in the progress of number theory in India is visible in the

curriculum vitae of almost every number theorist in India today, and Professor

Kannan Soundararajan.

We now present a small and personal selection of simple yet powerful ideas

from Ramachandra’s garden. We begin with an exposition of a simple method

for obtaining lower bounds for the mean square on a vertical line segment of

a function f(s) which is the analytic continuation of an absolutely convergent

Dirichlet series. This method, sometimes called the multiple averaging method,

which first appeared in the thesis of the author, written under the supervision

of Ramachandra [3] and the resulting lower bound have been put to a number
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of uses by Ramachandra and his collaborators. Throughout the remainder of

this section, s will denote a complex number with real part σ and imaginary

part t, following established notation in analytic number theory. We will also

use � and � to mean Vinogradov’s well-known notation.

Suppose that f(s) is a holomorphic function in a neighbourhood of the half

plane σ > 0 and is given by absolutely convergent Dirichlet series

∑

n≥1

a(n)

ns
(12)

when σ > 2. Let H ≥ 1 be a real number and M be a positive integer with

M ≤ H1−ε
for an ε > 0 and sufficiently small. Let us set A(s) to be the Dirichlet

polynomial given by the sum of the first M terms of the series (12) and write

B(s) to denote f(s)−A(s). Our aim is to show, under conditions that are often

met in practice, that

∫ T+H

T

|f(it)|2dt � H
∑

1≤n≤M

|a(n)|2 , (13)

which gives an essentially optimal lower bound for the mean square of f(s) on

a segment of the imaginary axis. To do this we start from the obvious relation

|f(it)|2 = |A(it)|2 + |B(it)|2 + 2Re
(

A(it)B(it)
)

. (14)

Let I be any interval satisfying the condition

[T, T +H] ⊇ I ⊇

[

T +
H

4
, T +

3H

4

]

. (15)

On integrating both sides of (14) over the interval I we deduce by positivity

that

∫ T+H

T

|f(it)|2dt ≥

∫ T+ 3H
4

T+H
4

|A(it)|2dt+ 2

∫

I

Re
(

A(it)B(it)
)

dt . (16)

The principle now is to exploit the flexibility in (16) with respect to the interval

I by averaging this relation over a family of intervals I satisfying (15). In effect,

let r be a positive integer and U a positive real number such that rU ≤
H

4
.

Then, for any real numbers u1, u2, . . . , ur lying in the interval [0, U ], the interval

I =

[

T + u1 + u2 . . .+ ur, T +
3H

4
+ u1 + u2 . . .+ ur

]

(17)

satisfies (15). We apply (16) to the above I and integrate over all the ui, with

each ui varying in [0, U ]. On dividing the resulting relation by Ur
and using

Re(z) ≥ −|z| for any complex number z we deduce that

∫ T+H

T

|f(it)|2dt ≥

∫ T+ 3H
4

T+H
4

|A(it)|2dt − 2|P | , (18)
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where P denotes the integral

1

Ur

∫ U

0

∫ U

0

. . .

∫ U

0

∫ T+ 3H
4

+u1+u2...+ur

T+u1+u2...+ur

A(it)B(it) dt du1 du2 . . . dur . (19)

By a well-known theorem of Montgomery and Vaughan, the first integral on

the right hand side of (18) is � H
∑

1≤n≤M
|a(n)|2 since H ≥ M . To obtain

our lower bound (13) it therefore suffices to show that |P | is small compared

to the right hand side of (13). To this end let us set

F (s) =
∑

1≤n≤M

a(n)ns . (20)

Then F (s) is an entire function whose restriction to the the imaginary axis is

A(it). Moreover, the growth properties of B(s), which are the same as that of

f(s), are such that error in replacing the integral (19) with the integral

1

Ur

∫ U

0

∫ U

0

. . .

∫ U

0

∫ T+ 3H
4

+u1+u2...+ur

T+u1+u2...+ur

F (3 + it)B(3 + it) dt du1 du2 . . . dur

(21)

by Cauchy’s integral formula is small compared to the right hand side of (13).

We now note that B(3+it) is given by an absolutely convergent Dirichlet series.

Using this expression for B(s) together with (20) and integrating term-by-term

we conclude that the integral (21) is the same as

∑

n≤M

m>M

a(n)a(m)P (n,m)

( n

m

)3

(22)

where P (n,m) is the integral

1

Ur

∫ U

0

∫ U

0

. . .

∫ U

0

∫ T+ 3H
4

+u1+u2...+ur

T+u1+u2...+ur

( n

m

)it

dt du1 du2 . . . dur . (23)

On making the change of variable t 7→ t+ u1 + u2 . . .+ ur in the integral with

respect to t in (23) we easily see that

P (n,m) =

(

∫ T+ 3H
4

T

( n

m

)it

dt

)(

1

U

∫ U

0

( n

m

)

−iu

du

)r

. (24)

Let us recall that
∫ y

x
aitdt = (aiy − aix)/ log a for positive real a. Using this

to evaluate the integrals in (24) and then applying the triangle inequality we

deduce that

|P (n,m)| ≤
2
r+1

Ur
| log(

n

m
)|r+1

≤

(2M)
r+1

Ur
, (25)



Highly Composite 191

where the last inequality follows on noting that n ≤ M and m ≥ M + 1 and

therefore that | log(
n

m
)| ≥

1

M
. On now taking U = H1− ε

2 , r to be the largest

integer with 4r ≤ H
ε
2 and recalling that M ≤ H1−ε

, we see that P (n,m) �

H−k
for any k > 0 and sufficiently large H depending only on k and ε. This

bound is sufficient to offset any contribution from the remaining terms of the

sum (22), making |P | as small as required.

A key advantage of the lower bound (13) is that H does not depend on

T . This allows us, in applications, to take H as small as a power of log T .

Ramachandra and his collaborators have applied this observation to obtain a

number of Ω-results. Thus, for example, by applying the lower bound (13) to

ζ( 1
2
+ s)k for any positive integer k, we evidently get lower bounds for mean

value of |ζ(s)|2k on an interval of the form [T, T +H] on the line σ =
1

2
. These

lower bounds are uniform in k. By letting k tend to +∞, it has then been shown

in [8] that

sup
T≤t≤T+H

|ζ(
1

2
+ it)| ≥ exp

(

1

2

(logH)
1

2

(log logH)
1

2

)

(26)

for H as small as a power of log T . Thus we infer that ζ( 1
2
+ it) takes large

values rather frequently. Let us remark here that in [8] the above relation is

given with an indeterminate constant D in place of
1

2
; the constant was given

the value
3

4
in [5] in place of

1

2
above. It has, however, been kindly pointed out

to the author by Professor Soundararajan that the method of [5] does not yield

a constant larger than 0.57. Soundararajan has recently made a remarkable

improvement to the above result by showing that we may take the constant to

be as large as 3.5.

One may also apply the lower bound (13) to obtain Ω-results for error terms

in the asymptotic expansion of the summatory functions of various arithmetical

functions. To see how this is done, let us assume that f(s) is a meromorphic

function in σ > 0 but is given by the Dirichlet series (12) when σ > 1. Then

define E(x) by the relation

∑

n≤x

a(n) = M(x) + E(x) (27)

where M(x) is the main term, that is, the contribution to the asymptotic ex-

pansion (27) from a given set of poles S of f in σ ≥ 0. By a classical argument,

we have E(T ) = Ω(T a
) for an a in (0, 1) if

∫ 2T

T

|f(a+ it)|2dt � T 2, (28)

and f is holomorphic in a neighbourhood of σ ≥ a except for the poles S. This is

shown by an application of Parseval formula for the Mellin transform together

with a contour integration over a rectangular contour that has one vertical side

on σ = a and the other vertical side at a σ where f is given by the Dirichlet
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series (13). Roughly speaking, we would like to extend the method so as to

cover the case when f has infinitely many poles in the half-plane σ ≥ a, with

a such that (28) holds and a condition controlling the growth of the number of

poles of f up to an ordinate T . Such a result will allow us to obtain an Ω-result

when a(n) is the characteristic function of the square-full numbers, that is, n

such that p|n =⇒ p2|n. In this case f(s) = ζ(2s)ζ(3s)/ζ(6s).

If a rectangular contour is used in the setting we have described, then this

contour must necessarily lie to right of all the poles of f not contained in S;

but this will not allow us to use (28) since the contour no more extends to the

line σ = a. It therefore becomes necessary to use a contour that is the union

of a number of vertical and horizontal line segments designed so as to avoid

the poles of f in an appropriate manner. The vertical line segments making up

such a contour could be of length a power of log T . Then, in order to calculate a

lower bound for the mean square of f on such segments, we necessarily require

(13). Indeed, it is by such an argument that Ramachandra, M.V. Subbarao and

the author [9] were able to improve the Ω-result in the square full numbers

problem from T
1

12 , given by the classical method of Landau, to T
1

10 . For an

exposition of this method together with a number of other applications we refer

to [48].

We now turn to what Ramachandra has called the Hooley-Huxley contour

– the name was meant as Ramachandra’s expression of thanks to M.N. Huxley

for explaining to him a closely related idea of C. Hooley’s. The purpose of

this contour is to evaluate, for x a sufficiently large real number, h satisfying

1 ≤ h ≤ x, c = 1 +
D

log x
, for some D > 0, T = xθ

for some θ with 0 < θ < 1,

the integral
∫ c+iT

c−iT

f(s)
(x+ h)s − xs

s
ds , (29)

where f(s) is given in σ > 1 by the absolutely convergent Dirichlet series (12)

with a(n) � nε
and the implicit constant depending only on ε. The interest in

this integral is due to the fact that it appears in the following relation, which

is a particular case of the well-known Perron’s formula.

∑

x≤n≤x+h

a(n) =
1

2πi

∫ c+iT

c−iT

f(s)
(x+ h)s − xs

s
ds + O

(

x1+ε

T

)

, (30)

where the constant implicit in the O symbol depends only on ε. The sum on the

left hand side of (30) is called a short interval sum of a(n) and is of interest in

numerous problems in number theory. The goal is to obtain an asymptotic for-

mula for the left hand side for all large enough x and h suitably small compared

to x. We assume that there are positive real numbers a1, a2, a3 and a4, with a1
satisfying the crucial requirement that a1 < 1, such that the inequalities

σ > 1−
a2

(log |t|)a1

when |t| ≥ a3 , (31)

σ > 1− a4 when |t| < a3 . (32)
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define an open neighbourhood U of σ ≥ 1 to which f extends as a meromorphic

function with a unique pole and that at s = 1. This assumption simplifies what

one sees in a number of applications, where f has an algebraic singularity at

s = 1 rather than a pole. The method below may, however, be adapted to serve

in such situations as well. For sufficiently large x, our assumptions on U allow

us to treat the integral (29) by moving the line of integration in (29) to the line

σ = β0, where

β0 = 1−
a2

2(log T )a1

. (33)

When this is done, we pick up the main term of the asymptotic expansion for

the left hand side of (30) at the pole s = 1 and replace c in the integral (29)

with β0, with an error that is negligible with respect to this main term, which

is of order h.

In order to show that the integral (29) with c = β0, is also small compared

to h, we would ordinarily move the line of integration further into the half

plane σ < 1. In a number of interesting cases, however, this is obstructed by

the presence of algebraic singularities of f in the strip 0 < σ < 1. The main

observation of Ramachandra [64], following Hooley and Huxley, is that this set

of singularities is sparsely distributed close to the line σ = 1 and that this

may be taken advantage of by deforming the line of integration in (29) into a

contour – the Hooley-Huxley contour – that stays away from these singularities

but over which the integral may readily be shown to be of smaller order than

h. Let us now provide a more precise description of this contour.

Let Z be a discrete closed subset of the strip 0 < σ < 1 and let Ω be the

complement in σ > 0 of the union of the line segments 0 < σ ≤ Re(z), with z

varying over Z. Let us suppose that U is contained in Ω and that f extends

meromorphically to Ω with a unique pole and this at s = 1. Further, we assume

that there exists a real number A ≥ 1 such that for any σ ≥ 1−
1

A
we have

Card{z ∈ Z |σ ≤ Re(z), |Im(z)| ≤ |T |} � TA(1−σ)
for all T ≥ 1. (34)

Finally, let us set B = 1−
1

A
, T = x1−B−ε

and write L to denote
1

log T
.

Let t0 < t1 < . . . < tm be an increasing sequence of real numbers lying in

the interval [−T, T ], with t0 = −T and tm = T , and

(log T )p ≤ ti − ti−1 ≤ 2(log T )p (35)

for each i and some fixed integer p ≥ 1. Define Ki for 1 ≤ i ≤ m as the set of

complex numbers s = σ+ it with σ in [B +L, β0] and t in [ti−1, ti] that satisfy

the additional condition

σ ≥ Re(z) + L for each z ∈ S with ti−1 − L ≤ Im(z) ≤ ti + L. (36)

It is easily verified that each Ki is a rectangle lying in U , and that, by (31) and

(32), the left side of each of the rectangles Ki lies in the strip B + L ≤ σ ≤

β0 − 2L for sufficiently large x, while the right side of Ki is the line segment
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[β0+ iti, β0+ iti−1]. The complement of the open line segment (β0− iT, β0+ iT )

in the oriented boundary of the union of the rectangles Ki is the Hooley-Huxley

contour H. By (36) each point on H is at a distance at least L from Z. This

allows us to show, for f we meet in applications, that |f(s)| � (log T )k for

all s on H and some integer k ≥ 1. By the mean value theorem, we have

|((x+ h)s − xs
)/s| ≤ xσ−1

, for all s with σ > 0. Consequently, the integrand in

(29) is � hxσ−1
(log T )k, for all s on H.

Let the abscissae of the vertical line segments of H be β1, β2 . . . , βn, num-

bered along the orientation of H, for some integer n ≥ 1, and set βn+1 = β0.

Also, for any j, let lj denote the length of the vertical segment with abscissa

βj . With this notation let us show that the integral over H of the integrand in

(29) is majorised, up to a constant, by

h(log T )p+k



xβ0−1
+

∑

B+L<βj<β0

N(βj − L)xβj−1
+ xB+L−1

∑

βj=B+L

lj



 .

(37)

For any j, the contribution to the integral from the vertical segment with ab-

scissa βj is� h(log T )kljx
βj−1

. For any β ≥ B let us write N(β) for the number

of z in Z with Re(z) = β and |Im(z)| ≤ 2T . Then if B + L < βj , it is easily

seen that the number of Ki whose left sides make up the vertical segment with

abscissa βj does not exceed 2N(βj − L). Consequently, for such βj we have

lj � N(βj −L)(log T )p. Summing over j, for 1 ≤ j ≤ n, we see that the contri-

bution from the vertical segments of H is majorised, up to a constant, by (37).

The length of any horizontal segment of H is ≤ 1. Therefore, for any j with

1 ≤ j ≤ n+ 1, the contribution to the integral from the horizontal segment of

H with end points at abscissae βj−1 and βj is � h(log T )k(xβj−1−1
+ xβj−1

).

Summing over j, and noting that N(βj − 1) ≥ 1 for 1 ≤ j ≤ n, we conclude

that the contribution from the horizontal segments of H is also majorised, up

to a constant, by (37).

It remains to check that (37) is o(h) for a sufficiently large x. The first term

in the parenthesis is of the form exp(−C(log x)1−a1), for some C > 0 taking

account of our choice of T . Since xL
� 1, second sum in (37) does not exceed

∑

B<β<β0
N(β)xβ−1

, which is finite since N(β) 6= 0 for only finitely many β.

On partitioning the interval [B, 0] into sub-intervals, each of length between L

and 2L, we obtain using (34) that this last sum is majorised by

1

L
max

B≤σ≤β0

∑

σ<β<σ+2L

N(β)xβ−1
� max

B≤σ≤β0

xσ+2L−1TA(1−σ)
log T . (38)

Since T = x
1

A
−ε

, we conclude from (38) that the second sum in (37) is �

xAε(β0−1)
, which is of the form exp(−C(log x)1−a1), for some C > 0. The last

sum in the parenthesis is ≤ 2T . Since xL
� 1, it follows that the last term

in the parenthesis is � xB−1T � x−ε
. Collecting these estimate together and
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recalling that a1 < 1, we conclude that (37) is indeed o(h). Since we have chosen

T = x
1

A
−ε

, we require that h ≥ xB+3ε
so that h dominate the error term in (30).

Thus for this choice of h the preceding method yields an asymptotic formula

for the short interval sum under the various hypotheses that have been made.

For a number of applications of the Hooley-Huxley contour we refer the reader

to the papers of M.D. Coleman ([24], [25], [26]) and P.Zarzycki [83] ,

Our final section considers a problem that has seen substantial Indian con-

tribution over the last century.

6. Waring’s Problem

A famous theorem of Lagrange, originally conjectured by Fermat, states that

every natural number is the sum of 4 squares of natural numbers. By way

of extending this theorem, the English mathematician Edward Waring wrote

down in 1770 an assertion that now bears his name and that has since been

interpreted as saying that for every integer k ≥ 1 we have that

sup
n≥0

inf{s | s ≥ 1, n = xk

1 + . . .+ xk

s for some x1, . . . , xk ∈ N} (39)

is finite and that this supremum is 9 when k = 3, is 19 when k = 4 and so on.

Here and below, N denotes the set of natural numbers {0, 1, 2, . . .}.

Modern notation for the supremum defined in (39) is g(k), while that for

the closely related

lim sup
n→+∞

inf{s | s ≥ 1, n = xk

1 + . . .+ xk

s for some x1, . . . , xk ∈ N} (40)

is G(k). In less formal terms g(k), for any integer k ≥ 1, is nothing but the

smallest number of k-th powers of natural numbers required to represent every

natural number as a sum of k-th powers of natural numbers. Similarly, G(k) is

the smallest number of k-th powers of natural numbers required to represent

every sufficiently large natural number as a sum of k-th powers of natural

numbers. With this notation, Waring’s assertion is that g(k) is finite for all

k ≥ 1 and that g(3) = 9, g(4) = 19 and so on.

The problem of supplying a proof of Waring’s assertion, and more gener-

ally, of determining the values of g(k) and G(k) for all k ≥ 1, has occupied a

number of mathematicians over the last three centuries, during which period

this question came to be known as Waring’s problem. A thorough account of

the history of Waring’s problem being plainly out of the scope of this article,

we present here a sketch detailed enough for us to discuss the salient Indian

contribution to this problem.

The earliest recorded work on Waring’s problem dates to 1772 and is due

J.A. Euler, a son of Leonard Euler, who obtained, for all k ≥ 1, the lower bound

g(k) ≥

[

3
k

2k

]

+ 2
k
− 2 . (41)
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The inequality (41) is easily justified. In effect, for a given k ≥ 1 let n < 3
k

be a natural number and a, b be natural numbers such that n = a2k + b, with

b ≤ 2
k
−1. Then the smallest number s such that n is a sum of s k-th powers is

a+ b. Further, the maximum value of a+ b when a, b are natural numbers such

that a2k + b < 3
k
is attained when a =

[

3
k

2k

]

− 1 and b = 2
k
− 1. Consequently,

we deduce that the integer c(k) defined by

c(k) =

([

3
k

2k

]

− 1

)

2
k
+ 2

k
− 1 = 2

k

[

3
k

2k

]

− 1 (42)

requires, among the natural numbers n < 3
k
, the largest number of k-th powers

in order to be represented as their sum. Since, moreover, the number of k-th

powers so required is the right hand side of (41), this inequality is verified.

Intuitively speaking, the smaller the number of k-th powers not exceeding a

natural number n, the larger the number of k-th powers that may be required

to represent n as the sum of k-th powers of natural numbers. It is therefore

reasonable to expect that the value of g(k) is determined by an initial segment

of the k-th powers of natural numbers. This expectation is fortified by the ob-

servation that the right hand side of (41), which, as we noted above, is smallest

number of k-th powers required to represent c(k), coincides with the values of

g(k) for k = 1, 2, 3, 4 given by Lagrange’s theorem and Waring. All of this leads

us to the conjecture that (41) is an equality for all k ≥ 1.

Plainly, the first step in proving the preceding conjecture is to show that

g(k) is indeed finite for any integer k ≥ 1 and this is already not trivial. The

original proof of this fact, due to Hilbert [43] in 1909, is an induction on k and

is based on the existence of polynomial identities of the shape

(x2
1 + x2

2 + . . .+ x2
n)

k
=

∑

1≤i≤N

ai(c1ixi + . . .+ cnixn)
2k

(43)

for any integers n, k ≥ 1 and a suitable positive integer N , positive rational

numbers ai and integers cij dependent on n and k. Let us remark here that

the first determination of g(k), for k different from 1 and 2, was g(3) = 9

by Weiferich in 1909, together with Kempner in 1912, was also by exploiting

polynomial identities. Hilbert’s argument has since been revisited and simplified

by a number of authors, our preference being for the account of W. Ellison on

pages 23 to 29 of [35].

Hilbert’s method in [43] is ineffective in the sense that it shows the finiteness

of g(k) without providing any upper bound for g(k) in terms of k. Even when

this method is rendered effective, as is now known to be possible from Rieger

[68], the upper bounds for g(k) so obtained are generally stratospherically high

owing to the inductive structure of the method. For this reason the problem of

obtaining upper bounds for g(k) of the same strength as the right hand side

(41) required a different current of ideas, which came with the work of Hardy

and Ramanujan [39] on the partition function.
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In their paper [39], Hardy and Ramanujan inaugurated a new analytic

method for obtaining the asymptotic behaviour of an arithmetical function, that

is, a complex valued function on N. More precisely, suppose that c is an arith-

metical function and that the associated generating series f(z) =
∑

n∈N
c(n)zn

has the unit disc for its domain of holomorphy. The Cauchy integral formula

then gives the relation

c(n) =
1

2πi

∫

|z|=r

f(z)

zn+1
dz , (44)

for any r < 1 and n ∈ N. In this setting Hardy and Ramanujan had the ex-

tremely fertile insight that for a number of arithmetical functions the dominant

contribution to the integral on the right hand side of (44), when r is sufficiently

close to 1, comes from the neighbourhood of points z = e
2πi

p
q where

p

q
is a

rational number with “small” denominator q. With the aid of this observation,

applied to case when c(n) is the arithmetical function p(n), the number of ways

of writing n as a sum of natural numbers, Hardy and Ramanujan [39] obtained

a famously sharp asymptotic formula for p(n). In the final section of this paper

they discuss briefly the applicability of their method to the problem of study-

ing the number of representations of a natural number by the sum of a given

number of squares of integers.

In a pioneering series of papers titled “Some problems of Partitio Numero-

rum”, Hardy and Littlewood developed the insight of Hardy and Ramanujan

into a powerful tool for the treatment of additive problems often called the

Hardy-Littlewood circle method, the circle in this name being in reference to

the integral on the boundary of a disc on the right hand side of (44). In par-

ticular, Hardy and Littlewood applied their method to Waring’s problem by

considering this integral with

f(z) =



1 +

∑

n≥1

2 zn
k





s

, (45)

and obtained, in the fourth paper [40] of their series published in 1922, the

bound G(k) ≤ (k − 2)2
k−1

+ 5, for any k ≥ 1.

The work of Hardy and Littlewood made it clear that the problem of im-

proving upon their upper bound for G(k) was central to further progress on

Waring’s problem. This goal remained elusive up to the end of the 1920s, when

I.M. Vinogradov entered the scene. Vinogradov’s first paper on the subject [81],

published in 1928, introduced major technical simplifications into the method

of Hardy and Littlewood that allowed him to recover their bound with “incom-

parable brevity and simplicity” ([80], page 101). In effect, Vinogradov replaces

the infinite series f(z) of (45) with the finite trigonometric sum

f(t) =
∑

1≤x≤P

e2πix
k
t , (46)
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where x and P denote integers, and the integral on the right hand side of (44)

with
∫ 1

0

f(t)se−2πintdt (47)

On expanding the f(t)s and using the orthogonality of the exponentials e2πint as

functions on [0, 1], it is immediate that the integral (47) evaluates to the number

of representations rs(n) of n as a sum of k-th powers of positive integers when

n ≤ P k
. Vinogradov then applies the Hardy-Littlewood-Ramanujan method

to deduce the asymptotic behaviour of this integral for suitably large n and

P , from which he recovers the Hardy-Littlewood bound for G(k). In the years

following [81], Vinogradov introduced a number of important innovations into

the treatment of trigonometric sums with the aid of which he obtained in 1935

the remarkable inequality

G(k) ≤ 6k log k + k log 216 . (48)

Vinogradov’s method, as also the original Hardy-Littlewood method, is com-

pletely effective. In other words, it is possible to compute from this method a

natural number N0(k) such that every n ≥ N0(k) is represented as xk
1+ . . .+xk

s

with s � k log k and natural numbers xi.

Vinogradov’s method for the bound (48) rendered viable, for the first time,

the following simple two step strategy for showing that (41) is an equality for

all k ≥ 1. We set s to be the right hand side of (41) for a given k.

(i) Compute using Vinogradov’s method a natural number N1(k) such that

the number of k-th powers required to represent any n ≥ N1(k) does

not exceed s.

(ii) Directly verify that every natural number n < N1(k) is the sum of s

k-th powers.

The first step works out because the right hand side of (48) is much smaller

than the right hand side of (39) for large k. The step (ii) is then executed by

means of a clever argument called the method of ascent, developed largely by

L.E. Dickson. This method works in two stages. First, one observes by a direct

computation that for a given k and natural numbers n in a range beyond c(k),

the number of k-th powers required to represent n decreases sharply from the

number required for c(k), that is, s. One then exploits this reduction in the

number of k-th powers required to represent these n to show that the number

of k-th powers required to represent all larger n up to N1(k) does not exceed s.

With the field so set by Vinogradov’s method, the years 1935 to 1940 saw

an intense amount of work on the determination of g(k). A leading role in this

effort was played by S.S. Pillai, and essentially independently, by L.E. Dickson.

We present below a summary of S.S. Pillai’s work on g(k) based in part on a talk

given by him at a symposium in 1939 [55] and an unpublished manuscript of
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his, which will now appear in [10], pages 656-659. For a description of Dickson’s

results we refer to his paper [32] and the references in it.

Let k be a natural number ≥ 1 and let a and b be respectively the quotient

and remainder obtained on dividing 3
k
by 2

k
. Thus 3

k
= a2k + b and a, b are

natural numbers with b ≤ 2
k
− 1. By December, 1935 Pillai showed that if

b < 2
k
− 1− a− 1 (49)

then (41) is an equality for all sufficiently large k. He published this result in the

Journal of the Annamalai University, Vol. V(2) that appeared in March, 1936.

In January, 1936, he improved this result and showed that (41) is an equality

for all k with 8 ≤ k ≤ 100 and also for any k > 100 satisfying the condition

(49). This result was published in the Journal of the Indian Mathematical So-

ciety, Vol. II which appeared in May-June, 1936. He then took up the situation

complementary to the condition (49) considering, more precisely, the case when

b ≥ 2
k
− 1− a+ 2 . (50)

When (50) holds it is no more true that g(k) is given by the right hand side of

(41) and Pillai’s paper in the Journal of Annamalai University, VI(1) that ap-

peared in October-November, 1936 gives the correct expression for g(k) in this

case. Since this expression for g(k) is slightly complicated, we do not reproduce

it here, but refer the reader to page 50 of Pillai’s paper or page 447 of [42].

In a second paper in the same issue of the Journal of Annamalai University,

Pillai completed his determination of g(7) by showing that g(7) = 143. Then

in 1940, following the work of Van Der Corput on Weyl’s inequality, Pillai ob-

tained g(6) = 73 in his paper [56]. This result of Pillai was probably the most

important mathematical achievement in India of his time.

Pillai’s interest in Waring’s problem was not limited to the determination

of g(k). In his collected works [10] the reader will find his contributions to

Waring’s problem with prime power summands, to the problem of representing

a number as a sum of k non-negative k-th powers and to the polynomial case,

together with all his papers cited in our summary above.

When neither of the conditions (49) and (50) hold, we must either have

equality in (49) or that b = 2
k
− a− 1 or b = 2

k
− a. In the first of these cases,

it was shown by I. Niven [51] in 1944 that we in fact have equality in (41). On

the other hand, Dickson showed in 1936 that b 6= 2
k
− a− 1 for any k, leaving

us with the possibility that b = 2
k
− a. This was also shown to be impossible

for k > 1 by R.K. Rubugunday in 1942 [69].

Raghunath Krishna Rubugunday was born in Chennai (then Madras) in

1918 and after a brilliant performance at school and Presidency college, where

he did his B.A. Hons., he left following family tradition – K. Ananda Rau was

an uncle on his father’s side – for Cambridge. At Cambridge, Rubugunday

was classed as Wrangler of Cambridge Tripos Part II in 1938 ([58], page 192)

and subsequently came under the influence of Hardy. On his return to India,

Rubugunday taught at various universities, his last position being the Head of
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the Department of Mathematics at Saugar University (now Dr. Hari Singh Gaur

University), Madhya Pradesh. Professor Rubugunday passed away in Chennai

in the year 2000.

In summary, we have seen that by 1944 all values of g(k) were determined

except for g(4) and g(5) but that this determination was subject to one of the

conditions (49) and (50). It has been conjectured that the condition (50) which

can be written in the form

2
k

{

(

3

2

)k
}

+

[

(

3

2

)k
]

> 2
k

(51)

does not hold for any k ≥ 4. The problem of proving this conjecture is sometimes

called the ideal Waring’s problem because it’s truth, from what we have said

above, will imply that (41) is an equality for all k ≥ 1. It is known from the

work of Mahler that the number of k for which (50) holds is in fact finite,

though an effective bound for such a k is unknown at present. For more details

on this matter we refer the reader to page 302 of [77].

As the reader will no doubt have noticed by now, an essential feature of

Waring’s problem of determining g(k) is that the smaller the value of k the

harder it has been to determine g(k). This is rooted in the fact that for smaller

values of k, G(k) and g(k) do not differ by much. For example, when k = 4,

the right hand side of (41) evaluates to 19. On the other hand, by a celebrated

result of Davenport [27] from 1939 we have G(4) ≤ 16. When taken together

with a remark of Kempner [47] that, for any n ≥ 0, the number 31.16n requires

at least 16 fourth powers for its representation as their sum, Davenport’s result

gives G(4) = 16.

When g(k) and G(k) are close, the natural number N1(k) of step (i) above

worked out from Vinogradov’s method in its original form turns out far too large

to be accessible to the ascent argument of step (ii). Thus the determination of

g(5) had to wait almost 25 years after the phase of activity we have described.

This was done in 1965 by the noted Chinese mathematician Jing-Run Chen

who showed in [23] that g(5) = 37.

We shall now discuss in some detail the determination of g(4) by

Deshouillers, Dress and author in 1986, who showed that g(4) = 19, which

is to say that every natural number is a sum of no more than 19 biquadrates,

that is fourth powers of natural numbers, as originally asserted by Waring. We

begin with the work of F.C. Auluck around 1940.

Perhaps spurred by the exciting results of his friend and collaborator S.S.

Pillai, Sarvadaman Chowla encouraged Faqir Chand Auluck to apply the

method of Vinogradov as modified by Gelbcke to Waring’s problem for bi-

quadrates. Auluck, who was born in 1912 in Jalandhar, Punjab, was then

a lecturer at the Dyal Singh College, Lahore and had, not long before, se-

cured the distinction of having obtained the first rank in both the B.A. and

M.A. degree examinations of the Panjab University, Lahore. Auluck took up
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Chowla’s suggestion and in 1940 showed that every natural number n such that

log10 log10 n ≥ 89 is indeed a sum of 19 biquadrates [2].

Even if Auluck’s bound was, by its author’s own admission in the intro-

duction to [2], far beyond the reach of any computing power so as to allow

improvements on upper bounds for g(4), it was cited for a long time as the

only explicit bound known on the representation by 19 biquadrates. While he

continued to work with Chowla and by himself on problems in number theory,

Auluck subsequently became a physicist well-known for his work in Statistical

Physics. He moved from Lahore to New Delhi where he was eventually Profes-

sor Emeritus and Aryabhata Professor of Physics at the University of Delhi.

Professor F.C. Auluck died in 1987, aged 75.

In his thesis [74] of 1973, H.E. Thomas made explicit Davenport’s refinement

of Vinogradov’s method in [27] to obtain remarkable gains in Waring’s prob-

lems for biquadrates. In particular, he improved vastly upon Auluck’s bound by

showing that every natural number exceeding 10
1409

is a sum of 19 biquadrates

and also that every natural number exceeding 10
568

is a sum of 22 biquadrates.

From his bounds, Thomas concluded that g(4) ≤ 23, thereby improving sub-

stantially on earlier results F.Dress and J.-.R Chen who had g(4) ≤ 30 and

g(4) ≤ 27, respectively. In the following year, Thomas [75] revisited the prob-

lem, and this time by means of a superior ascent technique, he improved his

result to g(4) ≤ 22.

Referring the reader to Deshouillers [29] for a deeper discussion of the

method of Thomas, we note that his results were still the best that were known

in 1978, when Professor Ramachandra proposed to the author that he consider

the problem of showing that g(4) = 19. Let us sketch the argument that is used

in [4] to show that g(4) ≤ 21. We caution the reader that in order to keep the

following exposition simple, we shall be slightly lax with the details at various

points. Here and below we shall write e(z) to denote e2πiz, for any complex

number z.

When Vinogradov’s method is implemented for biquadrates, we are eventu-

ally reduced to obtaining numerically explicit estimates for the sum

S =

∑

n≤P

e(αn4
) , (52)

where α is a suitable point in [0, 1], P is a given large positive integer lying in

a given interval, say, between 10
30

and 10
53
. To estimate S, which is trivially

bounded by P , one applies a device called Weyl’s differencing process, originally

due to Hermann Weyl in this context. This amounts to taking the square of

the absolute value of both sides of (52), rearranging the terms and applying the

triangle inequality so as to obtain

|S|2 =

∑

m,n≤P

e(α(m4
− n4

)) ≤

∑

|h|≤P

∣

∣

∣

∣

∣

∣

∑

n≤P

e(α((n+ h)4 − n4
))

∣

∣

∣

∣

∣

∣

. (53)
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Let us note that the polynomial (n + h)4 − n4
is of degree 3 in the variable

n. Thus by an application of Weyl differencing we have succeeded in reducing

the estimation of an exponential sum whose phase is a polynomial of degree

4 to a sum of exponential sums with phases polynomials of degree 3. On now

applying the Cauchy-Schwarz inequality we deduce from (53) that

|S|4 ≤ P
∑

|h|≤P

∣

∣

∣

∣

∣

∣

∑

n≤P

e(4αhn3
+ . . .)

∣

∣

∣

∣

∣

∣

2

, (54)

where we have written 4αhn3
+ . . . to denote (n+h)4−n4

, whose leading terms

as a polynomial in n is 4αhn3
. On now applying the Weyl differencing process

to the inner sum on the right hand side of (54), we obtain

|S|4 ≤ P
∑

|h1|≤P

∑

|h2|≤P

∣

∣

∣

∣

∣

∣

∑

n≤P

e(12αh1h2n
2
+ . . .)

∣

∣

∣

∣

∣

∣

. (55)

A final application of the Cauchy-Schwarz inequality together with the Weyl

differencing process gives us the inequality

|S|8 ≤ 4P 4
∑

|h1|≤P

∑

h2≤P

∑

h3≤P

∣

∣

∣

∣

∣

∣

∑

n≤P

e(24αh1h2h3n+ . . .)

∣

∣

∣

∣

∣

∣

. (56)

Since the innermost sum on the right hand side of (56) has a linear phase, this

may be summed as a geometric series. On then applying the triangle inequality

and setting h1h2h3 = h we deduce that

|S|8 ≤ 4P 4
∑

h≤P 3

d3(h)min

(

P,
1

‖24hα‖

)

, (57)

where d3(h) is the number of ways of writing h as a product of three integers

with d3(0) = 4P 2
. Let us now recall that our aim is to obtain a numerically

explicit upper bound for |S| and therefore for the right hand side of (57). It

turns out that at the point such a bound is required in Vinogradov’s method

we already have an estimate of the shape

∑

h≤P 3

min

(

P,
1

‖24hα‖

)

≤ C(P )P 3
logP , (58)

where C(P ) is an explicitly determined constant. Now, it is known and in fact

easily seen, that for any ε > 0 there is a constant C(ε) such that d3(h) ≤ C(ε)P ε
.

On inserting this bound into (57) and using (58) we obtain a bound of the shape

|S| ≤ C1(ε)P
7

8
+ε

(59)
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for any ε > 0. Unfortunately, however, when ε is small, the constant C1(ε) turns

out to be far too large in comparison to the size of P for such a bound to be of

value. Put differently, our problem is to obtain a bound for |S| that may well

be worse than (59) asymptotically, that is, as P → +∞ but is better than (59)

for the given range of P .

The method devised in [4] to address this problem proceeds by introducing

an auxillary arithmetical function f(n) in the Cauchy-Schwarz steps (54) and

(56). Indeed, let f(n) be any arithmetical function with f(n) > 0 for all natural

numbers n. By means of the Cauchy-Schwarz inequality we then obtain from

(53) that

|S|4 ≤





∑

|h|≤P

1

f(h)





∑

|h|≤P

f(h)

∣

∣

∣

∣

∣

∣

∑

n≤P

e(4αhn3
+ . . .)

∣

∣

∣

∣

∣

∣

2

. (60)

Let us denote the second sum over h on the right hand side of (60) by S1. Then

an application of Weyl differencing yields

|S1| ≤

∑

|l|≤P

f(l)
∑

|k|≤P

∣

∣

∣

∣

∣

∣

∑

n≤P

e(12αlkn2
+ . . .)

∣

∣

∣

∣

∣

∣

. (61)

On putting h = lk we may rewrite the right hand side of the above inequality

as

∑

|h|≤P 2

(

∑

lk=h

|l|≤P

|k|≤P

f(l)

)

∣

∣

∣

∣

∣

∣

∑

n≤P

e(24αlkn2
+ . . .)

∣

∣

∣

∣

∣

∣

. (62)

By means of a final application of Cauchy-Schwarz inequality followed by Weyl

differencing we obtain from the above relations that

|S|8 ≤ AB
∑

|h|≤P 3

(

∑

lk=h

|l|≤P 2,

|k|≤P.

f(l)2
)

min(P,
1

‖24αh‖
) , (63)

where A and B are given by the relations

A =





∑

|h|≤P

1

f(h)





2

, B =

∑

|h|≤P 2

1

f(h)2

(

∑

lk=h,

|l|≤P,

|k|≤P.

f(l)

)2

. (64)

In summary, we have replaced d3(h) by the function

∑

lk=h

|l|≤P 2,

|k|≤P.

f(l)2 . (65)
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When f is chosen to be multiplicative, the above function may be easily esti-

mated in terms of
∑

d|h
f2

(d). It turns out that a good choice for f is

f(n) = nβ
∏

p|n

(1− p−2β
)

1

2 , (66)

for n ≥ 1 and a β fixed depending on the range of values for P . With the aid

of this device and the numerical computations of Thomas we cited earlier, it

was thus possible to show g(4) ≤ 21 – the claim g(4) ≤ 20 made by the author

in [6] was based on a bound given by Thomas, which Deshouillers [29] pointed

out was not substantiated. Thus in 1979 with g(4) ≤ 21 we were literally two

steps away from g(4) = 19. Tantalisingly close but not yet there.

Fortunately for the author, Deshouillers and Dress were also working on

this problem around the same time, based in part on a marvellous probabilistic

idea of Deshouillers. It remained for Deshouillers to realize that our improve-

ments were in fact in different parts of the problem and that a combination

of our methods would yield g(4) = 19. Once this was checked, the result was

announced in [7].

The ideas that went into the proof of g(4) = 19 have been recently applied

to obtain an explicit version of Davenport’s theorem that G(4) = 16. More

precisely, Deshouillers, Kawada and Wooley [30] have combined these ideas

with an ingenious use of a polynomial identity due to Kawada and Wooley [46]

to show that every integer exceeding 10
216

that is not divisible by 16 is a sum of

16 biquadrates. When taken together with the numerical work of Deshouillers,

Hennecart and Landreau [31] this result implies the remarkable conclusion that

every integer exceeding 13792 is a sum of at most 16 biquadrates, which is

Theorem 1 of [30]. The reader will also find in the appendix of [30] a proof of

g(4) = 19, that requires much less computational effort than earlier, based on

the methods of that paper.

In our enthusiasm for a problem that occupied our attention for some years

we have mostly hewed to a single path of progress through Waring’s problem

- that of determining the values of g(k). Naturally there have been other de-

velopments, and indeed, in the recent years these developments have yielded

extremely impressive results in Waring’s problem on G(k) and, more generally,

in Diophantine problems to which the circle method has been applied. A proper

description of these advances would, however, require another essay and other

authors. We conclude by warmly recommending [12] and [77].
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Mathematics Subject Classification (2010). Main: 11F70; Secondary: 14K10

Keywords. Automorphic forms, endoscopy, transfer conjecture, fundamental lemma,

Hitchin fibration.

1. Langlands’ Functoriality Conjecture

This section contains an introduction of the functoriality principle conjectured

by Langlands in [39].

1.1. L-functions of Dirichlet and Artin. The proof by Dirichlet

for the infiniteness of prime numbers in an arithmetic progression of the form

m + Nx for some fixed integers m,N with (m,N) = 1, was a triumph of

∗Supported by the Institute for Advanced Study, the NSF and the Symonyi foundation.
School of Mathematics, Institute for Advanced Study, Princeton NJ 08540 USA.
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the analytic method in elementary number theory, cf. [13]. Instead of studying

congruence classes modulo N which are prime to N , Dirichlet attached to each

character χ : (Z/NZ)× → C×
of the group (Z/NZ)× of invertible elements in

Z/NZ, the Euler product

LN (s, χ) =
∏

p-N

(1− χ(p)p−s
)
−1. (1)

This infinite product converges absolutely for all complex numbers s having real

part <(s) > 1 and defines a holomorphic function on this domain of the com-

plex plane. For N = 1 and trivial character χ, this function is the Riemann zeta

function. As for the Riemann zeta function, general Dirichlet L-function has

a meromorphic continuation to the whole complex plane. However, in contrast

with the Riemann zeta function that has a simple pole at s = 1, the Dirichlet

L-function associated with a non trivial character χ admits a holomorphic con-

tinuation. This property of holomorphicity was a key point in Dirichlet’s proof

for the infiniteness of prime numbers in an arithmetic progression. Another

important property is the functional equation relating L(s, χ) and L(1− s, χ̄).

Let σ : Gal(Q̄/Q) → C×
be a finite order character of the Galois group of the

field of rational numbers Q. For each prime number p, we choose an embedding

of the algebraic closure Q̄ of Q into the algebraic closure Q̄p of the field of p-adic

numbers Qp. This choice induces a homomorphism Gal(Q̄p/Qp) → Gal(Q̄/Q)

from the local Galois group at p to the global Galois group. The Galois group

Gal(F̄p/Fp) of the finite field Fp is a canonical quotient of Gal(Q̄p/Qp). We

have the exact sequence

1 → Ip → Gal(Q̄p/Qp) → Gal(F̄p/Fp) → 1 (2)

where Ip is the inertia group. Recall that Gal(F̄p/Fp) is an infinite procyclic

group generated by the substitution of Frobenius x 7→ xp
in F̄p. Let the inverse

of this substitution denote Frp.

Let σ : Gal(Q̄/Q) → C×
be a character of finite order. For all but finitely

many primes p, say for all p - N for some integer N , the restriction of σ to the

inertia group Ip is trivial. In that case σ(Frp) ∈ C×
is a well defined root of

unity. Artin defines the L-function

LN (s, σ) =
∏

p-N

(1− σ(Frp)p
−s

)
−1. (3)

Artin’s reciprocity law implies the existence of a Dirichlet character χ such that

LN (s, χ) = LN (s, σ). (4)

As a consequence, the LN (s, σ) satisfies all the properties of the Dirichlet L-

functions. In particular, it is holomorphic for nontrivial σ and it satisfies a

functional equation with respect to the change of variables s ↔ 1− s.
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Finite abelian quotients of Gal(Q̄/Q) correspond to finite abelian extensions

of Q. According to Kronecker-Weber’s theorem, abelian extensions are obtained

by adding roots of unity to Q. Since general extensions of Q are not abelian, it

is natural to seek a non abelian generalization of Artin’s reciprocity law.

Let σ : Gal(Q̄/Q) → GL(n,C) be a continuous n-dimensional complex

representation. Since Galois groups are profinite groups, the image of σ is a

finite subgroup of GL(n,C). There exists an integer N , such that for every

prime p - N , the restriction of σ to the inertia group Ip is trivial. In that case,

σ(Frp) is well defined in GL(n,C), and its conjugacy class does not depend on

the particular choice of embedding Q̄ → Q̄p. The Artin L-function attached to

σ is the Euler product

LN (s, σ) =
∏

p-N

det(1− σ(Frp)p
−s

)
−1. (5)

Again, this infinite product converges absolutely for a complex number s with

real part <(s) > 1 and defines a holomorphic function on this domain of the

complex plane. It follows from the Artin-Brauer theory of characters of finite

groups that the Artin L-function has meromorphic continuation to the complex

plane.

Conjecture 1 (Artin). If σ is a nontrivial irreducible n-dimensional complex

representation of Gal(Q̄/Q), the L-function L(s, σ) admits holomorphic contin-

uation to the complex plane.

The case n = 1 follows from Artin’s reciprocity theorem and Dirichlet’s the-

orem. The general case would follow from Langlands’s conjectural nonabelian

reciprocity law. According to this conjecture, it should be possible to attach to

σ as above a cuspidal automorphic representation π of the group GL(n) with

coefficients in the ring of the adeles AQ so that the Artin L-function of σ has the

same Eulerian development as the principal L-function attached to σ. Accord-

ing to the Tamagawa-Godement-Jacquet theory cf. [62, 17], the latter extends

to an entire function on complex plane that satisfies a functional equation. In

the case n = 2, if the image of σ is solvable, the reciprocity law was established

by Langlands and Tunnel by means of the solvable base change theory. The

case where the image of σ in PGL2(C) = SO3(C) is the the nonsolvable group

of symmetries of the icosahedron is not known in general, though some progress

on this question has been made [64].

1.2. Elliptic curves. Algebraic geometry is a generous supply of rep-

resentations of Galois groups. However, most interesting representations have

`-adic coefficients instead of complex coefficients. Any system of polynomial

equations with rational coefficients, homogeneous or not, defines an algebraic

variety. The groups of `-adic cohomology attached to it are equipped with a con-

tinuous action of Gal(Q̄/Q). In contrast with complex representations, `-adic

representations might not have finite image.
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The study of the case of elliptic curves is the most successful so far. Let E

be an elliptic curve defined over Q. The first `-adic cohomology group of E is a

2-dimensional Q`-vector space equipped with a continuous action of Gal(Q̄/Q).

In other words, we have a continuous 2-dimensional `-adic representation

σE,` : Gal(Q̄/Q) → GL(2,Q`) (6)

for every prime `. The Q-elliptic curve E can be extended to a Spec(Z[N−1
])-

elliptic curve EN for some integer N , i.e. E can be defined by homogeneous

equation with coefficients in Z[N−1
] such that for every prime p - N , the re-

duction of EN modulo p is an elliptic curve defined over the finite field Fp. If

p 6= `, this implies that the restriction of σE,` to inertia Ip is trivial. It follows

that the conjugacy class of σE,`(Frp) in GL(2,Q`) is well defined. The number

of points on EN with coefficients in Fp is given by the Grothendieck-Lefschetz

fixed points formula

|EN (Fp)| = 1− tr(σE,`(Frp)) + p. (7)

It follows that tr(σE,`(Frp)) is an integer independent of the prime `. Since it

is also known that det(σE,`(Frp)) = p, the eigenvalues of σE(Frp) are conju-

gate algebraic integers of eigenvalue p1/2, independent of `. We can therefore

drop the ` in the expressions tr(σE,`(Frp)) and det(σE,`(Frp)) as well as in the

characteristic polynomial of σE,`(Frp).

The L-function attached to the elliptic curve E is defined by Euler product

LN (s,E) =

∏

p-N

det(1− σE(Frp)p
−s

)
−1. (8)

Since the complex eigenvalues of σE(Frp) are of complex absolute value p1/2,

the above infinite product is absolute convergent for <(s) > 3/2 and converges

to a homolomorphic function on this domain of the complex plane.

Shimura, Taniyama and Weil conjectured that the there exists a weight two

holomorphic modular form f whose L-function L(s,E) has the same Eulerian

development as LN (s,E) at the places p - N . It follows, in particular, that

L(s,E) has a meromorphic continuation to the complexe plane and it satisfies

a functional equation. As it was shown by Frey and Ribet, a more spectac-

ular consequence is the last Fermat’s theorem is actually true. The Shimura-

Taniyama-Weil conjecture is now a celebrated theorem of Wiles and Taylor

[73, 63] in the semistable case. The general case is proved in [7].

The Shimura-Taniyama-Weil conjecture fits well with Langlands’s reci-

procity conjecture, cf. [39]. Though the main drive of Wiles’s work consists

of the theory of deformation of Galois representations, it needed as input the

reciprocity law for solvable Artin representations σ : Gal(Q̄/Q) → GL2(C)

that was proved by Langlands and Tunnell. The interplay between the p-adic

theory of deformations of Galois representations and Langlands’s functoriality

principle should be a fruitful theme to reflect upon cf. [44].
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1.3. The Langlands conjectures. Let G be a reductive group over

a global field F which can be a finite extension of Q or the field of rational

functions of a smooth projective curve over a finite field. For each absolute

value v on F , Fv denotes the completion of F with respect to v, and if v is

nonarchimedean, Ov denotes the ring of integers of Fv. Let AF denote the ring

of adeles attached to F , defined as the restricted product of the Fv with respect

to Ov.

By discrete automorphic representation, we mean an irreducible represen-

tation of the group G(AF ), the group of adeles points of G, that occurs as a

subrepresentation of

L2
(G(F )\G(AF ))χ (9)

where χ is an unitary character of the center of G [6]. Such a representation

can develop as a completed tensor product π = ˆ
⊗

v
πv where πv are irreducible

admissible smooth representations of G(Fv) for all nonarchimedean place v.

For almost all nonarchimedean place v, πv has a unique G(Ov)-invariant line

lv. The Hecke algebra Hv of compactly supported complex valued functions on

G(Fv) that are bi-invariant under the action of G(Ov) acts on that line. Assume

that G is unramified at v then Hv is a commutative algebra whose structure

could be described in terms of a duality between reductive groups, [8].

Reductive groups over an algebraically closed field are classified by their

root datum (X∗, X∗,Φ,Φ
∨
), where X∗

and X∗ are the group of characters,

respectively cocharacters of a maximal torus and Φ ⊂ X∗,Φ∨
⊂ X∗ are, re-

spectively, the finite subset of roots and of coroots, cf. [61]. By the exchange

of roots and coroots, we have the dual root datum which is the root datum

of a complex reductive group Ĝ. The reductive group G is defined over F and

becomes split over a Galois extension E of F . The group Gal(E/F ) acts on the

root datum of G in fixing a basis. It thus defines an action of Gal(E/F ) on the

complex reductive group Ĝ. The semi-direct product
LG = ĜoGal(E/F ) was

introduced by Langlands and is known as the L-group attached to G, cf. [39].

Suppose G unramified at a nonarchimedean place v; in other words, assume

that the finite extension E is unramified over v. After a choice of embedding

E → F̄v, the Frobenius element Frv ∈ Gal(F̄v/Fv), where Fv denotes the residue

field of Fv, defines an element of Frv ∈ Gal(E/F ). There exists an isomorphism,

known as the Satake isomorphism, between the Hecke algebra Hv and the

algebra of Ĝ-invariant polynomial functions on the connected component Ĝo

{Frv} of
LG = Ĝ o Gal(E/F ). The line lv acted on by the Hecke algebra

Hv defines a semisimple element sv ∈ Ĝ o {Frv} up to Ĝ-conjugacy in this

component.

Unramified representations of G(Fv) are classified by semisimple Ĝ-

conjugacy classes in Ĝ o {Frv}. In order to classify all irreducible admissible

smooth representations of G(Fv) for all non-archimedean v, Langlands intro-

duced the group

LFv
= WFv

× SL(2,C)
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where WFv
is the Weil group of Fv. The subgroup WFv

of Gal(F̄v/Fv) consists

of elements whose image in Gal(F̄v/Fv) is an integral power of Frv.

According to theorems of Laumon, Rapoport, and Stuhler in equal char-

acteristic case, and Harris-Taylor and Henniart in unequal characteristic case,

there is a natural bijection between the set of n-dimensional representations of

LFv
and the set of irreducible admissible smooth representations of GLn(Fv)

preserving L-factors and ε-factors of pairs, [51, 20, 22, 23].

According to Langlands, there should be also a group LF attached to the

global field F such that automorphic representations of GLn(n,AF ) are classi-

fied by n-dimensional complex representations of LF . The hypothetical group

LF should be equipped with a surjective homomorphism to the Weil group WF .

When F is the field of rational functions of a curve defined over a finite

field Fq, the situation is much better. Instead of complex representations of

the hypothetical L-group LF , one parametrizes automorphic representations

by `-adic representations of the Weil group WF . Recall that in the function

field case WF is the subgroup of Gal(F̄ /F ) consisting of elements whose image

in Gal(F̄q/Fq) is an integral power of Frq. In a tour de force, Lafforgue proved

that there exists a natural bijection between irreducible n-dimensional `-adic

representation of the Weil group WF and cuspidal automorphic representations

of GLn(AF ) following a strategy initiated by Drinfeld, who settled the case

n = 2 [14, 46, 47]. In the number fields case, only a part of `-adic representa-

tions of WF coming from motives should correspond to a part of automorphic

representations.

Let us come back to the general case where G is a reductive group over

a global field that can be either a number field or a function field. According

to Langlands, automorphic representations should be partitioned into packets

parametrized by conjugacy classes of homomorphisms LF →
LG compatible

with the projections to WF . At non-archimedean places, irreducible admissible

smooth representations of G(Fv) should also be partitioned into finite packets

parametrized by conjugacy of homomorphism LFv
→ Ĝ o WFv

compatible

with the projections to WFv
. The parametrization of the local component of an

automorphic representation should dervie from the global parametrization by

the homomorphism LFv
→ LF that is only well defined up to conjugation.

This reciprocity conjecture on global parametrization of automorphic rep-

resentations seems for the moment out of reach, in particular because of the

hypothetical nature of the group LF . In constrast, Langlands’ functoriality

conjecture is not dependent on the existence of LF .

Conjecture 2 (Langlands). Let H and G be reductive groups over a global

field F and let φ be a homomorphism between their L-groups LH →
LG com-

patible with projection to WF . Then for each automorphic representation πH

of H(AF ), there exists an automorphic representation π of G(AF ) such that at

each unramified place v where πH is parametrized by a conjugacy class sv(πH)

in Ĥ o {Frv}, the local component of π is also unramified and parametrized by

φ(sv(πH)).
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At least in the number field case, the existence of LF seems to depend

upon the validity of the functoriality principle. Some of the most important

conjectures in number theory and in the theory of automorphic representations.

As explained in [39], Artin conjecture follows from the case of functoriality when

Ĥ is trivial. It is also explained in loc. cit how the generalized Ramanujan

conjecture and the generalized Sato-Tate conjecture would also follow from the

functoriality conjecture.

The approach based on a combination of the converse theorem of Cogdell

and Piateski-Shairo, and the Langlangs-Shahidi method was succesful in estab-

lishing some startling cases of functoriality beyond endoscopy, cf. [26]. However,

it suffers obvious limitation as Langlands-Shahidi method is based on the rep-

resentation of a Levi component of a parabolic group on the Lie algebra of its

unipotent radical.

Recently, the p-adic method was also successful in establishing a weak form

of the functoriality conjecture. The most spectacular result is the proof of the

Sato-Tate conjecture [21] deriving from this weak form. We will not discuss this

topic in this survey.

So far, the most successful method in establishing special cases of func-

toriality is endoscopy. We will discuss this topic in more details in the next

section.

2. Endoscopy Theory and Applications

The endoscopy theory is primarily focused in the structure of the packet of

representations that have the same conjectural parametrization, either global

LF →
LG or local LFv

→ Ĝ o WFv
. The existence of the packet is closely

related to the lack of stability in the trace formula. As shown in [42], the

answer to this question derives from the comparison of trace formulas. It is quite

remarkable that the inconvenient unstability in the trace formula turned out to

be a possibility. The quest for a stable trace formula bringing the necessity of

comparing two trace formulas, turned out to be an efficient tool for establishing

particular cases of functoriality.

A good number of known cases of functoriality fits into a general scheme

that is nowadays known as the theory of endoscopy and twisted endoscopy:

Jacquet-Langlands theory, solvable base change, automorphic induction and

the Arthur lift from classical groups to linear groups.

Another source of endoscopic phenomenon was the study of continuous co-

homology of Shimura varieties as first recognized by Langlands [40]. The work

of Kottwitz has definitely shaped this theory by proposing precise conjecture on

the `-adic cohomology of Shimura variety as Galois module [34]. This descrip-

tion has been established in many important cases by means of comparison of

the Grothendieck-Lefschetz fixed points formula and the Arthur-Selberg trace

formula.
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2.1. Packets of representations. First intuitions of endoscopy come

from the theory of representations of SL(2,R). The restriction of discrete se-

ries representations of GL(2,R) to SL(2,R) is reducible. Their irreducible fac-

tors having the same Langlands parameter obtained by composition W (R) →

GL(2,C) → PGL(2,C) and thus belong to the same packet. Packet of represen-

tations is understood to be dual stable conjugacy relation between conjugacy

classes. For instance, the rotations of angle θ and −θ centered at the origin

of the plane are not conjugate in SL(2,R), but become conjugate either in

GL(2,R) or in SL(2,C).

In general, if G is a quasi-split reductive group over a local field Fv, and

Πv(G) is the set of irreducible representations of G, Langlands conjectured that

Π(G) is a disjoint union of finite sets Πv,φ(G) that are called L-packets and

indexed by admissible homomorphisms φv : LFv
→

LGv. The work of Shelstad

[59] in the real case suggested the following description of the set Πv(G) in

general, cf. [42].

Let Sφv
denote the centralizer of the image of φv in Ĝ, and S0

(φv) its

neutral component. Let Z(Ĝ) denote the center of Z(Ĝ) and Z(Ĝ)
Γ
denote

the subgroup of invariants under the action of the Galois group Γ. The group

Sφv
= Sφv

/S0
φv
Z(Ĝ)

Γ
should control completely the structure of the finite set

Πφv
and also the characters of the representations belonging to Πφv

. If we

further assume φv tempered, i.e its image is contained in a relatively compact

subset of Ĝ, then there should be a bijection π 7→ 〈s, π〉 from Πφv
onto the set

of irreducible characters of Sφv
. In particular, the cardinal of the finite set Πφv

should equal the number of conjugacy classes of Sφv
.

There is also a conjectural description of multiplicity in the automorphic

spectrum of each member of a global L-packet. We can attach any admissible

homomorphism φ : LF →
LG local parameter φv : LFv

→
LGv. By definition,

the global L-packet Πφ is the infinite product of local L-packets Πφv
. For a

representation π = ⊗vπv with πv ∈ Πv to appear in the automorphic spec-

trum, all but finitely many local components must be unramified. For those

representations, there is a conjectural description of its automorphic multi-

plicity m(π, φ) that was made precise by Kottwitz based on the case of SL2

worked out by Labesse and Langlands cf. [38]. In [31], Kottwitz introduced a

group Sφ equipped with homomorphism Sφ → Sφv
. The conjectural formula

for m(π, φ) is

m(π, φ) = |Sφ|
−1

∑

ε∈Sφ

∏

v

〈εv, πv〉.

For each v, εv denotes the image of ε in Sφv
and 〈εv, πv〉, the value of the

character of Sφv
corresponding to πv evaluated on εv.

If the above general description has an important advantage of putting the

automorphic theory in perspective, it also suffers a considrable inconvenience

of being dependent on the hypothetical Langlands group LF .

For quite a long time, we have known only a few low rank cases includ-

ing the case of inner forms of SL(2) due to Labesse and Langlands [38], the
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cyclic base change for GL(2) due to Saito, Shintani and Langlands [41] and the

case of U(3) and its base change due to Rogawski [58]. Later, the cyclic base

change for GL(n) was established by Arthur and Clozel [3]. Recently, this field

has been undergoing spectacular developments. For quasisplit classical groups,

Arthur has been able to establish the existence and the description of local

packets as well as an automorphic multiplicity formula for global packets [2].

For p-adic groups, the local description becomes unconditional based on the

local Langlands conjecture for GL(n) proved by Harris-Taylor and Henniart.

Arthur’s description of global packet as well as his automorphic multiplicity

formula is based on cuspidal automorphic representations of GL(n) instead of

the hypothetical group LF . This description relies on a little bit of intricate

combinatorics that goes beyond the scope of this report. The unitary case was

also settled by Moeglin [52], the case of inner forms of SL(n) by Hiraga and

Saito [24]. The general case of Jacquet-Langlands correspondence has been also

established by Badulescu [4].

Most of the above developments were made possible by the formidable ma-

chine that is the Arthur trace formula and its stabilization. The comparison of

the trace formula for two different groups, one being endoscopic to the other,

proved to be a quite fruitful method. Arthur’s parametrization of automorphic

forms on quasisplit classical groups derives from the possibility of realizing these

groups as twisted endoscopic groups of GL(n) and the comparison between the

twisted trace formula of GL(n) and the ordinary trace formula for the classical

group. This procedure is known as the stabilization of the twisted trace formula.

The structure of the L-packets derives from the stabilization of ordinary trace

formula for classical groups. For both twisted and untwisted, Arthur needed to

assume the validity of certain conjectures on orbital integrals: the transfer and

the fundamental lemma.

2.2. Construction of Galois representations. Based on indica-

tions given in Shimura’s work, Langlands proposed a general strategy to con-

structing Galois representations attached to automorphic representation incor-

porated in `-adic cohomology of Shimura varieties. This domain also recorded

important developments due to Kottwitz, Clozel, Harris, Taylor, Yoshida,

Labesse, Morel, Shin and others.

In particular, a non negligible portion of the global Langlands correspon-

dence for number fields is now known. A number field F is of complex multipli-

cation if it is a totally imaginary quadratic extension of a totally real number

field F+
. In particular, the complex conjugation induces an automorphism c

of F that is independent of complex embedding of F . Let Π =
⊗

v
Πv be

a cuspidal automorphic representation of GL(n,AF ) such that Π
∨

' Π ◦ c,

whose component at infinity Π∞ has the same infinitesimal character as

some irreducible algebraic representation satisfying certain regularity condi-

tion. Then for every prime number `, there exists a continuous representa-

tion σ : Gal(F̄ /F ) → GL(n, Q̄`) so that for every prime p of F that does
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not lie above `, the local component πv of π corresponds to the `-adic local

representation of Gal(F̄v/Fv) via the local Langlands correspondence estab-

lished by Harris-Taylor and Henniart. This important theorem is due to Clozel,

Harris, and Labesse [11], Morel [53] and Shin [60] with some difference in the

precision.

Under the above assumptions on the number field F and the automor-

phic representation Π, there exists a unitary group U(F+
) with respect to the

quadratic extension F/F+
that gives rise to a Shimura variety and an automor-

phic representation π of U whose base change to GL(n, F ) is Π. The base change

from the unitary group U to the linear group GL(n, F ) is a case of the theory

of twisted endoscopy. It is based on a comparison of the twisted trace formula

for GL(n, F ) and the ordinary trace formula for U(F+
). For more details, see

[10, 37].

Following the work of Kottwitz on Shimura varieties, it is possible to attach

Galois representation to automorphic forms. Algebraic cuspidal automorphic

representations of unitary group appears in `-adic cohomology of Shimura vari-

ety. In [35], Kottwitz proved a formula for the number of points on certain type

of Shimura varieties with values in a finite field at a place of good reduction,

and in [34], he showed how to stabilize this formula in a very similar manner

to the stabilization of the trace formula. He also needed to assume the validity

of the same conjectures on local orbital integrals as in the case of stabilization

of the trace formula.

Kottwitz’ formula for the number of points allow to show the compatibility

with the local correspondence at the unramified places. More recently, Shin

proved a formula for fixed points on Igusa varieties that looks formally similar

to Kottwitz’ formula that allows him to prove the compatibility with the local

correspondence at a ramified place [60].

Morel was able to calculate the intersection cohomology of non-compact

unitary Shimura varieties when the other authors confined themselves in the

compact case [53]. The description of the intersection cohomology has been

conjectured by Kottwitz.

We observe the remarkable similarity between Arthur’s works on the classi-

fication of automorphic representations of classical groups and the construction

of Galois representations attached to automorphic representations by Shimura

varieties. Both need the stablization of a twisted trace formula and of an ordi-

nary trace formula or similar formula thereof.

3. Stabilization of the Trace Formula

The main focus of the theory of endoscopy is the stabilization of the trace

formula. The trace formula allows us to derive properties of automorphic rep-

resentations from a careful study of orbital integrals. The orbital side of the

trace formula is not stable but the defect of stability can be expressed by an

endoscopic group. It follows the endoscopic case of the functoriality conjecture.
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This section will give more details about the stabilization of the orbital side of

the trace formula.

3.1. Trace formula and orbital integrals. In order to simplify the

exposition, we will consider only semisimple groups G defined over a global field

F . The Arthur-Selberg trace formula for G has the following form

∑

γ∈G(F )/∼

Oγ(f) + · · · =

∑

π

trπ(f) + · · · (10)

where γ runs over the set of anisotropic conjugacy classes of G(F ) and π over

the set of discrete automorphic representations. The trace formula contains also

more complicated terms related to hyperbolic conjugacy classes on one side and

the continuous spectrum on the other side.

The test function f is of the form f =
⊗

v
fv where for v, fv is a smooth

compactly supported function on G(Fv) and for almost all nonarchimedean

places v, fv the unit function of the unramified Hecke algebra of G(Fv). The

global orbital integral

Oγ(f) =

∫

Iγ(F )\G(A)

f(g−1γg)dg (11)

is convergent for anisotropic conjugacy classes γ ∈ G(F ). Here Iγ(F ) is the

discrete group of F -points on the centralizer Iγ of γ. After choosing a Haar

measure dt =
⊗

dtv on Iγ(A), we can express the above global integral as

follows

Oγ(f) = vol(Iγ(F )\Iγ(A), dt)
∏

v

Oγ(fv, dgv/dtv). (12)

The torus Iγ has an integral form well defined up to finitely many places, and

the measure dt is chosen so that Iγ(Ov) has volume one for almost all v. Over

a nonarchimedean place, the local orbital integral

Oγ(fv, dgv/dtv) =

∫

Iγ(Fv)\G(Fv)

f(g−1γg)
dgv

dtv
(13)

is defined for every locally constant function fv ∈ C∞

c (G(Fv)) with compact

support. Local orbital integral Oγ(fv, dgv/dtv) is convergent for every v and

equals 1 for almost all v. The volume term is finite when the global conjugacy

class γ is anisotropic.

Arthur introduced a truncation operator to deal with the continuous spec-

trum in the spectral expansion and hyperbolic conjugacy classes in the geomet-

ric expansion. In the geometric expansion, Arthur has more complicated local

integrals that he calls weighted orbital integrals, see [2].
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3.2. Stable orbital integrals. For GL(n), two regular semisimple ele-

ments in GL(n, F ) are conjugate if and only if they are conjugate in GL(n, F̄ ),

where F̄ is an algebraic closure of F and this latter condition is tantamount to

request that γ and γ′
have the same characteristic polynomial. For a general

reductive group G, we also have a characteristic polynomial map χ : G → T/W

where T is a maximal torus and W is its Weyl group. An element is said to

be strongly regular semisimple if its centralizer is a torus. Strongly regular

semisimple elements γ, γ′
∈ G(F̄ ) have the same characteristic polynomial if

and only if they are G(F̄ )-conjugate. However, there are possibly more than one

G(F )-conjugacy classes within the set of strongly regular semisimple elements

having the same characteristic polynomial in G(F ). These conjugacy classes

are said to be stably conjugate.

Let γ, γ′
∈ G(F ) be such that there exist g ∈ G(F̄ ) with γ′

= gγg−1
. For all

σ ∈ Gal(F̄ /F ), since γ, γ′
are defined over F , σ(g)−1g belongs to the centralizer

of γ. The map

σ 7→ σ(g)−1g (14)

defines a cocycle with values in Iγ(F̄ ) whose image in G(F̄ ) is a boundary.

For a fixed γ ∈ G(F ), assumed strongly regular semisimple, the set of G(F )-

conjugacy classes in the stable conjugacy class of γ can be identified with the

subset Aγ of elements H
1
(F, Iγ) whose image in H

1
(F,G) is trivial. For local

fields, the group H
1
(F, Iγ) is finite but for global field, it can be infinite.

For a local non-archimedean field F , Aγ is a subgroup of the finite abelian

group H
1
(F, Iγ). One can form linear combinations of orbital integrals within a

stable conjugacy class using characters of Aγ . In particular, the stable orbital

integral

SOγ(f) =
∑

γ′

Oγ′(f)

is the sum over a set of representatives γ′
of conjugacy classes within the stable

conjugacy class of γ. One needs to choose in a consistent way Haar measures

on different centralizers Iγ′(F ). For strongly regular semisimple γ, the tori Iγ′

for γ′
in the stable conjugacy class of γ, are in fact canonically isomorphic,

so that we can transfer a Haar measure from Iγ(F ) to Iγ′(F ). Obviously, the

stable orbital integral SOγ depends only on the characteristic polynomial of γ.

If a is the characteristic polynomial of a strongly regular semisimple element

γ, we set SOa = SOγ . A stable distribution is an element in the closure of the

vector space generated by the distributions of the forms SOa with respect to

the weak topology.

In some sense, stable conjugacy classes are more natural than conjugacy

classes. In order to express the difference between orbital integrals and stable

orbital integrals, one needs to introduce other linear combinations of orbital in-

tegrals known as κ-orbital integrals. For each character κ : Aγ → C×
, κ-orbital
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integral is a linear combination

Oκ

γ(f) =
∑

γ′

κ(cl(γ′
))Oγ′(f)

over a set of representatives γ′
of conjugacy classes within the stable conjugacy

class of γ, cl(γ′
) being the class of γ′

in Aγ . For any γ′
in the stable conjugacy

class of γ, Aγ and Aγ′ are canonical isomorphic so that the character κ on Aγ

defines a character of A′

γ . Now,O
κ
γ andOκ

γ′ are not equal but differ by the scalar

κ(cl(γ′
)) where cl(γ′

) is the class of γ′
in Aγ . Even though this transformation

rule is simple enough, we can’t a priori define κ-orbital Oκ
a for a characteristic

polynomial a as in the case of stable orbital integral. This is a source of an

important technical difficulty in the theory of endoscopy: the transfer factor.

3.3. Stable distributions and the trace formula. Test functions

for the trace formula are finite combination of functions f on G(A) of the form

f =
⊗

v∈|F |
fv where for all v, fv is a smooth function with compact support on

G(Fv) and for almost all finite place v, fv is the characteristic function of G(Ov)

with respect to an integral form of G which is well defined almost everywhere.

The trace formula defines a linear form in f . For each v, it induces an

invariant linear form in fv. There exists a Galois theoretical cohomological

obstruction that prevents this linear form from being stably invariant. Let γ ∈

G(F ) be a strongly regular semisimple element. Let (γ′

v) ∈ G(A) be an adelic

element with γ′

v stably conjugate to γ for all v and conjugate for almost all

v. There exists a cohomological obstruction that prevents the adelic conjugacy

class (γ′

v) from being rational. In fact the map

H
1
(F, Iγ) →

⊕

v

H
1
(Fv, Iγ) (15)

is not surjective in general. Let Îγ denote the dual complex torus of Iγ equipped

with a finite action of the Galois group Γ = Gal(F̄ /F ). For each place v, the

Galois group Γv = Gal(F̄v/Fv) of the local field also acts on Îγ . By local Tate-

Nakayama duality as reformulated by Kottwitz, H
1
(Fv, Iγ) can be identified

with the group of characters of π0(Î
Γv
γ ). By global Tate-Nakayama duality, an

adelic class in
⊕

v
H

1
(Fv, Iγ) comes from a rational class in H

1
(F, Iγ) if and

only if the corresponding characters on π0(Î
Γv
γ ), after restriction to π0(Î

Γ
γ ),

sum up to the trivial character. The original problem with conjugacy classes

within a stable conjugacy class, complicated by the presence of the strict subset

Aγ of H
1
(F, Iγ), was solved in Langlands [42] and in a more general setting by

Kottwitz [32].

In [42], Langlands outlined a program to derive from the usual trace formula

a stable trace formula. The key point is to apply Fourier transform on the finite

group π0(Î
Γ
γ ) and the part of the trace formula corresponding to the stable

conjugacy class of γ becomes a sum over the group of characters of π0(Î
Γ
γ ).



Endoscopy Theory of Automorphic Forms 223

By definition, the term corresponding to the trivial character of π0(Î
Γ
γ ) is the

stable trace formula. The other terms can be expressed as product of κ-orbital

integrals.

Langlands conjectured that these κ-orbital integrals can also be expressed

in terms of stable orbital integrals of endoscopic groups. The precise constant

occuring in these conjectures were worked out in his joint work with Shelstad cf.

[45]. There are in fact two conjectures: the transfer and the fundamental lemma

that we will review in a similar but simpler context of Lie algebras. Admitting

these conjectures, Langlands and Kottwitz proved that the correction terms

in the elliptic part match with the stable trace formula for endoscopic groups.

This equality is known under the name of the stabilization of the elliptic part

of the trace formula.

The whole trace formula was eventually stabilized by Arthur under more

local assumptions that are the weighted transfer and the weighted fundamental

lemma cf. [1]. Arthur’s classification of automorphic forms of quasisplit clas-

sical groups depends upon the stabilization of twisted trace formula. For this

purpose, Arthur’s local assumptions are more demanding: the twisted weighted

transfer and the twisted weighted fundamental lemma.

3.4. The transfer and the fundamental lemma. We will state

the two conjectures about local orbital integrals known as the transfer conjec-

ture and the fundamental lemma in the case of Lie algebra. The statements in

the case of Lie group are very similar but the constant known as the transfer

factor more complicated.

Assume for simplicity that G is a split group over a local non-archimedean

field F . Let Ĝ denote the connected complex reductive group whose root system

is related to the root system of G by exchanging roots and coroots. Let γ be

a regular semisimple F -point on the Lie algebra g of G. Its centralizer Iγ is a

torus defined over F . By the Tate-Nakayama duality, a character κ of H
1
(F, Iγ)

corresponds to a semisimple element of Ĝ that is well defined up to conjugacy.

Let Ĥ be the neutral component of the centralizer of κ in Ĝ. For a given

torus Iγ , we can define an action of the Galois group of F on Ĥ that factors

through the component group of the centralizer of κ in Ĝ. By duality, we

obtain a quasi-split reductive group H over F which is an endoscopic group

of G.

The endoscopic group H is not a subgroup of G in general. Nevertheless,

it is possible to transfer stable conjugacy classes from H to G, and from the

Lie algebra h = Lie(H) to g. Assume for simplicity that H is also split. The

inclusion Ĥ = Ĝκ ⊂ Ĝ induces an inclusion of Weyl groups WH ⊂ W . It follows

that there exists a canonical map t/WH → t/W that realizes the transfer of

stable conjugacy classes from h to g. If γH ∈ h(F ) has characteristic polynomial

aH ∈ t/WH(F ) mapping to the characteristic polynomial a of γ ∈ G(F ), we

will say that the stable conjugacy class of γH transfers to the stable conjugacy

class of γ.
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Kostant has constructed a section t/W → g of the characteristic polynomial

morphism g → t/W cf. [29]. For every a ∈ (t/W )(F ), the Kostant section

defines a distinguished conjugacy class with the stable conjugacy class of a. As

showed by Kottwitz cf. [36], the Kostant section provides us a rather simple

definition of the Langlands-Shelstad transfer factor in the case of Lie algebra.

Let ∆(γH , γ) be the unique complex function depending on regular semisimple

conjugacy classes γH ∈ h(F ) and γ ∈ g(F ) with the characteristic polynomial

aH ∈ (t/WH)(F ) of γH mapping to the characteristic polynomial a ∈ (t/W )(F )

of γ and satisfying the following property

• ∆(γH , γ) depends only on the stable conjugacy class of γH ,

• if γ and γ′
are stably conjugate then ∆(γH , γ′

) = 〈inv(γ, γ′
), κ〉∆(γH , γ)

where inv(γ, γ′
) is the cohomological invariant lying in H

1
(F, Iγ) defined

by the coccyle (14),

• if γ is conjugate to the Kostant section at a, ∆(γH , γ) =

|∆G(γ)
−1

∆H(γH)|
1/2

where ∆G,∆H are the usual discriminant func-

tions on g and h and |.| denotes the standard absolute value of the non-

archimedean field F .

Conjecture 3 (Transfer). For every f ∈ C∞

c (G(F )) there exists fH
∈

C∞

c (H(F )) such that

SOγH
(fH

) = ∆(γH , γ)Oκ

γ(f) (16)

for all strongly regular semisimple elements γH and γ with the characteristic

polynomial aH ∈ (t/WH)(F ) of γH mapping to the characteristic polynomial

a ∈ (t/W )(F ) of γ.

Under the assumption γH and γ regular semisimple with the characteristic

polynomial aH ∈ (t/WH)(F ) of γH mapping to the characteristic polynomial

a ∈ (t/W )(F ) of γ, their centralizers in H and G are canonically isomorphic

tori. We can therefore transfer Haar measures between those locally compact

groups.

Assume that we are in unramified situation i.e. both G andH have reductive

models over OF . Let 1g(OF ) be the characteristic function of g(OF ) and 1h(OF )

the characteristic function of h(OF ).

Conjecture 4 (Fundamental lemma). The equality (16) holds for f = 1g(OF )

and fH
= 1h(OF ).

In the case of Lie group instead of Lie algebra, there is a more general

version of the fundamental lemma. Let HG be the algebra of G(OF )-biinvariant

functions with compact support on G(F ) and HH the similar algebra for H(F ).

Using Satake isomorphism, we have a canonical homomorphism b : HG → HH .

Conjecture 5. The equality (16) holds for any f ∈ HG and for fH
= b(f).
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In [68], Waldspurger also stated another beautiful conjecture in the same

spirit. Let G1 and G2 be two semisimple groups with isogeneous root systems

i.e. there exists an isomorphism between their maximal tori which maps a root

of G1 on a scalar multiple of a root of G2 and conversely. In this case, there is

an isomorphism t1/W1 ' t2/W2. We can therefore transfer regular semisimple

stable conjugacy classes from g1(F ) to g2(F ) and back.

Conjecture 6 (Nonstandard fundamental lemma). Let γ1 ∈ g1(F ) and

γ2 ∈ g2(F ) be regular semisimple elements having the same characteristic poly-

nomial. Then we have

SOγ1
(1g1(OF )) = SOγ2

(1g2(OF )). (17)

3.5. The long march. Let us remember the long march to the conquest

of the transfer conjecture and the fundamental lemma.

The theory of endoscopy for real groups is almost entirely due to Shelstad.

She proved, in particular, the transfer conjecture for real groups. The funda-

mental lemma does not make sense for real groups.

Particular cases of the fundamental lemma were proved in low rank case

by Labesse-Langlands for SL(2) [38], Kottwitz for SL(3) [30], Rogawski for

U(3) [58], Hales, Schroder and Weissauer for Sp(4). The first case of twisted

fundamental lemma was proved by Saito, Shintani and Langlands in the case of

base change for GL(2). The conjecture 4 in the case of stable base change was

proved by Kottwitz [33] for unit and then 5 by Clozel and Labesse independently

for Hecke algebra. Kazhdan [27], and Waldspurger [66] proved 4 for SL(n). More

recently, Laumon and myself proved the case U(n) [50] in equal characteristic.

The following result is to a large extent a collective work.

Theorem 7. The conjectures 3, 4, 5 and 6 are true for p-adic fields.

In the landmark paper [67], Waldspurger proved that the fundamental

lemma implies the transfer conjectures. Due to his and Hales’ works, the case of

Lie group follows from the case of Lie algebra. Waldspurger also proved that the

twisted fundamental lemma follows from the combination of the fundamental

lemma with his nonstandard variant [68]. In [19], Hales proved that if we know

the fundamental lemma for the unit for almost all places, we know it for the

entire Hecke algebra for all places. In particular, if we know the fundamental

lemma for the unit element at all but finitely many places, we also know it at

the remaining places. More details on Hales’ argument can be found in [53].

The problem is reduced to the fundamental lemma for Lie algebra. Follow-

ing Waldspurger and, independently, Cluckers, Hales and Loeser, it is enough

to prove the fundamental lemma for a local field in characteristic p, see [69]

and [12].

For local fields of characteristic p, the approach using algebraic geometry

was eventually successful. This approach originated in the work of Kazhdan

and Lusztig who introduced the affine Springer fiber, cf. [28]. In [18], Goresky,
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Kottwitz and MacPherson gave an interpretation of the fundamental lemma in

terms of the cohomology of the affine Springer. They also introduced the use of

the equivariant cohomology and proved the fundamental lemma for unramified

elements assuming the purity of cohomology of affine Springer fiber. Later in

[49], Laumon proved the fundamental lemma for general element in the Lie al-

gebra of unitary group also by using the equivariant cohomology and admitting

the same purity assumption. The conjecture of purity of cohomology of affine

Springer fiber is still unproved.

The Hitchin fibration was introduced in this context in [54]. Laumon and

I used this approach, combined with [49], to prove the fundamental lemma for

unitary group in [50]. The equivariant cohomology is no longer used for effective

calculation of cohomology but to prove a qualitative property of the support of

simple perverse sheaves occurring in the cohomology of Hitchin fibration. Later,

I realized that the equivariant cohomology does not work in general simply due

to the lack of toric action. The general case was proved in [56] with essentially

the same strategy as in [50] but with a major difference. Since the equivari-

ant cohomology does not provide a general argument for the determination of

the support of simple perverse sheaves occurring in the cohomology of Hitchin

fibration, an entirely different argument was needed. This new argument is a

blend of an observation of Goresky and MacPherson on perverse sheaves and

Poincaré duality with some particular geometric properties of algebraic inte-

grable systems cf. [57].

4. Affine Springer Fibers and the Hitchin

Fibration

In this section, we will describe the geometric approach to the fundamental

lemma.

4.1. Affine Spriger fibers. Let k = Fq be a finite field with q elements.

Let G be a reductive group over k and g its Lie algebra. Let F = k((π)) and

OF = k[[π]]. Let γ ∈ g(F ) be a regular semisimple element. According to

Kazhdan and Lusztig [28], there exists a k-scheme Mγ whose set of k points is

Mγ(k) = {g ∈ G(F )/G(OF ) | ad(g)
−1

(γ) ∈ g(OF )}.

They proved that the affine Springer fiber Mγ is finite dimensional and locally

of finite type.

The centralizer Iγ(F ) acts on Mγ(k). The group Iγ(F ) can be given a

structure of infinite dimensional group P̃γ over k, acting on Mγ . There exists

a unique quotient Pγ of P̃γ such that the above action factors through Pγ and

there exists an open subvariety of Mγ over which Pγ acts simply transitively.
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Here is a simple but important example. Let G = SL2 and let γ be the

diagonal matrix

γ =

(

π 0

0 −π

)

.

In this case Mγ is an infinite chain of projective lines with the point ∞ in each

copy being identified with the point 0 of the next one. The group Pγ is Gm×Z

with Gm acting on each copy of P1
by rescaling and the generator of Z acting

by translation from each copy to the next one. The dense open orbit is obtained

by removing from Mγ its double points.

We have a cohomological interpretation for stable κ-orbital integrals. Let us

fix an isomorphism Q̄` ' C so that κ can be seen as taking values in Q̄`. Then

we have the formula

Oκ

γ(1g(OF )) = ]P0
γ(k)

−1
tr(Frq,H

∗
(Mγ ⊗k k̄, Q̄`)κ)

where Frq denotes the action of the geometric Frobenius on the `-adic cohomol-

ogy of the affine Springer fiber. In the case where the component group π0(Pγ)

is finite, H
∗
(Mγ , Q̄`)κ is the biggest direct summand of H

∗
(Mγ , Q̄`) on which

Pγ acts through the character κ. By taking κ = 1, we obtained a cohomological

interpretation of the stable orbital integral

SOγ(1g(OF )) = ]P0
γ(k)

−1
tr(Frq,H

∗
(Mγ , Q̄`)st)

where the index st means the direct summand where Pγ acts trivially. When

π0(Pγ) is infinite, the definition of H
∗
(Mγ , Q̄`)st and H

∗
(Mγ , Q̄`)κ is a little

bit more complicated.

Cohomological interptration of the fundamental lemma follows from the

above cohomological interpretation of stable and κ-orbital integrals. In general,

it does not seem possible to prove the cohomological fundamental lemma by

a direct method because the `-adic cohomology of the affine Springer fiber is

as complicated as the orbital integrals. Nevertheless, in the case of unrami-

fied conjugacy classes, by using a large torus action of the affine Springer fiber

and the Borel-Atiyah-Segal localization theorem for equivariant cohomology,

Goresky, Kottwitz and MacPherson proved a formula for the `-adic cohomol-

ogy of unramified affine fibers in assuming the purity conjecture. It shuold be

noticed however that there may be no torus action on the affine Springer fibers

associated to most ramified conjugacy classes.

4.2. The Hitchin fibration. The Hitchin fibration appears in a quite

remote area from the trace formula and the theory of endoscopy. It is fortunate

that the geometry of the Hitchin fibration and the arithmetic of endoscopy

happen to be just different smiling faces of Bayon Avalokiteshvara.

In [25], Hitchin constructed a large family of algebraic integrable systems.

Let X be a smooth projective complex curve and Bun
st

G the moduli space of

stable G-principal bundles on X. The cotangent bundle T ∗
Bun

st

G is natuturally
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a symplectic variety so that its algebra of analytic functions is equipped with a

Poisson bracket {f, g}. It has dimension 2d where d is the dimension of BunG.

Hitchin proves the existence of d Poisson commuting algebraic functions on

T ∗
BunG that are algebraically independent

f = (f1, . . . , fd) : T
∗
Bun

st

G → Cd. (18)

The Hamiltonian vector fields associated to f1, . . . , fd form d commuting vector

fields along the fiber of f . Hitchin proved that generic fibers of f are open

subsets of abelian varieties and Hamiltonian vector fields are linear.

To recall the construction of Hitchin, it is best to relax the stability condition

and consider the algebraic stack BunG of all principal G-bundles instead of its

open substack Bun
st

G of stable bundles. Following Hitchin, a Higgs bundle is

a pair (E, φ), where E ∈ BunG is a principal G-bundle over X and φ is a

global section of ad(E) ⊗ K, K being the canonical bundle of X. Over the

stable locus, the moduli space M of all Higgs bundles coincide with T ∗
Bun

st

G

by Serre’s duality.

According to Chevalley and Kostant, the algebra C[g]G of adjoint invariant

function is a polynomial algebra generated by homogeneous functions a1, . . . , ar
of degree e1+1, . . . , er+1 where e1, . . . , er are the exponents of the root system.

If (E, φ) is a Higgs bundle then ai(φ) is well defined as a global section of

K⊗(ei+1)
. This defines a morphism f : M → A where A is the affine space

A =

r
⊕

i=1

H
0
(X,K⊗(ei+1)

).

whose dimension equals somewhat miraculously the dimension d of dim(BunG).

This construction applies also to a more general situation where K is replaced

by an arbitrary line bundle, but of course the symplectic form as well as the

equality of dimension are lost. It is not difficult to extend Hitchin’s argument to

prove that, after passing from the coarse moduli space to the moduli stack, the

generic fiber of f is isomorphic to an extension of a finite group by an abelian

variety. More canonically, the generic fiber of f is a principal homogeneous space

under the action of the extension of a finite group by an abelian variety. On

the infinitesimal level, this action is nothing but the action of the Hamiltonian

vector fields along the fibers of f . We observe that Hamiltonian vector fields act

also on singular fibers of f , and we would like to understand the the geometry

of those fibers by this action.

In [54], we constructed a smooth Picard stack g : P → A that acts on

f : M → A. In particular, for every a ∈ A, Pa acts on Ma in integrating the

infinitesimal action of the Hamiltonian vector fields. For generic parameters a,

the action of Pa on Ma is simply transitive but for degenerate parameters a,

it is not. We observe the important product formula

[Ma/Pa] =

∏

v∈X

[Ma,v/Pa,v] (19)
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that expresses the quotient [Ma/Pa] as an algebraic stack as the product of

affine Springer fibers Ma,v by its group of symmetry Pa,v. For almost all v,

Ma,v is a disrete set acted on simply transitively by Pa,v.

In order to get an insight of the product formula, it is best to switch the

base field from the field of complex numbers to a finite field k. In this case, it

is instructive to count the number of k-points on the Hitchin fiber Ma as well

as on the quotients [Ma/Pa]. In order to get actual numbers, we assume that

the component group π0(Pa) is finite. This is the case for a in an open subset

A
ell

of A, called the elliptic part, to which we will restrict ourselves from now

on.

More details about the following discussion can be found in [54, 55]. For

a ∈ A
ell
(k), the fiber Ma is a proper Deligne-Mumford stack and the number

of its k-points can be expressed as a sum

|Ma(k)| =
∑

γ∈g(F )/∼,χ(f)=a

Oγ(1D) (20)

over rational conjugacy classes γ ∈ g(F )/ ∼, F denoting the function field of

X within the stable conjugacy class defined by a, of global orbital integral (11)

of certain adelic function 1D, whose local expression 1D =
∏

v∈|X|
1Dv

is given

by the choice of a global section of the line bundle K = OX(D). The number

of k-points on the quotient [Ma/Pa] can be expressed as a product of stable

orbital integrals

|[Ma/Pa](k)| =
∏

v∈|X|

SOa(1Kv
) (21)

We will now look for an expression of the sum of global orbital integrals (20)

in terms of stable orbital (21) plus correcting terms as in the stabilization of

the trace formula. In our geometric terms, this expression becomes

|Ma(k)| = |P
0
a(k)|

∑

κ

Oκ

γa
(1D) (22)

where Oκ
γa

are κ-orbital integrals attached to the Kostant conjugacy class γa in

the stable class a with respect to a Frobenius invariant character κ : π0(Pa) →

Q`
×
. The component group π0(Pa) or the smile of Avalokiteshvara is the origin

of endoscopic pain.

The cohomological interpretation of the formula (22) is the decomposition

into direct sum of the cohomology of Ma with respect to the action of π0(Pa)

H
∗
(Ma ⊗k k̄,Q`) =

⊕

κ:π0(Pa)→Q`
×

H
∗
(Ma ⊗k k̄,Q`)κ. (23)

It is not obvious to understand how this decomposition depends on a since

the component group π0(Pa) also depends on a. According to a theorem of

Grothendieck, the component groups π0(Pa) for varying a can be interpolated
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as fiber of a sheaf of abelian groups π0(P) for the étale topology of A. Restricted

to the elliptic part A
ell
, π0(P) is a sheaf of finite abelian groups. One of the

difficulties to understand the decomposition (23) lies in the fact that π0(P) is

not a constant sheaf. Nevertheless, the sheaf π0(P) acts on the perverse sheaves

of cohomology
p
H

n
(f∗Q`|A)

and decomposes it into a direct sum canonically indexed by a finite set of

semisimple conjugacy classes of the dual group Ĝ

p
H

n
(f∗Q`|Aell) =

⊕

[κ]∈Ĝ/∼

p
H

n
(f∗Q`|Aell).

This peculiar decomposition reflects the combinatorial complexity of the sta-

bilization of the trace formula, see [54, 55]. Among the direct summand, the

main term corresponding to κ = 1 is called the stable piece. For instance, the

surprising appearance of semisimple conjugacy classes of the dual group reflects

the presence of the equivalence classes of endoscopic groups in the stabilization

of the trace formula.

The stabilization of the trace formula as envisionned by Langlands and Kot-

twitz suggests that the [κ]-part in the above decomposition should correspond

to the stable part in the similar decomposition for an endoscopic group. This

prediction can be realized in a clean geometric formulation after we pass to the

étale scheme Ã over A cf. [56] which depends on the choice of a point ∞ ∈ X.

It was constructed in such a way that over Ã, π0(P) becomes a quotient of the

constant sheaf, whose sections over any connected test scheme are cocharacters

of the maximal torus T . Over Ã
ell
, we obtain a finer decomposition

p
H

n
(f∗Q`|Ãell) =

⊕

κ∈T̂

p
H

n
(f∗Q`|Ãell)κ

indexed by a finite subset of the maximal torus T̂ in Ĝ.

Let κ ∈ T̂ correspond to a nontrivial piece in the above decomposition. The

κ-component of the above direct sum is supported by the locus Ã
ell
κ in Ã

ell

given by the elements ã ∈ Ã
ell

such that κ : X∗(T ) → Q×

`
factors through

π0(Pã). This locus is not connected; its connected components are classified

by homomorphism ρ : π1(X,∞) → π0(Ĝκ). Such a homomorphism defines a

reductive group scheme H over X whose dual group is Ĥρ by outer twisting. It

can be checked that the connected component of Ã
ell
κ corresponding to ρ is just

the Hitchin base AHρ
for the reductive group scheme Hρ. Let ικ,ρ : ÃHρ

→ Ã

denote this closed immersion.

Theorem 8. Let G be a split semisimple group. There exists an isomorphism

⊕

n

p
H

n
(f∗Q`|Ãell)κ[2r](r) ∼

⊕

ρ

(ικ,ρ)∗

⊕

n

p
H

n
(fHρ,∗

Q`|Ãell
Hρ

)st
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where ρ are homomorphisms ρ : π1(X,∞) → π0(Ĝκ) and where r is some

multiple of deg(K).

Here we stated our theorem in the case of split group, but it is valid for

quasi-split group as well. In fact, the theorem was first proved for quasi-split

unitary group by Laumon and myself in [50] before the general case was proved

in [56]. To be more precise, the above theorem is proved under the assumption

that the characteristic of the residue field is at least twice the Coxeter number

of G.

The fundamental lemma for Lie algebra in equal characteristic case follows

from the above theorem by a local-global argument. The unequal characteristic

case follows from the equal characteristic case by theorem of Waldspurger [69]

oand Cluckers, Hales, Loeser [12]. Waldspurger assumes that p does not divide

the order of the Weyl group and Cluclers, Hales, Loeser needs a much stronger

lower bound on p. In number field case, these assumptions do not matter as

Hales proved that the validity of the fundamental lemma at almost all places

implies its validity at the remaining places. Currently, the fundamental lemma

for local fields of positive characteristic small with respect to G, is not known.

4.3. Support theorem. The main ingredient in the proof of theorem 8

is the determination of the support of simple perverse sheaves that appear as

constituent of perverse cohomology of f∗Q`.

Let C be a pure `-adic complex over a scheme S of finite type over a finite

field k. Its perverse cohomology
p
H

n
(C) are then perverse sheaves and geomet-

rically semisimple according to a theorem of Beilinson, Bernstein, Deligne and

Gabber cf. [5]. According to Goresky and MacPherson, geometrically simple

perverse sheaves are of the following form: let Z be a closed irreducible sub-

scheme of S⊗k k̄ with i : Z → S⊗k k̄ denoting the closed immersion, let U be a

smooth open subscheme of Z with j : U → Z denoting the open immersion, let

K be a local system on U , then K = i∗j!∗K[dim(Z)] is a simple perverse sheaf,

j!∗ being the functor of intermediate extension, and every simple perverse sheaf

on S ⊗k k̄ is of this form. In particular, the support Z = supp(K) of a simple

perverse sheaf is well defined. For a pure `-adic complex C over a scheme S,

we can ask the question what is the set of supports of simple perverse sheaves

occurring as direct factors of the perverse sheaves of cohomology
p
H

n
(C).

The main topological ingredient in the proof of theorem 8 is the determi-

nation of this set of supports. We state only the result in characteristic zero.

In characteristic p, we prove a weaker result, more complicated to state but

enough for the purposes of the fundamental lemma.

Theorem 9. Assume the base field k is the field of complex numbers. Then for

any simple perverse sheaf K direct factor of p
H

n
(f∗Q`|Ãell)st, the support of K

is Ãell. Similarly, if K is a direct factor of p
H

n
(f∗Q`|Ãell)κ, then the support of

K is of the form ιρ(ÃHρ
) for certain homomorphism ρ : π1(X,∞) → π0(Ĝκ).
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If we know two perverse sheaves having simple constituents of the same

support, in order to construct an isomorphism between them, it is enough to

construct an isomorphism over an open subset of the support. Over a small

enough open subscheme, the isomorphism can be constructed directly.

Let us explain the proof of the nonstandard fundamental lemma con-

jectured by Waldspurger. Let G1, G2 be semisimple groups with isogeneous

root systems. Their Hitchin moduli spaces M1,M2 map to the same base

A = A1 = A2. Let restrict to the elliptic locus and put A = A
ell
. In order to

prove (f1∗Q`)st ∼ (f2∗Q`)st, it is enough to prove that they are isomorphic over

an open subscheme of A, as we know every simple perverse sheaf occurring in

either one of these two complexes have support A
ell
. Over an open subscheme

of A
ell
, M1 is acted on simply transitively by extension of a finite group by an

abelian scheme and so isM2. The nonstandard fundamental lemma follows now

from the fact that the above two abelian schemes are isogeneous and isogeneous

abelian varieties have the same cohomology.

4.4. Weighted fundamental lemma. According to Waldspurger,

the twisted fundamental lemma follows from the usual fundamental lemma

and its nonstandard variant. Combining with his theorem that the fundamen-

tal lemma implies the transfer, the local results needed to stabilize the elliptic

part of the trace formula and the twisted trace formula.

The classification of automorphic forms on quasisplit classical group requires

the full power of the stabilization of the entire trace formula. For this purpose,

Arthur needs more the twisted weighted fundamental lemma. This conjecture

is an identity between twisted weighted orbital integrals.

The weighted fundamental lemma is now a theorem due to Chaudouard

and Laumon cf. [9]. In the particular case of Sp(4), it was previously proved by

Whitehouse cf. [72]. They introduced a condition of χ-stability in Higgs bundles

such that the restriction of the Hitchin map f : M → A to the open subset

A
♥

of stable conjugacy classes that are generically regular semisimple and to

moduli stack of χ-stable bundles M
♥

χ−st

f♥

χ−st : M
♥

χ−st → A
♥

is a proper morphism. This is an extension of the proper morphism fell
:

M
ell

→ A
ell

that depends on a stability parameter χ. Chaudouard and Lau-

mon extended the support theorem from fell
to f♥

χ−st. They also showed that

the number of points on a hyperbolic fiber of A
♥

can be expressed in terms

of weighted orbital integrals. The weighted fundamental lemma follows. It is

quite remarkable that the moduli space depends on the stability parameter χ,

though the number of points and the `-adic complex of cohomology don’t.

Finally, Waldspurger showed that the twisted weighted fundamental lemma

follows from the weighted fundamental lemma and its nonstandard variant. He

also showed that, if these statements are known for a local field of characteristic
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p, tehy are also known for a p-adic local field with the same residue field,

provided the residual characteristic does not divide the order of the Weyl group.

5. Functoriality Beyond Endoscopy

The unstability of the trace formula has been instrumental in establishing the

first cases of the functoriality conjecture. The stable trace formula now fully

established by Arthur should be the main tool in our quest for more general

functoriality.

In [43], Langlands proposed new insights for the general case of functori-

ality principle. He observed that we are primarily concerned with the ques-

tion how to distinguish automorphic representations π of G whose hypothetical

parametrization σ : LF →
LG has image contained in a smaller subgroup.

Assume π of Ramanujan type (or tempered), the Zariski closure of the image

of σ is not far from being determined by the order of the pole at 1 of the

L-functions L(s, ρ, π) for all representations ρ of
LG. Though we are not in

position to work directly with these L-functions individually, the stable trace

formula can be effective in dealing with the sum of L-functions attached to

all automorphic representations π or the sum of their logarithmic derivative.

Nontempered representations, especially the trivial representation, represent

an obstacle to this strategy as they contribute to this sum the dominant term.

The subsequent article [15], directly inspired from [43], might have proposed a

method to subtract the dominant contribution. Other works [65, 48, 16], more

or less inspired from [43], are the first encouraging steps on this new path that

might lead us to the general case of functoriality.
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234 Ngô Bao Châu
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Jussieu 5 (2006), no. 3, 423–525.

[70] Waldspurger, J.-L., A propos du lemme fondamental pondéré tordu. Math. Ann.
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A control system is a dynamical system on which one can act by using controls.

A classical issue is the controllability problem: Is it possible to reach a desired

target from a given starting point by using appropriate controls? We survey

some methods to handle this problem when the control system is modeled by

means of a nonlinear partial differential equation and when the nonlinearity

plays a crucial role.
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1. Introduction

A control system is a dynamical system on which one can act by using suitable

controls. Very often it is modeled by a differential equation of the following type

ẏ = f(y, u). (1)

The variable y is the state and belongs to some space Y. The variable u is the

control and belongs to some space U . The spaces Y and U can be of infinite

dimension and the differential equation (1) can be a partial differential equation

(PDE). There are many problems that appear when studying a control system.

One of the most common ones is the controllability problem, which, roughly

speaking, is the following one. Given two states, is it possible to steer the

control system from the first one to the second one? In the framework of (1),

this means that, given the state a ∈ Y and the state b ∈ Y, does there exist

∗Université Pierre et Marie Curie-Paris 6 and Institut universitaire de France, Laboratoire
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a map u : [0, T ] → U such that the solution of the Cauchy problem ẏ =

f(y, u(t)), y(0) = a, satisfies y(T ) = b? If the answer is yes, the control system

is said to be controllable.

The purpose of this article is to survey some results on the controllability

of nonlinear control systems in the case where the nonlinearity plays a crucial

role. This is, for example, the case when the linearized control system around

the equilibrium of interest is not controllable. This is also the case when the

nonlinearity is big at infinity and one looks for global results. For convenience,

we start by recalling in Section 2 some classical controllability results for control

systems in finite dimension. Then, in Section 3, we turn to systems modeled by

means of nonlinear partial differential equations.

2. Controllability of Finite Dimensional Control

Systems

Let, for i ∈ {0, 1, . . . ,m}, fi ∈ C∞
(Rn

;Rn
). In this section, our control system

is

ẏ = f(y, u) = f0(y) +

m
∑

i=1

uifi(y), (2)

where the state is y = (y1, . . . , yn)
tr

∈ Rn
and the control is u =

(u1, . . . , um)
tr
∈ Rm

. We assume that (ye, ue) ∈ Rn
×Rm

is an equilibrium, i.e.,

f(ye, ue) = 0.

Example 1 (Inverted pendulum on a cart). This is the traditional example

that one can find in most of the textbooks on control theory. This control

system consists of a cart with an inverted pendulum on it, as represented on

Figure 1. The mass of the cart is M . The pendulum rod is considered massless;

its length is denoted by l. The mass of the point mass at the end of the rod

is denoted by m. The force applied to the cart is the control and is denoted

by F . Let x1 := ξ, x2 := θ, x3 := ξ̇, x4 := θ̇ and u := F . The dynamical

equations governing the motion of this control system can be written in the

form ẏ = f(y, u), with y = (y1, y2, y3, y4)
tr

and

f(y, u) :=



















y3
y4

mly24 sin y2 −mg sin y2 cos y2

M +m sin
2 y2

+
u

M +m sin
2 y2

−mly24 sin y2 cos y2 + (M +m)g sin y2

(M +m sin
2 y2)l

−

u cos y2

(M +m sin
2 y2)l



















. (3)

Example 2 (Baby stroller). Let us consider the following control system, which

models a baby stroller,

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2, (4)
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ξ M

m

θ

l

F

Figure 1. An inverted pendulum on a moving cart.

where the state is (y1, y2, y3)
tr

∈ R3
and the control is (u1, u2)

tr
∈ R2

. The

variable y3 is an angle which gives the orientation of the baby stroller and

y1, y2 are the coordinates of the midpoint between the two back wheels; see

Figure 2.

y1

y2

y3

Figure 2. A baby stroller.

This control system is sometimes also called the “unicycle” or “shopping

cart” control system. Note that, however, in many shops, the four wheels of

a shopping cart are castor wheels. For the baby stroller control system, only

the two front wheels are castor wheels: The back wheels have a fixed direction
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(relatively to the baby stroller). For the control system (4), n = 3, m = 2 and,

for every y = (y1, y2, y3)
tr
∈ R3

, f1(y) = (cos y3, sin y3, 0)
tr
, f2(y) = (0, 0, 1)tr.

There are many possible choices for natural definitions of local controllabil-

ity. The most popular one is the following one.

Definition 3 (Small-Time Local Controllability (STLC)). The control system

ẏ = f(y, u) is small-time locally controllable at (ye, ue) if, for every real number

ε > 0, there exists a real number η > 0 such that, for every y0 ∈ Bη(ye) := {y ∈

Rn
; |y − ye| < η} and for every y1 ∈ Bη(ye), there exists u ∈ L∞

((0, ε);Rm
)

satisfying |u(t) − ue| 6 ε for almost every t ∈ (0, ε) and such that, if ẏ =

f(y, u(t)) and y(0) = y0, then y(ε) = y1.

The simplest control systems are linear control systems, i.e. systems such

that f(y, u) = Ay + Bu, for some A ∈ L(Rn
;Rn

) and some B ∈ L(Rm
;Rn

),

where L(Rk
;Rl

) denotes the set of linear maps from Rk
into Rl

. For linear

systems, a necessary and sufficient condition for STLC is given by the Kalman

rank condition that we recall in the next theorem.

Theorem 2.1 (Kalman’s rank condition). The linear control system ẏ = Ay+

Bu is small-time locally controllable at (0, 0) ∈ Rn
× Rm if and only if

Span {AiBu;u ∈ Rm, i ∈ {0, 1, . . . , n− 1}} = Rn. (5)

In “real life” there are very few linear control systems. But, by linearization,

controllability of linear control systems is important to study the controllability

of nonlinear systems. This is similar to the following classical result: Let F ∈

C1
(Rk,Rl

) and let a ∈ Rl
. Then, if F ′

(a) is onto, F is locally onto at a, i.e., the

image by F of every neighborhood of a is a neighborhood of F (a). This just

follows from the inverse mapping theorem. For the control system (2) and the

equilibrium(ye, ue), the analog of F ′
(a) is the linearized control system at the

equilibrium (ye, ue), i.e. the linear control system

ẏ =
∂f

∂y
(ye, ue)y +

∂f

∂u
(ye, ue)u, (6)

where the state is y ∈ Rn
and the control is u ∈ Rm

. Using again the inverse

mapping theorem, one has the easy but important following theorem.

Theorem 2.2 (Linear test). If the linear control system (6) is small-time lo-

cally controllable at (0, 0) ∈ Rn
× Rm, then ẏ = f(y, u) is small-time locally

controllable at (ye, ue).

Example 4. We go back to the inverted pendulum on a cart, already considered

in Example 1. The dynamics is ẏ = f(y, u) where f : R4
× R is defined by

(3). Note that f(0, 0) = 0. Hence (0, 0) ∈ R4
× R is an equilibrium of the
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control system ẏ = f(y, u). The linearized control system at this equilibrium is

ẏ = Ay +Bu with

A :=















0 0 1 0

0 0 0 1

0 −

mg

M
0 0

0
(M +m)g

Ml
0 0















, B :=
1

Ml









0

0

l

−1









.

Simple computations show that

det (B,AB,A2B,A3B) = −

g2

M4l4
6= 0.

Hence the linear control system ẏ = Ay+Bu satisfies the Kalman rank condition

(5) and therefore, by Theorem 2.1, is small-time locally controllable at (0, 0) ∈

R4
×R. By Theorem 2.2, this implies that the cart-pendulum system is small-

time locally controllable at the equilibrium (0, 0) ∈ R4
× R.

Example 5. We return to the baby stroller control system (4) considered

in Example 2. Note that (0, 0) ∈ R3
× R2

is an equilibrium of this control

system. The linearized control system around this equilibrium is the linear

control system

ẏ1 = u1, ẏ2 = 0, ẏ3 = u2, (7)

where the state is (y1, y2, y3)
tr

∈ R3
and the control is (u1, u2)

tr
∈ R2

. The

linear control system (7) is clearly not controllable (one cannot control y2).

Of course, if the linearized control system around an equilibrium is not

controllable, one cannot conclude anything about the small-time local control-

lability of the nonlinear control system at this equilibrium. This leads naturally

to the question: What to do if the linearized control system is not controllable?

In finite dimension the basic tool to deal with this problem is the use of (iter-

ated) Lie brackets. Let us recall that, if X ∈ C∞
(Rn

;Rn
) and Y ∈ C∞

(Rn
;Rn

)

are two smooth vector fields on Rn
, the Lie bracket [X,Y ] of X and Y is the

vector field on Rn
defined by [X,Y ](y) := Y ′

(y)X(y) −X ′
(y)Y (y). Examples

of iterated Lie brackets are [X, [X,Y ]], [[Y,X], [X, [X,Y ]]] etc.

Let us explain why Lie brackets are natural objects to study the local con-

trollability problem. Let us start with the case f0 = 0 (then the control system

is called a driftless control system). Hence the control system is

ẏ =

m
∑

i=1

uifi(y), (8)

where the state is y = (y1, . . . , yn)
tr
∈ Rn

and the control is u = (u1, . . . , um) ∈

Rm
. Let us fix η1 ∈ R, η2 ∈ R and a ∈ Rn

. For ε > 0, we consider the following
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control u : (0, 4ε) → Rm

u(t) = (η1, 0, 0, . . . , 0)
tr, t ∈ (0, ε),

u(t) = (0, η2, 0, . . . , 0)
tr, t ∈ (ε, 2ε),

u(t) = (−η1, 0, 0, . . . , 0)
tr, t ∈ (2ε, 3ε),

u(t) = (0,−η2, 0, . . . , 0)
tr, t ∈ (3ε, 4ε).

Let y : [0, 4ε] → Rn
be the solution of the Cauchy problem ẏ =

∑m

i=1
ui(t)fi(y),

y(0) = a. Straightforward computations lead to

y(4ε) = a+ ε2η1η2[f1, f2](a) +O(ε3) as ε → 0.

With these controls, starting from a, we have therefore succeeded to move in the

directions [f1, f2](a) and −[f1, f2](a). This can be “iterated”: suitable controls

allow to move in the directions ±[f1, [f1, f2]](a), ±[[f2, f1], [f1, [f1, f2]]](a) etc.

(see in particular [76]) and one has the following theorem.

Theorem 2.3 ([63, 16]). Let ye ∈ Rn. Let us assume that

{h(ye); h ∈ Lie({f1, . . . , fm})} = Rn. (9)

Then the control system (8) is small-time locally controllable at the equilibrium

(ye, 0) ∈ Rn
× Rm.

(A proof of this theorem is also given in [23, Section 3.3].) In (9) and in

the following, for a nonempty subset E of C∞
(Rn

;Rn
), Lie(E) denotes the Lie

algebra generated by E , i.e. the smallest (for the inclusion) vector subspace V

of C∞
(Rn

;Rn
) containing E and such that [X,Y ] ∈ V, for every X ∈ V and for

every Y ∈ V.

In fact, for driftless control systems, one can also get a global controllability

result relying on iterated Lie brackets. One has the following theorem.

Theorem 2.4 ([63, 16]). Let Ω be a nonempty open connected subset of Rn.

Let us assume that

{h(y); h ∈ Lie({f1, . . . , fm})} = Rn, ∀y ∈ Ω. (10)

Then the control system (8) is globally controllable in every time in Ω in the

following sense: For every y0 ∈ Ω, for every y1 ∈ Ω and for every T > 0, there

exists u ∈ L∞
((0, T );Rm

) such that the solution of the Cauchy problem

ẏ =

m
∑

i=1

ui(t)fi(y), y(0) = y0,

satisfies y(T ) = y1 and y([0, T ]) ⊂ Ω.

(A proof of this theorem is again also given in [23, Section 3.3].) When (10)

does not hold, the set of points which can be reached from a given point while

remaining in Ω is an immersed submanifold of Ω whose tangent space can be

precisely described: See [73].
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Example 6. Let us return to the baby stroller control system (4). This control

system can be written as ẏ = u1f1(y)+u2f2(y), with f1(y) := (cos y3, sin y3, 0)
tr

and f2(y) := (0, 0, 1)tr. One has [f1, f2](y) = (sin y3,− cos y3, 0)
tr
. Hence f1(y),

f2(y) and [f1, f2](y) span all of R3
, for every y ∈ R3

. This implies the small-

time local controllability of the baby stroller at (y, 0) ∈ R3
× R2

, for every

y ∈ R3
(see Theorem 2.3) and also the global controllability in every time of

this control system (see Theorem 2.4).

When there is a drift term f0, iterated Lie brackets are still useful. Let us

explain, for example, how to move in the direction ±[f0, f1]. Let η ∈ R. Let

a ∈ Rn
be such that f0(a) = 0. Let, for ε > 0, u : (0, 2ε) → Rm

be defined by

u(t) := (−η, 0, . . . , 0)tr, t ∈ (0, ε),

u(t) := (η, 0, . . . , 0)tr, t ∈ (ε, 2ε).

Let y : [0, 2ε] → Rn
be the solution of the Cauchy problem

ẏ = f0(y) +

m
∑

i=1

ui(t)fi(y), y(0) = a.

Straightforward computations lead now to y(2ε) = a+ ε2η[f0, f1](a)+O(ε3) as

ε → 0. Hence, starting from a, one can move in the directions ±[f0, f1](a).

Let us emphasize also that the Kalman rank condition (5) is also a condition

on (iterated) Lie brackets. Indeed, for k ∈ N, X ∈ C∞
(Rn

;Rn
) and Y ∈

C∞
(Rn

;Rn
), one defines ad

k

XY ∈ C∞
(Rn

;Rn
) by induction on the integer k

by ad
0
XY := Y , ad

k

XY := [X, ad
k−1

X
Y ]. Let us write the linear control system

ẏ = Ay +Bu as ẏ = f0(y) +
∑m

i=1
uifi(y) with

f0(y) := Ay, fi(y) := Bi, Bi ∈ Rn, (B1, . . . , Bm) := B.

Then

ad
k

f0
fi = (−1)

kAkBi, ∀k ∈ N, ∀i ∈ {1, . . . ,m}. (11)

Hence the Kalman rank condition (5) can be written in the following way

Span {ad
k

f0
fi(0); k ∈ {0, . . . , n− 1}, i ∈ {1, . . . ,m}} = Rn. (12)

Moreover, one easily checks that Kalman rank condition (5) is also equivalent

to

{h(0); h ∈ Lie({f0, . . . , fm})} = Rn. (13)

It turns out that, for analytic systems, condition (13) is necessary for small-time

local controllability at the equilibrium (0, 0): One has the following theorem.
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Theorem 2.5 ([46, 62]). Assume that

f0(ye) = 0. (14)

Assume that the control system (2) is small-time locally controllable at the

equilibrium point (ye, 0) and that the fi’s (i ∈ {0, . . . ,m}) are analytic. Then

{h(ye); h ∈ Lie({f0, . . . , fm})} = Rn. (15)

Hence, condition (15) is necessary for small-time local controllability of an-

alytic control systems (Theorem 2.5) and is also sufficient for small-time local

controllability for control systems without drift (Theorem 2.3) as well as for

linear control systems (Theorem 2.1 and (11)). However this condition is far

from being sufficient for small-time local controllability in general. Let us give

a simple example. We take n = 2 and m = 1 and consider the control system

ẏ1 = y22 , ẏ2 = u, (16)

where the state is y := (y1, y2)
tr

∈ R2
and the control is u ∈ R. This control

system can be written as ẏ = f0(y) + uf1(y) with f0(y) := (y22 , 0)
tr
, f1(y) :=

(0, 1)tr. One has [f1, [f1, f0]] = (2, 0)tr and therefore f1(0) and [f1, [f1, f0]](0)

span all of R2
. However the control system (16) is clearly not small-time locally

controllable at the equilibrium (0, 0) ∈ R2
× R since ẏ1 > 0.

One knows powerful sufficient conditions for small-time local controllability.

Let us mention, in particular, [1, 2, 3, 9, 10, 54, 34, 74, 75, 77] and references

therein. One knows also powerful necessary conditions which are stronger than

the one given in Theorem 2.5. See, in particular, [74, Proposition 6.3] and [72].

However, one does not know an (interesting) necessary and sufficient condi-

tion for small-time local controllability. One has the following challenging open

problem.

Open problem 2.6. Let k be a positive integer. Let Xk be the set of vector

fields in Rn whose components are polynomials of degree k. Let

S := {(f0, f1) ∈ Xk ×Xk; f0(0) = 0, ẏ = f0(y) + uf1(y) is STLC }.

Is S a semi-algebraic set?

Let us recall that a semi-algebraic set is a subset of a real finite dimensional

space (here X
2
k
) defined by a finite sequence of polynomial equations and poly-

nomial inequalities on the coordinates or any finite union of such sets. Let us

point out that the set of (f0, f1) ∈ X
2
k
satisfying the Lie algebra rank condition

(15) at ye = 0 is a semi-algebraic set: See [64, 41, 40].

3. Controllability of PDE Control Systems

We now turn to the cases of control systems modeled by partial differential

equations. Again the simplest cases concern the case of linear partial differential
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equations. There are many powerful tools to study the controllability of linear

control systems in infinite dimension. The most popular ones are based on

the duality between observability and controllability (related to the J.-L. Lions

Hilbert uniqueness method [58, 59]). This leads to try to prove observability

inequalities. There are many methods to prove these observability inequalities.

For example, let us mention the following methods (together with the pioneering

works where they have been introduced in control theory)

• Ingham’s inequalities [67],

• Multipliers method [47, 58, 59],

• Microlocal analysis [5],

• Carleman’s inequalities [49, 56, 50, 36]. (See also [78] in these proceed-

ings.)

However there are still plenty of open problems on the controllability of linear

partial differential equations.

Of course, when one wants to study the local controllability around an

equilibrium of a control system in infinite dimension, the first step is again

to study the controllability of the linearized control system. If this linearized

control system is controllable, one can usually deduce the local controllability

of the nonlinear control system. However this might be sometimes difficult due

to some loss of derivatives issues. One may need to use suitable complicated

iterative schemes. If the nonlinearity is not too big at infinity, one can get a

global controllability result (see in particular [79, 55, 80] for semilinear wave

equations and [31, 36, 33] for semilinear parabolic equations).

Let us now focus on cases where either the linearized control system around

the equilibrium is not controllable or when the nonlinearity is too big at infinity

to use this method for global controllability. Let us start with an example for

the first case, namely the Euler control system. (For the second case, see the

Navier-Stokes control system below.) Let Ω be a smooth connected nonempty

bounded open subset of Rn
. Let Γ0 be a nonempty open subset of the boundary

∂Ω of Ω. We denote by ν : ∂Ω → Rn
the outward unit normal vector field to Ω.

The controllability problem is the following one. Let T > 0. Let y0, y1 : Ω → Rn

be such that

div y0 = div y1 = 0 in Ω and y0 · ν = y1 · ν = 0 on ∂Ω \ Γ0. (17)

Does there exist y : [0, T ]× Ω → Rn
and p : [0, T ]× Ω → R such that

yt + (y · ∇)y +∇p = 0, div y = 0, in (0, T )× Ω, (18)

y · ν = 0 on [0, T ]× (∂Ω \ Γ0), (19)

y(0, ·) = y0, y(T, ·) = y1? (20)
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(For simplicity we do not specify the regularity of y0, y1, y, p etc: For these

regularities, see the given references.) This system models the flow in Ω of

an inviscid, incompressible fluid with constant density, which is equal to one

without loss of generality. The vector y(t, x) ∈ Rn
is the velocity of the fluid

and p(t, x) ∈ R is the pressure, both at time t and position x ∈ Ω. Condition

(19) states that the fluid does not flow through the boundary ∂Ω\Γ0: It slips on

this boundary without friction. The first equation of (18) is Newton’s second

law: It states that the acceleration of a fluid particle is proportional to the

pressure-force acting on it. The second equation of (18) is the incompressibility

condition: It states that the volume of any part of the fluid does not change

under the flow.

Note that, in the above formulation, the control does not appear explicitly:

We consider a control system as an underdetermined equation. However one

can specify the control if one wants to do so. Many choices are in fact possible.

For example, one can take as the control y · ν on Γ0 with
∫

Γ0

y · ν = 0 together

with curl y if n = 2 and the tangent vector (curl y) × ν if n = 3 at the points

of [0, T ] × Γ0 where y · ν < 0, where curl y is the vorticity of the velocity field

y.

The problem of the controllability of this control system (and of the Navier-

Stokes control system considered below) has been raised in [60, 61].

We start by giving an obstruction to the controllability for n = 2, when

there is a connected component Γ1 of ∂Ω which does not meet Γ0. Let γ0 be a

given curve in Ω. Let, for t ∈ [0, T ], γ(t) be the Jordan curve obtained, at time

t ∈ [0, T ], from the points of the fluids which, at time 0, were on γ0. The Kelvin

law tells us that, if γ(t) does not intersect Γ0,
∫

γ(t)
y(t, ·) ·

−→

ds =
∫

γ0

y(0, ·) ·
−→

ds,

∀t ∈ [0, T ]. We take γ0 := Γ1. Then γ(t) = Γ1 for every t ∈ [0, T ]. Hence, if
∫

Γ1

y1 ·
−→

ds 6=
∫

Γ1

y0 ·
−→

ds, one cannot steer the control system from y0 to y1.

More generally, for every n ∈ {2, 3}, if Γ0 does not intersect every connected

component of the boundary ∂Ω of Ω, the Euler control system is not control-

lable. This is the only obstruction to the controllability of the Euler control

system. Indeed, one has the following theorem.

Theorem 3.1 ([18, 21] for n = 2 and [42, 43] for n = 3). Assume that Γ0

intersects every connected component of ∂Ω. Then the Euler control system is

globally controllable in every time: For every T > 0, for every y0, y1 : Ω → Rn

such that (17) holds, there exist y : [0, T ]×Ω → Rn and p : [0, T ]×Ω → R such

that (18), (19) and (20) hold.

Let us sketch the main ideas of the proof of this controllability result. For

simplicity we assume that n = 2. One first studies (as usual) the controllability

of the linearized control system around 0. This linearized control system is the

underdetermined system

yt +∇p = 0, div y = 0, in (0, T )× Ω, and y · ν = 0 on [0, T ]× (∂Ω \ Γ0).

(21)
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Taking the curl of the first equation of (21), on gets (curl y)t = 0. Thus curl y

is constant along the trajectories for the linearized control system, which shows

that (21) is not controllable.

In Section 2, for finite dimensional control systems, we saw that when the

linearized control system is not controllable, the usual tool to use is (iterated)

Lie brackets. This can also be used for some infinite dimensional control sys-

tems. See in particular [4, 68] for Euler and Navier-Stokes equations and [13]

for a Schrödinger equation. However one does not know how to use this tool

for numerous examples of infinite dimensional control systems (including our

Euler control system). Let us explain the difficulty on the simplest PDE control

system, namely

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L), and y(t, 0) = u(t), t ∈ (0, T ). (22)

This is a control system where, at time t, the state is y(t, ·) : (0, L) → R and the

control is u(t) ∈ R. A natural state space is Y := L2
(0, L) and for the control

u it then suffices to take u ∈ L2
(0, T ) in order to have a well-posed Cauchy

problem. Of course, using the explicit expression of the solutions of (22), it

is easy to see that this control system is controllable on [0, T ] if and only if

T > L. Let us try to understand what is [f0, f1] for the control system (22).

We proceed as in Section 2. Let η ∈ R. Let us consider, for ε > 0, the control

defined on [0, 2ε] by

u(t) := −η for t ∈ (0, ε), u(t) := η for t ∈ (ε, 2ε).

Let y : (0, 2ε)× (0, L) → R be the (weak) solution of the Cauchy problem

yt + yx = 0, t ∈ (0, 2ε), x ∈ (0, L),

y(t, 0) = u(t), t ∈ (0, 2ε), y(0, x) = 0, x ∈ (0, L).

Then one readily gets, if 2ε 6 L,

y(2ε, x) = η, x ∈ (0, ε), y(2ε, x) = −η, x ∈ (ε, 2ε), y(2ε, x) = 0, x ∈ (2ε, L).

Unfortunately

∣

∣

∣

∣

y(2ε, ·)− y(0, ·)

ε2

∣

∣

∣

∣

L2(0,L)

→ +∞ as ε → 0
+.

In fact, for every φ ∈ H2
(0, L), one gets, after suitable computations,

lim
ε→0+

1

ε2

∫ L

0

φ(x)(y(2ε, x)− y(0, x))dx = −ηφ′
(0). (23)

So, in some sense, (23) says that, for the control system (22), [f0, f1](0) = δ′0.

Unfortunately it is not clear how to use this derivative of a Dirac mass at 0 in

the framework of our controllability problem.
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Remark 3.2. In fact the above problem already appears for f1 = ad0f0f1. Pro-

ceeding as for [f0, f1], one finds that, in some sense, we could say that, for the

control system (22), ad0f0f1(0) = δ0.

In order to overcome this difficulty, we use the return method, a method

introduced in [17] for a stabilization problem. Let us explain this method first in

the framework of the local controllability of a control system in finite dimension.

Thus we consider the control system ẏ = f(y, u), where y ∈ Rn
is the state

and u ∈ Rm
is the control. We assume that f is of class C∞

and satisfies

f(0, 0) = 0. The return method consists in reducing the local controllability of

a nonlinear control system to the existence of suitable trajectories and to the

controllability of linear systems. The idea is the following one: Assume that,

for every positive real number T and every positive real number ε, there exists

a measurable bounded function ū : [0, T ] → Rm
with ‖ū‖L∞(0,T ) 6 ε such that,

if we denote by ȳ the (maximal) solution of ˙̄y = f(ȳ, ū(t)), ȳ(0) = 0, then

ȳ(T ) = 0, (24)

the linearized control system around (ȳ, ū) is controllable on [0, T ]. (25)

Then, from the inverse mapping theorem, one gets the existence of η > 0 such

that, for every y0 ∈ Rn
and for every y1 ∈ Rn

such that |y0| < η and |y1| < η,

there exists u ∈ L∞
((0, T );Rm

) such that

|u(t)− ū(t)| 6 ε, t ∈ (0, T ),

and such that, if y : [0, T ] → Rn
is the solution of the Cauchy problem ẏ =

f(y, u(t)), y(0) = y0, then y(T ) = y1. Since T > 0 and ε > 0 are arbitrary,

one gets that ẋ = f(x, u) is small-time locally controllable at the equilibrium

(0, 0) ∈ Rn
× Rm

.

Let us show how this method works on the baby stroller control system (4).

For every ū ∈ C∞
([0, T ];→ R2

) such that, for every t in [0, T ], ū(T−t) = −ū(t),

every solution ȳ : [0, T ] → R3
of ˙̄y1 = ū1 cos ȳ3, ˙̄y2 = ū1 sin ȳ3, ˙̄y3 = ū2, satisfies

ȳ(0) = ȳ(T ). We impose ȳ(0) = 0. We then have ȳ(T ) = 0. The linearized

control system around (ȳ, ū) is

ẏ1 = −ū1y3 sin ȳ3 + u1 cos ȳ3, ẏ2 = ū1y3 cos ȳ3 + u1 sin ȳ3, ẏ3 = u2. (26)

Using a Kalman rank condition for time varying linear systems (see [69] or [23,

Theorem 1.18, page 11]), one can easily check that the linear control system (26)

is controllable if (and only if) ū 6≡ 0. Hence we have given a new proof of the

small-time local controllability of the baby stroller control system (4) at (0, 0) ∈

R3
× R2

which does not use Lie brackets: this proof uses only controllability

results for linear (time-varying) control systems.

The next proposition shows some kind of converse: The return method essen-

tially always works if the control system is small-time locally controllable. More

precisely, let us go back to the control system (2) and assume that (14) holds.
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We also assume that (15) holds. (Let us recall that, if the fi’s are analytic, (15)

is a necessary condition for small-time local controllability at (ye, 0) ∈ Rn
×Rm

:

See Theorem 2.5). Then one has the following proposition.

Proposition 3.3 ([70, 19]). Let us assume that the control system (2) is small-

time locally controllable at (ye, 0) ∈ Rn
×Rm. Then, for every ε > 0, there exists

ū ∈ L∞
((0, ε);Rm

) satisfying |u(t)| 6 ε for almost every t ∈ (0, T ) such that,

if ȳ : [0, ε] → Rn is the solution of ˙̄y = f(ȳ, ū(t)), ȳ(0) = ye, then

ȳ(T ) = ye,

the linearized control system around (ȳ, ū) is controllable.

However there is a fundamental drawback for the return method: it does

not provide any insight on strategies to construct (ȳ, ū).

Let us show how to construct (ȳ, ū) for our Euler control system. One looks

for (ȳ, p̄) : [0, T ]× Ω → Rn
× R such that

ȳt + (ȳ · ∇ȳ) +∇p̄ = 0, div ȳ = 0, in (0, T )× Ω, (27)

ȳ · ν = 0 on [0, T ]× (∂Ω \ Γ0), (28)

ȳ(T, ·) = ȳ(0, ·) = 0, (29)

the linearized control system around (ȳ, p̄) is controllable. (30)

We construct (ȳ, p̄) if n = 2 and Ω is simply connected. Let us take θ : Ω → R

such that

∆θ = 0 in Ω,
∂θ

∂ν
= 0 on ∂Ω \ Γ0. (31)

Then, let α : [0, T ] → [0,+∞) be such that α(0) = α(T ) = 0. Finally, we define

(ȳ, p̄) : [0, T ]× Ω → R2
× R by

ȳ(t, x) := α(t)∇θ(x), p̄(t, x) := −α̇(t)θ(x)−
α(t)2

2
|∇θ(x)|2.

Then (ȳ, p̄) is a trajectory of the Euler control system which goes from 0 to

0, i.e. it satisfies (27)–(28)–(29). Let us now study (30). The linearized control

system around (ȳ, p̄) is
{

yt + (ȳ · ∇)y + (y · ∇)ȳ +∇p = 0, div y = 0, in [0, T ]× Ω,

y · ν = 0 on [0, T ]× (∂Ω \ Γ0).
(32)

Taking once more the curl of the first equation, one gets

(curl y)t + (ȳ · ∇)(curl y) = 0 in [0, T ]× Ω. (33)

This is a simple transport equation on curl y. If there exists a ∈ Ω such that

∇θ(a) = 0, then ȳ(t, a) = 0 and (curl y)t(t, a) = 0, which shows that (33) is

not controllable. This is the only obstruction: If

∇θ does not vanish in Ω, (34)
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one can (easily) prove that (33), and then (32), are controllable if
∫ T

0
α(t)dt is

large enough. For the construction of θ : Ω → R satisfying (31) and (34), let

Γ+ and Γ− be two nonempty open connected subsets of Γ0 such that

Γ+ ∩ Γ− = ∅, Γ+ ∪ Γ− ⊂ Γ0.

Let g : ∂Ω → R be such that

{x ∈ ∂Ω; g(x) > 0} = Γ+, {x ∈ ∂Ω; g(x) < 0} = Γ−,

∫

∂Ω

g(s)ds = 0.

Let θ : Ω → R be the solution of the following Neumann problem

∆θ = 0 in Ω,
∂θ

∂ν
= g on ∂Ω,

∫

Ω

θ = 0.

Then one can check that (34) holds (apply the strong maximum principle to

the harmonic conjugate of θ together with Morse or degree theory).

From the above argument, one expects only a local controllability result

around 0. However this local controllability result leads to a global controllabil-

ity result by using the following simple scaling argument, which works in every

dimension n. If (y, p) : [0, 1] × Ω :→ Rn
× R is a solution of our Euler control

system (18)-(19), then, for every ε > 0, (yε, pε) : [0, ε] × Ω → Rn
× R defined

by

yε(t, x) :=
1

ε
y

(

t

ε
, x

)

, pε(t, x) :=
1

ε2
p

(

t

ε
, x

)

is also a solution of our Euler control system.

Let us now turn to the controllability of a Navier-Stokes control system.

The Navier-Stokes control system is deduced from the Euler control system by

adding the linear term −µ∆y: The equation is now

yt − µ∆y + (y · ∇)y +∇p = 0, div y = 0, in (0, T )× Ω, (35)

where µ > 0 is the viscosity of the fluid (a positive constant). For the boundary

condition, one requires now that

y = 0 on [0, T ]× (∂Ω \ Γ0), (36)

meaning that the viscous fluid sticks to the boundary ∂Ω \ Γ0. Here, for the

control u, one can take, for example, y = u on [0, T ]× Γ0.

Due to the regularizing effect of the Navier-Stokes equations, the “right”

controllability problem is not to go from a given state to another given state.

The right problem is to go from a state to a given trajectory. For simplicity we

assume that this given trajectory is 0. The controllability problem is then the

following one. Let T > 0. Let y0 : Ω → Rn
be such that

div y0 = 0 in Ω, y0 = 0 on ∂Ω \ Γ0,

Does there exist y : [0, T ]×Ω → Rn
and p : [0, T ]×Ω → R such that (35) (36)

hold, y(0, ·) = y0 and y(T, ·) = 0? One has the following theorem.
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Theorem 3.4 ([51, 52]; see also [35, 37, 38, 32]). Such a (y, p) exists if y0 is

small enough (in L2n−2
(Ω)

n).

A challenging open problem is the following one.

Open problem 3.5. Does (y, p) exist even if y0 is not small?

One has a positive answer to this problem if Γ0 = ∂Ω:

Theorem 3.6 ([20, 25, 39]). Such a (y, p) always exists if Γ0 = ∂Ω.

Note that the linearized control system around (0, 0) is controllable (this is

a key point for the proof of Theorem 3.4 and this property is known to be true

even if Γ0 6= ∂Ω). However this result seems to give only a local controllability

result (i.e. Theorem 3.4). The main idea is to consider other trajectories going

from 0 to 0 which have a better controllability around them. Let us explain this

in the context of a linear perturbation of a quadratic control system in finite

dimension. We consider the following control system

ẏ = F (y) +Bu(t), (37)

where the state is y ∈ Rn
, the control is u ∈ Rm

, B is a n × m matrix and

F ∈ C1
(Rn

;Rn
) is quadratic: F (λy) = λ2F (y), ∀λ ∈ [0,+∞), ∀y ∈ Rn

. We

assume that there exists a trajectory (ȳ, ū) ∈ C0
([0, T0];R

n
)×L∞

((0, T0);R
m
)

of the control system (37) such that the linearized control system around (ȳ, ū)

is controllable and such that ȳ(0) = ȳ(T0) = 0.

Remark 3.7. One has F (0) = 0. Hence (0, 0) is an equilibrium of the control

system (37). The linearized control system around this equilibrium is ẏ = Bu,

which is not controllable if (and only if) B is not onto.

Let A be a n× n matrix and let us consider the following control system

ẏ = Ay + F (y) +Bu(t), (38)

where the state is y ∈ Rn
, the control is u ∈ Rm

. For the application to

incompressible fluids, (37) is the Euler control system and (38) is the Navier-

Stokes control system.

One has the following (easy) theorem.

Theorem 3.8. Under the above assumptions, the control system (38) is globally

controllable in arbitrary time: For every T > 0, for every y0 ∈ Rn and for every

y1 ∈ Rn, there exists u ∈ L∞
((0, T );Rm

) such that

(

ẏ = f(y, u(t)), y(0) = y0
)

⇒

(

y(T ) = y1
)

.

Proof of Theorem 3.8. Let y0 ∈ Rn
and y1 ∈ Rn

. Let

G : R× L∞
((0, T0);R

m
) → Rn

(ε, ũ) 7→ ỹ(T0)− εy1
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where ỹ : [0, T0] → Rn
is the solution of ˙̃y = F (ỹ)+εAỹ+Bũ(t), ỹ(0) = εy0. The

map G is of class C1
in a neighborhood of (0, ū). One has G(0, ū) = 0. Moreover

G′

ũ
(0, ū)v = y(T0) where y : [0, T0] → Rn

is the solution of ẏ = F ′
(ȳ)y + Bv,

y(0) = 0. Hence G′

ũ
(0, ū) is onto. Therefore there exist ε0 > 0 and a C1

-map

ε ∈ (−ε0, ε0) 7→ ũε
∈ L∞

((0, T0);R
m
) such that

G(ε, ũε
) = 0, ∀ε ∈ (−ε0, ε0),

ũ0
= ū.

Let ỹε : [0, T0] → Rn
be the solution of the Cauchy problem ˙̃yε = F (ỹε) +

εAỹε + Bũε
(t), ỹε(0) = εy0. Then ỹε(T0) = εy1. Let y : [0, εT0] → Rn

and

u : [0, εT0] → Rm
be defined by

y(t) :=
1

ε
ỹε
(

t

ε

)

, u(t) :=
1

ε2
ũε

(

t

ε

)

.

Then ẏ = F (y) + Ay + Bu, y(0) = y0 and y(εT0) = y1. This concludes the

proof of Theorem 3.8 if T is small enough. If T is not small, it suffices, with

ε > 0 small enough, to go from y0 to 0 during the interval of time [0, ε], stay

at 0 during the interval of time [ε, T − ε] and finally go from 0 to y1 during the

interval of time [T − ε, T ].

The “morality” behind Theorem 3.8 is that the quadratic term F (y) wins

against the linear term Ay. Note, however, that for Euler/Navier-Stokes equa-

tions the linear term µ∆y contains more derivatives than the quadratic term

(y · ∇)y. This creates many new difficulties and the proof requires important

modifications. In particular, one first gets a global approximate controllability

result and then concludes with a local controllability result (see Theorem 3.4).

Of course, as one can see by looking at the proof of Theorem 3.8, this method

works only if we have a (good) convergence of the solution of the Navier-Stokes

equations to the solution of the Euler equations when the viscosity tends to

0. Let us recall that this is not known even in dimension n = 2 if there is no

control. More precisely, let us assume that Ω is of class C∞
, that n = 2 and that

ϕ ∈ C∞

0 (Ω;R2
) is such that div ϕ = 0. Let T > 0. Let y ∈ C∞

([0, T ] × Ω;R2
)

and p ∈ C∞
([0, T ]× Ω) be the solution to the Euler equations

(E)







yt + (y · ∇)y +∇p = 0, div y = 0, in (0, T )× Ω,

y · ν = 0 on [0, T ]× ∂Ω,

y(0, ·) = ϕ on Ω.

Let ε ∈ (0, 1]. Let yε ∈ C∞
([0, T ] × Ω;R2

) and pε ∈ C∞
([0, T ] × Ω) be the

solution to the Navier-Stokes equations

(NS)







yεt − ε∆yε + (yε · ∇)yε +∇pε = 0, div yε = 0, in (0, T )× Ω,

yε = 0 on [0, T ]× ∂Ω,

y(0, ·) = ϕ on Ω.

One knows that there exists C > 0 such that |yε|C0([0,T ];L2(Ω;R2)) 6 C, for every

ε ∈ (0, 1]. One has the following challenging open problem.
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Open problem 3.9. (i) Does yε converge weakly to y in L2
((0, T )×Ω;R2

)

as ε → 0
+?

(ii) Let K be a compact subset of Ω and m be a positive integer. Does yε
|[0,T ]×K

converge to y|[0,T ]×K in Cm
([0, T ] ×K;R2

) as ε → 0
+? (Of course, due

to the difference of boundary conditions between the Euler equations and

the Navier-Stokes equations, one does not have a positive answer to this

last question if K = Ω.)

The return method turns out to give controllability results on many other

partial differential equations, for example, Burgers equations [48, 15, 53], Saint-

Venant equations [22] (see also below), Vlasov Poisson equations [44], Isentropic

Euler equations [45], Schrödinger equations [6, 7], Korteweg-de Vries equations

[14], Hyperbolic equation [26], Navier-Stokes equations with a control force

having a vanishing component [27], Ensemble controllability of Bloch equation

[8]. For finite dimensional control systems, this method is much less interesting

since one then has at one’s disposal the powerful tool of iterated Lie brackets;

see however [71].

As mentioned above, there is an important difficulty in the application of the

return method, namely it is often difficult to construct the reference trajectory

(ȳ, ū) satisfying ȳ(0) = 0, (24) and (25). Let us present a method to take care

of this problem in some cases and that has been applied to get controllability

results for the Saint-Venant equation (shallow water equation) in [22] (which

is motivated by [30]) and a Schrödinger equation [6, 7] (which is motivated by

[66]). Let us deal with the control system modeled by the Saint-Venant equation.

It concerns the motion of a 1-D tank containing an inviscid incompressible

irrotational fluid. The tank is subject to one-dimensional horizontal moves.

We assume that the horizontal acceleration of the tank is small compared to

the gravity constant and that the height of the fluid is small compared to the

length of the tank. This motivates the use of the Saint-Venant equations (also

called shallow water equations) to describe the motion of the fluid; see e.g.

[29, Section 4.2]. After suitable scaling arguments, the length of the tank, the

gravity constant and the height of the fluid at rest can be taken to be equal to

1; see [22]. Then the dynamics equations are (see [30])



































Ht (t, x) + (Hv)x (t, x) = 0,

vt (t, x) +

(

H +
v2

2

)

x

(t, x) = −u (t) ,

v(t, 0) = v(t, 1) = 0,

ds

dt
(t) = u (t) ,

dD

dt
(t) = s (t) ,

(39)

where, see Figure 3, at time t and position x ∈ [0, 1],

• H (t, x) is the height of the fluid,
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D

x

vH

Figure 3. Fluid in the 1-D tank

• v (t, x) is the horizontal water velocity of the fluid in a referential attached

to the tank (in the Saint-Venant model, the points on the same vertical

line have the same horizontal velocity),

• u(t) is the horizontal acceleration of the tank in the absolute referential,

• s(t) is the horizontal velocity of the tank,

• D(t) is the horizontal displacement of the tank.

This is a control system, where at time t, the control is u(t) ∈ R and the state

is Y (t) = (H(t, ·), v(t, ·), s(t), D(t)).

One is interested in the local controllability of the control system (39)

around the equilibrium point (Ye, ue) := ((1, 0, 0, 0), 0). Of course, the total

mass of the fluid is conserved so that, for every solution of (39),

d

dt

∫ 1

0

H (t, x) dx = 0. (40)

(One gets (40) by integrating the first equation of (39) on [0, 1] and by using

the third equation of (39).) Moreover, if H and v are of class C1
, it follows

from the second and third equation of (39) that

Hx(t, 0) = Hx(t, 1) (= −u (t)). (41)

Therefore, we introduce the vector space E of functions

Y = (H, v, s,D) ∈ C1
([0, 1])× C1

([0, 1])× R× R

such that Hx(0) = Hx(1) and v(0) = v(1) = 0. We consider the affine subspace

Y ⊂ E of Y = (H, v, s,D) ∈ E satisfying

∫ 1

0

H(x)dx = 1. (42)
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For general controllability results for 1-D quasilinear hyperbolic systems, let us

refer to [57]. However, the results of [57] cannot be applied here since they all

deal with cases where the linearized control system around the equilibrium of

interest is controllable and, as pointed in [30], the linearized control system of

(39) around the equilibrium point (Ye, ue) is not controllable. However, as for

the Euler control system (18)-(19), the nonlinearity allows to get the control-

lability: One has the following theorem, where |ϕ|1 denotes the usual C1
-norm

of ϕ ∈ C1
([0, 1]).

Theorem 3.10 ([22]). There exists T > 0 satisfying the following property:

For every ε, there exists η > 0 such that, for every Y0 = (H0, v0, s0, D0) ∈ Y

and for every Y1 = (H1, v1, s1, D1) ∈ Y such that

|H0 − 1|
1
+ |v0|1 + |s0|+ |D0| < η, |H1 − 1|

1
+ |v1|1 + |s1|+ |D1| < η,

there exists (H, v, s,D, u) satisfying

H and v are in C1
([0, T ]× [0, 1]), s and D are in C1

([0, T ]), u in C0
([0, T ]),

(39) holds for every (t, x) ∈ [0, T ]× [0, 1],

(H(0, ·), v(0, ·), s(0), D(0)) = Y0 and (H(T, ·), v(T, ·), s(T ), D(T )) = Y1,

|H (t, ·)− 1|
1
+ |v (t, ·)|

1
+ |s (t)|+ |D (t)|+ |u (t)| < ε, ∀t ∈ [0, T ].

Note that, as a consequence of this theorem, it is possible to move the tank

from a given position to a desired position with the fluid at rest at the beginning

and at the end (see also [30] for such motion for the linearized control system).

For simplicity, we explain some of the main ideas of the proof of Theorem

3.10 on the following toy control problem in finite dimension

ẏ1 = y2, ẏ2 = −y1 + y2y3 + u, ẏ3 = y4, ẏ4 = −y3 + 2y1y2, (43)

where the state is y = (y1, y2, y3, y4)
tr

∈ R4
and the control is u ∈ R. The

linearized control system of (43) around (0, 0) ∈ R4
× R is

ẏ1 = y2, ẏ2 = −y1 + u, ẏ3 = y4, ẏ4 = −y3. (44)

This linear control system is again not controllable (look at (y3, y4)
tr
). The

analog of Theorem 3.10 for the control system (43) is the following proposition.

Proposition 3.11. There exists T > 0 such that, for every ε > 0, there exists

η > 0 such that, for every y0 ∈ R4 and every y1 ∈ R4 with |y0| < η and |y1| < η,

there exists u ∈ L∞
((0, T );R) satisfying |u(t)| < ε for almost every t ∈ (0, T )

and the following property: If y = (y1, y2, y3, y4)
tr
: [0, T ] → R4 is the solution

of the Cauchy problem

ẏ1 = y2, ẏ2 = −y1 + y2y3 + u, ẏ3 = y4, ẏ4 = −y3 + 2y1y2, y(0) = y0,

then y(T ) = y1.
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Let us prove this proposition by using the return method and quasi-static

deformations. (Of course, for the finite dimensional control system (43), a sim-

pler method relying on iterated Lie brackets can be used; but one does not know

how to adapt this method to the Saint-Venant control system (39).) In order to

use the return method, one needs, at least, to know trajectories of the control

system (43) such that the linearized control systems around these trajectories

are controllable. The simplest trajectories one can consider are the trajectories

((y
γ

1 , y
γ

2 , y
γ

3 , y
γ

4 )
tr, uγ

) := ((γ, 0, 0, 0)tr, γ), (45)

where γ is any real number different from 0. These trajectories are here

just equilibrium points (they could be more complicated: for the Saint-

Venant and Schrödinger control systems these special trajectories do depend

on time). The linearized control system around the trajectory (yγ , uγ
) :=

((y
γ

1 , y
γ

2 , y
γ

3 , y
γ

4 )
tr, uγ

) is the linear control system

ẏ1 = y2, ẏ2 = −y1 + u, ẏ3 = y4, ẏ4 = −y3 + 2γy2, (46)

Using the usual Kalman rank condition for controllability (Theorem 2.1), one

easily checks that this linear control system is small-time locally controllable

at (0, 0) ∈ R4
× R if (and only if) γ 6= 0. Let us now choose γ 6= 0 and τ1 > 0.

Then, by this controllability of (46) and Theorem 2.2, there exists δ1 > 0 such

that for every y0 ∈ B(yγ , δ1) := {y ∈ R4
; |y − yγ | < δ1} and for every y1 in

B(yγ , δ1) there exists u ∈ L∞
((0, τ1);R) such that |u(t) − γ| < γ for almost

every t ∈ (0, τ1) and

(

ẏ1 = y2, ẏ2 = −y1 + y2y3 + u, ẏ3 = y4, ẏ4 = −y3 + 2y1y2, y(0) = y0
)

⇒ (y(τ1) = y1).

Let us first deal with the weaker statement where one replaces, in Proposition

3.11, “There exists T > 0 such that, for every ε > 0, there exists η > 0 such

that...” by “For every ε > 0, there exist T > 0 and η > 0 such that...”. Then,

by the continuity of the solutions of the Cauchy problem with respect to the

initial condition, it suffices to check that

(i) there exist τ2 > 0 and a trajectory (ỹ, ũ) : [0, τ2] → R4
×R of the control

system (43) such that ỹ(0) = 0 and |ỹ(τ2)− yγ | < δ1.

(ii) there exist τ3 > τ2 + τ1 and a trajectory (ŷ, û) : [τ2 + τ1, τ3] → R4
× R of

the control system (43) such that ŷ(τ3) = 0 and |ŷ(τ2 + τ1)− yγ | < δ1.

In order to prove (i), we consider quasi-static deformations. Let g ∈

C2
([0, 1];R) be such that g(0) = 0 and g(1) = 1. Let ũ : [0, 1/ε] → R be

defined by ũ(t) = γg(εt). Let ỹ := (ỹ1, ỹ2, ỹ3, ỹ4)
tr
: [0, 1/ε] → R4

be defined by

˙̃y1 = ỹ2, ˙̃y2 = −ỹ1 + ỹ2ỹ3 + ũ, ˙̃y3 = ỹ4, ˙̃y4 = −ỹ3 + 2ỹ1ỹ2, ỹ(0) = 0.
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One easily checks that

ỹ(1/ε) → (γ, 0, 0, 0)tr as ε → 0,

which ends the proof of (i).

In order to get (ii) one just needs to modify a little bit the above construc-

tion. In order to have the required statement “There exists T > 0 such that, for

every ε > 0, there exists η > 0 such that...”, one needs some further estimates

which are omitted.

Remark 3.12. If g(y) := (y2,−y1 + γ + y2y3, y3,−y3 + 2y1y2)
tr, then the

eigenvalues of g′(yγ) are i and −i. This is why the quasi-static deformations

are so easy to perform. If this linear map had eigenvalues with strictly positive

real part, it is still possible to perform in some cases quasi-static deformations

by stabilizing the equilibriums by suitable feedbacks, as it has been pointed out

in [28] for a parabolic equation.

The method which we have used in order to prove Proposition 3.11 has

still an important drawback: Due to the quasi-static deformation parts, it leads

to too conservative estimates on the time T for controllability. Let us now

propose another method which gives the optimal estimate on the time T for

local controllability. This method, called “power series expansion” has been

introduced for the first time in infinite dimension for a KdV control system in

[24], a paper motivated by[65]. (For other applications of this method, see [7, 11,

12].) This method consists in looking for “higher order variations” which allows

to move in the directions which are missed by the controllability of the linearized

control system. These directions are ±(0, 0, 1, 0) and ±(0, 0, 0, 1) for the control

system (43). Let us describe this method in order to show that Proposition 3.11

holds more precisely for every T > π. (Again, for the finite dimensional control

system (43), a simpler method relying on iterated Lie brackets can be used;

but, again, one does not know how to adapt these methods to the PDE control

systems considered in [24, 7, 11, 12].)

One first looks to the linearized control system around 0, i.e. the linear

control system (44). Let T > 0 and let (ei)i∈{1,...,4} be the usual basis of R4
.

One easily sees that, for every i ∈ {1, 2}, there exists ui ∈ L∞
(0, T ) such that

(ẏ1 = y2, ẏ2 = −y1 + ui, ẏ3 = y4, ẏ4 = −y3, y(0) = 0) ⇒ (y(T ) = ei).

Let us assume for the time being that, for every i ∈ {3, 4}, there exist u±

i
∈

L∞
(0, T ) such that

(ẏ1 = y2, ẏ2 = −y1 + u±

i
, ẏ3 = y4, ẏ4 = −y3 + 2y1y2, y(0) = 0)

⇒ (y(T ) = ±ei). (47)

Note that in the left hand side of (47), we have put ẏ2 = −y1 + u±

i
and

not ẏ2 = −y1 + y2y3 + u±

i
. The reason is that the yi with i ∈ {1, 2} and u
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are considered to be of order 1, and the yi with i ∈ {3, 4} are considered to

be of order 2. With this choice of scaling, the left hand side of (47) is the

approximation of order 2 of the control system (43). Then, let b :=
∑4

i=1
biei.

Let, for i ∈ {3, 4},

ui := u+
i
if bi ≥ 0 and ui := u−

i
if bi < 0.

Let u ∈ L∞
(0, T ) be defined by u :=

∑

i∈{1,2}
biui +

∑

i∈{3,4}
|bi|

1/2ui. Let

y : [0, T ] → R4
be the solution of the Cauchy problem

ẏ1 = y2, ẏ2 = −y1 + y2y3 + u, ẏ3 = y4, ẏ4 = −y3 + 2y1y2, y(0) = 0.

Then straightforward estimates lead to y(T ) = b + o(b) as b → 0. Hence,

using the Brouwer fixed point theorem (and standard estimates on ordinary

differential equations), one gets the local controllability of (43) (around (0, 0) ∈

R4
× R) in the considered time T (and therefore Proposition 3.11 for that T ).

It then remains to prove the existence of u±

i
∈ L∞

(0, T ) for every i ∈ {3, 4}

and for T > π. Easy computations show that

(ẏ1 = y2, ẏ3 = y4, ẏ4 = −y3 + 2y1y2, y(0) = 0)

⇒

(

y3(T ) =

∫ T

0

y21(t) cos(T − t)dt, y4(T ) = y21(T )−

∫ T

0

y21(t) sin(T − t)dt

)

.

Then, taking u±

i
:= y1 + ẏ2, it is not hard to get that the existence of u±

i
∈

L∞
(0, T ) for every i ∈ {3, 4} holds if (and only if) T > π. Unfortunately, one

does not know how to use this power series expansion method for the Saint-

Venant control system (39) and the optimal value of T in Theorem 3.10 is not

known.
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pliquées. With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.

[59] Jacques-Louis Lions. Exact controllability, stabilization and perturbations for

distributed systems. SIAM Rev., 30(1):1–68, 1988.

[60] Jacques-Louis Lions. Exact controllability for distributed systems. Some trends

and some problems. In Applied and industrial mathematics (Venice, 1989), vol-

ume 56 of Math. Appl., pages 59–84. Kluwer Acad. Publ., Dordrecht, 1991.

[61] Jacques-Louis Lions. Are there connections between turbulence and controlla-

bility? 9th INRIA International Conference, Antibes, June 12–15, 1990.

[62] Tadashi Nagano. Linear differential systems with singularities and an application

to transitive Lie algebras. J. Math. Soc. Japan, 18:398–404, 1966.

[63] Petr K. Rashevski. About connecting two points of complete nonholonomic space

by admissible curve. Uch Zapiski Ped. Inst. Libknexta, 2:83–94, 1938.

[64] Jean-Jacques Risler. A bound for the degree of nonholonomy in the plane. The-

oret. Comput. Sci., 157(1):129–136, 1996.

[65] Lionel Rosier. Exact boundary controllability for the Korteweg-de Vries equation

on a bounded domain. ESAIM Control Optim. Calc. Var., 2:33–55 (electronic),

1997.

[66] Pierre Rouchon. Control of a quantum particle in a moving potential well. In

Lagrangian and Hamiltonian methods for nonlinear control 2003, pages 287–290.

IFAC, Laxenburg, 2003.

[67] David L. Russell. Nonharmonic Fourier series in the control theory of distributed

parameter systems. J. Math. Anal. Appl., 18:542–560, 1967.

[68] Armen Shirikyan. Approximate controllability of three-dimensional Navier-

Stokes equations. Comm. Math. Phys., 266(1):123–151, 2006.

[69] Leonard M. Silverman and Henry E. Meadows. Controllability and time-variable

unilateral networks. IEEE Trans. Circuit Theory, CT-12:308–314, 1965.

[70] Eduardo D. Sontag. Finite-dimensional open-loop control generators for nonlin-

ear systems. Internat. J. Control, 47(2):537–556, 1988.

[71] Eduardo D. Sontag. Control of systems without drift via generic loops. IEEE

Trans. Automat. Control, 40(7):1210–1219, 1995.

[72] Gianna Stefani. On the local controllability of a scalar-input control system.

In C.I. Byrns and A. Lindquist, editors, Theory and applications of nonlinear

control systems (Stockholm, 1985), pages 167–179. North-Holland, Amsterdam,

1986.
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[75] Héctor J. Sussmann. A general theorem on local controllability. SIAM J. Control

Optim., 25(1):158–194, 1987.
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Abstract

NP is the complexity class of problems for which it is easy to check that a

solution is correct. In contrast, finding solutions to certain NP problems is

widely believed to be hard. The canonical example is the sat problem: given a

Boolean formula, it is notoriously difficult to come up with a satisfying assign-

ment, whereas given a proposed assignment it is trivial to plug in the values and

verify its correctness. Such an assignment is an “NP-proof” for the satisfiability

of the formula.

Although the verification is simple, it is not local, i.e., a verifier must typ-

ically read (almost) the entire proof in order to reach the right decision. In

contrast, the landmark PCP theorem [4, 3] says that proofs can be encoded

into a special “PCP” format, that allows speedy verification. In the new format

it is guaranteed that a PCP proof of a false statement will have many many

errors. Thus such proofs can be verified by a randomized procedure that is lo-

cal: it reads only a constant (!) number of bits from the proof and with high

probability detects an error if one exists.

How are these PCP encodings constructed? First, we describe the related

and possibly cleaner problem of constructing locally testable codes. These are

essentially error correcting codes that are testable by a randomized local al-

gorithm. We point out some connections between local testing and questions

about stability of various mathematical systems. We then sketch two known

ways of constructing PCPs.
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1. Introduction

In this paper we discuss the computational complexity class NP and a ro-

bust characterization of this class through Probabilistically Checkable Proofs

(PCPs). We describe the

NP is the complexity class of problems for which it is easy to check that

a solution is correct. In contrast, finding solutions to NP problems is widely

believed to be hard. Consider for example the problem 3-sat
1
. Given a 3-

CNF Boolean formula, it is notoriously difficult to come up with a satisfying

assignment, whereas given a proposed assignment it is trivial to plug in the

values and verify its correctness. Such an assignment is an “NP-proof” for

the satisfiability of the formula. Indeed, an alternative way to define NP is

as the class of all sets L ⊂ {0, 1}∗ that have efficient proof systems: proof

systems in which there is a polynomial-time algorithm that verifies correctness

of the statement x ∈ L with assistance of a proof. This significantly generalizes

systems such as Frege’s propositional calculus in which a proof system is defined

by a set of axioms and inference rules, and a valid proof consists of a sequence of

steps that are either axioms or inferred from previous steps through an inference

rule.

Intuitively, a proof is very sensitive to error. A false theorem can be “proven”

by a proof that consists of only one erroneous step. Similarly, a 3-sat formula ϕ

can be unsatisfiable, yet have an assignment that satisfies all clauses save one.

In these cases, the verifier must check every single proof step / clause in order

to make sure that the proof is correct.

Probabilistically Checkable Proofs. In contrast, the PCP theorem gives

each set in NP an alternative proof system, in which proofs are robust. In this

system a proof for a false statement is guaranteed to have so many errors that

a verifier can randomly read only a few bits from the proof and decide, with

high probability of success, whether the proof is valid or not.

More formally, a PCP verifier for a set L ∈ NP is an extension of the

standard NP verifier. Whereas the standard verifier is given an input x
?

∈ L

and access to a proof π and is required to accept or reject, the PCP verifier

is also allowed to read some r random bits. However, it is restricted to read

only at most q bits from the proof. The class PCP [r, q] is defined to contain all

languages L for which there is a verifier V that uses O(r) random bits, reads

O(q) bits from the proof, and guarantees the following. Let V π
(x, ρ) denote the

output of V on input x, randomness ρ, and proof π.

• (Completeness:) If x ∈ L then there is a proof π such that

Pr
ρ
[V π

(x, ρ) accepts] = 1.

13-sat is defined in Section 2.
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• (Soundness:) If x 6∈ L then for any proof π,

Pr
ρ
[V π

(x, ρ) accepts] ≤
1

2
.

The PCP theorem says that every L ∈ NP has a verifier that uses at most

O(log n) random bits and reads only O(1) bits from the proof. In other words,

Theorem 1.1 (PCP Theorem, [4, 3]). NP ⊆ PCP[log n, 1].

Consider, as an example, the PCP verifier for 3-sat. Given an instance,

i.e. a 3-CNF Boolean formula ϕ, the PCP verifier reads ϕ, but is only allowed

access to a constant q number of bits from a proof string π. What should

be written in these bits? This clearly cannot be the “obvious” proof which is

just an assignment to the variables of ϕ. Such a proof will miserably fail the

soundness condition: unsatisfiable formulae that can be almost satisfied will

fool the verifier into accepting with too high a probability.

Locally Testable Codes. The fact that in a PCP proof system, a proof for

a false statement is guaranteed to have many errors begs the analogy to error

correcting codes. An error correcting code is a mapping C : {0, 1}k → {0, 1}n

in which even a tiny distance between two message strings x 6= y ∈ {0, 1}k is

guaranteed to become huge: the encoded strings C(x), C(y) will differ on at

least (say) 20% of their bits. In this analogy, it is the number of erroneous steps

in a proof that needs to be greatly amplified.

Can a PCP proof be constructed simply by encoding the standard NP proof?

This seems like a promising path to follow since error correcting codes are

easy to come by. In fact, the answer is yes, but with a caveat. A simple error

correcting code will certainly not do the trick . The encoding must be much

more subtle, and the main additional ingredient that is needed is local testability.

Local testability is the ability to decide if a string is a valid codeword by looking

at a (randomly selected) small part of it. This leads us to the definition of

locally testable codes (LTCs) whose construction is the combinatorial heart of

constructing PCPs. LTCs are a clean mathematical analog of PCPs whose

definition is direct and requires no mention of computation. We will discuss

testability and LTCs in Section 4.

Stability. Local testability is related to the notion of stability of mathemat-

ical systems. Generally speaking, a system of constraints (e.g. equations) is

considered stable if small perturbations of the system result in small perturba-

tions of the solution set. In such systems the only way to approximately satisfy

the system is by taking a valid solution and perturbing it. In other words,

approximate solutions are always perturbations of exact solutions.

In the discrete setting, when the constraints are, for example, Boolean, a

system of constraints is stable if any approximate solution, i.e. one that satisfies
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many of the constraints, must be close to a perfect solution, i.e. one that satisfies

the entire system. This notion naturally appears in various other mathematical

contexts, and there are interesting connections between results on PCPs and

stability results in areas such as discrete Fourier analysis, geometry, probability,

and arithmetic combinatorics.

Stability and hardness of approximation. The PCP machinery allows

one to transform any system (that belongs to NP) into a stable system. The

transformation can be done efficiently, even if solving the system is infeasible.

For example, the following is equivalent to the PCP theorem:

Theorem 1.2 (Informal Statement). There is an efficiently computable trans-

formation rpcp that on input a 3-CNF formula ϕ generates a 3-CNF formula

ϕ′
= rpcp(ϕ) such that the set s(ϕ′

) = {x |x satisfies ϕ′
} is stable (i.e., when-

ever x′ satisfies many of the clauses of ϕ′ it must be close to some x ∈ s(ϕ′
)).

Feige et. al. [16] were the first to discover the equivalence of this theorem

and Theorem 1.1, and this has had far reaching implications for the complexity

of approximation problems. We will discuss this further in Section 3.2.

Let us point out that Theorem 1.2 implies that if P 6= NP there is no

algorithm that inputs a 3-CNF formula and approximates the maximal number

of satisfiable clauses to within increasingly better precision. The reason is that

by applying such an algorithm on rpcp(ϕ) one can determine if ϕ is satisfiable

or not, thus solving an NP-complete problem.

In other words, we have just established the hardness of finding, even ap-

proximately, the maximal number of satisfiable clauses in a 3-sat formula.

Gap amplification. The key to constructing PCPs is a transformation that

amplifies errors in a proof, had there been any in the first place. The original

proof and formulation of the PCP theorem stemmed out of research on proof

verification. The techniques used in the proof are largely based on algebraic

encodings and testing results that are generally called “low degree tests”. More

recently, a combinatorial proof was given by the author [13]. This proof is

described more naturally as a hardness of approximation result, and it relies

on rapid mixing of random walks on expanding graphs. In Section 5 we sketch

these two approaches.

Organization. We begin in Section 2 with basic definitions, as well as an

introduction of the class NP aimed at the non-experts. In Section 3 we for-

mally state the PCP theorem, and connect it to hardness of approximation

problems. In Section 4 we discuss stability and local testable codes, and give a

concrete example of a locally testable code. This is intended to provide some

intuition as to how PCPs work. Finally, in Section 5 we sketch the algebraic

and combinatorial constructions of PCPs.
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2. Preliminaries

2.1. Computational Problems. A computational (search) problem

is formally described by a relation S ⊂ {0, 1}∗ × {0, 1}∗. We interpret the pair

(x, y) ∈ S to mean that y is a valid solution for problem instance x. Some

examples are

• satisfy = {(ϕ, a)} where ϕ describes a Boolean logic formula; and a

describes a satisfying assignment to the variables (i.e., an assignment

under which the formula evaluates to true).

• clique = {(G,K)} where G describes a graph, and K describes a clique

in the graph, i.e. a set of vertices each pair of which are connected by an

edge.

• proofs = {(T, π)} where T describes a theorem in some fixed logic proof

system, and π describes a proof for T in that proof system.

An optimization problem is a search problem S together with a valuation

function v : {0, 1}∗ → R+
that assigns a value to each solution. For example

the maximum clique problem is the search problem clique together with a

valuation function that counts the number of vertices in a given solution. The

goal is to find a clique of largest size.

An algorithm is called efficient if its running time is bounded by a polyno-

mial function in the length of the input. Whenever we consider an algorithm it

is implicitly assumed to be efficient. An algorithm solves an optimization (max-

imization or minimization) problem if for every instance x ∈ {0, 1}∗ it finds a

y ∈ {0, 1}∗ such that (x, y) ∈ S (if one exists) and v(y) is optimal (maximal or

minimal).

An r-approximation algorithm for a given combinatorial optimization prob-

lem is an algorithm that always finds a solution whose value is within multi-

plicative factor r of the optimal value.

It is often simpler to work with decision problems. A decision problem, or

a language, is a set L ⊂ {0, 1}∗. For a search problem S, denote by S(x) =

{y |(x, y) ∈ S }. A set L is a called a decision version of a search problem S if

L = {x ∈ {0, 1}∗ |S(x) 6= φ}

2.2. The class NP. It is natural to restrict attention to search problems

in which a correct solution can be efficiently recognized, regardless of how it is

reached.

Definition 1. An NP search problem is a search problem S for which there

is an efficient algorithm that inputs an instance x and a purported solution for

it y such that |y| ≤ |x|
O(1)

and outputs ‘yes’ if and only if (x, y) ∈ S.

Definition 2 (The ClassNP). The classNP is the set of languages L ⊆ {0, 1}∗

that are decision versions of NP search problems.
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A canonical example of a language in NP is Satisfiability (sat). It consists

of all satisfiable formulae ϕ. The corresponding search problem, described ear-

lier as satisfy, consists of all pairs (ϕ, a) where ϕ describes a logical Boolean

formula, and a describes an assignment to the variables that satisfies the for-

mula. Clearly, one can efficiently verify that a is a valid solution simply by

plugging in the values and simplifying. Intuitively, this seems much easier to

do than to actually find a from scratch. Indeed, an equivalent way to state the

famous P 6= NP conjecture is to say that there is no efficient way to always

find a given ϕ.

We next describe an optimization problem called max-csp, which is NP-

complete. First, let us define a constraint.

Definition 3 (Constraint). Let V = {v1, . . . , vn} be a set of variables that

take values in some finite alphabet Σ. A q-ary constraint C = (ψ, i1, . . . , iq)

consists of a q-tuple of indices i1, . . . , iq ∈ [n] and a predicate ψ : Σ
q

→

{0, 1}. A constraint is satisfied by a given assignment a : V → Σ iff

ψ(a(vi1), a(vi2), . . . , a(viq )) = 1.

The csp problem with parameters q and |Σ| is defined as follows. The prob-

lem instance is a set V of variables, an alphabet Σ, and a set of constraints

C1, . . . , Cm. The goal is to find an assignment to the variables that satisfies all

of the constraints. Several well-known problems in NP are special cases of csp.

For example,

• 3-sat is the problem when Σ = {0, 1}, all constraints have q = 3 and

a predicate that can be written as a disjunction of three literals, e.g.

ψ(a, b, c) = a ∨ ¬b ∨ c.

• 3-col is usually defined as a problem on graphs: given a graph, find a

3 coloring of the vertices χ : V → {1, 2, 3} such that no two adjacent

vertices are colored by the same color. Clearly, this is a special case of

csp if we take variable for each vertex, q = 2, Σ = {1, 2, 3}, and let

each edge represent a constraint whose predicate is the unequal predicate

ψ(a, b) = 1 iff a 6= b.

• 3-lin is the csp problem when Σ = {0, 1}, all constraints have q = 3 and

all predicates are affine equations over the field GF (2).

The related optimization problem max-csp is the problem of finding an assign-

ment that maximizes the number of satisfied constraints.

2.3. NP and Efficient Proof Systems. An equivalent definition

of the class NP, is as a class of efficient proof systems. Roughly speaking, a

logic proof system consists of a set of axioms and inference rules, such that

any of its theorems can be obtained through a sequence of steps each of which

is either an axiom, or is inferred from previous steps through application of
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one of the inference rules. As an example, one should keep in mind Frege’s

propositional calculus (see [11]) which consists of six axioms and one inference

rule. A proof system has two important properties called completeness and

soundness. Completeness means that every provable statement is true, and

soundness means that every true statement has a proof.

One can generalize this notion of a proof system as follows. First, observe

that one can fully describe the proof system through its verification process,

which we will call its verifier from now on. The verifier is nothing but an

algorithm that checks that each step is either an axiom or a result of applying

a derivation rule on some previous steps. Now, since the verifier fully defines

the proof system, we generalize by allowing a wider class of verifiers. Indeed,

we allow the verifier to be any efficient algorithm. We insist on the efficiency of

the verifier to maintain the intuitive notion that checking a proof should be an

easy and technical matter, unlike, perhaps, coming up with one.

More formally,

Definition 4. A language L ⊂ {0, 1}∗, has an efficient proof system if there

is an efficient algorithm, called a verifier, that inputs a string x and also a

purported proof string y. The verifier and runs in time polynomial in |x| and

either accepts or rejects, and

• (Completeness:) If x ∈ L then there is some y that the verifier accepts.

(In other words for every x ∈ L there is an acceptable proof y).

• (Soundness:) If x 6∈ L then for every y the verifier rejects. (In other words,

no proof y will be able to prove a false statement).

In this proof system the set L is interpreted to be the set of all ‘theorems’,

or ‘true’ statements.

Definition 5 (The class NP, second definition). The class NP is the set of all

languages L that have efficient proof systems.

For example, the set sat of all logical Boolean formulae that are satisfiable

has an efficient proof system. The verifier is a simple algorithm that expects,

as proof, a string y that represents a satisfying assignment, and then plugs

it in the formula and simplifies. From this example it becomes clear that NP
provides a rich variety of proof systems, quite different from the sequential ones

with which we began our discussion.

Reductions and NP completeness One can move quite freely between

different NP languages through reductions. A reduction from L1 to L2 is a

mapping r : {0, 1}∗ → {0, 1}∗ that has two properties. First, it is computable in

polynomial time, and second, it guarantees that x ∈ L1 if and only if r(x) ∈ L2.

There are languages inNP, calledNP-complete, that are “hardest” in the sense

that any otherNP language can be reduced to them. sat is a canonical example
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for an NP-complete set, and there are many others. The NP-completeness of

sat implies that for every L ∈ NP there is a reduction r mapping it to sat.

Through the notion of reductions we can see that one set can have many

different NP verifiers (or proof systems). For example, let L denote the set of

all graphs containing a clique of size at least k, for some k. Since L ∈ NP
and since sat is NP-complete, there is a reduction from L to sat. This gives

rise to the following (not so natural) verifier for L: Given an instance G
?

∈ L,

the verifier will first run the reduction to compute the formula r(G), and then

check that the proof is a satisfying assignment for this formula.

This example demonstrates that one NP set can have many proof systems,

quite different from one another. We will see in Section 3 that some of these

proof systems turn out to have quite remarkable properties.

2.4. Error Correcting Codes. The Hamming distance of a pair of

strings x, y ∈ {0, 1}n is denoted Dist(x, y) and is the number of bits on which

they differ. The relative Hamming distance is denoted by dist(x, y) and is equal

to Dist(x, y)/n.

We define an error correcting code with relative distance δ to be a mapping

C : {0, 1}k → {0, 1}n for which the following holds:

∀x 6= y ∈ {0, 1}k, dist(C(x), C(y)) ≥ δ.

We usually think of an error correcting code as part of an asymptotic family of

codes Ck one for each message length k, but this will be suppressed from the

following discussion.

Let us remark that error correcting codes with constant relative distance are

not hard to come by. A GF (2)-linear mapping C : {0, 1}k → {0, 1}n with n =

Θ(k) that is defined by an n×k matrix with 0/1 entries selected independently

at random will have constant relative distance with overwhelming probability.

3. The PCP Theorem

Probabilistically Checkable Proofs (PCPs) have evolved from the celebrated

notion of interactive proofs [23, 5] and the complexity class IP. This line of

research was originally motivated by cryptography and the study of what it

means for two entities to prove something to one another. Soon it lead to a list

of remarkable complexity-theoretic results (e.g., see [30, 40, 9, 17, 7]), which

seemed to suggest existence of a PCP verifier for every language in NP. At

the same time, a surprising connection was discovered by [16], showing that

existence of such a PCP verifier would imply that it is NP-hard to determine

the size of the maximum clique in a graph, even approximately. With this

additional motivation, the proof was soon found, first partially in [4] and then

fully in [3], and came to be known as the PCP theorem (Theorem 1.1).
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In this section we present the PCP theorem in two guises. First we follow

the standard presentation, as done in the introduction, but in more formal

details. Next, we present the PCP theorem as an NP-hardness result about

approximating constraint satisfaction problems.

3.1. The PCP theorem - formal statement. The PCP theorem

[4, 3] describes, for every language L ∈ NP, a proof system in which the verifier

is both enhanced with additional randomness and restricted in its access to the

proof.

Notation For any n ∈ N we denote by [n] the set of n elements {1, . . . , n}.

For a string s ∈ {0, 1}n and a set of indices I = {i1 < · · · < it} ⊂ [n], we

denote by s|I the t-bit string si1si2 · · · sit obtained by restricting s to I.

We now define formally the class PCP [r, q] through the notion of an (r, q)-

verifier.

Definition 6. An (r, q)-verifier for a language L ∈ NP is given an input

x ∈ {0, 1}n and is also allowed to read r random bits. It then computes a set

of q indices I = {i1, . . . , iq} and a Boolean predicate ψ : {0, 1}q → {0, 1} and

accepts if and only if ψ(π|I) = 1.

Definition 7. The class PCPc,s[r, q] contains all languages L for which there

is an (O(r), O(q))-verifier V such that

• (Completeness:) If x ∈ L then there is a proof π such that

Pr[ψ(π|I) = 1] ≥ c,

• (Soundness:) If x 6∈ L then for any proof π,

Pr[ψ(π|I) = 1] ≤ s.

where the probability is over the r bits of randomness of the verifier that are

used to compute ψ, I.

The PCP theorem says that every language in NP has a verifier that uses

at most O(log n) random bits and reads only O(1) bits from the proof. Here n

denotes the input length and the O(·) notation refers to asymptotic growth of

n→ ∞. In other words,

Theorem 3.1 (PCP Theorem, [4, 3]). NP ⊆ PCP1, 1
2

[O(log n), O(1)].
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3.2. The PCP theorem – a hardness of approximation re-
sult. The beautiful connection discovered by Feige et. al. [16] shed new light

on the hardness of approximating combinatorial optimization problems. (A for-

mal definition of approximation and optimization problems can be found in Sec-

tion 2). This entire field was soon completely transformed, when many known

algorithms found nearly matching lower bounds via the PCP theorem.

Approximation algorithms are a natural way to cope with NP-hard prob-

lems. By the late 1980’s approximation algorithms have been developed for a

variety of NP-hard problems. Different problems were found to have approx-

imation algorithms with vastly differing values of the approximation ratio r.

Predating the discovery of the PCP theorem and the connection of [16], there

were no lower bounds on approximation: it seemed possible that approxima-

tion is never NP-hard when r > 1, and even that every NP-problem can be

approximated up to any precision, in polynomial time.

An extreme example is the difference between the approximation behavior

of minimum vertex cover
2
and maximum independent set

3
. In any graph G =

(V,E), if S is an independent set then V \ S is a vertex cover. Thus finding an

exact solution for one problem is the same as for the other. In contrast, the best

approximation for the maximum independent set is within a factor only slightly

below the trivial factor of n, whereas vertex cover can be 2-approximated quite

easily.

The PCP theorem implied, for the first time, that numerous problems (in-

cluding, for example, the problems mentioned above) are hard to approximate

to within some constant factor. This has had a tremendous impact on the study

of combinatorial optimization problems, and today the PCP theorem stands at

the heart of nearly all hardness-of-approximation results.

The equivalence between the PCP theorem (as stated in Theorem 3.1) and

a hardness of approximation result is easily described in terms of the constraint

satisfaction problem csp (see definition in Section 2). First, let us state a typical

hardness of approximation result. We will then prove that it is equivalent to

the PCP theorem.

Theorem 3.2. For every L ∈ NP there is an absolute constant q ∈ N and a

reduction that maps x
?

∈ L to a csp instance with |Σ| = 2 and q-ary constraints

such that if x ∈ L then there is an assignment satisfying all constraints, and if

x 6∈ L then every assignment satisfies at most 1

2
of them.

Proposition 3.3 ([16]). Theorem 3.1 and Theorem 3.2 are equivalent.

Proof. (⇒): Let L ∈ NP and let V er be the (r, q)-verifier for L with r =

O(log |x|) and q = O(1). Recall that for each random string ρ, when V er is

2In the minimum vertex cover problem, one is given a graph and needs to find a smallest
set of vertices that touch all edges.

3In the maximum independent set problem, one is given a graph and needs to find a largest
set of vertices that spans no edges.
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run on the input x with randomness ρ, it computes a predicate and a set of

indices, i.e., a q-ary constraint. The reduction will simulate V er on every pos-

sible random string, thus generating a list of 2
O(logn)

constraints over variables

that represent the proof bits. This is the output csp instance of the reduction.

It is easy to see that the completeness and soundness of V er translate to the

desired behavior of the csp instance.

(⇐): Let L ∈ NP, we design an (O(log n), O(1))-verifier for it. The verifier

will input x, run the reduction computing from x a csp instance, and then

expect the proof π to contain an assignment to the variables of the csp in-

stance C = {C1, . . . , Cm}. The verifier will use its randomness select a random

constraint Ci = (ψ, i1, . . . , iq) ∈ C, read the corresponding bits from the proof

and accept iff ψ(π|{i1,...,iq}) = 1.

We discuss the proof of this theorem in Section 5.

3.3. Further Results. One way to study the class NP is by examining

its limits, or “boundary”. The search for tightest parameters and parameter

tradeoffs of PCP verifiers that still capture NP has been the focus of research

in the past two decades. Some questions of particular interest are

• Suppose the verifier is restricted to make exactly q ≥ 2 queries. What is

the smallest possible probability of error ? (this refers to the probability

that the verifier accepts an x 6∈ L, or rejects an x ∈ L).

• Viewing a PCP as an encoding of an NP proof, what is the smallest

possible encoding length? For example, could there be a mapping that

takes an n bit NP proof into an O(n) bit PCP ? Currently, the shortest

known PCPs take n bit NP proofs to PCPs of length n · (log n)O(1)
.

In terms of inapproximability, similar efforts have been made. Here, one is

interested in finding, for each approximation problem, what is the largest r for

which it is still NP-hard
4
to r-approximate the problem. In several cases this

r matches the best known approximation algorithm, and in other cases there

is still a huge gap.

The Unique Games Conjecture. One direction that has been very success-

ful in recent years stems from the unique games conjecture of Khot [25]. This

conjecture says that a certain restricted type of csp instance is NP-hard. This

can be viewed as a conjectured “strengthening” of the PCP theorem. There

have been many works [28, 27, 14, 29, 12, 39, 35] showing that if this conjec-

ture were true, then various approximation problems would be even harder to

approximate, often to within factors that match their best approximation algo-

rithms. Very recently Arora et. al [2] found a slightly subexponential algorithms

4A problem is NP-hard if an algorithm for can be used to solve any other problem in NP.
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for unique games. This can be taken as evidence that the unique games csp

may not be NP hard, and in the least, it seems easier than other csp’s such as

3-sat.

4. Local Testing and Stability

The idea that global phenomena can be determined based on local behavior

is commonplace. Whether it is astronomers that study the universe through

observing a tiny fraction of it, or statisticians deducing about entire populations

from polled data. Even when local observations are somewhat noisy we still

manage to deduce global properties quite nicely, or at least so we think. In

fact, what makes this paradigm go through is the fact that these properties are

stable.

Generally speaking, a system of constraints (e.g. equations) characterizes a

set in a stable manner if any approximate solution to the system is nothing but

a perturbation of some exact solution.

A system of constraints over Boolean variables is stable if any solution that

satisfies many of the constraints must be close to a solution that satisfies the

entire system.

In theoretical computer science the focus shifts to the solution set itself

rather than the constraints that characterize it. A set that can be characterized

by a stable set of local constraints (i.e., where each constraint looks at only at

most q bits of the proposed solution) is called locally testable.

In what follows we will formally define local testability. Next, we will give an

example of a locally testable property. We will then define and discuss locally

testable codes, which are an important notion in the construction of PCPs.

Finally, we will discuss connections to other mathematical areas in which similar

stability phenomena are studied.

4.1. Local Testing. A property of binary strings is a subset L ⊂ {0, 1}∗,

alternatively described as a sequence (Ln)n∈N, where Ln ⊆ {0, 1}n. We next

define what a locally testable property is. First let us recall that a constraint

over a string x ∈ {0, 1}n is defined by a predicate ψ : {0, 1}q → {0, 1} and q

indices i1, . . . , iq ∈ [n] and is satisfied on string x ∈ {0, 1}n if ψ(xi1 , . . . , xiq ) =

1.

Definition 8 (Local testability). A property Ln ⊂ {0, 1}n is locally testable

with q queries and error ε if there is a set of q-ary constraints C1, . . . Cm over

n bits such that for every x ∈ {0, 1}n

• If x ∈ L then Prj∈[m][x satisfies Cj ] = 1

• If x 6∈ L then Prj∈[m][x satisfies Cj ] ≤ ε

A property (Ln)n∈N is locally testable if Ln is locally testable for every n ∈ N.
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What is it that makes a property testable? Questions regarding what types

of properties are locally testable are the topic of a field called property testing.

This field started out from works on testing low algebraic degree of functions [4,

3, 16, 37, 19, 6, 33] similar to the example below, and more recently has evolved

into property testing of graph properties [21], codes [37, 22], and various other

types of objects. For a survey, see [20, 36].

4.2. Example: low degree testing. In this section we describe a

property that is locally testable. The purpose is to give a sense of what it

means to be locally testable. As our example, we chose the linearity testing of

[10] which also plays a role in the actual construction of PCPs. We will return

to this example later when we describe the PCP construction.

Let our universe consist of all functions f : Fk
2 → F2, where F2 = {0, 1} is

the field with two elements, and k ∈ N. The property under consideration is

the subset of all linear functions:

lin =

{

f : Fk

2 → F2

∣

∣

∣

∣

∣

∃a1, . . . , ak ∈ F2, s.t. ∀x f(x) =

k
∑

i=1

aixi

}

.

Although we only defined local testability for properties of strings, Definition 8

easily extends to functions by identifying a function f : Fk
2 → F2 with the string

f ∈ {0, 1}2
k

that describes its truth table.

In order to show that the property lin is testable, we must find a set of local

constraints that characterize the property in a stable way. This seems easy: for

each pair of points x, y ∈ Fk
2 think of the constraint that is satisfied if and

only if

f(x) + f(y) = f(x+ y).

Denoting this constraint by Cx,y we define C = {Cx,y}x,y∈Fk
2

to be our system

of constraints. It remains to verify that the definition of testability holds.

For sanity check we observe that if f is linear then every constraint will be

satisfied. Moreover, if every constraint is satisfied then surely the function is

linear. What is less obvious is what happens when f satisfies almost all of the

constraints, but not quite all. Does it necessarily have to be close to some linear

function?. A priori, one could imagine a function g for which

Pr
x,y∈Fk

2

[g(x) + g(y) = g(x+ y)] > 0.99 (1)

and yet g is far from every linear function.

Nevertheless, the linearity testing theorem of [10] implies that any g for

which (1) holds must agree with some linear function on at least 99% of the

domain.

Theorem 4.1 ([10, 8]). Let g : Fk
2 → F2 be a function for which dist(g, lin) ≤

1

2
. Then

Pr
x,y∈Fk

2

[g(x) + g(y) 6= g(x+ y)] ≥ dist(g, lin).
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The proof of this theorem turns out to be a relatively simple exercise in

discrete Fourier analysis. However, even straightforward generalizations of it

(for example, for the property of functions having degree 2, 3, etc.) require

significantly more work [1, 38, 24, 42] and many open questions still remain.

4.3. Locally testable codes. Let us return to the main topic of this

paper, Probabilistically Checkable Proofs. Recall our attempt to construct prob-

abilistically checkable proofs by encoding the NP proof. This encoding should

amplify errors in the original proof had there been any. The PCP verifier must

check that the given proof string is valid, i.e., that it is a valid encoding of a

valid NP proof. Focusing on the first part of the requirement (i.e., that of being

a valid encoding) is the task of locally testing a code.

Definition 9 (Locally testable code). A locally testable code is an error cor-

recting code C : {0, 1}k → {0, 1}n whose image Im(C) =
{

C(x)
∣

∣x ∈ {0, 1}k
}

is locally testable.

One usually considers error correcting codes with large relative distance,

δ = Ω(1). In such cases, every bit in the encoding should depend, on av-

erage, on a constant fraction of the message bits. In contrast, the fact that

Im(C) is locally testable means that there are very local correlations between

the encoding bits. These two requirements are in tension with one another,

and this is partly what makes the construction of locally testable codes more

challenging.

There are few known constructions of LTCs with reasonable parameters. A

first example is the Hadamard code

H : {0, 1}k → {0, 1}2
k

that encodes a message a = (a1, . . . , ak) ∈ {0, 1}k by a string H(a) ∈ {0, 1}2
k

that is the truth table of the linear function f defined by f(x) =
∑k

i=1
aixi.

First, note that if a 6= b ∈ {0, 1}k then dist(H(a), H(b)) = 1

2
, so this code has

good relative distance. Next, note that H is locally testable. This follows from

the testability of the property lin described in the previous section.

The main drawback of the Hadamard code as an LTC is its encoding length,

encoding k bits by 2
k
. There are much more efficient constructions, yet they are

much more complicated and less ‘explicit’. In general these come by stripping

down a construction of an equivalent PCP. It is a challenging question to find

a construction of an LTC that is as explicit as the Hadamard code, yet with

better parameters.

4.4. Connections with other fields. Questions about stability of

systems appear in various other fields of mathematics. Below we describe a few

examples that have some direct connections with PCPs.
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4.4.1. Approximate Polynomials. Polynomial functions obey local con-

straints that come essentially from interpolation formulae. For example, a de-

gree d univariate polynomial obeys many constraints on d + 2 points: simply

use the first d+1 points to compute the value on the remaining point, and test

that this is indeed the value. That these constraints are also stable is the topic

of “low degree tests” which play a key role in the proof of [4, 3] of the PCP

theorem.

Similarly a multi-variate polynomial of degree d that must behave in a

certain way on subspaces of dimension d+ 1 (again due to interpolation). The

fraction of subspaces on which a function behaves like a polynomial is exactly

captured by the so-called Gowers d+ 1 uniformity norm.

A sequence of works [1, 38, 24, 42] has been focused on characterizing what

functions have Gowers uniformity norm that is strictly above the value the

norm of a random function. This is called the inverse conjecture for the Gow-

ers uniformity norm, see also [41]. These questions are related to questions

in arithmetic combinatorics which study the behavior of sets containing many

arithmetic progressions. In PCPs, such results have been used for constructing

PCPs with near optimal tradeoff between the number of queries and the error

probability [39].

4.4.2. Approximate Dictatorships. Dictatorships are functions f :

{0, 1}n → {0, 1} that depend on only one variable. There are n such basic

functions, χi(x1, . . . , xn) = xi for each i ∈ [n]. There are many different ways

to characterize dictatorships in the hypercube, and each way leads to a different,

and often interesting, stability question. Here are two examples.

• One can measure the average sensitivity of a function. This is the prob-

ability that f(x) = f(x + ei) when x ∈ {0, 1}n and i ∈ [n] are chosen at

random (and ei is the unit vector with 1 in the i-th coordinate). For bal-

anced functions this value is minimized on dictators. A stability question

is to characterize all functions with average sensitivity that is within a

constant factor of the minimum. Friedgut [18] proved that such functions

must be close to “juntas” which are functions that depend on a constant

number of their n variables. Friedgut’s theorem has been used in results

related to the hardness of approximating the minimum vertex cover in a

graph [15, 28].

• The “majority is stablest” theorem is concerned with the noise sensitivity

of Boolean functions. This is the probability that f(x) = f(y) when y is

a “noisy” copy of x, i.e. when each coordinate of x is flipped with proba-

bility ε. Dictatorships are the least sensitive to noise, and the conjecture

above says that every function that is “far” from being a dictatorship

must have sensitivity at least as much as the majority function does (the

majority function evaluates to 1 on inputs x that have more 1’s than

0’s). The “majority is stablest” theorem was conjectured in [27] as part
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of an inapproximability result about max-cut. It was later proved in

[32] and led to the discovery of a powerful ‘invariance principle’ [32, 31].

At the heart of these results one needs a method to differentiate be-

tween dictatorships and between functions that are “smooth” and have

no variable that has large influence. The ‘invariance principle’ is a gen-

eralization of the central-limit-theorem showing that smooth polynomi-

als behave almost the same regardless of how each individual variable is

distributed.

Raghavendra [35] relied on the invariance principle to prove a very general

inapproximability result for csp’s.

We point the reader to Khot’s article [26] for more illuminating examples.

5. Construction of Probabilistically Checkable

Proofs

The original proof and formulation of the PCP theorem came from study of

proof verification. The techniques are largely based on algebraic encodings and

testing results that are generally called “low degree tests”. More recently, a

combinatorial proof was given by the author [13]. This proof is framed more

naturally as a hardness of approximation result, and it relies on rapid mixing

of random walks on expanding graphs. In this section we sketch these two

approaches.

5.1. PCPs using algebra. The original proof of the PCP theorem,

relies on “algebraic” encodings of NP witnesses by low degree functions. This

proof proceeds by constructing a (O(log n), O(1))-verifier for every language in

NP, thus proving Theorem 3.1.

5.1.1. A verifier for linear CSPs. Before constructing a (log n, 1)-verifier

for every NP language, let us construct such a verifier for the csp language

defined by linear and affine predicates. In other words, the input is a set of

linear or affine constraints, say each over two variables, and the goal is to verify

that a given assignment a satisfies all constraints. This is really only a baby

case since a verifier can determine efficiently whether the system is satisfiable

without looking at a proof at all. Nevertheless, it gives some intuition for the

actual proof.

We can encode the assignment a that satisfies all of these constraints us-

ing the so-called Hadamard code, that was described in Section 4.3. The PCP

verifier would expect as proof the encoding H(a) of an assignment. Since the

Hadamard code is a locally testable code, the verifier can test that a purported

proof w is a valid encoding of some a. Moreover, it is not hard to see, that since

this encoding consists of all linear forms in the input message a, it is also easy

to test whether a satisfies some set of affine predicates.
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5.1.2. The general case. Moving on to the general case, here are some of

the points that are resolved along the way.

• First, we need to be able to encode non-linear predicates. It turns out

that it suffices to consider degree 2 predicates since these are already

expressive enough to capture NP (in other words, the csp problem with

degree 2 predicates is NP-complete).

• Our second concern is the exponential length of the Hadamard encoding.

The PCP encoding should be efficient. In particular, we cannot afford

to encode n bits of message by 2
n
bits, as done by the Hadamard code.

This again is resolved by considering polynomials of higher degree, say

d = log n, over a larger field (of size say (log n)O(1)
). In other words,

the encoding of an n-bit assignment would be the point evaluation of a

polynomial function p : Fm
→ F whose restriction to some predefined set

of points S ⊂ Fm
agrees with the original assignment. This brings the

length of the encoding down, but causes a new problem. Although “low

degree tests” for such functions have been proven, these tests necessarily

use at least d queries to test whether a function has degree d. This is no

longer constant when d = log n.

• In order to reduce the number of queries from log n to O(1) one relies on

several steps and most importantly, on composition. We do not describe

this here.

• Finally, we neglected to describe how to check that the encoded proof

encodes a valid proof, i.e., one that satisfies the original constraints. This

is done by additional machinery and in particular using a so-called sum-

check procedure. For details see [4, 3].

5.2. PCPs using random walks on graphs. We now describe

a combinatorial proof of the PCP theorem due to the author, see [13, 34].

This proof is best described as an inapproximability result, i.e., as a proof for

Theorem 3.2, which we quote again for convenience:

Theorem 3.2. For every L ∈ NP there is a q ∈ N and a reduction that maps

x
?

∈ L to a csp instance with |Σ| = 2 and q-ary constraints such that if x ∈ L

then there is an assignment satisfying all constraints, and if x 6∈ L then every

assignment satisfies at most 1

2
of them.

It is enough to fix L to be one NP-complete language, say 3− col. Recall

that in this problem the input is a graph G = (V,E) and the goal is to decide

whether there is a coloring c : V → {1, 2, 3} such that for every (u, v) ∈ E,

c(u) 6= c(v).

We construct an algorithm that inputs a graph G and outputs a new graph

G′
such that

• If G is 3 colorable then so is G′
.
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• If G is not 3 colorable, then every coloring of the vertices of G′
must have

at least some ε > 0 fraction of unsatisfied (i.e., monochromatic) edges.

Let the unsat value of a graph G, denoted unsat(G), be the minimum frac-

tion of monochromatic edges, when going over all possible 3-colorings of G

unsat(G) = min
c:V→[3]

[

Pr
(u,v)∈E

[c(u) = c(v)]

]

.

Note that G is 3-colorable if and only if unsat(G) = 0. If G is not 3-colorable

then surely unsat(G) ≥ 1/ |E|.

Our algorithm proceeds by a sequence of encodings,

G→ G1 → G2 → · · · → G′

where the unsat value is amplified a little in each step.

The basic transformation Gi → Gi+1 will amplify this value by a constant

multiplicative factor. This will be done without harming the 3-colorability of

G in case it was 3-colorable. In other words, if Gi is 3-colorable, then so is

Gi+1, but otherwise unsat(Gi+1) ≥ 2 · unsat(Gi) (unless unsat(Gi) exceeds

some constant threshold).

After repeating this basic step O(log n) times the unsat value will become

some absolute constant and we are done. The transformation taking Gi to Gi+1

only causes a linear increase in the size of G, so repeating it this many times

(O(log n)) will not cause the output to be too large.

5.2.1. Amplifying the unsat value. Let us sketch a description of the trans-

formation taking Gi to Gi+1. For notation convenience we denote the input and

output graphs of the transformation by G,H instead of Gi, Gi+1.

This transformation involves two main steps.

1. In the first step G is encoded by a graph G′
and a 3-coloring for G

is encoded by a k-coloring for G′
, where k > 3 is some constant. The

vertices of G′
are the same as those of G, and the color of a vertex in

G′
is supposed to encode the colors of all of its neighbors in G. The

constraints on the edges of G′
are not “inequality” constraints as in a

proper k-colorability problem, but rather more general constraints that

check that the local colorings are consistent with each other. E.g., if two

vertices assign a different color to a common neighbor then this is an

inconsistency.

Finally, we place an edge between two vertices in G′
if they are at distance

up to 100 from each other.

By construction, if G were 3-colorable, then there is a k-coloring that

satisfies all of the new constraints. The main thing to prove is the converse.

Under some (expansion) conditions on the structure of G, one can show

that if the unsat value of G was α, the fraction of unsatisfiable constraints

on G′
is at least 2α.
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2. The second step involves an alphabet reduction, taking the k-colorability

instance G′
back into a 3-colorability instance H without harming the

unsat value too much. This step relies on composition similarly to the

way it is applied in the original proof of the PCP theorem, and is beyond

our scope.
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1. Introduction

Ergodic theory treats measure preserving dynamical systems. We recall: a

quadruple X = (X,B, µ, T ) is a measure preserving system (m.p.s.) if (X,B, µ)

is a measure space with µ(X) < ∞, and T : X → X is a measurable, measure

preserving map. That is to say, for B ∈ B, T−1(B) ∈ B and µ(T−1B) = µ(B).

The dynamical character of such a system appears when the transformation T

is iterated so that Tnx describes the state at the time n when the initial state

is x. There are two theorems at the foundation of classical ergodic theory:

Poincaré’s Recurrence Theorem. If (X,B, µ, T ) is an m.p.s. and A ∈ B

with µ(A) > 0, then for some n = 1, 2, 3, . . . , µ(A ∩ T−nA) > 0.

It is not hard to deduce from this that in fact almost every point of A

returns to A infinitely often.

Birkhoff’s Pointwise Ergodic Theorem. If (X,B, µ, T ) is an m.p.s. and

f ∈ L1
(X,B, µ), then for almost every x ∈ X, the limit as N → ∞ of ergodic

averages

AN (f, x) =
1

N

N−1
∑

n=0

f(Tnx) (1.1)

exists, and the limit function f̄(x) = limAN (f, x) satisfies f̄(Tx) = f̄(x) and
∫

f̄dµ =
∫

fdµ.
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Our focus here will be on “non-conventional ergodic averages”,

1

N

N−1
∑

n=0

f1(T
p1(n)x)f2(T

p2(n)x) · · · fk(T
pk(n)x) (1.2)

and their limits, in which several functions are involved simultaneously,

and these are evaluated on the orbit of a point x at polynomial times

p1(n), p2(n), . . . , pk(n) respectively. The polynomial character of the times has

no special dynamical significance, but is meaningful for diophantine applica-

tions.

The diophantine significance of expressions of the form (1.2) showed up first

in the ergodic theoretic proof of Szemerédi’s theorem. This theorem states that

if a set E of integers has positive upper density, then it contains arbitrarily

long arithmetic progressions. It can be shown — via a correspondence principle

([EW10], [TT09, p. 163]) — that this is equivalent to the following extension

of the Poincaré recurrence theorem:

The Multiple Recurrence Theorem. For any m.p.s. X = (X,B, µ, T ), if

A ∈ B with µ(A) > 0 and k ∈ N, then for some n

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0. (1.3)

This recurrence result was first proved by a consideration of averages.

Namely, ([FU77]) one showed that for any k,

lim inf
N→∞

1

N

N−1
∑

n=0

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0. (1.4)

This raises the question as to whether the limit in question exists, and this will

be the case, if, setting f(x) = 1A(x) the “non-conventional average”

lim
N→∞

1

N

N−1
∑

n=0

f(Tnx)f(T 2nx) · · · f(T knx)

exists in L2
(X,B, µ). This in fact is true but considerably more effort was

required to obtain this “mean ergodic theorem” than was needed for (1.4). (See

[EW10], [BL96] and [FU81] for a more detailed exposition.)

One is now able to extend the two types of phenomena further to polyno-

mial times, as we’ll see. We can talk of a “polynomial mean ergodic theorem”

as well as a “polynomial multiple recurrence theorem”. The former is of in-

terest in its own right as a legitimate topic in ergodic theory; the latter is of

interest also for its diophantine and combinatorial implications. The polyno-

mial mean ergodic theorem is the statement that for any bounded measurable

functions f1, f2, . . . , fk and integer valued polynomials p1(n), p2(n), . . . , pk(n),

the averages in (1.2) converge, as N → ∞, in L2
(X,B, µ). It is believed that
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one also has almost everywhere convergence but this has been proved so far

only for some special cases. A polynomial multiple recurrence theorem is the

analogue of (1.3) or (1.4) with n, 2n, . . . , kn replaced by a suitable set of poly-

nomials. Some restrictions on the polynomials pj(n) have to be made since, e.g.,

it is easy to construct systems with µ(A ∩ T−(2n+1)A) = 0 for certain A for

all n.

2. Ergodicity, Factors and the Basic Structure

Theorems

A system (X,B, µ, T ) is ergodic if for A,B ∈ B with µ(A), µ(B) > 0 there

exists n with µ(A ∩ T−nB) > 0. This is equivalent to the condition that if f is

measurable and f ◦ T = f then f is almost everywhere constant. The ergodic

theorem implies in this case that the limit f̄ of (1.1) is constant, and the

condition
∫

f̄dµ =
∫

fdµ implies that f̄(x) = 1

µ(X)

∫

fdµ. We will be assuming

throughout that µ(X) = 1, so that for ergodic systems we obtain AN (f, x) →
∫

fdµ a.e.

For two measure spaces (X,B, µ) and (Y,D, ν), a map π : X → Y is

measurable if the σ-algebra π−1(D) ⊂ B and π is measure preserving if for

D ∈ D, µ(π−1(D)) = ν(D). For (X,B, µ) a “Lebesgue space” we have the no-

tion of “decomposition of µ relative to (Y,D, ν)” and conditional expectation.

(See [GL03], [FU81] for details). Namely there is an almost everywhere defined

map from Y to probability measures on X, y → µy, so that µ =
∫

µydν(y),

meaning that
∫

fdµ =
∫

{

∫

fdµy}dν(y) for f ∈ L1
(X,B, µ). The function

φ(y) =
∫

fdµy is denoted E(f |π−1(D)) (See [DO53]). The lift of the latter

function to X, E(f |π−1(D))◦π belongs to L1
(X,B, µ) and for f ∈ L2

(X,B, µ),

the linear map f → E(f |π−1D)◦π is the orthogonal projection of L2
(X,B, µ) to

the subspace L2
(Y,D, ν) ◦ π. We will use the notation E(f |Y ) interchangeably

for the function E(f |π−1(D)) on Y and its lift to X.

For two measure preserving systems (X,B, µ, T ), (Y,D, ν, S) we will speak of

a measurable, measure preserving map π : X → Y as a homomorphism if for a.e.

x ∈ X, Sπ(x) = π(Tx). It will follow that for almost every y, T (µy) = µSy and

that E(f◦T |Y ) = E(f |Y )◦S as functions on Y . When we have a homomorphism

of a system X to a system Y we speak of the latter as a factor of the former

and of the former as an extension of the latter.

Suppose Y = (Y,D, ν, S) is a degenerate system meaning that Sy = y for

each y ∈ Y , and suppose π : X → Y is a homomorphism. Then the measures

µy are T -invariant for a.e. y. We can then form systems (X,B, µy, T ). One now

has the ergodic decomposition theorem:

Theorem. For any m.p.s. X = (X,B, µ, T ) there is a degenerate factor

Y = (Y,S, ν, S) for which the systems (X,B, µy, T ) are almost all ergodic.
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A consequence of this ergodic decomposition theorem, together with the

representation µ =
∫

µydν(y), is that the issues we are dealing with, recurrence

and convergence of ergodic averages, can be confined to the case of an ergodic

system. We proceed to present a structure theorem for ergodic systems. We will

describe two types of extensions for ergodic systems and the basic structure

theorem for ergodic systems will be the assertion that combining these two

forms of extensions one can arrive at any ergodic system starting from the

trivial 1-point system.

For a compact metric space M we denote by Isom(M) the compact group

of isometries of M . We will say that X = (X,B, µ, T ) is an isometric extension

of Y = (Y,D, ν, S) if the former can be represented as X = Y ×M for compact

metric M with µ = ν ×mM where mM ∈ P(M) is invariant under isometries,

and T (y, u) = (Sy, ρ(y)u) where ρ : Y → Isom(M) is measurable. When Y
is a trivial system and X an ergodic isometric extension, it can be seen that

X ≈ M is a compact abelian group and Tx = ax where a ∈ M generates a

dense subgroup of M . We call such a system a Kronecker system and denote

the action of S additively: z → z + α, and denote the system (M , Borel sets,

Haar measure, translation by α) briefly by (M,α).

Let X = (X,B, µ, T ) be an ergodic m.p.s. with Kronecker factor (Z,α)

and let ϕ : X → Z define the corresponding homomorphism. Any character

χ : Z → S1
satisfies χ(z + α) = χ(α)χ(z) and so lifting to X, if f = χ ◦ ϕ,

f(Tx) = χ ◦ ϕ(Tx) = χ(ϕ(x) + α) = χ(α)χ ◦ ϕ(x) = χ(α)f(x), we obtain an

eigenfunction f of the operator f → f◦T . For ergodic systems all eigenfunctions

come about in this way, and indeed, using the group of eigenfunctions of the

induced operator Tf = f ◦ T , we can construct a “universal” Kronecker factor

(Z̃, α̃) of X such that all Kronecker factors of X are factors of (Z̃, α̃). We refer

to (Z̃, α̃) as the Kronecker factor of X.

A broader family of systems is obtained by taking successive isometric

extensions of previously defined systems. This leads to the notion of a dis-

tal system: X is distal if it is a member of a (possibly) transfinite tower

of systems {Xη, η ordinal} having at its base X0 the trivial 1-point sys-

tem, and with Xη+1 an isometric extension of Xη, and for a limit ordinal

η, Xη = lim
ξ<η

Xξ.

The other type of extension which will appear in our general structure

theorem is that of a (relatively) weakly mixing extension, which we abbre-

viate to WM extension. Recall that a system is (absolutely) weakly mixing if

X × X is ergodic. In the relative notion we introduce the “relative product”.

If (Xi,Bi, µi), i = 1, 2, are two measure spaces, fi, i = 1, 2, two measurable

function on these spaces respectively, we denote by f1 ⊗ f2 the function on

X1 × X2 with f1 ⊗ f2(x1, x2) = f1(x1)f2(x2). Suppose X1 and X2 are both

extensions of a system Y there will be a unique measure µ̃ or X1 × X2 with
∫

f1⊗f2dµ̃ =
∫

E(f1|Y )E(f2|Y )dν(y). If Xi = (Xi,Bi, µi, Ti) then T1×T2 will
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preserve the measure µ̃. We can speak of the m.p.s. (X1×X2,B1×B2, µ̃, T1×T2)

which we denote X1 ×

Y

X2. We now make the definition:

Definition. A system X is a WM extension of a factor Y if X×

Y

X is ergodic.

Our main structure theorem is:

Theorem. Every ergodic system is a WM extension of its maximal distal fac-

tor.

It follows from this that every ergodic system arises by taking successively

isometric and WM extensions beginning with the trivial system.

The ergodic decomposition theorem together with the foregoing structure

theorem were made use of in the original proof of (linear) multiple recurrence in

the form (1.4) which implies Szemerédi’s theorem. (See [FKO82]). A variant of

that argument in the spirit of the proof of Szemerédi’s theorem for commuting

transformations ([FK78]) is the following. Call a system an MR system when

(1.4) holds for all sets A of positive measure and for all k. It is relatively

straightforward to show that a WM extension of an MR system is MR. Using

van der Waerden’s theorem on arithmetic progressions, one can show that the

MR property is also preserved under isometric extensions. Finally one argues

that every system has a maximal MR factor and this proves that every ergodic

system is MR. Ultimately by ergodic decomposition the phenomenon of (linear)

multiple recurrence is established.

A similar strategy was adopted by V. Bergelson and A. Leibman in [BL96]

to obtain a polynomial multiple recurrence theorem:

Theorem. Let p1(n), p2(n), . . . , pk(n) be polynomials with integer coefficients

and with vanishing constant term (pi(0) = 0), then for any m.p.s. X =

(X,B, µ, T ) and a set A ∈ B with µ(A) > 0, there exists n 6= 0 with

µ(A ∩ T−p1(n)A ∩ T−p2(n)A ∩ · · · ∩ T−pk(n)A) > 0

The proof in [FK78] of multiple recurrence which is needed for Szemerédi’s

theorem on arithmetic progressions and its higher dimensional analogues makes

use of the related, classical van der Waerden theorem. For the Bergelson-

Leibman polynomial version, a polynomial version of van der Waerden’s theo-

rem is needed and this too is established in their paper [BL96].

We remark that the formulation in the foregoing theorem is not the final

word on multiple recurrence. The result can be refined to include certain sets of

polynomials which do not vanish at 0, but this will require additional machinery

which will be discussed.

We may make use of the same correspondence principle alluded to earlier

to derive the following result regarding “polynomial progressions”:

Theorem. Let E ⊂ Z be a subset of positive upper density, and let p1(n),

p2(n), . . . , pk(n) be k polynomials vanishing for n = 0. Then E contains a

progression {a, a+ p1(n), a+ p2(n), . . . , a+ pk(n)} with n 6= 0.
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3. Characteristic Factors and the van der

Corput Lemma

We shall refer to families {p1(n), p2(n), . . . , pk(n)} of integer valued polynomials

as schemes.

Definition. If X is a m.p.s. and Y is a factor of X, we shall say that Y is

a characteristic factor for the scheme {p1(n), . . . , pk(n)} if for every choice of

f1, f2, . . . , fk ∈ L∞(X,B, µ),

1

N

N−1
∑

0

T p1(n)f1T
p2(n)f2 · · ·T

pk(n)fk

−

1

N

N−1
∑

0

T p1(n)E(f1|Y )T p2(n)E(f2|Y ) · · ·T pk(n)E(fk|Y ) → 0

in L2
(X,B, µ).

Here we have abbreviated f ◦ T to Tf . Finding a characteristic factor for

a scheme often gives a reduction of the problem of evaluating limit behavior

of non-conventional averages to special systems. This will be the case in the

proof of the polynomial mean ergodic theorem, which is carried out by first

showing the convergence for nilsystems and showing that the latter serve as

characteristic factors for all polynomial schemes.

Perhaps the principal tool in identifying characteristic factors is the follow-

ing lemma which we will refer to as the “Hilbert space van der Corput lemma”:

Lemma. Let H be a Hilbert space with inner product 〈 , 〉. Let {un} be a

bounded sequence of vectors in H and assume that for each m, the limit

γm = lim
N→∞

1

N

N
∑

n=1

〈un, un+m〉

exists. If 1

M

∑M

1
γm → 0 as M → ∞, then ‖

1

N

∑N

1
un‖ → 0.

We will illustrate the use of this lemma in showing that for any ergodic

system X, its Kronecker factor (Z,α) is a characteristic factor for the scheme

{n, 2n}. It suffices to show that if E(f |Z) = 0 or E(g|Z) = 0 then

1

N

N
∑

n=1

TnfT 2ng → 0

in L2
(X,B, µ). Regarding the products TnfT 2ng as elements in L2

(X,B, µ),

we set un = TnfT 2ng. Then

〈un, un+m〉 =

∫

Tn
(fTmf̄)T 2n

(gT 2mḡ)dµ =

∫

fTmf̄ · Tn
(gT 2mḡ)dµ
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By the ergodic theorem the average of these expressions over n exists and by

ergodicity

γm = lim
N→∞

1

N

N
∑

n=1

〈un, un+m〉 =

∫

fTmf̄dµ

∫

gT 2mḡdµ

=

∫

f ⊗ g(T × T 2
)
mf̄ ⊗ ḡd(µ× µ).

The average over m exists:
1

M

∑M

1
γm →

∫

f⊗gHd(µ×µ) where T×T 2H =

H. Now invariant functions on a product system are formed from products of

eigenfunctions for the individual systems, from which it follows that if either

E(f |Z) = 0 or E(g|Z) = 0, then
∫

f ⊗ g H d(µ × µ) = 0. This proves that

the Kronecker factor is a characteristic factor for {n, 2n} as claimed. We re-

mark that following T. Ziegler [ZI07], for any scheme and any system there

exists a “minimal” characteristic factor. If we take into account expressions
1

N
Σ

N
n=1T

nϕ2T 2nϕ̄ where ϕ is an eigenfunction we see that all eigenfunctions of

T appear in any characteristic factor for {n, 2n}. Thus we have identified the

minimal characteristic factor for {n, 2n} as the Kronecker factor.

One conclusion that can be drawn is the existence of lim
1

N
Σ

N
n=1T

nfT 2ng in

L2
(X,B, µ) for any system. From the foregoing this is reduced to the special

case of a Kronecker system and L2
-convergence is readily established in this

case. Namely, for convergence in L2
it suffices to consider f, g in an L4

-dense

subset of L2
, and particularly for f, g continuous. For this case we can use the

equidistribution of {nα} in Z:

1

N

N
∑

n=1

f(z + nα)g(z + 2nα) →

∫

f(z + θ)g(z + 2θ)dθ

which is true pointwise and consequently also in L2
.

Since strong convergence in L2
(X,B, µ) implies weak convergence, we can

formulate a consequence of the foregoing:

For f, g, h ∈ L∞(X,B, µ),

1

N

∑

∫

f(x)g(Tnx)h(T 2nx)dµ →

∫

E(f |Z)(z)E(g|Z)(z + θ)E(h|Z)(z + 2θ)dzdθ.

An instructive interpretation of this is that as x ranges over X and n

ranges over non-negative integers, the triple (x, Tnx, T 2nx) ranges “freely” over

X×X×X subject to the condition that ϕ(x), ϕ(Tnx), ϕ(T 2nx) form an arith-

metic progression in Z, where ϕ : X → Z is the projection of X to its Kronecker

factor. Thus the role played by the characteristic factor here is that of deter-

mining the constraints on (x, Tnx, T 2nx). It is remarkable that the constraints

are purely algebraic.
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There is a situation when no constraints exist on (x, T p1(n)x,

T p2(n)x, . . . , T pk(n)x). Another way of saying this is to say that the charac-

teristic factor of X for {p1(n), p2(n), . . . , pk(n)} is trivial so that

1

N

∑

T p1(n)f1T
p2(n)f2 . . . T

pn(n)fk →

∫

f1dµ ·

∫

f2dµ . . .

∫

fkdµ

in L2
(X,B, µ). This will be the case when X is weakly mixing - or a WM

extension of the trivial system - provided the polynomials pi − pj for i 6= j

differ not only in their constant term. This result was proved by Bergelson

[BE87] and the proof makes repeated use of the Hilbert space van der Corput

lemma.

4. Geometric Progressions in Nilpotent Groups

and on Nilmanifolds

Turning to the general case, one finds that for k > 2 the (k + 1)-tuples

(x, Tnx, T 2nx, . . . , T knx) are subject to further restrictions not implicit in the

projection to a (k+1)-term arithmetic progression in the Kronecker factor of the

system X = (X,B, µ, T ). These come from “nil-factors”, i.e., factors (Y,D, ν, S)

where Y = N/Γ, N a nilpotent Lie group, Γ a cocompact discrete subgroup. ν

is an N -invariant measure, and S(uΓ) = a◦uΓ for a◦ fixed in N . The existence

of a nil-factor π : X → N/Γ for a nilpotent group N of level k − 1 imposes an

algebraic condition on (k + 1)-tuples (x, Tnx, T 2nx, . . . , T knx). This condition

can be stated as the requirement that (π(x), π(Tnx), . . . , π(T knx)) belong to

a submanifold of (N/Γ)k+1
which we designate HPk+1(N/Γ). H-P stands for

Hall and Petresco who studied the term by term products of geometric pro-

gressions for non-commutative groups, these no longer having to be geometric

progressions.

Definition. Let G ⊃ G(1)
⊃ G(2)

⊃ · · · be the lower central series of a group

G, G(i+1)
= [G,G(i)

]. A (k+1)-term sequence {u0, u1, u2, . . . , uk} is an HPk+1-

sequence if there exist x1 ∈ G, x2 ∈ G(1), . . . , xk ∈ G(k−1)
so that

u1 = x1u0, u2 = x2x
2
1u0, u3 = x3x

3
2x

3
1u0, u4 = x4x

4
3x

6
2x

4
1u0 ,

. . . , uk = xkx
k

k−1 · · ·x
k

1u0.

The significance of this notion is that the HPk+1 sequences form a group in

Gk+1
([LE98], [TT09, p. 217]). We can define the projection of such sequences

on a homogeneous space G/Γ as HPk+1-progressions which form a subvariety

of (G/Γ)k+1
. The role played by nilpotence comes from the following:

Lemma. If N is k-step nilpotent, i.e., N (k)
= {1}, then the first k + 1 terms

of an HP`-progression, ` > k + 1, determine all successive terms.
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Now let X be an arbitrary m.p.s. possessing a k-step nilfactor, then

the projections π(x), π(Tnx), . . . , π(T `nx) form a HP`+1 sequence on the

factor and this imposes new constraints on (x, Tnx, T 2nx, . . . , T `nx). As in

the case of {n, 2n} these constraints turn out to be the only ones on

(x, Tnx, T 2nx, . . . , T knx). To make this precise we formulate the notion of a

k-step pro-nilsystem: a k-step pro-nilsystem is an inverse limit of nilsystems

lim
←

Nj/Γj where Nj is a nilpotent Lie group with N
(k)

j
= {1}, and on each of

these the measure preserving action is translation by an element of Nj , so that

the inverse system is consistently defined. Every ergodic system X will have

a maximal k-step pro-nilflow factor Zk and Ziegler’s theorem asserts that Zk

is characteristic for {n, 2n, . . . , kn}, and, more generally, for any linear family

{a1n, a2n, . . . , akn} with distinct ai [ZI07].

As remarked earlier, a consequence of this identification of the characteristic

factor for any ergodic system enables us to prove convergence in L2
(X,B, µ) of

1

N

N
∑

n=1

f1(T
a1nx)f2(T

a2nx) · · · fk(T
aknx)

as N → ∞, since this will now follow for any system once it is known for

translations on nilmanifolds. For nilmanifolds this was established in 1969 by

W. Parry ([PA69]), and is also a special case of theorems of N. Shah ([SH96])

and Leibman ([LE05]). An explicit description of the limit appears in [ZI05]

and for the special case k = 3 was given by E. Lesigne ([Le89]). The entire

theory was developed for k = 3 by J.P. Conze and E. Lesigne in [CL84] and

[CL87], who first recognized the role of nilmanifolds for 3-term non-conventional

averages.

In fact pro-nilsystems serve as characteristic factors for any scheme, and

both the polynomial mean ergodic theorem and polynomial multiple recurrence

can be deduced from this. With the identification of the characteristic factor for

any scheme, the polynomial mean ergodic theorem as well as a polynomial mul-

tiple recurrence theorem will follow for arbitrary measure preserving systems,

once they are known for nilsystems. As regards the polynomial mean ergodic

theorem one has available for nilsystems a pointwise ergodic theorem which

is valid for all points for continuous functions by results of Leibman ([LE05]).

In addition, the analysis of distribution of polynomial orbits on a nilmanifold

leads to the following refinement of our earlier multiple recurrence theorem:

Call a set of integer valued polynomial {q1(n), . . . , qr(n)} intersective if

for any m ∈ N, there exists n such that m divides each qi(n). Then if

{q1(n), . . . , qr(n)} is an intersective family, for any m.p.s. X = (X,B, µ, T )

and A ∈ B with µ(A) > 0 there exists an integer n with µ(A ∩ T−q1(n)A ∩

T−q2(n)A ∩ · · · ∩ T−qr(n)A) > 0.

Note that the sufficient condition for multiple recurrence given in §2 is a

special case of the above. But there are intersective families of polynomials

which don’t have a common 0 and so the present theorem is strictly stronger
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than the earlier one. This is noteworthy since the theorem in [BL96] makes use

implicitly of the distal factor of a given ergodic system, whereas the present

refinement in [BLL08] makes use of a special distal factor - namely, the pro-

nilfactor.

5. Conze-Lesigne Factors

The main result of these investigations is identifying the nilfactor of an ergodic

system as the characteristic factor for all schemes. Two approaches have been

taken up and these show up in considering the schemes {a1n, a2n, . . . , akn}. The

approach of Conze and Lesigne has been mentioned and this was generalized by

T. Ziegler from the case k = 3 to arbitrary k ([ZI07]). In line with this approach

is the treatment in [FW96] of characteristic factors for {a1n, a2n, a3n} which,

as is shown there, is also characteristic for {n, n2
}. This was the first instance

of a non-linear scheme to be treated, and for which a mean ergodic theorem

was proved. B. Host and B. Kra have an entirely different approach leading

ultimately to the same conclusion ([HK05]).

We begin with what can be called the Conze-Lesigne approach. With Ziegler

([ZI07]) we denote by Yk = Yk(X) the “universal” characteristic factor for

schemes {a1n, a2n, . . . , akn} which, first of all, is shown to exist. It is manifest

that Yk+1 is an extension of Yk. It can be shown to be an isometric extension

and moreover an extension Yk+1 = Yk × Wk, where Wk is a compact abelian

group. The action on Yk+1 is given by T (y, w) = (Ty, ρ(y)w) and further analy-

sis shows that the “cocycle” ρ is not arbitrary but satisfies a functional equation.

This has led to the important notion of a “Conze-Lesigne cocycle” which ap-

pears in contemporary treatments of more general convergence questions. In

the simplest situation k = 2 where Y2 has already been shown to coincide with

the Kronecker factor (Z̃, α̃) of X, the Conze-Lesigne condition takes the form:

there exist measurable functions K and L with

ρ(z + u)

ρ(z)
= K(u)

L(u, z + α)

L(u, z)
.

Conze and Lesigne arrived at this equation in their direct treatment of

convergence of ergodic averages, but Ziegler makes use of it and its analogs

for higher k to show that the k-universal factor is a (k − 1)-step pro-nilsystem

which can be denoted Zk−1(X).

6. Gowers Seminorms and Host-Kra Factors

In his proof of Szemerédi’s theorem ([GO01]), T. Gowers introduced a notion of

mixing (he calls it “uniformity”) which is useful in studying non-conventional

averages. With B. Host and B. Kra one defines an ergodic theoretic analog of an
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expression studied by Gowers: the k-seminorm ‖|f‖|k of a bounded measurable

function which can be defined inductively by

‖|f‖|2
k+1

k+1 = lim
N→∞

1

N

N
∑

n=1

‖|f · Tnf‖|2
k

k ,

and ‖|f‖|0 =
∫

fd µ. These are non-decreasing with k so that the condition

‖|f‖|k = 0 becomes more and more restrictive. It can be shown that if f is

orthogonal to the distal component of a system X, then ‖|f‖|k = 0 for all k.

On the other hand ‖|f‖|k = 0 if f ⊥ g for functions g on X coming from

the (k− 1)-step pro-nilfactor, and indeed this nilfactor can be characterized by

this quantitative condition on its orthogonal complement. A direct definition

of ‖| ‖|k is given in [HK05] where the seminorm appears as an autocorrelation

of values of a function on “cubes”, these being special 2
k
-tuples of points in X.

For our purposes, the main result is the theorem of Leibman [LE05,1].

Theorem. For any r, b ∈ N there exists k ∈ N such that for any system of

non-constant essentially distinct integer valued polynomials p1, . . . , pr of degree

≤ b and any f1, f2 , . . . , fr ∈ L∞(X,B, µ) for a m.p.s. X for which ‖|f1‖|k = 0,

one has

1

N

N−1
∑

0

T p1(n)f1 T p2(n)f2 · · ·T
pr(n)fr → 0

in L2
(X,B, µ) as N → ∞.

It follows from this theorem that for any scheme {p1(n), p2(n), . . . , pr(n)},

the (k − 1)-step pro-nilfactor of X serves as a characteristic factor provided k

is sufficiently large.

Pro-nilfactors appear as characteristic in a related but different context.

Namely one can form multi-parameter averages:

lim
N1,N2···Nk→∞

1

N1N2 · · ·Nk

N1
∑

n1=1

N2
∑

n2=1

· · ·
Nk
∑

nk=1

∏

ε1,...,εk∈{0,1}

T
ε1n1+···+εknkfε1ε2···εkdµ.

These were first considered by Bergelson for k = 2, who showed that

lim
N1,N2→∞

1

N1N2

N1
∑

n1=1

f(Tn1x)f(Tn1x)g(Tn2x)h(Tn1+n2x)

exists in L2
(X,B, µ). It turns out that Zk−1(X) is a characteristic factor (in

this extended sense) for this expression as well. ([BE00])

We have only skimmed the surface of a large area, which is still growing.

Much work has already been done when powers of a single transformation

are replaced by more general commuting transformations. Another notion of

interest is that of IP -limit (see [BE06]) replacing the usual average. This plays

a central role in establishing a density version of the Hales-Jewett theorem. See

[FK85] and [BM00] for further details.
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Abstract

We present an introduction to Isogeometric Analysis, a new methodology for

solving partial differential equations (PDEs) based on a synthesis of Computer

Aided Design (CAD) and Finite Element Analysis (FEA) technologies. A prime

motivation for the development of Isogeometric Analysis is to simplify the pro-

cess of building detailed analysis models for complex engineering systems from

CAD representations, a major bottleneck in the overall engineering process.

However, we also show that Isogeometric Analysis is a powerful methodology

for providing more accurate solutions of PDEs, and we summarize recently ob-

tained mathematical results and describe open problems.
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1. Introduction

Designers generate CAD (Computer Aided Design) files and these must be

translated into analysis-suitable geometries, meshed and input to large-scale fi-

nite element analysis (FEA) codes. This task is far from trivial and for complex

engineering designs is now estimated to take over 80% of the overall analysis

time, and engineering designs are becoming increasingly more complex; see Fig-

ure 1. For example, presently, a typical automobile consists of about 3,000 parts,

a fighter jet over 30,000, the Boeing 777 over 100,000, and a modern nuclear

submarine over 1,000,000. Engineering design and analysis are not separate en-

deavors. Design of sophisticated engineering systems is based on a wide range of

computational analysis and simulation methods, such as structural mechanics,

fluid dynamics, acoustics, electromagnetics, heat transfer, etc. Design speaks

to analysis, and analysis speaks to design. However, analysis-suitable models

∗Institute for Computational Engineering and Sciences, University of Texas at Austin, 1
University Station, Austin, Texas 78735, U.S.A. E-mail: hughes@ices.utexas.edu
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Figure 1. Engineering designs are becoming increasingly complex, making analysis a

time consuming and expensive endeavor. (Courtesy of General Dynamics / Electric

Boat Division.)

are not automatically created or readily meshed from CAD geometry. Although

not always appreciated in the academic analysis community, model generation

is much more involved than simply generating a mesh. There are many time

consuming, preparatory steps involved. And one mesh is no longer enough. Ac-

cording to Steve Gordon, Principal Engineer, General Dynamics Electric Boat

Corporation, “We find that today’s bottleneck in CAD-CAE integration is not

only automated mesh generation, it lies with efficient creation of appropriate

‘simulation-specific’ geometry.” (In the commercial sector analysis is usually re-

ferred to as CAE, which stands for Computer Aided Engineering.) The anatomy

of the process has been studied by Ted Blacker, Manager of Simulation Sciences,

Sandia National Laboratories. At Sandia, mesh generation accounts for about

20% of overall analysis time, whereas creation of the analysis-suitable geom-

etry requires about 60%, and only 20% of overall time is actually devoted to

analysis per se; see Figure 2. The 80/20 modeling/analysis ratio seems to be a

very common industrial experience, and there is a strong desire to reverse it,

but so far little progress has been made, despite enormous effort to do so. The

integration of CAD and FEA has proven a formidable problem. It seems that

fundamental changes must take place to fully integrate engineering design and

analysis processes.

It is apparent that the way to break down the barriers between engineer-

ing design and analysis is to reconstitute the entire process, but at the same
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Figure 2. Estimation of the relative time costs of each component of the model gener-

ation and analysis process at Sandia National Laboratories. Note that the process of

building the model completely dominates the time spent performing analysis. (Cour-

tesy of Michael Hardwick and Robert Clay, Sandia National Laboratories.)

time maintain compatibility with existing practices. A fundamental step is to

focus on one, and only one, geometric model, which can be utilized directly as

an analysis model, or from which geometrically precise analysis models can be

automatically built. This will require a change from classical FEA to an anal-

ysis procedure based on CAD representations. This concept is referred to as

Isogeometric Analysis, and it was introduced in [21]. Since then a number

of additional papers have appeared [1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 16, 18, 19] as

well as a book [12].

There are a number of candidate computational geometry technologies that

may be used in Isogeometric Analysis. The most widely used in engineering de-

sign are NURBS (non-uniform rational B-splines), the industry standard (see

[17, 22, 23, 11]). The major strengths of NURBS are that they are convenient

for free-form surface modeling, can exactly represent all conic sections, and

therefore circles, cylinders, spheres, ellipsoids, etc., and that there exist many

efficient and numerically stable algorithms to generate NURBS objects. They

also possess useful mathematical properties, such as the ability to be refined

through knot insertion, Cp−1
-continuity for pth-order NURBS, and the varia-

tion diminishing and convex hull properties. NURBS are ubiquitous in CAD

systems, representing billions of dollars in development investment. One may

argue the merits of NURBS versus other computational geometry technologies,

but their preeminence in engineering design is indisputable. As such, they were

the natural starting point for Isogeometric Analysis and their use in an analysis

setting is the focus of this paper.
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T-splines [24, 25] are a recently developed forward and backward generaliza-

tion of NURBS technology. T-splines extend NURBS to permit local refinement

and coarsening, and are very robust in their ability to efficiently sew together

adjacent patches. Commercial T-spline plug-ins have been introduced in Maya

and Rhino, two NURBS-based design systems (see references [27] and [28]).

Initiatory investigations of T-splines in an Isogeometric Analysis context have

been undertaken by [4] and [15]. These works point to a promising future for

T-splines as an isogeometric technology.

2. Basics of NURBS-based Isogeometric

Analysis

In FEA there is one notion of a mesh and one notion of an element, but an ele-

ment has two representations, one in the parent domain and one in the physical

space. Elements are usually defined by their nodal coordinates and the degrees-

of-freedom are usually the values of the basis functions at the nodes. Finite

element basis functions are typically interpolatory and may take on positive

and negative values. Finite element basis functions are often referred to as “in-

terpolation functions,” or “shape functions.” See [20] for a discussion of the

basic concepts.

In NURBS, the basis functions are usually not interpolatory. There are two

notions of meshes, the control mesh
1
and the physical mesh. The control points

define the control mesh, and the control mesh interpolates the control points.

The control mesh consists of multilinear elements, in two dimensions they are

bilinear quadrilateral elements, and in three dimensions they are trilinear hex-

ahedra. The control mesh does not conform to the actual geometry. Rather, it

is like a scaffold that controls the geometry. The control mesh has the look of

a typical finite element mesh of multilinear elements. The control variables are

the degrees-of-freedom and they are located at the control points. They may be

thought of as “generalized coordinates.” Control elements may be degenerated

to more primitive shapes, such as triangles and tetrahedra. The control mesh

may also be severely distorted and even inverted to an extent, while at the same

time, for sufficiently smooth NURBS, the physical geometry may still remain

valid (in contrast with finite elements).

The physical mesh is a decomposition of the actual geometry. There are

two notions of elements in the physical mesh, the patch and the knot span. The

patch may be thought of as a macro-element or subdomain. Most geometries

utilized for academic test cases can be modeled with a single patch. Each patch

has two representations, one in a parent domain and one in physical space.

1The control mesh is also known as the “control net,” the “control lattice,” and curiously
the “control polygon” in the univariate case.
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Figure 3. Quadratic B-spline basis functions for open, non-uniform knot vector Ξ =

{0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.

In two-dimensional topologies, a patch is a rectangle in the parent domain

representation. In three dimensions it is a cuboid.

Each patch can be decomposed into knot spans. Knots are points, lines,

and surfaces in one-, two-, and three-dimensional topologies, respectively. Knot

spans are bounded by knots. These define element domains where basis func-

tions are smooth (i.e., C∞
). Across knots, basis functions will be Cp−m

where

p is the degree
2
of the polynomial and m is the multiplicity of the knot in

question. Knot spans are convenient for numerical quadrature. They may be

thought of as micro-elements because they are the smallest entities we deal

with. They also have representations in both a parent domain and physical

space. When we speak of “elements” without further description, we usually

mean knot spans.

There is one other very important notion that is a key to understanding

NURBS, the index space of a patch. It uniquely identifies each knot and

discriminates among knots having multiplicity greater than one.

NURBS basis functions are the rational counterpart of standard B-spline

basis functions. For a discussion of the construction of B-spline basis functions

on the parent domain from preassigned knot vectors, see Chapter 2 of [12].

A quadratic example is presented in Figure 3. B-spline basis functions exhibit

many desirable properties, including partition of unity, compact support, and

point-wise positivity. Multi-dimensional basis functions are defined through a

tensor product, and basis functions are defined in physical space through a

push-forward, i.e. by considering a composition with the inverse of the ge-

ometrical mapping. In Isogeometric Analysis, the isoparametric concept is

invoked. That is, the same basis is used for both geometry and analysis. Ana-

logues of h- and p-refinement also exist in Isogeometric Analysis in the form of

knot insertion and order elevation, and there is a new refinement scheme called

k-refinement. See Chapter 2.1.4 of [12].

2There is a terminology conflict between the geometry and analysis communities. Geome-
ters will say a cubic polynomial has degree 3 and order 4. In geometry, order equals degree
plus one. Analysts will say a cubic polynomial is order three, and use the terms order and
degree synonymously. This is the convention we adhere to.
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See Table 2 for a summary of NURBS paraphernalia employed in Isogeo-

metric Analysis. A schematic illustration of the ideas is presented in Figure 4

for a NURBS surface in R3
. For more details on B-splines and NURBS, see

[17, 22, 23, 11].

Index Space

Control Mesh Physical Mesh

Multilinear Control Elements Patches Knot Spans

Topology:

1D: Straight lines defined

by two consecutive

control points

2D: Bilinear quadrilaterals

defined by four control

points

3D: Trilinear hexahedra

defined by eight

control points

Patches: Images of

rectangular meshes in

the parent domain

mapped into the

actual geometry.

Patches may be

thought of as

macro-elements or

subdomains.

Topology of knots in

the parent domain:

1D: Points

2D: Lines

3D: Planes

Topology:

1D: Curves

2D: Surfaces

3D: Volumes

Topology of knots in

the physical space:

1D: Points

2D: Curves

3D: Surfaces

Patches are

decomposed into knot

spans, the smallest

notion of an element.

Topology of knots

spans, i.e.,

“elements”:

1D: Curved

segments

connecting

consecutive

knots

2D: Curved

quadrilaterals

bounded by

four curves

3D: Curved

hexahedra

bounded by six

curved surfaces

Table 1. NURBS paraphernalia in Isogeometric Analysis
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î ĵ
N

î
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Figure 4. Schematic illustration of NURBS paraphernalia for a one-patch surface

model. Open knot vectors and quadratic C1-continuous basis functions are used. Com-

plex multi-patch geometries may be constructed by assembling control meshes as in

standard FEA. Also depicted are C
1-quadratic (p = 2) basis functions determined

by the knot vectors. Basis functions are multiplied by control points and summed to

construct geometrical objects, in this case a surface in R3. The procedure used to

define basis functions from knot vectors is described in detail in Chapter 2 of [12].
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3. Boundary Value Problems

As an example of solving a differential equation posed over the domain defined

by a NURBS geometry, let us consider Laplace’s equation. The goal is to find

u : Ω̄ → R such that

∆u+ f = 0 in Ω, (1a)

u = g on ΓD, (1b)

∇u · n = h on ΓN , (1c)

βu+∇u · n = r on ΓR, (1d)

where ΓD

⋃

ΓN

⋃

ΓR = Γ ≡ ∂Ω, ΓD

⋂

ΓN

⋂

ΓR = ∅, and n is the unit outward

normal vector ∂Ω. The functions f : Ω → R, g : ΓD → R, h : ΓN → R, and r :

ΓR → R are all given, as is the constant β. Equation (1) constitutes the strong

form of the boundary value problem (BVP). The boundary conditions given

in (1b), (1c), and (1d) represent the three major types of boundary conditions

one is likely to encounter. These are Dirichlet conditions, Neumann conditions,

and Robin conditions, respectively.

For a sufficiently smooth domain, and under certain restrictions on g, h, and

r, a unique solution u satisfying (1) is known to exist, but an analytical expres-

sion will usually be impossible to obtain. However, we may seek an approximate

solution of the form

uh =

∑

A

dANA (2)

where NA is a basis function and dA is an unknown to be determined. We

generically refer to techniques for doing so as numerical methods. Different

numerical methods are simply different techniques for finding dA such that

uh ≈ u. We focus here on the Bubnov-Galerkin method that underlies most of

modern FEA.

The technique begins by defining a weak, or variational, counterpart of (1).

To do so, we need to characterize two classes of functions. The first is to be

composed of candidate, or trial solutions. From the outset, these functions will

be required to satisfy the Dirichlet boundary condition of (1b).

To define the trial and weighting spaces formally, let us first define the space

of square integrable functions on Ω. This space, called L2
(Ω), is defined as the

collection of all functions u : Ω → R such that

∫

Ω

u2 dΩ < +∞. (3)

Let us consider a multi-index ααα ∈ Nd
where d is the number of spatial

dimensions in the space. Forααα = {α1, . . . , αd}, we define |ααα| =
∑d

i=1
αi. We now

have a concise way to represent derivative operators. LetDααα
= D

α1

1 D
α2

2 . . . D
αd

d
,

where D
j

i
=

∂
j

∂x
j
i

. So that certain expressions to be employed in the formulation



Isogeometric Analysis 307

make sense, we shall require that the derivatives of the trial solutions be square-

integrable. Such a function is said to be in the Sobolev space H1
(Ω), which is

characterized by

H1
(Ω) = {u|Dαααu ∈ L2

(Ω), |ααα| ≤ 1}. (4)

We may now define the collection of trial solutions, denoted by S, as all

of the function which have square-integrable derivatives and that also satisfy

u|ΓD
= g. (5)

This is written as

S = {u | u ∈ H1
(Ω), u|ΓD

= g}. (6)

The second collection of functions in which we are interested is called the

weighting functions. This collection is very similar to the trial functions,

except that we have the homogeneous counterpart of the Dirichlet boundary

condition. That is, the weighting functions are denoted by a set V defined by

V = {w | w ∈ H1
(Ω), w|ΓD

= 0}. (7)

We may now obtain a variational statement of the BVP by multiplying (1a)

by an arbitrary test function w ∈ V and integrating by parts, incorporating

(1c) and (1d) as needed. The resulting weak form of the problem is now: Given

f , g, h, and r, find u ∈ S such that for all w ∈ V

∫

Ω

∇w · ∇u dΩ+ β

∫

ΓR

wudΓ

=

∫

Ω

wf dΩ+

∫

ΓN

whdΓ +

∫

ΓR

wr dΓ. (8)

This weak form may be rewritten as

a(w, u) = L(w) (9)

where

a(w, u) =

∫

Ω

∇w · ∇u dΩ+ β

∫

ΓR

wudΓ, (10)

and

L(w) =

∫

Ω

wf dΩ+

∫

ΓN

whdΓ +

∫

ΓR

wr dΓ. (11)

This concise notation, or variants thereof, is quite common in the finite element

literature. For problems other than the Laplace equation, the details vary, but

the basic form remains. It captures the essential mathematical features of the

variational method (as well as suggesting features of a finite element implemen-

tation) that are more general than the details of the equation itself.

The solution to (8), or equivalently (9), is called a weak solution. Under

appropriate regularity assumptions, it can be shown that the weak solution and

the strong solution of (1) are equivalent; see [20].
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The Bubnov-Galerkin method, abbreviated as Galerkin’s method, consists

of constructing finite-dimensional approximations of S and V, denoted S
h
and

V
h
, respectively. Strictly speaking, these will be subsets such that

S
h

⊂ S, (12)

V
h

⊂ V. (13)

Furthermore, these will be associated with subsets of the space spanned by the

isoparametric basis. In Isogeometric Analysis, these spaces consist of mapped

NURBS functions.

We can further characterize S
h
by recognizing that if we have a given func-

tion gh ∈ S
h
such that gh|ΓD

= g, then for every uh ∈ S
h
, there exists a unique

vh ∈ V
h
such that

uh = vh + gh. (14)

We can now write a variational equation of the form of (9). The Galerkin form

of the problem is: Given gh, h, and r, find uh = vh + gh, where vh ∈ V
h
, such

that for all wh
in V

h

a(wh, uh) = L(wh
). (15)

Recalling (14) and the bilinearity of a(·, ·), we can rewrite (15) as

a(wh, vh) = L(wh
)− a(wh, gh). (16)

In this latter form, the unknown information is on the left-hand-side, while

everything on the right-hand-side is given, as before.

The finite-dimensional nature of the function spaces used in Galerkin’s

method leads to a coupled system of linear algebraic equations. Let the solu-

tion space consist of all linear combinations of a given set of NURBS functions

NA : Ω̂ → R, where A = 1, . . . , nnp. Without loss of generality, we may assume

a numbering for these functions such that there exists an integer neq < nnp
such that

NA|ΓD
= 0 ∀A = 1, . . . , neq. (17)

Thus, for all wh
∈ V

h
, there exist constants cA, A = 1, . . . , neq such that

wh
=

neq
∑

A=1

NAcA. (18)

Furthermore, the function gh (frequently called a “lifting”) is given similarly

by coefficients gA, A = 1, . . . , nnp. In practice, we will always choose gh such

that g1 = . . . = gneq
= 0 as they have no effect on its value on ΓD, and so

gh =

nnp
∑

A=neq+1

NAgA. (19)
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Finally, recalling again (14), for any uh ∈ S
h
there exist dA, A = 1, . . . , neq

such that

uh =

neq
∑

A=1

NAdA +

nnp
∑

B=neq+1

NBgB =

neq
∑

A=1

NAdA + gh. (20)

Proceeding to define

KAB = a(NA, NB), (21)

FA = L(NA)− a(NA, g
h
), (22)

and

K = [KAB ], (23)

F = {FA}, (24)

d = {dA}, (25)

for A,B = 1 . . . , neq, we can rewrite (16) as the matrix problem

Kd = F. (26)

The matrix K is commonly referred to as the stiffness matrix, and F and d are

referred to as the force and displacement vectors, respectively.

It is important to note that K is a sparse matrix. This is a result of

the fact that the support of each basis function is highly localized. Thus,

for many combinations of A and B in the neq × neq global stiffness matrix,

KAB = a(NA, NB) = 0. We can take advantage of this fact in order to reduce

the amount of work necessary in building and solving the algebraic system.

Things are further simplified by employing Gaussian quadrature to perform

integrations. This process is detailed in Section 3.3.1 of [12]. Even though the

NURBS functions are not necessarily polynomials, Gaussian quadrature seems

to be very effective for integrating them. Though this approach to integra-

tion is only approximate, it is important to note that integrating the classical

polynomial functions by quadrature on elements with curved sides is only an

approximation as well.

Once Galerkin’s method has been applied and an approximation, uh, has

been obtained, it is fair to inquire as to just how good of an approximation

it is. Results for classical FEA and Isogeometric Analysis are discussed in the

next session. It turns out that, for elliptic problems such as the one considered

in this section, the solution is optimal in a very natural sense; see Chapter 4

of [20].

4. Error Estimates for NURBS

4.1. FEA. Well established a priori approximation results exist for classical

finite elements applied to elliptic problems (see, for example, the classic text
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by [10]). The Sobolev space of order r is defined by

Hr
(Ω) = {u|Dαααu ∈ L2

(Ω), |ααα| ≤ r}. (27)

The norm associated with Hr
(Ω) is given by

‖u‖2r =

∑

|ααα|≤r

∫

Ω

(Dαααu) · (Dαααu) dx. (28)

In classical FEA, the fundamental error estimate for the elliptic boundary value

problem, expressed as a bound on the difference between the exact solution, u,
and the FEA solution, uh

, takes the form

‖u− uh
‖m ≤ Chβ‖u‖r, (29)

where ‖ · ‖m and ‖ · ‖r are the norms corresponding to Sobolev spaces Hm
(Ω)

and Hr
(Ω), respectively, h is a characteristic length scale related to the size of

the elements in the mesh, β = min(p+1−m, r−m) where p is the polynomial

order of the basis, and C is a constant that does not depend on u or h.

The term of interest in (29) is hβ . The mesh parameter, h, can be defined in

several ways, with the specific definition affecting C. A fairly general definition

is the diameter of the smallest circle (in two dimensions) or sphere (in three

dimensions) that is large enough to circumscribe any element in the mesh. The

order of convergence, β, expresses how the error changes under refinement

of the mesh. In particular, if we use h-refinement to bisect each of the elements

in the mesh (i.e., h is replaced with h/2), we would expect the error to decrease

by a factor of (1/2)β .

4.2. NURBS. The extremely technical details of the process of obtaining

a result analogous to (29) for NURBS can be found in [3]. Here we present

the basic ideas, but encourage the interested reader to consult the original

publication.

For classical FEA polynomials, the result in (29) is obtained by first es-

tablishing the interpolation properties of the basis. Let Πm be the projection

operator from Hm
(Ω) into the space spanned by the FEA basis. Then the

optimal interpolate is the function

ηh = Πmu (30)

such that

‖u− ηh‖m ≤ ‖u− vh‖m ∀vh ∈ S
h, (31)

where S
h
is the finite element space. To establish just how good this optimal

approximation is (i.e., to determine how can ‖u−ηh‖m be bounded), we obtain

a bound on each element, and then sum over all of the elements to get a global

result. With this interpolation result in hand, the second step in the process is
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to relate the result of the Galerkin finite element method, uh, to the optimal

interpolate, ηh. In particular, it can be shown that the order of convergence

of the finite element solution is the same as for the optimal interpolate. Taken

together, these two results yield the the bound (29), which states that (up to a

constant) Galerkin’s method gives us the optimal result.

When we seek an analogous result for NURBS, we face several difficulties.

The first is that the approximation properties of this rational basis are harder to

determine than are those of a standard polynomial basis. In particular, note that

the weights are determined by the geometry and so are out of our control when

we attempt to approximate a field over that geometry and cannot be adjusted to

improve the result. The second difficulty originates from the large support of the

spline functions. Standard interpolation estimates seek to find a best fit within

each element and then aggregate these results to obtain an approximation over

the entire domain. This is non-trivial with the spline functions because the

support of each function spans several elements, and so we cannot determine

optimal values for the control variables by looking at each element individually.

The issue is further complicated by the possibility of differing levels of continuity

(and thus differing sizes of the the supports of the functions) throughout the

domain.

To overcome the fact that the basis is rational rather than polynomial, we

first note that the parameter space Ω̂ can be considered to be the unit cube

[0, 1]d. No generality is lost in this assumption as dividing a knot vector by a

constant or adding a constant does not change the resulting physical domain

in any way. Let us first denote a NURBS basis function as:

Ri(ξ) =
Ni(ξ)wi

W (ξ)
, (32)

with

W (ξ) =

n
∑

i=1

Ni(ξ)wi (33)

where Ni is the corresponding B-spline basis function. The important thing

to note is that the weighting function
3
, W (ξ), does not change as we h-refine

the mesh (it does not change under p-refinement either, though this is not

the case we are interested in at present). While both the weights and the basis

functions change, they do so in such a way as to leaveW (ξ) unaltered. Similarly,

the geometrical mapping from the parameter space into the physical space,

F : Ω̂ → Ω, does not change as we insert new knot values. See Figure 5. It

remains exactly the same at all levels of refinement. To take advantage of this

fact, we consider the function we wish to approximate, u : Ω → R`
. As the

geometrical mapping is one-to-one, we can pull this back to the parametric

3Do not confuse this use of the term “weighting function” with the unrelated use of the
same terminology in Galerkin’s method.
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(c) Second h-refinement

Figure 5. As we h-refine the mesh, the basis functions Ni and weights wi change, but

the geometrical mapping F and the weighting function W are completely fixed at the

coarsest level of discretization. They do not change under refinement.
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domain to define û = u ◦ F−1
: Ω̂ → R`

. Lastly, we can lift the image of

the function using the weighting function to define ũ = {Wû,W} : Ω̂ → R`+1
.

Recalling that we obtain the rational basis in Rd
by a projective transformation

(equivalent to dividing byW ) of a B-spline basis in Rd+1
, we see that the ability

of the rational NURBS basis to approximate u on Ω is intimately related to the

ability of the underlying B-spline basis to approximate ũ on Ω̂. Thus we have

reduced the problem of understanding a rational basis on a general domain to

that of understanding a polynomial basis on the unit cube.

The second hurdle is more technical. The fact that each function has sup-

port over many elements and that the continuity across the various element

boundaries can vary from one boundary to the next greatly complicates mat-

ters compared with the classical case. [3] address this difficulty by proving

approximation results in so-called “bent” Sobolev spaces in which the continu-

ity varies throughout the domain. A sequence of lemmas is established leading

up to an approximation result that includes not only the norm in these bent

Sobolev spaces of the function u being approximated, but also the gradient

of the mapping, ∇F. This last term presents no problem because, as already

discussed, it does not change as the mesh is refined, and thus does not affect

the rate of convergence. The resulting approximation result is: Let k and l be

integer indices such that 0 ≤ k ≤ l ≤ p+ 1, and let u ∈ H l
(Ω); then

nel
∑

e=1

|u−Πku|
2
Hk(Ωe)

≤ C

nel
∑

e=1

h2(l−k)
e

l
∑

i=0

‖∇F‖
2(i−l)

L∞(F−1(Ωe))
|u|2

Hi(Ωe). (34)

The constant C depends on p and the shape (but not size) of the domain Ω, as

well as the shape regularity of the mesh. The factors involving the gradient of

the mapping render the estimate dimensionally consistent.

Finally, with the approximation result of (34) in hand, establishing the

manner in which the Isogeometric Analysis solution, uh, relates to the optimal

interpolate, ηh, proceeds exactly as in the classical case. Combining these results

yields the desired result: The Isogeometric Analysis solution obtained using

NURBS of order p has the same order of convergence as we would expect in

a classical FEA setting using classical basis functions with a polynomial order

of p. This is an exceptionally strong result as it is independent of the order

of continuity that the mesh possesses. That is, bisecting all of the elements in

an FEA mesh (thus cutting the mesh parameter from h to h/2) requires the

introduction of many more degrees-of-freedom than does bisection of the same

number of NURBS elements while maintaining p − 1 continuity (see Section

2.1.4 of [12]). This means that NURBS can converge at the same rate as FEA

polynomials, while remaining much more efficient.

4.3. Explicit h-k-p-estimates for NURBS. The theoretical study

of [3] is continued in [6], focusing on the relation between the degree p and the

global regularity k of a NURBS space and its approximation properties. Indeed,

error estimates that are explicit in terms of the mesh-size h, and p, k are
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obtained. The approach is restricted to Ck−1
approximations, with 2k− 1 ≤ p.

The interesting case of higher regularity, up to k = p, is still open. However,

the results give an indication of the role of the smoothness k and offer a first

mathematical justification of the potential of Isogeometric Analysis based on

globally smooth NURBS. The main result, in a simplified form and in the two-

dimensional setting, is the following: let v be a function to be approximated.

Then there exists a NURBS approximation Πv such that

|v −Πv|H`(Ωe)
≤ C(p− k + 1)

−(σ−`)hσ−`

e ‖v‖Hσ(Ωe) (35)

where Ωe is a mesh element of diameter he in the NURBS physical domain Ω,

2k ≤ σ ≤ p+ 1, and ` ≤ k. In [6], different asymptotic regimes are studied. In

particular, when v is smooth, the strong advantage of higher k is shown.

5. Vibrations

The study of structural vibrations or, more specifically, of eigenvalue problems

allows us to examine in more detail the approximation properties of the smooth

NURBS functions independently of any geometrical considerations. In general,

spectrum analysis is the term applied to the study of how numerically com-

puted natural frequencies, ωh
n, compare with the analytically computed natural

frequencies, ωn. We will see that, for a given number of degrees-of-freedom and

bandwidth, the use of NURBS results in dramatically improved accuracy in

spectral calculations over classical FEA.

Let us begin by considering one of the simplest vibrational model problems

in one dimension: the longitudinal vibrations of an elastic rod. If we consider

the domain Ω = (0, L) ⊂ R, there is no longer an issue of geometrical accu-

racy. FEA basis functions and NURBS
4
are equally capable of representing this

domain exactly, and so the quality of the results will depend entirely on the

approximation properties of the basis.

To understand the formulation of the eigenproblem representing the lon-

gitudinal vibrations of a “fixed-fixed” elastic rod, let us begin by considering

the elastodynamics equation from which it is derived. The behavior of the rod,

which is assumed to move only in the longitudinal direction, is governed by the

equations of linear elasticity combined with Newton’s second law, resulting in

(Eu,x),x − ρu,tt = 0 in Ω× (0, T ), (36a)

u = 0 on Γ× (0, T ), (36b)

where Ω = (0, L), ρ : (0, L) → R is the density per unit length of the rod,

E : (0, L) → R is Young’s modulus, and the “fixed-fixed” condition (36b)

4In this simple domain, the NURBS reduce to the special case of B-splines.
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ensures that the ends of the rod do not move. For an actual dynamics problem,

we would need to augment (36) with appropriate initial conditions of the form

u(x, 0) = u0(x), (37)

u,t(x, 0) = v0(x). (38)

At present, however, we are not interested in the transient behavior of the rod.

Instead, we are interested in the natural frequencies and modes in which the

rod vibrates. We obtain these by separation of variables. In a slight abuse of

notation, we assume u(x, t) to have the form

u(x, t) = u(x)eiωt, (39)

where u(x) is a function of only the spatial variable, x, while i =
√

−1, and ω

is the natural frequency. Inserting (39) into (36a) and dividing by the common

exponential term results in the eigenproblem we are seeking:

(Eu,x),x + ω2ρu = 0 in Ω, (40a)

u = 0 on Γ. (40b)

Equation (40) constitutes an eigenproblem for the rod. The nontrivial so-

lutions are countably infinite. That is, for k = 1, 2, . . . ,∞, there is an eigen-

value λk = (ωk)
2
and corresponding eigenfunction u(k) satisfying (40). Fur-

thermore, 0 < λ1 ≤ λ2 ≤ . . ., and the eigenfunctions are orthogonal. Though

the eigenfunctions are only defined up to a multiplicative constant, we can re-

move the arbitrariness by augmenting the orthogonality condition to include

normality.

Following the now familiar process, we multiply (40a) by a test function

w and integrate by parts to obtain the weak form of the equation: Find all

eigenpairs {u, λ}, u ∈ S, λ = ω2
∈ R+

, such that for all w ∈ V

a(w, u)− ω2
(w, ρu) = 0, (41)

where

a(w, u) =

L
∫

0

w,xEu,x dx, (42)

(w, ρu) =

L
∫

0

wρudx. (43)

Note that, due to the homogeneous boundary conditions, S = V = H1
0 (0, L) =

{u ∈ H1
(0, L)|u(0) = u(L) = 0}.

The Galerkin formulation is obtained by restricting ourselves to finite-

dimensional subspaces S
h

⊂ S in the usual way. That is, w and u in (41)
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will be replaced by finite dimensional approximations wh
and uh of the form

wh
=

neq
∑

A=1

NAdA and uh =

neq
∑

B=1

NBcB , (44)

respectively. The resulting eigenpairs will contain approximations of both nat-

ural modes uh
(k)

and the natural frequencies ωh

k
. The problem becomes: Find

all ωh
∈ R+

and uh ∈ S
h
such that for all wh

∈ V
h

a(wh, uh)− (ωh
)
2
(wh, ρuh) = 0. (45)

Substituting the shape-function expansions for wh
and uh in (45) gives

rise to a matrix eigenvalue problem: Find natural frequency ωh

k
∈ R+

and

eigenvector ΨΨΨk, k = 1, . . . , neq, such that

(

K− (ωh

k )
2M

)

ΨΨΨk = 0, (46)

where

K = [KAB ], (47)

M = [MAB ], (48)

with

KAB = a(NA, NB), (49)

MAB = (NA, ρNB), (50)

and ΨΨΨk is the vector of control variables corresponding to uh
(k)

.

As before, we refer to K as the stiffness matrix. The new object, M, is

the mass matrix. Noting that ρ > 0, and that the NURBS basis functions are

pointwise non-negative, we see from (43) that every entry in the mass matrix

is also non-negative. This claim cannot be made for standard finite elements.

Let us consider the case where ρ, E, and L are each taken to be 1. Analyt-

ically, (40a) can be solved to obtain ωn = nπ for n = 1, . . . ,∞. We can assess

the quality of the numerical method by comparing the ratio of the computed

modes, ωh
n, with the analytical result. That is, (ωh

n/ωn) = 1 indicates that the

numerical frequency is identical to the analytical result. In practice, the discrete

frequencies will always obey the relationship

ωn ≤ ωh

n for n = 1, . . . , neq, (51)

and so we expect the ratio (ωh
n/ωn) to be greater than 1 (see, e.g., [26]), with

larger values indicating decreased accuracy.

Figure 6 shows a comparison of k-method (Cp−1 pth-order NURBS) and

p-method (C0 pth-order finite elements) numerical spectra for p = 1, ..., 4 (we

recall that for p = 1 the two methods coincide). Here, the superiority of the

isogeometric approach is evident, as one can see that for C0
finite elements the

higher modes diverge with p. This negative result shows that even higher-order
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Figure 6. Longitudinal vibrations of an elastic rod. Comparison of k-method and

p-method numerical spectra.

finite elements have no approximability for higher modes in vibration analysis,

and possibly explains the fragility of higher-order finite element methods in

nonlinear and dynamic applications in which higher modes necessarily partic-

ipate. In contrast, the entire NURBS spectrum converges for all modes. This

dramatic result is all the more compelling when we recall that the result is inde-

pendent of the geometry in this one-dimensional setting. Results such as these

can be understood from a more fundamental functional analysis perspective

through the notion of Kolmogorov n-widths.

6. Kolmogorov n-widths

The approximation result (34) is a basic tool for proving convergence of NURBS

to the solution of partial differential equations with h-refined meshes (see [3] for

examples). Note that the continuity of the basis functions does not explicitly

appear in (34). Consequently, the order of convergence in (34) depends only

on the order of the basis functions employed. However, the results of eigen-

value calculations indicate that there is a dramatic difference between C0
- and

Cp−1
-continuous pth-order basis functions (see, e.g., Figure 6). In Figure 6, as

p is increased, the upper part of the spectrum diverges for C0
-continuous clas-

sical finite elements whereas it converges for Cp−1
-continuous NURBS (i.e.,

B-splines in this case). This phenomenon is not revealed by standard approxi-

mation theory results of the form (34). Consequently, we much conclude that

there is a lot of information hiding in the so-called “constant” C in (34). In-

deed, the refined approximation result (35) illustrates an explicit dependence
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of the constant on polynomial order and continuity. However, the result is

quite limited in its application as it is restricted to Ck−1
approximations, with

2k − 1 ≤ p.

It would be desirable to develop a mathematical framework that revealed

behavior like that seen in Figures 6 from the outset. The concept of Kolmogorov

n-widths seems to hold the potential to do so. A sketch of some of the main

ideas follows: Let X be a normed, linear space, equipped with norm ‖ · ‖X .

In the cases of primary interest here, X would be a Sobolev space. Let Xn

be an n-dimensional subspace of X. Assume we wish to approximate a given

x ∈ A ⊂ X, where A is a subset of X, with a member xn ∈ Xn. We define the

distance between x and Xn as

E(x,Xn;X) = inf
xn∈Xn

‖x− xn‖X , (52)

where inf stands for infimum (see Figure 7). If there exists an x∗n such that

‖x− x∗n‖X = E(x,Xn;X) (53)

then x∗n is called the best approximation of x.

X

X
n

x

xn
xn
∗

Figure 7. The point x
∗

n is the closest approximation in Xn to x with respect to the

norm ‖ · ‖X .

Now we assume we are interested in approximating all x ∈ A. For each

x ∈ A, the best we can do is expressed by (53). The question we wish to

have answered is, for which x ∈ A do we get the worst best-approximation?

In other words, for which x ∈ A is infxn∈Xn
‖x − xn‖X the largest? The idea

is to anticipate situations such as those depicted in Figures 6. The worst best-

approximation is obtained by computing the supremum of (53) over all x ∈ A;
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Figure 8. The distance between subspaces Xn and A is determined by the “worst-case

scenario.” That is, if the distance between point x
∗ ∈ A and its best approximation

x
∗

n ∈ Xn is the supremum over all such best-fit pairs, then ‖x∗ − x
∗

n‖X defines the

distance between Xn and A.

we define the deviation, or “sup-inf,” as

E(A,Xn;X) = sup
x∈A

inf
xn∈Xn

‖x− xn‖X . (54)

See Figure 8 for a schematic illustration. Sup-inf’s are useful for comparing

the approximation quality of different finite element subspaces, such as C0
and

Cp−1
splines, but prior to that we might ask what is the best n-dimensional

subspace for approximating A? This is given by the Kolmogorov n-width, or

“inf-sup-inf,” namely,

dn(A,X) = inf
Xn⊂X

dimXn=n

sup
x∈A

inf
xn∈Xn

‖x− xn‖X (55)

= inf
Xn⊂X

dimXn=n

E(A,Xn;X). (56)

If there exists an X̃n such that

E(A, X̃n;X) = dn(A,X), (57)

then X̃n is called an optimal n-dimensional subspace. In this case, we can

define the optimality ratio, that is, the sup-inf divided by the inf-sup-inf, for

a given Xn:

Λ(A,Xn;X) =
E(A,Xn;X)

dn(A,X)
. (58)
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Figure 9. The optimality ratio for approximating the H5 unit ball in H
1 using quartic

(p = 4) elements. As the number of degrees-of-freedom increases, the optimality ratio

of C
0 FEA functions diverges, while the optimality ratio of C

3-continuous splines

converges toward 1.

To illustrate how one might use this measure for comparing spaces, con-

sider the following example of a uniform mesh on the unit interval [0, 1]. Let

X = H1
(0, 1), the Sobolev space of square-integrable functions with square-

integrable derivatives. Let

A = B5
(0, 1) = {x|x ∈ H5

(0, 1), ‖x‖X ≤ 1}, (59)

where H5
(0, 1) is the Sobolev space of functions having five square-integrable

derivatives. B5
(0, 1) is referred to as the unit ball in H5

(0, 1) in the H1
(0, 1)-

topology. A comparison of optimality ratios for quartic C0
and C3

splines is

shown in Figure 9. Note that as n increases, the optimality ratio of the C3

case approaches 1. Apparently, the C3
case is converging toward an optimal

subspace. In contrast, in the C0
case, the optimality ratio converges to ap-

proximately 5.5, indicating that for each n there is at least one member of

B5
(0, 1) that is much more poorly approximated by C0

splines than C3
splines.

This result seems to be qualitatively consistent with what we saw in Figures 6.

Smooth spline bases, that is the k-method, exhibit better behavior than clas-

sical C0
elements. For further results and methodology used to compute them,

see [16].

7. Smooth Isogeometric Discretizations

From the mathematical side, one of the most interesting aspects of Isogeometric

Analysis is the possibility to have smooth approximation fields. Smooth discrete
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spaces can be directly used with partial differential equations of order higher

than two. One interesting example is the stream-function approach to the Stokes

problem (see [1]). The solution of the Stokes variational equations is the pair
5

(u, p) ∈ (H1
D
(Ω))

2
× L2

(Ω) such that



















∫

Ω

grad (u) : grad (v) +

∫

Ω

pdiv v =

∫

Ω

f · v ∀v ∈ H1
D
(Ω)

∫

Ω

q divu = 0 ∀q ∈ L2
(Ω),

(60)

where H1
D
(Ω) is the Sobolev space of H1

functions vanishing on ΓD ⊂ ∂Ω. For

two-dimensional problems, the divergence-free field u can be represented as the

curl of a potential, the so called stream function, that is u = curlψ. Since
div ( curlψ) = 0, one can replace (60) with

∫

Ω

grad ( curlψ) : grad ( curlφ) =

∫

Ω

f · curlφ ∀φ ∈ H2
(Ω)

+ boundary conditions.

(61)

The advantage of the above formulation is that at the discrete level, replacing

H2
(Ω) with a suitable NURBS space with at least global C1

-continuity, one

obtains an approximation uh = curlψh which is exactly divergence-free.

The application of this approach to a more realistic problem is presented

in [2] where the capability of various numerical methods to correctly reproduce

the stability range of finite strain (nonlinear) problems in the incompressible

regime is studied. The stream-function isogeometric NURBS approach is ap-

plied to a linearized problem at each Newton step of the finite strain problem.

This technique is able to sharply estimate the stability limits of the continuous

problem in contrast with various standard finite element methods. For example,

a simple benchmark problem (an elastic incompressible square in plain strain

under constant body load and clamped on three sides) is shown to be stable

under compression up to a loading factor of 6.6, while various finite element

methods show instabilities around a loading factor of 1.

Another application area where smooth isogeometric discretizations can be

utilized is the numerical simulation of phase-field models. Phase-field models

provide an alternative description for phase-transition phenomena. The key

idea in the phase-field approach is to replace sharp interfaces by thin transition

regions where the interfacial forces are smoothly distributed. The transition

regions are part of the solution of the governing equations and, thus, front

tracking is avoided. Phase-field models are typically characterized by higher-

order differential operators and hence require smooth discretization techniques.

Isogeometric Analysis has been applied to several phase-field models, including

the Cahn-Hilliard equation [18] and the Navier-Stokes-Korteweg equations [19].

5Here p is the pressure instead of the degree.
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8. Vector Field Discretizations

An alternate approach to stream-functions which can also handle problems with

a solenoidal constraint is the construction of B-splines or NURBS spaces which

fulfill the divergence-free property exactly. This is possible once again due to the

smoothness of isogeometric spaces, leading to an extension of classical Raviart-

Thomas elements. These new discretizations can be used for a much wider class

of problems (e.g., Stokes flow (60)) than classical Raviart-Thomas elements.

In [9], smooth Raviart-Thomas B-splines and NURBS spaces are introduced

and their study is initiated. In [7], these spaces are used in the simulation of

incompressible fluid flows.

The mathematical structure behind the construction in [9] can be under-

stood in the framework of the Exterior Calculus. This has been done in [8]

where a De Rham complex for B-spline spaces
6
is constructed. Notably, there

exist B-spline spaces Xi

h
, i = 0, . . . , 3, of any degree and commuting projectors

Π
i
, i = 0, . . . , 3 such that

H1
(Ω)

grad

−−−−→ H(curl; Ω)
curl

−−−−→ H(div; Ω)
div

−−−−→ L2
(Ω)

Π
0





y Π
1





y Π
2





y Π
3





y

X0
h

grad

−−−−→ X1
h

curl
−−−−→ X2

h

div
−−−−→ X3

h
.

(62)

The above diagram paves the way to stable discretizations of a wide class of

differential problems. For example, it provides spurious free smooth approxi-

mation of the Maxwell eigenproblem: find ω ∈ R, and u ∈ H(curl; Ω) , u 6= 0
such that

∫

Ω

curl u · curl v = ω2

∫

Ω

u · v ∀v ∈ H(curl; Ω) . (63)

For more details, see [8].

9. Conclusions

We have presented a brief mathematical introduction to Isogeometric Analysis,

a new numerical methodology for solving partial differential equations (PDEs)

that combines and synthesizes Computer Aided Design (CAD) and Finite Ele-

ment Analysis (FEA) technologies. A main motivation of Isogeometric Analy-

sis is to simplify the process of building FEA models from CAD files, a major

bottleneck in the overall engineering process. However, Isogeometric Analysis

has also provided new insights and methods for solving PDEs. By way of an

6Note that these are B-splines and not NURBS.
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example, we have shown that Isogeometric Analysis can provide more accu-

rate solutions of PDEs than classical C0
-continuous finite elements. However,

these differences are not revealed by standard error analysis procedures utiliz-

ing functional analysis techniques in that they are rather insidiously hidden

in “constants” in functional analysis inequalities. The example also illustrates

a striking deficiency of classical, higher-order, C0
-continuous finite elements,

namely, the errors in higher modes diverge with increasing polynomial order.

This surprising result seems to explain the observed fragility of these finite el-

ement spaces when used to obtain the solution of nonlinear problems, which

often involve higher-mode behavior. We also reported on initial investigations

using Kolmogorov n-widths to computationally determine the relative merits

of finite-dimensional approximating spaces. This amounts to an a priori ap-

proach capable of exposing deficiencies of approximating spaces for computing

the solutions of PDEs.

We have also noted that the smooth, higher-order basis functions of Iso-

geometric Analysis open the way to efficiently solving higher-order PDEs on

complex domains. Problems of this kind, such as those representing multi-phase

phenomena, have proven very difficult for standard FEA approaches. Finally,

we briefly reviewed recent mathematical work in Isogeometric Analysis devoted

to the construction of smooth, divergence-free, approximating spaces for vector

field problems, and mentioned seminal functional analysis results that explicitly

reveal the improvements garnered by the smooth approximating spaces used in

Isogeometric Analysis.
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Dispersive Equations
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Abstract

We will discuss some recent developments in the area of non-linear dispersive

and wave equations, concentrating on the long time behavior of solutions to

critical problems. The issues that arise are global well-posedness, scattering

and finite time blow-up. In this direction we will discuss a method to study

such problems (which we call the “concentration compactness/rigidity theo-

rem” method) developed by the author and Frank Merle. The ideas used here

are natural extensions of the ones used earlier, by many authors, to study critical

non-linear elliptic problems, for instance in the context of the Yamabe problem

and in the study of harmonic maps. They also build on earlier works on en-

ergy critical defocusing problems. Elements of this program have also proved

fundamental in the determination of “universal profiles” at the blow-up time.

This has been carried out in recent works of Duyckaerts, the author and Merle.

The method will be illustrated with concrete examples, from works of several

authors.

Mathematics Subject Classification (2010). 35L70, 35Q55

In the last 25 years or so, there has been considerable interest in the study of

non-linear partial differential equations, modeling phenomena of wave propa-

gation, coming from physics and engineering. The areas that gave rise to these

equations are water waves, optics, lasers, ferromagnetism, general relativity

and many others. These equations have also connections to geometric flows,

and Minkowski and Kähler geometries. Examples of such equations are the

generalized KdV equations

{

∂tu+ ∂3
xu+ uk∂xu = 0, x ∈ R, t ∈ R

u|t=0 = u0

, (1)

∗Department of Mathematics, University of Chicago, Chicago, IL 60637, USA. E-mail:
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the non-linear Schrödinger equations:

{

i∂tu+4u+ |u|pu = 0 x ∈ RN , t ∈ R

u|t=0 = u0

(2)

and the non-linear wave equation







∂2
t u−4u = |u|pu (x, t) ∈ RN

× R

u|t=0 = u0

∂tu|t=0 = u1

. (3)

Inspired by the theory of ordinary differential equations, one defines a no-

tion of well-posedness for these initial value problems, with data u0 in a given

function space B. Since these equations are time-reversible, the intervals of

time to be considered are symmetric around the origin. Well-posedness entails

existence, uniqueness of a solution, which describes a continuous curve in the

space B, for t ∈ I, the interval of existence, and continuous dependence of this

curve on the initial data. If I is finite, we call this local well-posedness, if I is

the whole line, we call this global well-posedness. The first stage of develop-

ment of the theory concentrated on what I will call the “local theory of the

Cauchy problem”, which established local well-posedness results on Sobolev

spaces B, or global well-posedness for small data in B. Pioneering works were

due to Sigal [Si], Strichartz [Str], Kato [Ka1, Ka2], Ginibre–Velo [GV1], Pecher

[P], Tsutsumi [Ts] and many others. In the late 80’s, in collaboration with

Ponce and Vega (see [KPV1, KPV2], etc.) we introduced the systematic use of

the machinery of modern harmonic analysis to study the “local theory of the

Cauchy problem”. Further contributions came from work of Bourgain ([B1, B2],

etc.) and Klainerman–Machedon ([KlM], etc.), Tataru ([Tat1, Tat2], etc.), Tao

([T4, T5], etc.) and many others. The resulting body of techniques has proved

very powerful in many problems and has attracted the attention of a large

community of researchers.

In recent years, there has been a great deal of interest in the study, for non-

linear dispersive equations, of the long-time behavior of solutions, for large data.

Issues like blow-up, global existence and scattering have come to the forefront,

especially in critical problems. These problems are natural extensions of non-

linear elliptic problems which were studied earlier. To explain this connection,

recall that in the late 1970’s and early 1980’s, there was a great deal of interest

in the study of semi-linear elliptic equations, to a great degree motivated by

geometric applications. For instance, recall the Yamabe problem: let (M, g) be a

compact Riemannian manifold of dimension N ≥ 3. Is there a conformal metric

g̃ = cg, so that the scalar curvature of (M, g̃) is constant? In this context, the

equation (4u =
∑N

j=1
∂
2
u

∂x2

j

) for x ∈ RN

4u+ |u|
4

N−2u = 0, (4)

where u ∈ Ḣ1
(RN

) = {u : ∇u ∈ L2
(RN

)} was extensively studied. Using

this information, Trudinger, Aubin and Schoen solved the Yamabe problem in
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the affirmative (see [S] and references therein). The equation (4) is “critical”

because the linear part and the non-linear part have the same “strength”, since

if u is a solution, so is
1

λ(N−2)/2u
(

x

λ

)

. The equation (4) is “focusing”, because

the linear part (4) and the non-linearity (|u|4/(N−2)u) have opposite signs and

hence they “fight each other”. The difficulties in the study of (4) come from

the “lack of compactness” of the Sobolev embedding:

‖u‖
L2∗ (RN )

≤ CN ‖∇u‖
L2(RN )

,
1

2∗
=

1

2
−

1

N
, (5)

where CN is the best constant. The only non-zero radial solution of

(4) in Ḣ1
(RN

) (modulo sign, translation and scaling) and also the only

non-negative solution is W (x) =
(

1 + |x|2/N(N − 2)
)

−(N−2)/2
(Gidas–Ni–

Nirenberg [GNN]). W is also the unique minimizer in (5) ([Tal]). For the much

easier “defocusing problem”

4u− |u|
4

N−2u = 0, u ∈ Ḣ1
(RN

), (6)

it is easy to see that there are no non-zero solutions.

Another much studied elliptic problem, which motivated a lot of research,

comes from the study of “harmonic maps”. Let M be a k-dimensional Rieman-

nian manifold. A map u : RN
→ M is a “harmonic map” if it is a minimizer

of the energy
∫

|∇u|2. If u ∈ C2
(RN

;M) is a “harmonic map”, it solves the

elliptic system (we view M as embedded in Rp
)

4ui
+ Γ

i

jk(u)
∂uj

∂xl

∂uk

∂xl

= 0, in RN , (7)

where Γ
i

jk
are the Christoffel symbols of the metric on M. Major concerns were

the existence and regularity of solutions and their geometrical significance.

Through the study of (4) and (7) by Talenti, Trudinger, Aubin, Schoen–

Uhlenbeck, Sachs–Uhlenbeck, Brézis–Coron, etc. (see [S, BC] and references

therein) many important techniques were developed. In particular, through

these works, the study of the “defect of compactness” and the “bubble decom-

position” were first understood. A systematization was developed through P.L.

Lions’ work on concentration-compactness [L] and other works.

I will now try to describe a program (which I call the concentration-com-

pactness/rigidity theorem method) which Frank Merle and I have developed to

study such critical evolution problems (See [KM1, KM2, KM3, KM4] and the

surveys [K1, K2]). This program was inspired in part by the earlier elliptic the-

ory and by Bourgain’s induction on energy method [B3]. It has antecedents in

works of Glangetas–Merle [GM], Martel–Merle [MM1, MM2], etc., and Merle–

Raphael [MR1, MR2], etc. It applies to both defocusing cases and (for the

first time) also to focusing cases. To illustrate the program, we will concen-

trate on two examples, the “energy critical” non-linear Schrödinger equation
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and non-linear wave equation:

(NLS)

{

i∂tu+4u± |u|4/(N−2)u = 0 (x, t) ∈ RN
× R

u|t=0 = u0 ∈ Ḣ1
(RN

)
(8)

(NLW)







∂2
t u−4u = ±|u|4/(N−2)u (x, t) ∈ RN

× R

u|t=0 = u0 ∈ Ḣ1
(RN

)

∂tu|t=0 = u1 ∈ L2
(RN

)

(9)

In both instances, the “−” sign corresponds to the defocusing case, while the

“+” sign corresponds to the focusing case. For (8) if u is a solution, so is
1

λ(N−2)/2u
(

x

λ
, t

λ2

)

, while for (9) if u is a solution, so is
1

λ(N−2)/2u
(

x

λ
, t

λ

)

. Both

scalings leave invariant the norm in the energy spaces Ḣ1
, Ḣ1

× L2
, which is

why the problems are called “energy critical”. Both problems have “energies”

that are constant in time:

(NLS) E±(u0) =
1

2

∫

|∇u0|
2
±

1

2∗

∫

|u0|
2
∗

(10)

(NLW) E±(u0, u1) =
1

2

∫

|∇u0|
2
+

1

2

∫

(u1)
2
±

1

2∗

∫

|u0|
2
∗

(11)

where +=defocusing case, −=focusing case.

For both problems the “local theory of the Cauchy problem” has been long

understood. (For (NLS) through work of Cazenave–Weissler (90) [CW], for

(NLW) through works of Pecher (84) [P], Ginibre–Velo (95) [GV2]). These

works (say for (NLS)) show that for any u0 ∈ Ḣ1
(RN

), ‖u0‖Ḣ1 < δ, ∃! solution

of (NLS), defined for all time, depending continuously on u0 and which scatters,

i.e. ∃ u±

0 ∈ Ḣ1
such that

lim
t→±∞

‖u(t)− w±(t)‖Ḣ1 = 0, (12)

where w± solves the linear problem

{

i∂tw± +4w± = 0

w±|t=0 = u±

0

. (13)

Moreover, given any data u0 in the energy space, there exist T±(u0) such that

there exists a unique solution u ∈ C((−T−(u0), T+(u0)); Ḣ
1
) and the interval

is maximal. Corresponding results hold for (NLW).

The natural conjecture in defocusing cases (when the linear operator and

the non-linearity cooperate) is:

(†) Global regularity and well-posedness conjecture: The same global

result as above holds for large data, i.e. we have global in time well-posedness
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and scattering for arbitrary data in Ḣ1
(Ḣ1

×L2
), moreover more regular data

preserve this regularity for all time.

(†) was first established for (NLW), through work of Struwe (1988) in the

radial case [St1], Grillakis (1990) in the general case [Gr] and in this form by

Shatah–Struwe (93,94) [SS1], [SS2] and Kapitanski (93) [Kap] and Bahouri–

Shatah (98) [BS].

The first progress on (†) for (NLS) was due to Bourgain (99) (radial case

N = 3, 4) [B3], Tao (05) (radial case N ≥ 5) [T3], Colliander–Keel–Staffilani–

Takaoka–Tao (05) [CKSTT] general case N = 3, Ryckman–Vişan (06) N = 4

[RV], Vişan (06) N ≥ 5 [V].

In the focusing case, (†) fails. In fact, for (NLW), H. Levine (1974) [Le]

showed that if (u0, u1) ∈ H1
× L2

, E(u0, u1) < 0, then T±(u0, u1) are finite.

(This was done through an “obstruction” type of argument). Recently, Krieger–

Schlag–Tataru (07) [KST2] constructed explicit radial examples, N = 3. For

(NLS) a classical argument (first discovered by Zakharov and then indepen-

dently by Glassey (77) [G]) shows that if
∫

|x|2|u0(x)|
2 < ∞, u0 ∈ Ḣ1

, E(u0) <

0, then T±(u0) are finite. Moreover, W (x) =
(

1 + |x|2/N(N − 2)
)

−(N−2)/2
∈

Ḣ1
and is a static solution of (NLS), (NLW) since 4W + |W |

4/(N−2)W = 0.

Thus scattering need not happen for global solutions. We now have, for focusing

problems:

(††) Ground state conjecture: There exists a “ground state”, whose en-

ergy is a threshold for global existence and scattering.

The method that Merle and I have developed gives a “road map” to attack

(†), (††). Let us illustrate it with (††) for (NLS), (NLW).

Theorem A (Kenig and Merle 06 [KM3]). For the focusing energy critical

(NLS) 3 ≤ N ≤ 5, u0 ∈ Ḣ1, radial, such that E(u0) < E(W ), we have:

i) If ‖u0‖Ḣ1 < ‖W‖
Ḣ1 , the solution exists for all time and scatters

ii) If ‖u0‖Ḣ1 > ‖W‖
Ḣ1 , T±(u0) < ∞

Theorem B (Kenig and Merle 07 [KM1]). For the focusing energy critical

(NLW), 3 ≤ N ≤ 5, (u0, u1) ∈ Ḣ1
× L2, E(u0, u1) < E(W, 0), we have

i) If ‖u0‖Ḣ1 < ‖W‖
Ḣ1 , the solution exists for all time and scatters

ii) If ‖u0‖Ḣ1 > ‖W‖
Ḣ1 , T±(u0, u1) < ∞

Remark: There is no radial assumption on Theorem B. Also the case

E(u0, u1) < E(W, 0), ‖u0‖Ḣ1 = ‖W‖
Ḣ1 is impossible (similarly for (NLS)).

This proves (††), the ground state conjecture, for (NLW). It was the first full

proof of (††) in a significant example. Killip–Vişan (08) [KV1] have combined
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the ideas in Theorem B with another important new idea, to extend Theorem

A to the non-radial case N ≥ 5.

“The road map” (applied to the proof of Theorem B, i)):

a) Variational arguments (Only needed in focusing problems)

These are “elliptic arguments” which come from the characterization of W

as the minimizer of ‖u‖
L2∗ ≤ CN ‖∇u‖

L2 . They yield that if we fix δ0 > 0

so that E(u0, u1) < (1 − δ0)E(W, 0) and if ‖u0‖Ḣ1 < ‖W‖
Ḣ1 , ‖u0‖Ḣ1 <

(1 − δ) ‖W‖
Ḣ1 (energy trapping) and

∫

|∇u0|
2
− |u0|

2
∗

≥ δ
∫

|∇u0|
2
(coer-

civity). From this, using preservation of energy and continuity of the flow we

can see that for t ∈ (−T−, T+) = I, E(u(t), ∂tu(t)) ≈ ‖(u(t), ∂tu(t))‖
2

Ḣ1
×L2 ≈

‖(u0, u1)‖
2

Ḣ1
×L2 , so that supt∈I ‖(u(t), ∂tu(t))‖Ḣ1

×L2 < ∞. This need not guar-

antee I = (−∞,+∞), since, for instance, the Krieger–Schlag–Tataru [KST2]

example has this property.

b) Concentration-compactness procedure If E(u0, u1) < E(W, 0),

‖u0‖Ḣ1 = ‖W‖
Ḣ1 , by a) E(u(t), ∂tu(t)) ≈ ‖(u0, u1)‖

2

Ḣ1
×L2 . Thus, if E(u0, u1)

is small, by the “local Cauchy problem” we have global existence and scatter-

ing. Hence, there is a critical level of energy EC , 0 < η0 ≤ EC ≤ E(W, 0) s.t. if

E(u0, u1) < EC , ‖u0‖Ḣ1 < ‖W‖
Ḣ1 , we have global existence and scattering and

EC is optimal with this property. Theorem B i) is the statement EC = E(W, 0).

If EC < E(W, 0), we reach a contradiction by proving:

Proposition 1 (Existence of critical elements). There exists (u0,C , u1,C) with

E(u0,C , u1,C) = EC , ‖u0,C‖Ḣ1 < ‖W‖
Ḣ1 , such that, either I is finite or, if I

is infinite, uC does not scatter. We call uC a “critical element”.

To establish Proposition 1, we need to face the “lack of compactness” and the

criticality of the problem. To overcome this we use a “profile decomposition”,

which is the analog, for wave and dispersive equation of the elliptic “bubble de-

composition”. For the wave equation it was first obtained by Bahouri–Gérard

(1999) [BG], while for the 2D Schrödinger equation it was independently ob-

tained by Merle–Vega (1998) [MV].

Proposition 2 (Compactness of critical elements). ∃ λ(t) ∈ R+, x(t) ∈ RN ,

t ∈ I such that

K =

{(

1

λ(t)(N−2)/2
uC

(

x− x(t)

λ(t)
, t

)

,
1

λ(t)N/2
∂tuC

(

x− x(t)

λ(t)
, t

))

: t ∈ I

}

has compact closure in Ḣ1
× L2.

This boils down to the fact that the optimality of EC forces critical elemens

to have only 1 “bubble” in their “bubble decomposition”.
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Finally, the contradiction comes from:

c) Rigidity Theorem: If K is compact (and E(u0,C , u1,C) < E(W, 0),

‖u0,C‖Ḣ1 < ‖W‖
Ḣ1), then (u0,C , u1,C) = (0, 0).

c) clearly gives a contradiction since E(u0,C , u1,C) = EC ≥ η0 > 0.

The “road map” has already found an enormous range of applicability to

previously intractable problems, in work of many researchers. Many more ap-

plications are expected. Here is an incomplete list of such applications:

Mass Critical NLS
{

i∂tu+4u± |u|4/Nu = 0 (x, t) ∈ RN
× R

u|t=0 = u0, N ≥ 1
(14)

The “critical norm” is ‖u0‖L2(RN )
. The analog of (†) (defocusing case) and (††)

(focusing case), where the “threshold” is ‖u0‖L2 < ‖Q‖
L2 , where the ground

state Q ≥ 0 solves 4Q + Q1+4/N
= Q, has been obtained, for N ≥ 2, in the

radial case, in works of Tao, Killip, Vişan, Zhang (2007) [KTV, KVZ, TVZ].

Recently, B. Dodson (2010) [D] established (†) in the non-radial case for N ≥ 3.

The case N = 1, (†) N = 2 non-radial and (††) N ≥ 2 are open. All positive

results use the “road map”.

Wave maps Consider the system, for u = (u1, . . . , ud), u : RN+1
→

M ↪→ Rd
, �u = A(u)(Du,Du), where A(u)= second fundamental form,

Du = (−∂tu,∇u). The system is obtained from similar considerations as har-

monic maps, using the Minkowski metric. The case N = 2 is “energy critical”.

Consider the targets M = S2
or H2

. The case M = S2
is “focusing” (even

though the energy is positive), while the case M = H2
is “defocusing”. The

earlier works dealt with mappings satisfying extra symmetries, for instance

radial symmetry or being invariant under the action of S1
on the target (co-

rotational symmetry). For such data, the theory of the “local Cauchy problem”,

worked out in [S-TZ], is similar to the one of the semi-linear case mentioned

earlier. For general data, the theory of the “local Cauchy problem” is highly

non-trivial. The theory was developed by Tataru, Tao ([Tat1, Tat2, T4, T5])

for M = S2
and by Krieger [Kr] for M = H2

. The Cauchy problem “in the

large” was also first studied in the presence of symmetry, starting with pioneer-

ing works of Shatah–Thavildar-Zadeh [S-TZ], Christodoulou–Thavildar-Zadeh

[C-TZ1, C-TZ2], who showed, for the case of H2
, that in the radial case there

is global existence and scattering for data of any size. Building upon these

works, Struwe [St2, St3] showed that for radial data, when M = S2
there is

also global existence and in the co-rotational case, when M = H2
, there is

global existence while if M = S2
, if u is such that E(u) ≤ E(Q), where Q is the

non-constant harmonic map of least energy, there is also global existence. Re-

cently, examples of Rodnianski–Sterbenz [RS], Krieger–Schlag–Tataru [KST1]

and Raphael–Rodnianski [RR] have shown that when M = S2
, finite time
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blow-up can occur for co-rotational wave maps. Using the “road map”, Côte–

Kenig–Merle [CKM] have shown that when M = S2
and u is co-rotational,

E(u) ≤ E(Q), Q as above, then, in addition, either u = ±Q or u scatters. This

is a strengthened version of (††) for this case.

When M = H2
(defocusing case) Tao ([T1], [T2] etc.), Krieger–Schlag

(2009) [KrS] gave a general case (not just co-rotational) proof of (†), using the

road map. Using a different approach, specific to wave maps, which exploits

the fact that the energy is always positive, Sterbenz–Tataru (2009) [ST1, ST2]

also gave a proof of (††) when M = S2
, E(u) < E(Q). The study of the case

M = S2
, E(u) = E(Q) for general wave maps remains open.

Energy supercritical defocusing problems in critical spaces For N =

3, consider the defocusing equation







∂2
t u−4u = −|u|p−1u

u|t=0 = u0

∂tu|t=0 = u1

(15)

where p > 5, and 5 is the energy critical case. There is a critical space

Ḣsp
× Ḣsp−1

, sp =
3

2
−

2

p−1
, 1 < sp < 3

2
. Kenig and Merle [KM4] have shown,

using the “road map” that, if supt∈I ‖(u(t), ∂tu(t))‖Ḣsp×Ḣ
sp−1 < ∞, (u0, u1) ra-

dial, I= maximal interval of existence, then u is global in time (I = (−∞,+∞))

and scatters. This was the first large data, global in time result for the energy

supercritical case for (NLW). Following this paper and inspired by it, also fol-

lowing the “road map”, Killip–Vişan wrote three papers on the subject. In

[KV2], they proved the corresponding result for the defocusing, energy supre-

critical non-linear Schrödinger equation in RN
× R, N ≥ 5, in the non-radial

case, extending the decay estimate they obtained in the energy critical focusing

case ([KV1]). In [KV3] they extended the result in [KM4] for N = 3, to the

non-radial case. In [KV4] they extended the radial result in [KM4] to N > 3,

for certain ranges of p, for instance for N = 4, 5, 6, they deal with the range
4

N−2
+ 1 < p < 4

N−3
+ 1. In the forthcoming paper [KM5], Kenig–Merle have

extended the result in [KM4] to any odd dimension, in many cases, including

the case p = 5 in any dimension, in which the critical space is Ḣk
× Ḣk−1

,

N = 2k + 1.

These results are analogs of the following one for the Navier–Stokes equa-

tion, due to Escauriaza–Seregin–Sverak [ESS]. They consider







∂tvj + ∂xi
(vivj)−4vj = −∂xj

p

div v = 0

v|t=0 = a, x ∈ R3, t > 0

(16)

where div a = 0 in R3
. They showed, settling a problem which goes back to

Leray, that if I = (0, T+) is the maximal interval of existence, and v is a solution

so that supt∈I ‖v(·, t)‖L3
x
< ∞, then T+ = ∞ and v is smooth and unique. L3
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is a critical space here. In joint work with G. Koch [KK], we have shown that

our “road map” yields this result (at least in the case when L3
(R3

) is replaced

by the critical space Ḣ1/2
(R3

)). The “rigidity theorem” is established using

backward uniqueness for parabolic equations, which was the main ingredient in

the proof of [ESS]. This application shows that the “road map” is also applicable

to parabolic problems.
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December 1995.

[G] Glassey, R. T. On the blowing up of solutions to the Cauchy problem for

nonlinear Schrödinger equations. J. Math. Phys. 18 (1977), no. 9, 1794–

1797.

[Gr] Grillakis, M. G. Regularity and asymptotic behaviour of the wave equation

with a critical nonlinearity. Ann. of Math. (2) 132 (1990), no. 3, 485–509.

[Ka1] Kato, T. On the Cauchy problem for the (generalized) Korteweg-de Vries

equation. Stud. Appl. Math. ed. V. Guillemin, Academic Press, 1983, 93–

128.

[Ka2] Kato, T. On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys.
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In 1962 Serre posed a conjecture, now referred to as Conjecture II, which states

that principal homogeneous spaces under semisimple simply connected linear

algebraic groups over perfect fields of cohomological dimension two have rational
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Introduction

In the sixties, Kneser posed the Hasse Principle conjecture ([Kn3]): a principal
homogeneous space under a semisimple simply connected linear algebraic group
over a number field has a rational point provided it has a rational point over
every real completion. In the case of p-adic fields, Kneser had proved ([Kn1])
that every principal homogeneous space under a semisimple simply connected
linear algebraic group has a rational point. A classification free proof is due to
Bruhat-Tits ([BT]). Kneser’s conjecture was settled in the affirmative in the
sixties for all groups of type other than E8 ([H1], [H4], [Kn2]). The solution
for E8 came two decades later from Chernousov ([Ch1]). Already in the early
sixties, Serre posed the following conjecture, known as Conjecture II ([Se1]):
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every principal homogeneous space under a semisimple simply connected linear
algebraic group over a perfect field of cohomological dimension 2 has a ratio-
nal point. Serre’s conjecture includes Kneser’s conjecture for totally imaginary
number fields; it also brings into its fold interesting geometric fields like func-
tion fields of surfaces over algebraically closed fields. There is a real analogue of
Conjecture II, due to Colliot-Thélène ([BP2]) which places the Hasse Principle
of Kneser in the general context of virtual cohomological dimension 2.

In this article, we trace the progress towards Conjecture II, beginning with
the theorem of Merkurjev-Suslin for groups of inner type An. While Conjecture
II and the Colliot-Thélène conjecture were settled for groups of classical type
([BP1], [BP2]), they are still open for exceptional groups of type E6, E7, E8

and trialitarian D4. Conjecture II is proved for these exceptional groups with
additional constraints; for quasisplit groups not of type E8, the proof is due to
Gille ([Gi4]). There are also classes of fields of geometric type, such as func-
tion fields of surfaces over algebraically closed fields and two-dimensional strict
Henselian fields, where Conjecture II is settled ([CTOP], [CTGP], [dJHS]). The
proof of He-de Jong-Starr of Conjecture II for function fields of surfaces uses
purely geometric techniques, yielding a classification-free proof of Conjecture II
for split simply connected groups over such fields. It is a challenge to construct
a classification-free proof of Conjecture II for number fields; such a proof for
global fields of positive characteristic is due to Harder ([H3]).

We say that a field k of characteristic zero is of arithmetic type if cd(k) ≤ 2,
k satisfies Conjecture II and k has the property ‘index = exponent’ for central
simple algebras over all finite extensions of k. Function fields of surfaces over C
(type gl), two-dimensional strict Henselian fields with residue field C (type ll)
and function fields of curves over the field of Laurent series over C (type lg),
besides local fields and totally imaginary number fields are examples of fields of
arithmetic type. Over a field of arithmetic type, principal homogeneous spaces
under connected linear algebraic groups satisfy several properties typical of
number fields. For fields of type (ll), (gl) or (lg), finiteness of R-equivalence
classes, finiteness of the defect of the Hasse principle and weak approximation
are proved to be true ([CTGP]). An analogue of Harder’s theorem on the Hasse
principle for rational points on projective homogeneous spaces is also true for
fields of type (ll) and (lg).

Rost constructed an invariant for principal homogeneous spaces under sim-
ple simply connected linear algebraic groups with values in degree three Galois
cohomology ([GMS], p.126). This invariant was useful in handling Conjecture
II for groups of type G2 and F4 ([Se3], §8, §9) as well as quasisplit groups of
type E6, E7 ([Ga1]) and trialitarian D4 ([Ch2], [Ga2]). Conjecture II may be
reformulated as an injectivity statement for the Rost invariant. This leads to
questions concerning the injectivity of the Rost invariant for function fields of
arithmetic surfaces. This question is particularly interesting for function fields
of curves over p-adic fields in the context of Kato’s theorems on the unramified
degree three Galois cohomology of such fields. Certain patching techniques have
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been developed for such fields by Harbater-Hartman-Krashen ([HH], [HHK]).
Triviality of the kernel of the Rost invariant for split groups over such a field
as well as a local global principle for principal homogeneous spaces under split
reductive groups with respect to all discrete valuations of the field have been
proved in ([CTPS]) using the patching techniques from ([HH]) and ([HHK]).

1. Galois Cohomology of Classical Groups

Let k be a field, ks a separable closure of k and Γk = Gal(ks/k) the Galois group
of ks over k. For a prime number p, we denote by cdp(k) the p-cohomological

dimension of k defined as the largest integer n such that there exists a finite
p-primary Γk-module M with Hn

(Γk,M) 6= 0. The cohomological dimension

cd(k) is the supremum of the cdp(k) over all prime numbers p.
Let G be a linear algebraic group defined over k. The first non-abelian Ga-

lois cohomology set H1
(k,G) = H1

(Γk, G(ks)) classifies isomorphism classes of
principal homogeneous spaces under G, where the neutral element corresponds
to the principal homogeneous space with a rational point. Conjecture II states
that H1

(k,G) = 1 if k is a perfect field of cohomological dimension 2 and G

is a semisimple simply connected linear algebraic group defined over k. For a
finite extension l of k and a linear algebraic group G defined over l, we have
H1

(k,Rl/k(G)) = H1
(l, G) where Rl/k(G) denotes the Weil restriction of G. In

view of this fact, the problem is reduced to looking at absolutely simple simply
connected groups while discussing Conjecture II.

The following is the list of absolutely simple simply connected groups of
classical type over k:

1) (type 1An) The special linear group SL1(A), where A is a central simple
algebra over k.

2) (type 2An) The special unitary group SU(A, σ), where A is a central
simple algebra over l with a unitary involution σ satisfying lσ = k.

3) (type Cn) The symplectic group Sp(A, σ), A being a central simple alge-
bra over k with a symplectic involution.

4) (type Bn, Dn, trialitarian D4 excluded) The spinor group Spin(A, σ),
where A is a central simple algebra over k with an orthogonal involution
σ, if the characteristic of k is not 2. For characteristic 2, and type Bn and
Dn, see ([KMRT], §26.A).

Let G = SL1(A), where A is a central simple algebra over k. The exact
sequence of Γk-groups

1 → SL1(A) → GL1(A) → Gm → 1
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yields a connecting map in Galois cohomology,

k∗/Nrd(A∗
) → H1

(k, SL1(A))

which is a bijection, Nrd : A → k denoting the reduced norm map. The fol-
lowing theorem of Merkurjev-Suslin not only settles Conjecture II for groups of
type SL1(A), but gives a converse to it.

Theorem 1.1. (Merkurjev-Suslin [Su], 24.8) Let k be a perfect field. The fol-

lowing are equivalent:

1) cd(k) ≤ 2

2) For every finite extension l of k and every central simple algebra A over

l, the reduced norm map is surjective.

The above theorem is a consequence of the injectivity of the map
H1

(k, SL1(A)) → H3
(k, µ⊗2

n ), [λ] → (λ) · [A] (see 3.1), for a central simple
algebra of square-free index n ([MS], 12.2).

The proof of Conjecture II for other classical groups is due to Bayer-
Parimala ([BP1]) and relies on the Merkurjev-Suslin Theorem (1.1). Let G be a
simple simply connected linear algebraic group of type 2), 3) or 4) in the above
list. An element in H1

(k,G) gives rise to a hermitian form over the correspond-
ing central simple algebra with involution. We prove the following classification
theorem for hermitian forms over division algebras with involution, in terms of
invariants, similar to classification results over number fields ([BP1], §4). In the
classification theorem below we assume char(k) 6= 2 instead of k perfect.

Theorem 1.2. ([BP1], §4) Let (D,σ) be a central division algebra over a field

l with an involution σ and lσ = k and h a hermitian form over (D,σ). Suppose

that cd2(k) ≤ 2.

1) If σ is of symplectic type, the dimension of h determines the isomorphism

class of h.

2) If σ is of unitary type, the dimension and discriminant determine the

isomorphism class of h.

3) If σ is of orthogonal type, the dimension, discriminant and Clifford in-

variant determine the isomorphism class of h.

In the case of orthogonal involutions, the notion of Clifford invariant extends
that of quadratic forms ([B]) and takes values in 2Br(k)/〈[D]〉 where 2Br(k)

denotes the 2-torsion in the Brauer group of k.
If k is a totally imaginary number field, classifying hermitian forms is facil-

itated by the fact that over such fields there are no anisotropic groups of large
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rank of type Bn, Cn and Dn. In contrast, for every n, Merkurjev ([M1]) has
constructed fields of cohomological dimension 2 which admit a tensor product
A = H1⊗H2⊗· · ·⊗Hn of n quaternion algebras which is a division algebra. To
such a tensor product is associated a 2n+ 2 dimensional anisotropic quadratic
form over k; this produces anisotropic groups of large rank of type Dn.

The proof of the classification theorem goes simultaneously for groups of
type 2An, Bn, Cn and Dn. A key inductive step is provided by an exact se-
quence in Witt groups of hermitian forms constructed by Parimala-Sridharan-
Suresh ([BP1], Appendix 2). The remaining part of the proof of Conjecture II,
after classification of hermitian forms, rests in showing that if G is a simply
connected group with a central subgroup µ, the image of H1

(k, µ) → H1
(k,G)

is zero if cd(k) ≤ 2. This is achieved via certain norm principle theorems due
to Merkurjev ([M2], [Gi2]).

A classification of central simple algebras with involutions over fields of
cohomological dimension 2 is given by Lewis-Tignol ([LT]).

The case of classical groups over perfect fields of cohomological dimension
2 and characteristic 2 is due to Serre ([BP1], Appendix 1).

We refer to ([Se3], §8, §9) for discussions on G2 and F4. Let G be a split
simply connected group of type G2 over a field k. Then H1

(k,G) classifies
isomorphism classes of octonion algebras. The isomorphism class of an octonion
algebra is determined by its norm form which is a quadratic form of dimension 8.
If char(k) 6= 2, the norm form is a 3-fold Pfister form <1, a>⊗<1, b>⊗<1, c>

for a, b, c ∈ k∗. Let P3(k) denote the isomorphism classes of 3-fold Pfister forms
over k. For x ∈ k∗, (x) denotes the square class of x in k∗/k∗2 ' H1

(k,Z/2Z).
The Arason invariant e3 : P3(k) → H3

(k,Z/2Z) given by

e3(<1, a>⊗<1, b>⊗<1, c>) = (−a) · (−b) · (−c)

is an injection. This leads to the fact that if cd2(k) ≤ 2, then H1
(k,G) = 1.

Let G be a split simply connected group of type F4 over a field k. The
set H1

(k,G) classifies isomorphism classes of exceptional central simple 27-
dimensional Jordan algebras which we shall refer to as Albert algebras. Suppose
char(k) 6= 2, 3. An invariant ‘g3’ for Albert algebras with values in H3

(k,Z/3Z)

was constructed by Rost ([R]); the vanishing of this invariant ensures that the
algebra is ‘reduced’. There is a classification of reduced Jordan algebras by
their trace forms due to Springer. The trace form of an Albert algebra J is
determined by two invariants, f3(J) ∈ H3

(k,Z/2Z) and f5(J) ∈ H5
(k,Z/2Z).

This leads to H1
(k,G) = 1 if cd2(k) ≤ 2 and cd3(k) ≤ 2.

2. Real Analogue of Conjecture II

A field k is said to be of virtual cohomological dimension n, denoted by vcd(k) =

n, if cd(k(
√

−1)) = n. If char(k) > 0, vcd(k) = cd(k). The class of fields of
virtual cohomological dimension two includes number fields as well as function
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fields of surfaces over R. Let k be a field of characteristic zero. Let Vk denote
the space of orderings of k. For v ∈ Vk, let kv denote the real closure of k in
its algebraic closure. The following Hasse principle conjecture, due to Colliot-
Thélène, places in a general context Kneser’s conjecture for number fields:

Conjecture (HP Conjecture). Let k be a field of characteristic zero and

vcd(k) ≤ 2. Let G be a semisimple simply connected linear algebraic group

defined over k. Then a principal homogeneous space under G over k has a

rational point provided it has a rational point over kv for every v ∈ Vk.

In terms of Galois cohomology, the conjecture says that the map

H1
(k,G) →

∏

v∈Vk

H1
(kv, G)

has zero kernel.
If k is a number field and A is a central simple algebra over k, the Hasse

Principle states that a scalar λ ∈ k∗ is a reduced norm from A if it is a re-
duced norm over kv for each real closure of k. The local criterion is simply a
positivity condition for λ at all orderings where A is ramified. A proof of the
HP Conjecture for SL1(A) over number fields is due to Hasse-Maaß-Schilling.
The conjecture is settled for all groups of classical type and of types G2 and
F4 ([BP2]). For the solution of the conjecture for exceptional groups with con-
straints, see §5.

3. The Rost Invariant

Let k be a field of characteristic zero and A a central simple algebra over
k of index n. We identify the Brauer group of F with H2

(F,Gm) via the
cross product construction as in ([KMRT], p.397); under this correspondence,
the n-torsion subgroup of the Brauer group is identified with H2

(F, µn). We
write [A] for the class of the central simple algebra A in the H2

(F, µn). The
association λ ∈ k∗ 7→ (λ)·[A] in H3

(k, µ⊗2
n ) yields an invariant H1

(k, SL1(A)) '

k∗/Nrd(A∗
) → H3

(k, µ⊗2
n ). We have the following theorem due to Merkurjev-

Suslin.

Theorem 3.1. (Merkurjev-Suslin [MS], 12.2) Let A be a central simple algebra

of square-free index. The map H1
(k, SL1(A)) → H3

(k, µ⊗2
n ) has zero kernel.

The theorem gives a sufficient condition for a scalar λ ∈ k∗ to be a reduced
norm from A if its index is square-free. This theorem is critical to the proof of
Conjecture II for SL1(A).

Let q be a regular quadratic form over k with even rank, trivial discriminant
and trivial Clifford invariant. Then q is a sum of 3-fold Pfister forms in the
Witt group of k. The Arason invariant extends to give an invariant e3(q) ∈
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H3
(k,Z/2Z) ([A], Thm. 5.7). Let G = Spin(q). An element ζ ∈ H1

(k,G) yields
the isomorphism class of a quadratic form q′ over k under the composite map
H1

(k, Spin(q)) → H1
(k, SO(q)) → H1

(k,O(q)). The quadratic form q′ ⊥ −q

has even dimension, trivial discriminant and trivial Clifford invariant. The map
H1

(k, Spin(q)) → H3
(k,Z/2Z), ζ 7→ e3(q

′
⊥ −q) is an invariant, called the

Arason invariant for Spin(q).
Rost proved the existence of an invariant RG : H1

(k,G) → H3
(k,Q/Z(2))

for any absolutely simple simply connected linear algebraic group G defined
over a field k of characteristic zero. We refer to an exposition of Merkurjev in
([GMS], p.126) for the definition of the Rost invariant which builds on a theorem
of Bruno Kahn ([K], see also [EKLV]). In view of the norm residue isomorphism
theorem of Merkurjev-Suslin ([MS]), H3

(k,Z/nZ(2)) → H3
(k,Q/Z(2)) is in-

jective and RG takes values in H3
(k,Z/nZ(2)) where the only primes dividing

n are the ‘homological torsion primes’ associated to G (cf. §4). The invariant
RG is a ‘canonical’ generator of cohomological invariants in degree 3 with val-
ues in Q/Z(2) ([KMRT], §31). The Arason invariant for Spin(q) and the f3
invariant for F4 (cf. §1) coincide with the 2-primary part of the Rost invariant.
For groups of type G2, the Rost invariant coincides with the Arason invariant
of the norm form. The invariant for SL1(A) defined above is the negative of
the Rost invariant (in characteristic zero), in view of the recent work of Gille-
Quéguiner ([GQ]); in fact their work also leads to identifying the g3 invariant
for groups of type F4 defined by Rost ([R]) with the 3-primary part of the Rost
invariant.

The Rost invariant is a powerful tool in the study of principal homogeneous
spaces under simply connected groups. The map RG can be defined in arbi-
trary characteristic ([GMS], §2, Appendix A). If char(k) = p, the p-primary
part of RG should be interpreted as having values in the Kato cohomology
groups H3

(k,Qp/Zp(2)). The group Hn
(k,Z/pZ(2)), denoted by Hn

p (k) has
the following description. Let Ω1

k
denote the module of absolute differentials of

k and Ω
n

k
= ∧

n
Ω

1
k
. Then Hn+1

p (k) is the cokernel of the homomorphism

Ω
n

k → Ω
n

k/dΩ
n−1

k

induced by x · (
dy1

y1

) ∧ (
dy2

y2

) · · · ∧ (
dyn

yn
) 7→ (xp

− x) · (
dy1

y1

) ∧ (
dy2

y2

) · · · ∧ (
dyn

yn
).

4. Strengthening of Conjecture II

Given an absolutely simple simply connected linear algebraic group defined over
a field k, Serre ([Se3], 2.2) defines the set S(G) of primes associated to G ‘which
plays a special role in the structure of H1

(k,G)’. After a suggestion from Serre,
we call these primes homological torsion primes. Serre poses a strengthening
of Conjecture II which includes the case of not necessarily perfect fields ([Se3]
§10). For a field k of characteristic p, we have the cohomology groups Hn

p (k)
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defined by Kato (see §3). The separable p-dimension sdp(k) of a field k is defined
as follows:

a) if char(k) 6= p, sdp(k) = cdp(k)

b) if char(k) = p, sdp(k) is the least integer r such that Hr+1
p (l) = 0 for

every finite separable extension l of k.

Conjecture (Strong Conjecture II). Let G be an absolutely simple simply con-

nected linear algebraic group over a field k. Suppose that for every p ∈ S(G),

sdp(k) ≤ 2. Then H1
(k,G) = 1.

Gille observes ([Gi5], §2) that the additional condition [k : kp] ≤ p2 if
char(k) = p proposed by Serre in the strengthening of Conjecture II is not
used in the cases where Strong Conjecture II is proved. Strong Conjecture II
for groups of type 1An is due to Gille ([Gi3], Thm. 7). Gille in fact proves that
sdp(k) ≤ 2 if and only if for every finite extension l of k, the reduced norm
map on every p-primary central simple algebra is surjective. His method of
proof involves lifting of the Rost invariant in characteristic p to characteristic
zero and then appealing to the theorem of Merkurjev-Suslin. Berhuy-Frings-
Tignol ([BFT]) prove Strong Conjecture II for all classical groups, using Gille’s
theorem on reduced norms. Strong Conjecture II holds also for groups of type
G2 and F4 ([Se3], Thm. 11, [Gi3], Thm. 8, Thm. 9), which is a consequence of
the properties of the Rost invariant map in arbitrary characteristic.

5. Exceptional Groups

Conjecture II for quasisplit groups not containing a factor of type E8 is settled
by Gille ([Gi4]) through a study of norm groups of varieties of Borel subgroups.
The techniques in that paper lead to several interesting consequences, including
a new proof of the Hasse principle for quasisplit groups over number fields. Let
G be an absolutely simple simply connected linear algebraic group defined over
k. Suppose that sdp(k) ≤ 2 for every prime p ∈ S(G). Let µ be the center of G
and

1 → µ → G → Gad
→ 1

the central isogeny, Gad denoting the adjoint group of G. The set H1
(k,G) is

zero if and only if the following two conditions hold:

a) The connecting map δ : Gad
(k) → H1

(k, µ) is surjective.

b) The image of H1
(k,G) → H1

(k,Gad
) is zero.

Gille proves that the condition sdp(k) ≤ 2 for every p ∈ S(G) implies con-
dition a); the part of H1

(k,G) arising from the center is zero. Thus Conjecture
II is equivalent to statement b). Further, Gille proves Conjecture II for simply
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connected groups of type 3,6D4, E6 and E7 under certain assumptions on the
indices of the corresponding Tits algebras:

Theorem 5.1. (Gille [Gi4]) Let G be an absolutely simple simply connected

group defined over a field k with sdp(k) ≤ 2 for every p ∈ S(G).

a) Suppose G is of type 3,6D4, char(k) 6= 2 and the Tits algebra of G has

index at most 2. Then H1
(k,G) = 1.

b) Suppose G is of type E6 and the Tits algebra of G has index at most 3.

Then H1
(k,G) = 1.

c) Suppose G is of type E7 and the Tits algebra of G has index at most 4.

Then H1
(k,G) = 1.

d) Suppose G is the split group of type E8 and char(k) = 0. Then for every

cyclic extension L/k of degree 2,3, or 5, H1
(L/k,E8) = 1.

Conjecture I of Serre ([Se1]) asserts that if cd(k) ≤ 1, H1
(k,G) = 1 for any

connected linear algebraic group over k. Conjecture I was proved by Steinberg
([St]). A real analogue of Steinberg’s theorem is due to Scheiderer ([Sch]).

Let k be a field of cohomological dimension two with char(k) = 0 and
cd(kab) ≤ 1, kab denoting the maximal abelian extension of k. Let G be the
split group of type E8 and ξ ∈ H1

(k,G). Then by Steinberg’s theorem there
exists a maximal k-torus T of G and ξ1 ∈ H1

(k, T ) which maps to ξ under
H1

(k, T ) → H1
(k,G) ([PR], 6.19). The order of ξ1 is 2

α
3
β
5
γ for some non-

negative integers α, β, γ ([PR], 6.21). Since cd(kab) ≤ 1, by Steinberg’s theorem,
ξ1 is zero over kab. Let L/k be a finite abelian extension such that ξ1 is zero
over L. Let E/k be a subextension of L/k such that [L : E] is coprime to 2, 3
and 5, and the only prime divisors of [E : k] are 2, 3 or 5. Then ξ1 is zero over
E since the order of ξ1 is prime to [L : E]. Since E/k can be filtered by a tower
of cyclic extensions of order 2, 3 or 5, it follows that ξ is split by such a tower.
Thus the following is a consequence of (5.1(d)). The proof of (5.1(d)) in ([Gi4])
is parallel to that of Chernousov for number fields.

Theorem 5.2. (Gille [Gi4], §IV.2) Let k be a field of characteristic zero,

cd2(k) ≤ 2, cd3(k) ≤ 2 and cd5(k) ≤ 2. Suppose cd(kab) ≤ 1. If G is a simple

simply connected group of type E8, then H1
(k,G) = 1.

Another approach to the proof of Conjecture II for quasisplit groups of
type 3,4D4, E6 and E7 is through the study of the kernel of the Rost in-
variant map, due to Garibaldi ([Ga1]) for E6 and E7 and Chernousov for
D4 ([Ch2], [Ga2]). They show that for an arbitrary field k of characteristic
zero and G a quasisplit group of type 3,6D4, E6, E7, the Rost invariant map
RG : H1

(k,G) → H3
(k,Q/Z(2)) has zero kernel. Using an effective lifting of the

Rost invariant from characteristic p to characteristic zero, due to Gille ([Gi1]),
one deduces the injectivity of the RG : H1

(k,G) → H3
(k,Q/Z(2)) for groups of



348 R. Parimala

type 3,6D4, E6, E7 in arbitrary characteristic, interpreting the p-primary torsion
in H3

(k,Q/Z(2)) as Kato groups. In particular, H1
(k,G) = 1 for G quasisplit

of type 3,6D4, E6 and E7 if sdp(k) ≤ 2 for all p ∈ S(G). If char(k) = 0

and vcd(k) ≤ 2, H3
(k,Qp/Zp(2)) = 0 if p 6= 2 and H3

(k,Q2/Z2(2)) →
∏

v∈Vk
H3

(kv,Q2/Z2(2)) has zero kernel ([AEJ1], §2). These results lead to the
Hasse Principle conjecture for these groups over fields of virtual cohomological
dimension two.

6. Arithmetic of Certain Two-dimensional Fields

The following are some well known properties of number fields k:

• (Hasse-Brauer-Noether, Albert) Index and exponent coincide for central
simple algebras over k.

• (Hasse-Brauer-Noether, Albert) Every central division algebra over k is
cyclic.

• (Hasse-Brauer-Noether) Let Ωk denote the set of all places of k and for
v ∈ Ωk, kv the completion of k at v. Then the map

Br(k) →
⊕

v∈Ωk

Br(kv)

has zero kernel.

• (Hasse-Minkowski) A quadratic form q over k is isotropic if it is isotropic
over all kv, v ∈ Ωk. In particular, if k is a totally imaginary number field,
every quadratic form in at least 5 variables over k is isotropic.

• If kab denotes the maximal abelian extension of k, cd(kab) = 1 ([Se2]).

We discuss analogues of these properties in the context of the following
two-dimensional fields of geometric type.

(ll) Two-dimensional strict Henselian field, i.e. field of fractions of a Henselian
excellent two-dimensional local domain A with separably closed residue
field k.

(gl) Function field of a surface over an algebraically closed field.

(lg) F = k((t))(X), k an algebraically closed field and X an integral curve
over k((t)).

Fields of type (ll) were studied in [CTOP] where it is shown that they
satisfy ‘essentially’ all the properties listed above for number fields. Let A be a
two-dimensional excellent Henselian local domain with field of fractions F and
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separably closed residue field k. Examples of such fields are finite extensions
of k((X,Y )) where k is separably closed. If ` is a prime not equal to char(k),
then cd`(F ) = 2 (SGA 4, Cor 6.3, XIX). Let ΩF denote the set of all rank one
discrete valuations of F and let Fv denote the completion of F at v for v ∈ ΩF .
The following theorems ([CTOP]) describe the arithmetic properties of fields
of type (ll).

Theorem 6.1. ([CTOP], Thm. 2.1) Let F be a field of type (ll) and D a central

division algebra over F of exponent n. Suppose n is coprime to char(k). Then

D is cyclic of index n.

The above theorem for char(k) = 0 is due to Ford-Saltman ([FS]).

Theorem 6.2. ([CTOP], Thm. 2.3) Let F be a field of type (ll) with char(k) =

0. Then cd(F ab
) ≤ 1, where F ab denotes the maximal abelian extension of F .

Theorem 6.3. ([CTOP], Cor. 1.10) Let F be a field of type (ll). Then the

restriction map

Br(F ) →

∏

v∈ΩF

Br(Fv)

has zero kernel.

In fact, in Theorem 6.3, one may restrict v ∈ ΩF to the set of rank one
discrete valuations of F centered on codimension one points of a regular proper
scheme X → Spec(A) with function field F .

Theorem 6.4. ([CTOP], Thm. 3.6 and Thm. 3.1) Let F be a field of type (ll).

Suppose the characteristic of k is different from 2. Then every quadratic form

over F of dimension at least 5 is isotropic. Further, every quadratic form of

dimension 3 or 4 over F is isotropic if it is isotropic over Fv for every v ∈ ΩF .

An example of the failure of the Hasse principle for quadratic forms in
dimension 2 is due to Jaworski ([Ja]). In other words, the local square theorem
fails in this setting.

One has real analogues of these results for two-dimensional Henselian fields
with real closed residue field. For such a field F , every torsion quadratic form of
dimension greater than four has a nontrivial zero; in other words, the u-invariant
u(F ), in the sense of Elman-Lam, is at most 4. In particular, u(R((X,Y ))) = 4;
It is an open question whether the u-invariant of R(X,Y ) is 4.

Let F = k(X) be the function field of a surface over an algebraically closed
field k. The field F has the C2 property. The following question is due to M.
Artin ([Ar]).

Question. (Artin) Let K be a C2 field. Do the index and exponent of central
simple algebras over K coincide?
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Artin points out that for central simple algebras of index a power of 2 or
3, an affirmative answer to the question follows from elementary arguments.
Artin’s question is answered in the affirmative for function fields of surfaces
over algebraically closed fields by de Jong ([dJ], [Li]). Cyclicity of prime degree
algebras over such fields is already a challenge (cf. [V], [KRTY]). The question
of whether cd(F ab

) ≤ 1 is part of a general conjecture of Bogomolov and is
wide open. There are no analogues of the Hasse principle for Brauer groups or
quadratic forms for (gl) fields in view of the fact that the Brauer group of a
surface over an algebraically closed field is in general nonzero. Since (gl) fields
satisfy the C2 property, every 5-dimensional quadratic form over such fields is
isotropic.

Let F = k((t))(X) be of type (lg). Let k((t)) denote the algebraic closure
of k((t)). Then F ′

= k((t))(X) is a Galois (pro) cyclic extension of F with
cd(F ′

) ≤ 1. In particular, cd(F ab
) ≤ 1. Since F is a C2 field, index = exponent

for central simple algebras over F with index a power of 2 or 3. In fact, following
Saltman’s proof of splitting ramification of central simple algebras over func-
tion fields of two-dimensional regular schemes ([S]), one can show that index
and exponent coincide for all central simple algebras over F (see also [HHK],
Thm.5.5). Let X → Spec(k[[t]]) be a regular proper model of the curve X over
k((t)). Then Br(X ) = 0 ([CTOP], 1.10) and the map Br(F ) →

∏

v∈ΩF
Br(Fv)

has trivial kernel.
In the next section, we discuss how these arithmetic properties of fields of

type (ll), (gl) and (lg) lead to consequences for linear algebraic groups and
homogeneous spaces defined over such fields.

7. Arithmetic of Linear Algebraic Groups over

Two-dimensional Fields

Let A be a two-dimensional strict Henselian local domain with field of fractions
F and residue field k of characteristic zero. Then F satisfies the conditions
index = exponent for central simple algebras and cd(F ab

) ≤ 1. In view of (5.1),
(5.2), Conjecture II holds for F .

Let F = k(X), X a smooth integral surface over an algebraically closed
field k. The property index = exponent for central simple algebras over F leads
to Conjecture II for all groups not containing a factor of type E8. There is
a uniform proof of Conjecture II for split simply connected groups over F in
arbitrary characteristic due to de Jong-He-Starr ([dJHS]). Thus Conjecture II
is proved for fields of type (gl). The proof ([dJHS], 1.5) involves deformation
techniques in complex algebraic geometry. The following key ingredient in their
proof is a consequence of a more general theorem.

Theorem 7.1. ([dJHS], Thm. 1.4) Let F be a field of type (gl) and G0 a split

simply connected group over F . Let ζ ∈ H1
(F,G0) and G the group obtained
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from G0 by twisting through a cocycle defining ζ. Let P be an F -parabolic sub-

group of G0 and V the variety of F -parabolic subgroups of G of type P . Then

V (F ) 6= ∅.

We refer to ([Gi5], 6.5) for a proof of how this theorem leads to Conjecture
II for split simply connected groups over F .

Suppose F = k((t))(X), where k is an algebraically closed field and X is an
integral curve over k((t)). In view of the fact that index = exponent for central
simple algebras over F and cd(F ab

) ≤ 1, Conjecture II holds for F .

Definition. We call a field F of characteristic zero of arithmetic type if it
satisfies the following conditions:

1) cd(F ) ≤ 2

2) For every finite extension E/F , index and exponent of central simple
algebras over E coincide

3) H1
(F,G) = 1 for a semisimple simply connected linear algebraic group G

over F .

We remark that the condition 3) above would be redundant once Conjecture
II is proved for groups of type E8 for fields satisfying 1) and 2).

Examples of fields of arithmetic type are totally imaginary number fields and
fields of type (ll), (gl) and (lg). Several properties of linear algebraic groups
and principal homogeneous spaces, which are classical for totally imaginary
number fields, can be proved to be true for fields of arithmetic type. We refer
to ([CTGP]) for a discussion of the following results.

Let G be a semisimple simply connected linear algebraic group defined over
a field F . Let

1 → µ → G → Gad
→ 1

be the central isogeny, where Gad denotes the adjoint group of G. Let δ :

H1
(F,Gad

) → H2
(F, µ) be the connecting map in Galois cohomology.

Theorem 7.2. ([CTGP], Thm. 2.1) Let F be a field of arithmetic type. Then

δ : H1
(F,Gad

) → H2
(F, µ) is a bijection.

This theorem for number fields is classical (cf. [Kn2]), the unitary case being
a theorem of Landherr ([Sc], p.383).

Theorem 7.3. ([CTGP], Thm. 4.3) Let F be a field of arithmetic type and G

a semisimple simply connected linear algebraic group defined over F not con-

taining a factor of type An. Then the F -variety G is F -rational, i.e. birational

to an affine space over F .

Rationality is a consequence of isotropicity of G if it has no factor of type
An. This leads to the triviality of R-equivalence classes G(F )/R if G is simply
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connected and has no factor of type An. If G = SL1(A) then G(F )/R = SK1(A)

([Vo]); in view of a theorem of Yanchevskĭı ([Y]), this group is zero for all fields
of cohomological dimension two. Triviality of G(F )/R for simply connected
groups of type 2An over fields of cohomological dimension at most 2 is due to
Chernousov and Merkurjev ([CM]). We thus have the following:

Theorem 7.4. ([CTGP], Thm. 4.5) Let F be a field of arithmetic type and

G a semisimple simply connected group defined over F . Then the group of R-

equivalence classes G(F )/R is zero.

We discuss finiteness of R-equivalence classes, obstruction to Hasse principle
and weak approximation for connected linear algebraic groups over fields of
arithmetic type.

Let G be a connected reductive group defined over any field F . Then G

admits a flasque resolution, namely, there are (nearly canonical) exact sequences
([CT], Prop.3.1)

1 → F → H → G → 1

where F is a flasque torus and H is an extension of quasitrivial torus by a
semisimple simply connected group. This induces an exact sequence of groups
([CT], Thm. 8.1)

H(F )/R → G(F )/R → Ker(H1
(F,F) → H1

(F,H)) → 1.

If F is a field of arithmetic type, then H1
(F,H) = 1 and using a delicate

argument of Gille ([Gi4], [BKG] Appendix) one has H(F )/R = 1. In particular,
G(F )/R ' H1

(F,F) ([CT], Thm. 8.4).
This leads to the fact that G(F )/R is abelian. It is an open question whether

the group of R-equivalence classes is abelian for a general field.

Theorem 7.5. (cf. [CTGP], Thm. 4.12) Let F be a field of arithmetic type.

Suppose H1
(F,F) is finite for every flasque torus F over F . Then G(F )/R is

finite for a connected linear algebraic group G defined over F .

The finiteness of H1
(F,F) for flasque tori F is proved in ([CTGP], Thm.

3.4) for fields of type (gl) and (ll). In the case (lg), we have F = k((t))(X)

where X is an integral curve over k((t)). The field k((t)) has finite cohomology
in the sense of ([CTGP], p.312) and the finiteness of H1

(F,F) for flasque tori
F follows from ([CTGP], 3.4).

Corollary 7.6. ([CTGP], Thm. 4.12) Let F be a field of type (gl), (ll) or (lg).

Then G(F )/R is finite for a connected linear algebraic group G defined over F .

The above result for number fields is due to Colliot-Thélène and Sansuc
([CTS]) for quasisplit groups and Gille ([Gi2]) in the general case.
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There are also theorems concerning finiteness of the obstruction to the Hasse
principle and weak approximation for connected linear algebraic groups over
fields of type (ll) and (gl) ([CTGP], Thm. 5.1, Thm. 4.13); the original results
over number fields are due to Sansuc ([Sa]). We shall now explain these results
in the context of fields of arithmetic type.

Let F be a field and Ω a set of rank one discrete valuations of F . For a linear
algebraic group G defined over F , let X

i

Ω(F,G) denote the kernel of the map
Hi

(F,G) →
∏

v∈Ω
Hi

(Fv, G), with the convention i ≤ 1 if G is not abelian.
Let A be a Noetherian excellent strict Henselian local domain of dimension

at most 2 with field of fractions K . Let F be a finitely generated field over
K. Let X → Spec(A) be a proper morphism with X regular and with function
field F . Let ΩX denote the set of all rank one discrete valuations of F centered
on codimension 1 points of X . Let Ω denote the union of ΩX as X varies over
regular proper schemes over Spec(A) with function field F . We call Ω the set
of divisorial discrete valuations of F . The fields of type (ll), (gl) and (lg) are
all function fields of two-dimensional regular schemes which are proper over
strict Henselian local domains. In these cases Ω stands for the set of divisorial
discrete valuations of the corresponding fields.

We have the following:

Theorem 7.7. (cf. proof of [CTGP], Thm. 5.1) Let F be a field of arithmetic

type and Ω a set of rank one discrete valuations. Let G be a connected linear

algebraic group defined over F . Suppose that X2
Ω(F, µ) is finite for every finite

F -group µ of multiplicative type. Then X
1
Ω(F,G) is finite.

Corollary 7.8. (cf. [CTGP], Thm. 5.1) Let F be of type (ll), (lg) or (gl) and

Ω the set of divisorial discrete valuations of F . Let G be a connected linear

algebraic group defined over F . Then X
1
Ω(F,G) is finite.

Proof. We will just outline the case when F is of type (lg) which is similar to
the case (ll). Suppose F = k((t))(X) where k is an algebraically closed field
and X an integral curve over k((t)). Let X → Spec(k[[t]]) be a regular proper
model of X. There exists an open subset U of X and an étale sheaf µU on U

such that µU restricts to µ on F . The map H2
(U, µU ) → H2

(F, µ) contains in
its image X

2
Ω(F, µ). In view of ([SGA 4], Exp. XIX, Thm 5.1), H2

(U, µU ) is
finite and hence X

2
Ω(F, µ) is finite.

Theorem 7.9. (cf. proof of [CTGP], Thm. 4.13) Let F be a field of arithmetic

type and S a finite set of rank one discrete valuations of F . Suppose H1
(Fv,F)

is finite for every v ∈ S and for every flasque torus F over Fv. Let G be a

connected linear algebraic group defined over F . Let G(F ) denote the closure of

G(F ) under the diagonal embedding G(F ) →
∏

v∈S
G(Fv). Then the defect of

weak approximation

AS(G) =

∏

v∈S

G(Fv)/G(F )

is finite.
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Corollary 7.10. (cf. [CTGP], 4.13) Let F be a field of type (ll), (gl) or (lg)

and S a finite set of divisorial discrete valuations of F . Let G be a connected

linear algebraic group defined over F . Let G(F ) denote the closure of G(F )

under the diagonal embedding G(F ) →

∏

v∈S
G(Fv). Then the defect of weak

approximation

AS(G) =

∏

v∈S

G(Fv)/G(F )

is finite.

Proof. We discuss the case F = k((t))(X) of type (lg). The completion of F at
any v ∈ S is of the form k((t′))((s)) or k(X ′

)((s)), where X ′ is a curve over k.
In either case in view of ([CTGP], Thm. 3.2 and Thm. 3.4), H1

(Fv,F) is finite
for any flasque torus over Fv.

In ([BKG]), using the above results, Borovoi, Kunyavskĭı and Gille compute
G(F )/R, X1

Ω(F,G) and AS(G) in terms of the algebraic fundamental group of
G. They show that for fields of type (gl) or (ll), G(F )/R, AS(G) and X

1
Ω(F,G)

are stably F -birational invariants of G. A key step in their proof is to show
that for a connected linear algebraic group G defined over any field, the Ga-
lois module PicV G is flasque, where V G = VG × k and VG denotes a smooth
compactification of G. This generalizes a theorem of Voskresenskĭı on tori; this
result is extended to homogeneous spaces with connected stabilisers in a paper
of Colliot-Thélène and Kunyavskĭı in ([CTK]).

We shall now discuss the Hasse principle for projective homogeneous spaces
under connected linear algebraic groups defined over fields of arithmetic type
(cf. [CTGP], §5). An analogous theorem for number fields is due to Harder
([H2]).There is a proof due to Borovoi ([Bo]) of Harder’s theorem which lends
itself to a more general setting. Let F be a field of arithmetic type and H a
semisimple simply connected linear algebraic group defined over F . Let X be
a projective homogeneous space under H. Let G be the stabiliser of a point in
X(F ). Since X is projective, G is a parabolic subgroup of H(F ). Let Gtor be
the biggest quotient torus of G. Then Gtor is defined over F and is quasitrivial
([CTGP], 5.6). Following Borovoi, one associates to the homogeneous space X

an element i∗(X) ∈ H2
(F,Gtor

) with the property that i∗(X) = 0 if and only
if X lifts to a principal homogeneous space under H. For fields of arithmetic
type F , we have H1

(F,H) = 0 and i∗(X) = 0 if and only if X(F ) 6= ∅. Let Ω

be a set of discrete valuations of F . If X(Fv) 6= ∅ for every v ∈ Ω, then i∗(X) ∈

X
2
Ω(F,G

tor
). Suppose Gtor is isomorphic to product of RLi/F

(Gm), where
Li/F are finite extensions. Then X

2
Ω(F,G

tor
) is isomorphic to the product of

X
2
Ω(Li,Gm). We thus have:

Theorem 7.11. ([CTGP], Thm. 5.5) Let F be field of type (ll) or (lg). Let X

be a projective homogeneous space under a connected linear algebraic group G

over F . Then the Hasse principle holds for the existence of rational points on

X with respect to all divisorial discrete valuations of F .
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Proof. If F is of type (ll), for every finite extension L/F , X2
Ω(L,Gm) = 0 (6.3).

If F = k((t))(X) be of type (lg), then X
2
Ω(F,Gm) = 0 (cf. §6). Since every

finite extension of F is again of the type (lg), the theorem follows.

8. Function Fields of Arithmetic Surfaces

Let F be a field of characteristic zero. Let G be an absolutely simple sim-
ply connected linear algebraic group defined over F . Let RG : H1

(F,G) →

H3
(F,Q/Z(2)) be the Rost invariant (cf. §3). Conjecture II may be reformu-

lated as an injectivity statement for RG for fields of cohomological dimension
two. A general setting to look for the injectivity of RG is the case of fields of co-
homological dimension at most three. In fact the following result for quasisplit
groups can be obtained from known results for RG.

Theorem 8.1. ([CTPS], Thm. 5.4) Let F be a field of characteristic zero and

cd(F ) ≤ 3. Let G/F be an absolutely simple simply connected quasisplit group

not containing an E8 factor. Then RG : H1
(F,G) → H3

(F,Q/Z(2)) has zero

kernel.

The proof for classical groups reduces to classification of quadratic and
hermitian forms over fields of cohomological dimension 3; the Milnor conjecture
in this case is due to Arason-Elman-Jacob ([AEJ2]). The cases of E6 and E7 are
due to Garibaldi ([Ga1]) and for the case of trialitarian D4 we refer to ([Ch2],
[Ga2]). The cases of G2 and F4 are discussed in ([Se3]). However, for a general
field of cohomological dimension 3 and G not quasisplit, there are examples due
to Merkurjev ([CTPS], 5.2) for which RG has nonzero kernel. There exist fields
F with cd(F ) = 3, a biquaternion division algebra A over F and an element
λ ∈ F which is not a reduced norm from A such that (λ)·[A] = 0 in H3

(F, µ⊗2
2 ).

Thus, [λ] ∈ F ∗/Nrd(A∗
) = H1

(F, SL1(A) is nontrivial and RG([λ]) = 0. This
construction involves fields which are not of arithmetic type. A natural question
is whether the kernel of RG is zero if F is a field of cohomological dimension 3
which is finitely generated over a number field, a local field, a real closed field
or an algebraically closed field.

Function fields of p-adic curves are studied in ([CTPS]). The following theo-
rem asserts that the Rost invariant map has zero kernel for split groups of type
E8 as well.

Theorem 8.2. ([CTPS], Thm. 5.5) Let O be the ring of integers in a p-adic

field k and κ its residue field. Let X/k be a smooth projective geometrically

integral curve and F = k(X). Let G be an absolutely simple simply connected

group over O. If G is of type E8, we assume that the prime p is different from

2,3 and 5. Then the kernel of the Rost map RG : H1
(F,G) → H3

(F,Q/Z(2))

is zero.

We note that the group GF is quasisplit since the special fiber Gκ is qua-
sisplit, κ being a finite field ([St]). The proof of (8.2) uses a Hasse principle for
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principal homogeneous spaces under GF where G/O is a connected reductive
group:

Theorem 8.3. ([CTPS], Thm. 4.8) Let O be the ring of integers in a p-adic

field k with residue field κ. Let X/k be a smooth projective geometrically integral

curve. Let F = k(X) and ΩF the set of all discrete valuations of k. Let G be

a connected reductive group over O. Then the restriction map H1
(F,G) →

∏

v∈ΩF
H1

(Fv, G) has zero kernel.

Let X → Spec(O) be a regular proper model of X → Spec(k). An element
ζ ∈ H1

(F,G), which is trivial in H1
(Fv, G) for every v ∈ ΩF , is unramified at

all codimension one points of X . Theorem 8.3 is a consequence of the following:

Theorem 8.4. ([CTPS], Thm. 4.6) With the same notation as in Theorem

8.3, an element ζ ∈ H1
(F,G) unramified at all codimension one points of X is

trivial.

The above theorem applied to PGLn recovers a theorem of Grothendieck
that the Brauer group of a regular proper model X/O of a curve over a p-adic
field is zero.

We conclude by showing how the Hasse principle leads to the injectivity of
the Rost invariant. We have a commutative diagram

H1
(F,G)

ρ
−→

∏

v∈Ω
H1

(Fv, G)

RG ↓ ↓

∏

RG

H3
(F,Q/Z(2))

(ρv)
−→

∏

v∈Ω
H3

(Fv,Q/Z(2))

By Theorem 8.3, ρ has zero kernel. To show that RG has zero kernel, it suffices
to show that for every v ∈ ΩF ,

RG : H1
(Fv, G) → H3

(Fv,Q/Z(2))

has zero kernel. The proof of this fact uses Bruhat-Tits theory.
The proof of Theorem 8.4 uses a certain patching technique for function

fields of curves over complete discrete valuated fields developed by Harbater-
Hartmann-Krashen ([HH], [HHK]). Suppose F = k(X) is the function field of
a smooth projective curve over a complete discrete valuated field k. Let O be
the ring of integers in k and let κ be the residue field. Let X → Spec(O) be a
regular proper model of X and X0 the reduced special fiber of X . We assume, by
possibly blowing up X , that X0 consists of regular curves with normal crossings.
Let {Ui}, 1 ≤ i ≤ n be nonempty open subsets of the components Yi of X0 and
P = {Pi | 1 ≤ i ≤ m} be a finite set of closed points of X0 containing all singular
points of X0. Suppose X0 = ∪1≤i≤nUi ∪ P. Let RUi

be the ring of rational
functions on X which are regular on Ui, and FUi

the field of fractions of the
completion of RUi

along the ideal tRUi
, where t denotes a parameter in O. For

any closed point P of X0, let FP denote the field of fractions of the completion
of the regular local ring OX ,P along its maximal ideal. Given a connected
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reductive group G over F whose underlying F -variety is F -rational, Harbater-
Hartmann-Krashen define a regular model X → Spec(O) and patching fields
{FUi

, FPj
} with the property: the local global principle holds for certain classes

of homogeneous spaces under G over F with respect to {FUi
, FPj

}. Using this
local global principle, they provide a new proof of the following result due
to Parimala-Suresh ([PS]): every quadratic form in at least 9 variables over
function fields in one variable over nondyadic p-adic fields has a nontrivial zero.

In ([CTPS]), the study of the local global principle for certain classes of
homogeneous spaces under G over F with respect to discrete valuations of F
is reduced to the study of a corresponding statement for the patching fields
{FUi

, FPj
}. In particular, the Hasse principle for quadratic forms of dimension

at least 3 over the function field of a p-adic curve (p 6= 2) with respect to
all its discrete valuations is proved in ([CTPS] Thm. 3.1), which again yields
u(F ) = 8.

References

[A] J.K. Arason, Cohomologische Invarianten quadratischer Formen, J. Algebra

36 (1975), 448–491.

[AEJ1] J.K. Arason, R. Elman, and B. Jacob, The graded Witt ring and Galois

cohomology I., Quadratic and Hermitian forms (Hamilton, Ont., 1983), 17–

50, CMS Conf. Proc. 4, Amer. Math. Soc., Providence, RI, 1984.

[AEJ2] J.K. Arason, R. Elman, and B. Jacob, Fields of cohomological 2-dimension

three, Math. Ann. 274 (1986), 649–657.

[Ar] M. Artin, Brauer-Severi varieties, Brauer groups in ring theory and algebraic

geometry, 194–210, Lecture Notes in Math. 917, Springer, Berlin-New York,

1982.

[B] H.J. Bartels, Invarianten hermitescher Formen über Schiefkörpern, Math.

Ann. 215 (1975), 269–288.

[BP1] E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical

groups over fields of cohomological dimension ≤ 2, Invent. Math. 122 (1995),

195–229.

[BP2] E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse prin-

ciple, Ann. of Math. 147 (1998), 651–693. Erratum, Ann. of Math. 163

(2006), 381.

[BFT] G. Berhuy, C. Frings and J.-P. Tignol, Galois cohomology of the classical

groups over imperfect fields, J. of Pure and Appl. Algebra 211 (2007),

307–341.

[Bo] M. Borovoi, Abelian Galois cohomology of reductive groups, Memoirs of the

American Mathematical Society 132 (1998).

[BKG] M. Borovoi, B. Kunyavskĭı, and P. Gille, Arithmetical birational invariants

of linear algebraic groups over two-dimensional geometric fields, J. Algebra

276 (2004), 292–339.



358 R. Parimala

[BT] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. Chap. III. Com-

pléments et applications à la cohomologie galoisienne, J. Fasc. Sci. Tokyo 34

(1987), 671–698.

[Ch1] V. Chernousov, The Hasse principle for groups of type E8, Dokl. Akad.

Nauk. SSSR 306 (1989), 1059–1063 and english transl. in Math. USSR-Izv.

34 (1990), 409–423.

[Ch2] V. Chernousov, The kernel of the Rost invariant, Serre’s Conjecture II and

the Hasse principle for quasi-split groups 3,6
D4, E6, E7, Math. Ann. 326

(2003), 297–330.

[CM] V. Chernousov and A.S. Merkurjev, R-equivalence and special unitary

groups, J. Algebra 209 (1998) 175–198.

[CT] J.-L. Colliot-Thélène, Résolutions flasques des groupes linéaires connexes, J.

reine angew. Math. 618 (2008), 77–133.

[CTGP] J.-L. Colliot-Thélène, P. Gille and R. Parimala, Arithmetic of linear algebraic

groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), 285–

341.

[CTK] J.-L. Colliot-Thélène and B. Kunyavskĭı, Groupe de Picard et groupe de
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What do we mean by local? To get an answer to this question let us start from

the following two problems.

First problem is from number theory. When does the diophantine equation

f(x, y, z) = x2
− ay2 − bz2 = 0, a, b, ∈ Q∗

have a non-trivial solution in rational numbers? In order to solve the problem,

let us consider the quadratic norm residue symbol (−,−)p where p runs through

all primes p and also ∞. This symbol is a bi-multiplicative map (−,−)p :

Q∗ × Q∗ → {±1} and it is easily computed in terms of the Legendre symbol.

Then, a non-trivial solution exists if and only if, for any p, (a, b)p = 1. However,
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these conditions are not independent:

∏

p

(a, b)p = 1. (1)

This is essentially the Gauss reciprocity law in the Hilbert form.

The “points” p correspond to all possible completions of the field Q of ra-

tional numbers, namely to the p-adic fields Qp and the field R of real numbers.

One can show that the equation f = 0 has a non-trivial solution in Qp if and

only if (a, b)p = 1.

The second problem comes from complex analysis. Let X be a compact

Riemann surface (= complete smooth algebraic curve defined over C). For a

point P ∈ X, denote by KP = C((tP )) the field of Laurent formal power

series in a local coordinate tP at the point P . The field KP contains the ring

̂

OP = C[[tP ]] of Taylor formal power series. These have an invariant meaning

and are called the local field and the local ring at P respectively. Let us now fix

finitely many points P1, . . . , Pn ∈ X and assign to every P in X some elements

fP such that fP1
∈ KP1

, . . . , fPn
∈ KPn

and fP = 0 for all other points.

When does there exist a meromorphic (=rational) function f on X such

that

fP − f ∈
̂

OP for every P ∈ X? (2)

The classical answer to this Cousin problem is the following: there exists such

an f whenever for any regular differential form ω on X

∑

P

resP (fPω) = 0. (3)

The space of regular differential forms has dimension g (= genus of X) and

in this way one gets finitely many conditions on the data (fP ). The residue is

an additive map resP : Ω
1
(KP ) → C and is easily computed in terms of the

local decomposition of the differential form ω ∈ Ω
1
(KP ). Note that “locally”,

problem (2) can be solved for any point P . Behind our global conditions (3),

we have the following residue relation:

∑

P

resP (η) = 0 (4)

for any meromorphic differential form η on X.

We see some similarity between these two problems, which belong to very

different parts of our science. The explanation lies in the existence of a very

deep analogy between numbers and functions, between number fields and fields

of algebraic functions. This analogy goes back to the nineteenth century, pos-

sibly to Kronecker. The leading role in the subsequent development belongs to

Hilbert. The analogy was one of his beloved ideas, and thanks to Hilbert it

became one of the central ideas in the development of number theory during

the twentieth century. Following this analogy, we can compare algebraic curves
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over C (= compact Riemann surfaces) and number fields (= finite extensions of

Q). In particular, this includes a comparison of local fields such as that between

the fields C((t)) and Qp. Their similarity was already pointed out by Newton
1
.

In modern terms, we have two kinds of geometric objects. First, a complete

algebraic curve X, containing an affine curve U = Spec(R)
2
, where R is the

ring of regular functions on U :

(geometric picture) X ⊃ U and finitely many points P ∈ X.

Next, if we turn to arithmetic, we have a finite extension K ⊃ Q and the ring

R ⊂ K of integers. We write

(arithmetic picture) X ⊃ U = Spec(R) and finitely many infinite places P ∈ X.

The places (“points”) correspond to the embeddings of K into the fields R or

C. Here, X stands for the as yet not clearly defined complete “arithmetical”

curve, an analogue of the curve X in the geometric situation. The analogy

between both U ’s is very clear and transparent. The rings R are the Dedekind

rings of the Krull dimension
3
1. The nature of the additional points (outside U)

are more complicated. In the geometric case, they also correspond to the non-

archimedean valuations on the curve X, whereas in the arithmetical case these

infinite places are a substitute for the archimedean valuations of the field K.

In algebraic geometry, we also have the theory of algebraic curves defined

over a finite field Fq and this theory, being arithmetic in its nature, is much

closer to the theory of number fields than the theory of algebraic curves over

C. The main construction on both sides of the analogy is the notion of a local

field. These local fields appear into the following table:

dimension geometric case arithmetic case

> 2 . . . . . .

2 ? R((t)), C((t))

1 Fq((t)) Qp, R, C

0 Fq F1

Here F1 is the so-called “field” with one element, which is quite popular nowa-

days. We will see soon why the fields R((t)) and C((t)) belong to the higher level

of the table than the fields Qp or R. More on the analogy between geometry

and arithmetic can be found in [61].

1He compared the power series and the expansions of rational numbers in powers of p (for
p = 10).

2Here, Spec(R) is the set of prime ideals in the ringR together with the additional structure
of a scheme.

3That is, the length of a maximal chain of prime ideals. The ring R itself is not a prime
ideal.
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1. n-dimensional Local Fields and Adelic

Groups

Let us consider algebraic varieties X (or Grothendieck schemes) of dimension

greater than one. It appears that we have a well established notion of something

local attached to a point P ∈ X. One can take a neighborhood of P , e.g. affine,

complex-analytic if X is defined over C, formal and so on. In this talk we will

advocate the viewpoint that the genuine local objects on the varieties are not

the points with some neighborhoods but the maximal ordered sequences (or

flags) of subvarieties, ordered by inclusion.

If X is a variety (or a scheme) of dimension n and

X0 ⊂ X1 ⊂ . . . Xn−1 ⊂ Xn = X

is a flag of irreducible subvarieties (dim(Xi) = i) then one can define a certain

ring

KX0,...,Xn−1

associated to the flag. In the case where all the subvarieties are regularly em-

bedded, this ring is an n-dimensional local field.

Definition 1. Let K and k be fields. We say that K has a structure of an

n-dimensional local field with the last residue field k if either n = 0 and K = k

or n ≥ 1 and K is the fraction field of a complete discrete valuation ring OK

whose residue field K̄ is a local field of dimension n − 1 with the last residue

field k.

Thus, an n-dimensional local field has the following inductive structure:

K =: K
(0) ⊃ OK → K̄ =: K

(1) ⊃ O
K̄

→ K̄
(1)

=: K
(2) ⊃ O

K(2) → . . . → K̄
(n)

= k

where OF denotes the valuation ring of the valuation on F and F̄ denotes the

residue field.

The simplest example of an n-dimensional local field is the field

K = k((t1))((t2)) . . . ((tn))

of iterated Laurent formal power series. In dimension one, there are examples

from the table. However, fields such as R or C are not covered by this definition.

Concerning classification of the local fields see [17].

One can then form the adelic group (actually, the ring)

AX =

∏′

KX0,...,Xn−1

where the product is taken over all the flags with respect to certain restrictions

on components of adeles. For schemes over a finite field Fq, this is the ultimate
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definition of the adelic space attached to X. In general, one must extend it by

adding archimedean components, such as the fields R or C in dimension one.

In dimension one, the local fields and adelic groups are well-known tools

of arithmetic. They were introduced by C. Chevalley in the 1930s and were

used to formulate and solve many problems in number theory and algebraic

geometry (see, for example, [1, 74]). These constructions are associated with

fields of algebraic numbers and fields of algebraic functions in one variable over a

finite field, that is with schemes of dimension 1. A need for such constructions in

higher dimensions was realized by the author in the 1970s. They were developed

in the local case for any dimension and in the global case for dimension two

[53, 54, 17, 58]. This approach was extended by A. A. Beilinson to the schemes

of an arbitrary dimension [3, 25]. In this talk, we restrict ourselves to the case

of dimension two.

Let X be a smooth irreducible surface over a field k (or an arithmetic

surface), let P be a closed point of X and let C ⊂ X be an irreducible curve

such that P ∈ C. We denote by OX,P the local ring at the point P , that is the

ring of rational functions which are regular at P . We denote also by OC the

ring of rational functions on X which have no pole along the C.

If X and C are smooth at P , then we pick a local equation t ∈ OX,P of C

at P and choose u ∈ OX,P such that u|C ∈ OC,P is a local parameter at P .

Denote by ℘ the ideal in OX,P defining the curve C near P . We can introduce

a two-dimensional local field KP,C attached to the pair P,C by the following

procedure which includes completions and localizations:

OX,P

|

̂

OX,P = k(P )[[u, t]] ⊃ ℘ = (t)

|

( ̂OX,P )℘ = discrete valuation ring with residue field k(P )((u))

|

̂

OP,C :=
̂
( ̂OX,P )℘ = k(P )((u))[[t]]

|

KP,C := Frac ( ̂OP,C) = k(P )((u))((t))

Note that the left-hand construction is meaningful even without smoothness of

the curve C (it is sufficient to assume that C has only one formal branch near

P ). In the general case, the ring KP,C is a finite direct sum of 2-dimensional

local fields. If P is smooth then the field KP,C has the following informal inter-

pretation. Take a function f on X. We can, first, develop f as a formal power

series in the variable t along the curve C and then every coefficient of the series

restricted to C can be further developed as a formal power series in the variable

u. The local field KP,C is a kind of completion of the field of rational functions

k(X) on X. It carries a discrete valuation νC : K∗
P,C

→ Z defined by the powers

of the ideal ℘.
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Let KP be the minimal subring of KP,C which contains both K = k(X) and

̂

OX,P . In general, the ring KP is not a field. Then K ⊂ KP ⊂ KP,C and there

is another intermediate subring KC = Frac ( ̂OC) ⊂ KP,C . We can compare the

structure of the local adelic components in dimensions one and two:

KP KP,C

��
� ??

?

KP

??
?

KC

��
�

K K

The global adelic group is a certain subgroup of the ordinary product of

all two-dimensional local fields. Namely, a collection (fP,C) where fP,C ∈ KP,C

belongs to AX if the following two conditions are satisfied:

•

{fP,C} ∈ AC((tC))

for a fixed irreducible curve C ⊂ X and a local equation tC = 0 of the

curve C on some open affine subset U ⊂ X and

• we have νC(fP,C) ≥ 0, or equivalently

{fP,C} ∈ AC [[tC ]],

for all but finitely many irreducible curves C ⊂ X.

Here we reduced the definition of the adelic group to the classical case of alge-

braic curves C. Recall that a collection (fP , P ∈ C) belongs to the adelic (or

restricted) product AC of the local fields KP if and only if for almost all points

P we have fP ∈
̂

OP .

What can one do with this notion of the local field and why is it really

local? To get some understanding of this, we would like to develop the above

examples (of residues and symbols) in dimension two. For any flag P ∈ C on

a surface X and a rational differential form ω of degree 2 we can define the

residue

resP,C(ω) = Trk(P )/k(a−1,−1)

where ω =
∑

i,j
ai,ju

itjdu∧dt in the field KP,C
∼= k(P )((u))((t)). Then, instead

of the simple relation (4) on an algebraic curve, we get two types of relations

on the projective surface X [54]

∑

P∈C

resP,C(ω) = 0, for any fixed curve C, (5)

∑

C3P

resP,C(ω) = 0, for any fixed point P. (6)
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At the same time, we can define certain symbols (bi-multiplicative and three-

multiplicative) [53]

(−,−)P,C : K∗P,C ×K∗P,C → Z and (−,−,−)P,C : K∗P,C ×K∗P,C ×K∗P,C → k∗

which are respectively generalizations of the valuation νP : K∗
P

→ Z and the

norm residue symbol (−,−)P : K∗
P
× K∗

P
(actually, the tame symbol) on an

algebraic curve C. The reciprocity laws have the same structure as the residue

relations. In particular, if f, g, h ∈ K∗ then

∏

P∈C

(f, g, h)P,C = 1, for any fixed curve C,

∏

C3P

(f, g, h)P,C = 1, for any fixed point P.

This shows that in dimension two there is a symmetry between points P

and curves C (which looks like the classical duality between points and lines in

projective geometry).

If C is a curve then the space AC contains the important subspaces A0 =

K = k(C) of principal adeles (rational functions diagonally embedded into the

adelic group) and A1 =
∏

P∈C
̂

OP of integral adeles. These give rise to the

adelic complex

A0 ⊕ A1 → AC . (7)

This complex computes the cohomology of the structure sheaf OC . If D is a

divisor on C then the cohomology of the sheaf OC(D) can be computed using

the adelic complex (7) where the subgroup A1 is replaced by the subgroup

A1(D) = {(fP ) ∈ AC : νP (fP ) + νP (D) > 0 for any P ∈ C}.

In dimension two, there is a much more complicated structure of sub-

spaces in AX (see [58]). Among the others, it includes three subspaces

A12 =
∏

′

P∈C
̂

OP,C , A01 =
∏

′

C⊂X
KC and A02 =

∏

′

P∈X
KP . We set A0 =

A01 ∩A02,A1 = A01 ∩A12 and A2 = A02 ∩A12, and arrive at an adelic complex

A0 ⊕ A1 ⊕ A2 → A01 ⊕ A02 ⊕ A12 → AX .

Once again, the complex computes the cohomology of the sheaf OX . One can

extend these complexes to the case of arbitrary schemes X and any coherent

sheaf on X (see [3, 25, 17]).

The last issue which we will discuss in this section is the relation between

the residues and Serre duality for coherent sheaves. We will only consider the

construction of the fundamental class for the sheaf of differential forms. For

curves C, we have an isomorphism H1
(C,Ω1

C
) ∼= Ω

1
(AC)/Ω

1
(A0) ⊕ Ω

1
(A1).

The fundamental class isomorphism H1
(C,Ω1

C
) ∼= k can be defined as the sum

of residues on Ω
1
(AC). The residues relation (3) shows that this sum vanishes

on the subspace Ω
1
(A0) (and it vanishes on the other subspace Ω

1
(A1) for
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trivial reasons). The same reasoning works in the case of surfaces. We have an

isomorphism

H2
(C,Ω2

X) ∼= Ω
2
(AX)/Ω2

(A01)⊕ Ω
2
(A02)⊕ Ω

2
(A12) → k,

where the last arrow is again the sum of residues over all flags P ∈ C ⊂ X. The

correctness of this definition follows from the residues relations (5) and (6). We

refer to [54, 3, 17] for the full description of the duality.

2. Harmonic Analysis on Two-dimensional

Schemes

In the 1-dimensional case, local fields and adelic groups both carry a natural

topology for which they are locally compact groups and classical harmonic

analysis on locally compact groups can therefore be applied to this situation.

The study of representations of algebraic groups over local fields and adelic

groups is a broad subfield of representation theory, algebraic geometry and

number theory. Even for abelian groups, this line of thought has very nontrivial

applications in number theory, particularly to the study of L-functions of one-

dimensional schemes (see below). The first preliminary step is the existence of a

Haar measure on locally compact groups. The analysis starts with a definition

of certain function spaces.

We have two sorts of locally compact groups. The groups of the first type are

totally disconnected such as the fields Qp or Fq((t)). These groups are related

with varieties defined over a finite field. The groups of the second type are

connected Lie groups such as the fields R or C.

If V is a locally compact abelian group of the first type let us consider the

following spaces of functions (or distributions) on V :

D(V ) = {locally constant functions with compact support}

Ẽ(V ) = {uniformly locally constant functions}

E(V ) = {all locally constant functions}

D
′
(V ) = {the dual to D(V ), i.e. all distributions}

Ẽ
′
(V ) = {the “continuous” dual to Ẽ(V )}

E
′
(V ) = {the “continuous” dual to E(V ), i.e. distributions with compact

support}.

These are the classical spaces introduced by F. Bruhat [10] and the more power-

ful way to develop the harmonic analysis is the categorical point of view. First,

we need definitions of direct and inverse images with respect to the continuous

homomorphisms.

Let f : V → W be a strict homomorphism
4
of locally compact groups V

and W . Then the inverse image f∗ : D(W ) → D(V ) is defined if and only if the

4This means that f is a composition of an open epimorphism and a closed monomorphism.
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kernel of f is compact. The direct image f∗ : D(V )⊗µ(V ) → D(W ) is defined if

and only if the cokernel of f is discrete. Here, µ(V ) is a (1-dimensional) space of

Haar measures on V . For the spaces like E , Ẽ the inverse image is defined for any

f , but the direct image is defined if and only if the kernel is compact and the

cokernel is discrete. For the distribution spaces the corresponding conditions

are the dual ones. Therefore, we see that these maps do not exist for arbitrary

homomorphisms in our category and there are some “selection rules”.

The Fourier transform F is defined as a map from D(V ) ⊗ µ(V ) to D(V̌ )

as well as for the other types of spaces. Here, V̌ is the dual group. The main

result is the following Poisson formula

F(δW,µ0
⊗ µ) = δ

W⊥,µ−1/µ
−1

0

for any closed subgroup i : W → V . Here µ0 ∈ µ(W ) ⊂ D
′
(W ), µ ∈ µ(V ) ⊂

D
′
(V ), δW,µ0

= i∗(1W ⊗ µ0) and W⊥ is the annihilator of W in V̌ .

This general formula is very efficient when applied to the self-dual (!) group

AC . The standard subgroups in AC have their characteristic functions δA1(D) ∈

D(AC) and δK ∈ D
′
(AC). We have

F(δA1(D)) = vol(A1(D))δA1((ω)−D), (8)

F(δK) = vol(AC/K)
−1δK , (9)

where K = Fq(C) and (ω) is the divisor of a nonzero rational differential form

ω ∈ Ω
1
K

on C. There is the Plancherel formula 〈f, g〉 = 〈F(f),F(g)〉 where

f ∈ D(AC), g ∈ D
′
(AC) and 〈−,−〉 is the canonical pairing between dual

spaces. When we apply this formula to the characteristic functions δA1(D) and

δK the result easily yields Riemann-Roch theorem together with Serre duality

for divisors on C (see for example [58]).

Trying to extend the harmonic analysis to the higher local fields and adelic

groups we meet the following obstacle. The n-dimensional local fields and conse-

quently the adelic groups are not locally compact topological groups for n > 1

in any reasonable sense whereas by a theorem of Weil the existence of Haar

measure (in the usual sense) on a topological group implies its local compact-

ness. Unfortunately, the well-known extensions of this measure theory to the

infinite-dimensional spaces or groups (such as the Wiener measure) do not help

in our circumstances. Thus, we have to develop a measure theory and harmonic

analysis on n-dimensional local fields and adelic groups ab ovo.

The idea for dealing with this problem came to me in the 1990s. In dimension

one, local fields and adelic groups are equipped with a natural filtration provided

by fractional ideals ℘n, n ∈ Z, which correspond to the standard valuations. For

example, this filtration on the field Fq((t)) is given by the powers of t. If P ⊃ Q

are two elements of such a filtration on a group V , then the Bruhat spaceD(V ) is

canonically isomorphic to the double inductive limit of the (finite-dimensional)

spaces F(P/Q) of all functions on the finite groups P/Q. The other function
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spaces listed above can be represented in the same way if we use all possible

combinations of projective or inductive limits.

In dimension two, local fields K such as KP,C again have a filtration by frac-

tional ideals, which are powers of ℘. But now, the quotient P/Q = ℘m/℘n, n >

m will be isomorphic to a direct sum of finitely many copies of the residue

field K̄ = Fq((u)). Thus this group is locally compact and the functional

space D(P/Q) is well defined. To define the function spaces on K one can

try to repeat the procedure which we know for the 1-dimensional fields. To

do that, we need to define the maps (direct or inverse images) between the

spaces D(P/Q),D(P/R),D(Q/R) for P ⊃ Q ⊃ R. The selection rules men-

tioned above restrict the opportunities for this construction. This enables us to

introduce the following six types of spaces of functions (or distributions) on V :

DP0
(V ) = lim lim D(P/Q)⊗ µ(P0/Q),

←−

j∗
←−

i∗
D
′

P0
(V ) = lim lim D

′
(P/Q)⊗ µ(P0/Q)

−1
,

−→

j∗
−→

i∗

E(V ) = lim lim E(P/Q),
←−

j∗
−→

i∗

E
′
(V ) = lim lim E

′
(P/Q),

−→

j∗
←−

i∗

Ẽ(V ) = lim lim Ẽ(P/Q),
−→

i∗
←−

j∗

Ẽ
′
(V ) = lim lim Ẽ

′
(P/Q),

←−

i∗
−→

j∗

where P ⊃ Q ⊃ R are some elements of the filtration in V (with locally compact

quotients), P0 is a fixed subgroup from the filtration and j : Q/R → P/R,

i : P/R → P/Q are the canonical maps.

This definition works for a general class of groups V including the adelic

groups such as AX , which has a filtration by the subspaces A12(D) where D

runs through the Cartier divisors on X.

Thus, developing of harmonic analysis may start with the case of dimension

zero (finite-dimensional vector spaces over a finite field representing a scheme of

dimension zero, such as Spec(Fq), or finite abelian groups) and then be extended

by induction to the higher dimensions.

An important contribution was made in 2001 by Michael Kapranov [33]

who suggested using a trick from the construction of the Sato Grassmanian

in the theory of integrable systems (known as a construction of semi-infinite

monomials)
5
. The idea consists of using the spaces µ(P0/Q) of measures instead

of µ(P/Q) in the above definition of the spaces DP0
(V ) and D

′

P0
(V ): without

5A construction of this kind for the local fields is also contained in [35].
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it one cannot define the functional spaces for all adelic groups in the two-

dimensional case and, in particular, for the whole adelic space AX .

In 2005 Denis Osipov has introduced the notion of a Cn structure in the

category of filtered vector spaces [49]. With this notion at hand, harmonic

analysis can be developed in a very general setting, for all objects of the category

C2. The crucial point is that the Cn-structure exists for the adelic spaces of

any n-dimensional noetherian scheme. The principal advantage of this approach

is that one can perform all the constructions simultaneously in the local and

global cases. The category C1 contains (as a full subcategory) the category of

linearly locally compact vector spaces (introduced and thoroughly studied by

S. Lefschetz [42]) and there one can use the classical harmonic analysis.

When we go to general arithmetic schemes over Spec(Z), fields like

C((t1)) . . . ((tn)) appear and we need to extend the basic category Cn. In dimen-

sion one, this means that connected Lie groups must also be considered. It is

possible to define categories of filtered abelian groups Car
n , (n = 0, 1, 2), which

contain all types of groups which arise from arbitrary schemes of dimension

0, 1 and 2 (in particular from algebraic surfaces over Fq and arithmetic sur-

faces). Harmonic analysis can be developed for these categories if we introduce

function spaces which are close to that of classical functional analysis, such as

Schwartz space S(R) of smooth functions on R, which are rapidly decreasing

together with all their derivatives. Recall that in the case of dimension one we

had to consider, in addition to the genuine local fields such as Qp, the fields R

and C. In the next dimension, we have to add to the two-dimensional local fields

such as Fq((u))((t)) or Qp((t)) the fields R((t)) and C((t)). They will occupy

the entire row in the table above. This theory has been developed in papers

[50, 51].

Just as in the case of dimension one, we define direct and inverse images

in the categories of groups, which take into account all the components of

the adelic complex, the Fourier transform F which preserves the spaces D and

D
′
but interchanges the spaces E and E

′
. We also introduce the characteristic

functions δW of subgroups W and then prove a generalization of the Poisson

formula. It is important that for a certain class of groups V (but not for AX

itself) there exists a nonzero invariant measure, defined up to multiplication

by a constant, which is an element of D
′
(V ). Another important tool of the

theory are the base change theorems for the inverse and direct images. They

are function-theoretic counterparts of the classical base change theorems in the

categories of coherent sheaves.

The applications of the theory includes an analytic expression for the inter-

section number of two divisors based on an adelic approach to the intersection

theory [55] and an analytic proof of the (easy part of) Riemann-Roch theorem

for divisors on X.

This theory is the harmonic analysis on the additive groups of the local fields

and adelic rings (including their archimedean cousins). In the classical case of

dimension one, the analysis can be developed on arbitrary varieties (defined



Representations of Higher Adelic Groups and Arithmetic 373

either over K, or over A). This has already been done by Bruhat in the local

case [10]. For arbitrary varieties defined over a two-dimensional local field K,

this kind of analysis was carried out by D. Gaitsgory and D. A. Kazhdan in [18]

for the purposes of representation theory of reductive groups over the field K.

This was preceded by a construction [34] of harmonic analysis on homogenous

spaces such as G(K)/G(O′
K
) (introduced in [56]). We note that the construction

of harmonic analysis (over K and A) is a nontrivial problem even in the case

G = Gm. This will be the topic of our discussion in the following sections.

3. Discrete Adelic Groups on Two-dimensional

Schemes

The harmonic analysis discussed above can be viewed as a representation the-

ory of the simplest algebraic group over local or adelic rings, namely, of the

additive group. In general, 1-dimensional local fields and adelic rings lead to

a vastly developed representation theory of reductive groups over these fields

and rings. The simplest case of this theory is still the case of an abelian group,

namely GL(1). Let K be a local field of dimension 1. Then GL(1,K) = K∗,

the multiplicative group of K, and the irreducible representations are the

abelian characters, i.e. continuous homomorphisms χ : K∗ → C∗. For arith-

metic applications one requires the morphisms to C∗, not to the unitary group

U(1) ⊂ C∗.

The 1-dimensional local field K contains a discrete valuation subring O with

a maximal ideal ℘. Then the local group K∗ has the following structure

K∗ = {tn, n ∈ Z} × O
∗
= {tn, n ∈ Z} × K̄∗ × {1 + ℘},

where t is a generator of the ideal ℘, K̄ = Fq and the group {1 + ℘} is the

projective limit of its finite quotients {1 + ℘}/{1 + ℘n
}. Thus, our group K∗

is a product of the maximal compact subgroup O
∗
and a discrete group ∼= Z.

When K is the local field KP attached to a point P of an algebraic curve C

defined over a finite field Fq, let us set ΓP := K∗
P
/O∗

P
. In the adelic case, we

set

ΓC := A∗C/
∏

P

O
∗

P =

⊕

P

K∗P /O
∗

P =

⊕

P

Z.

This group is the group of divisors on C.

We now introduce the groups dual to these discrete groups viewing them as

algebraic groups defined over C:

TP = Hom(ΓP ,C
∗
), TS =

∏

P∈S
TP , TC = lim TS ,

←−

S

where S runs through all finite subsets in C. Let us consider the divisor DS

with normal crossings on TS that consists of the points in the product TS for
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which at least one component is the identity point in some TP . Let C+[TS ] be

the space of rational functions on TS that are regular outside DS and may have

poles of first order on DS . The space C+[TC ] can be defined as an inductive

limit with respect to the obvious inclusions.

We would like to show that harmonic analysis on the adelic space AC can

be reformulated in terms of complex analysis on the dual groups. We need one

more torus T0
∼= C∗, which corresponds by the duality to the image of the

degree map

deg : ΓC → Z with deg(D) =

∑

P

nP deg(P ) for a divisor D =

∑

P

nPP.

Denote by j : T0 → TC the natural embedding. Then the following diagram

D(AC)
O

∗

=: D+(ΓC)
L

−−−−→ C+[TC ]
j
∗

−−−−→ F+[T0]

F



y



y

i
∗



y

D(AC)
O

∗

=: D+(ΓC)
L

−−−−→ C+[TC ]
j
∗

−−−−→ F+[T0]

(10)

commutes. Here, the map F is induced by the Fourier transform on the adelic

group AC , the map i : T0 → T0 sends z ∈ T0 to q−1z−1 and the space F+[T0]

consists of the functions that are regular outside the points z = 1 and z = q−1

and may have poles of the first order at these points. We denoted here by L

a duality map, a version of the Fourier transform in this situation (completely

different however from the Fourier map F). If g ∈ G and z ∈ TG = Hom(G,C∗)

for some group G then (Lf)(z) =
∑

g
f(g)z(g).

The next important fact is a reformulation of the Poisson formula on the

group AC
6
. It can be shown that for any function f ∈ D(AC)

O
∗

∑

γ∈K

f(γ) = res(0)(ω) + res(1)(ω),

∑

γ∈K

(Ff)(γ) = −res(q−1)(ω)− res(∞)(ω),

where ω = j∗Lfdz/z is the differential form on the compactification of the torus

T0 and the points we have chosen for the residues are z = 0, z = q−1, z = 1

and z = ∞. Since the poles of the form ω are contained in this set, we deduce

that the Poisson formula on the curve C (with an appropriate choice of Haar

measure on AC) is equivalent to the residue formula (4) for the form ω on the

compactification of the torus T0 (the general case see in [62]).

Our main goal now is to understand what correspond to these constructions

in the case of dimension two
7
. Let us first consider the local situation, that is

6For the sake of simplicity, we assume that Pic0(C)(Fq) = (0), that is Ker(deg) = Divl(C).
7We consider here the case of an algebraic surface. The main definitions remain valid for

the scheme part of an arithmetic surface.
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we fix a flag P ∈ C on X and assume, for the sake of simplicity, that P is

a smooth point on C. The local field KP,C has the discrete valuation subring

̂

OP,C . It is mapped onto the local field k(C)P on C. This local field contains

his own discrete valuation subring ̂

OP and we denote its preimage in ̂

OP,C by

̂

O
′

P,C
We set

ΓP,C := K∗P,C/
̂

O
′ ∗

P,C

where ΓP,C is a certain abelian group, which is (non-canonically) isomorphic

to Z⊕ Z. However, there is a canonical exact sequence of abelian groups

0 → Z → ΓP,C → Z → 0. (11)

The map to Z in the sequence corresponds to the discrete valuation νC with

respect to C and the subgroup Z corresponds to the discrete valuation νP on C

at P . A choice of local coordinates u, t in a neighborhood of P such that locally

C = {t = 0} provides a splitting of this exact sequence. The group ΓP,C will

then be isomorphic to the subgroup {tnum, n,m ∈ Z} in K∗
P,C

.

The group of coordinate transformations u 7→ u, t 7→ tuk, k ∈ Z preserves

extension (11). Therefore, this determines an embedding

Z → Aut(ΓP,C). (12)

which in fact is canonical.

We are now going to produce a global analogue of the local construction

given above. For that purpose, consider the subgroup ̂

O
′ ∗

of A∗
X
, defined as the

adelic product of the local groups ̂

O
′ ∗

P,C
for all flags on an algebraic surface X.

Let us consider the quotient

ΓX := A∗X/ ̂O′ ∗ =:

∏

(P,C)

′
ΓP,C .

We have a natural surjective homomorphism A∗
X

→ ΓX and all subgroups in

A∗
X

such as A∗01,A
∗

12, . . . ,A
∗

0 have their images Γ01,Γ12, . . . ,Γ0 in ΓX .

Then the structure of ΓX can be described by an exact sequence

0 →

∏

C

Div(C) −→ ΓX

π
−→

⊕

C

∏

P∈C

′Z → 0 , (13)

where, as above, Div(C) denotes the group of divisors on a curve C ⊂ X

and the restricted product
∏

′Z denotes the set of collections of integers with

components whose absolute values are bounded. More precisely,

(1) The subgroups
∏

C
Div(C) and Γ12 in ΓX coincide.

(2) The restriction of the homomorphism π to the subgroup Γ02 ⊂ ΓX is an

isomorphism:

π|Γ02
: Γ02

∼

−→

⊕

C

∏

P∈C

′Z.
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In other words, we see that there is a canonical splitting ΓX = Γ12 ⊕ Γ02 of

exact sequence (13) which is independent of any possible choice of the co-

ordinates. The groups which we have constructed are abelian. In our two-

dimensional case, the crucial point is that they are provided with certain canon-

ical central extensions.

Let us start once more with the local situation, that is we fix a flag P ∈ C on

X. Following [2](see also [30]) we have a canonical central extension of groups

1 → k(C)
∗

P → K̃∗P,C → K∗P,C → 1 . (14)

such that the corresponding commutator map in the central extension is a skew

form 〈·, ·〉 : K∗
P,C

×K∗
P,C

→ k(C)
∗

P
given by the tame symbol (without sign),

that is by

〈f, g〉 = fνC(g)g−νC(f)
(mod℘) ∈ k(C)

∗

P , (15)

where ℘ is the ideal which defines the curve C.

There exists a canonical section of extension (14) over the subgroup ̂

O
′∗

P,C
⊂

K∗
P,C

. Denote by Õ
′∗

P,C
the image of ̂

O
′∗

P,C
in K̃∗

P,C
with respect to this section.

If we take the quotient of the extension (14) by the subgroup ̂

O
∗

P
of the center

k(C)
∗

P
and then by the subgroup Õ

′∗

P,C
we obtain a new central extension

0 → Z → Γ̃P,C → ΓP,C → 0. (16)

It is well known that H2
(Z ⊕ Z,Z) = Z and the extension (16) is a gen-

erator of this group. The commutator in this central extension defines a non-

degenerate symplectic form 〈−,−〉 on ΓP,C with values in Z. Let us fix local

parameters u, t at P . Then ΓP,C is isomorphic to the group of matrices





1 n c

0 1 p

0 0 1



 (17)

with integer entries and 〈n, p〉 = np. We denote this group by Heis(3,Z). Hence,

we arrive at the following class of discrete nilpotent groups.

Definition 2. Let H, H ′, and C be abelian groups and let 〈−,−〉 : H ×

H ′ → C be a biadditive pairing. The set H ×H ′ ×C with the composition law

(n, p, c)(m, q, a) = (n+m, p+ q, c+ a+ 〈n, q〉), where n,m ∈ H, p, q ∈ H ′ and

c, a ∈ C, is called the discrete Heisenberg group G.

One then constructs the Heisenberg group G as a group of upper triangular

unipotent matrices with H and H ′ on the second diagonal and C in the right

top corner. There is the obvious natural central extension

0 → C → G → H ⊕H ′ → 0.
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In the global case, we have the Heisenberg group Γ̃X with

H ′ = Γ02
∼=

⊕

C

∏

P∈C

′Z, by H ′ = Γ02
∼=

⊕

C

∏

P∈C

′Z,

C = IX :=

⊕

C

⊕

P∈C

Z

and the pairing H ×H ′ → C is given by a component-wise multiplication. We

thus get a central extension

0 → IX → Γ̃X → ΓX → 0 (18)

and for each flag P ∈ C the restriction of extension (18) to ΓP,C coincides

with extension (16). So, we obtain in this way a global analogue of the local

construction, since we could describe Γ̃X as an “adelic” product of the local

groups Γ̃P,C in an appropriate sense.

There is a natural surjective homomorphism ϕ : IX → Z2
(X), (nP,C) 7→

∑

P
(
∑

C3P

nP,C)[P ], where Z2
(X) denotes the group of zero-cycles on X. We set

I02 := Ker(ϕ), I01 :=

⊕

C

Divl(C) ⊂

⊕

C

Div(C) = IX .

The Heisenberg group Γ̃X is closely related to the main arithmetic groups

attached to the surface X. The quotient IX/(I01 + I02) is the second Chow

group CH2
(X) of X. Also, there are isomorphisms

Γ01/(Γ0 + Γ1)
∼= (Γ12 ∩ (Γ01 + Γ02))/Γ1

∼=

∼= (Γ02 ∩ (Γ01 + Γ12))/Γ0
∼= Pic(X).

Moreover, the pairing Γ12 × Γ02 → IX corresponds to the intersection pairing

Pic(X)× Pic(X) → CH2
(X).

It is remarkable that the groups K∗
P,C

(and the global adelic groups), which

are very far from being locally compact, nevertheless have a non-trivial discrete

quotient.

4. Representations of Discrete Heisenberg

Groups

We have seen that in the case of dimension two the first non-trivial nilpotent

groups have occured. To define their duals one needs to develop an appropriate

representation theory for this class of groups.

For the discrete groups the classical theory of unitary representations on a

Hilbert space is not so well developed since these groups are mostly not of type
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I. By Thoma’s theorem, a discrete group is of type I if and only if it has an

abelian subgroup of finite index.

This implies a violation of the main principles of representation theory on

Hilbert spaces: non-uniqueness of the decomposition into irreducible compo-

nents; too bad topology of the unitary dual space; non-existence of charac-

ters.... V. S. Varadarajan wrote in 1989: “A systematic developement of von

Neumann’s ideas led eventually (in the 1950s) to a deep understanding of the

decomposition of unitary representations and to results which implied more or

less that a reasonable generalization of classical Fourier analysis and represen-

tation theory could be expected only for the so-called type I groups; i.e. groups

all of whose factor representations are of type I” [70].

We can also say that the class of unitary representations is too restrictive

for the arithmetic purposes.

On the other hand, there exists a theory of smooth representations for p-adic

algebraic groups. This theory is also valid for a more general class of totally

disconnected locally compact groups. Discrete groups are a simple particular

case of this class of groups and the general theory delivers a reasonable class of

representations, namely representations on a vector space without any topology.

The new viewpoint consists in a systematic consideration of purely algebraic

representations in place of unitary representations on Hilbert spaces.

Following [63], we consider now this representation theory for the dis-

crete Heisenberg groups G = (H,H ′,C, 〈−,−〉) where all three groups are

finitely generated. We introduce the complex tori TH = Hom(H,C∗),TH′ =

Hom(H ′,C∗) and TC = Hom(C,C∗), and set TG = TH ×TH′ ×TC. The group

H is homomorphically mapped to TH′ according to the rule:

h ∈ H 7→ {h′ 7→ χC(〈h, h
′
〉)}. (19)

Denote the kernel of this map by Hχ. If χ ∈ TH′ then let h(χ) be the

translate of the character χ by the image of h in TH′ . We have h(χH′)(p) =

χH′(p)χC(〈h, p〉) for any p ∈ H ′. For any χ ∈ TG, χ = χH ⊗ χH′ ⊗ χC , let

Gχ = HχH
′
C be the subset in G. Then Gχ is a normal subgroup in G, which

depends only on χC and χ|Gχ is a character of the group Gχ [65].

Definition 3. Let Vχ be the space of all complex-valued functions f on G which

satisfy the following conditions:

1. f(gh) = χ(h)f(g) for all h ∈ Gχ.

2. The support Supp(f) is contained in the union of a finite number of left

cosets of Gχ.

Left translations define a representation πχ of the group G on the space Vχ.

One can prove that these representations πχ are irreducible in both possible

senses: there are no nontrivial invariant subspaces, and the Schur lemma holds.

Furthermore, these representations can be completely classified. Namely, the
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representations Vχ and Vχ′ are equivalent if and only if three following condi-

tions are satisfied:

1. χC = χ′C.

2. There exists h ∈ H such that χ′
H′ = h(χH′).

3. χ′
H
(h) = χH(h) for all h ∈ Hχ or equivalently there exists t ∈ TH/Hχ

=

Hom(H/Hχ,C
∗
) ⊂ TH such that χ′

H
= t(χH).

Here the torus TH/Hχ
acts on the ambient torus TH by translations. The

equivalence classes of representations Vχ therefore correspond to orbits of the

groups TH/Hχ
×H/Hχ in subsets TH × TH′ × {χC} of the torus TG.

The group G is a semidirect product of the groups H and H ′C and the main

tool for obtaining the results stated above is the Mackey formalism [43] which

describes the category of induced representations for semi-direct products of

abelian locally compact groups. In the classical theory, this is well-known for

unitary representations on Hilbert spaces. In our case, we can use the version

of this formalism developed in the theory of representation of p-adic reductive

groups [4, 15, 71].

The restriction of functions from the group G to the subgroup H defines

a bijection of Vχ with a certain space of functions on H. This space has an

explicit basis and we can now define the character of the representation πχ as

the matrix trace of the representation operators πχ(g) with respect to this basis.

It is easy to see that in many cases the corresponding infinite sum of diagonal

elements will diverge. The simplest example is the group Heis(3,Z), see (17).

It is nevertheless possible to define the character if we apply a well-known

construction from the theory of loop groups [64][ch. 14.1]. Namely, we have to

add some “loop rotations” to the group G. In our context, this means that

the group G has to be extended to a semi-direct product Ĝ = G o A, where

A ⊂ Hom(H,H ′) is a non-trivial subgroup.

In the case of the group ΓP,C
∼= Heis(3,Z), this extension is suggested by

the existence of the group of coordinate transformations on the surface X (see

(12)). According to the analogy between algebraic and arithmetic surfaces we

discussed above, these coordinate transformations in the two-dimensional local

field Fq((u))((t)) indeed correspond to the loop rotations in the field C((t)).

To construct the group Ĝ = GoA, one needs to extend the automorphisms

of the abelian groups H ⊕ H ′ to the automorphisms of the entire Heisenberg

group. Note that the group A acts on H ⊕ H ′ by unipotent transformations.

When we fix an r ∈ H and choose k ∈ A, the expression

k(m, p, c) = (m, p+ k(m), c+ 1/2〈m− r, k(m)〉) m ∈ H, p ∈ H ′, c ∈ C

defines an automorphism of the group G if the following conditions hold:

1. 〈m, k(m′)〉 = 〈m′, k(m)〉 for all m,m′ ∈ H

2. 〈m− r, k(m)〉 ∈ 2C for all m ∈ H.
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When k(Hχ) ⊂ Ker(χH′) the representation of G on Vχ can be extended to a

representation π̂χ of the extended group Ĝ on the same space. Let

(TC ×A)+ := {χ ∈ TC, k ∈ A :| χC(〈n, k(n)〉) |< 1 for all n ∈ H/Hχ, n 6= 0}

be a relation in TC×A, let A(χ) be the projection of the set (TC×A)+∩({χ}×A)

to A and let Ĝ(χ) = G×A(χ) ⊂ Ĝ.

We can now solve the existence problem for the characters. The trace

Tr π̂χ(g) exists for all g ∈ Ĝ(χ) and we have

Tr π̂χ(g) = χH(m)χH′(p)χC(c) ·
∑

n∈H/Hχ

χH′(k(n))χC(〈n, p〉+1/2〈n− r, k(n)〉).

for g = (m, p, c, k), k ∈ A(χ), m ∈ Hχ. The trace is zero if m does not belong

to Hχ.

The trace is well-defined, but does not determine a function on the set of

equivalence classes of representations. To overcome this difficulty, we have to

consider representations of the extended group Ĝ.

Let TA = Hom(A,C∗) and T
Ĝ

= TG × TA. If χ̂ = (χ, χA) ∈ T
Ĝ
, then we

set

π̂χ̂ = π̂χ ⊗ χA.

We therefore have Tr π̂χ̂ = Tr π̂χ ·χA. For a given g ∈ Ĝ(χ), the trace Tr π̂χ̂(g)

can be considered as a function on the domain T ′ = TH ×TH′ ×TC(k)×TA in

the torus T
Ĝ
, where TC(k) is the projection of the set (TC ×A)+ ∩ (TC ×{k})

to the torus TC.

Let us define an action of the group TH/Hχ
× H on the set TH × TH′ ×

{χC} × TA ⊂ T ′ by the formula

(t, h)(χH , χH′ , χC, χA) = (t(χH), h(χH′), χC, χ
′

A), (20)

where

χ
′

A(k) = χA(k)χH′(k(h))χC(1/2〈h− r, k(h)〉), k ∈ A.

We define the space MG(k), k ∈ A as the quotient of the domain T ′ by this

action. The quotient-space is a complex-analytic manifold, in fact a fibration

over a domain in TC. For a given g = (m, p, c, k) ∈ Ĝ(χ) the trace Tr π̂χ̂(g)

is invariant, under a simple additional condition, under the action (20) and

defines a holomorphic function Fg = Fg(χ̂) on MG(k). We now obtain the

main property that the characters must enjoy:

Let χ̂, χ̂
′

∈ T
Ĝ
. The representations π̂χ̂ and π̂

χ̂
′ are equivalent if and only

if Ĝ(χ) = Ĝ(χ′) and Fg(χ̂) = Fg(χ̂
′
) for all g ∈ Ĝ(χ).

Thus we see that the space MG(k) is actually a moduli space for a certain

class of representations of Ĝ.
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Let us consider the simplest example, that of the group Heis(3,Z). Let

A = Z = Hom(H,H ′), r = 1, Ĝ = G o Z and χC(c) = λc, χC ∈ TC(k > 0)

where TC(k > 0) = {0 < |λ| < 1}. Then TH′/ImH =: Eλ is an elliptic curve,

where z ∈ TH′ = C∗, ImH = {λZ
}. We have a degree map

Pic(Eλ) = H1
(Eλ,O

∗
) = H1

(H,O∗(TH′)) → Hom(H,H ′) = A,

and

Pic(Eλ) = {ϕ(n, z) = a−nz−knλ−1/2kn(n−1) : a ∈ C∗, k ∈ A = Z}.

Let L be the line bundle which corresponds to a 1-cocycle ϕ. Then

H0
(Eλ, L) = {f(z), z ∈ TH′ : f(λnz) = ϕ(n, z)f(z)}.

The theta-series

ϑp,k,a(z, λ) := zp
∑

n∈Z

anzknλnp+1/2kn(n−1)

(which are the Poincaré series with respect to ϕ) converge for all z ∈ C∗, 0 <

|λ| < 1, k > 0, and form a basis of the space H0
(Eλ, L) for 0 ≤ p < k. Finally,

Tr π̂χ̂(0, p, c, k) = λctkϑp,k,1(z, λ), (z, λ) ∈ AG(k), t ∈ TA. (21)

In this case, the theta-series lifted to AG(k) = C×{upper halfplane} are Jacobi

modular forms (up to some powers of λ and z) with respect to the standard

action of a finite index subgroup of the group (Z ⊕ Z) o SL(2,Z)). This last

statement is completely parallel to a well-known property of characters for

representations of affine Kac-Moody algebras [31, 64].

In the more general situation in which H and H ′ are torsion-free groups and

C = Z, |χC(c)| 6= 1 for c 6= 0, the map k : H → H ′ is a monomorphism with

finite cokernel, A = Zk and the form 〈−, k(−)〉 is positive-definite, we have two

dual abelian varieties E = TH′/ImH and E′ = TH/ImH ′ with the Poincaré

bundle P over E × E′. The morphism k defines an isogeny ϕk : E → E′

and the sheaf L is defined as (Id × ϕk)
∗
P. By Mumford’s theory [44], there

exists a finite Heisenberg group ˜Ker(ϕk), which is a central extension of the

group Ker(ϕk). Then for all g = (m, p, c, k) ∈ Ĝ(χ) the values of the characters

Tr π̂χ̂(g)χ
−1

C
(c)χ−1

A
(k) are theta-functions for the bundle L.

If χ̂ = 1 ⊗ χH′ ⊗ χC ⊗ 1, then the functions Tr π̂χ̂(0, p, 0, k) for p ∈

H ′mod k(H) form a basis of the space H0
(E,L). This basis is a standard Mum-

ford basis for the action of the Heisenberg group ˜Ker(ϕk) = (H ′/H,TH′/H ,C∗)

on the space H0
(E,L).

In addition, certain orthogonality relations are satisfied by the characters

[63].

The boundary of the domain TC(k) can contain those characters χ0 ∈ TC

for which Hχ0
has a finite index in H. These characters correspond to the
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roots of unity in C∗, so that the representations πχ0
are finite-dimensional. Let

V = H⊗R and Q be the extension of the pairing 〈n, k(n)〉, n ∈ H to the space

V . Also, let χC(c) = λc
and let us choose a boundary point χ0. The classical

limit formulas for theta-functions imply the following behavior of the trace near

the χ0 (we assume that χH = 1 and χ′
H

= 1):

Tr π̂χ̂(g) ∼ Tr π̂χ̂0
(g)·[H : Hχ0

]
−1

(DetV Q)
−1

(√
π

2

)rkH

log |λ|− 1

2
rkH

when χC → χ0.

(22)

The trace of the representation π̂χ̂0
can be computed in terms of a Gauss sum.

Thus, we see that, in our situation, the change in the class of representations

will cause the moduli spaces of induced representations to be complex-analytic

manifolds. Characters do exist and are the modular forms. It seems that this

more general holomorphic dual space is more adequate for this class of groups

than the standard unitary dual which goes back to the Pontrjagin duality for

abelian groups.

5. Problems and Perspectives

We collect here several problems related to the issues we have discussed in the

talk.

1. Harmonic analysis for local fields and adelic groups of arbitrary
dimension n.

The basic category for this study has to be the category Cn [49] and its

version that includes fields of the archimedean type [51]. When one tries to

extend the measure theory and harmonic analysis to n-dimensional local fields

and adelic groups for n > 2 the following problem arises. The selection rules

become too severe to go further in a straightforward way. This obstacle appears

already for n-dimensional local fields with n = 3. We can define the spaces

analogous to D(V ) or D
′
(V ) only under some strong restrictions on the groups

V (= objects in Cn). Note that spaces such as E(V ) can be easily defined for

any n and arbitrary group V .

2. The Tate-Iwasawa method for two-dimensional schemes.

J. Tate [68] and independently K. Iwasawa [29] reformulated the classical

problem of analytic continuation for zeta- and L- functions for the fields of

algebraic numbers and the fields of algebraic functions in one variable over a

finite field. They introduced a new type of L-functions:

L(s, χ, f) =

∫

A∗

f(g)χ(g)|g|sd∗g
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where d∗g is a Haar measure on A∗, the function f belongs to the Bruhat-

Schwartz space of functions on AX and χ is an abelian character of the group

A∗ associated to a character

χ : Gal(Kab/K) → C∗

of the Galois group by the reciprocity map A∗ → Gal(Kab/K). They also

proved the analytic continuation of L(s, χ, f) to the entire s-plane and the

functional equation

L(s, χ, f) = L(1− s, χ−1,F(f))

by means of the Fourier transform F and the Poisson formula for functions on

AX (8), (9).

For a special choice of f and χ = 1 we obtain the zeta-function

ζX(s) =
∏

x∈X

(1− (#k(x))−s)−1,

of any scheme X of dimension one (to which we have to add, if necessary, the

archimedean factors). Here x runs through the closed points of X. The product

converges for Re(s) > dimX.

There exists a general Hasse-Weil conjecture [23, 73] which asserts that these

zeta- (and more general L-) functions can be meromorphically extended to the

entire s-plane and satisfy the functional equation (for regular proper schemes

X of dimension n) of the type ζX(n− s) = {elementary factors} ζX(s).

This conjecture has been completely proved for algebraic varieties defined

over a finite field Fq. For this goal the powerful machinery of the étale coho-

mology has been developed by A. Grothendieck. For schemes over Spec(Z), the

general results are known only in dimension one, thanks to the Hecke’s theorem.

Later this was included into the Tate-Iwasawa approach. At the same time, this

approach works for algebraic curves defined over Fq. For the higher dimensions

over Spec(Z), there are only scattered results; however these include the proof

of the Hasse-Weil conjecture for elliptic curves over Q [75, 8].

For a long time the author has advocated the following

Problem. Extend Tate–Iwasawa’s analytic method to higher dimensions (see

in particular [58]).

The higher adeles were introduced precisely for this purpose. We hope

that harmonic analysis and representation theory of adelic groups on two-

dimensional schemes may help to solve this problem.

3. Behavior of zeta- and L-functions in the critical strip.

The critical strip for the ordinary Riemann’s zeta-function is 0 ≤ <(s) ≤

1 and this zeta-function (with an archimedean factor) has there exactly two
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poles, both of first order. For the two-dimensional case, the critical strip is

wider, namely 0 ≤ <(s) ≤ 2. Take as X a model over Spec(Z) of an elliptic

curve E defined over Q. The Birch and Swinnerton-Dyer conjecture [5, 69]

states that

ζX(s) ∼

s→1

#E(Q)
2
tor

c Ω DetE(Q)〈−,−〉 #X
(s− 1)

−r−2, (23)

where E(Q) is the finitely generated Mordell-Weil group of rational points on

E, r is its rank, 〈−,−〉 is the height pairing, Ω is the real period of the curve,

X is the Shafarevich-Tate group and c is a product of certain local invariants.

Many years ago several people, including the author, have independently

observed that this limit behavior is very similar to the limit behavior of a

theta-function attached to a lattice. Namely, let V/R be a finite dimensional

euclidean vector space of dimension n. Denote by 〈−,−〉 the scalar product on

V . Let Γ be a finitely generated abelian group such that Γ ⊗ R = V and let

Γ
′
= Γ/Γtor be the corresponding lattice (= a discrete co-compact subgroup)

in V . Then the theta-function θΓ(t) is defined as

θΓ(t) :=

∑

γ∈Γ

e−πt〈γ,γ〉 = #Γtor · θΓ′(t)

and satisfies the functional equation

θΓ′(t) = t−
n
2 Vol(Γ

′
)
−1θΓ′⊥(t−1) ,

where Γ
′⊥

⊂ V is the dual lattice and the volume of the fundamental domain

for Γ
′
is Vol(Γ

′
) = det(〈ei, ej〉) with {ei} a basis of the free Z-module Γ

′
.

In particular, we get

θΓ(t) ∼

t→0
#ΓtorVol(Γ)

−
1

2 t−
n
2 .

If we apply this asymptotic formula to the group Γ⊕ Γ then we get

θΓ⊕Γ(t) ∼

t→0

#Γ
2
tor

DetΓ〈−,−〉

t−r−2, (24)

which looks rather similar to the conjecture (23) if we take as Γ the group

E(Q) ⊕ Z ⊕ Z. D. Zagier has devoted to this relation a note [77] with many

interesting remarks and observations. In particular, he discussed the question

of interpreting such factors as Ω and #X which are not visible in the theta-

formula (24).

In order to clarify the situation, let us look at the corresponding behavior

of the zeta-function of an algebraic surface X defined over Fq. The analogy

between geometric surfaces over Fq and arithmetic surfaces such as this model

X of E suggests that this may be a useful move.

The value of the zeta function at s = 1 is given by the conjecture of Artin

and Tate [69, 45]. We assume that X is a smooth proper irreducible surface.
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Denote by ρ = rk NS(X) the rank of the Neron-Severi-group of X and let {Di}

with Di ∈ NS(X) i = 1, . . . , ρ be a basis of ∈ NS(X) ⊗ Q. Denote by Di ·Dj

their intersection index. Let Br(X) = H2
(Xet,OX) be the Brauer group of X.

Then the group Br(X) is conjectured to be finite and the following relation

holds:

ζX(s) ∼

s→1
(−1)

ρ−1 qχ(OX) #Pic(X)
2
tor

#H0(X,O∗
X
)2 #Br(X) det((Di ·Dj))

(

1 − q1−s
)

−ρ
.

Within the framework of the analogy between geometry and arithmetic [61],

the group NS(X) corresponds to the group E(Q)⊕Z⊕Z, the intersection index

corresponds to the height pairing, the period Ω corresponds to qχ(OX)
and the

Brauer group to the Shafarevich-Tate group X.

Since
(

1 − q1−s
)

−ρ
∼

s→1
(s − 1)

−ρ
(log q)−ρ, we again guess that certain

theta-functions related to the lattice NS(X) may have this kind of the limit

behavior. An immediate objection to this suggestion is that the intersection

pairing is not positive-definite. This can be resolved if we consider the Siegel

theta-functions attached to indefinite quadratic forms.

The case of surfaces makes it clear that this question is highly non-trivial.

Zeta-functions of algebraic varieties over Fq are very simple analytic functions.

Indeed, according to Grothendieck’s theory, they are equal to F (q−s) where F (t)

is a rational function of a variable t. The theta-functions involved are certainly

transcendental functions, which cannot be simplified in this way by substitu-

tion. Thus the problem we arrive at is to understand how theta-functions can

appear in this setting in a natural way, and how to relate them to zeta-functions.

We conjecture that the theta-functions which occur into the traces of represen-

tations of the adelic groups constructed above could be such theta-functions.

Their behavior in the limit (22) has the structure we have just described.

It is worth mention another problem, the so called S-duality conjecture,

which is quite close to what have been discussed here. The problem came from

the quantum field theory [72] but has purely algebraic formulation for an alge-

braic surface X over a finite field Fq (see a discussion in [32]). Let Mr,n be a

moduli space of semi-stable vector bundles E on X with given rank r, trivial

determinant and the second Chern class c2(E) = n. Then the formal series

∑

n

#Mr,n(Fq)q
−ns

is expected to have under mild conditions on X a modular behavior with re-

spect to a congruence subgroup of the group SL(2,Z). It is remarkable that the

transcendental functions appear once more in relation to a surface defined over

a finite field.

4. Representations of discrete nilpotent groups.

i) The representations πχ and π̂χ̂ of the discrete Heisenberg groups are

particular examples of the irreducible representations of these groups. Thus,
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the problem of classification of all irreducible representations arises. Of course,

one needs to impose certain conditions in order to get a reasonable answer. In

the theory of unitary representations for discrete nilpotent finitely generated

groups G on a Hilbert space such a condition was found in [9]. One says that

a representation π of G on a space V has the finite multiplicity property if

there exists a subgroup H ⊂ G which preserves a line l in V and such that the

character of H defined by the action of H on l occurs in π|H as a discrete direct

summand with finite multiplicity. Then the class of irreducible representations

with this property coincides with the class of irreducible monomial (= induced

by an one-dimensional character) representations of G.

It is highly desirable to define in our algebraic situation a class of “basic”

induced representations which will play the role that the Verma modules or

representations with highest weight do for the representations of reductive Lie

groups (or algebraic groups). This is closely related to a problem of classification

of (say, left) maximal ideals in the group ring of G.

ii) The moduli spaces MG(k) defined above are orbit spaces for group ac-

tions. This construction looks very similar to the Kirillov’s orbit method for

connected real (or complex) nilpotent Lie groups G (or nilpotent algebraic

groups over Qp) [39] where the unitary dual is the space g∗/G of co-adjoint

orbits in the dual g∗ of the Lie algebra g of G. Attempts to extend Kirillov’s

method to finitely generated nilpotent groups were made in [24, 36] (see also

[6]). It seems that there is a general functorial definition of spaces such as

MG(k) for arbitrary nilpotent discrete groups which will replace the spaces

g∗/G in this situation, just as the torus T
Ĝ

may be an analogue of the space

g∗. The Kirillov’s character formula may also exist in this situation.

iii) When one tries to apply the representation theory developed in section

5 to the nilpotent groups which arise from the algebraic surfaces X (section 4),

one immediately observes that:

1) the groups like Γ̃X are not finitely generated;

2) the groups like (Pic(X), Pic(X), CH (X)) are equipped with the indefinite

form 〈−,−〉.

Certainly, the representation theory cannot be automatically extended to

the case of infinitely generated groups. In our case, the “big” group Γ̃X is

the adelic product of simplest Heisenberg groups Γ̃P,C and consequently is an

inductive limit of finite products of these local groups. We can easily extend

all the representation-theoretic constructions to the case of Γ̃X if we apply the

technique from the theory of adelic products of reductive algebraic groups over

1-dimensional local fields. The role of the compact subgroups is now played by

co-finite products of the local Heisenberg groups.

The problem 2) can also be solved. A solution is based on using the Siegel

theta-functions for indefinite quadratic forms that are well suited for this situ-

ation.
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iv) An important problem is to develop an analysis on discrete Heisen-

berg groups G, in particular, to define appropriate function spaces on G, the

analogue of the map L (see (8) in section 3) and to obtain a Plancherel-type

theorem which relates the function spaces on G and spaces of holomorphic (or

meromorphic) functions on MG(k).

v) There exists a general question of the decomposition into the irreducible

components of representations of discrete nilpotent groups. It is known that the

regular representation (on the L2
-space on G) of a discrete group G may have

very different decompositions into irreducible components (see a first example of

this kind in [43]). On the other hand, in our situation there is a rather concrete

problem: how does one decompose the natural fundamental representation of

the group Γ̃X (and locally of the groups Γ̃P,C) on the spaces DA12
(AX)

O
′∗

or D
′

A12
(AX)

O
′∗

(respectively in DOP,C
(KP,C)

O
′∗

P,C or D
′

OP,C
(KP,C)

O
′∗

P,C ) on a

surface X?

vi) Our theory deals with the discrete “part” of the adelic group A∗
X

=

GL(1,AX). D. Gaitsgory and D. Kazhdan have extended the traditional theory

of representations for reductive p-adic groups (parabolic induction, Jacquet

functor, cuspidal representations) to the case of groups GL(n,K) where K is a

two-dimensional local field (and of more general reductive groups)[18, 19, 20].

An important and certainly very hard problem is to merge these two theories,

at least for the group GL(2,AX).

vii) For the schemes of dimension two, we constructed discrete Heisenberg

groups, which are nilpotent groups of class 2. It is possible to associate certain

discrete adelic groups to schemes of arbitrary dimension n and that are the

nilpotent groups of class n.

In this text, we mainly gave a review of certain recent advances in the higher

adelic theory. During the last thirty years, this theory was developed in many

different directions. We finish with a short list of these developements
8
:

• residues and symbols [53, 54, 17, 76, 11, 12, 13, 37, 38, 47, 67, 52]

• class field theory for higher dimensions: the author, K. Kato and his

school, S. V. Vostokov and his school, see surveys [17, 16, 28, 66]

• adelic resolutions for sheaves, intersection theory, Chern classes, Lefschetz

formula for coherent sheaves [55, 76, 26, 27, 21, 22]

• algebraic groups over local fields, buildings, Hecke algebras [56, 60, 34,

18, 19, 20, 7]

• restricted adelic complexes and the Krichever correspondence [59, 46, 48,

40, 41]

• relations with non-commutative algebra [57, 78].

8This list of references does not pretend to be complete.
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l’étude des représentations des groupes ℘-adiques, Bull. Soc. Math. France, 89

(1961), 43–75.

[11] J.-L. Brylinski, D. A. McLaughlin, Multidimensional reciprocity laws, J. Reine

Angew. Math. 481 (1996), 125–147.

[12] J.-L. Brylinski, D. A. McLaughlin, Characteristic classes and multidimensional

reciprocity laws, Math. Res. Lett. 3 (1996), No.1, 19–30.

[13] J.-L. Brylinski, D. A. McLaughlin, The geometry of two-dimensional symbols,

K-Theory 10 (1996), No.3, 215–237.

[14] M. Burger, Analyse Harmonique sur les groupes de Heisenberg généralisés,

Monatsch. für Math., 98 (1984), 29–40.

[15] P. Cartier, Representations of ℘-dic groups: a survey, Automorphic forms, rep-

resentations and L-functions, Proc. Symposia in Pure Math., 33 (1979), Part 1,

Amer. Math. Soc., Providence, RI, 1979, 111–155.

[16] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. A constructive

approach, Amer. Math. Soc., Providence, RI, 1993, 283pp.

[17] T. Fimmel, A. N. Parshin, An introduction to the higher adelic theory, preprint

1999.

[18] D. Gaitsgory, D. Kazhdan, Representations of algebraic groups over a 2-

dimensional local field, Geom. and Funct. Analysis, 14 (2004), n 3, 535–574;

arXiv math. RT/0302.174.

[19] D. Gaitsgory, D. Kazhdan, Algebraic groups over a 2-dimensional local field:

irreducibility of certain induced representations, J. Differ. Gom. 70 (2005), No.

1, 113–127 (2005); arXiv: math/0409543.



Representations of Higher Adelic Groups and Arithmetic 389

[20] D. Gaitsgory, D. Kazhdan, Algebraic groups over a 2-dimensional local field:

some further constructions, Bernstein, Joseph (ed.) et al., Studies in Lie theory.

Dedicated to A. Joseph on his sixtieth birthday. Progress in Mathematics 243,

Basel: Birkhauser, 2006, 97–130; arXiv: math/0406282.

[21] S. O. Gorchinskiy, A. N. Parshin, Adelic Lefschetz formula for the action of a

one-dimensional torus, Uraltseva, N.N.(ed.), Proceedings of the St. Petersburg

Mathematical Society. Vol. XI.. Translations. Series 2. Amer. Math. Soc. 218

(2006), 31–48; e-print arXiv: math/0408058.

[22] S. O. Gorchinskiy, An adelic resolution for homology sheaves, Izvestiya: Mathe-

matics 72 (2008), No. 6, 1187–1252; e-print arXiv: math/0705.2597.

[23] H. Hasse Zetafunktionen und L-Funktionen zu einem arithmetischen Funktio-

nenkörper vom Fermatschen Typus, Abh. S. Akad. Wiss. Berlin Math. Kl. (1954),

5–70 (= Helmut Hasse, Mathematische Abhandlungen, Band 2, Berlin-New York:

Walter de Gruyter, 1975, S. 450).

[24] R. E. Howe, On representations of discrete, finitely generated, torsion-free, nilpo-

tent groups Pacif. J. Math. 73 (1977), 281–305.

[25] A. Huber, On the Parshin-Beilinson Adeles for Schemes, Abh. Math. Sem. Univ.

Hamburg 61 (1991), 249–273.
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The theory of backward stochastic differential equations (BSDEs in short)

and nonlinear expectation has gone through rapid development in so many dif-

ferent areas of research and applications, such as probability and statistics,

partial differential equations (PDE), functional analysis, numerical analysis

and stochastic computations, engineering, economics and mathematical finance,

that it is impossible in this paper to give a complete review of all the impor-

tant progresses of recent 20 years. I only limit myself to talk about my familiar

subjects. The book edited by El Karoui and Mazliark (1997) provided excellent

introductory lecture, as well as a collection of many important research results

before 1996, see also [35] with applications in finance. Chapter 7 of the book of

Yong and Zhou (1999) is also a very good reference.

Recently, using the notion of sublinear expectations, we have developed

systematically a new mathematical tool to treat the problem of risk and ran-

domness under the uncertainty of probability measures. This framework is par-

ticularly important for the situation where the involved uncertain probabilities

are singular with respect to each other thus we cannot treat the problem within

the framework of a given “reference” probability space. The well-known volatil-

ity model uncertainty in finance is a typical example. We present a new type of

law of large numbers and central limit theorem as well as G-Brownian motion

and the corresponding stochastic calculus of Itô’s type under such new sublin-

ear expectation space. A more systematical presentation with detailed proofs

and references can be found in Peng (2010a).

This paper is organized as follows. In Section 1 we present BSDE theory

and the corresponding g-expectations with some applications in super-hedging

and risk measuring in finance; In Section 2 we give a general notion of nonlinear

expectations and a new law of large numbers combined with a central limit theo-

rem under a sublinear expectation space. G-Brownian motion under a sublinear

expectation–G-expectation, which is a nontrivial generalization of the notion

of g expectation, and the related stochastic calculus will be given in Section 3.

We also discuss a type of fully “nonlinear BSDE” under G-expectation. For a

systematic presentation with detailed proofs of the results on G-expectation,

G-Brownian motion and the related calculus, see Peng (2010a).

1. BSDE and g-expectation

1.1. Recall: SDE and related Itô’s stochastic calculus. We

consider a typical probability space (Ω,F , P ) where Ω = C([0,∞),Rd
), each

element ω of Ω is a d-dimensional continuous path on [0,∞) and F = B(Ω),

the Borel σ-algebra of Ω under the distance defined by

ρ(ω, ω′
) = sup

i≥1

max
0≤t≤i

|ωt − ω′

t| ∧ 1, ω, ω′
∈ Ω.

We also denote {(ωs∧t)s≥0 : ω ∈ Ω} by Ωt and B(Ωt) by Ft. Thus an Ft-

measurable random variable is a Borel measurable function of continuous paths
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defined on [0, t]. For an easy access by a wide audience I will not bother read-

ers with too special vocabulary such as P -null sets, augmentation, etc. We say

ξ ∈ L
p

P
(Ft,R

n
) if ξ is an Rn

-valued Ft-measurable random variable such that

EP [|ξ|
p
] < ∞. We also say η ∈ M

p

P
(0, T,Rn

) if η is an Rn
-valued stochas-

tic process on [0, T ] such that ηt is Ft-measurable for each t ∈ [0, T ] and

EP [
∫ T

0
|ηt|

pdt] < ∞. Sometimes we omit the space Rn
, if no confusion will

be caused.

We assume that under the probability P the canonical process Bt(ω) = ωt,

t ≥ 0, ω ∈ Ω is a d-dimensional standard Brownian motion, namely, for each t,

s ≥ 0,

(i) B0 = 0, Bt+s−Bs is independent of Bt1
, · · · , Btn

, for t1,· · · ,tn ∈ [0, s], n ≥

1;

(ii) Bt+s −Bs

d
= N(0, Idt), s, t ≥ 0, where Id is the d× d identical matrix.

P is called a Wiener measure on (Ω,F).

In 1942, Japanese mathematician Kiyosi Itô had laid the foundation of

stochastic calculus, known as Itô’s calculus, to solve the following stochastic

differential equation (SDE):

dXs = σ(Xs)dBs + b(Xs)ds (1.1)

with initial condition Xs|s=0 = x ∈ Rn
. Its integral form is:

Xt(ω) = x+

∫ t

0

σ(Xs(ω))dBs(ω) +

∫ t

0

b(Xs(ω))ds, (1.2)

where σ : Rn
7→ Rn×d

, b : Rn
7→ Rn

are given Lipschitz functions. The key part

of this formulation is the stochastic integral
∫ t

0
σ(Xs(ω))dBs(ω). In fact, Wiener

proved that the typical path of Brownian motion has no bounded variation and

thus this integral is meaningless in the Lebesgue-Stieljes sense. Itô’s deep insight

is that, at each fixed time t, the random variable σ(Xt(ω)) is a function of path

depending only on ωs, 0 ≤ s ≤ t, or in other words, it is an Ft-measurable

random variable. More precisely, the process σ(X·(ω)) can be in the space

M2
P
(0, T ). The definition of Itô integral is perfectly applied to a stochastic

process η in this space. The integral is defined as a limit of Riemann sums in

a “non-anticipating” way:
∫ t

0
ηs(ω)dBs(ω) ≈

∑

ηti(Bti+1
− Bti

). It has zero

expectation and satisfies the following Itô’s isometry:

E

[

∣

∣

∣

∣

∫ t

0

ηsdBs

∣

∣

∣

∣

2
]

= E

[∫ t

0

|ηs|
2ds

]

. (1.3)

These two key properties allow Kiyosi Itô to obtain the existence and uniqueness

of the solution of SDE (1.2) in a rigorous way. He has also introduced the well-

known Itô formula: if η, β ∈M2
P
(0, T ), then the following continuous process

Xt = x+

∫ t

0

ηsdBs +

∫ t

0

βsds (1.4)
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is also inM2
P
(0, T ) and satisfies the following Itô formula: for a smooth function

f on Rn
× [0,∞),

df(Xt, t) = ∂tf(Xt, t)dt+∇xf(Xt, t)dXt+
1

2

n
∑

i,j=1

(ηη∗)ijDxixj
f(Xt, t)dt. (1.5)

Based on this formula, Kiyosi Itô proved that the solution X of SDE (1.1) is a

diffusion process with the infinitesimal generator

L =

n
∑

i=1

bi(x)Dxi
+

1

2

n
∑

i,j=1

(σ(x)σ∗
(x))ijDxixj

. (1.6)

1.2. BSDE: existence, uniqueness and comparison theo-
rem. In Itô’s SDE (1.1) the initial condition can be also defined at any initial

time t0 ≥ 0, with a given Ft0
-measurable random variable Xt|t=t0

= ξ ∈

L2
P
(Ft0

). The solution X
t0,ξ

T
at time T > t0 is FT -measurable. This equation

(1.1) in fact leads to a family of mappings φT,t(ξ) = X
t,ξ

T
: L2

P
(Ft,R

n
) 7→

L2
P
(FT ,R

n
), 0 ≤ t ≤ T < ∞, determined uniquely by the coefficients σ

and b. This family forms what we called stochastic flow in the way that the

following semigroup property holds: φT,t(ξ) = φT,s(φs,t(ξ)), φt,t(ξ) = ξ, for

t ≤ s ≤ T <∞.

But in many situations we can also meet an inverse type of problem to find

a family of mappings Et,T : L2
P
(FT ,R

m
) 7→ L2

P
(Ft,R

m
) satisfying the following

backward semigroup property: (see Peng (1997a)) for each s ≤ t ≤ T < ∞ and

ξ ∈ L2
P
(FT ,R

m
),

Es,t[Et,T [ξ]] = Es,T [ξ], and ET,T [ξ] = ξ.

Et,T maps an FT -measurable random vector ξ, which can only be observed at

time T , backwardly to an Ft-measurable random vector Et,T [ξ] at t < T . A

typical example is the calculation of the value, at the current time t, of the risk

capital reserve for a risky position with maturity time T > t. In fact this type

of problem appears in many decision making problems.

But, in general, Itô’s stochastic differential equation (1.1) cannot be applied

to solve this type of problem. Indeed, if we try to use (1.1) to solve Xt at time

t < T for a given terminal value XT = ξ ∈ L2
P
(FT ), then

Xt = XT −

∫ T

t

b(Xs)ds−

∫ T

t

σ(Xs)dBs.

In this case the “solution” Xt is still, in general, FT -measurable and thus b(X)

and σ(X) become anticipating processes. It turns out that not only this formu-

lation cannot ensure Xt ∈ L2
P
(Ft), the stochastic integrand σ(X) also becomes

illegal within the framework of Itô’s calculus.
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After the exploration over a long period of time, we eventually understand

that what we need is the following new type of backward stochastic differential

equation

Yt = YT +

∫ T

t

g(s, Ys, Zs)ds−

∫ T

t

ZsdBs, (1.7)

or in its differential form

dYs = −g(s, Ys, Zs)ds+ ZsdBs, s ∈ [0, T ].

In this equation (Y,Z) is a pair of unknown non-anticipating processes and the

equation has to be solved for a given terminal condition YT ∈ L2
P
(FT ) (but ZT

is not given). In contrast to SDE (1.1) in which two coefficients σ and b are

given functions of one variable x, here we have only one coefficient g, called

the generator of the BSDE, which is a function of two variables (y, z). Bismut

(1973) was the first to introduce a BSDE for the case where g is a linear or (for

m = 1) a convex function of (y, z) in his pioneering work on maximum principle

of stochastic optimal control systems with an application in financial markets

(see Bismut (1975)). See also a systematic study by Bensoussan (1982) on

this subject. The following existence and uniqueness theorem is a fundamental

result:

Theorem 1.1. (Pardoux and Peng (1990)) Let g : Ω × [0,∞) × Rm
× Rm×d

be a given function such that g(·, y, z) ∈M2
P
(0, T,Rm

) for each T and for each

fixed y ∈ Rm and z ∈ Rm×d, and let g be a Lipschitz function of (y, z), i.e.,

there exists a constant µ such that

|g(ω, t, y, z)− g(ω, t, y′, z′)| ≤ µ(|y − y′|+ |z − z′|), y, y′ ∈ Rm, z, z′ ∈ Rm×d.

Then, for each given YT = ξ ∈ L2
P
(FT ,R

m
), there exists a unique pair of

processes (Y,Z) ∈ M2
P
(0, T,Rm

× Rm×d
) satisfying BSDE (1.7). Moreover, Y

has continuous path, a.s. (almost surely).

We denote E
g

t,T
[ξ] = Yt, t ∈ [0, T ]. From the above theorem, we have ob-

tained a family of mappings

E
g

s,t : L
2
P (Ft) 7→ L2

P (Fs), 0 ≤ s ≤ t <∞, (1.8)

with “backward semigroup property” (see Peng (2007a)):

E
g

s,t[E
g

t,T
[ξ]] = E

g

s,T
[ξ], E

g

T,T
[ξ] = ξ, for s ≤ t ≤ T <∞, ∀ξ ∈ L2

(FT ).

In 1-dimensional case, i.e., m = 1, the above property is called “recursive”

in utility theory in economics. In fact, independent of the above result, Duffie
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and Epstein (1992) introduced the following class of recursive utilities:

−dYt =

[

f(ct, Yt)−
1

2
A(Yt)Z

T

t Zt

]

dt− ZtdBt, YT = ξ, (1.9)

where the function f is called a generator, and A a “variance multiplier”.

In 1-dimensional case, we have the comparison theorem of BSDE, introduced

by Peng (1992b) and improved by El Karoui, Peng and Quenez (1997).

Theorem 1.2. We assume the same condition as in the above theorem for two

generators g1 and g2. We also assume that m = 1. If ξ1 ≥ ξ2 and g1(t, y, z) ≥

g2(t, y, z) for each (t, y, z), a.s., then we have E
g1

t,T
[ξ1] ≥ E

g2

t,T
[ξ2], a.s.

This theorem is a powerful tool in the study of 1-dimensional BSDE theory

as well as in many applications. In fact it plays the role of “maximum prin-

ciple” in the PDE theory. There are two typical theoretical situations where

this comparison theorem plays an essential role. The first one is the existence

theorem of BSDE, obtained by Lepeltier and San Martin (1997), for the case

when g is only a continuous and linear growth function in (y, z) (the uniqueness

under the condition of uniform continuity in z was obtained by Jia (2008)).

The second one is also the existence and uniqueness theorem, in which g

satisfies quadratic growth condition in z and some local Lipschitz conditions, ob-

tained by Kobylanski (2000) for the case where the terminal value ξ is bounded.

The existence for unbounded ξ was solved only very recently by Briand and Hu

(2006).

A specially important model of symmetric matrix valued BSDEs with a

quadratic growth in (y, z) is the so-called stochastic Riccati equation. This

equation is applied to solve the optimal feedback for linear-quadratic stochas-

tic control system with random coefficients. Bismut (1976) solved this problem

for a situation where there is no control variable in the diffusion term, and then

raised the problem for the general situation. The problem was also listed as

one of several open problems in BSDEs in Peng (1999a). It was finally com-

pletely solved by Tang (2003), whereas other problems in the list are still open.

Only few results have been obtained for multi-dimensional BSDEs of which the

generator g is only assumed to be (bounded or with linear growth) continu-

ous function of (y, z), see Hamadène, Lepeltier and Peng (1997) for a proof in a

Markovian case. Recently Buckdahn, Engelbert and Rascanu (2004) introduced

a notion of weak solutions for BSDEs and obtained the existence for the case

where g does not depend on z.

The above mentioned stochastic Riccati equation is used to solve a type

of backward stochastic partial differential equations (BSPDEs), called stochas-

tic Hamilton-Jacobi-Bellman equation (SHJB equations) in order to solve the

value function of an optimal controls for non-Markovian systems, see Peng

(1992). Englezos and Karatzas (2009) characterized the value function of a util-

ity maximization problem with habit formation as a solution of the correspond-

ing stochastic HJB equation. A linear BSPDE was introduced by Bensoussan
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(1992). It serves as the adjoint equation for optimal control systems with par-

tial information, see Nagai (2005), Oksendal, Proske and Zhang (2005), or for

optimal control system governed by a stochastic PDE, see Zhou (1992). For the

existence, uniqueness and regularity of the adapted solution of a BSPDE, we

refer to the above mentioned papers as well as Hu and Peng (1991), Ma and

Yong (1997,1999), Tang (2005) among many others. The existence and unique-

ness of a fully nonlinear backward HJB equation formulated in Peng (1992)

was then listed in Peng (1999a) as one of open problems in BSDE theory. The

problem is still open.

The problem of multi-dimensional BSDEs with quadratic growth in z was

partially motivated from the heat equation of harmonic mappings, see Elwor-

thy (1993). Dynamic equilibrium pricing models and non-zero sum stochastic

differential games also lead to such type of BSDE. There have been some very

interesting progresses of existence and uniqueness in this direction, see Dar-

ling (1995), Blache (2005). But the main problem remains still largely open.

One possible direction is to find a tool of “comparison theorem” in the multi-

dimensional situation. An encouraging progress is the so called backward via-

bility properties established by Buckdahn, Quincampoix and Rascanu (2000).

1.3. BSDE, PDE and stochastic PDE. It was an important dis-

covery to find the relation between BSDEs and (systems of) quasilinear PDEs

of parabolic and elliptic types. Assume that Xt,x
s , s ∈ [t, T ], is the solution

of SDE (1.1) with initial condition Xt,x
s |s=t = x ∈ Rn

, and consider a BSDE

defined on [t, T ] of the following type

dY t,x

s = −g(Xt,x

s , Y t,x

s , Zt,x

s )ds+ Zt,x

s dBs, (1.10)

with terminal condition Y
t,x

T
= ϕ(X

t,x

T
). Then we can use this BSDE to solve

a quasilinear PDE. We consider a typical case m = 1:

Theorem 1.3. Assume that b, σ, ϕ are given Lipschitz functions on Rn

with values in Rn, Rn×d and R respectively, and that g is a real valued Lip-

schitz function on Rn
× R× Rd. Then we have the following relation Y t,x

s =

E
g

s,T
[ϕ(X

t,x

T
)] = u(s,Xt,x

s ). In particular, u(t, x) = Y
t,x

t , where u = u(t, x)

is the unique viscosity solution of the following parabolic PDE defined on

(t, x) ∈ [0, T ]× Rn:

∂tu+ Lu+ g(x, u, σ∗Du) = 0, (1.11)

with terminal condition u|t=T = ϕ. Here Du = (Dx1
u, · · · , Dxn

u)

The relation u(t, x) = Y
t,x

t is called a nonlinear Feynman-Kac formula.

Peng (1991a) used a combination of BSDE and PDE method and established

this relation for non-degenerate situations under which (1.11) has a classical

solution. In this case (1.11) can also be a system of PDE, i.e., m > 1, and we

also have Zt,x
s = σ∗Du(s,Xt,x

s ). Later Peng (1991b), (1992a) used a stochastic
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control argument and the notion of viscosity solution to prove a more general

version of above theorem for m = 1. Using a simpler argument, Pardoux and

Peng (1992) provided a proof for a particular case, which is the above theorem.

They have introduced a new probablistic method to prove the regularity of u,

under the condition that all coefficients are regular enough, but the PDE is

possibly degenerate. They then proved that the function u is also a classical

regular solution of (1.11). This proof is also applied to the situation m > 1.

The above nonlinear Feynman-Kac formula is not only valid for a system of

parabolic equation (1.11) with Cauchy condition but also for the corresponding

elliptic PDE Lu + g(x, u, σ∗Du) = 0 defined on an open subset O ⊂ Rn
with

boundary condition u|x∈O = ϕ. In fact, u = u(x), x ∈ O can be solved by

defining u(x) = E
g

0,τx
[ϕ(X0,x

τx
)], where τx = inf{s ≥ 0 : X0,x

s 6∈ O}. In this case

some type of non-degeneracy condition of the diffusion process X and a mono-

tonicity condition of g with respect to y are required, see Peng (1991a). The

above results imply that we can solve PDEs by using BSDEs and, conversely,

solve some BSDEs by PDEs.

In principle, once we have obtained a BSDE driven by a Markov process X

in which the final condition ξ at time T depends only on XT , and the generator

g also depends on the state Xt at each time t, then the corresponding solution

is also state dependent, namely Yt = u(t,Xt), where u is the solution of the

corresponding quasilinear evolution equation. Once ξ and g are path functions

of X, then the solution Yt = E
g

t,T
[ξ] of the BSDE becomes also path dependent.

In this sense, we can say that PDE (1.11) is in fact a “state dependent BSDE”,

and BSDE gives us a new generalization of PDE—“path-dependent PDE” of

parabolic and elliptic types.

The following backward doubly stochastic differential equation (BDSDE)

smartly combines two essentially different SDEs, namely, an SDE and a BSDE

into one equation:

dYt = −ḡt(Yt, Zt)dt− h̄t(Yt, Zt) ↓ dWt + ZtdBt, YT = ξ, (1.12)

where W and B are two mutually independent Brownian motions. In (1.12)

all processes at time t are required to be measurable functions on Ωt × Ω
W
t

where Ω
W
t is the space of the paths of (WT −Ws)t≤s≤T and ↓ dWt denotes

the “backward Itô’s integral” (≈
∑

i
hti(Wti

−Wti−1
)). We also assume that ḡ

and h̄ are Lipschitz functions of (y, z) and, in addition, the Lipschitz constant

of h̄ with respect to z is assumed to be strictly less than 1. Pardoux and Peng

(1994) obtained the existence and uniqueness of (1.12) and proved that, under

a further assumption:

ḡt(ω, y, z) = g(Xt(ω), y, z), h̄t(y, z) = h(Xt(ω), y, z), ξ(ω) = ϕ(XT (ω)),

(1.13)

where X is the solution of (1.1) and where g, h, b, σ, ϕ are sufficiently regular

with |∂z ḡ| < µ, µ < 1, then Yt = u(t,Xt), Zt = σ∗Du(t,Xt). Here u is a smooth
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solution of the following stochastic PDE:

dut(x, ω) = −(Lu+ g(x, u, σ∗Du))dt+ h(x, u, σ∗Du) ↓ dWt (1.14)

with terminal condition u|t=T = ϕ(XT ). Here we see again a path-interpretation

of a nonlinear stochastic PDE.

Another approach to give a probabilistic interpretation of some infinite di-

mensional Hamilton-Jacobi-Bellman equations is to consider a generator of a

BSDE of the form g(Xt, y, z) where X is a solution of the following type of

infinite dimensional SDE

dXs = [AXs + b(Xs)]ds+ σ(Xs)dBs, (1.15)

where A is some given infinitesimal generator of a semigroup and B is, in

general, an infinite dimensional Brownian motion. We refer to Fuhrman and

Tessitore (2002) for the related references.

Up to now we have only discussed BSDEs driven by a Brownian motion. In

principle a BSDE can be driven by a more general martingale. See Kabanov

(1978), Tang and Li (1994) for optimal control system with jumps, where the

adjoint equation is a linear BSDE with jumps. For results of the existence,

uniqueness and regularity of solutions, see Situ (1996), El Karoui and Huang

(1997), Barles, Buckdahn and Pardoux (1997), Nualart and Schoutens (2001)

and many other results on this subject.

1.4. Forward-backward SDE. Nonlinear Feynman-Kac formula can

be used to solve a nonlinear PDE of form (1.11) by a BSDE (1.10) coupled with

an SDE (1.1). In this situation BSDE (1.10) and forward SDE (1.1) are only

partially coupled. A fully coupled system of SDE and BSDE is called a forward-

backward stochastic differential equation (FBSDE). It has the following form:

dXt = b(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt, Zt)dBt, X0 = x ∈ Rn,

−dYt = f(t,Xt, Yt, Zt)dt− ZtdBt, YT = ϕ(XT ).

Note that it is not realistic to only assume, as in a BSDE framework, that the

coefficients b, σ, f and ϕ are just Lipschitz functions in (x, y, z). A counterex-

ample can be easily constructed. Therefore additional conditions are needed for

the well-posedness of the problem. Antonelli (1993) provided a counterexample

and solved a special type of FBSDE. Then Ma, Protter and Yong (1994) have

proposed a four-step scheme method of FBSDE. This method uses some clas-

sical result of PDE for which σ is assumed to be independent of z and strictly

non-degenerate. The coefficients f , b, σ and ϕ are also assumed to be deter-

ministic functions. For the case dim(x) = dim(y) = n, Hu and Peng (1995)

proposed a new type of monotonicity condition: the function A = (−f, b, σ) is

said to be a monotone function in γ = (x, y, z) if there exists a positive constant

µ such that

(A(γ)−A(γ′), γ − γ′) ≤ −µ|γ − γ′|2, γ, γ′ ∈ Rn
× Rn

× Rn×d.
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With this condition and (ϕ(x)− ϕ(x′), x− x′) ≥ 0, for each x, x′ ∈ Rn
, the

above FBSDE has a unique solution. The proof of the uniqueness is immedi-

ate and the existence was established by using a type of continuation method

(see Peng (1991a), and Yong (1997)). This method does not need to assume

coefficients to be deterministic. Peng and Wu (1999) have weakened the mono-

tonicity condition and the constraint dim(x) = dim(y), Wu (1999) provided

a new type of comparison theorem. Another type of existence and uniqueness

theorem under different conditions was obtained by Pardoux and Tang (1999).

We also refer to the book of Ma and Yong (1999) for a systematic presentation

on this subject. For time-symmetric forward-backward stochastic differential

equations and its relation with stochastic optimality, see Peng and Shi (2003),

Han, Peng and Wu (2010).

1.5. Reflected BSDE and other types of constrained
BSDE. If (Y,Z) solves

−dYs = g(s, Ys, Zs)ds− ZsdBs + dKs, YT = ξ, (1.16)

where K is a càdlàg (continu à droite avec limite à gauche, or in English,

right continuous with left limit) and increasing process with K0 = 0 and

Kt ∈ L2
P
(Ft), then Y or (Y,Z,K) is called a supersolution of the BSDE, or

g-supersolution. This notion is often used for constrained BSDEs. A typical one

is, for a given terminal condition ξ and a continuous adapted process (Lt)t∈[0,T ]

to find a smallest g-supersolution (Y,Z,K) such that Y ≥ L, and YT = ξ. This

probelm was initialed in El Karoui, Kapoudjian, Pardoux, Peng and Quenez

(1997). They have proved that this problem is equivalent to finding a triple

(Y,Z,K) satisfying (1.16) and the following reflecting condition of Skorohod

type:

Ys ≥ Ls,

∫ T

0

(Ys − Ls)dKs = 0. (1.17)

The existence, uniqueness and continuous dependence theorems were obtained.

Moreover, a new type of nonlinear Feynman-Kac formula was introduced: if

all coefficients are given as in Theorem 1.3 and Ls = Φ(Xs) where Φ satisfies

the same condition as ϕ, then we have Ys = u(s,Xs), where u = u(t, x) is the

solution of the following variational inequality:

min{∂tu+ Lu+ g(x, u, σ∗Du), u− Φ} = 0, (t, x) ∈ [0, T ]× Rn, (1.18)

with terminal condition u|t=T = ϕ. They also proved that this reflected BSDE

is a powerful tool to deal with contingent claims of American types in a financial

market with constraints.

BSDE reflected within two barriers, for a lower one L and an upper one U

was first investigated by Cvitanic and Karatzas (1996) where a type of nonlinear

Dynkin games was formulated for a two-player model with zero-sum utility, each

player chooses his own optimal exit time. See also Rascano (2009).
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There are many other generalizations on the above problem of RBSDEs, e.g.

L and U can be càdlàg or even L2
-processes and g admits a quadratic growth

condition, see e.g. Hamadene (2002), Lepeltier and Xu (2005), Peng and Xu

(2005) and many other related results. For BSDEs applied to optimal switching,

see Hamadene and Jeanblanc (2007). For the related multi-dimensional BSDEs

with oblique reflection, see Ramasubramanian (2002), Carmona and Ludkovski

(2008), Hu and Tang (2010) and Hamadene and Zhang (2010).

A more general case of constrained BSDE is to find the smallest g-

supersolution (Y,Z,K) with constraint (Yt, Zt) ∈ Γt where, for each t ∈ [0, T ],

Γt is a given closed subset in R×Rd
. This problem was studied in El Karoui and

Quenez (1995) and in Cvitanic and Karatzas (1993), El Karoui et al (1997) for

the problem of superhedging in a market with constrained portfolios, in Cvi-

tanic, Karatzas and Soner (1998) for BSDE with a convex constraint and in

Peng (1999) with an arbitrary closed constraint.

1.6. g-expectation and g-martingales. Let E
g

t,T
[ξ] be the solution

of a real valued BSDE (1.7), namely m = 1, for a given generator g satisfying

an additional assumption g|z=0 ≡ 0. Peng (1997b) studied this problem by

introducing a notion of g-expectation:

E
g
[ξ] := E

g

0,T
[ξ] : ξ ∈

⋃

T≥0

L2
P (FT ) 7→ R. (1.19)

E
g
is then a monotone functional preserving constants: E

g
[c] = c. A signifi-

cant character of this nonlinear expectation is that, thanks to the backward

semigroup properties of E
g

s,t, it keeps all dynamic properties of classical linear

expectations: the corresponding conditional expectation, given Ft, is uniquely

defined by E
g
[ξ|Ft] = E

g

t,T
[ξ]. It satisfies:

E
g
[E

g
[ξ|Fs]|Ft] = E

g
[ξ|Ft∧s], E

g
[1Aξ|Ft] = 1AE

g
[ξ|Ft], ∀A ∈ Ft. (1.20)

This notion allows us to establish a nonlinear g-martingale theory, which plays

the same important role as the martingale theory in the classical probability

theory. An important theorem is the so-called g-supermartingale decomposition

theorem obtained in Peng (1999). This theorem does not need to assume that

g|z=0 = 0. It claims that, if Y is a càdlàg g-supermartingale, namely,

E
g

t,T
[YT ] ≤ Yt, a.s. 0 ≤ t ≤ T ,

then it has the following unique decomposition: there exists a unique pre-

dictable, increasing and càdlàg process A such that Y solves

−dYt = g(t, Yt, Zt)dt+ dAt − ZtdBt.

In other words, Y is a g-supersolution of type (1.16).

A theoretically very interesting and practically important question is: given

a family of expectations Es,t[·] : L
2
P
(Ft) 7→ L2

P
(Fs), 0 ≤ s ≤ t < ∞, satisfying
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the same backward dynamically consistent properties of a g-expectation (1.20),

can we find a function g such that Es,t ≡ E
g

s,t? The first result was obtained in

Coquet, Hu, Memin and Peng (2001) (see also lecture notes of a CIME course

of Peng (2004a)): under an additional condition such that E is dominated by a

gµ-expectation with gµ(z) = µ|z| for a large enough constant µ > 0, namely

Es,t[ξ]− Es,t[ξ
′
] ≤ E

gµ

s,t [ξ − ξ′], (1.21)

then there exists a unique function g = g(t, ω, z) satisfying

g(·, z) ∈M2
P (0, T ), g(t, z)− g(t, z′) ≤ µ|z − z′|, z, z′ ∈ Rd,

such that Es,t[ξ] ≡ E
g

s,t[ξ], for all ξ ∈ L2
P
(Ft), s ≤ t. For a concave dynamic

expectation with an assumption much weaker than the above domination con-

dition, we can still find a function g = g(t, z) with possibly singular values,

see Delbaen, Peng and Rosazza Gianin (2009). Peng (2005a) proved the case

without the assumption of constant preservation, the domination condition of

E
gµ was also weakened by gµ = µ(|y| + |z|). The result is: there is a unique

function g = g(t, ω, y, z) such that Es,t ≡ E
g

s,t, where g is a Lipschitz function:

g(t, y, z)− g(t, y′, z′) ≤ µ(|y − y′|+ |z − z′|), y, y′ ∈ R, z, z′ ∈ Rd.

In practice, the above criterion is very useful to test whether a dynamic pricing

mechanism of contingent contracts can be represented by a concrete function

g. Indeed, it is an important test in order to establish and maintain a system

of dynamically consistent risk measure in finance as well as in other industrial

domains. We have collected some data in financial markets and realized a large

scale computation. The results of the test strongly support the criterion (1.21)

(see Peng (2006b) with numerical calculations and data tests realized by Chen

and Sun).

Chen, Chen and Davison (2005) proved that there is an essential difference

between g-expectation and the well-known Choquet-expectation, which is ob-

tained via the Choquet integral. Since g-expectation is essentially equivalent to

a dynamical expectation under a Wiener probability space, their result seems

to tell us that, in general, a nontrivially nonlinear Choquet expectation cannot

be a dynamical one. This point of view is still to be clarified.

1.7. BSDE applied in finance. The above problem of constrained

BSDE was motivated from hedging problem with constrained portfolios in a

financial market. El Karoui et al (1997) initiated this BSDE approach in finance

and stimulated many very interesting results. We briefly present a typical model

of continuous asset pricing in a financial market: the basic securities consist of

1 + d assets, a riskless one, called bond, and d risky securities, called stocks.

Their prices are governed by

dP 0
t = P 0

t rdt, for the bond,
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and

dP i

t = P i

t



bidt+

d
∑

j=1

σijdB
j

t



 , for the ith stock, i = 1, · · · , d.

Here we only consider the situation where the matrix σ = (σij
)
d
i,j=1 is invertible.

The degenerate case can be treated by constrained BSDE. We consider a small

investor whose investment behavior cannot affect market prices and who invests

at time t ∈ [0, T ] the amount πi
t of his wealth Yt in the ith security, for i =

0, 1, · · · , d, thus Yt = π0
t + · · ·+ πd

t . If his investment strategy is self-financing,

then we have dYt =
∑d

i=0
πi
tdP

i
t /P

i
t , thus

dYt = rYtdt+ π∗

t σθdt+ π∗

t σdBt, θi = σ−1
(bi − r), i = 1, · · · , d.

Here we always assume that all involved processes are in M2
P
(0, T ). A strategy

(Yt, {π
i
t}

d
i=1)t∈[0,T ] is said to be feasible if Yt ≥ 0, t ∈ [0, T ], a.s. A European con-

tingent claim settled at time T is a non-negative random variable ξ ∈ L2
P
(FT ).

A feasible strategy (Y, π) is called a hedging strategy against a contingent claim

ξ at the maturity T if it satisfies:

dYt = rYtdt+ π∗

t σθdt+ π∗

t σdBt, YT = ξ.

Observe that (Y, π∗σ) can be regarded as a solution of BSDE and the solution

is automatically feasible by the comparison theorem (Theorem 1.2). It is called

a super-hedging strategy if there exists an increasing process Kt, often called

an accumulated consumption process, such that

dYt = rYtdt+ π∗

t σθdt+ π∗

t σdBt − dKt, YT = ξ.

This type of strategy are often applied in a constrained market in which certain

constraint (Yt, πt) ∈ Γ are imposed. Observe that a real market has many

frictions and constraints. An example is the common case where interest rate

R for borrowing money is higher than the bond rate r. The above equation for

hedging strategy becomes

dYt = rYtdt+ π∗

t σθdt+ π∗

t σdBt − (R− r)

[

d
∑

i=1

πi

t − Yt

]+

dt, YT = ξ,

where [·]
+
= max{[·], 0}. A short selling constraint πi

t ≥ 0 is also very typical.

The method of constrained BSDE can be applied to this type of problems.

BSDE theory provides powerful tools to the robust pricing and risk measures for

contingent claims. For more details see El Karoui et al. (1997). For the dynamic

risk measure under Brownian filtration see Rosazza Gianin (2006), Delbaen

et al (2009). Barrieu and El Karoui (2004) revealed the relation between the
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inf-convolution of dynamic convex risk measures and the corresponding one

for the generators of the BSDE, Rouge and El Karoui (2000) solved a utility

maximization problem by using a type of quadratic BSDEs. Hu, Imkeller and

Müller (2005) further considered the problem under a non-convex portfolio

constraint where BMO martingales play a key role. For investigations of BMO

martingales in BSDE and dynamic nonlinear expectations see also Barrieu,

Cazanave, and El Karoui (2008), Hu, Ma, Peng and Yao (2008) and Delbaen

and Tang (2010).

There are still so many important issues on BSDE theory and its appli-

cations. The well-known paper of Chen and Epstein (2002) introduced a con-

tinuous time utility under probability model uncertainty using g-expectation.

The Malliavin derivative of a solution of BSDE (see Pardoux and Peng (1992),

El Karoui et al (1997)) leads to a very interesting relation Zt = DtYt. There

are actually very active researches on numerical analysis and calculations of

BSDE, see Douglas, Ma and Protter (1996), Ma and Zhang (2002), Zhanng

(2004), Bouchard and Touzi (2004), Peng and Xu (2003), Gobet, Lemor and

Warin (2005), Zhao et al (2006), Delarue and Menozzi (2006). We also refer to

stochastic differential maximization and games with recursive or other utilities

(see Peng (1997a), Pham (2004), Buckdahn and Li (2008)), Mean-field BSDE

(see Buckdahn et al (2009)).

2. Nonlinear Expectations and Nonlinear

Distributions

The notion of g expectations introduced via BSDE can be used as an idea tool

to treat the randomness and risk in the case of the uncertainty of probability

models, see Chen and Epstein (2002), but with the following limitation: all the

involved uncertain probability measures are absolutely continuous with respect

to the “reference probability” P . But for the well-known problem of volatil-

ity model uncertainty in finance, there is an uncountable number of unknown

probabilities which are singular from each other.

The notion of sublinear expectations is a powelful tool to solve this problem.

We give a survey on the recent development of G-expectation theory. More

details with proofs and historical remarks can be found in a book of Peng

(2010a). For references of decision theory under uncertainty in economics, we

refer to the collection of papers edited by Gilboa (2004).

2.1. Sublinear expectation space (Ω,H, Ê). We define from a

very basic level of a nonlinear expectation.

Let Ω be a given set. A vector lattice H is a linear space of real functions

defined on Ω such that all constants are belonging to H and if X ∈ H then

|X| ∈ H. This lattice is often denoted by (Ω,H). An element X ∈ H is called

a random variable.
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We denote by CLat(R
n
) the smallest lattice of real functions defined on Rn

containing the following n + 1 functions (i) ϕ0(x) ≡ c, (ii) ϕi(x) = xi, for

x = (x1, · · · , xn) ∈ Rn
, i = 1, · · · , n.

We also use CLip(R
n
) (resp. Cl.Lip(R

n
)) for the space of all Lipschitz (resp.

locally Lipschitz) real functions on Rn
. It is clear that CLat(R

n
) ⊂ CLip(R

n
) ⊂

Cl.Lip(R
n
). Any elements of Cl.Lip(R

n
) can be locally uniformly approximated

by a sequence in CLat(R
n
).

It is clear that if X1, · · · , Xn ∈ H, then ϕ(X1, · · · , Xn) ∈ H, for each

ϕ ∈ CLat(R
n
).

Definition 2.1. A nonlinear expectation Ê defined on H is a functional

Ê : H 7→ R satisfying the following properties for all X,Y ∈ H:

• Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y ].

• Constant preserving: Ê[c] = c.

Ê is called a sublinear expectation if it furthermore satisfies

Ê[X + λY ] ≤ Ê[X] + λÊ[Y ], ∀X,Y ∈ H, λ ≥ 0.

If it further satisfies Ê[−X] = −Ê[X] for X ∈ H, then Ê is called a linear

expectation. The triple (Ω,H, Ê) is called a nonlinear (resp. sublinear,

linear) expectation space.

We are particularly interested in sublinear expectations. In statistics and

economics, this type of functionals was studied by, among many others, Huber

(1981) and then explored by Walley (1991).

Recently a new notion of coherent risk measures in finance caused much

attention to the study of such type of sublinear expectations and applications

to risk controls, see the seminal paper of Artzner, Delbaen, Eber and Heath

(1999) as well as Föllmer and Schied (2004).

The following result is well-known as representation theorem. It is a direct

consequence of Hahn-Banach theorem (see Delbaen (2002), Föllmer and Schied

(2004), or Peng (2010a)).

Theorem 2.2. Let Ê be a sublinear expectation defined on (Ω,H). Then there

exists a family of linear expectations {Eθ : θ ∈ Θ} on (Ω,H) such that

Ê[X] = max
θ∈Θ

Eθ[X].

A sublinear expectation Ê on (Ω,H) is said to be regular if for each sequence

{Xn}
∞

n=1 ⊂ H such thatXn(ω) ↓ 0, for ω, we have Ê[Xn] ↓ 0. If Ê is regular then

from the above representation we have Eθ[Xn] ↓ 0 for each θ ∈ Θ. It follows
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from Daniell-Stone theorem that there exists a unique (σ-additive) probability

measure Pθ defined on (Ω, σ(H)) such that

Eθ[X] =

∫

Ω

X(ω)dPθ(ω), X ∈ H.

The above representation theorem of sublinear expectation tells us that

to use a sublinear expectation for a risky loss X is equivalent to take the

upper expectation of {Eθ : θ ∈ Θ}. The corresponding model uncertainty of

probabilities, or ambiguity, is the subset {Pθ : θ ∈ Θ}. The corresponding

uncertainty of distributions for an n-dimensional random variable X in H is

{FX(θ,A) := Pθ(X ∈ A) : A ∈ B(Rn
)}.

2.2. Distributions and independence. We now consider the no-

tion of the distributions of random variables under sublinear expectations. Let

X = (X1, · · · , Xn) be a given n-dimensional random vector on a nonlinear

expectation space (Ω,H, Ê). We define a functional on CLat(R
n
) by

F̂X [ϕ] := Ê[ϕ(X)] : ϕ ∈ CLat(R
n
) 7→ R.

The triple (Rn, CLat(R
n
), F̂X [·]) forms a nonlinear expectation space. F̂X is

called the distribution of X. If Ê is sublinear, then F̂X is also sublinear. More-

over, F̂X has the following representation: there exists a family of probability

measures {FX(θ, ·)}θ∈Θ on (Rn,B(Rn
)) such that

F̂X [ϕ] = sup
θ∈Θ

∫

Rn

ϕ(x)FX(θ, dx), for each bounded continuous function ϕ.

Thus F̂X indeed characterizes the distribution uncertainty of X.

Let X1 and X2 be two n–dimensional random vectors defined on nonlinear

expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2), respectively. They are called

identically distributed, denoted by X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ CLat(R
n
).

In this case X1 is also said to be a copy of X2. It is clear that X1
d
= X2 if and

only if they have the same distribution uncertainty. We say that the distribution

of X1 is stronger than that of X2 if Ê1[ϕ(X1)] ≥ Ê2[ϕ(X2)], for ϕ ∈ CLat(R
n
).

The meaning is that the distribution uncertainty of X1 is stronger than that of

X2.

The distribution of X ∈ H has the following two typical parameters: the

upper mean µ̄ := Ê[X] and the lower mean µ := −Ê[−X]. If µ̄ = µ then we say

that X has no mean uncertainty.

In a nonlinear expectation space (Ω,H, Ê) a random vector Y =

(Y1, · · · , Yn), Yi ∈ H is said to be independent from another random vectorX =
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(X1, · · · , Xm), Xi ∈ H under Ê[·] if for each test function ϕ ∈ CLat(R
m
× Rn

)

we have

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Under a sublinear expectation Ê, the independence of Y from X means that

the uncertainty of distributions of Y does not change with each realization of

X = x, x ∈ Rn
. It is important to note that under nonlinear expectations the

condition “Y is independent from X” does not imply automatically that “X is

independent from Y ”.

A sequence of d-dimensional random vectors {ηi}
∞

i=1
in a nonlinear expecta-

tion space (Ω,H, Ê) is said to converge in distribution (or in law) under Ê if for

each ϕ ∈ Cb(R
n
) the sequence {Ê[ϕ(ηi)]}

∞

i=1 converges, where Cb(R
n
) denotes

the space of all bounded and continuous functions on Rn
. In this case it is easy

to check that the functional defined by

F̂[ϕ] := lim
i→∞

Ê[ϕ(ηi)], ϕ ∈ Cb(R
n
)

forms a nonlinear expectation on (Rn, Cb(R
n
)). If Ê is a sublinear (resp. linear)

expectation, then F̂ is also sublinear (resp. linear).

2.3. Normal distributions under a sublinear expectation.
We begin by defining a special type of distribution, which plays the same role

as the well-known normal distribution in classical probability theory and statis-

tics. Recall the well-known classical characterization: X is a zero mean normal

distribution, i.e., X
d
= N(0,Σ) if and only if

aX + bX ′ d
=

√

a2 + b2X, for a, b ≥ 0,

where X ′
is an independent copy of X. The covariance matrix Σ is defined by

Σ = E[XX∗
].

We now consider the so-called G-normal distribution under a sublinear ex-

pectation space. A d-dimensional random vector X = (X1, · · · , Xd) in a sublin-

ear expectation space (Ω,H, Ê) is called G-normally distributed with zero

mean if for each a , b ≥ 0 we have

aX + bX̄
d
=

√

a2 + b2X, for a, b ≥ 0, (2.1)

where X̄ is an independent copy of X.

It is easy to check that, if X satisfies (2.1), then any linear combination of

X also satisfies (2.1). From Ê[Xi + X̄i] = 2Ê[Xi] and Ê[Xi + X̄i] = Ê[
√

2Xi] =
√

2Ê[Xi] we have Ê[Xi] = 0, and similarly, Ê[−Xi] = 0 for i = 1, · · · , d.

We denote by S(d) the linear space of all d× d symmetric matrices and by

S+(d) all non-negative elements in S(d). We will see that the distribution of X

is characterized by a sublinear function G : S(d) 7→ R defined by

G(A) = GX(A) :=
1

2
Ê[〈AX,X〉], A ∈ S(d). (2.2)
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It is easy to check that G is a sublinear and monotone function on S(d). Thus

there exists a bounded and closed subset Θ in S+(d) such that (see e.g. Peng

(2010a))

1

2
Ê[〈AX,X〉] = Ĝ(A) =

1

2
max
Q∈Θ

tr[AQ], A ∈ S(d). (2.3)

If Θ is a singleton: Θ = {Q}, then X is normally distributed in the classi-

cal sense, with mean zero and covariance Q. In general Θ characterizes the

covariance uncertainty of X. We denote X
d
= N({0} ×Θ).

A d-dimensional random vector Y = (Y1, · · · , Yd) in a sublinear expectation

space (Ω,H, Ê) is called maximally distributed if we have

a2Y + b2Ȳ
d
= (a2 + b2)Y, ∀a, b ∈ R, (2.4)

where Ȳ is an independent copy of Y . A maximally distributed Y is character-

ized by a sublinear function g = gY (p) : R
d
7→ R defined by

gY (p) := Ê[〈p, Y 〉], p ∈ Rd. (2.5)

It is easy to check that g is a sublinear function on Rd
. Thus, as for (2.3), there

exists a bounded closed and convex subset Θ̄ ∈ Rd
such that

g(p) = sup

q∈Θ̄

〈p, q〉 , p ∈ Rd. (2.6)

It can be proved that the maximal distribution of Y is given by

F̂Y [ϕ] = Ê[ϕ(Y )] = max
v∈Θ̄

ϕ(v), ϕ ∈ CLat(R
d
).

We denote Y
d
= N(Θ̄× {0}).

The above two types of distributions can be nontrivially combined together

to form a new distribution. We consider a pair of random vectors (X,Y ) ∈ H
2d

where X is G-normally distributed and Y is maximally distributed.

In general, a pair of d-dimensional random vectors (X,Y ) in a sublinear

expectation space (Ω,H, Ê) is called G-distributed if for each a , b ≥ 0 we have

(aX + bX̄, a2Y + b2Ȳ )
d
= (

√

a2 + b2X, (a2 + b2)Y ), ∀a, b ≥ 0, (2.7)

where (X̄, Ȳ ) is an independent copy of (X,Y ).

The distribution of (X,Y ) can be characterized by the following function:

G(p,A) := Ê

[

1

2
〈AX,X〉+ 〈p, Y 〉

]

, (p,A) ∈ Rd
× S(d). (2.8)

It is easy to check that G : Rd
× S(d) 7→ R is a sublinear function which is

monotone in A ∈ S(d). Clearly G is also a continuous function. Therefore there

exists a bounded and closed subset Γ ⊂ Rd
× S+(d) such that

G(p,A) = sup

(q,Q)∈Γ

[

1

2
tr[AQ] + 〈p, q〉

]

, ∀(p,A) ∈ Rd
× S(d). (2.9)
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The following result tells us that for each such type of function G, there

exists a unique G-normal distribution.

Proposition 2.3. (Peng (2008b, Proposition 4.2)) Let G : Rd
× S(d) 7→ R

be a given sublinear function which is monotone in A ∈ S(d), i.e., G has the

form of (2.9). Then there exists a pair of d-dimensional random vectors (X,Y )

in some sublinear expectation space (Ω,H, Ê) satisfying (2.7) and (2.8). The

distribution of (X,Y ) is uniquely determined by the function G. Moreover the

function u defined by

u(t, x, y) := Ê[ϕ(x+

√

tX, y + tY )], (t, x, y) ∈ [0,∞)× Rd
× Rd, (2.10)

for each given ϕ ∈ CLat(R
2d
), is the unique (viscosity) solution of the parabolic

PDE

∂tu−G(Dyu,D
2
xu) = 0, u|t=0 = ϕ, (2.11)

where Dy = (∂yi
)
d
i=1, D

2
x = (∂2xi,xj

)
d
i,j=1.

In general, to describe a possibly degenerate PDE of type (2.11), one needs

the notion of viscosity solutions. But readers also can only consider non-

degenerate situations (under strong elliptic condition). Under such condition,

equation (2.11) has a unique smooth solution u ∈ C1+α
2
,2+α

((0,∞)× Rd
) (see

Krylov (1987) and Wang (1992)). The notion of viscosity solution was intro-

duced by Crandall and Lions. For the existence and uniqueness of solutions and

related very rich references we refer to a systematic guide of Crandall, Ishii and

Lions (1992) (see also the Appendix of Peng (2007b, 2010a) for more specific

parabolic cases). In the case where d = 1 and G contains only the second order

derivative D2
xu, the G-heat equation is the well-known Baronblatt equation (see

Avellanaeda, Levy and Paras (1995)).

If both (X,Y ) and (X̄, Ȳ ) are G-normal distributed with the same G, i.e.,

G(p,A) := Ê

[

1

2
〈AX,X〉+ 〈p, Y 〉

]

= Ê

[

1

2

〈

AX̄, X̄
〉

+
〈

p, Ȳ
〉

]

,

∀(p,A) ∈ S(d)× Rd,

then (X,Y )
d
= (X̄, Ȳ ). In particular, X

d
= −X.

Let (X,Y ) be G-normally distributed. For each ψ ∈ CLat(R
d
) we define a

function

v(t, x) := Ê[ψ(x+

√

tX + tY )], (t, x) ∈ [0,∞)× Rd.

Then v is the unique solution of the following parabolic PDE

∂tv −G(Dxv,D
2
xv) = 0, v|t=0 = ψ. (2.12)

Moreover we have v(t, x + y) ≡ u(t, x, y), where u is the solution of the PDE

(2.11) with initial condition u(t, x, y)|t=0 = ψ(x+ y).
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2.4. Central limit theorem and law of large numbers. We

have a generalized central limit theorem together with the law of large numbers:

Theorem 2.4. (Central Limit Theorem, Peng (2007a, 2010a)) Let

{(Xi, Yi)}
∞

i=1
be a sequence of Rd

× Rd-valued random variables in (H, Ê).

We assume that (Xi+1, Yi+1)
d
= (Xi, Yi) and (Xi+1, Yi+1) is independent

from {(X1, Y1), · · · , (Xi, Yi)} for each i = 1, 2, · · · . We further assume that

Ê[X1] = Ê[−X1] = 0 and Ê[|X1|
2+δ

] + Ê[|Y1|
1+δ

] < ∞ for some fixed δ > 0.

Then the sequence {S̄n}
∞

n=1 defined by S̄n :=
∑n

i=1
(
Xi
√

n
+

Yi

n
) converges in law

to ξ + ζ:

lim
n→∞

Ê[ϕ(S̄n)] = Ê[ϕ(ξ + ζ)], (2.13)

for all functions ϕ ∈ C(Rd
) satisfying a linear growth condition, where (ξ, ζ) is

a pair of G-normal distributed random vectors and where the sublinear function

G : S(d)× Rd
7→ R is defined by

G(p,A) := Ê

[

〈p, Y1〉+
1

2
〈AX1, X1〉

]

, A ∈ S(d), p ∈ Rd.

The proof of this theorem given in Peng (2010) is very different from the

classical one. It based on a deep C1,2
-estimate of solutions of fully nonlinear

parabolic PDEs initially given by Krylov (1987) (see also Wang (1992)). Peng

(2010b) then introduced another proof, involving a nonlinear version of weak

compactness based on a nonlinear version of tightness.

Corollary 2.5. The sum
∑n

i=1
Xi
√

n
converges in law to N({0}× Θ̂), where the

subset Θ̂ ⊂ S+(d) is defined in (2.3) for Ĝ(A) = G(0, A), A ∈ S(d). The sum
∑n

i=1
Yi

n
converges in law to N(Θ̄ × {0}), where the subset Θ̄ ⊂ Rd is defined

in (2.6) for Ḡ(p) = G(p, 0), p ∈ Rd. If we take, in particular, ϕ(y) = dΘ̄(y) =

inf{|x−y| : x ∈ Θ̄}, then we have the following generalized law of large numbers:

lim
n→∞

Ê

[

dΘ̄

(

n
∑

i=1

Yi

n

)]

= sup

θ∈Θ̄

dΘ̄(θ) = 0. (2.14)

If Yi has no mean-uncertainty, or in other words, Θ̄ is a singleton: Θ̄ =

{θ̄} then (2.14) becomes limn→∞ Ê[|
∑n

i=1
Yi

n
− θ̄|] = 0. To our knowledge,

the law of large numbers with non-additive probability measures have been

investigated under a framework and approach quite different from ours, where

no convergence in law is obtained (see Marinacci (1999) and Maccheroni &

Marinacci (2005)). For a strong version of LLN under our new framework of

independence, see Chen (2010).

2.5. Sample based sublinear expectations. One may feel that

the notion of the distribution of a d-dimensional random variable X introduced

through Ê[ϕ(X)] is somewhat abstract and complicated. But in practice this



Backward Stochastic Differential Equation, Nonlinear Expectation 413

maybe the simplest way for applications: in many cases what we want to get

from the distribution of X is basically the expectation of ϕ(X). Here ϕ can

be a financial contract, e.g., a call option ϕ(x) = max{0, x − k}, a consumer’s

utility function, a cost function in optimal control problems, etc. In a classical

probability space (Ω,F , P ), we can use the classical LLN to calculate E[ϕ(X)],

by using

E[ϕ(X)] = lim
n→∞

1

n

n
∑

i=1

ϕ(xi),

where xi , i = 1, 2, · · · is an i.i.d. sample from the random variable X. This

means that in practice we can use the mean operator

M[ϕ(X)] := lim
n→∞

1

n

n
∑

i=1

ϕ(xi) : CLat(R
d
) 7→ R

to obtain the distribution ofX. This defines what we call “sample distribution of

X”. In fact the well-known Monté-Carlo approach is based on this convergence.

We are interested in the corresponding situation in a sublinear expectation

space (Ω,H, Ê). Let xi, i = 1, 2, · · · be an i.i.d. sample from X, meaning that

xi
d
= X and xi+1 is independent from x1, · · · , xi under Ê. Under this much

weaker assumption we have that
1

n

∑n

i=1
ϕ(xi) converges in law to a maximal

distribution N([µ, µ] × {0}), with µ = Ê[ϕ(X)] and µ = −Ê[−ϕ(X)]. A direct

meaning of this result is that, when n → ∞, the number
1

n

∑n

i=1
ϕ(xi) can

take any value inside [µ, µ]. Then we can calculate Ê[ϕ(X)] by introducing the

following upper limit mean operator of {ϕ(xi)}
∞

i=1:

M̂{xi}
[ϕ] := lim sup

n→∞

1

n

n
∑

i=1

ϕ(xi), ϕ ∈ Cb.Lat(R
d
).

On the other hand, it is easy to check that for any arbitrarily given sequence

of data {xi}
∞

i=1, the above defined M̂{xi}
[ϕ] still forms a sublinear expectation

on (Rd, Cb.Lat(R)). We call M̂{xi}
the sublinear distribution of the data {xi}

∞

i=1.

M̂{xi}
gives us the statistics and statistical uncertainty of the random data

{xi}
∞

i=1. This also provides a new “nonlinear Monté-Carlo” approach (see Peng

(2009)).

In the case where M̂{xi}
[ϕ] <∞ for ϕ(x) ≡ |x|, we can prove that M̂{xi}

[ϕ]

is also well-defined for ϕ ∈ L∞
(Rd

). This allows us to calculate the capac-

ity ĉ(B) := M̂{xi}
[1B ], B ∈ B(Rd

), of {xi}
∞

i=1 which is the “upper relative

frequency” of {xi}
∞

i=1 in B.

For a sample with relatively finite size {xi}
N
i=1, we can also introduce the

following form of sublinear expectation:

F̂[ϕ] := sup
θ∈Θ

N
∑

i=1

pi(θ)ϕ(xi), with pi(θ) ≥ 0,

N
∑

i=1

pi(θ) = 1.
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Here {(pi(θ))
N
i=1 : θ ∈ Θ} is regarded as the subset of distribution uncertainty.

Conversely, from the representation theorem of sublinear expectation, each sub-

linear expectation based on a sample {xi}
N
i=1 also has the above representation.

In many cases we are concerned with some Rd
-valued continuous time data

(xt)t≥0. It’s upper mean expectation can be defined by

M̂(xt)[ϕ] = lim sup
T→∞

1

T

∫ T

0

ϕ(xt)dt, ϕ ∈ CLat(R
d
),

or, in some circumstances,

M̂(xt)[ϕ] = lim sup
T→∞

∫ T

0

ϕ(xt)µT (dt),

where, for each T > 0, µT (·) is a given non-negative measure on

([0, T ],B([0, T ])) with µT ([0, T ]) = 1. M̂(xt) also forms a sublinear expecta-

tions on (Rd,B(Rd
)). This notion also links many other research domains such

as dynamical systems, particle systems.

3. G-Brownian Motion and its Stochastic

Calculus

3.1. Brownian motion under a sublinear expectation. In this

section we discuss G-Brownian motion under a nonlinear expectation, called G-

expectation which is a natural generalization of g-expectation to a fully nonlin-

ear case, i.e., the martingale under G-expectation is in fact a path-dependence

solution of fully nonlinear PDE, whereas g-martingale corresponds to a quasi-

linear one. G-martingale is very useful to measure the risk of path-dependent

financial products.

We introduce the notion of Brownian motion related to the G-normal distri-

bution in a space of a sublinear expectation. We first give the definition of the

G-Brownian motion introduced in Peng (2006a). For simplification we only con-

sider 1-dimensional G-Brownian motion. Multidimensional case can be found

in Peng (2008a, 2010a).

Definition 3.1. A process {Bt(ω)}t≥0 in a sublinear expectation space

(Ω,H, Ê) is called a Brownian motion under Ê if for each n ∈ N and

0 ≤ t1, · · · , tn < ∞, Bt1
, · · · , Btn

∈ H and the following properties are sat-

isfied:

(i) B0(ω) = 0,

(ii) For each t, s ≥ 0, the increments satisfy Bt+s − Bt

d
= Bs and Bt+s − Bt

is independent from (Bt1
, Bt2

, · · · , Btn
), for each 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

(iii) |Bt|
3
∈ H and Ê[|Bt|

3
]/t→ 0 as t ↓ 0.



Backward Stochastic Differential Equation, Nonlinear Expectation 415

B is called a symmetric Brownian motion if Ê[Bt] = −Ê[−Bt] = 0. If more-

over, there exists a nonlinear expectation ˜E defined on (Ω,H) dominated by Ê,

namely,
˜E[X]− ˜E[Y ] ≤ Ê[X − Y ], X, Y ∈ H

and such that the above condition (ii) also holds for ˜E, then B is also called a

Brownian motion under ˜E.

Condition (iii) is to ensure that B has continuous trajectories. Without this

condition, B may become a G-Lévy process (see Hu and Peng (2009b)).

Theorem 3.2. Let (Bt)t≥0 be a symmetric G-Brownian motion defined on

a sublinear expectation space (Ω,H, Ê). Then Bt/
√

t
d
= N(0, [σ2, σ2

]) with

σ2
=Ê[B̃2

1 ] and σ2
= −Ê[−B̃2

1 ]. Moreover, if σ2
= σ2 > 0, then the finite

dimensional distribution of (Bt/σ)t≥0 coincides with that of classical one di-

mensional standard Brownian motion.

A Brownian motion under a sublinear expectation space is often called a

G-Brownian motion. Here the letter G indicates that the Bt is G-normal dis-

tributed with

G(α) :=
1

2
Ê[αB2

1 ], α ∈ R.

We can prove that, for each λ > 0 and t0 > 0, both (λ−
1

2Bλt)t≥0 and (Bt+t0
−

Bt0
)t≥0 are symmetric G-Brownian motions with the same generating function

G. That is, a G-Brownian motion enjoys the same type of scaling as in the

classical situation.

3.2. Construction of a G-Brownian motion. Since each incre-

ment of a G-Brownian motion B is G-normal distributed, a natural way to

construct this process is to follow Kolmogorov’s method: first, establish the fi-

nite dimensional (sublinear) distribution of B and then take a completion. The

completion will be in the next subsection.

We briefly explain how to construct a symmetric G-Brownian. More details

were given in Peng (2006a, 2010a). Just as at the beginning of this paper, we

denote by Ω = C([0,∞)) the space of all real–valued continuous paths (ωt)t∈R+

with ω0 = 0, by L0
(Ω) the space of all B(Ω)-measurable functions and by Cb(Ω)

all bounded and continuous functions on Ω. For each fixed T ≥ 0, we consider

the following space of random variables:

HT = CLat(ΩT ) := {X(ω) = ϕ(ωt1∧T , · · · , ωtm∧T ), ∀m ≥ 1, ϕ ∈ Cl.Lat(R
m
)},

where Cl.Lat(R
m
) is the smallest lattice on Rm

containing CLat(R
m
) and all

polynomials of x ∈ Rm
. It is clear that CLat(Ωt)⊆CLat(ΩT ), for t ≤ T . We also

denote

H = CLat(Ω) :=

∞
⋃

t≥0

CLat(Ωt).
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We will consider the canonical space and set Bt(ω) = ωt, t ∈ [0,∞), for ω ∈ Ω.

Then it remains to introduce a sublinear expectation Ê on (Ω,H) such that B

is a G-Brownian motion, for a given sublinear function G(a) = 1

2
(σ2a+−σ2a−),

a ∈ R. Let {ξi}
∞

i=1 be a sequence of G-normal distributed random variables in

some sublinear expectation space (Ω̄, H̄, Ē): such that ξi
d
= N({0} × [σ2, σ2

])

and such that ξi+1 is independent from (ξ1, · · · , ξi) for each i = 1, 2, · · · . For

each X ∈ H of the form

X = ϕ(Bt1
−Bt0

, Bt2
−Bt1

, · · · , Btm
−Btm−1

)

for some ϕ ∈ Cl.Lat(R
m
) and 0 = t0 < t1 < · · · < tm <∞, we set

Ê[X] = Ē[ϕ(
√

t1 − t0ξ1, · · · ,
√

tm − tm−1ξm)],

and

Êtk
[X] = Φ(Bt1

, · · · , Btk
−Btk−1

), where

Φ(x1, · · · , xk) = Ē[ϕ(x1, · · · , xk,
√

tk+1 − tkξk+1, · · · ,
√

tm − tm−1ξm)].

It is easy to check that Ê : H 7→ R consistently defines a sublinear expectation

on (Ω,H) and (Bt)t≥0 is a (symmetric) G-Brownian motion in (Ω,H, Ê). In

this way we have also defined the conditional expectations Êt : H 7→ Ht, t ≥ 0,

satisfying

(a’) If X ≥ Y , then Êt[X] ≥ Êt[Y ].

(b’) Êt[η] = η, for each t ∈ [0,∞) and η ∈ CLat(Ωt).

(c’) Êt[X] + Êt[Y ] ≤ Êt[X + Y ].

(d’) Êt[ηX] = η+Êt[X] + η−Êt[−X], for each η ∈ CLat(Ωt).

Moreover, we have

Êt[Ês
[X]] = Ê

t∧s
[X], in particular Ê[Êt[X]] = Ê[X].

3.3. G-Brownian motion in a complete sublinear expecta-
tion space. Our construction of a G-Brownian motion is very simple. But

to obtain the corresponding Itô’s calculus we need a completion of the space

H under a natural Banach norm. Indeed, for each p ≥ 1, ‖X‖
p
:= Ê[|X|

p
]
1

p ,

X ∈CLat(ΩT ) (respectively, CLat(Ω)) forms a norm under which CLat(ΩT )

(resp. CLat(Ω)) can be continuously extended to a Banach space, denoted by

HT = L
p

G
(ΩT ) (resp. H = L

p

G
(Ω)).

For each 0 ≤ t ≤ T < ∞ we have L
p

G
(Ωt) ⊆ L

p

G
(ΩT ) ⊂ L

p

G
(Ω). It is easy

to check that, in L
p

G
(ΩT ) (respectively, L

p

G
(Ω)), the extension of Ê[·] and its
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conditional expectations Êt[·] are still sublinear expectation and conditional

expectations on (Ω,L
p

G
(Ω)). For each t ≥ 0, Êt[·] can also be extended as a con-

tinuous mapping Êt[·] : L
1
G
(Ω) 7→ L1

G
(Ωt). It enjoys the same type of properties

as Êt[·] defined on Ht.

There are mainly two approaches to introduce L
p

G
(Ω), one is the above

method of finite dimensional nonlinear distributions, introduced in Peng (2005b:

for more general nonlinear Markovian case, 2006a: forG-Brownian motion). The

second one is to take a super-expectation with respect to the related family of

probability measures, see Denis and Martini (2006) (a similar approach was

introduced in Peng (2004) to treat more nonlinear Markovian processes). They

introduced ĉ-quasi surely analysis, which is a very powerful tool. These two

approaches were unified in Denis, Hu and Peng (2008), see also Hu and Peng

(2009a).

3.4. L
p
G(Ω) is a subspace of measurable functions on Ω. The

following result was established in Denis, Hu and Peng (2008), a simpler and

more direct argument was then obtained in Hu and Peng (2009a).

Theorem 3.3. We have

(i) There exists a family of (σ-additive) probability measures PG defined on

(Ω,B(Ω)), which is weakly relatively compact, P and Q are mutually sin-

gular from each other for each different P,Q ∈ PG and such that

Ê[X] = sup
P∈PG

EP [X] = sup
P∈PG

∫

Ω

X(ω)dP, for each X ∈ CLat(Ω).

Let ĉ be the Choquet capacity induced by

ĉ(A) = Ê[1A] = sup
P∈PG

EP [1A], for A ∈ B(Ω).

(ii) Let Cb(Ω) be the space of all bounded and continuous functions on Ω;

L0
(Ω) be the space of all B(Ω)-measurable functions and let

Lp
(Ω) :=

{

X ∈ L0
(Ω) : sup

P∈PG

EP [|X|
p
] <∞

}

, p ≥ 1.

Then every element X ∈ L
p

G
(Ω) has a ĉ-quasi continuous version, namely,

there exists a Y ∈ L
p

G
(Ω), with X = Y , quasi-surely such that, for each

ε > 0, there is an open set O ⊂ Ω with ĉ(O) < ε such that Y |Oc is

continuous. We also have Lp
(Ω) ⊃ L

p

G
(Ω) ⊃ Cb(Ω). Moreover,

L
p

G
(Ω) = {X ∈ Lp

(Ω) : X has a ĉ-quasi-continuous version and

limn→∞ Ê[|X|
p1{|X|>n}] = 0}.
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3.5. Itô integral of G–Brownian motion. Itô integral with respect

to a G-Brownian motion is defined in an analogous way as the classical one,

but in a language of “ĉ-quasi-surely”, or in other words, under L2
G
-norm. The

following definition of Itô integral is from Peng (2006a). Denis and Martini

(2006) independently defined this integral in the same space. For each T > 0,

a partition ∆ of [0, T ] is a finite ordered subset ∆ = {t1, · · · , tN} such that

0 = t0 < t1 < · · · < tN = T . Let p ≥ 1 be fixed. We consider the following type

of simple processes: For a given partition {t0, · · · , tN} = ∆ of [0, T ], we set

ηt(ω) =

N−1
∑

j=0

ξj(ω)I[tj ,tj+1)(t),

where ξi ∈ L
p

G
(Ωti

), i = 0, 1, 2, · · · , N−1, are given. The collection of processes

of this form is denoted by M
p,0

G
(0, T ).

Definition 3.4. For each p ≥ 1, we denote by M
p

G
(0, T ) the completion of

MG
p,0

(0, T ) under the norm

‖η‖
M

p
G
(0,T )

:=

{

Ê

[

∫ T

0

|ηt|
pdt

]}1/p

.

Following Itô, for each η ∈M
2,0

G
(0, T ) with the above form, we define its Itô

integral by

I(η) =

∫ T

0

η(s)dBs :=

N−1
∑

j=0

ξj(Btj+1
−Btj

).

It is easy to check that I : M
2,0

G
(0, T ) 7−→ L2

G
(ΩT ) is a linear continuous

mapping and thus can be continuously extended to I : M2
G
(0, T ) 7−→ L2

G
(ΩT ).

Moreover, this extension of I satisfies

Ê[I] = 0 and Ê[I2] ≤ σ2Ê[

∫ T

0

(η(t))2dt], η ∈M2
G(0, T ).

Therefore we can define, for a fixed η ∈M2
G
(0, T ), the stochastic integral

∫ T

0

η(s)dBs := I(η).

We list some main properties of the Itô integral of G–Brownian motion. We

denote for some 0 ≤ s ≤ t ≤ T ,

∫ t

s

ηudBu :=

∫ T

0

I[s,t](u)ηudBu.

We have
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Proposition 3.5. Let η, θ ∈M2
G
(0, T ) and 0 ≤ s ≤ r ≤ t ≤ T . Then we have

(i)
∫ t

s
ηudBu =

∫ r

s
ηudBu +

∫ t

r
ηudBu,

(ii)
∫ t

s
(αηu+θu)dBu = α

∫ t

s
ηudBu+

∫ t

s
θudBu, if α is bounded and in L1

G
(Ωs),

(iii) Êt[X +
∫ T

t
ηudBu] = Êt[X], ∀X ∈ L1

G
(Ω).

3.6. Quadratic variation process. The quadratic variation process

of a G–Brownian motion is a particularly important process, which is not yet

fully understood. But its definition is quite classical: Let πN
t , N = 1, 2, · · · , be

a sequence of partitions of [0, t] such that |πN
t | → 0. We can easily prove that,

in the space L2
G
(Ω),

〈B〉
t
= lim

|πN
t |→0

N−1
∑

j=0

(BtNj+1

−BtNj
)
2
= B2

t − 2

∫ t

0

BsdBs.

From the above construction, {〈B〉
t
}t≥0 is an increasing process with 〈B〉

0
=

0. We call it the quadratic variation process of the G–Brownian motion B.

It characterizes the part of statistical uncertainty of G–Brownian motion. It

is important to keep in mind that 〈B〉
t
is not a deterministic process unless

σ2
= σ2

, i.e., when B is a classical Brownian motion.

A very interesting point of the quadratic variation process 〈B〉 is, just like

the G–Brownian motion B itself, the increment 〈B〉
t+s

− 〈B〉
s
is indepen-

dent of 〈B〉
t1
, · · · , 〈B〉

tn
for all t1, · · · , tn ∈ [0, s] and identically distributed:

〈B〉
t+s

−〈B〉
s

d
=〈B〉

t
. Moreover Ê[|〈B〉

t
|
3
] ≤ Ct3. Hence the quadratic variation

process 〈B〉 of the G-Brownian motion is in fact a G-Brownian motion, but for

a different generating function G.

We have the following isometry:

Ê





(

∫ T

0

η(s)dBs

)2


 = Ê

[

∫ T

0

η2(s)d 〈B〉
s

]

, η ∈M2
G(0, T ).

Furthermore, the distribution of 〈B〉
t

is given by Ê[ϕ(〈B〉
t
)] =

maxv∈[σ2,σ2] ϕ(vt) and we can also prove that ĉ-quasi-surely, σ2t ≤〈B〉
t+s

−

〈B〉
s
≤σ2t. It follows that

Ê[| 〈B〉
s+t

− 〈B〉
s
|
2
] = sup

P∈PG

EP [| 〈B〉
s+t

− 〈B〉
s
|
2
] = max

v∈[σ2,σ2]
|vt|2 = σ4t2.

We then can apply Kolmogorov’s criteria to prove that 〈B〉
s
(ω) ĉ-q.s. has con-

tinuous paths.
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3.7. Itô’s formula for G–Brownian motion. We have the corre-

sponding Itô formula of Φ(Xt) for a “G-Itô process” X. The following form of

Itô’s formula was obtained by Peng (2006a) and improved by Gao (2009). The

following result of Li and Peng (2009) significantly improved the previous ones.

We now consider an Itô process

Xν

t = Xν

0 +

∫ t

0

αν

sds+

∫ t

0

ηνs d 〈B〉
s
+

∫ t

0

βν

s dBs.

Proposition 3.6. Let αν , ην ∈M1
G
(0, T ) and βν

∈M2
G
(0, T ), ν = 1, · · · , n.

Then for each t ≥ 0 and each function Φ in C1,2
([0, t]× Rn

) we have

Φ(t,Xt)− Φ(s,Xs) =

n
∑

ν=1

∫ t

s

∂xνΦ(u,Xu)β
ν

udBu +

∫ t

s

[∂uΦ(u,Xu)

+ ∂xν
Φ(u,Xu)α

ν

u]du

+

∫ t

s

[

n
∑

ν=1

∂xνΦ(u,Xu)η
ν

u

+
1

2

n
∑

ν,µ=1

∂2xµxνΦ(u,Xu)β
µ

uβ
ν

u

]

d 〈B〉
u
.

In fact Li and Peng (2009) allows all the involved processes αν
, ην to belong

to a larger space M1
ω(0, T ) and β

ν
to M2

ω(0, T ).

3.8. Stochastic differential equations. We have the existence and

uniqueness result for the following SDE:

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

h(Xs)d 〈B〉
s
+

∫ t

0

σ(Xs)dBs, t ∈ [0, T ],

where the initial condition X0 ∈ Rn
is given and b, h, σ : Rn

7→ Rn
are given

Lipschitz functions, i.e., |ϕ(x)−ϕ(x′)| ≤ K|x−x′|, for each x, x′ ∈ Rn
, ϕ = b, h

and σ, respectively. Here the interval [0, T ] can be arbitrarily large. The solution

of the SDE is a continuous process X ∈M2
G
(0, T ;Rn

).

3.9. Brownian motions, martingales under nonlinear ex-
pectation. We can also define a non-symmetric G-Brownian under a sublin-

ear or nonlinear expectation space. Let G(p,A) : Rd
×S(d) 7→ R be a given sub-

linear function monotone in A, i.e., in the form (2.9). It is proved in Peng (2010,

Sec.3.7, 3.8) that there exists an R2d
–valued Brownian motion (Bt, bt)t≥0 such

that (B1, b1) is G-distributed. In this case Ω = C([0,∞),R2d
), (Bt(ω), bt(ω))

is the canonical process, and the completion of the random variable space is

(Ω, L1
G
(Ω)). B is a symmetric Brownian motion and b is non-symmetric. Under
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the sublinear expectation Ê, Bt is normal distributed and bt is maximal dis-

tributed. Moreover for each fixed nonlinear function G̃(p,A) : Rd
× S(d) 7→ R

which is dominated by G in the following sense:

G̃(p,A)− G̃(p′, A′
) ≤ G(p− p′, A−A′

), p, p′ ∈ R, A,A′
∈ S(d),

we can construct a nonlinear expectation ˜E on (Ω, L1
G
(Ω)) such that

˜E[X]− ˜E[Y ] ≤ Ê[X − Y ], X, Y ∈ L1
G(Ω)

and that the pair (Bt, bt)t≥0 is an R2d
-valued Brownian motion under ˜E. We

have

G̃(p,A) = ˜E[〈b1, p〉+
1

2
〈AB1, B1〉], p ∈ Rd, A ∈ S(d).

This formula gives us a characterization of the change of expectations (a gen-

eralization of the notion of change of measures in probability theory) from one

Brownian motion to another one, using different generator G.

Moreover, ˜E allows conditional expectations ˜Et : L
p

G
(Ω) 7→ L

p

G
(Ωt) which is

still dominated by Êt:
˜Et[X]− ˜Et[Y ] ≤ Êt[X − Y ], for each t ≥ 0, satisfying:

1. ˜Et[X] ≥ ˜Et[Y ], if X ≥ Y ,

2. ˜Et[X + η] = ˜Et[X] + η, for η ∈ L
p

G
(Ωt),

3. ˜Et[X]− ˜Et[Y ] ≤ Êt[X − Y ],

4. ˜Et[
˜Es[X]] = ˜Es∧t[X], in particular, ˜E[˜Es[X]] = ˜E[X].

In particular, the conditional expectation of Êt : L
p

G
(Ω) 7→ L

p

G
(Ωt) is still

sublinear in the following sense:

5. Êt[X]− Êt[Y ] ≤ Êt[X − Y ],

6. Êt[ηX] = η+Êt[X] + η−Êt[−X], η is a bounded element in L1
G
(Ωt).

A process (Yt)t≥0 is called a G̃-martingale (respectively, G̃-supermartingale;

G̃-submartingale) if for each t ∈ [0,∞), Mt ∈ L1
G
(Ω

t
) and for each s ∈ [0, t], we

have

˜Es[Mt] =Ms, (respectively, ≤Ms; ≥Ms).

It is clear that for each X ∈ L1
G
(ΩT ), Mt := ˜Et[X] is a G̃-martingale. In

particular, if X = ϕ(bT + BT ), for a bounded and continuous real function ϕ

on Rd
, then

Mt =
˜Et[X] = u(t, bt +Bt)

where u is the unique viscosity solution of the PDE

∂tu+ G̃(Dxu,D
2
xxu) = 0, t ∈ (0, T ), x ∈ Rd,
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with the terminal condition u|t=T = ϕ. We have discussed the relation between

BSDEs and PDEs in the last section. Here again we can claim that in general

G̃-martingale can be regarded as a path-dependent solution of the above fully

nonlinear PDE. Also a solution of this PDE is a state-dependent G̃-martingale.

We observe that, even with the language of PDE, the above construction

of Brownian motion and the related nonlinear expectation provide a new norm

which is useful in the point view of PDE. Indeed, ‖ϕ‖
L

p
G

:= Ê[|ϕ(BT )|
p
]
1/p

forms an norm for real functions ϕ on Rd
. This type of norm was proposed

in Peng (2005b). In general, a sublinear monotone semigroup (or, nonlinear

Markovian semigroup of Nisio’s type) Qt(·) defined on Cb(R
n
) forms a norm

‖ϕ‖
Q
= (Qt(|ϕ|

p
))

1/p
. A viscosity solution of the form

∂tu−G(Du,D2u) = 0,

forms a typical example of such a semigroup if G = G(p,A) is a sublinear

function which is monotone in A. In this case ‖ϕ‖
p

Q
= u(t, 0), where u is the

solution of the above PDE with initial condition given by u|t=0 = |ϕ|p.

Let us give an explanation, for a given X ∈ L
p

G
(ΩT ), how a G̃-martingale

(˜Et[X])t∈[0,T ], rigorously obtained in Peng from (2005a,b) to (2010a), can be

regarded as the solution of a new type of “fully nonlinear” BSDE which is

also related to a very interesting martingale representation problem. By using

a technique given in Peng (2007b,2010a), it is easy to prove that, for given

Z ∈M2
G
(0, T ) and p, q ∈M1

G
(0, T ), the process Y defined by

Yt = Y0 +

∫ t

0

ZsdBs +

∫ t

0

psdbs +

∫ t

0

qsd 〈B〉
s
−

∫ t

0

G̃(ps, 2qs)ds, t ∈ [0, T ],

(3.1)

is a G̃-martingale. The inverse problem is the so-called nonlinear martingale

representation problem: to find a suitable subspace M in L1
G
(ΩT ) such that

Yt := ˜Et[X] has expression (3.1) for each fixed X ∈ M. This also implies that

the quadruple of the processes (Y,Z, p, q) ∈M2
G
(0, T ) satisfies a new structure

of the following BSDE:

−dYt = G̃(pt, 2qt)dt− ZtdBt − ptdbt − qtd 〈B〉
t
, YT = X. (3.2)

For a particular case where G̃ = G = G(A) (thus bt ≡ 0) and G is sublinear, this

martingale representation problem was raised in Peng (2007, 2008 and 2010a).

In this case the above formulation becomes:

−dYt = 2G(qt)dt− qtd 〈B〉
t
− ZtdBt, YT = X.

Actually, this representation can be only proved under a strong condition where

X ∈ HT , see Peng (2010a), Hu, Y. and Peng (2010). For a more general X ∈

L2
G
(ΩT ) with E[X] = −E[−X], Xu and Zhang (2009) proved the following

representation: there exists a unique process Z ∈ M2
G
(0, T ) such that Et[X] =
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E[X]+
∫ t

0
ZsdBs, t ∈ [0, T ]. In more general case, we observe that the process

Kt =
∫ t

0
G(2qs)ds−

∫ t

0
qsd 〈B〉

s
is an increasing process with K0 = 0 such that

−K is a G-martingale. Under the assumption Ê[supt∈[0,T ] Et[|X|
2
]] <∞, Soner,

Touzi and Zhang (2009) first proved the following result: there exists a unique

decomposition (Z,K) such that

Et[X] = E[X] +

∫ t

0

ZsdBs −Kt, t ∈ [0, T ].

The above assumption was weakened by them to E[|X|
2
] < ∞ in their 2010

version and also, independently, by Song (2010) with an even weaker assumption

E[|X|
β
] <∞, for a given β > 1, by using a quite different method. Our problem

of representation is then reduced to prove Kt =
∫ t

0
G(2qs)ds−

∫ t

0
qsd 〈B〉

s
. Hu

and Peng (2010) introduced an a prior estimate for the unknown process q

to get a uniqueness result for q. Soner, Touzi and Zhang (2010) proved the

well-posenes of the following type of BSDE, called 2BSDE, or 2nd order BSDE,

−dYt = F (t, Yt, Zt)dt− ZtdBt − dKt, YT = X.

This 2BSDE is in fact quite different from the first paper by Cheridito, Soner,

Touzi and Victoir (2007) which was within the framework of classical probabil-

ity space.

We prefer to call (3.2) a BSDE under nonlinear expectation, (see Peng

(2005b)), or a fully nonlinear BSDE, instead of 2BSDE. Indeed, in a typical sit-

uation where G̃ = g(p) (thus Bt ≡ 0, Zt ≡ 0), the solution Yt = ˜Et[X] is in fact

related to a first order fully nonlinear PDE of the form ∂tu−g(Du) = 0. Gener-

ally speaking, with different generators G̃, Yt = ˜Et[X] gives us ‘path-dependent’

solutions of a very large type of quasi-linear or fully nonlinear parabolic PDEs

of the first and second order.

Note that for a given X ∈ L1
G
(ΩT ), the G̃-martingale Yt := ˜Et[X] has solved

the part Y of the fully nonlinear BSDE (3.2). Furthermore, we can follow the

domination approach introduced in Peng (2005b, Theorem 6.1) to consider the

following type of multi-dimensional fully nonlinear BSDE:

Y i

t = ˜Ei

t

[

Xi
+

∫ T

t

f i(s, Ys)ds

]

, i = 1, · · · ,m, Y = (Y 1, · · · , Y m
), (3.3)

where, as for a G̃-expectation, for each i = 1, · · · ,m, ˜Ei
is a G̃i-expectation

and G̃i is a real function on Rd
× S(d) dominated by G. Then it can be proved

that if f i(·, y) ∈ M1
G
(0, T ), y ∈ Rd

, and is Lipschitz in y, for each i, then for

each given terminal condition X = (X1, · · · , Xm
) ∈ L1

G
(ΩT ,R

m
), there exists

a unique solution Y ∈M1
G
(0, T,Rm

) of BSDE (3.3).

Another problem is for stopping times. It is known that stopping times play

a fundamental role in classical stochastic analysis. But up to now it is difficult

to apply stopping time techniques in G-expectation space since the stopped
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process may not belong to the class of processes which are meaningful in the

G-framework. Song (2010b) considered the properties of hitting times for G-

martingale and the stopped processes. He proved that the stopped processes for

G-martingales are still G-martingales and that the hitting times for symmetric

G-martingales with strictly increasing quadratic variation processes are quasi-

continuous.
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dian calculation” adopted by Arab mathematicians to the “Hindoo method” for

solving quadratic equations in nineteenth-century algebra textbooks. Likewise,
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Introduction

Nowadays, the very concept of an “International Congress of Mathematicians”
refutes the idea that “foreign identity” somehow intrinsically affects the trans-
mission of mathematics. Colleagues in a particular mathematical discipline from
all over the world now read the same research papers, apply the same subject
classifications to their field of study, and use the same criteria to judge the
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truth of their results. There are still foreign countries and foreign languages,
but there is no more foreign mathematics.

It is sometimes argued that mathematics inherently transcends “foreignness”
by its abstract and rigorous nature. Since, for example, every mathematician
in every culture agrees that 2 + 2 = 4, mathematics ranks as a universal lan-
guage that makes other language differences irrelevant. But this observation
overlooks the fact that even if mathematicians agree on the essential truth of
a statement like 2 + 2 = 4, there are many other things about it on which
they can disagree: e.g., how it should be symbolically represented, how the
calculation should be performed, and how its truth should be demonstrated.
Historically, cultural and linguistic divisions—that is, “foreignness”—often co-
incided with the dividing lines in such disagreements. This paper examines how
foreign identity affected perceptions of mathematics and mathematicians across
one very marked cultural and linguistic divide: that between the Indians and
the so-called “Yavanas”.

Yavanas and Indians. The Sanskrit name “Yavana” (or “Yona”) was orig-
inally a rendering of the Greek “Ionian”, an appellation of the Eastern Greeks
who came into contact with Indians when Alexander the Great’s armies crossed
the Himalayas. When Alexander turned westward again, not all of his troops
went back with him. Some established petty states (the “Indo-Greek” kingdoms)
in the north and west of India, and were known to their neighbors by Sanskrit
titles like “Yavana-rāja”, “king of the Yavanas”.

In later centuries the name “Yavana” was applied to other foreigners enter-
ing India from the northwest, including the Indo-Scythians (“Śakas”), medieval
Persian and Turkic Muslim groups, and sometimes even modern European
colonists. The “Yavanas” treated here are mostly those of classical antiquity
and medieval and early modern Europe.

Images of Indian Mathematics in the West

Ancient allusions. It was over twenty-three hundred years ago that the
professional activities of the mathematical scientists of India seem to have made
their first known appearance in a western text. The Greek ambassador to the
court of Candragupta in northeastern India, Megasthenes, commented on the
Indian “philosophers” as follows:

. . .[G]athered together in a great assembly at the beginning of the
year, they foretell the droughts and rains, propitious winds and
diseases and other things that may benefit the hearers. . . A philoso-
pher who errs in his predictions incurs no other penalty than dis-
grace, and remains silent for the rest of his life. [37, pp. 91–92],
[27, pp. 40–41]
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These “philosophers” were apparently forerunners of the mathematician-
astronomer-astrologers known from Sanskrit scientific texts in later centuries,
who were responsible for astronomical and astrological predictions, maintaining
the calendar, training students in the exact sciences, and developing new math-
ematical knowledge. The technical details of their learning don’t appear to have
received much attention from Megasthenes and his contemporaries, who were
much more interested in Indian geography and the varieties of Indian animals
(particularly elephants). But from then on, scholars in the western tradition
were at least dimly aware of a professional category of philosophers or learned
men in India.

Nearly a thousand years after Megasthenes in 662 CE, the first known spe-
cific acknowledgement of Indian mathematical accomplishments surfaced in a
western document, in the Syrian bishop Severus Sebokht’s famous allusion to
the “nine signs” of the Indian decimal place-value numerals:

I will omit all discussion of the science of the Hindus, a people not
the same as the Syrians; their subtle discoveries in this science of
astronomy, discoveries that are more ingenious than those of the
Greeks and the Babylonians; their valuable methods of calculation;
and their computing that surpasses description. I wish only to say
that this computation is done by means of nine signs. If those who
believe, because they speak Greek, that they have reached the limits
of science should know these things they would be convinced that
there are also others who know something. [10], [28, pp. 225–227]

These “nine signs” would of course have been accompanied in the Indian numer-
als by a tenth, the round zero symbol to indicate an empty place, but Sebokht
apparently did not consider the zero as representing a “number”. The “valuable
methods of calculation” and “computing” that he ascribed to the Indians cer-
tainly included their decimal arithmetic, but we don’t know any other specifics
of his acquaintance with Indian mathematics or astronomy.

The “Indian learned men” in European texts. A similar ac-
colade to the “science of the Indians” appears in a late tenth-century Latin
manuscript:

We must know that the Indians have a most subtle talent and all
other races yield to them in arithmetic and geometry and the other
liberal arts. And this is clear in the nine figures with which they are
able to designate each and every degree of each order (of numbers).
[3, p. 17]

The Indian figures were not in fact the first system ever devised for representing
“each and every degree of each order” with a limited set of glyphs by means of
the place-value principle. For instance, the ancient Babylonians alluded to by
Sebokht had developed sexagesimal or base-60 place-value numerals for both
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integer and fractional numbers, traces of which persisted in the common western
sexagesimal units for measuring intervals of time and degrees of arc. But the
Babylonian place-value system for ordinary numeration and arithmetic had not
been passed on to its successor cultures, so the Indian “nine figures” were the
first instance of place-value that medieval western mathematicians encountered.

The system of the ten numeral signs was thoroughly described a little later
in various high-medieval European works that disseminated Indian calculation.
Examples include Latin versions of al-Khwārizmı̄’s ninth-century Arabic text on
decimal arithmetic, Latin translations of Hebrew works by the twelfth-century
Jewish scholar Abraham ibn Ezra, and the Liber abaci or “Book of calcula-
tion” written by the Italian merchant and mathematician Leonardo of Pisa
(“Fibonacci”) at the start of the thirteenth century. Leonardo explains:

[F]ollowing my introduction, as a consequence of marvelous instruc-
tion in the art, to the nine digits of the Indians, the knowledge of
the art very much appealed to me before all others. . . [A]ll this, the
algorism as well as the Pythagorean art, I considered as almost a
mistake compared to the method of the Indians. . .

The nine Indian figures are: 9 8 7 6 5 4 3 2 1. With these nine figures,
and with the sign 0 which the Arabs call zephir [Arabic s. ifr ], any
number whatsoever is written. . .[38, pp. 15–16], [11]

Remarks on the same topic attributed to Abraham ibn Ezra make it clear that
not just the nine figures but the zero symbol as well were known to be of Indian
origin, despite the zero’s Arabic name:

The learned men of India named all their numbers up through nine
and drew figures for the nine numerals. . . [39, p. 2] It is the custom of
the Indians to put a little circle like ◦ as a sign if there is no degrees
place [in a sexagesimal arc measurement]. [24, pp. 210, 96–98]

Indeed, ibn Ezra was aware not only of the techniques of Indian decimal arith-
metic but also, more distantly, of Indian geometry as represented by their value
of π:

The learned men of India say: If the diameter [of a circle] is 20000,
then the periphery is 62838. [39, p. 87]

(This assertion is slightly mistaken: in fact, the circumference value for a di-
ameter of 20000 known from Sanskrit texts as early as the sixth century is
62832, not 62838, equivalent to a π value of 3.1416 rather than ibn Ezra’s
3.1419 [16, pp. 2–3].) Ibn Ezra notes elsewhere that the “circumference of the
Indians” is bigger by a factor of 107

105
or 367

360
than the circumference according to

“arithmeticians” or “geometers” [24, pp. 209, 96–97], which indicates that such
practitioners were using a value for π around 3.08.
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How the Indian numerals became “Arabic”. The image of the
mathematically astute Indians, now established in European scholarly con-
sciousness, soon blossomed into various legends and imaginary attributions.
Abraham ibn Ezra himself recounted an apocryphal story about how an eighth-
century Jewish envoy to India from the caliph al-S. affāh persuaded an Indian
sage to introduce the decimal system in the west:

. . .[A] wise man of Arin [Ujjain in Madhya Pradesh, traditionally
located on the Indian prime meridian] decided to come to the king
for a large sum after the Jew promised him that he would stay for
only one year, and then could return home. Then the wise man,
whose name was Kankah, was brought to the king, and taught the
Arabs the basis of number, which lies in nine characters. [29, p. 101]

As we know from Sebokht’s abovementioned comment, the Indian decimal nu-
merals must in fact have penetrated to West Asia at least by the previous
century. But by a natural process of elaboration and association, they were at-
tached to the name of the semi-legendary Indian authority “Kankah” or Kanaka,
who appeared in several similar elaborations in Islamic sources [30, vol. 2, p. 19].

Other myths evolved about the name “algorym” or “algorism” for the pro-
cedures of decimal arithmetic. The word was derived originally from the name
of al-Khwārizmı̄, but later was traced to various fanciful sources, including an
alleged “king of India”, as the following remarks in a fourteenth-century English
arithmetic treatise [5, p. 28] attest:

And þis boke tretys þe Craft of Nombryng, þe quych crafte is called
also Algorym. Ther was a kyng of Inde, þe quich heyth Algor, &
he made þis craft. And after his name he called hit algorym; or els
anoþer cause is quy it is called Algorym, for þe latyn word of hit
s. Algorismus comes of Algos, grece, quid est ars, latine, craft on
englis, and rides, quid est numerus, latine, A nombur on englys. . .

this present craft ys called Algorismus, in þe quych we vse teen
signys of Inde. Questio. Why ten fyguris of Inde? Solucio. for as
I haue sayd afore þai were fonde fyrst in Inde of a kynge of þat
Cuntre, þat was called Algor. [41, p. 3]

The shadowy figures of their Indian counterparts were obscured to some
extent in the minds of western mathematicians by their nearer neighbors, the
Arab and Jewish scholars from whose works many Latin mathematical texts
were more directly derived. As the thirteenth-century scholar John of Sacro-
bosco noted in his Algorismus Vulgaris or Popular Arithmetic,

In this art we write [higher numbers] toward the left in the style of
the Arabs, the inventors of this science. [12, p. 5] [4, p. 7]

The notion of the decimal place-value digits increasing in value from right to
left not surprisingly suggested to Latin authors an association with the right-to-
left script of Arabic or Hebrew. The identification of decimal place-value digits
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as “Arabic numbers” eventually became standard in European mathematical
writing. Mistrust of their exotic origin also inspired the label “foreigners’ (or
barbarians’) numbers”; this name lingered as a routine technical term even after
the decimal digits themselves were wholly naturalized in Europe, as when Jakob
Bernoulli in the 1680’s used “numeri barbari, seu Arabici” and “numeri Romani”
to designate rows and columns of a table of exponents [26, p. 18].

How the double false position method became “Indian”. On
the other hand, some mathematical practices attributed to the “learned men
of the Indians” in western texts seem to have had little or no basis in actual
Indian mathematics. A case in point is the so-called “method of increase and de-
crease” or double false position technique described in a Latin work, apparently
a twelfth-century translation of a source in Hebrew or Arabic, titled Liber aug-

menti et diminutionis vocatus numeratio divinationis, ex eo quod sapientes Indi

posuerunt, quem Abraham compilavit et secundum librum qui Indorum dictus

est composuit or “Book of increase and decrease, called calculation of predict-
ing, [or guessing] from what the Indian wise men established, which Abraham
compiled and composed according to a book said [to be] of the Indians” [25,
vol. 1, pp. 304–305]. The compiler of the source appears not to have been the
abovementioned Abraham ibn Ezra [19, 18, p. 80], but the translator may have
thought that the work was his. After a brief listing of the contents, the text
begins:

I have compiled this book according to what the learned men of the
Indians have found out about the calculation of predicting, inves-
tigating and seeking out the usefulness of that, and persevering it,
and understanding its intention.

Whence therefore: there is a square from which a third of it is sub-
tracted, and a quarter, and there is eight that remains. How much
is the square? The start of the calculation is that you assume a
guess of twelve. . . and you subtract a third and a fourth of it, which
is seven, and five remains. Then you compare that with eight. . . it
appears that you have an error of three too little.

Keep that, and then assume a second guess separate from the for-
mer, and let it be twenty-four, and subtract a third and a fourth
of it, which is fourteen, and ten remains. So then you compare that
with eight. . . And it appears that you have an error of two too much.

Multiply the error of the second guess, which is two, by the first
guess, which is twelve, and 24 results. And multiply the error of the
first guess, which is three, by the second guess, which is twenty-
four, and it is 72. Therefore add 24 and 72, since one error is too
little and the other too much. . . the sum will be ninety-six; then add
the two errors, which are three and two, and five results; and then
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divide ninety-six by five. . . and your result is nineteen drachmas and
one-fifth drachma.

That is, given the following relation,

x2
−

1

3
x2

−

1

4
x2

= 8 or
5

12
x2

= 8,

one is to use two guesses to solve for x2, as follows.
First assume x2

= 12, which when modified as stated in the problem gives
5

12
x2

= 5, which falls short by 3 of the desired result 8. Then assume x2
= 24

and get 5

12
x2

= 10, which exceeds the desired result 8 by 2. Each guess is
then multiplied by the error produced by the other guess, and the sum of the
products is divided by the sum of the errors to give the true x2:

x2
=

2 · 12 + 3 · 24

2 + 3
=

96

5
, and indeed

5

12
·

96

5
= 8.

Despite the appearance of an x2 term in this equation, it is essentially a
linear expression, where the desired value is found by linearly interpolating
between two arbitrary values. This is easy to see if we let w represent the
value of x2 and define an “error function” f(w) = 5

12
w − 8. The root of f(w)

is computed by linear interpolation between two guesses w1 and w2, as the
following graph illustrates:

w

w1
w2

The similarily of the right triangles in the figure implies that

w − w1

|f(w1)|
=

w2 − w1

|f(w1)|+ |f(w2)|

or equivalently,

w =
w2|f(w1)|+ w1|f(w2)|

|f(w1)|+ |f(w2)|

which is equivalent to “Abraham’s” rule for the desired square.
This technique of linear interpolation with two supposed results in order

to find the true result is the standard “regula elchataym” or “double-false” rule
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common in Islamic and medieval western arithmetic, which was routinely as-
cribed by Arabic texts to “the Indians” [18, p. 81]. But in fact, the “double-false”
rule illustrated here was not used in this way in Indian arithmetic. Sanskrit texts
from at least the middle of the first millennium CE did use iterated linear in-
terpolation (known as Regula Falsi in modern numerical analysis) exclusively
to approximate solutions to certain non-linear equations in astronomy.

For solving linear equations, however, they used more efficient methods:
either algebra procedures similar to our own or a simpler version of false position
called “operation with an assumed [quantity]”, employing linear proportion to
find the desired value with only one wrong guess [33, pp. 182–183]. For instance,
to solve 5

12
w = 8, one might guess w = 24, find 5

12
·24 = 10, and proportionally

compute the true w =
24·8

10
=

96

5
. But typically, an Indian mathematician

would prescribe simply setting up an equation in essentially the same way it is
done today, allowing for some differences in notation. Compare the cumbersome
“double-false” procedure in the Latin text with an actual Indian solution to a
linear equation problem of the same period:

Two [people] have equal wealth. One has six horses and three
hundred rupees, the other ten horses and a debt of a hundred
rupees. . .What is the price of a horse?

yā 6 rū 300

yā 10 rū 10
•

0

. . .When the difference of the rupees, rū 400, is divided by the dif-
ference of the unknowns, yā 4, the quotient is the amount of one
unknown, 100. . . (Bhāskara, Bı̄ja-gan. ita E36) [15, pp. 41–42]

The negative value is signified by an overdot, and the two sides of the equation
are stacked vertically, without operators or equals sign, but the solution method
is equivalent to our own.

It is not clear how mathematicians writing in Arabic, and consequently
their Latin redactors and translators, acquired the notion that the popular non-
iterated double false position method for solving linear equations was derived
from the “learned men of the Indians”. Perhaps the attribution arose from a
vague awareness of the Indian iterated double-false method, or perhaps it was
part of a hitherto undocumented sub-scientific tradition of practical “merchant
mathematics” among Indians [18, p. 81]; it is not attested in known Sanskrit
compilations of practical mathematical rules [13, 14]. Or perhaps in this case the
name “Indian” merely stood for an exotic source of arcane learning in general,
as the names “Egyptian” and “Chaldaean” also sometimes did in western texts.

Evidence for “crypto-Indian” mathematics in Europe. Be-
sides the various mathematical sources and concepts to which European authors
explicitly assigned (rightly or wrongly) an Indian origin, there were various
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features of the content and structure of arithmetic and algebra books in the
Renaissance that distinctly resembled their counterparts in Sanskrit works, al-
though not directly ascribed to Indian sources [17]. The classic “Rule of Three”
or linear proportion (Sanskrit trairāśika or “[rule] of three quantities”), for in-
stance, has been noted as bearing remarkably similar forms in early medieval
India and in Renaissance Europe [36, pp. 152–153].

The organization of topics in arithmetic texts also suggests the possibility
of Indian influence through transmission channels not yet traced. A more or
less standard approximate order for basic arithmetic subjects had begun to
develop at least by the middle of the first millennium CE in India. The follow-
ing table roughly reproduces that order for some major topics in the renowned
L̄ılāvat̄ı of the Indian mathematician Bhāskara, and juxtaposes it with the cor-
responding subject sequences in L’aritmétique of the sixteenth-century French
scholar Jacques Peletier, as well as the Liber abaci of Leonardo [17, pp. 1–4],
[38, pp. 5–11].

Bhāskara, 12th c. Peletier, 1552 Fibonacci, 1202
Numeration Def. of number Numeration
Add/subtract Add/subtract Multiplication
Multiplication Multiplication Addition
Division Division Subtraction
Squaring
Square root Square root Fractions with integers
Cubing
Cube root Cube root Fraction arithmetic
Fractions Fractions Rule of three
Zero
Inversion
Single false pos. Double false pos. Barter
[. . .]
Rules of three Rules of three Mixtures
Compound proportion Compound proportion Alloys
Barter
Mixtures Alloys Single false pos./inversion
Interest Double false pos.
Misc. [. . .] Misc. Roots
Alloys
[. . .] [. . .] [. . .]

Numerous likenesses in the content as well as the classification of many
of these arithmetic rules strengthen the plausibility of transmission. However,
even if it were possible conclusively to rule out parallel evolution of any of
these likenesses in the Indian and European traditions independently, we could
not credibly deduce any direct impact from Sanskrit works on Renaissance
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mathematics [17, p. 51]. Arguments for such transmission rely on hypotheses
about contacts between sub-scientific traditions of recreational and commer-
cial mathematics, about which we still know very little, rather than between
scholarly authorities directly.

Awareness of some Indian sources in the modern period.
Shortly thereafter, European authors did increasingly come into direct contact
with Indian sources of mathematical thought, which contained not only many
interesting similarities to the mathematics they were already familiar with, but
also some notably novel ideas. For instance, Simon de la Loubère, a French
envoy to Siam, published in 1691 a description of methods for constructing
magic squares that one of his countrymen had learned from the Indians of
Surat [23, pp. 235–288]. However, the widespread interest his account inspired
among European readers focused more on understanding and developing the
algorithms for such constructions than on investigating their origins, and the
Indian techniques eventually became known in Europe under the names of Eu-
ropean researchers [6, pp. 295–299]. (More misleadingly still, the Indian tech-
nique widely known as the “De la Loubere” method is also commonly called the
“Siamese method”, from erroneous association with de la Loubère’s embassy to
Siam rather than with his reference to Surat [42, p. 1839].)

In a somewhat similar but more recent development, a certain form of the
method for simplifying the solution of quadratic equations by “completing the
square” was reported by early nineteenth-century scholars of Sanskrit technical
works as due to the medieval Indian mathematician Śr̄ıdhara [8, pp. 209–210],
or more generally to “the Indians” [20, p. 197]. This technique was incorporated
into various textbooks as the “Hindu Rule” or “Hindu Method”, but the name
gradually dropped out of use (as did the method itself) in later texts, and the
rule was subsequently rediscovered with no recognition of its Indian origin [35].
Once again, a mathematical concept originally recognized as Indian had begun
to shed its foreign identity over time.

Images of Western Mathematics in India

Where Latin texts had their “barbari”, despised as uncouth or bizarre (or hea-
then) foreigners, Sanskrit texts similarly had their “mlecchas”, who were consid-
ered alien to sacred language and traditions. The stigma of mleccha identity was
associated with their legendary origins among demonic beings called asuras, as
recounted in, for instance, the ancient sacred text Śatapatha-brāhman. a:

Now the gods and the asuras, both of them sprung from [the creator]
Prajāpati, entered upon their father Prajāpati’s inheritance. . .the
gods came in for the sacrifice and asuras for speech [vāc]; the gods
for that (heaven) and the asuras for this (earth). . .

The gods then cut her [Vāc] off from the asuras; and having gained
possession of her and enveloped her completely in fire, they offered
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her up. . .thereby they made her their own; and the asuras, being
deprived of speech, were undone. . .

Such was the unintelligible speech which they then uttered—and he
(who speaks thus) is a mleccha (barbarian). Hence let no Brāhman. a
speak barbarous language, since such is the speech of the asuras.
Thus alone he deprives his spiteful enemies of speech; and whosoever
knows this, his enemies, being deprived of speech, are undone. [Śata-

patha-brāhman. a 3.2.1.18–24]

The Brāhman. as or “Brahmins”, hereditary priests and scholars, were espe-
cially charged with maintaining Sanskrit learning and its divine laws, and
consequently were admonished to avoid the corruption of barbarian contact:
“A Brāhman. a who speaks with a mleccha must undergo purification” (Vis.n. u-

dharmaśāstra 22.76).
However, this prohibition might sometimes be evaded or even directly chal-

lenged. One mleccha group widely viewed as transcending its alien status was
the so-called “Yavanas”. They and other invaders such as the Śakas or Indo-
Scythians were traditionally considered to be degraded types of Ks.atriyas or
hereditary rulers, who had forfeited their earlier status by rebellion or other
offenses against the gods:

[Yavanas] also, and other Ks.atriya races, [the sage Vasis.t.ha] de-
prived of the established usages of oblations to fire and the study of
the Vedas; and thus separated from religious rites, and abandoned
by the Brāhman. as these different tribes became mlecchas. (Vis.n. u-

purān. a 4.3)

Yet this debased race was also described as being worthy of honor as the de-
velopers of certain mathematized forms of divination, specifically horoscopic
astrology. The sixth-century astronomer/astrologer Varāhamihira famously re-
marked of them:

For although the Yavanas are mlecchas, they have brought this sci-
ence to perfection and so are honored like sages; how much more
honorable, then, is an astrologer who is a Brāhman. a. (Br.hatsam. hitā

2.15 [21, p. 8])

And in fact, the founding texts of Indian mathematical astrology in the
second through fourth centuries CE were composed by Indianized Yavana au-
thors, and openly acknowledged Greek inspiration [31, p. 81]. Later Sanskrit
astrology texts retained dozens of Greek loanwords for astrological and astro-
nomical technical terms, and quoted multiple authors with the name or epithet
“Yavana” [32, pp. 34–38]. There seems to have been no fear of contamination
from mleccha speech in retaining Sanskrit words like liptā, “arc-minute” (from
Greek lepton) and kendra, “center” or “anomaly” (from Greek kentron).
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The invention of the sine. In the non-astrological Indian mathematical
sciences, however, there are many fewer direct references to western sources,
and the mathematical features in them that suggest a western origin, such as
trigonometry of chords and spherical coordinates, are not explicitly flagged as
“foreign” [34, pp. 118–119]. We can reconstruct the process of transmission in
these instances only as a plausible hypothesis. In the case of trigonometry, for
example, we have only the two variants of the subject that appeared in ancient
Greece and ancient India, plus our knowledge of the Indian adoption of Greek
astrology and some of its astronomical components at about this time.

The differences between the Greek and Indian versions of trigonometry sup-
ply some hints about the hypothesized transmission process. Greek trigonom-
etry, which tabulates only the chords of angles at the center of the circle, is
computationally somewhat clumsy: as illustrated on the left side of the dia-
gram below, solving a right triangle with chords requires doubling the given
angle (at the circumference) to find the side opposite to it (which is the chord
of the angle at the center, equal to twice the angle at the circumference). The
corresponding figure on the right represents the Indian form of the solution,
which is more efficent: half-chords (sines) are tabulated rather than chords,
so any given right triangle can be solved directly with no doubling of angles.
The sine, in this view, represents a later Indian improvement on the original
“Yavana” chord.

The standard Sanskrit names for the sine or opposite side to the given angle,
which mean “bowstring” or half-bowstring”, also suggest that the sides of right
triangles in circles were first perceived as chords, with the arcs subtending them
reminiscent of an archer’s bow. The same name “bowstring” was then applied
to the more convenient sine quantity. But since the Sanskrit texts are silent on
how these techniques and terms originated, any such reconstruction remains
conjectural.

The direct absorption of western learning into Indian mathematics per se

appears to have commenced only toward the middle of the second millennium,
when Sanskrit mathematical authors confronted various Islamic works expound-
ing and extending the results of Hellenistic Greek science. The “Yavana” identity
now generally embraced the Central and West Asian Muslim authors of such
works as well as the Greek authors who inspired them, but at least some of
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the Indian translators were aware of the historical and linguistic complexity
of the sources. The following introduction to an early eighteenth-century San-
skrit translation of an Arabic version of Theodosius’s Spherics from the late
first millennium BCE illustrates this awareness, and also some of the pitfalls of
transliteration:

This book called Ukarā [Arabic kura, “sphere”], made by
Sāvajūsayūsa [Theodosius]. . .[was translated] from the Yunān̄ı [Ara-
bic, “Ionian, Greek”] language to the Arava language by Abu-la Accā
sa-a-ha-sa-ha. . .The fifth figure of the third chapter was arranged by
Kustā vivi Lukā [Qust.ā ibn Lūqā]. . .It was corrected by Sābit vini
Kusai [Thābit ibn Qurra]. The commentary was made by Naras̄ıra
[Nas.̄ır al-Dı̄n T. ūs̄ı]. It is rendered into Sanskrit words by Nayana-
sukha. [2, p. 1]

Acknowledgement of Yavana sources did not necessarily imply endorsement
of Yavana vocabulary in Sanskrit mathematics. Contrast the treatment of the
word “parallel”, for which the Sanskrit geometry of this era had devised the
technical term samānāntara (“equal-differenced”), in Nayanasukha’s translation
of the Spherics and in the Hayata-grantha, a Sanskrit translation of the Persian
spherical astronomy treatise Risāla dar hay’a made probably in the seventeenth
century:

[Hayata-grantha:] When one has made two lines, and made points
on one line, if there is equal-difference with points on the other line,
then the two equal-differenced lines are called mutavājiyena [Arabic
mutawāzin, “parallel”]. [1, p. 11]

[Nayanasukha:] Two circles on a sphere whose poles are not distinct
are equal-differenced circles. [2, p. 13] (Spherics 2.2)

Other translations by Nayanasukha, however, are less strict in their avoidance
of transliterated Arabic or Persian words [22, p. 7]. Clearly, while it was seen
as desirable to construct a proper Sanskrit technical vocabulary for new math-
ematical concepts in foreign topics like spherical trigonometry and Ptolemaic
astronomy, it was not considered necessary to obliterate all trace of their Yavana
origins or their mleccha tongues.

Perceptions of the “Indians”, the “Yavanas”, and

their Knowledge

What patterns can we trace in these examples of acquisition and assimilation
of “foreign” mathematics? For one thing, it is clear that an explicit “foreign”
label or the absence thereof on a particular concept does not necessarily mean
much. Not surprisingly, such labels are likely to be most accurate at the point
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closest to the actual transmission, and recede into irrelevance or fantasy once
the concept has become integrated into the receiving tradition.

Such assimilation seems to be often particularly thorough in mathematics,
where, for example, even in the information-rich twentieth century the associ-
ation of a certain algorithm with Indian sources could be largely forgotten in
the space of fifty years or so. The internal logic of the structure of mathematics
means that identical innovations can emerge independently in different linguis-
tic traditions more easily than in, say, poetry or dialectic; it is also easier for a
foreign innovation to take on the coloring of its new environment as an abstract
idea.

Nonetheless, in both the western and the Indian traditions a recognized al-
though indistinct picture of the mathematical “foreigners” as a culture seems to
have emerged. They were strange; they were wise; they were (possibly) accursed
and a threat to civilization; they were fellow-scholars; they had new ideas. Their
mutual contributions not only enriched each other’s separate mathematical tra-
ditions but ultimately enabled their convergence into today’s common global
culture of mathematical research, where there are no strangers anymore.
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[1] V.B. Bhattācārya, Hayata, Varanaseya Sanskrit Vishvavidyalaya, Varanasi, 1967.
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tuto Italiano per l’Africa e l’Oriente, Rome, Italy, 1997.



448 Kim Plofker

[33] Kim Plofker, “Use and Transmission of Iterative Approximations in India and

the Islamic World”, in [9].

[34] Kim Plofker, Mathematics in India, Princeton University Press, Princeton, USA,

2009.

[35] Dave L. Renfro, “The Hindu method for completing the square”, Mathematical

Gazette, 91, 2007, 198–201.

[36] Sreeramula Rajeswara Sarma, “Rule of Three and its Variations in India”, in [9].

[37] E.A. Schwanbeck, Megasthenes Indica, Plemesius, Bonn, Germany, 1846.

[38] L.E. Sigler, Fibonacci’s Liber abaci, Springer, New York, USA, 2002.

[39] Moritz Silberberg, Sefer ha-Mispar, Kauffmann, Frankfurt, Germany, 1895.

[40] David Eugene Smith and Louis Charles Karpinski, The Hindu-Arabic Numerals,

Ginn & Co., Boston, 1911.

[41] Robert Steele, The Earliest Arithmetics in English, Oxford University Press,

London, UK, 1922.

[42] Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chap-

man & Hall/CRC, Boca Raton, Florida, USA, 2003.



Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

Riemannian Manifolds of Positive

Curvature

Simon Brendle∗ and Richard Schoen∗

Abstract

The study of positive sectional curvature is one of the oldest pursuits in Rie-

mannian geometry, but despite the considerable efforts of many researchers,

basic questions remain unanswered. In this lecture we will briefly summarize

the state of knowledge in this area and outline the techniques which have had

success. These techniques include geodesic and comparison methods, minimal

surface methods, and Ricci flow. We will then describe our recent work (see [18],

[21], [22]) which uses the Ricci flow to resolve the differentiable sphere theorem;

that is, the complete classification of manifolds whose sectional curvatures are

1/4-pinched.
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1. Preliminaries and the Main Theorems

We let M denote a smooth manifold of dimension n. Recall that a Riemannian

metric on M is a choice g of inner product on each tangent space which varies

smoothly from point to point. Any manifold admits an infinite dimensional

family of Riemannian metrics, but the question of whether a manifold admits

metrics with desired geometric properties is one of the basic questions of global

Riemannian geometry. Surfaces embedded in R3
provide important examples

of two dimensional Riemannian manifolds where the metric g is the restriction

of the euclidean inner product to each tangent space. The geometry of surfaces

was developed by Gauss in the early nineteenth century. Gauss understood

∗Department of Mathematics, Stanford University, Stanford, CA 94305.
E-mails: brendle@math.stanford.edu and schoen@math.stanford.edu



450 Simon Brendle and Richard Schoen

aspects of the geometry of surfaces which are intrinsic in that they depend

only on the metric g as opposed to those geometric aspects which depend on

the way in which the surface is embedded in space. In his famous Theorema

Egregium, Gauss identified the function K equal to the product of the principal

curvatures, which we call the Gauss curvature of a surface. He showed that K

can be expressed in terms of g and its first two derivatives. This means that if we

choose local coordinates x1, x2 on the surface and express the metric in terms of

the coordinate vector fields ∂1, ∂2 by gij = 〈∂i, ∂j〉 then the function K has an

expression involving the gij and its first and second derivatives. Among other

things Gauss showed that K = 0 if and only coordinates can be introduced in

a neighborhood of any point in which gij = δij ; that is, the metric is locally

equivalent to the euclidean space R2
.

In 1854 Riemann extended Gauss’ theory of the intrinsic geometry of sur-

faces to higher dimensions. In particular, he found an expression involving the

metric and its first two derivatives whose vanishing characterizes those met-

rics which are locally equivalent to the euclidean metric on Rn
. To describe

this expression, let M denote a manifold of dimension n, and let g be a Rie-

mannian metric on M . The curvature of (M, g) is described by the Riemann

curvature tensor R. This gives, for each point p ∈ M , a multilinear function

R : TpM × TpM × TpM × TpM → R. From its construction, the Riemann

curvature tensor satisfies the symmetries

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = R(Z,W,X, Y ) (1)

and the first Bianchi identity

R(X,Y, Z,W ) +R(Y,Z,X,W ) +R(Z,X, Y,W ) = 0 (2)

for all tangent vectors X,Y, Z,W ∈ TpM . By contracting the Riemann curva-

ture tensor with respect to the metric, we obtain the Ricci and scalar curvature

of (M, g):

Ric(X,Y ) =

n
∑

k=1

R(X, ek, Y, ek)

and

scal =

n
∑

k=1

Ric(ek, ek).

Here, X,Y are arbitrary vectors in the tangent space TpM , and {e1, . . . , en} is

an orthonormal basis of TpM .

Although the curvature of a higher dimensional Riemannian manifold is

a much more complicated object than the Gaussian curvature of a surface,

it turns out to be possible to understand R in terms of Gauss curvatures of

surfaces embedded in M . To explain this, we consider a two dimensional plane

π in the tangent space TpM , and we consider all geodesics emanating from

p that are tangent to the plane π. The union of these geodesics rays forms a
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two-dimensional surface Σ ⊂ M ; more formally, the surface Σ is defined as

Σ = expp(U ∩ π), where expp : TpM → M denotes the exponential map and

U ⊂ TpM denotes a small ball centered at the origin. With this understood,

the sectional curvature K(π) is defined to be the Gaussian curvature of the

two-dimensional surface Σ at the point p.

The sectional curvatures can be described precisely in terms of R: given any

point p ∈M and any two dimensional plane π ⊂ TpM , the sectional curvature

of π is defined by

K(π) =
R(X,Y,X, Y )

|X|
2
|Y |

2
− 〈X,Y 〉

2
,

where {X,Y } is a basis of π. Note that this definition is independent of the

choice of the basis {X,Y }, and that if X,Y are chosen to be an orthonormal

basis then the denominator is equal to 1. Because of the symmetries of R it

turns out that the sectional curvatures algebraically determine all components

of R at a given point p.

We say that a Riemannian manifold has positive curvature if all sectional

curvatures are positive at all points of M . Perhaps the most basic example of

a Riemannian manifold of positive curvature is the n-dimensional sphere Sn

with its standard metric arising from its embedding as the unit sphere in Rn+1
.

This manifold has constant sectional curvature 1; that is, K(π) = 1 for all

two-dimensional planes π. Conversely, it was shown by H. Hopf in 1926 that a

compact, simply connected Riemannian manifold with constant sectional cur-

vature 1 is necessarily isometric to the sphere Sn
, equipped with its standard

metric (see [53], [54]). More generally, if (M, g) is a compact Riemannian man-

ifold with constant sectional curvature 1, then (M, g) is isometric to a quotient

Sn/Γ, where Γ is a finite group of isometries acting freely. These quotient man-

ifolds are completely classified (see [83]) and they are referred to as spherical

space forms. The simplest examples of spherical space forms are the sphere Sn

and the real projective space RP
n
. When n is even, these are the only examples.

By contrast, there is an infinite collection of spherical space forms for each odd

integer n.

In case of dimension n = 2 it is a classical result that the only compact

surfaces which can be given metrics of positive curvature are S2
and RP

2
. This

follows from the Gauss-Bonnet Theorem which asserts that for any metric the

integral of K over the surface is equal to 2π times the Euler characteristic.

Thus if K is positive the Euler characteristic must be positive, and from the

classification of compact surfaces it follows that M is diffeomorphic to either

S2
or RP

2
.

For n ≥ 3 it is a much more difficult task to classify those compact manifolds

which can be given metrics of positive curvature, and we can only give partial

answers. There are families of positively curved manifolds which are called com-

pact rank one symmetric spaces (CROSS). These include Sn
and RPn

as well as

other manifolds which are not spherical space forms. One such family consists

of the complex projective spaces CP
n
for n ≥ 2. The manifold CP

n
is the set of
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complex lines through the origin in Cn+1
, or it may be alternatively described

as the quotient of the unit sphere S2n+1
in Cn+1

by the circle action consisting

of multiplication by eiθ for θ ∈ S1
. The metric on S2n+1

induces a natural

metric on CPn
. Now since CPn

has a complex structure which is compatible

with this metric, a two plane π in TpM might be complex, meaning that it

is invariant under multiplication by
√

−1; it might be totally real, meaning

that multiplication by
√

−1 takes π to an orthogonal two plane; or it might

be somewhere between these extremes. It turns out that if we normalize the

metric so that all complex two planes have curvature 1, then the algebra of the

curvature tensor implies that the totally real two planes must have curvature

1/4, and all two planes have curvature in the interval [1/4, 1]. Note that the

real dimension of CP
n
is 2n. There is a similar construction with the complex

numbers replaced by the quaternions H, and this produces the quaternionic

projective spaces HP
n
for n ≥ 2. These are CROSS manifolds of dimension

4n, and they also have natural metrics with sectional curvatures in the interval

[1/4, 1]. There is one remaining CROSS manifold of dimension 16 called the

Cayley projective plane (see [4] for a detailed description). It also has a natural

metric with sectional curvatures in the interval [1/4, 1].

In addition to manifolds which are locally CROSS (covered by a CROSS

manifold), there are a few other constructions which have yielded metrics of

positive curvature on other manifolds. First, the compact homogeneous mani-

folds of positive curvature have been classified by Berger [10], Aloff and Wal-

lach [2], Wallach [81], and Bérard-Bergery [6]. Secondly, there are biquotient

constructions by Eschenburg [31] and Bazaikin [5]. The combination of these

constructions give non-CROSS examples in dimensions 6, 7, 12, 13, and 24. In

dimensions 7 and 13 they produce infinitely many distinct examples. The study

of manifolds of positive curvature with symmetry is being actively pursued by

a number of authors. We refer the reader to Grove [41] for a recent survey of

this topic.

There are very few general obstructions known to the existence of met-

rics of positive curvature on compact manifolds of dimension 4 or more. In

the next section we will summarize what is known and give an overview of

the methods which have been effective. As a step toward the classification

problem Hopf conjectured that a compact, simply connected Riemannian man-

ifold whose sectional curvatures are close to 1 should be homeomorphic to a

sphere (see Marcel Berger’s account in [13], page 545). This idea is formal-

ized by the notion of curvature pinching, which goes back to H. Hopf and

H.E. Rauch:

Definition 1.1. A Riemannian manifold (M, g) is said to be weakly δ-pinched

in the global sense if the sectional curvature of (M, g) satisfies δ ≤ K ≤ 1. If

the strict inequality holds, we say that (M, g) is strictly δ-pinched in the global

sense.

For our purposes, it will be convenient to consider the weaker notion of

pointwise pinching. This means that we only compare sectional curvatures
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corresponding to different two dimensional planes based at the same point

p ∈M :

Definition 1.2. We say that (M, g) is weakly δ-pinched in the pointwise sense

if 0 ≤ δ K(π1) ≤ K(π2) for all points p ∈ M and all two dimensional planes

π1, π2 ⊂ TpM . If the strict inequality holds, we say that (M, g) is strictly δ-

pinched in the pointwise sense.

Hopf’s pinching problem was first taken up by H.E. Rauch after he visited

Hopf in Zürich during the late 1940s ([13], page 545). In a seminal paper [72],

Rauch showed that a compact, simply connected Riemannian manifold which

is strictly δ-pinched in the global sense is homeomorphic to Sn
(δ ≈ 0.75).

Furthermore, Rauch posed the question of what the optimal pinching constant δ

should be. This question was settled around 1960 by the celebrated Topological

Sphere Theorem of M. Berger and W. Klingenberg:

Theorem 1.3 (M. Berger [8], W. Klingenberg [59]). Let (M, g) be a com-

pact, simply connected Riemannian manifold which is strictly 1/4-pinched in

the global sense. Then M is homeomorphic to Sn.

The classical proof of the Topological Sphere Theorem relies on compar-

ison geometry techniques which were refined during the 1950’s (see e.g. [28],

Chapter 6). There are several ways in which one might hope to improve Theo-

rem 1.3. A natural question to ask is whether the global pinching condition in

Theorem 1.3 can be replaced by a pointwise one. Furthermore, one would like

to extend the classification in Theorem 1.3 to include manifolds that are not

necessarily simply connected. By applying Theorem 1.3 to the universal cover,

one can conclude that any compact Riemannian manifold which is strictly 1/4-

pinched in the global sense is homeomorphic to a quotient of a sphere by a

finite group, but this leaves open the question of whether the group is conju-

gate to one which acts by standard isometries, the condition required to show

that the manifold is homeomorphic to a spherical space form. We point out

that exotic Z2-actions on the standard sphere S4
have been constructed in [26]

and [33].

Another fundamental question is whether a Riemannian manifold satisfying

the assumptions of Theorem 1.3 is diffeomorphic, instead of just homeomorphic,

to Sn
. This is a highly non-trivial matter as the smooth structure on Sn

is

not unique in general. In other words, there exist examples of so-called exotic

spheres which are homeomorphic, but not diffeomorphic, to Sn
. Hence, we may

rephrase the problem as follows:

Conjecture 1.4. An exotic sphere cannot admit a metric with 1/4-pinched

sectional curvature.

The first examples of exotic spheres were constructed in a famous paper

by J. Milnor [65] in 1957. M. Kervaire and J. Milnor proved that there ex-

ist exactly 28 different smooth structures on S7
(cf. [58]). It was shown by
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E. Brieskorn that the exotic 7-spheres have a natural interpretation in terms of

certain affine varieties (cf. [24], [25], [51]). To describe this result, let Σk denote

the intersection of the affine variety

{(z1, z2, z3, z4, z5) ∈ C5
: z21 + z22 + z23 + z34 + z6k−1

5 = 0}

with the unit sphere in C5
. Brieskorn proved that, for each k ∈ {1, . . . , 28}, Σk

is a smooth manifold which is homeomorphic to S7
. Moreover, the manifolds

Σk, k ∈ {1, . . . , 28}, realize all the smooth structures on S7
.

In 1974, D. Gromoll and W. Meyer [38] described an example of an exotic

seven-sphere that admits a metric of nonnegative sectional curvature. It was

shown by F. Wilhelm [82] that the Gromoll-Meyer sphere admits a metric which

has strictly positive sectional curvature outside a set of measure zero (see also

[32]). P. Petersen and F. Wilhelm have recently proposed a construction of a

metric of strictly positive sectional curvature on the Gromoll-Meyer sphere,

which is currently in the process of verification.

For each n ≥ 5, the collection of all smooth structures on Sn
has the struc-

ture of a finite group Θn, called the Kervaire-Milnor group. If n ≡ 1, 2 mod 8,

there is a natural invariant α : Θn → Z2. This invariant is described in de-

tail in [57]. In particular, half of all smooth structures on Sn
have non-zero

α-invariant. Using the Atiyah-Singer index theorem, N. Hitchin [52] showed

that an exotic sphere with non-zero α-invariant cannot admit a metric of posi-

tive scalar curvature. On the other hand, it follows from a theorem of S. Stolz

[79] that every exotic sphere with vanishing α-invariant does admit a metric of

positive scalar curvature.

Conjecture 1.4 is known as the Differentiable Pinching Problem. This prob-

lem has been studied by a large number of authors since the 1960s, and various

partial results have been obtained. D. Gromoll [37] and E. Calabi (unpublished)

showed that a simply connected Riemannian manifold which is δ(n)-pinched in

the global sense is diffeomorphic to Sn
. The pinching constant δ(n) depends

only on the dimension, and converges to 1 as n → ∞. In 1971, M. Sugimoto,

K. Shiohama, and H. Karcher [80] proved an analogous theorem with a pinching

constant δ independent of n (δ = 0.87). The pinching constant was subsequently

improved by E. Ruh [73] (δ = 0.80) and by K. Grove, H. Karcher, and E. Ruh

[43] (δ = 0.76).

In 1975, H. Im Hof and E. Ruh proved the following theorem, which extends

earlier work of Grove, Karcher, and Ruh [42], [43]:

Theorem 1.5 (H. Im Hof, E. Ruh [56]). There exists a decreasing sequence of

real numbers δ(n) with limn→∞ δ(n) = 0.68 such that the following statement

holds: if M is a compact Riemannian manifold of dimension n which is δ(n)-

pinched in the global sense, then M is diffeomorphic to a spherical space form.

E. Ruh [74] has obtained a differentiable version of the sphere theorem under

a pointwise pinching condition, albeit with a pinching constant converging to 1
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as n→ ∞. In 2007, the authors proved the Differentiable Sphere Theorem with

the optimal pinching constant (δ = 1/4), thereby confirming Conjecture 1.4.

Theorem 1.6 (S. Brendle, R. Schoen [22]). Let (M, g) be a compact Rieman-

nian manifold which is strictly 1/4-pinched in the pointwise sense. Then M is

diffeomorphic to a spherical space form. In particular, no exotic sphere admits

a metric with strictly 1/4-pinched sectional curvature.

Note that Theorem 1.6 only requires a pointwise pinching condition. (In

fact, we will see in the coming sections that a much weaker curvature condi-

tion suffices.) The Differentiable Sphere Theorem, proved in [22], asserts that

any compact Riemannian manifold (M, g) which is strictly 1/4-pinched in the

pointwise sense admits another Riemannian metric which has constant sectional

curvature 1. In particular, this implies that M is diffeomorphic to a spherical

space form. In dimension 2, the Differentiable Sphere Theorem reduces to the

statement that a compact surface of positive Gaussian curvature is diffeomor-

phic to S2
or RP

2
. (In dimension 2, there is only one sectional curvature at each

point; hence, every two-dimensional surface of positive curvature is 1/4-pinched

in the pointwise sense.)

For weakly 1/4-pinched manifolds we have the following result.

Theorem 1.7 (S. Brendle, R. Schoen [21]). Let (M, g) be a compact Rieman-

nian manifold which is weakly 1/4-pinched in the pointwise sense. Then either

M is diffeomorphic to a spherical space form or M is isometric to a locally

CROSS manifold.

2. Methods of Studying Positive Curvature

The proof of Theorem 1.3 relies on comparison methods which involve the study

of geodesics and the influence of positive curvature which causes focusing of

nearby geodesics. This made possible delicate theorems which compare triangle

measurements in a variable curvature manifold to related measurements in the

standard sphere. These methods also employ the variational theory of geodesics

and the study of their Morse index; that is, the number of negative eigenvalues

of the index form

I(V, V ) =

∫

γ

(|Dγ′V |
2
−R(γ′, V, γ′, V )) ds

where γ is a geodesic and V , a normal vector field along γ which is required

to vanish at the endpoints if γ is not closed. The comparison methods were

employed in more powerful ways later in the work of Grove and Shiohama [44]

on their diameter sphere theorem. This led soon after to the following result of

Gromov.
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Theorem 2.1 (M. Gromov [39]). There is a constant C depending only on

the dimension n such that the Betti numbers of any compact n-manifold of

nonnegative curvature are bounded by C.

New methods were introduced into the study of positive curvature by Mi-

callef and Moore [64]. Through the study of the variational theory of minimal

two spheres immersed inM they were able to weaken the curvature assumptions

in the Topological Sphere Theorem. To that end, Micallef and Moore introduced

a novel curvature condition, which they called positive isotropic curvature.

Definition 2.2. Let (M, g) be a Riemannian manifold of dimension n ≥ 4. We

say that (M, g) has nonnegative isotropic curvature if

R(e1, e3, e1, e3) +R(e1, e4, e1, e4) +R(e2, e3, e2, e3)

+R(e2, e4, e2, e4)− 2R(e1, e2, e3, e4) ≥ 0

for all points p ∈ M and all orthonormal four-frames {e1, e2, e3, e4} ⊂ TpM .

Moreover, if the strict inequality holds, we say that (M, g) has positive isotropic

curvature.

For each point p ∈ M , we denote by TC
p M = TM ⊗R C the complexified

tangent space to M at p. The Riemannian metric g extends to a complex

bilinear form g : TC
p M × TC

p M → C. Similarly, the Riemann curvature tensor

extends to a complex multilinear form R : TC
p M × TC

p M × TC
p M × TC

p M → C.

Proposition 2.3. The manifold (M, g) has nonnegative isotropic curvature if

and only if R(ζ, η, ζ̄, η̄) ≥ 0 for all points p ∈ M and all vectors ζ, η ∈ TC
p M

satisfying g(ζ, ζ) = g(ζ, η) = g(η, η) = 0.

The key idea of Micallef and Moore is to study harmonic (or equivalently

minimal) two-spheres instead of geodesics. More precisely, for each map f :

S2
→M , the energy of f is defined by

E (f) =
1

2

∫

S2

(∣

∣

∣

∂f

∂x

∣

∣

∣

2

+

∣

∣

∣

∂f

∂y

∣

∣

∣

2)

dx dy,

where (x, y) are the coordinates on S2
obtained by stereographic projection. A

map f : S2
→ M is called harmonic if it is a critical point of the functional

E (f). This is equivalent to saying that

D ∂
∂x

∂f

∂x
+D ∂

∂y

∂f

∂y
= 0

at each point on S2
. In the special case when (M, g) has positive isotropic

curvature, Micallef and Moore obtained a lower bound for the Morse index of

harmonic two-spheres.
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Proposition 2.4 (M. Micallef, J.D. Moore [64]). Let (M, g) be a compact

Riemannian manifold of dimension n ≥ 4 with positive isotropic curvature,

and let f : S2
→M be a nonconstant harmonic map. Then f has Morse index

at least [n−2

2
].

The key idea in the proof is to consider complex variations W of the map

and to observe that the index form can be written

I(W,W ) = 4

∫

S2

g
(

D ∂
∂z̄
W,D ∂

∂z
W

)

dx dy − 4

∫

S2

R

(∂f

∂z
,W,

∂f

∂z̄
,W

)

dx dy.

It is then shown, by use of the Riemann-Roch theorem, that the dimension

of the space of holomorphic and isotropic variations is at least [
n−2

2
], and this

leads to the Morse index bound.

Combining Proposition 2.4 with the variational theory for harmonic maps

(see e.g. [75], Chapter VII), Micallef and Moore were able to draw the following

conclusion.

Theorem 2.5 (M. Micallef, J.D. Moore [64]). Let (M, g) be a compact, simply

connected Riemannian manifold of dimension n ≥ 4 with positive isotropic

curvature. Then M is homeomorphic to Sn.

Sketch of the proof of Theorem 2.5. The idea is to study the homotopy groups

of M . If πk(M) 6= 0 for some k ∈ {2, . . . , [n
2
]}, then the variational theory

for harmonic maps implies that there exists a nonconstant harmonic map f :

S2
→M with Morse index at most k− 2. On the other hand, any nonconstant

harmonic map from S2
into M has Morse index at least [

n−2

2
] by Proposition

2.4. This is a contradiction.

Therefore, we have πk(M) = 0 for k = 2, . . . , [n
2
]. Since M is assumed to

be simply connected, it follows that Hk(M,Z) = 0 for k = 1, . . . , [n
2
]. Using

Poincaré duality, it follows that Hk(M,Z) = 0 for k = 1, . . . , n− 1. This shows

that M is a homotopy sphere. Hence, it follows from results of Freedman [35]

and Smale [78] that M is homeomorphic to Sn
.

We note that any manifold (M, g) which is strictly 1/4-pinched in the point-

wise sense has positive isotropic curvature. Hence, Theorem 2.5 generalizes the

Topological Sphere Theorem of Berger and Klingenberg. The following result

provides some information about fundamental groups of manifolds with positive

isotropic curvature.

Theorem 2.6 (A. Fraser [34]). Let M be a compact Riemannian manifold of

dimension n ≥ 5 with positive isotropic curvature. Then the fundamental group

of M does not contain a subgroup isomorphic to Z⊕ Z.

The proof of Theorem 2.6 relies on a delicate analysis of stable minimal

tori. This result was proved in dimension n ≥ 5 by A. Fraser [34]. In [23], the
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authors extended Fraser’s theorem to the four-dimensional case. The topology

of manifolds with positive isotropic curvature is also studied in [36].

Finally we introduce the Ricci flow approach to positive curvature. This

technique was introduced in seminal work of R. Hamilton in the 1980s (see e.g.

[46], [47]). The fundamental idea is to start with a given Riemannian manifold

(M, g0), and evolve the metric by the evolution equation

∂

∂t
g(t) = −2Ricg(t), g(0) = g0.

Here, Ricg(t) denotes the Ricci tensor of the time-dependent metric g(t).

Hamilton [46] proved that the Ricci flow always has a solution on some

maximal time interval [0, T ), where T > 0 (see also [30]). Furthermore, if T <

∞, then the Riemann curvature tensor of (M, g(t)) must be unbounded, so that

lim supt→T supM |Rg(t)| = ∞. This result was later improved by N. Šešum [77]

who showed that lim supt→T supM |Ricg(t)| = ∞ if T <∞.

As pointed out above, the Ricci flow is a nonlinear heat equation for Rie-

mannian metrics. This becomes apparent when we consider the evolution of the

curvature tensor of g(t). The Riemann curvature tensor satisfies an evolution

equation of the form

∂

∂t
R = ∆R+ quadratic terms in R,

where ∆ denotes the Laplace operator associated with the time-dependent met-

ric g(t). The exact form of the quadratic terms will become important later on.

As an example, suppose that g0 is the standard metric on Sn
with constant

sectional curvature 1. In this case, the metrics g(t) = (1 − 2(n − 1)t) g0 form

a solution to the Ricci flow. This solution is defined for all t ∈ [0, 1

2(n−1)
), and

collapses to a point as t→ 1

2(n−1)
.

In dimension 3, Hamilton showed that the Ricci flow deforms any initial

metric with positive Ricci curvature to a constant curvature metric.

Theorem 2.7 (R. Hamilton [46]). Let (M, g0) be a compact three-manifold

with positive Ricci curvature. Moreover, let g(t), t ∈ [0, T ), denote the unique

maximal solution to the Ricci flow with initial metric g0. Then the rescaled

metrics 1

4(T−t)
g(t) converge to a metric of constant sectional curvature 1 as

t→ T .

The proof of Theorem 2.7 relies on pointwise curvature estimates. These are

established using a suitable version of the maximum principle for tensors.

Theorem 2.7 has important topological implications. It implies that any

compact three-manifold with positive Ricci curvature is diffeomorphic to a

spherical space form. Using the classification of spherical space forms in [83],

Hamilton was able to give a complete classification of all compact three-

manifolds that admit metrics of positive Ricci curvature.
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Hamilton’s convergence theorem in dimension 3 has inspired a large body

of work over the last 25 years. In particular, two lines of research have been

pursued:

First, one would like to study the global behavior of the Ricci flow in dimen-

sion 3 for general initial metrics (i.e. without the assumption of positive Ricci

curvature). This line of research was pioneered by Hamilton, who developed

many crucial technical tools (see e.g. [48], [49]). It culminated in Perelman’s

proof of the Poincaré and Geometrization conjectures (cf. [68], [69], [70]). A

non-technical survey can be found in [14] or [60].

Another natural problem is to extend the convergence theory for the Ricci

flow to dimensions greater than 3. In this case, one assumes that the initial

metric satisfies a suitable curvature condition. The goal is to show that the

evolved metrics converge to a metric of constant sectional curvature up to

rescaling. One of the first results in this direction was established by Hamilton

[47] in 1986.

Theorem 2.8 (R. Hamilton [47]). Let (M, g0) be a compact Riemannian man-

ifold of dimension 4. Assume that g0 has positive curvature operator; that is,
∑

i,j,k,l
Rijkl ϕ

ij ϕkl > 0 for each point p ∈ M and every non-zero two-form

ϕ ∈ ∧
2TpM . Moreover, let g(t), t ∈ [0, T ), denote the unique maximal solution

to the Ricci flow with initial metric g0. Then the rescaled metrics 1

6(T−t)
g(t)

converge to a metric of constant sectional curvature 1 as t→ T .

Again, Theorem 2.8 has a topological corollary: it implies that any compact

four-manifold which admits a metric of positive curvature operator is diffeo-

morphic to S4
or RP

4
.

H. Chen [29] proved that the conclusion of Theorem 2.8 holds under a

slightly weaker curvature assumption. A Riemannian manifold M is said to

have two-positive curvature operator if
∑

i,j,k,l
Rijkl (ϕ

ij ϕkl
+ ψij ψkl

) > 0 for

all points p ∈ M and all two-forms ϕ,ψ ∈ ∧
2TpM satisfying |ϕ|2 = |ψ|2 =

1 and 〈ϕ,ψ〉 = 0. Furthermore, Chen [29] proved that every four-manifold

which is strictly 1/4-pinched in the pointwise sense has two-positive curvature

operator. This is a special feature of the four-dimensional case, which fails

in dimension n ≥ 5. As a consequence, Chen was able to show that every

compact four-manifold, which is strictly 1/4-pinched in the pointwise sense,

is diffeomorphic to S4
or RP

4
. B. Andrews and H. Nguyen [3] have recently

obtained an alternative proof of this result.

We note that C. Margerin [62] proved a sharp convergence result for the

Ricci flow in dimension 4. Combining this theorem with techniques from con-

formal geometry, A. Chang, M. Gursky, and P. Yang proved a beautiful con-

formally invariant sphere theorem in dimension 4:

Theorem 2.9 (A. Chang, M. Gursky, P. Yang [27]). Let (M, g) be a compact

four-manifold with positive Yamabe constant. Suppose that (M, g) satisfies the
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integral pinching condition

∫

M

|W |
2 dvol < 16π2 χ(M),

where |W |
2
=

∑

i,j,k,l
WijklW

ijkl denotes the square of the norm of the Weyl

tensor of (M, g). Then M is either diffeomorphic to S4 or RP
4.

The key step in the proof is to construct a conformal metric g̃ = e2w g which

has positive scalar curvature and satisfies the pointwise inequality

1

6
scal

2
g̃ − 2 |

o

Ricg̃|
2
− |Wg̃|

2 > 0.

Having constructed a metric g̃ with these properties, a theorem of C. Margerin

[62] implies that the Ricci flow evolves the metric g̃ to a constant curvature

metric. This shows that M is diffeomorphic to either S4
or RP

4
.

The first convergence result in arbitrary dimension was proved by

G. Huisken [55] in 1985.

Theorem 2.10 (G. Huisken [55]). Assume that (M, g0) is a compact manifold

of dimension n ≥ 4. If (M, g0) is δ(n)-pinched in the pointwise sense, then the

Ricci flow converges to a metric of constant curvature 1 up to rescaling. Here,

δ(n) ∈ (0, 1) is an explicit constant that depends only on n.

We note that C. Margerin [61] and S. Nishikawa [67] have also obtained

convergence results for the Ricci flow in arbitrary dimension. By introducing

new methods into the study of the curvature ODE, Böhm and Wilking were

able to extend Chen’s theorem to higher dimensions.

Theorem 2.11 (C. Böhm, B. Wilking [16]). If (M, g0) is a compact manifold

with two-positive curvature operator, then the Ricci flow converges to a metric

of constant curvature 1 up to rescaling.

3. Proofs of the Main Theorems

All known convergence theorems for the Ricci flow share some common features.

In particular, they all exploit the fact that a certain curvature condition is

preserved by the Ricci flow. To begin this section, we describe some general

tools for verifying that a given curvature condition is preserved by the Ricci

flow. These tools are based on the maximum principle, and were developed by

Hamilton [46], [47].

Let g(t), t ∈ [0, T ), be a solution to the Ricci flow on a manifold M . More-

over, let E denote the pull-back of the tangent bundle TM under the map

M × (0, T ) →M, (p, t) 7→ p.
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Clearly, E is a vector bundle over M × (0, T ), and the fiber of E over the point

(p, t) ∈ M × (0, T ) is given by the tangent space TpM . The sections of the

vector bundle E can be viewed as vector fields on M that vary in time. Given

any section X of E, we define the covariant time derivative of X by

D ∂
∂t
X =

∂

∂t
X −

n
∑

k=1

Ric(X, ek) ek,

where {e1, . . . , en} is a local orthonormal frame with respect to the metric g(t).

The covariant time derivative D ∂
∂t

is metric compatible in the sense that

∂

∂t
(g(X,Y )) = g

(

∂

∂t
X, Y

)

+ g

(

X,
∂

∂t
Y

)

− 2Ric(X,Y )

= g

(

D ∂
∂t
X,Y

)

+ g

(

X,D ∂
∂t
Y

)

for all sections X,Y of the bundle E.

The Riemann curvature tensor of g(t) can now be viewed as a section of the

bundle E∗
⊗ E∗

⊗ E∗
⊗ E∗

. Furthermore, the covariant time derivative on E

induces a covariant time derivative on the bundle E∗
⊗ E∗

⊗ E∗
⊗ E∗

. With

this understood, the evolution equation of the Riemann curvature tensor can

be written in the form

D ∂
∂t
R = ∆R+Q(R),

where Q(R) denotes the following quadratic expression in R:

Q(R)(X,Y, Z,W ) =

n
∑

p,q=1

R(X,Y, ep, eq)R(Z,W, ep, eq)

+ 2

n
∑

p,q=1

R(X, ep, Z, eq)R(Y, ep,W, eq) (3)

− 2

n
∑

p,q=1

R(X, ep,W, eq)R(Y, ep, Z, eq).

This evolution equation was first derived by Hamilton [47]; see also [20], Section

2.3.

We next describe Hamilton’s maximum principle for the Ricci flow. To fix

notation, let CB(R
n
) denote the space of all algebraic curvature operators on

Rn
. In other words, CB(R

n
) consists of all multilinear forms R : Rn

× Rn
×

Rn
× Rn

→ R satisfying the relations

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = R(Z,W,X, Y )

and

R(X,Y, Z,W ) +R(Y,Z,X,W ) +R(Z,X, Y,W ) = 0
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for all vectors X,Y, Z,W ∈ Rn
. Moreover, let F be a subset of CB(R

n
) which

is invariant under the natural action of O(n). Since F is O(n)-invariant, it

makes sense to say that the curvature tensor of a Riemannian manifold (M, g)

lies in the set F . To explain this, we fix a point p ∈ M . After identifying the

tangent space TpM with Rn
, we may view the curvature tensor of (M, g) at p

as an element of CB(R
n
). Of course, the identification of TpM with Rn

is not

canonical, but this does not cause problems since F is O(n)-invariant.

Theorem 3.1 (R. Hamilton [47]). Let F ⊂ CB(R
n
) be a closed, convex set

which is invariant under the natural action of O(n). Moreover, we assume that

F is invariant under the ODE d

dt
R = Q(R). Finally, let g(t), t ∈ [0, T ), be a

solution to the Ricci flow on a compact manifold M with the property that the

curvature tensor of (M, g(0)) lies in F for all points p ∈M . Then the curvature

tensor of (M, g(t)) lies in F for all points p ∈M and all t ∈ [0, T ).

In the remainder of this section, we discuss some important examples of

curvature conditions that are preserved by the Ricci flow. Hamilton [47] proved

that nonnegative curvature operator is preserved in all dimensions. Further-

more, Hamilton showed that nonnegative Ricci curvature is preserved by the

Ricci flow in dimension 3, and nonnegative isotropic curvature is preserved

in dimension 4 (see [46], [50]). It turns out that nonnegative Ricci curvature

is not preserved by the Ricci flow in dimension n ≥ 4 (see [63]). By con-

trast, nonnegative isotropic curvature is preserved by the Ricci flow in all

dimensions.

Theorem 3.2 (S. Brendle, R. Schoen [22]; H. Nguyen [66]). LetM be a compact

manifold of dimension n ≥ 4, and let g(t), t ∈ [0, T ), be a solution to the Ricci

flow on M . If (M, g(0)) has nonnegative isotropic curvature, then (M, g(t)) has

nonnegative isotropic curvature for all t ∈ [0, T ).

The proof of Theorem 3.2 requires two ingredients: the first is Hamilton’s

maximum principle for the Ricci flow (cf. Theorem 3.1); the second one is an

algebraic inequality for curvature tensors with nonnegative isotropic curvature.

We give a sketch of the proof here. A complete proof can be found in [20],

Sections 7.2 and 7.3.

Proposition 3.3. Let R be an algebraic curvature tensor on Rn with nonneg-

ative isotropic curvature. Moreover, suppose that

R1313 +R1414 +R2323 +R2424 − 2R1234 = 0

for some orthonormal four-frame {e1, e2, e3, e4}. Then

Q(R)1313 +Q(R)1414 +Q(R)2323 +Q(R)2424 − 2Q(R)1234 ≥ 0.
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Sketch of the proof of Proposition 3.3. Using the definition of Q(R), we compute

Q(R)1313 +Q(R)1414 +Q(R)2323 +Q(R)2424 − 2Q(R)1234

=

n
∑

p,q=1

(R13pq −R24pq)
2
+

n
∑

p,q=1

(R14pq +R23pq)
2

+ 2

n
∑

p,q=1

(R1p1q +R2p2q) (R3p3q +R4p4q)− 2

n
∑

p,q=1

R12pq R34pq

− 2

n
∑

p,q=1

(R1p3q +R2p4q) (R3p1q +R4p2q)

− 2

n
∑

p,q=1

(R1p4q −R2p3q) (R4p1q −R3p2q).

Hence, it suffices to prove that

n
∑

p,q=1

(R1p1q +R2p2q) (R3p3q +R4p4q)−

n
∑

p,q=1

R12pq R34pq

≥

n
∑

p,q=1

(R1p3q +R2p4q) (R3p1q +R4p2q) (4)

+

n
∑

p,q=1

(R1p4q −R2p3q) (R4p1q −R3p2q).

In order to prove (4), we view the isotropic curvature as a real-valued func-

tion defined on the space of all orthonormal four-frames. By assumption, this

function attains its global minimum at the point {e1, e2, e3, e4}. Hence, the

first variation at the point {e1, e2, e3, e4} is zero, and the second variation is

nonnegative. In order to take advantage of this information, we consider three

different types of variations:

Step 1: We first consider the orthonormal four-frame {e1, cos(s) e2−sin(s) e3,

sin(s) e2 + cos(s) e3, e4}. Since the first variation of the isotropic curvature is

zero, we have R1213 +R1242 +R3413 +R3442 = 0. An analogous argument gives

R1214 +R1223 +R3414 +R3423 = 0. Using these identities, one can show that

4
∑

p,q=1

(R1p1q +R2p2q) (R3p3q +R4p4q)−

4
∑

p,q=1

R12pq R34pq

=

4
∑

p,q=1

(R1p3q +R2p4q) (R3p1q +R4p2q) (5)

+

4
∑

p,q=1

(R1p4q −R2p3q) (R4p1q −R3p2q).
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Step 2: We next consider the four-frame {cos(s) e1 + sin(s) eq, e2, e3, e4},

where q ∈ {5, . . . , n}. Since the first variation of the isotropic curvature is equal

to zero, it follows that R133q+R144q+R432q = 0. Using this and other analogous

identities, we obtain

4
∑

p=1

(R1p1q +R2p2q) (R3p3q +R4p4q)−

4
∑

p=1

R12pq R34pq

=

4
∑

p=1

(R1p3q +R2p4q) (R3p1q +R4p2q) (6)

+

4
∑

p=1

(R1p4q −R2p3q) (R4p1q −R3p2q)

for q = 5, . . . , n.

Step 3: To describe the third type of variation, we consider four vectors

w1, w2, w3, w4 ∈ span{e5, . . . , en}. For each i ∈ {1, 2, 3, 4}, we denote by vi(s)

the unique solution of the linear ODE

v′i(s) =

4
∑

j=1

(〈vi(s), ej〉wj − 〈vi(s), wj〉 ej)

with initial condition vi(0) = ei. Then v
′

i
(0) = wi. Moreover, it is easy to see

that the vectors {v1(s), v2(s), v3(s), v4(s)} are orthonormal for all s ∈ R. Since

the second variation of the isotropic curvature is nonnegative, we conclude that

0 ≤ R(w1, e3, w1, e3) +R(w1, e4, w1, e4)

+R(w2, e3, w2, e3) +R(w2, e4, w2, e4)

+R(e1, w3, e1, w3) +R(e2, w3, e2, w3)

+R(e1, w4, e1, w4) +R(e2, w4, e2, w4)

− 2
[

R(e3, w1, e1, w3) +R(e4, w1, e2, w3)
]

(7)

− 2
[

R(e4, w1, e1, w4)−R(e3, w1, e2, w4)
]

+ 2
[

R(e4, w2, e1, w3)−R(e3, w2, e2, w3)
]

− 2
[

R(e3, w2, e1, w4) +R(e4, w2, e2, w4)
]

− 2R(w1, w2, e3, e4)− 2R(e1, e2, w3, w4)

for all vectors w1, w2, w3, w4 ∈ span{e5, . . . , en}. We next define linear trans-

formations A,B,C,D,E, F : span{e5, . . . , en} → span{e5, . . . , en} by

〈Aep, eq〉 = R1p1q +R2p2q, 〈Bep, eq〉 = R3p3q +R4p4q,

〈Cep, eq〉 = R3p1q +R4p2q, 〈Dep, eq〉 = R4p1q −R3p2q,

〈Eep, eq〉 = R12pq, 〈Fep, eq〉 = R34pq
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for p, q ∈ {5, . . . , n}. The inequality (7) implies that the symmetric operator









B F −C∗
−D∗

−F B D∗
−C∗

−C D A E

−D −C −E A









is positive semi-definite. From this, we deduce that tr(AB)+tr(EF ) ≥ tr(C2
)+

tr(D2
), hence

n
∑

p,q=5

(R1p1q +R2p2q) (R3p3q +R4p4q)−

n
∑

p,q=5

R12pq R34pq

≥

n
∑

p,q=5

(R1p3q +R2p4q) (R3p1q +R4p2q) (8)

+

n
∑

p,q=5

(R1p4q −R2p3q) (R4p1q −R3p2q).

Combining (5), (6), and (8), the inequality (4) follows.

We next describe various curvature conditions that are related to nonnega-

tive isotropic curvature, and are also preserved by the Ricci flow. The following

is an immediate consequence of Theorem 3.2.

Corollary 3.4 (S. Brendle, R. Schoen [22]). Let M be a compact manifold of

dimension n ≥ 4, and let g(t), t ∈ [0, T ), be a solution to the Ricci flow on M .

Then:

• If (M, g(0)) × R has nonnegative isotropic curvature, then the product

(M, g(t))× R has nonnegative isotropic curvature for all t ∈ [0, T ).

• If (M, g(0)) × R2 has nonnegative isotropic curvature, then the product

(M, g(t))× R2 has nonnegative isotropic curvature for all t ∈ [0, T ).

Another result in this direction was proved by the first author in [18] (see

also [20], Section 7.6). In the following, S2
(1) denotes a two-dimensional sphere

of constant curvature 1.

Theorem 3.5 (S. Brendle [18]). Let M be a compact manifold of dimen-

sion n ≥ 4, and let g(t), t ∈ [0, T ), be a solution to the Ricci flow on M .

If (M, g(0))×S2
(1) has nonnegative isotropic curvature, then (M, g(t))×S2

(1)

has nonnegative isotropic curvature for all t ∈ [0, T ).

Unlike Corollary 3.4, Theorem 3.5 does not follow directly from Theorem

3.2. This is because the manifolds (M, g(t)) × S2
(1) do not form a solution to

the Ricci flow.
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We now discuss the product conditions in more detail. To that end, we

assume that (M, g) is a Riemannian manifold of dimension n. We first consider

the case n = 3. In this case, the following holds:

• The product (M, g) × R has nonnegative isotropic curvature if and only

if (M, g) has nonnegative Ricci curvature.

• The product (M, g)×R2
has nonnegative isotropic curvature if and only

if (M, g) has nonnegative sectional curvature.

We now return to the case n ≥ 4. The following proposition gives a necessary

and sufficient condition for the product (M, g)×R to have nonnegative isotropic

curvature.

Proposition 3.6. Let (M, g) be a Riemannian manifold of dimension n ≥ 4.

Then the following statements are equivalent:

(i) The product (M, g)× R has nonnegative isotropic curvature.

(ii) We have

R(e1, e3, e1, e3) + λ2R(e1, e4, e1, e4)

+R(e2, e3, e2, e3) + λ2R(e2, e4, e2, e4)

− 2λR(e1, e2, e3, e4) ≥ 0

for all points p ∈M , all orthonormal four-frames {e1, e2, e3, e4} ⊂ TpM ,

and all λ ∈ [0, 1].

(iii) We have R(ζ, η, ζ̄, η̄) ≥ 0 for all points p ∈M and all vectors ζ, η ∈ TC
p M

satisfying g(ζ, ζ) g(η, η)− g(ζ, η)2 = 0.

The proof of Proposition 3.6 is purely algebraic (for details, see [20], Propo-

sition 7.18). We next consider the condition that (M, g)× R2
has nonnegative

isotropic curvature (cf. [20], Proposition 7.18).

Proposition 3.7. Let (M, g) be a Riemannian manifold of dimension n ≥ 4.

Then the following statements are equivalent:

(i) The product (M, g)× R2 has nonnegative isotropic curvature.

(ii) We have

R(e1, e3, e1, e3) + λ2R(e1, e4, e1, e4)

+ µ2R(e2, e3, e2, e3) + λ2µ2R(e2, e4, e2, e4)

− 2λµR(e1, e2, e3, e4) ≥ 0
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for all points p ∈M , all orthonormal four-frames {e1, e2, e3, e4} ⊂ TpM ,

and all λ, µ ∈ [0, 1].

(iii) We have R(ζ, η, ζ̄, η̄) ≥ 0 for all points p ∈M and all vectors ζ, η ∈ TC
p M .

Theorem 3.2 and Corollary 3.4 provide important examples of preserved

curvature conditions. Each of these curvature conditions defines a closed, con-

vex, O(n)-invariant cone in CB(R
n
), which is preserved by the Hamilton ODE.

By adapting a technique of Böhm and Wilking [16], it is possible to construct

a family of so-called pinching cones, which are all preserved by the Hamilton

ODE. Combining these ideas with general results of R. Hamilton (see [47] or

[20], Section 5.4), one can draw the following conclusion.

Theorem 3.8 (S. Brendle, R. Schoen [22]). Let (M, g0) be a compact Rieman-

nian manifold of dimension n ≥ 4 with the property that

R(e1, e3, e1, e3) + λ2R(e1, e4, e1, e4)

+ µ2R(e2, e3, e2, e3) + λ2µ2R(e2, e4, e2, e4)

− 2λµR(e1, e2, e3, e4) > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, µ ∈ [0, 1]. Let g(t),

t ∈ [0, T ), denote the unique maximal solution to the Ricci flow with initial

metric g0. Then the rescaled metrics 1

2(n−1)(T−t)
g(t) converge to a metric of

constant sectional curvature 1 as t→ T .

It turns out that any Riemannian manifold of dimension n ≥ 4 which is

strictly 1/4-pinched in the pointwise sense satisfies the assumption of Theorem

3.8. Hence, we can draw the following conclusion.

Corollary 3.9 (S. Brendle, R. Schoen [22]). Let (M, g0) be a compact Rieman-

nian manifold of dimension n ≥ 4 which is strictly 1/4-pinched in the pointwise

sense. Let g(t), t ∈ [0, T ), denote the unique maximal solution to the Ricci flow

with initial metric g0. Then the rescaled metrics 1

2(n−1)(T−t)
g(t) converge to a

metric of constant sectional curvature 1 as t→ T .

The Differentiable Sphere Theorem (Theorem 1.6 above) is an immediate

consequence of Corollary 3.9. To conclude this section, we state an improved

convergence result for the Ricci flow.

Theorem 3.10 (S. Brendle [18]). Let (M, g0) be a compact Riemannian man-

ifold of dimension n ≥ 4 with the property that

R(e1, e3, e1, e3) + λ2R(e1, e4, e1, e4)

+R(e2, e3, e2, e3) + λ2R(e2, e4, e2, e4)

− 2λR(e1, e2, e3, e4) > 0
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for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [0, 1]. Let g(t), t ∈

[0, T ), denote the unique maximal solution to the Ricci flow with initial metric

g0. Then the rescaled metrics 1

2(n−1)(T−t)
g(t) converge to a metric of constant

sectional curvature 1 as t→ T .

Theorem 3.10 extends many known convergence results for the Ricci flow

(see also [15]). The main ingredient in the proof is Theorem 3.5. A detailed

argument can be found in [20], Section 8.4.

4. Weak Pinching and Further Developments

In this section, we describe various rigidity theorems and results which weaken

the 1/4-pinching assumption. For a detailed exposition of the rigidity results,

we refer to [20], Chapter 9. We close by outlining some open problems and

conjectures in this area.

The first result in this direction was established by M. Berger [9] (see also

[28], Theorem 6.6).

Theorem 4.1 (M. Berger [9]). Let (M, g) be a compact, simply connected

Riemannian manifold which is weakly 1/4-pinched in the global sense. Then

M is either homeomorphic to Sn or isometric to a symmetric space.

We now describe some rigidity results obtained by means of the Ricci flow.

The following result was established by R. Hamilton:

Theorem 4.2 (R. Hamilton [47]). Let (M, g0) be a compact three-manifold

which is locally irreducible and has nonnegative Ricci curvature. Moreover, let

g(t), t ∈ [0, T ), denote the unique maximal solution to the Ricci flow with initial

metric g0. Then the rescaled metrics 1

4(T−t)
g(t) converge to a metric of constant

sectional curvature 1 as t→ T .

In dimension n ≥ 4, we have the following result:

Theorem 4.3 (S. Brendle, R. Schoen [21]). Let M be a compact manifold of

dimension n ≥ 4, and let g(t), t ∈ [0, T ] be a solution to the Ricci flow on M

with nonnegative isotropic curvature. Then, for each τ ∈ (0, T ), the set of all

orthonormal four-frames {e1, e2, e3, e4} satisfying

Rg(τ)(e1, e3, e1, e3) +Rg(τ)(e1, e4, e1, e4)

+Rg(τ)(e2, e3, e2, e3) +Rg(τ)(e2, e4, e2, e4)

− 2Rg(τ)(e1, e2, e3, e4) = 0

is invariant under parallel transport with respect to the metric g(τ).

In particular, if the reduced holonomy group of (M, g(τ)) is SO(n), then

(M, g(τ)) has positive isotropic curvature.
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Theorem 4.3 is similar in spirit to a result of R. Hamilton [47] concern-

ing solutions to the Ricci flow with nonnegative curvature operator. However,

Hamilton’s techniques are not applicable in this setting. Instead, the proof of

Theorem 4.3 relies on a variant of J.M. Bony’s strict maximum principle for

degenerate elliptic equations (cf. [17]). This technique was first employed in

the context of geometric flows in [21]. It has since found applications to other

borderline situations involving Ricci flow (see e.g. [3], [45]).

Theorem 4.3 is particularly effective in combination with M. Berger’s clas-

sification of holonomy groups (see [7]). For example, the following structure

theorem for compact, simply connected manifolds with nonnegative isotropic

curvature was established in [19]:

Theorem 4.4 (S. Brendle [19]). Let (M, g0) be a compact, simply connected

Riemannian manifold of dimension n ≥ 4 which is irreducible and has nonneg-

ative isotropic curvature. Then one of the following statements holds:

(i) M is homeomorphic to Sn.

(ii) n = 2m and (M, g0) is a Kähler manifold.

(iii) (M, g0) is isometric to a symmetric space.

M. Berger [11] has shown that any quaternionic-Kähler manifold with pos-

itive sectional curvature is isometric to HP
m

up to scaling. More recently,

H. Seshadri proved that any Kähler manifold which satisfies the assumptions

of Theorem 4.4 is biholomorphic to a complex projective space or isometric to

a Hermitian symmetric space (see [76], Theorem 1.2). We now state another

consequence of Theorem 4.3.

Theorem 4.5. Let (M, g0) be a compact, locally irreducible Riemannian man-

ifold of dimension n ≥ 4 with the property that

R(e1, e3, e1, e3) + λ2R(e1, e4, e1, e4)

+R(e2, e3, e2, e3) + λ2R(e2, e4, e2, e4)

− 2λR(e1, e2, e3, e4) ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [0, 1]. Moreover, let

g(t), t ∈ [0, T ), denote the unique maximal solution to the Ricci flow with initial

metric g0. Then one of the following statements holds:

(i) The rescaled metrics 1

2(n−1)(T−t)
g(t) converge to a metric of constant

sectional curvature 1 as t→ T .

(ii) n = 2m and the universal cover of (M, g0) is a Kähler manifold.

(iii) (M, g0) is locally symmetric.
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In particular, if (M, g0) is weakly 1/4-pinched in the pointwise sense, then

(M, g0) satisfies the assumptions of Theorem 4.5. Hence, we have completed

the proof of Theorem 1.7.

In the remainder of this section, we describe some results concerning almost

1/4-pinched manifolds. The first result in this direction was proved by M. Berger

in 1983.

Theorem 4.6 (M. Berger [12]). For every even integer n, there exists a real

number δ(n) ∈ (0, 1/4) with the following property: if (M, g0) is a compact,

simply connected Riemannian manifold of dimension n which is strictly δ(n)-

pinched in the global sense, then M is homeomorphic to Sn or diffeomorphic

to a compact symmetric space of rank one.

The proof of Theorem 4.6 is by contradiction, and relies on a compactness

argument in the spirit of Gromov. In particular, the value of the pinching

constant δ(n) is not known in general. U. Abresch and W. Meyer [1] showed

that any compact, simply connected, odd-dimensional Riemannian manifold

whose sectional curvatures lie in the interval (
1

4(1+10−6)2
, 1] is homeomorphic to

a sphere. Using the classification in Theorem 4.5 and a Cheeger-Gromov-style

compactness argument, P. Petersen and T. Tao obtained the following result:

Theorem 4.7 (P. Petersen, T. Tao [71]). For each integer n ≥ 4, there exists a

real number δ(n) ∈ (0, 1/4) with the following property: if (M, g0) is a compact,

simply connected Riemannian manifold of dimension n which is strictly δ(n)-

pinched in the global sense, then M is diffeomorphic to a sphere or a compact

symmetric space of rank one.

The conclusion of Theorem 4.7 can be improved slightly when n is odd.

In this case, there exists a real number δ(n) ∈ (0, 1/4) with the property that

every compact n-dimensional manifold (M, g0) which is strictly δ(n)-pinched in

the global sense is diffeomorphic to a spherical space form.

Finally we discuss some open problems in the study of positive curvature.

First there are two well-known conjectures of H. Hopf.

Conjecture 4.8 (Hopf). There is no metric of positive sectional curvature on

S2
× S2.

Conjecture 4.9 (Hopf). If n is even and Mn is a compact manifold with

positive sectional curvature, then the Euler characteristic of M is positive.

Concerning the first problem, we do not know of any compact simply con-

nected manifold which admits a metric of nonnegative sectional curvature but

can be shown not to admit a metric of positive sectional curvature. The famous

theorem of J.L. Synge (see [28]) which classifies fundamental groups of even

dimensional manifolds of positive sectional curvature implies that RP2
× RP2

does not admit a metric with positive sectional curvature. There does not seem

to be a viable method to approach the second Hopf conjecture at this time.
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It would be interesting to understand the fundamental groups of manifolds

with positive isotropic curvature (see [34] and [40]).

Conjecture 4.10. The fundamental group of a compact manifold of positive

isotropic curvature contains a free subgroup of finite index.

One possible approach to this conjecture involves the Ricci flow. For initial

metrics with positive isotropic curvature, the Ricci flow will, in general, develop

singularities. For n = 4, the singularities were analyzed by Hamilton [50], but

the case n ≥ 5 is open.

We expect that there is an almost 1/4-pinching theorem assuming only

pointwise pinching. Even the topological version of this is unknown. The proof

will require a more sophisticated technique.

Conjecture 4.11. Theorems 4.6 and 4.7 hold with the assumption of pointwise

pinching replacing global pinching.
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2, 1–14 (1966)

[26] S.E. Cappell and J.L. Shaneson, Some new four-manifolds, Ann. of Math. 104,

61–72 (1976)

[27] A. Chang, M. Gursky, and P. Yang, A conformally invariant sphere theorem in

four dimensions, Publ. Math. IHÉS 98, 105–143 (2003)

[28] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, AMS

Chelsea Publishing, Providence RI (2008)

[29] H. Chen, Pointwise 1/4-pinched 4-manifolds, Ann. Global Anal. Geom. 9, 161–

176 (1991)

[30] D. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Diff.

Geom. 18, 157–162 (1983)

[31] J.-H. Eschenburg, New examples of manifolds with strictly positive curvature,

Invent. Math. 66, 469–480 (1982)

[32] J.-H. Eschenburg and M. Kerin, Almost positive curvature on the Gromoll-Meyer

7-sphere, Proc. Amer. Math. Soc. 136, 3263–3270 (2008)



Riemannian Manifolds of Positive Curvature 473

[33] R. Fintushel and R.J. Stern, An exotic free involution on S
4, Ann. of Math. 113,

357–365 (1981)

[34] A. Fraser, Fundamental groups of manifolds with positive isotropic curvature,

Ann. of Math. 158, 345–354 (2003)

[35] M.H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17,

357–453 (1982)

[36] S. Gadgil and H. Seshadri, On the topology of manifolds with positive isotropic

curvature, Proc. Amer. Math. Soc. 137, 1807–1811 (2009)

[37] D. Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf
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Abstract

An algebraic variety is an object which can be defined in a purely algebraic way,

starting from polynomials or more generally from finitely generated algebras

over fields. When the base field is the field of complex numbers, it can also

be seen as a complex manifold, and more precisely a Kähler manifold. We will

review a number of notions and results related to these two aspects of complex

algebraic geometry. A crucial notion is that of Hodge structure, which already

appears in the Kähler context, but seems to be meaningful and interpretable

only in the context of algebraic geometry.
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1. Introduction

1.1. From topology to geometry and vice-versa. An algebraic

variety V is defined by polynomial equations which are polynomials with coef-

ficients in some field K. For any field K ′
containing K, one considers the set

V (K ′
) of solutions with coefficients in K ′

. In particular, if K ⊂ C, one can con-

sider V (C) which will be a subvariety of an affine or projective space. When the

equations defining V (C) locally satisfy the Jacobian criterion, V (C) can also

be seen as a complex manifold, and in particular a topological space, which is

compact if the original V is projective. In fact, it is endowed with a so-called

Kähler metric, which happens to be extremely restrictive topologically. So we

get a first set of forgetting maps:

{Algebraic varieties overK ⊂ C} {Algebraic varieties over C}

 {Compact Kähler manifolds}.
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Each step above can be seen as an enlargement of the category of functions used

on the space V (C): in the first case, rational functions with K-coefficients, in

the second case, rational functions with complex coefficients, and in the third

case, holomorphic functions rather than polynomials or rational functions.

That some structure is lost at each step is obvious, but it is not so clear

whether these changes of category of pairs consisting of a space plus a class of

functions, also correspond to relaxing topological restrictions. However, it was

shown by Serre [39] in the 60’s, for the first inclusion, and by the author [49]

in 2004 for the second one, that at each step we get a strict inclusion at the

level of topological spaces, even modulo homotopy equivalence. This will be the

subject of section 3.3.

Starting with a compact Kähler manifold, we can forget some of its geomet-

ric structure. Indeed, a Kähler manifold is at the same time a complex manifold,

a symplectic manifold and a Riemannian manifold, the three structures being

compatible in a very nice way. It has been known for a very long time that

compact Kähler manifolds are more restricted topologically than complex or

symplectic manifolds. We will show in section 3.2 that there are in fact many

more topological restrictions than the classical ones, obtained by introducing

and exploiting the notion of Hodge structure on a cohomology algebra intro-

duced in [54].

Continuing further, we can also forget about the complex structure or the

symplectic structure, and then keep the differentiable manifold. All these oper-

ations again enlarge the class of topological spaces considered. Finally we can

even forget about the differentiable structure and consider only the underly-

ing topological space, which is a topological manifold. Its homotopy type or

cohomology can be computed by combinatorial data: it is determined by the

combinatorics of a good covering by open balls. A major result due to Donald-

son [23] says that some topological manifolds do not admit any differentiable

structure, so that in this last step, we still enlarge the category of topological

spaces involved. Doing so, we also loose a tool which makes the essential bridge

between geometry and topology, namely the use of differential forms to com-

pute cohomology (and even homotopy, according to Sullivan [42]), which can

be summarized under the name of de Rham theory and will be a guiding theme

of this paper.

While we made a long walk from algebraic varieties to topological spaces, de

Rham theorems appear to be crucial to understand partially the cohomology of

a smooth complex algebraic variety V defined over a field K ⊂ C, using only its

structure as an algebraic variety (eg the ideal of polynomials vanishing on it),

and not the topology of V (C). The key point here is the fact that differentiating

polynomial or rational functions is a formal operation. This way we can speak

of algebraic differential forms and use them to “compute” the cohomology of

our algebraic variety (cf. [29]).

A very mysterious and crucial fact is the following: according to whether we

consider our complex algebraic variety over K ⊂ C as a topological space with
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its complex of singular cochains, or as a differentiable manifold with its complex

of differential forms, or as a K-variety with its complex of algebraic differential

forms withK-coefficients, we compute the “same” cohomology groups, but with

different coefficients (Q-coefficients for Betti cohomology, R or C-coefficients for

differentiable de Rham cohomology, K-coefficients for algebraic de Rham co-

homology). Comparing these various groups is crucial in the theory of motives,

or of periods (cf. [1]).

We will put the emphasis in this text on the following fact: Hodge theory

on a compact Kähler manifold X provides beautiful objects attached to X,

namely a Hodge structure of weight k on its rational cohomology of degree k,

for any k ≥ 0. We will show how to extract from the existence of such Hodge

structures topological restrictions on X. When X is projective, it is furthermore

expected that these Hodge structures reflect faithfully certain algebro-geometric

properties of X, related to the structure of its algebraic subvarieties. The sim-

plest example of such expectation is the Hodge conjecture, which predicts from

the shape of the Hodge structure on H2k
(X,Q) which degree 2k rational co-

homology classes are generated over Q by classes of algebraic subvarieties of

codimension k of X. This conjecture cannot be extended in the Kähler context

(cf. [47] and section 2.1), which suggests that this is not a conjecture in complex

differential topology, and that some extra structure existing on the cohomol-

ogy of algebraic varieties, compatible with Hodge theory, has to be exploited.

We will try to give an idea of what can be done in this direction in section 4.

The rest of this introduction makes more precise the various tools and notions

alluded to above.

1.2. De Rham theorems and Hodge theory. The degree i Betti

cohomology Hi
(X,A) of a reasonable topological space (say a topological mani-

fold) with value in any abelian group A can be computed in several ways, which

correspond to various choices of acyclic resolutions of the constant sheaf A on

X. Concretely, one can choose a triangulation of X and consider the simpli-

cial cohomology of the associated simplicial complex. A more general approach

uses singular cohomology, built from continuous cochains and their boundaries.

The last one involves a good covering by open balls and the associated Čech

complex.

The last approach, which is also the most natural from the viewpoint of

sheaf cohomology, led Weil [56] to a new proof of the fundamental de Rham

theorem [22], which says that in the differentiable case, cohomology with real

coefficients can be computed using the complex of differential forms:

Theorem 1.1. (de Rham) If X is a differentiable manifold, one has

Hi
(X,R) =

{closed real i−forms on X}

{exact real i−forms on X}

. (1.1)

An important point however is the fact that de Rham cohomology does not

detect cohomology with rational coefficients.
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The next step in relating topology and geometry is the major advance in

differential topology due to Hodge (cf. [27], [48, Chapter 5]), which provides

canonical representatives for the cohomology of a compact differentiable mani-

fold endowed with a Riemannian metric.

For a general oriented Riemannian manifold (X, g), with corresponding vol-

ume form V olg, one has the Laplacian ∆d acting on differential forms, pre-

serving the degree, and given by the formula ∆d = dd∗ + d∗d, where d∗ is

the formal adjoint of d with respect to the L2
-metric (α, β)L2 :=

∫

X
〈α, β〉V olg

on compactly supported forms. A differential form α is said to be harmonic

if ∆gα = 0, or equivalently in the compact case, dα = d∗α = 0. When X is

compact, a harmonic form on X has thus a de Rham cohomology class.

Theorem 1.2. (Hodge) Let X be a compact orientable differentiable manifold.

Then the map H
i
(X) → Hi

(X,R) from the space of harmonic i-forms on X to

real cohomology of degree i, which to a harmonic form associates its de Rham

class, is an isomorphism.

1.3. Kähler geometry and algebraic geometry. A complex

manifold (of complex dimension n) is a differentiable manifold of real dimension

2n with a set of charts with values in open sets of Cn
such that the transition

diffeomorphisms are holomorphic. Its tangent space has then a natural struc-

ture of complex vector bundle, given by its local identifications to the tangent

space of Cn
.

A Kähler metric is a Hermitian metric on the tangent bundle of a com-

plex manifold X which fits very nicely with the complex structure on X:

The Hermitian metric h being locally written in holomorphic coordinates as
∑

i,j
hijdzi ⊗ dzj , there is the corresponding real (1, 1)-form

ω =
ι

2

∑

i,j

hijdzi ∧ dzj ,

(the Kähler form), and the Kähler condition is simply dω = 0. The closed 2-

form ω has a de Rham class [ω] ∈ H2
(X,R), called the Kähler class of the

metric.

A projective complex variety X (defined over a field K ⊂ C) is the set

of solutions of a finite number of equations Pi(x) = 0, x = (x0, . . . , xN ) ∈

PN
(C), where the Pi are homogeneous polynomials (with coefficients in K) in

the coordinates xi.

The Pi’s give local rational, hence holomorphic, equations for X, which is

thus a closed analytic subset of PN
(C) as well. A remarkable result due to Chow

and generalized later on by Serre [38] says that any closed analytic subset of

PN
(C) is in fact algebraic. When the local defining equations ofX can be chosen

to have independent differentials, X is a complex submanifold of PN
(C). We

will say that X is a complex projective manifold (defined over K).

The Kodaira criterion [32] characterizes projective complex manifolds inside

the class of compact Kähler manifolds.
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Theorem 1.3. A compact complex manifold X is projective if and only if X

admits a Kähler class [ω] which is rational, that is belongs to

H2
(X,Q) ⊂ H2

(X,R).

The “only if” is easy. It comes from the fact that if X is projective, one

gets a Kähler form on X by restricting the Fubini-Study Kähler form on some

projective space PN
in which X is imbedded as a complex submanifold. But

the Fubini-Study Kähler form has integral cohomology class, as its class is the

first Chern class of the holomorphic line bundle OPN (1) on PN
.

The converse is a beautiful application of the Kodaira vanishing theorem

for line bundles endowed with a metric whose Chern form is positive.

1.4. Topology and algebraic geometry. As we mentioned already,

one way to put a topology on a complex algebraic variety is to use the topology

on the ambient space Cn
or CPn

. This is what we will call the classical topology.

There is however another topology, the Zariski topology, which has the property

that the closed subsets are the closed algebraic subsets of X, that is, subsets

defined by the vanishing of polynomial equations restricted to X. These sets

are closed for the classical topology, so this topology is weaker than the classical

topology.

This topology is in fact very weak. Indeed, if the variety is “irreducible”

(for example smooth and connected), any two Zariski open sets intersect non

trivially by analytic continuation. It easily follows that the cohomology of X,

endowed with the Zariski topology, with constant coefficients, (that is, with

value in a constant sheaf) is trivial. However, the Zariski topology is excellent

to compute the cohomology of X with values in other softer sheaves, namely

the “coherent sheaves”: There is the notion of algebraic vector bundle on X,

and even algebraic vector bundle defined over K if X is. Namely, in some

Zariski open cover (defined over K), it is trivialized, and the transition matrices

are matrices of algebraic functions with K-coefficients. The simplest coherent

sheaves are sheaves of algebraic sections of such vector bundles. The general

ones allow singularities.

Let us assume that K = C and let E be such an algebraic vector bundle.

There are two things we can do to compute the “cohomology of X with value

in E”.

1) X is endowed with the Zariski topology and one considers the sheaf E

of algebraic sections of E. Then we compute cohomology of the sheaf E

by general methods of sheaf cohomology, using acyclic resolutions. Con-

cretely, it suffices to compute Čech cohomology with respect to an affine

covering. Let us denote these groups H l
(XZar, E).

2) We put on X the classical topology and consider the sheaf of holomorphic

sections E
an

of E in the classical topology. Let us denote these groups

H l
(Xcl, E

an
).
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It is a remarquable fact (the “GAGA principle”, [38]), proved by Serre, that

the resulting cohomology groups are the same.

Theorem 1.4. (Serre) For any algebraic coherent sheaf E on X, one has a

canonical (inverse image) isomorphism H l
(XZar, E) → H l

(Xcl, E
an
).

Why then to care about the Zariski topology and the algebraic vector bun-

dles? One reason is the fact that staying in the algebraic geometry setting allows

to take care of the fields of definition of a variety X and a vector bundle E on

it; such a field of definition contains the coefficients of defining equations of

X, or the coefficients of rational functions involved in the transition matrices

of E. If X, E are defined over a subfield K ⊂ C, then we can compute the

cohomology of XK , endowed with the “K-Zariski topology” (for which closed

subsets are closed algebraic subsets defined by polynomial equations with K-

coefficients), with value in EK (the sheaf of sections defined over K), and there

is an isomorphism (which is called a K-structure on Hi
(X, E)):

Hi
(X, E) = Hi

(XK , EK)⊗K C.

We already mentioned that the Zariski topology is not good at all to com-

pute Betti cohomology of X endowed with its classical topology. However, holo-

morphic de Rham theory combined with GAGA allows in fact to compute Betti

cohomology of X, at least with complex coefficients, using algebraic differen-

tials and the Zariski topology. This result due to Grothendieck [29] is crucial

to understand the notion of absolute Hodge class [19] that will be discussed in

section 4.2.

Étale cohomology invented by Grothendieck is another way of constructing

an intrinsic cohomology theory, not depending on the topology of the field

C. It depends on introducing étale topology which is a refinement of Zariski

topology, and is not actually a topology: Roughly speaking, one adds to the

Zariski open sets their étale covers. Furthermore, Artin’s comparison theorems

allow to compare it to Betti cohomology. However, this theory does not allow

to recover Betti cohomology with rational coefficients (see for example [13]) of

our classical topological space X, but only its Betti cohomology with finite or

l-adic coefficients.

The presence of various cohomology theories with comparison theorems be-

tween them is at the heart of Grothendieck’s theory of Motives (cf. [1]).

Our last topic in section 4.4 will be another way to go around the fact

that the Zariski topology is too weak to compute Betti cohomology of the

corresponding complex manifold. This is by looking at the spectral sequence

associated to the obviously continuous map

Xcl → XZar

which is the identity on points. This study is done by Bloch-Ogus [8] and leads

to beautiful results when combined with algebraic K-theory.
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2. Hodge Theory in Kähler or Projective

Geometry

2.1. Hodge structures. Let us start with the notion of cohomology

class of type (p, q) on a complex manifold X. On such an X, we have the

notion of differential form of type (p, q): these are the complex differential forms

α (say of class C
∞
), which can be written in local holomorphic coordinates

z1, . . . , zn, n = dimCX, and in the multiindex notation:

α =

∑

I,J

αI,JdzI ∧ dzJ , |I| = p, |J | = q,

where αI,J are C
∞

functions. Let us denote Ap,q
(X) the space of (p, q)-forms

on X. Thus Ap,q
(X) ⊂ Ak

(X), p + q = k, where Ak
(X) is the space of C∞

complex differential k-forms on X. The cohomology Hk
(X,C) with complex

coefficients can be computed by de Rham theorem as

Hk
(X,C) =

{closed complex k−forms on X}

{exact complex k−forms on X}

,

and it is natural to define for a complex manifold X and for each (p, q) the

space of cohomology classes of type (p, q) by the formula

Hp,q
(X) :=

{closed forms of type (p, q) on X}

{exact forms of type (p, q) on X}

.

The following result is a famous result due to Hodge.

Theorem 2.1. (The Hodge decomposition theorem) Let X be a compact Kähler

manifold. Then for any integer k, one has Hk
(X,C) =

⊕

p+q=k
Hp,q

(X).

The proof of this theorem uses the representation of cohomology classes by

harmonic forms (Theorem 1.2 above), together with the fact that the (p, q)-

components of harmonic forms are harmonic, a fact which is specific to the

Kähler case.

The decomposition above satisfies Hodge symmetry, which says that

Hp,q(X) = Hq,p
(X), (2.2)

where complex conjugation acts naturally on Hk
(X,C) = Hk

(X,R)⊗RC. This

is because the complex conjugate of a closed form of type (p, q) is a closed form

of type (q, p).

We have the change of coefficients theorems Hk
(X,Q) ⊗Q C ∼= Hk

(X,C).

On the other hand, Theorem 2.1 gives the decomposition Hk
(X,C) =

⊕

p+q=k
Hp,q

(X), satisfying Hodge symmetry (2.2). These data are summa-

rized in the following definition.
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Definition 2.2. A rational (resp. integral) Hodge structure of weight k is a

finite dimensional Q-vector space (resp. a lattice, that is a free Z-module of

finite rank) V , together with a decomposition:

VC := V ⊗Q C = ⊕p+q=kV
p,q

satisfying Hodge symmetry.

The cohomology Hk
(X,Q), X compact Kähler, carries such a structure.

Note that the Hodge decomposition depends on the Kähler complex structure.

Furthermore, the dimensions hp,q
(X) := rk Hp,q

(X) are not topological invari-

ants of X, although they are constant under deformations of the Kähler com-

plex structure. However, the following classical remark shows that the Hodge

decomposition provides topological restrictions on compact Kähler manifolds.

Remark 2.3. A Hodge structure of odd weight has its underlying Q-vector

space of even dimension. Hence a compact Kähler manifold X has

b2i+1(X) := dimQ H2i+1
(X,Q)

even for any i.

Example 2.4. There is an equivalence of categories between the set of (in-

tegral) Hodge structures of weight 1 and the set of complex tori. To L,LC =

L1,0
⊕ L1,0 corresponds T :=

LC

L1,0
⊕L

. In the reverse direction, associate to T

the Hodge structure on H2g−1
(T,Z), g = dimT .

Example 2.5. (Trivial Hodge structure) A Hodge structure (V, V p,q
) of weight

2k is trivial if VC = V k,k
.

The following definition is crucial:

Definition 2.6. If (V, V p,q
) is a rational Hodge structure of weight 2k, Hodge

classes of V are elements of V ∩ V k,k.

The simplest examples of Hodge classes on a compact Kähler manifold are

given by the cohomology classes of closed analytic subspaces Z ⊂ X of codi-

mension k. The singular locus Zsing of such a Z is then a closed analytic subset

of X which has codimension ≥ k+1 and thus real codimension ≥ 2k+2. Thus

one can define

[Z] ∈ H2k
(X,Z)

by taking the cohomology class [Z \ Zsing] ∈ H2k
(X \ Zsing,Z) of the closed

complex submanifold

Z \ Zsing ⊂ X \ Zsing

and by observing that H2k
(X \ Zsing,Z) ∼= H2k

(X,Z).

The class [Z] is an integral Hodge class. This can be seen using Lelong’s

theorem, showing that the current of integration over Z \ Zsing is well defined
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and closed, with cohomology class equal to the image of [Z] in H2k
(X,C). On

the other hand, this current anihilates all forms of type (p, q), p 6= q, p + q =

2n− 2k, n = dimX, and it follows dually that its class is of type (k, k).

The Hodge conjecture is the following statement:

Conjecture 2.7. Let X be a complex projective manifold. Then the space

Hdg2k(X) of degree 2k rational Hodge classes on X is generated over Q by

classes [Z] constructed above.

It would be natural to try to formulate the Hodge conjecture in the Kähler

context. However, it seems that there is no way to do this, and this is the

reason why we will focus on the interplay between Hodge theory and algebraic

geometry in section 4. First of all, it has been known for a long time that Hodge

classes on compact Kähler manifolds are not in general generated over Q by

classes of closed analytic subsets. The simplest such example is provided by a

complex torus T admitting a holomorphic line bundle L of indefinite curvature.

This means in this case that the harmonic de Rham representative of the Chern

class c1(L) is given by a real (1, 1)-form with constant coefficients on T having

the property that the corresponding Hermitian form on the tangent space of T

is indefinite. If the torus T satisfying this condition is chosen general enough,

its space Hdg2(T ) will be generated by c1(L), as one shows by a deformation

argument. It follows that T will not contain any analytic hypersurface, hence

no non zero degree 2 Hodge class can be constructed as the Hodge class of a

codimension 1 closed analytic subset, while c1(L) provides a non zero Hodge

class on T .

However, there are two other constructions of Hodge classes starting from

analytic objects:

1) Chern classes of holomorphic vector bundles: one uses the Chern connec-

tion and Chern-Weil theory to show that they are indeed Hodge classes.

2) Chern classes of analytic coherent sheaves (that is, roughly speaking,

sheaves of sections of singular holomorphic vector bundles): the construc-

tion is much more delicate. We refer to [28] for a recent elegant construc-

tion.

In the projective case, it is known that the three constructions generate

over Q the same space of Hodge classes (cf. [38] and [9]). In the general Kähler

case, the torus example above shows that Chern classes of holomorphic vector

bundles or coherent sheaves may provide more Hodge classes than cycle classes.

The fact that Chern classes of coherent sheaves allow in some cases to construct

strictly more Hodge classes than Chern classes of holomorphic vector bundles

was proved in [47]. This is something which cannot be detected in degree 2,

as in degree 2, Chern classes of holomorphic line bundles generate all integral

Hodge classes, a fact which is known as the Lefschetz theorem on (1, 1)-classes.

To conclude, one can prove as in [9] that cycle classes are generated by Chern

classes of analytic coherent sheaves.
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If we want to extend the Hodge conjecture to the Kähler case, we therefore

are led to consider the following question:

Question 2.8. Are Hodge classes on compact Kähler manifolds generated over

Q by Chern classes of coherent sheaves?

We provided in [47] a negative answer to this question. Weil tori [57] are

complex tori T of even dimension 2n admitting an endomorphism φ satisfying

φ2
= −d IdT , d > 0 and a certain sign assumption concerning the action of φ

on holomorphic forms on T , which implies that T carries a 2-dimensional Q-

vector space of Hodge classes of degree 2n. The following result shows that they

provide a counterexample to question 2.8, thus showing that the projectivity

assumption is crucial in the statement of the Hodge conjecture.

Theorem 2.9. [47] Let T be a general Weil torus of dimension 4. Then any

analytic coherent sheaf F on T satisfies c2(F) = 0. Thus the Weil Hodge classes

on them are not in the space generated by Chern classes of coherent sheaves.

2.2. Hard Lefschetz theorem and Hodge-Riemann rela-
tions. Another very deep application of Hodge theory is the hard Lefschetz

theorem, which says the following: let X be a compact Kähler manifold of

dimension n and [ω] ∈ H2
(X,R) be the class of a Kähler form ω on X.

Cup-product with [ω] gives an operator usually denoted by L : H∗
(X,R) →

H∗+2
(X,R).

Theorem 2.10. For any k ≤ n,

Ln−k
: Hk

(X,R) → H2n−k
(X,R)

is an isomorphism.

A first formal consequence of the hard Lefschetz theorem 2.10 is the so-

called Lefschetz decomposition. With the same notations as before, define for

k ≤ n the primitive degree k cohomology of X by

Hk
(X,R)prim := Ker (Ln−k+1

: Hk
(X,R) → H2n+2−k

(X,R)).

For example, if k = 1, the whole cohomology is primitive, and if k = 2, primitive

cohomology is the same as the orthogonal subspace, with respect to Poincaré

duality, of [ω]n−1
∈ H2n−2

(X,R).

The Lefschetz decomposition is given in the following theorem (it can also

be extended to k > n using the hard Lefschetz isomorphism).

Theorem 2.11. The cohomology groups Hk
(X,R) for k ≤ n decompose as

Hk
(X,R) = ⊕2r≤kL

rHk−2r
(X,R)prim.
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2.2.1. Hodge-Riemann bilinear relations. We consider a Kähler compact

manifold X with Kähler class [ω]. We can define an intersection form qω on each

Hk
(X,R) by the formula

qω(α, β) =

∫

X

[ω]n−k
∪ α ∪ β.

By hard Lefschetz theorem and Poincaré duality, qω is a non-degenerate bilinear

form. It is skew-symmetric if k is odd and symmetric if k is even. Furthermore,

the extension of qω to Hk
(X,C) satisfies the property that

qω(α, β) = 0, α ∈ Hp,q, β ∈ Hp
′

,q
′

, (p′, q′) 6= (q, p).

This property is indeed an immediate consequence of Lemma 3.1 and the fact

that H2n
(X,C) = Hn,n

(X), n = dimCX.

Equivalently, the Hermitian pairing hω on Hk
(X,C) defined by

hω(α, β) = ιkqω(α, β)

has the property that the Hodge decomposition is orthogonal with respect to hω.

This property is summarized under the name of first Hodge-Riemann bilinear

relations.

It is also an easy fact that the Lefschetz decomposition is orthogonal with

respect to qω. To state the second Hodge-Riemann bilinear relations, note that,

because the operator L shifts the Hodge decomposition by (1, 1), the primitive

cohomology has an induced Hodge decomposition:

Hk
(X,C)prim = ⊕p+q=kH

p,q
(X)prim,

with Hp,q
(X)prim := Hp,q

(X) ∩Hp+q
(X,C)prim. We have now

Theorem 2.12. The Hermitian form hω is definite of sign (−1)
k(k−1)

2 ιp−q−k
=:

ε(p, q, r) on the component LrHp,q
(X)prim, 2r + p+ q = k, of Hk

(X,C).

The Hodge-Lefschetz decomposition is particularly interesting when [ω] can

be chosen to be rational, so that X is projective by Kodaira’s embedding The-

orem 1.3. Indeed, in this case, this is a decomposition into a direct sum of

rational Hodge substructures. Furthermore the intersection form qω is rational.

On each piece of the Lefschetz decomposition, it induces up to sign a polariza-

tion of the considered Hodge substructure. This notion will come back later on.

Let us just say that we mentioned in Example 2.4 the equivalence of categories

{Weight 1Hodge structures} ↔ {Complex tori}.

This can be completed by saying that there is an equivalence of categories

{Weight 1 polarized Hodge Structures} ↔ {Abelian varieties}.

Indeed, an intersection form q on L,LC = L1,0
⊕L1,0 satisfying the Hodge-

Riemann bilinear relations as in Theorem 2.12 provides an integral Kähler class

on the torus T = LC/(L
1,0

⊕ L) which is thus projective by Theorem 1.3.
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3. Hodge Structures on Cohomology Algebras

The following simple Lemma 3.1 is a direct consequence of the following two

facts:

1) Under the de Rham isomorphism (1.1), the cup-product is induced by

wedge product of differential forms.

2) The wedge product of a closed (p, q)-form and of a closed (p′, q′)-form is

a closed (p+ p′, q + q′)-form.

Lemma 3.1. If X is a compact Kähler manifold, the Hodge decomposition on

H∗
(X,C) is compatible with cup-product:

Hp,q
(X) ∪Hp

′

,q
′

(X) ⊂ Hp+p
′

,q+q
′

(X).

Below, a cohomology algebra A∗
is the rational cohomology algebra of a con-

nected orientable compact manifold, or more generally any graded commutative

finite dimensional Q-algebra satisfying Poincaré duality: for some integer d ≥ 0,

A0
= Ad

= Q and Ak
⊗ Ad−k

→ Ad
is perfect for any k. By analogy, d will be

called the dimension of A∗
.

Definition 3.2. (Voisin 2008) A Hodge structure on A∗ is the data of a Hodge

structure of weight k on each Ak (i.e. a Hodge decomposition on Ak

C
, satisfying

Hodge symmetry), such that:

A
p,q

C
∪A

p
′

,q
′

C
⊂ A

p+p
′

,q+q
′

C
.

Let us state a number of obvious properties:

1. By Remark 2.3, if A∗
admits a Hodge structure, dimA2k+1

is even, ∀k.

2. If A∗
admits a Hodge structure, then d is even. This follows from 1 because

dimAd
= 1 and Ad

carries a Hodge structure of weight d.

3. Any cohomology algebra with trivial odd part admits a Hodge structure,

namely the trivial one:

A2k
C

= Ak,k, ∀k.

Definition 3.3. (Hodge class on A∗) A Hodge class in A∗ is an element of

A2k
∩Ak,k for some k.

Hodge classes a ∈ A2k
act by multiplication on A∗

, sending Al
to Al+2k

.

These morphisms are morphisms of Hodge structures, hence “special”. For ex-

ample, the simplest restriction on them is the following: they are of even rank

if l is odd. Indeed, the image of a morphism of Hodge structures is a Hodge

substructure (see [48, I,7.3.1]) hence, in particular, of even dimension if it has

odd weight (cf. Remark 2.3).
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3.0.2. Deligne’s lemma. This lemma implies that, given a cohomology

algebra A∗
, some classes a ∈ A∗

must be Hodge classes for any Hodge structure

on A∗
.

Let Z ⊂ Ak

C
be a closed algebraic subset defined by homogeneous equa-

tions depending only on the structure of multiplication on A∗
. Concretely, the

following examples will be interesting for applications: fixing l and s, let

Z := {z ∈ Ak

C
, rank z : Al

→ Al+k
≤ s}.

A second kind of examples is as follows: Fixing l, let

Z := {z ∈ Ak

C
, zl = 0 in Akl

}.

Lemma 3.4. (Deligne) Let Z ′ be a an irreducible component of Z, and V :=

〈Z ′
〉 ⊂ Ak

C
be the complex vector subspace generated by Z ′. Then V is stable

under Hodge decomposition, i.e. V = ⊕V p,q, where V p,q
= V ∩Ap,q.

Corollary 3.5. Under the same assumptions, if V is defined over Q, this is a

Hodge substructure of Ak.

Corollary 3.6. Under the same assumptions, if dimV = 1 and V is defined

over Q, it is generated by a Hodge class.

3.1. Polarized Hodge structures on cohomology algebras.
Let A∗

be a cohomology algebra with Hodge structure.

Definition 3.7. A Hodge structure on A∗ admits a real polarization if some

α ∈ A
1,1

R
satisfies the hard Lefschetz property and the Hodge-Riemann bilinear

relations.

We will say that the Hodge structure on A∗
admits a rational polarization

if furthermore α can be chosen in A2
Q
∩A1,1

.

Here the hard Lefschetz property and the Hodge-Riemann bilinear relations

are the analogs of their geometric counterparts described in section 2.2. The

hard Lefschetz property implies formally the Lefschetz decomposition (cf. [48,

I,6.2.2]): Ak

R
= ⊕k−2r≥0α

rAk−2r

R,prim
, k ≤ n, 2n = dimA∗

. When α is real of type

(1, 1) with respect to a Hodge structure on A∗
, this is a decomposition into real

Hodge sub-structures thus giving a Hodge-Lefschetz decomposition of Ak

C
into

terms of type αrA
p,q

prim
, 2r + p+ q = k.

The Hodge-Riemann relations (cf. Theorem 2.12) say in this context that

hα(a, b) := ιkαn−k
· a · b ∈ A2n

C
∼= Cαn

has a definite sign ε(p, q, r) on each piece of this Hodge-Lefschetz decomposition.
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In the rest of this section, we are going to apply these notions to prove the

following results:

1. There are very simple examples of compact symplectic manifolds satis-

fying all the “classical” restrictions (i.e they are formal, satisfy the hard

Lefschetz property, have abelian fundamental group), but which are topo-

logically non Kähler (that is, are not homotopically equivalent to a com-

pact Kähler manifold). Such manifolds can be constructed as complex

projective bundles over complex tori.

2. (The Kodaira problem) There exist compact Kähler manifolds which are

not homeomorphic (and, in fact, not homotopically equivalent) to complex

projective manifolds.

The criterion that we will use to prove that the constructed examples as in

1 are topologically non Kähler is the following:

Criterion 3.8. The cohomology algebra of a compact Kähler manifold carries

a Hodge structure. (We can also use as a strengthened criterion the existence

of a Hodge structure with real polarization to get more sophisticated examples,

eg simply connected examples).

The criterion that we will use to prove that the constructed examples as in

2 are topologically non projective is the following version of criterion 3.8, where

the rational polarization plays now a crucial role, as in Kodaira’s embedding

Theorem 1.3:

Criterion 3.9. The cohomology algebra of a complex projective manifold car-

ries a Hodge structure with rational polarization.

3.2. Symplectic versus Kähler manifolds. There is a close ge-

ometric relation between symplectic geometry and Kähler geometry. If X is

compact Kähler, forgetting the complex structure on X and keeping a Kähler

form provides a pair (X,ω) which is a symplectic manifold.

On the other hand, numerous topological restrictions are satisfied by com-

pact Kähler manifolds, and not by general symplectic manifolds (cf. [44]). For

example, very strong restrictions on fundamental groups of compact Kähler

manifolds have been found (see [2]) while Gompf proves in [24] that funda-

mental groups of compact symplectic manifolds are unrestricted in the class of

finitely generated groups.

Hodge theory provides two classical restrictions which come directly from

what we discussed in section 2.

1. The odd degree Betti numbers b2i+1(X) are even for X compact Kähler

(see Remark 2.3).

2. The hard Lefschetz property (cf. Theorem 2.10), saying that the cup-

product maps [ω]n−k
∪ : Hk

(X,R) ∼= H2n−k
(X,R), 2n = dimRX are

isomorphisms, is satisfied.
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Another topological restriction on compact Kähler manifolds is the so-called for-

mality property [17]. A number of methods to produce examples of symplectic

topologically non Kähler manifolds were found by Thurston [43], McDuff [34],

Gompf [24]. On these examples, one of the properties above was not satified.

We want to exhibit here further topological restrictions on compact Kähler

manifolds, coming from Criterion 3.8. One of the difficulties to exploit this

criterion is the fact that the hp,q
-numbers of the Hodge decomposition are not

determined topologically. Thus we have to analyse abstractly the constraints

imposed by the existence of a polarized Hodge structure on the cohomology

algebra without knowing the hp,q
-numbers or the set of polarization classes.

Let us give a sample of results in this direction. The proofs, which are purely

algebraic, are all based on Deligne’s lemma 3.4.

We start with an orientable compact manifold X and consider a complex

vector bundle E onX. We denote by p : P(E) → X the corresponding projective

bundle.

We make the following assumptions on (X,E):

H∗
(X) generated in degree ≤ 2 and c1(E) = 0.

As a consequence of Leray-Hirsch theorem, one has an injection (of algebras)

p∗ : Hk
(X,Q) ↪→ H∗

(P(E),Q) (cf. [48, 7.3.3]).

Theorem 3.10. [54] If H∗
(P(E),Q) admits a Hodge structure, then each sub-

space Hk
(X,C) ⊂ Hk

(P(E),C) has an induced Hodge decomposition (and thus

the cohomology algebra H∗
(X,Q) also admits a Hodge structure).

Furthermore each ci(E) ∈ H2i
(X,Q), i ≥ 2, is of type (i, i) for this Hodge

structure on H2i
(X,Q).

This allows the construction of symplectic manifolds with abelian funda-

mental group satisfying formality (cf [17]) and the hard Lefschetz property,

but not having the cohomology algebra of a compact Kähler manifold. These

manifolds are produced as complex projective bundles over compact Kähler

manifolds (eg complex tori), which easily implies that all the properties above

are satisfied. We start with a compact Kähler manifold X having a given class

α ∈ H4
(X,Q) such that for any Hodge structure on H∗

(X,Q), α is not of

type (2, 2). Then if E is any complex vector bundle on X satisfying c1(E) = 0,

c2(E) = Nα, for some integer N 6= 0, P(E) is topologically non Kähler by

Theorem 3.10, using Criterion 3.8.

The simplest example of such a pair (X,α) is obtained by choosing for X a

complex torus of dimension at least 4 and for α a class satisfying the property

that the cup-product map α∪ : H1
(X,Q) → H5

(X,Q) has odd rank. Indeed,

if α was Hodge for some Hodge structure on the cohomology algebra of X, this

morphism would be a morphism of Hodge structures, and its kernel would be

a Hodge substructure of H1
(X,Q), hence of even rank by Remark 2.3.
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3.3. Kähler versus projective manifolds. Kodaira’s characteriza-

tion Theorem 1.3 can be used to show that certain compact Kähler manifolds

X become projective after a small deformations of their complex structure. The

point is that the Kähler classes belong to H1,1
(X)R, the set of degree 2 coho-

mology classes which can be represented by a real closed (1, 1)-form. They even

form an open cone, the Kähler cone, in this real vector subspace of H2
(X,R).

This subspace deforms differentiably with the complex structure, and by Ko-

daira’s criterion we are reduced to see whether one can arrange that, after a

small deformation, the Kähler cone contains a rational cohomology class.

Example 3.11. Complex tori admit arbitrarily small deformations which are

projective.

The following beautiful theorem of Kodaira is at the origin of the work [49].

Theorem 3.12. [33] Let S be a compact Kähler surface. Then there is an

arbitrarily small deformation of the complex structure on S which is projective.

Kodaira proved this theorem using his classification of complex surfaces.

Buchdahl ([10], [11]) gives a proof of Kodaira theorem which does not use

the classification. His proof is infinitesimal and shows for example that a rigid

compact Kähler surface is projective.

3.3.1. Various forms of the Kodaira problem. Kodaira’s theorem 3.12

immediately leads to ask a number of questions in higher dimensions:

Question 3.13. (The Kodaira problem) Does any compact Kähler manifold

admit an arbitrarily small deformation which is projective?

In order to disprove this, it suffices to find rigid Kähler manifolds which

are not projective. However, the paper [21] shows that it is not so easy: if a

complex torus T carries three holomorphic line bundles L1, L2, L3 such that

the deformations of T preserving the Li are trivial, then T is projective. The

relation with the previous problem is the fact that from (T,L1, L2, L3), one

can construct a compact Kähler manifold whose deformations identify to the

deformations of the quadruple (T,L1, L2, L3).

A weaker question concerns global deformations.

Question 3.14. (The global Kodaira problem) Does any compact Kähler man-

ifold X admit a deformation which is projective?

Here we consider any deformation parameterized by a connected analytic

space B, that is any smooth proper map π : X → B between connected analytic

spaces, with X0 = X for some 0 ∈ B. Then any fiber Xt will be said to be a

deformation of X0. In that case, even the existence of rigid Kähler manifolds

which are not projective would not suffice to provide a negative answer, as there

exist families of compact Kähler manifolds π : X → B all of whose fibers Xt

for t 6= 0 are isomorphic but are not isomorphic to the central fiber X0.
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Note that if X is a deformation of Y , then X and Y are diffeomorphic,

because the base B is path connected, and by the Ehresmann theorem (cf. [48,

9.1.1]), the family of deformations X → B can be trivialized in the C
∞
-category

over any path in B.

In particular, X and Y should be homeomorphic, hence have the same

homotopy type, hence also the same cohomology ring. Thus Question 2 can be

weakened as follows:

Question 3.15. (The topological Kodaira problem) Is any compact Kähler

manifold X diffeomorphic or homeomorphic to a projective complex manifold?

Does any compact Kähler manifold X have the homotopy type of a projective

complex manifold?

The following theorem answers negatively the questions above.

Theorem 3.16. There exist, in any complex dimension ≥ 4, compact Kähler

manifolds which do not have the rational cohomology algebra of a projective

complex manifold.

Our first proof used the integral cohomology ring. Deligne provided then

us with lemma 3.4, which allowed him to extend the result to cohomology

with rational coefficients, and even, after modification of our original example,

complex coefficients, (see [49]). We in turn used this lemma to construct simply

connected examples.

The examples in [49] were built by blowing-up in an adequate way compact

Kähler manifolds which had themselves the property of deforming to projec-

tive ones, namely self-products of complex tori, or self-products of Kummer

varieties. This left open the possibility suggested by Buchdahl, Campana and

Yau, that under bimeromorphic transformations, the topological obstructions

we obtained above for a Kähler manifold to admit a projective complex struc-

ture would disappear. However we proved in [50] the following result.

Theorem 3.17. In dimensions ≥ 10, there exist compact Kähler manifolds,

no smooth bimeromorphic model of which has the rational cohomology algebra

of a projective complex manifold.

The following questions remain open (cf. [30]):

1. What happens in dimension 3?

2. Do there exist compact Kähler manifolds whose π1 is not isomorphic to

the π1 of a complex projective manifold ? (See [55] for one step in this

direction.)

3. Is it true that a compact Kähler manifold with nonnegative Kodaira di-

mension has a bimeromorphic model which deforms to a complex projec-

tive manifold?
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3.3.2. Construction of examples. The simplest example of a topologically

non projective compact Kähler manifold is based on the existence of endo-

morphisms of complex tori which prevent the complex tori in question to be

algebraic. Let Γ be a rank 2n lattice, and let φ be an endomorphism of Γ.

Assume that the eigenvalues of φ are all distinct and none is real. Choosing n

of these eigenvalues λ1, . . . , λn, so that no two of them are complex conjugate

to each other, one can then define Γ
1,0

⊂ ΓC as the eigenspace associated to

the λi’s, and T = ΓC/(Γ
1,0

⊕Γ). Clearly, the extended endomorphism φC of ΓC

preserves both Γ
1,0

and Γ, and thus descends to an endomorphism φT of T .

Our first example was the following. Let (T, φT ) be as above a complex

torus with endomorphism. Inside T × T , we have the four subtori

T1 = T × 0, T2 = 0× T, T3 = Diagonal, T4 = Graph(φT ),

which are all isomorphic to T . These tori meet pairwise transversally in finitely

many points x1, . . . , xN . Blowing-up these points, the proper transforms ˜Ti are

smooth and do not meet anymore. We can thus blow-up all the ˜Ti’s to get a

compact Kähler manifold X. This is our example.

Theorem 3.18. [49] This compact Kähler manifold X does not have the coho-

mology algebra of a projective complex manifold. More precisely, the cohomology

algebra H∗
(X,Q) does not admit a Hodge structure with rational polarization.

Let us give an idea of the proof. The degree 2 cohomology of the manifold

X contains the classes ei of the exceptional divisors over the ˜Ti. The first step

is to use Deligne’s Lemma 3.4, or rather its corollary 3.6 to show that these

classes have to be Hodge classes for any Hodge structure on H∗
(X,Q). The

second step consists then in examining the morphisms of Hodge structures

∪ei : H
1
(X,Q) → H3

(X,Q)

given by cup-product with the ei’s. The conclusion is the following: For any

Hodge structure on H∗
(X,Q), the weight 1 Hodge structure on H1

(X,Q) is

the direct sum of two copies of a weight 1 Hodge structure L, which admits

an endomorphism conjugate to
tφ. One concludes then with the following easy

result:

Proposition 3.19. [49] If n ≥ 2 and the Galois group of the splitting field

of Q(φ) acts as the full symmetric group S2n on the eigenvalues of φ, then a

weight 1 Hodge structure admitting an endomorphism conjugate to tφ does not

admit a rational polarization.

4. Cohomology of Algebraic Varieties;

Algebraic Data

4.1. Algebraic de Rham cohomology. Let X be a smooth pro-

jective variety defined over a field K of characteristic 0. One has the sheaf of
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Kähler (or algebraic) differentials ΩX/K which is a locally free algebraic coher-

ent sheaf on X, locally generated by differentials dfi, where the fi are algebraic

functions on X defined near x, the relations being given by da = 0, a ∈ K and

Leibniz rule d(fg) = fdg + gdf .

We can form the locally free sheaves Ω
l

X/K
:=

∧l
ΩX/K and, by the def-

inition of ΩX/K and using Leibniz rule, we get the differentials d : OX →

ΩX/K , d : Ω
l

X/K
→ Ω

l+1

X/K
satisfying d ◦ d = 0.

Definition 4.1. The algebraic de Rham cohomology of X is defined as the hy-

percohomology of the algebraic de Rham complex: Hk

dR
(X/K) := Hk

(X,Ω∗

X/K
).

Note that this finite dimensional K-vector space depends on K. However,

when K ⊂ L (field extension), one has Hk

dR
(XL/L) = Hk

dR
(X/K) ⊗K L. This

construction led Grothendieck to the following remarkable conclusion: The co-

homology with complex coefficients of a smooth complex projective variety (en-

dowed with its classical topology)Xcl can be computed as an algebraic invariant

of the algebraic variety X.

Note that this is not at all true if we change the field of coefficients or

the definition field. Even with R instead of C, and even if the variety X is

defined over R, the cohomology H∗
(Xcl,R) cannot be computed by algebraic

means. It is furthermore known by work of Serre (see also [13], [40] for fur-

ther refined versions of this phenomenon) that the homotopy types (and even

the real cohomology algebra) of Xcl indeed is not determined by the abstract

algebraic variety X. In fact, a field automorphism of C will provide another

complex algebraic variety, thus another complex manifold, which is usually not

homeomorphic or even homotopically equivalent to the original one.

The precise statement of Grothendieck’s Theorem is the following:

Theorem 4.2. [29] Let X be a smooth algebraic variety defined over C. Then

there is a canonical isomorphism

Hk

dR(X/C) = Hk
(Xcl,C). (4.3)

When X is projective, this is a direct consequence of Serre’s theorem 1.4 and

of the fact that the holomorphic de Rham complex Ω
∗

X
, which is the analytic

counterpart of the algebraic de Rham complex, is a resolution of the constant

sheaf C on Xcl. The quasi-projective case involves a projective completion X of

X with a boundary D = X \X which is a normal crossing divisor, and the in-

troduction of the logarithmic (algebraic and holomorphic) de Rham complexes

Ω
∗

X
(logD).

Remark 4.3. What makes Theorem 4.2 striking is the fact that the algebraic

de Rham complex, unlike the holomorphic de Rham complex in the classical

topology, is not at all acyclic in positive degree in the Zariski topology, so that

the proof above is completely indirect. In fact, by the affine version of Theorem

4.2, its degree i cohomology sheaf is the complexified version of the sheaf H
i

studied by Bloch and Ogus [8], (cf. Section 4.4).
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4.1.1. Cycle classes. Let X be a smooth projective variety defined over K

and Z ⊂ X be a local complete intersection closed algebraic subset of X, also

defined over K. Following Bloch [7], one can construct an algebraic cycle class

[Z]alg ∈ H2k
dR(X/K).

Assume now that X is defined over C. We denote by Hdg2k(X) the set of

Hodge classes of the corresponding complex manifold. This is naturally a sub-

space of H2k
(Xcl,Q), hence of H2k

(Xcl,C). We mentioned in section 2.1 that

one can define for any closed algebraic or analytic subset Z ⊂ X of codimension

k a topological cycle class [Z] ∈ Hdg2k(X). The following result compares the

algebraic and topological constructions.

Theorem 4.4. Via the isomorphism (4.3) in degree 2k, one has

[Z]alg = (2ιπ)k[Z].

Remark 4.5. The coefficient (2ιπ)k is not formal there, or just a matter of

definition. It is forced on us, due to the fact that the algebraic cycle class is

compatible with definition fields (eg, if Z, X are defined over K, so is [Z]alg),

while the topological cycle class is rational for the Betti cohomology theory.

4.2. Absolute Hodge classes. Here we enter one of the most fascinat-

ing aspects of the Hodge conjecture, which seriously involves the fact that the

complex manifolds we are considering are algebraic.

Let us first introduce the notion of (de Rham) absolute Hodge class (cf.

[19]). First of all, let us make a change of definition: a Hodge class of degree

2k on X will be in this section a class α ∈ (2ιπ)kH2k
(X,Q) ∩ Hk,k

(X). The

reason for this shift is the fact that we want to use the algebraic cycle class [Z]alg

introduced in section 4.1.1, which takes value in algebraic de Rham cohomology,

and which, by Theorem 4.4, equals (2ιπ)k[Z] via the isomorphism (4.3).

Let Xcl be a complex projective manifold endowed with its classical topol-

ogy and α ∈ Hdg2k(X) be a Hodge class. Thus α ∈ (2ιπ)kH2k
(Xcl,Q) ⊂

H2k
(Xcl,C) and we can use Theorem 4.2 to compute the right hand side as

the hypercohomology of the algebraic variety X with value in the complex of

algebraic differentials:

H2k
(Xcl,C) ∼= H2k

(X,Ω∗

X/C
). (4.4)

For each field automorphism σ of C, we get a new algebraic variety Xσ de-

fined over C, obtained from X by applying σ to the coefficients of the defining

equations of X. The corresponding complex manifold Xσ,cl is called a “conju-

gate variety” of Xcl(cf. [39]). It is in general not homotopically equivalent to

Xcl. However, as an algebraic variety, Xσ is deduced from X by applying σ,

and it follows that there is a natural (only σ(C)-linear) isomorphism between

algebraic de Rham cohomology groups:

H2k
(X,Ω∗

X/C
) ∼= H2k

(Xσ,Ω
∗

Xσ/C
).
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Applying the comparison isomorphism (4.4) in the reverse way, the class α thus

provides for each σ a (de Rham or Betti) complex cohomology class

ασ ∈ H2k
(Xσ,Ω

∗

Xσ
) = H2k

(Xσ,cl,C).

Definition 4.6. (cf [19]) The class α is said to be (de Rham) absolute Hodge

if ασ is a Hodge class for each σ. Concretely, as ασ has the right Hodge type,

it suffices to check that ασ = (2ιπ)kβσ, for some rational cohomology class

βσ ∈ H2k
(Xσ,cl,Q).

The main reason for introducing this definition is the following, which is an

immediate consequence of the comparison theorem 4.4 and of the naturality of

the algebraic cycle class:

Proposition 4.7. If Z ⊂ X is an algebraic subvariety of codimension k, then

(2ιπ)k[Z] ∈ (2ιπ)kH2k
(X,Q) is an absolute Hodge class.

Proposition 4.7 shows that the Hodge conjecture contains naturally the

following subconjectures:

Conjecture 4.8. Hodge classes on smooth complex projective varieties are

absolute Hodge.

Conjecture 4.9. Let X be smooth complex projective. Absolute Hodge classes

on X are generated over Q by algebraic cycles classes.

Conjecture 4.8 is solved affirmatively by Deligne for Hodge classes on abelian

varieties (cf. [19]). An important but easy point in this proof is the fact that

Weil classes (cf. section 2.1) on Weil abelian varieties are absolute Hodge.

To conclude this section, let us mention a crucial example of absolute Hodge

class. It plays an important role in the theory of algebraic cycles (cf. [31]) and is

not known in general to be algebraic (that is to satisfy the Hodge conjecture).

Example 4.10. Let X be smooth projective of dimension n. Recall from

Theorem 2.10 that if h = c1(H), where H is an ample line bundle on

X, there is for each k ≤ n an isomorphism of Hodge structures hn−k
∪ :

Hk
(X,Q) ∼= H2n−k

(X,Q). Consider now the inverse of the Lefschetz isomor-

phism above: (hn−k
∪)

−1
: H2n−k

(X,Q) ∼= Hk
(X,Q). By Poincaré duality and

Künneth decomposition, the space Hom (H2n−k
(X,Q), Hk

(X,Q)) is contained

in H2k
(X×X,Q). The corresponding Hodge of degree 2k on X×X is absolute

Hodge, and is not known in general to be algebraic.

4.3. Hodge loci and absolute Hodge classes. The key point in

which algebraic geometry differs from Kähler geometry is the fact that a smooth

complex projective variety X does not come alone, but accompanied by a full

family of deformations π : X → T , where π is smooth and projective (that

is X ⊂ T × PN
over T , for some integer N), and where the base T is quasi-

projective smooth and defined over Q (T is not supposed to be geometrically
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irreducible). Indeed, one can take for T a desingularization of a Zariski open

set of the reduced Hilbert scheme parameterizing subschemes of PN
with same

Hilbert polynomial asX. The Hilbert scheme and its universal family are known

to be defined over Q. The existence of this family of deformations is reflected

in the transformations X 7→ Xσ considered above. Namely, the variety T being

defined over Q, σ acts on its complex points, and if X is the fiber over some

complex point 0 ∈ T (C), then Xσ is the fiber over the complex point σ(0) of

T (C).

The total space X is thus an algebraic variety defined over Q (and in fact

we may even complete it to a smooth projective variety defined over Q), but

for the moment, let us consider it as a family of smooth complex varieties, that

is, let us work with π : Xcl → Tcl.

Associated to this family are the Hodge bundles H l
on T , which are de-

scribed set theoretically as follows: H l
= {(t, αt), t ∈ T, αt ∈ H l

(Xt,C)}.

Using a relative version of Grothendieck’s theorem 4.2, one can show that H l

is an algebraic vector bundle on T , defined over Q.

Definition 4.11. (cf [12]) The locus of Hodge classes for the family X → T

and in degree 2k is the subset Z ⊂ H2k consisting of pairs (t, α) where t ∈ T (C)

and αt is a Hodge class on Xt.

This locus is thus the set of all Hodge classes in fibers of π. For α ∈ Z we

shall denote by Zα the connected component of Z passing through α and by

Tα the projection of Zα to T . Tα is the Hodge locus of α, that is the locus of

deformations of X where α deforms as a Hodge class.

Observing that the transport map H l
(Xt,C) 3 αt 7→ αt,σ ∈ H l

(Xt,σ,C)

associated to a field automorphism σ of C in the previous section is nothing

but the action of AutC on the complex points of the total space of the vector

bundle H l
, seen as a variety defined over Q, we get the following “geometric”

interpretation of the notion of absolute Hodge class.

Lemma 4.12. (cf. [52]) i) To saying that Hodge classes of degree 2k on fibers

of the family X → T are absolute Hodge is equivalent to say that the locus Z is

a countable union of closed algebraic subsets of H2k defined over Q.

ii) To saying that α ∈ Hdg2k(X) is an absolute Hodge class is equivalent

to say that Zα is a closed algebraic subset of H2k defined over Q and that its

images under Gal (Q : Q) are again components of the locus of Hodge classes.

This lemma rephrases Conjecture 4.8 as a structure statement for the locus

of Hodge classes. The following result, due to Cattani, Deligne and Kaplan,

establishes part of the predicted structure of the locus of Hodge classes. It is a

strong evidence for Conjecture 4.8, hence for the Hodge conjecture itself.

Theorem 4.13. [12] The connected components Zα of Z are closed algebraic

subsets of H2k. Hence the Hodge loci Tα are closed algebraic subsets of T .

Let us now investigate the arithmetic aspect of the notion of absolute Hodge

class, exploiting its relation with the definition field of the component of the
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Hodge loci. The following result is obtained in [52] as a consequence of Deligne’s

global invariant cycle theorem (cf. [18]). This result says that for absolute Hodge

classes, or under the much weaker assumption ii), the Hodge conjecture can be

reduced to the case of Hodge classes on varieties defined over a number field.

Theorem 4.14. [52] i) Let α ∈ Hdg2k(X) be an absolute Hodge class. Then

the Hodge conjecture is true for α if it is true for absolute Hodge classes on

varieties defined over Q.

ii) Let α ∈ Hdg2k(X) be a Hodge class, such that the Hodge locus Tα is

defined over Q. Then the Hodge conjecture is true for α if it is true for Hodge

classes on varieties defined over Q.

The second statement of Theorem 4.14 is one motivation to investigate the

question whether the Hodge loci Tα are defined over Q, which by Lemma 4.12

is weaker than the question whether Hodge class are absolute.

We have the following criterion, proved in [52]:

Theorem 4.15. Let α ∈ H2k
(X,C) be a Hodge class. Suppose that any locally

constant Hodge substructure defined along Tα, say L ⊂ H2k
(Xt,Q), t ∈ Tα,

is purely of type (k, k). Then Tα is defined over Q, and its translates under

Gal(Q/Q) are again of the form Tβ.

The assumptions in the theorem are reasonably easy to check in practice,

for example by infinitesimal methods. On the other hand, they are clearly not

satisfied in the case where the component Tα of the Hodge locus consists of one

isolated point, if the Hodge structure on H2k
(X) is not trivial. In this case,

what predicts the Hodge conjecture is that this point should be defined over

Q. But our criterion does not give this: in fact our criterion applies only when

we actually have a non trivial variation of Hodge structure along Tα.

4.4. Bloch-Ogus theory and K-theory. Let X be a smooth com-

plex algebraic variety. As before Xcl denotes X(C) endowed with the classical

topology, while XZar denotes X(C) endowed with the Zariski topology. We de-

note π : Xcl → XZar the identity map, which is continuous. Bloch-Ogus theory

is the study of the spectral sequence associated to π. It appears to be one of

the best ways to relate the cohomology of Xcl to the structure of its spaces of

subvarieties or rather algebraic cycles.

Let us start with a notation: Let A be an abelian group; the sheaves H
i

X
(A)

are the sheaves on XZar defined by H
i

X
(A) := Riπ∗A. More concretely, H

i

X
(A)

is the sheaf on XZar associated to the presheaf U 7→ Hi
(Ucl, A). The Leray

spectral sequence for π starts at E2

E
p,q

2 = Hp
(XZar,H

q

X
(A)) ⇒ Hp+q

(Xcl, A).

There is one simple thing that can be said about the sheaves H
i

X
(A): namely

they vanish for i > n = dimC X. Indeed, this is a consequence of the fact that
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the homotopy type of a smooth complex affine algebraic variety of dimension

n is a CW complex of real dimension ≤ n (cf. [48, II,1.2.1]).

However, much more can be said about the shape of the above spectral se-

quence, as a consequence of Bloch-Ogus theorem providing a Gersten-Quillen’s

type resolution for the sheaves H
i

X
.

Theorem 4.16. (Bloch-Ogus, [8]) One has Hp
(XZar,H

q

X
(A)) = 0 for p > q.

Another spectacular consequence of this resolution is the following formula

due to Bloch-Ogus for groups of cycles modulo algebraic equivalence:

Theorem 4.17. [8] One has, for any p ≥ 0, the formula Hp
(XZar,H

p
(Z)) =

Z
p
(X)/alg.

Here Z
p
(X) is the free abelian group with basis the irreducible closed al-

gebraic subsets of X of codimension p. The algebraic equivalence relation is

generated by the deformation relation: two closed algebraic subsets of X are

deformation equivalent if they are the fibers over two points of a codimension

p closed algebraic subset Z ⊂ C × X, parameterized by a smooth connected

curve C.

Finally, the most impressive applications of Bloch-Ogus theory are ob-

tained via the Bloch-Kato conjecture which had been partially established by

Merkur’ev and Suslin in [35], [36], by Voevodsky in [46], and is now fully an-

nounced by Voevodsky [45]. This conjecture relates Milnor K-theory of a field

modulo n to Galois cohomology of this field with twisted Z/nZ-coefficients.

Combined with Bloch-Ogus resolution for finite coefficients and in the étale

setting on one hand, and with the Gersten-Quillen resolution for K-theory on

the other hand, it leads to beautiful results concerning groups of algebraic cy-

cles modulo certain equivalence relations, and more precisely to their torsion

part or their version with finite coefficients (we refer to [15], [37] for reviews of

them).

The following beautiful consequence of Bloch-Kato conjecture was obtained

by Bloch and Srinivas [6].

Theorem 4.18. The Bloch-Kato conjecture implies that the sheaves H
i

X
(Z)

have no torsion, which is also equivalent to the fact that for any i and n, there

are exact sequences:

0 → H
i

X(Z)
n
→ H

i

X(Z) → H
i

X(Z/nZ) → 0.

Let us state a simple application, which is related to the defect of the Hodge

conjecture for integral Hodge classes (already observed by Atiyah and Hirze-

bruch [3] in 1962). We introduce first the following invariant, which is shown

in [14] to be a birational invariant, allowing to detect non rationality of cer-

tain unirational varieties. Here we use the following notions: A rational variety

is birationally equivalent to a projective space, while a unirational variety X

admits a rational dominating map PN 99K X. Deciding whether a unirational
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variety is rational or not is a version of the Lüroth problem, which has a long

history [5].

Definition 4.19. The i-th unramified cohomology group of X with coefficients

in A is defined by the formula Hi
nr(X,A) = H0

(XZar,H
i

X
(A)).

On the other hand, the defect of the integral Hodge conjecture for X is

measured by the groups Z2i
(X) := Hdg2i(X,Z)/〈[Z], codimZ = i〉. The group

Z4
(X) was shown by Kollár to be non trivial for very general hypersurfaces of

high degree in P4
. However it was shown in [51] that Z4

(X) is trivial if X is

a threefold swept-out by rational curves, i.e curves isomorphic to P1
. In higher

dimensions, the question whether Z4
(X) = 0 for rationally connected varieties

(i.e. varieties for which any two points can be joined by a rational curve) was

asked in [53]. We disprove this using the main result of [14] and comparing

H3
nr(X,Z/nZ) and the n-torsion of Z4

(X) (see also [4]).

Theorem 4.20. [16] There exist rationally connected (and even unirational)

varieties of dimension 6 for which Z4
(X) 6= 0.
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[23] S. Donaldson. An application of gauge theory to four-dimensional topology. J.

Differential Geom. 18 (1983), 279–315.

[24] R. Gompf. A new construction of symplectic manifolds, Ann. of Math. 142

(1995), 527–595.

[25] Ph. Griffiths, J. Morgan. Rational homotopy theory and differential forms,

Progress in Mathematics, 16. Birkhäuser, Boston, Mass. (1981).
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Abstract

The axioms ZFC do not provide a concise conception of the Universe of Sets.

This claim has been well documented in the 50 years since Paul Cohen estab-

lished that the problem of the Continuum Hypothesis cannot be solved on the

basis of these axioms.

Gödel’s Axiom of Constructibility, V = L, provides a conception of the

Universe of Sets which is perfectly concise modulo only large cardinal axioms

which are strong axioms of infinity. However the axiom V = L limits the large

cardinal axioms which can hold and so the axiom is false. The Inner Model

Program which seeks generalizations which are compatible with large cardinal

axioms has been extremely successful, but incremental, and therefore by its

very nature unable to yield an ultimate enlargement of L. The situation has

now changed dramatically and there is, for the first time, a genuine prospect

for the construction of an ultimate enlargement of L.
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1. Introduction

Paul Cohen showed in 1963 that Cantor’s problem of the Continuum Hypothesis

cannot be (formally) solved on the basis of the ZFC axioms for Set Theory. This

result and its mathematical descendents have severely challenged any hope for

a concise conception of the Universe of Sets.

Gödel’s Axiom of Constructibility, this is the axiom V = L defined in Section

6, does provide a clear conception of the Universe of Sets–a view that is arguably

absolutely concise modulo only large cardinal axioms which are strong versions

of the Axiom of Infinity. A conception of sets, perfectly concise modulo only

large cardinal axioms, is clearly the idealized goal of Set Theory. But the axiom

V = L limits the large cardinal axioms which can hold and so the axiom is false.
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The obvious remedy is to seek generalizations of the axiom V = L which are

compatible with large cardinal axioms. This program has been very successful,

producing some of the most fundamental insights we currently have into the

Universe of Sets. But at the same time the incremental nature of the program

has seemed to be an absolutely fundamental aspect of the program: each new

construction of an enlargement of L meeting the challenge of a specific large

cardinal axiom comes with a theorem that no stronger large cardinal axiom

can hold in that enlargement. Since it seems very unlikely that there could

ever be a strongest large cardinal axiom, this methodology seems unable by its

very nature to ever succeed in providing the requisite axiom for clarifying the

conception of the Universe of Sets.

The situation has now changed dramatically and there is for the first time

a genuine prospect for the construction of an ultimate enlargement of L. This

arises not from the identification of a strongest large cardinal axiom but from

the unexpected discovery that at a specific critical stage in the hierarchy of

large cardinal axioms, the construction of an enlargement of L compatible with

this large cardinal axiom must yield the ultimate enlargement of L. More pre-

cisely this construction must yield an enlargement which is compatible with all

stronger large cardinal axioms.

In this paper I shall begin with an example which illustrates how large car-

dinal axioms have been successful in solving questions some of which date back

to the early 1900’s and which were conjectured at the time to be absolutely

unsolvable. This success raises a fundamental issue. Can the basic methodol-

ogy be extended to solve a much wider class of questions such as that of the

Continuum Hypothesis?

I shall briefly review the construction of L, the basic template for large

cardinal axioms, and describe the program which seeks enlargements of L com-

patible with large cardinal axioms.

Finally I will introduce Ω-logic, explain how on the basis of the Ω Conjecture

a multiverse conception of V is untenable, and review the recent developments

on the prospects for an ultimate version of L. I will end by stating an axiom

which I conjecture is the axiom that V is this ultimate L even though the

definition of this ultimate L is not yet known.

This account follows a thread over nearly 100 years but neither it nor the

list of references is intended to be comprehensive, see [10] and [18] for far more

elegant and thorough accounts.

2. The Projective Sets and Two Questions of

Luzin

The projective sets are those sets of real numbers A ⊆ R which can be generated

from the open subsets of R in finitely many steps of taking complements and
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images by continuous functions,

f : R → R.

Similarly one defines the projective sets A ⊆ Rn
or one can simply use a borel

bijection,

π : R → Rn

and define A ⊆ Rn
to be projective if the preimage of A by π is projective.

From perspective of set theoretic complexity, projective sets are quite simple

and one might expect that their basic properties can be established directly on

the basis of the axioms ZFC.

The projective sets were defined by Luzin who posed two basic questions,

[13] and [14]. A definition is required. Suppose that A ⊆ R × R. A function

f uniformizes A if for all x ∈ R, if there exists y ∈ R such that (x, y) ∈ A

then (x, f(x)) ∈ A. The Axiom of Choice implies that for every set A ⊆ R×R

there exists a function which uniformizes A. But if A is projective the Axiom

of Choice seems to offer little insight into whether there is a function f which

uniformizes the set A and which is also projective (in the sense that the graph

of f is a projective subset of R× R).

The two questions of Luzin are the following but I have expanded the scope

of the second question–this is the measure question–to include the property of

Baire.

1. Suppose A ⊆ R × R is projective. Can A be uniformized by a projective

function?

2. Suppose A ⊆ R is projective. Is A Lebesgue measurable and does A have

the property of Baire?

Luzin conjectured that “we will never know the answer to the measure

question for the projective sets”. Luzin’s reason for such a bold conjecture is

the obvious fact that Lebesgue measurability is not preserved under continu-

ous images since any set A ⊆ R is the continuous image of a Lebesgue null

set.

The exact mathematical constructions of Gödel [6], [7] and Cohen [1],[2]

which were used to show that the Continuum Hypothesis can neither be proved

nor refuted on the basis of the ZFC axioms, show that the uniformization

question for the projective sets can also neither be proved or refuted from the

axioms ZFC.

The measure question is more subtle but the construction of Gödel and a

refinement of Cohen’s construction due to Solovay [25] show the same is true

for the measure question. A curious wrinkle is that for Solovay’s construction

a modest large cardinal hypothesis is necessary.

The structure of the projective sets is of fundamental mathematical interest

since it is simply the structure of the standard model of Second Order Number

Theory:

〈P(N),N,+, ·,∈〉.
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3. Logical Definability from Parameters,

Elementary Embeddings, and Ultrapowers

The answers to Luzin’s questions involve aspects of Mathematical Logic and Set

Theory which were unknown and unimagined at the time and I briefly review

the basic context.

A setX is transitive if every element ofX is a subset ofX. Naively transitive

sets can be viewed as initial segments of the Universe of Sets. The ordinals are

the transitive sets α which are totally ordered by the set membership relation.

There is a least infinite ordinal, denoted ω, and ω is simply the set of all finite

ordinals. The order (ω,∈) is isomorphic to (N, <) and this also uniquely specifies

ω as an ordinal. The ordinals provide the basis for transfinite constructions and

in this sense they yield a generalization of the natural numbers into the infinite.

Formal notions of mathematical logic play a central role in Set Theory.

Suppose X is a transitive set. Then a subset Y ⊆ X is logically definable in

(X,∈) from parameters if there exist elements a1, . . . , an of X and a logical

formula φ(x0, . . . , xn) in the formal language for Set Theory such that

Y = {a ∈ X | (X,∈) � φ[a, a1, . . . , an]} .

Let’s look at two examples. If X = ω then a subset Y ⊆ X is logically definable

in (X,∈) from parameters if and only if Y is finite or the complement of Y is

finite. If X is the smallest transitive set which contains R then the projective

sets A ⊆ R are exactly those sets A ⊆ R which are logically definable from

parameters in X. In general if X is a finite transitive set then every subset of

X is logically definable in (X,∈). Assuming the Axiom of Choice, if X is an

infinite transitive set then there must exist subsets of X which are not logically

definable in (X,∈) from parameters. The collection of all subsets of X is the

powerset of X and is denoted by P(X).

SupposeX and Y are transitive sets. A function π : X → Y is an elementary

embedding if for all formulas φ[x0, . . . , xn] in the formal language for Set Theory

and all a0, . . . , an in X,

(X,∈) � φ[a0, . . . , an] iff (Y,∈) � φ[π(a0), . . . , π(an)].

Note for example that if X is an ordinal and π : X → Y is an elementary

embedding then Y must be an ordinal as well. In general elementary embeddings

are simply functions which preserve logical truth (and so generalize the notion

of isomorphism) and this makes sense for all mathematical structures (of the

same logical type) not just the structures given by transitive sets which I am

discussing here. However the case of transitive sets is quite special, if π : X →

Y is both an elementary embedding and a surjection then π is the identity

function.

Suppose X is a transitive set and U is a free ultrafilter over some index

set I. Then one can form the ultrapower, XI/U , to both define a new struc-

ture from X and an elementary embedding from X to this new structure–

the points of XI/U are equivalence classes [f ]U of functions f : I → X
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where f ∼ g if {a ∈ I | f(a) = g(a)} ∈ U and one defines [f ]U ∈U [g]U if

{a ∈ I | f(a) ∈ g(a)} ∈ U . The elementary embedding sends a to [fa]U where

fa is the constant function with value a.

For example, if X = ω then the ultrapower XI/U is linear order. In general

unless X is finite, the ultrapower XI/U is not isomorphic to a transitive set. If

however the ultrafilter U is closed under countable intersections then for each

transitive set X, the ultrapower XI/U is isomorphic to a transitive set Y and

both Y and the isomorphism are unique. I note that in this situation, if the

ultrapower is nontrivial (for example, if the ultrapower XI/U is not isomorphic

to X), then the set X must be very large. This is because if U is closed under

countable intersections then U must be closed under intersections of cardinality

δ for relatively large δ. This is the entry point for new notions of mathematical

infinity which transcend the usual classical notions of infinity. It is such notions

of infinity–completely unknown at the time of Luzin’s questions and directly

the result of the influence of mathematical logic within Set Theory–which are

the key to resolving Luzin’s questions. But surprisingly the explanation begins

with yet another notion within Set Theory and this notion has nothing a priori

to do with such (or any) strong axioms of infinity.

4. The Hierarchy of Large Cardinals,

Determinacy, and the Answers to Luzin’s

Questions

Suppose A ⊆ R. There is an associated infinite game involving two players. The

players alternate choosing εi ∈ {0, 1}. After infinitely many moves an infinite

binary sequence 〈εi : i ∈ N〉 is defined. Player I wins this run of the game if

Σ
∞

i=1εi/2
i
∈ A

otherwise Player II wins. Either player could choose to follow a strategy which

is simply a function

τ : SEQ → {0, 1}

where SEQ is the set of all finite binary sequences 〈ε1, . . . , εn〉. The strategy

τ is a winning strategy for that player if by following τ , that player wins no

matter how the other player moves. Trivially if [0, 1] ⊆ A then every strategy

is a winning strategy for Player I and if A ∩ [0, 1] = ∅ then every strategy is

a winning strategy for Player II. The set A is determined if there is a winning

strategy for one of the players in the game associated to A.

Gale and Stewart [5] proved that if A is a closed set then A is determined and

they asked whether this is also true when A is borel. Mycielski and Steinhaus

[20] took a much bolder step and formulated 50 years ago the axiom AD.

Definition 1 (Mycielski, Steinhaus). Axiom of Determinacy (AD): Every set

A ⊆ R is determined. ut
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The axiom AD is refuted by the Axiom of Choice and so it is false. But

restricted versions have proven to be quite important and provide the answers

(yes) to Luzin’s questions, [18], [19], and [20].

Definition 2. Projective Determinacy (PD): Every projective set A ⊆ R is

determined. ut

Theorem 3. Assume every projective set is determined.

(1) (Mycielski, Steinhaus) Every projective set has the property of Baire.

(2) (Mycielski, Swierczkowski) Every projective set is Lebesgue measurable.

(3) (Moschovakis) Every projective set A ⊆ R × R can be uniformized by a

projective function. ut

The axiom PD yields a rich structure theory for the projective sets and

modulo notions of infinity no question about the projective sets is known to

be unsolvable on the basis of ZFC + PD. But is PD even consistent and if

consistent is PD true? The answers to both questions is yes but this involves

another family of axioms, these are large cardinal axioms which are axioms of

strong infinity. The basic modern form of these axioms is as follows where a

classM is transitive if each element ofM is a subset ofM (just as for transitive

sets). A cardinal κ is a large cardinal if there exists an elementary embedding,

j : V →M

such that M is a transitive class and κ is the least cardinal such that j(α) 6= α.

This is the critical point of j, denoted CRT(j). By requiring more sets to belong

to M , possibly in a way that depends on action of j on the cardinals, one

obtains a hierarchy of notions. The obvious maximum here, taking M = V , is

not possible (it is refuted by the Axiom of Choice by a theorem of Kunen). In

some cases the large cardinal axiom of interest holding at κ is specified by the

existence of many elementary embeddings and possibly elementary embeddings

with smaller critical points that the cardinal κ.

The careful reader might object to the reference to classes but in all instances

of interest one can require M and j be definable classes (from parameters but

in a simple manner) and j need only be elementary with respect to rather

simple formulas. The situation is analogous to that in Number Theory where

one frequently refers to infinite collections such as the set of prime numbers.

This does not require that one work in a theory of infinite sets–similarly the

reference to j and M here in all the relevant instances does not require in

general that one work in a theory of classes.

In this scheme the simplest large cardinal notion is that of a measurable

cardinal. A cardinal κ is measurable if there exists an elementary embedding

j : V → M such that κ = CRT(j). This is not the usual definition (rather it is

a theorem) but it is equivalent. The standard definition is that an uncountable
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cardinal κ is a measurable cardinal if there exists an ultrafilter µ on κ (more

precisely on the complete boolean algebra given by P(κ)) which is nonprincipal

(i.e., free) and which is closed under intersections of cardinality δ for all δ < κ.

Given µ one can form the ultrapower of the universe of sets, V κ/µ, show that

this ultrapower is isomorphic to a transitive class, and so generates an elemen-

tary embedding as above. Conversely given an elementary embedding j with

CRT(j) = κ, define µ = {A ⊆ κ | κ ∈ j(A)}. It follows that µ is a nonprincipal

ultrafilter on κ which is closed under intersections of cardinality δ for all δ < κ.

Beside measurable cardinals, there are strong cardinals, Woodin cardinals,

superstrong cardinals, supercompact cardinals, extendible cardinals, huge cardi-

nals, and much more. These I shall not define with exception of supercompact

and extendible cardinals but I shall defer these particular definitions until Sec-

tion 10. I refer the reader to the excellent exposition [10] for details and the

history of the development of large cardinal axioms. I also note that all these

large cardinal notions have equivalent reformulations in terms of ultrapowers

or direct limits of ultrapowers.

The connection between Projective Determinacy and large cardinal axioms

is given in the next two theorems the first of which is the seminal theorem of

Martin and Steel [15]. These theorems proved in 1985 and 1987, respectively,

brought to a close a chapter which began over 60 years earlier with the questions

of Luzin. But as I hope to show in a convincing fashion, the real story was just

beginning.

Theorem 4 (Martin, Steel). Assume there are infinitely many Woodin cardi-

nals. Then every projective set is determined. ut

Theorem 5 (Woodin). The following are equivalent.

(1) Every projective set is determined.

(2) For each n < ω there is a countable (iterable) model M such that

M � ZFC + “There exist at least n Woodin cardinals”. ut

With these theorems one can assert that PD is both consistent and true and

this represents a mathematical milestone since we now have the axioms for the

structure,

〈P(N),N,+, ·,∈〉,

which are the correct extension of the Peano axioms for the structure 〈N,+, ·〉.

Can this success be extended to the entire universe of sets?

5. Rank-universal Sentences and the

Cumulative Hierarchy

The cumulative hierarchy stratifies the universe of sets. The definition involves

transfinite iterations of the operation of taking powersets. Recall that for each
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set X, the powerset of X, denoted P(X), is the set of all subsets of X. Now

define by induction on the ordinal α a set Vα as follows.

1. V0 = ∅.

2. (Successor step) Vα+1 = P(Vα).

3. (Limit step) Vα = ∪{Vβ | β < α}.

It is a consequence of the axioms ZFC that for each ordinal α, Vα exists and

moreover that for each set X there exists an ordinal α such that X ∈ Vα.

The set Vα is the rank initial segment of V determined by the ordinal α. This

calibration of V suggests that to understand V one should simply proceed by

induction on α, analyzing Vα.

The integers appear in Vω, the reals appear in Vω+1, and all sets of reals

appear in Vω+2. The projective sets in their incarnation as relations of Sec-

ond Order Number Theory appear in effect in Vω+1 since Vω+1 is logically

bi-interpretable with 〈P(N),N,+, ·,∈〉. Given the amount of mathematical ef-

fort and development which was required to understand Vω+1 just to the point

where one could identify the correct axioms for Vω+1, and noting that this is

an infinitesimal fragment of the Universe of Sets, the prospects for understand-

ing V to this same degree, or even just Vω+2 which would reveal whether the

Continuum Hypothesis is true, is a daunting task.

I take a strong, perhaps unreasonable position, on this. The statement that

Projective Determinacy is consistent is a new mathematical truth. It predicts

facts about our world, for example that in the next 1000 years, so by ICM

3010, there will be no contradiction discovered from Projective Determinacy by

any means. Of course one could respond with the observation that with each

new theorem of mathematics comes such a prediction. For example from Wiles’

proof of Fermat’s Last Theorem, one has the superficially similar prediction

that no counterexample to FLT will be discovered. But this prediction, while

certainly a new prediction, is reducible by finite means (i.e. the proof) to a

previous prediction–namely that the axioms (whatever they are) necessary for

Wiles’ proof will not be discovered to be contradictory. This is not the case for

the prediction I have made above. That prediction is a genuinely new prediction

which is not reducible by finite means to any previously held prediction (say

from before 1960). This is the nature of the investigation of large cardinal

axioms which sets it apart from other mathematical enterprises. But now there

is a dilemma. The claim that a large cardinal axiom is consistent, such as

the claim that the existence of Woodin cardinals is consistent, would seem

ultimately to have to be founded on a conception of truth for the Universe of

Sets which includes the existence of these large cardinals. But if our axioms

for this Universe of Sets fail to resolve even the most basic questions about the

Universe of Sets, such as that of the Continuum Hypothesis, then ultimately

what sense is there to the claim that large cardinals exist? This is perhaps

tolerable on a temporary basis during a period of axiomatic discovery but it

certainly cannot be the permanent state of affairs.
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The alternative position–that consistency claims can never be meaningfully

made–is simply a rejection of the infinite altogether. And what if my prediction

is correct and an instance of an evolving series of ever stronger similarly correct

predictions? How will this skeptic explain that?

In any case an incremental approach might be prudent and so I shall restrict

attention to sentences about the universe of sets of a particular form. A sentence

φ is a rank-universal sentence if for some sentence ψ, φ asserts that

Vα � ψ

for all ordinals α. Similarly a sentence φ is a rank-existential sentence if for

some sentence ψ, φ asserts that there exists an ordinal α such that Vα � ψ.

For any sentence ψ, the assertion that

Vω+2 � ψ

is both rank-universal and rank-existential and so the Continuum Hypothesis

is expressible as both a rank universal sentence and a rank existential sentence.

There is nothing particularly special about the ordinal ω here or for that matter

about 2 either. For example if δ0 is the least Woodin cardinal then for any

sentence ψ, the assertion that

Vδ0+ω � ψ

is both rank-universal and rank-existential, etc.

6. The Effective Cumulative Hierarchy: L

Gödel’s definition of L arises from restricting the successor step in the definition

of the cumulative hierarchy. For each set X, let PDef(X) be the set of all Y ⊆ X

such that Y is logically definable in the structure (X,∈) from parameters in X.

If X is infinite and the Axiom of Choice holds then PDef(X) is never the set of

all subsets of X. Now define Lα by induction on α as follows.

1. L0 = ∅,

2. (Successor case) Lα+1 = PDef(Lα),

3. (Limit case) Lα = ∪{Lβ | β < α}.

Definition 6. L is the class of all sets X such that X ∈ Lα for some

ordinal α. ut

The axiom “V = L” is Gödel’s Axiom of Constructibility and this axiom is

expressible by a rank-universal sentence.

Theorem 7. Assume V = L.

(1) (Gödel) Every projective set A ⊆ R×R can be uniformized by a projective

function.
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(2) (Gödel) There is a projective set which is not Lebesgue measurable (there

is a projective wellordering of the reals).

(3) (Scott) There are no measurable cardinals. ut

Scott’s Theorem was proved just before the seminal work of Cohen and so

provided the first consistency proof that V 6= L. My own view is more extreme

on the significance of Scott’s Theorem:

Corollary 8. V 6= L. ut

It is Scott’s Theorem which shows that to find canonical models in which

large cardinal axioms hold one must somehow enlarge L. This is the Inner

Model Program.

7. L(R) and AD

By relativizing L to R one obtains L(R) which provides a transfinite extension

of the projective sets. The formal definition proceeds by first defining Lα(R)

by induction on α:

1. L0(R) = R (more precisely L0(R) = Vω+1),

2. (Successor case) Lα+1(R) = PDef(Lα(R)),

3. (Limit case) Lα(R) = ∪{Lβ(R) | β < α}.

Definition 9. L(R) is the class of all sets X such that X ∈ Lα(R) for some

ordinal α. ut

The projective sets are precisely the sets in

L1(R) ∩ P(R)

and

Lω1
(R) ∩ P(R)

is the smallest σ-algebra containing the projective sets and closed under images

by continuous functions, f : R → R. The collection P(R)∩L(R) is a transfinite

extension of the projective sets.

A natural axiom generalizing the axiom that all projective sets are deter-

mined is the axiom, “L(R) � AD”, which is simply the axiom which asserts

that every set A ∈ L(R) ∩ P(R) is determined.

Theorem 10 (Martin, Steel, Woodin). Assume there are infinitely many

Woodin cardinals with a measurable cardinal above. Then L(R) � AD. ut
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The proof of the theorem involves combining [15] with methods from pre-

vious results and something like the measurable cardinal is necessary but only

just barely. The following theorem clarifies the situation by providing an ex-

act match to the axiom “L(R) � AD” within the hierarchy of large cardinals

axioms and from the perspective of the formal consistency of theories.

Theorem 11 (Woodin). The following theories are equiconsistent.

(1) ZFC + “L(R) � AD”.

(2) ZFC + “There are infinitely many Woodin cardinals”. ut

The axiom, L(R) � AD, gives a complete analysis of L(R) extending the

analysis that the axiom, all projective sets are determined, provides for the pro-

jective sets. For example Moschovakis’s theorem on uniformization generalizes

to show that for many ordinals α, assuming all sets in Lα(R)∩P(R) are deter-

mined, uniformization holds in Lα(R). This includes all countable α and quite

a bit more. Subsequent work of Steel has exactly characterized these ordinals.

Of course assuming V = L, uniformization holds in L(R) since in this case

L(R) = L. But if uniformization holds in L(R) then the Axiom of Choice

must hold in L(R) and so in L(R), uniformization implies that L(R) 6� AD.

Thus there is mathematical tension between uniformization and the regularity

properties such as Lebesgue measurability and having the property of Baire.

Theorem 12 (Woodin). Suppose that uniformization holds in Lα(R) and that

α = ω1 · β for some limit ordinal β. Then the following are equivalent.

(1) Every set A ∈ Lα(R)∩P(R) is Lebesgue measurable and has the property

of Baire.

(2) Every set A ∈ Lα(R) ∩ P(R) is determined. ut

The proof of the theorem uses rather elaborate machinery to construct given

A ∈ Lα(R) ∩ P(R) and assuming (1), a countable transitive set M such that

A∩M ∈M and such that inM there are Woodin cardinals sufficient to establish

that A ∩M is determined. There is an additional requirement that M ∩ A be

correct about whether a strategy is a winning strategy in the game associated

to A and so the determinacy of A ∩M within M yields the determinacy of A.

By a remarkable theorem of Steel the restriction on α is necessary, in par-

ticular Theorem 12 does not hold with α = ω1 and this fact argues strongly

that there is no elementary proof of the theorem even in specific cases such as

α = ω1 · ω1 where the theorem does hold.

The previous theorem is now one of many analogous theorems which have

been proved, including recent dramatic results of Sargsyan [21]. These theorems

collectively confirm that the understanding of determinacy plays a central role

in modern Set Theory. The ubiquity of Projective Determinacy in infinitary

combinatorics is often cited as an independent confirmation of its truth.
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8. The Universally Baire Sets

For any set E there is an associated enlargement of L, denoted L[E], which is

defined as follows. For each ordinal α, Lα[E] is first defined by induction on α:

1. L0[E] = ∅

2. (Successor case) Lα+1[E] = PDef(Lα[E] ∪ {E ∩ Lα[E]}),

3. (Limit case) Lα[E] = ∪{Lβ [E] | β < α}.

Then L[E] is defined as the class of all sets X such that X ∈ Lα[E] for some

ordinal α. One can also in analogous fashion modify the definition of L(R) to

define L(R)[E]. I caution that L[R] = L and so in general L(R) 6= L[R].

Assuming the Axiom of Choice for any set X there exists a set E such that

X ∈ L[E] (this is equivalent to the Axiom of Choice). So for the Inner Model

Program where one seeks structural generalizations of L one must somehow

restrict the choices of E.

For the case of measurable cardinals there is an elegant solution to the choice

of E. Suppose that κ is a measurable cardinal and let

j : V →M

be an associated elementary embedding with CRT(j) = κ. Define an ultrafilter

µ on κ by A ∈ µ if κ ∈ j(A). Then µ is a nonprincipal ultrafilter on κ closed

under intersections of cardinality δ for all δ < κ. The enlargement of L given

by L[µ] turns out to be a true generalization of L.

Theorem 13 (Kunen). Suppose κ is a measurable cardinal with associated

ultrafilter µ.

(1) L[µ] and µ ∩ L[µ] each depend only on κ.

(2) L[µ] ∩ R is independent of both κ and µ.

(3) L[µ] � “κ is the only measurable cardinal”. ut

Theorem 14 (Silver). Suppose κ is a measurable cardinal with associated ul-

trafilter µ. Then

L[µ] � “There is a projective wellordering of the reals”. ut

One can also consider L(R)[µ], the associated enlargement of L(R).

Theorem 15. Suppose κ is a measurable cardinal with associated ultrafilter µ.

(1) (Kunen) L(R)[µ] ∩ P(R) is independent of both κ and µ.

(2) (Woodin) Suppose there are infinitely many Woodin cardinals with at least

two measurable cardinals above. Then L(R)[µ] � AD. ut
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In general the enlargements of L produced by the Inner Model Program

have companion enlargements of L(R). If we cannot yet define an ultimate inner

model perhaps we can nevertheless define the ultimate extension of P(R)∩L(R).

It turns out that assuming there is a proper class of Woodin cardinals, we can.

Even more we can define the order in which these sets of reals are generated by

that ultimate enlargement of L adapted to produce an enlargement of L(R).

The following definition is from [4].

Definition 16. A set A ⊆ R is universally Baire if for all topological spaces

Ω and for all continuous functions π : Ω → R, the preimage of A by π has the

property of Baire in the space Ω. ut

One can restrict to only those spaces Ω which are compact Hausdorff spaces

and obtain an equivalent definition. The definition that a set A ⊆ R × R is

universally Baire is identical. A partial function f : R → R is universally Baire

if its graph is universally Baire. Given A ⊆ R one defines L(A,R) following the

definition of L(R) except L0(A,R) = L0(R) ∪ {A}.

Theorem 17. Suppose that there is a proper class of Woodin cardinals.

(1) (Martin-Steel) Suppose A ⊆ R is universally Baire. Then A is determined.

(2) (Woodin) Suppose A ⊆ R is universally Baire. Then every set B ∈

L(A,R) ∩ P(R) is universally Baire.

(3) (Steel) Suppose A ⊆ R×R is universally Baire. Then A can be uniformized

by a universally Baire function. ut

There is an ordinal measure of complexity for the universally Baire sets–

this can be defined a number of ways and I define a somewhat coarse notion

using a definition which is just for this account. Suppose A and B are subsets

of R. Define A to be borel reducible to B, written A ≤borel B, if there is a

borel function π : R → R such that either A = π−1
[B] or A = R\π−1

[B].

Define A <borel B if A ≤borel B but B 6≤borel A. Finally define A and B to be

borel bi-reducible if both A ≤borel B and B ≤borel A. The borel degree of A is

the equivalence class of all sets which are borel bi-reducible with A. The borel

degree of a set A ⊆ R is analogous to the Turing degree of a set A ⊆ N.

The following lemma is an immediate corollary of the rather remarkable

Wadge’s Lemma from the theory of determinacy together with the determinacy

of the universally Baire sets. The subsequent theorem is similarly a corollary

of a fundamental theorem of Martin on the Wadge order.

Lemma 18. Assume there is a proper class of Woodin cardinals. Suppose that

A and B are universally Baire subsets of R.

(1) Either A ≤borel B or B ≤borel A,

(2) Suppose A <borel B. Then there is a borel function π : R → R such that

A = π−1
[B]. ut
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Theorem 19. Assume there is a proper class of Woodin cardinals. There is

no sequence 〈Ai : i < ω〉 of universally Baire sets such that for all i < ω,

Ai+1 <borel Ai. ut

Thus, assuming there is a proper class of Woodin cardinals, the borel de-

grees of the universally Baire sets are linearly ordered by borel reducibility and

moreover this linear order is a wellorder.

I illustrate the relevance of this to the Inner Model Program. Suppose that

there is proper class of Woodin cardinals and consider the enlargement of L(R)

given by L(R)[µ] as discussed above. Then the sets in L(R)[µ] ∩ P(R) are all

universally Baire. Suppose that A,B ∈ L(R)[µ]∩P(R) and that for some ordinal

α, A ∈ Lα(R)[µ] but B /∈ Lα(R)[µ]. Then A <borel B.

In general, the ranking of the universally Baire sets given by borel reducibil-

ity must refine the order of generation of these sets in any possible enlargement

of L adapted to define an enlargement of L(R). The point here is that for any

transitive set X, if A ≤borel B and B ∈ PDef(X) then A ∈ PDef(X).

In summary, the sets generated by any possible enlargement of L (subject

only to very general constraints) adapted to define an enlargement of L(R)

defines an initial segment of the universally Baire sets relative to the order

of borel reducibility. The extent of that initial segment is determined by the

extent of the large cardinal axioms which hold in the initial segments of that

enlargement.

9. Ω-logic and the Ω Conjecture

The foundational issues of truth in Set Theory arise because of Cohen’s method

of forcing and I shall refer in this paper to extensions obtained by the method of

forcing as Cohen extensions. Cohen extensions are the source of the profound

unsolvability of problems such as that of the Continuum Hypothesis which

makes these problems seem so intractable. This is in contrast to Luzin’s ques-

tions about the projective sets which we have seen are resolved by simply invok-

ing strong notions of infinity. Perhaps then the best one can do is a multiverse

conception of the universe of sets. To illustrate suppose that M is a countable

(transitive) model of ZFC (of course one cannot prove such a set exists with-

out appealing to large cardinal axioms). Let V(M) be the smallest collection

of countable transitive models such that if (M0,M1) is any pair of countable

transitive models with M1 a Cohen extension of M0, if either M0 ∈ V(M) or

M1 ∈ V(M) then both models are in V(M). V(M) is the generic multiverse

generated by M . Taking M to be V itself, this defines the generic-multiverse.

Of course one is interested in the corresponding notion of truth. So a sen-

tence φ is true in the generic-multiverse generated by V if φ is true in each

universe of the generic-multiverse generated by V . This can be made perfectly

precise (without quantifying over classes) and I shall give a relatively simple re-

formulation at least for rank-universal sentences. It turns out that for essentially
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all large cardinal axioms (and certainly all listed in this account), the existence

of a proper class of κ witnessing the large cardinal axiom, is invariant across

the generic-multiverse generated by V . For example the existence of a proper

class of Woodin cardinals if true in one universe of the generic-multiverse gen-

erated by V , is true in every universe of the generic-multiverse generated by V

[8]. Thus a generic-multiverse conception of the universe of sets could provide

a framework for set theoretic truth which allows one to confirm the consistency

of large cardinal axioms, even confirm that Projective Determinacy is true, and

yet not resolve questions such as that of the Continuum Hypothesis. But only

if such a conception of truth is compatible with the basic principles of infinity

on which ZFC is founded.

There is a remarkable consequence of large cardinal axioms which gives a

very simple equivalent definition (modulo the definition of Cohen’s method of

forcing) that a rank-universal sentence is true in the generic-multiverse gener-

ated by V .

Theorem 20. Suppose that there is a proper class of Woodin cardinals and

that φ is a rank-universal sentence. Then the following are equivalent.

(1) φ is true in the generic-multiverse generated by V .

(2) φ is true in all Cohen extensions of V . ut

To say that a rank-universal sentence is true in all Cohen extensions of V is

itself a rank-universal sentence. So this theorem shows that in the context of a

proper class of Woodin cardinals, the assertion that a rank-universal sentence

is true in the generic-multiverse generated by V is itself a rank-universal sen-

tence. I note that without the indicated large cardinal hypothesis, the previous

theorem is false. For example the conclusion of the theorem is false if V is a

Cohen extension of L and R 6⊆ L.

The generic-multiverse conception of truth is connected by the previous

theorem to Ω-logic.

Definition 21. Suppose φ is a rank-universal sentence. Then φ is Ω-valid,

written �Ω φ, if φ is true in all Cohen extensions of V . ut

Is there a notion of proof for Ω-logic? This leads back to the universally

Baire sets.

Definition 22. Suppose A ⊆ R is universally Baire and M is a countable

transitive model of ZFC. Then M is strongly A-closed if A ∩ N ∈ N for all

countable transitive sets N such that N is a Cohen extension of M . ut

Definition 23. Assume there is a proper class of Woodin cardinals. Suppose

φ is a rank-universal sentence. Then φ is Ω-provable, written `Ω φ, if there is a

universally Baire set A ⊆ R such that if M is a countable transitive model of

ZFC and M is strongly A-closed then M � “�Ω φ”, or equivalently N � φ for

all countable transitive sets N such that N is a Cohen extension of M . ut
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The ordinal rank of complexity that I defined for universally Baire sets

provides a very reasonable notion of length of proof and so Ω-logic shares many

features with classical logic.

I now come to the Ω Conjecture and the issue is whether Ω-validity implies

Ω-provability.

Definition 24 (The Ω Conjecture). Assume there is a proper class of Woodin

cardinals and φ is a rank-universal sentence. Then φ is Ω-valid if and only if φ

is Ω-provable. ut

How does the Ω Conjecture impact the generic-multiverse conception of

truth? There are two relevant theorems. The point is that for rank-universal

sentences, truth in the generic-multiverse is equivalent to Ω-validity and so to

Ω-provability if the Ω Conjecture holds (nontrivially).

Theorem 25. Suppose that there is a proper class of Woodin cardinals and let

δ0 be the least Woodin cardinal. Assume the Ω Conjecture holds. Then the set

of rank-universal sentences which are Ω-valid is definable in Vδ0+1. ut

Let T0 be the set of sentences ψ such that “ Vω+2 � ψ” is a generic-multiverse

truth and let T be the set of all rank-universal sentences which are generic-

multiverse truths. Clearly T0 is reducible to T . The second theorem shows

that assuming the Ω Conjecture (and that there is a proper class of Woodin

cardinals) then these two sets have the same computational complexity by

showing that T is reducible to T0 (and the proof gives the explicit reduction).

Theorem 26. Suppose that there is a proper class of Woodin cardinals and

assume the Ω Conjecture holds. Then T is recursively reducible to T0. ut

Why is this a problem? Assuming the Ω Conjecture (and that there is a

proper class of Woodin cardinals), then the second theorem shows that the

whole hierarchy of rank-universal truth–in the generic-multiverse conception of

truth–collapses to simply the truths of Vω+2. Moreover augmented by a second

conjecture, the Ω Conjecture yields a strong form of the first theorem–namely

that this set of sentences is actually definable in Vω+2.

This collapse is completely counter to the fundamental principles concerning

infinity on which Set Theory is founded. Moreover since Vω+2 is in essence just

the standard structure for Third Order Number Theory, this collapse shows

that the generic-multiverse conception of truth (for rank-universal sentences)

is simply a version of third order formalism. If the Ω Conjecture is true then

the generic-multiverse conception of truth is untenable.

No viable alternative multiverse conception of truth is known that survives

the challenge posed by the Ω Conjecture and this seems to argue for a multiverse

of one universe which leads us back to searching for generalizations of the axiom

V = L and the Inner Model Program.

Perhaps this all is simply evidence that the Ω Conjecture is false. The Ω Con-

jecture is invariant across the generic multiverse generated by V and so a rea-

sonable conjecture is that if the Ω Conjecture can fail then it must be refuted by



520 W. Hugh Woodin

some large cardinal axiom. But the Ω Conjecture holds in all the enlargements

of L produced by the Inner Model Program and so to the extent this program

succeeds in analyzing large cardinal axioms, no large cardinal axiom can refute

the Ω Conjecture.

10. Extenders, Supercompact Cardinals, and

HOD

It is Scott’s theorem that if V = L then there are no measurable cardinals which

necessitates the search for generalizations of the definition of L in which large

cardinal axioms can hold. This is reinforced by Gödel’s theorem that shows that

if V = L then one cannot have the true theory of the projective sets: projective

determinacy must fail and moreover there are pathological projective sets.

But how should one enlarge L? The enlargements are of the form L[E] for

some set (or class) E. The problem is to identify sets E for which L[E] is a

generalization of L from the perspective of definability. Since the issue is large

cardinal axioms, these sets should somehow be derived from large cardinals. The

relevant key notion is that of an extender, the modern formulation is due to

Jensen and based on an earlier formulation due to Mitchell. There are precursors

due to Powell (in a model theoretic context) and to Jensen, see [10] for more

details. To simplify this exposition I deviate from the standard definition of an

extender and use a definition which is in some ways more restricted, in other

ways more general, but in all ways less technical to state.

Definition 27. A function, E : P(γ) → P(γ) where γ is an ordinal, is an

extender of length γ if there exists an elementary embedding j : V → M such

that

1. CRT(j) < γ and Vγ+ω ⊆M ,

2. for all A ⊆ γ, E(A) = j(A) ∩ γ. ut

If E is an extender it is convenient to define CRT(E) = CRT(j) where j :

V → M witnesses that E is an extender. This is well-defined and CRT(E) is

easily computed from E itself.

Let’s look at an example. Suppose j : V →M is an elementary embedding

with CRT(j) = κ and with Vκ+ω ⊂ M . Recall that the associated ultrafilter µ

on κ is defined by A ∈ µ if κ ∈ j(A). Let

E : P(κ+ 1) → P(κ+ 1)

be the associated extender of length κ+1, this is the shortest possible extender

defined from j. Then L[E] = L[µ]. Unfortunately if κ < γ ≤ j(κ), Vγ+ω ⊂ M ,

and if E is the associated extender of length γ, then nothing changes; L[E] is

closed under E and L[E] = L[µ]. Therefore L[E] where E is a single extender
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is not a rich enough enlargement of L. For this reason (and others) one must

use sequences of fragments of extenders to construct the inner models. All the

information required is encoded into a set (or even possibly a class) E ⊂ Ord

and the enlargement of L produced is the class L[E].

Definition 28. Suppose E ⊂ Ord. Then E(L[E]:V ) denotes the class of all

F ∩ L[E] such that F is an extender, F ∩ L[E] ∈ L[E], and such that F ∩ L[E]

is an extender in L[E]. ut

In general the difficulty in constructing E is arranging that E(L[E]:V ) is

rich enough to witness that the targeted large cardinal axiom holds within

L[E] while simultaneously arranging that L[E] is canonical. It is the tension

between these two goals which generates the difficulties. It is the richness of

E(L[E]:V ) which calibrates where the enlargement of L given by L[E] sits in

the hierarchy of all enlargements of L. I have not defined what it means for

L[E] to be canonical but there is an easily stated variation of this requirement

that modulo possibly passing to a Cohen extension of V can be imposed with

no additional difficulty, it is the requirement that the sets in P(R) ∩ L(R)[E]

be universally Baire or even just that L(R)[E] � AD.

The critical large cardinal notion is due to Reinhardt and Solovay from

nearly 40 years ago. The definition below is based on a reformulation due to

Magidor.

Definition 29. A cardinal δ is a supercompact cardinal if for all γ > δ there

exist γ̄ < δ and an elementary embedding j : Vγ̄+1 → Vγ+1 such that j(δ̄) = δ

where δ̄ = CRT(j). ut

This definition of a supercompact cardinal is closely related to the definition

of an extendible cardinal which is due to Reinhardt and which is a much stronger

large cardinal notion.

Definition 30. A cardinal δ is an extendible cardinal if for all γ > δ there exist

γ̄ > δ and an elementary embedding j : Vγ+1 → Vγ̄+1 such that CRT(j) = δ

and j(δ) > γ. ut

If E is an extender then E can be used to construct an elementary em-

bedding jE : V → ME as a direct limit of elementary embeddings given by

ultrapowers. If E is a collection of extenders then E witnesses that δ is a super-

compact cardinal if the elementary embeddings jE |Vα where E ∈ E suffice to

witness the definition above that δ is supercompact. I can now state the recent

theorems which show that by the level of exactly one supercompact cardinal

something remarkable happens [29].

Theorem 31. Suppose E ⊂ Ord, δ is supercompact in L[E] and this is wit-

nessed in L[E] by E(L[E]:V ). Suppose F is an extender of strongly inaccessi-

ble length such that L[E] is closed under F and such that CRT(F ) ≥ δ. Then

F ∩ L[E] ∈ L[E]. ut
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I note that L is closed under all extenders and more generally if N is any

transitive class which contains the ordinals and if sufficient large cardinals exist

in V then necessarily N is closed under F for a rich class of extenders F of

strongly inaccessible length. Therefore the requirements that L[E] be closed

under F and F have strongly inaccessible length are not a very restrictive

requirements.

To date the basic methodology of constructing inner models L[E] which gen-

eralize L is such that if F is an extender in L[E], then F is given by an intial

segment of an extender specified explicity by E, [22]. Roughly, E is constructed

as a sequence of extender fragments and if F is an extender of L[E] then F is

an initial segment of a fragment on the sequence E. This has always seemed an

essential feature of the detailed analysis of L[E] and it is closely related to why

each new construction of L[E] has come with an associated generalization of

Scott’s Theorem (that there are no measurable cardinals in L). The previous

theorem easily yields a complete reversal of this at the level of one supercom-

pact cardinal. For example if κ > δ is an extendible cardinal then κ must be

a supercompact cardinal in L[E] and this generalizes to essentially all large

cardinal notions.

The next theorem–which is also closely related to the previous theorem–

gives yet another measure of the transcendence of and possible construction

of L[E] at the level of one supercompact cardinal. at least in a background

universe of sufficient large cardinal strength, must correctly compute the proof

relation for Ω-logic.

Theorem 32. Suppose there is a proper class of extendible cardinals. Suppose

E ⊂ Ord, δ is supercompact in L[E] and this is witnessed in L[E] by E(L[E]:V ).

Then for all rank-universal sentences φ the following are equivalent.

(1) `Ω φ.

(2) L[E] � “`Ω φ”. ut

I require another definition due to Gödel. This definition is of the class

HOD of all hereditarily ordinal definable sets and here I give an equivalent

reformulation of Gödel’s definition which highlights it as some sort of merge of

the definitions of the cumulative hierarchy and that of L.

Definition 33. HOD is the class of all sets X such that there exist α ∈ Ord

and A ⊆ α such that A is definable in Vα without parameters and such that

X ∈ L[A]. ut

If V = L then HOD = L but if for example L(R) � AD then HOD 6= L.

The class HOD is not in general canonical, for example by passing to a Cohen

extension of V one can arrange that any designated set of V be an element of

HOD as defined in the extension.

There is a remarkable theorem of Vopenka which connects HOD and Co-

hen’s method of forcing, see [10]. This theorem illustrates why Cohen’s method
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is so central in Set Theory and for reasons other than simply establishing inde-

pendence results. If G ⊂ Ord then HODG is simply HOD defined allowing G

as a parameter (so G ∈ HODG).

Theorem 34 (Vopenka). For each set G ⊂ Ord, if G /∈ HOD then HODG is

a Cohen extension of HOD. ut

With these definitions I can pose two questions any positive solution to

which will likely involve the successful extension of the Inner Model Program to

the level of one supercompact cardinal–in the sense of producing (subject to the

requirements of the program) E ⊂ Ord such that for some δ, δ is supercompact

in L[E] and this is witnessed in L[E] by E(L[E]:V ). For the first question it is

entirely possible that there be a positive solution obtained by other means but

not (I believe) for the second question. The first question involves E(HOD:V )

which is defined in the natural fashion: E(HOD:V ) is the class of all F ∩HOD

such that F is an extender, F ∩ HOD ∈ HOD, and such that F ∩ HOD is an

extender in HOD.

Suppose that there is a proper class of Woodin cardinals and that δ

is an extendible cardinal. Must E(HOD:V ) witness in HOD that δ

is a supercompact cardinal?

A positive solution to this question would have significant consequences in

Set Theory independent of whether the solution has anything to do with the

Inner Model Program.

I give an example. Consider the ultimate large cardinal axiom–that of the

existence of a Reinhardt cardinal–which asserts there is a nontrivial elementary

embedding j : V → V . This axiom as I have noted is refuted by the Axiom of

Choice. But is the axiom consistent with ZF? The axiom AD is refuted by the

Axiom of Choice and yet as we have seen, not only is ZF+AD consistent (the

theory holds in L(R)), this theory is of fundamental interest (again because it

holds in L(R)).

But the existence of a Reinhardt cardinal can be shown to imply the con-

sistency with the Axiom of Choice of all the other large cardinal axioms I have

mentioned [29]. So what can possibly provide the basis for the claim that the

existence of Reinhardt cardinals is consistent with ZF? Certainly not their ex-

istence since that would deny the Axiom of Choice.

A positive answer to the question above would yield as a corollary that

in ZF if there is a proper class of supercompact cardinals then there are no

Reinhardt cardinals and very likely yield the outright nonexistence of Reinhardt

cardinals–this would resolve a key foundational issue. More fundamentally and

in an ironic twist since one early motivation of the study of the projective sets

was a rejection of the Axiom of Choice, the positive answer will reveal deep

connections between large cardinal axioms and proving instances of the Axiom

of Choice [29].
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The second question is a variant of the first question and the formulation

involves the universally Baire sets. The positive solution to this question ar-

guably must involve the successful extension of the Inner Model Program to

the level of one supercompact cardinal.

Suppose that there is a proper class of Woodin cardinals and that

there is a supercompact cardinal. Must there exist δ and E ⊂ Ord

such that for all x ∈ R∩L[E] there is a universally Baire set A ⊆ R

such that:

(1) δ is supercompact in L[E] and this is witnessed in L[E] by

E(L[E]:V ).

(2) x ∈ N where N is HOD as defined in L(A,R)?

The answer to the latter question is yes for Woodin cardinals. These are

difficult constructions which evolved over 20 years and involved substantial

contributions from quite a number of mathematicians. The basic definitions in

their current form are due primarily to Mitchell and Steel over the period 1988-

1999, [17] with revisions [26]. This work was based on earlier work of Martin and

Steel [16], Dodd and Jensen (and others), and there is an alternative scheme

which has subsequently been developed by Jensen, [9].

11. The Axiom for Ultimate-L

Even if one has identified the construction of ultimate-L this does not obvi-

ously yield the axiom that V is ultimate-L. This is in part because not all the

extenders used in the construction survive as extenders in the inner model. The

isolation of the axiom requires a much deeper understanding of the construction

and this is an important issue in the whole program which I have ignored until

now.

By combining the three notions of universally Baire sets, relative con-

structibility, and HOD, I can formulate what I conjecture will be the axiom

that V is ultimate-L. I do this in the context that there is a supercompact

cardinal and a proper class of Woodin cardinals though the latter is ultimately

irrelevant.

The formulation of this axiom involves one last definition. Suppose that

A ⊆ R is universally Baire. Then Θ
L(A,R)

is the supremum of the ordinals α

such that there is a surjection, π : R → α, such that π ∈ L(A,R).

The connection between the determinacy of the projective sets and Woodin

cardinals generalizes to a structural connection illustrated by the following the-

orem where HOD
L(A,R)

denotes HOD as defined within L(A,R).

Theorem 35 (Woodin). Suppose that there is a proper class of Woodin car-

dinals and that A is universally Baire. Then Θ
L(A,R) is a Woodin cardinal in

HOD
L(A,R). ut
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The connection runs much deeper as indicated by the following theorem

of Steel. The Mitchell-Steel extender models are the inner models L[E] which

provide solutions of the Inner Model Program at the level of Woodin cardinals

which I alluded to in the discussion after the two test questions.

Theorem 36 (Steel). Suppose that there is a proper class of Woodin cardinals.

Let δ = Θ
L(R). Then HOD

L(R)
∩ Vδ is a Mitchell-Steel extender model. ut

Theorem 37 (Woodin). Suppose that there is a proper class of Woodin cardi-

nals. Then HOD
L(R) is not a Mitchell-Steel extender model. ut

But then what is HOD
L(R)

? It belongs to a different, previously unknown,

class of extender models, these are the strategic extender models. For a signifi-

cant initial segment of the universally Baire sets, HOD
L(A,R)

has been verified

to be a strategic extender model and there is very strong evidence that this

will be true for all universally Baire sets. Until recently it was not clear at all

what large cardinal axioms could hold in these models. But on the basis of

the foundational questions which I have been discussing combined with associ-

ated mathematical developments, [29], there is compelling evidence (to me) that

these inner models HOD
L(A,R)

∩Vδ where δ = Θ
L(A,R) cannot be limiting in any

way: the only issue (assuming these are strategic extender models) is whether

strategic extender models can exist at the level of one supercompact cardinal

for then just as is the case for extender models, they are transcendent for large

cardinals. There is absolutely compelling evidence that strategic extender mod-

els exist which are transcendent for Ω-logic in the sense of Theorem 32 and from

this perspective it seems perhaps obvious that there must exist strategic exten-

der models at the level of one supercompact cardinal as well. The underlying

point here is that the family of inner models HOD
L(A,R)

∩Vδ where δ = Θ
L(A,R)

and A is universally Baire are collectively transcendent for Ω-logic. Therefore if

these inner models are strategic extender models then strategic extender models

are transcendent for Ω-logic as well.

Extending the theory of extender models to the level of one supercompact

cardinal seems difficult enough, why should there be any optimism that this

can be done for strategic extender models the theory of which has generally

been more difficult. There is a key and fundamental difference. The structure

and theory of strategic extender models will be fully revealed by the inner

models HOD
L(A,R)

where A is universally Baire. So the mathematical problem

is not one of finding the correct definition to satisfy a possibly vague goal, but

rather of the analysis of structures we can already define. Moreover we have a

rich framework provided by determinacy in which to undertake that analysis.

I should emphasize that prior to the proof of Theorem 37, it was not known if

strategic extender models could exist in any reasonable form.

I now come to my main conjecture which is the conjecture that the following

axiom is the axiom that V is ultimate-L. The formulation of the axiom involves

rank-existential sentences as opposed to rank-universal sentences. However it

can be shown that the axiom is expressible as a rank-universal sentence modulo
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the indicated large cardinal hypothesis. There are natural refinements of the

axiom, for example one can allow more complicated sentences and one can en-

large L(A,R) to L(Γ,R) where Γ is a suitable initial segment of the universally

Baire sets.

Axiom. There is a proper class of Woodin cardinals. Further for each rank-

existential sentence φ, if φ holds in V then there is a universally Baire set A ⊆ R

such that

HOD
L(A,R)

∩ VΘ � φ

where Θ = Θ
L(A,R)

. ut

Of course one could have made this conjecture independent of the recent

results about the maximality of the inner model for one supercompact cardinal.

But it is precisely these results which make this conjecture plausible and which

provide a realistic scenario for proving that the axiom above is in fact the axiom

that V is ultimate-L. In [28] and [29] a number of partial results concerning

this conjecture are proved.

Far more speculative is the conjecture which I also make for all of the reasons

discussed at length in [29]: The axiom above is true. By this I mean that the

axiom will eventually be validated on the basis of accepted and compelling

principles of infinity exactly as the axiom of Projective Determinacy has been

validated.

This axiom implies the Continuum Hypothesis as well as the Ω Conjecture

and together with its natural refinements will arguably reduce all questions of

Set Theory to axioms of strong infinity and so banish the specter of undecid-

ability as demonstrated by Cohen’s method of forcing.
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Abstract

We survey some aspects of homogeneous dynamics — the study of algebraic

group actions on quotient spaces of locally compact groups by discrete sub-

groups. We give special emphasis to results pertaining to the distribution of

orbits of explicitly describable points, especially results valid for the orbits of

all points, in contrast to results that characterize the behavior of orbits of typ-

ical points. Such results have many number theoretic applications, a few of

which are presented in this note. Quantitative equidistribution results are also

discussed.
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1. Introduction

1.1. In this note we discuss a certain very special class of dynamical systems of

algebraic origin, in which the space is the quotient of a locally compact group

G by a discrete subgroup Γ and the dynamics is given by the action of some

closed subgroup H < G on G/Γ by left translations, or more generally by the

action of a subgroup of the group of affine transformations on G that descends

to an action on G/Γ. There are several natural classes of locally compact groups

one may consider — connected Lie groups, linear algebraic groups (over R, or

Qp, or perhaps general local field of arbitrary characteristic), finite products of

linear algebraic groups over different fields, or the closely related case of linear

algebraic groups over adeles of a global field such as Q.
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1.2. Such actions turn out to be of interest for many reasons, but in particular

are intimately related to deep number theoretic questions. They are also closely

connected to another rich area: the spectral theory of such quotient spaces, also

known as the theory of automorphic forms, which has so many connections to

both analytic and algebraic number theory that they are hard to separate.

From the point of view of these connections between dynamics and number

theory, perhaps the most interesting quotient space is the space Xd of lattices in

Rd
up to homothety, which is naturally identified with PGL(d,R)/PGL(d,Z).

There are several historical sources for the use of this space in number theory.

One prominent historical source is H. Minkowski’s work on Geometry of Num-

bers c. 1895; and while (like most mathematical research areas) it is hard to

draw the precise boundaries of the Geometry of Numbers, certainly at its heart

is a systematic use of lattices, and implicitly the space of lattices, to the study

of number theoretic problems of independent interest.

The use of tools and techniques of ergodic theory and dynamical systems,

and perhaps no less importantly the use of the dynamical point of view, to study

these actions has proven to be a remarkably powerful method with applications

in several rather diverse areas in number theory and beyond, but in particular

for many of the problems considered in the Geometry of Numbers. This is a

very active direction of current research sometimes referred to as Flows on

Homogeneous Spaces, though the shorter term Homogeneous Dynamics seems

to be gaining popularity.

1.3. We present below a Smörg̊asbord of topics from the theory. The selection

is somewhat arbitrary, and is biased towards aspects that I have personally

worked on. A brief overview of the topics discussed in each section is given

below:

§2. Actions of unipotent and diagonalizable groups are discussed. Thanks to

the deep work of several mathematicians the actions of unipotent groups

are quite well understood (at least on a qualitative level). The actions

of diagonalizable groups are much less understood. These diagonalizable

actions behave quite differently depending on whether the acting group is

one dimensional or of higher dimensions; in the latter case there are several

long-standing conjectures and a few partial results toward these conjectures

that are powerful enough to have applications of independent interest.

§3. We consider why the rigidity properties of an action of a multiparameter

diagonalizable group is harder to understand than actions of unipotent

groups (or groups generated by unipotents), and highlight one difference

between these two classes of groups: growth rates of the Haar measure of

norm-balls in these groups.

§4. Three applications of the measure classification results for multiparame-

ter diagonalizable groups are presented: results regarding Diophantine ap-

proximations and Littlewood’s Conjecture, Arithmetic Quantum Unique
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Ergodicity, and an equidistribution result for periodic orbits of the diago-

nal group in X3 (a problem considered by Linnik with strong connections

to L-functions and automorphic forms).

§5. We present recent progress in the study of actions of another natural class of

groups that share with unipotent groups the property of large norm-balls:

Zariski dense subgroups of semisimple groups or more generally groups

generated by unipotents.

§6. We conclude with a discussion of the quantitative aspects of the density

and equidistribution results presented in the previous sections regarding

orbits of group actions on homogeneous spaces.

2. Actions of Unipotent and Diagonalizable

Groups

2.1. Part of the beauty of the subject is that for a given number theoretic

application one is led to consider a very concrete dynamical system. Perhaps

the best way to illustrate this point is by example. An important and influential

milestone in the theory of flows on homogeneous spaces has been Margulis’ proof

of the longstanding Oppenheim Conjecture in the mid 1980’s [Mar87]. The

Oppenheim Conjecture states that if Q(x1, . . . , xd) is an indefinite quadratic

form in d ≥ 3 variables, not proportional to a form with integral coefficients,

then

(2.1) inf
{

|Q(v)| : v ∈ Zd r {0}
}

= 0.

By restricting Q to a suitably chosen rational subspace, it is easy to reduce

the conjecture to the case of d = 3, and instead of considering the values

of an arbitrary indefinite ternary quadratic form on the lattice Zd
one can

equivalently consider the values an arbitrary lattice ξ in Rd
attains on the fixed

indefinite ternary quadratic form, say Q0(x, y, z) = 2xz − y2. The symmetry

group

SO(1, 2) =
{

h ∈ SL(3,R) : Q0(v) = Q0(hv) for all v ∈ R3
}

is a noncompact semisimple group. By the definition of H, for every h ∈ H =

SO(1, 2) and ξ ∈ X3 the set of values Q0 attains at nonzero vectors of the

lattice ξ coincides with the set of values this quadratic form attains at nonzero

vectors of the lattice h.ξ, i.e. the lattice obtained from ξ by applying the linear

map h on each vector. It is now an elementary observation, using Mahler’s

Compactness Criterion, that for ξ ∈ X3,

inf {|Q0(v)| : v ∈ ξ r {0}} = 0 ⇐⇒ the orbit H.ξ is unbounded.
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G. A. Margulis established the conjecture by showing that any orbit of H

on X3 is either periodic or unbounded (see [DM90a] for a highly accessible

account); the lattices corresponding to periodic orbits are easily accounted for,

and correspond precisely to indefinite quadratic forms proportional to integral

forms. Here and throughout, an orbit of a group H acting on a topological

space X is said to be periodic if it is closed and supports a finite H-invariant

measure.

We note that the homogeneous space approach for studying values of

quadratic forms was noted by M.S. Raghunathan who also gave a much more

general conjecture in this direction regarding orbit closures of connected unipo-

tent groups in the quotient space G/Γ. In retrospect one can identify a similar

approach in the remarkable paper [CSD55] by Cassels and Swinnerton-Dyer.

2.2. This example illustrates an important point: in most cases it is quite easy

to understand how a typical orbit behaves, e.g. to deduce from the ergodicity

of H acting on X3 that for almost every ξ the orbit H.ξ is dense in X3; but

for many number theoretical applications one needs to know how orbits of

individual points behave — in this case, one needs to understand the orbit H.ξ

for all ξ ∈ X3.

2.3. Raghunathan’s Conjecture regarding the orbit closures of groups gener-

ated by one parameter unipotent subgroups, as well as an analogous conjecture

by S.G. Dani regarding measures invariant under such groups [Dan81] have been

established in their entirety
1
in a fundamental series of papers by M. Ratner

[Ra91a,Ra90a,Ra90b,Ra91b].

Theorem 1 (Ratner). Let G be a real Lie group, H < G a subgroup generated

by one parameter Ad-unipotent groups, and Γ a lattice in G. Then:

(i) Any H-invariant and ergodic probability measure µ on G/Γ is an L-

invariant measure supported on a single periodic L-orbit of some subgroup

L ≤ G containing H

(ii) For any x ∈ G/Γ, the orbit closure H.x is a periodic orbit of some subgroup

L ≤ G containing H.

A measure µ as in (i) above will be said to be homogeneous .

This fundamental theorem of Ratner, which in applications is often used in

conjunction with the work of Dani and Margulis on nondivergence of unipotent

flows [Mar71,Dan86] and related estimates on how long a unipotent trajectory

can spend near a periodic trajectory of some other group (e.g. as developed

in [DM90b, DM93] or [Ra91b]) give us very good (though non-quantitative)

understanding of the behavior of individual orbits of groups H generated by one

1Special cases of Raghunathan’s Conjecture were established by Dani and Margulis
[DM90b] using a rather different approach.
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parameter unipotent subgroups, such as the group SO(1, 2) considered above.

It has been extended to algebraic groups over Qp and to S-algebraic groups

(products G =
∏

p∈S
Gi(Qp) with the convention that Q∞ = R) by Ratner

[Ra95] and Margulis-Tomanov [MT94].

2.4. These theorems on unipotent flows have numerous number theoretical

applications, much too numerous to list here. A random sample of such appli-

cations, to give a flavor of their diverse nature, is the substantial body of work

regarding counting of integer and rational points on varieties, e.g. Eskin, Mozes

and Shah [EMS96] who give the asymptotic behavior as T → ∞ of the num-

ber of elements γ ∈ SL(d,Z) with a given characteristic polynomial satisfying

‖γ‖ < T (see also H. Oh’s survey [Oh10] for some more recent counting results

of interest); Vatsal’s proof of a conjecture of Mazur regarding non-vanishing

of certain L-functions associated to elliptic curves at the critical point [Vat02];

Elkies and McMullen’s study of gaps in the sequence
√

n mod 1 [EM04]; and

Ellenberg and Venkatesh theorems on representing positive definite integral

quadratic forms by other forms [EV08].

2.5. The action of one parameter diagonalizable groups on homogeneous

spaces, such as the action of at =

(

et/2 0

0 e−t/2

)

on X2 is fairly well under-

stood (at least in some aspects), but these R-actions behave in a drastically

different way than e.g. one parameter unipotent groups. The case of at acting

on X2 is particularly well studied. There is a close collection between this ac-

tion and the continued fraction expansion of real numbers that has been used

already by E. Artin [Art24], and was further elucidated by C. Series [Ser85]

and others, that essentially allows one to view this system as a flow over a sim-

ple symbolic system. Any ergodic measure preserving flow of sufficiently small

entropy can be realized as an invariant measure for the action of at on X2,

and there is a wealth of irregular orbit closures. There is certainly also a lot

of mystery remaining regarding this action and in particular due to the lack of

rigidity it is extremely hard to understand the behavior of specific orbits of the

action, e.g.:

Question 1. Is the orbit of the lattice

(

1
3
√

2

0 1

)

Z2

under the semigroup {at : t ≥ 0} dense in X2?

Even showing that this orbit is unbounded is already equivalent to the con-

tinued fraction expansion of
3
√

2 being unbounded, a well known and presumably

difficult problem. While Artin constructs in [Art24] a point in X2 which has a

dense at-orbit in a way that can be said to be explicit, I do not know of any
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construction of a lattice in X2 generated by vectors with algebraic entries that

is known to have a dense at-orbit.

2.6. Actions of higher rank diagonal groups are much more rigid than one

parameter diagonal group, though not quite as rigid as the action of groups

generated by unipotents. Many of the properties such actions are expected to

satisfy are still conjectural, though there are several quite usable partial results

that can be used to obtain nontrivial number theoretic consequences. A basic

example of such actions is the action of the (d− 1)-dimensional diagonal group

A < PGL(d,R) on the space of lattices Xd for d ≥ 3. A similar phenomenon is

exhibited in a somewhat more elementary setting by the action of a multiplica-

tive semigroup Σ of integers containing at least two multiplicative independent

elements on the 1-torus T = R/Z. This surprising additional rigidity of multidi-

mensional diagonalizable groups has been discovered by Furstenberg [Fur67] in

the context of multiplicative semigroups acting on T, and is in a certain sense

implicit in the work of Cassels and Swinnerton-Dyer [CSD55].

2.7. Actions of diagonalizable groups also appear naturally in many contexts.

In the aforementioned paper of Cassels and Swinnerton-Dyer [CSD55] the fol-

lowing conjecture is given:

Conjecture 2. Let F (x1, . . . , xd) =
∏d

i=1

(

∑d

j=1
gijxj

)

be a product of d-

linearly independent linear forms in d variables, not proportional to an integral

form (as a homogeneous polynomial in d variables), with d ≥ 3 . Then

(2.2) inf
{

|F (v)| : v ∈ Zd r {0}
}

= 0.

This conjecture in shown in [CSD55] to imply Littlewood’s Conjecture (see

§4.1), and seems to me to be the more fundamental of the two. As pointed out

by Margulis, e.g. in [Mar97], Conjecture 2 is equivalent to the following:

Conjecture 2’. Any A-orbit A.ξ in Xd for d ≥ 3 is either periodic or un-

bounded.

2.8. A somewhat more elementary action with similar features was studied

by Furstenberg [Fur67]. Let Σ be the multiplicative semigroup of N generated

by two multiplicative independent integers a, b (i.e. log a/ log b 6∈ Q). In stark

contrast to cyclic multiplicative semigroups, Furstenberg has shown that any

Σ-invariant closed subset X ⊂ T = R/Z is either finite or T and gave the

following influential conjecture:

Conjecture 3. Let Σ = {anbk : n, k ≥ 0} be as above. The only Σ-invariant

probability measure on R/Z with no atoms is the Lebesgue measure.

This conjecture can be phrased equivalently in terms of measures on G/Γ

invariant under left translation by a rank two diagonalizable group H for an
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appropriate solvable group G and lattice Γ < G; e.g. if a, b are distinct primes,

we can take

H =
{

(s, t, r) : s ∈ R×, t ∈ Q×

a , r ∈ Q×

r , |s| · |t|a · |r|b = 1
}

G = H× n (R×Qa ×Qb)

Γ = {(s, s, s) : s = anbm, n,m ∈ Z}n {(t, t, t) : t ∈ Z[ 1

ab
]}.

2.9. Ergodic theoretic entropy is a key invariant in ergodic theory whose in-

troduction in the late 1950s by Kolmogorov and Sinai completely transformed

the subject. At first sight it seems quite unrelated to the type of questions

considered above. However, it has been brought to the fore in the study of mul-

tiparameter diagonalizable actions by D. Rudolph (based on earlier work of R.

Lyons [Lyo88]), who established an important partial result towards Fursten-

berg’s Conjecture (Conjecture 3): Rudolph classified such measures under a

positive entropy condition [Rud90]. A. Katok and R. Spatzier were the first to

extend this type of results to flows on homogeneous spaces [KS96], but due to

a subtle question regarding ergodicity of subactions their results do not seem

to be applicable in the number theoretic context.

2.10. Some care needs to be taken when stating the expected measure classifi-

cation result for actions of multiparameter diagonalizable groups on a quotient

space G/Γ, even for G = PGL(3,R) and A the full diagonal group, since as

pointed out by M. Rees [Ree82] (see also [EK03, §9]), any such conjecture

should take into account possible scenarios where the action essentially degen-

erates into a one parameter action where no such rigidity occurs. An explicit

conjecture regarding measures invariant under multiparameter diagonal flows

was given by Margulis in [Mar00, Conjecture 2]; a similar but less explicit

conjecture by Katok and Spatzier was given in [KS96], and by Furstenberg

(unpublished). For the particular case of the action of the diagonal group A

on the space of lattice in Xd such degeneration cannot occur
2
and one has the

following conjecture:

Conjecture 4. Let µ be an A-invariant and ergodic probability measure on

Xd for d ≥ 3 (and A < PGL(3,R) the group of diagonal matrices). Then µ is

homogeneous (cf. §2.3).

More generally, we quote the following from [EL06]:

Conjecture 5. Let S be a finite set of places for Q and for every v ∈ S let

Gv be a linear algebraic group over Qv. Let GS =
∏

v∈S
Gv, G ≤ GS closed,

and Γ < G discrete. For each v ∈ S let Av < Gv be a maximal Qv-split torus,

2For probability measures; there are non-homogeneous A-invariant and ergodic Radon
measures on Xd.
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and let AS =
∏

v∈S
Av. Let A be a closed subgroup of AS ∩G with at least two

independent elements. Let µ be an A-invariant and ergodic probability measure

on G/Γ. Then at least one of the following two possibilities holds:

(i) µ is homogeneous, i.e. is the L-invariant measure on a single, finite volume,

L-orbit for some closed subgroup A ≤ L ≤ G.

(ii) There is some S-algebraic subgroup LS with A ≤ LS ≤ GS, an element

x ∈ G/Γ, an algebraic homeomorphism φ : LS → L̃S onto some S-algebraic

group L̃S, and a closed subgroup H < L̃S with H ≥ φ(Γ) so that (i)

µ((LS ∩G).xΓ) = 1, (ii) φ(A) does not contain two independent elements

and (iii) the image of µ to L̃S/H is not supported on a single point.

2.11. To obtain a measure classification result in the homogeneous spaces set-

ting with only an entropy assumption and no assumptions regarding ergodicity

of subactions (which are nearly impossible to verify in most applications of

the type considered here) requires a rather different strategy of proof than

[KS96], using two different and complementary methods. The first, known as

the high entropy method, was developed by M. Einsiedler and Katok [EK03]

and utilizes non-commutativity of the unipotent subgroups normalized by the

acting group, and e.g. in the case of A acting on Xd for d ≥ 3 allows one to

conclude that any measure of sufficiently high entropy (or positive entropy in

“sufficiently many directions”) is the uniform measure. The other method, the

low entropy method, was developed by the author [Lin06] where in particular

an analogue to Rudolph’s theorem for the action of the maximal R-split torus3

on SL(2,R)× SL(2,R)/Γ is given. Even though the measure under study is in-

variant under a diagonalizable group and a priori has no invariance under any

unipotent element, ideas from the theory of unipotent flows, particularly from a

series of papers of Ratner on the horocycle flow [Ra82a,Ra82b,Ra83], are used

in an essential way. These two methods can be combined successfully as was

done in a joint paper with Einsiedler and Katok [EKL06] where the following

partial result toward Conjecture 4 is established:

Theorem 2 ([EKL06]). Let A be the group of diagonal matrices as above and

d ≥ 3. Let µ be an A-invariant and ergodic probability measure on Xd. If for

some a ∈ A the entropy hµ(a) > 0 then µ is homogeneous.

2.12. The high entropy method was developed further by Einsiedler and Katok

in [EK05] and the low entropy method was developed further by Einsiedler and

myself in [EL08]; these can be combined to give in particular the following

theorem, which we state for simplicity for real algebraic groups but holds in

3Which in this case is simply the product of the diagonal group from each factor
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the general S-algebraic setting of Conjecture 5 (see [EL06, §2.1.4] for more

details
4
):

Theorem 3. Let G be a semisimple real algebraic group, A < G the connected

component of a maximal R-split torus, and Γ < G an irreducible lattice. Let µ

be an A-invariant and ergodic probability measure on G/Γ. Assume that:

(i) the R-rank of G is ≥ 2

(ii) there is no reductive proper subgroup L < G so that µ is supported on a

single periodic L-orbit

(iii) there is some a ∈ A for which hµ(a) > 0.

Then µ is the uniform measure on G/Γ.

If (ii) does not hold, one can reduce the classification of A-invariant measures µ

on this periodic L-orbit to the classification of A∩ [L,L]-invariant and ergodic

measures µ′
on [L,L]/Λ, with Λ a lattice in [L,L]. If Λ is reducible, up to finite

index, [L,L]/Λ =
∏s

i=1
Li/Λi and µ =

∏s

i=1
µ′

i
, with µ′

i
an A ∩ Li-invariant

measure on Li/Λi. As long as there is some Li with R-rank ≥ 2 and some

element a′ ∈ A ∩ Li with hµ′

i
(a′) > 0, one can apply Theorem 3 recursively to

obtain a more explicit, but less concise measure classification result.

New ideas seem to be necessary to extend Theorem 3 to non-maximally split

tori; in part this seems to be related to the fact that for non-maximal A much

more general groups L, even solvable ones, need to be considered in case (ii).

3. A Remark on Invariant Measures, Individual

Orbits, and Size of Groups

3.1. One important difference between a group H generated by unipotent

one parameter subgroups (considered as a subgroup of some ambient algebraic

group G, which for simplicity we assume in this paragraph to be simple) and di-

agonalizable groups such as the group A of diagonal matrices in G = PGL(d,R)

is the size of norm-balls in the groups H or A respectively under any nontrivial

finite dimensional representation ρ of G (in particular, the adjoint representa-

tion): if λH and λA denote Haar measure on H and A respectively,

(3.1) λH ({h ∈ H : ‖ρ(h)‖ < T}) ≥ CTα
for some α = α(ρ) > 0

while

(3.2) λA ({a ∈ A : ‖ρ(a)‖ < T}) � (log T )d−1.

4There is a slight inaccuracy in the statement of [EL06, Thm. 2.4]: either one needs to
assume to begin with that hµ(a) > 0 for some a ∈ A or one needs to allow the trivial group
H = {e} in the first case listed there.
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We shall loosely refer to groups as in (3.1) for which the volume of norm-balls

is polynomial as thick in G, and groups where this volume is polylogarithmic

as in (3.2) as thin.

3.2. Such norm balls appear naturally when one studies how orbits of nearby

points x and y diverge — an important element of Ratner’s proof of Theo-

rem 1. Suppose e.g. G is a linear algebraic group over R, Γ < G a lattice

and H < G some closed subgroup . If x = exp(w).y for w ∈ Lie(G) small,

h.x = exp(Adh(w)).h.y and these will still be reasonably close for all h ∈ H

with ‖Ad(h)‖ < ‖w‖
−1

. One can gain in the range of usable elements of H by

allowing h.x to be compared with a more carefully chosen point h′.y ∈ H.y,

but in any case the range of usable h ∈ H includes elements of norm bounded

at most by a polynomial in ‖w‖
−1

. The entropy condition of Theorems 2 and 3

can be thought of as a partial compensation for the fact that the acting group

is thin.

3.3. The size of norm-balls also plays an important role in another important

aspect of the dynamics, namely the extent to which the behavior of individual

orbits relates to any possible classification of invariant measures. We recall the

following definition due to Furstenberg:

Definition 1. Let X be a locally compact space, and H an amenable group

acting continuously on X. A point x ∈ X will be said to be generic for an

H-invariant measure µ along a Følner sequence
5
{Fn} in H (that is usually

kept implicit) if for any f ∈ Cc(X)

lim
n→∞

∫

Fn
f(h.x) dλH(h)

λH(Fn)
→

∫

X

f(y) dµ(y)

where λH is the left invariant Haar measure on H.

By the pointwise ergodic theorem (which in this generality can be found in

[Lin01]) and separability of Cc(X), if {Fn} is a sufficiently nice Følner sequence

(e.g. for H = Rk
, Fn can be taken to be any increasing sequence of boxes whose

shortest dimension → ∞ as n → ∞), and if µ is an H-invariant and ergodic

probability measure, then µ almost every x ∈ X is generic for µ along {Fn}.

3.4. As is well-known, if X is uniquely ergodic, i.e. there is a unique H-

invariant probability measure µ on X (which will necessarily be also H-ergodic,

as the ergodic measures are the extreme points of the convex set of all H-

invariant probability measures) then something much stronger is true: every

5A sequence of sets Fn ⊂ H is said to be a Følner sequence if for any compact K ⊂ G we
have that λH(Fn4KFn)/λH(Fn) → 0 as n → ∞; a group H is said to be amenable if it has
a Følner sequence.
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x ∈ X is generic for µ along any Følner sequence (we will also say in this case

that the H-orbit of x is µ-equidistributed in X along any Følner sequence).

Even if there are only two H-invariant and ergodic probability measures

on X, or even if there is a unique H-invariant and ergodic probability mea-

sure on X but X is not compact, individually orbits may behave in somewhat

complicated ways, failing to be generic for any measure on X. The most one

can say is that if {Fn} is Følner sequence, for large n the push forward of

(λH(Fn))
−1λH |Fn

restricted to a large Følner set Fn under the map h 7→ h.x

is close to a linear combination (depending on n) of the two H-invariant and

ergodic measures in the former case, or to c times the unique H-invariant prob-

ability measure in the latter case for some c ∈ [0, 1] (which again may depend

on n).

3.5. For unipotent flows, the connection between distribution properties of

individual orbits and the ensemble of invariant probability measures is excep-

tionally sharp. In [Ra91b] Ratner has shown that if ut is a one parameter

unipotent group, G a real Lie group, and Γ < G a lattice then any x ∈ G/Γ

is generic for some homogeneous measure µ whose support contains x. A uni-

form version where one is allowed to vary the unipotent group as well as the

starting point was given by Dani and Margulis [DM93, Thm. 2]. Another use-

ful result in the same spirit by Mozes and Shah [MS95] classifies limits of

sequences of homogeneous probability measures (mi)i in G/Γ that are invari-

ant and ergodic under some one parameter unipotent subgroup of G (possibly

different for different i); such a limiting measure is also a homogeneous prob-

ability measure. Often if the volume of the corresponding sequence of periodic

orbits goes to ∞ one can show that these homogeneous probability measures

converge to the uniform measure on G/Γ. In the proof of all these results, the

thickness of unipotent groups (and groups generated by unipotents), under the

guise of the polynomial nature of unipotent flows, plays a crucially important

role.

Even for G = SL(2,R), the connection between invariant measures and

distribution properties of individual orbits for the action of unipotent groups

on infinite volume quotients is not well understood outside the geometrically

finite case, though there is some interesting work in this direction, e.g. [SS08].

3.6. For diagonalizable flows, the connection between invariant measures and

behavior of individual orbits is much more tenuous. Certainly if X = G/Γ is

compact then for any ξ ∈ X the A-orbit closure A.ξ supports an A-invariant

measure: but this measure may not be unique, nor does the support of µ have

to coincide with A.ξ. Counterexamples given by Maucourant [Mau10] to the

topological counterpart of Conjecture 5 in [Mar00] are of precisely this type:

they give an A orbit whose limit set is the support of two (or more) different

homogeneous measures. An example in a similar spirit has been given by U.

Shapira [Sha10,LS10] for the action of the full diagonal group A on X3: Here
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ξ is the lattice

ξ =





1 a 0

0 1 0

0 a 1



Z3

which for a typical a ∈ R will spiral between two infinite homogeneous measures

supported on the closed orbits through the standard lattice Zd
of the groups

H1 =





∗ ∗ 0

∗ ∗ 0

0 0 ∗



 and H2 =





∗ 0 0

0 ∗ ∗

0 ∗ ∗



 .

3.7. In special cases isolation results give a weak substitute for diagonal actions

to the “linearization” techniques used in [DM93,MS95, Ra91b] for unipotent

flows. An isolation result of this type for the action of A on Xd for d ≥ 3 by

Cassels and Swinnerton-Dyer [CSD55]
6
gives in particular that if ξ, ξ0 ∈ Xd,

with

(3.3) A.ξ0 ⊂ A.ξ r (A.ξ) and A.ξ0 periodic

then A.ξ is unbounded; this has been strengthened by Barak Weiss and myself

[LW01] to show that under the same assumptions A.ξ is a periodic orbit of

some closed connected group H with A ≤ H ≤ PGL(d,R) (such periodic orbits

are easily classified and in particular unless H = A are unbounded). Results of

this nature under somewhat less restrictive conditions than (3.3), along with

some Diophantine applications, were recently given by U. Shapira and myself

[LS10].

Using the Cassels Swinnerton-Dyer isolation result it is easy to show that

Conjecture 4 implies Conjecture 2: indeed, if A.ξ is a bounded orbit in Xd then

A.ξ supports an A-invariant probability measure, and hence by the ergodic

decomposition A.ξ supports an A-invariant and ergodic probability measure.

Assuming Conjecture 4 this measure will be homogeneous, and by the clas-

sification alluded to in the previous paragraph the only compactly supported

A-invariant homogeneous probability measures are the probability measures on

periodic A-obits. Thus A.ξ contains an A-periodic measure, and unless A.ξ is

itself periodic we get a contradiction to the Cassels-Swinnerton-Dyer Isolation

Theorem.

3.8. The field of arithmetic combinatorics has witnessed dramatic progress

over the last few years with remarkable applications. One of the basic results is

the following exponential sum estimate by Bourgain, Glibichuk and Konyagin

6In the paper, Cassels and Swinnerton-Dyer treat only the case of d = 3, but the general
case is similar.
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[BGK06]: for any δ there are c, ε > 0 so that if p is prime, H̃ a subgroup of

(Z/pZ)× with |H̃| > pδ,

max
b∈(Z/pZ)×

∣

∣

∑

h∈H̃
e(bh/p)

∣

∣

|H̃|

< cp−ε

with e(x) = exp(2πix). Bourgain has proved a similar estimate with p replaced

by an arbitrary integer N ; this involves considerable technical difficulties since

one is interested in a result in which the error term does not depend on the

decomposition of N into primes. If H̃ is the reduction modulo N of some

multiplicative semigroup H ⊂ Z×
, we can interpret this estimate as saying

that for any 0 ≤ b < N , the periodic H-orbit

{

hb

N
mod 1 : h ∈ H̃

}

is close to

being equidistributed in T in a quantitative way provided |H̃| > N δ
.

3.9. Of particular interest to us is the semigroup H =
{

anbk : n, k ∈ N
}

where

a, b are multiplicatively independent integers. For a certain sequence of Ni (rel-

atively prime to ab) it may well happens that |H mod N | > N δ
for a fixed δ,

even though H is a thin sequence in the sense of §3.1. For such a sequence Ni

and any choice of bi ∈ (Z/NiZ)
×
, the sequence of periodicH-orbitsH. bi

Ni
mod 1

would become equidistributed in a quantitative way as i → ∞ by the theorem

of Bourgain quoted above (§3.8). However there are sequences of N for which

|H mod N | is rather small — (logN)
c log log logN

[APR83]. A trivial lower bound

on |H mod N | is

|H mod N | ≥ (loga N)(logb N)/2,

and if there were infinitely many Ni with |H mod Ni| � (logNi)
2
then the

orbits H. 1

Ni
mod 1 would spend a positive proportion of their mass very close

to 0, and hence fail to equidistribute.

Using the Schmidt Subspace Theorem (more precisely, its S-algebraic ex-

tension by Schlickewei) in an elegant and surprising way Bugeaud, Corvaja and

Zannier [BCZ03] show that

lim
N→∞

|H mod N |

(logN)2
→ ∞

giving credence to the following conjecture, presented as a question by Bourgain

in [Bou09]:

Conjecture 6. Let H =
{

anbk : n, k ∈ N
}

, with a, b multiplicatively indepen-

dent. Then for any sequence {(bi, Ni)} with Ni → ∞ and bi ∈ (Z/NiZ)
× the

sequence of H-periodic orbits H. bi
Ni

mod 1 becomes equidistributed as i → ∞,

i.e. for any f ∈ C(T),

|H|
−1

∑

h∈H

f

(

h.
bi

Ni

)

→

∫

T

fdx.
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Even if one assumes (or proves) Conjecture 3 regarding H-invariant measures,

this conjecture seems challenging due to the absence of a strong connection be-

tween individual orbits and invariant measures for diagonalizable group actions

(cf. §3.6).

4. Some Applications of the Rigidity Properties

of Diagonalizable Group Actions

4.1. The partial measure classification results for actions of diagonalizable

groups mentioned above, e.g. Theorems 2 and 3, have several applications. We

give below a sample of three theorems, in the proof of which one of the major

ingredients is the classification of positive entropy invariant measures. Several

other applications are discussed in Einsiedler’s notes for his lecture at this ICM

[Ein10]
7
.

Multiparameter diagonal groups and Diophantine
approximations.

4.2. Using the variational principle relating topological entropy and ergodic

theoretic entropy, together with an averaging argument and use of semiconti-

nuity properties of entropy for measures supported on compact subsets of Xd

in [EKL06] the following partial result towards Conjecture 2 was deduced from

Theorem 2 (see either [EKL06] or [EL10, §12] for more details):

Theorem 4 (Einsiedler, Katok and L. [EKL06]). The set of degree d homoge-

neous polynomials F (x1, . . . , xd) that can be factored as a product of d linearly

independent forms in d variables that fail to satisfy (2.2) have Hausdorff di-

mension zero.

By Conjecture 2 above, the set of such F is expected to be countable; the

trivial upper bound on the dimension of the set of such F is d(d− 1).

4.3. Recall the following well known conjecture of Littlewood regarding simul-

taneous Diophantine approximations:

Conjecture 7 (Littlewood). For any x, y ∈ R2,

(4.1) inf
{

n |nx−m| |ny − k| : (n,m, k) ∈ Z3, n 6= 0
}

= 0.

7Einsiedler and I have worked together for some years on many aspects of the action of
diagonalizable groups, and there is some overlap between this paper and Einsiedler’s [Ein10],
as well as our joint contribution to the proceedings of the previous ICM in Madrid [EL06].
However the selection of topics and style is quite different in these three papers.
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Similar ideas as in the proof of Theorem 4 allows one to prove that the

Hausdorff dimension of the set of exceptional pairs (x, y) ∈ R2
that do not

satisfy (4.1) is zero. Indeed, one can be a bit more precise: for a sequence of

integers (ak)k∈N define its combinatorial entropy as

hcomb((ak)) = lim
n→∞

logWn((ak))

n

where Wn((ak)) counts the number of possible n-tuples (ak, ak+1, . . . , ak+n−1)

(if (ak) is unbounded,Wn((ak)) = ∞). Then the techniques of [EKL06] gives the

following explicit sufficient criterion for a real number x to satisfy Littlewood’s

conjecture for all y ∈ R:

Theorem 5. Let x = a1 +
1

a2 +
1

a3 + . . .

be the continued fraction expansion

of x ∈ R. If hcomb((ak)) > 0 then for every y ∈ R equation (4.1) holds.

Periodic orbits of diagonal groups.

4.4. Unlike the case for groups generated by unipotents, it is not hard to

give a sequence of A-periodic orbits A.xi in Xd (for any d ≥ 2) so that the

associated probability measures mA.xi
fail to converge to the uniform measure

(cf. [ELMV09, §7]). Indeed, as pointed out to me by U. Shapira, such an example

is implicit already in an old paper by Cassels [Cas52].

4.5. However, when the periodic orbits are appropriately grouped their behav-

ior improves markedly: define for any A-periodic ξ ∈ Xd an order in the ring

D of d× d (possibly singular) diagonal matrices by

O(ξ) =
{

h ∈ D : h.ξ̄ ⊆ ξ̄
}

where ξ̄ is a lattice representing the homothety equivalence class ξ. This is a

discrete subring of D containing 1; stabA(ξ) = {a ∈ A : a.ξ = ξ} is precisely

the set of invertible elements of O(ξ) and moreover Z[stabA(ξ)] ⊆ O(ξ). Since

ξ is A-periodic, stabA(ξ) contains d− 1-independent units and O(ξ) is a lattice

in D (considered as an additive group), isomorphic as a ring to an order in a

totally real number field K of degree d over Q. For a given order O < D set

C(O) = {A.y : O(y) = O} ;

for any A-periodic ξ ∈ Xd the collection C(O(ξ)) can be shown to be finite.

Theorem 6 (Einsiedler, Michel, Venkatesh and L. [ELMV10]). Let A.xi can

be a sequence of distinct A-periodic orbits in X3, and set Ci = C(O(xi)). Then

for any f ∈ Cc(X3) we have that

1

|Ci| · |A/ stabA(xi)|

∑

A.y∈Ci

∫

A/ stabA(xi)

f(a.y) da →

∫

X3

f.
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For d = 2 the corresponding statement is a theorem of Duke [Duk88] proved

using the theory of automorphic forms, with some previous substantial partial

results by Linnik and Skubenko (see [Li68]). Weaker results about the distri-

bution of periodic A-orbits for d ≥ 3 in substantially greater generality were

obtained in [ELMV09].

4.6. In the case of periodic A-orbits A.ξ whose corresponding order O(ξ) is

maximal (equivalently, is isomorphic to the full integer ring OK of a totally real

number field K), C(ξ) can be identified with the ideal class group of OK , and

in particular has a natural structure of a group. It is quite challenging to make

use of the group structure of C(ξ) in the dynamical context. In particular,

it would be of interest to prove equidistribution of the collection of A-orbits

corresponding to (possibly quite small) subgroups of the ideal class group.

4.7. We refer the reader to the comprehensive survey [MV06] by Michel and

Venkatesh for more details on this and related equidistribution questions.

Diagonal flows and Arithmetic Quantum Unique
Ergodicity.

4.8. In [RS94], Z. Rudnick and P. Sarnak conjectured the following:

Conjecture 8. Let M be a compact Riemannian manifold of negative sectional

curvature. Let φi be an orthonormal sequence of eigenfunctions of the Laplacian

on M . Then

(4.2)

∫

M

f(x) |φi(x)|
2
d vol(x) →

1

vol(M)

∫

M

f(x) d vol(x) ∀f ∈ C∞
(M).

There is also a slightly stronger form of this conjecture for test functions

in phase space. Both versions of the conjecture are open, and there does not

seem to be strong evidence for it in high dimensions. However in the special

case of M = H/Γ with Γ an arithmetic lattice of congruence type (either

congruence sublattices of PGL(2,Z) or of PGL(1,O) for O an order in an

indefinite quaternion algebra over Q; in the latter case M is compact) we have a

lot of extra symmetry that aids the analysis: an infinite commuting ensemble of

self-adjoint operators, generated by the Laplacian and, for each prime p outside

a possible finite set P of “bad” primes, a corresponding Hecke operators Tp.

Theorem 7 (Brooks and L. [BL10,Lin06]). Let M = H/Γ be as above, and p 6∈

P , with M compact. Then any orthonormal sequence φi of joint eigenfunctions

of the Laplacian and Tp on M satisfies (4.2).

This theorem refines a previous theorem that relied on work by Bourgain

and myself [BL03]. When Γ is a congruence subgroup of SL(2,Z), i.e. M is not

compact, there is an extra complication in that one needs to show that no mass
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escapes to the cusp in the limit. Under the assumption of φi being joint eigen-

functions of all Hecke operators this has been established by Soundararajan

[Sou09].

4.9. The proof of Theorem 7 does not quite use multiparameter diagonalizable

flows but rather the following theorem (generalized in [EL08]) of similar but

somewhat more general flavor:

Definition 2. Let X be locally compact space, H a locally compact group

acting continuously on X, and µ any σ-finite measure on X (not necessarily

H invariant). Then µ is H-recurrent if for every set B ⊂ X with µ(B) > 0 for

almost every x ∈ X the set {h ∈ H : h.x ∈ B} is unbounded (has noncompact

closure).

Theorem 8 ([Lin06]). Let G = PGL(2,R) × PGL(2,Qp), H = PGL(2,Qp)

considered as a subgroup of G, A1 the diagonal subgroup of SL(2,R) (also

considered as a subgroup of G), and Λ < G an irreducible lattice. Let µ be a

probability measure on G/Λ which is (i) A1-invariant (ii) H-recurrent (iii)

a.e. A1-ergodic component of µ has positive entropy (with respect to A1). Then

µ is the uniform measure on G/Λ.

Note that if µ as in Theorem 8 were invariant under any unbounded subgroup

of H, by Poincaré recurrence it would be H-recurrent.

The connection to Theorem 7 uses the fact that for Γ < PGL(2,R) of

congruence type as above and p 6∈ P , H/Γ can be identified with K\G/Λ for

G as in Theorem 8 and K < G the compact subgroup PO(2,R)× PGL(2,Zp);

let π : G/Λ → H/Γ be the projection corresponding to this identification. The

Hecke operator Tp is related to this construction as follows: for f ∈ L2
(H/Γ)

and x̃ ∈ G/Λ

[

Tpf
]

(π(x̃)) = p−1/2

∫

PGL(2,Zp)

(

p 0

0 1

)

PGL(2,Zp)

f̃ ◦ π((e, h).x̃) dh.

The crux of both [BL03] and [BL10] is the verification of the entropy assumption

(iii) above, which can be rephrased in terms of decay rates of measures of small

tubes in G/Λ.

4.10. Note that though Theorems 4 and 5 are clearly partial results, in Theo-

rem 6 and Theorem 7 one essentially obtains unconditionally full equidistribu-

tion statements using only the partial measure classification results currently

available.

4.11. A more detailed discussion of quantum unique ergodicity in the arith-

metic context can be found in Soundararajan’s contribution to these proceed-

ings [Sou10], which also include a discussion of some recent exciting results of

Holowinsky and Soundararajan [HS09] regarding an analoguous question for

holomorphic forms.
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5. Zariski Dense Subgroups of Groups

Generated by Unipotents

5.1. An important difference between groups generated by unipotent sub-

groups and diagonalizable groups is the size of norm balls in these groups.

Given a closed subgroup H < G with large norm balls, i.e. for which

(5.1) λH ({h ∈ H : ‖Ad(h)‖ < T}) ≥ CTα
for some α > 0

the discussion in §3 might lead us to hope that we may be able to understand

the behavior of individual H-orbits for the action of H on a quotient space G/Γ

for a lattice Γ < G.

5.2. A natural class of groups which satisfy the thickness condition (5.1) are

Zariski dense discrete subgroups Λ of semisimple algebraic groups. For instance,

one may look at the action of a subgroup Λ < SL(d,Z) with a large Zariski

closure on Td
, or at the action of a subgroup Λ < G with large Zariski closure

(in the simplest case, G) on G/Γ where G is a simple real algebraic group. Two

substantial papers addressing this question appeared in the same Tata Institute

Studies volume by Furstenberg [Fur98] and by N. Shah [Sh98], the latter paper

addressing this question when Λ is generated by unipotent elements.

5.3. In the context of actions of subgroups Λ < SL(d,Z) on Td
, under the

assumption of strong irreducibility of the Λ-action and that the identity com-

ponent of the Zariski closure of Λ is semisimple, Muchnik [Muc05] and Guivarc’h

and Starkov [GS04] show that for any x ∈ Td
the orbit Λ.x is either finite or

dense, in analogy with theorems of Furstenberg (cf. §2.8) and Berend [Ber84]

who address this question in the context of the action of two or more commuting

automorphisms of Td
.

5.4. Groups Λ as above with a large Zariski closure are not amenable
8
, and

hence in general there is no reason why the behavior of individual orbits in a

continuous action of Λ on a compact (or locally compact) space X should be

governed by Λ-invariant measures, even to the more limited extent manifest by

actions of diagonalizable groups. A natural substitute for invariant measures in

this context was suggested by Furstenberg (e.g. in [Fur98]): choose an arbitrary

auxiliary probability measure ν on Λ whose support generates Λ, subject to an

integrability condition, e.g. the finite moment condition
∫

‖g‖
δ
dν(g) < ∞ for

some ε > 0 (if Λ is finitely generated one can take ν to be finitely supported).

A measure µ on X is said to be ν-stationary if

ν ∗ µ :=

∫

g∗µdν(g) = µ.

8See footnote on p. 540 for a definition.
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Unlike invariant measures, even in the nonamenable setting, if X is compact

then for every x ∈ X there is a ν-stationary probability measure supported on

Λ.x.

5.5. In analogy with Conjecture 3, one may conjecture that if ν is a measure

on SL(d,Z) whose support generates a subgroup Λ acting strongly irreducibly

on Td
and whose Zariski closure is semisimple, in particular if Λ is Zariski

dense in SL(d,R), any ν-stationary probability measure on Td
is a linear com-

bination of Lebesgue measure λTd and finitely supported measures each on a

finite Λ-orbit. In particular, one may hope that any ν-stationary measure is in

fact Λ-invariant, a phenomenon Furstenberg calls stiffness. Guivarc’h posed the

following question, suggesting that a much stronger statement might be true:

whether under the conditions above, for any x ∈ Td
with at least one irrational

component,

(5.2) ν∗k ∗ δx := ν ∗ · · · ∗ ν
︸ ︷︷ ︸

k

∗δx → λTd as k → ∞.

Equation (5.2) clearly implies that if µ is any nonatomic measure, ν∗k∗µ → λTd ,

hence it implies the above classification of ν-stationary measures.

5.6. In joint work with Bourgain, Furman and Mozes, a positive quantitative

answer to Guivarc’h question is given under the assumption that Λ acts totally

irreducibly on Td
and has a proximal element

9
, in particular, if Λ is Zariski

dense in SL(d,R):

Theorem 9 (Bourgain, Furman, Mozes and L. [BFLM10]). Let Λ < SLd(R)

satisfy the assumptions above, and let ν be a probability measure supported on

a set of generators of Λ satisfying the moment condition of §5.4. Then there

are constants C, c > 0 so that if for a point x ∈ Td the measure µn = ν∗n ∗ δx
satisfies that for some a ∈ Zd r {0}

|µ̂n(a)| > t > 0, with n > C · log

(

2‖a‖

t

)

,

then x admits a rational approximation p/q for p ∈ Zd and q ∈ Z+ satisfying

(5.3)

∥

∥

∥

∥

x−

p

q

∥

∥

∥

∥

< e−cn and |q| <

(

2‖a‖

t

)C

.

This proof uses in an essential way the techniques of arithmetic combina-

torics, particularly a nonstandard projections theorem by Bourgain [Bou10].

9 An element g ∈ SL(d,R) is said to be proximal if it has a simple real eigenvalue strictly
larger in absolute value than all other eigenvalues.
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5.7. A purely ergodic theoretic approach to classifying Λ-stationary measures,

as well as Λ-orbit closures, has been developed by Y. Benoist and J. F. Quint.

Their approach has a considerable advantage that it is significantly more general

in scope, though the analytic approach of [BFLM10] where applicable gives

much more precise and quantitative information. In particular, in [BQ09] the

following is proved for homogeneous quotients G/Γ:

Theorem 10 (Benoist and Quint). Let G be the connected component of a sim-

ple real algebraic group, Γ a lattice in G. Let ν be a finitely supported probability

measure G whose support generates a Zariski dense subgroup Λ < G then

1. Any non-atomic ν-stationary measure on G/Γ is the uniform measure on

G/Γ.

2. For any x ∈ G/Γ, the orbit Λ.x is either finite or dense. Moreover, in

the latter case the Cesàro averages 1

n

∑n

k=1
ν∗n ∗ δx converge weak∗ to the

uniform measure on G/Γ.

It is not known in this case if the sequence ν∗n ∗ δx converges to the uniform

measure. A technique introduced by Eskin and Margulis [EM04] to establish

nondivergence of the sequence of measures ν∗k∗δx onG/Γ and further developed

by Benoist and Quint is used crucially in this work, and in particular gives a

useful substitute in this context for the linearization techniques for unipotent

flows discussed in §3.5. Some of the ideas of Ratner’s Measure Classification

Theorem (see §2.3) are used in the proof of Theorem 10, as well as the result

itself.

6. Quantitative Aspects

6.1. As we have seen, dynamical techniques applied in the context of homo-

geneous spaces are extremely powerful, and have many applications in number

theory and other subjects. However they have a major deficiency, in that they

are quite hard to quantify. For example, Margulis’ proof of the Oppenheim

conjecture (cf. §2.1) does not give any information about the size of the small-

est v ∈ Z3 r {0} satisfying |Q(v)| < ε for a given indefinite ternary quadratic

form Q not proportional to a rational one (note that necessarily any quantita-

tive statement of this type needs to be somewhat involved as the qualitative

statement fails for integral Q, and any quantitative statement has to take into

account how well Q can be approximated by forms proportional to rational

forms of a given height.)

Contrast this with the proof by Davenport and Heilbronn [DH46] of the

Oppenheim Conjecture for diagonal forms with d ≥ 5 variables (forms of the

type Q(x1, . . . , xd) =
∑

i
λix

2
i
where not all λi have the same sign) using a
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variant of the Hardy-Littlewood circle method, from which it can be deduced
10

that the shortest vector v with |Q(v)| < ε is O(ε−C
), and the much more recent

work of Götze and Margulis [GM10] who treat the general d ≥ 5 case using

substantially more elaborate analytic tools and obtain a similar quantitative

estimate.

6.2. Overcoming this deficiency is an important direction of research within

the theory of flows on homogeneous spaces. There is one general class in which

at least in principle it had long been known that fairly sharp quantitative

equidistribution statements can be given, and that is for the action of horocyclic

groups. Recall that U < G is said to be horocyclic if there is some g ∈ G

for which U = {u ∈ G : gnug−n
→ e as n → ∞}; the prototypical example is

U =

(

1 t

0 1

)

in SL(2,R). Such quantitative equidistribution results have been

given by Sarnak [Sar81] and Burger [Bur90, Thm. 2] and several other authors

since. Even in this well-understood case, quantitative equidistribution results

have remarkable applications such as in the work of Michel and Venkatesh on

subconvex estimates of L-functions [Ven05,MV09].

6.3. Another case which is well understood, particularly thanks to the work

of Green and Tao [GT07], is the action of a subgroup of G on G\Γ when G

is nilpotent ; these nilsystems appear naturally in the context of combinatorial

ergodic theory, and have a different flavor from the type of dynamics we consider

here, e.g. when G is a semisimple group or a solvable group of exponential

growth.

6.4. We list below several nonhorospherical quantitative equidistribution re-

sults closer to the main topics of this note:

(a) Using deep results from the theory of automorphic forms, and under some

additional assumptions that are probably not essential, Einsiedler, Margulis

and Venkatesh were able to give a quantitative analysis of equidistribution

of periodic orbits of semisimple groups on homogeneous spaces [EMV09]

with a polynomial rate of convergence — a result that I suspect should

have many applications.

(b) Let ν be a probability measure on SL(d,Z) as in §5.6. Theorem 9 quoted

above from [BFLM10] gives a quantitative equidistribution statement for

successive convolutions ν∗n ∗ δx for x ∈ Td
, which in particular gives quan-

titative information on the random walk associated with ν on (Z/NZ)d as

N → ∞ irrespective of the prime decomposition of N . This has turned out

10At least for forms that are not too well approximated by forms proportional to rational
ones, though by Meyer’s Theorem for d ≥ 5 rational forms should not cause any significant
complication.
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to be useful in the recent work of Bourgain and P. Varjú [BV10] that show

that the Cayley graphs of SL(d,Z/NZ) with respect to a finite set S of

elements in SL(d,Z) generating a Zariski dense subgroup of SL(d,R) are a

family of expanders as N → ∞ as long as N is not divisible by some fixed

set of prime numbers depending on S.

(c) In joint work with Margulis we give an effective dynamical proof of the

Oppenheim Conjecture, i.e. one that does give bounds on the minimal size

of a nonzero integral vector v for which |Q(v)| < ε. The bound obtained

is of the form ‖v‖ � exp(ε−C
). Nimish Shah has drawn my attention to

a paper of Dani [Dan94] which has a proof of the Oppenheim conjecture

that in principle is quantifiable, i.e. without the use of minimal sets or the

axiom of choice, though it is not immediately apparent what quality of

quantification may be obtained from his method.

(d) In work with Bourgain, Michel and Venkatesh [BLMV09] we have given an

effective version of Furstenberg’s Theorem (cf. §2.8), giving in particular

that if a, b are multiplicatively independent integers, for sufficiently large

C depending on a, b and some θ > 0, for all N ∈ N and m relatively prime

to N ,
{

anbkm

N
: 0 ≤ n, k ≤ C logN

}

intersects any interval in R/Z of length � log log logNθ
. This has been

generalized by Z. Wang [Wan10] in the context of commuting actions of

toral automorphisms.

Clearly, there is ample scope for further research in this direction, particularly

regarding the quality of these quantitative results and their level of generality.

In particular, I think any improvement on the quality of the estimate obtained

in (d) above would be quite interesting.
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Abstract

Cluster algebras were introduced by Fomin-Zelevinsky in 2002 in order to give

a combinatorial framework for phenomena occurring in the context of algebraic

groups. Cluster algebras also have links to a wide range of other subjects, includ-

ing the representation theory of finite dimensional algebras, as first discovered

by Marsh- Reineke-Zelevinsky. Modifying module categories over hereditary al-

gebras, cluster categories were introduced in work with Buan-Marsh-Reineke-

Todorov in order to “categorify” the essential ingredients in the definition of

cluster algebras in the acyclic case. They were shown to be triangulated by

Keller. Related work was done by Geiss-Leclerc-Schröer using preprojective al-

gebras of Dynkin type. In work by many authors there have been further de-

velopments, leading to feedback to cluster algebras, new interesting classes of

finite dimensional algebras, and the investigation of categories of Calabi-Yau

dimension 2.
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Introduction

Almost 10 years ago Fomin and Zelevinsky introduced the concept of cluster

algebras, in order to create a combinatorial framework for the study of canoni-

cal bases in quantum groups, and for the study of total positivity for algebraic

groups. In a series of papers they developed a theory of cluster algebras, which

has turned out to have numerous applications to many areas of mathematics.

One of the most important and influential connections has been with the repre-

sentation theory of finite dimensional algebras. Such a connection was suggested

by the paper [92].
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A cluster algebra, in its simplest form, is defined as follows, as a sub-

algebra of the rational function field F = Q (x1, . . . , xn). Start with a seed

((x1, . . . , xn), B), which, by definition, is a pair consisting of a free generating

set of F, which for simplicity we choose to be (x1, . . . , xn), and a skew sym-

metric n×n matrix B over Z. Alternatively, we can instead of the matrix use a

finite quiver Q (that is, directed graph) with vertices 1, 2, . . . , n, and no oriented

cycles of length 1 or 2. For each i = 1, . . . , n, a new seed µi((x1, . . . , xn), Q)

is defined by first replacing xi with another element x∗

i
in F according to a

specific rule which depends upon both (x1, . . . , xn) and Q. Then we get a new

free generating set (x1, . . . , xi−1, x
∗

i
, xi+1, . . . , xn). For i = 1, . . . , n there is de-

fined a mutation µi(Q) of the quiver Q, giving a new quiver with n vertices.

Then we get a new seed ((x1, . . . , xi−1, x
∗

i
, xi+1, . . . , xn), µi(Q)). We continue

applying µ1, . . . , µn to the new seeds to get further seeds. The n-element sub-

sets occurring in seeds are called clusters, and the elements in the clusters are

called cluster variables. The associated cluster algebra is the subalgebra of F

generated by all cluster variables.

There are many challenging problems concerning cluster algebras. One way

of attacking them is via categorification. This is not a well defined procedure,

but expresses the philosophy that we want to replace ingredients in the def-

inition of cluster algebras by similar concepts in a category with additional

structure. The category could for example be the category of finite dimensional

modules over a finite dimensional k-algebra for a field k, or a closely related

category with similar properties. In particular, the category should have enough

structure so that each object X has an associated finite quiver QX (namely the

quiver of the endomorphism algebra of the object). It is an extra bonus if there

is a way of constructing the original ingredients of the cluster algebra back from

the chosen analogous object in the new category, but we do not require that

this should always be the case.

We first discuss the special case of categorifying quiver mutation alone. Then

we want to find a “nice” category C with a distinguished set T of objects, with

an operation T 7→ µi(T ) defined for T in T and any i = 1, . . . , n. We would

like this operation to “lift” the quiver mutation, that is, we would want that

QT = Q and Qµi(T ) = µi(Q).

We then discuss categorification of some of the essential ingredients involved

in the definition of cluster algebras, such as clusters, cluster variables, seeds. We

want to imitate these concepts, and preferably also operations of addition and

multiplication involving them, in a “nice” category C . As analogs of clusters we

want a distinguished set T of objects of the form T = T1⊕ . . .⊕Tn, where the

Ti are indecomposable and Ti ; Tj for i 6= j. The Ti would then be the analogs

of cluster variables. For each i = 1, . . . , n we want a unique indecomposable

object T ∗

i
; Ti, where T

∗

i
is a summand of an object in T , such that T/Ti⊕T ∗

i

is in T . To find analogs of the seeds, we consider pairs (T,Q) where T is

in T and Q is a quiver with n vertices. For a seed ((u1, . . . , un), Q) it does

not make sense to talk about a connection between (u1, . . . , un) and Q. But
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for the pair (T,Q) a natural connection to ask for between T and Q is that

Q coincides with the quiver QT of the endomorphism algebra End(T )op. We

can try to choose T such that we have an initial tilting seed (T,Q) with this

property. If the same set T provides a categorification of quiver mutation in

the sense discussed above, then this nice property for a tilting seed will hold

for all pairs obtained from (T,Q) via a sequence of mutations of the objects

in T .

We have collected a (not complete) list of desired properties for the cate-

gories, together with a distinguished set of objects T , which we would like our

categorification to satisfy. But there is of course no guarantee to start with that

it is possible to find a satisfactory solution. Here we explain how we can find an

appropriate categorification in the case of what is called acyclic cluster algebras.

We let Q be an acyclic quiver, that is, a quiver with no oriented cycles, with

n vertices. Given a field k, there is a way of associating a finite dimensional

path algebra kQ with the quiver Q (see Section 1). Then the category of finite

dimensional kQ-modules might be a candidate for the category we are looking

for. The tilting modules, which have played a central role in the representation

theory of finite dimensional algebras, might be a candidate for the distinguished

set of objects, since they have some of the desired properties, as also suggested

by the work in [92]. A kQ-module T = T1 ⊕ . . . ⊕ Tn is a tilting module if the

Ti are indecomposable, Ti ; Tj for i 6= j, and every exact sequence of the form

0→ T → E → T → 0 splits. However, this choice does not quite work since it

may happen that for some i there is no indecomposable module T ∗

i
; Ti such

that T/Ti ⊕ T ∗

i
is a tilting module. The idea is then to “enlarge” the category

mod kQ to make it more likely to find some T ∗

i
. This enlargement can in prac-

tice be done by taking a much larger category containing mod kQ, namely the

bounded derived category D
b
(kQ), and then taking the orbit category under

the action of a suitable cyclic group in order to cut down the size. Then we end

up with what has been called the cluster category CQ [20]. As distinguished

set of objects T we choose an enlargement of the set of tilting kQ-modules,

called cluster tilting objects. Then CQ, together with T , has all the properties

we asked for above, and some more which we did not list.

It is natural to try to find other categories with distinguished sets of objects

which would categorify other classes of cluster algebras. This has been succes-

fully done in [57] using the category of finite dimensional modules modΛ over

a class of finite dimensional algebras Λ called preprojective algebras of Dynkin

type.

The investigation of cluster categories and preprojective algebras of Dynkin

type has further led to work on what is called Hom-finite triangulated 2-Calabi-

Yau categories (2-CY for short), with a specific set of objects called cluster

tilting objects [78]. The endomorphism algebras of the cluster tilting objects

form an interesting class of finite dimensional algebras. For example, the in-

vestigation of the cluster tilted algebras, which by definition are those coming

from cluster categories, has shed new light on tilting theory.
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In addition, there have been exciting applications of the categorification

to the theory of cluster algebras. For this it is useful to establish a tighter

connection between cluster algebras and cluster categories (or more general

2-CY categories). This can happen through providing maps in one or both di-

rections, especially between the cluster variables and the indecomposable sum-

mands of the cluster tilting objects. In many cases, for example for cluster

categories, such explicit maps have been constructed, giving deep connections

which are useful for applications to cluster algebras ([25],[31],[35],[34],[57],[95]).

A special case of the problem of categorifying quiver mutation was inves-

tigated in the early days of the present form of the representation theory of

finite dimensional algebras, which started around 40 years ago. Reflections of

quivers at vertices which are sinks (or sources) were introduced in [15]. A sink

i is a vertex where no arrow starts, and a source is a vertex where no ar-

row ends. The operation µi on a quiver where i is a sink was defined by re-

versing all arrows ending at i. A categorification of this special case of quiver

mutation was done using tilting modules over the path algebras kQ for a fi-

nite acyclic quiver Q [8]. In this special case it was possible to use tilting

modules [8].

We start the paper with a discussion of this mutation from [15] and its cat-

egorification in Section 1. We also give some definitions and basic properties of

path algebras and quiver representations. In Section 2 we give an introduction

to the theory of cluster algebras, including definitions, examples and crucial

properties. Cluster categories are introduced in Section 3. We give some mo-

tivation, including a list of desired properties which they should satisfy, and

illustrate through examples. We also introduce the cluster tilting objects. In

Section 4 we deal with generalizations to Hom-finite triangulated 2-CY cate-

gories. The endomorphism algebras of cluster tilting objects are called 2-CY

-tilted algebras. They are discussed in Section 5, together with their relationship

to the interesting class of Jacobian algebras, which are given by quivers with

potential [39]. In Section 6 we discuss applications to cluster algebras in the

acyclic case.

The various aspects of the relationship between cluster algebras and the

representation theory of finite dimensional algebras have stimulated a lot of

research activity during the last few years, with several interesting developments

by a large number of contributors. I have chosen to emphasize aspects closest

to my own interest, which deal with the more categorical aspects of the subject.

But cluster algebras lie in the center of it all, as inspiration, so I have included

a brief discussion of them, as well as a discussion of the feedback of the general

categorical approach to cluster algebras.

Several important topics related to cluster algebras are not discussed in

this paper. In particular, this concerns the developments dealing with the clus-

ter algebras themselves, the applications of categorification to the construction

of (semi)canonical bases and their duals [57], and the recent work in [89] re-

lated to 3-Calabi-Yau algebras. Another interesting type of categorification was
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introduced in [70], and pursued in [94], see also [91]. We also refer to [40] for

work using quivers with potentials to solve a series of conjectures.

We refer to the survey papers ([19],[45],[80],[81],[82],[83],[91],[99],[100],[104],

[112]) for additional information.

1. Bernstein-Gelfand-Ponomarev Reflections

In this section we go back to the beginning of the present form of the represen-

tation theory of finite dimensional algebras, which dates back to around 1970.

We show that some of the early developments can be seen as categorification of

Bernstein-Gelfand-Ponomarev reflections of quivers at sinks (or sources), which

is a special case of the quiver mutation used by Fomin-Zelevinsky in connection

with their definition of cluster algebras. This categorification involves tilting

theory ([16],[67]), which is one of the most important developments in the rep-

resentation theory of algebras. There are numerous applications both within

the field and outside. We start with some relevant background material. We

refer to the books ([6],[10],[54],[64],[103]) as general references.

1.1. Representations of quivers. Let Q be a finite quiver, that is, a

directed graph with a finite number of vertices and a finite number of arrows

between the vertices. Assume that the quiver Q is acyclic, that is, has no

oriented cycles; for example, let Q be the quiver
1 2 3

α β . For simplicity

of exposition, we define the most relevant concepts only for this example.

Let k be a field, which we always assume to be algebraically closed. A

representation of Q over k is V1

fα
→ V2

fβ
→ V3, where we have associated a finite

dimensional vector space Vi to each vertex i, and a linear transformation to

each arrow. A map

h : (V1

fα
→ V2

fβ
→ V3) −→ (V ′

1

f
′

α
→ V ′

2

f
′

β
→ V ′

3)

between two representations is a triple h = (h1, h2, h3), where hi : Vi → V ′

i
is a

linear transformation for each i, such that the following diagram commutes.

V1 V2 V3

V ′

1 V ′

2 V ′

3

h1 h2 h3

fα fβ

f
′

α
f
′

β

The category repQ of representations of Q, with objects and maps as de-

fined above, is equivalent to the category mod kQ of finite dimensional modules

over the path algebra kQ. Here the paths in Q, including the trivial paths

ei associated with the vertices i, are a k-basis for kQ. So in our example

{α, β, βα, e1, e2, e3} is a k-basis. The multiplication for the basis elements

is defined as composition of paths whenever this is possible, and is defined to
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be 0 otherwise. For example, we have β · α = βα, α · e2 = 0, α · e1 = α,

e1 · e1 = e1.

The connection between repQ and mod kQ is illustrated as follows. If

V1

fα
→ V2

fβ
→ V3 is in repQ, then the vector space V1 ⊕ V2 ⊕ V3 can be given a

kQ-module structure by defining α(v1, v2, v3) = (0, fα(v1), 0), β(v1, v2, v3) =

(0, 0, fβ(v2)), e1(v1, v2, v3) = (v1, 0, 0), e2(v1, v2, v3) = (0, v2, 0), e3(v1, v2, v3) =

(0, 0, v3).

The indecomposable projective representations P1, P2 and P3 associated

with the vertices 1, 2 and 3 are k
id
→ k

id
→ k, 0 → k

id
→ k and 0 → 0 → k,

the simple representations S1, S2 and S3 are k → 0 → 0, 0 → k → 0 and

0 → 0 → k and the indecomposable injective representations I1, I2 and I3 are

k → 0 → 0, k
id
→ k → 0 and k

id
→ k

id
→ k. We also use the same notation for a

representation viewed as a kQ-module.

An important early result on quiver representations was the following [53].

Theorem 1.1. Let Q be a finite connected quiver and k an algebraically closed

field. Then repQ has only a finite number of indecomposable representations

up to isomorphism if and only if the underlying graph |Q| is of Dynkin type

An, Dn, E6, E7 or E8.

1.2. Reflection functors. The proof by Gabriel of Theorem 1.1 was

technically complicated. A more elegant proof was soon thereafter given by

Bernstein-Gelfand-Ponomarev [15], taking advantage of the fact that the clas-

sification theorem involved Dynkin diagrams, a fact which suggested connec-

tions with root systems and positive definite quadratic forms. One important

aspect of their work was that they introduced reflections of quivers and asso-

ciated reflection functors. Using this, together with some special modules from

[8] inspired by the reflection functors, later known as APR-tilting modules, we

shall illustrate the idea of categorification. These examples are special cases of

categorifications of more general mutation of quivers, which is important for

the categorification of cluster algebras.

Let i be a vertex in the quiver Q which is a sink, that is, there are no

arrows starting at i. In our running example the vertex 3 is a sink. We define

a new quiver µ3(Q), known as the mutation of Q at the vertex 3. This is

obtained by reversing all the arrows in Q ending at 3, so in our example it is the

quiver 1 2 3. In [15] a reflection functor F3 : repQ → repQ′
was

defined on objects by sending V1

fα
→ V2

fβ
→ V3 to V1

fα
→ V2

f
′

β
← Ker fβ , where f ′

β

is the natural inclusion. We see that S3 is sent to the zero representation, and

we have the following connection between repQ and repQ′, where S′

3 is the

representation 0→ 0← k of Q′.

Theorem 1.2. The reflection functor F3 induces an equivalence F3 :

repQ\S3 → repQ′
\S′

3, where repQ\S3 denotes the full subcategory of repQ
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consisting of objects which are finite direct sums of indecomposable objects not

isomorphic to S3.

This is a key step in the proof in [15] of Gabriel’s theorem. It gives an easy

illustration of a categorification, where a quiver Q is replaced by some object in

repQ, and the mutation of Q at a sink i is replaced by the associated functor Fi.

1.3. Illustration using AR-quiver. For a finite dimensional k-

algebra Λ a special kind of exact sequence, known as an almost split sequence

(or also Auslander-Reiten sequence), was introduced in [9]. An exact sequence

0 → A
f
→ B

g
→ C → 0 is almost split if it is not split, the end terms are

indecomposable, and each map h : X → C where X is indecomposable and

h is not an isomorphism, factors through g : B → C. We have the following

basic result, where we assume that all our modules are finite dimensional over

k [9].

Theorem 1.3. For any indecomposable nonprojective Λ-module C (or for any

indecomposable noninjective Λ-module A), there exists an almost split sequence

0→ A→ B → C → 0, which is unique up to isomorphism.

The almost split sequences induce an operation τ, called the AR-translation,

from the indecomposable nonprojective Λ-modules to the indecomposable non-

injective ones, satisfying τ(C) = A when 0 → A → B → C → 0 is almost

split.

On the basis of the information given by the almost split sequences (in gen-

eral together with some special maps to projectives and from injectives) we can

draw a new quiver, called the Auslander-Reiten quiver (AR-quiver for short),

where the vertices correspond to the isomorphism classes of indecomposable

Λ-modules.

In our examples we have the following.

AR-quiver for kQ

S3

P2

P1

S2

S1

P1/S3

AR-quiver for kQ′

S′

3

The broken arrows indicate the translation τ, and we can then deduce

the shape of the almost split sequences from the AR-quiver. For example, for

kQ we have the almost split sequences 0 → S3 → P2 → S2 → 0, 0 → S2 →

P1/S3 → S1 → 0 and 0 → P2 → P1 ⊕ S2 → P1/S3 → 0. The AR-quivers for

kQ and kQ′
are not isomorphic, but when dropping S3 from the first one and

S′

3 from the second one, they are clearly isomorphic. This reflects the fact that
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there is an equivalence between the corresponding subcategories, as stated in

Theorem 1.2.

1.4. Module theoretical interpretation. Let Q be a finite quiver

without oriented cycles and with vertices 1, . . . , n. Let i be a vertex of Q which

is a sink. Denote by µi(Q) = Q′
the quiver obtained by mutation at i. We write

kQ = P1 ⊕ . . . ⊕ Pn, where Pj is the indecomposable projective kQ-module

associated with the vertex j. Then we have the following module theoretical

interpretation of the reflection functors [8].

Theorem 1.4. With the above notation, we have the following.

(a) For T = kQ/Pi ⊕ τ−1Pi we have EndkQ(T )
op
' kQ′.

(b) The functor Fi : repQ→ repQ′ is isomorphic to the functor HomkQ(T, ) :

mod kQ→ mod kQ′.

Let J = JQ be the ideal generated by all arrows in a path algebra kQ. It

is known that any finite dimensional k-algebra A is Morita equivalent to kQ/I

for some finite quiver Q and ideal I in kQ with I ⊆ J2. A generating set of I

is called a set of relations for A. We denote Q by QA. In particular, we have

QkQ = Q and QkQ′ = Q′. If X is in modA, then the associated quiver QX is by

definition the quiver QEnd(X)op associated with the finite dimensional k-algebra

End(X)
op.

In our running example we have T = P1⊕P2⊕τ
−1S3. Consider the diagram

Q

kQ T

µ3(Q) = Q′µ3

Then QT = Q′
since EndkQ(T )

op
' kQ′. Further, we can define µ3(kQ) by

replacing P3 = S3 by τ−1S3, so that µ3(kQ) = T. This way we can view the

above theorem as a way of categorifying quiver mutation. This categorification,

which is quite different from the one discussed in Section 1.2, is of the type we

shall be dealing with, and it will be generalized later.

1.5. Tilting theory. The kQ-modules kQ and T are examples of what

are now called tilting modules ([16], [67]). A module T over a path algebra kQ is

a tilting module if Ext
1
kQ(T, T ) = 0, and the number of nonisomorphic indecom-

posable summands is the number of vertices in the quiver Q. Objects X with

Ext
1
kQ(X,X) = 0 are called rigid. The endomorphism algebras EndkQ(T )

op
are

by definition the tilted algebras. It was the work discussed in Sections 1.2 and

1.4 which inspired tilting theory.
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An aspect of tilting theory of interest in this paper is the following

([102],[110],[68]).

Theorem 1.5. Let T = T1 ⊕ . . .⊕ Tn be a tilting kQ-module, where the Ti are

indecomposable and Ti ; Tj for i 6= j.

(a) For each i, there is at most one indecomposable kQ-module T ∗

i
; Ti such

that T/Ti ⊕ T ∗

i
is a tilting kQ-module.

(b) For each i there exists such a module T ∗

i
if and only if T/Ti is a sin-

cere kQ-module, that is, all simple kQ-modules are composition factors

of T/Ti.

The modules T/Ti are called almost complete tilting modules, and Ti (and

T ∗

i
if it exists) are called complements of T/Ti. The kQ-module kQ is clearly

a tilting module, and when i is a sink in the quiver Q, then there is always

some indecomposable kQ-module P ∗

i
; Pi such that kQ/Pi ⊕ P ∗

i
is a tilting

module. The module T ∗

i
is in fact τ−1Pi. So we can view the previously defined

operation µi(kQ) as replacing Pi by the unique indecomposable kQ-module

P ∗

i
; Pi such that kQ/Pi ⊕ P ∗

i
is a tilting module.

1.6. General quiver mutation and tilting modules. For quiv-

ers with no loops and no (oriented) 2-cycles , Fomin and Zelevinsky

have introduced a mutation of quivers at any vertex of the quiver as follows

[48] (see also papers in mathematical physics [107]).

Let i be a vertex in the quiver Q.

(i) Each pair of arrows s→ i→ t in Q gives rise to a new arrow s→ t in the

mutated quiver µi(Q).

(ii) We reverse the arrows starting or ending at i.

(iii) We remove any 2-cycles.

Example 1.6. Let Q be the quiver 1 2 3
α β . Then µ2(Q) is the quiver

1 2 3 . Let again kQ = P1⊕P2⊕P3 be the tilting kQ-module associated

with Q. Then T = P1 ⊕ S1 ⊕ P3 is also a tilting kQ-module, and we define

µ2(kQ) = T according to the previous principle. But the quiver QT associated

to T can be shown to be 31 2 . Hence mutation of tilting modules

does not give a categorification of quiver mutation in this case. For the vertex

1, it is not even possible to replace P1 to get another tilting module.

In conclusion, we can use tilting modules to categorify quiver mutation

at sinks, but not at an arbitrary vertex. We shall see in Section 3 how we

can modify the module category mod kQ, and use objects related to tilting
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kQ-modules, in order to make things work for quiver mutation at any vertex

of an acyclic quiver (and more generally any quiver in the mutation class of

an acyclic quiver). We shall also see that in addition to being interesting in

itself, this work can be used to obtain information on the mutation class of a

finite acyclic quiver. Here we take advantage of the richer structure provided

by the categorification. We shall also see that for another class of quivers one

can actually use tilting modules to categorify quiver mutation [77].

2. Cluster Algebras

Cluster algebras were introduced by Fomin and Zelevinsky in [48]. The moti-

vation was to create a common framework for phenomena occurring in connec-

tion with total positivity and canonical bases. The theory has had considerable

influence on many different areas, amongst them the theory of quiver represen-

tations. In this section we give basic definitions and state some main results,

following ([48],[49]), in order to have appropriate background for discussing

categorification of cluster algebras.

2.1. Cluster algebras with no coefficients. We first discuss clus-

ter algebras with “no coefficients,” which we mainly deal with in this paper.

Let F = Q(x1, . . . , xn) be the function field in n variables over the field Q

of rational numbers, and let B = (bij) be an n × n - matrix. We assume for

simplicity that B is skew symmetric. Then B corresponds to a quiver with n

vertices, where there are bij arrows from i to j if bij > 0. Here we deal with

quivers instead of matrices. We start with an initial seed ((x1, . . . , xn), Q), con-

sisting of a free generating set (x1, . . . , xn) for F, together with a finite quiver Q

with n vertices, labelled 1, . . . , n. For each i ∈ {1, . . . , n} we define a new seed

µi((x1, . . . , xn), Q) to be a pair ((x1, . . . , xi−1, x
∗

i
, xi+1, . . . , xn), µi(Q)). Here

x∗

i
is defined by the equality xix

∗

i
= m1 +m2, where m1 is the product whose

terms are xs
j
if there are s arrows from j to i, and m2 is the corresponding

product associated with the arrows starting at i. If i is a source, that is, no

arrow ends at i, we set m1 = 1, and if i is a sink we set m2 = 1. It can be

shown that (x1, . . . , xi−1, x
∗

i
, xi+1, . . . , xn) is again a free generating set, and

that µ2
i
((x1, . . . , xn), Q) = ((x1, . . . , xn), Q). Note that the quiver µi(Q) = Q′

only depends on the quiver Q, while the new free generating set depends on

both Q and the old free generating set.

We illustrate with the following.

Example 2.1. Let F = Q(x1, x2, x3) and Q be the quiver 1 2 3.

We start with the seed

(

(x1, x2, x3),1 2 3

)

, and apply µ3. Then

µ3

(

1 2 3

)

= Q′
: 1 2 3. Furthermore x∗

3x3 = x2 + 1, so that x∗

3 =

x2+1

x3

. Hence we obtain the new seed

(

(x1, x2,
x2+1

x3

),1 2 3

)

. Similarly, we
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get µ2((x1, x2, x3), Q) =

(

(x1,
x1+x3

x2

, x3),1 2 3

)

and µ1((x1, x2, x3), Q) =

(

(
1+x2

x3

, x2, x3), 1 2 3

)

.

We continue by applying µ1, µ2, µ3 to the new seeds, keeping in mind that

µ2
i
is the identity. In this example we get only a finite number of seeds, namely

14. Note that the seeds
(

(x1, x2, x3),1 2 3

)

and

(

(x1, x3, x2),1 2 3

)

are

identified, since they are the same up to relabelling.

Example 2.2. When Q is the quiver 1 2 and F = Q(x1, x2), we have

the following complete picture of the graph of seeds, called the cluster graph.

(

(x1, x2),1 2

)

(

(
1+x2

x1

, x2),1 2

) (

(x1,
1+x1

x2

),1 2

)

(

(
1+x2

x1

, 1+x1+x2

x1x2

),1 2

) (

(
1+x1+x2

x1x2

, 1+x1

x2

),1 2

)

(

(
1+x1

x2

, 1+x1+x2

x1x2

),1 2

)

µ1

µ2

µ2 µ1

µ1
∼

The n-element subsets occurring in the seeds are called clusters, and the

elements occurring in the clusters are called cluster variables. Finally, the as-

sociated cluster algebra is the subalgebra of Q(x1, . . . , xn) generated by the

cluster variables.

In Example 2.2 we have 5 clusters, and the cluster variables are the 5 el-

ements x1, x2,
1+x1

x2

, 1+x2

x1

, 1+x1+x2

x1x2

. The cluster graph is also interesting in

connection with the study of associahedra ([50],[92]).

2.2. Basic properties. In both examples above there is only a finite

number of seeds, clusters and cluster variables. This is, however, not usually

the case. In fact, there is the following nice description of when this holds [49].

Theorem 2.3. Let Q be a finite connected quiver with no loops or 2-cycles.

Then there are only finitely many clusters (or cluster variables, or seeds) if and

only if the underlying graph of Q is a Dynkin diagram.

Note that this result is analogous to Gabriel’s classification theorem for when

there are only finitely many nonisomorphic indecomposable representations of

a quiver.
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A remarkable property of the cluster variables is the following [48], called

the Laurent phenomenon.

Theorem 2.4. Let ((x1, . . . , xn), Q) be an initial seed. When we write a cluster

variable in reduced form f/g, then g is a monomial in x1, . . . , xn.

We shall see later that these monomials g contain some interesting informa-

tion from a representation theoretic point of view.

A cluster algebra is said to be acyclic if there is some seed with an acyclic

quiver. In this case there is the following information on the numerators of the

cluster variables, when they are expressed in terms of the cluster in a seed which

has an acyclic quiver ([35],[36],[98]). The corresponding result is not known for

cluster algebras in general.

Theorem 2.5. For an acyclic cluster algebra as above, there are positive co-

efficients for all monomials in the numerator f of a cluster variable in reduced

form.

2.3. Cluster algebras with coefficients. Cluster algebras with co-

efficients are important for geometric examples of cluster algebras. Here we only

consider a special case of such cluster algebras. Let Q(x1, . . . , xn; y1, . . . , yt)

be the rational function field in n + t variables, where y1, . . . , yt are called

coefficients. Let Q be a finite quiver with n + t vertices corresponding to

x1, . . . , xn, y1, . . . , yt.We start with the seed ((x1, . . . , xn; y1, . . . , yt), Q). Then

we only apply mutations µ1, . . . , µn with respect to the first n vertices, and

otherwise proceed as before. Note that Theorems 2.3 and 2.4 hold also in this

setting.

There are several examples of classes of cluster algebras with coefficients,

for example the homogeneous coordinate rings of Grassmanians investigated in

[106] and the coordinate rings C[N ] of unipotent groups (see [57]). There are

further examples in ([14],[59],[56],[17],[61]).

The combinatorics of the cluster algebras in the case of Grassmanians of

type An can be nicely illustrated geometrically by triangulations of a regular

(n+3)-gon. The cluster variables, which are coefficients, correspond to the edges

of the regular (n + 3)-gon, and the other cluster variables correspond to the

diagonals. The clusters, without coefficients, correspond to the triangulations

of the (n+3)-gon, or in other words to maximal sets of diagonals which do not

intersect. We illustrate with the following simple example.

Example 2.6. Let

1 2

5

4

3

a

b be a regular 5-gon. Then the diagonals

a and b correspond to cluster variables which are not coefficients, and (a, b)
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is a maximal set of non intersecting diagonals. Taking corresponding cluster

variables together with the coefficients, we obtain a cluster. It is easy to see

that there are 5 diagonals, and 5 triangulations (see [50]).

3. Cluster Categories

It is of interest to categorify the main ingredients in the definition of cluster

algebras. The idea behind this is to work within a category with extra structure,

and imitate the basic operations within this new category. The hope is on one

hand that this will give some feedback to the theory of cluster algebras, and on

the other hand that it will lead to new interesting theories. Both aspects have

been successful, for various classes of cluster algebras. In this section we deal

with the acyclic ones.

3.1. Cluster structures. We first make a list of desired properties for

the categories C we are looking for. Let C be a triangulated k-category with

split idempotents, which is Hom-finite, that is, the homomorphism spaces are

finite dimensional over k. Then C is a Krull-Schmidt category, that is, each

object is a finite direct sum of indecomposable objects with local endomorphism

ring. We are looking for appropriate sets of n nonisomorphic indecomposable

objects T1, . . . , Tn, or rather objects T = T1 ⊕ . . . ⊕ Tn, where the Ti should

be the analogs of cluster variables and the T, the analogs of clusters. To have a

good analog we would like these objects to satisfy the following, in which case

we say that C has a cluster structure (see [17]). C has a weak cluster structure

if (C1) and (C2) are satisfied.

(C1) For T = T1 ⊕ . . .⊕ Tn in our set, there is, for each i = 1, . . . , n, a unique

indecomposable object T ∗

i
; Ti in C such that T/Ti ⊕ T ∗

i
is in our set.

(C2) For each Ti there are triangles T ∗

i

f
→ Bi

g
→ Ti → T ∗

i
[1] and Ti

s
→

B′

i

t
→ T ∗

i
→ Ti[1], where the maps g and t are minimal right add(T/Ti)-

approximations and the maps f and s are minimal left add(T/Ti)-

approximations.

(C3) There are no loops or 2-cycles in the quiver QT of EndC (T )op. This means

that any nonisomorphism u : Ti → Ti factors through g : Bi → Ti and

through s : Ti → B′

i
, and Bi and B′

i
have no common nonzero summands.

(C4) For each T in our set we have µi(QT ) = Qµi(T ).

We recall that the map g : Bi → Ti is a right add(T/Ti)-approximation if Bi

is in add(T/Ti) and any map h : X → Ti with X in add(T/Ti) factors through

g : Bi → Ti. The map g : Bi → Ti is right minimal if for any commutative



Cluster Categories 571

diagram

Bi Ti

Bi

g

g
s , the map s is an isomorphism. Left approximations and

left minimal maps are defined similarly.

Note that the relationship between Ti and T ∗

i
required in part (C2) is similar

to the formula xix
∗

i
= m1 +m2 appearing in the definition of cluster algebras.

Part (C4) is related to our discussion in Section 1 about what is needed

in order to categorify quiver mutation. There we saw that tilting kQ-modules

could not always be used for this purpose. However, for a class of complete

algebras of Krull dimension 3, known as 3-Calabi-Yau algebras, we shall see

that actually the tilting modules (of projective dimension at most 1) can be

used.

When we deal with cluster algebras with coefficients, we need a modified

version of the above definition of cluster structure (see [17]).

3.2. Origins. When Q is a Dynkin quiver, it was shown in [48] that there

is a one-one correspondence between the cluster variables for the cluster alge-

bra determined by the seed ((x1, . . . , xn), Q), and the almost positive roots,

that is, the positive roots together with the negative simple roots. On the

other hand the positive roots are in 1 − 1 correspondence with the indecom-

posable kQ-modules. This led the authors of [92] to introduce the category of

decorated representations of Q, which are the representations of the quiver

Q ∪
{

1 . . . n
}

, that is, Q, together with n isolated vertices. Then the in-

decomposable representations of Q correspond to the positive roots and the

n additional 1-dimensional representations correspond to the negative simple

roots. A compatibility degree E(X,Y ) for a pair of decorated representations

was introduced, and E(X,X) = 0 corresponds to Ext
1
kQ(X,X) = 0 when X

is in mod kQ. The maximal such X in mod kQ are the tilting modules, in-

dicating a connection with tilting theory. On the other hand, if the cluster

variables should correspond to indecomposable objects in the category we are

looking for, then we would need additional indecomposable objects compared

to mod kQ. This could also help remedy the fact that not all almost complete

tilting modules in mod kQ have exactly two complements in mod kQ. Recall

that the almost complete tilting modules are the modules obtained from tilting

modules T = T1 ⊕ . . . ⊕ Tn, where n is the number of vertices in the quiver,

by dropping one indecomposable summand. In order to have property (C4), we

would also need more maps in our desired category.

Taking all this into account, it turns out to be fruitful to consider a suitable

orbit category of the bounded derived category D
b
(kQ). In the case of path

algebras the bounded derived categories have a particularly nice structure.

3.3. Derived categories of path algebras. Let Q be a finite acyclic

quiver, for example 1 2 3 as before. Then the indecomposable objects in the
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bounded derived category D
b
(kQ) are just the objects X[i] for i ∈ Z, where X

is an indecomposable kQ-module. Then for X and Y in mod kQ we have that

Hom
D

b(kQ)(X[i], Y [j]) is isomorphic to HomkQ(X,Y ) if i = j, to Ext
1
kQ(X,Y )

if j = i+ 1, and is 0 otherwise.

The category D
b
(kQ) is a triangulated category, and it has almost split tri-

angles [64], where those inside a given shift (mod kQ)[i] are induced by the al-

most split sequences in mod kQ. The others are of the form I[j−1]→ E → P [j],

where P is indecomposable projective in mod kQ, and I is the indecomposable

injective module associated with the same vertex of the quiver. The operation

τ is defined as for almost split sequences. Actually, in this setting it is even

induced by an equivalence of categories τ : D
b
(kQ)→ D

b
(kQ) [64].

For the running example we then have the corresponding AR-quiver

. . .

P3 = S3

P1

P2

S3[1]

S2

P1/S3

S2[1]

S1

S1[1]

P1[1] S2[2]

. . .

When Q′
is obtained from Q by reflection at a sink (for example

1 2 3 is obtained from 1 2 3 in the above example), then

we have seen that we have an associated tilting kQ-module T such that

EndkQ(T )
op
' kQ′. Hence there is induced a derived equivalence between kQ

and kQ′
[64].

3.4. The cluster category. Let as before τ : D
b
(kQ)→ D

b
(kQ) denote

the equivalence which induces the AR-translation, so that τC = A if A→ B →

C → A[1] is an almost split triangle. Then F = τ−1
[1] : D

b
(kQ) → D

b
(kQ)

is an equivalence, where [1] denotes the shift functor. We defined in [20] the

cluster category CQ to be the orbit category D
b
(kQ)/F . By definition, the in-

decomposable objects are the F -orbits in D
b
(kQ) of indecomposable objects,

represented by indecomposable objects in the fundamental domain F . This con-

sists of the indecomposable objects in mod kQ, together with P1[1], . . . , Pn[1],

where P1, . . . , Pn are the indecomposable projective kQ-modules. So in the

Dynkin case, the number of indecomposable objects in F , up to isomorphism,

equals the number of cluster variables. For X and Y indecomposable in F we

have HomCQ
(X,Y ) =

∞
⊕

i=−∞

Hom
D

b(Q)(X,F iY ), by the definition of maps in an

orbit category. So in general we have more maps than before. For example, if Q

is 1 2 3 , we have Hom
D

b(Q)(S1, F (S3)) ' k, and Hom
D

b(Q)(S1, F
iS3) = 0

for i 6= 1. Hence we have HomCQ
(S1, S3) ' k. Now, for T = P1 ⊕ S1 ⊕ S3 in

CQ, we have QT =: 1 2 3, which coincides with µ2(Q), as desired.

The category CQ has some nice additional structure, which orbit categories

rarely have; namely they are triangulated categories [79].
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3.5. Cluster tilting objects. In Section 1.6 we have seen that we could

not use tilting kQ-modules to categorify quiver mutation at vertex 2 in our

running example, since the quiver of the tilting module T = P1 ⊕ S1 ⊕ P3

was not “correct.” But when T is viewed as an object in CQ, the associated

quiver is the correct one. So it seems natural that our desired class of objects

should include the tilting kQ-modules. Now, as already pointed out, there are

usually different module categories of the form mod kQ giving rise to the same

bounded derived category D
b
(kQ), and hence to the same cluster category. So it

is natural to consider the objects in CQ induced by all the corresponding tilting

modules. This class of modules turns out to have a nice uniform description as

objects in CQ, which motivates the following definitions.

An object T in CQ is maximal rigid if Ext
1
CQ

(T, T ) = 0 and T is maximal

with this property. It is cluster tilting if it is rigid and Ext
1
C (T,X) = 0 implies

that X is in addT. Actually the concepts of maximal rigid and cluster tilting

coincide for CQ [20].

We have the following ([20],[24]).

Theorem 3.1. The cluster category CQ has a cluster structure with respect to

the cluster tilting objects.

As for the cluster algebras, there is also in this setting a natural associated

graph, called the cluster tilting graph. Associated with a cluster tilting object T

in CQ, we have a quiver QT , which is the quiver of EndCQ
(T )op, and hence we

have a natural tilting seed (T,QT ) [24]. The vertices of the cluster tilting graph

correspond to the cluster tilting objects up to isomorphism, or equivalently, to

the tilting seeds. We have an edge between two vertices if the two corresponding

cluster tilting objects differ by exactly one indecomposable summand.

Whereas the cluster graph by definition is connected, this is not automatic

for the cluster tilting graph. However, it can be shown to be the case for cluster

categories ([20], using [69]), see also [72].

3.6. Categorification of quiver mutation. Note that we have in

particular obtained a way of categorifying quiver mutation beyond the case of

mutation at a sink as discussed in Section 1. So we isolate the more general

statement as follows.

Theorem 3.2. Let Q be a finite acyclic quiver, and Q′ a quiver obtained from Q

by a finite sequence of mutations. Let i be a vertex of Q′. Then there is a cluster

tilting object T ′ in CQ such that for T ′′
= µi(T

′
) we have the commutative

diagram

T
′

T
′′

QT ′ = Q
′

µi(Q
′) = QT ′′

µi

µi
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As an illustration of how such a categorification can be useful we state the

following result [27].

Theorem 3.3. Let Q be a finite acyclic quiver. Then the mutation class of

Q is finite if and only if Q has at most two vertices, or Q is a Dynkin or an

extended Dynkin diagram.

The point of the categorification is that since the cluster tilting objects

are closely related to the tilting kQ-modules, we can take advantage of the

well developed theory of tilting modules over finite dimensional algebras. The

problem amounts to deciding when only a finite number of quivers occur as

quivers associated with tilting modules.

We point out that a classification of finite mutation type has recently been

obtained in general for finite quivers without loops or 2-cycles [41].

As indicated before, quiver mutation can be categorified using tilting mod-

ules of projective dimension at most 1 for a class of algebras of Krull dimension

3 called 3-Calabi Yau algebras (see [77])

Theorem 3.4. Let Λ be a basic 3-Calabi-Yau algebra given by a quiver Q with

relations. Assume that Q has no loops or 2-cycles. Then µi(Q) is obtained from

the quiver of µi(Λ) by removing all 2-cycles, with µi as defined below.

Let Λ = P1 ⊕ . . . ⊕ Pn, where the Pi are indecomposable projective Λ-

modules, and Pr ; Ps for r 6= s since Λ is basic. There is for a given i = 1, . . . , n

a unique indecomposable Λ-module P ∗

i
such that Λ/Pi⊕P ∗

i
is a tilting module

of projective dimension at most 1, and we let µi(Λ) = Λ/Pi ⊕ P ∗

i
.

3.7. A geometric description. WhenQ is a quiver of type An, there is

an independent categorification of the corresponding cluster algebra along very

different lines [33]. This is based upon the example discussed in Section 2.3.

We consider the triangulations of the regular (n + 3)-gon, without including

the coefficients, which correspond to the edges in the (n + 3)-gon. A category

with indecomposable objects corresponding to the diagonals in the (n+3)-gon

was defined in [33]. The authors showed that this category is equivalent to the

cluster category of type An. So we get an interesting geometric description of

the cluster category in the An case. There is also further work in this direction

for Dn [105].

Cluster structures in the context of Teichmüller spaces were discussed in

([42],[43],[44], [61],[62]). This inspired the systematic study of cluster algebras

coming from oriented Riemann surfaces with boundary and marked points

([41],[47]). Also in this case clusters are in bijection with triangulations. It

is easy to see that the mutation class is always finite for these examples.

3.8. Hereditary categories. The theory of cluster categories also

works when we replace mod kQ by an arbitrary Hom-finite hereditary abelian

category with tilting object [66], as pointed out in [20]. It has been shown in

[11] that in the tubular case the cluster tilting graph is connected.
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3.9. (m)-cluster categories. There is a natural generalization of the

cluster categories CQ = D
b
(kQ)/τ−1

[1] to (m)-cluster categories C
(m)

Q
=

D
b
(kQ)/τ−1

[m], for m ≥ 1. Then C
(m)

Q
is Hom-finite and also triangulated

[79]. Some more results on cluster categories remain true in the more general

setting.

We recall some work from ([109],[111],[115],[113]). The concepts of maximal

rigid and cluster tilting have a natural generalization to (m)-maximal rigid and

m-cluster tilting objects in C
(m)

Q
. Also in this setting the concepts coincide.

Further, the number of nonisomorphic indecomposable summands of an m-

cluster-tilting object equals the number of vertices in the quiver Q. If we drop

one indecomposable summand from an m-cluster tilting object T, there are

exactly m different ways to replace it by an indecomposable object, such that

we still have an m-cluster tilting object.

It was shown in [29] that also for arbitrary m there is a combinatorial

description of mutation of m-cluster tilting objects in m-cluster categories. In

this connection the concept of coloured quiver mutation is introduced. There is

a geometric description of the m-cluster categories for quivers of type An and

Dn (see [12]). In the Dynkin case the concept of m-clusters has been introduced

in [46], and it was shown in ([109],[115]) that the m-cluster category provides

a categorification. This was used in ([109],[115]) to simplify proofs of results

about m-clusters in [46].

4. Calabi-Yau Categories of Dimension Two

A crucial property for the investigation of cluster tilting objects in cluster cat-

egories CQ was the functorial isomorphism DExt
1
CQ

(A,B) ' Ext
1
CQ

(B,A),

where D = Homk( , k), which by definition expresses that the Hom-finite tri-

angulated k-category CQ is 2-Calabi-Yau (2-CY for short). A similar theory

worked for modΛ when Λ is the preprojective algebra of a Dynkin diagram

[57]. Also in this case an important feature was that the stable category modΛ

is 2-CY . Then we say that modΛ is stably 2-CY . This motivated trying to gen-

eralize work from cluster categories to arbitrary Hom-finite triangulated 2-CY

k-categories. We usually omit the k when we speak about k-categories.

4.1. Preprojective algebras of Dynkin type. In their work in [57]

on modΛ for Λ a preprojective algebra of Dynkin type, Geiss-Leclerc-Schröer

dealt with the maximal rigid modules, as defined in Section 3. One can here

go back and forth between exact sequences in modΛ and triangles in modΛ,

so for the general theory one can deal with either one of these categories. They

followed the same basic outline as in ([20],[24]), and proved that modΛ has

a cluster structure in the terminology of Section 3. For (C2) the same proof

as for cluster categories could be used, but in the other cases new proofs were

necessary. This was also the case for showing that the concepts of maximal rigid
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and cluster tilting coincide also in this context. For this work some of the results

of Iyama on a higher theory of almost split sequences and Auslander algebras

were useful ([74],[75]). Actually, in this work Iyama introduced independently

the concept of maximal 1-orthogonal, which coincides with cluster tilting in the

setting of (stably) 2-CY categories.

The cluster algebras C[N ] are categorified using the cluster tilting objects in

the category modΛ for a preprojective algebra Λ of Dynkin type. All the inde-

composable projective modules are summands of any cluster tilting object, and

correspond to the coefficients of the associated cluster algebra. Actually, here

categorification can be used to show that C[N ] has a cluster algebra structure

(see [57]). This has recently been generalized in [56].

Cluster monomials are monomials of cluster variables in a given cluster. A

central question is their relationship to the canonical and semicanonical bases

and their duals, investigated by Lusztig and Kashiwara (see [57],[58]).

4.2. Generalizations. In the general case of stably 2-CY categories, or

Hom-finite triangulated 2-CY categories, there are not necessarily any cluster

tilting objects. Actually, there may be maximal rigid objects, but no cluster

tilting objects [30]. But we have the following general result [78].

Theorem 4.1. Let C be a Hom-finite triangulated 2-CY category with cluster

tilting objects. Then C has a weak cluster structure.

The proof of (C2) is the same as for cluster categories, while a new argument

was needed for (C1). Property (C3) does not however hold in general. There are

many examples of stable categories of Cohen-Macaulay modules over isolated

hypersurface singularities where there are both loops and 2-cycles [30]. But if

there are no loops or 2-cycles, then we have the following [17].

Theorem 4.2. Let C be a Hom-finite 2-CY triangulated k-category having

cluster tilting objects, and with no loops or 2-cycles. Then C has a cluster

structure.

We have pointed out that the cluster tilting graph is known to be connected

for cluster categories CQ when Q is a finite connected quiver. This is an impor-

tant open problem for connected Hom-finite triangulated 2-CY categories in

general. The only other cases where this is known to be true is for the case dis-

cussed in Section 3.8, and for some cases of stable categories of Cohen-Macaulay

modules in [30].

4.3. 2-CY categories associated with elements in Coxeter
groups. Let Q be a finite acyclic quiver with vertices 1, . . . , n, and let CQ

be the associated Coxeter group. By definition CQ has a distinguished set of

generators s1, . . . , sn, and the relations are as follows: s2
i
= 1, sisj = sjsi

if there is no arrow between i and j in Q, and sisjsi = sjsisj if there is
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exactly one arrow between i and j. Let w = si1 . . . sit be a reduced expression

of w in CQ, that is, t is smallest possible. Let Λ be the (completion of the)

preprojective algebra associated with Q. For each i = 1, . . . , n, consider the

ideal Ii = Λ(1−ei)Λ in Λ, where ei denotes the trivial path at the vertex i. Then

define the ideal Iw = Ii1 . . . Iit . It can be shown to be independent of the reduced

expression, and the factor algebra Λw = Λ/Iw is finite dimensional. Denote by

SubΛw the full subcategory of modΛw whose objects are the submodules of

the free Λw-modules of finite rank. Then Cw = SubΛw is stably 2-CY , and

the associated stable category SubΛw is Hom-finite triangulated 2-CY . Here

we refer to ([77],[17]).

There is a nice class of cluster tilting objects, called standard cluster tilting

objects, in SubΛw and SubΛw. When w = si1 . . . sit is a reduced expression we

define

Tw = (Pi1
/Ii1Pi1

)⊕ (Pi2
/Ii1Ii2Pi2

)⊕ . . .⊕ (Pit
/Ii1 . . . IitPit

) .

Then Tw is a cluster tilting object in SubΛw and in SubΛw, and it depends on

the reduced expression. However, the standard cluster tilting objects all lie in

the same component of the cluster tilting graph [17].

A stably 2-CY category, dual to Cw, was independently associated with a

class of words called adaptable, in a very different way [55]. Here there were

also associated two cluster tilting objects in a natural way, which are a subset

of the set of standard cluster tilting objects (up to duality).

4.4. Stable categories of Cohen-Macaulay modules. Let R be

a commutative complete local Gorenstein isolated singularity of Krull dimension

3, with k ⊂ R for the field k. Then by results of Auslander [7] on existence of

almost split sequences for (maximal) Cohen-Macaulay modules, the category

of Cohen-Macaulay modules CM(R) is stably 2-CY and the stable category

CM(R) is Hom-finite triangulated 2-CY .

When R is an isolated hypersurface singularity, we can, by the periodicity

result for hypersurfaces ([88],[108]), deal with the case of Krull dimension 1

just as well. Already for finite Cohen-Macaulay type there are examples with

no cluster tilting objects, and where there are maximal rigid objects which are

not cluster tilting [30]. For all these examples there are 2-cycles, and in many

cases also loops. An interesting question in this connection is the following. Let

C be a Hom-finite triangulated 2-CY k-category, where we have no loops or

2-cycles. Then do the maximal rigid objects coincide with the cluster tilting

objects?

Another class of Gorenstein rings giving rise to 2-CY categories with desired

properties is the following. LetG ⊂ SL(3, k) be a finite subgroup where no g 6= 1

in G has eigenvalue 1, and let R = k[[X,Y, Z]]
G

be the associated invariant

ring, which under these assumptions is an isolated singularity. Then CM(R) is

Hom-finite triangulated 2-CY , and does not have loops or 2-cycles [90].
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4.5. Generalized cluster categories. In [1] Amiot introduced a new

class of Hom-finite triangulated 2-CY -categories, generalizing the class of clus-

ter categories.

Let A be a finite dimensional k-algebra of global dimension at most 2.

Also under this assumption D
b
(A) has almost split triangles, and the AR-

translation τ is induced by an equivalence τ : D
b
(A) → Db

(A) [64]. Consider

again the orbit category D
b
(A)/τ−1

[1]. In this setting the orbit category is not

necessarily triangulated. The generalized cluster category CA is then defined to

be the triangulated hull of Db
(A)/τ−1

[1]. If HomCA
(A,A) is finite dimensional,

then CA is Hom-finite triangulated 2-CY , with A as a cluster tilting object

(see [1]).

A striking application of these generalized cluster categories is Keller’s proof

of the periodicity conjecture for pairs of Dynkin diagrams [81] (see also [73]),

using the algebra A = kQ ⊗k kQ of global dimension at most 2, where Q is a

Dynkin quiver.

A more general construction of Hom-finite triangulated 2-CY categories was

given in ([1],[84]), starting with a quiver with potential (Q,W ) such that the

associated Jacobian algebra is finite dimensional (see Section 5). There is an

associated differential graded algebra Γ, called the Ginzburg algebra, and a

triangulated 2-CY category C(Q,W ) was constructed from Γ. By ([1],[84]) this

generalizes the previous construction of CA from A.

4.6. Relationship between the different classes. A natural

question to ask is how the various classes of Hom-finite triangulated 2-CY

categories are related.

We first show how the cluster categories and the preprojective algebras of

Dynkin type are related to the 2-CY categories associated with elements in

Coxeter groups ([17],[55]).

Theorem 4.3. (a) The cluster category CQ is triangle equivalent to the cat-

egory SubΛw, where w = c2 for a Coxeter element c, when Q is not of

type An.

(b) When Q is Dynkin and Λ is the associated preprojective algebra, then

modΛ is SubΛw, where w is the longest element in the Coxeter group.

The following was shown in ([1],[3],[4]).

Theorem 4.4. Let Cw be a Hom-finite triangulated 2-CY category associated

with an element in a Coxeter group. Then there is some algebra A of global

dimension at most 2 such that Cw is triangle equivalent to the generalized cluster

category CA.

Another result of a similar flavour was recently shown in ([2],[38]).

Theorem 4.5. Let R = k[[X,Y, Z]]
G be an invariant ring as discussed above,

where G ⊂ SL(3, k) is a finite cyclic group. Then the 2-CY triangulated category
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CM(R) is triangle equivalent to a generalized cluster category CA for some finite

dimensional algebra A of global dimension at most 2.

4.7. Subfactor constructions. There is also a useful way of construct-

ing new Hom-finite triangulated 2-CY categories from old ones, via subfactor

constructions [78].

Let C be a Hom-finite triangulated 2-CY category with a nonzero rigid

object D. Let ⊥D[1] = {X ∈ C ; Ext
1
C (X,D) = 0}. Then the factor category

⊥D[1]/ addD is triangulated 2-CY . The cluster tilting objects in
⊥D[1]/ addD

are in one-one correspondence with the cluster tilting objects of C which have

D as a summand.

This was proved in the general case in [78]. Related results for the cluster

categories were first proved in [24]. There they were used to show that if an

algebra Γ is cluster tilted, then Γ/ΓeΓ is cluster tilted for any idempotent ele-

ment e of Γ (see Section 5 for definition). This was useful for reducing problems

to algebras with fewer simple modules.

When w = uv is a reduced expression in a Coxeter group, then the 2-

CY triangulated category SubΛv is triangle equivalent to a specific subfactor

category of SubΛw [76]. This was used to get information on components of

cluster tilting graphs for SubΛw [76].

5. 2-Calabi-Yau Tilted Algebras and Jacobian

Algebras

The study of cluster categories gave rise to an interesting class of finite dimen-

sional algebras, obtained by taking endomorphism algebras of cluster tilting

objects. They have been called cluster tilted algebras [23], and are in some

sense analogous to the tilted algebras in the representation theory of finite di-

mensional algebras. But their properties are quite different, from several points

of view. The cluster tilted algebras have a natural generalization to what has

been called 2-CY -tilted algebras, where in the definition we replace cluster

categories by Hom-finite triangulated 2-CY -categories. In this section we give

some basic properties of these algebras, and discuss their relationship to an-

other important class of algebras; the Jacobian algebras associated with quivers

with potential ([39],[40]).

5.1. Special properties of cluster tilted algebras. The follow-

ing result from [5] gives a procedure for passing from a tilted algebra to a cluster

tilted algebra (see also ([114],[104])). It has no known analog in the general case

of 2-CY -tilted algebras.

Theorem 5.1. Let Γ be a tilted algebra. Then the trivial extension algebra

Γn Ext
2
Γ(DΓ,Γ) is cluster tilted.
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In practice, this is interpreted to amount to drawing an additional arrow

from j to i in the quiver of Γ, for each relation from i to j in a minimal set of

relations for Γ. In the case of finite representation type, this construction was

first made in [26], and also used in [28] for a small class of algebras of infinite

representation type.

For example, if Q is the quiver 1 2 3
α β and Γ = kQ/〈βα〉, then the

quiver of Γn Ext
2
Γ(DΓ,Γ) is 1 2 3

Another interesting property of cluster tilted algebras, not shared by tilted

algebras or by 2-CY -tilted algebras in general, is the following [18].

Theorem 5.2. A cluster tilted algebra is determined by its quiver.

In the case of finite representation type this was proved in [21], where also

the relations were described. Part of the finite type case was also proved inde-

pendently in [32]. In general there is no known way of constructing the unique

cluster tilted algebra associated with a given quiver.

The following example shows that the corresponding result does not hold for

tilted algebras, since for the quiver Q : 1 2 3
α β , both kQ and kQ/〈βα〉

are tilted algebras. If Q is the quiver 1

2

3

α β

γ
, then kQ/〈βα, γβ, αγ〉 and

kQ/〈βαγβα, γβαγβ, αγβαγ〉 can both be shown to be 2-CY -tilted algebras,

even though they have the same quiver. Here only the first one is cluster tilted.

5.2. Homological properties. The central properties of cluster tilted

algebras of a homological nature remain valid also in the general case of 2-CY

-tilted algebras. A Hom-finite triangulated category C with split idempotents

is 3-CY if we have a functorial isomorphism D(Ext
1
(X,Y )) ' Ext

2
(Y,X) for

X,Y in C .

Theorem 5.3. Let C be a Hom-finite triangulated 2-CY category, T a cluster

tilting object in C , and let Γ = EndC (T )op. Then we have the following.

(a) The functor HomC (T, ) : C → mod Γ induces an equivalence of categories

C / add τT
∼

→ mod Γ.

(b) Γ is Gorenstein of injective dimension at most 1.

(c) The stable category SubΓ is triangulated 3-CY.

Part (a) was proved in [23] for cluster tilted algebras and in [85] in general.

Parts (b) and (c) were proved in [85].

Part (a) expresses a close relationship between C and modΓ. For exam-

ple, on the level of objects, the indecomposable objects in modΓ are obtained

from those in C by dropping the indecomposable summands of τT (which are

only finite in number). The category C has almost split triangles inherited from
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the almost split triangles in D
b
(kQ), and by dropping the indecomposable sum-

mands of τT one obtains the AR-quiver of modΓ. Since C and modΓ are closely

related, then also modΓ and modΓ
′
are closely related when Γ

′
= End(T ′

)
op

for some cluster tilting object T ′
in C . In particular, we have the following

([23],[85]), which generalizes Theorem 1.2.

Theorem 5.4. Let the notation be as above, and assume in addition that T ′ is

obtained from T by a mutation. Then Γ and Γ
′ are nearly Morita equivalent,

that is, there are simple modules S and S′ over Γ and Γ
′ respectively, such that

the factor categories modΓ/ addS and modΓ/ addS′ are equivalent.

Here the objects in addS are finite direct sums of copies of S, and the

maps in modΓ/ addS are the usual Γ-homomorphisms modulo those factoring

through an object in addS.

In view of the close relationship between C and modΓ, it is natural to ask

if modΓ determines C . It is not known if this holds in general, but there is the

following information [86], which was essential for the proof of Theorem 4.3.

Theorem 5.5. Let C be a Hom-finite triangulated 2-CY category over the

field k, and assume that C is algebraic (see [86]). If there is a cluster tilting

object in C whose associated quiver Q has no oriented cycles, then C is triangle

equivalent to the cluster category CQ.

5.3. Relationship to Jacobian algebras. It was clear from the be-

ginning of the theory that many examples of cluster tilted algebras, and later

of 2-CY tilted algebras, were given by quivers with potentials. This is a class

of algebras appearing in the physics literature [13], and they have been sys-

tematically investigated in ([39],[40]). We refer to [39] for the general definition

of quiver with potential. In particular, a theory of mutations of quivers with

potential has been developed.

For example if we have the quiver 1

2

3

α β

γ
, we can consider the

potential W = γβα, which is a cycle. Taking the derivatives with respect to

the arrows α, β, γ, up to cyclic permutation, we get ∂W/∂α = γβ, ∂W/∂β =

αγ, ∂W/∂γ = βα. Using these elements as a generating set for the relations, we

obtain the first algebra in the example in Section 5.1. If we take the potential

W = γβαγβα, we get the second algebra.

The algebras associated with a quiver with potential (Q,W ) as above are

called Jacobian algebras and denoted by Jac(Q,W ). They are not necessar-

ily finite dimensional. For example, the 3-CY algebras of Krull dimension 3

mentioned in Section 3 are often Jacobian.

The connection between 2-CY -tilted and Jacobian algebras indicated by

the above examples is not accidental. In fact we have the following ([1],[84]).

Theorem 5.6. Any finite dimensional Jacobian algebra is 2-CY -tilted.
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It is an open problem whether any 2-CY -tilted algebra is Jacobian. But in

many situations this is known to be the case. For example we have the following

([18],[84]) (see also [84] and Corollary 5.12 for more general results).

Theorem 5.7. Any cluster tilted algebra is Jacobian.

For the 2-CY -tilted algebras associated with standard cluster tilting objects

in SubΛw, there is an explicit description of the quiver in terms of the reduced

expression [17]. The same quiver appeared in [14] in the Dynkin case. In [18]

the following was shown.

Theorem 5.8. Let w be an element in a Coxeter group. Then the 2-CY -

tilted algebras associated with the standard cluster tilting objects in SubΛw are

Jacobian.

We illustrate with the following.

Example 5.9. Let Q be the quiver 1 2 3
a b and w = s1s2s3s1s2s1 a

reduced expression. Let T be the corresponding cluster tilting object in SubΛw.

Then End(T )op and End(T )op have quivers

1 1′ 1′′

2 2′

3

and

1 1′

2

a a
∗

p
.

For the second quiver we have the potential W = pa∗a, and End(T )op '

Jac(Q,W ).

5.4. Mutation of quivers with potentials. Let (Q,W ) be a quiver

with potential, where Q is a finite quiver with no loops. Then a mutation

µi(Q,W ) is defined in [39] (see also [13]), when i does not lie on a 2-cycle. Here

we illustrate the definition on an example.

Example 5.10. LetQ be the quiver 1 2 3
a b

c

, andW = cba a potential.

We first define µ̃i(Q,W ) = (Q̃, W̃ ), where Q̃ is the quiver
1 2 3

a
∗

b
∗

c
[ba]

and

W̃ = c[ba] + a∗b∗[ba]. Here we have replaced the path ba of length 2 going

through the vertex 2 by a new arrow [ba], and we have added a new term

a∗b∗[ba] in the potential. Since W̃ has a term which is a cycle of length 2, it is

by definition not reduced. In the next step we get rid of cycles of length 2 in

the potential, and obtain µ2(Q,W ) = (Q̄, W̄ ), where Q̄ is 1 2 3
a
∗

b
∗

and

W̄ = 0.
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In general Q̄ may have 2-cycles. Then Q̄ coincides with µ2(Q) only after

removing all 2-cycles. If we require to remove all 2-cycles, mutation of quivers

with potential gives a categorification of quiver mutation.

5.5. Comparing mutations. Since there is a large intersection between

the classes of Jacobian algebras and 2-CY -tilted algebras, it makes sense to

ask if the mutations of cluster tilting objects and of quivers with potential are

closely related (see [18]).

Consider the following diagram, where T is a cluster tilting object in a Hom-

finite triangulated 2-CY category C , and (Q,W ) is a quiver with potential. We

assume that EndC (T )op ' Jac(Q,W ), and consider the diagram

(Q,W ) µi(Q,W ) = (Q,W )

Jac(Q,W ) Jac(Q,W )

End(T )op End(µi(T ))
op

T µi(T )

'
It is not clear whether any cluster tilting object T ′

with End(T ′
)
op
'

End(T )op gives rise to an algebra End(µi(T
′
))

op
which is isomorphic to

End(µi(T ))
op. Similarly, it is not clear if a quiver with potential µi(Q

′,W ′
) gives

rise to an algebra isomorphic to Jac(µi(Q,W )) when Jac(Q,W ) ' Jac(Q′,W ′
).

The latter was posed as a problem in [39]. It was solved in the finite dimensional

case, as a consequence of the following [18].

Theorem 5.11. Let the notation be as above, and assume that we have an

isomorphism End(T )op ' Jac(Q,W ).

(a) For any choice of T and of (Q,W ) in the isomorphism End(T )op '

Jac(Q,W ), we have End(µi(T ))
op
' Jac(µi(Q,W )).

(b) As a consequence, the assignment End(T )op 7→ End(µi(T ))
op is indepen-

dent of the choice of T and the assignment Jac(Q,W ) 7→ Jac(Q,W ) is

independent of the choice of (Q,W ).

We have the following important consequence.

Corollary 5.12. If a 2-CY -tilted algebra is Jacobian, then all 2-CY -tilted

algebras belonging to the same component in the cluster tilting graph are Jaco-

bian.

Note that this gives an easy proof of the fact that a cluster tilted algebra

is Jacobian, since kQ is clearly Jacobian, and we know that there is only one

component in this case.
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It also follows, using Corollary 5.12, that any 2-CY -tilted algebra belonging

to the same component of the cluster tilting graph as those coming from stan-

dard cluster tilting objects in categories SubΛw are Jacobian. This emphasizes

the importance of the problem of proving the existence of only one component

in general.

We have seen that for a cluster tilting object T in a triangulated 2-CY

category C , then End(T )op and End(µi(T ))
op

are nearly Morita equivalent.

Hence the corresponding result holds for neighbouring finite dimensional Ja-

cobian algebras by Theorems 5.4, 5.6 and 5.11. Actually, the following more

general result holds ([18],[40],[87]).

Theorem 5.13. If Λ and Λ
′ are neighbouring Jacobian algebras, then the cate-

gories of finite dimensional modules over Λ and Λ
′ are nearly Morita equivalent.

The 3-Calabi-Yau tilted algebras mentioned in Sections 3.1 and 3.6 are

sometimes given by quivers with potential, and for these algebras we have

mutation using tilting modules of projective dimension at most 1. Also in this

setting the mutation of quivers with potential is closely related to the mutation

of tilting modules [18].

Theorem 5.14. Assume that T is a tilting module of projective dimen-

sion at most 1 over a 3-CY-algebra, where End(T )op ' Jac(Q,W ). Then

End(µi(T ))
op
' Jac(µi(Q,W )).

In particular, it follows that Jac(µi(Q,W )) is obtained from Jac(Q,W ) via

a tilting module T of projective dimension at most 1.

5.6. Derived equivalence. As discussed above, it was shown in [77]

that for 3-CY-algebras quiver mutation can be categorified using mutation of

tilting modules of projective dimension at most 1, similar to the original case

of categorifying reflections at sinks discussed in Section 1. And a tilting module

gives rise to a derived equivalence [64].

It is known from [39] that for any finite quiver Q without loops or 2-cycles,

there is some potential W with the following property. For any quiver with

potential (Q′,W ′
) obtained from (Q,W ) by a finite sequence of mutations, the

quiver Q′
has no loops or 2-cycles. Then the operation µi taking (Q,W ) to

µi(Q,W ) = (µi(Q),W ) is directly a categorification of the quiver mutation

taking Q to µi(Q), without having to remove any 2-cycles after performing the

mutation µi on (Q,W ). The following result from [87] is a generalization of the

results in [77].

Theorem 5.15. With the above notation, the Ginzburg algebras associated with

(Q,W ) and µi(Q,W ) are derived equivalent.
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6. Applications to Cluster Algebras

The categorification of various classes of cluster algebras is an interesting prob-

lem itself. We have seen that the special case of categorifying quiver mutation

in the acyclic case led to information on cluster algebras, namely a charac-

terization of the acyclic cluster algebras having only a finite number of quivers

occurring in the seeds. Categorification has also been used to discover new clus-

ter algebras and to categorify old ones. In order to use categorification to obtain

additional information on cluster algebras, it is of interest to define maps with

nice properties between cluster variables and indecomposable rigid objects, and

show that they are injective and/or surjective.

6.1. The Dynkin case. For Dynkin diagrams it was already known from

[49] and [92] that there is a bijection between the cluster variables and the

almost positive roots, hence a bijection between cluster variables and indecom-

posable decorated representations. For the associated cluster category CQ we

have a natural correspondence between the negative simple roots −s1, . . . , −sn
and the indecomposable objects P1[1], . . . , Pn[1] in the cluster category. Here Pi

is the projective cover of the simple kQ-module Si corresponding to the simple

root si. Then we have the following [20].

Theorem 6.1. Let Q be a Dynkin quiver of type An, Dn, E6, E7 or E8 and

A(Q) the associated cluster algebra with no coefficients. Then there is a bijection

from the cluster variables of A(Q) to the indecomposable (rigid) objects in the

cluster category CQ, sending clusters to cluster tilting objects.

6.2. From cluster algebras to cluster categories. It was con-

jectured in [20] that there should be a bijection as in Theorem 6.1 in the general

acyclic case. Relevant maps have been defined in both directions in order to deal

with this problem. Here we start with defining a natural map α from cluster

variables to indecomposable rigid objects [25].

Let ((x1, . . . , xn), Q), with Q a finite connected acyclic quiver, be the

initial seed. Then define α(xi) = Pi[1] for i = 1, . . . , n. The mutation

µi((x1, . . . , xn), Q) creates a new cluster variable x∗

i
, which is sent to the inde-

composable rigid object Pi[i]
∗, where Pi[1]

∗
; Pi[1] and (kQ/Pi[1]) ⊕ Pi[1]

∗
is

a cluster tilting object in CQ. We continue this procedure, and prove that the

map α is well-defined. Here we use heavily property (C4) of a cluster structure,

as proved in [24]. To show that α is surjective one uses that the cluster tilting

graph is connected. Then one shows that the map α on cluster variables induces

a map from clusters to cluster tilting objects.

Already from these properties of α one gets the following, which was proved

independently in [25] and [34] for acyclic cluster algebras.

Theorem 6.2. For acyclic cluster algebras with no coefficients, a seed is de-

termined by its cluster.
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This has later been generalized in [60] using other methods.

6.3. Interpretation of denominators. Let ((x1, . . . , xn), Q) be the

initial seed, where Q is an acyclic quiver. The denominator of a cluster variable

(different from (x1, . . . , xn)), expressed in the variables x1, . . . , xn, determines

the composition factors of a unique indecomposable rigid kQ-module. This is

proved in [25] at the same time as constructing the surjective map α discussed

in 6.2. For example, for Q : 1 2 3 the cluster variable f/x1x2x3 in

reduced form is sent by α to the unique indecomposable rigid kQ-module which

has composition factors S1, S2, S3, and this is P1.

The surprisingly simple, but extremely useful, idea of positivity condition

was crucial for the proof. This says that if f = f(x1, . . . , xn) has the property

that if f(ei) > 0, where ei = (1, . . . , 1, 0
i

, 1, . . . , 1), for i = 1, . . . , n, then f/m,

where m is a non constant monomial, is in reduced form.

The approach sketched above is taken from [25]. This type of connection

between denominators and indecomposable rigid objects was first shown in [48]

for Dynkin diagrams with alternating orientation, then in [32] and [101] for

the general Dynkin case, with another approach in [35]. Note that only using

the approach sketched above there could still theoretically be different cluster

variables f/m and f ′/m in reduced form, with the same monomial m. Another

approach to the denominator theorem is given in [34], where also the above

positivity condition from [25] is used, together with the Caldero-Chapoton map,

which we discuss next. Using this map, it follows that m determines f/m (see

also [71]).

Note that when we express the cluster variables in terms of a seed dif-

ferent from the initial one, the denominators do not necessarily determine an

indecomposable rigid module [22]. This fact was useful in [52] for giving a coun-

terexample to a conjecture in [51].

6.4. From cluster categories to cluster algebras. We now de-

fine a map from indecomposable rigid objects in cluster categories to cluster

variables in the corresponding cluster algebras. This beautiful work was started

in [31] for the Dynkin case, with the following definition.

Let M be in mod kQ. Then define

XM =

∑

e

χ(Gre(M))

∏

i

u
−〈e,αi〉−〈αi,m−e〉

i
.

Here Gre(M) = {N ∈ mod kQ;N ⊂M, dimN = e}, where e = (e1, . . . , en) ≤

m = (m1, . . . , mn), which denotes the dimension vector of M. Further 〈 , 〉

denotes the Euler form defined on the Grothendieck group of mod kQ. ForM,N

in mod kQ it is defined by 〈M,N〉 = dimk HomkQ(M,N)−dimk Ext
1
kQ(M,N).

Finally χ denotes the Euler-Poincaré characteristic of the quiver Grassmanian.

Further we define XPi[1] = ui, where P1, P2, . . . , Pn are the indecomposable

projective kQ-modules.
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We illustrate with the following.

Example 6.3. Let Q be the quiver 1 2 3. We compute XS2
. We have

e = (0, 0, 0) or e = (0, 1, 0). In both cases χ(Gre(S2)) = 1.

Assume first e = (0, 0, 0). Then we have

u
−〈0,α1〉−〈α1,α2〉

1 u
−〈0,α2〉−〈α2,α2〉

2 u
−〈0,α2〉−〈α3,α2〉

3 = u1/u2

since Ext
1
kQ(S1, S2) ' k and Ext

1
kQ(S3, S2) = 0.

Assume then that e = α2. Then we have

u
−〈α2,α1〉

1 u
−〈α2,α2〉

2 u
−〈α2,α3〉

3 = u3/u2

Hence we get

XS2
= u/u2 + u3/u2 = (u1 + u3)/u2.

The following is the main result of [31].

Theorem 6.4. In the Dynkin case, the Q[u1, . . . , un]-submodule of

Q(u1, . . . , un) generated by the XM for M an indecomposable kQ-module, co-

incides with the cluster algebra A(Q), and the set of cluster variables is given

by

{ui; 1 ≤ i ≤ n} ∪ {XM ;M indecomposable module in mod kQ}.

The Caldero-Chapoton formula was generalized to the acyclic case in [34].

The corresponding map β from the indecomposable rigid objects in the cluster

category to the cluster variables in the associated cluster algebra was shown

to be surjective, and also injective by using the positivity condition from the

previous subsection. One then has the following [34] (see also [25, Appendix]).

Theorem 6.5. There is a map β from the indecomposable objects in the cluster

category CQ for a finite acyclic quiver Q to the associated cluster algebra, A(Q),

with no coefficients, such that there is induced

(1) a bijection from the indecomposable rigid objects to the cluster variables

(2) a bijection between the cluster tilting objects in CQ and the clusters for

A(Q).

Some further feedback to acyclic cluster algebras is then given as a result

of this tighter connection, for example the following [25, Appendix].

Theorem 6.6. If {u1, . . . , un} is a cluster in an acyclic cluster algebra with

no coefficients, there is for each i = 1, . . . , n, a unique element u∗

i
6= ui such

that {u1, . . . , u
∗

i
, ui+1, . . . , un} is a cluster.

This has later been generalized to cluster algebras of geometric type in [60],

using different methods.
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There is another variation of the Caldero-Chapoton formula in [95], where

the case of an arbitrary initial seed in an acyclic cluster algebra was treated.

In that connection Palu formulated the desired properties needed in order to

obtain a good map from a 2-CY triangulated category C to a commutative ring

R, called a cluster character χ [95] (see also [17]). The requirement was that

(i) χ(A) = χ(B) if A ' B.

(ii) χ(A⊕B) = χ(A)χ(B).

(iii) If dimExt
1
(X,Y ) = 1 for indecomposable objects X and Y in C , consider

the non split triangles X → B → Y → X[1] and Y → B′
→ X → Y [1].

Then we have χ(X)χ(Y ) = χ(B) + χ(B′
).

The last condition is needed to ensure that indecomposable rigid objects

are sent to cluster variables (see also [17]).

There are several interesting generalizations beyond the acyclic case, and

we refer to ([37],[52],[56],[57],[58],[93],[96],[97]).
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1. Introduction

The goal of this note is to discuss some of the applications of discrete com-

plex analysis to problems in probability and statistical physics. It is not an

exhaustive survey, and it lacks many references. Forgoing completeness, we try

to give a taste of the subject through examples, concentrating on a few of our

recent papers with Dmitry Chelkak, Hugo Duminil-Copin and Clément Hon-

gler [CS08, CS09, CS10, DCS10, HS10]. There are certainly other interesting

developments in discrete complex analysis, and it would be a worthy goal to

write an extensive exposition with an all-encompassing bibliography, which we

do not attempt here for lack of space.

Complex analysis (we restrict ourselves to the case of one complex or equiv-

alently two real dimensions) studies analytic functions on (subdomains of) the

complex plane, or more generally analytic structures on two dimensional man-

ifolds. Several things are special about the (real) dimension two, and we won’t
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discuss an interesting and often debated question, why exactly complex analysis

is so nice and elegant. In particular, several definitions lead to identical class of

analytic functions, and historically different adjectives (regular, analytic, holo-

morphic, monogenic) were used, depending on the context. For example, an

analytic function has a local power series expansion around every point, while

a holomorphic function has a complex derivative at every point. Equivalence of

these definitions is a major theorem in complex analysis, and there are many

other equivalent definitions in terms of Cauchy-Riemann equations, contour

integrals, primitive functions, hydrodynamic interpretation, etc. Holomorphic

functions have many nice properties, and hundreds of books were devoted to

their study.

Consider now a discretized version of the complex plane: some graph em-

bedded into it, say a square or triangular lattice (more generally one can speak

of discretizations of Riemann surfaces). Can one define analytic functions on

such a graph? Some of the definitions do not admit a straightforward discretiza-

tion: e.g. local power series expansions do not make sense on a lattice, so we

cannot really speak of discrete analyticity. On the other hand, as soon as we

define discrete derivatives, we can ask for the holomorphicity condition. Thus

it is philosophically more correct to speak of discrete holomorphic, rather than

discrete analytic functions. We will use the term preholomorphic introduced by

Ferrand [Fer44], as we prefer it to the term monodiffric used by Isaacs in the

original papers [Isa41, Isa52] (a play on the term monogenic used by Cauchy

for continuous analytic functions).

Though the preholomorphic functions are easy to define, there is a lack

of expository literature about them. We see two main reasons: firstly, there

is no canonical preholomorphicity definition, and one can argue which of the

competing approaches is better (the answer probably depends on potential

applications). Secondly, it is straightforward to transfer to the discrete case

beginnings of the usual complex analysis (a nice topic for an undergraduate

research project), but the easy life ends when it becomes necessary to multiply

preholomorphic functions. There is no easy and natural way to proceed and the

difficulty is addressed depending on the problem at hand.

As there seems to be no canonical discretization of the complex analysis, we

would rather adopt a utilitarian approach, working with definitions correspond-

ing to interesting objects of probabilistic origin, and allowing for a passage to

the scaling limit. We want to emphasize, that we are concerned with the fol-

lowing triplets:

1. A planar graph,

2. Its embedding into the complex plane,

3. Discrete Cauchy-Riemann equations.

We are interested in triplets such that the discrete complex analysis approxi-

mates the continuous one. Note that one can start with only a few elements of
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the triplet, which gives some freedom. For example, given an embedded graph,

one can ask which discrete difference equations have solutions close to holomor-

phic functions. Or, given a planar graph and a notion of preholomorphicity, one

can look for an appropriate embedding.

The ultimate goal is to find lattice models of statistical physics with preholo-

morphic observables. Since those observables would approximate holomorphic

functions, some information about the original model could be subsequently

deduced.

Below we start with several possible definitions of the preholomorphic func-

tions along with historical remarks. Then we discuss some of their recent ap-

plications in probability and statistical physics.

2. Discrete Holomorphic Functions

For a given planar graph, there are several ways to define preholomorphic func-

tions, and it is not always clear which way is preferable. A much better known

class is that of discrete harmonic (or preharmonic) functions, which can be

defined on any graph (not necessarily planar), and also in more than one way.

However, one definition stands out as the simplest: a function on the vertices of

graph is said to be preharmonic at a vertex v, if its discrete Laplacian vanishes:

0 = ∆H(u) :=

∑

v: neighbor of u

(H(v)−H(u)) . (1)

More generally, one can put weights on the edges, which would amount to taking

different resistances in the electric interpretation below. Preharmonic functions

on planar graphs are closely related to discrete holomorphicity: for example,

their gradients defined on the oriented edges by

F ( ~uv) := H(v)−H(u) , (2)

are preholomorphic. Note that the edge function above is antisymmetric, i.e.

F ( ~uv) = −F ( ~vu).

Both classes with the definitions as above are implicit already in the 1847

work of Kirchhoff [Kir47], who interpreted a function defined on oriented edges

as an electric current flowing through the graph. If we assume that all edges

have unit resistance, than the sum of currents flowing from a vertex is zero by

the first Kirchhoff law:
∑

u: neighbor of v

F ( ~uv) = 0 , (3)

and the sum of the currents around any oriented closed contour γ (for the

planar graphs it is sufficient to consider contours around faces) face is zero by

the second Kirchhoff law:
∑

~uv∈γ

F ( ~uv) = 0 . (4)
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The two laws are equivalent to saying that F is given by the gradient of a

potential function H as in (2), and the latter function is preharmonic (1). One

can equivalently think of a hydrodynamic interpretation, with F representing

the flow of liquid. Then conditions (3) and (4) mean that the flow is divergence-

and curl-free correspondingly. Note that in the continuous setting similarly de-

fined gradients of harmonic functions on planar domains coincide up to complex

conjugation with holomorphic functions. And in higher dimensions harmonic

gradients were proposed as one of their possible generalizations.

There are many other ways to introduce discrete structures on graphs, which

can be developed in parallel to the usual complex analysis. We have in mind

mostly such discretizations that restrictions of holomorphic (or harmonic) func-

tions become approximately preholomorphic (or preharmonic). Thus we speak

about graphs embedded into the complex plane or a Riemann surface, and the

choice of embedding plays an important role. Moreover, the applications we

are after require passages to the scaling limit (as mesh of the lattice tends to

zero), so we want to deal with discrete structures which converge to the usual

complex analysis as we take finer and finer graphs.

Preharmonic functions satisfying (1) on the square lattices with decreasing

mesh fit well into this philosophy, and were studied in a number of papers in

early twentieth century (see e.g. [PW23, Bou26, Lus26]), culminating in the

seminal work of Courant, Friedrichs and Lewy. It was shown in [CFL28] that

solution to the Dirichlet problem for a discretization of an elliptic operator

converges to the solution of the analogous continuous problem as the mesh

of the lattice tends to zero. In particular, a preharmonic function with given

boundary values converges in the scaling limit to a harmonic function with the

same boundary values in a rather strong sense, including convergence of all

partial derivatives.

Preholomorphic functions distinctively appeared for the first time in the pa-

pers [Isa41, Isa52] of Isaacs, where he proposed two definitions (and called such

functions “monodiffric”). A few papers of his and others followed, studying the

first definition (5), which is asymmetric on the square lattice. More recently the

first definition was studied by Dynnikov and Novikov [DN03] in the triangular

lattice context, where it becomes symmetric (the triangular lattice is obtained

from the square lattice by adding all the diagonals in one direction).

The second, symmetric, definition was reintroduced by Ferrand, who also

discussed the passage to the scaling limit [Fer44, LF55]. This was followed by

extensive studies of Duffin and others, starting with [Duf56].

Both definitions ask for a discrete version of the Cauchy-Riemann equations

∂iαF = i∂αF or equivalently that z-derivative is independent of direction.

Consider a subregion Ωε of the mesh ε square lattice εZ2
⊂ C and define a

function on its vertices. Isaacs proposed the following two definitions, replacing

the derivatives by discrete differences. His “monodiffric functions of the first

kind” are required to satisfy inside Ωε the following identity:

F (z + iε)− F (z) = i (F (z + ε)− F (z)) , (5)
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Figure 1. The first and the second Isaacs’ definitions of discrete holomorphic functions:

multiplied by i difference along the vector α is equal to the difference along the rotated

vector iα. Note that the second definition (on the right) is symmetric with respect to

lattice rotations, while the first one is not.

which can be rewritten as

F (z + iε)− F (z)

(z + iε)− z
=

F (z + ε)− F (z)

(z + ε)− z
.

We will be working with his second definition, which is more symmetric and also

appears naturally in probabilistic context (but otherwise the theories based on

two definitions are almost the same). We say that a function is preholomorphic,

if inside Ωε it satisfies the following identity, illustrated in Figure 1:

F (z + iε)− F (z + ε) = i (F (z + ε(1 + i))− F (z)) , (6)

which can also be rewritten as

F (z + iε)− F (z + ε)

(z + iε)− (z + ε)
=

F (z + ε(1 + i))− F (z)

(z + ε(1 + i))− z
.

It is easy to see that restrictions of continuous holomorphic functions to the

mesh ε square lattice satisfy this identity up to O(ε3). Note also that if we color

the lattice in the chess-board fashion, the complex identity (6) can be written

as two real identities (its real and imaginary parts), one involving the real part

of F at black vertices and the imaginary part of F at white vertices, the other

one – vice versa. So unless we have special boundary conditions, F splits into

two “demi-functions” (real at white and imaginary at black vs. imaginary at

black and real at white vertices), and some prefer to consider just one of those,

i.e. ask F to be purely real at black vertices and purely imaginary at white ones.

The theory of so defined preholomorphic functions starts much like the

usual complex analysis. It is easy to check, that for preholomorphic functions

sums are also preholomorphic, discrete contour integrals vanish, primitive (in
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a simply-connected domain) and derivative are well-defined and are preholo-

morphic functions on the dual square lattice, real and imaginary parts are pre-

harmonic on their respective black and white sublattices, etc. Unfortunately,

the product of two preholomorphic functions is no longer preholomorphic: e.g.,

while restrictions of 1, z, and z2 to the square lattice are preholomorphic, the

higher powers are only approximately so.

Situation with other possible definitions is similar, with much of the linear

complex analysis being easy to reproduce, and problems appearing when one

has to multiply preholomorphic functions. Pointwise multiplication cannot be

consistently defined, and though one can introduce convolution-type multipli-

cation, the possible constructions are non-local and cumbersome. Sometimes,

for different graphs and definitions, problems appear even earlier, with the first

derivative not being preholomorphic.

Our main reason for choosing the definition (6) is that it naturally appears in

probabilistic context. It was also noticed by Duffin that (6) nicely generalizes to

a larger family of rhombic lattices, where all the faces are rhombi. Equivalently,

one can speak of isoradial graphs, where all faces are inscribed into circles of

the same radius — an isoradial graph together with its dual forms a rhombic

lattice.

There are two main reasons to study this particular family. First, this is

perhaps the largest family of graphs for which the Cauchy-Riemann operator

admits a nice discretization. Indeed, restrictions of holomorphic functions to

such graphs are preholomorphic to higher orders. This was the reason for the

introduction of complex analysis on rhombic lattices by Duffin [Duf68] in late

sixties. More recently, the complex analysis on such graphs was studied for the

sake of probabilistic applications [Mer01, Ken02, CS08].

On the other hand, this seems to be the largest family where certain lattice

models, including the Ising model, have nice integrability properties. In par-

ticular, the critical point can be defined with weights depending only on the

local structure, and the star-triangle relation works out nicely. It seems that

the first appearance of related family of graphs in the probabilistic context

was in the work of Baxter [Bax78], where the eight vertex and Ising models

were considered on Z-invariant graphs, arising from planar line arrangements.

These graphs are topologically the same as the isoradial ones, and though they

are embedded differently into the plane, by [KS05] they always admit isora-

dial embeddings. In [Bax78] Baxter was not passing to the scaling limit, and

so the actual choice of embedding was immaterial for his results. However, his

choice of weights in the models would suggest an isoradial embedding, and

the Ising model was so considered by Mercat [Mer01], Boutilier and de Tilière

[BdT08, BdT09], Chelkak and the author [CS09]. Additionally, the dimer and

the uniform spanning tree models on such graphs also have nice properties, see

e.g. [Ken02].

We would also like to remark that rhombic lattices form a rather large family

of graphs. While not every topological quadrangulation (graph all of whose faces
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are quadrangles) admits a rhombic embedding, Kenyon and Schlenker [KS05]

gave a simple topological condition necessary and sufficient for its existence.

So this seems to be the most general family of graphs appropriate for our

subject, and most of what we discuss below generalizes to it (though for sim-

plicity we speak of the square and hexagonal lattices only).

3. Applications of Preholomorphic Functions

Besides being interesting in themselves, preholomorphic functions found sev-

eral diverse applications in combinatorics, analysis, geometry, probability and

physics.

After the original work of Kirchhoff, the first notable application was per-

haps the famous article [BSST40] of Brooks, Smith, Stone and Tutte, who used

preholomorphic functions to construct tilings of rectangles by squares.

Several applications to analysis followed, starting with a new proof of the

Riemann uniformization theorem by Ferrand [LF55]. Solving the discrete ver-

sion of the usual minimization problem, it is immediate to establish the ex-

istence of the minimizer and its properties, and then one shows that it has

a scaling limit, which is the desired uniformization. Duffin and his co-authors

found a number of similar applications, including construction of the Bergman

kernel by Dieter and Mastin [DM71]. There were also studies of discrete versions

of the multi-dimensional complex analysis, see e.g. Kiselman’s [Kis05].

In [Thu86] Thurston proposed circle packings as another discretization of

complex analysis. They found some beautiful applications, including yet an-

other proof of the Riemann uniformization theorem by Rodin and Sullivan

[RS87]. More interestingly, they were used by He and Schramm [HS93] in the

best result so far on the Koebe uniformization conjecture, stating that any

domain can be conformally uniformized to a domain bounded by circles and

points. In particular, they established the conjecture for domains with count-

ably many boundary components. More about circle packings can be learned

form Stephenson’s book [Ste05]. Note that unlike the discretizations discussed

above, the circle packings lead to non-linear versions of the Cauchy-Riemann

equations, see e.g. the discussion in [BMS05].

There are other interesting applications to geometry, analysis, combina-

torics, probability, and we refer the interested reader to the expositions by

Lovász [Lov04], Stephenson [Ste05], Mercat [Mer07], Bobenko and Suris [BS08].

In this note we are interested in applications to probability and statistical

physics. Already the Kirchhoff’s paper [Kir47] makes connection between the

Uniform Spanning Tree and preharmonic (and so preholomorphic) functions.

Connection of Random Walk to preharmonic functions was certainly known

to many researchers in early twentieth century, and figured implicitly in many

papers. It is explicitly discussed by Courant, Friedrichs and Lewy in [CFL28],

with preharmonic functions appearing as Green’s functions and exit probabili-

ties for the Random Walk.
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More recently, Kenyon found preholomorphic functions in the dimer model

(and in the Uniform Spanning Tree in a way different from the original consid-

erations of Kirchhoff). He was able to obtain many beautiful results about

statistics of the dimer tilings, and in particular, showed that those have a

conformally invariant scaling limit, described by the Gaussian Free Field, see

[Ken00, Ken01]. More about Kenyon’s results can be found in his expositions

[Ken04, Ken09]. An approximately preholomorphic function was found by the

author in the critical site percolation on the triangular lattice, allowing to prove

the Cardy’s formula for crossing probabilities [Smi01b, Smi01a].

Finally, we remark that various other discrete relations were observed in

many integrable two dimensional models of statistical physics, but usually no

explicit connection was made with complex analysis, and no scaling limit was

considered. Here we are interested in applications of integrability parallel to

that for the Random Walk and the dimer model above. Namely, once a pre-

holomorphic function is observed in some probabilistic model, we can pass to

the scaling limit, obtaining a holomorphic function. Thus, the preholomorphic

observable is approximately equal to the limiting holomorphic function, provid-

ing some knowledge about the model at hand. Below we discuss applications of

this philosophy, starting with the Ising model.

4. The Ising Model

In this Section we discuss some of the ways how preholomorphic functions

appear in the Ising model at criticality. The observable below was proposed in

[Smi06] for the hexagonal lattice, along with a possible generalization to O(N)

model. Similar objects appeared earlier in Kadanoff and Ceva [KC71] and in

Mercat [Mer01], though boundary values and conformal covariance, which are

central to us, were never discussed.

The scaling limit and properties of our observable on isoradial graphs were

worked out by Chelkak and the author in [CS09]. It is more appropriate to

consider it as a fermion or a spinor, by writing F (z)
√

dz, and with more general

setup one has to proceed in this way.

Earlier we constructed a similar fermion for the random cluster representa-

tion of the Ising model, see [Smi06, Smi10] and our joint work with Chelkak

[CS09] for generalization to isoradial graphs (and also independent work of Riva

and Cardy [RC06] for its physical connections). It has a simpler probabilistic

interpretation than the fermion in the spin representation, as it can be written

as the probability of the interface between two marked boundary points pass-

ing through a point inside, corrected by a complex weight depending on the

winding.

The fermion for the spin representation is more difficult to construct. Below

we describe it in terms of contour collections with distinguished points. Alter-

natively it corresponds to the partition function of the Ising model with a
√

z
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Figure 2. Left: configuration of spins in the Ising model with Dobrushin boundary

conditions, its contour representation, and an interface between two boundary points.

Right: an example of a configuration considered for the Fermionic observable: a num-

ber of loops and a contour connecting a to z. It can be represented as a spin configu-

ration with a monodromy at z.

monodromy at a given edge, corrected by a complex weight; or to a product of

order and disorder operators at neighboring site and dual site.

We will consider the Ising model on the mesh ε square lattice. Let Ωε be

a discretization of some bounded domain Ω ⊂ C. The Ising model on Ωε has

configurations σ which assign ±1 (or simply ±) spins σ(v) to vertices v ∈ Ωε

and Hamiltonian defined (in the absence of an external magnetic field) by

H(σ) = −

∑

〈u,v〉

σ(u)σ(v) ,

where the sum is taken over all edges 〈u, v〉 inside Ωε. Then the partition func-

tion is given by

Z =

∑

σ

exp (−βH(σ)) ,

and probability of a given spin configuration becomes

P (σ) = exp (−βH(σ)) /Z .

Here β ≥ 0 is the temperature parameter (behaving like the reciprocal of

the actual temperature), and Kramers and Wannier have established [KW41]

that its critical value is given by βc = log
(√

2 + 1
)

/2.

Now represent the spin configurations graphically by a collection of inter-

faces – contours on the dual lattice, separating plus spins from minus spins,

the so-called low-temperature expansion, see Figure 2. A contour collection is

a set of edges, such that an even number emanates from every vertex. In such

case the contours can be represented as a union of loops (possibly in a non-

unique way, but we do not distinguish between different representations). Note
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that each contour collection corresponds to two spin collections which are neg-

atives of each other, or to one if we fix the spin value at some vertex. The

partition function of the Ising model can be rewritten in terms of the contour

configurations ω as

Z =

∑

ω

xlength of contours .

Each neighboring pair of opposite spins contributes an edge to the contours,

and so a factor of x = exp(−2β) to the partition function. Note that the critical

value is xc = exp(−2βc) =
√

2− 1.

We now want to define a preholomorphic observable. To this effect we need

to distinguish at least one point (so that the domain has a non-trivial con-

formal modulus). One of the possible applications lies in relating interfaces to

Schramm’s SLE curves, in the simplest setup running between two boundary

points. To obtain a discrete interface between two boundary points a and b, we

introduce Dobrushin boundary conditions: + on one boundary arc and − on

another, see Figure 2. Then those become unique points with an odd number

of contour edges emanating from them.

Now to define our fermion, we allow the second endpoint of the interface to

move inside the domain. Namely, take an edge center z inside Ωε, and define

Fε(z) :=

∑

ω(a→z)

xlength of contours
W(ω(a→ z)) , (7)

where the sum is taken over all contour configurations ω = ω(a → z) which

have two exceptional points: a on the boundary and z inside. So the contour

collection can be represented (perhaps non-uniquely) as a collection of loops

plus an interface between a and z.

Furthermore, the sum is corrected by a Fermionic complex weight, depend-

ing on the configuration:

W(ω(a→ z)) := exp (−i s winding(γ, a→ z)) .

Here the winding is the total turn of the interface γ connecting a to z, counted

in radians, and the spin s is equal to 1/2 (it should not be confused with the

Ising spins ±1). For some collections the interface can be chosen in more than

one way, and then we trace it by taking a left turn whenever an ambiguity arises.

Another choice might lead to a different value of winding, but if the loops and

the interface have no “transversal” self-intersections, then the difference will be

a multiple of 4π and so the complex weight W is well-defined. Equivalently we

can write

W(ω(a→ z)) = λ# signed turns of γ , λ := exp

(

−is
π

2

)

,

see Figure 3 for weights corresponding to different windings.
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Figure 3. Examples of Fermionic weights one obtains depending on the winding of

the interface. Note that in the bottom left example there are two ways to trace the

interface from a to z without self-intersections, which give different windings ±2π,

but the same complex weight W = −1.

Remark 1. Removing complex weightW one retrieves the correlation of spins

on the dual lattice at the dual temperature x∗
, a corollary of the Kramers-

Wannier duality.

Remark 2. While such contour collections cannot be directly represented by

spin configurations, one can obtain them by creating a disorder operator, i.e. a

monodromy at z: when one goes one time around z, spins change their signs.

Our first theorem is the following, which is proved for general isoradial

graphs in [CS09], with a shorter proof for the square lattice given in [CS10]:

Theorem 1 (Chelkak, Smirnov). For Ising model at criticality, F is a preholo-

morphic solution of a Riemann boundary value problem. When mesh ε→ 0,

Fε(z) /
√

ε ⇒
√

P ′(z) inside Ω,

where P is the complex Poisson kernel at a: a conformal map Ω → C+ such

that a 7→ ∞. Here both sides should be normalized in the same chart around b.

Remark 3. For non-critical values of x observable F becomes massive pre-

holomorphic, satisfying the discrete analogue of the massive Cauchy-Riemann

equations: ∂̄ F = im(x− xc)F̄ , cf. [MS09].

Remark 4. Ising model can be represented as a dimer model on the Fisher

graph. For example, on the square lattice, one first represents the spin configu-

ration as above — by the collection of contours on the dual lattice, separating
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Figure 4. Fisher graph for a region of the square lattice, a spin configuration and a

corresponding dimer configuration, with dimers represented by the bold edges.

+ and − spins. Then the dual lattice is modified with every vertex replaced by

a “city” of six vertices, see Figure 4. It is easy to see that there is a natural

bijection between contour configurations on the dual square lattice and dimer

configuration on its Fisher graph.

Then, similarly to the work of Kenyon for the square lattice, the coupling

function for the Fisher lattice will satisfy difference equations, which upon ex-

amination turn out to be another discretization of Cauchy-Riemann equations,

with different projections of the preholomorphic function assigned to six ver-

tices in a “city”. One can then reinterpret the coupling function in terms of

the Ising model, and this is the approach taken by Boutilier and de Tilière

[BdT08, BdT09].

This is also how the author found the observable discussed in this Section,

observing jointly with Kenyon in 2002 that it has the potential to imply the

convergence of the interfaces to the Schramm’s SLE curve.

The key to establishing Theorem 1 is the observation that the function

F is preholomorphic. Moreover, it turns out that F satisfies a stronger form

of preholomorphicity, which implies the usual one, but is better adapted to

fermions.

Consider the function F on the centers of edges. We say that F is strongly

(or spin) preholomorphic if for every centers u and v of two neighboring edges

emanating from a vertex w, we have

Proj(F (v), 1/
√

α) = Proj(F (u), 1/
√

α) ,

where α is the unit bisector of the angle uwv, and Proj(p, q) denotes the or-

thogonal projection of the vector p on the vector q. Equivalently we can write

F (v) + ᾱ F (v) = F (u) + ᾱ F (u) . (8)
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contributes λC1 to F (v)

���
αs s ss

a w u

v

←→ ���
αs s ss

a w u

v

contributes 1C1 to F (u)

���
αs s ss

a w u

v

contributes λxC2 to F (v)

←→ ���
αs s ss

a w u

v

contributes λ2 C2 to F (u)

Figure 5. Involution on the Ising model configurations, which adds or erases half-

edges vw and uw. There are more pairs, but their relative contributions are always

easy to calculate and each pair taken together satisfies the discrete Cauchy-Riemann

equations. Note that with the chosen orientation constants C1 and C2 above are real.

This definition implies the classical one for the square lattice, and it also easily

adapts to the isoradial graphs. Note that for convenience we assume that the

interface starts from a in the positive real direction as in Figure 2, which slightly

changes weights compared to the convention in [CS09].

The strong preholomorphicity of the Ising model fermion is proved by con-

structing a bijection between configurations included into F (v) and F (u). In-

deed, erasing or adding half-edges wu and wv gives a bijection ω ↔ ω̃ between

configuration collections {ω(u)} and {ω(v)}, as illustrated in Figure 5. To check

(8), it is sufficient to check that the sum of contributions from ω and ω̃ satisfies

it. Several possible configurations can be found, but essentially all boil down to

the two illustrated in Figure 5.

Plugging the contributions from Figure 5 into the equation (8), we are left

to check the following two identities:

λ+ λλ̄ = 1 + λ1̄ , λx+ λλx = λ2
+ λλ̄2 . (9)

The first identity always holds, while the second one is easy to verify when

x = xc =
√

2 − 1 and λ = exp(−πi/4). Note that in our setup on the square

lattice λ (or the spin s) is already fixed by the requirement that the complex

weight is well-defined, and so the second equation in (9) uniquely fixes the

allowed value of x. In the next Section we will discuss a more general setup,

allowing for different values of the spin, corresponding to other lattice models.

To determine F using its preholomorphicity, we need to understand its be-

havior on the boundary. When z ∈ ∂Ωε, the winding of the interface connect-

ing a to z inside Ωε is uniquely determined, and coincides with the winding of
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the boundary itself. This amounts to knowing Arg(F ) on the boundary, which

would be sufficient to determine F knowing the singularity at a or the normal-

ization at b.

In the continuous setting the condition obtained is equivalent to the Rie-

mann Boundary Value Problem (a homogeneous version of the Riemann-

Hilbert-Privalov BVP)

Im

(

F (z) · (tangent to ∂Ω)
1/2

)

= 0 , (10)

with the square root appearing because of the Fermionic weight. Note that the

homogeneous BVP above has conformally covariant solutions (as

√

dz-forms),

and so is well defined even in domains with fractal boundaries. The Riemann

BVP (10) is clearly solved by the function

√

P ′

a(z), where P is the Schwarz

kernel at a (the complex version of the Poisson kernel), i.e. a conformal map

P : Ω→ C+ , a 7→ ∞ .

Showing that on the lattice Fε satisfies a discretization of the Riemann BVP

(10) and converges to its continuous counterpart is highly non-trivial and a pri-

ori not guaranteed – there exist “logical” discretizations of the Boundary Value

Problems, whose solutions have degenerate or no scaling limits. We establish

convergence in [CS09] by considering the primitive
∫ z

z0
F 2

(u)du, which satisfies

the Dirichlet BVP even in the discrete setting. The big technical problem is

that in the discrete case F 2
is no longer preholomorphic, so its primitive is a

priori not preholomorphic or even well-defined. Fortunately, in our setting the

imaginary part is still well-defined, so we can set

Hε(z) :=
1

2ε
Im

∫ z

F (z)2dz .

While the function H is not exactly preharmonic, it is approximately so, van-

ishes exactly on the boundary, and is positive inside the domain. This allows

to complete the (at times quite involved) proof. A number of non-trivial dis-

crete estimates is called for, and the situation is especially difficult for general

isoradial graphs. We provide the needed tools in a separate paper [CS08].

Though Theorem 1 establishes convergence of but one observable, the latter

(when normalized at b) is well behaved with respect to the interface traced from

a. So it can be used to establish the following, see [CS10]:

Corollary 1. As mesh of the lattice tends to zero, the critical Ising inter-

face in the discretization of the domain Ω with Dobrushin boundary conditions

converges to the Schramm’s SLE(3) curve.

Convergence is almost immediate in the topology of (probability measures

on the space of) Loewner driving functions, but upgrading to convergence of

curves requires extra estimates, cf. [KS09, DCHN09, CS10]. Once interfaces
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are related to SLE curves, many more properties can be established, including

values of dimensions and scaling exponents.

But even without appealing to SLE, one can use preholomorphic functions

to a stronger effect. In a joint paper with Hongler [HS10] we study a similar

observable, when both ends of the interface are allowed to be inside the domain.

It turns out to be preholomorphic in both variables, except for the diagonal,

and so its scaling limit can be identified with the Green’s function solving

the Riemann BVP. On the other hand, when two arguments are taken to be

nearby, one retrieves the probability of an edge being present in the contour

representation, or that the nearby spins are different. This allows to establish

conformal invariance of the energy field in the scaling limit:

Theorem 2 (Hongler, Smirnov). Let a ∈ Ω and 〈xε, yε〉 be the closest edge

from a ∈ Ωε. Then, as ε→ 0, we have

E+

[

σε

xσ
ε

y

]

=

√

2

2
+

lΩ (a)

π
· ε+ o (ε) ,

Efree

[

σε

xσ
ε

y

]

=

√

2

2
−

lΩ (a)

π
· ε+ o (ε) ,

where the subscripts + and free denote the boundary conditions and lΩ is the

element of the hyperbolic metric on Ω.

This confirms the Conformal Field Theory predictions and, as far as we

know, for the first time provides the multiplicative constant in front of the

hyperbolic metric.

These techniques were taken further by Hongler in [Hon10], where he showed

that the (discrete) energy field in the critical Ising model on the square lattice

has a conformally covariant scaling limit, which can be then identified with

the corresponding Conformal Field Theory. This was accomplished by showing

convergence of the discrete energy correlations in domains with a variety of

boundary conditions to their continuous counterparts; the resulting limits are

conformally covariant and are determined exactly. Similar result was obtained

for the scaling limit of the spin field on the domain boundary.

5. The O(N) Model

The Ising preholomorphic function was introduced in [Smi06] in the setting of

general O(N) models on the hexagonal lattice. It can be further generalized to a

variety of lattice models, see the work of Cardy, Ikhlef, Rajabpour [RC07, IC09].

Unfortunately, the observable seems only partially preholomorphic (satisfying

only some of the Cauchy-Riemann equations) except for the Ising case. One

can make an analogy with divergence-free vector fields, which are not a priori

curl-free.
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The argument in the previous Section was adapted to the Ising case, and

some properties remain hidden behind the notion of the strong holomorphicity.

Below we present its version generalized to the O(N) model, following our joint

work [DCS10] with Duminil-Copin. While for N 6= 1 we only prove that our

observable is divergence-free, it still turns out to be enough to deduce some

global information, establishing the Nienhuis conjecture on the exact value of

the connective constant for the hexagonal lattice:

Theorem 3 (Duminil-Copin, Smirnov). On the hexagonal lattice the number

C(k) of distinct simple length k curves from the origin satisfies

lim
k→∞

1

k
logC(k) = log

√

2 +

√

2 . (11)

Self-avoiding walks on a lattice (those without self-intersections) were pro-

posed by chemist Flory [Flo53] as a model for polymer chains, and turned out

to be an interesting and extensively studied object, see the monograph [MS93].

Using Coulomb gas formalism, physicist Nienhuis argued that the connective

constant of the hexagonal lattice is equal to

√

2 +
√

2, meaning that (11) holds.

He even proposed better description of the asymptotic behavior:

C(k) ≈

(√

2 +

√

2

)k

k11/32, k →∞ . (12)

Note that while the exponential term with the connectivity constant is lattice-

dependent, the power law correction is supposed to be universal.

Our proof is partially motivated by Nienhuis’ arguments, and also starts

with considering the self-avoiding walk as a special case of O(N) model at

N = 0. While a “half-preholomorphic” observable we construct does not seem

sufficient to imply conformal invariance in the scaling limit, it can be used to

establish the critical temperature, which gives the connective constant.

The general O(N) model is defined for positive integer values of N , and is

a generalization of the Ising model (to which it specializes for N = 1), with

±1 spins replaced by points on a sphere in the N -dimensional space. We work

with the graphical representation, which is obtained using the high-temperature

expansion, and makes the model well defined for all non-negative values of N .

We concentrate on the hexagonal lattice in part because it is trivalent and

so at most one contour can pass through a vertex, creating no ambiguities.

This simplifies the reasoning, though general graphs can also be addressed

by introducing additional weights for multiple visits of vertices. We consider

configurations ω of disjoint simple loops on the mesh ε hexagonal lattice inside

domain Ωε, and two parameters: loop-weight N ≥ 0 and (temperature-like)

edge-weight x > 0. Partition function is then given by

Z =

∑

ω

N# loops xlength of contours .
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a

b

x

x

Figure 6. The high-temperature expansion of the O(N) model leads to a gas of disjoint

simple loops. Probability of a configuration is proportional to N
# loops

x
length. We

study it with Dobrushin boundary conditions: besides loops, there is an interface

between two boundary points a and b.

A typical configuration is pictured in Figure 6, where we introduced Dobrushin

boundary conditions: besides loops, there is an interface γ joining two fixed

boundary points a and b. It was conjectured by Kager and Nienhuis [KN04]

that in the interval N ∈ [0, 2] the model has conformally invariant scaling limits

for x = xc(N) := 1/
√

2 +
√

2−N and x ∈ (xc(N),+∞). The two different

limits correspond to dilute/dense regimes, with the interface γ conjecturally

converging to the Schramm’s SLE curves for an appropriate value of κ ∈ [8/3, 4]

and κ ∈ [4, 8] correspondingly. The scaling limit for low temperatures x ∈ (0, xc)

is not conformally invariant.

Note that for N = 1 we do not count the loops, thus obtaining the low-

temperature expansion of the Ising model on the dual triangular lattice. In

particular, the critical Ising corresponds to x = 1/
√

3 by the work [Wan50] of

Wannier, in agreement with Nienhuis predictions. And for x = 1 one obtains

the critical site percolation on triangular lattice (or equivalently the Ising model

at infinite temperature). The latter is conformally invariant in the scaling limit

by [Smi01b, Smi01a].

Note also that the Dobrushin boundary conditions make the model well-

defined for N = 0: then we have only one interface, and no loops. In the dilute
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a

{

z
{

Figure 7. To obtain the parafermionic observable in the O(N) model we consider

configurations with an interface joining a boundary point z to an interior point z and

weight them by a complex weight depending on the winding of the interface.

regime this model is expected to be in the universality class of the self-avoiding

walk.

Analogously to the Ising case, we define an observable (which is now a para-

fermion of fractional spin) by moving one of the ends of the interface inside the

domain. Namely, for an edge center z we set

Fε(z) :=

∑

ω(a→z)

xlength of contours
W(ω(a→ z)) , (13)

where the sum is taken over all configurations ω = ω(a→ z) which have disjoint

simple contours: a number of loops and an interface γ joining two exceptional

points, a on the boundary and z inside. As before, the sum is corrected by a

complex weight with the spin s ∈ R:

W(ω(a→ z)) := exp (−i s winding(γ, a→ z)) ,

equivalently we can write

W(ω(a→ z)) = λ# signed turns of γ , λ := exp

(

−is
π

3

)

.

Note that on hexagonal lattice one turn corresponds to π/3, hence the difference

in the definition of λ.
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C1 to F (p)

s
a

c ss
s
v

xλ̄C1 to F (q)

s
a

c ss
s
v

xλC1 to F (r)

s
a

c ss
s
v

N C2 to F (p)

s
a

c ss
s
v

λ̄4 C2 to F (q)

s
a

c ss
s
v

λ4 C2 to F (r)

s
a

c ss
s
v

Figure 8. Configurations with the interface ending at one of the three neighbors of v

are grouped into triplets by adding or removing half-edges around v. Two essential

examples of triplets are pictured above, along with their relative contributions to the

identity (13).

Our key observation is the following

Lemma 4. For N ∈ [0, 2], set 2 cos (θ) = N with parameter θ ∈ [0, π/2]. Then

for

s =
π − 3θ

4π
, x−1

= 2 cos
(

π+θ

4

)

=

√

2−
√

2−N, or (14)

s =
π + 3θ

4π
, x−1

= 2 cos
(

π−θ

4

)

=

√

2 +
√

2−N , (15)

the observable F satisfies the following relation for every vertex v inside Ωε:

(p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0 , (16)

where p, q, r are the mid-edges of the three edges adjacent to v.

Above solution (14) corresponds to the dense, and (15) – to the dilute

regime. Note that identity (16) is a form of the first Kirchhoff’s law, but apart

from the Ising case N = 1 we cannot verify the second one.

To prove Lemma 4, we note that configurations with an interface arriving

at p, q or r can be grouped in triplets, so that three configurations differ only in

immediate vicinity of v, see Figure 8. It is enough then to check that contribu-

tions of three configurations to (16) sum up to zero. But the relative weights of

configurations in a triplet are easy to write down as shown in Figure 8, and the

coefficients in the identity (16) are proportional to the three cube roots of unity:

1, τ := exp(i2π/3), τ̄ (if the neighbors of v are taken in the counterclockwise
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order). Therefore we have to check just two identities:

N + τ λ̄4
+ τ̄ λ4

= 0 ,

1 + τ xλ̄ + τ̄ xλ = 0 .

Recalling that λ = exp (−isπ/3), the equations above can be recast as

−

2π

3
− 4s

π

3
= ± (π − θ) + 2πk , k ∈ Z ,

x = − 1

/(

2 cos

(

(2 + s)π

3

))

.

The first equation implies that

s = ±

(

−

3

4
+

3θ

4π

)

−

1

2
−

3

2
k , k ∈ Z , (17)

and the second equation then determines the allowed value of x uniquely. Most

of the solutions of (17) lead to observables symmetric to the two main ones,

which are provided by solutions to the equations (14) and (15).

When we set N = 0, there are no loops, and configurations contain just an

interface from a to z, weighted by xlength
. This corresponds to taking θ = π/2

and one of the solutions is given by s = 5/8 and xc = 1/
√

2 +
√

2, as predicted

by Nienhuis. To prove his prediction, we observe that summing the identity

(16) over all interior vertices implies that

∑

z∈∂Ωε

F (z)η(z) = 0 ,

where the sum taken over the centers z of oriented edges η(z) emanating from

the discrete domain Ωε into its exterior. Since F (a) = 1 by definition, we

conclude that F for other boundary points sums up to 1. As in the Ising model,

the winding on the boundary is uniquely determined, and (for this particular

critical value of x), one observes that considering the real part of F we can

get rid of the complex weights, replacing them by explicit positive constants

(depending on the slope of the boundary). Thus we obtain an equation

∑

z∈∂Ωε\{a}

∑

ω(a→z)

xlength of contours
c � 1 ,

regardless of the size of the domain Ωε. A simple counting argument then shows

that the series

∑

k

C(k) xk
=

∑

simple walks from a inside C

xlength ,

converges when x < xc and diverges when x > xc, clearly implying the conjec-

ture.
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Note that establishing the holomorphicity of our observable in the scaling

limit would allow to relate self-avoiding walk to the Schramm’s SLE with κ =

8/3 and together with the work [LSW04] of Lawler, Schramm and Werner to

establish the more precise form (12) of the Nienhuis prediction.

6. What’s Next

Below we present a list of open questions. As before, we do not aim for com-

pleteness, rather we highlight a few directions we find particularly intriguing.

Question 1. As was discussed, discrete complex analysis is well developed for

isoradial graphs (or rhombic lattices), see [Duf68, Mer01, Ken02, CS08]. Is there

a more general discrete setup where one can get similar estimates, in particular

convergence of preholomorphic functions to the holomorphic ones in the scaling

limit? Since not every topological quadrangulation admits a rhombic embedding

[KS05], can we always find another embedding with a sufficiently nice version

of discrete complex analysis? Same question can be posed for triangulations,

with variations of the first definition by Isaacs (5), like the ones in the work of

Dynnikov and Novikov [DN03] being promising candidates.

Question 2. Variants of the Ising observable were used by Hongler and Kytölä

to connect interfaces in domains with more general boundary conditions to more

advanced variants of SLE curves, see [HK09]. Can one use some version of this

observable to describe the spin Ising loop soup by a collection of branching

interfaces, which converge to a branching SLE tree in the scaling limit? Similar

argument os possible for the random cluster representation of the Ising model,

see [KS10]. Can one construct the energy field more explicitly than in [Hon10],

e.g. in the distributional sense? Can one construct other Ising fields?

Question 3. So far “half-preholomorphic” parafermions similar to ones dis-

cussed in this paper have been found in a number of models, see [Smi06, RC06,

RC07, IC09], but they seem fully preholomorphic only in the Ising case. Can we

find the other half of the Cauchy-Riemann equations, perhaps for some mod-

ified definition? Note that it seems unlikely that one can establish conformal

invariance of the scaling limit operating with only half of the Cauchy-Riemann

equations, since there is no conformal structure present.

Question 4. In the case of the self-avoiding walk, an observable satisfying

only a half of the Cauchy-Riemann equations turned out to be enough to de-

rive the value of the connectivity constant [DCS10]. Since similar observables

are available for all other O(N) models, can we use them to establish the critical

temperature values predicted by Nienhuis? Our proof cannot be directly trans-

fered, since some counting estimates use the absence of loops. Similar question

can be asked for other models.
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Question 5. If we cannot establish the preholomorphicity of our observables

exactly, can we try to establish it approximately? With appropriate estimates

that would allow to obtain holomorphic functions in the scaling limit and hence

prove conformal invariance of the models concerned. Note that such more gen-

eral approach worked for the critical site percolation on the triangular lattice

[Smi01b, Smi01a], though approximate preholomorphicity was a consequence

of exact identities for quantities similar to discrete derivatives.

Question 6. Can we find other preholomorphic observables besides ones men-

tioned here and in [Smi06]? It is also peculiar that all the models where preholo-

morphic observables were found so far (the dimer model, the uniform spanning

tree, the Ising model, percolation, etc.) can be represented as dimer models.

Are there any models in other universality classes, admitting a dimer represen-

tation? Can then Kenyon’s techniques [Ken04, Ken09] be used to find preholo-

morphic observables by considering the Kasteleyn’s matrix and the coupling

function?

Question 7. Throughout this paper we were concerned with linear discretiza-

tions of the Cauchy-Riemann equations. Those seem more natural in the prob-

abilistic context, in particular they might be easier to relate to the SLE martin-

gales, cf. [Smi06]. However there are also well-known non-linear versions of the

Cauchy-Riemann equations. For example, the following version of the Hirota

equation for a complex-valued function F arises in the context of the circle

packings, see e.g. [BMS05]:

(F (z + iε)− F (z − ε)) (F (z − iε)− F (z + ε))

(F (z + iε)− F (z + ε)) (F (z − iε)− F (z − ε))
= − 1 . (18)

Can we observe this or a similar equation in the probabilistic context and use

it to establish conformal invariance of some model? Note that plugging into the

equation (18) a smooth function, we conclude that to satisfy it approximately

it must obey the identity

(∂xF (z))
2
+ (∂yF (z))

2
= 0 .

So in the scaling limit (18) can be factored into the Cauchy-Riemann equations

and their complex conjugate, thus being in some sense linear. It does not seem

possible to obtain “essential” non-linearity using just four points, but using five

points one can create one, as in the next question.

Question 8. A number of non-linear identities was discovered for the correla-

tion functions in the Ising model, starting with the work of Groeneveld, Boel

and Kasteleyn [GBK78, BK78]. We do not want to analyze the extensive liter-

ature to-date, but rather pose a question: can any of these relations be used to

define discrete complex structures and pass to the scaling limit? In two of the

early papers by McCoy, Wu and Perk [MW80, Per80], a quadratic difference

relation was observed in the full plane Ising model first on the square lattice,
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and then on a general graph. To better adapt to our setup, we rephrase this

relation for the correlation C(z) of two spins (one at the origin and another

at z) in the Ising model at criticality on the mesh ε square lattice. In the full

plane, one has

C(z + iε)C(z − iε) + C(z + ε)C(z − ε) = 2C(z)2 . (19)

Note that C is a real-valued function, and the equation (19) is a discrete form

of the identity

C(z)∆C(z) + |∇C(z)|
2
= 0 .

The latter is conformally invariant, and is solved by moduli of analytic func-

tions. Can one write an analogous to (19) identity in domains with boundary,

perhaps approximately? Can one deduce conformally invariant scaling limit of

the spin correlations in that way?

Question 9. Recently there was a surge of interest in random planar graphs

and their scaling limits, see e.g. [DS09, LGP08]. Can one find observables

on random planar graphs (weighted by the partition function of some lat-

tice model) which after an appropriate embedding (e.g. via a circle packing

or a piecewise-linear Riemann surface) are preholomorphic? This would help

to show that planar maps converge to the Liouville Quantum Gravity in the

scaling limit.

Question 10. Approach to the two-dimensional integrable models described

here is in several aspects similar to the older approaches based on the Yang-

Baxter relations [Bax89]. Some similarities are discussed in Cardy’s paper

[Car09]. Can one find a direct link between the two approaches? It would also

be interesting to find a link to the three-dimensional consistency relations as

discussed in [BMS09].

Question 11. Recently Kenyon investigated the Laplacian on the vector bun-

dles over graphs in relation to the spanning trees [Ken10]. Similar setup seems

natural for the Ising observable we discuss. Can one obtain more information

about the Ising and other models by studying difference operators on vector

bundles over the corresponding graphs?

Question 12. Can anything similar be done for the three-dimensional models?

While preholomorphic functions do not exist here, preharmonic vector fields are

well-defined and appear naturally for the Uniform Spanning Tree and the Loop

Erased Random Walk. To what extent can they be used? Can one find any

other difference equations in three-dimensional lattice models?
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[BdT09] Cédric Boutillier and Béatrice de Tilière. The critical Z-invariant Ising

model via dimers: locality property. Comm. Math. Physics, to appear.

Preprint arXiv:0902.1282, 2009.

[BK78] R. J. Boel and P. W. Kasteleyn. Correlation-function identities and in-

equalities for Ising models with pair interactions. Comm. Math. Phys.,

61(3):191–208, 1978.

[BMS05] Alexander I. Bobenko, Christian Mercat, and Yuri B. Suris. Linear and

nonlinear theories of discrete analytic functions. Integrable structure and

isomonodromic Green’s function. J. Reine Angew. Math., 583:117–161,

2005.

[BMS09] Vladimir V. Bazhanov, Vladimir V. Mangazeev, and Sergey M. Sergeev.

Quantum geometry of 3-dimensional lattices and tetrahedron equation.

Preprint, arXiv:0911.3693, 2009.

[Bou26] George Bouligand. Sur le problemè de Dirichlet. Ann. Soc. Pol. Math.,
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Large Deviations
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Abstract

The theory of Large Deviations deals with techniques for estimating proba-

bilities of rare events. These probabilities are exponentially small in a natural

parameter and the task is to determine the exponential constant. To be pre-

cise, we will have a family Pn of probability distributions on a space X and

asymptotically

Pn(A) = exp

[

−n inf
x∈A

I(x) + o(n)

]

for a large class of sets, with a suitable choice of the function I(x). This function

is almost always related to some form of entropy. There are connections to

statistical mechanics as well as applications to the study of scaling limits for

large systems. The subject had its origins in the Scandinavian insurance industry

where it was used for the evaluation of risk. Since then, it has undergone many

developments and we will review some of the recent progress.
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Keywords. Large deviations

1. What Are Large Deviations?

What are Large Deviations and why are they called by that name? The law

of large numbers plays a central role in probability and statistics. While we

cannot predict the outcome of a single toss of a coin, one expects that repeated

tosses will produce roughly an equal number of heads and tails. Of course we

are not naive to believe that the numbers will be exactly equal. There will be

deviations or fluctuations. The central limit theorem asserts that if the coin is

tossed N times the deviation from the “expected” number
N

2
of heads will be of

the order
√

N and the deviation normalized by

√

N

4
will produce a “random”
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quantity whose distribution is the standard Gaussian distribution. This is really

a mathematical result

lim
N→∞

∑

r≥
N
2
+x (N

4
)
1

2

1

2N

(

N

r

)

=
1

√

2π

∫

∞

x

exp

[

−

y2

2

]

dy

Deviations of order
√

N are called fluctuations or “normal” deviations. Devi-

ations that are larger than
√

N while they are theoretically possible, are not

very probable. For instance if α > 1

2
,

lim
N→∞

∑

r≥
N
2
+xNa

1

2N

(

N

r

)

= 0

One can ask how fast? If we think of xNa
as 2xNa−

1

2 (
N

4
)

1

2 perhaps one can

then guess that

∑

r≥
N
2
+xNa

1

2N

(

N

r

)

'
√
2π

∫

∞

2xN
a−

1

2

exp

[

−y
2

2

]

dy = exp[−2x
2
N

2a−1
+ o(N

2a−1
)]

This is actually correct if a < 1. These are called “moderate deviations”. The

behavior is like the far tail of a Gaussian distribution. The answers change as

soon as a = 1. For x > 1

2
,

(1)

∑

r≥xN

1

2N

(

N

r

)

= exp[−I(x)N + o(N)]

where I(x) = x log[2x] + (1−x) log[2(1−x)]. Now we are talking about “Large

Deviations”. It is not so much because the deviations have suddenly become

large, but rather the answers have suddenly become different making the prob-

lems considerably more interesting!

2. Formulation

The estimate (1) is not hard to derive. If r = Nx, then one can use Stirling’s

formula to calculate
(

N

r

)

and we get

log

(

N

r

)

= −N [x log x+ (1− x) log(1− x)] + o(N) = Nh(x) + o(N)

Entropy comes up because we can have r heads in many different ways and

the number of such ways is
(

N

r

)

= exp[Nh(x) + o(N)] and each one carries a

probability of 2
−N

. This leads to

pN (r) = exp[−N(log 2− h(x)) + o(N)]
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The summation over r involves at most N terms and can only make an insignif-

icant correction to the exponential rate. This provides the formula

−

1

N
log

∑

r≥Nx

pN (r) ' inf
y≥x

[log 2− h(y)] = log 2− h(x)

if x ≥
1

2
. The probabilities pN (r) = exp[−N I(y) + o(N)] decay exponentially

if r ' N y with y 6=
1

2
and the sum over r ≥ Nx behaves essentially like the

supremum.

This makes the calculations in large deviation problems more accessible.

Summation or integration due to aggregation is replaced by optimization lead-

ing to variational formulas for asymptotic evaluation of probabilities and inte-

grals. There are two terms that contribute, one measuring the decay rate of the

probabilities of individual microscopic events and one measuring the multiplic-

ity of microscopic events that make up the event in question.

The earliest systematic treatment of large deviation estimates goes back to

nineteen thirties, to the work carried out by Cramér [3]. If {Xi} are independent

identically distributed random variables with E[X] = m then for a > m,

P

[

1

N

N
∑

i=1

Xi ≥ a

]

= exp[−NI(a) + o(N)]

where I(a) = supθ[θ a − logE[eθX ]. While deviations of the form Y ≥ a are

natural in the case of the real line R, in higher dimensions or a more abstract

setting one needs a reformulation.

One starts with a reasonable abstract space X with its Borel σ-field (a

complete separable metric space is OK.) and one has a family PN of probability

distributions on (X ,B). They may concentrate at some point as N → ∞. One

says that PN satisfies a large deviations principle with a rate function I(x) if

the following are true.

1. I : X → [0,∞] is lower semi-continuous.

2. K` = {x : I(x) ≤ `} is a compact subset of X for each ` <∞

3. For every open set G ∈ X

lim inf
N→∞

1

N
logPN (G) ≥ − inf

x∈G

I(x)

4. For every closed set C ∈ X

lim sup
N→∞

1

N
logPN (C) ≤ − inf

x∈C

I(x)
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It turns out that this formulation is general enough to be able to handle

most of the examples. The “rate functon” I(·) can usually be expressed in a

concrete form in terms of the model that produced {PN}. One basic tool is the

“contraction principle”.

If F : X → Y is a continuous map, and a large deviation principle holds for

{PN} on X with a rate function I(x) then QN = PNF
−1

on Y satisfies a large

deviation principle with rate function J(y) given by

(2) J(y) = inf
x:F (x)=y

I(x)

This allows us to recognize a particular example as a contraction of another

example on a larger space, but perhaps with a simpler rate function. The diffi-

culty in expressing the rate function J in a concrete fashion may very well be

due to the complexity of the variational problem involved in (2).

The theory is mainly a collection of examples and applications that often

solve other problems within mathematics. We will survey a few of them.

3. Sanov’s Theorem, Entropy

If QN is a product measure µ⊗N
on X

N
and πN is the map from X

N
→ M(X )

sending (x1, . . . , xN ) to δN (dx) = 1

N

∑N

i=1
δxi

, then the induced measure PN on

M(X ) will become concentrated at µ by the law of large numbers. The space

M(X ) is given the topology of weak* convergence. Sanov’s theorem [14] asserts

that a large deviation principle is valid for PN with rate function

I(λ) = H(λ, µ) =

∫

dλ

dµ
(x) log

dλ

dµ
(x)dµ

which is defined to be +∞ unless λ << µ and
dλ

dµ
(x) log dλ

dµ
(x) ∈ L1(µ). This is

not all that different from the coin tossing we started out with. The multinomial

distribution arises when objects are distributed randomly in one of k boxes,

the probability of ending in box j being πj . If N objects are distributed the

probability that the counts for the boxes is (n1, n2, . . . , nk) is the multinomial

distribution

pN (n1, n2, . . . , nk) =
N !

n1! · · ·nk!
π
n1

1 · · ·π
nk

k

The probability that the ratios {
ni

N
} are close to {pi} (instead of {πi} ), can be

calculated again by Stirling’s formula and leads to a large deviation principle

on the space Mk of probability distributions {pi} on {1, 2, . . . , k} with rate

function

I(p) =

k
∑

i=1

pi log
pi

πi

This is of course a special case of Sanov’s theorem, and Sanov’s theorem is a

limiting case of this.
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Now one can see the connection between Cramèr’s theorem and Sanov’s

theorem. The mean x̄ is after all

x̄ =
1

N

N
∑

i=1

xi =

∫

y δN (dy)

and the contraction principle applies modulo some technical issues due to pos-

sible large values of x:

inf
λ:

∫
y λ(dy)=x

H(λ, µ) = sup
θ

[θx− log

[∫

eθyµ(dy)

]

4. Tilting

Jensen’s inequality states that for any probability measure P

log

∫

exp[F (x)]dP ≥

∫

F (x)dP

If P and Q are mutually absolutely continuous

P (A) =

∫

A

dP =

∫

A

dP

dQ
(x)dQ = Q(A)

1

Q(A)

∫

A

exp

[

− log
dQ

dP
(x)

]

dQ

and by Jensen’s inequality

logP (A) ≥ logQ(A)−
1

Q(A)

∫

A

[

log
dQ

dP
(x)

]

dQ

In particular if we want to get a lower bound on
1

N
logPN (A), we pick a suitable

QN such that QN (A) → 1 as N → ∞. We can then expect

lim inf
N→∞

1

N
logPN (A) ≥ − lim inf

N→∞

1

N

∫ [

log
dQN

dPN

(x)

]

dQN

We think of this as a “control” problem where we want to change the model

that produced PN to a new model that produces QN under which A has nearly

full measure. The cost of the control is measured in terms of the relative entropy

H(QN , PN ) and yields a large deviation lower bound. The converse is true as

well. If PN (A) > 0, then the “tilt” QN = PA

N
= PN |A, i.e. the restriction of PN

to A, is clearly concentrated on A and has relative entropy

H(QN , PN ) =

∫

A

log
dQN

dPN

(x)dQN =
1

PN (A)

∫

A

log
1

PN (A)
dPN = − logPN (A)

The importance of this procedure is that, while this particular choice of QN is

not very useful because we need to know PN (A), one can try other QN that

will asymptotically yield the same large deviation rate.
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We will illustrate this by some examples. If, in the multinomial case, we

want the empirical relative frequencies
xi

N
to be in an open set G containing

{pi}, then we can change the model and let QN be the multinomial with cell

probabilities {pi} instead of {πi}. Clearly QN [{
xi

N
} ∈ G] → 1 and

H(QN , PN ) = EQN

[

∑

i

xi log
pi

πi

]

= N
∑

i

pi log
pi

πi

In the case of Cramér’s theorem the underlying distribution µ is tilted to

dλθ =
1

M(θ)
eθxdµ

where θ is chosen so that

M ′
(θ)

M(θ)
=

∫

xλθ(dx) = a

The entropy is

H(⊗
Nλθ,⊗

Nµ) = NH(λθ, µ) = N [aθ − logM(θ)]

and [aθ − logM(θ)] is maximized when

a−
M ′

(θ)

M(θ)
= 0

5. Diffusion with Small Noise

A class of problems that have been studied in detail is the perturbation of

deterministic equations by a small noise; for instance, Stochastic differential

equations in Rd
of the form

dx(t) = b(x(t))dt+
√

ε σ(x(t))dβ(t); x(0) = x

where β is a d-dimensional Brownian motion and σ is such that σ(x)σ(x)∗ =

a(x) is positive definite. As ε → 0 the distribution Pε,b of the solution will

concentrate at the solution of the ODE, x′(t) = b(x(t)). If f(t) is any smooth

curve in Rd
with x(0) = x we can ask for an estimate of

Pε,b[x(·) ∈ B(f, δ)]

in some interval [0, T ]. In other words is there a large deviation principle for

the distribution Pε of the solution x and if so what is the rate function? The

work of Schilder [15], Varadhan [16], Glass [9], Ventcel and Freidlin[18] gives

the answer as

I(f) =
1

2

∫ T

0

〈a−1
(f(t))(f ′(t)− b(f(t)), (f ′(t)− b(f(t))〉dt
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where a−1
(x) = {ai,j}(x) is the inverse of a(x). One can understand the formula

through tilting. If we replace the SDE with

dx(t) = f ′(t)dt+
√

ε σ(x(t))dβ(t); x(0) = x

then as ε → 0 the measure Pε,f will concentrate at the path f(t). Girsanov

formula calculates explicitly the Radon-Nikodym derivative and a simple cal-

culation shows that the relative entropy is given by

H(Pε,f , Pε,b) =
1

ε
I(f) + o(ε−1

)

If b(·) is zero, ε is a rescaling of time and the rate function is closely related

to arc length and geodesic distance in the metric

ds2 =

∑

i,j

ai,j(x)dxidxj

In particular, for small t, one would expect the transition density p(t, x, y) to

behave like

p(t, x, y) = exp

[

−

d(x, y)2

2t
+ o(

1

t
)

]

In other words if a diffusion process is forced to go somewhere in a small time

interval it will follow closely a geodesic with probability nearly 1.

6. Gibbs Measures and Equilibrium Statistical

Mechanics

For simplicity let us consider in R a large interval [−`, `]. We want put roughly

N = 2ρ` particles randomly in the interval. But rather than uniformly dis-

tributing them in [−`, `]N we want to have their joint distribution Q`,N to be

given by the density

Z−1

N,`
exp



−

∑

i,j

V (xi − xj)



Πdxj

Here V ≥ 0 is a short range potential and ZN,` is the normalizing constant.

One wants to take the limit as N → ∞ keeping ρ fixed. If we take V ≡ 0,

the limit would be a Poisson point process Pρ with intensity ρ. In general we

would expect to a get a stationary point process Q in the limit, with density ρ

but with nontrivial correlations. For any stationary process Q, we can calculate

the entropy of the restriction of Q`
of Q to [−`, `], which is a distribution on

∪
∞

n=0[`, `]
n
with densities qn,`(x1, . . . , xn) relative to corresponding restrictions

pn,`(x1, . . . , xn) =
e−2ρ`

n!
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of the Poisson process Pρ on [−`, `]n.

H`(Q,Pρ) =

∞
∑

n=0

∫

[−`,`]n
qn,`(x1, . . . , xn) log

qn,`(x1, . . . , xn)

pn,`(x1, . . . , xn)
Πdxj

H` is super-additive and the limit

lim
`→∞

H`

2`
= sup

`

H`

2`
= Hρ(Q)

exists. Roughly speaking e−2`Hρ(Q)+o(`)
is the probability that in an interval

[−`, `] a realization of a Poisson point process with intensity ρ resembles the

stationary point process Q rather than the Pρ promised to us by the ergodic

theorem. For any stationary point process the limit

lim
`→∞

1

2`
EQ





∑

xi,xj∈[−`,`]

F (xi − xj)



 = Q2(F )

exists for functions F with compact support. The limit Q of Q`,N that we seek

is the minimizer Q over all stationary point processes with density ρ of

inf
Q

[

Q2(V ) +Hρ(Q)]

The rationale for this goes something like this. If Pn satisfies a large deviation

principle on X with a rate function I(x), and F (x) is a nice function on X , the

contribution for the integral

∫

e−nF (x)dPn(x)

comes mostly from around the point x, where F (x)+ I(x) is a minimum. After

all, the probabilities decay locally like e−n I(x)
and the combined contribution to

the integral from around x is roughly e−n[F (x)+I(x)]
. It is not hard to conclude

that

lim
n→∞

1

n
log

∫

e−nF (x)dPn = − inf
x
[F (x) + I(x)]

and that the normalized distribution

Z−1
n e−nF (x)dPn

will converge to the δ-function at the minimizer x (provided it is unique). See

[12] for a detailed exposition of this point of view.



630 S.R.S. Varadhan

7. Longtime Behavior of Markov Processes

IfX is a finite set and π(x, y) is stochastic matrix onX×X with positive entries,

there is a nice rapidly mixing Markov chain {xj} on X with π as transition

probability. For any V : X → R, the limit

1

n
logEx



exp





n
∑

j=1

V (xj)







 = λπ(V )

exists and just as in the multinomial case

Iπ(p(·)) = sup
V

[

∑

V (x)p(x)− λπ(V )

]

will be the large deviation rate function for deviations from the ergodic theo-

rem. If

fn(x) =
1

n

n
∑

j=1

1xj=x

is the proportion of time spent at x during {1, 2, . . . , n} by the chain {xj},

Px[{fn(x)} ' {p(x)}] = exp[−nIπ(p(·)) + o(n)]

There are various ways of identifying λπ(V ). The matrix πV (x, y) =

π(x, y)eV (y) is not stochastic but has positive entries. It will have, by Frobenius

theory, a principal eigen-value ρπ(V ) which is positive. All the other eigen-

values will be smaller in modulus. The eigen-value with the largest modulus

will be simple and have a strictly positive row as well as column eigenfunctions.

The expectation

Ex0



exp





n
∑

j=1

V (xj)







 =

∑

y

(πV )
n
(x0, y)

and grows (or decays) exponentially like [ρπ(V )]
n
. Clearly λπ(V ) = log ρπ(V ).

We can also identify it by tilting. If we replace the Markov chain π(x, y) by

a new one π̂(x, y) such that
∑

x
p(x)π̂(x, y) = p(y), then the ergodic theorem

will guarantee that after tilting the proportions {fn(x)} will be close to {p(x)}.

The relative entropy, normalized by the number of steps n, is easy to calculate

1

n

∑

x1,...,xn

[

n−1
∑

i=0

log
π̂(xi, xi+1)

π(xi, xi+1)

]

Π
n−1
i=0 π̂(xi, xi+1)

It has as its limit

J(π̂) =
∑

x,y

p(x)π̂(x, y) log
π̂(x, y)

π(x, y)
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It definitely behooves us to minimize J(π̂) over π̂ satisfying
∑

x
p(x)π̂(x, y) =

p(y).

Iπ(p(·)) = inf
π̂:pπ̂=p

J(π̂)

The minimum is attained when
π̂(x,y)

π(x,y)
factors as the product of a function of x

and a function of y.

π̂(x, y) = π(x, y)eV (y) u(y)

ρ u(x)

for some V and u(y) is the row eigen-vector

∑

y

πV (x, y)u(y) = ρ u(x)

of πV and p(x) satisfies

∑

x

p(x)

u(x)
πV (x, y) = ρ

p(y)

u(y)

making
p(x)

u(x)
the column eigen-vector. Therefore p(x) is the product of the

principal row and column eigen-vectors of πV .

If we insist that in addition to {fn(x)} being close to {p(x)}, the proportion

of transitions

gn(x, y) =
1

n− 1

n−1
∑

i=1

1{xi=x,xi+1=y}

be close to q(x, y), then q(x, y) will have to be a a probability on X ×X with
∑

x
q(x, y) =

∑

x
q(y, x) = p(y). We have no choice and the tilt has to be chosen

as π̂ =
q(x,y)

p(x)
. The rate function is explicit

I2(q) =
∑

x,y

q(x, y) log
q(x, y)

p(x)π(x, y)

One can reinterpret the optimization as the contraction principle going from

probabilities on X ×X based on visits at successive times to probabilities on

X involving just the number of visits.

One can try to push this as far as it will go. Let P be a stationary process

on X and let {xi} be a realization of length n. We can extend it periodically

in both directions to get a periodic orbit of period n under shift and take the

orbital measure Rn which is now a random stationary process. Its distribution

will be a measure µn on the space M(X) of stationary processes Q on X. As

n→ ∞, µn will concentrate around P by the ergodic theorem and one can ask

for a large deviation result and a rate function. The rate function is universal

and should be given by

EQ

[

log
q(x0|x−1, x−2, . . .)

p(x0|x−1, x−2, . . .)

]
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the average with respect to Q of the conditional relative entropy of x0 under

Q given the past history with respect to a similar object for P . This is too

good to be true and it is. The conditional relative entropy is not well defined.

q(x|·) is defined a.e Q while p(x|·) is defined a.e. P . The measures P and Q

want to be orthogonal. The way out is to assume conditions on P so that p is

well defined everywhere. Since expectation is taken with respect to Q, q being

only defined a.e. Q is not a problem. What this means is that in order to have

a large deviation principle for P we need to assume some regularity on the

conditional distributions p(x0|x−1, x−2, . . .). For Markov processes this is only

an assumption on π(x, y). See [6],[7] for details.

8. Particle Systems

Large deviation theory plays a crucial role in the study of certain types of

large systems of interacting particle systems. The simple exclusion process is

a system of particles on the lattice Zd
or Zd

N
a cube of side N with periodic

boundaries. We will deal with the periodic case to make life a bit easier. The

state space of the system is [Zd

N
]
kN , the locations ξi of every particle in the

system. The process is a measure QN on D[[0,∞);Zd

N
]
kN , i.e kN trajectories

ξi(t) of the particles.

The transitions are that a particle waits for an exponential time and when

the clock rings it tries to jump to a new site and if the site is free the jump is

executed, otherwise it is disallowed and the particle waits at the original site

for another exponential time. The probability of the particle wanting to pick

site y to jump to from site x is p(y − x). The probabilities p(z) add up to 1.

We assume p(0) = 0 and p(z) = 0 outside a finite set F . The generator of the

process can be written as

(Lf)(. . . , zi, . . .) =
∑

i,z

(1− η(zi + z))p(z)[f(. . . , zi + z, . . .)− f(. . . , zi, . . .)]

where

η(z) =

kN
∑

i=1

1{ξi=z}

is the number of particles at z. This is either 0 or 1 indicating if the site is

available or not. There are various possibilities for p(·). But we shall assume

p(z) = p(−z). Therefore
∑

z p(z) = 0. We rescale diffusively and consider

RN =
1

Nd

kN
∑

i=1

δ ξi(N
2
·)

N

as a random measure with total mass
kN

Nd on the space Ω = D[[0, T ); T d
] for

some fixed T . It is viewed as a point in M(Ω). Its distribution µN is a measure
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on the space M(Ω). We have speeded up time by N2
and rescaled space by N .

If we start with an initial configuration ξi(0) = xi, then

νN (t) =
1

Nd

kN
∑

i=1

δ ξi(N
2t)

N

tracks the marginals of RN and is a Markov process with values in M(T
d
).

We assume that νN (0) the initial distribution of particles {ξi(0)} has a limit.

The limit is necessarily given by a density q0(y) with 0 ≤ q0(y) ≤ 1 and

ρ̄ = limn→∞

kN

Nd =
∫

q0(y)dy.

The measure valued process νN (t) converges in probability to q(t, y)dy that

is a solution of the heat equation

∂q(t, y)

∂t
=

1

2

∑

i,j

Ci,j

∂ρ(t, y)

∂yi∂yj

with

Ci,j =

∑

z

〈ei, z〉〈ej , z〉p(z)

If we start in equilibrium at density ρ and follow the motion of a single particle

it diffuses and scales as a Brownian motion with covariance Si,j(ρ) that depends

on ρ. The one dimensional nearest neighbor case is the only exception where

{Si,j(ρ)} ≡ 0. Otherwise Si,j(ρ) → Ci,j as ρ → 0 and to 0 as ρ → 1. The

measures RN converge to a Q ∈ M(Ω). Q is a Markov process with total mass

ρ̄ and q(t, y) for marginals, but the generator of the time dependent Markov

Process is

(Ltg)(y) =
1

2
[∇S(q(t, y))∇g](y) +

1

2q(t, y)
[S(q(t, y))− Ci,j ]∇q(t, y)] · (∇g)(y)

Note that q(t, y) is also a solution of

qt = L
∗

t q

One can ask for a large deviations result. There is one and the rate function

is quite explicit. Can be described by tilting. The way to tilt a jump Markov

process is to alter the rates. We introduce a small bias, shifting p(z) → p(z) +
c(z,t, x

N
)

N
, the bias depending on time and location. The shift has a cost and an

effect. The effect is that the q now solves

(3)
∂q(t, y)

∂t
=

1

2

∑

i,j

Ci,j

∂ρ(t, y)

∂yi∂yj
−∇ · b(t, y)q(t, y)(1− q(t, y))

and the limit Q of RN , has generator

(L
b

tg)(y) =
1

2
[∇S(q(t, y))∇g](y) +

1

2q(t, y)
[S(q(t, y))− Ci,j ]∇q(t, y)] · (∇g)(y)

+ (1− q(t, y))b(t, y) · (∇g)(y)

= (Ltg)(y) + (1− q(t, y))b(t, y) · (∇g)(y)
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and b(t, y) =
∑

z
c(z, t, y). Since c is not uniquely determined by b we can

optimize and the optimal cost is

J(b) =
1

2

∫ T

0

〈b(t, y), C−1b(t, y)〉q(t, y)(1− q(t, y))dt dy

If we want to calculate the rate function for large deviations of RN as a

function of Q, then the first step is to determine marginals q of Q. There are

many b’s that solve (3) for given q. In addition to matching the density profile

EQ

[

∫ T

0

g(t, y(t))dt

]

= EQb

[

∫ T

0

g(t, y(t))dt

]

=

∫ T

0

∫ d

T

g(t, y)q(t, y)dt dy

we try to match the current.

EQ

[

∫ T

0

〈h(t, y(t)), dy(t)〉

]

= EQb

[

∫ T

0

〈h(t, y(t)), dy(t)〉

]

We can attempt this because various Qb are equivalent to one another and

I(Q) = +∞ if Q is not in that equivalence class or bQ does not exist. If it does,

it produces a unique b = b(Q). Then we have Q̃ = Qb(Q). The rate function was

established in [13] and is given by

I(Q) = J(bQ) +H(Q,Qb(Q)).

9. Super Exponential Estimates

In proving these large deviation results as well as in other contexts the notion

of super exponential bounds arise naturally. If we make approximations and

want to interchange limits we need to make sure that the error probabilities are

irrelevant. They need to be smaller than the exponential rates we are trying to

determine.

We will illustrate with two examples. If we want to show that the distri-

bution Pε of Brownian Motion on C[0, 1] with variance ε has a large deviation

property with rate function

I(f) =
1

2

∫ 1

0

[f ′(t)]2dt

we can first approximate the Brownian Motion x(t) by a piecewise linear path

xn(t) and now the large deviation rates come from a Gaussian distribution in

a finite dimensional space.

Pε[x(·) ∈ C] ≤ Pε[xn(·) ∈ Cδ
] + Pε

[

sup
0≤t≤1

|xn(t)− x(t)| ≥ δ

]
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The error probability in this case is controlled by

lim sup
ε→0

ε logPε

[

sup
0≤t≤1

|x(t)− x(t)| ≥ δ

]

≤ −

nδ2

2
= C(n, δ)

and C(n, δ) → −∞ as n → ∞ for every δ > 0. This allows us to interchange

the two limits n→ ∞ and ε→ 0.

In many interacting particle systems like the ones we considered, where the

number of particles is conserved, it takes a long time for the system to reach

equilibrium, which requires the density to be constant. There are two impor-

tant scales. The microscopic scale, where the interactions take place and the

dynamics is defined and the macroscopic scale where the density is measured

and the precise distribution of particles in the microscopic scale are “averaged

out”. Although this averaging needs to be done only in probability to prove the

limits, it still requires methods from large deviations. The precise nature of the

distribution of the particle at any time is impossible to compute. The averag-

ing can be justified in equilibrium, because then the distribution is Bernoulli.

Large deviations are used to obtain super-exponential error probabilities in

equilibrium and then use them to control the error in non-equilibrium.

For instance in the example we considered it would be important to calculate

the following error probability. Let f(η) be a function that depends on the local

configuration {η(x);x ∈ F} where F is a fixed finite set {z : |z| ≤ r}. fz = τzf

is the translate of f by the shift τz. Let

ρN (t, x, ε) =
1

(2Nε)d

∑

z:|z−y|≤Nε

η(z, t)

One expects the system to be locally in equilibrium, i.e. if we denote by f̂(ρ) =

Eρ[f(η)] the expectation with respect to the Bernoulli distribution with density

ρ, the error

S =
1

N2

∫ N
2
T

0

1

Nd

∑

x∈Zd
N

∣

∣

∣

∣

∣

∣

1

(2Nε)d

∑

z:|z−x|≤Nε

fz(η(t))− f̂(ρN (t, x, ε))

∣

∣

∣

∣

∣

∣

dt

has to be small. It is rather difficult to control directly P [S ≥ δ] especially in

non-equilibrium and under tilting. However in equilibrium it is not hard. One

can use Dirichlet forms and Feynman-Kac formula to get super-exponential

bounds and then use the entropy inequality

α(A) ≤
H(α, β) + C

log
1

β(A)

to control it in non-equilibrium.
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10. Large Deviations and Homogenization

Methods from the study of large deviations are useful for carrying out the

homogenization of certain nonlinear partial differential equations. For example,

suppose b(x) is a periodic function of x and we want to investigate the behavior

as ε→ 0 of the solution uε of

ut +
ε

2
∆u+

1

2
‖∇u‖2 +

〈

b

(x

ε

)

,∇u

〉

= 0; u(T, x) = f(x)

We can do a Hopf-Cole transformation and if u = ε log v, then the equation

becomes

vt +
ε

2
∆v +

〈

b

(x

ε

)

,∇v

〉

= 0; v(T, x) = exp

[

1

ε
f(x)

]

If we change variables t = ετ , x = εy, then we obtain

vτ +
1

2
∆v + 〈b(y),∇v〉 = 0; v

(

T

ε
, y

)

= exp

[

1

ε
f(εy)

]

If we consider the SDE

dy(t) = b(y(t))dt+ dβ(t)

with a periodic b, there is a law of large numbers for
y(t)

t
and we can ask for

the corresponding large deviations result. Let us suppose that there is a rate

function Ib(y)

Pb

[

y(t)

t
' y

]

= exp[−t Ib(y) + o(t)]

Then

lim
ε→0

ε log v(0, 0) = sup
y

[

f(y)− TIb

( y

T

)]

or

lim
ε→0

ε log v(0, 0) = lim
ε→0

u(0, 0) = sup
y

[

f(y)− TIb

( y

T

)]

In fact

lim
ε→0

u(t, x) = sup
y

[

f(y)− (T − t)Ib

(

y − x

T − t

)]

which is the solution of the homogenized equation

ut +H(∇u) = 0;u(T, x) = f(x)

with

H(p) = sup
y

[〈p, y〉 − Ib(y)]
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The function I(y) can be calculated by tilting. We need to perturb the equation

dy(t) = b(y(t))dt+ dβ(t)

to

dy(t) = c(y(t))dt+ dβ(t)

where c is another periodic function. The adjoint equation

1

2
∆φ−∇ċφ = 0

will have a positive, normalized solution φ = φc on the period torus. Then the

law of large numbers states that

lim
n→∞

y(t)

t
= m(c) =

∫

c φcdy

The tilt has an entropy cost

e(c) =
1

2

∫

‖b− c‖2φcdy

Then

Ib(y) = inf
m(c)=y

e(c)

and

H(p) = sup
c

[〈p,m(c)〉 − e(c)]

See [11] for more details.

11. Some Quenched Large Deviation Results

If we have two independent stationary stochastic processes {Xn} and {Yn} with

distributions P and Q respectively, sometimes one is interested in the almost

sure limit

lim
n→∞

1

n
logψn(Y1, Y2, . . . , Yn)

where

ψn(Y1, Y2, . . . , Yn) = EP



exp





n
∑

j=1

F (Xi, Yi)









If P is a product measure then this is trivial because for any ergodic Q,

1

n
ψn(Y1, Y2, . . . , Yn) =

1

n

n
∑

j=1

logE
P
[expF (Xj , Yj)]] → E

Q
[logE

P
[expF (Xj , Yj)]]



638 S.R.S. Varadhan

Let us assume for simplicity that under P , {Xn} is a Markov chain on a finite

state space X , with transition probability π(x, x′). Then

lim
n→∞

1

n
logψn(Y1, Y2, . . . , Yn) = λπ(Q)

exists a.e Q for every ergodic Q. λπ(Q) has a variational formula

λπ(Q) = sup
R:σ2R=Q

[

ER
[F (X0, Y0)− h(Rω;Pω1

×Qω2
)]]

Here R varies over all jointly stationary distributions for {(Xn, Yn)} with the

distribution of the second component {Yn} fixed at the stationary process Q.

Rω is the conditional distribution of (X1, Y1) given the past {Xj , Yj : j ≤ 0}.

The similar conditional probability for P ×Q is Pω1
×Qω2

, where ω = (ω1, ω2)

represent the past histories {Xj : j ≤ 0} and {Yj : j ≤ 0} respectively. Note

that λπ(Q) is well defined because although Qω2
is only defined a.e. Q, any R

that appears in the supremum will have the marginal σ2R equal to Q. On the

other hand Pω1
is globally defined by π(x, x′). Results of this type have been

obtained in [1], [2] and [4].

Additional results and some applications will appear in a forthcoming article

[10] while [16], [17], [18] and [19] are earlier expositions that contain additional

references. In addition the texts [5] and [8] are excellent sources.
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In this note I describe the solution of a longstanding problem in mathemati-

cal physics: the extension of the Landau damping from the linearized to the

nonlinear Vlasov equation.
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In 1936, Lev Landau introduced the basic collisional kinetic model for plasma

physics, now commonly called the Landau–Fokker–Planck equation. With this

model he imported in plasma physics Boltzmann’s notion of relaxation by in-

crease of entropy, or equivalently loss of information.

In 1946, Landau came back to this field with a much more daring con-

cept: relaxation without entropy increase, with preservation of information,

even when collisions are neglected. This notion led to the extremely influen-

tial idea that conservative partial differential equations may exhibit irreversible

features.

Landau’s analysis was not directly based on the relevant kinetic model in

plasma physics, the Vlasov–Poisson equation, but only on a linearized approx-

imation. The validity of this approximation in large time has been questioned.

A recent work in collaboration with Mouhot [22] fills this gap and thus demon-

strates that relaxation is possible in confined reversible systems, without en-

tropy increase nor radiation. In this note I shall describe the main results and

the main insights brought by the proof.
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1. Mean-field Approximation

Large particle systems interacting via long-range collective interactions occur in

many situations in physics. Consider the most fundamental situation of classical

particles interacting via Newton’s equations in Rd
:

mi ẍi(t) =
∑

j

Fj→i(t),

where mi is the mass of particle i, xi(t) ∈ Rd
its position at time t, ẍi(t)

its acceleration, and Fj→i is the force exerted by particle j on particle i. If

all masses are equal and the force derives from an interaction potential, in

adimensional units we obtain, after proper time-rescaling,

ẍi(t) = −

1

N

∑

j

∇W
(

xi(t)− xj(t)
)

.

In applications N can be of the order of 10
20
, and then such a large system

of equations is hopeless. The mean-field limit N → ∞ transforms this system

of many simple equations in just one (complicated) equation. To perform the

limit, first rewrite the equations in terms of the empirical measure µ̂N
t (dx dv) =

N−1
∑

δ(xi(t),ẋi(t)):

∂µ̂N

∂t
+ v · ∇xµ̂

N
+ FN

(t, x) · ∇vµ̂
N

= 0, FN
= −

(

∇W ∗x,v µ̂
N
)

;

then take the limit N → ∞ to get an equation for the limit measure µt(dx dv).

Assuming that µt(dx dv) = f(t, x, v) dx dv, we can formally simplify by the

invariant measure dx dv; the result is the nonlinear Vlasov equation with

interaction potential W . In this model the unknown f = f(t, x, v) is a time-

dependent density distribution in phase space (position, velocity), and the equa-

tion is

∂f

∂t
+ v · ∇xf + F (t, x) · ∇vf = 0 (1)

F = −∇W ∗x ρ ρ(t, x) =

∫

f(t, x, v) dv, (2)

To escape the discussion of boundary conditions and to avoid dispersion effects

at infinity, I shall only consider periodic data, that is, x ∈ Td
= Rd/Zd

.

The most important case of application is the Vlasov–Poisson equation in

plasma physics, where heavy ions are treated as a fixed background, f(t, x, v)

is the density of electrons, treated as a continuum, and the interaction po-

tential is the Coulomb potential (the fundamental solution of −∆). An-

other archetypal interaction is the Newton potential, which differs from the

Coulomb potential only by a change of sign and units; the resulting equation
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is the gravitational Vlasov–Poisson equation, of considerable importance in

astrophysics.

Before going on, let me notice that while the mean-field limit is well-

understood for smooth interactions [4, 8, 23], it has never been put on rigorous

footing for Coulomb or Newton interactions. For singular potentials the only

available results are those of Hauray and Jabin [11], which miss the Coulomb

singularity by (a little bit more than) one order, and assume very stringent

conditions of uniform interparticle separation at initial time.

2. Qualitative Behavior of the Vlasov Equation

The Vlasov equation (1) is a time-reversible transport equation; it is in some

sense Hamiltonian [1] [15, Section 6]. In contrast with the Boltzmann equation,

it keeps the value of Boltzmann’s entropy, −
∫∫

f log f dv dx, constant in time.

Its invariances are well-known: preservation of the energy (kinetic energy +

potential energy), and preservation of all integrals of f , that is, all functionals

of the form
∫∫

A(f) dv dx.

This equation admits many, many equilibria: first, any spatially homoge-

neous function f0
= f0

(v) is an equilibrium; next, there is a general recipe to

construct inhomogeneous equilibria on Td
× Rd

, known as BGK (Bernstein–

Greene–Kruskal) waves [3]; the theory of these equilibria is still in their infancy

in spite of wide speculation.

The long-time behavior of the Vlasov–Poisson equation has been the object

of much debate and speculation: does the kinetic distribution converge to an

equilibrium by means of conservative phenomena? Which equilibria are stable

and which ones are not? Is there a recipe to predict the “most likely” asymptotic

equilibria? Is there an invariant measure on solutions of the Vlasov–Poisson

equations? These questions are of great interest in particular in astrophysics,

since the apparent approximate homogeneity of galaxies cannot be explained

by means of the very slow entropy production mechanisms. At the end of the

sixties, Lynden-Bell introduced the mysterious notion of (collisionless) vio-
lent relaxation to solve this paradox [16, 17]; this is still the object of much

debate.

In this ocean of conjectures and mysteries about collisionless relaxation, the

only little island on which we can set foot, so far, is the Landau damping,
which holds in the neighborhood of stable homogeneous equilibria, as I shall

now explain.

3. Linearization

In the sequel I will use Fourier transform in both x and v variables, writing

̂f(k, v) =

∫

f(x, v) e
−2iπk·x

dx, ˜f(k, η) =

∫∫

f(x, v) e
−2iπk·x

e
−2iπη·v

dv dx.



Landau Damping 643

Let f0
= f0

(v) be a homogeneous equilibrium. Let us write f(t, x, v) =

f0
(v) + h(t, x, v), assume ‖h‖ � 1 in some sense, and accordingly neglect the

quadratic term in (1). The result is the linearized Vlasov equation:

∂h

∂t
+ v · ∇xh+ F [h](t, x) · ∇vf

0
= 0, F [h] = −∇xW ∗x,v h; (3)

here F [h] is the force field generated by the distribution h.

Applying the Duhamel formula (considering F [ · ] · ∇vf
0
as perturbation of

v · ∇x), then taking the Fourier transform in x and integrating in v yields the

closed equation on ρ1(t, x) =
∫

h(t, x, v) dv:

ρ̂1(t, k) = ˜hi(k, kt) +

∫ t

0

K0
(t− τ, k) ρ̂1(τ, k) dτ, (4)

where

K0
(t, k) = −4π2

̂W (k)˜f0(kt) |k|2t. (5)

Appreciate the miracle: the Fourier modes ρ̂1(k), k ∈ Z, evolve in time indepen-

dently of each other, and satisfy a convolution equation — a simple instance of

Volterra equation. In a way this expresses a property of complete integrabil-

ity, which can actually be made more formal [21].

The convolution equation (4) can be studied by means of Fourier–Laplace

transform. If (a) ˜f0(η) = O(e−2πλ0|η|), (b) the Laplace transform (in time)

of the kernel K0
does not approach 1 in a strip {0 ≤ Re ξ ≤ λL|k|}, and

(c) ˜hi(k, η) = O(e−2πλ|η|
), then (4) implies exponential time-decay of nonzero

modes of the density perturbation: ρ̂1(t, k) = O(e−2πλ
′

|k|t
), for any rate λ′ <

min(λ, λ0, λL). As a consequence the force F [h] decays exponentially fast. This

phenomenon discovered in [14] is called Landau damping. (Physics textbooks
usually focus on λL, the Landau damping rate, as dictating the relaxation rate;

but λ0 and λ should not be forgotten in case f0
and hi are not entire functions.)

The existence of a positive decay rate λL is guaranteed by the analyticity

of f0
and the Penrose stability condition, which in dimension d = 1 reads

∀ω ∈ R, (f0
)
′
(ω) = 0 =⇒ ̂W (k)

∫

(f0
)
′
(v)

v − ω
dv < 1. (6)

The multidimensional version is that for any k ∈ Zd
, the one-dimensional

marginal of f0
along the axis k satisfies this criterion. For instance, this sta-

bility criterion always holds true for Coulomb interaction in dimension 3 if f0

is a radially symmetric distribution. On the contrary, for Newton interaction,

even the Gaussian distribution may be stable or unstable, depending on the

temperature (or equivalently, up to rescaling, on the size of the periodic box);

this is the phenomenon of Jeans instability, which qualitatively explains the

fact that stars tend to cluster in galaxies rather than spread around uniformly.
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The following theorem summarizes the situation; since Landau’s original

work it has proven and reproven by many authors in various formalisms and

with various degrees of precision, generality and rigor [2, 7, 12, 20, 22, 25, 27, 28].

Theorem 3.1 (Landau’s damping theorem). Let f0
= f0

(v) be an analytic

homogeneous equilibrium, with |
˜f0(η)| = O(e−2πλ0|η|), and let W be an inter-

action potential such that ∇W ∈ L1
(Td

). Let K0 be defined in (5); assume that

there is λL > 0 such that the Laplace transform (K0
)
L
(ξ, k) of K0

(t, k) stays

away from the value 1 when 0 ≤ Re ξ < λL|k|. Let further hi = hi(x, v) be an

analytic initial perturbation such that ˜hi(k, η) = O(e−2πλ|η|
). Then if h solves

the linearized Vlasov equation (3) with initial datum hi, one has exponential

decay of the force field: for any k 6= 0, and any λ′ < min(λ0, λL, λ),

̂F [h](t, k) = O(e−2πλ
′

|k|t
).

In particular, F [h] converges to 0 exponentially fast as t → ∞.

Moreover, Penrose’s stability condition (6) guarantees the existence of

λL > 0.

Note that high modes decay faster, low modes decay slower. The infrared

cutoff imposed by the periodic boundary conditions implies a uniform lower

bound on the decay rate of the various modes; if the problem is set in the

whole space, the very slow decay of very low spatial frequencies prevents the

exponential decay of the force [9, 10].

4. Nonlinear Landau Damping

The impact of Landau’s discovery cannot be overestimated: Landau damping

nowadays is one of the cornerstones of classical plasma physics [26].

However, half a century ago, Backus [2] raised a serious objection against

Landau’s reasoning. He argued that the linearization approximation is not justi-

fied in large times for the Vlasov equation, because the amplitude of∇vh(t, x, v)

grows at least linearly in time, due to the appearance of fast oscillations as

t → ∞; so even if ∇vh is initially of size O(ε), after time O(1/ε) it will be of

size O(1).

O’Neil [24] further predicted that the linearization approximation anyway

breaks down on time scales O(1/
√

ε), where ε is the size of the perturbation;

this is well checked on numerical schemes. So if one is interested in larger

time scales, the question naturally arises whether damping does hold for the

nonlinear Vlasov equation, at least in the perturbative regime near a stable

spatially homogeneous equilibrium.

This question seems to pose formidable difficulties: the nonlinear equa-

tion does not have the beautiful structure of the linearized equation; more-

over the density f(t, x, v) develops fast oscillations which prevent any uniform

smoothness bound, a fortiori analytic regularity. Numerical simulations on such



Landau Damping 645

long time scales are not fully reliable, and sometimes subject to controversy.

Isichenko [13] argued that the convergence to equilibrium in the nonlinear case

should be very slow. However, Caglioti and Maffei [5] proved the existence of

some exponentially damped solutions, leaving open the question of their gener-

icity.

The following recent theorem by Mouhot and myself ends the debate:

Theorem 4.1 (nonlinear Landau damping). Let f0 be an analytic profile satis-

fying the Penrose linear stability condition. Further assume that the interaction

potential W satisfies

̂W (k) = O

(

1

|k|2

)

. (7)

Then one has nonlinear stability and nonlinear damping close to f0. More pre-

cisely, there is ε > 0 such that if fi is an initial datum satisfying

|
˜fi − ˜f0|(k, η) ≤ ε e−2πµ|k| e−2πλ|η|,

∫∫

|fi(x, v)− f0
(v)| e2πβ|v| dx dv ≤ ε

and f(t, x, v) is the solution of the nonlinear Vlasov equation (1) with interac-

tion potential W and initial datum fi, then F [f ](t, · ) converges exponentially

fast to 0 as t → +∞. Moreover, f(t, · ) converges weakly to an analytic homo-

geneous equilibrium f∞ = f∞(v).

This theorem is perturbative, and in fact there is convincing numerical evi-

dence that the conclusion should not hold for large perturbations of equilibrium.

Nevertheless the strength of Theorem 4.1 is that it theoretically demonstrates

the possibility of relaxation to equilibrium without any dissipation or random-

ness in a non-radiating, time-reversible, entropy-preserving system.

Theorem 4.1 also predicts the existence of a limit distribution f∞(v). The

constructive nature of the proof of Theorem 4.1 provides a natural approxima-

tion scheme for that limit. By time-reversibility there is also a limit distribution

in negative times, and one may check that in general it differs from f∞, imply-

ing that the limit distribution does not depend only on the invariants of the

equation.

There is no contradiction between the reversibility of the Vlasov equation

and the effective irreversibility of the behavior expressed by Theorem 4.1: the

explanation is that although information is preserved for all times, it becomes

stored in high-frequency variations of the distribution function in the kinetic

variable. This transfer of information from low to high modes acts like a cascade

in phase space, which we like to interpret in terms of regularity: the regularity

deteriorates in the velocity variable because of the fast oscillations, but at the

same time the regularity of the force in the position variable improves with

time.

The rest of this text is devoted to a sketchy presentation of the main tools

underlying the proof of Theorem 4.1.
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Figure 1. A slice of the distribution function (relative to a homogeneous equilibrium)

for gravitational Landau damping, at two different times; notice the fast oscillations

of the distribution function, which are very difficult to capture by an experiment.

Image courtesy of Francis Filbet.
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Figure 2. Time-evolution of the norm of the field, for electrostatic (on the left) and

gravitational (on the right) interactions. In the electrostatic case, the fast time-

oscillations are called Langmuir oscillations, and should not be mistaken with the

velocity oscillations.

5. Gliding Analytic Regularity

To estimate solutions of the nonlinear Vlasov equation in analytic regularity,

let us look for an analytic norm which behaves well under composition (because

the solution of a linear transport equation is obtained by composition with the

trajectories of particles); and which does not fear the fast oscillations.

The first problem (composition) is solved by using algebra norms, well-

known in certain areas of mathematics: two such norms are defined (say in

dimension 1) by

‖f‖
F

λ =

∑

k∈Z

e2πλ|k| | ̂f(k)| ‖f‖
C
λ =

∑

n∈N0

λn

n!
‖f (n)

‖L∞ , (8)
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where f (n)
stands for the derivative of order n of f , and N0 = {0, 1, 2, . . .}. The

first norm (as it is written) makes sense only for periodic functions, while the

second one makes sense for any smooth function on R. Both satisfy ‖fg‖ ≤

‖f‖ ‖g‖, and as a consequence also satisfy nice formulas for the composition:

with obvious notation,

∥

∥

∥
f ◦ (Id +G)

∥

∥

∥

λ

≤ ‖f‖ν , ν = λ+ ‖G‖λ.

The second problem (fast oscillations) is resolved by taking away the contri-

bution of the free transport. This is like a scattering philosophy: to estimate the

solution of the perturbed kinetic equation at time t, first evolve it backwards

from time t to time 0, using the (reversed) free transport equation.

So the smoothness scale is devised by comparison with the solution of the

free transport, and there is an information cascade from low to high modes, as

in weak turbulence theory. We call this the gliding regularity.
All in all, we introduce a functional norm which mixes the two recipes ap-

pearing in (8) (one recipe for the position variable, another one for the velocity

variable), and kills fast oscillations by replacing differentiation along ∇v by

differentiation along ∇v + t∇x:

‖f‖
Z

λ,(µ,γ);p
τ

=

∑

k∈Zd

∑

n∈Nd
0

e2πµ|k| (1+|k|)γ
λn

n!

∥

∥

∥

(

∇v+2iπτk
)n
̂f(k, v)

∥

∥

∥

Lp(dv)
. (9)

By default, τ = 0, γ = 0 and p = ∞.

The five indices might seem a burden, however they provide a lot of flexibil-

ity. The parameter τ can be adjusted as one wishes, but should not be too far

from the physical time. Please note that the Z spaces are ordered with respect

to the parameters λ, µ, γ and (cheating a bit) p, but not with respect to the

parameter τ , at least not with uniform constants.

One can work out nice properties of the Z norms with respect to product,

composition, differentiation, inversion. For instance:

∥

∥

∥f
(

x+X(x, v), v + V (x, v)
)

∥

∥

∥

Z
λ,µ;p
τ

≤ ‖f‖
Z

α,β;p
σ

,

where α = λ+ ‖V ‖
Z

λ,µ
τ

, β = µ+ λ|τ − σ|+ ‖X − σV ‖
Z

λ,µ
τ

.

Finally, as soon as one has a good decay in velocity space, one may embed

the complicated Z spaces into more naive functional spaces, such as

‖f‖
Y

λ,µ
τ

:= sup
k,η

∣

∣ ˜f(k, η)
∣

∣ e2πλ|η+kτ | e2πµ|k|.

6. Characteristics

Let us consider the linear Vlasov problem, where particles move in a given force

field F , satisfying the same estimates as if it was induced by a solution f of the
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free transport. Then the regularity of F improves with time: if f is analytic,

then
∥

∥F (t, · )
∥

∥

F
λt+µ = O(1)

for some λ, µ > 0.

Then the solution f is given by the composition of the initial datum, fi,

by the characteristic equations (trajectories). So, to understand the solution of

the equation, it is sufficient to understand these characteristics; we define

St,τ (x, v) =

(

Xt,τ (x, v), Vt,τ (x, v))

)

as the position and velocity at time τ of particles which are transported by the

force field F and which at time t will have position x and velocity v. To compare

S with the free transport evolution S0
t,τ (x, v) = (x− (t− τ)v, v), introduce

Ωt,τ = St,τ ◦ S0
τ,t. (10)

That is, start from time τ , evolve by the free dynamics up to time t, and then

evolve it backwards by the perturbed dynamics to time τ . As t → ∞, Ωt,τ

converges to what is usually called a scattering transform.

A fixed point argument shows the following: if λ′ < λ, µ′ < µ and

‖F (t, · )‖
F

λt+µ ≤

ε (µ− µ′
) (λ− λ′

)
2

C
,

for C large enough, then

∥

∥Ωt,τ − Id

∥

∥

Z
λ′,µ′

τ
≤ C ε e−2π(λ−λ

′

)τ
min

(

t− τ,
1

λ− λ′

)

.

This estimate shows that the dynamics asymptotically looks like free trans-

port; it is good because it is (a) uniform as t → ∞; (b) small as τ → t; (c)

exponentially small as τ → ∞.

The loss of regularity index is roughly of order O(ε1/3); we shall see later

how to improve this by playing on the parameters of the norm.

7. Reaction

Now let us consider the force as the unknown, and let the force act on a given

time-dependent distribution f(t, x, v) = f0
(v)+h(t, x, v). Then the equation is

∂f

∂t
+ v · ∇xf + F [f ](t, x) · ∇vf(t, x, v) = 0, (11)

which formally describes the evolution of a gas of particles which acts by forcing

the distribution f , such that there is a flux of particles from distribution f to
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distribution f , which exactly reacts to the effect of the force and guarantees

that f is unaffected.

Let us set artificially f0
= 0 to focus on the effect of the nonlinearity.

Applying the Duhamel principle, Fourier transform and integration in velocity,

we obtain

ρ̂(t, k) = ˜fi(k, kt) +

∫ t

0

∑

`

̂

∇W (k− `) ρ̂(τ, k− `) (
˜

∇vf)
(

τ, `, k(t− τ)
)

dτ. (12)

Of course all modes of the density are now coupled; to bound them all together,

let use the norm ‖ρ‖
F

λt+µ . We assume that ̂W (k) = O(1/|k|1+γ
) as k → ∞,

and that f satisfies the same estimates as a solution of free transport:

˜

∇vf
(

τ, `, k(t− τ)
)

≤ C |k|(t− τ) e−2πλ|k(t−τ)+`τ | e−2πµ|k|.

Plugging this bound in (12) leads to an integral equation replacing (4):

‖ρ(t)‖
F

λt+µ ≤ A(t) + C

∫ t

0

K(t, τ) ‖ρ(τ)‖
F

λτ+µ dτ, (13)

where A(t) =
∑

k
e2π(λt+µ)|k|

|
˜hi(k, kt)| remains bounded if λ is small enough,

and

K(t, τ) = sup
k,`

(

|k|(t− τ) e−2π(λ−λ)|k(t−τ)+`τ | e−2π(µ−µ)|`|

1 + |k − `|γ

)

. (14)

Note that the argument inside the supremum is not uniformly small for large

k and large t: a resonance phenomenon occurs for

k(t− τ) + `τ = 0,

similar to the celebrated echo experiment performed by Malmberg and collab-

orators in the sixties [18, 19].

The bad news about kernel (14) is that it grows linearly with time: K(t, τ) is

in general not better than O(τ), and
∫ t

0
K(t, τ) dτ = O(t), suggesting a potential

superexponential instability. But the good news is that the interaction comes

with an important delay. To appreciate this, compare the integral equations

ϕ(t) ≤

∫ t

t−1
τ ϕ(τ) dτ (allowing superexponential growth) and ϕ(t) ≤ t ϕ(t/2)

(imposing subexponential growth).

Also the influence of the singularity of the interaction potential W is seen on

(14): the more singular it is, the slower the decay as |k − `| → ∞, the stronger

the coupling between different modes.

To estimate solutions of (13) one can use exponential moment estimates.

The idea is that
∫ t

0

e−εt K(t, τ) eετ dτ (15)
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will be smaller if K favors large values of t− τ . In the present case,

∫ t

0

e−εt K(t, τ) eετ dτ ≤

C

εr tγ−1
, (16)

for some constants C > 0, r > 0, and ε arbitrarily small. The important fact

is that the bound on the right-hand side of (16) decays as t → ∞, at least for

γ > 1. One can use this information to show that solutions of (13) cannot grow

faster than O(eεt), where ε is as small as desired; stated otherwise, there is an

arbitrarily small loss on the decay rate.

This method accommodates with the presence of f0
, at the price of technical

estimates involving further information on K(t, τ):

(∫

e
−2εt

K(t, τ)
2
e
2ετ

dτ

)1/2

≤ C

εr tγ−1/2
, sup

τ≥0

∫

∞

τ

e
ετ

K(t, τ) e
−εt

dt ≤ C

εr
.

As γ → 1, the coupling becomes so strong that the previous method no

longer works; instead one can work out a more complicated scheme where all

modes are estimated separately, rather than within a single norm. The resulting

infinite system of inequalities also provides an arbitrarily small loss on the

exponential decay rate.

8. Newton’s Scheme

To overcome the loss of decay rate observed in the solution of the linearized

problem, we adapt to the present setting the classical Newton algorithm, thus

constructing the solution of the nonlinear Vlasov equation as a superposition of

solutions of linear equations: f = limn→∞ fn
, fn

= fn
(t, x, v) being defined as

fn
= f0

+ h1
+ . . .+ hn,

where

• f0
= f0

(v) is the homogeneous equilibrium;

• h1
solves the linearized Vlasov equation around f0

, starting from fi − f0
;

• for any n ≥ 1, hn+1
solves the linear equation

∂hn+1

∂t
+ v ·∇xh

n+1
+F [fn

] ·∇vh
n+1

+F [hn+1
] ·∇vf

n
= −F [hn

] ·∇vh
n

(17)

with initial datum hn+1
(0, · ) = 0. The fact that hn

appears quadratically in

the right-hand side of (17) formally guarantees that the convergence of the

scheme is extremely fast (almost like δ2
n

).

The analytic regularity of the solution of this system of equations is first

estimated for short times, as in Cauchy–Kowalevskaya theory.
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Large time estimates are much more tricky and involve all the ingredients

from sections 5 to 7. First one composes by the characteristics induced by F [fn
],

in order to get rid of the term F [fn
] · ∇vh

n+1
. This does not harm much if we

can show that these trajectories are asymptotic to free transport in a suitable

sense. Then the reaction analysis and echo control provide the decay of the

force, with an arbitrarily small loss on the rate of decay. The overall goal is to

set up a virtuous circle: if F [fn
] decays fast, the trajectories will be close to

free transport trajectories, and in particular will induce a good mixing of hn+1
;

and in turn this will imply a fast decay of F [hn+1
].

The implementation of these ideas is particularly technical. Let ρnt (x, v) =
∫

hn
(t, x, v) dv, and Ω

n
t,τ = Sn

t,τ ◦S
0
τ,t, where Sn

are the characteristics induced

by F [fn
]. Two key estimates which are propagated along the scheme are:

sup
τ≥0

‖ρnτ ‖Fλnτ+µn ≤ δn, sup
t≥τ≥0

∥

∥hn

τ ◦ Ω
n−1
t,τ

∥

∥

Z
λn(1+b),µn;1

τ−
bt

1+b

≤ δn, (18)

where b(t) = B/(1 + t) for some well-chosen parameter B > 0. Notice the shift

in the indices of the norm of hn
, where the regularity is modulated depending

on the final time t: this trick, combined with the decay of the force field, al-

lows to circumvent the fixed loss of regularity due to the composition by the

characteristics.

A number of auxiliary estimates are propagated: schematically,

• Ω
n
' Id, ∇Ω

n
' I;

• Ω
n
− Ω

k
is small and (Ω

k
)
−1

◦ Ω
n
' Id as k → ∞, uniformly in n;

• hk
◦ Ω

n
, ∇hk

◦ Ω
n
, ∇

2hk
◦ Ω

n
are small as k → ∞, uniformly in n;

• (∇hn+1
) ◦ Ω

n
' ∇(hn+1

◦ Ω
n
)

A key step is a self-consistent estimate on ρn+1
=
∫

hn+1 dv: among other

ingredients, the assumption ̂W (k) = O(1/|k|2) is used there to ensure that

‖∇Fn+1
‖ ≤ C ‖ρn+1

‖, so that

‖Fn+1
◦ Ω

n
− Fn+1

‖ ≤ ‖∇Fn+1
‖ ‖Ω

n
− Id‖ ≤ ‖ρn+1

‖ ‖Ω
n
− Id‖,

with the same norm on the left-hand and right-hand sides.

The implementation of the scheme is done in a number of steps at each

stage, each of which involves a small loss on the gliding regularity, and large

constants. But the latter are all eventually wiped out by the extraordinarily

fast convergence of the Newton scheme:

δn = O
(

δa
n)

, 1 < a < 2.

In the end remains the uniform bound

sup
n∈N

sup
t≥0

(

‖fn
(t, · )− f0

‖
Z

λ,µ;1

t
+ ‖Fn

(t, · )‖
F

λt+µ

)

= O
(

‖fi − f0
‖

)

. (19)
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From this follows a uniform bound on the solution f , and the exponential decay

on the force F (t, · ), which in turn implies that f(t, x+vt, v) converges to some

distribution function g(x, v). Then f(t, x, v) is asymptotic to g(x − vt, v), and

the existence of the asymptotic profile f∞(v) follows by the homogenization

properties of the free transport.

9. Conclusions

Theorem 4.1 establishes that Landau damping survives nonlinearity: this solves

a controversial problem posed half a century ago. The proof of this result is

technical and complex, but constructive and based on elementary tools. It pro-

vides a hands-on approach of the long-time behavior of the nonlinear Vlasov

equation, and singles out the mechanism and the important ingredients behind

Landau damping: confinement, mixing, and the Riemann–Lebesgue lemma.

The construction bears several similarities with the Kolmogorov–Arnold–

Moser theory [6]. Indeed, the linearized Vlasov equation is completely inte-

grable in some sense, the nonlinearity acts as a perturbation, and the loss of

regularity occurring in the solution of the linearized Landau problem can be

overcome by a Newton scheme. In our case, the most severe reason for the loss

of regularity is the formation of echoes due to the oscillatory nature of solu-

tions. In this sense the proof provides an unexpected bridge between three of

the most famous paradoxical statements from classical mechanics of the twen-

tieth century: Landau damping, KAM theory, and the echo experiment. This

is all the more remarkable that this bridge only appears in the treatment of

the nonlinear Vlasov equation, while Landau was dealing specifically with the

linearized equation.

However, in contrast with classical KAM theory, the solution of the lin-

earized Vlasov equation implies a loss of infinitely many derivatives; in Fourier

space, this is like mutiplication by e|ξ|
α

with 0 < α < 1. This high loss of

regularity is one of the main reasons why we are unable to run a classical

Nash–Moser regularization scheme and get results in Ck
regularity. Instead, we

are only able to work in Gevrey regularity, and formulate a guess for the critical

regularity: Gevrey-3 (that is, derivatives growing like n!3).

After this theorem, many new problems can be formulated: extension to

other models, to inhomogeneous equilibria, long-time behavior of less smooth

data, mean-field limit in the perturbative regime. . . A number of old problems

also remain wide open, such as the understanding of the statistical theory of

the Vlasov equation. When addressing these issues, just as the problem which

motivated Theorem 4.1, we must bear in mind that the goal of mathematical

physics is not to rigorously prove what physicists already know, but rather

through mathematics to get new insights about the physics, and from physics

to identify new mathematical problems.
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Abstract

It is common to describe university-level mathematics as virtually a different

subject from school-level mathematics, even when their subject matter overlaps.

The difference is particularly keenly felt in analysis, where there is a big contrast

between a typical first course in calculus and the more rigorous epsilon-delta

approach that one encounters at university.

I shall argue that this appearance is misleading, and that the epsilon-delta

definitions and proofs are more intuitive than they might at first appear. I shall

focus in particular on the treatment of the real number system, the definition

of continuity, and the proof of the intermediate value theorem.
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If I was asked to name the two most notable ways in which university-level

mathematics differs from school-level mathematics, then I would say that they

were abstraction and rigour. Early courses at university in subjects such as

group theory and linear algebra will introduce students to the axiomatic way

of thinking, while a first course in mathematical analysis introduces them to

rigorous proofs of statements that they will hitherto have justified only infor-

mally, if at all. It is often claimed that mathematical analysis is difficult to

learn because in order to understand it one must learn to think in a new way.

In this short presentation I would like to suggest that there are many connec-

tions between the advanced, rigorous way of thinking and the more naive way

of thinking that would come naturally to a schoolchild. How these observations

should influence the way we teach analysis is far from clear, but it cannot do

any harm to draw attention to them.

I plan to discuss three aspects of basic real analysis: the axiomatic approach

to the real number system, the definition of continuity, and the proof of the

intermediate value theorem. In each case, I shall compare how they are treated
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in a typical analysis course (or textbook) with how they are thought of by an

intelligent mathematician who has not yet attended such a course.

First, the real number system. The advanced attitude to the real numbers

is this: there exists a complete ordered field; complete ordered fields can be

constructed in many different ways; the mere fact that they exist is more im-

portant than the precise details of the constructions, since any two complete

ordered fields are isomorphic; therefore, it is best to treat the real numbers

axiomatically, deducing everything from the axioms for a complete ordered

field.

In practice, the fact that the real numbers form an ordered field is kept

firmly in the background. We just add them, multiply them, take reciprocals of

non-zero numbers, put them in order, and take for granted that they obey the

obvious rules. In that respect, a university-level mathematician ends up behav-

ing in a very similar way to a school-level mathematician, who also takes these

various rules for granted (the difference being that a school-level mathematician

may well not have consciously thought about them).

What really separates the university mathematician from the school math-

ematician is the use of the completeness axiom (in one of its forms). Or does

it? What does the school mathematician use instead? Does the school math-

ematician even need a substitute, or is the completeness axiom just used for

“advanced” statements?

Let us think about a few statements that need the completeness axiom in

their proofs. One is the Archimedean axiom, in the form n−1
→ 0. To prove

this, we say that the sequence is monotone decreasing and bounded below by

0. It therefore converges to a limit L, and a simple argument shows that L has

to be 0.

An obvious difficulty for the school mathematician is that the defini-

tion of convergence is not part of the school curriculum. But the following

equivalent statement is readily comprehensible at school level: for every pos-

itive real number x you can find a positive integer n such that n−1
is less

than x.

Now this last statement comes into the unfortunate category of statements

that need a proof, but that appear to the non-expert to be bafflingly simple.

Surely, a school mathematician might say, all you have to do is choose enough

0s so that the number

0.000 . . . 0001

starts with more 0s than x does, and then take n to be the reciprocal of this

number. Or, even simpler, take the reciprocal of x and let n be the next integer

above it. The university mathematician might then reply, “Ah, but you are

assuming that every real number has a decimal expansion,” or, “How do you

know that there is any integer above it?” To which the school mathematician

will reply that that a real number just is an infinite decimal (give or take

pedantic qualifications about recurring nines) and that there is obviously an
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integer above it because you can just get rid of the fractional part of x and

then add 1.

It is clear from these responses that the school mathematician is thinking in

terms of a model of the real numbers – defined in terms of infinite decimal ex-

pansions – rather than axiomatically. So perhaps there is a profound difference

after all.

Before we accept this conclusion, let us think about another statement that

a school mathematician finds obvious: that there exists a positive real number

x such that x2
= 2. Why is this obvious? I think the (unarticulated) reason is

this: they know in principle how to calculate it. They know that it is roughly

1.414, and they know that the reason for that is that 1.4142 is a tiny bit smaller

than 2, while 1.4152 is a tiny bit bigger than 2. And the next digit is 2 because

1.41422 is an even tinier bit smaller than 2, and 1.41432 is an even tinier bit

bigger than 2. And so on. (Moreover, each new digit can be found by a simple

process of trial and error.)

There are a few hidden assumptions here, of course, most notably the conti-

nuity of the function f(x) = x2
. However, a school mathematician is not too far

wrong to find it obvious that the difference between 1.41422 and 1.41432 is very

small, and that as you add more and more digits the corresponding differences

will get smaller and smaller. And if one imagines this process going on for ever

and producing a number with infinitely many digits, then what one is doing is

not very different from a rigorous proof by repeated bisection, except that in

this case we do not really need an axiom to see that the monotone sequence

1, 1.4, 1.41, 1.414, 1.4142, . . . converges: it converges to the infinite decimal that

has these finite decimals as its initial segments.

Note that the way that a school mathematician finds the decimal expansion

of
√

2 can easily be converted into a proof that every real number has a decimal

expansion. Of course, the resulting proof assumes the Archimedean axiom, so

we cannot use decimal expansions to prove the Archimedean axiom. But if we

want to prove that a specific number such as
√

2 has a decimal expansion, then

it will almost always be easy to find an integer n that is greater than that

number, in which case we can do without the Archimedean axiom. So the main

use of the Archimedean axiom is in getting us from the axioms for a complete

ordered field back to a more concrete picture of them.

Now let me turn to the definition of continuity. Here, surely, is one of the

truly difficult concepts that a beginning student of analysis must grasp. To

teach it, people often start with a very hand-waving explanation of what a

continuous function is – it is a function “whose graph you can draw without

taking your pen off the paper” – and they follow it up with a bizarre definition

that appears to have nothing to do with this intuitive idea. As if to emphasize

that the intuitive idea and the formal definition are different, students are given

examples of pathological functions, such as the function that is continuous at all

irrational numbers and discontinuous at all rational numbers, and encouraged

to be very suspicious of their intuition and use the rigorous definition instead.
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Does it have to be this way? I would contend that it does not, since there is

a much better intuitive description of what continuity is, one that leads directly

to the rigorous definition. It concerns limited-accuracy measurement.

Suppose that a car is being driven along a flat road with its engine switched

off and its brakes off as well, and we want to predict where it will be when it

comes to rest. To help us, we are given full details of the frictional forces that it

is subject to, and, crucially, we are told how fast it is going. Obviously, we are

not given the speed as a real number, since we cannot know it exactly: rather,

we are given an approximation to its speed, accurate to a few decimal places.

Because we are not given the exact speed, our prediction cannot be expected

to be exactly accurate either. Is this a problem? In practice, no, because knowing

the final position to a good approximation is good enough for practical purposes.

But can our prediction even be expected to be approximately correct? Most

people feel instinctively that it can. Indeed, they somehow sense that the more

accurate the initial data, the more accurate the prediction. Turning things

around, they find it intuitively clear that if you insist on a certain level of

accuracy for the prediction, then this can be achieved provided the initial data

is itself known sufficiently accurately.

Now let us vary the experiment slightly. This time the car is approaching a

small bridge. There are therefore three possible outcomes: it can come to rest

beyond the bridge, it can come to rest at the top of the bridge, or it can go part

of the way up the bridge before rolling back and coming to rest on the same

side of the bridge that it is on at the moment. What it cannot do is come to

rest on the parts of the bridge where there is any noticeable slope.

Suppose that the maximum speed that will not cause the car to go over the

bridge and down the other side is ten miles per hour. And suppose that the

car is going at precisely ten miles per hour. Then no matter how accurately we

measure the speed of the car, we cannot be sure whether it will come to rest

on the top of the bridge or over on the other side. Why is that? Because our

measurement will tell us that the speed of the car in miles per hour lies between

10 − a and 10 + b for two positive numbers a and b, and within that interval

there are speeds where the car goes over the bridge and speeds where the car

comes to rest on top of the bridge. Thus, however accurate our measurement

is, we cannot even say approximately what the final position of the car will be.

What is the mathematical difference between the two variants of the experi-

ment? In the first case, the final position of the car depends continuously on its

initial speed, and in the other case the dependence is discontinuous. This is easy

to see intuitively, and if one tries to explain in detail the thoughts behind one’s

intuition, then one is led naturally to the conventional definition of continuity.

This is not true of the graph-drawing intuition.

Here, very briefly, is another way that one might explain to a school math-

ematician what continuity is. Just ask them the value of π2
. They will quickly

ask you whether they are allowed to use a calculator, to which you reply yes. So

they key in π and then press the x2
button. The answer comes up: 9.8696044.
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You then express surprise: is it really true that π2
is a rational number? No,

they explain, but π2
is an infinite decimal so the best they can do is give you

the first few decimal places. Now you ask how they know that they have worked

out π2
to the first few decimal places. After all, the number they squared was

not π itself but an approximation to π such as 3.1415926. They will probably

protest that if the approximation to π is good enough, then the approximation

to π2
will be good too. And they will have formulated for themselves a state-

ment that is very close to asserting the continuity of the function x2
. You can

follow this up by asking them how accurately you would need to know π if you

wanted to know π2
to 100 decimal places. In that way, they would, without

realizing it, be proving the continuity that they had just asserted.

Note that at no point in this conversation would they need to mention an

epsilon or a delta, and yet their conception of continuity would not be impor-

tantly different or less rigorous than the standard one taught in universities.

My third example was the intermediate value theorem. This is another re-

sult that puzzles people because it seems obvious. However, if we put together

the discussion about why 2 has a square root with the discussion of why one can

feel confident that keying π into a calculator followed by x2
gives one a good

approximation to π2
, then we have everything we need for a rigorous proof of

the intermediate value theorem in that special case. Furthermore, the resulting

proof is close to the proof of the intermediate value theorem by repeated bi-

section. (It is not quite identical, because the theorem is slightly simpler if the

function is monotonic.)

I firmly believe that it would be helpful if more could be done to show that

the conventional treatment of basic real analysis is related to, and flows from,

the kinds of intuitions that a school mathematician already has about real

numbers and functions defined on the real numbers. Of course, there is already

a lot to teach, so fitting more into the curriculum may be difficult. But there

are no such practical considerations for writers of textbooks. Unfortunately,

there are still many textbooks, including newly published ones, that make no

attempt to bridge the gap between school and university mathematics. This

could, and in my view should, be changed.
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More than half of the students in the Latin American and the Caribbean region

are below Pisa level 1 which means that the majority of the students in our

region cannot identify information and carry out routine procedures according

to direct instructions in explicit situations.

There have been some good experiences in each country to reverse the de-

picted situation but it is not enough and this is not happening in all countries.

I will talk about these experiences. In all of them professional mathematicians

need to help teachers to have the necessary knowledge, and become more effec-

tive instructors that can raise the standard of every student.
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1. The Situation

Mathematics education is no longer geared toward a minority of students who

will pursue a scientific-based career in the future, or to especially gifted or

motivated students. Mathematics education is now understood as a right of

all students as a specific type of preparation for life. Following the definition

used by PISA, the OECD assessment program, “Mathematical literacy is an

individual’s capacity to identify and understand the role that mathematics

plays in the world, to make well-founded judgements and to use and engage
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with mathematics in ways that meet the needs of that individual’s life as a

constructive, concerned and reflective citizen.”

In accordance with this new consciousness, countries are increasingly par-

ticipating in large scale national and international assessments (such as PISA

and TIMSS) and making considerable efforts to improve the performance of

their educational systems. However, Latin American and Caribbean countries

have not achieved the expected results in mathematics.

Research in Mathematics education has clearly shown the difficulty of teach-

ing mathematics, even at the elementary school level. This research reveals that

teaching mathematics is a highly demanding mathematical task.

In this context the participation of professional mathematicians in Math-

ematics education development projects is highly appreciated. It is also very

important that they participate in institutional programs that develop this sec-

tor and in the corresponding public policy discussions.

Latin American and Caribbean children are not being taught at the level

they will need to live their lives and work at their jobs productively. A proof

of that are the bad results of the countries in that region on the international

evaluations like the Trends in the International Mathematics and Science Study

(TIMSS). There are other international evaluations such as the Program for In-

ternational Student Assessment (PISA) from the OECD which is a survey of

students skills and knowledge as they approach the end of compulsory edu-

cation. It is not a conventional school test. Rather than examining how well

students have learned the school curriculum, it looks at how well prepared they

are for life beyond school. Among the countries that participate in the 2006

evaluation, Uruguay, the best of them, has nearly 50

2. What Is Happening in our Classrooms?

The very core of education is teaching and that is done by the teachers. The

teaching pool in mathematics is inadequate to meet current needs; many classes

in this subject are taught by unqualified and under-qualified teachers. The only

way to help our children to understand and master mathematics is through

teachers who are not only enthusiastic, but also have a deep knowledge of

their discipline and have the professional training to teach well. Nor is teacher

training simply a matter of preparation; it depends just as much or even more on

sustained, high-quality professional development. It is known that the ability

to teach is not “something you’re born with” (McKenzie report); it can be

learned over time. Any way teachers need to have a deep knowledge of
the subject, for this there is no substitute. We need to teach students

not only what to learn but how to learn it. All Latin American and Caribbean

countries provide education for almost all young people, but unfortunately the

quality is too often poor. Long-term solutions are urgently needed. The region

needs better training of its mathematics teachers. In a couple of words, the

region needs BETTER TEACHERS.
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How can this be achieved?
In many countries in the LAC Region the responsibility for educating teach-

ers may be diffused among many agencies, including Ministries of Education,

Teacher Training Colleges and programs, university-level Departments of Ed-

ucation, and, to a lesser extent, university level Departments of Mathemat-

ics. Within a single country, including in some found in the English-speaking

Caribbean, one may even find all of these agencies producing teachers for their

national educational system. So, on one hand, there may be many agencies pro-

ducing teachers and working to improve their training even though they don’t

necessarily communicate with each other very much.

On the other hand, except for a relatively few teachers prepared in a mathe-

matics department, the role of mathematicians in the process is limited
or even non-existent throughout most of the region. This suggests that
mathematicians can play a greater role in teacher education and preparation

provided that care is taken in their approach.

If, indeed, Mathematics Departments throughout the region simply start

“improving” teacher preparation with out proper dialogue and cooperation,

they risk fragmenting the process of producing teachers even further. However,

if departments engage with various agencies in their country and have real

dialogue and cooperation, there is a good chance that they can help to unify and

improve the process of preparing mathematics teachers for their country. This

second alternative, in which mathematicians enter into meaningful partnerships

with other agents, would allow for a mostly untapped resource to be used to

help to improve mathematics teaching throughout the region.

3. Good Practices

In spite of having bad results in general, as was said before, one can find ex-

amples of important efforts that have shown success in improving Mathemat-

ics teaching and results, involving professional mathematicians. Here we will

present two cases only; probably the most important cases in the LAC coun-

tries but there are other valuable experiences.

Brazil
Many efforts are made in the country but one of the most striking examples in

Brazil led by professional mathematicians is the Olimpiada Brasileira de

Matematica das Escolas Publicas, OBMEP, starting in 2005. In this massive

and amazing effort in 2007, around 17 million students from around the country

took part, even from the more isolated areas. The Olimpiada Brasileira de

Matematica das Escolas Publicas, has three parts or sections.

The first one includes exams, awards, award ceremonies, as in every compe-

tition. What distinguishes this Olympiad, however, are initiatives that involve

directly professional mathematicians with schools and mathematics teachers in

the schools in an effort to raise general standards.
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Part two comprises: scholarship programs with 3000 awardees (offered by

the government); a Teachers Training Program (lead by professional mathe-

maticians) and a meeting of gold medallists about 300 (at IMPA, Instituto de

Matematica Pura e Aplicada).

The third part deals with different publications to support the competition

and the training program.

One of the most important parts of this program is the scholarships offered

to students with good results and the 197 venues where weekend training is

given during one year by professional mathematicians. Apart from taking care

of the students the program also involves some teachers and offers them a

special course at IMPA

Mexico
The situation in Mexico is no better than in other Latin American and

Caribbean countries. State evaluations show that the results are very poor.

It is clear that the keystone in mathematics education is the teachers prepara-

tion. The Mexican Academy of Sciences started to work with teachers to try to

improve their knowledge in mathematics and sciences and also in language.

For the first time the scientists of the Academy are approaching primary

and secondary school teachers through the program “La Ciencia en tu Escuela”

[Science in your School] to try to change the existing attitude towards math-

ematics and sciences. This has been a successful and a good quality program.

The proofs are, among others, the evaluations that have been made by the State

in the rural parts of the country:

Figure 1. Estado de México (2007)

Español = language, matemáticas = mathematics, promedio = average

The main problem is that in Mexico there are more than one million teach-

ers. To scale the program, the only way we see is to use the internet, so the
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program is starting to switch from a teachers-presence education to a semi-

virtual schooling followed very closely by counsellors and scientists. The pro-

gram “La Ciencia en tu Escuela” can be consulted at the page of the Mexican

Academy of Sciences (http://www.amc.unam.mx)

This program “La Ciencia en tu Escuela” has been so successful that now

we are sharing our experience with Republica Dominicana, Peru, Panama
and Guatemala. We are having workshops, conferences, camps and material

exchange.

The main part of the program of the teachers-presence education is a course

given all Saturdays of the scholar year during three hours where professional sci-

entists (specially professional mathematicians) work with teachers that almost

immediately apply what they learn at the school.

4. Conclusions

There are many competitions and many courses for teachers around the world

but the success of the Brazilian and Mexican experiences are that both pro-

grams work with professional mathematicians and with teachers that will take

what they learn to the classroom. Beside these two cases there have been some

good experiences in other countries of that region but this is not enough to

reverse the depicted situation. Although it is important to notice that in all of

them professional mathematicians are helping teachers to have the necessary

mathematical knowledge, and become more effective instructors so they can

raise the standard of every student.
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There are several ways in which mathematics in school classrooms misses ele-

ments that are vital to mathematicians’ practice. Here, we wish to emphasize
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to mirror the discipline of mathematics in the school classroom, but we sug-

gest that bringing these processes into school classrooms is both feasible and

desirable. This not only enriches school mathematics but can also help solve

problems that are currently endemic to mathematics education: perceptions of
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1. Background

The title of the session School mathematics and its relation to the discipline

of mathematics sounds suspiciously mischievous. If the relation were one of

identity, there would surely be no need to discuss it, so the implication is that

the two are distinct but (thankfully) bear some nontrivial relationship to each

other.

There is, of course, some difference in terms of objectives. The goal of any

discipline as such is to increase the sum total of knowledge, tools and techniques

of that discipline and expand its pratice. Teaching the discipline in school is

not so much for producing competence and expertise in that discipline as for

enriching the resources of the child as well as for meeting social goals: a good

citizen in a modern society is expected to possess a certain set of skills and

capabilities, and it is critical for society to assume the availability of such skills

on average to pursue goals of social and economic development. Thus, for in-

stance, poetry is taught for aesthetics as well as for understanding of culture.

Chemistry is taught so that the child understands some natural phenomena but

also to help the child fit better in an industrial society.

If poetry can be taught without mimicking the way poets create poems,

and chemistry can be taught without following the way chemists come up with

their solutions, surely mathematics can be taught without classrooms showing

little mathematicians at work. Indeed this reasoning applies for any discipline

whatsoever. Thus goes the argument.

Unfortunately, such an argument misses several important points. It is not

a question of what can be done, but of what is the best way to do it. Indeed,

the fine arts are best taught mimicking their disciplines. Not only painting and

music, but poetry also is most effectively taught by giving the children a taste

of the best that these arts have to offer. While competence and expertise in the

arts take years to acquire, an appreciation can indeed be developed early on,

and art teachers do this all the time.

So the question is not: Does school mathematics resemble the discipline?

but whether it should or even whether it can.

1.1. Should school mathematics resemble the discipline?
School mathematics has some important utilitarian aims. Fluency in arithmeti-

cal operations and use of notions like perimeter, area and volume, the ability

to understand geometrical shapes in two and three dimensions and the use of

basic algebra for setting up and solving linear equations — these are skills long

recognized to be useful in social life. It seems reasonable that compulsory edu-

cation systems include the imparting of such skills in the core curriculum, and

mathematics at the primary and upper primary level largely consists of such

topics.

If fulfilling these utilitarian objectives were the only goal of mathematics

education in school, then indeed there is no reason at all to consider its relation

to the discipline of mathematics. A carpenter needs a good understanding of
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arithmetic, mensuration and geometry, perhaps a little trigonometry. Indeed,

almost any vocation (except that of the physical scientist or technologist) needs

only a very small and elementary part of the mathematics that is produced. This

core is then best taught in whatever way that is most effective. Viewed from

such a perspective, school education needs to bother only with the products of

mathematics, and only with those products we use in “daily life”; the processes

by which mathematics produces them are irrelevant.

But then the goal of mathematics education is more than these utilitarian

objectives: in the words of Wheeler ([7]), it is to mathematize thought. If math-

ematics is about anything at all, it is about thinking, and the aim of teaching

mathematics is to enrich the inner resources of the child ([5]). For this purpose,

the process of mathematics is (arguably) more important than its products ([2]).

From such a viewpoint, it is indeed necessary that school mathematics bear a

strong resemblance to the discipline, albeit at an elemenatry level.

1.2. Can school mathematics resemble the discipline at all?
Another prevalent viewpoint takes the following attitude: even while granting

that it will be desirable for school mathematics to reflect the discipline, such a

reflection is simply infeasible. Some phrase this objection at the level of practice,

some deny feasibility even in principle.

On the face of it, this is a reasonable view. The sharp discontinuities be-

tween school and undergraduate mathematics and those between university

mathematics and research mathematics attest to the difficulty. In fact, these

discontinuities are much sharper in the case of mathematics than in other dis-

ciplines. Not only the content of discussions, but even the very language of

higher mathematics is inaccessible to anyone but the practitioner of the disci-

pline. The standards of rigour expected in the discipline are often considered

to be at variance with the psychology of children’s learning.

However, these are by no means insurmountable objections. As we will ar-

gue below, there are ways by which school mathematics can indeed access the

processes that characterize higher mathematics even while operating in its own

realm of language and content. As long as children’s cognitive and physical

abilities are taken into account, there can be no problem of infeasibility in

principle.

The objection from a practical viewpoint is indeed serious. It is an important

comment on the extant mathematics curriculum and pedagogy, as well as the

state of teacher preparation ([3]). Looking at the reality, it does seem daunting

to view the distance that needs to be travelled before school mathematics can

resemble the discipline in any significant way. But that is no reason to refuse

the journey altogether.

1.3. Why bother? All this fuss may seem very academic. Why should

one bother either way? Let schools decide what mathematics to teach, do so

in whatever way they consider best, and let mathematicians work in their own
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style. As long as each system delivers results, worrying about the relation be-

tween the two is a waste of our energy. Unfortunately, there are concerns ex-

pressed all over the world that these systems are not working well, and there

is some dissatisfaction about the results. It is against such a background that

this discussion becomes relevant.

• Mathematicians complain about the quality of student preparation at the

entry level for undergraduate and graduate studies.

• On the other hand, in many modern societies, people at large view math-

ematics with suspicion, considering it “too difficult” and as causing too

much anxiety in children to be acceptable as a compulsory subject of

study.

• In many societies, mathematics is considered to be decidedly uncool by

teenagers and there is much social pressure against mathematics.

• In fiercely competitive societies such as that of the Indian urban educated

class, competence in mathematics is equated with success in competitive

examinations and this shapes what is taught and how; as a result, even

these children, who are greatly encouraged to ‘do well’ in mathematics

and attain great proficiency in some aspects of mathematics, come out of

school with skills that few mathematicians care very much for.

Much has been written about problems in the school system and how they

result in the situation described above. In the Indian context, we merely quote

the core issues of concern identified by [4] as problems:

1. A sense of fear and failure regarding mathematics among a majority of

children,

2. A curriculum that disappoints both a talented minority as well as the

non-participating majority at the same time,

3. Crude methods of assessment that encourage perception of mathematics

as mechanical computation, and

4. Lack of teacher preparation and support in the teaching of mathematics.

The report then goes on to make many recommendations for addressing

these problems, but an important direction for action identified is the need for

shifting focus from content to process. The following quote from [4] summarizies

the advocated shift:

The content areas of mathematics addressed in our schools do offer a

solid foundation. While there can be disputes over what gets taught

at which grade, and over the level of detail included in a specific

theme, there is broad agreement that the content areas (arithmetic,
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algebra, geometry, mensuration, trigonometry, data analysis) cover

essential ground.

What can be levelled as major criticism against our extant curricu-

lum and pedagogy is its failure with regard to mathematical pro-

cesses. We mean a whole range of processes here: formal problem

solving, use of heuristics, estimation and approximation, optimiza-

tion, use of patterns, visualization, representation, reasoning and

proof, making connections, mathematical communication. Giving

importance to these processes constitutes the difference between

doing mathematics and swallowing mathematics, between math-

ematization of thinking and memorizing formulas, between trivial

mathematics and important mathematics, between working towards

the narrow aims and addressing the higher aims.

The main aim of this article is to emphasize what is perhaps merely obvious

and common sensical to mathematicians: that these processes precisely form

the locus of how school mathematics can reflect the discipline of mathematics.

2. Some Experiences

We describe a few experiences in school classrooms which illustrate how such

processes can liven up mathematics in school. These are selected from a variety

of such experiences, but it is important to note here that they were organized

as Math Club activities under the banner of Tamil Nadu Science Forum, a vol-

untary group committed to science and mathematics popularization, especially

in rural areas of Tamil Nadu (a state in southern India). This is relevant by im-

plication: the participating children and teachers saw these activities as “fun”

and not part of formal curriculum and certainly not something examinations

would be based on.

The three accounts below are selected to represent one stage (according to

the Indian classification) each: the first is with children at the primary level (age

group 6 to 10), the second at the upper primary level (age 11 to 13) and the

third at the secondary level (age 14 and 15). But these are really non-rigid in

terms of applicability and we have some experience of doing the same activities

at later/earlier stages varying the style and content.

2.1. Modular arithmetic. 20 children sit around in a circle, they an-

nounce numbers in sequence from 1 to 20, so they know their own position. A

book is handed to child number 1, and they play the game with a simple rule:

any child who gets the book should pass it on to her/his second neighbour, and

this should go on until everyone has got the book at least once.

When the book reaches 19, it doesn’t take much for the child to realise that

it next gets back to 1. The book goes another circle and is some way into the
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third round before an even numbered child complains that she never got it and

will never get it. Soon this is clear to everyone.

They next play the game with the rule: pass the book to the third neighbour,

and now everyone gets the book. It takes some confusion before this is clear to

all, but they do realise it. The question why the situation changed elicits some

response, but it’s unclear.

Fourth and Fifth neighbour passing again leave many children out. How

many are left out? This gets some answers, nobody is quite sure. But by now

there is widespread conviction: 2, 4 and 5 divide 20, that is why everyone did

not get the book, whereas 3 does not divide 20, so everyone gets the book.

Before they start the sixth neighbour passing, I ask the children to predict:

will everyone get the book? The vote is overwhelmingly in favour of ‘yes’, with

the screamed explanation: because 6 does not divide 20. Then they play the

game, and slowly the children realise that not everyone is getting the book.

Many are astonished. They do it again to verify whether someone was cheating.

What is going on? A few still stick to the “dividing 20 evenly” hypothesis

in the face of all the evidence and get shouted down by others. Some other

interesting hypotheses are proffered. One child says: “You start from 1 and keep

adding 6, you will always get only odd numbers, that is why even numbered

people did not get the book.” Soon, more children point out that this is true

for the +2 sequence and the +4 sequence. This convinces many until someone

points out: “But that does not work for 5! Start from 1 and keep adding 5, you

will get both even and odd numbers. But it doesn’t help!” There is much noise

as children are adding up and checking.

One child tells me, “Sir, it is definitely something to do with division!”

though he cannot tell what it might be.

I tell him no, point to the (poor) child numbered 20 and claim that he is the

source of all the problems. I get the stunned child out and ask them to play the

game, now with 19 children. And sure enough, whether they try the second,

third, sixth, whatever neighbour rule, everyone does get the book.

By now, there is plenty of excitement, and I bring back not only child 20,

but another onlooker who is now numbered 21. The game is played, and again

some numbers ‘work’, some do not. The results are available on the board.

Number of children 2 3 4 5 6 7

20 N Y N N N Y

19 Y Y Y Y Y Y

21 N N Y Y N N

Many conjectures fly around but eventually someone proposes that everyone

gets the book exactly when the total number (of children) and the neighbour

number have no common divisors. This is checked on the table and by playing

the game. Various explanations are proposed. One child says: whatever is the

common divisor, we can divide the children into that many groups.
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The children are then settled in three groups. One group draws a “clock”

with hours numbered 1 to 20, another with 1 to 19, and the third with 1 to 21.

They then draw the “figures”: arrows starting from 1 and moving to the kth

neighbour, for various values of k > 1. Beautiful pictures emerge, and children

enjoy looking at the variety and intricay of the closed curves they have drawn.

By now someone in the 20-clock group has realised that moving 15 neigh-

bours forward is the same as going 5 backward. This knowledge, shared with

other groups, produces more observations.

The phrase modular arithmetic has not been mentioned at all in the entire

afternoon.

2.2. Spanning tree. On the board is a very rough map of Chennai city,

with about 20 localities in the city marked with roads connecting them. We see

that every area is reachable from every other, and by different routes. The chil-

dren are told that a cyclone has washed away all the roads. Chennai metropoli-

tan authority would like to rebuild some roads, but rebuilding each road carries

a cost (marked on the board). Naturally, the authority would like to rebuild

just as many roads as is necessary to connect all areas by some route (however

long and indirect that might be). The children are divided into small groups

(typically with 4 or 5 children) and asked to come up with suggestions.

Graphs are being drawn in all groups, and the discussion is very lively. Some

children are trying arbitrary guesses, some fill in the least expensive edges first

and then add others, some start from a node and construct paths. But every

group (some sooner, some later) arrives at the conclusion that cycles are always

wasteful, phrased in different ways.

The structure of the spanning tree of the given graph is arrived at by every

group. What is unclear for any group is how to decide whether what they have

done is good enough or whether their solution can be improved. Invariably

someone keeps pointing to an alternative choice that might help. One child

says in disgust that they must start all over again. Comparing solutions across

groups shows that the net cost can indeed be lower. (“See, I said we should

include that xxx road” “Hey, that is in our answer, you cannot use it” “We

can’t? Who are you to say so? Is it your father’s road?”)

At the end of the day, each group talks about how they arrived at whatever

solution they came up with. The fact that there can be two distinct solutions

(with minimum weight), both of which are correct, is a surprise for many chil-

dren. (“Two correct answers in mathematics!”, exclaims one child.) Invariably,

at least one group is able to clearly explain an algorithm that they used to

arrive at the solution.
1

Children are fascinated when they hear that finding the fastest algorithm is

an open problem. Getting them to understand what it means for a method to be

1I have seen children come up with Borüvka’s algorithm several times, when the given
edge weights were unique.
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faster than another is something of a challenge. We never get as far as formal

definitions, but some children clearly appreciate the need for such a definition.

But they are uniformly surprised that there can be such (“easy”) problems

which even famous people find difficult.

2.3. Information hiding. 2
The problem given to the children is the fol-

lowing: some people have gathered in a room, men and women of all ages. A

need arises to find the average age of all those present. Unfortunately, most

people are embarassed to reveal their age to others. Can you suggest some way

by which they can find the average age without anyone finding another’s age?

Assume that there are at least 3 persons in the room, and that nobody has any

reason to cheat.

Invariably children come up with a solution using suitable props: everyone

writes her/his age on a piece of paper and drops it into a box. We can then

compute the average easily. This solution is discussed at length and all children

find it acceptable.

We then make the problem harder. One aspect of the box-based solution is

that we can find not only the average but also the frequency distribution. For

every given number, we can find how many people of that age are in the room.

One problem with this is the use of background information. If my age is 35,

and I find that there is only one piece of paper with 35 comes up, then I also

know that nobody else in the room is 35 years old. (So if I knew that someone

was 35 or 36 years old but unsure which, now I know for certain that (s)he

is 36.)

Can we eliminate such information as well? After a very interesting discus-

sion, there is general agreement that the box serves only to compute the sum

anyonymously. If the box could “announce” partial sums when anyone came

near, (s)he could simply add her age to the partial sum. This way, we get only

the sum of ages at the end, not the list of ages. From this it is a small step

to the following solution: each person receives a chit with the sum got so far;

(s)he adds her own age to this number, writes the new sum on another chit of

paper and passes it on. Of course, everyone must add their age only once, but

this is easily dealt with: seat everyone in a circle, so that everyone gets to add

their age exactly once.

The solution is very nice, except for a small problem: the person who starts

the process has to give her age to the second person! At this juncture, every

class splits into two: those who believe that this is acceptable (after all, only

one person’s age is revealed); and those who insist that this is not a solution to

the problem at all. Often, there is some heated argument on the issue.

2This was an example I learnt from Mike Fellows; see [1] for a very interesting discussion
of Kid Krypto.
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At this point, this issue is seen to be the heart of the problem: the partial

sum is zero when the first person adds her/his age, and hence this age is revealed

to the second. How do we make the partial sum non-zero initially?

Amazing as this may seem, even as the solution stares at everyone, it takes

some time before one student suggests the obvious: make it non-zero by starting

with some non-zero number! At this point, everything moves fast, and the class

converges on the solution: start with some number N ; each person adds her/his

age in turn. When all are done, subtract N and we have the sum of ages.

Which N is to be chosen? Obviously, the first person should know N and

the second should not. Therefore, it has to be a number privately chosen by

the first person.

There is a discussion on whether N can be small or large, relative to the

ages of people in the room. The discussion moves on to whether the solution

ensures what it should. It is easily seen that collusion would destroy the required

secrecy: the kth and the (k + 2)
nd

person can pool in their information to find

the age of the (k + 1)
th

person. But everyone is convinced that this works in

the absence of any collusion. Someone notes that there need to be at least three

persons in the room.

The question arises: can we prove that this procedure achieves what we set

out to do? We talk about formalizing the intuitive argument we gave above,

but attempts at formalization run into trouble. The only proofs that students

have seen have to do with numbers or come from geometry where they already

had the required definitions whereas here they need to define new functions and

prove statements about them. This turns out to be hard for the class.

The exercise lays the foundation for introducing one-way functions and the

class gets involved in coming up with them.

3. Live Mathematics

Many more such experiences can be recorded, many involving algebra, number

theory, geometry and trigonometry, but also topics like probability and combi-

natorics which do not figure very much in the Indian school curriculum. But the

point of recounting even a few cases here is only to use them for our discussion

on school mathematics in relation to the discipline.

A good starting point is acknowledging and delineating the ways in which

mathematics in school classrooms often miss elements that are vital to mathe-

maticians’ practice. Here, we wish to emphasize processes such as selecting be-

tween or devising new representations, looking for invariances, observing extreme

cases and typical ones to come up with conjectures, looking actively for coun-

terexamples, estimating quantities, approximating terms, simplifying or generaliz-

ing problems to make them easier to address, building on answers to generate new

questions for exploration, and so on. We suggest that bringing these processes

into the school classrooms is worthwhile, not only to enrich school mathematics
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but even more to solve problems that are currently endemic to mathematics

education in India: perceptions of fear and failure, and low participation.

In Indian schools, mathematics classrooms tend to be like work-out gyms for

group exercising: pre-set exercises are conducted on the blow of a whistle and

everyone must go through the motions. Exercises are graded, inexorably moving

to greater levels of exertion independent of whether everyone in the group is

comfortable or not. There is little room for changing the exercises or for explor-

ing new ways. A few definitely enjoy the process and want tougher exercises,

but most merely wait for the bell to ring, signalling the end of exercising.

If we had to point out one single lacuna in the typical Indian school class-

room doing mathematics it is this: an entire lack of interaction, either be-

tween students and the teacher, or among the students themselves. Hearing

children talk mathematics, discuss problems and their solutions and see them

work together on problems is indeed unusual. While it is indeed possible to do

mathematics without interaction or discussion, in a driven fashion, the range of

processes referred to above that constitute the practice of doing mathematics in-

volve interaction and communication. Pedagogy that emphasizes such processes

can engage all the children, and thus help many children overcome anxiety as

well.

Specifically, the examples illustrate some aspects related to these processes:

• Making conjectures, looking for invariances and looking actively for coun-

terexamples is a very important part of mathematical practice, whereas

this is something ordinarily absent from mathematics classrooms in

school. The examples serve to restore the primacy of conjecture making

during problem solving.

• Building on answers to generate new questions for exploration has to be

an integral part of classroom discussion, and this is another way school

mathematics can/should mirror the discipline.

• The examples given did not show much of formalization and selection be-

tween or devising new representations, but other examples do. Observing

extreme cases and typical ones to come up with conjectures is something

children can be guided to do, and several children pick up the habit easily.

• Talking, discussing and communicating mathematics is an important part

of learning the subject, and the use of informal argumentation, heuristics,

pictures and other aids for discussion is an essential part of mathematical

practice. Providing such opportunities for children shows how live math-

ematics can be, rather than a very formal finished product that brooks

no room for disagreement.

It is important to note that the discussions mentioned here were all in

the math club mode, and hence not considered to be part of the curriculum.

This meant that the shadow of assessment did not loom large over the exercise
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and children felt free to participate. Indeed, many pedagogic and curricular

innovations perish at the altar of tests and evaluation. Teachers find processes

hard to evaluate and hence do not give them importance. It is easy to evaluate

answers and the “steps” used by students to arrive at them, but how can a

teacher evaluate discussions, communication, use of heuristics, formulation of

conjectures etc? This is a serious problem, and unless the assessment culture in

schools can accommodate process evaluation, it is highly unlikely that the kind

of interaction and exploration discussed here would become commonplace.

Another important point is that most of schoolwork consists of fairly routine

work and instances of exploratory, open-ended problems that allow a multiplic-

ity of approaches and solutions are hard to come by. So one may be accused

of picking convenient examples that teachers can’t have the luxury of working

with. This is true to a limited extent, but the sad reality is that current class-

room practice falls far short of what is possible within the extant curriculum.

Indeed, it can be argued that a curriculum that gives primacy to processes

of the kind discussed here would be so structured as to make these examples

routine.

It is also relevant to note that the shift we advocate requires far greater

teacher preparation and support than currently available. Teachers have access to

few exercises that are exploratory, and lack models for guiding children through

uncertain mathematical terrain. Their own foundations with regard to some of

the concepts involved may be not strong enough, and few systemic mechanisms

exist for them to strengthen their foundations on the job. Also lacking are

networks of support that provide such resources on a dependable basis.

Lastly, it is not incidental that the chosen examples come largely from fi-

nite mathematics, a domain that is mostly neglected in school curriculum in

India. Combinatorics, discrete mathematics, graph theory and probability tend

to require little background at an introductory level and children who have

difficulties with other areas (such as trigonometry) can easily get into these,

but such opportunities are few in the curriculum. We end with a quote from

Thurston ([6]) that underlines this need:

The long-range objectives of mathematics education would be bet-

ter served if the tall shape of mathematics were de-emphasized, by

moving away from a standard sequence to a more diversified cur-

riculum with more topics that start closer to the ground. There

have been some trends in this direction, such as courses in finite

mathematics and in probability, but there is room for much more.
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1. What distinguishes mathematical knowledge in the discipline for
researching experts and in general education for students learning
mathematics?

In a socio-scientific empirical study, Bettina Heintz (2000) has elaborated the

modern mathematical proof as the decisive tool for the increasing unambigu-

ousness in the professional communication of mathematics researchers. Her

analysis shows that a changing concept in the relation between the ‘objects’

and the ‘conceptual structures’ has been essential in the history of mathemat-

ics. “In the course of the 19
th

century, the ‘näıve abstractionism’ of earlier

mathematics was overcome and replaced by objects, which are defined in an

exclusively mathematically-internal way. This work on the concepts had also

become urgent because mathematicians increasingly use concepts, which could

no longer be understood as idealisations or abstractions arising from empirical

experience, but had an exclusively fictional character. . . . In the course of this

‘theoretisation’ (Jahnke 1990) or ‘deontologisation’ (Bekemeier 1987, p. 220) of

mathematics, concepts, which until then had been postulated as self-evident,

were successively questioned and transferred into an explicit system. . . .

In the course of this conceptual reflection and reconstruction, essential parts

of mathematics lost their natural and illustrative character. Those mathemati-

cians who back then breached tradition and put theoretical, as orthodox critics

claimed, ‘artificial’ constructs in the place of the ‘natural’ given, were still fully

aware of the breach they conducted” (Heintz 200, p. 263, 264).

Abandoning the given empirical, illustrative objects and constructing ide-

alised mathematical objects by means of defining conceptual relations made a

strict, doubtless basis for reasoning on which the unambiguousness of mathe-

matical argumentation could develop and thus became a precise communicative

body of rules between professional mathematicians (Heintz 2000, p. 221). Given

objects and immediate view can be interpreted in many ways and can lead to

opposite conceptions. “Even when arguments are deductively constructed and

argue with the help of logical rules, when these arguments require a common

knowledge and rely on intuition and visualization they are more at risk of

dissent than a formal argumentation which one can hardly avoid even if it is

contrary to intuition and experience.” (Heintz 2000, p. 274).

Even though ontological or idealised object features do not play an explicit

role within official professional mathematical communication, i. e. within the

frame of the well-rehearsed communicative body of rules of proof (cf. Heintz

2000, p. 221), one can assume that every single mathematician in his conscious-

ness or in his private world of thought (Heintz 2000, p. 220 ff.) does not avoid

such conceptions about the mathematical ‘object’ completely when working on

mathematical argumentations.

Within the professional mathematical communication, unambiguous con-

ceptual structures and relations take precedence. “In contrast to content-related

axiomatic, formal axiomatic avoids a qualification of the axioms as regards con-

tent. . . . Axioms are conceptions of a hypothetical kind, whose truth of content
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is not up for debate. Axioms are true if no contradiction arises from them, and

the same is true for the existence of mathematical objects. . . ” (Heintz 2000,

p. 265).

Such a strictly professional communication, aiming at abstract structures,

is not a priori possible for students who stand at the beginning of learning and

understanding mathematics. The learning student cannot be directly compared

to a professional researching mathematician. A mathematical expert has long

years of experience in mathematical communication with colleagues and has

acquired routine in the interactive negotiation of the correctness of a mathe-

matical thesis, by means of using the communicative body of rules of formal

proof. Also, such professional communications aim at the consistent mathe-

matical product in question in a comparably direct way. The learning student,

however, is faced with the demand of developing and then perfecting such forms

of mathematical communication together with his fellow students; this process

of development is essentially influenced by cultural aspects of the instruction

process, by subjective instruction conditions, by cognitive means, by exem-

plary and situative mathematical frames and interpretations, and therefore,

diversity and ambiguousness in understanding and interpreting mathematical

knowledge receive priority within the processes of developing, learning and im-

parting mathematics (cf. Steinbring 2009, pp. 187ff).

As opposed to professional mathematical communication, instructional

mathematical communication must carry out a different weighting when it

comes to the relation between ‘conceptual structures’ and ‘object’. This is be-

cause mathematics instruction is also about introducing the students to an

insightful participation in the specific forms of mathematical communication.

The self-evident and problem-free use of the well-rehearsed communicative body

of rules remains and is a long-term goal to be aimed at by the learning student

on his way of becoming a mathematically thinking and communicating person.

For this purpose, the particular conditions of the developing communication of

learning students within mathematics instruction must be reconstructed with

a focus on the particular characteristics of mathematical communication.

If for the professional mathematician the conceptions about the ideal math-

ematical object are of a rather private nature and reserved to his individual

world of thought, for the beginning learner, concrete, illustrative conceptions

about the mathematical object as regards content are an important first basis

of understanding for developing conceptual structures and relations, and such

illustrative conceptions must be reflected together in the classroom communi-

cation in an explicit way.

On this basis of an illustration-bound interpretation of mathematical knowl-

edge, an access to, an understanding and a use of mathematics as it is necessary

for politically mature and active citizens in a modern society can develop for the

broad majority of learning students who will not become mathematical experts

later on. A mathematical layperson must have learned such mathematical com-

petences, which allow him to question mathematical statements, models and
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uses within his social, economic, political etc. context critically and in a gen-

eral yet mathematically competent way. Students must in their later lives as

mature citizens be able to communicate with mathematical experts as well as

to ask critical questions and to understand and evaluate the expert answers.

(cf. Fischer 2001; Wille 2002).

2. Mathematical knowledge as a ready made product or as a process

of students’ own learning activities?

Freudenthal (1973) has emphasized the process character of mathematics for

learning in a paradigmatic way: “It is true that words as mathematics, language,

and art have a double meaning. In the case of art it is obvious. There is a finished

art studied by the historian of art, and there is an art exercised by the artist. It

seems to be less obvious that it is the same with language; in fact linguists stress

it and call it a discovery of de Saussure’s. Every mathematician knows at least

unconsciously that besides ready-made mathematics there exists mathematics

as an activity. But this fact is almost never stressed, and non-mathematicians

are not at all aware of it” (Freudenthal 1973, p. 114).

Mathematics, as an activity, implies that learning becomes an active process

in the construction of knowledge. “The opposite of ready-made mathematics is

mathematics in statu nascendi. This is what Socrates taught. Today we urge

that it be a real birth rather than a stylized one; the pupil himself should re-

invent mathematics. . . . The learning process has to include phases of directed

invention, that is, of invention not in the objective but in the subjective sense,

seen from the perspective of the student” (Freudenthal 1973, p. 118).

Such a conception that mathematical knowledge is not appropriately char-

acterised when it is seen mainly as a finished product, and when therefore

the side of the mathematical activity and process is neglected, also plays an

important role in the context of mathematical research and in the history of

mathematics. For the learning of mathematics, however, the perspective that

an already elaborated and finished mathematics is delivered to the children,

sometimes dominates.

In order to understand and to realize Freudenthal’s request for the learning

of mathematics in school, it is helpful to understand the respective character-

istics of the cultural context in which mathematics development processes and

activities take place. The concept of the cultural surroundings or the mathe-

matical culture is intended to help illuminate the question about the particular

epistemological status of mathematics in school teaching and learning processes.

Different authors have highlighted the importance of the culture concept for

scientific mathematics as well as for school mathematics (Wilder 1981, Bishop

1988). Wilder (1986) characterises the concept of culture as follows:

“A culture is the collection of customs, rituals, beliefs, tools, mores, etc., which

we may call cultural elements, possessed by a group of people, such as a prim-

itive tribe or the people of North America. Generally it is not a fixed thing

but changing with the course of time, forming what can be called a ‘culture
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stream’. It is handed down from one generation to another,. . . ” (Wilder 1986,

p. 187).

The use of symbols as well as the way of reading and interpreting them

represent a characteristic trait of every culture. “Without a symbolic appara-

tus to convey our ideas to one another, and to pass on our results to future

generations, there wouldn’t be any such thing as mathematics – indeed, there

would be essentially no culture at all, since, with the possible exception of a

few simple tools, culture is based on the use of symbols. A good case can be

made for the thesis that man is to be distinguished from other animals by the

way in which he uses symbols. . . . ” (Wilder 1986, p. 193).

The mathematical signs, symbols, formulas, diagrams and visual represen-

tations have an essential meaning within the different mathematical cultures.

During the long development of the socio-historical culture, the development

of mathematical signs and symbols as well as changes in their use and their

interpretations can be observed (Steinbring 2009, p. 21ff). Within the pro-

fessional culture, mathematical symbols are used in an unequivocal and well-

defined way by the participants in the common communication (see Heintz

2000). Within the classroom culture the students are introduced to the use of

mathematical signs and symbols; a variety and sometimes ambiguousness of

emerging mathematical interpretations and of mathematical knowledge can be

observed.

For learning mathematics, it is important to distinguish between the cul-

tural conditions of professional mathematical research practice and the cultural

conditions within schools and in mathematics instruction. Mathematics instruc-

tion in school cannot be understood simply as a teaching and learning activity,

which is determined and regulated by scientific mathematics in a definite way.

Mathematics instruction represents an autonomous culture, with a particular

and independent type of (school) mathematical knowledge and mathematical

language. It is a particular culture in which understanding and knowledge de-

velopment take place in a self-referential way (see Bauersfeld 1982; 1988; Voigt

1998).

“Participating in the process of a mathematics classroom is participating

in a culture of mathematizing. The many skills, which an observer can identify

and will take as the main performance of the culture, form the procedural

surface only. These are the bricks of the building, but the design of the house

of mathematizing is processed on another level. As it is with culture, the core

of what is learned through participation is when to do what and how to do

it. . . . The core part of school mathematics enculturation comes into effect on

the meta-level and is ‘learned’ indirectly” (Bauersfeld, cited according to Cobb

1994, p. 14).

The interactive development of mathematical knowledge and understand-

ing in general instruction takes place within a particular culture with its own

interpretation of mathematical symbols and within this culture it requires par-

ticular learning and instruction activities in order to realize (school) math-
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ematical knowledge adequately as a process (Freudenthal 1973; Steinbring

2009).

3. Mathematical concepts as central knowledge elements in school
mathematics: Based on formal definitions or developed in pro-
cesses of generalization?

Do the formal definitions contain all of the meaning of mathematical knowledge

and mathematical concepts in school mathematics? Can an elementary math-

ematical theory be deducted precisely and in all its details out of defined basic

concepts? Often one can find the thesis that the learning and the acquisition

of mathematical knowledge is particularly successful if the knowledge elements

are clear and unequivocal, and if the knowledge building is constructed log-

ically and the course of learning is oriented along the deductive structure of

the knowledge. According to such a conception, the mathematical knowledge

in particular would play a central role in learning scientific knowledge.

This leads to the following question: Is the finished, consistent mathematical

knowledge that has been developed over thousands of years and is based on a

solid axiomatic foundation at the same time the best basis for the learning

process of the knowledge at school?

Two elementary examples – the number concept and probability – will serve

to point out that an insightful understanding in school mathematical learning

processes cannot start on the current foundations of scientific mathematics. An

appropriate interpretation of the specific epistemological character of the solid,

abstract axiomatic foundations of scientific mathematics – i. e. an appropri-

ate theoretical description of their specific epistemological character – requires

experience and proficiency in scientific knowledge as well as with scientific ar-

guments and proofs, which a beginning mathematics leaner does not have, but

which he has to learn parallel with the mathematical knowledge.

The elementary concept of the natural number surely cannot be introduced

and understood in elementary school on the basis of the Peano axioms. An ini-

tial understanding of numbers for young students consists in experiences with

the activity of counting. Numbers as quantities in order to count things from the

children’s experience is a self-evident first essential justification for the mathe-

matical number concept. Such empirically concrete foundations of elementary

mathematical concepts are common in elementary school. “. . . especially in ele-

mentary school, the meanings of symbols (signs) are related to empirical issues

(numerals to materials, geometrical terms to the physical space, etc.).” (Voigt,

1994, p. 176).

The empirical relationship of numbers to objects in the real world could be

a necessary and helpful beginning for the introduction into the number concept;

but at the same time it could be later a severe obstacle for the development of

structural arithmetical and algorithmic strategies of a comprehensive number

concept. Contrary to the empirical use of the number concept in mathematics

teaching, where numbers are conceived of as numbers of objects or as names
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of sets, this empiristic conception is fundamentally criticized from a philosoph-

ical and epistemological perspective. P. Benacerraf (1984) demonstrates by a

philosophical and logical argumentation that numbers cannot be defined in

a universal and definite manner by reduction to objects given unequivocally

(objects existing in reality or mathematical objects as sets). The central con-

sequence of this analysis is that numbers cannot be objects nor can they be

names for objects.

“I therefore argue,. . . that numbers could not be sets, that numbers could

not be objects at all; for there is no reason to identify any individual number

with any one particular object than with any other (not already known to be

a number)” (Benacerraf, 1984, pp. 290/1.).

But if numbers are no objects what else they are then? “To be the number

3 is no more and no less than to be preceded by 2, 1, and possibly 0, and

to be followed by. . . . . . Any object can play the role of 3; that is any object

can be the third element in some progression. What is peculiar to 3 is that

it defines that role - not being a paradigm of any object, which plays it, but

by representing the relation that any third member of a progression bears to

the rest of the progression. Arithmetic is therefore the science that elaborates

the abstract structure that all progressions have in common merely in virtue of

being progressions. It is not a science concerned with particular objects - the

numbers” (Benacerraf, 1984, p. 291).

Which important orientation could this philosophical interpretation offer for

elementary arithmetic instruction in elementary school? Mathematical knowl-

edge is ultimately abstract and characterised by varied structures. But in school,

the learning process cannot start with abstract, axiomatic definitions. Yet, from

the very first, one should keeping mind that for instance natural numbers can-

not be taken as a basis by means of concrete things or empirical features. This

dilemma between abstract formal definition and an insightful interpretation of

numbers which necessarily refers to concrete things can only be dealt with if the

material for illustrating and representing numbers is used in a way that the con-

crete material and its concrete features do not themselves ‘define’ the numbers,

but rather in a way that makes actively constructed relations and structures

within the material the basis for a theoretical foundation of numbers. In this

way, school mathematics can, from the very beginning, become an elementary

science of structures and patterns (Devlin 1997; Wittmann 2003), in which the

development of the number concept, following on to fractions, to negative, ra-

tional and real numbers happens by means of an increase in structures and

relations.

Elementary probability theory offers a further example for the analysis of ba-

sic epistemological problems of school mathematical knowledge. Historical and

epistemological research about the development of the concept of probability

reveal that the relation between the foundation of a theory and its development

is complex and difficult and cannot be understood simply as a logical-deductive

process.
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From the very beginning, probability theory focuses on analysing and mod-

elling a fundamental polarity: The dichotomy between chance and regularity.

The concept of probability acquires its specific function in such situations, in

which it is no longer possible to make exact prognoses about future events based

on strictly causal connections. In these situations, one is trying to achieve cer-

tain grades of certainty with the help of probability (Steinbring 1980).

In early history of probability, simple, ideal situations are given in the form

of games of chance, in which a direct form of randomness as well as a concrete

structuring of law like aspects in the physical symmetry of chance devices and

their use became manifest (cf. Hacking 1975, Maistrov 1974). The throwing of a

die represents a natural form of randomness and disorder, for which possibilities

of a regular model were offered simultaneously by means of the supposedly ideal

symmetry. Largely not using mathematically precise definitions, those (ideal)

games of chance constituted a ‘concrete’ elementary concept of probability for

the prognosis of the occurrence or non-occurrence of certain events and for the

determination of gradual certainties.

The relation between relative frequency and classical probability modelled

in the empirical law of large numbers is in itself an issue to be mathematically

analysed and described by rules and models. In the history of probability theory,

Bernoulli’s theorem provides an initial precise formulation for this mathemat-

ical relation (cf. Loève 1978). Within this elementary theorem of probability,

a particular epistemological requirement concerning theoretical mathematical

knowledge becomes apparent.

The reflexive statement in Bernoulli’s theorem saying that there is a very

great probability that relative frequency and probability of the (ideal) chance

experiment will come as close to each other as desired if the number of trials

increases, is an expression of the circularity of the concept’s definition and of the

complementarity of empirical, experimental situations and (ideal) mathematical

modelling.

Bernoulli’s theorem required the abandonment of a supposedly deductive

point of view in the development of knowledge and theory: what probability is

can only be explained by means of randomness, and what randomness is can

only be modelled by means of probability. This is where one accedes to those

problems in the theoretical foundations of mathematics which, in a modern

perspective, have become known as the circularity of mathematical concept

definitions (in particular for the elementary concepts of probability, cf. Borel,

1965). This circularity or self-reference implies that knowledge must be inter-

preted, at all stages of its development, as a complex structure which cannot

be extended in a linear or deductive way, but rather requires a continuous,

qualitative change in all the concepts of the theory.

Thus, the foundations of mathematical knowledge are not determined once

and for all; when developing mathematical theory further, ultimately the foun-

dations are modified as well. In the history of mathematics, this process of

transformation has always played a role: The change of the foundations of any
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mathematical theory has at the same time changed the epistemological status

of knowledge of these foundations.

Summary: 1. Mathematical knowledge as the subject of the discipline and

as a subject in school requires different interactive ways of approaching it.

Researching mathematicians use a professional discourse based on the body

of rules of modern proof in order to reach understanding about mathemati-

cal objects, which are defined by conditions and postulates. Learning students

understand and communicate about mathematics with generally understand-

able and illustration-bound conceptions about ‘a priori existing’ mathematical

objects.

2. Mathematical knowledge cannot be imparted to students as a finished

product, but an insightful understanding requires the students to carry out their

own learning activities with respect to the features of the particular culture of

mathematics learning and teaching.

3. The extension of mathematical knowledge – and particularly learning

mathematics in school – is not simply an increasing quantitative accumulation

of further mathematical facts, but it is a process of integration and general-

isation of knowledge as well as of epistemological new interpretations of the

foundations of mathematical knowledge.
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1. Symbolic Power

Symbolic power is not a well-defined notion, yet it has been used in many

contexts
1
. Symbolic power can be exercised through discourses which impose a

range of priorities and implicit notions on that which is being addressed
2
.

Symbolic power can be exercised by way of labelling, for instance by singling

out particular groups of people. One can refer to immigrants when trying to

shed light on street violence; blacks when addressing poverty in Africa; slow

learners when trying to explain certain educational problems. In fact there is

a close correlation between designating and an imposition of stereotypes. A

language can operate as an instrument of simplification; one may think of the

language developed around production efficiency. Such a language may refer to

workers, but stripped of their human relationships, instead highlighting them as

more of less efficient elements of a production machinery. Symbolic power can

be exercised through concepts like “soul”, “God”, “salvation” just to mention

some designations that includes layers of metaphysical assumptions. The dis-

cussion of symbolic power can refer to any form of discourse and to any form of

language.

Rudolf Carnap found that one could get rid of all the misunderstandings and

preconceptions that have been instilled in natural language by constructing for-

mal languages
3
. In this way science would have a true universal formal format.

Thus Carnap envisioned formal languages as liberators from the illegitimate

power exercised by natural language.

2. Mathematics and Symbolic Power

A formal language is also a language, and as such it may exercise symbolic

power. One can discuss, then, to what extent the symbolic power connected

to formal languages is benevolent, or if it might be questionable, illegitimate,

and suspicious. In fact a formal language might not be a liberator as assumed

by Carnap. It might be the bearer of a power that is in need of being both

identified and criticize; it might bring along with it heavy loads of metaphysical

assumptions. In fact, it is possible for symbolic power to have the same huge

range of qualities that can be associated to power in general.
4
It could be

problematic, unfair, blind, helpful, ruthless, benevolent, etc.

I do not assume that the notion of mathematics can be captured in any

single definition. Instead I find that mathematics can take many different forms,

1See, for instance, Bourdieu (1991). For a discussion of knowledge and power, see Foucault
(1989, 1994, 2000).

2Several philosophers, from Nietzsche (1998) via Carnap (1959) to iek (2008) has formu-
lated a heavy critique of the power exercised by language.

3See Carnap (1937).
4I use the notion of “quality” in a classic philosophical way as referring to “property”,

and not to some degree of desirability.
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such as making a budget, calculating a salary, making an investment, reading

a map, completing a design, solving school mathematics exercises, solving an

engineering problem, not to forget doing mathematical research. One can see

mathematics as a language, as a discourse. In fact one can see it as an extended

family of discourses that involve different degrees of formalism.

I will discuss symbolic power with reference to this extended family of lan-

guages in two steps: (1) One can see mathematics as a descriptive tool. However,

there are no neutral descriptions. Any description includes priorities with re-

spect to what to include and what to exclude. Also mathematics-based descrip-

tions exercise symbolic power by nominating what to call primary and what to

call secondary. (2) One can see mathematics as making part of actions, and I

will explore this dimension of symbolic power by addressing different features

of mathematics in action. Together the discussion of (1) and (2) will illustrate

how I associate symbolic power to mathematics.
5

3. What Is Primary and what Is Secondary?

We can imagine that symbolic power can be exercised through the invention of

something that is not already the case. It appears that by applying mathemat-

ics one can invent measures, norms, and standards that were not really there

before the mathematical discourse nominated the entities to be addressed. One

can also assume that symbolic power manifests as the systematic overlooking

of particular groups of phenomena. Thus, we can search for symbolic power by

examining priorities for both “seeing” and “overlooking”. Such priorities can

be imprinted in the grammar (or the structure) of language, and also of formal

languages. Symbolic structuring provides a way of nominating something as pri-

mary and other things as secondary. Such a grammar-based primary-secondary

ranking makes up one layer of a language-instilled metaphysics.

In order to clarify further the primary-secondary ranking, I will consider

two distinctions that can be associated with mathematics. One distinction is

related to the formulation of the mechanical world view, while the other is

related to the formulation of what I refer to as the formal world view.
6
By

paying attention to these two distinctions, I try to point out two features of

symbolic power that can be associated to mathematics.

3.1. Appearance and reality. Through the scientific revolution an

intimate relationship between mathematics and the natural sciences was

5This applies to all different forms of mathematics, and also to the different forms of
ethnomathematics. In the following, however, I will concentrate on what can be referred to
as academic mathematics, in particular as it is realised through its applications.

6For a discussion of these two distinctions see Skovsmose (2009). See also Skovsmose (2005)
for a discussion of mathematics and power. My work with these distinctions is inspired by
my cooperation with Ole Ravn, see Skovsmose and Ravn (draft).
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established. This relationship, however, was only made possible through the

distinction between appearance and reality. The establishment of the heliocen-

tric world view illustrates clearly what this distinction is about. Looking at

the sun in the morning, one sees how it rises in the sky. During the course of

the day one can follow its movements. In the evening we can see the beautiful

colours of the western sky, when it sinks below the horizon. Literature is awash

with variations of sunrise-sunset descriptions. Let us imagine that we were to

collect all these descriptions and from them try to extract an insight into the

sunrise-sunset phenomenon. According to the scientific revolution, we would

never attain any insight at all, as we would remain trapped by the appear-

ance of the phenomenon. At the heart of the formulation of the heliocentric

world view is the assumption that one needs to get around the appearances of

phenomena in order to grasp the structures of reality.

The distinction between appearance and reality has been emphasised by

many. However, I will refer to a particular text by Galileo Galilei as paradig-

matic for formulating the appearance-reality distinction. In The Assayer, first

published in 1623, Galilei discusses the notion of heat.
7
We all have experiences

of this phenomenon. One may be burned by the rays of the sun, touch a warm

kettle, come too close to a fire, gulp a spoonful of too hot soup, etc. One could

try to register a broad variety of experiences with heat and on this basis try

to formulate an insight as to what heat really is. Galilei’s point is that such

an approach brings us nowhere: our experiences of heat do not reveal anything

about the real nature of heat. The “mechanics” of heat, according to Galilei, is

very different from whatever might be gleaned from of our sense experiences,

just as the mechanism of sunrise and sunset is different from our experiences

of these phenomena. According to Galilei, to provoke an experience of heat

“nothing is required in external bodies except shapes, numbers, and slow or

rapid movements” (Galilei 1957: 276–277).

The mechanical world view presents reality as a tremendous mechanism

composed of material units, characterised by their shape, number and move-

ments, governed by certain laws. Such a mechanism is behind experienced

phenomena like heat as well as sunsets. It is behind any of our experiences.

The appearance-reality distinction facilitates the formulation of the mechani-

cal world-view and brings mathematics into a prominent position: it becomes

the principal tool for describing reality. While natural language is useful for

expressing experiences, mathematics is capable of depicting the underlying re-

ality. It does so in terms of shapes, numbers and movements in other words:

in terms of a mechanism.

If we assume that reality is in fact a mechanical structure, then mathemat-

ics can be assigned a tremendous descriptive power: it turns out to be not only

necessary but also sufficient for grasping reality. If we think of this descriptive

7The Assayer is reprinted in Galilei (1957: 229-280). See also Skovsmose (2009) for a
discussion of The Assayer.
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power as a form of symbolic power, the whole outlook of the scientific revo-

lution would bring us to celebrate the symbolic power of mathematics. This

celebration has brought about the claim that mathematics is the language of

sciences; it is the universal symbolism of knowledge. However, if we do not

consider the mechanical world as a given to be discovered, but rather as in-

vented, then we reach quite a different interpretation of this symbolic power.

The mechanical reality is not described by means of mathematics but rather es-

tablished through mathematics as a projection of the grammar of mathematics,

which seems designated to talk about entities like shape, number, movements,

etc. The mechanical world view is due to the way mathematics nominates cer-

tain phenomena as primary and ignores others as secondary. The mechanical

world view can be seen as a frightening metaphysics rooted in the grammar of

mathematics. Thus the mechanical world view becomes a demonstration of a

symbolic power associated with mathematics. Through applications of mathe-

matics the mechanical world view becomes imposed not only on nature, but on

any domain that is mathematised: business, management, forms of production,

marketing, etc.

3.2. Sense and reference. While in The Assayer, Galilei formulated a

distinction between appearance and reality, Gottlob Frege, in Über Sinn und Be-

deutung, first published in 1892, formulated a distinction between sense (Sinn)

and reference (Bedetung).8 The distinction between appearance and reality is

linked to the scientific revolution, while the distinction between sense and ref-

erence can be linked to a formal revolution. Both distinctions specify what is

to be considered primary and what secondary. While the distinction between

appearance and reality concerns our perception of nature and physical environ-

ment, the distinction between sense and reference concerns our perception of

logic and rationality. Frege sought to grasp the nature of logical reasoning.

To illustrate the distinction between sense and reference we can look at

the notion of a triangle. In order to indicate the sense of the word triangle,

one could try to explain that we are dealing with a geometric figure composed

of three straight lines. If, however, one were to indicate the reference of the

concept “triangle”, one would look to the set of all triangles. As Frege was a

Platonist, he would see the reference as the collection of ideal objects. More

generally, the reference of a concept is the set of objects that “fall under” that

concept.

Frege also applies the distinction between sense and reference to statements.

If we state that “the sum of the angles in a triangle is 180
◦
”, then one could try

to clarify the sense of that sentence, maybe by showing some of the steps in the

proof of the statement. The sense of the statement has to do with the content

of what is stated. However, according to Frege, the reference of the statement

8Über Sinn und Bedeutung is reprinted in Frege (1969: 40-65). See also Skovsmose (2009)
for a discussion of Über Sinn und Bedeutung.
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is something quite different. He suggests that the reference of a statement is

its truth value. Furthermore, he assumes that there are only two such values:

“true” (or T) and “false” (or F). This means that the reference of the statement

“the sum of the angles in a triangle is 180
◦
” is “true”. If we were to consider all

possible statements, they would have lots of different senses, but their references

would be either “true” or “false”. The domain of references of sentences would

be a very small universe, namely consisting of only two objects, the two possible

truth values, “true” and “false”.

Such a claim may appear absurd. However, it makes it possible for Frege to

formulate his main point: in order to clarify the reality of logical reasoning, one

needs to concentrate on the domain of references of concepts and statements.

References can be considered primary, while senses are secondary and can be

ignored. In fact, when it comes to logical investigation, the dimension of sense

only confuses analysis.
9

The distinction between sense and reference has also been expressed in terms

of intension and extension, corresponding to sense and reference. Thus, the ex-

tension of a concept is the set of objects that fall under the concept, while the

intension can be understood as its sense. The extension of a statement is its

truth value, while its intention refers to the content of what is stated. With this

terminology Frege’s claim is that the logical aspects of language are located in

the domain of extensions, while the intentional aspects are carriers of psycho-

logical aspects. If one wants to grasp the reality of logical reasoning, one has

to focus on the extensional aspects of language.
10

If one pays attention to the

intentional aspects, one might get bewildered by the appearance of rationality.

This appearance may reveal just as little about logic as the experience of heat

reveals about movements of molecules, or as the beauty of sunrise and sunset

reveals about the rotation of the Earth.
11

Frege’s apparently absurd idea paved the way for a tremendous development

of formal systems, formalisations of deduction, automation of reasoning and

for the proliferation of formal languages, including all variations of computer

languages. Frege’s ranking of primary and secondary with respect to logical

reasoning is crucial for the development of artificial intelligence. It is crucial for

establishing any automatic manipulation of formal systems.

9According to Frege, many have suffered such confusion. Mill, for instance, who found
that in order to understand both the nature of logical reasoning and the foundation of math-
ematics, one had to grasp their inductive origin. See Mill’s presentation in A System of Logic

and Frege’s harsh critique of Mill in The Foundation of Arithmetic.
10Frege’s idea was nicely condensed by Wittgenstein in the Tractatus, where he presented

a truth-table logic.
11An important step towards giving logic an extensional format was presented by Frege in

his Begriffschrift, which was published in 1879. Later Frege provided a new careful elaboration
of formal logic in Grundgesetze der Arithmetik, which appeared in two volumes in 1893 and
1903. Many studies have followed, and Whitehead’s and Russell’s Principia Mathematica,
published in three volumes in 1910-1913, reworked many of Frege’s ideas and established a
more powerful symbolism than the one originally suggested by Frege.
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However, one need not assume that the distinction between sense and ref-

erence reveals a basic reality of logical rationality. One may instead consider

the possibility that the sense-reference distinction is imposed on the domain

of investigation. It might be a proposal for implementing a primary-secondary

ranking within the domain of logic. The ranking may represent a profound

metaphysics with respect to rationality. Maybe a new logic is not discovered

through the sense-reference distinction, so much as a new logic is created and

brought into action. We might be dealing with an imposition that represents

symbolic power. And this symbolic power is exercised with respect to all the dif-

ferent domains within business, management, forms of production, marketing,

etc.— taken into custody by automatic manipulations for formal systems.

4. Mathematics in Action

Symbolic power connected to mathematics reaches beyond any primary-

secondary imposition. It is manifested in mathematics-based actions. In this

section I will illustrate the range of mathematics-based actions within tech-

nology. I use “technology” as an almost all-embracing concept referring to any

form of design and construction (of machines, artefacts, tools, robots, automatic

processes, networks, etc.) decision-making (concerning management, promo-

tion, economy, etc.), and organisation (with respect to production, surveillance,

communication, money-processing, etc.).

Like any action, so also a mathematics-based action can be described in

general terms, and I will point out some of its dimensions: (1) Any action

includes visions about what could be done, and by technological imagination

I refer to the tentative formulation of technological possibilities. (2) As part

of investigating a possible action, hypothetical reasoning is important. Through

such reasoning one addresses consequences of not-yet-realised technological con-

structions and initiatives. Through an if-then reasoning one tries to estimate

how feasible it might be to carry out an action. (3) An action may require

justification. Some such justification may take place before one carries out the

action, although one can also try to justify actions after their completion. In

many ways, justification might take the form of a questionable legitimisation.

(4) When completed, an action comes to make part of reality, and realisation

of mathematics refers to the fact that mathematics itself may come to make

part of reality. (5) One can think of an acting person as being responsible for

the action. However, in many examples of mathematics-based actions, it is not

easy to identify an acting subject, and a dissolution of responsibility might

occur.
12

12For presentations and discussions of mathematics in action see Skovsmose (2005, 2009);
Skovsmose and Yasukawa (2009); Christensen and Skovsmose (2007); Christensen, Skovsmose
and Yasukawa (2007); Skovsmose, Yasukawa and Ravn (draft); and Skovsmose and Ravn
(draft). The following presentation of mathematics in action draws on this material.
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4.1. Technological imagination. Often technological imagination is

mathematics - based. As a paradigmatic example, one can think of the concep-

tualisation of the computer. The mathematical construct, in terms of the Turing

machine was investigated in every detail.
13

Even the computational limits of

the computer were worked out before the construction of the first computer had

taken place. If we consider the computational approach in all its dimensions, we

can talk about the formal revolution, and this revolution is directly related to

the sense-reference distinction. Algorithmic procedures which could be handled

mechanically were related to the extensional aspect of language.
14

All features of modern information and communication technology are

deeply rooted in mathematics-based imagination. To illustrate: great potential

for cryptography was identified through mathematical clarifications of number-

theoretical properties. Of particular importance was the identification of what

could be referred as a one-way function This is a function, f , where it is easy to

calculate y = f(x), when x is given, but impossible in any feasible way to cal-

culate f1
(y), when only f and y are given.

15
The straightforward calculation of

y from the value of x can be associated with encryption, and breaking the code,

i.e. calculating x from the value of y, remains impossible.
16

In this way a mathe-

matical construct, a one-way function, provided new technological possibilities.

There is no commonsense-based imagination equivalent to mathematics-based

imagination. Furthermore, it must be noted that mathematics-based imagina-

tion operates beyond any scheme of prediction; instead it brings about contin-

gencies as a characteristic feature of technological development.

Mathematics-based technological imagination plays a crucial role in econ-

omy and business, for instance in establishing schemes for prices and payment

of goods. We can take air-fares as an example: airlines deliberately overbook as

one element of such schemes.
17

The overbooking is carefully planned; in par-

ticular, the degree to which a flight can be overbooked needs to be estimated

from the statistics of the numbers of no-shows for the departures in question.

13See, Turing (1965) as well as Skovsmose (2009) for a discussion for this example.
14It is worth noting that intensional logic has developed tremendously, for instance through

the work of Montague (1974), who was keen to develop a Frege semantics, acknowledging
Frege’s contribution to logic and the analysis of language. Montague demonstrated how ap-
parently intentional features of language could be incorporated in a Frege semantics and,
in this way, provided with an extensional foundation. This insight is crucial for develop-
ing computational linguistic features, and, for instance, for establishing automatic forms of
translation.

15That it is possible to construct one-way functions is based on number theoretical insight,
and in particular on the observation of the extreme complexity of factorising a product of
two very large (say at least 50 digits) unknown prime numbers.

16See Skovsmose and Yasukawa (2009), as well as more general presentations in Schroeder
(1997) and Stallings (1999). See also Diffie and Hellman (1976) for the presentation of the
original idea.

17See Clements (1990). See also Skovsmose (2005) for a discussion of this example. There
is a great amount of papers and comments about the phenomenon of overbooking at the
internet. See for instance “Why do Airlines Overbook Flights” (http://weakonomics.com/
2009/12/29/why-do-airlines-overbook-flights/).
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(A “no-show” refers to a passenger with a valid ticket who does not show up for

the departure.) The costs of bumping a passenger need to be estimated as well.

(“Bumping” a passenger means not allowing a passenger with a valid ticket to

board the plane.) The predictability of a passenger for a particular departure be-

ing a no-show is naturally an important parameter in designing the overbooking

policy. The whole overbooking policy can be mathematically experimented with

until a price-setting is reached that maximises profits, this in turn becoming an

ongoing algorithmic-based process. Mathematics-based technological imagina-

tion is crucial, not only for the construction of new technological artefacts, but

also for the identification of new schemes for, say, production, management,

decision-making, etc. It is an imagination, however, that exists within a certain

space. It is an imagination that assumes the mechanical world view, and it is

an imagination that assumes rationality to be of a certain format.

4.2. Hypothetical reasoning. Hypothetical reasoning is counterfac-

tual, as it is of the form: “if p then q, although p is not the case”. This form of

if-then reasoning is essential to any kind of technological enterprise.

If we do p, what would be the consequence? It is important to address this

question before in fact doing p. In order to carry out any more specific hypo-

thetical reasoning within the domain of technology, mathematics is brought in

action. A mathematical model comes to represent an imagined situation, and

the model becomes the basis for identifying what could be the implications of

doing what was imagined. However, the model-determined implications are just

calculated implications. It is far from obvious what might be the relationship

between such calculated implications and real-life consequences of completing

the technological enterprise. The identification of implications, based on formal

calculations, assumes that the mathematical model adequately represents what

is to be implemented. But this assumption rests upon the mechanical world

view claiming that the primary-secondary distinction imposed by the mathe-

matical format of the model is adequate for identifying implications. In other

words the assumption is that what the model downgrades as secondary is in fact

secondary for identifying implications. However, this is a deeply metaphysical

assumption. It is a questionable assumption that relevant implications are of a

mechanical nature, and can be indentified through formal calculations. Yet this

assumption accompanies any mathematics-based hypothetical reasoning.
18

4.3. Legitimation or justification. According to a classic perspec-

tive in philosophy, justification refers to a proper and genuine logical support

of a statement, of a decision, or of an action, while the notion of legitimation

does not include such an assumption. The point of providing a legitimation of

an action might be to make it appear, as if it is justified. When a mathematical

18Risks emerge from the fact that mathematical modelling is, in this way, a technique
for overlooking. The emergence of the risk society is partly due to the development of
mathematics-based hypothetical reasoning than to mathematics-based actions in general.
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model is brought into effect, it can serve as both a legitimation and a justifica-

tion. It can help to provide priorities, although the basis for doing so might be

obscure.

Let me try to illustrate this with a quotation from an article “The Predator

War” by Jane Mayer in The New Yorker, which addresses US use of unmanned

aircraft which can be used for identifying targets and for launching missiles.

The Pentagon has created formulas to help the military develop a taxonomy

of targets: “A top military expert, who declined to be named, spoke of the

military’s system, saying, ‘There’s a whole taxonomy of targets.’ Some people

are approved for killing on sight. For others, additional permission is needed.

A target’s location enters the equation, too. If a school, hospital, or mosque is

within the likely blast radius of a missile, that too is weighed by a computer

algorithm before a lethal strike is authorized.”
19

Although the particular details of such “elaborate formulas” for helping the

military most likely will remain a military secrete, we can speculate about the

kind of rationality that is reflected in the taxonomy of targets. In principle, one

could assume that an automatic connection between the processes of calculation

and the military action has been established. However, according to the article

one should assume that the decision—firing or not firing—is a human decision,

although guided by the taxonomy.

We could imagine that the development of the taxonomy is of a cost-benefit

format. On the benefit side must be counted the importance of the target, and

the likelihood that the target will in fact be eliminated by the strike. But,

most certainly, many other military gains could be considered. The costs of

the action also have to be estimated, which implies a range of parameters to

be considered. First one could think of the death of American soldiers, but as

in this case we are dealing with unmanned aircraft this parameter might not

enter into the cost-calculations. However, the value of the airplane must be

included, although reduced by the rather small likelihood that the plane will

get lost in the operation. The value of the missile fired will clearly represent

a cost. But there are more parameters to consider: non-targeted people might

be killed, and, as pointed out, the target could be located close to schools,

hospitals or mosques. How does a school become “weighted” by a computer

algorithm? Through the number of school children expected killed? Or through

the economic value of such a child? Or perhaps it is not the school children

as such that are valued, but the negative PR the bombing of school might

cause?

The crucial point of cost-benefit analysis is that costs and benefits are mea-

sured by the same units. But which? What is the shared unit for cost and

benefits, encompassing the value of fired missiles, American soldiers, school

19Brian Greer drew my attention to this quotation. See the whole article at: http:
//www.newyorker.com/reporting/2009/10/26/091026fa\ fact\ mayer?currentPage=all See
also Greer (in print).



700 Ole Skovsmose

children, hospitals, mosques, etc.? One might label the stipulation of shared

units of measurement for cynical equations. Such equations are necessary for

any cost-benefit analysis and for turning a process of decision-making into a

process of calculation. Cynical equations are made possible when a mechanical

world-view is forced on the domain in question. All human matters are nom-

inated “appearance”, while reality is constituted by what might be captured

by mathematics. Originally, the appearance-reality distinction nominates the

mechanical world view with respect to nature. However, when mathematics is

applied to human enterprises, the appearance-reality distinction makes human

matters secondary with respect to the enterprise in question. The “primary”

takes a mechanical format captured by predesigned scales of measurement—and

cynical equations might come to appear both natural and neutral. Cynical equa-

tions stem from the imposed mechanical world view, and they enter smoothly

into the automated procedures for formal manipulations. The formulation of

cynical equations blurs the distinction between legitimisations and justifica-

tions. This not only applies to military action, but to any action—in engineer-

ing, economy, business, administration—where a mathematics-based taxonomy

might provide a suspicious legitimation with a glimmer of justification.

4.4. Realisation. A mathematical model can become part of our envi-

ronment. Our life-world is formed through techniques and practices as well as

through categories and discourses emerging from mathematics in action. Tech-

nology is not something “additional” which we can put aside, as if it were a

simple tool, like a hammer. We live in a technologically structured environment,

a techno-nature. Our life-world is situated in this techno-nature, and we cannot

even imagine what it would mean to eliminate technology from our environ-

ment. Just try to do the subtraction piece by piece. We remove the computer,

the credit card, the TV set, the phone. And we continue by removing medicine,

newspapers, cars, bridges, streets, shoes. We have no idea about what kind

of life-world such a continued subtraction would bring us. In this sense our

life-world is submerged in techno-nature.
20

Mathematics is an integral part of both techno-nature and life-world. Thus

computers, credit cards, TV sets, phones, medicine, newspapers, cars, bridges,

streets, and shoes are today produced by means of processes packed with math-

ematics. But not only the objects which make part of our techno-nature are

formatted through mathematics; so are many practices. Mathematics estab-

lishes routines: in production, in business, in all economic affairs, in daily life.

The whole domain of relevant knowledge for decision making at the stock

market—buying or selling—is mathematised and made available through figures

and diagrams. In this way mathematics can provide a highly relevant descrip-

tive tool. One could also imagine that algorithms make proposals as to which

decisions to make. However, there is a step more that can be taken. One might

20For a discussion of the notion of life-word, see Skovsmose (2009).
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imagine that the very decision about selling and buying is in fact made by a

mathematical algorithm. The Danish newspaper, Politiken, in its edition of the

24
th

of February 2010 contains an article, “Maskinen overtager den globale br-

shandel” (“The machine takes over the global stock market”) by Jeremy Grant

and Michael Mackenzie, whose point is exactly that the very decision-making

is placed in the hands of algorithms. Furthermore the newspaper contains an

article by Per Thiemann stating that 20% of the selling and buying at the

Copenhagen Stock Market is conducted by the computer. This is an example

of mathematics coming to be a direct part of the economic reality.

The overall implication of this is that the nature into which we are sub-

merged is of a mechanical format. Techno-nature is a complex mathematics-

based construction. Through mathematics in action, we are in fact bringing our

social, political, and economic environment deeper into a mechanical format.

5. Dissolution of Responsibility

An action may be associated with an acting subject, this being a person or

institution that conducts the action. Generally, the acting subject is held re-

sponsible for the action. This responsibility, however, can be questioned if the

acting subject might have been forced to perform the action, or if they had

been unaware of the full range of implications of the action.

However, mathematics-based actions often appear to be missing an acting

subject. As a consequence, mathematics-based actions easily appear to be con-

ducted in an ethical vacuum. As an illustration, one could think of automatic

selling-buying decisions made at the stock market, as referred to previously.

Such decisions are merged into automated clusters of decisions, and large quan-

tities of such clusters have implications far beyond what is normally expected.

It is in fact possible to relate features of the world-wide economic crisis to such

mathematics-based avalanches of decisions. But who could be held responsible?

Somehow responsibility seems to dissolve.

An example of such a possible dissolution of responsibility is presented by

Mario Snchez (2009, 2010) in his discussion of a “marginalisation index”. This

index has been applied in a Mexican context in trying to invent measures for the

degree of marginalisation which certain communities might suffer. Naturally,

there can be many different ways of measuring marginalisation, but whatever

modelling is applied, some parameters have to be introduced and related, and

some standards have to be introduced so that the entire social, political and

economic processes of marginalisation emerge in a modelled format. Here may

occur an extreme form of primary-secondary ranking, where the experienced

characteristics of marginalisation are “abstracted away”, in favour of only con-

centrating on quantitative and “mechanical” features of marginalisation. On

this basis political action might be taken, or not taken. Such an approach has

many implications, one of which might be that new criteria are formulated and

claimed to be “objective”.
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It might be claimed that mathematics helps to establish objectivity in calcu-

lations and that mathematics-based actions are well-considered and represent

the optimal course to be taken. However, mathematics might also introduce

a certain amount of arbitrariness into the decision-making process, as can be

illustrated by the “cynical equations”. Arbitrariness might be covered by an

overwhelming mass of formal calculations and formalities that may endow the

result with a perceived necessity, although a subjective and impart necessity.

This impartation draws on the whole metaphysics that accompanies mathe-

matics. It does so by imposing a mechanical world view. This also applies to

the mathematical marginalisation model. Through the impartation of necessity,

elimination of responsibility becomes part of mathematics in action.

6. Symbolic Power, Beyond Good and Evil?

The duality between good and evil is deep-rooted in many philosophical dis-

courses. But when we consider the symbolic power associated with mathemat-

ics, it might be relevant to try to step outside the good-evil duality. Symbolic

power opens a space for technological enterprises that can be problematic, un-

fair, blind, helpful, ruthless, benevolent, productive, risky, innovative, etc. Such

qualities cannot be described along a good-evil axis.

It could well be that mathematics imposes much on the domain it is assumed

to describe. Mathematics can impose priorities concerning what is primary and

what to relegate as secondary. Mathematics can become part of action by form-

ing conceptions about what can be constructed, designed and accomplished. It

can structure the as-if reasoning through which the viability of an action is ad-

dressed. It can provide patterns for justification and legitimation. It can come to

make part of reality as an integral part of what has been implemented. Finally,

mathematics in action might miss an “acting subject” and let responsibility

dissolve. However, we cannot assume that we are in a position to provide any

straightforward evaluation of such features of symbolic power.

My conclusion is not to try to eliminate or to obstruct the symbolic power

that might be rooted in mathematics. Thus there is no point in claiming that

the distinctions between appearance and reality and between sense and ref-

erence are “bad” distinctions, nor can they be claimed to be “good”. They

are distinctions that may facilitate powerful symbolic actions. My point is to

address this power explicitly, and to try to identify its possible dimensions.
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Abstract

What image does “the public” have of mathematics? Why and how should re-
search mathematicians be involved in communicating mathematics and math-
ematical research to the public? Which “general audience” can we expect to
reach (media, teenagers, highschool students, their parents and teachers, gen-
eral public, learned public, etc.)? How do we reach them? What can we expect
them to learn, to understand?

The panelists present and discuss their experiences in communicating with
the public, both from the perspectives of mathematicians in academia, and from
the perspectives of science journalists. They highlight the importance of the
scientific message, the vocabulary of mathematics, the creative use of different
formats to reach diverse audiences, and the wide range of mathematics the
public can be stimulated to take an interest in.

The subsequent discussion will enlarge on these themes and, with comments
from the audience, provide a basis for suggesting strategies for communicating
effectively with society at large. The panel will conclude by discussing options
and opportunities for international collaboration.
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This is a short summary of the panel at ICM 2010 about “Communicating
Mathematics to the Society at Large”. The panelists were:

– Marianne Freiberger
Plus Magazine, University of Cambridge, UK
M.Freiberger@damtp.cam.ac.uk

– Ivars Peterson
Mathematical Association of America (MAA), USA
ipeterson@maa.org

– R. Ramachandran
Frontline/The Hindu, India
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– Christiane Rousseau
Université de Montréal, Canada
rousseac@dms.umontreal.ca

– Günter M. Ziegler, Chair
Media Office, Deutsche Mathematiker-Vereinigung (DMV), Germany
ziegler@math.tu-berlin.de

There has been a lot of activities, progress, and achievements in the last
decades’ strong push of communicating mathematics to the public, which was
initiated at various points of time in various countries (the US, Canada, the
UK, Germany, for example), and even led to international activies. While some
of these efforts have certainly been short-lived, others have been established on
a more sustainable or even permanent basis.

Also in view of these initiatives and achievements, the ICM2010 panel set
out to reconsider very basic questions: Which “general audience” can we expect
to reach (media, kids, general public, learned public, etc.)? How do we reach
them? What can we expect them to learn, to understand? Which image of
mathematics do we communicate?

The activists on the panel will present and discuss their experiences, starting
off with short presentations of five key aspects:

(1) the importance of the message,

(2) the vocabulary of mathematics,

(3) the topics,

(4) the setting, the occasions, and

(5) an Indian perspective.

Each of these aspects is documented in the following by a short text by one of
the panel members.

At ICM2010, the presentations on these topics were followed by a discus-
sion that tried to collect ideas and recommendations. At the end, the panel
discussed options and opportunities for international collaboration and joining
forces throughout the world. The audience was invited to join this discussion.
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Communicating Mathematics: The Message

Christiane Rousseau

Science in general, and mathematics in particular, is not well understood from
the public. We hear too often:

“Hasn’t everything been found in mathematics?”
“What is mathematics useful for?”

Why should mathematicians be involved? We are certainly partly re-
sponsible for the public image of our science. Indeed, it is not without social
consequences:

– The power of mathematical ideas and problem solving for scientific or
technological breakthroughs is not sufficiently recognized. This results
in insufficient funding and support for our discipline. But also, a better
recognition of the importance of mathematics would help ensuring more
jobs in industry for graduates in mathematical sciences.

– Mathematics could be better taught in the schools if a perspective of
where we need to bring the students was more widely spread.

– In many countries we are faced with the fact that too few high school
students choose to do mathematics and science.

The questions above deserve an answer. If the answer is given by a mathe-
matician, then another message goes through: the mathematician is a human
person. Similarly to a kid, he (she) repeatedly asks questions. Through his (her)
deep understanding of the subject, the mathematician can instil the flavor of
the discipline. The passion is important for the message to go through and, at
the same time, the modesty to admit the limits of the scientist, and the many
questions to which we can only answer “I don’t know.”

Not all mathematicians need be involved in popularization of mathematics.
This requires a passion for communication, which we do not necessarily all
share. On the other hand, improving our communication skills when involved
in popularization activities helps improving the quality of our teaching: we
introduce a distant horizon and place our subject inside a wider scope, we
introduce links with other mathematical subjects and scientific disciplines, we
show applications, we stick to crystal clear explanations, and we introduce
strong messages through our teaching.

The importance of the message. In order for the message to go through,
it should not be too technical. A dream when you do popularization of mathe-
matics is that the listeners of your lectures or the readers of your papers can,
in turn, explain part of it. For this, it helps if they have felt a skeleton around
which the message is built. What is the spine? The central part could take
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the form of a slogan or a leitmotiv. The leitmotiv should be sufficiently well
illustrated that it is digested and remembered.

Let us give examples. Some are not from me, but they are so good that they
deserve to last.

1. Mathematics makes the invisible visible.

2. Mathematics provides models to the other sciences.

3. Mathematics makes predictions.

4. Mathematics classifies objects.

5. Mathematics is a living discipline within science and technology.

6. The importance of a clever idea for a scientist.

7. There is no limit to the imagination of a scientist.

8. The existence of unifying ideas inside mathematics or science.

9. Mathematicians introduce new concepts and generalize.

When you read this enumeration, you certainly noticed that we missed some. . .
So, it will be your turn to develop your favorite message.

Some guidelines to prepare the message. The danger for a scientist going
into popularization is to be too technical and/or too long. If you are involved
in popularization of mathematics, there is no need to choose a subject that
is close to your research interests. Choose a subject that is both scientifically
significant, and likely to bring a strong message.

It is important to address all people in the audience. The message should be
adapted to the less learned, and one should never be intimidated, nor change
the message, because there are mathematicians in the audience. At the same
time, the message should be sufficiently scientifically sound that anyone in the
audience, including the scientists, be interested.

The choice of words is important. Formal definitions, formulas, proofs should
be avoided or kept to a minimum. Analogies with known concepts are impor-
tant. Even, the choice of technical details (which should not be too numerous)
should be done so as to convey a message: it could insist on the power of a
clever idea, the elegance of a small piece of proof, etc.

This ends my short summary. A more detailed exposition appears in [1].
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Communicating Mathematics: The Vocabulary
Problem

Ivars Peterson

Some years ago, at a conference that brought together mathematicians and sci-
ence writers to discuss ways to inform the public more effectively about mathe-
matics and discoveries in mathematics, a well-known mathematician presented
a talk on exciting, new findings linking the Riemann Hypothesis, quantum
physics, and random matrix models.

Though carefully prepared and relying on little more than basic calculus
and linear algebra, the presentation missed its mark. A model of mathematical
exposition, it would have worked well with an audience of mathematicians. It
did not work for an audience of science writers. It contained too little of the
grand ideas underlying the mathematics and too much of the mechanics of
presenting these ideas mathematically. Indeed, by neglecting to define prime
numbers or even dip into the lore and lure of primes, the speaker failed to
connect with his audience from the beginning.

In the discussion that followed the presentation, one science writer likened
the talk to the way she had felt at a party with some German friends. Her
friends would try to speak English for a while but would inevitably lapse into
German. She could understand very little of the ensuing conversation.

Speakers also tend to overestimate how much new information their audi-
ences can absorb in one sitting. To reach the “new and exciting” part of his
talk, the conference speaker had to describe the Prime Number Theorem, the
Riemann zeta function, the Riemann Hypothesis, quantization and linear op-
erator matrices (along with eigenvalues), random matrix theory and unitary
symmetry, Poissonian statistics, and quantum chaos. That was a heavy burden
for any audience, even more so for listeners not already attuned to these topics.

Authors of written material have an advantage over speakers. Readers who
lose the thread of an argument can reread a difficult passage, return to earlier
sections to recall a definition or key point, or even go to an outside source to
obtain the necessary knowledge to proceed. Listeners typically can’t do that.
At the same time, however, authors cannot count on readers being willing to
put in a lot of extra effort just to get to the end of an article. Many readers
would (and do) give up.

Mathematical language itself throws up additional barriers to broad dissem-
ination. The statements of mathematics are supposed to be precise, devoid of
the ambiguities of ordinary speech. The meaning and position of every word and
symbol make a difference. The language is unusually dense. And mathematical
statements can be highly complex and may incorporate a specialized vocabu-
lary.

Mathematician William Thurston expressed the difference between reading
mathematics and reading other subject matter in this way:
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“Mathematicians attach meaning to the exact phrasing of a sen-
tence, much more than is conventional. The meanings of words are
more precisely delimited. When I read articles or listen to speeches
in the style of the humanities . . . I find I have great trouble con-
centrating and comprehending: I think I try to read more into the
phrases and sentences than is meant to be there, because of habits
developed in reading mathematics.” [1]

Such habits add to the difficulties that mathematicians face in trying to com-
municate with the public, when they have to surrender the clarity and economy
of their usual modes of expression to the messiness of ordinary language. Com-
fortable with their specialized language, mathematicians too often fall into the
trap of assuming their listeners or readers have equal facility, or at least some
familiarity, with the language.

To complicate the situation, at least in the English language, mathemati-
cians have appropriated simple, everyday words for their own purposes, using
them in unexpected ways or assigning them specific, technical meanings to
express abstract concepts.

Consider, for example, the term “function,” a notion fundamental to math-
ematics. The American Heritage Dictionary of the English Language offers the
following definitions:

1. The action for which a person or thing is particularly fitted or employed.

2. a. Assigned duty of activity.
b. A specific occupation or role: in my function as chief editor.

3. An official ceremony or a formal social occasion.

4. Something closely related to another thing and dependent on it for exis-
tence, value, or significance. Growth is a function of nutrition.

The mathematical meaning comes next:

5. Mathematics
a. A variable so related to another that for each value assumed by one
there is a value determined for the other.
b. A rule of correspondence between two sets such that there is a unique
element in the second set assigned to each element of the first set.

It is followed by three more definitions:

6. Biology The physiological activity of an organ or body part.

7. Chemistry The characteristic behavior of a chemical compound, resulting
from the presence of a specific functional group.

8. Computer Science A procedure within an application.
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That’s a hefty load for one word to carry. Readers or listeners encountering the
word “function” may have difficulties sorting through so many definitions to
ascertain the word’s meaning in a particular context. Even when such a word is
properly defined near the beginning and the context is clear, a reader unfamiliar
with the notion may later revert to other, more familiar meanings of the word,
potentially creating confusion in the reader’s mind.

When I was a writer for Science News magazine, I could only on rare occa-
sions get away with using the word “function” in my mathematics news articles
without offering some sort of definition of the concept, expressed in words. My
editors were there to ensure that my articles were accessible to as broad a
range of readers as possible, and this meant keeping in mind that a reader’s no-
tion of what a word means could differ enormously from the author’s intended
meaning.

In the same way, mathematicians should realize that words that they use
routinely can echo in unexpected ways in the minds of their listeners or readers,
particularly in ways that reflect different experiences and contexts. Such words
include acute, base, chaos, chord, composite, concurrent, coordinate, degree,
dimension, domain, exponent, factor, graph, group, linear, matrix, mean, net-
work, obtuse, order, power, prism, proof, radical, range, relation, root, series,
set, vector, and volume. Each has a precise mathematical meaning; each also
has multiple alternative meanings.

On the other hand, the word “fractal,” coined by mathematician Benoit
Mandelbrot, is a noteworthy example of a term that works in both a mathe-
matical and a popular context. Mathematics could use more such words.

People are genuinely curious about mathematics, despite the overwhelming
fear of the subject that many may feel. Mathematicians who pay particular
attention to how they express themselves and connect with their audiences
through a common, nontechnical language can make important contributions
to the public understanding of mathematics.
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Communicating Mathematics: The Topics

Marianne Freiberger and Rachel Thomas

Plus magazine (plus.maths.org), a free online magazine about all aspects of
mathematics aimed at the general public, is an interesting case study of the
public’s appetite for mathematics. The success of the Plus website, which has
been established since 1997, indicates that this appetite, contrary to popular
belief, is considerable. In 2009 the website attracted nearly 1.6 million absolute
unique visitors, with our readers ranging from older school students, to uni-
versity students, teachers and academics, and the non-expert general public.
(Source: Google Analytics).

The most important lesson we have learnt as editors of Plus is that there is
an audience for all types of mathematics, be it pure or applied, easy or hard.
Some people are drawn to the beauty of mathematical ideas or philosophical
questions, others to practical applications, or hands-on problems, and others
can be drawn in by “stealth” through revealing the mathematics that hides be-
hind seemingly un-mathematical ideas. Even, or perhaps especially, the hardest
mathematical concepts can find a large audience, as long as they are presented
accessibly and in a non-patronising, engaging way.

We assess the popularity of our content in two ways. Firstly, by looking at
our website statistics, including the number of page visits an article receives,
time spent on a page, and whether visitors go on to view other Plus content
subsequently. These statistics enable us to estimate how many readers actively
engaged with the content. Secondly, we look at qualitative feedback through
emails from readers, comments posted on our blog, and in particular discussions
of our content on other websites. These include aggregation sites like reddit.

com or digg.com, which allow users to recommend and discuss web content.

This information indicates which of our articles have proved particularly
successful with a wide audience. From qualitative feedback we can assess why
a particular article has been successful, and to a certain extent what kind of
audience it appeals to.

To illustrate the variety of material that has been successful, we present
three examples from the Plus archive. The first two of the following articles
come in the all-time top 10% of our material measured through our website
statistics analysis and have generated lively online debate. The third is a topical
piece which was very popular at the time of publication.

Mysterious number 6174 by Yutaka Nishiyama

“I hate math but love this kind of stuff. So fascinating” — reader comment

The number 6174 is a fixed point of Kaprekar’s operation, a simple operation
taking the set of 4-digit whole numbers into itself. The article explores the
operation, proves the uniqueness of the fixed point, and shows that it attracts
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every sequence resulting from iteratively applying the operation to a generic
four-digit number.

This article is the all-time favourite on Plus. The mathematics that’s ex-
plored is extremely simple and the article gives readers the chance to actually do
the maths: anyone can take a calculator, apply the operation to their favourite
number, and see the sequence converge. And this is what makes this particular
article appealing. Reader feedback has shown that its large audience contains
many people who do not consider themselves interested in mathematics (see
the quote above), but quickly become intrigued by the opportunity to explore
these ideas themselves.

The article illustrates the appeal of easy and hands-on pieces of mathemat-
ics. When presented in a friendly way that appeals to people’s playfulness, these
can draw in audiences that would not normally engage with mathematics. It’s
important to note that easy doesn’t necessarily mean trivial – the article pon-
ders if the result hides a deeper theorem in number theory, thus giving people a
glimpse of what motivates mathematicians and the kind of problem they might
work on.

The story of the Gömböc by Marianne Freiberger [1]

“Absolutely fascinating how awesome human science is” — reader com-
ment

A Gömböc is a 3D convex and homogeneous shape with exactly one stable and
one unstable point of equilibrium. Analogous to the 2D case, such an object
was conjectured impossible, until its existence was proved in 2006 by two Hun-
garian mathematicians. This article is based on an interview with one of these
mathematicians, Gábor Domokos, exploring some of the maths and the process
of discovering the proof.

Why should such a curious mathematical object, devoid of any practical
applications, appeal to a popular audience? Reader feedback indicates that
the reasons why it does are not that different from those that attract mathe-
maticians: the object’s sheer strangeness and the suggestion that it might not
exist. In online discussions, readers have marveled at the Gömböc’s strange self-
righting wriggle (the article includes a video of an actual Gömböc self-righting),
explored the meaning of its mathematical definition, and what makes it different
from familiar objects, for example eggs.

Another point of appeal of the article, we believe, is the glimpse it affords
of the human experience of doing mathematical research, with all the set-backs
and triumphs involved in feeling your way towards a proof. Such journeys of
discovery can appeal to a wide audience, even if the object of discovery is not
something everyone would normally consider interesting.

Swimming in mathematics by Rachel Thomas
Published in the wake of the 2008 Beijing Olympics, this article explores

the Games’ swimming venue, known as the Water Cube, a beautiful structure
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which appears to be made from bubbles. The article describes how architects
used Denis Weaire and Robert Phelan’s response to Kelvin’s problem to come
up with this organic-looking structure.

The appeal of the article is immediately clear: the Water Cube is a beautiful
building people would have seen many times during the Games. The article
also benefits from elements of surprise. Many people were not aware of the fact
that mathematics was involved in the design of the apparently random-looking
arrangement of bubbles that makes up the building’s external structure. The
underlying mathematical problem – the Kelvin problem – is relatively easy
to state, yet it is still not known if the Weaire–Phelan structure is the most
efficient solution.

There are more interesting examples. Other articles that have been particu-
larly successful cover the Riemann hypothesis, Gödel’s incompleteness theorem,
the mathematics of music, and a range of perhaps surprising applications, such
as a mathematical model of the neurological processes that cause visual hallu-
cinations.

We are not claiming that each of these articles exerts the same appeal on the
same audience (though they almost certainly overlap). Each article probably
finds its own audience who enjoy a particular approach and with particular
interests. But this merely reflects the many aspects of mathematics: some people
are drawn to ideas, some to patterns and forms, some to mathematics as a
universal language, and others to puzzles. In terms of popularization, the multi-
faceted nature of maths should really give it an edge over other fields, as it
provides so many ways to engage a non-expert audience.

The quality of presentation is of course extremely important. If you don’t
stimulate your audience’s imagination, you lose them immediately. This doesn’t
mean that difficult ideas can’t be brought across, but it means that, akin to
a conversation, you must address any questions as they might arise in peo-
ple’s minds, rather than requiring your audience to do the mental legwork.
While the definition-theorem-proof structure of a research paper presents the
reader with a fait accompli, a popular article may be better off reflecting what
actually happens when you do the research: play around with examples, de-
velop a feel for the mechanisms at work, pose a conjecture, and, if you can,
prove it.

Research mathematicians have a vital role to play in the popularisation of
mathematics, whether it is through producing material themselves, or inter-
acting with science communication professionals. Our experience at Plus has
shown that researchers’ expertise and passion bring a richness to our content
that would otherwise be hard to reproduce. Moreover, presenting the human
face of mathematics, the people who produce it, is a vital tool in engaging
people’s interest. We believe that many mathematicians under-estimate this
interest. As more working mathematicians engage with the public, more people
will identify with mathematicians and their work, and the perceived gulf be-
tween the maths community and the public will start to diminish.
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Communicating Mathematics: The Setting, the
Occasions

Günter M. Ziegler and Thomas Vogt

“Communicating Mathematics to the Society at Large” does not mean that
the public has to be invited to the University, where a Mathematics Professor
explains mathematics at the blackboard. Indeed, it need not involve a university,
nor a professor, nor a blackboard.

The German “Year of Mathematics” 2008 (which was part of the German
series of National Science Years started in 2000 and was more visible and more
successful than all the previous ones; see also [5] and Z-mathyear-gazette) was
also a gigantic learning experience, a welcome experimental platform, and an
opportunity for professionalization of mathematics communication in Germany.
In the following, I comment on these three aspects.

Learning to Communicate. Very vividly I remember three insights from
the discussions and planning meetings that preceeded the Mathematics Year.

The first one was to go ahead with a positive, active message. I was warned
“Wer sich verteidigt, ist ein Looser” (“Whoever defends himself is a loser”). So
we should not complain about the negative image that our subject might have
in the public and in the media, but rather go ahead with “Mathematics is an
exciting subject, it has many stories to tell, it is full of interesting challenges,
it is the basis for exciting jobs”, etc.

The second is that you really have to think about what you mean by “the
public” or “society at large”. Who do you want to reach, who is your target
group: the people who go to exhibitions, those who read the science pages in
the daily newspapers, the readers of the “Arts and Letters” section of the same
newspapers, pupils, students, teachers, parents? Hardly any format can reach
all of them. And you also should think about what you want to communicate.
My belief is that you can’t teach much Math to the Society at Large – the
teaching has to be done in the schools. However, it is essential to work on the
public perception of what Mathematics is about, about what Mathematicians
do, about news and challenges, images and jobs. For the Mathematics Year,
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after all these discussions we set a particular emphasis on reaching the schools.
And we did this with a positive message: “Du kannst mehr Mathe, als Du
denkst” (“You know more maths than you think”).

The third insight was a positive surprise: The media are interested. After a
rather dull “Year of the Humanities” in Germany, which journalists and news-
papers had taken no big interest in (most of the journalists have studied some
humanities subjects), math as a difficult subject with a very love-and-hate pub-
lic perception and a new, fresh message was interesting – and this gave us the
opportunity to reach very diverse audiences.

Experimenting with Formats. There are many different media, channels
and forms of presentation to try out: Lectures, quiz shows, books, blogs, news-
paper features, posters, games, websites, events, exhibitions, etc. Here are five
examples of surprisingly successful formats that we have experimented with –
probably none of them can be copied as it is, but you could think of “your own
version”.

1. On occasion of the Maths Year, the Mathematisches Forschungsinstutut
Oberwolfach (under its director Gert-Martin Greuel, assisted by Andreas D.
Matt) pioneered an exhibition called “IMAGINARY – with the eyes of mathe-
matics” [4], which presented images of algebraic surfaces in large color pictures.
It came along with software called “surfer” that you could download to create
your own surfaces and images. This was taken up by Spektrum science magazine
(the German edition of Scientific American) as well as by zeit.de (the online
version of the weekly Die Zeit) who ran competitions for the most creative
images. By December 2008, the exhibition had been shown in 13 German cities
and had more than 120,000 visitors, including more than 340 school classes.
The website for the exhibition had different 130,000 visitors, and more than
5 million hits. The software was downloaded more than 40,000 times, and the
contests were great successes.

2. On various occasions I ran a “Maths Quiz live” – modelled after the TV-
show “Wer wird Millionär” (the German version of “Who wants to be a mil-
lionaire?”). This is a very flexible format, which works for small, medium and
large audiences. I would pose 12 problems (plus one warm-up problem to ex-
plain the rules, and three tie-breaker extra problems). For each problem I offer
four answers, A, B, C, and D, exactly one of which is correct. You can have
a few contestants on the stage, or have school classes compete against each
other. All you need is a good collection of problems (suitable in difficulty for
the audience you expect – my audiences ranged from middle-school kids to the
German Minister of Science and a room full of science journalists).

Simple problems are of the type: How much does the area of a rectangular
garden grow if you increase its length and its width by 10% each. (Answers: A:
10%; B: 20%; C: 21%; D: Can’t tell, depends on the shape of the garden.)
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My favourite tie-breaker: What ∗∗∗∗ ∗∗, ∗∗∗ ∗∗ ∗∗∗∗ N , ∗∗∗ ∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ?

(Answers: A: N > 30; B: N is a square between 10 and 20; C: N = 16; D:
N = 42.)

Note: This is not primarily a format where we would try to teach mathematics,
but just to entertain — and to whet the appetite for problems . . .

3. In 2004, the DFG Research Center Matheon “Mathematics for Key Tech-
nologies” in Berlin started to run an annual Digital Advent Calender on the
internet (modelled after the traditional advent calendars which would have a
piece of chocolate behind doors, which are to be opened on the 24 days before
Christmas), targeted at upper-level highschool students and adults: On each
day of advent, December 1 to 24, there is a problem posted at 6pm, which has
to be solved correctly within a certain time limit. In the end prizes are awarded
to the pupils and to the adults who would achieve the largest number of cor-
rect answers – and needed the smallest extra time beyond the time limits. The
problems would typically be rather hard, connected to research done at Math-
eon. (Even the head of the German Science Foundation, Matheon’s funding
agency, has once admitted that he had looked at the problems and decided that
they were too hard for him.) A collection of the problems is now available as a
book [1]. At the end of the Math Year, the DMV Media Office also started to
run a separate internet advent calendar, for younger pupils, classes 5–7. See [3]
for the common web presence of the two advent calendars. Both calendars have
developed into huge successes: In 2009, the calendar for the younger pupils had
nearly 32,700 registered participants, while the Matheon calendar had more
than 16,300 participants from 48 countries — despite the fact that the problems
are offered only in German.

4. Various mathematics exhibitions drew large crowds in the Mathematics
Year. Perhaps the most unusual format for such an exhibition is the Science
Ship, which, run by “Wissenschaft im Dialog” (“Science in dialogue” www.

w-i-d.de), is a regular part of each of the German Science Years. The ship
would travel on the Rhine and Elbe rivers, with stops at larger and smaller
cities for one to four days, where school classes and individuals would visit. The
ship holds an exhibition of some 600 square meters, compiled from contributions
suggested and provided by various universities and research institutes. Students
would be on the boat as “tour guides” who could offer explanations. The media
response is amazing – the local media would have advance reports about “the
ship will be in town”. The 2008 mathematics exhibition on the science ship had
more than 110,000 visitors in 31 cities in less than four months.

5. The German Mathematical Society DMV awards its Mathematics Journal-
ists’ Prize (for a specific piece about mathematics) as well as a Media Prize (for
someone’s “collected works”) every second year. On occasion of the Mathemat-
ics Year, DMV awarded an additional Mathematics Cartoon Prize, funded by
De Gruyter Publishers, and promoted by the cartoon website toonpool.com.
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This contest was an unexpected, huge success, with 260 contributions by 158
cartoonists from 40 different countries. See [2] for the winning entries.

Humor is, I believe, a category that is underused in science communications
in general. Think about this. (For me personally the cartoon contest provided
the cover illustration for a book about Stories from Mathematics [7] — a draw-
ing by a Mongolian artist, Tsogtbayar Samandari, that I would certainly not
have been aware of without the contest.)

Building Professional Structures The “Mathematics Year 2008” was a
joint enterprise of the German Federal Ministry of Science and Education
(BMBF), the Deutsche Telekom Foundation (DTS), the “Science in Dialogue”
agency, and the German Mathematical Society (DMV). It was run to a large
extent by a large advertising agency without any specific mathematics exper-
tise. Thus we had insisted to run a “Mathematics Content Back Office”, where
Thomas Vogt, a trained science journalist together with a team of students, free-
lancers and volunteers would prepare contents, give advice, check that the math
was right and the emphasis made sense on all publications of the Math Year.

This Math Contents Back Office later grew into what is now the “Math-
ematics Media Office” of DMV at TU Berlin, still headed by Thomas Vogt
(under my direction), funded now by TU Berlin, as well as private/industry
funding agencies such as GesamtMetall. In year two after the Math Year we
are very successful in reaching the media, ran the second installment of M3, the
“Math-Month May” that gives a common framework for a dozen different local
mathematics events at different places in Germany, administrate the Abitur
Prize (sponsored by Springer), prepare the next edition of Mathematics advent
calendar, etc. The Media Office is our platform to answer journalists’ queries
(quickly!), prepare press releases, prepare contents for the DMV website, and
dozens of other things. (There is enough to do.)

It is a lot of work (and also needs money) to address the media and the
public in a sustainable way. But the effort will pay off some day. Talking about
mathematics is the first step towards doing mathematics. Positive experiences
with mathematics at a young age will draw young people into mathematics
studies some day. And decision makers, reading about mathematics in the daily
papers, will become aware of mathematics as a part of our culture and also as a
part of our daily life – and appreciate its importance for society and economy.
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PostScriptum: A Question from the Discussion
in Hyderabad

The panel discussion at ICM Hyderabad on Wednesday, August 25, drew a
very large crowd, and the panelists’ presentations (based on the preceeding
pieces) led to a very interesting and diverse discussion. This cannot be recorded
here in detail – but we want to present one interesting question asked in the
course of the discussion. The question referred to a book review (on A. Aczel’s
“Fermat’s Last Theorem”), which said that the book “successfully creates the
illusion of understanding”. The question to the panel was, whether this should
be considered a good or a bad thing.

As panelists, we use the opportunity of this post-scriptum to share our
personal views on this.

Christiane Rousseau: How do we learn, and what is understanding? We
enrich our general knowledge by layers. Understanding could be described as
putting a structure in our knowledge, for instance building it around a spine,
bones, etc. The process is not necessarily linear. Indeed, knowledge and under-
standing often increase through a back and forth movement: we add thin layers
to the knowledge. At the same time, we add more structure (understanding)
through additional bones. With experience, we learn to put a structure in any
new knowledge from the very beginning. As a professor, it is one of my goals
that my students acquire this skill. How is this created? At each level of the
process of learning, there should be an “illusion” of understanding. The next
levels refine and enrich that understanding. How can we achieve that? At each
level of learning, there should be a strong message which provides both a thin
layer of knowledge, and some contribution to the structure. There is a price to
pay for this: we need to use simplifications and/or analogies, and to avoid some
details. So, to me, the communicator is allowed to “cheat” with details. Where
do we pass from “illusion of understanding” to full understanding? There is
no easy answer to this. We often realize that our full understanding was only
partial . . . Hence, to me “illusion of understanding” is desirable, as long as we
have the modesty to admit its limit. . .

Günter M. Ziegler: Science communication to “the society at large” does
not necessarily mean that we can teach mathematics, such that understanding
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would be the ultimate goal. Indeed, there are many occasions where teach-
ing is impossible, unnecessary, or undesirable, but where we have the chance
to report about mathematics, to tell stories (success stories, for example), to
portray the field, the persons, to report about the setting and the impact of
current research, etc. In this case, the main goal after a public lecture or event,
or after people read your article or book would not be that they understand
more mathematics, but rather that they understand more about mathematics.
This is equally valuable, but in this domain “understanding”, the “illusion of
understanding”, or the feeling that they “understand what it is about” may be
plainly the same thing. And in many public or literary settings or occasions,
this is also all you can hope for. A full “understanding the mathematics”, as
we know, is often only achievable via years of serious study.

Marianne Freiberger: The question is what is meant by the “illusion of un-
derstanding”. Presenting mathematics to a general audience is akin to guiding
people through a complex and unknown landscape. You need to provide peo-
ple with a map and it’s your choice what kind of map is appropriate for the
audience: what level of detail to include, which features of the landscape your
map should faithfully preserve, and where you allow some distortion in order
to make your map easy to read. In some sense any map creates illusory un-
derstanding: there’s much more to a landscape than a map tells you and often
there’s been some distortion you may not be fully aware of. The important
point is, however, that the map correctly reflects the aspects of the landscape
that are of interest: it should not lead you astray, or lead you to draw wrong
conclusions.

In this sense it’s acceptable to create illusory understanding in communi-
cating mathematics. Your exposition should enable people to navigate correctly
between the main ideas in the theory. It’s for you to decide what aspects to
focus on and how deeply to penetrate the theory. Perhaps most importantly,
your audience should be aware that what they are looking at is just a map,
rather than the real thing, with all the caveats this entails.

PostScriptum 2: Joining Forces Together for a
Greater Impact

The panel was an occasion for learning success stories from all around the world.
Many of these occur within the boundaries each different country. While there
are cultural differences between the countries so that the strategies to reach to
the public and the schools are not the same from one country to another, it
also appears that a greater impact could be achieved at the level of the planet
if we increased collaboration. Let us mention a few examples:
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• Posters and magazines produced and distributed in one country could be
distributed in other countries as well. Worldwide diffusion is particularly
easy with electronic material.

• Mathematical exhibitions can travel in several countries, as has been the
case for the exhibition “Mathematics is everywhere”.

• Public lectures can be video-taped and placed on the web.

Christiane Rousseau used the opportunity of this item of discussion to invite
the world community to join the initiative Mathematics of Planet Earth 2013 :

www.mpe2013.org

Günter M. Ziegler pointed to the new website

www.mathematics-in-europe.eu

created and maintained by Ehrhard Behrends (FU Berlin) on behalf of the
European Mathematical Society.
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Abstract

We discuss the role of mathematicians in popularization of mathematics and

science. We stress the importance of the message: the message should be sci-

entifically significant. It should strike the imagination, so that a lasting effect

remains from its reception. We also discuss how to prepare the message. This

is illustrated by examples.

Mathematics Subject Classification (2010). Primary 97A80; Secondary 97A40.

1. Why Should Mathematicians be Involved?

Preamble. The text below reflects my personal views on the popularization of
mathematics. There is not a unique method to do good popularization of science
and mathematics. The different methods stick to the personality of the scientists,
and the public should benefit from the richness of different personalities.

The reasons for mathematicians to be involved are numerous. Science in

general, and mathematics in particular, is not well understood from the public.

We hear too often:

“Hasn’t everything been found in mathematics? What is mathemat-
ics useful for?”

We are certainly partly responsible for this. And, this is not without social

consequences:

• The power of mathematical ideas and problem solving for scientific or

technological breakthroughs is not sufficiently recognized. This results
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in insufficient funding and support for our discipline. But also, a better

recognition of the importance of mathematics would help ensuring more

jobs in industry for graduates in mathematical sciences.

• Mathematics could be better taught in the schools if a perspective of

where we need to bring the students was more widely spread.

• In many countries we are faced with the fact that too few high school

students choose to do mathematics and science.

The questions above deserve an answer. If the answer is given by a mathe-

matician, then another message goes through: the mathematician is a human

person. Similarly to a kid, he (she) repeatedly asks questions. Through his (her)

deep understanding of the subject, the mathematician can instil the flavor of

the discipline. The passion is important for the message to go through and, at

the same time, the modesty to admit the limits of the scientist, and the many

questions to which we can only answer “I don’t know.”

Not all mathematicians need be involved in popularization of mathematics.

This requires a passion for communication, which we do not necessarily all

share. On the other hand, improving our communication skills when involved

in popularization activities helps improving the quality of our teaching: we

introduce a distant horizon and place our subject inside a wider scope, we

introduce links with other mathematical subjects and scientific disciplines, we

show applications, we stick to crystal clear explanations and we introduce strong

messages through our teaching.

The paper is organized as follows. Section 2 deals with the message: the

content, a long list of examples, and my own guidelines to prepare it. The two

last sections each contain a detailed example. On a first reading one may want

to skip part of the list of examples of Section 2, and go directly to Sections 3

and 4.

2. The Importance of the Message

2.1. The content of the message. In order for the message to go

through, it should not be too technical. A dream when you do popularization

of mathematics is that the listeners of your lectures or the readers of your papers

can, in turn, explain part of it. For this, it helps if they have felt a skeleton

around which the message is built. What is the spine? The central part could

take the form of a slogan or a leitmotiv. The leitmotiv should be sufficiently

well illustrated that it is digested and remembered.

Let us give examples. Some are not from me, but they are so good that they

deserve to last. The list is quite long.

1. Mathematics makes the invisible visible. You observe an object that looks

complicated to you, and that you do not understand. You turn around
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it to look at it from different points of view. You put your mathematical
glasses and you understand it. Let us go through a few examples:

• A fractal is a complex object. But it could be the attractor of an

iterated function system which is a simple mathematical object. This

will be illustrated in Section 3.

• The Fourier series, or Fourier transform, or any other similar trans-

formation like a wavelet transform, allows to understand the struc-

ture of a musical sound, of a signal, or of an image.

• Biologists do not see the action of enzymes on DNA. Analyzing the

resulting knots through the mathematical glasses of knot theory al-

lows to see the action of a given enzyme on DNA.

• Changes of coordinates allow to understand complicated mathemat-

ical objects: conic curves reduced to normal form in an orthogonal

frame, diagonalization of linear operators, etc.

• The surprising laws of special relativity are better understood when

moving in a space of dimension 4.

• A breakthrough in the understanding and control of chaos comes

from the identification of the simple dynamical system that gener-

ates it.

2. Mathematics provides models to the other sciences.

• Polyhedra are models for the big carbon molecules called fullerenes.

• Knots are models for DNA strands inside a molecule.

• Manifolds are models for the Universe.

• Fractals provide models for the forms of nature: this includes the

profile of rocky coasts, the shape of plants like the fern, the network

of blood vessels in the human body, the fractal structure of the lung.

• The laws of nature often obey optimization principles.

• It is remarkable that nature seems to distinguish between rational

and irrational numbers (even diophantian and Liouvillian irrational

numbers, but this is too sophisticated for the public). Two examples,

very far apart, are given by the golden number in phyllotaxy and the

holes in the belt of asteroids in the Solar system, these corresponding

to periods being rational multiples of the period of Jupiter.

3. Mathematics makes predictions. The examples are numerous among, for

instance, statistics, actuarial science, meteorology, genetics, etc.

4. Mathematics classifies objects. Classifying is introducing equivalence re-

lations. Important tools are invariants. We can make the links with the
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invariants used by, for instance, biologists, when they classify the species.

Here again, we like to take the time to discuss a few examples:

• How to classify the shapes of nature? The biologist Harry Blum,

specialist of morphology, uses the concept of skeleton (or sym-axis)

of a shape, [2]. The skeleton of a planar region is a graph. In the

special case of a simply connected region, it is a tree. Hence, we are

led to the classification of tree graphs. Let us cite Harry Blum: “The
exciting thing now is that non-topological poperties of the object or
its boundary become topological properties of the sym-axis. . . ”

• When are two knots equivalent? Simple invariants are given by the

minimal crossing number. Some polynomial invariants can also be

sketched to the public. It is quite remarkable that the tools intro-

duced by the mathematicians to construct polynomial invariants for

knots, namely skein relations, resemble exactly the operations of

some enzymes on DNA.

• The topological classification of closed compact oriented surfaces by
means of the genus.

• The classification of friezes and tilings by means of their symmetries.
In three dimensions, there are applications to crystallography.

• Are all configurations of the faces of the Rubik cube possible? The

use of invariants allows to answer the question.

5. Mathematics is a living discipline within science and technology. The ex-

amples of cross-fertilization of mathematics, science and technology are

numerous. One of them is quantum computing where Shor’s algorithm to

factor large integer numbers on a quantum computer, and hence break

the RSA code, has been proved before the quantum computer ever exists.

Other examples will be discussed in the section on clever ideas.

6. The importance of a clever idea for a scientist. There are many important

breakthroughs coming from clever ideas that are simple to illustrate. Let

us name a few.

• The RSA cryptographic code makes a positive use of the negative

fact that computers cannot factor large integers: it is impressive

that the RSA code is still in use after more than 30 years, despite

the attempts to break it by many of the best researchers around the

world.

• A second example is given by the success of Google’s PageRank

algorithm. The simple idea of using the stationary state of a Markov

chain process to order pages is the secret of the supremacy of Google

over the other search engines. This example is discussed in more

details in Section 3.
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• A third example, also discussed in Section 3, is the use of iterated

function systems for image compression.

7. There is no limit to the imagination of a scientist. If a mathematician

encounters a problem without solution, then he(she) may create an ob-

ject solution of the problem. Historically, this has led to the creation of

negative numbers, complex numbers, infinite ordinals and cardinals. Also,

mathematicians play with infinitesimally small or large objects.

8. The existence of unifying ideas inside mathematics or science.

• The concept of skeleton discussed above in morphology appears in

many areas of science, including physics, where it was probably first

introduced when considering the propagation of wave fronts, and

computer science, where it is used for 3D modeling.

• Banach’s fixed point theorem, one of my favorite examples, appears

in many areas of mathematics and its applications. It will be dis-

cussed in more detail in Section 3.

9. Mathematicians introduce new concepts and generalize. For instance, the

introduction of fractals has brought the generalization of the notion of

dimension. Fractal dimension is now used by engineers when they need to

measure the roughness of a surface. It is also useful in medical diagnosis

of cancer since the fractal dimension of blood vessels is different in the

neighborhood of a tumor.

10. Mathematicians and scientists make mistakes, but these mistakes can be
source of creativity. An example is given by the Lagrange cylindrical col-

umn which was wrongly conjectured to be the strongest column of rev-

olution with a given volume and a given height. The correct answer was

given in 1992 by Cox and Overton [4] (see Figure 1).

Figure 1. The strongest column.
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Through all these examples, I have addressed some of the possible ways a

mathematician thinks. When you read this enumeration, you certainly noticed

that I missed some. . . So, it will be your turn to develop your favorite message.

2.2. My own guidelines to prepare the message. The danger

for a scientist going into popularization is to be too technical and/or too long.

If you are involved in popularization of mathematics, there is no need to choose

a subject that is close to your research interests. Choose a subject that is both

scientifically significant, and likely to bring a strong message.

It is important to address all people in the audience. The message should be

adapted to the less learned, and one should never be intimidated, nor change

the message, because there are mathematicians in the audience. At the same

time, the message should be sufficiently scientifically sound that anyone in the

audience, including the scientists, be interested.

In order to avoid being too technical, here is how I prepare my contributions.

I never start sitting at my desk or with my laptop. If I do so, then, most

probably, my talk or paper will be too technical. Rather, I try to imagine

my contribution when jogging, or skiing, or riding my bicycle, or a similar

activity. Then I have no choice: I cannot take a pencil or a piece of chalk for

my explanations. Therefore, these will be as synthetic as possible. Also, I figure

what is the shortest path to illustrate the message I want to convey. It is only

when I have completely visualized my contribution that I sit at my desk, and

write the details. Of course, this does not mean that I do not put technical

details. But, I stick to the minimum. Even, the choice of details is done so as

to convey a message: it could insist on the power of a clever idea, the elegance

of a small piece of proof, etc.

3. An Example

In many cultures, we find images containing an embedded smaller copy of the

image. One of them is the Laughing Cow and her earrings (Figure 2). Let

us play the following game. To each point P of the picture we associate the

corresponding point on the left earring, which we call f(P ): to the tip of the

chin, we associate the tip of the chin of the cow on the left earring, etc. We

iterate and look for f2
(P ) = f ◦ f(P ), . . . , fn

(P ) = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n

(P ), . . . We

can already remark three things:

(i) In theory, we can continue this process an infinite number of times and

create an infinite sequence.

(ii) In practice, on the figure, we cannot iterate for very long, since iterates

become indistinguishable.
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Figure 2. The famous Laughing Cow.

(iii) If we start with a second point Q, for instance the tip of the right ear of

the cow, then the iterates fn
(Q) also become indistinguishable. Moreover,

very soon, fn
(Q) becomes indistinguishable from fn

(P ).

The morale of (i) is that mathematicians have imagination and like to play

with infinite sequences. Considering (ii), a natural reaction is to zoom, i.e. to

decrease the threshold at which we stop distinguishing points. The deeper the

zoom, the more distinguishable iterates we see. But, whatever a zoom we make,

using a magnifying glass, a microscope or an electronic microscope, only a finite

number of elements of the sequences are visually distinguishable and the others

are merged together, since closer to each other than the new threshold. Well,

we have experienced the notion of a Cauchy sequence. Now, what about (iii)?

Can we imagine that there exists a point A which coincides with its image

f(A)? Surely, if such a point exists, it must lie in the left earring of the cow.

And inside the left earring of the cow appearing on the left earring, etc. If such

a point exists, it will be indistinguishable from the indistinguishable points

{fn
(P )}n≥N for any P . So, we are reasonably convinced that such a point

exists, and that it is located inside the bunch of indistinguishable points, up

to the threshold of our eye. But, we have done much more. We have given

a method to construct it! We start with any point P0, and we construct the

sequence {Pn = fn
(P0)}n∈N. We choose a precision a priori. Once the points of

the sequence become indistinguishable for that precision, we have located our

fixed point with a pretty good accuracy. And we have experienced Banach’s

fixed point theorem through its proof.

The next thing that we need to experience is that we can do big things with

this theorem. So let us look at a few applications.
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Figure 3. The Sierpiński carpet.

3.1. Compression of images through iterated function sys-
tems. Let us consider the Sierpiński carpet of Figure 3. It looks a priori a

complicated object. How to store it in computer memory, in the most economi-

cal way? The best is to store a program to reconstruct it when needed. And the

clever idea behind this program is the use of Banach’s fixed point: the Sierpiński

carpet is the fixed point of an operator defined on compact subsets of the plane.

But, we need not go into these fine details to illustrate the process.

Let us first analyze our Sierpiński carpet: it is the union of three Sierpiński

carpets. Starting from the Sierpiński carpet, we can construct a second figure

with the following procedure:

• We shrink the Sierpiński carpet to its half size from the lower left vertex.

• We make a second copy of this half Sierpiński carpet and glue it on the

right.

• We make a third copy of this half Sierpiński carpet and glue it on the

top.

The second figure we have built is identical to our initial Sierpiński carpet. So

the Sierpiński carpet is the fixed point for this process.

Can we play the same game with other shapes? Let us take a square C0

(Figure 4(a)). Its image is C1 in Figure 4(b). We apply the same process to

C1 and get C2, etc. (Figure 4(c)-(f)). One is easily convinced that the process

converges to the Sierpiński carpet.

Not only that, but we can experiment that it works with any initial set! A

second example iterating a pentagon appears in Figure 5. The same remarks

(i), (ii) and (iii) as above apply to this example.

In mathematical terms, what have we done? We have three affine contrac-

tions T1, T2 and T3. If we call A the Sierpiński carpet, we have constructed the

sets T1(A), T2(A) and T3(A) and the image T1(A)∪T2(A)∪T3(A), and we have
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(a) C0 (b) C1 (c) C2

(d) C3 (e) C4 (f) C5

Figure 4. C0 and the first five iterations C1–C5.

(a) B0 (b) B1 (c) B2 (d) B3

(e) B4 (f) B5 (g) B6

Figure 5. A pentagon B0 and its first six iterates B1–B6 .

remarked that this image is identical to the initial image:

A = T1(A) ∪ T2(A) ∪ T3(A).

If, instead of A, we take another subset B of the plane, we construct the set

T1(B)∪ T2(B)∪ T3(B). So we have defined an operator W on compact subsets

of the plane through the rule

B 7→ W (B) = T1(B) ∪ T2(B) ∪ T3(B),
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Figure 6. A simple web.

and the process has constructed the Sierpiński carpet which is the unique fixed

point A of W .

This process has been adapted to the compression of real images (see [5] or

[7]). The method produces high quality images when the image has some fractal

character. However the rate of compression is not as good and not as flexible

as the JPEG format. Also, the encoding process (transforming the image in

a program to reconstruct it) is still too tedious to be of practical interest.

Nevertheless, the idea remains very appealing.

3.2. The PageRank algorithm. How does Google order the pages of

the web? Let us look at a simple web in Figure 6 with five pages named A, B,

C, D, and E. The web is modeled by a oriented graph in which the pages are

the vertices. The arrows represent the links on each page. For instance, if we

are on page C, we find three links, and we can choose to move to either page

A, or B, or E. On the other hand, if we are on page A, then there is only one

link to page B.

Here again, we play a game, which is simply a random walk on the oriented

graph. Starting from a page, at each step we choose at random a link from the

page where we are. For instance, in our example, if we start on page A, then

we go to B with probability 1 while, if we start with B, then we can do to A
or to C with probability 1/2 for each case. We iterate the game. Where will

we be after n steps? To automatize the process, we summarize the web in the

following matrix, where each column represents the departing page and each

row the page where we arrive.

P =

A B C D E












0
1

2

1

3
1 0

1 0
1

3
0

1

3

0
1

2
0 0

1

3

0 0 0 0
1

3

0 0
1

3
0 0













A
B
C
D
E
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It is not difficult to figure that the probabilities after two steps can be

summarized in the matrix P 2
.

P 2
=

A B C D E












1

2

1

6

1

6
0

11

18

0
2

3

4

9
1

1

9
1

2
0

5

18
0

1

6

0 0
1

9
0 0

0
1

6
0 0

1

9













A
B
C
D
E

Experimentation shows that for n large, all columns of Pn
are identical:

P 32
=

A B C D E












0.293 0.293 0.293 0.293 0.293

0.390 0.390 0.390 0.390 0.390

0.220 0.220 0.220 0.220 0.220

0.024 0.024 0.024 0.024 0.024

0.073 0.073 0.073 0.073 0.073













A
B
C
D
E

After n steps, where n is sufficiently large, the probability of being on a page is

independent from where we started! For a mathematician, this can be explained

from the fact that P is the matrix of a Markov chain, and such a matrix

generically has a unique eigenvector π of the eigenvalue 1, normalized so as

to be a probability distribution, and called the stationary distribution. (More

details in [7].) This stationary distribution allows to order the pages. In our

example, we order the pages as B, A, C, E, D and we declare B the most

important page.

In practice, given any vector p0 = (pA, pB , pC , pD, pE), representing the

probabilities of starting on any given page, the sequence Pnpt
0 converges to

the stationary distribution πt
. This is because the map p 7→ Pp is a contrac-

tion on the complete metric space of probability vectors. (This space is a 5-

simplex.)

Once again, we have seen Banach’s fixed point theorem providing an elegant

solution to an important problem. And again, we could observe properties (i),

(ii) and (iii).

3.3. Coming back to Banach’s fixed point theorem. As math-

ematicians, we know the importance of this theorem in mathematics, because

of its numerous applications in differential equations. These more exotic appli-

cations have demonstrated this fact to the public also. As for the leitmotiv, we

have illustrated, both the importance of a clever idea to make a breakthrough,

and the existence of unifying ideas or concepts.
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4. A Second Example

After having explained the importance of the message, let us come to a second

example for which the message is less scientific than the ones listed before. But,

there is a link with the Laughing Cow of Section 3.

You may have heard of the completion of Escher’s lithography by Hendrik

W. Lenstra and Bart de Smit [6]: see for instance

http://escherdroste.math.leidenuniv.nl/

Let us first summarize the mathematics of the process. We start with an

image which is reproduced inside itself, like the Laughing Cow. In mathematical

terms, we say that the image is invariant under z 7→ Cz where |C| < 1. So all

points {Cnz}n∈Z have the same color. We will apply a transformation

z 7→ w = f(z) = zβ

for some β ∈ C. How is chosen β? If we start with some z0 and we make a

turn around the origin we come back to z0e
2πi

. (Here we choose the positive

direction, but we could choose the negative direction as well.) Since f is ramified

we choose β so that f
(

z0e
2πi
)

= f(Cz0), yielding zβ0 e
2πiβ

= Cβzβ0 . Hence,

β lnC = 2πi(β + k), for some k ∈ Z. For instance, if we take k = 1, then

β =
2πi

lnC − 2πi
.

In practice, this can be accomplished through the following sequence of trans-

formations:

• z 7→ Z = lnZ: in the Z-coordinate the image has the infinite set of

periods {k1 lnC + k2(2πi)|k1, k2 ∈ Z}, which is generated by T1 = lnC
and T2 = 2πi, but also by T1 = lnC and T3 = lnC − 2πi.

• Z 7→ W = βZ: again, the image is doubly periodic. Then, the set of

periods is generated by T4 = βT1 and T2 = βT3 = 2πi.

• W 7→ w = eW : the period T2 guarantees a uniform (non ramified) image.

The final image is invariant under w 7→ Cβw, where Cβ
= eT4 .

To complete Escher’s lithography which is in the w-coordinate, Hendrik W.

Lenstra and Bart de Smit brought it back to the z-coordinate, filled the hole

and returned to w-coordinate.

But how to explain this to a non-mathematician? We will make a film of

these transformations on the simple example appearing in Figure 7. We should

imagine that the image is on a table cloth in 3-dimensional space (Figure 8).

We lift the (elastic) table cloth by its center, thus transforming it into a cone

(Figure 9). During the process, the unit circle is kept fixed in the plane. We

observe that the multiplicative period tends to 1 and that, in the limit, we
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Figure 7. The initial image.

Figure 8. The initial image in 3-dimensional space.

observe a translational symmetry on the cylinder in Figures 10(a) and 11(a). If

we suppose that the cylinders are rolls of paper with identical images on each

sheet and we unroll the cylinder on the left (resp. right), we obtain the image

in Z (resp. W ) coordinate which is doubly periodic.

The last step is simply the inverse process to the one represented in Figure 9

starting from the cylinder in Figure 10(b) or 11(b). It is represented in Figure 12,

and the final image appears in Figure 13.

Now, how can we put this transformation in equation? To transform a plane

into a cone we apply z 7→ zα. But we must at the same time send the origin to

∞ and keep the image of the unit circle of length 2π. So the transformation is

z 7→ ω(z, α), where

ω(z, α) =

{

zα−1

α , α ̸= 0,

ln z, α = 0,
(1)

and we let α decrease from 1 to 0. From its form, the transformation is conformal

in z for all α. The function ω(z, α) is simply the unfolding of the function ln z.

In dynamical systems, it is called the Leontovich-Écalle-Roussarie compensator.
In statistics, it is called the Box-Cox transformation. It may exist in other areas

of mathematics.

A 2-dimensional animation of this process has been programmed by Philippe

Carphin and can be visualized at:

http://accromath.uqam.ca/contents/Animation.wmv

What is the message behind this example? Maybe that mathematics is a

form of art, and that mathematicians and artists eventually share the same

dreams. . .
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(a) α = 9

10
(b) α = 8

10
(c) α = 7

10

(d) α = 6

10
(e) α = 5

10
(f) α = 4

10

(g) α = 3

10
(h) α = 2

10
(i) α = 1

10

Figure 9. Lifting the image by the center. (Note: the parameter α refers to the trans-

formation ω(z, α) used to produce the figure and discussed in (1).)

(a) (b)

Figure 10. The image on the cylinder. The image on the right is obtained by cutting

the left cylinder along a vertical line, sliding the sides by one period and scaling so

that the horizontal section remains of radius 1.
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(a) (b)

Figure 11. The same images on the cylinder as in Figure 10, with the horizontal plane

represented.

(a) α = 1

10
(b) α = 2

10
(c) α = 3

10

(d) α = 4

10
(e) α = 5

10
(f) α = 6

10

(g) α = 7

10
(h) α = 8

10
(i) α = 9

10

Figure 12. Back from the cylinder to the plane.
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Figure 13. The final transformed image.
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Round Table: The Use of Metrics in

Evaluating Research

J.M. Ball∗

The use of metrics for evaluating research is a hotly debated issue. The

IMU/ICIAM/IMS report on Citation Statistics [1] highlighted the dangers of

uncritical use of impact factors, which play an increasing role in funding, pro-

motions and library purchases. Are impact factors and other such indices good

measures of journal quality, and should they be used to evaluate research and

individuals? What can be done about unethical practices like impact factor ma-

nipulation? Is there a role for metrics in evaluating research? Are there better

alternatives?

These were the topics of discussion at the ICM 2010 Round Table on Thurs-

day, 26 August, between 6 and 8 p.m. It was chaired by John Ball, and organized

by IMU’s Committee on Electronic Information and Communication (CEIC).

This record of the Round Table consists of edited and shortened ver-

sions of the presentations by the panellists, together with excerpts from some

of the contributions by participants in the discussion. A complete video is

available at the IMU website http://www.mathunion.org/publications/

historic-material.

Introduction of the Panellists

John Ball. Good evening. I’m substituting for the IMU President, László

Lovász, who is actually here but has some problem with his eyes that make it

difficult to be in front of bright lights. This round table is a sequel to the 2008

Citation Statistics Report, which was a joint report of the International Math-

ematical Union, the International Council for Industrial and Applied Mathe-

matics and the Institute of Mathematical Statistics. The writing group for that

report was chaired by John Ewing, who was then Executive Director of the

American Mathematical Society. This report had a very good reception and

∗Mathematical Institute, University of Oxford
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it drew attention to the dangers of uncritical use of the impact factor as a

statistical measure of journal quality. We have a very interesting panel:

Doug Arnold is Professor of Mathematics at the University of Minnesota in

Minneapolis and currently is President of SIAM.

Malcolm MacCallum is the Director of the Heilbronn Institute at the Uni-

versity of Bristol, and was a consultant on the United Kingdom Research Ex-

cellence Framework, which is going to be the next evaluation of research in the

UK.

José Antonio de la Pen̆a was Director of the Mathematical Institute at

the National University of Mexico and is a former President of UMALCA, the

Mathematical Union of Latin America and the Caribbean, and he is currently

Deputy General Director for Science at the National Council for Science and

Technology, Mexico.

Frank Pacard is Professor of Mathematics at the Université Paris Est-Creteil,

and is Scientific Advisor of Mathematics in the French Ministry of Higher Ed-

ucation and Research.

Presentations by the Panellists

Doug Arnold. I will focus mostly on one research metric: the Impact Factor

(IF), which is simply the average number of citations made in a given year to a

journal’s papers from the preceding two years. It is intended as an easily used

journal quality measure, but, as I will demonstrate, it is fatally flawed.

The Citations Statistics report found many failings in the IF design as a

proxy for journal quality, but I am going to focus on something else: Goodhart’s

law and IF manipulation. Goodhart’s law states that: ‘When a measure becomes

a target, it ceases to be a good measure’. An example used in economics is that

if a nail factory in a centralized economy is judged on the number of nails

produced, pretty soon they will figure out they should make lots and lots of

tiny nails. If it is judged on the weight of the output, they will start making

very big nails. The metric ceases to be an accurate proxy for the more complex

attribute, say productivity, which was intended.

How do people manipulate the IF? One way was demonstrated by an editor

of Journal of Gerontology A. Every January, he would write a review article

citing all the articles of the preceding two years, and so acquire 200 impact factor

citations, more than most math journals get altogether. Another approach is

that ‘the editor cultivates a cadre of regulars, who can be relied upon to cite

themselves and cite the journal shamelessly’. Such a bargain between authors

and editors is difficult to detect. Authors are often under citation pressure, but

the editors of the Balkan Journal of Geometry and Applications put it in their

instructions to authors: ‘[it] is advisable for each accepted paper to contain

citations to articles published during 2006-2008 in our journals’.
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In order to determine to what extent such manipulation is actually damaging

the IF, I compared it to expert opinion, for which I used a journal ranking

carried out with broad and careful expert consultation as part of an Australian

research assessment exercise. This study [2] demonstrates that many of the

bottom class, B and C, journals have higher IF than a significant proportion

of the journals that are judged by experts to be the best in their subfield.

The grossest anomaly is The International Journal of Nonlinear Sciences and

Numerical Simulations (IJNSNS), which has had the highest IF in all of applied

mathematics by a large margin for the last four years running, although as a

B-rated journal there are roughly a hundred journals in front of it according

to the Australian rating. Working with librarian Kristine Fowler, I studied this

case in detail.

Which authors gave IJNSNS all those citations? It turns out that 30% of

the citations were from just three authors, and these were the Editor-in-Chief,

who cited his own journal 243 times in the IF window, and two other editors.

(For control we looked at high reputation journals in applied mathematics, and

found it is rare to have more than a few citations come from a single author).

As a second approach, I looked at the highest citing journals for IJNSNS. First

place is a single issue of the Journal of Physics Conference series, which provided

294 citations. This was the proceedings of a conference that the IJNSNS Editor-

in-Chief organised and controlled the peer review for. The next highest citer

was a special issue of a different journal that was again organised by the Editor-

in-Chief of IJNSNS. Similar issues arose with other highly citing journals, so

that more than 70% of the citations were under the immediate control of the

IJNSNS editorial board. A different sort of check is to look at the citations

outside the IF window. With IJNSNS, 72% of their citations are in the two

years that count for the IF and only 28% in all the other years. With SIAM

Review, for example, it is the very opposite: only 8% fall in the IF window.

Although I have been mainly concerned with journals, the people who make

the IF say their citation database ‘can rank top countries, journals, scientists,

papers and institutions’. Who do they think is the top mathematician? Ji-Huan

He, the Editor-in-Chief of IJNSNS! He was named by them as a ‘Rising Star’

in Computer Science; he had a ‘New Hot Paper’ in Physics, another one in

Mathematics; a ‘Fast Breaking Paper’ in Engineering. And then in 2007-2008,

they named 13 scientists in all of science as ‘Hottest Researchers of the Year’,

and he was the only mathematician, a performance he repeated the next year.

To conclude, there is little doubt that IF is highly flawed as an indicator of

journal quality. I showed how a journal which is roughly number 100 in applied

mathematics moved itself up to number one. There are certainly many other

cases in which journals manipulate the IF more subtly, moving themselves up

(and so moving more honest journals down) five or ten places. We cannot ex-

pect an easy formulaic fix. If we agree to judge quality by counting citations,

Goodhart’s law indicates that we will fail. However, there is a need, e.g. for

library purchase decisions, for an easily consulted indicator of journal quality.
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The IMU and ICIAM have discussed this and taken a big step forward this

month by resolving to develop a plan for a joint ICIAM/IMU method of rating

journals, based on expert opinion. This has the potential of providing truly use-

ful information to those who need it, while returning the process of judgement

to us, the experts.

Malcolm MacCallum. I think a lot of the discussion is going to centre on im-

pact factors and citation indices. I want first to draw your attention to the

other sorts of metric used, in particular in the UK Research Assessment Ex-

ercise (RAE). It had three headings: ‘Outputs’, ‘Environment’ and ‘Esteem’.

‘Outputs’, essentially papers, and ‘Esteem’ were assessed by peer judgement.

In judging Environment, we had about 20 metrics presented to us, for example

the number of Research Assistants per full time equivalent members of staff.

There was no sane way to use them all.

Some of them were really input measures, and it is very hard to establish

how effectively they had created output or knowledge transfer. My own suspi-

cion is that the less income you have, the better you use it. Some are outside

institutional control. Some are historical: you may be very attracted to where,

say, Hardy worked although Hardy died long ago. In fact, I think too many

of them are self perpetuating, rather than reacting to current research quality.

Even if you accept them as valid, there are still various ways to use them. For

example, in considering the total research income per person against the size of

departments, do you reward the department that earned most or the one spec-

tacularly effective with the number of people they have? Kenna and Berche

[3] found that in almost all disciplines there is a critical size above which the

research quality tails off. Unfortunately this isn’t a very useful message for this

assembly because while true for applied, it is not true for pure mathematics.

In the UK, they plan to replace ‘Esteem’ by ‘Impact’, meaning economic,

social or cultural but not scientific impact. That has to do with why a govern-

ment should fund research at all, which is a very fair question. But I think the

specific way that they are intending to answer it is not the right one. The Royal

Astronomical Society and the UK Institute of Physics, concluded ‘we can’t do

it’ and ‘we don’t think it’s doable’ Fabian [4].

Now I want to come back to bibliometric measures. There has been a lot of

research on citation data, and the many problems it has, such as consistency,

coverage, nationality and gender biases, indexing, ‘obliteration’, discipline size

and citation practice etc. (see e.g. Blustin [5], and for fun [6]). In RAE we

specifically did not use bibliometric data. But after I had read and assessed

each paper, I looked up its citations. That caused me to change my opinion on

only two or three of the 400 papers read. So citation information can be useful,

but it has to be interpreted with a knowledge of the sociology of the discipline

and an understanding of the mathematical content. For the Expert Advisory

Group on the replacement for RAE, there was a pilot of looking at citations

of individual papers. The resulting data was given to us to compare with our
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actual assessments. There was general agreement across all subjects that the

bibliometric data could not have been used without some serious injustices.

As a journal editor I find impact factors a useful measure of how we are

doing against the competition. But I do not believe one can judge a paper by

where it appears: thus I do not agree with Professor Arnold’s proposals.

In summary, I have two messages.

1. To bureaucrats: no metric is safe for use without human interpretation.

You have to be very careful to realise that correlation does not imply cau-

sation. One of my colleagues claimed that the UK ranking of institutions

was very tightly correlated with the number of gardeners they employed!

2. To those entirely opposed to metrics: they can be a useful sanity check,

providing you don’t try to use too many or make them too complex.

Frank Pacard. I wanted to say something about the situation in France concern-

ing the use of citations and metrics to evaluate mathematical research, either

by the government or by the universities. First of all, there have been some

changes in the French higher education and research system and, to under-

stand how citations and metrics are used, it is very important to understand

how the money supporting research is now distributed. In France almost all

the money for mathematics comes from the Ministry of Higher Education and

Research but it travels through many different channels before it reaches math-

ematicians. As far as the assessment of research is concerned, the government

has created some evaluation agency to this effect. So far, the evaluations from

this agency are not based on the use of metrics and complicated impact fac-

tors, there is though a definition of an ‘active researcher’ which depends on the

number of publications. Therefore, everything seems to be going smoothly in

France with a very limited use of statistics in the assessment of research.

However, looking closer you find that there is also an institution whose work

is to provide statistics based on the number of publications and citation. Even

though these statistics are not used officially to evaluate a research department,

they are becoming more and more popular to measure for example the strength,

weakness and evolution of the different fields in a given part of France (for

example, all sciences in the south west of France). These data are also available

to all actors of the research system. These statistics can be very precise and

can cover very different scales : at a scale of a whole country up to the scale of

a research department.

For example, in my own university, statistics about the number of publica-

tions of the mathematics department (which is a small department) are received

and, as you can imagine, interpretation of the data can be rather controversial

at such a small scale. French universities are now autonomous and have more

freedom in their scientific policy. In particular, to some extent, they can decide

to give more support to department A rather than to department B and the

government does not provide them with any guide on how to distribute the

money among departments. As a consequence, there is more and more pressure
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to make use of metrics in order to distribute the money as best as possible,

using possibly some very complicated mathematical formula.

Even though French mathematics is very strong, it is fair to say it only

corresponds to a very tiny subset of the French research system. What is true

at a national level is also true at the level of a university where mathematics

departments are now in direct competition with other departments of other

sciences whose weights are much bigger and for which the use of metrics seems

more natural. This is where I see that there is some danger for mathematics in

France. My experience shows that there is a strong temptation to use metrics

not necessarily coming from the top of the research evaluation system but also

coming from the bottom of the evaluation system, because metrics are a rather

quick and convenient way to compare people or departments from different

fields!

On the other hand, the use of metrics at a large scale (say the scale of a

country like France) is probably worth considering and, carefully analysed and

complemented, can give some interesting insight on the strength and weak-

nesses of a given field. For example, the relative share of publications of French

mathematicians in the world has decreased over the past years slightly faster

than expected. This is an interesting piece of information but unfortunately,

since there is no further analysis of this information, it might be improperly

used. Also, people in charge of building the statistics based on publications

are well aware that some indices used are not adapted to mathematics (for

example, the number of citations in the two years after publication is not very

meaningful in mathematics) and they would be very interested in having some

more meaningful formula.

To conclude, I would say that the situation concerning the use of metrics

in France is still not completely clear. There is some pressure to use them and

we have to be very careful in the next years to protect ourselves from improper

intensive use.

José Antonio de la Pen̆a. Citation indices, originally designed for information

retrieval purposes, are increasingly used for research evaluation. The concern

that the consideration of these indices is distorting the evaluation of the indi-

vidual work has passed, in the last few years, from corridors to main stream

journals.

In the developed countries, at least since the second half of the 20
th

cen-

tury, science is accepted as a social, cultural and economic asset. Although the

relevance of scientific work has been evaluated from decades back, current eval-

uation practices have a recent history that respond not only to academic needs,

but to conceptual changes of political, economic and social character.

In evaluating scientific work, the criteria used are expected to have universal

validity (as much geographic, as thematically), to be objective, to be simple to

measure and to determine, as far as possible, the quality of the work. The

criteria used so far show many limitations and misinterpretations. Notably,

the use of impact factor of journals as a measure of the quality of the science
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published and, still worse, the quality of the individual papers published in

those journals, is an extended practice without a solid support. Even Eugene

Garfield has warned against some abuses: ‘It is absurd to make comparisons

between specialist journals and multi-disciplinary general journals like Nature’.

To check the evaluation practices in Latin American countries, we asked

friends from Argentina, Brazil, Colombia, Chile, Mexico and Venezuela. Here I

quote just a few answers to illustrate the discussion:

Q1. Are indices (such as number of papers, number of citations, impact factor

of journals, h-number, etc) used for the evaluation of mathematicians in your

country? If yes, which indices are prefered?

Chile: In general no. Up to now the committees of mathematics agree on the

quality of the journals to evaluate the research projects or CV. Sometimes they

use, as complementary information in the analysis, some citation indices.

Colombia: In the public universities, the salary of the professors depends on

the numbers of papers.

Venezuela: Yes, in some cases. At research institutions, the tendency is to use

all those indices to evaluate researchers, but not so much at universities.

Q2. Who promotes the use of these indices (the administration, scientists in

general, mathematicians in particular)?

Everybody: the administration, in first place; scientists of other fields, as second.

Q3. Is it considered that the use of indices provides a more: efficient, scientific,

fair, objective way of evaluation? Who thinks so?

Most: I guess that some groups of scientists look for efficiency and some kind

of ‘fairness’.

Q4. In your opinion, what is the effect of the use of these indices?

Most: I believe they do add value to the evaluation, if used carefully and in

combination with other parameters.

Argentina: the use of indices is helpful to discriminate between real scientists

and those who pretend to do scientific work but have no impact whatsoever.

Chile: I do not know the effect for all areas, perhaps in some of them the sys-

tematic use of indices could be useful (but, at the end the prevalence of indices

would mean that the work of specialists is not necessary). A systematic use

of indices in mathematics will constitute a big catastrophe for its development

(an enormous deformation that could affect quality for a long time).
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Q5. Could you give an idea of the general feeling of (dis)satisfaction concerning

evaluation among the scientists (in particular, mathematicians) in your coun-

try?

Brazil: The general feeling is actually very positive, among mathematicians and

among scientists in general. This is perhaps because the scientific community

itself is directly in charge of the evaluation.

Chile: People that have been part of the local evaluation committees say that

there is mutual dissatisfaction between mathematicians and other groups of

scientists.

Comparing the use of impact factors to measure quality of research with

the story of the measuring human intelligence by means of the IQ, we point

out the misunderstanding of thinking that a person is intelligent because they

have a high IQ. Similarly, we are pushed to believe that a scientific paper is

good because it is published in a journal of high impact factor. This is my last

argument: I would call it the mismeasure of science, to keep the parallelism with

the situation described by Stephen Jay Gould. It is a complete misconception

to transfer the value, whatever the impact factor measures, from journals to

articles. It should be made in the converse way, after all, a journal is not more

than a collection of papers. The only meaningful definition for the impact factor

of a journal is the mean value of the impact factor of the papers it publishes.

If this is so, it is the impact of a scientific article which should be discussed: is

it possible to give a sound definition?

General Discussion

Doug Arnold. While we’re waiting for someone to pluck up their courage, let me

respond to just one misimpression which may have arisen from Malcolm’s talk.

He said one cannot judge a paper by where it appears and for that reason didn’t

like my proposal. So I want to make clear that I agree 100% with Malcolm that

one cannot and should not judge a paper by where it appears. In fact in some

cases it might be wise to choose a lower impact journal for an excellent paper,

for example to help strengthen the journal. My proposal to rate journals is in

no way aimed at judging individual papers, and any report that comes out of

it would clearly state that. It is a way to get a sense of a quality of a journal

for reasons like library purchase decisions, helping the editorial board to know

how their work is going and so forth.

George Andrews, Penn State University, USA. I’d like to ask Prof MacCallum,

since you say you do not accept Doug Arnold’s proposals, I wonder if you are

not disturbed by, not the manipulations and outliers, that were in the graph,

but the discrepancy that he described between the top level journals, as people

assess them, having a lower impact factor than really badly ranked journals.
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Any solution is going to have problems, but aren’t the problems mitigated

somewhat by Doug’s proposal?

Malcolm MacCallum. I think that there are certain problems that would be

mitigated but what worries me are the ways in which this is likely to be used,

and the degree to which it seems to be going along with the idea that you can

make judgements by where something appears. I think we should simply be

opposing use of data on journals for this kind of purpose. What was shown

in the comparison you refer to doesn’t surprise me because different journals

appeal to different subcommunities or accept papers with a different kind of

angle or approach.

Doug Arnold. So I just want to repeat again that there was never any suggestion

that one should use the journal quality, no matter how carefully measured and

determined, as a way to rate papers, or what you call products of research. I

know you have been very involved with rating products of research and you

may think that is what this proposal is for. The proposal is to rate roughly, to

give a rough idea of what we all know as mathematicians, to put down what

we all know about the quality of journals.

Why do we want to do this? We want to do this, for instance, because people

must make a decision on which journal their libraries are going to subscribe

to. If they don’t have enough local expertise in the area then the library must

make a decision based on data. Right now they are making such decisions based

on seriously flawed data, and we were hoping to replace that with reasonable

data which reflects the expert opinions of the people who look carefully at the

journals. You can say that people might misuse that, but in fact people are

misusing a highly flawed database. We can create one that is less flawed and

with clear instructions of what it can be used for and what its limitations are.

The fact that somebody might refuse to honor those or do something foolish, is

not a reason not to do anything, particularly because what is being done now

is much worse.

László Lovász, Budapest, Hungary. So first of all thank you, John, for being

out there instead of me. The second remark is that I am a bit envious of Prof

Arnold that he lives in a country where it’s still the librarians who decide

which journal to subscribe to; in many countries it is by bulk subscription by

some government agency for all universities in that country, especially for the

electronic versions. This is a situation which is a separate question but I just

wanted to mention that this is also a very serious concern as far as I can see.

My next remark is that I like very much Malcolm’s remarks, essentially that the

peer review system and numerical data should complement each other. In case

there is a discrepancy then it should probably be more carefully looked at. We

all know examples where the numerical data gives an entirely false impression,

but I have also seen the peer review system run amock, with somebody who

was by personality not so well liked or had one enemy in the system, and it
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has produced very very strange results. So I think in that case numerical data

should have corrected the procedure at some point. So I think the question to

look at is which numerical data and how can we use it? Now I am talking about

evaluating people not about evaluating journals, these are two different issues.

R. C. Cowsik, Mumbai, India. In India we have journals which publish only to

the writers of papers in that journal – no other copies are ever sold. And we

also have departments where everybody works in the same subject, a narrow

part of mathematics. They quote each other so the citations would be large for

them. We have a journal called Annals of Mathematics, India, and India is in

small print!

Daya-Nand Verma, formerly at TIFR, Mumbai, India. My question to the en-

tire panel is, isn’t there some sort of a parallel between the life of research

papers and life of individuals? Educationalists know that all children are not

equal, in the same way as you have been pointing out that all research papers

are not equal. So sometimes some research paper goes unnoticed, or maybe

with very, very few exceptional references by a few people, and has not been

referred to for 40 years, 100 years perhaps. Is there a way of devising a system

which can pick up these exceptional, high calibre youngsters, so by that I mean

the exceptional papers which go unnoticed, just as many high calibre children

go not only unnoticed but get punished by the system.

Malcolm MacCallum. As mathematicians we like to have absolute objective

truth. One area where there will not be an objective truth is in assessment of

papers. It is a human activity and we’re inevitably going to make mistakes. I

don’t think we can do anything but accept that and try to minimise its extent.

Doug Arnold. I would add that I certainly agree with what Malcolm just said.

The most we can do is try to be careful when it come to assessing and the way

you assess a paper is to read it. Counting the citations, no matter how carefully

you count them, is not very helpful. You brought up the very good point that

great papers in mathematics often go uncited for a long period. One of the

wonderful facts about mathematics is you often see papers that are very highly

cited many years after they are written. And another point is that citations

come from all sorts of reasons. If a paper has a mistake and there are criticisms

and retractions published, those cite the paper and boost its quality according

to a foolish, citation-counting viewpoint.

Malcolm MacCallum. In fact I would say if you really want to be highly cited

quickly the best way to do it is to write a paper that is just subtly wrong, so

that lots of people pitch in to tell you why.

Garth Dales, Leeds, U.K. I would like to ask about possible political action,

perhaps particularly addressed to Prof Arnold. I share your doubt about ci-

tation indices and I entirely agree that they are seriously flawed, but I see a

lot of use in them, and it seems that the IMU and mathematicians don’t like
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this and they are inclined to try to protest against this or do something. But I

regret to say that political realities are that mathematicians are a small group

in the overall scheme of things, and my experience is that however cogent and

powerful our arguments are that impress us, they have very limited impact on

our government and agencies and so on. And I wonder what your assessment is.

It seems to be that the only possibility of changing the culture in this particu-

lar respect is to find allies in the much bigger subjects of engineering, biology,

physics and chemistry. Unless we have allies and friends in these subject areas,

we’ll have no impact whatsoever on the governments and agencies, or in par-

ticular private publishers that make money out of publishing these statistics.

So what is your assessment of our chances of finding allies among these subject

areas?

Doug Arnold. Well I think that’s a very good point and one that has to be

raised and thought about quite a lot. I’ll make a couple of comments. First

of all my comments are limited to impact factor as a journal quality proxy.

I am not taking on the bigger question of an individual or departments. If

we limit ourselves to pointing out, as many have pointed out, and many will

continue to point out, that impact factor is highly flawed, we will go unheard.

That has already been done and is basically a proven proposition. It is not

only mathematicians who are complaining about this. Many, many groups are

complaining about it. I feel that – because we are a fairly small community

with a great devotion to our literature and some coherence – that by providing

an alternative we have a realistic chance to say: ‘Well you know there is an

alternative that you can use instead. It is much, much better but just as easy

to use. It has the imprimatur of the major math organisations in the world and

there is all this evidence that it is better.’

This won’t be used for comparing mathematics journals to say geophysics

journals, which is meaningless, but for the purposes where you need to make an

evaluation and judgement on journals of mathematics. I think this has a chance

to come about. I think there is a possibility that people will say ‘you know these

mathematicians have some integrity and they really are doing this right, and

maybe we should see about doing something like this.’ As far as building up

allies, recently I travelled to Singapore, to the World Conference on Research

Integrity. There were 350 delegates including people from ministries of science

and so forth. Out of the 350 delegates only I was a mathematician. I spoke a

little bit about this proposal and I saw lots of allies and got lots of support.

People are actually looking forward to seeing what we are going to be able to

do in this area.

José Antonio de la Pen̆a. Well I think it’s important that mathematicians take

a position with respect to the indices, and maybe propose new ways to measure

the impact of journals. But even what is done now, which is very bad, very

flawed for mathematics, like measuring the impact factor of journal using this

two years window which is completely nonsignificant for mathematics, could be
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changed. For example, why not calculate the impact factors not using the two

years window but using the full history of the journal? Just simply that. That

can be much more significant for all sciences: why is this not done? I had an

opportunity to speak with some high-ranking person from Thomson Reuters

and the answer was ‘of course we calculate this, we don’t publish these results

but we do calculate them’. So this means there is a completely different agenda,

there’s a hidden agenda why they calculate the indices in this way: maybe it is

an economic agenda.

Chandan Dalawat, Harish-Chandra Research Institute, Allahabad, India. I just

want to know if this new measure or classification on the quality of journal

that’s been proposed, has it actually been tested and could we look at the

results that it gives?

Doug Arnold. No. The situation is the following. First of all, I am the President

of SIAM which publishes these journals, so it is not my place to personally set

down the mechanics of rating the journals. The proposal, which is brand new,

just passed by the IMU General Assembly, is to establish a committee to try to

design the best possible system, and then consider the question of how difficult

it will be to implement. I can give you just a rough idea of at least what I have

in mind, although other people may well change this. This is something akin

to the program committee and panels that chose the invited speakers of this

congress. That is many people, between 100 or 200, that were carefully chosen

to cover many areas of mathematics. There will be a fairly small number of

rating tiers, a few tiers or, perhaps, a matrix with separate tiers for journals

that are tightly concentrated on one subdiscipline and broad journals, and so

forth. Then these experts would review the journals and try to determine where

they place them. Maybe there would be a time for public comment. There would

be some rule against conflict of interest. Once they present the results, we will

get the opportunity to test them. They will need to be renewed every 4 years

or something like that. That’s what I have in mind.

John Ball. To amplify that a bit, the committee would consider what would be

the best way to create such a ranking system, then decide whether to implement

that system, and in particular consider some of the issues surrounding such a

system, maybe legal implictions, whether there would be the involvement from

the community to sustain such a system, and what the knock on affect of such

a system would be.

Zhiming Ma, China. Several years ago in China this problem was really very

serious. For example in China if you apply for a promotion or for a prize you

have to submit a document with citations. You maybe have to pay money to an

agency or a library and then the agency (library) will type the citations, and

then you submit it. This was several years ago; now the situation is getting bet-

ter because many people complained about this. In China we mathematicians

say that maybe people in other disciplines such as biologists will use this but
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for mathematics it’s not the case. We always ask the agencies or government to

distinguish between subjects, so in this way we get some improvement. Now in

China (at least in CAS) when mathematicians apply for a promotion or a prize,

we will not follow the general rule of metrics. In this sense we are improving.

Martin Grötschel, Berlin, Germany. Somebody said before that we have no

influence. This is absolutely not true; I think mathematicians are heard. Here

is an example. The 2002 IMU General Assembly endorsed a document about

best practices of journal publishing, advice to authors and so on, and open

access in particular. This document was taken up in 2003 by the Max-Planck-

Gesellschaft in Germany, Germany’s top research organisation. MPG and other

institutions finally formulated what was then called the ‘Berlin Declaration’ on

open access. IMU’s influence was clearly visible in this activity. Hundreds of

research organisations worldwide signed this declaration, and mathematicians

were the forerunners of this effort.

One can come up with many ways of classifying journals. Of course, targets

have to be formulated together with reasons why we want to classify, why we

want to sort journals, or people, or departments by quality. Even if we have

reasonable arguments for the organization of the system of our journals, we must

not only provide information about scientific quality but also about the way

authors are handled, the turnover times and all the things that are important for

journal publishing. Making available a broad spectrum of relevant information

may be an alternative to just addressing the current crude measurements.

The panel addressed totally different targets, for example, whether we rank

a paper, a journal, a department, or an individual, or how we compare math-

ematics to other sciences. We can’t handle all these issues in the same way. I

personally think that we mathematicians have to simply declare how we would

like us and our work be judged; we then have to discuss the evaluation system

with our peers in science and in administration. After that we can negotiate

with them the way we are in fact judged. Most of the ideas presented here

today are good, and our task is to find a reasonable combination of these mea-

surements. My main field is optimisation and what we see in front of us is a

multi-objective optimisation problem. There is something like a Pareto set that

we have to target for, and which point on the Pareto curve is chosen will depend

on local circumstances. We should simply be aware of this fact and spell it out.

Something I was really puzzling about is one of Frank Pacard’s arguments.

Everyone is happy about being free to make decisions. Now the French gov-

ernment seems to give financial support to the universities and the freedom to

distribute it. I think that everywhere in the world you would be happy to have

such a situation: you just have to elect a good president and good deans. They

ought to have good insight and will determine who is doing good research. Do

you really want the bureaucracy to give rules? I think it is better to have good

people with good judgement distributing the money.
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Frank Pacard. I agree with you, but in France we are passing from a system in

which everything was decided at the top to a system in which a lot is decided

at a local level. This takes time. Assessment of research is not an easy thing

to do at the level of a university. Also, I think that the importance of the use

of metrics really depends on how the money supporting research is distributed

and this differs from one country to the other. In France, for example, one of the

problems we are already confronted with in mathematics is that departments

now have to fight against each other inside each university, to get research

funds. And, so far, universities have no real way to decide how much support

they should give to a given department. Beside the question of research support,

there is also the problem of the evaluation of individuals. French universities

now have to compare mathematicians with biologists, chemists or lawyers and

panels performing these evaluations do not necessarily have mathematicians,

biologists or lawyers on them. In this case, as you can imagine, metrics turn

out to have a great impact on discussions. One can hope that the system will

probably evolve towards a better equilibrium between the use of metrics and

peer review, but in French universities I’m not so sure that the system has

already reached this equilibrium.

Cheryl Praeger, University of Western Australia. I thought I would say a little

bit about the Australian experience. The mathematical scientists in Australia

did not choose, that is, did not set out, to rank journals. It was the Australian

government that decided that all journals would be ranked. The government

dictated the proportion of A*, A, B and C journals. So the mathematical sci-

entists decided that we would prefer to make the ranking rather than have the

government do it for us. We ended up having to do it three times; in our first

run through we decided to rank as many journals as we could, so we would have

more A* and A journals, since we had a fixed proportion available for them.

The government did not accept this and we were given a limit on the number

of journals we were allowed to rank. Even our second attempt was not accepted

and we had to make a third attempt.

We are not terribly happy with it but it is something which has had the

support under pressure of the whole Mathematical Sciences community, the

pure, applied, the statisticians. Everyone joined together to try and do as good

a job as we could. It has not been used yet but it is going to be used in a

research assessment exercise, which is happening in the next year. We fear it

will be used for other purposes. Already it is being used in an unfortunate way;

for example my university proposes to measure research activity of individual

staff members by the number of journal papers they publish in A* and A rated

journals only, which comprise the top 20% or 30% of the journals according to

an imperfect ranking. All other publications will be ignored.

John Ball. Am I not correct in saying that there is also a ranking of conferences,

because I saw a listing of this on the Australian website (see http://www.
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arc.gov.au/era/era_journal_list.htm). So I wondered whether you weren’t

allowed to go to a conference unless it was an A rated conference.

Malcolm MacCallum. That would have particular relevance in Computer Sci-

ence where a lot of the best papers come out in refereed conference proceedings.

Hamidou Toure, Burkina Faso. We are a small community of mathematicians

in Africa and the administrations are trying to use these different indices. Since

the evaluation of publications in journals is done normally by peer review, it

will be good that the International Mathematical Union make a peer evaluation

of the ranking of different journals. It will be very useful for us.

Jean Lubuma, University of Pretoria, South Africa. I would like to say some-

thing about the system which we have in South Africa. I think the colleague

from Australia (Cheryl Praeger) said something which is a bit similar. The sys-

tem in South Africa is such that when you publish a paper, the South African

Ministry of Education allocates directly an amount of about 20,000 dollars,

which is paid to the university where the research work was done for papers

published in the so-called accredited journals. For the moment those are the

journals which are in the ISI list. We as mathematicians in the South African

Mathematical Societies fought to show the government that this ISI list is not

a system which is effective and which is definitely not in favour of mathemati-

cians. The government said ‘look, we want a simple method for us to decide’ and

so far the method which has been suggested came mostly from our colleagues

from medicine and biology, because probably that is where all these ideas of the

ISI lists originated. So this is the situation which we have at present in South

Africa, and unfortunately we tried to fight but it didn’t work. So I don’t agree

with what was said by the Secretary earlier, that mathematicians are powerful.

I think I would rather agree with our colleague from England, that we are a

very small group and it is not always easy to try and convince our colleagues

from biology etc. who publish almost every day.

Jorge Soto-Andrade, University of Chile. I would like to point out that in our

country we have some Chilean analogue of NSF and mathematicians have had

some word to say concerning assessment of research, but most of the funding

for research comes from the government, not directly through the universities.

To some extent we have been able to make the point that mathematics is

specific, compared with other domains like biology or economics and so on.

One of the points is that journals which count for funding for reports are those

which you find in this list of ISI or Thomson Reuters. Many people in the

government agencies had the idea that ISI was something like IAS or some

scientific institute. They didn’t realize that it was just a private enterprise with

commercial criteria, like Microsoft, Thomson being analogous to Bill Gates.

I would say that the International Mathematical Union is a rather small

community but is quite homogeneous and has taken stance in a very significant

way in the past, and if we can cite a report or some work of the IMU concerning
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these points this will strengthen our position. I would like to recall the report by

Figa Talamanca [7] who was very keen from the systemic viewpoint concerning

ISI and perhaps some sort of update of this report would be very helpful. It

pointed to the fact that the systemic role of ISI in science in the world was a

very interesting subject in sociology, and there is a complex dynamic interaction

of ISI with big American libraries, with publishers and so on.

One interesting point also is that in our country, which is somewhat free-

market oriented, the government had the idea to give rewards to papers and

so if your paper is in ISI, you’ll get perhaps 1000 dollars, and if it’s not there

you’ll perhaps get just a symbolic reward. One important thing I think is that

IMU may have some alternative to ISI. If one looks a little bit, one finds very

impressive examples of flaws in ISI reports and listings. For instance you have

a list of highly cited mathematicians, highly cited researchers in ISI, and I

realized perhaps one or two years ago that no Fields Medallist is a highly cited

mathematician.

There is a field in which the situation is even worse than mathematics, which

is mathematics education and there perhaps the best journals are not listed in

ISI, and there was some reaction which was very positive from IMU and I think

this should be pursued. Concerning other scientific communities, I also work

with biochemists, biologists and other researchers in cognitive science, fields

whose dynamics are quite different from ours, where updated reports from the

IMU concerning this issue may help us a lot.

Michel Hébert, Cairo, Egypt. A few years ago the American Mathematical So-

ciety has started publishing their own impact factor in MathSciNet. I think

it was a result of their own long study. I didn’t read the report in detail at

that time but remember it was precisely to respond to all these wrong ways

for mathematics such as the two year window. So I’m a bit surprised also that

there doesn’t seem to be any collaboration, or there has been no result. Don’t

the IMU and AMS know what each other is doing?

Ali Ulas Ozgur Kisisel, Middle East Technical University, Turkey. So in my uni-

versity our struggle is usually with the university administration, which rarely

consists of any mathematicians; however in the mathematics department we

have quite a good idea about what should be brought up, and what should

be kept down. Maybe I should give some specifics. For instance all the hiring

procedures and appointments to posts are based on the number of papers in

science core index journals and for instance in order to be an Associate Pro-

fessor in the Maths department it should be at least 7, and that is a fairly low

number, and as you could expect it has drastically different effects if you are

studying Applied Mathematics or Modular Forms. So I asked some friend who

was working in Ex-Soviet Union how did it happen there? And it was very easy

– Kolmogorov decided everything, so no problem! But of course in today’s world

I guess this is out of the question. But something that we could use, and IMU or

global organisations could do, would be to bring forward some experiences from
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prestigious universities, like interviews with deans, interviews with department

chairs so we could use them in our struggle with our administrations.

Gholamreza Khosroshahi, IPM and University of Tehran, Iran. I work in an

institute called the Institute for Research in Fundamental Sciences. In the be-

ginning we were just theoretical physicists and mathematicians and the fight

from the beginning started in the committees and the councils about evaluation

of mathematics and physics. Physicists usually dominated the issue because of

citations and these kind of things and later on other schools like computer sci-

ence, theoretical computer science, neuroscience, nanoscience were added to our

institute. The fight was widened and there are two problems which are always

there, one – inside the mathematics council you have to fight – suppose I’m

a combinatorialist, at the beginning those who didn’t do any research about

20 years ago said what? Combinatorics? And they were saying that it is easy

to publish in combinatorics and it is very difficult to publish say in algebraic

geometry etc. So this fight gradually subsided because gradually they had to

publish and they couldn’t publish. Then outside of mathematics, physicists

used to say always ‘what is the citation on this’? ‘This paper has 100 citations’

and so forth? This fight still is going on, but I agree with Prof Grötschel that

mathematicians should be tough fighters and they should handle these hard

situations. We do that and we have succeeded.

One more thing is that we have to prove to others that every discipline

has its own culture: culture in mathematics is quite different from culture in

computer science or physics.

Gerhard Paseman, USA. There are a number of communities online (such as

mathoverflow.net) that are doing rankings of various things, anything from in-

dividuals to pizzas. In particular there are some communities forming, scientific

communities that exchange information and they do ranking based on reputa-

tion, and it seems to me that they are models of some of the things to look at,

as examples of what might be a good form of metric, and there are also some

obvious mistakes in some of these models, that could probably be avoided by

forming a metric. I’m curious to see how metrics for journals, for professional

mathematicians, for scientists will actually reflect some of their activity online.
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1. Introduction

These are brief notes of the IMU/LMS discussion meeting held on the 25th of

August. The meeting was chaired by Angus Macintyre, President of the London

Mathematical Society. The panellists were:

• John Ball: member of the MARM Board

• Wandera Ogana: Chair of the AMMSI Programme Committee

• Frank Neumann: an experienced mentor in the MARM scheme

• Felix Shu: a mathematician at the University of Buea, Cameroon

• Ramadas Ramakrishnan: Acting Head of Mathematics at ICTP

• Angel Pineda: active in the Volunteer Lecturer Program

2. Mentoring African Research in Mathematics

John Ball gave a quick overview of this joint initiative by the LMS, the IMU,

and AMMSI, which is funded by the Nuffield Foundation and the Leverhulme

Trust.

Under the scheme research groups in Africa are paired with individuals and

groups in the UK and elsewhere who act as mentors to research students and

others. This pairing is done following calls for proposals by AMMSI and for

mentors by the LMS (in the LMS newsletter, IMU-Net, and so on).

The key aim is to improve morale and research capability in situ without

contributing to a brain drain. African faculty and research students may make

short visits to the institution of the mentor.

∗Dr Stephen Huggett, Programme Secretary of the London Mathematical Society.
E-mail: s.huggett@plymouth.ac.uk
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In the first round the following three partnerships were established:

African University Mentor’s University Subject

KNUST, Kumasi, Ghana Leicester, UK Algebra/Geometry/Topology

Addis Ababa, Ethiopia Brunel, UK Analysis

Buea, Cameroon Heriot-Watt, UK Mathematical probability

In the second and third rounds a further ten partnerships were established,

including mentors from outside the UK, in a wide range of subject areas.

The MARM Board is currently in the process of applying for extra funding

to develop the project, to include thematic networks, postgraduate scholar-

ships, initiatives to encourage female mathematicians, use of videoconferencing

technology, workshops, and administrative support.

Finally, the report Mathematics in Africa: Challenges and Opportunities

published by the IMU in 2009 was recommended to delegates. It can be found

at:

http://www.mathunion.org/publications/reports-recommendations

3. AMMSI

Wandera Ogana introduced the African Mathematics Millenium Science Initia-

tive, which has a distributed network with five regional offices, each run by a

Regional Coordinator:

Central Africa Regional Office at University of Yaounde I, Cameroon

Eastern Africa Regional Office (and also Programme Office) at University of

Nairobi, Kenya

Southern Africa Regional Office at University of Botswana, Botswana

Western Africa (Zone 1) Regional Office at University of Ilorin, Nigeria

Western Africa (Zone 2) Regional Office at University of Ouagadougou,

Burkina Faso

Between 2005 and 2008, 23 research or visiting fellowships have been

awarded, for short visits by staff to host institutions, to conduct research and

train postgraduate students. Most of these were for African mathematicians

to visit African institutions. This scheme has been suspended now because the

Mellon Foundation grant has ended.

Under the Postgraduate scholarships scheme, AMMSI can offer partial sup-

port for study towards a PhD, an MSc, or a Postgraduate Diploma. Between

2005 and 2010, 213 of these scholarships have been awarded. From 2009 support
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by the International Mathematical Union has enabled this scheme to continue,

and there will soon be an announcement for the 2010/11 Scholarships.

There have been four AMMSI Regional Conferences and two African Scien-

tific meetings. Every year the London Mathematical Society provides support

for postgraduate students to attend conferences.

The AMMSI network also manages the African calls for proposals under the

MARM scheme.

AMMSI is proud to have enabled staff and institutions in different conti-

nents to collaborate, to have provided opportunities for younger researchers to

participate in conferences, and to have enabled staff and postgraduate students

to write and publish papers. However, we need to address concerns over funding

constraints, the transfer of funds to awardees, the promotion of research, and

enhanced outreach activities.

For more information visit:

http://www.ammsi.org

4. MARM in Ghana

Frank Neumann described his experience of research mentoring and collabo-

ration with the Department of Mathematics, Kwame Nkrumah University of

Science and Technology (KNUST), Kumasi, Ghana.

The Department of Mathematics at KNUST has 25 academic staff and cur-

rently 750 undergraduate and 40 postgraduate students. The research areas

can be divided as follows: Pure Mathematics, Applied Mathematics, Computa-

tional Mathematics, Operations Research, Statistics and Probability, Financial

Mathematics, and Actuarial Science.

The activities and achievements of this partnership include:

• Lecture series on “Algebraic Topology and its Applications” by the men-

tor (10 lectures)

• Mentoring and co-supervision of three postgraduate students (MSc, PhD)

which included several mutual visits by the mentor and his African col-

leagues.

• Improvement of local research environment, by demonstration of free on-

line resources (arxiv, Hopf Archive, and so on), by participation in the

“e-math for Africa” scheme, and by the provision of mathematical text-

books and volumes of journals

• Establishment of a new research and training centre at KNUST, the Na-

tional Institute of Mathematical Sciences (NIMS), whose current Director

is Isaac Dontwi, the MARM collaborator at KNUST. This is partially

funded by the Government of Ghana, and the MARM project played a
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crucial role in the choice of KNUST to host this new centre. Research ac-

tivities and workshops partially funded by MARM and organised through

NIMS include two workshops on Modelling Complex Systems in 2008, an

International Conference on “Mathematics and its Applications” at the

University of Ghana, Accra, in 2009, and a Summer Class on Homol-

ogy at the University of Ghana, Accra in 2010 given by Dror Bar-Natan

(Toronto).

• The Department of Mathematics and the National Institute for Mathe-

matical Sciences (NIMS) at KNUST expect to establish links with the

African Institute of Mathematical Sciences (AIMS) in Muizenberg, South

Africa.

5. MARM at the University of Buea

Felix Shu described the work of the MARM partnership between the mentor,

Sergey Foss, and the University of Buea, Cameroon, starting by explaining the

extreme shortage of qualified staff:

Subject Post Number

Algebra Professor 0

Associate Professor 1

Lecturer 0

Assistant Lecturer 1 (a PhD student)

Analysis Professor 0

Associate Professor 0

Lecturer 1

Assistant Lecturer 1 (a PhD student)

Mathematical Analysis Professor 0

Associate Professor 0

Lecturer 1

Assistant Lecturer 1 (a PhD student)

Mathematical Biology Professor 0

Associate Professor 1

Lecturer 0

Assistant Lecturer 0

Probability Professor 0

Associate Professor 0

Lecturer 1

Assistant Lecturer 1 (a PhD student)

The extremely high workload faced by staff who are in some cases also

studying for their PhDs was a point reinforced by a comment from the audience

later in the discussion.
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In 2010 there are eight students working for an MSc or PhD, but of the four

students who started the MSc in 2008, three left the country to study elsewhere

without getting to the end of the programme.

Felix went on to note the achievements within the MARM framework, which

include:

• two mentoring visits from Edinburgh to Buea,

• purchase of text books and journals for the Departmental Library,

• one course taught by the mentor in 2007 at Buea,

• participation of the mentor in mathematics syllabus review in 2007 at

Buea,

• a research visit from Buea to Edinburgh in 2008,

• one paper published with collaboration of the mentor, and

• agreement to supervise two students in probability.

Further research collaboration and co-supervision of a PhD student is con-

tinuing, and there are plans for more visits between Edinburgh and Buea. Felix

finished his presentation by making some suggestions for improvements in the

scheme, such as:

• simplifying the mechanisms for the transfer of funds,

• increasing the duration of each project,

• encouraging cooperation and communication between students of the

mentoring and mentored Departments, and

• making some funds available to encourage postgraduate students of the

mentored University not to leave.

6. ICTP

Ramadas Ramakrishnan gave a brief account of the work of the International

Centre for Theoretical Physics, which turns 45 this year. Since its inception,

over 100,000 scientists have visited the Centre, around half from developing

countries.

The funding of the centre comes from a tripartite agreement between the

Italian Government, the IAEA, and UNESCO. There are about 32 permanent

staff, of which four are in the mathematics section.

The Office of External Activities of the ICTP supports several networks and

affiliated centres around the world, as well as initiatives like a PhD programme

for sub-Saharan Africa and a series of schools in East Africa.
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The format of the intensive activities organised by ICTP is that of school

+ conference. In 2010 there were four of these at ICTP, with a fifth one to be

held in Libya. In 2011 there will be three again at ICTP and three “external”

ones, amongst which two are co-funded with CIMPA.

In 2009 there were 114 visitors from 47 countries, involving 32 seminars,

and 32 publications. Also, among the 500 or so Associates of ICTP, over 100

are mathematicians.

The Centre is involved in the award of the Ramanujan Prize, and among

other things it runs a book donation program. It also has a Diploma scheme,

and awards about ten each year.

In future the ICTP would like to continue to be involved in collaborative

programs, for example with CIMPA, and perhaps also with national or regional

bodies. There are clear opportunities for coordination with MARM and other

initiatives, and ICTP would also like to set up a “research in groups” scheme

in Trieste.

Ramadas ended his presentation by reminding delegates of the original mis-

sion of ICTP, which is to support researchers (who often work in difficult cir-

cumstances) where viable communities exist, and to help seed such communties

where possible.

7. IMU Volunteer Lecturer Programme

Angel Pineda explained that the VLP was established by the Developing Coun-

tries Strategy Group of the International Mathematical Union, inspired by the

Centre International de Mathématiques Pures et Appliquées program at the

Royal University of Phnom Penh (RUPP), the London Mathematical Society’s

Mentoring African Research in Mathematics program, and the Norwegian Pro-

gram for Development, Research and Education in southern Africa.

The VLP will be administered by the newly created IMU Commission for

Developing Countries.

Its collaborators are:

• International Mathematical Union

• US National Committee for Mathematics

• Centre International de Mathématiques Pures et Appliquées

• London Mathematical Society

It receives financial support from:

• French Government

• US National Science Foundation

• American Mathematical Society
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• Society of Industrial and Applied Mathematics

• London Mathematical Society

In this scheme a Visiting Lecturer gives a three or four week intensive course

at the upper undergraduate or master’s level, to a substantial number of stu-

dents (meaning about twenty). The local host provides support for the recruit-

ment of students, and the scheduling and living arrangements for the volunteer,

but all financial costs of the volunteer are covered by the VLP.

The scheme focuses on facilitating the transition between an undergraduate

and a graduate level understanding of mathematics. In terms of mathematical

development, it is designed to help a country build the mathematical founda-

tions necessary for subsequent research level mathematics.

Angel then made some brief remarks on his teaching experience at the Royal

University of Phnom Penh. He taught numerical analysis on two occasions, in

2009 and 2010. The courses were for three hours a day, five days a week. The

challenges faced were:

• teaching at the appropriate level

• language barrier

• time

• cultural differences

• access to technology

Strategies for addressing each of these challenges were discussed.

Looking back, the enthusiasm and appreciation of the students was fantastic,

and it was exciting to be part of a critical time in the mathematical development

of Cambodia, and to make a difference.

More information about volunteering or hosting lecturers through the VLP

can be found at:

www.math.ohio-state.edu/̃ imu.cdc/vlp/

The IMU VLP is actively seeking more hosts from the developing world as

well as volunteer lecturers.

More information about this experience teaching at RUPP can be found in

the article: “Teaching Numerical Analysis in Cambodia”, SIAM News, March

2010.

8. Contributions from the floor

8.1. Michel Passare. Michel informed the meeting of a new agreement

between Stockhom University and the University of Dar es Salaam to establish

a pan-African graduate school in mathematics. He said that there were many

ways in which the community could help, not least in making suggestions for a

Director of the graduate school.
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8.2. Michel Waldschmidt. (a) The International Center for Pure and

Applied Mathematics (CIMPA) is another organisation providing mechanisms

for strengthening mathematics in developing countries. It has organized 180

research schools in the last 30 years, with 14 planned for 2011. There are open

calls every year. In addition, CIMPA also promotes regional networks, organizes

workshops and seminars, has links with other institutions like AMU, UMALCA,

SEAMS, and ICTP.

Recently, a memorandum of understanding was signed between CIMPA and

the Spanish Ministerio de Ciencia e Innovacion, providing for Spanish funding

for CIMPA in addition to its existing funding from the French Government. It

is hoped to have more similar agreements in the near future.

More informaion about CIMPA can be found at:

http://www.cimpa-icpam.org/

(b) The Committee for the Developing Countries (CDC) of the European

Mathematical Society also works in this field. Its first action was to help dissem-

inate mathematical literature with a book donation program. Now the scope

is much larger. The IMU provides support which enables the CDC to organize

workshops in Africa on access to electronic literature. Also, Zentralblatt has

agreed to give free access to libraries of mathematics departments in develop-

ing countries.

Another initiative of the CDC is a twinning program: the committee of-

fers small seed grants to help departments in developed and developing coun-

tries twin with each other. Finally, a further plan of this committee is to

identify Emerging Regional Centres of Excellence (ERCE) which could play

a leading role in the region for the development of mathematics at research

level.

8.3. José-Antonio de la Peña. As the newly-elected President of the

IMU Commission for Developing Countries, José-Antonio expressed his strong

support for these various projects. He noted that In Latin America there is an

extremely successful programme of research schools, attracting large numbers

of students from all over the region.

8.4. John Mango. John spoke on the great benefit his University, Mak-

erere University, Kampala, Uganda, had derived from the MARM scheme, es-

pecially in algebra. In this case the mentor is Gregory Sankaran from the Uni-

versity of Bath. It is also hoped to make use of the VLP.

8.5. Hamidou Touré. Hamidou is the AMMSI Regional Coordinator,

from the Université de Ouagadougou, Burkina Faso. He pointed out that:

(a) there is very wide variation in the particular needs of developing coun-

tries, and

(b) networking is extremely important among research mathematicians.
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9. Concluding Remarks

The President of the LMS, Angus Macintyre, invited those who had not had a

chance to speak to write to President@lms.ac.uk

He thanked all the panellists and organizers, and expressed the hope that

there would be similar such discussion meetings in future.
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The IMU sponsored two public lectures during the Congress. These were held
at the Global Peace Auditorium in Hyderabad. The speakers were

Bill Barton (Auckland)
Where is Mathematics taking us,

and

Günter Ziegler (Berlin)
Proofs from the book.

The lectures drew a large audience of about 1500 school and college students.
The speakers described it as an unusual and overwhelming experience.

There was a Mandelbrot Fractal Art Exhibition in the lobby of the second
floor of the Congress venue, where twenty five prize winning designs were exhib-
ited. On the first floor there was an exhibition of photographs from the IHES,
Paris. Several publishers displayed their books in a large hall on the ground
floor.

There was a program of classical dance Bharatanatyam. The performance
of the ballet Panchamahabhutam was led by Professor C. V. Chandrasekhar. It
was produced by Nrityashree of Chennai.

Ustad Rashid Khan, a famous Hindustani classical singer, gave a concert.
It being the monsoon season he chose to sing the Malhar raga, associated with
the rains. To prepare the audience, the Organising Committee organised two
lectures on appreciation of Indian classical music by Professor Sunil Mukhi.

A video recording of the dance ballet Lilavati by the famous dancer Chan-
dralekha was shown a few times in one of the halls.

The theatre company Complicite of London gave two performances of their
play A Disappearing Number at the Global Peace Auditorium. These were open
to the public.

Grandmaster Viswanathan Anand, World Chess Champion, played simul-
taneous chess matches with forty opponents. He beat 39 of them. The 14 years
old Srikar Varadaraj managed a draw.

Springer India brought out a handsomely produced Hyderabad Intelligencer

edited by S. G. Dani. The Ramanujan Mathematical Society brought out a
special issue of its Newsletter edited by S. Ponnusamy.
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The Publications Committee produced a special colour booklet with short
pieces on mathematics, Indian history, art, music and culture. It has two pockets
to house the CD version of these Proceedings.
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Mira, José Antonio Cuenca (Spain)
Mira, Pablo (Spain)
Mironov, Andrey (Russian Federation)
Mirzaei, Sedigheh (India)
Mirzakhani, Maryam (USA)
Mishra, Akanksha (India)
Mishra, Akshaya Kumar (India)
Mishra, Ashish (India)
Mishra, Bimal (India)
Mishra, Bivudutta (India)
Mishra, Debashish (India)
Mishra, Debasisha (India)
Mishra, Dheerendra (India)
Mishra, Indira (India)
Mishra, Manoranjan (India)
Mishra, Mukund Madhav (India)
Mishra, Nachiketa (India)
Mishra, Rama (India)
Mishra, Ratnesh Kumar (India)
Misra, Amit Kumar (India)
Misra, Gadadhar (India)
Misra, Umakanta (India)
Mitra, Mahan (India)
Mitra, Mukut (India)
Mittal, Nikita (India)
Mittal, Prachi (India)
Miwa, Tetsuji (Japan)
Moakher, Maher (Tunisia)
Mockan, Pitchaimani (India)
Mohammad, Ilyas (India)
Mohammadian, Ali (Iran)
Mohammed, Abubakr (India)
Mohammed, Isa Baba (Nigeria)
Mohammed Anvar, T. (India)
Mohan, Devang S. Ram (India)
Mohan, Manil T. (India)
Mohan, Usha (India)
Mohanty, Parasar (India)
Mohanty, Sanjay Kumar (India)
Mohanty, Sumit (India)
Mohapatra, Anugraha Nidhi (India)
Mohapatra, Subhashree (India)
Mohri, Hiroaki (Japan)
Mojumder, Probal (India)
Molati, Motlatsi Ernest (Lesotho)
Mombelli, Juan Martin (Argentina)
Mondal, Amiya Kumar (India)
Mondal, Arghya (India)
Mondal, Ramnarayan (India)
Monikarchana, Yathaluru (India)

Montans, Fernando (Uruguay)
Monto, Geethanjali (India)
Moore, Justin (USA)
Moothathu, T. K. Subrahmonian (India)
Moran, Gadi (Israel)
More, Meena (India)
Morel, Sophie Marguerite (USA)
Morgado, Hector F. Sanchez (Mexico)
Morgan, Ruby Salestina (India)
Mori, Yoshiyuki (Japan)
Morris, Robert (Brazil)
Morrison, Scott Edward (USA)
Morye, Archana (India)
Moslehian, Mohammad Sal (Iran)
Moslemi, Bahman (Iran)
Mostafazadehfard, Maral (Brazil)
Mouhot, Clement (France)
Moura, Adriano Adrega De (Brazil)
Mourougane, Christophe Siva (France)
Mousa, Abdelrahim S. A. (Portugal)
Mousumi, Mandal (India)
Mozumder, Muzibur (India)
Mubeena, T. (India)
Mudagi, Basaweshwar Sahebrao (India)
Mudakkar, Syeda Rabab (U.K.)
Mudur, G. S. (India)
Mueller, Stefan (Germany)
Mukerjee, Himadri Kumar (India)
Mukhamedov, Farrukh (Malaysia)
Mukherjee, Amiya (India)
Mukherjee, Anjan (India)
Mukherjee, Manabendra Nath (India)
Mukherjee, Shyama Prasad (India)
Mukhi, Sunil (India)
Mukhopadhyay, Anirban (India)
Mukhopadhyay, Parthasarathi (India)
Mukhopadhyay, Swarnava (USA)
Mumford, David Bryant (USA)
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Octavia, Gaël Suzon (France)
Odagiri, Shinsuke (Japan)
Odai, Yoshitaka (Japan)
Odongo, Leo Odiwuor (Kenya)
O’Donovan, Donal (Ireland)
Ogana, Wandera (Kenya)
Ogiso, Keiji (Japan)
Oguntuase, James Adedayo (Nigeria)
Oh, Byung Geun (Rep. Korea)
Oh, Hee (USA)
Oh, Jumi (Rep. Korea)
Ojha, Aparajita (India)
Okada, Tatsuya (Japan)
Olanrewaju, Philip Oladapo (Nigeria)
Olatunji, Bode (Nigeria)
Olenko, Andriy (Australia)
Oli, Sanjay (India)
Oliveira, Bruno (Portugal)



786 List of Participants

Olver, Peter John (USA)
Onanaye, Samson (Nigeria)
Onshuus, Alf (Colombia)
Oprocha, Piotr Maciej (Spain)
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