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Generating examples:
an intriguing problem-solving activity

Samuele Antonini, Dipartimento di Matematica – Università di Pavia, Italy,
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ABSTRACT

Generating examples of mathematical objects can be very difficult for students and it can be consid-
ered a problem solving activity. In literature, some potentialities of such activity are suggested, from 
different points of view and for different reasons. Our investigation aims to better identify the char-
acteristics and the potentialities of the processes of constructing examples. The analysis, carried out 
by observing students’ processes, reveals a high complexity of examples generation tasks. In particular, 
giving an example requires continuous integrations between semiotic activities on mathematical ob-
jects and argumentation, between concept image and concept definition, between cognitive and meta-
cognitive resources. The study on these processes highlights the potentialities of generating examples 
activity as a tool for researchers in investigating many aspects of students’ thinking and for teachers 
in promoting students’ understanding and conceptualization.
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INTRODUCTION

The importance of examples in Mathematics is well recognised by mathemati-
cians, mathematics educators and philosophers. Lakatos (1976) has considered 
the production of examples as one of the basic activities in the development 
process of this science. Mathematicians are aware of the relevant contribution of 
examples both in problem solving (see Polya, 1945) and in education, and they 
have provided to collect examples and counterexamples in Analysis (Gelbaum 
& Olmsted, 1964), Probability and Statistics (Romano & Siegel, 1986; Stoyanov, 
1987), Topology (Steen & Seebach, 1978; Khaleelulla, 1982), Graph Theory 
(Capobianco & Molluzzo, 1978), and in general in Mathematics (Gelbaum & 
Olmsted, 1990).

In the last years, there has been an increasing interest in the examples 
also in mathematics education, as we can see by the high number of journal 
publications and sessions dedicated to this topic at the conferences. It is worth 
reminding, for example, the Special Issue (vol. 69, n. 2, 2008) “The Role and Use 
of Examples in Mathematics Education” of the Journal Educational Studies in Mathematics 
and the Research Forum “Exemplification: the use of examples in teaching and learning 
mathematics“ at the Conference of the International Group for the Psychology in 
Mathematics Education in Praha in 2006 (see Bills et al., 2006).

Nowadays, we can read studies on examples in mathematics educa-
tion carried out by different approaches. In this paper, I refer to examples of 
mathematical objects and I consider in particular the examples generation task. 
This is an activity with many potentialities in education (see Watson & Mason, 
2005), which has been studied in different situations from cognitive and epis-
temological points of view, as in defining (Dahlberg & Housman, 1997), in 
generation of conjecture, argumentation (Boero et al., 1999; Antonini, 2003; 
Alcock, 2004) and proof (Balacheff, 1987; Harel & Sowder, 1998). The act of 
generating an example offers also to teachers and researchers a diagnostic tool 
“that provides a ‘window’ into a learner’s mind”, because the examples produced by stu-
dents “mirror their conceptions of mathematical objects involved in an example generation task” 
(Zazkis & Leikin, 2007, p. 15).

One of the important approaches in studying examples production is 
the analysis of cognitive processes involved in it, a study that could answer to 
one of the research questions proposed in (Bills et al., 2006, p. 125): “What is 
entailed and revealed by the process of constructing examples and how does construction of examples 
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promote mathematical understanding?” In this article, I aim to show the complexity of 
processes involved in examples generation, and at the same time, to present a 
tool to analyse these processes.

THEORETICAL FRAMEWORK AND METHODOLOGY

Giving an example is often an open problem, without an algorithm to solve it, 
and with a not unique solution (in general and if there exists): “the state of generat-
ing examples can be seen as a problem solving situation, for which different people employ different 
strategies” (Zaslavsky and Peled, 1996, p. 76).
In this article, according to Zaslavsky and Peled (1996), I consider the con-
struction of examples as a problem solving activity. This point of view makes 
the study of strategies for producing examples and of the underlying cognitive 
processes meaningful. The processes are analysed with particular attention to 
both strategies and subjects’ control over the efficacy of the strategies, accord-
ing to the role of these aspects emphasized in the studies about mathematical 
problem solving (see, for instance, Schoenfeld, 1992).

Moreover, the analysis of processes takes into account those aspects 
that are specific in the construction and treatment of mathematical objects: in 
particular, I consider the semiotic representations of objects and the cognitive 
part of concepts. I respectively will refer to the notion of semiotic register of repre-
sentation (Duval, 1995), and to the classic distinction between concept image and 
concept definition (Tall & Vinner, 1981), together with the notion of cognitive cat-
egory, prototype and metaphors, (Rosch, 1977, Presmeg, 1992, Lakoff, 1987).

Collection of data of these studies was carried out through interviews, 
in which students were asked to produce mathematical objects. The subjects 
were students at university level (see Antonini et al., 2007; Antonini et al., 
2008) and PHD students in Mathematics (see Antonini, 2006). The analysis of 
processes carried out by experts is interesting as a form of mathematical think-
ing, and in particular it is common in problem solving research for the rich-
ness, complexity and efficiency of their reasoning.

We present here only the problems that will be analysed in this arti-
cle. All the tasks have an open form (“Give an example, if possible”), so that the stu-
dents must explore the situation to solve the problem. When the example does 
not exist (problem 5), an argumentation or a proof of this impossibility is 
required. In order to stimulate experts’ exploration processes, I propose them 
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the problem 1 and 2 which are particularly difficult. These two problems, in 
general, were not proposed to university students. The following is the list of 
the problems (in brackets we put the label identifying the problem within the 
paper):

1. Give an example, if possible, of a real function of a real variable, non con-
stant, periodic and not having a minimum period (the periodic function)

2. Give an example, if possible, of a function f:[a,b]ŀQĺQ (a,b� Q) continu-
ous and not bounded (the function on Q)

3. Give an example, if possible, of a binary operation that is commutative but 
not associative (the operation, modified from a problem discussed in Zaslavsky 
& Peled, 1996)

4. Give an example, if possible, of an injective function f:[-1,1]ĺR, such that 
f(0)= -1 and  (the injective function)

5. Give an example, if possible, of a twice differentiable function f:[a,b]ĺ�R, 
such that f is zero in three different points and its second derivate is positive 
in the domain (the convex function)

Some students’ solutions of these problems will be presented in the following 
sections.

THREE PROCESSES

From the analysis of the transcripts, I identified three processes (see Antonini, 
2006) that can be the basic components of more complex processes of generat-
ing examples.

1. Trial and error: 
The example is sought among some recalled objects; for each example the subject only observes whether 
it has the requested properties or not.

Excerpt: Franco (last year of the degree in Physics, the operation example)

“Which operations do I know? Sum, multiplication,... but they are no good.... 
The product of matrices!... No, no, it is associative ... and it is not commuta-
tive at all. Let’s see... division is not associative. No, it is no good, it is not 
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commutative. ... The exponential! No, it is not a binary operation. ... Well, if I 
take ab it is binary... but it does not commutate, so... Which other operations 
are there? [...]”

As we can see, if an example does not satisfy the required properties, another 
example is considered: after any unsuccessful attempt, the process starts from 
the beginning. It is interesting to compare this excerpt with Sandro’s solution of 
the same problem (see the next session). Sandro as well considers the division 
and, differently from Franco, when he realizes that this operation is not com-
mutative, he does not consider another operation, but he modifies the division 
transforming it into an operation which is a solution of the problem.

I underline that in trial and error process the subject does not neces-
sarily recall the objects by chance. For example, Filippa (PHD in Mathematics) 
considers the binary operations in set with one element, then in set with two 
elements, and so on, testing the required properties for every operation. Her 
process is carried out by trials and errors but the examples are generated with 
a precise and planned order.

2. Transformation: 
An object that fulfils part of the requested properties is modified through one or more successive trans-
formations until it is turned into a new object with all the requested characteristics.

Excerpt: Stefano (PHD student, the function on Q example)

“Now… [sketching a graph, figure 1]… where c will be an irrational. Of 
course this one does not have [all] values in Q. Let’s make it have values in Q.”

Figure 1
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“I might take a sequence [in the rest of the interview it will be clear that the sub-
ject means a sequence of irrational numbers], so… [drawing, see figure 2]… and 
there, in each little interval, taking a sort of maximum or minimum. Well, right, any 
rational number between the maximum and the minimum value. Is it continuous? 
[…] Then on the other side [meaning in the interval between c and b], the same.”

Figure 2

 
Stefano considers a not bounded function and then he modifies it in such a way 
that it assumes rational values.

In general, transformations and adjustments are physically carried out 
on one of the objects’ representations, which works as provider of the raw ma-
terial to be shaped in order to obtain the final object. In fact, Stefano really acts 
on the graph, drawing and transforming signs. In this sense, the transformation 
processes is similar to a process of construction and modification of physical 
objects in real situations.

We can see another solution of this problem. The process is the 
same, but the register of semiotic representation is different. Sandro, a PHD in 
Mathematics, generates his example transforming the analytical representation 
of the function:

“[...] example f(x)=  with f:[0,2]ŀQĺR. It is continuous in any points, 
not bounded. Let us look for f:[a,b]ŀQĺQ with such properties.

I make it go into Q, but how? …if I take the first three decimal digits?

…well, let us see before by integer part. [...]
f(x)=  [the square brackets denote the integer part]”
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As in Stefano’s solution, Sandro transforms the first function in such a way that 
it is a solution. It is not surprising that Stefano and Sandro start from the same 
function, a familiar object that seems to be a prototype of not bounded and 
continuous function. The only difference between these processes is the choice 
of the function representation and consequently, of the transformations that 
force the function to have values in rational numbers.

At this point, I think it is clear that by transformations I refer here to a 
very wide class including transformations on graphs of functions, movements 
of parts of geometrical figures, transformations of an algebraic formula into 
another (not necessarily equivalent) and so on, that is any transformation of the 
signs representing mathematical objects.

If the transformational process requires an intensive semiotic activity, 
the following process is performed by a sequence of inferences.

3. Analysis: 
Assuming that the object is been constructed, and possibly assuming that it satisfies other properties 
added in order to simplify or restrict the search ground, further properties are deduced up to conse-
quences that may evoke either a known object or a procedure to construct the requested one, that is 
a solution.

Excerpt: Sandro (PHD student, periodic function example)

“It seems to me that if it is continuous it is no good ...or maybe I should 
make it on Q. Well, let’s not complicate things... ... The examples I know are 
continuous enough periodic functions... and even if I adjust them I cannot 
get out of there … no, I must construct it from scratch. ... Example, a function 
that every 1/n is the same.

f(1/n)=f(2/n)......

Ah, so f(p/q) gets the same value! Now it will be enough to put another value 
for non rational numbers, for instance f(x)=0, if x� Q and f(x)=1, if x� Q.”

I named this strategy analysis for the analogy with the equally named meth-
od used by ancient Greeks for both geometrical constructions and search for 
proofs:

RL | Generating examples: an intriguing problem-solving activity



236

ICME 11 Proceedings

“in both cases, analysis apparently consists in assuming what was being 
sought for, in inquiring where it comes from, and in proceeding further till 
one reaches something already known” (Hintikka & Remes, 1974, p.1).

ANTICIPATION AND TRANSFORMATION

The empirical data show that often all the three processes are involved in gener-
ating examples, even if the transformational process seems the most common, 
both in experts and in students’ solution.

In mathematics education we can read many articles in which pro-
cesses involving a transformation are analysed. Even if these studies are car-
ried out with different points of view and are based on different theoretical 
assumptions, it is often underlined that one of the most important ingredients 
of transformation is anticipation (see, for example, Simon, 1996; Harel e Sowder, 
1998; Boero, 2001): to perform an efficient transformation, one has to foresee 
some aspect of the final shape of what is transformed.

Also in example generation processes, we can observe the role of an-
ticipation in leading the transformations, as we can see in the following excerpt 
(Sandro, PHD student, operation problem):

“[...] So, a non-associative operation is division: a*b=a/b. Well, I should take 
out 0, I will adjust the definition set later. Now, the problem is that it is not 
commutative. Can I use it anyway? ... Ah! I can make it commutative by mak-
ing it symmetrical! a*b=a/b+b/a ...[…]”

Sandro deals with a non-associative and non-commutative operation. Transfor-
mation of the considered operation into a new operation is performed within 
the algebraic register and seems to be caused by the fact that the subject translates 
the commutative property in this register into symmetry between representa-
tion’s symbols and non-commutative property into non-symmetry. This transla-
tion seems to allow the subject to anticipate the possibility of constructing a new 
operation having the commutative property, by means of a treatment1 within the 

1 Duval (1995) describes two types of transformations of semiotic representations: treatments and conversions. The 
former ones are transformations of representations within one single register, the latter ones are trans-
formations of representations consisting of a change of register without changing the denoted object.
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algebraic register that aims at “symmetrising” the symbolic writing so that the oper-
ation may become commutative (“I can make it commutative by making it symmetrical!”).

From the experimental data, it seems that experts choose the register 
of representation in such a way to perform efficient transformations foreseeing 
some aspect of the final form of the modified object. The lack of anticipation 
makes a transformation a blind attempts and the sequence of transformations 
could become a trial and error process. Some other examples can be found in 
(Antonini et al., 2008).

METACOGNITIVE PROCESSES

Metacognitive processes have the function of planning and monitoring and 
have a fundamental role in problem solving (Schoenfeld, 1992). The following 
excerpts show these processes in the particular case of examples generation.

Excerpt: Marco (PHD student, the function on Q example)

“It is like… [he sketches a graph of a function with a vertical asymptote in 
x=c].

[...] This is of the type 
 
 but it is not in Q. How can I map it into Q? I don’t 

really know how I could handle this one [in Italian: “non so proprio come 
potrei aggeggiare”]. [...] Well, the typical one like this is . But how can 
I map it into Q?...... Well, let’s write what the problem asks …”

Marco sketches a graph and writes the analytical expression of a non bounded 
function. Therefore he has two representations of a starting object on which he 
can work and he asks himself how to do. It is interesting the use of the meta-
phor “to handle”: I have translate in this way the unusual Italian verb “aggeg-
giare”, that recalls a manual activity related to the explorative use of a device. 
Marco realizes that the problem is forcing the function to have rational values 
and he makes explicit that he does not know how to do. I underline that Marco 
does not state that there are no transformations but that he, in this situation, 
does not manage to identify transformations that could respond to his goals. 
This awareness leads him to change the strategy initially based on transforma-
tion and to activate the analysis process:
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“[...] Then, let’s write what the problem asks… f:[a,b]ŀQĺQ continuous: that is 
� a,b� Q, f -1([a,b]ŀQ) is open and not bounded: �n �x |f(x)|�n n �n �x |f(x)|�n x |f(x)|*n, well, actually, 
the absolute value is not so important, if I find it negative I will find also positive.

Maybe it is sufficient the integer part, because I see there |f(x)| * n then it is 
sufficient f(x)=n. Then f(x)= .”

Here Marco studies some properties of the required function until one of the 
properties evokes the integer part and the solution is constructed modifying 
the initial function. Therefore, the analysis process, activated by a metacognitive 
control, has allowed to identify one efficient transformation.

Now I propose an analysis of an excerpt already considered in a previ-
ous section (Sandro, PHD student, periodic function), to highlight the cultural 
origin (see Morselli, 2007, p. 125) of a metacognitive process.

Sandro: “It seems to me that if it is continuous it is no good ...or maybe I should 
make it on Q. Well, let’s not complicate things... ... The examples I know are 
continuous enough periodic functions... “

Sandro conjectures that the continuous functions cannot fulfil the required prop-
erties. In fact, it is possible to prove that a periodic continuous function, is either 
constant or has a minimum period. Sandro is also aware that the periodic function 
that he knows are continuous or “continuous enough”, where with this expres-
sion he probably refers to piecewise continuous functions. In any case, they are 
functions that make valid his conjecture on the existence of a minimum period.

Sandro: “and even if I adjust them I cannot get out of there …”

Sandro anticipates that there are no transformations to modify these func-
tions in such a way they become neither non continuous nor non “continuous 
enough”. We can observe here the use of two metaphors that seem to character-
ize two different points of view in seeing the idea of transformation: the verb 
“adjust” which evokes an action on objects, and the expression “I cannot get out of 
there” which refers to a transformation as a process from a set into another set.

Sandro: “no, I must construct it from scratch. ...”
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Without transformations, Sandro changes his strategy and activates the analy-
sis process. Finally, as seen above, he concludes successfully with the Dirichlet 
function.

Therefore, while Marco analyses his own cognitive resources, available 
in one situation, the Sandro’s process is based on an anticipation with strong 
cultural roots: a conjecture on periodic functions and a consideration on the 
possibility to activate an efficient transformational process.

PROTOTYPES, CONCEPT IMAGE AND CONCEPT DEFINITION

The examples generation activity can be an efficient tool to observe some ef-
fects and processes that can be described as prototypes effect (Rosch, 1977, 
Presmeg, 1992), or by the notions of concept image and concept definition (Tall & 
Vinner, 1981). In a previous article (Antonini et al., 2008), we have shown as 
referring to a prototype and to some aspect of concept image can efficiently sup-
port the examples production but can also generate conflicts and make difficult 
to solve the task.

Here, we have already seen how prototypes play a significant role in these 
processes (see protocols of Stefano, Sandro and Marco). I add just a brief descrip-
tion of the case of Marisa (PHD in Mathematics, the periodic function problem) 
to show that also for an expert these aspects can be significant in failing the task.

Marisa is astonished because, for her, a periodic function is “periodic if it 
repeats itself in the same way […]… something that repeats itself…”. She concludes that if a 
function is periodic, then it has a minimum period, and she tries to prove it. The 
process is based on a concept image of periodic function that makes impossible 
to solve the problem. We observe how the activity of examples generation, in this 
case, has allowed to make observable this aspect of concept image, strong enough 
to darken the mathematical definition and its use also for a subject with a high 
mathematical culture.

CONCEPTUALIZATION AND MATHEMATICAL DEFINITION

The examples generation activities reveal didactical potentialities that requires fur-
ther studies. I report here a transcript in which the process of generating an example 
has given an important contribution to make sense of one aspect of the mathemati-
cal definition of limit (for a more detailed analysis see Antonini et al., 2007).

RL | Generating examples: an intriguing problem-solving activity
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Letizia (forth year of the degree in Mathematics, the injective function 
problem), after having sketched and modified a graph, focuses on the values of 
the function at the end points of the interval. The problem is that, in her opin-
ion, the limit of the function should be equal to the value it assumes.

Letizia: “I was thinking… Can I define my function in x=1, by giving any 
value? No, because if I define f(1)=3, then the limit for x tending to 1 of my 
function is 3 [see figure 3].

 […] Maybe, I want the function to be continuous in the intervals where I’m 
defining it, but it could even be not continuous. If I define f(1)= - 2, so that 
it is injective, my problem now is to see what is the value of the limit for x 
tending to 1 of this function. I don’t know what is the value, I mean, looking 
at the graph I would say that the limit is –2 and not 2.”

Figure 3

Interviewer: “Try to think of the definition of limit.”

Letizia: “Ah, but there is a neighbourhood with a hole! I mean, I write you 
the definition of limit [she writes down the definition]. I must exclude the 
point to which the x is tending, then it is ok, the function that I drew is ok, 
it tends to 2 for x tending to 1. What a nice exercise! Eventually I understand 
why in the definition of limit it is necessary to exclude the value of the point, 
I understand the meaning for neighborhood with a hole!”
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The suggestion of the interviewer has been essential and has the role of ex-
ternal metacognitive control. With the last comment (“What a nice exercise! 
Eventually I understand…”) Letizia (a student who have already had some ex-
perience in Mathematics!) makes explicit that this activity has given her the 
possibility to refine her understanding of the meaning of the mathematical 
definition of limit.

EXAMPLES GENERATION, ARGUMENTATION AND PROOF

It is well known that for some students giving some examples is enough to 
prove a statement (see, for example Balacheff, 1987; Chazan, 1993; Harel 
& Sowder, 1998). On the other side, generating examples could be relevant 
also for experts in conjecturing, argumenting and proving (see, for example, 
Alcock, 2004). In a study on explorative processes, Boero et al. (1999) iden-
tify four models of production of a statement, highlighting different roles 
of the examples generation. In Antonini (2003), I analyse some aspects of 
examples that can affect the argumentative processes and the structure of 
argumentation.

By now, the relationships between examples and argumentation has 
mainly seen from the point of view of argumentation. In this article I take 
the opposite point of view, focusing on argumentation processes in examples 
generation tasks. In these activities, it is common to observe argumentation, 
and sometimes mathematical proof, supporting some properties that an object 
should have - as in the analysis process - or the impossibility of generating an 
object. Here, I would like to spend some words about argumentation produced 
to show that an object does not exist.

In general, we can observe three situations:

1. The research of examples fails, the subject is convinced that the example 
does not exist but the only argument is his/her failure. In this case, there 
are not useful arguments to construct a mathematical proof.

2. In the analysis process, a contradiction is deduced. In fact, through the 
analysis it is sometimes possible to deduce a property that may evoke the 
required object, but in other cases it might happen to deduce a contra-
diction.

RL | Generating examples: an intriguing problem-solving activity
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For example, Cristiano (PHD in Mathematics, the periodic function 
problem) is aware of this double possibilities of the analysis and says: “I 
don’t know whether it exists, but I suppose it does, so either I find it or else I prove it does not 
exist”. The subject is not convinced that the requested object exists and be-
lieves that analysis may allow him to either find the function or prove that 
it does not exist.

In this case, the analysis process offers elements for constructing a 
proof by contradiction: there are no examples having the requested proper-
ties, in fact assuming the existence of such an example implies a contradic-
tion. In cases like this, we can observe cognitive unity (in terms of Garuti et al., 
1996) between exploration and proof construction processes, and structural 
continuity (in terms of Pedemonte, 2007) between argumentation and proof. 
On the other side, if the student plans to product a direct proof, as it could 
happens because direct proof is closer to his/her conception of proof (see 
Antonini & Mariotti, 2008), many difficulties could appear because new 
arguments are needed to construct the proof.

3. The transformations modify the objects in something that does not fulfil 
the required properties and the impossibility of generating the example is 
based on the reasons of the failure of the transformation process.

In this case, the proving process could be very problematic, in particu-
lar when the subject tries to produce a proof that is close to some of the 
arguments related to transformations. In this case, it is the search of cognitive 
unity between argumentation and proof that causes the main obstacles. In 
other words, the process of generating the conjecture could interfere with 
the proving process, causing significant difficulties, as we can see in the 
following excerpt.

Federica (fifth year of the Mathematics Degree, the convex function problem) 
tries to construct a convex function with three zeros joining two convex func-
tions and she realizes that the problem is in the joining point:

“We should manage to join two functions […] in a smooth way so that the 
result is differentiable. [...] I give you an example [see figure 4], this func-
tion is zero in at least three points but it doesn’t work because there is a point 
where it is not differentiable.”
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Figure 4

“The problem is that, I ask myself if in order to have the derivability in points 
like this, I have necessarily to consider a piece of function that is concave; or, 
if not concave, constant, that is not good because the second derivate is zero.”

I omit a part of the interview in which Federica tries to construct the function 
by defining the analytic expressions in two adjacent segments and in the point 
that separates the segments. After this work she realizes that the problem is 
again in joining the expressions so that the requirements are fulfilled and she 
produces a conjecture and an argumentation:

“I suspect that it is absurd. Because with functions like that I wrote, when 
I define [the value of the function] in one point I lose the second derivate 
everywhere positive. However, if I define it by piecewise it is not easy to joint 
them [the pieces] so that it [the function] is twice differentiable. Then I ask 
myself if it is absurd. Let’s see as this means. I write down the hypotheses. 
Now, if I assume that there exists a function fulfilling the hypotheses I want 
to arrive at an absurdity. I draw my hypotheses [see figure 5].”

Figure 5
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“I ask myself what the hypotheses mean. If the function were … […] Let’s 
see what happens in n [she is assuming that the function is composed by two 
convex functions joined in a point named n] […] I would like to show that 
the function in n either isn’t continue or isn’t differentiable, in order to arrive 
at an absurdity.”

Subsequently, Federica is involved in the production of a proof that the function 
does not exist but she has many difficulties. The main obstacle seems to be the 
interference of the process of generating the conjecture in the process of the 
proof production, as we can see in her decision of treating the problem of the 
joining point also in the proof.

We can observe here a continuity (in the sense of Garuti et al., 1996 
and Pedemonte, 2007) between the structure of argumentation and that of the 
planned proof. In fact, Federica plans to prove her conjecture by contradiction, 
and it seems that she does not assume only that the function exists, but, in con-
tinuity with the precedent stage, she assumes that the function is composed by 
two convex functions joined in the point n. In addition, she wants to look for 
a contradiction related to the point n, in particular she wants to prove that the 
function in n is not differentiable or not continue.

Only when Federica, after some suggestions of the interviewer, leaves 
the idea of the joining point, she manages to conclude her proof.

CONCLUSIONS

In this article, I have presented an analysis of processes involved in examples 
generation, showing their richness, complexity and potentialities. Constructing 
an example is a rich problem solving activity, efficient for didactical and diag-
nostic goals, for what it can reveal on conceptualization of students and with 
big potential from the point of view of education.

The transformation process is very common both in experts and 
students’ protocols. Even if further investigations are needed to explore its 
potentialities, transformation on objects seem to have a significant role in con-
ceptualization, as described by Piaget:

“To know an object is to act on it. To know it is to modify, to transform 
the object and to understand the process of this transformation and, as a conse-
quence, to understand the way the object is constructed ”(Piaget, 1964, p. 176)
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One of the role of the teacher is leading students to the awareness and 
familiarity with transformations of mathematical objects in different registers, 
and promoting processes of anticipation.

The analysis process is sophisticated and not common in students’ 
solution. On the other side, it seems a particularly significant process from 
cultural point of view, for the role that it assumes in scientific and, in general, 
speculative activities.

Further studies are necessary in different directions. It is necessary 
to investigate the identification of other processes, and the relationships with 
conceptualization, argumentation and proof. One open question is the educa-
bility of the processes, even if I think that suitable didactical activities can favour 
their development. Finally, a crucial research question regards the cultural and 
cognitive relevance of the processes of generating examples in Mathematics, in 
Sciences, and, in general, in reasoning.

RL | Generating examples: an intriguing problem-solving activity
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