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Abstract

This paper is about teachers using technology in ‘ordinary’ conditions. It addresses 
the discrepancies between potentialities of technology and teachers’ aspirations 
with regard to technology use, and between teachers ‘ expectations and the actual 
carrying out of technology based lessons in the classroom as well as by unexpected 
episodes of uncertainty and improvisation that teachers experience when teach-
ing these lessons. Two models are used to make sense of teachers’ position and of 
classroom phenomena. Ruthven and Hennessy’s (2002) model helps to understand 
how teachers connect potentialities of a technology to their pedagogical aspirations, 
rather than to mathematically meaningful capabilities, and to interpret their class-
room activity. Saxe’s (1991) model helps to analyse the flow of unexpected circum-
stances challenging teachers’ professional knowledge in technology based lessons 
and to understand how teachers react to this flow. It also draws attention on the 
consequences of the introduction of new artifacts in the culture of the classroom. 
This gives tools for researchers to work in partnership with teachers, as well as for a 
reorientation of teacher development in technology towards reflective approaches.

Keywords
Digital Technology Integration; Teachers’ aspirations; Teachers’ Classroom Activity; 
Emergent Goals; Practitioner Model
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This article is about teachers using technology in mathematics teaching/learn-
ing. I am interested here by teachers using technology in ‘ordinary conditions’, 
that is to say not in the frame of experimental projects. My question is what 
they really expect of technology and how these expectations impact upon their 
classroom activity. This question comes from observations we did in a French 
research group whose name is GUPTEn (Genèses d’Usages Professionnels des 
Technologies par les Enseignants)1. This group worked observing teachers with 
diverse methodologies and observed a series of gaps. The first gap is between 
institutional demand and few actual uses by teachers. In some parts of the French 
curriculum there are strong institutional demands towards technology use, but, 
as international studies like PISA show, students rarely mention having used tech-
nology in the classroom. The second gap is between the potentialities brought 
by technology and the actual uses by teachers. In some parts of the French cur-
riculum technology use is compulsory. However, uses prepared and carried out 
by the teachers appear to be deceiving in comparison to the potentialities of 
technology emphasised by research studies and innovating projects. When our 
group looked more closely to classroom uses, a third gap appeared. The carrying-
out of the lesson in the classroom was often different from what teachers had 
expected. Very frequently, we observed episodes where teachers seemed to be 
quite uncertain of how to carry out the lesson and had to improvise.

Some authors explain these gaps by teachers’ conservativeness, say-
ing that teachers are reluctant to change especially because using technology 
would also oblige them to modify their teaching habits and style. In my mean-
ing, these discourses underestimate the constraints that teachers face. Cuban 
(1989) emphasized the crucial role of these constraints : “Teachers teach the way 
they do simply to survive the impossibilities inherent in the workplace”. For me it means that 
opportunities exist for changing teaching practices, but, constraints make them 
not many, and one has to consider them carefully, which is a goal of this pa-
per. Another explanation of the gaps would be insufficient teacher education. 
Certainly teacher education does not contribute efficiently enough to technol-
ogy integration, but in my view, and from the observation that in France many 
efforts have been devoted to teacher education in this field, I take for granted 
that the gap is more qualitative than quantitative.

1 The web site http://gupten.free.fr presents this research group and its main activities
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1. Hypotheses, Frameworks, Case studies and Questions

In my view these gaps originate from a poor conceptualisation of teachers’ 
position towards technology and we need to understand better this position. 
That is what this article wants to contribute to. Studying teachers’ expectations 
relatively to technology and how they impact upon their classroom activity is 
a means for that. This study is based upon two hypotheses. The first one is of a 
discrepancy between potentialities emphasised by researchers that come from a 
didactical analysis of software uses and teachers’ expectations towards supposed 
effects of technology. Potentialities derive from a cognitive didactical analysis of 
software uses by researchers, while expectations are marked by teachers’ aspira-
tions regarding students’ activity.

The second hypothesis is that analysing classroom episodes where 
teachers meet uncertainty and have to improvise could help to reveal hidden 
constraints and obstacles. I will use two different frameworks for these two 
hypotheses. Conceptualising teachers’ expectations with regard to technol-
ogy will be done using Ruthven and Hennessy’s (2002) “practitioner model 
of the use of technology to support mathematics teaching and learning”. The 
framework that I will use to address the complexity and uncertainty of teach-
ers’ activity involving classroom use of technology is Saxe’s cultural perspec-
tive (the four parameters model) that Monaghan (2005) introduced to analyse 
technology based lessons.

1.1 A practitioner model

Figure 1: Ruthven and Hennessy’ practitioner model
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Ruthven and Hennessy built the model outlined in figure 1 from interviews 
conducted with mathematics teachers in the UK. These were not individual 
interviews but collective discussions in mathematics departments leaded by 
the researchers about what is for these teachers a successful use of technol-
ogy. From the script of the interviews, Ruthven and Hennessy determined ten 
themes and organized these themes in three levels. The first level is where we 
find the reasons for success directly following technology use. There is a bet-
ter ambience because students generally like working in pairs on a computer, 
it makes experimental approaches possible, routine tasks are facilitated, etc. At 
the second level we find aspirations regarding classroom activity is the conse-
quences of these effects of technology to the. At the third level, we find teach-
ers’ general views regarding conditions favoring students’ learning. Teachers 
consider that students learn better when they engage more, in a more effective 
activity, and when the ideas are better established.

The links between themes were established by a statistical procedure. 
Links are between the themes that appear together more often in the same 
teacher’s statements.

1.2 Saxe’s cultural perspective (the four parameters model)

Figure 2 : Saxe’s four parameters model
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Monaghan (2005) proposed to use Saxe’s cultural perspective to address the 
complexity of classroom practises with technology as a whole. My assumption 
is that Saxe’s idea of emergent goal might help to understand what I called 
above episodes of uncertainty and improvisation: «Goals are emergent phenomena, 
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shifting and taking new forms as individuals use their knowledge and skills alone and in interaction 
with others to organize their immediate contexts” (Saxe, 1991).

Monaghan (2004) described the four parameters in the context of 
technology use (figure 2).

Activity structure:
Monaghan considers here the way teachers organize their classes and prepare 
students’ tasks, and the decisions they take relatively to their role and activity 
as well as those of the students: he observed that the tasks and cycles of these 
lessons varied considerably across teachers and, in most cases, varied over time, 
technology tasks being ‘unsafe’ as compared to usual tasks.

Conventions – artefacts:
While recognizing that Mathematics teaching involves many cultural artefacts in-
cluding systems of convention and notations, Monaghan privileges software and 
written resources in the study of teacher activity in technology-based lessons, con-
sidering that the way a software transforms mathematics is an important concern for 
a teacher and also that the shift towards technology use brings him/her to widely 
re-evaluate the content of his/her written material as well as the way they use it.

Social interactions:
Monaghan observed a variety of ways in which technology affected social inter-
actions in observed classrooms. Although technology lessons were notable for 
their diversity, most changes appeared in relationship with specific constraints 
and did not denote a clear developmental path towards adopting new roles.

Prior understandings: For Monaghan, mathematics teachers’ ‘prior 
understandings’ of learning and teaching incorporate a range of beliefs and 
professional knowledge. Beliefs are globally independent of whether or not the 
lesson uses technology and were not reconsidered. In contrast, teachers’ knowl-
edge of their teaching, generally tacit in ordinary lessons, had to be rethought 
deeply in order to incorporate technology use.

1.3 Case studies and Questions
The two case studies analyzed in this paper come from doctoral theses. The first one 
is Caliksan-Dedeoglu (2006). It concerns Dynamic geometry (DG) at middle school 
level. In this context there is a strong institutional demand and many resources 
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should help the teacher. It is also a context where teachers feel often not easy to 
teach because of difficulties to maintain student’s attention and motivation. The 
questions are about the discrepancies between potentialities of technology and 
teachers’ expectations, and between teachers’ expectations and the actual carry-
ing out of the lessons in the classroom.
The second case study comes from Ozdemir-Erdogan (2006) and deals with 
spreadsheet use at upper secondary level by non scientific students. The context 
is a new curriculum where spreadsheet use is compulsory. The questions and 
hypotheses are about teachers’ understanding of this curriculum and the goals 
emerging in teachers’ classroom activity.

2 Potentialities of technology and teacher expectations

In the first case study Caliksan-Dedeoglu studied successive gaps between the po-
tential of Dynamic Geometry as seen by research, by the curriculum, by textbooks 
and by teachers. She also observed the classroom activity of a panel of teachers.

2.1 Successive gaps between views about Dynamic Geometry

Dynamic geometry in research studies
Caliksan-Dedeoglu looked for the potentialities that didactic research studies 
attribute to Dynamic Geometry, but also for the conditions that researchers find 
important in order that DG really contribute to learning.

She found that the construction and creation tools can help students to 
draw quickly accurate figures and that the dragging tool is appropriate to distinguish 
between a drawing and a figure (Laborde 1994) and to explore invariant properties.

She also noticed that these features are considered in interaction. A good 
example of interaction is the case of robust and soft constructions (Healey 2000).

A robust construction (figure 3, left) is the dynamic equivalent of a 
mathematical geometrical construction. For instance, constructing the circum-
circle of a given triangle ABC, the students classically construct O at the inter-
section of two perpendicular bisectors, for instance of A and B and of B and C. 
It is a robust construction because it resist to a change in the position of the 
given points. More generally, in a robust construction activity, dragging gives 
evidence of a valid construction.

In a soft construction, (figure 3, right) students drag free points to 
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obtain a given configuration. For instance, to obtain the circumcircle of a given 
triangle ABC, students create a free point O and three circles centred in O, pass-
ing respectively by A, B and C. They move O in order that the first two circles 
overlap. Then they move O carefully in order that the two circles continue to 
overlap, until the three circle overlap. This is a soft construction because it does 
not resist to a change in the position of the given points. When a student or 
the teacher moves a vertex of the triangle, the three circles disjoin. In a soft 
construction dragging helps to explore constructions and can play a role in the 
proof process: “dragging tools enable students to examine their constructions, both to identify re-
lationships which remain invariant and to impose further relationships visually” (Healey 2000).

Figure 3: Constructing the circumcircle of a triangle

  

A robust construction A soft construction 

 

Another important idea that we found in research studies is how classroom 
activities should be organized. For instance Falcade R., Laborde C., and Mariotti 
(2007) used Dynamic Geometry to develop students’ understanding of func-
tions and they insist on three types of uses. One is in the computer lab, stu-
dents working in pairs on a task, the second is individual writing, possibly using 
the computer to check some functioning and the third is classroom discussion 
where a video projector can be used. In their view, it is important that these 
three types of uses are coordinated, the individual writing fostering a reflection 
on computer activity, and the classroom discussion helping to give a mathemati-
cal meaning to the observations.

RL | Teachers using technology: aspirations and classroom activity
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2.2 Dynamic geometry in Textbooks
Caliksan-Dedeoglu made a comprehensive study of textbooks for the middle 
school with regard to Dynamic geometry and she found first a discrepancy 
with the curriculum. While the curriculum says that DG can be used for most 
tasks as well as paper/pencil, only 5% of the geometric tasks tasks involved 
Dynamic Geometry. And also there were some subjects like 3D geometry that 
the curriculum specially emphasised as interesting for the use of Dynamic ge-
ometry software and for which textbooks did not mention its use. This is for us 
an indication that integrating DG, as recommended by the curriculum is not so 
easy because textbooks authors find difficulties to propose tasks that the teach-
ers could really put into operation.

These were also clear discrepancies between Dynamic Geometry in 
Textbooks and in research. First, tasks in textbooks separated construction and 
dragging. Task for creating constructions were typically reproducing a paper 
pencil figure. Tasks involving dragging objects typically aimed to recognize in-
variant properties. And also there was emphasize on measure in invariant prop-
erties, for instance invariance of ratios in the theorems of the parallels.

Then textbooks separated two types of uses. Textbooks considered 
mainly two types of work, one in a computer room, students working alone or 
in pair on a computer and following a worksheet, and the other in an ordinary 
classroom with a computer hooked to a video projector and activated by the 
teacher. As a difference with research, textbooks did not insist on coordination 
between these types of uses.

Because textbooks influence teachers’ practices, but also are influ-
enced by what is possible in teachers’ practice, it was an indication that there 
could be a distance between these practices and what research studies found 
necessary for a successful use of DG. Actually, the computer room is seen as an 
environment for student autonomous work, while the computer hooked to a 
video projector and activated by the teacher is seen as a tool for the teacher to 
illustrate a lesson without necessary connection between those uses.

2.3 Classroom observation
As said above, Caliksan-Dedeoglu also observed teachers. She had difficulties 
to find teachers using dynamic geometry and accepting that a phD student 
observe their classroom. She found nevertheless a panel of five teachers in 
three schools that were not ordinary teachers in the sense of randomly chosen 
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teachers, but rather experienced teachers with some contact with groups of 
research and action. Two teachers in this panel developed uses in computers 
labs, what we called above GD Environment for student autonomous work and 
three used systematically a computer hooked to a video projector that they 
operated themselves.

DG= Environment for student autonomous work
Anne was one of the teachers that developed uses in computers labs. She taught 
at 7th grade and she was positive towards technology. Especially, she saw advan-
tage in GD use like speed and accuracy of drawings by students, avoiding mis-
takes by not confusing words for instance perpendicular bisector (‘médiatrice’ 
in French) and median in a triangle. To her, dragging was a means for students 
to experience an invariant property.

Figure 4: Anne’s instructions for students

Create a triangle A B C
Create a free point O
Create three circles centred in O passing by A, B, C
What can you say of these circles?
Create the perpendicular bisector of segment AB.	  
Put O on this line
What do you observe?
…
Write instructions to construct the circumcircle of a triangle

Figure 4 presents a task that Anne proposed in her 7th grade class. The objec-
tive was to introduce students to the topic of the circumcircle of a triangle and 
more precisely that they understand the position of the circumcenter and find 
a paper pencil construction..

Students had to create a triangle A B C, a free point O and three cir-
cles centred in O passing by A, B, C, they had then to observe that the circles 
are different, because point O is randomly positioned. Then Anne did not ask 
her students to find experimentally some position where two or three circles 
could be the same, like in a soft construction strategy. In contrast she directly 
asked to draw the perpendicular bisector of segment AB, to drag O on this line 
and to observe that the two circles passing by A and B are the same. At the end, 
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she did not ask for a hard construction and to verify by dragging, but to write 
a program of construction from the guided tasks they did before.

In our understanding, Anne transformed a problem of soft construc-
tion into a series of construction-observation tasks that should lead students to 
a paper pencil construction. She separated creating and dragging objects, thus 
loosing the challenging aspects of the problem.

The observation showed that students actually had much difficulty 
when operating the software, not understanding for instance that the three cir-
cles had to be named and how. Anne tried to help them individually, but there 
was much disturbance: the task was prepared for just half of a 50mn session, 
and few students could actually make sense of the observation.

DG= a tool for the teacher to illustrate a lesson
I now contrast Anne with another teacher, Bruno who had systematically de-
veloped the use of DG as a tool to illustrate a lesson. He was also positive to-
wards technology and particularly stressed that technology helps to visualize 
dynamically and allows easy construction and easy measurements. He said that 
he preferred to use a computer hooked to a video projector because he tried 
before to use GD in a computer room and found that it was much work for 
him and little gain for the students. He said he would have needed worksheets 
to strictly guide students. He taught nearly all geometry lessons with DG and 
video projector, operating the computer and showing various configurations. 
His students had to answer questions and to copy the configurations on paper.

A typical situation was a lesson about the triangle inequality for an 8th 
grade class. The triangle inequality is the theorem stating that for any triangle, 
the length of a given side must be less than or equal to the sum of the other 
two sides but greater than or equal to the difference between the two sides. 
Note that only the first inequality is mentioned by the curriculum at this level.

Starting the lesson, Bruno presented the goal with the following question:

Consider a triangle ABC, with AB= 5cm, AC= 3cm. What can be the length of BC?

In a first phase, students had to try do draw a triangle on their paper. Bruno’s 
intention was that students guess an adequate measure for the distance BC and 
use the standard compass procedure for drawing a triangle of given sides. Then 
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five phases followed. Theses phases were supported by a GD figure animated by 
the teacher. In this figure, A and B were two fixed points with a distance of five. 
M is a free point on the line (AB). A fixed circle centered in A and of radius 3, 
and a circle centered in A, passing by M were also drawn. The teacher animated 
the second circle by dragging M and the radius was displayed in the form r =…. 
(figure 5). Bruno’s idea was that the students would easily connect this figure 
with the standard compass procedure activated in the first phase.

Figure 5: Bruno’s screen and blackboard

 

r < 2 
r = 2 
2 < r 
<8 
r = 8 
r > 8 

In each of the five phases, the teacher considered a specific configuration: the cir-
cles were successively separated externally, tangent internally, secant in two points, 
tangent internally and separated internally. After discussing each configuration 
with the students, the teacher wrote a condition relatively to r on the blackboard. 
In a last concluding phase, he tried to make students pass from the condition 
2<r<8 to a statement involving the measures of the sides, that is to say the triangle 
inequality. He did this by raising the students’ attention on the numbers 2 and 8 
(respectively the difference and the sum of 5 and 3) rather than by considering 
the relationship between the radius of the circles and the distance of the center in 
a generic configuration.

Caliksan-Dedeoglu’s observation showed that the visualisation did not re-
ally make sense for the students. They did not understand the relationship between 
the problem and the GD figure. In the first phase they had used the compass, but 
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they did not see the relationship with the circle drawn and animated by the teacher. 
They did not understand the role of the free point M and of the variable r. They saw 
that the different cases correspond to r<2, r=2, 2<r<8, r=8, r>8 but they did not put 
these facts in relationship with properties of the lengths of the triangle. In an interview 
after the classroom session, Bruno said that he was disappointed: students should have 
found themselves the triangle inequality after observing the configurations.

2.4 Teachers’ expectations versus actual carrying out

Figure 6: a summary of the analysis
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The figure 6 summaries the above analysis of the two different types of use that 
we pointed out in the textbooks’ analysis and that we observed respectively in 
Anne’s and Bruno’s classrooms. For each teacher, from their declarations, we re-
tain in Ruthven and Hennessy’s model the themes that he (she) privileges, and 
the links between them. In Anne’s case (left), she insisted that students would 
work better in the computer lab, and then that their motivation, which was one 
of her great concern, would improve. Easy construction would also help stu-
dents to go faster in the task. The two lines of themes would converge towards 
intensified engagement. Really for Anne, student’s engagement in the task is 
condition for learning. For Bruno (right), DG helps to facilitate constructions 
and to put the focus on relevant features of the situation. It should help students 
to be attentive and to make clear the relevant ideas of the situation. As we can 
see, the two systems realize nearly a partition of Ruthven and Hennessy’s mod-
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el. I take this as an evidence of two distinct systems of expectations underlying 
the two types of uses. This is clearly different as compared to research where 
different types of uses are articulated.

The two systems connect the anticipation by the teachers of effects 
of technology uses to deep personal aspirations regarding students’ access to 
knowledge. For Anne, students’ engagement in tasks is a condition for concep-
tualising, whereas Bruno privileges a good visualization of math properties in 
order to retain the main ideas. These personal aspirations are clearly related to 
the context: as said above, at middle school level in France, teaching conditions 
can be difficult, a situation that teachers often explain by students lacking in 
motivation and concentration. Teachers’ use of technology seems to be driven 
by these context related aspirations rather than by the didactical potentialities 
evidenced by research on cognitive aspects of technology use.

In the figure 6, the broken arrows pointing to themes written in grey 
reflect phenomena observed in the classroom: in some cases expectations of the 
teachers were not fulfilled. Anne’s students experienced difficulties with the soft-
ware. Routine was not really facilitated. Then for Anne there was a danger that 
students did not fully engage in the task. That is why she devoted most of her time 
and energy to help individually students in their constructions. In Bruno’s case, 
the link between “Raising attention” and “Establishing ideas” did not work. That 
is why, like so many teachers in the same circumstances, Bruno finally obtained 
the statements he needed by what Brousseau (1997, p.25) named “a Topaze ef-
fect”. This means that the systems of expectations that I outlined can explain both 
how teachers prepare a lesson with technology, but also how they carry out the 
lesson, including the way they face unexpected circumstances. Using the second 
model outlined in section one, the next section will consider in more depth how 
a teacher in another context encounters and manages these unexpected situations.

3 Emerging goals in teachers’ classroom activity

The context for the second case study is the French curriculum for upper sec-
ondary non-scientific classes existing since the year 2000. It is intended for 
students more attracted by literature and arts than science, and who generally 
experienced difficulties in mathematics. It aims to strengthen mathematical ba-
sic knowledge by favouring modelling, interpreting and criticizing varied in-
formation. It recommends involving “mathematics use visible in society” that is to say 
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graphs, tables, percentages... It “systematically proposes to put all the items into operation on 
a spreadsheet”. It does not recommend the study of the spreadsheet for itself, but 
as means for exploring and solving problems.

Ozdemir-Erdogan focused on lessons about linear and exponential se-
quences. In the curriculum, this topic derives from the focus on “visible mathe-
matics”. Students are supposed to study “types of progression” from examples of 
situations without the mathematical apparatus of sequences, but with the help of the 
spreadsheet. As a difference with other courses where most teachers ignore curricu-
lar recommendation about technology, spreadsheet’s use cannot be avoided because 
of the national evaluation –the baccalaureate‑ whose texts are written in order that 
candidates could not succeed without spreadsheet knowledge.

3.1 The case of Charlotte
Among the teachers that Ozdemir-Erdogan observed in these classes we selected 
one ‑ Charlotte . She was a very experienced teacher, she taught these classes for 
30 years, and she had to adapt her teaching to the new curriculum although she 
thought that technology would not give great help. That ensured that difficulties 
would not come from poor classroom preparation and management. Actually 
Charlotte is representative of a majority of teachers who teach these classes be-
cause of the curriculum’s demands rather than because they like technology. This 
section presents Charlotte’s profile using Saxe’s four parameters and then reports 
on fragments of a classroom session identifying emergent goals.

3.2 Charlotte’s profile

Figure 7: Charlotte’s four parameters
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This is how we can see Charlotte with the help of the four parameters model

Activity Structures:
Charlotte devoted three weeks to sequences which is not much with regard 
to the curriculum’s demands. Charlotte’s structure was simple: the notion of 
sequence was presented to the students the first week, then arithmetical se-
quences the second and geometrical sequences the third. This structure is not 
consistent with the curriculum, since the study of situations and the notion of 
progression should be privileged.

The course was two hours per week, one in whole class and one 
in half class. Teachers had to decide how to use them. Charlotte taught 
the whole class in an ordinary classroom and the half class in a computer 
room. In both classes, whole class sessions were devoted to the presenta-
tion of the mathematical content and half class sessions to “applications” 
with the spreadsheet. Charlotte’s students worked individually following a 
worksheet.

Conventions - artefacts:
We consider here the spreadsheet whose use is compulsory in this course and 
the written material that teachers prepared for the students. In the whole class 
hour Charlotte’s students had to work on paper-pencil. In half-class it was clear 
that they had to work on the spreadsheet: Charlotte’s worksheets were really 
specific about this use, referring to cells and formulas.

Social Interactions:
Charlotte’s interactions with students were similar in the computer and in the 
ordinary room. These interactions were very frequent and generally between 
herself and a single student.

Prior Understandings:
In Charlotte’s view, technology was introduced in this course in order that stu-
dents learn about spreadsheets. For her, beside the use of technology, the math-
ematical content was not different from the previous curriculum. She thought 
that technology does not bring a very concrete contribution, but has a positive 
effect on the behaviour of her students that she considered weak and not inter-
ested in mathematics.

RL | Teachers using technology: aspirations and classroom activity
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3.3 Fragments of a lesson

Figure 8: an example of a task for the first lesson about sequences

Sabine has just been born. Her grandmother opens a credit account for her, makes a 
first 100 € deposit and decides to make each year a new deposit of the same amount 
plus the double of Sabine’s age.

a.	 Starting with u0 = 100, compute by 
hand the money that Sabine’s grand-
mother will deposit on the account

	 at year 1 : u1 =… at year2 : u2 =…
	 at year 3: u3 =… at year 4: u4 =…

b.	 Which of the following formulas should we write in cell B3 and fill down to obtain 
the values of the sequence?

	 (1) = B2 + 2*A3 (2) = B2 +2 (3) = $B$2+ 2*A3

The figure 8 presents an example of a task proposed by Charlotte for the first 
lesson about sequences. Question a. gave priority to the mathematical notion of 
sequence and notation, and privileged by hand calculation in the understand-
ing of the situation. In question b., a table and three formulas were provided, 
and students had only to “press buttons” to complete the electronic sheet. The 
first formula, although congruent to the definition, does not work, because 
of the filling down functioning. The second formula is recursive, and then not 
congruent to the definition, and it works. The third formula corrects the first by 
way of an absolute reference ($B$2) to the initial deposit.

This is how the students carried out the task: they launched directly 
the spreadsheet, entered the values in each cell; one hundred and two in cell B2, 
one hundred and four in cell B3, etc.. Going to question b. they tried formula 
(1) that did not work. Without reflecting more they tried formula (2). Then 
they passed to the next question without trying formula (3). Looking at the 
students’ screens, Charlotte was first satisfied to see the right numbers in the 
cells, and then she became aware that students did not enter a formula and she 
seemed quite surprised. She then devoted a number of individual interactions 
with the students to prompt them to enter formulas and fill down the sheet.
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This was the first emergent goal: making the students use the spreadsheet as a 
calculation tool.

She was again surprised that students did not try the third formula and 
she also prompted them individually for that. This was the second emergent 
goal: making the students try formula (3).

Figure 9: Managing the first emergent goal. Two interactions

Interaction 1
Student 1: Am I right ?
Charlotte: Yes…
…And.. how do you proceed?
Student 1: I calculate
Charlotte: no, you must not calculate, the spreadsheet must calculate!
Student 1: but it is quicker than with the computer
Charlotte: but go until 200 years like that?
Student 1: but this poor girl will never be 200 years old!

Interaction 2
Charlotte: what happens to you…? No, no, do not make like that.
Student 2: me?
Charlotte: one should not type each time the calculation.
Student 2: but why not?
Charlotte: it is necessary that…
I want to be able... Take your formula and fill down. 

The figure 9 displays two examples of interactions showing how Charlotte en-
countered and managed the first goal. The first interaction shows that teacher and 
student have different views of the task and of the spreadsheet. For Charlotte it was 
important to use the spreadsheet as a calculation tool, because, although she did 
not quite believe in the contribution of technology, she was aware of teaching a 
mathematics course and not just a course “about arranging data in columns”. In the 
students’ view the spreadsheet was not fundamentally a calculation tool. It was dif-
ficult for them to enter formulas and easy to calculate mentally the values. Some of 
them devoted a lot of time to neatly format the data and the columns using colours.

As can be seen in the second interaction, after trying with student 1 
to give reasons for using the spreadsheet, Charlotte gave up and exercised her 
authority on student 2.

RL | Teachers using technology: aspirations and classroom activity
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Figure 10: Managing the second emergent goal.

Interaction 3
Charlotte: Did you choose between the three formulas?
Student: Yes this one (She shows the second formula on her screen).
Charlotte: Did you try the third one? (with absolute reference)
Student: No, I did not.
Charlotte: Then please try.
Student: But, after that I will have to do it again!

Then Charlotte shows the student how to use a third column for the third formula.

Figure 10 shows an example of interaction relatively to the use of the third 
formula (second emerging goal). It helps to understand why students did not 
try this third formula. Because the second formula gave the data they expected, 
they were satisfied. They feared that the third formula would not work and then 
that their previous work would be destroyed. This is very consistent with com-
mon social behaviour with regard to technological tools. If one finds a way to 
reach a goal for instance with his (her) mobile phone, he (she) will generally 
not continue to seek for another way. He (she) will prefer to keep strictly to the 
way he (she) found. In contrast the task proposed in the text was about com-
paring different ways to reach the same goal.

3.4 Parameters and emergent goals
This is how the emergence and the management of goals can be seen under the 
influence of parameters (figure 11).

Activity Structures:
Charlotte’s students worked individually following a worksheet. This did not 
favour reflection that would be necessary to compare the three formulas and 
make sense of these.

Conventions - artefacts:
The students understood that in the computer lab they had to use the computer, 
that is why they directly launched the spreadsheet not understanding that the 
text asked first a paper pencil task and then a comparison with the spreadsheet.



21

Social Interactions:
Charlotte’s scheme of interactions with a single student made difficult for her 
to become aware of their behaviour. She was first satisfied to see the right values 
in the cells, before understanding that they had been entered one by one in the 
spreadsheet.

Prior Understandings:
There is a conflict between two understandings of the spreadsheet; students’ 
understanding is related to a social view of technological tools whereas the 
teacher understands the spreadsheet as a calculation tool. Charlotte seemed to 
be not aware of social representations of tools possibly conflicting with math-
ematical uses.

Figure 11: Charlotte’s parameters and emergent goals
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 Social Interactions 
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Conventions-Artefacts 
Computer room=> 
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Conflict between two 
understandings of the 
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3.5 Discussion
Other observations confirmed that Charlotte’s tendency to act on an exposi-
tion/application activity format and a teacher/student individual interaction 
scheme, already existing before the curriculum change, had been reinforced by 
the spreadsheet and consequently application was replaced by narrow spread-
sheet tasks. Maybe we could say that the observation of goals comes from the 
fact that Charlotte is particularly weak, falling into every pitfall of technology 
use. It is not the case, since Ozdemir-Erdogan observed another teacher, very 
experienced in the classroom use of technology, volunteer to teach this course 
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after the curriculum change, with a much better understanding of the cur-
riculum and an innovative classroom management. The observation of a similar 
session showed that this teacher encountered similar emerging goals and that, 
although she reacted better, this reaction was not always consistent (Lagrange, 
Erdogan 2009).

This idea of emergent goals was means to give account of teachers’ un-
certainty in classroom use of technology. It brings further to think about what 
these teachers have in common with the New Guinea Oksapmin from which 
Saxe built the model. This should be that both had to deal with a new artefact 
involving deep cultural representations. In the Vygotskian perspective, Saxe was 
interested by the impact of culture upon cognition and he chose the Oksapmin 
people because in their case there was a conflict of cultures: these people have a 
traditional way of counting, using parts of the body as representation of num-
bers; some of them trade in the modern way, but their traditional way does not 
permit them the calculations that this trade requires. This comparison brings to 
consider cultural systems involved in classroom use of technology. Students saw 
the spreadsheet as a means to neatly display data. It is consistent with the social 
representations of technological tools. People are generally not aware of the real 
power of the computer, which is the possibility of doing controlled automatic 
calculation on a data set, even when they used spreadsheet features based on 
this capability. In contrast, Charlotte saw the spreadsheet as a mathematical tool. 
She was disconcerted because she was not conscious of the existence of other 
representations.

4 Conclusion and perspectives

Combined with classroom observations, the two models helped to make sense 
of teachers’ position and of classroom phenomena. Ruthven and Hennessy’s 
model helped to understand that teachers connect potentialities of a technology 
to their pedagogical aspirations, rather than to mathematically meaningful capa-
bilities. The observation of two teachers using dynamic geometry showed what 
happens when the connection does not work: the teacher tries to re-establish 
the connection. In the first observation the teacher Anne expected that technol-
ogy would help students to work alone on a task, but it did not work because of 
insufficient instrumental genesis. Then she tried to re-establish the connection 
by becoming a technical assistant. This explain why teachers teaching in a com-
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puter room devote much time to technical scaffolding when they expected that 
technology would help their students to work alone and that they could act as a 
catalyst for mathematical thinking. In the second observation the teacher Bruno 
expected that after the students had their attention raised thanks to technology, 
it would be easy for them to make sense of the situation mathematically. Again 
here it did not work because students did not understand the teacher’s action on 
the computer and the teacher had to rely on a “Topaze effect”.

I also noted that these teachers had different expectations directing 
them towards different uses of technology, one in a computer room, the other 
on a computer he operated himself, and that in both cases, their expectations 
were connected to their teaching context.

Saxe’s model was chosen to analyse classroom episodes where teach-
ers meet uncertainty and have to improvise. The notion of emergent goals was 
central to analyse the flow of unexpected circumstances challenging teachers’ 
professional knowledge. The four parameters helped to understand how teach-
ers react to this flow. Saxe’s model also drew our attention to how cultural 
representations of a technological tool can differ between the teacher and the 
student, making it difficult for teachers to anticipate and understand what stu-
dents do with the tool.

The upshot of the two analyses is that teachers’ views of technology 
are influenced by general expectations and necessarily diverge from cognitive 
views privileged by research. It is then important that research broaden its 
range of concerns to include teachers’ expectations and context. It is also im-
portant that research take into account the impact of cultural views associated 
to computer artefacts upon classroom phenomena, which is another way for 
broadening the range of concerns to consider the diversity of social representa-
tions relative to technological tools.

This is consistent with Fuglestad, Healy, Kynigos & Monaghan ‘s (2009) 
idea that the complexity of technology use is linked to the fact that tools are 
a constituent part of culture; hence the introduction of new artifacts necessar-
ily involves the establishment of new cultural practices. The need to involve 
teachers as partners in research studies about technology is then increasingly 
evident, the focus of the partnership being on the design of learning activities 
and/or on the design of the digital tools themselves both resources playing the 
role of “boundary objects”. As a tool to understand teachers’ position towards 
technology, the two models we used are valuable for researchers working in 
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these partnerships: learning activities and digital tools could be appreciated for 
their didactical relevance as well as for their adaptation to a context and for the 
way they can be incorporated into teaching practices.

Reciprocally, ways are to be found in order that teachers come to re-
think their expectations, considering the actual support that technology is able 
to bring. Whilst strategies based on the transmission of “good practices” taking 
little care of the complexity of the integration fail to engage teachers, reflecting 
upon actual more or less unsatisfactory classroom activities might help them 
to identify possible evolutions (Emprin 2007). As a tool for teachers to clarify 
their beliefs, knowledge and decisions, as well as to learn to deal with shifting 
goals in the classroom, the two models we used here could facilitate a strategic 
shift towards reflectivity in teacher professional development about technology.
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A Higher Standpoint
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ABSTRACT

In 1908, Felix Klein not only became the founding president of the Commission 
internationale de l’enseignement mathématique (CIEM, anglicized as the International 
Commission on the Teaching of Mathematics) but also published the first 
volume of his groundbreaking Elementarmathematik vom höheren Standpunkte aus 
(Elementary Mathematics from a Higher Standpoint). In the introduction, 
Klein identifies a central problem in preparing teachers to teach mathematics: 
a double discontinuity that the prospective teacher encounters in going from school 
to university and then back to school to teach. School mathematics and univer-
sity mathematics typically seem to have no connection. Klein’s course assumes 
that the prospective teachers are familiar with the main branches of mathemat-
ics, and he attempts to show how problems in those branches are connected 
and how they are related to the problems of school mathematics. Throughout 
his career, Klein saw school mathematics as demanding more dynamic teaching 
and consequently university mathematics as needing to help prospective teach-
ers “stand above” their subject.
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In print for a century, the volumes of Klein’s textbook have been used 
in countless courses for prospective and practicing teachers. They provide ex-
cellent early examples of what today is termed mathematical knowledge for teaching. 
Klein’s courses for teachers were part of his reform efforts to improve second-
ary mathematics by improving the preparation of teachers. Despite the many 
setbacks he encountered, no mathematician has had a more profound influ-
ence on mathematics education as a field of scholarship and practice. Two later 
mathematicians whose contributions to mathematics education resemble those 
of Klein are George Pólya and Hans Freudenthal. After discussing their contri-
butions, I suggest why higher is a better translation of höheren than advanced is and 
end by noting some problems posed when considering mathematics education from 
a higher standpoint.

Keywords
Klein, Pólya, Freudenthal, discontinuity, intuition, mathematical knowledge for 
teaching
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In 1908, Felix Klein not only became the founding president of the Commission 
internationale de l’enseignement mathématique (CIEM, anglicized as the 
International Commission on the Teaching of Mathematics) but also published 
the first volume of his groundbreaking Elementarmathematik vom höheren Standpunkte 
aus (Elementary Mathematics from a Higher Standpoint). The third volume, on 
applications of calculus to geometry, had originally been published in 1902 
but was revised and put at the end of the series because, as Klein (1924/1932) 
noted in his introduction to the third edition of the first volume, it had been 
“designed to bridge the gap between the needs of applied mathematics and the 
more recent investigations of pure mathematics” (p. v.), a somewhat different 
purpose than that of the first two volumes, which were designed “to bring to 
the attention of secondary school teachers of mathematics and science the sig-
nificance for their professional work of their academic studies, especially their 
studies in pure mathematics” (p. v). The third volume (Klein, 1928) has never 
been translated from the original German, whereas the first two have also ap-
peared in English and Spanish.

All three volumes in the series began as lithographed copies of hand-
written lecture notes prepared by Klein’s assistants Ernst Hellinger and Conrad H. 
Müller that were later edited for printed editions by Fritz Seyfarth and others. For 
some years, Klein had offered courses addressed to secondary school teachers, 
and in this series, he concentrated on the content of the secondary mathematics 
syllabus. The first volume was based on notes from a course given at Göttingen 
in the winter semester of 1907–1908, and the second, from a course given the 
following summer semester, in 1908.

Elementary Mathematics from a Higher Standpoint

Arithmetic, Algebra, Analysis

Introduction
In the introduction to the first volume, Klein (1908, 1924, 1924/1932, 1933) 
identifies a central problem in preparing teachers to teach mathematics: a double 
discontinuity that the prospective teacher encounters in going from school to 
university and then back to school to teach. School mathematics and university 
mathematics appear to have no connection. Klein (1924/1932) identifies ef-
forts to eliminate that discontinuity by updating the school curriculum, on the 
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one hand, and by attempting “to take into account, in university instruction, 
the needs of the school teacher” (p. 1). His course, he says, will assume that the 
prospective teachers are familiar with the main fields within mathematics. His 
task will be to show

the mutual connection between problems in the various fields, a thing which is not brought 

out sufficiently in the usual lecture course, and more especially to emphasize 

the relations of these problems to those of school mathematics. In this way 

I hope to make it easier for you to acquire that ability which I look upon as 

the real goal of your academic study: the ability to draw (in ample measure) 

from the great body of knowledge there put before you a living stimulus for 

your teaching. (pp. 1–2)

In this quotation, one hears echoes of Klein’s early views of mathematics educa-
tion expressed in his inaugural address (Antrittsrede) of 1872 when he became 
professor at Erlangen at the age of 23. The problem of the secondary school 
curriculum was, for Klein, neither insufficient time nor inadequate content:

What is required is more interest in mathematics, livelier instruction, and a 

more spirited treatment of the material! . . .

At stake [for university teachers of mathematics] is the task . . . of raising the 

standards of mathematical education for later teaching candidates to a level 

that has not been seen for many years. If we educate better teachers, then 

mathematics instruction will improve by itself, as the old consigned form 

will be filled with a new, revitalized content! . . .

[Therefore,] we, as university teachers, require not only that our students, 

on completion of their studies, know what must be taught in the schools. We 

want the future teacher to stand above his subject, that he have a conception of 

the present state of knowledge in his field, and that he generally be capable of 

following its further development. (Klein, in Rowe, 1985, p. 139)

Throughout his career, Klein saw school mathematics as demanding more dy-
namic teaching and consequently university mathematics as needing to help 
prospective teachers “stand above” their subject.

RL | A Higher Standpoint
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To conclude the introduction to the volume, Klein cites several recent 
discussions of mathematics instruction that supplement the topics he will be 
treating. He points out, however, that some treatments of elementary mathe-
matics build it up “systematically and logically in the mature language of the 
advanced student, [whereas] the presentation in the schools . . . should be psy-
chological and not systematic. . . . A more abstract presentation will be possible 
only in the upper classes” (Klein, 1924/1932, pp. 3–4). He also points out that 
he adopts a “progressive” stance:

We, who are called the reformers, would put the function concept at the very 

center of instruction, because, of all the concepts of the mathematics of the 

past two centuries, this one plays the leading role wherever mathematical 

thought is used. We would introduce it into instruction as early as possible 

with constant use of the graphical method, the representation of functional 

relations in the x y system, which is used today as a matter of course in every 

practical application of mathematics. . . . Strong development of space per-

ception, above all, will always be a prime consideration. In its upper reaches, 

however, instruction should press far enough into the elements of infinitesi-

mal calculus for the natural scientist or insurance specialist to get at school 

the tools which will be indispensable to him. (p. 4)

Klein is anticipating the emphasis that he puts in the subsequent text on applica-
tions, geometric illustrations, space perception, and the historical development 
of the field. The book is divided into three parts—arithmetic, algebra, analysis—
together with supplementary sections on transcendental numbers and set theory.

Arithmetic
The main topics in the first part are the natural numbers; the extension to negative 
numbers, fractions, and irrationals; number theory; and complex numbers. An 
example of Klein’s emphasis on practical applications is his extended treatment of 
the mechanism for calculating machines (see Figure 1, which shows how mul-
tiplication is performed). Later in the book, when discussing logarithmic tables, 
Klein (1924/1932) mentions that such a machine “makes logarithmic tables su-
perfluous. At present, however, this machine is so expensive that only large offices 
can afford it. When it has become considerably cheaper, a new phase of numerical 
calculation will be inaugurated” (p. 174)—truly prophetic words.
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Figure I

Figure 1. Driving wheel and cogwheel in a calculating machine (Klein, 1908, p. 48).

 

Klein ends the discussion of arithmetic with a brief survey of the modern devel-
opment of mathematics. Reviewing the first edition, John Wesley Young (1910) 
said, “It is a mere sketch, but it is a masterpiece” (p. 258). In the survey, Klein dis-
tinguishes two processes by which mathematics has grown, each of which leads 
to a different plan for instruction. In Plan A, the plan more commonly followed 
in school and in elementary textbooks, each branch of mathematics is developed 
separately for its own sake and with its own methods. The major branches—alge-
braic analysis and geometry—make occasional contact but are not unified. In Plan 
B, in contrast, “the controlling thought is that of analytic geometry, which seeks a fusion 
of the perception of number with that of space” (Klein, 1924/1932, p. 77). Mathematics is 
to be seen as a connected whole, with pure and applied mathematics unified. Not 
surprisingly, Klein argues that Plan B is more likely than Plan A to engage those 
pupils “not endowed with a specific abstract mathematical gift” (p. 78). Both plans 
have their place, and neither should be neglected. But secondary school instruction

has long been under the one-sided control of the Plan A. Any movement toward reform 

of mathematical teaching must, therefore, press for more emphasis upon direction 

B. [Klein is] thinking, above all, of an impregnation with the genetic method of 

teaching, of a stronger emphasis upon space perception, as such, and, particularly, 

of giving prominence to the notion of function, under fusion of space perception and number 

perception!” (p. 85)
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Klein then argues that his aim in these books is to follow Plan B, thereby balancing 
existing books on elementary mathematics that almost invariably follow Plan A.

Algebra
The main topics of the second part of the book concern the use of graphical 
and geometric methods in the theory of equations. Klein begins by citing text-
books on algebra and pointing out that the “one-sided” approach he will take 
is designed to emphasize material neglected elsewhere that can nevertheless 
illuminate instruction. His approach to solving real equations uses the dual-
ity of point and line coordinates, and he draws on the theory of functions of 
a complex variable to show how to represent, using conformal mapping, the 
solution of equations with a complex parameter.

Analysis
The third part of the book concerns elementary transcendental functions and the calculus. 
It begins with a discussion of the logarithm, which provides a good illustration of Klein’s 
approach. He first considers how the logarithm is introduced in school—by performing the 
operation inverse to that of raising to a power—and draws attention to various difficulties 
and possible confusions that accompany such an approach, including the absence of any 
justification for using the number e as the base for what are, for the pupil, inexplicably 
called the “natural” logarithms. After discussing the historical development of the concept, 
emphasizing the pioneering work of Napier and Bürgi, Klein proposes an introduction that 
would define the logarithm of a as the area between the hyperbola xy = 1, the x-axis, the 
ordinate x = 1, and the ordinate x = a, first approximating the area as a sum of rectangles 
and then taking the integral. The section on the logarithm ends by considering a complex-
theoretic view of the function, which Klein argues that teachers should know even though it 
would not be an appropriate topic in school. In Young’s (1910) review of the book, he points 
at Klein’s treatment of the logarithm as the only one of his proposed reforms that would not 
be practical in the United States (and perhaps not even in Germany) since pupils need to use 
logarithms before they encounter hyperbolas, not to mention integrals.

The trigonometric functions and hyperbolic functions are also treated 
from the point of view of the theory of functions of a complex variable, and the 
part ends with an introduction to the infinitesimal calculus that relies heavily 
on Taylor’s theorem and that includes historical and pedagogical considerations. 
The supplement at the end of the volume contains a proof of the transcendence 
of e and π and a brief, lucid introduction to set theory.
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Geometry

In the second volume, Klein (1909, 1925, 1925/1939) takes a different ap-
proach than in the first. Arguing that there are no unified textbook treatments 
of geometry, as there are for algebra and analysis, he proposes to give a compre-
hensive overview of geometry, leaving all discussion of instruction in geometry 
for a final chapter (unfortunately not included in the English translation). Two 
supplements to the third edition that were prepared by Seyfarth in consultation 
with Klein “concern literature of a scientific and pedagogic character which 
was not considered in the original text” (Klein, 1925/1939, p. vi; the supple-
ments were not translated into English either).

The volume, like the first, has three parts. The first concerns the sim-
plest geometric forms; the second, geometric transformations; and the third, a 
systematic discussion of geometry and its foundations. Not surprisingly, Klein’s 
innovative characterization of geometries as the invariants of their symmetry 
groups, from his famous Erlangen program (see, e.g., Bass, 2005; Schubring, 
n.d.), forms the basis of his discussion of the organization of geometry. In the 
discussion of foundations, Klein (1925/1939) emphasizes the importance of 
non-Euclidean geometry “as a very convenient means for making clear visually 
relations that are arithmetically complicated” (p. 184):

Every teacher certainly should know something of non-euclidean geometry. . . . On the other 

hand, I should like to advise emphatically against bringing non-euclidean ge-

ometry into regular school instruction (i.e., beyond occasional suggestions, upon 

inquiry by interested pupils), as enthusiasts are always recommending. Let us 

be satisfied if the preceding advice is followed and if the pupils learn really to 

understand euclidean geometry. After all, it is in order for the teacher to know 

a little more than the average pupil. (p. 185)

The third part ends with a discussion of Euclid’s Elements in its historical context.
In the final chapter, Klein surveys efforts to reform the teaching of 

elementary geometry in England, France, Italy, and Germany. The supplement 
contains some additional observations on questions of elementary geometry 
and updated material on reform in the four countries, particularly reports pre-
pared for the CIEM surveys of teaching practices and curricula that had been 
initiated during Klein’s presidency.
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In print for a century, the volumes of Elementary Mathematics from a Higher 
Standpoint have been used in countless courses for prospective and practicing 
teachers. Although both of the first two volumes provide much useful material 
and are excellent early examples of what today is termed mathematical knowledge 
for teaching (Ball & Bass, 2000; Bass, 2005), the organization of the first volume, 
with pedagogical issues and difficulties facing the teacher taken up after each 
topic rather than relegated to a final chapter, seems much superior to that of the 
second. The organization of the first volume allows Klein to make specific sug-
gestions for instruction and references to textbooks and historical treatments of 
topics, whereas the comments in the second volume tend to be more general.

Klein and Mathematics Education

Like many mathematicians, Felix Klein spent much of his time working on is-
sues of mathematics education once he was no longer doing research in mathe-
matics. Unlike most of them, however, he had pursued such issues throughout 
his career. As noted above, Klein’s Erlangen inaugural address of 1872 dealt 
with mathematics education (Rowe, 1983, 1985). In it, he deplored the lack 
of mathematical knowledge among educated people. He saw that lack as symp-
tomatic of a growing division between humanistic and scientific education, 
a division in which mathematics is uniquely positioned: “Mathematics and 
those fields connected with it are hereby relegated to the natural sciences and 
rightly so considering the indispensability of mathematics for these. On the 
other hand, its conceptual content belongs to neither of the two categories” 
(Rowe, 1985, p. 135). Observing that like all sciences, mathematics is under-
taken for its own sake, Klein goes on to argue that “it also exists in order to 
serve the other sciences as well as for the formal educational value that its study 
provides” (p. 137).

By “formal educational value,” Klein did not mean the attention to 
form over content that dominated German mathematics education at the time: 
“Instead of developing a proper feeling for mathematical operations, or pro-
moting a lively, intuitive graphs of geometry, the class time is spent learning 
mindless formalities or practicing trivial tricks that exhibit no underlying prin-
ciple” (Rowe, 1985, p. 139). Instead, Klein saw mathematics as a formal educa-
tional tool for training the mind. He was not especially concerned with pupils’ 
mastery of formal procedures; he wanted them to understand the procedures 
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they were using. He also wanted those pupils who would become gymnasium 
teachers to have, if possible, some experience in doing an original research 
study in mathematics, which was at the time a requirement in Prussia to be-
come certified as a mathematics teacher. Klein was not concerned with which 
mathematical topics they studied as long as they learned to work independently.

In the inaugural address at Erlangen, Klein expressed a neohumanistic 
view of how mathematics ought to appear in school and university instruction, a 
view he was later to modify in light of his experience. After teaching at the tech-
nical institute in Munich from 1875 to 1880, for example, he adopted a more 
expansive outlook on the mutual roles of mathematics, science, and technol-
ogy in modern education. When he became professor of geometry at Leipzig in 
1880, he began to promote the teaching of applied mathematics in universities 
as well as in technical institutes. Klein’s ultimate goal was to make mathematics 
a foundational discipline in higher education, and to achieve that goal, he initi-
ated a reform of secondary mathematics education so that it would include the 
calculus. In Erlangen, however, he had said that livelier teacher rather than new 
subject matter was what the secondary schools needed: In autobiographical notes 
he made in 1913 (Rowe, 1985, p. 125), he summarized what he had said in that 
address: “An den Gymnasien auszubauen: Interesse. Leben und Geist. Kein neuer 
Stoff [To develop in the high schools: Interest. Life and spirit. No new material].” 
He then added a marginal remark reflecting his revised opinion that the sec-
ondary curriculum did need new material: “Da bin ich nun anderen Sinnes ge-
worden [I have changed my mind about that].” After 40 years of teaching, Klein 
also reversed his view that prospective teachers should conduct an independent 
study on any topic whatsoever. In private notes made available to his colleague 
Wilhelm Lorey (1916, quoted in Rowe), he wrote:

I would now suggest that teaching candidates of average talent should confine 

themselves to such studies as will be of fundamental importance in the later 

exercise of their profession, while everything beyond this should be reserved 

for those with unusual talent or favorable circumstances. (p. 128)

A final comment in Klein’s (1913, quoted in Rowe) autobiographical notes 
suggests the toll his battles for reform had taken: “When one is young, one 
works much more hastily and unsteadily, one also believes the ideals will soon 
be attained” (p. 126).

RL | A Higher Standpoint
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Nonetheless, Klein was successful in reforming the secondary school 
curriculum as well as in creating university courses for teachers. His goal had 
long been to raise the level of mathematics instruction in both the technical 
institutes and the universities, and he came to realize that the key to achieving 
that goal would be to raise the level of secondary mathematics instruction to 
include the calculus, thereby raising the level of tertiary instruction (Schubring, 
1989). To push for reform in secondary and tertiary curricula, Klein forged 
an alliance among teachers, scientists, and engineers, and he also helped the 
international commission become an agent for curricular change. His courses 
for teachers were part of reform efforts to improve secondary mathematics by 
improving the preparation of teachers. Despite the setbacks he encountered 
and the resulting changes in approach he made, no mathematician has had a 
more profound influence on mathematics education as a field of scholarship 
and practice.

Pólya and Freudenthal

Two mathematicians whose contributions to mathematics education resemble 
those of Klein are George Pólya and Hans Freudenthal. Like Klein, Pólya was in-
terested in number theory, theory of functions in the real and complex domain, 
mathematical physics, applied mathematics, and the art of teaching mathematics. 
Both were also strong proponents of the role of intuition in doing and learning 
mathematics. In 1912, Pólya went to Göttingen for postdoctoral studies, where 
he met Klein although did not take any courses from him. Talking about the con-
nection between polyhedra and groups, Pólya later said, “I learned it from the 
master—Felix Klein” (quoted in Alexanderson, 2000, p. 27).

Pólya’s interest in pedagogical questions began at an early age. While 
doing postgraduate studies at the University of Vienna in the academic year of 
1910–1911, he had taken a tutoring job. At the beginning of the second vol-
ume of Mathematical Discovery, he recounts that experience:

It happened about fifty years ago when I was a student; I had to ex-
plain an elementary problem of solid geometry to a boy whom I was prepar-
ing for an examination, but I lost the thread and got stuck. I could have kicked 
myself that I failed in such a simple task, and sat down the next evening to work 
through the solution so thoroughly that I shall never again forget it. Trying to 
see intuitively the natural progress of the solution and the concatenation of the 
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essential skills involved, I arrived eventually at a geometric representation of the 
problem-solving process. This was my first discovery, and the beginning of my 
lifelong interest, in problem solving. (Pólya, 1965, p. 1)

Pólya then shows graphically, using a problem on the volume of the 
frustum of a right pyramid, how the solution can be visualized as a sequence 
of connections, building a bridge between what is given and what is unknown 
(Figure 2). Pólya’s (1919) first publication on problem solving and heuristics 
made use of this means of expressing how a solution might progress. Two years 
earlier, when he was only 30, Pólya had delivered a speech on teaching at the 
city hall in Zürich (Alexanderson, 1987, p. 18), and his publication repeated 
the argument he had given in the speech (Pólya, 1938, p. 119).

Figure 2. Simultaneous progress on four levels 
(Pólya, 1965, Fig. 7.8, p. 9).

Pólya (1984) saw the same discontinuity between high school and college 
mathematics that Klein did:

RL | A Higher Standpoint
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[The prospective teacher] takes a course offered by the mathematics depart-

ment about some relatively more advanced subject. He has great trouble to 

keep up with, and to pass, the course, because his knowledge of high school 

mathematics is inadequate. He cannot connect the course at all with his high 

school mathematics. Or he takes a course offered by the school of education 

about teaching methods. It is offered in accordance with the principle that 

the school of education teaches only methods, not subject-matter. Our pro-

spective teacher may receive the impression, which was scarcely intended, 

that teaching methods are essentially connected with inadequate knowledge, 

or ignorance, of the subject-matter. At any rate, his knowledge of high school 

mathematics remains marginal. (pp. 531–532)

Pólya approached the courses he taught for teachers in much the same spirit 
as Klein did. He too wanted teachers to have opportunities to carry out in-
dependent projects in mathematics, and in his course assignments, he asked 
teachers “to discuss how the topic might be treated in school, what points 
students might have difficulty with, and what connections might be made to 
other problems or topics” (Kilpatrick, 1987, p. 92). Pólya promoted a reflective 
practice in which teachers looked back and critiqued their teaching, just as he 
did his own (p. 96).

Like Klein and Pólya, Hans Freudenthal turned to mathematics educa-
tion early in life. As he said, “All my life I have been a poor teacher, and in order 
to make the best of it I started thinking about education at an early age” (quot-
ed in Goffree, 1993, p. 22). Appointed a privaat-docent in 1930 at the University 
of Amsterdam at the age of 25, one of the courses Freudenthal taught was 
entitled Elementary Mathematics from an Advanced Standpoint (Van Est, 1993, 
p. 61). Early in the Second World War, while giving lessons in arithmetic to his 
two sons, he started studying the literature in didactics of arithmetic and mak-
ing notes for a “didactics of arithmetic” book that unfortunately exists only 
in fragmented, manuscript form (Goffree, p. 24). Before and during the war, 
Freudenthal participated in the Dutch Mathematics Study Group, which dis-
cussed issues in mathematics education, attempted to develop curricula, and 
provided Freudenthal with what he called his “college of mathematics educa-
tion” (quoted in Goffree, p. 26). In 1963, Freudenthal became a member of the 
reconstituted International Committee on Mathematical Instruction (ICMI) and 
served as ICMI President from 1967 to 1970.
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Freudenthal, like Klein, was interested in applications of mathematics, 
emphasizing the utility of mathematics and what he termed the mathematizing 
process. In 1967, Freudenthal organized a colloquium in Utrecht entitled “How 
to Teach Mathematics So As to Be Useful,” and in the introductory address laid 
out why he thought mathematics should be taught so as to be more useful. That 
address (Freudenthal, 1968) and the other colloquium papers were later pub-
lished in the first issue of the journal that Freudenthal founded, Educational Studies 
in Mathematics. Freudenthal’s appointment to the chair in geometry at Utrecht 
in 1946 had piqued his interest in geometry as a research field, and another 
affiliation with Klein arose when Freudenthal began to explore the connec-
tion between geometries and their symmetry groups (Van Est, 1993, p. 62). 
Freudenthal (1978, p. 131) credits Klein with introducing the term model to refer 
to a mathematical object that embodies a set of axioms or other conditions.

When it came to characterizing mathematical learning process, 
Freudenthal (1978) made the important observation that the process proceeds by 
moving from one “level” to a higher one: “Mathematics exercised on a lower level be-
comes mathematics observed on the higher level” (p. 61). Through a process of reflec-
tion, mathematical activity at one level becomes mathematical subject matter at the 
next level. Freudenthal criticized Klein’s Elementarmathematik series for failing to ad-
dress explicitly the need to move to a new level: “The ‘high’ in higher mathematics 
means raising the level, or at least should mean it, and if something should be made 
conscious in the learning process at university, it is this raising of level” (p. 71).

“Advanced” or “Higher”?

When it came time for the American translators of Klein’s Elementarmathematik to 
render the title in English, they chose to translate vom höheren Standpunkte aus as from an 
advanced standpoint. The term higher is not only a more literal translation of höheren than 
advanced is, but it also captures better the image Klein had for his work. Advanced can 
mean higher, but its connotation is more like “more developed” or “further along 
in space or time.” Klein wanted to emphasize that his courses would give pro-
spective teachers a better, more panoramic view of the landscape of mathematics. 
As noted above, he wanted those teachers to “stand above” their subject.

Discussing the mathematics a teacher needs to know, Klein 
(1924/1932) wrote: “The teacher’s knowledge should be far greater than that 
which he presents to his pupils. He must be familiar with the cliffs and the 
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whirlpools in order to guide his pupils safely past them” (p. 162). The meta-
phor here is that of guide, someone who knows the mathematical terrain well 
and can conduct his or her pupils through it without them getting lost or in-
jured. Klein went on to discuss how the novice teacher needs to be equipped to 
counteract common misperceptions of mathematical ideas:

If you lack orientation, if you are not well informed concerning the intuitive 

elements of mathematics as well as the vital relations with neighboring fields, 

if, above all, you do not know the historical development, your footing will 

be very insecure. You will then either withdraw to the ground of the most 

modern pure mathematics, and fail to be understood in the school, or you will 

succumb to the assault, give up what you learned at the university and even in 

your teaching allow yourself to be buried in the traditional routine. (p. 236)

Klein, Pólya, and Freudenthal all saw the value of helping teachers develop 
mathematical knowledge that went beyond the content they would teach and 
was more synoptic than the typical university mathematics course. They all saw 
that teachers need to know more than how to do the mathematics they are 
teaching; teachers need the specialized mathematical knowledge and skill that 
will give them a broad perspective on the field and equip them to work with 
learners. It is no accident that all three of these eminent figures in our field were 
first-rate mathematicians and also master educators.

Mathematics Education from a Higher Standpoint

What would it mean to view mathematics education from a higher standpoint? 
Mathematics education as an academic field is not a school subject, and as a uni-
versity subject, it belongs, at best, among the social sciences. In his inaugural 
address in Erlangen, Klein noted a critical difference between mathematics and 
other fields: “Each mathematical generation builds on the accomplishments of 
its predecessors, whereas in other fields it often happens that the old buildings 
are torn down before the new construction can proceed” (Rowe, 1985, p. 136). 
Consequently, the question of what is elementary and how one might adopt a 
higher stance to regard that elementary work becomes problematic when one 
moves outside of mathematics and certainly when one moves into mathemat-
ics education. What is elementary in mathematics education? Do people agree? 
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Where is the higher standpoint from which that elementary mathematics edu-
cation can be surveyed? Does anyone know?

Mathematics educators have begun to consider the history of their 
field, and through the lenses of international comparative studies, they have 
begun to consider its geography. So we have the beginnings of efforts to get 
some “higher” vantage points across time and space. As mathematics education 
continues to develop during the next century of the international commission, 
the higher standpoints that Felix Klein, George Pólya, and Hans Freudenthal 
took with respect to mathematics may inspire mathematics educators to find 
similar standpoints for examining their field.

RL | A Higher Standpoint
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Amongst Mathematicians and conversations 
on the teaching and learning of mathematics 
at university level: the case of visualisation

Elena Nardi, University of East Anglia, Norwich, UK, e.nardi@uea.ac.uk

How do students in the beginning of their undergraduate studies in mathematics cope with the re-
quirement for rigour? Why do they so often resort to the familiarity of number? Why do they have 
problems with constructing examples and with identifying and accepting counterexamples? How do 
they manage to express in symbols their thoughts about the convergence of a sequence? Why is refer-
ence to the domain of a function so conspicuously absent in their writing? How do their teachers at 
university help them acquire the ‘genre speech’ of university mathematics and the mathematician’s 
‘toolbox’ of useful images, theorems and techniques? Do these teachers pursue the help of mathematics 
education researchers in these complex tasks? If at all, how? If not, why not?...

The above questions provide a flavour of the issues that the research I am reporting in this 
paper aimed to explore. To this purpose I am drawing on the data and analyses presented in Amongst 
Mathematicians: Teaching and Learning Mathematics at University Level, a 2008 Springer 
monograph (Nardi, 2008) that was based on this research. The study offers a 
perspective on how mathematicians: perceive student learning; describe and 
reflect on their own teaching practices; and, perceive their relationship with 
mathematics educators. Its evidence base is a series of focused group interviews 
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with mathematicians from across the UK. Its analyses were presented in the for-
mat of a dialogue between two fictional, yet entirely data-grounded characters, 
M and RME, mathematician and researcher in mathematics education. (See the 
Appendix for a typical page from Amongst Mathematicians: each piece of dialogue 
between M and RME sets out from a discussion of a sample of student work, 
typically a piece of writing. The samples of student work exemplify topical 
learning and teaching issues – as highlighted in the literature and in previous 
research conducted by myself and colleagues at the universities of East Anglia 
and Oxford. Examples of relevant bibliography are cited in the footnotes ac-
companying the dialogue between M and RME.)

In what follows I first outline the study’s background, aims and meth-
ods. I then discuss three samples of findings focusing, respectively, on: an issue 
of student learning (Sample I, the role of visualisation in mathematical reasoning 
and argumentation, highlighted in the literature as key to the students’ early 
experiences of university mathematics); related pedagogical issues (Sample II); 
and, in closing, issues regarding the relationship between the respective com-
munities of M and RME (Sample III).

RL | Teaching and learning of mathematics at university level: the case of visualisation
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TALUM, a new and rapidly developing field of research

TALUM, the Teaching and Learning of Undergraduate Mathematics, is a relatively new and 
rapidly developing field of mathematics education research Holton, 2001). As, 
particularly in the 1990s, mathematics departments started to respond to the 
decline in the number of students who opt for mathematical studies at uni-
versity level (Hillel, 2001), the realisation that, beyond syllabus change, there 
is also the need to reflect upon tertiary pedagogical practice began to grow 
(McCallum, 2003). The research programme I am reporting here was con-
ceived and carried out with the aim to address this need in a systematic and 
original way.

The study I am focusing on in this paper is underlain by a rationale 
for a certain type of TALUM research. The study draws on several traditions of 
educational research reflected in the five, essential characteristics listed below: 
it is collaborative, context-specific and data-grounded and, through being non-
prescriptive and non-deficit, it aims to address the often difficult relationship 
between the communities of mathematics and mathematics education. A fun-
damental underlying belief of this work is that development in the practice of 
university-level mathematics teaching is manageable, and sustainable, if driven 
and owned by the mathematicians who are expected to implement it.

This rationale for collaborative, practitioner-engaging and context-
specific research draws heavily on Barbara Jaworski’s Co-Learning Partnerships 
(2003) and John Mason’s Inner Research (1998). In these types of research 
practitioners of mathematics teaching engage with research and they, along 
with the researchers, become co-producers of knowledge about learning and 
teaching; they become educational co-researchers (Wagner, 1997). In this 
sense the study is a first step towards engaging with Developmental Research 
(van den Akker, 1999), a much needed type of research in undergraduate 
mathematics education. Furthermore the study has aimed to steer clear of a 
tendency (that sometimes studies of teaching suffer from) towards a ‘defi-
cit’ and ‘prescriptive’ discourse on pedagogy, where the emphasis is on the 
identification of what it is thought teachers ought to be doing and are not 
doing, and on appropriate remedial action (Dawson, 1999). The work I am 
reporting here is located explicitly within a non-deficit and non-prescriptive 
discourse.

The study (Nardi, 2008) is the latest in a series of studies aiming to:



47

-	explore students’ learning in the first, and sometimes, second year 
of their undergraduate studies – mostly in Analysis, Linear Algebra 
and Group Theory and mostly through observing them in tutorials 
(Nardi, 1996; Nardi, 2000) and analysing their written work (e.g.: 
Nardi & Iannone 2001); and,

-	engage their lecturers in reflection upon learning issues and 
pedagogical practice – mostly in individual (Nardi, Jaworski and 
Hegedus, 2005) and group interviews (Iannone and Nardi, 2005).

The studies were conducted at the Universities of Oxford and East Anglia in 
the UK between 1992 and 2004. Further studies, that aim to refine the themes 
emerging from the earlier studies, as well as take steps towards collaborative 
implementation of innovative pedagogical practice, are currently in progress.

Student data, the data that ‘became’ M
and the Re-storying approach

The dialogues between M and RME that I exemplify in the following 
pages originate in eleven lengthy (approximately four-hour / half-day) focused 
group interviews with 20 mathematicians of varying experience and backgrounds 
from across the UK. In the interviews discussion was triggered by Datasets con-
sisting of students’ written work, interview transcripts and observation proto-
cols collected during (overall typical in the UK) Year 1 introductory courses in 
Analysis / Calculus, Linear Algebra and Group Theory – see background studies 
listed in the previous page. Datasets had been distributed to the interviewees at 
least a week prior to the interview and were about a dozen pages long, split in 
four to six sections. A typical section of the Dataset typically consisted of:

-	a mathematical problem (including its formulation as well as 
the suggested solution distributed to the students once they had 
submitted their written responses to their tutor)

-	two typical student responses, often reflecting learning issues 
highlighted in relevant mathematics education literature

The interviews were conducted according to the principles of Focused Group 
Interviews (Madriz, 2001). Below I explain the narrative approach of re-storying 
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(Clandinin and Connelly, 2000) adopted in this work and the composition pro-
cess through which the dialogues between M and RME came to be. In short the 
process of re-storying involves reading the raw transcripts, identifying and high-
lighting experiences to be told across this raw material and then constructing a 
new story that reflects these experiences. In this sense, while fictional, the new 
story is entirely data-grounded. In addition to the work of narrative researchers 
such as Clandinin and Connelly cited above a particularly helpful way of seeing 
the brand of re-storying I have used is Jerome Bruner’s account of how the mind 
constructs a sense of reality through ‘cultural products, like language and other 
symbolic systems’ (1991, p3). The dialogues between M and RME in (Nardi, 
2008) were constructed entirely out of the raw transcripts of the interviews with 
the mathematicians and then thematically arranged in Episodes. (For an example of 
the construction process see p27-28 in (Nardi, 2008)).
(Subsequently in (Nardi, 2008) chapters were constructed as series of Episodes, 
sometimes also broken in Scenes. Each Episode starts with a mathematical problem 
and usually two student responses. A dialogue between M and RME on issues 
exemplified by the student responses follows. Other examples of relevant student 
work are interspersed in the dialogue and links with relevant mathematics educa-
tion research literature are made in the footnotes. Special Episodes are episodes that 
supplement the discussion in the main Episodes and Out-Takes are slightly peculiar 
or too specific incidents that stand alone and outside the more ‘paradigmatic’ 
material of the main Episodes but somehow address the wider theme of a chapter.)

Below I outline briefly a rationale for the dialogic format employed 
in the study that goes a little beyond a conventional methodological account. 
It may look like a digression but the brief text that follows is deeply ingrained 
into the study’s, and the book’s, raison-d’-être.

A brief digression regarding the dialogic format

‘…all you can do, if you really want to be truthful, is to tell a story’

Paul Feyerabend (1991), quoted in Mason (1998, p367)

The idea for the character of M of course is not new – neither is the idea of a 
conversation between a researcher in mathematics education and a mathemati-
cian (Sfard, 1998a). Sfard’s Typical Mathematician (1998b, p495) and Davis & 
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Hersh’s Ideal Mathematician (1981) pre-date this study’s M. Dialogue as a form 
for communicating and debating ideas is a format most quintessentially used 
by philosophers such as Plato, Galileo, Berkeley, Feyerabend and, crucially for 
mathematics educators, Lakatos in Proof and Refutations (1978). In theatre as 
well, authors such as Tom Stoppard (Arcadia) and Michael Frayn (Copenhagen, 
Democracy) have deployed the dialogic format in admirable attempts to help 
the subtle meet the artful effectively. In this sense the ultimate aim for using the 
dialogic format as a way of representing processed data is to employ storytell-
ing as a different kind of science:

Vanbrugh: […] The plot already exists… in real life. The play and all its scenes.

Cibber: A drama documenting facts? […] Will you allow yourself the same 

liberties as Shakespeare? Taking liberties with facts converts facts into plays.

Vanbrugh: No liberties… just facts in this play.

Calculus, Scene I (Djerassi & Pinner, 2003)

Six themes on the teaching and learning of university 
mathematics

As mentioned earlier, the dialogues between M and RME were thematically ar-
ranged in Episodes. Then clusters of Episodes around each one of the following six 
themes constituted the six chapters of data analyses presented in (Nardi, 2008):

-	students’ mathematical reasoning; in particular their 
conceptualisation of the necessity for proof and their enactment of 
various proving techniques;

-	students’ mathematical expression and their attempts to mediate 
mathematical meaning through words, symbols and diagrams;

-	students’ encounter with fundamental concepts of advanced 
mathematics –

-	Functions (across the domains of Analysis, Linear Algebra and 
Group Theory) and Limits;

-	pedagogical practices at university level; and,
-	the often fragile relationship between M and RME as well as the 

necessary and sufficient conditions for their collaboration.

RL | Teaching and learning of mathematics at university level: the case of visualisation
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In the rest of this paper I collate samples of data and findings from across the 
above themes. Sample I reports manifestations of student perceptions of the 
role of visualisation as evident in their mathematical writing. Sample II reports 
their lecturers’ reactions, mathematical and pedagogical, to these manifesta-
tions and outlines a pedagogical role for the mathematician in fostering a fluent 
interplay between rigour and visual insight. Finally, Sample III collates elements 
of the discussion between M and RME which focuses on the benefits for peda-
gogical practice ensuing from engagement with educational research.

Notes
All quotations that follow, except otherwise noted, are utterances of the character 
M – page numbers indicate pages in (Nardi, 2008). Also: the data and analyses 
reported in these samples have appeared partly also in (Nardi , 2009a and b).

Sample I: Students’ perceptions on the role of visualisation

Students often have a turbulent relationship with visual means of mathemati-
cal expression. When they find difficulty in connecting different representations 
(for instance: formal definitions and visual representations), they often abandon 
visual representations - which tend to be personal and idiosyncratic - for ones 
they perceive as mathematically acceptable (Presmeg, 2006). Here we take a look 
at M’s perspective on students’ attitudes towards visualisation and on the ways in 
which these attitudes – and ensuing behaviour – can be influenced by teaching. 
The discussion eventually becomes about the importance of building bridges 
between the formal and the informal in constant negotiation with the students.

First and foremost M describes pictures as efficient carriers of mean-
ing – in the case of || as distance, for example:

‘What the students really need to be thinking about is what || means on the 

number line and as a distance. But they so often get stuck to the algorithmic 

habit of solving this without knowing what it means. And that stubbornness 

can be a nightmare.

What I mean by what it means is, for example, seeing, what an equality or in-

equality involving |x-1| means pictorially on the real line. Once you have 

seen it on the line, the answer to your question is obvious. That is why I am 
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a huge fan of them using all sorts of visual representation: because the ones 

who do, almost invariably are the ones who end up writing down proper 

proofs.’, p238

Instead students often feel ambivalence towards ‘picture’, even wondering ‘are 
pictures mathematics?!’

‘Students often mistrust pictures as not mathematics – they see mathematics as 

being about writing down long sequences of symbols, not drawing pictures 

– and they also seem to have developed limited geometric intuition perhaps 

since their school years. I assume that, because intuition is very difficult to 

examine in a written paper, in a way it is written out of the teaching experi-

ence, sadly. And, by implication, out of the students’ experience. It is stupefy-

ing sometimes to see their numb response to requests such as imagining facts 

about lines in space or what certain equations in Complex Analysis mean as 

loci on the plane.’, p139

This ambivalence can lead to a narrow, inflexible, even mutually exclusive ad-
herence to informal or formal modes of thinking:

‘… students somehow end up believing that they need to belong exclusively 

to one of the two camps, the informal or the formal, and they do not under-

stand that they need to learn how to move comfortably between them’, p140

Now let’s delve into the above general statements about student tendencies in 
the context of a specific mathematical problem and see how they pan out.

The premise for the discussion is the following mathematical problem 
(typically given to Year 1 mathematics undergraduates in a Semester 1 Calculus / 
Analysis course):

One acceptable approach to this is described in the notes below (written by the 
lecturer of the course the problem originally comes from):
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Questions / issues touched in the discussion included: what responses would 
you expect from the students to this problem; what difficulties may they face; if 
you were to discuss this problem with a student how would you do so?
One of the issues that emerged in the course of discussing this problem con-
cerns the fact that, in the second line of the lecturer’s notes, it is a perfectly ac-
ceptable part of the argument to ‘leave out’ of the inequality the terms b1, b2, 
…bN. Why this is helpful can also be visible in a simple picture that portrays 
the ‘boundedness away from zero’ of the significant majority of the sequence’s 
terms. Students treated the contingency of such a picture variably. See Table 1 
which shows three typical Year 1 student responses and the comments made 
on them – with regard to the presence, absence and quality of such a picture in 
the students’ scripts – by M.

Overall M’s insights into students’, and M’s own, perceptions regard-
ing the role of visualisation revolved around the following four axes:

•	Usefulness of visual representations: firm and unequivocal (‘Graphs 
are good ways to communicate mathematical thought’, p. 143);

•	Usefulness of educational technology, e.g. graphic calculators: 
caution and concern (‘Calculators are nothing more than a useful 
source of quick illustrations’, p. 143);

•	Students’ varying degrees of reliance on graphs (both in terms of 
frequency and quality); and,

•	The potentially creative fuzziness of the ‘didactical contract’ at 
university level with regard to the role of visualization.

We will now focus on the last two. In a nutshell, M’s views are largely put 
forward in the light of how mathematicians employ visualisation in their own 
mathematical practice. The emergent perspective is of the need for a clarified 
didactical contract (Brousseau, 1997), in which students are encouraged to 
emulate the flexible ways in which mathematicians to-and-fro between analyti-
cal rigour and often visually-based intuition.
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Student N, no picture
Student N has not left out of his argu-
ment a small but significant number of 
terms in the sequence he is working on. 
‘Had the student drawn a picture, he 
would have seen he had left them out’.

Student H, unhelpful picture
Student H, emulates ‘the type of picture 
drawing seen in lectures’. She however 
‘needed a more helpful picture’. It is 
encouraging though that both Students 
N and H pinned down an understand-
ing of || as a ‘distance between things’.

Student E, not benefiting from picture
Student E has not ‘used this diagram as 
a source of inspiration for answering 
the question’. Instead ‘she drew this, 
on cue from recommendations that 
are probably on frequent offer during 
the lectures, and then returned to the 
symbol mode unaffected’. So ‘there is 
no real connection between the pic-
ture and the writing’.

Table 1. Three ways of relating to ‘pictures’.

Examples and M utterances from p. 140 and pp. 195–199 in (Nardi, 2008)

The premise of the discussion is a question in which students were invited to 
explore whether certain functions from R to R were one-to-one and onto. In 
the two examples of student responses below M identifies two distinct ways 
in which students typically appear to rely on graphical evidence – see Table 2.
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Table 2. Two ways of relying on graphs.

Student WD, absence of transition from 
picture to wording
‘I am concerned about the answer being 
provided before the graph is produced 
but I also observe that the answer has 
been modified on the way – which may 
mean the graph did play some part after 
all in the student’s decision making. If the 
student had drawn a line through points 
a and b, I would be a bit more convinced 
that the student is actually building the 
argument from what they see in the 
graph. I am also disappointed by the ab-
sence of a transition from the picture to 
some appropriate words and with the 
use of a=b to denote that points a and b 
on the curve have same y. What a use of 
the equals sign! In this sense…’

Student LW, no construction evidence
‘… I am more sympathetic to Student 
LW …who may need the Intermediate 
Value Theorem to complete the argu-
ment in part (i) – the IVT is true after 
all –, the picture is almost perfect, all 
the shifting etc. is there, but this is still 
an incomplete answer. Still there is no 
construction evidence.’

Examples and M utterances from p. 144 in (Nardi, 2008)

M is particularly keen to stress what he calls the ‘irony in using the graph to 
produce evidence that a function is one to one or onto’ (p144) as the ability to 
construct this graph would in itself require this knowledge:
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‘…I find this evidence compelling but still this is not a complete answer. 

This picture is potent and I see a certain danger in its sophistication: the 

fact, for example, that, if a function has a maximum, it cannot be onto is 

immediately graspable from the graph. However some unpacking is still 

necessary in order to provide a full justification of the claim.

I am a proponent of starting with a diagram but I do not wish to see 

this placing value on starting with a diagram giving the students a false 

sense of obligation to do so, another hurdle to get over. I want them to 

think of doing so as a totally natural procedure to follow but also do it 

correctly.’, p144

From this quotation and the one below begin to emerge some of the terms of 
the renewed, clarified didactical contract mentioned earlier:

‘I would be far less frustrated if I could find evidence in the students’ writ-

ing that the diagram is used almost as a third type of language, where the 

other two are words and symbols, as an extension of their power to under-

stand: just drawing a diagram bigger, or, for example in the first picture, 

putting in a horizontal line that goes through the points a and b. I am afraid 

students do not use pictures to their full potential. Of course I see that rely-

ing on their power therein lies a danger but I would like to see students 

make a sophisticated use of this power and be alert to their potential to be 

misleading too.’, p145

First of all students need to be alerted to what I term here ‘the creative fuzzi-
ness of the ‘didactical contract’. ‘Fuzziness’ is used here to denote the neces-
sary acknowledgement that a clear-cut distinction between their obligation to 
engage with mathematics formally or informally, in a mutually exclusive way, 
is too simplistic. It is also ineffective; in fact, hence the use of ‘creative’, it is 
exactly this to-ing and fro-ing between the formal and the informal modes 
of engaging with mathematics that will ultimately turn out to be the most 
effective. M outlines two significant phases in imparting this new type of 
didactical contract:

Allow the use of visual insight, acknowledging that the students, by 
the nature of introductory university courses, are already using unproven facts:
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‘Students should be allowed at this stage to use the graphs for something 

more than simply identifying the answer because after all they allowed to use 

all sorts of other facts – the uniqueness of cubic roots is one of those facts – 

that have not been formally established yet.

So if the Intermediate Value Theorem is implicit in their finding the answer by 

looking at the graph, then let that be! Of course one needs to check: an actual 

value of a and b there would be very reassuring. At this stage I feel sympathy 

for them and want to let them say this function is onto because of the unique-

ness of the cubic root. Because at this stage, well, I don’t want to tell you what 

the cube root of two is … I want to tell you the cube root of eight is. I am 

not sure I even know how to exhibit the cube root of two without resorting 

to some quite sophisticated ideas.’, p145

Eventually prove, conveying that ultimately mathematics is mainly about estab-
lishing facts via proof:

‘I am happy with using the ingredients for proving a claim and then, at some 

later stage, spending some time on establishing those ingredients formally. So 

prove that ex is injective via the IVT and then later on prove the IVT. This to me 

is fine as long as I know that all along I have been leaving some business-to-

be-finished on the side. That kind of rigour is fine with me.’, p146

Below M concludes with two pertinent observations on this matter.

Sample II: Pedagogical practice with regard to 
visualisation

M describes three key elements to a teacher’s response to the student percep-
tions outlined in Sample I: acknowledgement of the innately human need for 
visual insight, raising students’ awareness and celebration of this typically very 
personal need, assist them in pursuing the construction of such insights:

‘…they need to learn how to move comfortably between [the formal and the 

informal]. Because in fact this is how mathematicians work! I still remember 

acutely my own teachers’ explanations of some Group Theory concepts via 
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their very own, very personal pictures. I am a total believer in the Aristotelian 

no soul thinks without mental images. In our teaching we ought to communicate this 

aspect of our thinking and inculcate it in the students. Bring these pictures, 

these informal toolboxes to the overt conscious, make students aware of them 

and help them build their own.

And I cannot stress the last point strongly enough: we need to maintain that 

these pictures are of a strictly personal nature and that students should de-

velop their own. All I can do is describe vividly and precisely my own pictures 

and, in turn, you pick and mix and accommodate them according to your 

own needs.’, p237

At the heart of this three-step plan of support is the frank acknowledgement 
that this approach to visualisation reflects the ways mathematics is understood 
and created by mathematicians themselves. Further elaborating the ‘this is how 
mathematicians work’ statement above M adds:

‘Lest we forget some very clever people regarded [IVT] not needing a proof 

either! People like Newton. […] there is an irony in the fact that validating 

the truth of the statement in IVT means that all the pictures that students 

have been drawing are retrospectively true – like drawing the solutions of an 

equation. This irony in fact is nothing other than another piece of evidence 

of a constant tension within pure mathematics: that you want to use these 

methods and occasionally you need a theory to come along and make them 

valid. And you need these means, diagrams etc., so badly. Yes, they are not 

proofs but they do help students acquire first impressions, start inventing 

some suitable notation.’, p238

M proceeds with the presentation of examples from mathematics where the 
above is the case. I omit these due to limitations of space but they are available 
in: p238 (geometric problems in the complex plane), p240 (exponentials) and 
p 241 (powers) in (Nardi, 2008); and (Nardi, 2009b).

In the course of the interviews M stressed repeatedly how much of the peda-
gogical awareness and the potentially effective pedagogical practices evidenced 
above became available through participation in this study.
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Sample III: Benefits from engagement with
educational research

M often juxtaposed the accusation for ‘indecipherability’, futility and irrele-
vance of mathematics education research often mounted by the mathematics 
community (Ralston, 2004) to the potent experience of participating in these 
interviews. Often M cited improved access to understanding students as a pri-
mary benefit of this participation:

‘… it is in these discussions exactly that these sessions have proved enor-

mously valuable already. There are things I will teach differently. There are 

things that I feel like I understand better of mathematics students than I 

did before. And I appreciate the questioning aspects of the discussion and I 

realise how one should be liaising with the other lecturers simultaneously 

lecturing the students and discussing what things we are doing that confuse 

them.’, p260

A substantial part of this understanding consisted of realising the extent of 
student difficulty:

‘…these discussions are already beginning to influence the way I think about 

my teaching. I think discussing the examples is a very good starting point, 

and a well-structured one. By seeing these often terrifying pieces of writing I 

am faced with the harsh reality of the extent of the students’ difficulties. Too 

often I see colleagues who are in denial and opportunities like this are poign-

ant reality checks! […] I am therefore grateful for this opportunity to face the 

music, so to speak.’, p261

A significant outcome of this understanding is fostering an appetite, and capac-
ity, for change, pedagogical innovation, even reform, away from conventional 
views of mathematics and how it is learnt and taught:

‘There is substance in this; it is important.

Suppose you have a schoolteacher. So, here is someone who has to run classes 

and, for some reason or another, their view of mathematics is no other than 
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an instrumental one: you apply this rule, you put this in and you get this 

out. Suppose that such a person one day meets Concept Image and all that. All 

of a sudden he learns that these things are all out there and that changes that 

person’s professional view entirely. It can change the whole classroom, it can 

change the whole mathematical process. That is precisely what we want.

A lot of the problems you have to deal with when you meet our students 

is that they have a very singular view of mathematics, a rather poor view of 

mathematics. So, I mean, that sort of debate that is happening here is on some 

of the building blocks around which, it seems to me, if made available at the 

school level for practitioners, would be hugely interesting. To get away from 

this sort of mathematics which is quite poor in a way.’, p262

M often concluded the discussion emphasising the gaining of awareness, and a 
renewed appreciation of openness regarding questions of pedagogy:

‘I think now I don’t have any more answers than when I started but certainly 

I don’t take things for granted anymore, from colleagues or from students.

I think I am much more open-minded on what might be going on inside 

other people brains. The material that you have got here has given the evi-

dence that sure, it is fascinating glancing in other people’s heads.

And I have become much more conscious about the spoken word. What I say 

can have an impact, saying the right thing at the right time when you get one 

opportunity to introduce the students for the first time to how mathematics 

works and not fluff the line. That I think has made a big influence on the way 

I lecture.’, p263

Often the discussion between M and RME signalled direct parallels with the 
educational literature Sample 3: M and RME – benefits, change EXAMPLE of 
parallel with literature – M’s comment below on the importance of substantial 
feedback to students’ written work echoes Mason’s recommended tactics on 
this matter (Focusing on what is mathematical; Developing a language; Finding something positive 
to say; Selecting what to mark; Summarising your observations; and, Providing a list of common er-
rors or a ‘corrected’ sample of student argument, Mason, 2002, Chapter 5):
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[…] examining these pieces of data was something of a reminder, if not 

a revelation, of the devastating importance of detailed responses to written 

work. In some sense every not totally perfect piece of written work has an in-

teresting important story to tell that needs to be engaged with and responded 

to.’, p263

Therefore it will be far from a surprise to say that the entire study incarnates 

rather aptly the much needed synergy between mathematicians and mathe-

matics educations often discussed by Michèle Artigue:

‘...we, mathematicians as well as didacticians […] have to act energetically 

in order to create the positive synergy between our respective competences 

which is necessary for a real improvement of mathematical education, both at 

secondary and at tertiary levels. Obviously such a positive synergy is not easy 

to create and is strongly dependent on the quality of the relationship between 

mathematicians and didacticians’. (Artigue, 1998, p482/3)

Concluding remarks: what has not been and
…a future for M/RME?

While the study reported in this paper focused on matters of learning and 
teaching that could be broadly described as ‘cognitive only’ (the discussion 
rarely turned to topical socio-affective matters such as gender, affect, equi-
ty etc.) its aspirations to meet at least two objectives were nonetheless rather 
wide: obviously, to listen to what M, experienced learner, doer and teacher of 
mathematics, has to say about learning and teaching; and, less obviously, to 
allow a certain image of M to emerge (characterised by pedagogical aware-
ness, perceptiveness and sensitivity) which would be in contrast to widespread 
pedagogical stereotypes of university mathematicians. And, to do so through its 
distinctive characteristics (context-specific, example-centred, mathematically-
focused samples of data, discussed in a relaxed yet focused, unthreatening and 
mutually respectful research ambience).
In resonance with its non-prescriptive character the study refrained from di-
rect recommendations for practice. However, soon after its completion, a brief 
guide with a focus on the teaching of proof was published following a request 
by the UK’s Higher Education Academy (Nardi and Iannone, 2006). Alongside 
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several studies that aim to refine some of this study’s findings (e.g. Ioannou and 
Nardi, 2009), in the (hopefully near!) future we aim to continue with more 
directly developmental work, namely: the construction, implementation and 
evaluation of innovative practice. We are currently in the process of designing a 
series of such interventions in collaboration with colleagues from mathematics 
departments in the UK.
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Appendix

A typical page from Amongst Mathematicians (Nardi, 2008). An example of student 
work at the top of the page becomes the trigger for the dialogue between M and 
RME in the middle. In the footnotes the reader is referred to relevant bibliography.
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Celebrating the first century of ICMI (1908-2008)
Some aspects of the history of ICMI

Ferdinando Arzarello, Livia Giacardi, Department of Mathematics, University of Turin, Italy
Fulvia Furinghetti, Department of Mathematics, University of Genoa, Italy

Marta Menghini, Department of Mathematics, University of Rome La Sapienza, Italy

Abstract

In this paper we report on the events in 2008 that commemorated the Centennial 
of the International Commission on Mathematical Instruction. This celebration 
offered the occasion to look back at the history of ICMI and outline the evolu-
tion of mathematics education until it achieved its present status as an academic 
discipline. The years after WWII up to the late 1960s were crucial in this evolu-
tion for both the settlement of some institutional aspects (mainly concerning 
the relationship with mathematicians) and the establishment of new trends 
of the activities. In this paper we outline – on the basis of unpublished docu-
ments - the role of two important figures in those years: Heinrich Behnke and 
Hans Freudenthal. First as secretary and later as president, Behnke faced the 
difficult task of reshaping the newborn ICMI after WWII and clarifying the 
relationship with mathematicians. His mission was completed by Freudenthal, 
who, as president of ICMI, definitively broke with the past and promoted im-
portant initiatives that fostered the emergence of mathematics education as an 
academic field.

Keywords
History, ICMI, first century, mathematicians, mathematics education
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1. Celebrating the first century of ICMI: a symposium,
a book and a website

The IV International Congress of Mathematicians, which took place in Rome 
from 6 to 11 April 1908, was memorable. An exceptional chronicler, the French 
mathematician Henri Poincaré, wrote:

“The number of participants was the highest of any of the preceding 

Congresses, which is doubtless due to the attraction of the Eternal City, but 

this is not the only reason. […] France was brilliantly represented […] there 

were also very distinguished representatives of German science […] No coun-

try was absent. […] It goes without saying that Italy had the most and most 

brilliant representatives […] The sessions were held at the Palazzo Corsini, 

home of the Accademia dei Lincei […] a beautiful palace in Trastevere […]” 

(Poincaré, 2008, pp. 19-20, our translation).

It was during this congress that an international commission on the teaching of 
mathematics was founded; its first president was Felix Klein, an eminent math-
ematician and promoter of an important reform for the teaching of mathemat-
ics in Germany. This commission may be considered the first incarnation of the 
International Commission on Mathematical Instruction (ICMI).1

To celebrate the centennial of the foundation of the ICMI, an interna-
tional symposium entitled “The First Century of the International Commission 
on Mathematical Instruction. Reflecting and shaping the world of mathematics 
education” was held in Rome from 5 to 8 March 2008. Once again, as it did 
a hundred years ago, Palazzo Corsini, home of the Accademia Nazionale dei 
Lincei, provided the splendid venue for the congress, along with Palazzo Mattei 
di Paganica, home of the Enciclopedia Italiana.2

1 In the first decades of its existence the commission was mainly called Commission Internationale de 
l’Enseignement Mathématique (CIEM) or Internationale Mathematische Unterrichtskommission (IMUK). In the 
following we will use the acronym ICMI to refer to all periods.
2 The International Programme Committee (IPC), composed of 16 members, was coordinated by 
Ferdinando Arzarello, while Marta Menghini represented the Organising Committee within the ICP. 
The permanent website http://www.unige.ch/math/EnsMath/Rome2008/ provides full documen-
tation of the Symposium: the program, the papers presented in the Working Groups, and photos.



67

The Congress was attended by about 180 participants representing 43 
countries. The program included ten plenary lectures, eight parallel lectures, 
five working groups and a panel discussion. An afternoon was reserved for the 
Italian teachers, with talks by scholars from Italy and abroad. The talks were 
broadcast via videoconferences to more than fifty schools throughout Italy; the 
afternoon session reached more than 1000 teachers.

The last day featured an excursion that recalled that of a century ago, 
and took the participants to visit the Villa d’Este and Hadrian’s Villa in Tivoli, 
both rich in historical evocations.

The Symposium proceedings have been published by the Enciclopedia 
Italiana, as a volume of their book series Scienze e Filosofia (Menghini et al., 2008) and 
the talks of the Italian afternoon appeared in the journal Progetto Alice (n. 25, 2008).

Taking as a point of departure the themes connected to ICMI activities 
over the course of its hundred year history the symposium sought to identify 
future directions of research and initiatives for improving mathematics culture 
in the various countries. The conviction that history is a powerful means not 
only for giving an account of the past but also for building the future, inspired 
the activities of the Symposium as well as the publication. The papers in the 
Proceedings touch on a wide variety of themes: the origins of the ICMI; its 
rebirth at the end of the 1960s and the emergence of a new field of research; 
the dialectic between rigour and intuition; the relationships between pure and 
applied mathematics and the emphasis to be given to each; the interactions be-
tween research and practice; the comparison between centres and peripheries 
of the world; the relationships between mathematics and mathematics teach-
ing; the training of teachers; and the relationship of mathematics education to 
technology, society and other disciplines. It emerges that ICMI has mirrored 
the development of mathematics education as a field of study and practice, and 
stimulated new directions of research, opening new horizons.

The comparison of the “historical” and the “didactical” papers points out 
the evolution of the research in mathematical education from a collateral aspect 
of mathematics to an autonomous scientific discipline, whose interactions with 
mathematics are continuously evolving. The richness of contributions, both in ple-
nary lectures and in working groups, show how varied and deep its current land-
scape is. The historical papers point out the extent to which ICMI activities in past 
years had prepared for the growth and development of important themes in didac-
tics of mathematics and the role played by some important figures.
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68

ICME 11 Proceedings

In parallel with the evolution of didactics of mathematics, many pa-
pers, and particularly the panel “ICMI’s challenges and future”, underline a 
social-geographical evolution from the centre to the peripheries of the world: 
the rooting of mathematical education in the different cultures gives it a further 
dimension, which is a richness in today’s globalised landscape.

On the occasion of the symposium, a permanent website was created 
to present the history of the ICMI (see Furinghetti & Giacardi, 2008). Its aim is 
to delineate the most significant events and the key figures through documents, 
images and interviews, and make available for the scholars all the tools which 
are necessary to reconstruct the complex network of relationships that featured 
this century of history.

The site is divided into six sections: Timeline; Portrait gallery; Documents; 
Affiliated Study Groups; International Congresses on Mathematical Education; Interviews and Film 
clips. The Timeline pinpoints the most important moments in the history of the 
ICMI: each fact is documented with references to the original sources, in par-
ticular to its official organ L’Enseignement Mathématique (hereafter EM)3 with links 
to its website. Many images, photos and quotations by the protagonists have 
been inserted. The Portrait gallery provides biographic cameos of the ICMI officers 
during the first hundred years of the Commission who have since passed away, 
stressing their roles within the ICMI, their publications and their contributions 
on the problems of teaching. As far as possible the contributions to this section 
were written by scholars from the country of the officer concerned. Among 
the Documents we find the digitalised versions of the publications of the Central 
Committee, the texts of the questionnaires proposed for the inquiries and the 
relative reports, the successive Terms of Reference of ICMI, and the list of the 
documents kept in the ICMI Archives.4 The section dedicated to Affiliated Study 
Groups (HPM, ICTMA, IOWME, PME, and WFNMC) presents the history of these 
groups. The section dedicated to the International Congresses on Mathematical Education 
offers general information about each of them, with bibliographical referenc-
es, and the Resolutions of the Congress. Finally, Interviews and Film Clips provide 

3 About this journal and its link with ICMI see (Furinghetti, 2003; 209)
4 The documents referring to ICMI are in the folders 14 A-G of the IMU files stored at the central 
Archives of the University of Helsinki. In the following we refer to them as ICMI Archives (IA). Cf. 
(Giacardi, 2008b)
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the testimony of some of the protagonists of the history of the ICMI – Emma 
Castelnuovo, Trevor Fletcher, Geoffrey Howson, Maurice Glaymann, Jean-Pierre 
Kahane, Heinz Kunle, André Revuz and Bryan Thwaites.

2. Glimpses of the first century of ICMI

2.1. The five periods of the history of ICMI
The celebration of the hundred years of ICMI5 has provided an occasion of 
going through its history, also outlined in (Bass & Hodgson, 2004; Howson, 
1984; Lehto, 1998). The book that resulted from the Rome Symposium organ-
ized to celebrate the ICMI centenary (Menghini et al., 2008) sheds light on 
some aspects of the life of this Commission. Donaghue (2008) and Schubring 
(2008a) document the inception of ICMI, the dissolution and the ephemer-
al rebirth between the two World Wars. Furinghetti et al. (2008) identify the 
conditions of ICMI’s renaissance after WWII. The recent years, which saw the 
definitive establishing of mathematics education as an academic discipline, are 
illustrated in chapters by Bass (2008), Bishop (2008), and Kilpatrick (2008). 
The website built on the occasion of ICMI’s centenary provides detailed infor-
mation on people and events (Furinghetti & Giacardi, 2008).

It is possible to identify five main periods in the history of ICMI 
that were produced by both the external events that influenced the life of the 
Commission as well as by the changing centres of interest and activities of the 
Commission itself: the early years; the years between the two World Wars; the 
reconstitution after WWII; the renaissance; the recent decades.

During the early period, from its founding up to WWI, rightly called 
the “Klein Era”, an important international network of national subcommittees 
was established for the preparation of reports on the state of mathematical in-
struction as well as on thematic issues. The original aim was to make an inquiry 
and publish a general report on the current trends in the secondary teaching 
of mathematics in various countries. However, already in the first meeting af-
ter its foundation ICMI acknowledged the need to consider all school levels. 
The work of the national subcommittees was really impressive. In 1920, at the 
moment of disbanding, in addition to the eleven Publications of the Central 

5 Website of ICMI. ttp://www.mathunion.org/ICMI/
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Committee there were about 300 reports of the national subcommittees of 
eighteen countries, for a total number of more than 13,500 pages. At the same 
time, eight inquiries had been launched and international congresses had been 
organized. The methodological tenets that underpinned Klein’s conception 
of mathematics teaching and to some extent inspired the early Commission’s 
work concern: bridging the gap between secondary and higher education; the 
early introduction of the concepts of function and transformation; the applica-
tions of mathematics across all the natural sciences; the applications of algebra 
to geometry and vice-versa; giving importance to the Approximationsmathematik, 
that is, “the exact mathematics of approximate relations”; fostering of intuition 
in teaching; the approach to topics from a historical perspective favouring a 
genetic teaching method; the role of elementary mathematics as seen from an 
advanced standpoint in teacher training.

After WWI the new conditions imposed on official international sci-
entific relations forced international commissions or associations created be-
fore the war to either dissolve or reorganize and the shocking decision to ban 
the researchers of the Central Powers from most international activities was 
made. ICMI dissolved in 1920 and it was reconstituted only during the ICM in 
Bologna in 1928, when international collaboration among mathematicians was 
re-established, reintegrating the countries that had been excluded. However, the 
Commission was not able to produce new ideas and projects, and was limited 
to carrying out the old agenda, until WWII forced a second arrest of activities.

In 1952 during the First General Assembly of the reconstituted 
International Mathematical Union (hereafter IMU), which took place in Rome, 
the Commission was transformed into a permanent sub-commission of IMU. 
The new president of ICMI for the period 1952-1954 was Albert Châtelet, dean 
of the Faculty of Sciences in Paris; the secretary was Heinrich Behnke from the 
University of Münster, who two years later would become president of ICMI. 
In the following years, ICMI defined – not without difficulty – several basic 
structural issues (composition, relationship with the IMU, the organisation of 
regional international groups, etc.), and established collaborations both scien-
tific and organisational with other associations. These led to a greater interna-
tionalism and to the organisation of numerous thematic congresses in various 
parts of the world, as well as to a broadening of the fields of interest of ICMI.

The actual renaissance and projection into the future took place in the 
late 1960s. It was Freudenthal who, by establishing almost with a coup de main 
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the tradition of the ICMEs and by founding the new journal Educational Studies in 
Mathematics6, marked a turning point in the history of the ICMI.

In the last decades there has been an evolution of the relationship be-
tween ICMI and IMU, which produced the recent changes in the governance 
of ICMI, giving more power to the ICMI General Assembly. The focus of the 
present paper is on some moments that have fostered these changes and, in 
particular to the two actors in these moments who played a fundamental roles.

2.2. Problems and frictions at the rebirth of ICMI
If the first president and enthusiastic promoter was Felix Klein, a considerable role 
in establishing the Commission was also played by David Eugene Smith, a profes-
sor at Teachers College of New York, who was deeply interested in education and 
in the history of mathematics. Thus the Commission was born of the closest col-
laboration between mathematicians and educators. The construction of the present 
status of the Commission and the birth of the discipline “Mathematics Education” 
are linked to the process of clarification of the relationship with the community 
of mathematicians and to the carrying out of initiatives independent from this 
community. The two main characters in the process of constructing new trends 
were Heinrich Behnke and Hans Freudenthal: both were able to grasp the changes 
in the world and in mathematics happening in their times and act consequently. 
Broadening our contribution to the celebration of the centennial we like to reflect 
on their role stressing the importance of their institutional actions.

Behnke (1898-1979) was a well-known mathematician in the field 
of complex analysis, professor at the University of Münster, and editor of 
Mathematische Annalen from 1938-1972. Deeply concerned with mathematical 
education, Behnke invested great energy in teacher training: he had founded 
the journal Semesterberichte zur Pflege des Zusammenhangs von Universität und Schule aus den 
mathematischen Seminaren, which he edited together with Otto Toeplitz, another 
mathematician strongly committed to education. The journal was aimed at en-
couraging the connection between school and university.

In 1955 Behnke also proposed the Idee völlig utopisch (Behnke, 1959, p. 148) 
of realizing of an international encyclopaedia of elementary mathematics, and ar-
dently hoped for the collaboration of mathematics teachers of all levels in order 

6 About the foundation of this journal see (Furinghetti, 2008; Hanna & Sidoli, 2002)
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to maintain contacts between schools and universities. On that occasion he wrote: 
“The work done should, if possible, be compiled in a book for the congress of 
Edinburg in 1958. The Italian encyclopaedia of elementary mathematics can be 
regarded as a model in certain ways”.7 In fact in 1958 the German subcommittee 
of the ICMI produced the first of the five-volume Grundzüge der Mathematik für Lehrer an 
Gymnasien sowie für Mathematiker in Industrie und Wirtschaft. In the preface to the first vol-
ume the editors Behnke and Kuno Fladt stress that the work was above all aimed 
at teachers: “They have always been uppermost in our thoughts. The destiny of fu-
ture generations of mathematicians depends on their mastery and their love of our 
science” (p. V-VI). The group of collaborators – which numbered more than 100 
members – included scholars not only from Germany but also from Yugoslavia, the 
Netherlands, Austria and Switzerland, and, significantly, comprised university and 
high school teachers. Each article has two authors, of which one is a university pro-
fessor, the other either a high school teacher or someone coming from this career.

As Schubring (2008b) puts it, “[h]aving in so many respects become 
a true successor of Felix Klein, he eventually followed Klein’s footsteps in or-
ganizational respect as well”. He was the first secretary-general of the renewed 
Commission, then president of the ICMI from 1955 to 1958, vice-president 
from 1959 to 1962, and member of the Executive Committee from 1963 to 
1970. Behnke’s political action was particularly incisive in the period of his 
secretariat and presidency.8 That he was completely aware of the problems he 
had to face in revitalising the Commission emerges from his correspondence: 
the difficulty of finding mathematicians active in research who were interested 
in teaching; the difficulty of being recognised in the world of mathematics, 
and thus how important it was that the work of the commission be visible at 
the international congresses; the difficulty of obtaining funding; and finally the 
relevance of the collaboration of mathematics teachers at all levels. In a confi-
dential letter to IMU president Marshall Stone, he wrote:

“It is a very difficult matter to engage mathematicians, well-known for their 

research work, into problems of instruction. Most of our colleagues refuse 

7 Program of Work of the International Commission for Mathematical Instruction for the period of 1955/58, in IA, 
14 A 1955-1957.
8 See (Lehto, 1998) and the documents from the ICMI Archives we report below
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to be active for our commission because they regard this kind of work of 

little value, and they even neglect to forward circulars. […] The work of our 

commission reveals its purpose and meaning only when we give lectures and 

exhibitions at the international mathematical congress”.9

When Behnke became president he too underlined the need to improve the 
terms of reference for governing the activities of the Commission and the rela-
tionships with IMU; the importance of having regional groups so to decrease 
the euro-centricity in ICMI; and the need of having ICMI Congresses. In his 
long report of April 1955 on the activities of ICMI to the IMU president Heinz 
Hopf, he affirmed:

“The national sub-commissions suffer from being ruled by university profes-

sors, for their influence is predominant through the national adhering organi-

zations … although the number of the university professors in their countries 

(at least in Europe) represents but a very small part of the teachers of mathe-

matics […] As president of the International Commission of Mathematical 

Instruction it is my duty to see that the members of the Commission are 

not university professors only […] the presidency of the national adhering 

organizations does not appreciate questions of mathematical instruction and 

inconsiderately uses its national power.

[…] The presidency of the IMU has […] to look upon the national sub-

commissions – as was the case already before 1914 - as sub-commission of 

the ICMI, and not of the national adhering organizations. Otherwise the work 

of the ICMI is made impossible.

[…] I regard it a special, honorary mission of the ICMI to establish a contact 

among the teachers of all levels. The teacher have to get interested in the re-

search work, and those active in the field of research have to get interested in 

the work of the teachers”.10

9 Behnke to Stone, Oberwolfach, August 11, 1954, in IA, 14A, 1952-1954.
10 Report of the president of the International Commission of Mathematical Instruction to the president of the International 
Mathematical Union, April 20, 1955, in IA, 14A, 1955-1957.
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In fact the beginnings of the new commission were not easy and relations with 
the IMU were characterised by constant friction, derived from the lack of pre-
cise terms of reference for governing the activities of the Commission.
Let us quote some passages from the correspondence in ICMI Archives. Stone, 
IMU president, wrote to Châtelet:

“It is my understanding that the Commission has proposed an arrangement 

whereby it will seek the adherence of several nations and set up special na-

tional committees in the adhering nations to work with the Commission. 

I believe that activity of this kind is inappropriate for a Commission of the 

Union and that it would lead to intolerable confusion as to the relations be-

tween the Union, the Commission, and the nations adhering to one or the 

other”.11

Stone sent a similar message to Enrico Bompiani, secretary of IMU:

“There seems to be a great deal of confusion in connection with the ICMI. I 

hope we can get it cleared up. […] The difficulties […] make me particularly 

aware of the fact that we need to clarify our procedure for appointing the 

members of Commission […]”.12

As well, William Hodge, member of the Executive Committee of IMU wrote 
to Stone:

“About ICMI, I agree very strongly that something must be done to curb its 

activities. At a recent meeting of our national committee very grave concern 

was expressed at the fact that so many of the Commission’s activities were 

carried on behind our backs and that we were being let in for responsibilities 

we know nothing about. […] I think it will be necessary to lay down very 

precise terms of reference for the Commission, and to define its powers very 

rigidly. It will also be necessary to select a president very carefully”.13

11 Stone to Châtelet, Chicago, November 3, 1952, in IA, 14A, 1952-1954.
12 Stone to Bompiani, Chicago, July 10, 1953, in IA, 14A, 1952-1954.
13 Stone to Châtelet, Chicago, July 29, 1954, in IA, 14A, 1952-1954.
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And again Stone to Châtelet:

“In connection with the Constitution of the National Sub-Commissions, I 

recall our agreement that each such Sub-Commission is to be in the first place 

a Sub-Committee of the National Committee for Mathematics in the Country 

which it represents”.14

In any case Behnke tried to make up for President Châtelet’s lack of initiative, 
and succeeded in organising the intervention of the ICMI at the International 
Congress of Mathematicians in Amsterdam in 1954 notwithstanding both the 
difficulties in relationships between ICMI and IMU, and the resistance on the 
part of the organising committee of the congress. In a confidential letter to IMU 
president Stone, he wrote:

“They [mathematicians] all expressed the idea that lectures on mathematical 

instruction might not be worthy enough for the Congress. Thus I showed 

them the reports of previous congresses and pointed out that after 1912 in 

Cambridge (England) Section VII (history and instruction) was as strongly 

accentuated as Section II (analysis). […] After a report stating this fact I rec-

ommended to rebuilt Section VII. Finally I succeeded [...] I was given a highly 

unfavourable time for the report on the work of our commission, which 

would never happened in the case of my scientific lectures”.15

The intention of Behnke was to recreate the climate of fervour and interna-
tional collaboration that existed during Klein’s chairmanship, and he meant 
“to extend the influence of Section VII (Instruction) so that it will equal the 
importance it had at the Congress in 1914”,16 the first congress organised by 
the Commission in Paris.

During the General Assembly of the IMU in The Hague (31 August - 
1 September 1954) the Terms of Reference were established, the Executive 
Committee of the ICMI was renewed and Behnke was nominated president. 

14 Hodge to Stone, May 31,1954, IMU Archives, quoted in (Lehto, 1998, p. 111).
15 Behnke to Stone, Oberwolfach, August 11, 1954, in IA, 14A, 1952-1954.
16 Behnke to Bompiani, Münster, July 8, 1954, in IA, 14A, 1952-1954.
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According to the new Terms of Reference ICMI had a relatively free hand in its 
internal organisation, but IMU retained control on important points: the President 
and the ten members-at-large of ICMI would be elected by the General Assembly 
of IMU on the nomination of the Union’s President. Moreover, the national del-
egates would be named by each National Adhering Organisation of IMU.

2.3. New trends and political issues in 1954-1967
The period from 1954 to 1967 is characterised by important developments both of 
scientific and organisational kind, which will smooth the way for the ICMI renaissance.

a.	 New themes to investigate emerged thanks to the interaction with other organi-
sations, such as the Commission Internationale pour l’étude et l’Amélioration 
de l’Enseignement des Mathématiques (CIEAEM), which focused on new issues 
such as: the relevance of psychology in mathematics education; the attention to 
methodology; the key role of concrete materials; the need to take in considera-
tion all the school levels (from primary to university); empirical research; the 
relation between mental and mathematical structures (Furinghetti et al., 2008). 
This different point of view emerges, for example, from the report presented in 
1958 at ICM XIII in Edinburgh by Hans Freudenthal (1959) on the comparative 
study of the methods used in the initiation to geometry: he goes on to a rich and 
in-depth examination of the teaching subjects and the teaching methods, also 
considering the impact that psychological and pedagogical research may have on 
geometrical instruction in the initiating phase.

b.	 There was an effort to renovate the journal L’Enseignement Mathématique by start-
ing a second series with renovated objectives that include space for psychol-
ogy and methodology in mathematics education:

“This second issue will deal with the subject of mathematics giving spe-
cial care to the modern theories treating the subject in an easy form studying 
the methodology and organisation of the teaching, studying the psychological 
formation of mathematical knowledge, publishing reports on the activity and 
inquiries of the ICMI. Each issue will contain a bibliographical index”.17

17 Note concerning the Review “Enseignement Mathématique”, in IA, 14 A, 1955-1957; see also EM, 1955, s. 2, 
1, pp. 270-271
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c .	 ICMI tried to gradually reduce its Eurocentric nature by attempting to 
extend the Commission’s activities beyond Europe. In 1955 the Indian 
Ram Behari was nominated a member of the Executive Committee; in 
1956 the ICMI was officially represented by its vice-president Stone in 
the Conference on Mathematical Instruction in South Asia in Bombay; in 
1958 Behnke suggested forming regional groups like the European one 
to foster international collaboration; in 1961 Stone, president of ICMI, 
contributed to the organization of the First Inter-American Conference 
on Mathematics Education in Bogotá.

d.	 The effort to improve the organization of the Commission led the 
Executive Committee to discuss the Regulations of the ICMI during 
the meeting in Brussels on 3 July 1957. In 1958 Behnke proposed a 
new draft of the by-laws, the main points of which are the follow-
ing:18 the reduction to a single representative of each of the National 
Sub-Commissions; “ICMI is also authorized to accept appropriate or-
ganizations as National Sub-Commission even from countries which 
are not members of IMU”; the right of the National Sub-Commissions 
to co-opt additional members; “Each National Sub-Commission shall 
elect a Chairman. Generally, the Chairman shall be the representative to 
ICMI from his Sub-Commission […] but he also is entitled to delegate 
a substitute who will have full voting power”; and finally the creation 
of Regional Groups”.

This proposal was criticized by Stone, the new president of the ICMI 
who wrote to Beno Eckmann, Secretary of the IMU:

“[…] the way is cleared for the elimination of any real influence in ICMI 

from the side of the mathematicians who are acquainted with the higher lev-

els of their subject and who are interested in research as well as in teaching 

and preparation for research”.19

18 (Draft) International Commission for Mathematical Instruction (ICMI) New Terms of Reference, 1958, in IA, 14 
A, 1958-1960; also EM, 1958, s. 2, 4, pp. 216-217.
19 Stone to Eckmann, Chicago, January 5, 1959, in IA, 14 A, 1958-1960.
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	 The New Terms of reference for ICMI would be adopted in 1960: Behnke’s 
proposals were scaled back, and a control on the part of the IMU was 
sought. Behnke was obviously opposed.20

e.	 Collaborations with other Institutions (OEEC, UNESCO) were sought both 
for economic reasons and to widen the range of ICMI’s influence. During his 
term as ICMI president Stone (1959-1962) promoted important activities 
and symposia in collaboration with local organisations, and the Organisation 
for European Economic Co-operation (OEEC). In 1959, he chaired the in-
fluential conference of mathematicians and educators at Royaumont devoted 
to the new thinking in mathematics and in mathematical education. Other 
important seminars and symposia were held, from which the guidelines on 
how to introduce “modern mathematics” into secondary schools emerged.21 

The next president of ICMI, André Lichnérowicz (1963-1966) especially 
promoted collaboration with UNESCO: UNESCO representatives were offi-
cially invited to the congresses organised by the ICMI; ICMI members were 
consulted as experts by UNESCO; and they were often sent on missions in 
various countries (Lichnérowicz, 1966). Thanks to the collaboration with 
UNESCO and other institutions, important international colloquia were or-
ganised,22 and contracts stipulated directly between the ICMI and UNESCO 
led to the publication of the books in the series New trends in mathematics teaching.

2.4. The renaissance in the late 1960s and the projection into the future:
the role of Freudenthal
In 1967 the presidency of the ICMI passed to Hans Freudenthal (1905-1990). 
He was a charismatic personality whose broad mathematical knowledge was 

20 Stone to Rolf Nevanlinna, April 5, 1960, in IA, 14 A, 1958-1960.
21 We mention the following meetings: Royaumont, France (23 November- 4 December 1959); 
Aarhus, Denmark (30 May-2 June 1960); Zagabria – Dubrovnik, Yugoslavia (21 August-19 
September 1960); Belgrade, Yugoslavia (19-24 September 1960); Lausanne, Switzerland (26-29 
June 1961); Bologna, Italy (4-8 October 1961). See (Furinghetti et al., 2008) and (Giacardi, 
2008, 1955-1959, 1960-1966).
22 We mention the following meetings: Frascati, Italy (8-10 October 1964); Utrecht, Holland 
(19-23 December 1964); Dakar, Senegal (14-22 January 1965); Echternach, Luxemburg, 30 
May - 4 June 1965). See (Giacardi, 2008, 1960-1966).
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joined by a profound interest in culture, and who possessed a talent for or-
ganisation and the independent spirit necessary to mark a turning point in 
ICMI activities. In 1963, he entered the Executive Committee of ICMI, as a 
member until 1966, but from 1967 to 1970 as its president (and thereafter, 
from 1971 to 1978, as ex-officio member). The story of ICMI was deeply influ-
enced by Freudenthal, who laid the foundations for its renaissance. The inspir-
ing principles of his action were put forward in January 1967 at the UNESCO 
Colloquium in Lausanne on “Coordination of Instruction of Mathematics and 
Physics”, in which he participated together with other important protagonists 
of mathematics education of those years, such as Anna Zofia Krigowska and 
Willy Servais. These principles were published as “Propositions on the teaching 
of Mathematics” in the first issue of the journal Educational Studies in mathematics, 
which Freudenthal founded in 1968. The main points were:

“Mathematics constitutes a unique and characteristic activity of human mind. 

All children have a right to be educated through mathematics”.

“[Mathematics education] must provoke and develop in the first place the 

capacity of intellectual action instead of merely piling up knowledge”.

“Mathematics develops more and more towards a general science of struc-

tures. These structures charge it with a remarkable power of application, in-

formation and unification. The knowledge and the mastership [sic] of these 

structures, its utilization in the grasp of reality are the real objectives of 

mathematics teaching”.

“The reformation of mathematics teaching has to be considered a permanent 

process. This implies a continuous retraining of the teachers which is based 

on regular pedagogical research.”23

As Howson (2008, p. 15) observes, “When he assumed the ICMI presidency 
(January 1967) he was faced with two alternatives: he could carry on as usual 

23 Propositions sur l’enseignement mathématique, in IA, 14B 1967-1974. Propositions on the teaching of 
mathematics. Educational Studies in Mathematics, 1, 1968, 244.
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or he could try to break what was by then becoming the ICMI mould. He chose 
the latter”. In fact, from the very beginning Freudenthal intended to open all 
future ICMI activities to discussion. His request for a permanent ICMI secre-
tariat was rejected by the IMU, which saw neither an urgency nor a purpose 
for such a move; thus Freudenthal had the greater part of the work of secretary 
done by his office.24 He sought and obtained funding beyond that provided by 
the IMU. He continued the collaboration with UNESCO already well established 
by his predecessors and stipulated a contract directly with UNESCO for the sec-
ond volume of New Trends in Mathematics Teaching (1970).

The turning point took place in 1967 at the meeting of the Executive 
Committee of the ICMI held in Utrecht (August 26, 1967), following the col-
loquium “How to teach mathematics so as to be useful”. There, the ideas for 
the ICME congresses and a new journal were launched. Freudenthal expressed 
his disappointment about the modality of ICMI participation at the quadrennial 
Congresses of Mathematicians and supported the idea of a congress of ICMI to 
be held a year before the ICM. He noted that, in general, the national reports 
were not useful, so he suggested that future congresses not include the topics 
of programs and scholastic organisation. He also listed the new subjects for 
discussion: mathematisation; motivation; how to teach mathematics without a 
schoolteacher; comparative evaluation of the contents of mathematics courses; 
criteria of success; evaluation of the results of research in mathematics educa-
tion; and finally research methodology.

The assembly accepted the project of a Congress of ICMI to be held in 
1969. The French delegate Maurice Glaymann proposed holding the congress 
in France. André Revuz asked for a new journal closer to secondary teachers, 
because L’Enseignement Mathématique was at too high a level. Freudenthal also pro-
posed increasing the number of ICMI members-at-large in order to enliven the 
Commission, and returned to the question of a permanent secretariat.25

On December 2, 1967 IMU secretary Otto Frostman wrote to 
Freudenthal in an attempt to dissuade him from both initiatives:

24 Frostman to the International Commission on Mathematical Instruction, Djursholm, June 29, 
1967, in IA, 14B 1967-1974.
25 EM, 1967, s. 2, 13, pp. 243-246. Compte-rendu de la séance de la CIEM tenue à Utrecht, le 26 août 1967, 
in IA, 14B 1967-1974.
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“I must admit that I am not too happy about the new pedagogical journal. Do 

you really think that there is a market for two international journals of that 

kind (I do not)? If you are not satisfied with L’Enseignement, ICMI’s official jour-

nal, perhaps it would be better to try to reform it. And I am afraid too that in a 

new journal the “modernizers” of the extreme sort would try to be very busy. 

At least I ask you to be cautious. I can agree with very much of your criticism 

of the meetings of ICMI at the International Congresses, but I am not sure that 

ICMI should isolate itself from those who have, primarily, a scientific interest 

but who have, nevertheless, very often taken part in the discussions of ICMI. 

And a special ICMI congress in France in 1969 will cost a lot of money”.26

On December 20 Freudenthal replied:

“I would like to reassure you about the new pedagogical journal. The pro-

visional list of editors does not include any “radical”. In spite of its name, 

Enseignement has never been a pedagogical journal. Its contributions on educa-

tion were not pedagogical but organisatory [sic] and administrative. I do not 

believe it is possible to reorganize a journal so fundamentally”.27

Frostman wrote to Freudenthal once again on January 2, 1968:

“I am still a bit afraid that the market will be hard for two publications, even 

if the new journal will mainly stress other points than L’Enseignement.”28

In March 1969 Frostman complained about not having received any report on 
ICMI activities29. ICMI secretary André Delessert answered him, announcing: 
the title of the new journal, Educational Studies in Mathematics, with Freudenthal 
as editor and saying that two issues had come out, the first in May 1968, and 
the second in January 1969; the date and place of the first ICME (Lyon, 24-30 
August 1969); the preparation of the journal Zentralblatt für Didaktik der Mathematik, 

26 Frostman to Freudenthal, December 2, 1967, in IA, 14B 1967-1974.
27 Freudenthal to Frostman, Utrecht, December 20, 1967, in IA, 14B 1967-1974.
28 Frostman to Freudenthal, January 2, 1968, in IA, 14B 1967-1974.
29 Frostman to Delessert, March 16, 1969, in IA, 14B 1967-1974.
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published as a collaboration between the ICMI and the Zentrum für Didaktik der 
Mathematik of the University of Karlsruhe. He excuses the delay in providing in-
formation by saying that the greater part of the work of secretary is performed 
by Freudenthal’s secretary’s office.30 Thus the IMU was faced with decisions 
already made. In August 1969 the First International Congress on Mathematical Education 
was held in Lyon. The Congress, attended by 655 active participants from 42 
countries, was a big success.31 The main resolutions concerned: the moderni-
sation of the teaching of mathematics, both in content and method; the col-
laboration between teachers of mathematics and those of other disciplines; 
international cooperation; the permanent training of the teachers; the place of 
“the theory of mathematical education” in universities or research institutes.32

In the course of the ICMI meeting that took place during the first ICME, 
Freudenthal explained the reasons for the changes made: although the small 
congresses dedicated to well-defined topics can be useful, “today we need to go 
beyond the circle of specialists and reach the teachers, thus large congresses are 
necessary”.33 (our translation) He further underlined the fact that it is necessary 
to make it so that all the national sub-committees work and collaborate, and 
for this it is indispensable that people who are genuinely interested in teaching 
take part. IMU president Henri Cartan underlined that in any case there had to 
be retained a section of the ICM dedicated to education and that the members 
of the ICMI sub-committee had to be designated by the IMU sub-committee.34

On August 1970, during the General Assembly of the IMU in Menton, 
the IMU President Cartan noted the important work accomplished by outgoing 
ICMI President Freudenthal, and expressed his desire that the measures that he 
had begun will come to fruition in the future.

However, he did not even acknowledge the first ICME congress held in 
Lyon the previous year. During the Assembly James Lighthill was elected ICMI 
President for the coming four-year term. Shortly before the meeting, Cartan 
had written to Lighthill suggesting that Freudenthal be kept in the Commission 

30 Delessert to Frostman, Riex, March 22, 1969, in IA, 14B 1967-1974.
31 ICMI Bulletin, 5, 1975, 20-24 and http://www.icmihistory.unito.it/icme1.php.
32 Cf. ICMI Bulletin, 5, 1975, 20-24 and http://www.icmihistory.unito.it/icme1.php.
33 Compte-rendu de la séance de la CIEM tenue à Lyon, le 23 août, à 14 heures, à l’occasion du premier Congrès International 
de l’Enseignement Mathématique, in IA, 14B 1967-1974.
34 Ibidem.
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as past president of the ICMI and that a new secretary be chosen who would not 
be reduced, as Delessert had been, to a “mail box”35.

In the ICMI session held in Nice on the occasion of ICM XVI (1-10 
September 1970), the outgoing president Freudenthal presented the deci-
sions of the IMU regarding the composition of the ICMI Executive Committee 
for the period 1971-1974. From the discussion that followed, two objections 
emerged: first, all the members at-large of the Commission were appoint-
ed by people who were not particularly competent in secondary education 
(Georges Papy, Freudenthal, Behnke, Ðuro Kurepa), second, the members ap-
pointed did not represent the various trends in the teaching of elementary 
mathematics (Papy)36. Therefore two important recommendations were for-
mulated: that the regulations which establish the ways that ICMI members are 
designated had to be modified, and that ICMI members had always to be cho-
sen from among those who are effectively involved with mathematics teach-
ing. Later discussion concerned the organisation of ICME 2: the Congress 
would take place in Exeter (UK) and would be structured differently from the 
preceding one, the number of plenary lectures on themes of general interest 
would be limited, and working groups would be constituted for addressing 
more specialised topics.

Even at the end of his term, Freudenthal made decisions that irritated 
the IMU. In fact, even while having to step down as president, he tried to insure 
that the directions he had opened would be followed with the same aims and 
guidelines. In October 1970 he sent a letter to the ICMI Executive Committee 
with a proposal for the Program Committee for ICME 2, which did not include 
Lighthill, the future president of the ICMI37.

Three days later Cartan wrote back, letting it be known that it would 
be the new ICMI who would decide about the organisation of ICME 2; he also 
requested the rectification of the sentence in the minutes of the session on Sept. 
5, 1970, concerning the constitution of the new Executive Committee of the 
ICMI, underlining that the regulations state that the new Executive Committee 
had to be designated by the entire new ICMI, that is, after every national sub-

35 Cartan to Lighthill, Die, August 20, 1970, in IA, 14B 1967-1974.
36 EM, 1970, s. 2, 16, p. 198.
37 Freudenthal to the Executive Committee of ICMI, October 11, 1970, in IA, 14B 1967-1974.

RL | Celebrating the first century of ICMI (1908-2008) Some aspects of the history of ICMI



84

ICME 11 Proceedings

committee had designated its representative, and that this, above all, concerned 
the new president Lighthill38.

Freudenthal replied that everything was done in agreement with 
Lighthill. As to the sentence, in the minutes affirming that ICMI members were 
often elected by persons who were not effectively competent in mathematics 
teaching, Freudenthal wrote to Frostman:

 “I admit it looks strong. This, however, reflects the actual discussion in 
which much stronger terms have been used. The disapproval of the way in which 
the new members at large were appointed was unanimous. As an attendant to this 
elections I could only say that the procedure was in complete agreement with the 
formal regulations. I would suggest that this is taken up as a serious problem by 
the new Executives of IMU and ICMI”.39

During his term as president Freudenthal was completely independent 
with regards to financial matters as well. On November 1970 Frostman wrote to 
Cartan:

 “I have not paid anything to the ICMI secretariat during the last years [...] in 

fact I don’t have exact information about ICMI’s affairs”.40

In a letter to Lighthill, Cartan wrote that the IMU had provided no funding 
for ICME in Lyon for the simple reason that nothing was ever requested, and 
that he had not asked for any funding from UNESCO because Freudenthal had 
gone to UNESCO directly. He also underlined that the decision to hold ICMI 
congresses independent of the ICMs was made by Freudenthal without him 
having ever consulted the IMU, and hoped that Lighthill would establish closer 
and more confidential relations with the IMU41.

38 Cartan to Freudenthal, Paris, October 15, 1970, in IA, 14B 1967-1974. Writing to Frostman, 
(Paris, October 15, 1970) Cartan states: “Freudenthal once again worries me […] he overdoes it 
somewhat by putting the new commission in front of decisions already made” [our translation].
39 Freudenthal to Cartan, October 19, 1970, and Freudenthal to Frostman, Utrecht, October 23, 
1970, in IA, 14B 1967-1974.
40 Frostman to Cartan, November 15, 1970, in IA, 14B 1967-1974.
41 Cartan to Lighthill, Paris, November 30, 1970, in IA, 14B 1967-1974.
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3. An epilogue

The two important events, the inauguration of the tradition of International Congresses 
on Mathematical Education (ICMEs), and the launch of journals related to research in 
Mathematics Education, were made possible thanks to the talent for organisation and 
the independent spirit of Freudenthal. He realised stable landmarks for its successive 
development, and the story of ICMI was deeply influenced by him. Continuing the 
work started by his predecessors in the 1950s he allowed mathematics education to 
be a discipline in its own right, and not just an appendage to the world of mathemat-
ics, so that Steiner (1997, p. 28) was able to write about the ICME-7 in Quebec that

“for the first time didactics of mathematics showed itself in great clarity as a sci-

entific discipline which under increasing theoretical orientation and empirical 

foundation is dynamically growing within an international frame of complex 

cultural, political and interdisciplinary interrelations.”

The actions of Behnke and Freudenthal make evident the friction between ICMI 
and IMU, as well as that between educators and mathematicians active in re-
search, but often inattentive to education, contrasts that have been resolved by 
the most recent decisions: in fact, starting with the election of the 2010-2012 
Executive Committee of the Commission, the election of the ICMI EC is to take 
place during the General Assembly of ICMI.42

Retracing the events that fostered the emancipation of ICMI from the com-
munity of mathematicians and the two key figures involved was a further way of 
celebrating the centenary and expressing our gratitude to them. Bernard of Chartres 
used to say that we are like dwarfs on the shoulders of giants, so that we can see more 
than they. So too can we, thanks to our great predecessors, who have contributed to 
the development of Mathematics Education into an autonomous scientific discipline.

We are very grateful to all those who have helped us with suggestions and advice, in particular 
to Michèle Artigue and Bernard Hodgson for their continuous help. We are also grateful to the 
Associazione Subalpina Mathesis of Torino and to the University of Helsinki for funding the journey 
to Helsinki to explore ICMI Archives.

42 See http://www.mathunion.org/organization/ec/procedures-for-election/#ICMI
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Appendices

1. Excerpt from Report of the president [H. Behnke] of the International 
Commission of Mathematical Instruction to the president of the International 
Mathematical Union. April 20, 1955, in IA, 14A, 1955-1957.

[…] 5. The work of the ICMI during 1955/58
The program of work planned for the ICMI cannot be adopted before the ses-
sion of the newly constituted Executive Committee has been held. The first 
session of this Executive Committee will probably take place in Geneva this 
coming July. But, according to a discussion on the work of the ICMI for the next 
years at the last session of the former Executive Committee in Paris, Oct. 1954, 
the following program was suggested:
1.	 the proposition is to be made to the national sub-commissions to work on 

the subject of “The Scientific Basis of School mathematics” and to compose 
for their countries or groups of countries a book for the scientific consulta-
tion of the teachers. For this book it is of primary importance that teachers 
of mathematics of all levels cooperate.

I regard it is a special, honorary mission of the ICMI to establish a con-
tact among the teachers of all levels. The teacher have to get interested in the 
research work, and those active in the field of research have to get interested 
in the work of the teachers. I have already succeeded in being assured of the 
readiness of cooperation for the second volume of the German ICMI report 
(“Mathematical Instruction for the early Youth in the Federal Republic of 
Germany”) from professors of the academies for education (Pädagogische 
Akademien) and through them from the teachers of primary level.

At the interim meeting in 1956 (symposia for the scientific basis of 
school mathematics) the experiences shall be compared gathered by the 
different nations in projecting this book.

In this context I may mention the suggestion of create an interna-
tional encyclopedia of elementary mathematics. I do not yet see a way to 
realize this project because the school systems and therefore the material 
of instruction deviate too considerably from one another in the different 
countries. Yet this project will be submitted at the session of the Executive 
Committee in July. This way it may be possible to approach the suggestion 
made by M. Stone to create an international work of instruction. This plan 
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might at first sound simply phantastic for everyone who knows the diver-
sity of national conditions of instruction in different countries. It would, 
indeed involve an entirely new way of working for the ICMI since, for the 
first time, it would not simply have to coordinate national work, but would 
have to realize an important international work.

As a matter of course, considerable financial means would be neces-
sary for the realization of such a project, because the different collaborators 
would have to be in constant communication during the time of accom-
plishing this work.

2.	 The inquiry “The part of Mathematics on Contemporary life” has to be 
examined more fully and with much more gravity than has been done up 
to new. The investigation of this bulk of questions is closely connected with 
the technical development of the different countries.

In America, f. i., there exists a supervision of production at the instant of 
production. This plays a particularly important part in iron industry of small 
quantities, thus preventing refuse. The establishment of such a supervision 
and such a controlling office is, to a high degree, dependent on exact mathe-
matical calculations. Our colleague Ulrich Graf, who died last year, was about 
to introduce the same establishment in Germany. If this is done on a larger 
scale in the region of the Ruhr, for example, large numbers of mathemati-
cians will be required. […] Similar questions arise for the use of large-size 
calculating machines in the industrial field. It is thinkable that, in the com-
ing years, the applications of these machines might expand enormously. This 
involves the new vocation of the industrial mathematician. The firm Siemens-
Halske in Munich has now opened a large department for the development 
of calculating machines and has already called from Münster four of ours of 
young doctors of mathematics.

Thus questions are raised which have to be discussed on an interna-
tional basis.

All pains taken by the ICMI can be summed up by this formula:
To contact people of different qualities and abilities, people of dif-

ferent nations and different teaching professions (as long as they are seriously 
interested in mathematics) in order to make them work together.

There resides the great obligation and chance for the ICMI.

RL | Celebrating the first century of ICMI (1908-2008) Some aspects of the history of ICMI



88

ICME 11 Proceedings

I personally try to be an example for this possible, rather comprehen-
sive kind of work
1.	 with my meetings at Whitsuntide aiming at the maintenance of rela-

tion between universities and schools (Pfingsttagungen zur Pflege des 
Zusammenhangs von Universität and Gymnasien); regular attendance of 
approximately 250 persons;

2.	 with the international interim meetings of the ICMI which will be intro-
duced (symposia for school mathematics) and the sessions of the Section at 
international congresses;

3.	 with our series of books on mathematical instruction in the different 
countries;

4.	 with the national encyclopedias of school mathematics;
4a.	 possibly with an international encyclopedia of school mathematics.

2. [Memorandum von Herrn Behnke über die Bildung von Gruppen]
in IA, 14A, 1958-1960.

Suggestions on the subject of forming „Regional Groups“ within ICMI
a.	 Since its foundation in 1908 in Rome, ICMI’s aim has been to compare ex-

periences in the teaching of mathematics in all types of educational estab-
lishments, and to discuss possible reforms in the teaching of mathematics. 
This program includes the following points:

1.	 Reports on mathematical instruction
2.	 Discussions on eliminating obsolete parts of material hitherto used
3.	 Suggestions and discussions on introducing new mathematical points 

of view into curriculum, (for instance to introduce the concept of 
“structure” already at Secondary School level)

4.	 To establish and cultivate contacts between various types of schools – as 
far as mathematical teaching is concerned – particularly where pupils 
progress from one school to the other.

b.	 In dealing with any particular problem included in this general program, 
we must be quite clear about the particular age group and the particu-
lar educational level of those pupils to whom this problem applies. But 
this is not easy because conditions vary considerably from country to 
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country, as the national school systems are very often based on differ-
ent principles. Therefore the work of the National Sub-Commissions must 
be the basis of all life in ICMI. It is then one of the main tasks of ICMI 
to create and cultivate the exchange of ideas and experiences between 
the sub-commissions of different countries. This exchange is obviously 
easiest between those countries where the school systems are similar. 
Therefore, it is rather natural that the sub-commissions of the coun-
tries sharing the old European traditions in educational matters (namely 
France, Germany, Great Britain, Italy, Scandinavia etc.) – which I shall 
briefly call the WNE-countries (West and North European) – have up 
to now found closer contact with one another than with national sub-
commissions from other parts of the world. Consequently the activity 
of ICMI during the 50 years of its existence was mainly concerned with 
these WNE-countries.

If ICMI now makes the attempt to extend its activities to all parts of the 
world, then it would be appropriate to form “groups” of national sub-com-
missions, so that countries whose educational systems are similar, belong 
to the same group. This is in accordance with the resolution passed by the 
General Assembly of the IMU at St. Andrews, August 1958.43

c.	 At the International Congresses of Mathematicians, ICMI plays a relatively 
small role, since these congresses are dominated by reports and discussions 
on matters of research. It might, therefore be more appropriate for ICMI to 
hold smaller symposia in the years between Congresses. This has, in fact, 
been the case in the past; especially during the periods 1909-1914 and 
1953-1958, such symposia have taken place annually. For financial reasons, 
it is necessary to restrict each of these meetings to some countries not too 
far from each other. Thus the geographical aspect must also be considered 
in the formation of the proposed groups. Fortunately, these two aspects, the 
similarity of educational systems and the geographical one coincide in the 
most cases.

Led by these considerations, I make the tentative suggestions that to 
begin with, the following “Regional Groups” of ICMI must be formed:

43 Cf. (Giacardi 2008a), 1955-1959.
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1.	 The WNE-countries
2.	 The East European Countries
3.	 South East Asia
4.	 Central and South America
5.	 Australia and New Zealand.

	 One might imagine that very large countries, like USA and USSR, would 
have little interest in joining a regional group.

The organization of the symposia mentioned above would be such 
that each year a certain group arranges a meeting in which the reports 
and discussions deal in first place with the particular interests of the mem-
bers of that group. However representatives of other groups should be in-
vited to take part. With regard to financial arrangements, it remains to be 
seen whether enough money would be available from IMU or whether the 
group itself would have to find other resources.

d.	 The climax of the whole work would be a meeting of all national sub-com-
missions (at present numbering 23). It would be appropriate for this to take 
place in connection with each International Congress of Mathematicians.

3. Proposition sur l’enseignement mathématique in IA, 14B, 1967-1974.44

A la suite de l’enquête de DIALECTICA, les professeurs de mathématique* ras-
semblés au colloque de Lausanne45 ont constaté qu’un accord presque général 
est actuellement réalisé sur les points suivants:

1.	 La mathématique est une activité inaliénable de l’esprit humain. Tout enfant 
a le droit d’y être formé.

2.	 Dans un monde changeant, il convient que cette formation éveille et dével-
oppe plutôt des aptitudes d’action intellectuelle qu’elle ne fixe des connais-
sances.

44 These principles were published as “Propositions on the teaching of Mathematics” in the first 
issue of the journal Educational Studies in mathematics (1, 1968, p. 244).
45 It is the UNESCO Colloquium in Lausanne on “Coordination of Instruction of Mathematics and 
Physics” (16-10 January 1967).
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3.	 La mathématique évolue de plus en plus vers une science générale des 
structures. Celles-ci lui confèrent un pouvoir considérable d’application, 
d’information et d’unification. La connaissance et la maîtrise de ces struc-
tures, leur mise en ouvre dans la saisie de la réalité sont les vraies buts de 
l’enseignement mathématique.

4.	 Certaines de ces structures ont un caractère élémentaire : il y aurait intérêt 
à chercher à s’en servir dès l’enfance.

5.	 Un certain nombre de structures plus élaborées devraient être acquises au 
terme des études secondaires.

6.	 La réalisation d’un niveau valable exige une formation mathématique et 
pédagogique appropriée des maîtres.

7.	 La réforme de l’enseignement mathématique doit être considérée comme 
un phénomène permanent. Cela implique une formation continue des maî-
tres appuyée sur une recherche pédagogique suivie.

8.	 En ce domaine, une collaboration efficace sur le plan mondial devient in-
dispensable. Il est urgent de fonder un organisme international des infor-
mations en matière d’enseignement mathématique.

Lausanne, le 18 janvier 1967

* A savoir : M. W. Servais (Belgique), M. R. Guy (Canada), M. J. Lichtenberg 

(Danemark), M. C. Pisot (France), Mme [illegible: P. Gadon ?] et M. A. Renyi 

(Hongrie), M. C. Cattaneo (Italie), M. H. Freudenthal et M. L. N. H. Bunt 

(Pays-Bas), M. Z. Krygowska et M.S.Straszewicz (Pologne), M. E. Blanc, M. 

A. Delessert, M. E. Emery, M. F. Gonseth, M. K. Grimm, M. J. de Siebenthal 

(Suisse) et M. I. Smolec (Yougoslavie).
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Collaborative learning for mathematical level raising, 
what does it take?

Rijkje Dekker, University of Amsterdam, r.dekker@uva.nl

Key words
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Summary

In this contribution I will give an overview of my work as researcher of 
collaborative mathematics learning during 20 years. I will focus on char-
acteristics of learning materials, a helpful theoretical model, the role of the 
teacher, the size of small groups and new research lines.
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1. Introduction

At ICME-6 in Budapest in 1988, I gave a presentation about the learning 
of mathematics in heterogeneous small groups. I was a PhD student and 
completely involved in classroom observations and the designing of good 
learning materials for small group learning (Dekker, 1987). Freudenthal, 
whose ideas about the heterogeneous learning group had influenced me, 
was in my audience, giving me support with his presence. Now, 20 years 
later, I have been involved in many research projects on collaborative learn-
ing of mathematics. We know a lot more about the process of interaction 
which stimulates mathematical level raising. We also know more about the 
characteristics of the learning materials. For level raising isolated problem 
solving activities are not sufficient, we need at least a series of problems, 
with special problems in it to provoke level differences between the stu-
dents. We know more about the favorable size of small groups, the pros 
and cons of couples: easily accessible for research, but less rich for a critical 
discussion between students. And we start to know more about the role of 
the teacher. Which interventions stimulate the interaction and the process of 
level raising? Which interventions can be disturbing? Which sort of whole 
class discussions supports the learning in small groups? Some say that whole 
class discussions are crucial to establish good social and socio-mathematical 
norms and to consolidate level raising. Others think that they are mainly 
time-consuming and evoke all sorts of stereotypical behavior of the stu-
dents, including off-task behavior. I will present some of our research find-
ings over the last twenty years and I am sure we will have enough to discuss!

2. Learning materials

While finishing my PhD, one of my supervisors asked me to formulate char-
acteristics of learning materials which evoke interaction and level differences 
between children, which I did in my thesis (Dekker, 1991). First, the problems 
are placed in a realistic context in order to appeal to the students and to make it 
possible for them to realize the situation. Second, there are problems in the 
learning materials which are complex, in order to stimulate interaction between 
the students. To solve these problems different abilities are needed, like finding 
relevant information in a text, measuring precisely, making calculations well.
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They also have to take into account all sorts of different information, 
data from a text, a map, a table or from earlier solved problems. A third charac-
teristic is that something has to be made, constructed, like a graph, a table, a model, 
a little story. That stimulates students to draw, write or make calculations. In that 
way they can see each other’s work and the differences in it. An important char-
acteristic of the learning materials is the aiming at level raising. At certain places in 
the learning materials there are problems which, when approached on a too low 
level, cannot be solved well. I will make the characteristics concrete by giving an 
example from the learning materials I have developed for my PhD research.

The learning materials for small, heterogeneous groups of students 
age 12, 13, consist of one map for each small group and a letter of a girl 
Merlien, living in Paramaribo, Surinam. Figure 1 shows a fragment of the map. 
Figure 2 shows a fragment of the letter.

Figure 1. Fragment of the map.

Fragment of the letter:
‘It was raining too hard, so we waited for a moment. Fortunately it was cooling down a bit. 
Suddenly the shower stopped, we walked on and soon the sun was burning again. 
We walked slower and slower. 
But when we strolled into the Palm Garden, it was pretty cool under the trees.’ 
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The letter of Merlien is about a walk she makes with her friends from school till the 
Palmgarden (see the upper right corner on the map). She tells about differences in 
temperature because of the heath and a sudden tropical rain shower and about differ-
ences in their speed of walking, strolling by the heath, and running by the shower. In 
the first problems in the learning materials the small groups are asked to tell Merlien’s 
story in graphs: a temperature/time graph about the differences in temperature during 
the walk, a speed/time graph about the differences in speed during the walk, and fi-
nally a distance/time graph about the growing of the walked distance during the walk.

The learning materials are clearly placed in a realistic context. Many children 
never have been in Surinam, but the map, the letter and the presence in many 
Dutch classes of children with parents from Surinam, make the situation very well 
realizable. The problems are also complex. In order to make the graphs, the map 
has to be studied, the letter as well, some measurements have to be made and all 
has to be combined. The graphs have to be constructed; decisions about the axes, 
about some numbers on the axes and about the global shape of the graphs have 
to be made. Van Hiele once explained that the making of the temperature/time 
graph and the speed/time graph are activities on the visual level. Changes in the 
temperature and in the speed are in direct contact with the changes in the graph: 
when the temperature or the speed goes up, the graph goes up as well and when 
the temperature or speed is constant, the graph is flat. Although making the graphs 
is not an easy thing, students don’t have to know much about graphs to construct 
them well. However, the making of the distance/time graph is a different thing: 
when the speed is constant, the walked distance grows regularly, when the speed 
is zero, the walked distance remains constant. One really has to understand the 
construction of the graph, which means a jump to the descriptive level where not 
the objects themselves, but their properties are central (Van Hiele, 1986). So the 
learning materials aim at level raising.

Analysis of audiotapes of the small groups revealed that the construction 
of the distance/time graph leads to level differences in the answers of the students, 
which are intensively discussed. Students frequently explain their work and criti-
cize each other’s work. Level raising is already evident in some students.

3. A helpful model

During my PhD work I was puzzled by the question which elements in the in-
teraction between students contribute to level raising. Freudenthal mentioned the 
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role of explaining as a mean for reflection (Freudenthal, 1978). I thought about 
the role of critic. I made a model in which I described what I thought was crucial 
for level raising. After my PhD I became a researcher of mathematics education 
and I started to collaborate with Marianne Elshout-Mohr, a cognitive psycholo-
gist with whom I shared interest in learning processes. I showed her my model and 
we discussed it in detail. She was very interested, but also raised some sound critic. 
She convinced me that criticizing the work of someone else is not crucial for one’s 
own level raising, but the justifying that it evokes, is. We reconstructed the model 
together and published it in Educational Studies of Mathematics (Dekker & Elshout-
Mohr, 1998). The model is presented in Figure 2. For an extended explanation and 
theoretical justification of it, I refer to that publication. Here I will explain parts of it.

In the process model for interaction and mathematical level raising we di-
vide key activities, regulating activities and mental activities. Key activities for a person A, who 
is working on a mathematical problem, are the main activities for A’s level raising. 
They are:

A tells or shows her work
A explains her work
A justifies her work
A reconstructs her work

In a collaborative learning setting a person B can regulate the level raising of A 
by performing the regulating activities:

B asks A to show her work
B asks A to explain her work
B criticizes A’s work

I will show her two parts of the model to give insight in the relation between 
the key, regulating and mental activities:

B asks A to explain her work (regulating)
A thinks about her work (mental)
A explains her work (key)
B criticizes A’s work (regulating)
A thinks about B’s critic (mental)
A justifies her work (key)
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The main idea for level raising is that when A justifies her work and notices 
that her justification fails, she will criticize her own work and come to re-
construction of it. The reconstruction can reveal A’s level raising.

A help for bringing the process model alive is to read only the middle 
column. That way one can imagine what kind of discussion between students 
can stimulate level raising.

Figure 2. Process model for interaction and mathematical level raising.

 
A and B are working on the same mathematical problem. Their work is different. 
 

 
     
A is working 
 

  
B is working 

 
A asks B to show his work 
 

 
What are you doing? 
What have you got? 
 

 
B asks A to show her work 

 
A becomes aware of her own work 
 

  
B becomes aware of his own work 

 
A shows her own work 

 
I am doing this… 
I have got this… 
 

 
B shows his own work 

 
A becomes aware of B’s work 
 

  
B becomes aware of A’s work 

 
A asks B to explain his work 

 
Why are you doing that? 
How did you get that? 
 

 
B asks A to explain her work 

 
A thinks about her own work 

  
B thinks about his own work 
 

 
A explains her own work 

 
I’m doing this, because… 
I’ve got this, because… 
 

 
B explains his own work 
 

 
A thinks about B’s work 

  
B thinks about A’s work 
 

 
A criticises B’s work 

 
But that’s wrong, because… 

 
B criticises A’s work 
 

 
A thinks about B’s criticism 

  
B thinks about A’s criticism 
 

 
A justifies her own work 

 
I thought it was right, because… 

 
B justifies his own work 
 

 
A thinks about her justification 

 
 

 
B thinks about his justification 
 

 
A criticises her own work 
 

 
Oh no, it isn’t right, because… 
 

 
B criticises his own work 

 
A reconstructs her own work 

 
I’ll better do it like this… 

 
B reconstructs his own work 
 

 
bold: key activities 
standard: mental activities 
italic: regulating activities 

RL | Collaborative learning for mathematical level raising, what does it take?



100

ICME 11 Proceedings

4. Role of the teacher

After reflecting on the findings of my PhD research and the development of the 
process model, Marianne Elshout-Mohr and I discussed the role of the teacher 
during collaborative mathematics learning. We argued that if we take our own 
model seriously, then a teacher who promotes the activities as described in the 
model is more effective in relation to level raising, than a teacher who gives 
‘normal’ help. We assumed that in both cases help should be minimal, in order 
to stimulate independent learning of the small groups. To make a clear distinction 
of both roles, we wanted the process teacher not to give any product help and to 
make this clear to the students. The focus is to stimulate the students to perform 
key and regulating activities and the process teacher should make this clear to the 
students. The other teacher, we called the product teacher, as for content help to 
small groups the product of the small group is an important source of informa-
tion for the teacher, should refrain himself from process help.

We prepared an experiment, this time with older students, age 16, 17, 
working in triples on learning materials about geometrical transformations (see 
Figure 3). Normally they follow a program on abstract mathematics.

Figure 3. Fragment of new learning materials about transformations.

The main finding of our experiment was that students with a process teacher 
reach more level raising than students with a product teacher. This was in 
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line with our hypothesis, but as the quality of the help of the product teacher 
was very high and the help of the process teacher was almost absent, this 
was not what we expected during our experiment. We have described our 
findings, including more details about the learning materials and teacher in-
terventions in Dekker and Elshout-Mohr (2004). Another finding from our 
experiment was that the discussion in triples is very intense. In the meantime 
my PhD student Monique Pijls also started research on the role of the teacher 
during collaborative mathematics learning. She developed learning materials 
on chances, partly on the computer. For that reason she worked with cou-
ples. Her students were younger, age 15, 16 and did a program on applied 
mathematics. She also worked with a process teacher and a product teacher. 
Her main finding was that students with a process teacher reach as much level 
raising as students with a product teacher. She also found that couples got 
stuck at level raising problems and giving process help without content help 
was very frustrating for the process teacher (Pijls, 2007; Pijls, Dekker & Van 
Hout Wolters, 2007a, 2007b).

5. Size of the small groups

In my PhD research I worked with groups of 4. It was very hard to listen and 
work out the audiotapes, but the mix of students and the level differences in 
their solutions led to rich discussions with a lot of showing and explaining.

In our research about teacher interventions we worked with triples. 
Also with triples the level differences led to rich discussions, but more than 
with the groups of 4 the discussions in triples were very intense. Monique 
Pijls worked with couples, in this case because of the computer. On the other 
hand, in much research on collaborative mathematics analyses of conversations 
between couples is dominant. Together with Terry Wood, Marianne Elshout-
Mohr and I analyzed a protocol of a couple, age 8, working on a mathemati-
cal problem. We analysed the protocol from different perspectives and studied 
how the students regulated their own learning (Dekker, Elshout-Mohr & Wood, 
2004, 2006). We felt that in a couple their can be an implicit division of roles, 
which can disturb the level raising process. That became more evident in the 
work with Konstantinos Tatsis. Tatsis analyzes collaborative mathematics learn-
ing from the perspective of the role theory of Goffman (Tatsis & Koleza, 2006). 
We combined our perspectives in an analysis of the protocols of couples, future 
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primary school teachers, working on mathematical problems. We studied the 
influence of the different roles, students take in pairs, on the performing of the 
key and regulating activities. One of our findings is that a smooth collaboration 
can lead to shared knowledge building, but at the same time level raising is at 
risk, as during smooth collaboration there is less need for explaining and justi-
fying, which are key activities for level raising. We continued our analysis on a 
protocol from the research of Pijls and also found a division of roles, which is 
in some parts counterproductive for level raising (Tatsis & Dekker, in press). It 
seems that working in a triple gives more chances for level raising. As a student, 
age 16, once said:

“I prefer to work in a couple, because then you really have to build upon each 

others thoughts… …

But in a group of three there is more knowledge.”

Or is expressed in an old Chinese saying:

‘Where three deliberate, wisdom arises.’

6. More research

Monique Pijls and I reflected on our research projects and the role of the teach-
er. We were convinced that a process teacher gives chances for level raising, 
but that the role of a process teacher is not ‘normal’ for teachers. Teachers like 
to explain. That is crucial for them. So we started to think how we could per-
suade teachers to stimulate students to perform key and regulating activities. 
We were also curious if teacher maybe already do that in unexpected ways. So 
we observed ‘normal’ teaching in search of (chances for) key and regulating 
activities, discussed our observations with the teachers, deliberated how key 
and regulating activities could be stimulated more and observed more experi-
mental lessons. It led to mixed results and feelings, as expressed very clearly by 
one teacher:

“I like very much to explain. Now I had to say, ask your neighbor and then go 

away quickly, because otherwise they keep on asking me. I found that very hard!”
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“I saw students really working more intensely together and sometimes that 

worked very, very well. They really started to ask each other to explain and 

they have helped each other.”

 
Monique Pijls and I described our findings in an article to be published 
(Pijls & Dekker, submitted). In the meantime Monique Pijls has started as a 
professional trainer of process help. I am trying to find new ways to imple-
ment process help in the daily practice of mathematics teachers. Sonia Palha, 
my new PhD student is developing switch problems to be used during the 
work with a chapter from a textbook that is very popular with teachers. 
The idea is, that during their normal teaching at certain moments, when 
the learning is hard, the teacher forms triples of students of mixed levels, 
give them switch problems to work on collaboratively in stead of working 
on problems in the book, and takes the role of a process teacher during the 
work on the switch problems. We use the word switch problems in a double 
meaning. The teacher switches role, from ‘normal’ to process teacher and 
the problems are to stimulate level raising, so to switch from one level to 
the other. The problem of making a distance time graph, presented in the 
beginning of my talk, is an example of such a switch problem. Sonia Palha 
will compare this working with the normal teaching of the chapter. Our 
hypothesis is that working with the chapter with switch problems, leads to 
more level raising than working with the chapter in the normal way. The 
first findings during try-outs are promising (Palha & Dekker, 2007). To be 
continued…

7. An overview

So, to sum up 20 years of research of the question ‘Collaborative learning for 
mathematical level raising, what does it take?’ We can say:

•	Carefully designed learning materials with switch problems
•	A teacher who stimulates students to perform key and regulating 

activities
•	Small groups of 3
•	More research!
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Not a normal teacher
Ending my overview I come back to the person who once stimulated me to 
do research on collaborative mathematics learning. His genuine interest in my 
developing ideas and experiences with collaborative mathematics learning and 
his encouragement by saying ‘go on’, gave me the courage to continue my 
research.

And I did go on…
I still do.

Figure 4. Hans Freudenthal (1905–1990).
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Conceptualizing the Learning of Algebraic Technique: 
Role of Tasks and Technology

Carolyn Kieran, Département de mathématiques, Université du Québec à Montréal, 
kieran.carolyn@uqam.ca

This article is divided into four parts. The first part presents some introductory remarks on the use of 
Computer Algebra System (CAS) technology in relation to the long-standing dichotomy in algebra 
between procedures and concepts. The second part explores the technical-conceptual interface in algebraic 
activity and discusses what is meant by conceptual (theoretical) understanding of algebraic technique 
– in other words, what it means to render conceptual the technical aspects of algebra. Examples to be 
touched upon include seeing through symbols, becoming aware of underlying forms, and conceptualizing 
the equivalence of the factored and expanded forms of algebraic expressions. The ways in which students 
learned to draw such conceptual aspects from their work with algebraic techniques in technology envi-
ronments is the focus of the third part of the article. Research studies that have been carried out by my 
research group1 with a range of high school algebra students have found evidence for the kinds of theoreti-
cal thinking that can be fostered by specific types of technique-oriented tasks within CAS environments. 
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The fourth part of the article then shifts to the perspective of teaching practice and discusses some of the 
issues that, according to this research, are to be taken into account by teachers when planning for the 
orchestration of such task-technique-theory activity in technological environments.

Keywords
Tasks, technology, technique, theory, algebra at secondary school level, concep-
tual learning of algebraic technique

1 My appreciation to the colleagues, post-doctoral fellows, and collaborators who have contrib-
uted to the research being presented in this article: André Boileau, Caroline Damboise, Paul 
Drijvers, José Guzmán, Fernando Hitt, Ana Isabel Sacristán, Luis Saldanha, and Denis Tanguay – as 
well as the teachers and students of the participating schools, and our project consultant, Michèle 
Artigue. I also express my gratitude to the Social Sciences and Humanities Research Council of 
Canada and the Québec Ministère des Relations Internationales who have funded this research.
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Introduction

1.1 What is Computer Algebra System (CAS) technology?
A Computer Algebra System (CAS) is a software program that facilitates sym-
bolic mathematics. The core functionality of a CAS is manipulation of math-
ematical expressions in symbolic form (Wikipedia, Sept. 5, 2007). In 1987, 
Hewlett-Packard introduced the first hand-held CAS calculator with the HP-
28 series, and it became possible, for the first time with a calculator, to ar-
range algebraic expressions, to differentiate, to do limited symbolic integration 
and Taylor series construction, and to solve algebraic equations. The Texas 
Instruments company in 1995 released the TI-92 calculator with an advanced 
CAS, based on the software Derive. This calculator, and its successors (including 
TI-89, Voyage 200, and TI-Nspire), have featured a reasonably capable and rela-
tively inexpensive hand-held Computer Algebra System with symbolic, graphi-
cal, and tabular capabilities.

1.2 CAS use in secondary school mathematics classes
Ever since the appearance of computers and calculators enabled with symbol-
manipulating capabilities, educators have considered these tools to be quite 
appropriate for student use in college-level mathematics courses, and in cal-
culus courses offered at some upper-level high schools (see, e.g., Heid, 1988; 
Shaw, Jean, & Peck, 1997; Zbiek, 2003). However, these tools have generally not 
been adopted for secondary school mathematics up until quite recently. Many 
secondary school mathematics teachers have, for several years, tended to stay 
away from CAS technology in their classrooms, preferring that their students 
first develop paper-and-pencil skills in algebra (National Council of Teachers of 
Mathematics, 1999). 

However, these attitudes are changing – based both on research find-
ings and on the leadership of interested teachers and mathematics educators, as 
well as on the greater availability of teacher resources for using this technology 
at the Grade 9, 10, and 11 levels of secondary school. The result is that student 
access to this technology is increasing in schools (Hoyles & Lagrange, 2009).

1.3 What does the research have to say?
CAS technology has been found to encourage the use of general mathematical 
reasoning processes and to improve student attitude, according to research re-
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ported during the five- year period from 2003 to 2008 at the annual conferences 
of the International Group for the Psychology of Mathematics Education (PME):

•	“It allows for generating, testing, and improving conjectures”
•	“It allows for developing awareness and intuition”
•	“It leads students to explore their own conjectures”
•	“It provides non-judgmental feedback”
•	“It develops the learner’s confidence.”

This research has also found that CAS can help develop students’ knowledge 
of algebraic content: their understanding of equivalence (Ball, Pierce, & Stacey, 
2003), parameters and variables (Drijvers, 2003), and literal-symbolic alge-
braic objects in general, without “leading to the atrophy of by-hand symbolic-
manipulation skills or to the slower development of these skills” (Heid, Blume, 
Hollebrands, & Piez, 2002, p. 586).

Since the mid-1990s, in France, when CAS technology started to make 
its appearance in secondary school mathematics classes, researchers (Artigue, 
Defouad, Duperier, Juge, & Lagrange, 1998) noticed that teachers were em-
phasizing the conceptual dimensions while neglecting the role of the techni-
cal work in algebra learning. However, this emphasis on conceptual work was 
producing neither a clear lightening of the technical aspects of the work nor 
a definite enhancement of students’ conceptual reflection (Lagrange, 1996). 
From their observations, the research team of Artigue and her collaborators 
came to think of techniques as a link between tasks and conceptual reflection, 
in other words, that the learning of techniques was vital to related conceptual 
thinking. The implication of these findings, as Michèle Artigue stated in her 
plenary presentation at this ICME-11 conference (Artigue, 2008), is that the 
dichotomy between techniques and concepts in algebra is a false one. It is ar-
gued not only that the two are complementary, but also that, within appropri-
ate learning environments, techniques and concepts co-emerge and mutually 
support each other’s growth.

1.4 The Task-Technique-Theory framework
Chevallard describes four components of practice by which mathematical ob-
jects are brought into play within didactic institutions: task, technique, tech-
nology, and theory. Chevallard (1999, p. 225) states that tasks are normally 
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expressed in terms of verbs, for example, “multiply the given algebraic expres-
sion.” He defines technique as “a way of accomplishing, of carrying out tasks.” 
In his theory, Chevallard separates technique from the discourse that justifies/
explains/produces it, which he refers to as technology. But he also admits that this 
type of discourse is often integrated into technique, and points out that such 
technique can be characterized in terms of theoretical progress. According to 
Chevallard, theory takes the form of abstract speculation, a distancing from the 
empirical. Thus, within the anthropological approach, discourse can be viewed 
as bridging technique and theory.

Artigue (2002a) and her research collaborators adapted Chevallard’s 
anthropological theory by collapsing technology and theory into the one term, 
theory. This gave the theoretical component a wider interpretation than is usual 
in the anthropological approach; it also reserved the use of the term technol-
ogy for digital devices. Furthermore, Artigue (2002a, p. 248) has emphasized 
that technique also has to be given a wider meaning than is usual in educational 
discourse: “A technique is a manner of solving a task and, as soon as one goes 
beyond the body of routine tasks for a given institution, each technique is a 
complex assembly of reasoning and routine work.” 

Lagrange (2002, p. 163), one of Artigue’s collaborators, has expressed 
the interrelationship of task, technique, and theory as follows:

Within this dynamic, tasks are first of all problems. Techniques become elaborat-

ed relative to tasks, then become hierarchically differentiated. Official techniques 

emerge and tasks lose their problematic character: tasks become routinized, the 

means to perfect techniques. The theoretical environment takes techniques into ac-

count – their functioning and their limits. Then the techniques themselves become 

routinized to ensure the production of results useful to mathematical activity. … 

Thus, technique has a pragmatic role that permits the production of results; but it 

also plays an epistemic role (Rabardel and Samurçay, 2001) in that it constitutes 

understanding of objects and is the source of new questions. [my translation]

Elsewhere, Lagrange (2003, p. 271) has further extended this latter idea: 
“Technique plays an epistemic role by contributing to an understanding of the 
objects that it handles, particularly during its elaboration. It also serves as an ob-
ject for a conceptual reflection when compared with other techniques and when 
discussed with regard to consistency.”
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Our research group was intrigued by the theoretical notion that al-
gebra learning at the high school level might be conceptualized in terms of a 
dynamic among Task-Technique-Theory (T-T-T) within technological environ-
ments. And so it came to be that we began a series of studies in 2002, which 
continue to this day, that explored the relations among task, technique, and 
theory in the algebra learning (and teaching) of Grades 10, 11, and 12 students 
(15-18 years of age) in CAS environments. I will be elaborating on aspects of 
this research in a short while; nevertheless, I summarize briefly here our main 
findings so as to situate my underlying theme.

As reported in Kieran and Drijvers (2006), technique and theory emerged 
in mutual interaction. Techniques gave rise to theoretical thinking; and the other 
way around, theoretical reflections led students to develop and use techniques.

As reported in Kieran and Damboise (2007), a comparative study of a 
CAS class and non-CAS class involving the same tasks, the CAS class improved 
much more than the non-CAS class in both technique and theory, but especially 
in theory; and the sequence of lessons was one where the technical component 
was clearly in the forefront.

This brings us to the main question to be addressed in this paper: 
How does the learning of algebraic technique in a CAS environment lead to the 
emergence of students’ theoretical/conceptual growth? In other words, how is 
technique rendered conceptual? What does it mean to have a conceptual under-
standing of algebraic technique?

2. The interface between technique and theory 
in algebra

Note that, within this text, I will be using the terms conceptual and theoretical in-
terchangeably. I also wish to point out that the context of this article is related 
to the letter-symbolic aspects of algebra. There are two reasons for this. On the 
one hand, a great deal of research exists already with respect to the benefits of 
multi-representational approaches (e.g., graphical representations) in making 
algebraic objects more meaningful to students (Kieran & Yerushalmy, 2004). 
On the other hand, algebra involves more than representational activity; sym-
bolic transformational activity lies at its core. However, the amount of research 
related to the ways in which the literal-symbolic transformational activity of 
algebra can be viewed as being conceptual is limited, to say the least.
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2.1 What is meant by a conceptual understanding of algebraic technique?
I propose that a conceptual understanding of algebraic technique includes:

•	Being able to see a certain form in algebraic expressions and 
equations, such as a linear or quadratic form;

•	Being able to see relationships, such as the equivalence between 
factored and expanded expressions;

•	Being able to see through algebraic transformations (the 
	 technical aspect) to the underlying changes in form of 
	 the algebraic object and being able to explain/justify
	 these changes. 

Some classic examples of conceptual understandings in algebra include: (a) the 
distinctions between variables and parameters, between identities and equa-
tions, between mathematical variables and programming variables, and so on; 
as well as (b) the knowledge of the objects to which the algebraic language 
refers (generally numbers and the operations on them) and the need to include 
certain semantic aspects of the mathematical context so as to be able to inter-
pret the objects being treated. But these classic examples deal more with objects 
than with techniques. 

2.2 Some examples of a conceptual understanding of algebraic technique

Example 1.
Seeing through symbols to the underlying forms, e.g.,

	(a)	 seeing x6 - 1 as ((x3)2 - 1) and as ((x2)3 - 1),
		  and so being able to factor it in two ways.
	(b)	 seeing that x2+5x+6 and x4+7x2+10
		  are both of the form ax2+bx+c.

Example 2.
Conceptualizing the equivalence of the factored and expanded forms of alge-
braic expressions, e.g., awareness that the same numerical substitution (not a 
restricted value) in each step of the transformation process of expanding will 
yield the same value: 
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		  (x+1)(x+2) – factored form – 
		  = x(x+2) + 1(x+2)
		  = x2 + 2x + x + 2
		  = x2 + 3x + 2 – expanded form – and so substituting, say 3, into 

all four expressions produces the same numerical result – in this 
case, 20 – for each expression.

Example 3. 
Coordinating the “nature” of equation solution(s) with the equivalence relation between 
the two expressions that comprise the original equation, e.g., for the following task, 

Given the three expressions: x(x2-9), (x+3)(x2-3x)-3x-3, (x2-3x)(x+3),

	(a)	 determine which of these three expressions are equivalent;
	(b)	 construct an equation using one pair of the above expressions that 

are not equivalent, and find its solution;
(	c)	 construct an equation from another pair of the above expressions 

that are not equivalent and, by logical reasoning only, determine 
its solution.

So, for the three given expressions,

		  Exp1: x(x2-9) 
		  Exp2: (x+3)(x2-3x)-3x-3 
		  Exp3: (x2-3x)(x+3)

	(a)	 Which are equivalent?
		  Only Exp1 and Exp3 are equivalent.

	(b)	 An equation using a pair of non-equivalent expressions from the 
three given expressions? And its solution? 

		  One could use Exp1 and Exp2 in the equation: Exp1 = Exp2.
		  Its solution (with CAS or with paper and pencil): x = -1.

	(c)	 An equation from another pair of non-equivalent expressions from the 
above three expressions? And its solution (by logical reasoning only)?
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		  This time, one uses Exp3 and Exp2 in the equation: Exp3 = 
Exp2.

		  One deduces that the solution has to be the same as in (b): 
(x = -1). (A conceptual/theoretical understanding involving 
substitution of equivalent expressions and transitivity leads to 
this deduction.)

2.3 The importance of fostering a conceptual 
understanding of algebraic technique
Having just seen some examples of what is intended by the phrase, a conceptual 
understanding of algebraic technique, I now argue, briefly, for the importance 
of this aim for algebra instruction. 

National and international mathematics assessments during the 1980s 
and 1990s reported that secondary school students, in order to cover their 
lack of understanding, resorted to memorizing rules and procedures and that 
students eventually came to believe that this activity represented the essence of 
algebra (e.g., Brown, Carpenter, Kouba, Lindquist, Silver, & Swafford, 1988).

Although some of the recent reform movements have attempted to 
make algebra more meaningful for students – at least during the earlier years 
of high school – by infusing “real-world” problem-solving activities and mul-
tiple representations of these problems into algebra curricula, these same cur-
ricula have tended to maintain the traditional dichotomy of procedures and 
concepts when dealing with the transformational activity of algebra in the later 
years of high school. When students are then faced with the literal-symbolic 
transformational activity of algebra, it is presented, by and large, as a primarily 
concept-free domain. 

Although Skemp (1976) described “relational understanding” as 
knowing both the rules and why they work, there has never been much move-
ment in the direction of describing what this might mean for algebra.

The point I wish to make is that this dichotomy between procedures 
and concepts in algebra is both unnecessary and unproductive for students, and 
in fact can lead to depriving them of the conceptual insights that can make their 
work with procedures meaningful. But before looking at how techniques can 
be approached so that the conceptual component might co-emerge along with 
the technical, we need first to consider the issue of tasks.
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2.4 The role of tasks in the T-T-T triad
At a recent PME Research Forum on “The Significance of Task Design in 
Mathematics Education”, Ainley and Pratt (2005) – the organizers of the 
Forum – argued that, “We see task design as a crucial element of the learning 
environment … [and contend that] the nature of the task influences the ac-
tivity of students.” Hoyles (2002) has emphasized that a focus on the design 
of task situations is at the heart of the “transformative potential of [techno-
logical] tools in activities” and that, with this focus, “knowledge and epis-
temology are brought back to center stage” (p. 284). Lagrange (1999) has 
suggested that task situations ought to be created in such a way as to “bring 
about a better comprehension of mathematical content” (p. 63) via the pro-
gressive acquisition of techniques in the achievement of a solution to the 
task. Guin and Trouche (1999) have added that tasks should aim at fostering 
experimental work (investigation and anticipation). 

More specifically, Drijvers (2003) has pointed out that more atten-
tion needs to be paid to the role of paper-and-pencil work throughout CAS 
task activity. For Hitt and Kieran (2009), a main consideration in task design 
is the nature of the theorizing that is to be elicited by the specific tasks and 
techniques of a teaching sequence. Artigue (2002b) has suggested that CAS 
tasks can capitalize on “the surprise effect that can occur when one obtains 
results that do not conform to expectations and that can destabilize errone-
ous conceptions, as well as on the multiplicity of results that can be obtained 
in a short space of time when exploring and trying to understand a certain 
phenomenon” (p. 344, my translation).

Zehavi and Mann (2003) have described how the tasks they devel-
oped had the potential to intertwine student work, CAS performance, and 
student reflection. Ball and Stacey (2003) have argued that students’ writ-
ten task records ought to focus principally on the reasoning that has been 
evoked.

As is suggested by all of the above studies – research that has involved 
mathematical activity within technology environments – there is an undeniable 
importance accorded to the design of tasks, tasks whose goal is to promote con-
ceptual reflection and development, even in technique-oriented work! Absent 
are task sequences whose main purpose is for students simply to provide an-
swers to procedural questions.
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2.5 To sum up
Because of the (a) recent advances in the development of theoretical frameworks, 
such as that of Task-Technique-Theory, (b) increasing use of technology in 
schools, for example, CAS at the secondary school level, and (c) attention being 
paid to the role that the nature of the task/situation plays in students’ mathemati-
cal learning, we are well poised to make headway in reflecting upon the ways 
in which technique can be viewed from a conceptual angle in the teaching and 
learning of algebra and, in fact, how technology can enhance the conceptualizing 
of technique.

3. How 10th grade students in our project drew 
conceptual aspects from their work with algebraic 
techniques in a CAS environment

Two preliminary remarks are in order, the first concerning the tasks, the second 
concerning the technologies. With respect to the tasks: The tasks went beyond 
merely asking technique-oriented questions; the tasks also called upon general 
mathematical processes that included observing/focusing, predicting, reflect-
ing, verifying, explaining, conjecturing, justifying. With respect to the tech-
nologies: Both CAS and paper-and-pencil were used, often with requests to 
coordinate the two; in general, the CAS provided the data upon which students 
formulated conjectures and arrived at provisional conclusions.

3.2 Conceptualizing that emerged while learning new techniques 
with the aid of CAS technology
The examples in this section are drawn from Kieran and Drijvers (2006) and 
Hitt and Kieran (2009). The two-lesson task-sequence was related to factoring 
(adapted from Mounier & Aldon, 1996). It involved the family of expressions, 
xn – 1. The aim of the task sequence was to arrive at a general form of factoriza-
tion for xn - 1 (for integer values of n ≥2) and then to relate this to the complete 
factorization of particular cases for integer values of n from 2 to 13. Proving 
one of these cases was part of the sequence, but is not included in this article 
(for details on the proving component and its unfolding in class, see Kieran & 
Guzmán, 2010).

One of the initial tasks of the sequence involved the following ques-
tions, which have been compressed for this article into Figure 1.
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Figure 1. Some of the initial task questions of the xn - 1 sequence.

 

After students had worked on these questions, either in groups or individu-
ally, the teacher opened up a whole-class discussion and asked students to state 
their responses to one particular question (Question #4 of Figure 1). Different 
students noticed different things in the pattern of expressions. The teacher’s aim 
in having the whole-class discussion was to encourage students to learn from 
what some of their peers had noticed. Figures 2 and 3 provide some samples of 
their responses to the given question. (As an aside: the issue of what students 
notice when doing exploratory mathematical work with technology is one that 
has received little research attention.)

The particular student whose work is shown in Figure 2 focused on 
the     

€ 

(x −1)  in the factored form and on the exponent in the expanded form.

Figure 2. For this question, this student focused on the (x-1) and the exponents.
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The student whose work is displayed in Figure 3 helped others to “refine 
their noticing” when she described during the whole-class discussion what 
she had focused on. She noticed more than did some other students and was 
also able to express herself with a certain clarity – even if she misused ter-
minology. Linguistic imprecisions such as this one, where equation was used 
for factor, were a common occurrence among the students in the classes we 
observed. 

Figure 3. This student helped others in the class to “refine their noticing”.

 

The class then moved on to a general form of factorization for xn-1 based on 
the above prior examples: xn - 1 = (x-1)(xn-1+xn-2 + … x+1) (see Sacristán 
& Kieran, 2006, for student work related to this component of the task se-
quence). After arriving at this general form, the students worked on the 
Factorization Task where they were confronted with the completely factored 
forms produced by the CAS and where they were requested to reconcile their 
paper-and-pencil (p/p) factorizations with those produced by the CAS. One 
of the ways in which students attempted to reconcile their expected factoriza-
tion of, for example, x4-1 with the CAS factorization is suggested by the work 
displayed in Figure 4. Here the student multiplied the 2nd and 3rd CAS factors 
to yield the same second factor that she had obtained with paper and pencil. 
Other students reconciled their p/p and CAS productions either by factoring 
more completely their 2nd p/p factor or by asking the CAS to multiply its 2nd 
and 3rd factors so as to see whether that produced the same polynomial as 
their 2nd p/p factor.
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Figure 4. Reconciling paper-and-pencil and CAS factorizations for x4-1.

 

After completing the Factorization Task for n = 2 to 6 in xn - 1, students 
were presented with the Conjecture Task: “Conjecture, in general, for what 
numbers n will the factorization of xn-1: (i) contain exactly two factors? (ii) 
contain more than two factors? (iii) include (x+1) as a factor? Explain.” The 
following pair of students, Chris and Peter, incorrectly conjectured that, for 
all odd ns, the complete factorization of xn-1 would contain exactly two fac-
tors (see Figure 5). The last line of the transcript extract indicates the moment 
of surprise when their initial conjecture proved false (this extract is drawn 
from Hitt & Kieran, 2009).

Figure 5. The role played by the CAS in disproving t
he initial false conjecture.
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The two students then began to wonder: If it is not the case that all odd ns pro-
duce exactly two factors when xn-1 is completely factored, then which ns will 
produce only two factors? The CAS allowed them to test a variety of values for 
n, including the extreme case of n = 99, which led to a first revision of their 
initial conjecture (see Figure 6).

Figure 6. A first revision of their odd-number conjecture: Exclude multiples of 3.

 
But they had not quite finished with their conjecturing, and testing of conjectures, 
with the CAS. In addition to eliminating multiples of 3 as possible values for n, they 
soon were able to eliminate multiples of 5 and 7 as well. Then one of them suggest-
ed trying x60 - 1 because, as he said, “I think it has to do with how many numbers 
can go into it.” This led to the “eureka” moment: that n had to be a prime number 
in order for the complete factorization of xn-1 to contain exactly two factors. 

From these samples drawn from Chris and Peter’s activity, we have 
had a glimpse at the role that CAS technology, within a thought-provoking task 
sequence, can play in supporting algebraic conjecture-making and conjecture-
refining – allowing these two students to focus their trials on certain multiples 
of the exponent, to try out extreme cases, … in short, to arrive at a new con-
ceptualization of the factors for expressions from this family of polynomials – 
all this within an activity related to technical work on factoring. 

3.2 Further evidence for the emergence of theoretical/conceptual ideas 
arising from work with CAS techniques 
The second set of examples to be presented is pulled from a comparison study 
that we carried out with two classes of weak Grade 10 algebra students (Kieran 
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& Damboise, 2007). Some of the characteristics of the task and test design were 
as follows: 

•	A set of tasks was developed on the topic of factoring 
	 and expanding.
•	Tasks were identical for the two classes except that, where 
	 one class was to use p/p only, the other class was to use 
	 CAS or a combination of CAS and p/p (see Figures 7 and 8 
	 for an example of the parallel task-sets for each class). 
•	Some tasks were technique-oriented; others were 
	 theory-oriented.
•	A pretest and posttest were also created with some questions being 

technical and others theoretical.

Note that, in both task-sets of Figures 7 and 8, the technical is the focus of 
the first question; the theoretical is the focus of the second question with its 
four subparts. Note as well that, in the CAS version of Question 1, students are 
asked to enter onto their worksheet the output produced by the CAS, while in 
the non-CAS version they are to record their paper-and-pencil factorizations 
and expansions. (N.B.: The “dissected” form of the first column was one with 
which both classes were quite familiar by the time that they encountered this 
Activity.)

Figure 7. One of the task-sets for the CAS class.

 

Activity 3 (CAS): Trinomials with positive coefficients and a = 1 (  

€ 

ax2 + bx +c ) 
1. Use the calculator in completing the table below. 

Given trinomial (in “dissected” 
for m )  

Factored form using FACTOR  Expanded form using EXPAN D  

(a)   

€ 

x2 + (3+ 4)x + 3•4    

(b)   

€ 

x2 + (3+5)x + 3•5   

(c)   

€ 

x2 + (4 + 6)x + 4• 6    

(d)   

€ 

x2 + (3+5)x + 3•3    

(e)   

€ 

x2 + (3+ 4)x + 3•6    

2(a) Why did the calculator not factor the trinomial expressions of 1(d) and 1(e) above? 
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if it is factorable? Explain 
and give an example. 
2(d) How would you describe the relation between the factored form and the expanded form of the above trinomials in 
1(a) – 1(c)?  
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Figure 8. The parallel task-set 
for the non-CAS class.

 

 

Activity 3 (non-CAS): Trinomials with positive coefficients and a = 1 (

€ 

ax 2 + bx + c ) 
1. Complete the table below by following the example at the beginning of the table. 

Given trinomial (in 
“dissected” form)  

Factored form Expanded form 

Example: 
     

€ 

x 2 + (3+ 4)x + 3• 4  

€ 

x 2 + (3+ 4)x + 3• 4  
= 

€ 

x 2 + 3x + 4x + 3• 4  
= 

€ 

x(x + 3)+ 4(x + 3) 
= 

€ 

(x + 3)(x + 4)

€ 

 

 

€ 

x 2 + 7x +12  

(a) 

€ 

x 2 + (5+ 6)x + 5•6    
(b) 

€ 

x 2 + (3+ 5)x + 3•5    
(c) 

€ 

x 2 + (4 + 6)x + 4 •6    
(d) 

€ 

x 2 + (3+ 5)x + 3• 3   
(e) 

€ 

x 2 + (3+ 4)x + 3•6    
2(a) Why could you not factor the trinomial expressions in 1(d) and 1(e) above? 
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is 
factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if 
it is factorable? Explain and give an example. 
2(d) How would you describe the relation between the factored form and the expanded form 
of the above trinomials in 1(a) – 1(c)? 

In this study, the technology was found to play several roles in the CAS class:

•	It provoked discussion; 
•	It generated exact answers that could be scrutinized for structure 

and form; 
•	It helped students to verify their conjectures, as well as their 
	 paper-and-pencil responses; 
•	It motivated the checking of answers; and 
•	It created a sense of confidence and thus led to increased interest in 

the algebraic activity.

Of all the roles that the CAS played in this study, the fact that CAS generated 
exact answers that could be scrutinized for structure and form was found to be 
crucial to the success of these weak algebra students. It proved to be the main 
mechanism underlying the evolution in the CAS students’ algebraic thinking. 
Ironically, the importance of this role was first made apparent to us by the voic-
ing of frustration on the part of one of the students in the non-CAS class. This 
student from the non-CAS class, when faced with Questions 2(c) and 2(d) of 
the task shown in Figure 8, remarked:
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“How can we describe the relation between the factored form and the expanded form of these 

trinomials? – we don’t even know if our paper-and-pencil factorizations and expansions from 

Question 1 are right.”

Students in the non-CAS class were at a loss to answer these explanation-orient-
ed questions. They stated emphatically that they were not sure of their paper-
and-pencil answers to Question 1, and could hardly use these as a basis for 
answering, say, Question 2d. In contrast, the students in the CAS class had at 
their disposal a set of factored and expanded expressions that had been gener-
ated by the calculator. They thus had confidence in these responses and could 
begin to examine them for elements related to structure and form.

This study analyzed the improvements of two classes of weak algebra 
students in both technique (being able to do) and theory (i.e., being able to explain 
why and to note some structural aspects), in the context of tasks that invited 
technical and theoretical development. At the outset, both the CAS class and the 
non-CAS class scored at the same levels in a pretest that included technical and 
theoretical components. However, the CAS class improved more than the non-
CAS class on both components, but especially on the theoretical component.

We see this finding as being of some interest. Being able to generate 
exact answers with the CAS allowed students to examine their CAS work and to 
see patterns among answers that they were sure were correct. This kind of as-
surance, which led the CAS students to theorize, was found to be lacking in the 
uniquely paper-and-pencil environment where students made few theoretical 
observations. The theoretical observations made by CAS students worked hand-
in-hand with improving their technical ability. In other words, their technique had 
become theorized, which in turn led to further improvement in technique.

4. The role of the teacher

Are good tasks and CAS technology all that are needed to render technique con-
ceptual, that is, to develop a conceptual understanding of algebraic technique? 
It would seem not!

Another deciding factor is the nature of the teacher’s orchestration of 
classroom activity that gives rise to the conceptualizing of technique in tech-
nology environments. It is the teacher who is pivotal in encouraging the stu-
dents to struggle with the task, who asks them key questions at appropriate 
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times, who helps them to see the overarching themes within the tasks, who 
makes the instrumental genesis converge to a common set of techniques and 
insights, and who leads the classroom discussions that provoke this conver-
gence through discourse. However, not all of the teachers in our research study 
proved to be equally successful in orchestrating the co-emergence of technique 
and theory within their students.

Currently our research group is analyzing teaching practice with the 
aim of identifying some of the key characteristics of teachers’ orchestrations of 
classroom activity with CAS technology that relate to drawing out the conceptual 
aspects of technical work in algebra. Some of the characteristics we have begun 
to identify include the following: (a) importance accorded to the mathematical 
aspects of the task – both technical and conceptual; (b) emphasis on the math-
ematical-technological similarities/differences; (c) interest in inquiring into the 
students’ thinking regarding the mathematics of the task at hand, by asking for 
their conjectures, their observations, their elaborations, and their justifications; 
and (d) awareness of the many possible roles that the technology can play. These 
possible roles encompass, for example, creating surprising results, generating re-
sults for the purpose of exploration, verifying other results or conjectures, and 
serving as a computational assistant. However, teachers also need to be able to 
capitalize on these roles in such a way as to encourage student learning.

Other characteristics of teachers’ orchestrations of classroom activity 
with CAS technology that we have been observing include having a repertoire 
of tasks that engage a variety of learning approaches and evoke different pro-
cesses, such as, provoking cognitive conflict and seeking to resolve the conflict; 
looking for patterns; generalizing; activating general mathematical processes, 
such as observing, comparing, extrapolating, conjecturing, and predicting; 
and having considered, before the lesson begins, possible student responses 
and how to encourage further evolution of their thinking within the ensuing 
lesson. Promising teacher orchestrations also consider the ways in which to 
incorporate additional artifacts (e.g., worksheets, paper and pencil, the black-
board (or the equivalent), electronic projection devices, etc.) and the roles they 
might play, namely guiding the work of pupils and structuring their explo-
rations (worksheets), focusing their attention (blackboard), and leading to a 
convergence of ideas (blackboard).

In sum, effective teaching practice with CAS would appear to embody 
planning that takes into account at the very least the following:
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1.	 Starting with a key mathematical idea.
2.	 Thinking about both the technical and theoretical aspects of the key idea.
3.	 Trying out, when planning the task, some technical examples on the CAS 

to see how best to take advantage of the technology (does it produce any 
surprises that could be integrated into an interesting sequence?)

4.	 Deciding what role the technological artifact should play in the task (gener-
ate examples, create surprises, serve as calculation assistant, …)

5.	 Deciding on the epistemological processes to be engaged by the task (pat-
tern matching and generalization, conjecturing, seeking connections be-
tween representations, resolving cognitive conflict, predicting, …)

6.	 Reflecting on how to draw out effectively within class discussions the 
mathematical-technological links.

Last, but not least, our research observations so far suggest that the one aspect 
of teacher’s practice in CAS environments that seems to be most crucial to 
students’ becoming aware of the conceptual aspects of their technical work in 
algebra is the following: Orchestrating classroom discussion in such a way as 
to draw out students’ thinking regarding the mathematics of the task at hand, 
by asking for their conjectures, their observations, their elaborations, and their 
justifications. When such orchestration is accompanied by tasks that (a) go be-
yond merely asking technique-oriented questions and which (b) call upon 
mathematical processes that include: observing/focusing, predicting, reflect-
ing, verifying, explaining, conjecturing, justifying, and which (c) require at 
times that students coordinate CAS techniques with paper-and-pencil tech-
niques, as well as (d) seek consistency between surprising CAS outputs and 
existing theoretical notions, then algebraic techniques will have a greater likeli-
hood of being rendered conceptual.
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Abstract

Despite all the intense and international efforts of research into the teaching-learning processes of 
mathematics, Euclid’s famous dictum is still valid according to which there is no royal way to mathe-
matics. A growing number of approaches has as its focus the nature of mathematics and investigates 
whether, by taking into account this nature, the teaching-learning processes might be improved. A 
common pattern of these approaches can be called to be a “genetic” one, i.e., to establish a relation 
between the historical evolution of mathematics and the learning of mathematics.

The paper ten discusses how interactions between epistemology and history of mathemat-
ics can contribute to better qualify teachers to cope with the conceptual problems inherent to the 
nature of mathematics. An outlook to the importance of semiotics within the history of mathematics 
is given for reflection within mathematics education.
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Introduction

The integration of historical elements is a longstanding issue in mathemat-
ics education. The ICMI Study of 2000, History in Mathematics Education, 
represents its most elaborate state of the art (Fauvel&Maanen 2000). Yet, the 
mainstream of approaches and proposals for the use of mathematics history in 
teaching mathematics takes history of mathematics as a ready-made collection 
of facts, easily transposable to the aims of teaching.

In fact, the main justification usually given for the direct use resides 
in practical methods of classroom teaching: historical elements are claimed 
to increase the motivation of the pupils, by showing them that the seemingly 
abstract mathematical system is a living system, that it was developed by hu-
man beings and that it is related to the cultural history of mankind - or of a 
particular nation. Even if not explicitly reflected, the underlying epistemologi-
cal assumption about the nature of mathematics is that of a continuistic growth.

I should like to refer here to a still not sufficiently known but seminal 
paper by Antonio Miguel of 1997 where besides the positive effects the prob-
lematic issues of the use of history in classrooms are reflected (Miguel 1997). 
He was only followed by Man-Keung Siu in 2004 with his 16 thought-provoc-
ative arguments for not using history in classrooms (Siu 2004).

Actually, all the approaches concerning a use of history are based on 
certain epistemological views about the nature of mathematics, but in general 
they remain implicit, and use underlying assumptions. And in order to make 
the approaches productive, these views should not only be made explicit, but 
also be reflected within the frames of theoretical discussions in historiography 
and sociology of science as well as in mathematics education.

What I am interested in, is, whether there exists - beyond the merely ac-
cidental contribution of the motivational function - a productive function of the 
history of mathematics for the actual mathematical practice and for research in 
the learning process. If one wants to tackle such a question one has to challenge 
a view of mathematics which is deeply grounded in the common-day philoso-
phy of many mathematicians: I do mean the view of an essentially cumulative 
nature of the development and growth of mathematical knowledge. According 
to this common-day philosophy (or epistemology), modern mathematics con-
tains already all fruitful achievements of earlier periods, in an abridged and 
rationalized manner - so that one could say that contemporaneous mathematics 
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presents in a condensed form the “logic” of history. Consequently, there would 
be no inherent reason for analyzing the processes of development of mathemati-
cal concepts. Likewise, no intrinsic moment would exist for a use of history in 
teaching – other than to constitute an exhibition of remarkable facts and dates. 
There would be left just one dimension for historical research: the dimension of 
factual data like those of priority - who invented first Lemma X, who invented 
first theorem Y? - and those on ordering and connection of the propositions and 
of regional/geographical distribution of mathematical knowledge. I confess that 
such a restricted view or epistemology is too unsatisfactory for me.

Gladly enough, there are recent conceptual developments in historiog-
raphy of mathematics and in didactics of mathematics, which allow to question 
the traditional cumulative view and which allow new insights in the relations 
between history, teaching and learning. The common feature in these develop-
ments resides in new approaches to consider the subjectivity in the development 
of knowledge - as regards the learning person as well as the researching person.

The genetic principle: Key Approaches

Let us begin to look at some prominent genetic approaches and how they con-
ceptualized the role of mathematics history.

In fact, it was an outstanding mathematician and a mathematician who 
probably was the one who did the utmost for a productive relation between 
mathematics and mathematics education and who decisively promoted the ge-
netic principle: this person was Felix Klein, at the turn from the 19th to the 20th 
centuries. Klein was deeply convinced of the pedagogical superiority of the genet-
ic principle – yet he never gave concrete suggestions for practising it. Nevertheless, 
from his assertions, one can deduce some of the intended characteristic features.

Firstly, he expressed, in 1907, the conviction that this didactical prin-
ciple had won the dominance within mathematics education:

“While a systematic manner of exposing mathematics instruction dominated 

earlier on, which overemphasized the formal aspects of knowledge, this did 

change more and more over the last years. Today, in German schools, this 

methodology is overcome. You can remark this victory of the genetic meth-

odology, in the most impressive way, by the establishment of the already 

mentioned propedeutic geometry teaching” (Klein 1907, 24; my transl.).

RL | Conceptions for Relating the Evolution of Mathematical concepts to Mathematics Learning



132

ICME 11 Proceedings

A first concrete hint is, hence, that Klein understood a “genetic ordering of the 
teaching subjects” as opposed to the traditional “systematic” teaching. A next 
hint is that he recommended the so called biogenetic law as the basis for estab-
lishing a good syllabus:

 “This basic law should apply mathematics instruction, too, like any instruc-

tion, at least in general: teaching should, by tieing to the natural disposition 

of the youth, lead them slowly to higher things and eventually even to ab-

stract formulations, by following that same path on which the entire mankind 

struggled to climb from its naïve primitive state upwards to more developed 

insight. […] A decisive obstacle for a dissemination of such a natural and truly 

scientific teaching methodology seems to be the lack of historical knowledge, 

which becomes so often evident” (Klein 1911, 590 f.; my transl.).

Klein mentioned here a factual restriction regarding a general application of this 
teaching method, which he had characterized as being simultaneously natural 
and truly scientific: the lack of sufficient historical knowledge – apparently he 
meant the teachers of mathematics. Another hint how Klein conceived of the 
genetic curriculum is that he postulated mathematics instruction should begin 
with the continuous, i.e. with geometry, like mathematics itself he claimed, and 
only after that proceed to the discontinuous, i.e. to the number concept and to 
algebra (Klein 1899, 136).

It is highly revealing that the genetic principle became prominent again in 
almost the same wording in the 1960s, as a reaction against the so-called modern 
mathematics, against a one-sided orientation of school mathematics at the structure 
of mathematical science. It was in the famous memorandum of 65 mathematicians 
from Canada and the USA – among them Birkhoff, Courant, Kline, Polya, André 
Weil, and Wittenberg, published in 1962, which argued for the genetic principle:

“in order to explain an idea (one should) refer to its genesis and retrace the 

historical formation of the idea. This may suggest a general principle: The best 

way to guide the mental development of the individual is to let him retrace 

the mental development of the race – retrace its great lines, of course, and 

not the thousand errors of detail. […] On the whole, we may expect greater 

success by following suggestions from the genetic principle than from the 

purely formal approach to mathematics” (Memorandum 1962).
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As you will note, both in Felix Klein’s view as in that of these North-American 
mathematicians, the biogenetic law featured prominently. I will discuss this 
issue soon. But first let me discuss some works, which have been esteemed as 
realizations of the genetic principle sensu Felix Klein.

Alexis-Claude Clairaut (1713-1765) was an important French mathe-
matician and physicist. He wrote tow textbooks, one on geometry in 1741 and 
the other one on algebra in 1746. They have often been claimed to be realiza-
tions of the genetic principle. This characterization is misleading, however: it is 
better to attest them a problem-oriented or heuristic approach (see Schubring 
1983a, Glaeser 1983, Schubring 2003, 54ff.).

The geometry textbook intends to develop geometry step by step, al-
ways motivated by practical questions like measuring quantities in fields, in 
the landscape, in farming, and generally in land surveying. At a first glance, the 
geometry textbook realizes Felix Klein’s demands to develop the geometrical 
notions – beginning from natural, “primitive” questions.

A closer analysis shows, however, that Clairaut did not succeed in a 
“natural” evolution of the conceptual field, according to an unfolding of “origi-
nal” problems and of their consequences. Rather, he imposes what should be the 
next, seemingly practical question to be solved. Moreover, Clairaut’s approach 
does not realize the claim to lead from simple notions to abstract knowledge. 
Rather, he refrains from all abstraction and theorization. And his claim to follow 
the historical evolution of geometry is not realized, neither: Clairaut postulates, 
in fact, how it might have been, how the “inventors” did proceed – his historical-
genetic claim can hence at best be appreciated as a “rational reconstruction” – in 
the sense of Lakatos.

The lack of abstraction was consciously intended: The book was pro-
duced for a mundane public, not for use in schools and systematic teaching. 
Actually, it was written for a marquise who desired to be instructed in some 
leisure mathematics. This explains Clairaut’s main methodological concern: ne 
pas rebuter les commençants – not to scare off the beginners. For the algebra 
textbook, the problem-oriented approach was even more difficult to realize.
In the famous Encyclopédie by Diderot and d’Alembert, in the key entry about 
textbooks, Clairaut’s textbooks were sharply criticized for omitting essential 
proofs and hence for lack of rigor. Moreover, they were criticized for providing 
nothing but a sample of propositions instead of a methodically constructed 
architecture (d’Alembert 1755, 497 r).
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A much more elaborated and theoretically reflected conception has 
been presented by Otto Toeplitz (1881-1940) - a German mathematician 
whose main book is translated at least into English and who was quite active for 
improving the teaching of mathematics in schools and in universities between 
the two world wars. Toeplitz pleaded for using history as a pivotal didactical 
means - he called this the “genetic methodology” and introduced the distinc-
tion between a “direct” genetic methodology and an “indirect” genetic one.

In a key paper of 1927, Toeplitz proposed to return to the “roots” of 
the concepts and to present them thus as living beings. As Toeplitz said, one 
could pursue two different ways to realize this goal in the teaching practice:

“One can either present the discoveries to the students with all its dramatic cir-

cumstances and let thus grow for them the questions, concepts and facts - I 

would call this the direct genetic methodology - or one can learn oneself from 

such an historical analysis what is the real meaning, the true essence of each 

concept, and one can draw conclusions from such an analysis for the teaching of 

this concept which are no longer tied to the historical development - I am calling 

this second approach the indirect genetic methodology” (Toeplitz 1927, 92f.).

While the direct genetic methodology corresponds to the already discussed di-
rect use of history in teaching, the second, indirect approach is interesting since 
it takes into consideration the role of the teacher and understands the teacher as 
actively reflecting the historical processes and as transmitting their essence by 
his teaching. Toeplitz’s indirect approach looks not so much on knowledge, but 
on meta-knowledge and his main focus is on how to provide teacher-students 
in their training with such a meta-knowledge about mathematics.

Toeplitz has used this methodology in his own courses at the univer-
sity, in particular on the infinitesimal calculus. This course has been published 
as a book: “The development of the infinitesimal calculus, exposed according 
to the genetic methodology” (Toeplitz 1972/1963). Unfortunately, despite its 
promising approach, this book cannot really serve as a model for the pro-
posed methodological use of history, since Toeplitz’s program to reveal the de-
cisive turning points and ruptures in the historical processes is hardly realized: 
Toeplitz discerned mainly three fundamental concepts, which determined, 
by their development, the emergence of the infinitesimal calculus. For two of 
them, the “infinite process” and the number concept, Toeplitz tries to show 



135

that the ancient Greeks did already achieve all essential steps and that later 
developments were but an unfolding and a change of exterior form of these 
first achievements. For instance, in the famous dispute between Dedekind and 
Lipschitz, whether Dedekind’s concept of real numbers was new or identical 
with the notions of the Greek Eudoxos, Toeplitz took the part of Lipschitz in 
claiming that Eudoxos already operated with the concept of real numbers while 
Dedekind had insisted that the notion of completeness was missing entirely in 
Greek mathematics and could not be derived, not even implicitly from geo-
metrical ideas. Toeplitz admitted for the function concept only that it emerged 
as a new concept in modern times, but even here he tried to show that Ptolemy 
was already aware in Hellenist time of this concept (see Schubring 1978).

We can see therefore that Toeplitz remained attached to the traditional 
view of a continuous, cumulative development in the history of mathemat-
ics so that his own notion of an indirect approach could not become fruitful. 
His underlying conception seems, too, to be effected by that notion, which is 
commonly called the “biogenetic law”: Toeplitz claimed that the development 
of mathematical concepts uses in general to follow “the easy ascent from the 
more simple to the more complex” and that this historical ascent might be used 
didactically (Toeplitz 1927, 95).

The example of Toeplitz’s conception therefore again shows that the main 
problem for a revealing use of history resides in an adequate conception of his-
torical development. While most of the other scientific disciplines are discussing 
- since Thomas Kuhn’s famous book on scientific revolutions - revolutions in their 
field and ruptures in the conceptual development, mathematics seems to close its 
mind to realize an analogous epistemological change. The traditional epistemol-
ogy stressing the uniform, continuous and cumulative character of this “queen 
of the sciences” is, apparently, too strong. A telling example for this exceptional 
position of mathematics has been formulated by the French philosopher Gaston 
Bachelard who has convincingly analyzed epistemological ruptures in the exact 
sciences, but who has consciously excepted mathematics from these analyses:

“The history of mathematics is a miracle of regularity. There are periods of 

standstill, but it knows no periods of errors” (Bachelard 1975, 25; my transl.).

Actually, the notion of error will provide a key to challenge this epistemologi-
cal view.
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Relation between Research and Teaching

In order to tackle this question let me present you some of the mentioned 
new approaches in historiography of mathematics. Their main feature is con-
stituted by studying the interrelationship between the system of production of 
new mathematical knowledge and the systems encompassing and supporting 
mathematics. These new types of historical research, which have evolved over 
the last decades, focus in particular on one specifically related social sub-system: 
on the education system, since the dissemination of mathematical knowledge 
is essentially bound to the education system and since teaching positions were 
for a long period the only relevant professional careers for mathematicians. The 
analysis of the relationship between mathematics seen as a social system and its 
surrounding systems has progressed much beyond the fruitless dichotomy of 
internal versus external determination of mathematical ideas and has particu-
larly contributed to better understanding the circumstances of mathematical 
production.

A primordial element in these analyses is given by a re-evaluation of 
the relation between teaching and research. The traditional view of this relation 
has been that the scientific part exclusively plays the active, productive role and 
that the didactical side always is the passively receiving partner, which transposes 
the received into the instruction system (a view, still perpetuated by Chevallard’s 
concept of transposition didactique). The relation between scientific knowledge 
and school knowledge was therefore understood as operating only in one direc-
tion. This one-directional view has been denounced in 1978 by Willem Kuyk 
– the author of “Complementarity in mathematics” (1977) - by comparing it 
with the relation between stalactites and stalagmites (Kuyk 1978, 5):

“Mathematics is not a stalactite hanging over a stalagmite”, thus deny-
ing the view that mathematics education grows but by receiving some drops 
from above, from the supreme instance. The instructional system cannot be un-
derstood in the simplistic way of a stalagmite, which receives some drops from 
the stalactite while it is growing. My intention is to show that the re-evaluation 
of the relation between research and teaching allows at arriving at another un-
derstanding of historical development.

An important publication on this way has been the article by Judith 
Grabiner of 1974: “Is mathematical truth time dependent?” At the same time, 
Hans Wußing had remarked that the new system of teaching higher mathemat-
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ics, emerging in France since the end of the 18th century, contributed decisively 
to establishing new standards of rigor, to promote research on the foundations 
of mathematics and to falsify propositions, which had been thought to be true 
(Wußing 1974, XVIII).

My own research on the development of mathematics in Prussia (a 
leading state in Northern Germany) in the 19th century done in the early 
1980s, has shown that the profession of mathematics teachers at secondary 
schools constituted the social basis which enabled the establishment of mathe-
matics as an autonomous discipline within the university system. Moreover, the 
type of interest of these teachers in mathematics decisively moulded the pro-
duction of pure mathematics for which Prussian and later German mathematics 
has become so well known: Actually, the interest of these teachers - themselves 
regarded as “scholars” - in rigor and in a consequent architecture of mathemat-
ics yielded important achievements in foundational questions and in clarifying 
basic notions (see Schubring 1983b, 158 ff.).

Resuming these briefly outlined researches and results on the history 
of mathematics in its context, one can say:

•	firstly, the teaching of mathematics has influenced the 
development of mathematical research. The dimension of 
instruction and teaching has therefore to be considered for an 
adequate notion of historical understanding of mathematics 

	 (see Schubring 2001);
•	secondly, ruptures and emergence of novel directions in history 

of mathematics are largely due to epistemological changes, which 
are connected to changes in the systems related to the system of 
scientific activities;

•	and thirdly, didactical research on learning processes can reveal 
means and categories which are usefully applicable to analyze also 
processes of scientific development.

The last two propositions aim at including the subjectivity of the student and 
of the scientist into the theoretical framework. In order to explain and to apply 
these propositions I want to discuss two aspects on which much didactical re-
search has been done over the last decades in order to study the subjective ele-
ment in the learning process. These two aspects are the errors and the obstacles.
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Errors
The investigation of pupils’ errors in the learning process constitutes a major field 
of didactical research since several decades – actually, as one of the main features 
of the emergence of mathematics education as a scientific discipline. Didactics of 
mathematics has increasingly established more refined experimental instruments 
to analyze pupils’ errors and discusses theoretical models for interpreting errors.

As major results of these researches I need here to mention only briefly: 
errors are not merely expressions of an individual’s “defects”, of missing atten-
tion, or the consequence of missing knowledge or due to an accidental specific 
situation. Errors can therefore not be simply remedied by increasing discipline, 
attention and diligence of the pupils.

Empirical research has shown that errors are rather causally deter-
mined and often of a systematic nature. Errors can be analyzed and described 
as resulting from patterns and notions, which can be internally consistent but 
which do not coincide with the notions and operations as intended by the 
teacher. A first consequence of these researches has been to identify as causes 
of the errors either difficulties of the pupils in grasping the new information in 
teaching or problems in the interaction of the variables influencing mathemat-
ics instruction (teacher, curriculum, pupil, context of the school). But even in 
this research, errors of students were understood as indicators for individual 
difficulties (Radatz 1979). Further research has, however, increasingly ques-
tioned that these specific patterns are signs for merely individual difficulties.

A radical research program developed in this field is that of social interac-
tionism, initiated and developed by the Bielefeld group: Bauersfeld, Krummheuer, 
and Voigt, since the 1980s:1 in this program the status of errors is challenged. The 
basis for this program is the philosophy of constructivism as developed in particu-
lar by Glasersfeld: There exists no objective meaning of notions and concepts. Each 
individual constructs his own meanings given his experience and background. It 
is only by the social interaction between the individuals that communication takes 
place and that the individual constructions can gain a certain convergence. It is by 
the process of social interaction, that a specific construction becomes acknowl-
edged as common knowledge, as “objective” (Bauersfeld 1983).

1 Paul Cobb, in his speech at ICME 11, after having received the ICMI Freudenthal 
medal, remembered the formative significance of his cooperation with this group.
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Mathematics teaching is particularly suited for studying the processes 
of establishing a common knowledge shared by the participants of the com-
munication in a class since there is no direct exterior reality, which would allow 
testing the validity of the individual constructions. The teaching process can be 
described as a negotiation between teacher and students and where the teacher 
tries to establish working procedures, which may be more or less stable. The 
original Bielefeld group has used particular experimental instrumentations like 
video-recording of the teacher-student interactions and developed methods for 
transcribing the interactions in order to make them analyzable and reproduc-
ible to other researchers. This research program has yielded very remarkable 
results and shown that what is usually seen, by the teacher, as errors are in fact 
misunderstandings: the students use to “see” other notions in the material pre-
sented by the teacher than the teacher had in mind.

For instance, in the teaching materials used for introducing the no-
tions of the first natural numbers several objects from the real world are shown. 
The student should “abstract” from the real world features and just retain the 
cardinal number. The analysis of the interaction process shows, however, that 
the students direct their attention to other elements in the pictures and effect 
therefore other “abstractions”. It takes a long time until the students can divine 
what the teacher wants to hear and that conventions become routinized upon 
signals given by the teacher. This learning “success” can be a merely superficial 
one and the working procedure can break down when the teacher uses a dif-
ferent symbolization (see Voigt 1985).

This concept of social interactionism need not remain restricted to 
school teaching and didactics. It can equally well be applied to research in 
mathematics and therefore to history, too. How does it happen that a new theo-
ry is adopted in mathematics, that a concept is regarded as rigorous or rejected 
as not rigorous, that a proposition is regarded as false? This is neither by the 
decision of an individual nor by the universal insight of an eternal truth, rather 
we find, here too, negotiating processes in the mathematical community, in-
teractions in this social community, which determine about acknowledgement 
or refutation. Before I discuss consequences of this view for the growth of 
mathematical knowledge, there is to mention yet another dimension relevant 
for history in the didactical research on students’ errors.

In fact, in the didactical research on errors one does not locate all 
problems in the modes of interaction and in the communication process, but 
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one also emphasizes possible causes in the mathematical content of the com-
munication: One analyzes the teaching material or the exposition of the teacher 
if they might not be correct from the mathematical point of view or if they 
contain missing links which could have caused that a student did not grasp a 
mathematical notion and its operations. This is surely a legitimate approach in 
didactics of mathematics but it is not a sufficient one: In almost all didactical 
theories, the mathematical knowledge is taken as objective or absolute precon-
dition for learning which will not be questioned. This starting point of didac-
tics is, however, insofar not sufficient, as there exists no a priori evidence that 
the mathematical knowledge used for teaching really is complete, organized 
consequently and coherently and without missing links. Didactical research 
should be aware of inherent problems in mathematics itself: unsolved or even 
undetected problems in the logic or in the epistemology of mathematics, am-
biguous or even misleading notations. The teacher who has been initiated to 
the language of mathematics and its peculiar operating procedures will not be 
able to remark such inconsistencies, but the student as naive, as non-initiated, 
might be hindered by such problems inherent to mathematics - what the teach-
er marks as error can be an indication for deficiencies within the mathematical 
knowledge.

It is particularly this dimension of unsolved internal or epistemo-
logical problems in mathematics by which the teaching process can effect an 
impetus for progress in mathematics or can even effect ruptures within the 
established system of mathematics.

Since school mathematics represents to a greater degree the condensed 
essence of the historical development than the actual research knowledge we 
did arrive at a first productive use of mathematics history for didactical re-
search, namely by supplying the means for analyzing those conceptual, nota-
tional or epistemological problems of mathematics which are due to certain 
stages of the historical development and which effect errors or misunderstand-
ings by the side of the students.

Obstacles
We can deepen the discussion of the use of history for teaching by the means of 
didactical categories if we regard the specific contributions by French didacti-
cians. The emphasis on the knowledge itself - what one can call the epistemic 
dimension -, which is largely missing in German and North-American didacti-
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cal research on errors, constitutes in French research one of the main issues. 
One uses in France a category for didactics of mathematics, which has origi-
nally been established for studies in history of science. I mean the category of 
obstacles épistémologiques, of epistemological obstacles, put forward in 1936 by the 
already mentioned French philosopher Gaston Bachelard. It gained particular 
influence after a re-edition of his works in 1975. Bachelard’s conceptions have 
been transposed by Guy Brousseau to didactics of mathematics, who has devel-
oped a didactical theory of obstacles. Its main aim is to overcome to attribute 
errors only to subjective causes in the students. Brousseau discerns in particular 
the following types:

•	didactical or didacto-genetic obstacles: by this he means learning 
difficulties or bareers which originate from the conception or 
structure of the curriculum, from the particular teaching concept, 
from didactical concepts,

•	and, secondly, epistemological obstacles. According to 
Brousseau, these obstacles to learning are rooted in the nature of 
mathematical knowledge and can therefore not be avoided. They 
are constitutive for the respective knowledge, they become visible 
in some stage of the historical development and can be identified 
by historical analysis.

According to Brousseau’s theory, where a model of stages is applied, there are in-
herent contradictions within the types of knowledge tied to the lower stages: the 
knowledge shows itself effective as long as applied within these restricted areas, 
but reveals to be an obstacle when it becomes applied to situations of a higher 
stage. Some knowledge can therefore, due to inherent reasons, function as an 
obstacle against progress on the next stage (Brousseau 1997, 84).

One can therefore understand his theory as a “transposition” of Bachelardian 
ideas to didactics. Both theories on whom Brousseau relies, by Bachelard and by 
Piaget, imply a teleological vision: the certainty to be able to achieve the most 
“mature”, the most elevated level of science, of human thinking.

A number of studies has been carried through on the basis of this re-
search program, for instance on the difficulties of students with the limit con-
cept in calculus, with the notion of infinite, and on students’ notions of basic 
geometric concepts. A particularly profound study of the limit concept, both 
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for the historical and for the didactical side is the collective work published in 
2005 by a group of Italian researchers: Oltre ogni limite – Beyond any limit.

The quality of such research relies to an important part on the reli-
ability of the historical analysis: otherwise, the empirical findings on students’ 
difficulties are interpreted according to prejudices or to a common-day un-
derstanding about the nature of breaks, ruptures and problems in the histori-
cal development. The demand for detailed and qualified historical research is 
the more imperative as historiography of mathematics traditionally tended to 
restrict itself to the ideas of the “great men”, the “heroes” - an emphasis by 
which the real difficulties experienced by the larger contemporaneous math-
ematical community can hardly be taken into account.

We arrive thus at a second, “indirect”, use of history for didactical re-
search: In order to fill the enormous gaps of knowledge about the mathematical 
thinking and practice in the larger group of mathematical practitioners, it con-
stitutes a challenging task for the historiography of mathematics to study debates 
and controversies about the status and nature of relevant mathematical concepts.

This second use is not thought of in the way of deriving recipes for 
teaching, but as elements for the didactical research on epistemological ob-
stacles and to enrich the meta-knowledge of teacher students and of teachers.

Starting from such a conception, I have done extensive research on the 
history of negative numbers. The results were significant contributions for his-
tory and for didactics, namely on the role of errors for mathematicians and for 
the teaching process and, likewise, on the notion of epistemological obstacles 
in history and in teaching (see Schubring 2005a; 2005 b; 2007).

The function of history in this French conception
Understanding Brousseau’s theory is facilitated by comparing its two versions, 
of 1976 and of 1983, which is easy, since many of his publications were trans-
lated in the volume Theory of Didactical Situations (1997). He uses to empha-
size that obstacles are unavoidable, but also that one should not reinforce them 
explicitly:

Obstacles of really epistemological origin are those from which one 
neither can nor should escape, because of their formative rôle in the knowledge 
being sought. (Brousseau 1997, 87).

In 1983, after his controversy with Georges Glaeser about the mean-
ing of the term “obstacle” and basing himself now on the study by Duroux – 
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the first concrete investigation in French didactique to identify epistemological 
obstacles, this time regarding the notion of absolute value – Brousseau relied 
much more on history of mathematics and attributed it a decisive function:

But it can prove itself to be fruitful for teaching insofar as:

•	the obstacles in question are truly identified in the history of 
mathematics;

•	they have been traced in students’ spontaneous models;
•	the pedagogical conditions of their “defeat” or their rejection 

are studied with precision in such a way that a precise didactical 
project can be proposed to teachers,

•	the assessment of such a project can be considered positive. 
(Brousseau 1997, p. 93-94)

This strengthened function of history reveals, however, a weakness of the con-
ception: history has to serve as source for errors committed by mathematicians. 
Thus, history has no productive function; it serves as an element of a recipe for 
research:

From the outset, therefore, researchers should

a.	 find recurrent errors, and show that they are grouped around conceptions;
b.	 find obstacles in the history of mathematics;
c.	 compare historical obstacles with obstacles to learning and establish their 

epistemological character. (Brousseau 1997, p. 99)

Here, one finds no active role for history. This seems to be related to the fact that 
Brousseau did no integrate a key element of Bachelard’s conception: the notion 
of a rupture between empirical knowledge and scientific knowledge, which 
is of enormous importance expressly for didactical research. Furthermore, in 
the 1983 conception, there is not the supposed symmetry between the side of 
history and the side of the learner: Since obstacles were declared to be insur-
mountable - “incontournables” and “insurmontables” (Brousseau 1989, quot-
ed in Brousseau 1998, 154) -, while students’ errors should be surmountable, 
there is a drastic asymmetry. And scientific progress would be impossible when 
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obstacles could not be overcome. Glaeser’s understanding of obstacles as “dif-
ficulties”, hence without a normative character, lent itself better for historical 
investigations.

The general weakness of the conception of epistemological obstacle 
resides in the problem that the history of mathematics is regarded as a fixed 
collection no longer open to questions and research. Traditional historiography, 
onto which this didactical conception would base itself, is not adapted for an-
swering to these new questions, for a use in didactics and learning: they did not 
look for the “normal” mathematicians who would better reveal the obstacles 
sought for than the traditional heroes.

Actually, it had never been investigated whether one of the normative 
pillars of the concept of epistemological obstacles is really justified, namely 
whether an historical obstacle necessarily shows up as a learning obstacle. I have 
therefore undertaken a case study to test this issue: it concerned the multiplica-
tion of quantities, which proved to constitute over various centuries a genuine 
conceptual obstacle in arithmetic and which characteristically no longer con-
stitutes an obstacle in learning – essentially due to an epistemological switch 
which had happened in the meantime: quantities no longer constituting the 
conceptual fundament of mathematics (Schubring 2005 b).

Critique of the biogenetic law
In almost all the genetic approaches, which I have presented to you so far, almost 
inevitably the so-called biogenetic law showed up – either implicitly or explicitly. 
This is true since Felix Klein’s first pleas. Even in Brousseau’s conception it shows 
up implicitly. He uses to relate to “spontaneous” reactions of students, i.e. to an-
swers before teaching the respective concept (Brousseau 1997, 93). According to 
him, these spontaneous answers reveal epistemological obstacles and correspond 
at the same time to the naïve hypotheses of the first scientists. This implies not 
only the implicit acceptation of the biogenetic law, but negates at the same time 
the profound social and cultural changes, which effect that children of today start 
at decisively different conditions than earlier generations.

The recapitulation hypothesis originated from a transfer of biologism 
to cognitive development. It was in particular Haeckel’s famous law for bio-
logical development of the. species which was grafted to psychology. The graft 
from biology on psychology and education was effected, among others, by the 
philosopher Herbert Spencer
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“the education of the child must accord, both in mode and arrangement, 

with the education of mankind, considered historically. In other words, the 

genesis of knowledge in the individual must follow the same course as the 

genesis of knowledge in the race.” (quoted from Branford 1908, 326).

This grafted biogenetical principle, or principle of parallelism, had become 
a largely shared topic in education by the end of the 19th and the early 20th 
centuries and, remarkably enough, in particular in mathematics education. In 
fact, it would seem that mathematics was, and still is, the only school discipline 
where this principle has become so prominent. I cannot remember anybody 
to have claimed it being applicable, say, to physics or to chemistry. Strangely 
enough, the biogenetic law, no longer prominent in the first half of the 20th 
century, made a more or less explicit return to mathematics education in its 
second half, and in particular in approaches for using mathematics history in 
teaching (see Schubring 2004).

An instructive and concise introduction to the entire problematic of par-
allelism and of the biogenetic law is the excellent paper of 2002 by Luis Radford 
and Fulvia Furinghetti. They elaborate not only Piaget’s and Garcia’s deficits in 
conceiving of cultural and social impacts on cognitive formation, but they also 
present L. Vygotski’s alternative approach as that of one of the few psychologists 
to have profoundly investigated socio-cultural influences on cognitive processes. 
As they put it, “the merging of the natural and the socio-cultural lines of develop-
ment in the intellectual development of the child definitely precludes any reca-
pitulation” (Radford/Furinghetti 2002, pp. 634 – 642; here: 637).

The major flaw in all the approaches based on parallelism is that they 
presuppose history of mathematics as a definitely established corpus of knowl-
edge, which is beyond controversy. This is, however, far from being true. The 
historiography of mathematics has hitherto concentrated on the “peaks”, on 
the “heroes” of mathematics, and it has practiced a resultatist view, searching 
for forerunners of the results of present mathematics, and thus ever and again 
reproducing the continuist view of development we always find in how didacti-
cians assess the history of mathematics.

For uses in education, another type of historiography and of research 
has to be attained, however, a view which unravels the contributions of sci-
entific communities at large, identifying and assessing conceptual ruptures, 
and in this way documenting conceptual developments in different relations 
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of subsystems to their encompassing systems (cf. Schubring 2002). This will 
make it possible to better establish the social and cultural contexts and their 
impact on scientific development – an approach hitherto only postulated, but 
never really elaborated.

Resuming our discussion of the conceptions of epistemological obsta-
cles and of the biogenetic law (or parallelism) we have to state that both are not 
adapted for a productive use of the history of mathematics. Both are normative 
approaches and do thus hamper experimental research in both domains, in 
history and in mathematics education – they are prejudicial for open-ended 
research.

Furthermore, al the discussed genetic approaches and these last two 
in particular presuppose a universally homogeneous conceptual development 
over time. However, there does not exist a “Gesamt-Intellektueller”, an all-
comprising intellectual. Conceptual developments occur within determinate 
and specific groups, the so-called scientific communities which have as pri-
mary references for their conceptual frames the values and norms of their 
particular cultural environment, their directly surrounding systems – which 
one may shortly call “context”. Therefore, there does likewise not exist an 
absolute simultaneousness or parallelism of conceptual developments in dif-
ferent cultures.

Errors in mathematics
I can now come back to my proposed approach to start form the subjectivity 
of the person and its group: I spoke already of this approach for the learner, 
within the conception of social constructivism. I should now turn to the other 
side, which is relevant here, to the scientist – and now not limited by a priori 
assumptions about a Naiveté of early scientists etc., but based on a productive 
role of interaction between research and learning. In such a sense, one is able to 
investigate more freely possible errors of scientists, and in particular of math-
ematicians.

In present day convictions it seems to be unthinkable to acknowledge 
the possibility of serious errors in the history of mathematics, as exemplified 
by Bachelard’s exclusion of errors in mathematics. Earlier generations seem to 
have had less problems with such a possibility. A telling example is provided by 
Martin Gebhardt, the author of the first ICMI Study on the role of mathematics 
history for mathematics instruction in 1912. He assured:
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“With the proof by history that error and controversy play their role and are 

important in mathematics, too, the abysm, which separates it from other sci-

ences, in particular also from the natural sciences, will disappear to a consid-

erable degree” (Gebhardt 1912, 83).

And by errors he meant, as he emphasized, not those which can happen to each 
mathematician, but those which are characteristic for an entire epoch – like the 
conviction of convergence of the series 1-1+1-1+1- … having as limit ½, de-
fended by Grandi, Leibniz, and Euler, among others. And in 1904, E. Maillet, a 
French mathematician had called to collect remarkable errors of mathematicians, 
as an instance of self-reflection. The resulting collection was published in 1935 
by Maurice Lecat, a specialist in variational calculus. It is not well known, neither 
in historiography nor in mathematics education. The collection documents about 
500 errors, attributed to 330 mathematicians – among them many minor figures, 
but also famous mathematicians. Lecat stated that there was only one famous 
mathematician who never committed an error: Evariste Galois. Thus, Lecat dedi-
cated to him an honorary page, i.e. an empty page (Lecat 1935, 39).

Given this dimension and extension of committing errors in math-
ematical research, on the one hand, and the acceptance of “errors” as good 
mathematics over extended periods, I am now able to formulate my main hy-
pothesis/research guideline/proposition:

It is a consequence of the program of social constructivism resp. so-
cial interactionism that so-called students’ errors can no longer be called “er-
rors” if they follow a definite strategy, jointly shared by that entire social group. 
Analogously, this applies to communities of scientists, too, and in particular 
to mathematicians. Regarding chemistry, I should like to recall the phlogiston 
theory, which was accepted by chemists over centuries (see Kuhn 1962).

This specific claim of such a constructivism has to face the objection: 
where remains the objectivity of mathematics, which has always been main-
tained to be the major characteristic of this science?

In fact, the consequence of my conception is that there exists no objectiv-
ity, at least no overall objectivity. Not only in learning, meanings of concepts are sub-
ject to negotiation processes, so that differences in meanings established by various 
groups will disappear as result of interactions when these groups get into commu-
nication and achieve shared meanings, but also in science a common understanding 
will at first be restricted to social communities, which are tied together by certain 
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conditions to form a basic unit of communication, say by sharing a common cul-
ture and language. Let me call this basic unit a scientific community of first order. 
In general, one can assume that they will share, too, the epistemological view of 
their subject. While there might co-exist different epistemological and conceptual 
views of mathematics in separated mathematical communities, there should begin 
processes of interaction at the moment when such separated communities come 
in contact with each other. Consequently, either the values and conceptions remain 
mutually alien so that – if there are no other pressures for establishing shared con-
ceptions – the communities will continue to be separated, or a negotiating about 
the differences will begin with the effect of certain compromises or dominations.

This hypothesis about a relative objectivity as result of negotiation pro-
cesses between originally separated mathematical communities can be tested by 
investigating – not a “clash” of cultures – but the effect when two cultures with 
different conceptions of knowledge are colliding.

A first such test is presented by the transmission of number signs 
and of decimal fractions from India to the Arab civilization, studied by Mahdi 
Abdeljaouad. As is well known our so-called Arab number signs are in reality 
Indian signs, as well as the establishment of zero and of the decadal number sys-
tem. The Arabs used, like the Greeks, the Phoenician manner of designing num-
bers by letters of the alphabet. And for fractions, they either used Babylonian 
sexagesimal fractions or Egyptian unit fractions. In the main period of Islamic 
culture, from the 8th to the tenth centuries, the Indian numbers and the deci-
mal fractions had not found acceptance. Al-Uqlidisi who had tried to introduce 
them, by a significant textbook in 952, had no success and his book was forgot-
ten, until a re-edition by Saidan in 1966. The resistance against the Indian way 
of mathematics is clearly documented by a polemic appreciation uttered by Al-
Biruni in the 11th century, in his introduction to the book “History of India”:

“The Indians to not dispose of philosophers like the Greeks who have ex-

posed their subjects in their texts entirely scientifically. They have produced 

almost no book, which is not a downright collection of rubbish and where 

get mixed all varieties of popular beliefs. The spirit of authority dominates in 

them. As far as I am concerned, I can assure that their books of arithmetic and 

mathematics are comparable with nothing else than stone cairns containing 

some fragments of ceramics or with pearls hidden in the dung/manure of 

camels.” (quoted from Abdeljaouad 1978, 14; my transl.)
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I have published a more recent example of mutually exclusive visions of mathe-
matics last year: the case of Edmund Külp, the teacher of Georg Cantor who in 
his youth was educated according to the values of French mathematics – and 
that meant of physico-mathématique: a vision of applied and applicable mathe-
matics. Becoming transferred to Germany, Külp had to suffer a purely formal, 
inapplicable mathematics – the mathematics of permutations and transposi-
tions of the German combinatorial school. Due to the incompatible meanings 
of that French and that German mathematics, Külp failed with his project to 
pursue an academic career at a German university and had to serve for decades 
in primary teacher education to make his living – until he managed to become 
a teacher at a trade school where some French mathematics was admissible 
(Schubring 2007).

Role of semiotics: the development of signs
A particularly illuminating quotation by Destutt de Tracy, a French philosopher, 
of 1801 underlines the productive role of teaching for research, for obtaining 
new knowledge, which I am emphasizing in my approach to the use of history 
of mathematics. This quotation presents an evaluation of the historically first 
experience to disseminate scientific knowledge, to elementarize science and 
making it accessible to a general public. Reflecting the ambitious projects of 
the French Revolution to produce such truly elementary textbooks, Destutt de 
Tracy resumed:

“When one is about to expose a scientific fact, one often remarks that it ne-

cessitates to undertake before new observations, and – better investigated – it 

presents itself by a quite different point of view. At other occasions, it proves 

that it is the principles of science itself, which need to be revised, or one has 

to fill numerous gaps to connect them mutually. Briefly, the matter is not to 

disseminate the truth, rather one has to detect it” (vol. 1, p. 4 f., of his Projet 

d’Éléments d’Idéologie; quoted from Schubring 1982, 114 (my translation).

A particularly important dimension of the challenge to research by teaching as 
explained by Destutt de Tracy is presented by the representation of mathemati-
cal objects, by the sign function of concepts where essential elements use to 
be hidden and where it is in particular the effort to teach them which effects 
an explication of implicit and hidden assumptions and conceptual moments.
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The last part of the lecture will be devoted to briefly expose the role 
of semiotics for such a new approach to the relation between history and di-
dactics. In fact, there is a forerunner for the present approaches to introduce 
semiotics into mathematics education: It is Karl Menger (1902-1985), the im-
portant philosopher of the Vienna circle, logician, mathematician and econo-
mist. He had to flee the Nazis and emigrated to the United States. Since the late 
1940s, Menger has published several papers and even a seminal book, which 
give excellent descriptions and analyses of inconsistencies in mathematics and 
notational ambiguities, most of them remain even today to be solved and pupils 
and students are left with the obstacles to get through the misleading paths.

His publications are not only well instructed in history, in semiotics, 
and in teaching, but they are written with such a deep humour that it is a real 
pleasure to read his profound analyses.

It is highly remarkable that a review of his seminal book refounding 
the teaching of the calculus emphasizes the same points as Destutt de Tracy:

“It becomes clear after reading the book that the invention of the new nota-

tion was an essential step toward the clarification of the basic ideas and their 

applications and is thus amply justified” (Review of: Karl Menger, Calculus, 

A Modern Approach, by H. E. Bray, in: American Mathematical Monthly, vol. 61, Sept. 

1954, 483-492, on p. 483).

A key starting point for Menger are notational ambiguities in mathematics, 
which use to be ever again transmitted to the next generation as time hon-
oured and therefore not questionable. A particularly striking example are the 
twelve different meanings of the seemingly so innocent letters x and y. In fact, 
the meanings range from numerical variables, over indicators for the identity 
function, indeterminates, specific fluents, function variables, to “dummies” 
(Menger 1956a).

Menger has sharply criticized the negation of notational and concep-
tual problems arising from the weight of unchallenged history. Summarizing 
the mainstream thinking of mathematicians at least of his time, he lets them say:

“Since for the past two hundred years and to this day, all mathematicians and 

scientists have achieved complete mastery of mathematics with its time hon-

ored procedures and in its traditional presentation, and since furthermore, 
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the difficulties here discussed do not disturb any accomplished mathemati-

cian in the least, youngsters who cannot cope with them must be mathemati-

cally utterly incompetent. To revise procedures or symbols for their sake is 

not worth anyone’s while since their study of mathematics cannot, under any 

circumstances, be profitable either to those mathematical morons themselves 

or to anyone else” (Menger 1956b, 584).

In a perfectly satirical manner, Menger has denounced the sticking to historical 
traditions in his series of papers on Gulliver, in particular in the first one enti-
tled: “Gulliver in the land without one, two, three”.

His starting point is the juxtaposition – historically to be often found – 
of the first numbers being treated as quantities (or “named numbers”) and the 
greater ones as numbers. And he ridicules a didactical retrogression by which 
all numbers are treated as quantities or named numbers. Here, the mainstream 
mathematicians defending this anti-didactic transformation are called the 
IMMORTALS, abbreviation of: The Island’s Major Mathematicians of Real Talent 
and Learning (Menger 1959).

This invented example of retrogression, of a use of history where one 
needs to get liberated from historical dust, serves as an introduction for what 
is a key element in Menger’s theories: the establishment of an algebra of func-
tions. For this, he first criticizes a notational ambiguity, which causes many 
learning problems: the often missing distinction between a function and a 
value of this function - both being usually designated by f(x) (or cumbersome 
formulations like: “the function which is expressed by f(x)”). Rather, one has 
to designate a function by its name; one is thus able to distinguish the function 
from its value at a certain point.

More generally, however, his conclusion is that one does not need vari-
ables in calculus, that they constitute but dummies, and that one has rather to 
reflect on naming functions to be able to operate with functions. In this sense, 
he calls variables “dummies” and shows that these are elements of historical 
tradition, from which teaching has to be liberated.

On the other hand, he develops his algebra of functions by the in-
troduction of a notational innovation: the basic element of this algebra is the 
identity, the neutral element. He calls it the function I, namely:

€ 

I : x → x, I2 : x → x 2
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And this otherwise neglected neutral element enables him to introduce an op-
erational calculus with functions. Therefore, this new approach of semiotics 
implies a double role of history of mathematics for teaching: on the one hand, 
it reveals outdated mathematical practices, which need to be deleted to improve 
the teaching-learning process. On the other hand, it reveals forgotten or mar-
ginalized conceptions which had been established in some mathematical com-
munity in an earlier period and which need to be valourised and updated for 
present day teaching purposes. In fact, Menger’s operational calculus is a direct 
continuation of the Derivation Calculus established by Arbogast in the wake of 
the French Revolution – exactly as a realization of the méthode analytique of the 
Enlightenment, which should contribute to disseminating the scientific knowl-
edge. It is not by accident that in these analytic approaches the role of symbols 
is decisive for clarifying the meaning of the concepts and for enhancing their 
teaching and learning.

In fact, Menger’s algebra of functions confirms again the systematic re-
lation between processes of algebraization and reflection on the use of symbols. 
Semiotics promises fruitful impacts on the use of history for teaching!

Menger’s ideas have had some impact and influence in the great 
Curriculum-Projects in the USA, during the 1960s, in particular within CSMP, 
but with their end they remain rather neglected. His legacy constitutes treas-
ures, which still remain to be excavated and brought to light and to use!

Conclusion

Although conceptually attractive, approaches to use history of mathematics for 
mathematics teaching show theoretical shortcomings as well as problematics in 
the experimental designs. As a major reason, continuistic visions of mathemati-
cal development proved to be underlying so that history of mathematics was 
not able to exert a productive function. The most promising conception, the 
indirect genetic method of Toeplitz, suffered in his realization from his peculiar 
teleological view of development: all the essence being already contained as a 
germ in Greek mathematics. But the kernel of his vision, to unravel the concep-
tual depth and meaning from turning points in the history, provides a precious 
approach at least for teacher training. Yet, historiography of mathematics still 
has to broaden its research areas to comply with such a vision. Semiotics pro-
vides promising contributions.
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1. Introduction

In this communication some reflections about ‘negative attitude toward mathe-
matics’ are proposed, which link theoretical issues with problems emerging 
from both teachers’ practice and students’ experiences.

After a brief theoretical introduction, in which some issues from re-
search about attitude toward mathematics are summarized, a study from an 
Italian National Project about negative attitude toward mathematics is present-
ed, aimed at investigating teachers’ use of the construct in their practice. Then a 
second study from the Project is discussed, based on students’ narratives about 
their own stories with mathematics. From this study a characterization of at-
titude emerges, that strictly links theoretical issues with students’ experience. 
Implications for research and teachers’ practice are then discussed.

2. Theoretical issues about attitude

Research on attitude has a long history in mathematics education. The con-
struct was borrowed from the field of social psychology (Allport, 1935), 
where attitude is viewed as the predisposition to respond to a certain object 
either in a positive or in a non positive way. The early studies in mathematics 
education aimed at investigating the relationship between attitude towards 
maths and achievement. This kind of studies led to often ambiguous or even 
contradictory results, as highlighted by the meta analysis carried out by Ma 
and Kishor (1997).

Research about attitude in ME more recently developed in the field of 
affect. In the classification of Mc Leod (1992) attitude is considered together 
with emotions and beliefs as one of the constructs that constitute the affective 
domain (De Bellis & Goldin, 1999, propose values as a fourth construct).

With the development of the field, the need also grows for a theoreti-
cal framework for affect in ME (Zan et al., 2006).

This claim for theory also involved the construct of ‘attitude to mathe-
matics’, and led to identify some critical issues in research:

i)	 Need for theoretical clarity about the definition of attitude and of positive / 
negative attitude (Leder, 1985; Ruffell, Mason & Allen, 1998; Daskalogianni 
& Simpson, 2000; Di Martino & Zan, 2001, 2002, 2003).
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Most studies about attitude do not provide a clear definition of the 
construct itself. Attitude tends rather to be defined implicitly and a posteri-
ori through the instruments used to measure it (Leder, 1985; Daskalogianni 
& Simpson, 2000).

When a definition is explicitly given, or can be inferred, it mainly 
refers to one of the two following types:

•	 A ‘simple’ definition, that describes attitude as the positive or nega-
tive degree of affect associated with a certain subject (McLeod, 1992; 
Haladyna, Shaughnessy J. & Shaughnessy M., 1983).

•	 A multidimensional definition, which generally recognizes three com-
ponents in attitude: emotional response, beliefs regarding the subject, 
behaviour related to the subject (Hart, 1989).

	 If in the case of the simple definition the characterization of positive / 
negative attitude seems natural (identified with positive / negative emo-
tional disposition toward mathematics), in the case of multidimensional 
definitions it requires several choices that need to be made explicit (what 
do ‘positive’ or ‘negative’ refer to? To each dimension individually? What 
does ‘positive’ belief mean?)

ii)	 Need for instruments consistent with the research problem and with the 
chosen definition of attitude, and capable of capturing the deep interac-
tion between affect and cognition. In particular several scholars question 
the possibility of ‘measuring’ attitude through questionnaires (Ruffell et 
al., 1998).

	
iii)	Need for overcoming the limits of a normative approach. Most studies try 

to point out a general cause / effect relationship between attitude and be-
haviour, but this approach does not seem compatible with the fact that the 
interaction affect / cognition depends on the individual. In particular, the 
same belief can elicit different emotions in different individuals: for exam-
ple some individuals associate the belief ‘In mathematics there is always a 
reason for everything’ with a positive emotion, others with a negative one 
(Di Martino & Zan, 2002).
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3. An Italian National Project about attitude

The points made above about the need for a theoretical framework for affect, 
together with the importance given to linking theory and practice, have been 
fundamental issues of an Italian Project about attitude, named ‘Negative atti-
tude towards mathematics: analysis of an alarming phenomenon for culture in 
the new millennium’.

One of the first studies carried out within the Project was an inves-
tigation aimed to recognize how teachers actually use the construct ‘negative 
attitude’ in their practice (Polo & Zan, 2006).

With this aim a questionnaire with 6 multiple choice questions and 
6 open ended questions has been designed and administered to 146 teachers 
from various school levels.

The study highlighted that the diagnosis “This student has a negative 
attitude toward mathematics” is frequently given by most teachers. Furthermore 
it emerges that to describe ‘negative attitude’ teachers do not refer to a sim-
ple negative emotional disposition toward mathematics: their answers regard 
students’ beliefs about maths, students’ beliefs about self, students’ emotions, 
students’ behaviour.

What the study mostly suggests is that the diagnosis “This student has 
a negative attitude toward mathematics” is not an accurate interpretation of the 
student’s behavior, capable of steering the teacher’s future action. Rather, it is a 
generic causal attribution of the student’s failure, that the teacher perceives as 
global and uncontrollable and gives as the final step of a series of unsuccessfull 
didactical actions.

To make the ‘negative attitude’ construct turn into a useful instrument 
for both practitioners and researchers, it is necessary to clarify it from a theoreti-
cal viewpoint, while keeping in touch with the practice that motivates its use.

4. An investigation based on students’ narratives 
about their own stories with mathematics

With this aim a second study was carried out with students. We meant to get over 
the normative approach that characterises most research on attitude, and that we 
consider one of the reasons underlying both the lack of theoretical clarity and the 

RL | Different profiles of ‘negative attitude toward mathematics’



160

ICME 11 Proceedings

difficulties encountered in getting significant results. Therefore we adopted an 
interpretive approach, aimed at studying attitude in its natural context.
The need for studying affect in its natural context is particularly stressed in the 
field of affect, and it is the basis for the use of non-traditional methods, such as 
narratives (da Ponte et al., 1998; Ruffell, Mason & Allen, 1998; Hannula, 2004).

In our study we collected and analysed students’ narratives about their 
own story with mathematics (hence autobiographical writing, according to 
the classification of Connelly and Clandinin, 1990), investigating students’ re-
lationship with mathematics ‘from the bottom’ and trying to spot in their de-
scriptions the dimensions involved.

In order to stimulate students’ narration of their story, they were pro-
posed the essay “Me and mathematics: my relationship with maths up to now”.

In choosing autobiographical essays we are interested in what the stu-
dent thinks he/she has done, the reasons underlying these actions, the type of 
situations he/she believed to be into and so on: it is not important whether the 
story told is actually «contradictory» or «likely» (Bruner, 1990).

In the end, our hypothesis is that the narrative and autobiographic 
data collected allow us to identify the dimensions students use to describe their 
relationship to mathematics and therefore may suggest a characterisation of 
attitude towards mathematics (in particular of negative attitude) that strictly 
links to practice.

We collected 1656 essays ranging from grade 1 to grade 13: 867 from 
primary school (grade 1-5), 369 from middle school (grade 6-8), 420 from 
high school (grade 9-13).

The essays were anonymous, assigned and collected in the class not by 
the class mathematics teacher.

As already mentioned, we adopted an interpretive approach, trying to 
understand how students interpret their own experiences with mathematics, 
rather than to explain their mathematical path in terms of cause / effect.

Final outcome of this analytical process is expected to be the construction 
of a set of categories, properties, relationships: what Glaser and Strauss (1967) call 
a grounded theory, i.e. a theory based on collected data, the construction of which 
requires a continuous back and forth between the different research phases.

In our case the essays were read in the light of both pre-existing cat-
egories (for instance liking and disliking mathematics) and in a free way, trying 
to identify meaningful categories a posteriori.
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As regard the analysis, we refer to Lieblich et al. (1998), who, looking 
at different possibilities for analyzing life stories and other narrative materials, 
identify two main independent dimensions:

	(a)	 Holistic versus Categorical approaches
	(b)	 Content versus Form

Combining these dimensions results in four modes of reading a narrative:

	(1)	 Holistic – Content mode of analysis
	(2)	 Holistic – Form – based mode
	(3)	 Categorical – Content mode (“content analysis”)
	(4)	 Categorical – Form mode

Each of the four modes of analysis is related to certain types of research ques-
tions. Both quality and quantity of collected data and the aims of our research 
led us to use all these four types in our analysis.

Here we will only present some results about:

•	the ‘dimensions’ used by the students to describe their own 
relationship with mathematics

•	some particularly meaningful types of stories, and precisely 
stories characterized by changes in the quality of the 

	 relationship with mathematics, and stories characterized by 
difficulties and unease.

5. The ‘dimensions’ used by the students to describe 
their own relationship with mathematics

From a repeated reading of the essays, supported by a quantitative analysis 
carried out through the software T-LAB (consisting of linguistic and statistical 
tools to analyse texts), we identified three main expressions: the most fre-
quent is ‘I like / dislike mathematics’ (in the different forms: I like / I don’t 
like / I used to like …), followed by ‘I can do it / I can’t do it’, and then 
‘mathematics is...’.

Therefore we identified three core themes:
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•	the emotional disposition towards mathematics, concisely 
expressed with ‘I like / dislike mathematics’

•	the perception of being /not being able to succeed in 
mathematics, what often is called perceived competence (concisely 
expressed with: ‘I can do it / I can’t do it’)

•	the vision of mathematics, concisely expressed with 
	 ‘mathematics is...’.

Sometimes an essay develops around one of these three themes. More often, it 
makes reference to all the themes, although it is centred on one of them, which 
therefore we called the ‘core theme’ of the essay.

The three themes are explicitly and deeply interconnected: the most 
frequent connection is associated with the word ‘because’.

Starting from the most recurrent theme, i.e. the emotional disposition 
(expressed with ‘I like / dislike’) it is a motivation (‘I like / dislike because …’) 
that leads to the other two themes.

The motivation ‘because’ may link the emotional disposition to the vision 
of mathematics:

I never liked to learn things by heart (except for some formulae) and this 

subject, together with Physics, gives me a chance to think and discuss. I like 

it, because it is a subject which needs reasoning. [3H.162]

I don’t like it because there are many rules to make a tiny little operation 

you must divide one number by the other one, take away the number you 

had before and so on. Moreover, if you forget a rule you run into troubles! 

[1M.16]

From these essays, two different visions of mathematics emerge, that Skemp 
(1976) respectively calls instrumental and relational: on the one hand ‘rules with-
out reasons’, leading to the need of remembering / memorizing; on the 

2 The first number refers to the class level, the letter refers to the school level (Primary 
/ Middle / High), the last number indicates the progressive numbering of the essay 
within the category.
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other hand ‘knowing both what to do and why’, thus stressing the role of 
reasoning. 

Combining emotional disposition (‘I like/I dislike maths’) and in-
strumental/relational vision of mathematics, we have, in theory,four possible 
combinations: I like / relational, I don’t like / instrumental (excerpts 3H.16 
and 1M.16 reported above), I like / instrumental, I don’t like / relational.

Interestingly enough, we did not find the combination I don’t like / 
relational in any of the 1656 essays.

Getting back to the link between emotional disposition and the other 
themes pointed out by the causal conjunction ‘because’, we also found a strong 
connection between emotional disposition (expressed with ‘I like’) and per-
ceived competence (expressed with ‘I can / can’t do it’).

This connection comes out so strong from the essays, that sometimes 
the expressions “I like” (“I dislike”) and “I can do it” (“I can’t do it”) are used 
as synonyms:

Since primary school, I remember when the teacher asked us to number by 2, 

3, 6, 9 up to 800, 900 … I used to hate it. Then I changed school and I started 

to hate it even more because of the expressions. Let’s not talk about middle 

school I changed 4 teachers in the 3 school years and therefore if I didn’t 

understand anything before, now I really understand zero. [1H.3]

One of the most interesting outcome of the reading of the essays is that ‘suc-
cess’ in mathematics has many deeply different meanings.

In some essays ‘succeeding’ is identified with school success, i.e. 
with getting good marks, and thus it is up to the teacher to acknowledge 
one’s success.

In some other cases, ‘succeeding’ is identified with ‘understanding’ 
(and therefore it is the student that acknowledges his/her own success): some-
times ‘understanding’ is used with an instrumental meaning and it is identified 
with knowing the rules and being able to apply them correctly, in other cases a 
relational-type ‘understanding’ appears, referring to one’s awareness of why the 
rules work and how they are linked to one another.

As a consequence, the themes ‘perceived competence’ and ‘vision of 
mathematics’ turn out to be deeply intertwined within the beliefs the student 
has about success in mathematics.
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6. Stories

Although the title asked students to write their own ‘story’ with mathematics 
(also stressed by the expression ‘up to now’), not all the essays are ‘stories’, 
since a story involves a sequence of events in time (a beginning state, a middle 
action, a final state): what is called a plot.

The development of the plot over time has been analyzed by Lieblich 
et al. (1998), who identified three basic formats:

•	in a ‘progressive narrative’, the story advances steadily
•	in a ‘regressive narrative’ there is a course of deterioration or 

decline
•	in the ‘stable narrative’, the plot is steady, and the graph does not 

change.

These three basic formats can be combined to construct more complex plots.
In our sample the most frequent plot is characterized by jumps.
Actually our stories always tell a ‘change’, i.e. we did not find ‘stable’ narratives.

The moments in which this change occurred, what Bruner (1990) 
calls the turning points, are described by the writer in great detail, thus giving 
more information about the possible causes.

We are particularly interested in those stories in which change involves 
an inversion in the quality of the relationship with maths, since - due to our 
goals - we are interested in the possibility of change from ‘negative’ to ‘posi-
tive’, and in understanding the reasons of a change from ‘positive’ to ‘negative’.

Actually we found examples of these kinds of inversion, but most fre-
quently we found ups and downs:

The first time I met mathematics was in the first year of primary school, and 

then my hatred for mathematics started because of the times tables. (…)

And then I went to lower secondary school and there I most hated mathematics, 
as a matter of fact I didn’t understand anything, mathematics was Arabic to me.
We were not made to be together, but then, who knows why, in grade 8 
there was a Boom, I was like a sort of mathematician, I was so good that 
equations and problems and theorems seemed to be brothers of mine, I 
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almost appeared as a genius in mathematics. But, as it happens in dreams, 
good things never last for long and actually my achievement dropped in 
grade 9, but nothing serious: my relationship to mathematics depends on 
the moment. [1H.42]

As we said earlier, turning points are described in great detail, thus giving in-
formation about the factors that caused the change.

Among these factors we sometimes found specific episodes, topics / 
activities (mainly algebra, equations, sets ...), moves from one school to an-
other one.

But, above all, the teacher emerges as the most important factor:

My relationship with mathematics did not start well, because my primary 

school teacher only looked after the best pupils and this was not fair to me. 

My relationship with mathematics at lower secondary school got betterm be-

cause I had a teacher who looked after me; whereas my relationship at higher 

secondary school is rather good, maybe because the teacher is looking after 

me enough. [1H.27S]

Another interesting point related to the stories is that in most essays that tell a 
story of difficulty or unease, a recurrent pattern emerges. This pattern is char-
acterized:

•	by an instrumental vision of mathematics, which implies the need 
of memorizing many products perceived as unconnected;

•	by a low perceived competence, also witnessed by causal 
attributions of failure (see Weiner, 1974) to causes often external 
and stable, but mainly perceived by the student as uncontrollable: 
for example the teacher, mathematics itself, some characteristics of 
the student himself.

7. Conclusions

The study highlights that to describe their own relationship with mathematics 
students use the three main following expressions, deeply interconnected in 
the essays mainly through the word ‘because’:
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•	I like/dislike maths
•	Mathematics is…
•	I can / I cannot succeed in mathematics.

This result suggests – as a first implication for research - that attitude toward 
mathematics may be described through the three corresponding dimensions:

•	Emotional disposition
•	Vision of mathematics
•	Perceived competence.

In this way a multidimensional description of attitude emerges, based on emo-
tions, beliefs about mathematics, beliefs about self.

This multidimensionality, together with the richness of the students’ 
narratives, underlines the inadequacy of the positive / negative dichotomy, 
and rather suggests the opportunity of considering profiles of negative attitude, 
depending on the dimension that we can define as ‘negative’.

In particular, and oversimplifying, we can reduce the complexity of 
each of the three dimensions to a dichotomy:

•	Emotional disposition: like / dislike
•	Vision of mathematics: relational / instrumental
•	Perceived competence: high / low.

In this way we obtain eight different profiles, out of which, seven are ‘negative’ 
in some sense.

Interestingly, the profile ‘I dislike / relational vision / high self-efficacy’ 
did not emerge from any essay.

A second implication for research is that the essays underline the deep inter-
action among the three dimensions (in particular between the vision of mathematics 
and the emotional disposition toward maths) and the subjectivity of this interaction. 
More generally, the essays confirm the role of affect in learning mathematics.

This study also suggests some implications for practice.
Drawing on the study on teachers’ use of the construct ‘attitude’ we observed 
that the diagnosis “This student has a negative attitude toward mathematics” is 
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not an accurate interpretation of the student’s behavior, capable of steering the 
teacher’s future action: it rather is a generic causal attribution of the student’s 
failure, that the teacher perceives as global and uncontrollable and gives as the 
final step of a series of unsuccessfull didactical actions.

The three dimensions that emerge from students’ narratives about 
their own story with mathematics suggest that different and targeted diagno-
ses of negative attitude are possible, through the identification of one or more 
negative components. This diagnosis in turn, would suggest a teaching inter-
vention aimed at changing those components .

Particularly interesting profiles that emerge from the study are those characterized by an 
instrumental vision of mathematics and by a low perceived competence.
Both these two kinds of profiles lead the student to the perception of not be-
ing capable to have control over mathematics, a sort of ‘fatalism’, that can result 
in giving up thinking, and therefore in a failing behaviour, such as avoiding 
answering, or answering randomly.

This interpretation suggests a didactical action aimed at overcoming 
low perceived competence and the instrumental view of mathematics: an activ-
ity centred on mathematical processes rather than on products – such as prob-
lem solving – may be a valuable strategy to either prevent or overcome both 
these negative profiles.

The study also emphasizes the teacher’s role in the vision of mathematics construct-
ed by pupils, in the idea of ‘success’ they develop, in their perceived competence.

But most of all, by highlighting teachers’ role in stories of change, 
the study suggests that it is never too late to change one’s own relationship to 
mathematics.
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Abstract

In recent years there has been renewed interest in gender differences in education generally, and in mathe-
matics achievement and participation in particular, not only from researchers but also from practitioners 
and policy makers. In this paper I provide a brief overview of historical evidence describing females’ 
involvement in mathematics and illustrate that research on gender and mathematics education has in-
creasingly reflected a greater diversity of inquiry methods used to examine and unpack critical factors. I 
examine changing perceptions over time – with boys now perceived by some as disadvantaged compared 
to girls, highlight insights to be gained from cross cultural perspectives, and document that our under-
standings of, and reactions to, gender differences in mathematics are affected by a lesser reliance on meth-
ods favored in psychology, and a greater acceptance of traditions prevalent in other disciplines. Theoretical 
considerations are supplemented by reference to “cases”. Assessment practices, changing beliefs about the 
perceived advantages and disadvantages of single-sex and co-educational settings and of diverse grouping 
practices are among the examples explored.

Keywords
Gender, equity, social perceptions, research foci
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Introduction – some historical notes

Reviews of gender differences in mathematics learning frequently start with a 
discussion of the situation that prevailed in the early 1970s. Yet concern about 
the education of females can be traced to much earlier times. Over three centu-
ries ago, for example, the English writer Daniel Defoe noted:

I have often thought of it as one of the most barbarous customs in the world that 

we deny the advantages of learning to women … If knowledge and understand-

ing had been useless additions to the sex, God almighty would never have given 

them capacity; for he made nothing needless (Defoe, 1697, pp. 283-284).

The experiences of Mary Somerville, who is often included in historical lists of 
successful female mathematician, provide a revealing picture of the education 
available to females in earlier times.

Is mathematics suitable for girls? The case of Mary Somerville
Mary Somerville was born in 1780, in Scotland. From descriptions of her early 
life we can glean some insight into the prevailing educational customs. A tu-
tor was engaged to teach Mary’s brothers. Appropriate books were available in 
the home library. Yet for Mary it was initially deemed sufficient to be taught 
to read. Learning to write was not considered a priority. Eventually, at the age 
of ten, Mary was sent to a fashionable boarding school for 12 months. From 
there she emerged “with a taste for reading, some notion of simple arithmetic, a 
smattering of grammar and French, poor hand writing and abominable spelling 
(Patterson, 1974, p. 270). Although she subsequently had lessons in ballroom 
dancing, playing the piano, horse riding, cookery, drawing and painting, Mary’s 
year at boarding school was her only formal education. Some years later, fortui-
tously, she came across a problem which aroused her curiosity. In her own words:

At the end of the magazine, I read what appeared to me to be simply an alge-

braic question, but on turning the page I was surprised to see strange-looking 

lines mixed with letters, chiefly Xs and Ys and asked ‘what is that?’ ‘Oh’, said 

(my) friend, ‘it’s a kind of arithmetic; they call it algebra; but I can tell you 

nothing about it.’ … On going home I thought I would look if any of our 

books could tell me what is meant by algebra. (Tabor, 1933, p. 98)
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Mary continued studying mathematics, very much against her father’s wishes, 
but with some help from her brother’s tutor. Over time, she was fortunate 
enough to obtain support from other sources. The early death of her first hus-
band gave her financial independence, freedom, and an opportunity to pursue 
her studies. William Wallace, a professor of mathematics at Edinburgh University 
and the editor of The Mathematical Repository, one of several periodicals cater-
ing for popular mathematical interests, was a supportive friend and mentor. 
Mary’s second husband accepted and encouraged her mathematical endeavors.

This brief vignette illustrates how opportunities to engage with math-
ematical studies can be affected by the social and economic environment – an 
observation still relevant today.

The “girls should study/not study mathematics” debate

The United States
The literacy and numeracy rates of males and females in the early days of 
Colonial America are useful for gauging differences in the educational oppor-
tunities available to the two groups. By the middle of the eighteenth century 
literacy rates of 80% for males and 45% for females were not uncommon. Girls 
were usually not taught arithmetic “because it was assumed that women had 
no need of it in adult life” (Cohen, 1982, p. 140). Over time, with improved 
schooling and levels of participation in education, this perception changed.

In the 1820s, with the spread of the common-school system and the in-

sertion of arithmetic into the elementary curriculum, female pupils for the 

first time encountered arithmetic, and educators, also for the first time, were 

forced to articulate the reasons why arithmetic beyond the Rule of Three was 

inappropriate for girls to learn. A whole corpus of books and articles asserted 

that it was useless or even impossible to teach girls to reason logically about 

mathematics…. It seems supremely ironic that at the precise moment when 

arithmetic was finally within the reach of the female half of the population, 

because it was not decently taught in local schools, the stereotype of the non-

mathematical feminine mind became dogma (Cohen, 1982, p. 139).

The United Kingdom
The desirability of girls studying mathematics beyond elementary arithmetic 
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was also questioned in the United Kingdom. The headmistress of a leading col-
lege for girls maintained

…I do not think that the mathematical powers of women enable them gen-

erally – (their physical strength, I dare say, has a great deal to do with it) to 

go so far in the higher branches (of mathematics), and I think we should be 

straining the mind (which is the thing of all things to be most deprecated) if 

we were to try to force them to take up such examinations … (Evidence giv-

en by Dorothea Beale in 1868 to the Schools Inquiry (Taunton Commission, 

quoted in Clements, 1979, p. 317)

Yet in earlier evidence given to the Commission Beale had argued: “suppose 
there is a taste for mathematics (in a girl), I would like to encourage it. I do not 
see why we should limit it where we find a special taste, …[but] I would not 
insist upon it for all” (Clements, 1979, p. 316).

In their summation of the evidence presented, the Commission con-
cluded that

as far as higher mathematics for girls is concerned … mathematics do not 

appear to be much in use…. But in favourable circumstances, … girls who 

have an aptitude for the subject are said to make good progress, and the study 

of it is approved by some of the ablest mistresses” (Clements, 1979, p. 317).

Australia
Educational authorities in colonial Australia were heavily influenced by the 
debate in England about girls and mathematics. Examination records from 
the time females were first allowed to matriculate and enter university in-
dicate “that in the 1870s and 1880s many of the girls who presented for 
matriculation took two, and some even took three of arithmetic, algebra, 
and Euclid” (Clements, 1979, p. 318). Some of these girls performed well. 
For others the hurdle of being taught by “persons with minimal qualifica-
tions in the subject” (Clements, 1979, p. 319) was reflected in the moder-
ate results obtained. Significantly, the first female to win the matriculation 
mathematics exhibition (in 1890) attended a “Ladies’ College” with suffi-
cient financial resources to employ a highly qualified, specialist mathemat-
ics teacher.
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In brief
With appropriate support, personal and institutional, females were able to 
cope well with the mathematics curriculum deemed suitable for males. More 
frequently, however, girls wishing to study mathematics had to manage with 
teachers whose own knowledge of mathematics was limited, and with social 
ambivalence, if not disapproval, about the wisdom of doing so. These obsta-
cles inevitably influenced their performance in mathematics and reinforced the 
beliefs of those who argued that girls could not cope with more advanced 
mathematics and should not be encouraged to do so.

Towards the present

In the 1970s, gender differences in mathematics performance and participation 
in post compulsory mathematics courses began to attract considerable research 
attention. A careful reading of the literature consistently revealed a substantial 
overlap in the performance of males and females. When found, gender differ-
ences in performance – typically in favor of males – were small and influenced 
by many factors - including the students’ grade level and the format, scope, 
content, and setting of the test. Gender differences in favor of boys were also 
more likely to be found when the sample consisted of high achieving students.

Over the years, means to achieve gender equity have been introduced 
in many countries. These have included putting in place legislation to address 
discriminatory practices in fields such as education and employment, media 
campaigns to encourage females to continue with mathematics and enter tradi-
tional male fields which rely on strong mathematical background, and welfare 
grants to schools to initiate special intervention programs. What have these 
intervention programs achieved?

Current evidence: Gender differences in mathematics 
performance – data from selected large scale tests

International Examples

The Programme for International Student Achievement [PISA]
More than 400 000 (15-year-old) students from 57 countries participated in PISA 
2006. Overall, relatively few changes in performance were found when data from 
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successive testings were compared. “For most countries, performance in mathematics 
remained broadly unchanged between PISA 2003 and PISA 2006…. The performance 
advantage of males (also) remained unchanged … at some 11 score points” (OECD, 
2007, p. 320). More specifically, boys performed significantly better in mathematics 
than girls in 35 of the participating countries. No significant differences were found 
in 21 countries. Girls outperformed males in only one country, Qatar.

Trends in International Mathematics and Science Study [TIMSS]
In many countries no statistically significant gender differences in mathematics 
performance were found in the TIMSS 2003 testing and when such differences 
were found they varied by country. The United States was among those in which 
males performed statistically significantly better than females at both the eighth 
and fourth grades level; Australia and Japan among those in which males per-
formed somewhat but not significantly better than females at both these levels; 
and Singapore among those in which females performed significantly better 
than males at both the grade four and grade eight levels1.

Gender differences by content area (in TIMSS 2003) also showed considera-
ble between-country variations. For students in grade eight, the most striking gender 
differences were found on the algebra items, with females significantly outperform-
ing males in 22 of the participating countries. Fewer differences were found for the 
number, measurement, and geometry items with males outperforming females in 
12, 13, and 11 countries respectively. At the grade four level males outperformed 
females on the measurement items in well over half the participating countries.

National Examples

National Assessment of Educational Progress [NAEP]
The NAEP program provides a nationally representative and sustained overview 
of the performance of America’s students in grades 4, 8, and 12 in various 

1 Subtle changes to these findings were reported in the TIMSS 2007 data which were released after 
the ICME 11 conference was held. Males again outperformed females in Australia and the USA. In 
the former the difference was statistically significant at grade 8 but not at grade 4; in the latter the 
difference was statistically significant a grade 4 but not at grade 8. No difference was found in the 
performance of males and females in grade 4 in Japan, but females performed non-significantly better 
at grade 8. Females again scored significantly higher than males in Singapore, at both grades 4 and 8. 
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subject areas, including mathematics. The tests are administered in selected 
American schools each year. Results are reported at various levels: overall and 
by specific group (e.g., by grade level, gender, race/ethnicity, region, and state). 
McGraw, Lubienski, and Struchens (2006) examined NAEP data from 1990 to 
2003 and concluded that

Gender gaps favoring males (1) were generally small but had not diminished 

across reporting years, (2) were largest in the areas of measurement, number 

and operations (in Grades 8 and 12) and geometry (in Grade 12), (3) tended 

to be concentrated at the upper end of the score distributions, and (4) were 

most consistent for White, high-SES students and non-existent for Black stu-

dents. (p. 129)

Australian data
The Australian Mathematics Competition [AMC] and the Victorian Certificate 
of Education [VCE]

Leder, Forgasz, and Taylor (2006) compared the performance of grade 
12 students in two large scale testings: the AMC and the VCE. The former is a 
highly respected voluntary national competition; the latter is a high stake State-
wide examination, compulsory for students enrolled in grade 12, the final year 
of high school for students across Australia who wish to proceed to university 
as VCE results are converted into a score used for tertiary entrance. The authors 
concluded:

retention rates in the final year of secondary schooling are higher for females 

than for males Australia-wide. Yet more grade 12 males than females engaged 

in formal (VCE) and informal (AMC) mathematical endeavours. At the high-

est levels of achievement, males outperformed females in both of the tests 

monitored, whether comparisons were made with or without adjustment 

for the differences in cohort sizes. Male dominance was more marked and 

more consistent for the voluntary AMC than for Mathematical Methods, the 

important VCE gate keeping subject. (p. 39)

In brief
Gender differences in performance, most often in favor of males, continue 
to be reported, particularly on selected mathematical tasks assessed through 
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standardized or large scale testings, for students in advanced post compulsory 
mathematics courses, and when above average performance is considered.

The emphasis in this section of the paper on continuing gender differ-
ences must not be allowed to obscure the large overlap in the performance of 
males and females. As pointed out by Hyde (2005),

It is time to consider the costs of over inflated claims of gender differences. 

Arguably, they cause harm in numerous realms, including women’s oppor-

tunities in the workplace, couple conflict and communication, and analyses 

of self esteem problems among adolescents. Most important, these claims are 

not consistent with the scientific data. (p. 590)

Beyond large scale testing: theoretical 
considerations

Elsewhere (Leder, 2004) I have sketched the changing lenses through which 
gender and mathematics learning have been viewed as follows:

Gender differences in achievement in areas such as mathematics were typi-

cally assumed to be the result of inadequate educational opportunities, social 

barriers, or biased instructional methods and materials…. It was generally 

assumed that the removal of school and curriculum barriers, and if necessary 

the resocialization of females, would prove to be fruitful paths for achieving 

gender equity. Male (white and Western) norms of performance, standards, 

participation levels, and approach to work were generally accepted uncriti-

cally as optimum. Females were to be encouraged and helped to assimilate. 

This notion, helping females attain achievements equal to those of males, 

was consistent with the tenets of liberal feminism…. Undoubtedly influenced by 

work developed in the wider research community, those working within the 

mathematics/science area also began to frame research questions guided by a 

different set of assumptions. The themes fueled by Gilligan’s (1982) In a differ-

ent voice, and the feminist critiques of the sciences and of the Western notions 

of knowledge proved particularly powerful. New questions began to be asked 

…. Rather than expect them to aim for male norms, attempts were made to 

use females’ experiences and interests to shape curriculum content and meth-

ods of instruction. The assumptions of liberal feminism that discrimination and 
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inequalities faced by females were the result of social practices and outdated 

laws were no longer deemed sufficient or necessary explanations. Instead, 

emphasis began to be placed on the pervasive power structures imposed by 

males for males. …Some researchers …wished to settle for nothing less than 

making fundamental changes to society. Advocates of this approach, often 

classed as radical feminists, considered that the long-term impact of traditional 

power relations between men and women could only be redressed through 

such means. (pp. 106-107)

Others have used different theoretical perspectives and nomenclature to 
chart the developments in research on gender and education. In the compre-
hensive two tomes of Gender and education (Bank, 2007) gendered theo-
ries of education are discussed under a number of headings, listed in Table 
1 below.

Table 1: Gendered theories of education – selected perspectives

Academic Capitalism
“in times of financial stress or uncertainty, individuals and organizations often adopt 
market like strategies to strengthen or bolster their relative position in the economy 
(Metcalfe & Slaughter, 2007, p. 7)

Black Feminism, Womanism, and Standpoint Theories
“Black feminist perspectives stress how various forms of gender, race, and class op-
pression work together to form a matrix of domination. These perspectives are deeply 
interwoven into social structures …” (Wheeler, 2007, p. 22)

Cultural Capital Theories
“… insightfully draws attention to the power dimensions of cultural practices, disposi-
tions, and resources in market societies …. Cultural capital theories have rarely been 
utilized to explain inequalities of gender or race…” (Reay, 2007, p. 23)

Feminist Reproduction Theory
“… arguably the form of educational feminism aligned most closely with Marxist and 
neo-Marxist feminist thought…. (Its proponents argue) that education and other social 
forces in the cultural field (e.g., media) play a very substantial part in reproducing … 
gender, race, and class divisions in the state”(Dillabough, 2007,p. 31)
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Liberal and Radical Feminisms
“Liberal feminism has argued that women are as rational as men and that gender should 
not affect the forms that education takes… radical feminism criticized existing education-
al provisions as part of a patriarchal order … and argued for education for women that 
would enable them to resist and transform the patriarchal order”(Weedon, 2007, p. 38)

Multicultural and Global Feminisms
“… are two related modes of feminist thinking that emphasize women’s differences, 
disagreements, and situated identities, even as they strive to identify both commonali-
ties in women’s experiences and opportunities for women to work together to achieve 
shared goals”(Tong, 2007, p. 47)

Postmodern and Poststructural Theories
“Poststructuralism is a branch of postmodernism that places particular emphasis on 
the ways in which socially and culturally produced patterns of language … construct 
people and the power relationships among them … (it) has also challenged feminism, 
particularly its tendency to categorize people by gender and its claims to being a move-
ment that will emancipate women” (Francis, 2007, p. 55)

Queer Theory
“Informed by lesbian and gay studies, as well as feminist and poststructural theorizing, 
queer theory is less a systematic method or framework than a collection of approaches to 
questioning normative assumptions about sex, gender, and sexuality” (Talburt, 2007, p. 64)

Relational-Cultural Theory (RCT)
“In reframing relationships as the context in which we experience optimal psycho-
logical development and emotional well-being throughout our lives, RCT articulates 
as a means by which we can create and nourish mutually empathic growth-fostering 
relationships in therapy and life” (Comstock, 2007, p. 78)

Sex Role Socialization
“Sex role socialization … involves developing beliefs about gender roles, the expecta-
tions associated with each sex group, and … gender identity, an understanding of what 
it means to be a male or female” (Stockard, 2007, p. 79)

Social Capital Theories
“… social capital can be seen as an investment of a resource with an expectation that 
there will be a return on this investment. Theorists’ definitions of the concept have 
varied” (Horvat, 2007, pp. 87-88)
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Social Constructionism
“… social constructionism occupies an important position in questioning the so-called 
positivist research paradigm in which the world can be understood only through the 
ways in which it is mediated by culture and through ways in which people understand 
and interpret their experiences” (Gordon, 2007, p. 93)

In brief
The theoretical stances summarized above are at times overlapping, some-
times complementary, and sometimes contradictory. The different per-
spectives encapsulate a variety of personal values and beliefs. They are 
based on different assumptions which can directly or indirectly shape the 
research undertaken, the selection of research methods and design em-
ployed, and the conclusions ultimately drawn. Collectively they capture 
the ingenuity with which subtle and elusive gender differences continue 
to be explored.

Cases – the inconsistency of gender differences

Beliefs “they are a-changing”
The Fennema-Sherman [F-S] Mathematics Attitudes Scales [MAS] (Fennema 
& Sherman, 1976) were published in 1976 and have been widely used 
since then to examine gender differences in mathematics learning. An ex-
tensively modified version of one of the subscales scales, the Mathematics 
as a male domain subscale [MD] was administered several years ago to a 
sample of approximately 860 students in coeducational high schools in 
Victoria, Australia. The questionnaire was used to tap students’ perceptions 
about the learning of mathematics and possible gender-linked differences 
in those perceptions (see Forgasz, Leder, & Kloosterman, (2004). For each 
of 30 statements students were asked to indicate whether they believed (1) 
the statement to be definitely more likely to be true for boys than girls, 
(2) probably more likely to be true for boys than girls, (3) there was no 
difference between boys and girls, (4) probably more likely to be true for 
girls than boys, or (5) definitely more likely to be true for girls than boys. 
In Table 2, the data obtained from the administration of that questionnaire 
were compared with findings previously reported in the relevant research 
literature.
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Table 2. Research findings (in italics) and predictions based on previous research

ITEM Pred Find ITEM Pred Find

1 Mathematics is their favourite 
subject

M F
16 Distract others from 
mathematics work

M M

2 Think it is important to 
understand the work

F F
17 Get wrong answers in 
mathematics

F M

3 Are asked more questions by 
the mathematics teacher

M M 18 Find mathematics easy M F

4 Give up when they find a 
mathematics problem too 
difficult

F M
19 Parents think it is important 
for them to study mathematics

M nd

5 Have to work hard to do well F M
20 Need more help in 
mathematics

F M

6 Enjoy mathematics M F
21 Tease boys if they are good 
at mathematics

M M

7 Care about doing well M/F F
22 Worry if they don’t do well 
in mathematics

M/F F

8 Think they did not work hard 
enough if don’t do well

M F
23 Are not good at 
mathematics

F M

9 Parents would be disappointed 
if they don’t do well

M F
24 Like using computers to 
solve mathematics problems

M M

10 Need mathematics to 
maximise employ opportunities

M M
25 Teachers spend more time 
with them

M nd

11 Like challenging 
mathematics problems

M nd
26 Consider mathematics 
boring

F M

12 Are encouraged to do well 
by the mathematics teacher

M nd 27 Find mathematics difficult F M

13 Mathematics teacher thinks 
they will do well

M F
28 Get on with their work in 
class

F F

14 Think mathematics will be 
important in their adult life

M F
29 Think mathematics is 
interesting

M F

15 Expect to do well in 
mathematics

M F
30 Tease girls if they are good 
at mathematics

M M

There were only eight items, it can be seen from Table 2, for which the respons-
es were consistent with previous findings consistently reported in the research 
literature. These items were largely related to the learning environment and to 
peers. For example, boys were still believed more likely to distract others from 
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their work (Item 16) and to like using computers to solve problems (Item 24). 
Girls, it was still indicated, were more likely to get on with their work in class 
(item 28). In the past, boys were generally believed to have more natural ability 
for mathematics than girls, were considered to enjoy mathematics more, and to 
find it more interesting than did girls. Yet the more recent data revealed that, on 
average, students considered boys more likely than girls to give up when they 
find a problem too challenging (Item 4), to find mathematics difficult (Items 
27 & 18), and to need additional help (Item 20). Girls were considered more 
likely than boys to enjoy mathematics (Item 6) and find mathematics interest-
ing (Item 29). Responses on so many items inconsistent with previous findings 
surely implies that changes have occurred over time in gendered perceptions 
related to mathematics education, that, in other words, the energy expended 
on documenting gender inequities in Australia and attempting to redress them 
have left their mark.

Administration of this instrument in other countries has yielded simi-
lar results, i.e., with some changes over time in perceptions of gender differ-
ences in mathematics learning2.

Assessment practices – do they matter?
In Victoria, Australia, the final examination program at the end of second-
ary school contains three different grade 12 mathematics subjects. These are 
Further Mathematics (the least difficult option), Mathematical Methods (the 
most popular mathematics subject and a prerequisite for a large number of uni-
versity courses) and Specialist Mathematics (the most challenging mathematics 
subject and a prerequisite for tertiary courses with a strong mathematics com-
ponent). Some years ago, the format of the examination for these subjects was 
changed. Three Common Assessment Tasks, or CATs, were introduced. These 
were set by a central body for all three subjects. The first, CAT 1 consisted of 
an investigative project or challenging problem, to be solved during school 
time and at home. Initial solution attempts were expected to be redrafted after 

2 Relevant publications include Leder and Forgasz (2000) – Australian students; Barkatsas, Forgasz, 
and Leder (2001) – Greek students; Forgasz, Leder and Kaur ( 2001) – Singaporian students; 
Forgasz, Leder and Kloosterman (2004) – American students; and Brandell, Leder, and Nyström, 
(2007) – Swedish students.
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some teacher input. CATs 2 and 3 were traditional timed examinations, to be 
completed under supervision. CAT 2 contained multiple-choice questions and 
questions requiring a short answer. Questions in CAT 3 typically required more 
extended written answers. All students in a given year needed to complete each 
of the three CATs.

Clearly, the new assessment procedures offered a unique opportunity 
to explore the affect on student performance of different types of assessments 
– for under the new examination structure, the same group of students was 
required to sit for three distinct examination tasks during the school year. The 
format of CAT1 was less traditional: time constraints were less rigid. Solutions 
had a strong language component as considerable explanations were required 
of the methods used and solution steps taken. The other two components, 
CATs 2 and 3, were traditional timed examination papers. The students’ perfor-
mance on the different test components are shown in Table 3, for Mathematical 
Methods, the most popular grade 12 mathematics subject.

Table 3: Mean scores (converted to percentages) obtained in Mathematical 
Methods, by gender, for 6 successive years

Year CAT 1 (%) CAT 2 (%) CAT 3 (%)
M F M F M F

1994 72.0 75.5 64.4 63.6 53.3 49.3
1995 64.1 67.6 56.2 54.8 36.5 32.6
1996 64.0 66.0 50.9 48.9 42.0 38.9
1997 68.0 70.4 55.8 54.3 44.5 40.7
1998 65.0 67.0 47.6 45.9 41.7 40.0
1999 69.3 72.2 55.8 55.1 38.1 36.6

Consistently, it can be seen, girls outperformed boys on the more innovative 
examination task CAT 1 while boys outperformed girls on CAT 2 and CAT 3, the 
more traditional examination formats. Clearly, the format of the examination 
task influenced students’ performance and hence their perceived mathematical 
ability. Who is apparently good at mathematics can be affected by the nature of 
the assessment task.

Single-sex v co-educational settings
Australia has a long history of single-sex schooling. Concerns about educational 
outcomes for girls initially fuelled research on the advantages and disadvantages 
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of single-sex and co-education. More recently perceived disadvantages in boys’ 
educational outcomes have often been the driving forces behind such work. 
Investigations – often with inconclusive findings – typically involve comparisons 
of single-sex schooling; single-sex classes in co-educational settings; other single-
sex models; and sex-segregation differences by subject area.

Exhibit 1
In a series of articles my colleague Helen Forgasz and I (see Leder & Forgasz, 
1994; 1997a; 1997b, Forgasz & Leder, 1995) reported on an evaluation of the 
implementation of single-sex mathematics classes in one public co-educational 
high school in Australia. We were invited to evaluate the program not long after 
it had first been implemented at the grade 10 level, and were then invited back 
three years later to re-evaluate it. The single-sex classes at that time were at the 
grade 9 level. Data were gathered from students, teachers, and parents through 
questionnaires and interviews. The first evaluation did not:

provide unequivocal evidence that single-sex mathematics classes per se 

address well-documented gender differences in mathematics learning out-

comes. The program evaluated did not appear to have been damaging to the 

majority of Grade 10 students in the school investigated, and may well have 

benefited many. Although the school’s aims for the program, and the stu-

dents’ and parents’ beliefs were that females would benefit most from single-

sex classes, there were signs that males derived equal, if not more, benefit 

from the program than the females (Forgasz & Leder, 1995, p. 44).

Three years later, it was found (see Leder & Forgasz, 1997) that relatively fewer 
males and females had enjoyed their single-sex classes, and relatively fewer fe-
males wanted the single-sex classes to continue into the next year. The teachers 
were also found to have adopted different teaching approaches in the boys’ and 
the girls’ single-sex classes. Over the two evaluations, parents’ support for the 
program overall had waned. The parents of daughters were much less support-
ive than initially, but the mothers of sons were more supportive. They seemed 
to believe that their sons’ education at the school was in need of special atten-
tion. Thus at the time of the second evaluation, parents’ and students’ percep-
tions had changed: boys rather than girls were deemed to be disadvantaged 
educationally.
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Exhibit 2
After a recent survey of research comparing students’ performance in single-
sex and co-educational settings (for an unpublished study) Helen Forgasz and 
I summarized the findings with respect to mathematics education as follows:

Collectively, the findings reported from mathematics classes mirrored 
those drawn from the broader classroom setting. When differences were found, 
girls typically liked the single-sex setting and performed somewhat better aca-
demically than in coeducational classes. In a number of the studies surveyed, 
boys were more ambivalent than girls about the single-sex setting with some 
indicating a firm preference for coeducational classes. These differences, how-
ever, could often be attributed to differences in student background factors 
rather than the sex-segregated setting per se. In the majority of studies, the 
focus was on the shorter term effect of single-sex / coeducational grouping. 
In the few studies in which longer term effects were examined, earlier ad-
vantages attributed to the single-sex grouping appeared to dissipate and those 
students who originally favored single-sex groupings seemed less enthusiastic. 
Two explanations for the equivocal findings emerged: certain groups of stu-
dents (e.g., those being harassed in a coeducational setting) benefited from a 
single-sex environment while for other groups it made no difference. Teacher 
strategies and the prevailing school climate, rather than the gender grouping in 
the mathematics class, seemed critical to students’ success and perceptions of 
the class environment.

In brief
Gender differences in mathematics, if found, do not occur in a vacuum but are 
susceptible to societal expectations and environmental and contextual influences.

The future

Research on gender differences in learning mathematics, per se or interactively 
with other factors, continues – as is evidenced, for example, by the continuing 
stream of papers on the topic published in peer reviewed journals, presented 
at national and international research conferences, and reported in the popular 
media. From the different theoretical perspectives summarized in Table 1 above, 
there are clearly many different lenses through which research can be planned, 
gender issues can be explored, and data gathered can be interpreted.
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Contradictory findings continue to emerge. At times, females are con-
sidered to be the educationally disadvantaged group; at others it is males for 
whom it is considered that more support is needed.

The media undoubtedly capture and reinforce current expectations 
and beliefs about gender issues and have a more than negligible input into 
shaping future directions. A focus on some recent print media articles, then, 
concludes this paper.

Seemingly contradictory reports appear, as can be seen from two arti-
cles printed in the New York Times on the same day, December 4, 2007. From 
the one it might be concluded that females are doing well.

This year, more than 1,600 students nationwide entered the Siemens compe-

tition [a prestigious math/science/technology award]. After several rounds 

of judging, 20 finalists were chosen to present their projects at N.Y.U. and to 

vie for scholarships ranging from $10,000 to $100,000. Eleven of the final-

ists were girls. It was the first year that girls outnumbered boys in the final 

round. Most of the finalists attend public school. … Three-quarters of the 

finalists have a parent who is a scientist. (New York times, December 4, 2007)

From the other, it appears that gender stereotyping is persistently robust:

Dr. Hopkins helped start a national discussion about girls and science two 

years ago when she walked out of a talk by Harvard University’s president, 

Lawrence H. Summers, after he suggested that innate differences between 

men and women might be one reason that fewer women than men succeed 

in math and science careers. Dr. Summers apologized during the ensuing 

furor; he announced his resignation as Harvard’s president 13 months later. 

(New York times, December 4, 2007)

Articles such as these should not be allowed to disguise a broader problem 
identified in many countries: the drift away from the mathematical sciences and 
related careers. How best to counteract this trend is a topic of intense interest, 
and indeed some interventionist activity, in many countries.
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Ethnomathematics at the Margin of Europe – 
A Pagan Calendar

Kristín Bjarnadóttir, University of Iceland – School of Education

Abstract

In 930, at the close of the settlement period in Iceland, a week-based calendar was adopted. Observations 
of the solar cycle soon revealed errors of the calendar, which were cleverly amended. In the 12th cen-
tury, the week-based calendar, called misseri calendar was adjusted to the Roman Calendar used by 
the Christian Church. It remained in common use for secular purposes until the 19th century, and 
detailed guides to it were written. Special occasions related to it are still celebrated.

Keywords
Ethnomathematics, week-based calendar, Roman calendar, Julian Calendar, 
Gregorian Calendar, misseri, finger-rhyme counting method.
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Introduction

The construction of calendars, i.e. the counting and recording of time, is an 

excellent example of ethnomathematics (D’Ambrosio, 2001, 12).

What is ethnomathematics? “The term was coined by Ubiratan D’Ambrosio 
to describe the mathematical practices of identifiable cultural groups ... in 
its broadest sense the “ethno” prefix can refer to any group – national socie-
ties, labor communities, religious traditions, professional classes, and so on. 
Mathematical practices include ... measurement in time and space ... and other 
cognitive and material activities which can be translated to formal mathemati-
cal representation.” (ISGEm, website).

In this article, practices of an ethnic group, a subgroup of the Viking 
culture, and their translatation into mathematical representation will be ex-
plained. The Vikings established a society in Iceland, an island in the Mid-
North Atlantic Ocean, around 900 AD. The settlers came from different parts 
of Norway, the British Isles and Ireland. The calendar they had in common 
included a seven-day week and an empirical lunar calendar (Richards, 1998, 
p. 204). They constructed a new system of recording time, a calendar later 
called misseri calendar. On the basis of the above quotations, the misseri calen-
dar will be considered as an example of ethnomathematics:

A parliament, Althingi, for the inhabitants of the relatively large 
country, 100,000 square kilometres, was established in 930. Its meetings 
were held for two weeks every summer. The short summer in Iceland and 
its vulnerable nature demanded that the meetings take place after certain 
farming duties were done, and before others arose. A fairly accurate calen-
dar was therefore needed for the gathering. The seven-day-week calendar 
was extended to measure the length of the year, as will be explained in this 
article.

The parliament agreed to accept the Christian faith in about 1000 
AD. The Christian Church as an institution was established around 1100, 
and due to its influence the Icelanders became literate in the first quarter 
of the twelfth century. Once literate, the Icelanders began to write volumi-
nously, initially to document the laws of the newly-founded Commonwealth 
(Kristjansson, 1980, p. 29). A thirteenth-century manuscript of the law code 
Grágás contains a concise description of a week-based calendar, created in 
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Iceland in the tenth century (Grágás, 2001; 1980–2000). The Church intro-
duced the Roman system of Julian calendar in the twelfth century, with one 
extra day added to the 365 days every fourth year: the leap year.

During the Commonwealth period, Icelanders had a close connec-
tion to Norway and in 1262 they submitted to the Norwegian King. By the 
establishment of the Kalmar Union in 1397, Iceland followed Norway into the 
Danish realm, to stay there until 1944 when the Republic of Iceland was estab-
lished (Thorsteinsson and Jonsson, 1991).

The Viking Calendar

The common calendar of the settlers included a seven-day week, the days being 
named after the Norse gods (Bjornsson, 1990, pp. 71–74; 1993, pp. 18–19, 
665–660):

Sunnudagur, Sunday, the day of the sun.
Manadagur, Monday, the day of the moon.
Tysdagur, Tuesday for Tyr, the god of war.
Odinsdagur, Wednesday for Woden, the cunning god.
Thorsdagur, Thursday for Thor, the thunder god.
Frjadagur, Friday for Freyja/Frigg, the goddesses of love/marriage.
Laugardagur, Saturday, the day of bathing.

The pagan names have survived in English and other Nordic languages than 
Icelandic, where they were abandoned by the Icelandic Church in the twelfth 
century for thridjudagur (Third Day) for Tuesday, miðvikudagur (Mid-week Day) for 
Wednesday, fimmtudagur (Fifth Day) for Thursday and föstudagur (Fast Day) for 
Friday. Sunnudagur, manadagur (later manudagur) and laugardagur have remained intact 
to this day.

Probably some of the settlers counted the time according to the cycle 
of the moon, which is 29.52 days. In Iceland the nights are light from April un-
til late August, so the moon is barely seen. Counting the lunar months in sum-
mer was therefore abandoned and counting the summer weeks was taken up 
instead. Moreover, difficult weather conditions may mean that the moon cannot 
be seen regularly in wintertime and in time winter months were standardized 
at 30 days each (Richards, 1998, p. 204).
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When a yearly parliamentary gathering was agreed upon in AD 930, 
some way to count the time had to be accepted. An agreement was reached that 
the next meeting would take place after 52 weeks or twelve 30-day months 
plus four extra nights. The year was divided into two terms, misseri, and accord-
ingly the calendar was called misseri calendar. The winter misseri was to last six 
months, the summer misseri six months, and the four extra nights were added 
at mid-summer, after the 13th week of the summer misseri. The parliamentary 
meeting was to be in the tenth week of summer (Benediktsson, 1968, pp. 
9–11, 15; Almanak fyrir Ísland 2008).

This system quickly revealed the need for a more reliable system of 
time-computing. By the 950s it had become clear that the summer ‘moved 
back towards the spring’, i.e. the summer according to this calendar began 
earlier and earlier vis-à-vis the natural summer. This was inconvenient, as 
the parliamentary gathering had to assemble after the completion of certain 
necessary farming tasks, and before others were due to begin. This is re-
corded in a brief history of Iceland, Íslendingabók (The Book of Icelanders, Libellum 
Islandorum), written by Ari the Learned in the period 1122–1133 that exists 
in manuscripts from seventeenth century (Benediktsson, 1968, pp. xvii–xvii, 
xliv–xlvii).

This was when the wisest men of the country had counted in two misseris 

364 days – that is 52 weeks, but twelve thirty-night months and four extra 

days – then they observed from the motion of the sun that the summer 

moved back towards the spring; but nobody could tell them that there is 

one day more in two semesters than can be measured by whole weeks, 

and that was the reason. But there was a man called Thorsteinn Surtur … 

when they came to the Althing then he sought the remedy … that every 

seventh summer a week should be added and try how that would work …1 

(Benediktsson, 1968, pp. 9–11).

Figure 1 below shows the view from Thorsteinn Surtur’s farm where he may 
have studied the motion of the sun. Only at the summer solstice does the sun 
set on the right of Mt. Eyrarfjall (Vilhjalmsson, 1990, p. 21).

1 All Icelandic texts have been translated by the author, KB.
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Figure 1: The view from Thorsteinn Surtur’s farm. Photographer: 
Gretar Eiriksson.

Thorsteinn Surtur thus realized the error around 955 AD by an observation of 
the location of the sunset, which in northern areas moves rapidly clockwise 
along the horizon before the summer solstice, and subsequently anti-clock-
wise. The extra week that Thorsteinn Surtur recommended every seventh year 
to be inserted at mid-summer is called Sumarauki / Summer’s Extra Week, making the 
average year 365 days.

By 1000 AD parliament was meeting a week later than before, which 
indicates that the eleven missing leap years had also caused the start of ‘sum-
mer’ to move progressively earlier in the year, as explained above. In the Book 
of Icelanders it says: “Then it was spoken the previous summer by law, that men 
should arrive at Althingi when ten weeks of summer had passed, but until then 
it had been a week earlier.” (Benediktsson, 1968, p. 15).

The reason why summer solstice may so easily be recognized in 
Iceland is that the track of the sun is flatter at northern latitudes than closer 
to the equator. Recalling that the declination of the axis of the earth is 23.5°, 
figure 2 is a simplified graph of the path of the sun, which shows how the sun 
moves rapidly along the horizon near the solstice.

The Mediterranean or ‘Mid-Earth Sea’ is known by that same name 
in Old Norse and in modern Icelandic: Midjardarhaf. The great city, Rome, was 
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regarded as the middle of the earth. Rome is at 42°N. At the equinoxes the 
altitude of the sun there at noon is 90° – 42° = 48°. At the summer solstice 
the sun is 48° – 23.5° = 24.5° below the horizon at midnight and the night 
is completely dark. Thorsteinn Surtur lived at Thorsnes, near the modern town 
of Stykkishólmur, at 65°N (Almanak fyrir Ísland, 2008, p. 59). The altitude of the 
sun there at noon is 90° – 65° = 25° at the equinoxes. These computations are 
in agreement with the true altitude of the sun in Reykjavík at 64°N (Almanak 
Háskóla Íslands, website).

At summer solstice the sun is therefore only 25° – 23.5° = 1.5° below 
the horizon at its lowest position. Since the sun is so close to the horizon at that 
time, the night is bright enough for reading a book. The official calendar for 
Iceland does not record darkness in Reykjavík at 64° N from May 19 until July 
23 (Almanak fyrir Ísland, 2008, pp. 22, 30).

As the path of the sun may be approximated fairly well by a graph of 
the cosine function, which becomes increasingly flatter when approximating 
its minimum value, one may understand the fast displacement of the sunset’s 
position along the horizon in the period around the summer solstice (and the 
winter solstice as well). In figure 2 the altitude of the sun at 65°N and 42°N is 
approximated by

f(x) = –(90–65)cos(2π(x)/360) and g(x) = –(90–42)cos(2π(x)/365.22) 
respectively.

The scale on the horizontal axis, 0 – 360°, denotes the direction of the sun at 
the various times of the 24 hours’ day, while the scale on the vertical axis de-
notes the altitude in degrees.

Figure 2: The altitude of the sun with respect to directions on the horizon. 

The horizontal lines at -22.5 and -23.5 denote the horizon in early June and at summer 
solstice respectively. Their intersections to the two graphs denote the directions of sunrise 
and sunsets and their differences in Mid-Iceland and Rome at the indicated time of the year.

The time between the 22.5° and 23.5° lowering of the horizon is about 17 days. 
During that period the sunset moves about 1.4° at 42°N in Rome, while at 65°N in 
Thorsnes, it moves 5.9° along the horizon in the same number of days, or more than 
four times as far.
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Figures 3 and 4 below show that this fact can also be easily realized in Reykjavík 
at 64°N. The pictures were taken at eight days’ interval in mid-June 2008.

Figure 3: Sunset at 64°N on June 11, 2008 at 23:55 
Figure 4: Sunset at 64° on June 19, 2008 at 24:04

According to the time difference of the two sunsets, 9 minutes, the sunset has moved 
9/(60*24)*360 = 2¼° clockwise along the horizon in 8 days at 64°N.
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Advent of the Christian Church and Roman Calendar

After the establishment of the Christian Church as an institution in the twelfth 
century, the Roman Julian calendar was introduced as the calendar of the 
Church, with one extra day added to the 365 days every fourth year, in the 
leap year.

But the Julian calendar also contained errors. By adding a day to 
365 days every fourth year, the average length of the year became 365.25 
days, while in reality it is approximately 365.2422 days. The Julian calendar 
assumed the summer solstice to be on June 21, decided upon in Nicea AD 
325, while in the twelfth century it fell on June 15, six days earlier, due to 
the addition of six too many leap-year days, which would have be skipped at 
years 500, 600, 700, 900, 1000 and 1100 according to the correction of the 
Gregorian calendar.

In the first half of the twelfth century Oddi Helgason, called Star-Oddi, 
a farm labourer, made observations of the annual motion of the sun, of which 
an account is found in the ancient treatise Odda-tala/Oddi’s Tale (Beckman and 
Kålund, 1914–1916, pp. 48–53).

The treatise Oddi’s Tale is preserved in several ancient manuscripts. In 
some of them it is a part of a chronological treatise, Rím I (‘rím’/rhyme mean-
ing calendar), while in the oldest manuscript, GKS 1812, 4to, written around 
1192 (A dictionary of old Norse prose, 1989, p. 471), it is a separate treatise. Oddi’s Tale 
comprises three sections, treating different aspects of the sun’s motion. Firstly, 
Star-Oddi observed the summer solstice and the winter solstice to be a week 
earlier than the official date, i.e. on June 15 and December 15 instead of June 
21 and December 21. Secondly, he explained the curve of the height of the sun 
during the year by counting the weekly increase in the first half of the year and 
decrease in the second half. As a measuring scale, he used the diameter of the 
sun, the sun rising a total of 91 diameters. The third part of Oddi’s Tale concerns 
the time of dawn (Vilhjálmsson, 1991, pp. 27–34).

The Icelandic chronological treatise, Rím II, written in the late thir-
teenth century, says:

Solstice in summer is four nights before the mass of John the Baptist ... It is 

so in the middle of the world. Some men say that it is close to a week earlier 

in Iceland (Beckman, and Kålund, 1914–1916, p. 121).



197

The error of the Julian calendar had thus been discovered in Iceland in the 
twelfth century. Better estimates of the year than that entailed by the Julian cal-
endar had been made earlier, as listed in Table 1.

Table 1: Examples of early estimates of the length of the year 
(Richards, 1998: p. 33).

Researcher Location Year Length of the year
? Babylon c. 700 BC 365.24579 days
Hippachus Egypt 150 BC 365.2466 -
? Mexico2 (Mayan) 700 AD 365.2420 - 
Da Yen China 724 AD 365.2441 -
Al-Battani Arabia 900 AD 365.24056 -
Al-Zarqali Arabia 1270 AD 365.24225 -

2 So in the source.

The Icelandic week-based misseri-calendar was adjusted to the Julian calendar 
in the early twelfth century, in Oddi’s time. By this adjustment the Summer’s 
Extra Week was to be inserted every sixth year, or every fifth year if there were 
two leap years in between. The computations thus depended on the Julian 
calendar.

The Misseri Calendar

The pagan misseri calendar is adjusted to the Julian calendar but there is a basic 
difference between the calendars in determining dates. The year in the misseri 
calendar is counted in weeks. The years therefore have two different durations: 
52 weeks with 364 days or 53 weeks with 371 days.

The First Day of Summer marks the beginning of the secular year. It was to 
fall on Thursday in the week April 9 to 15. In the late middle ages, April 9 was 
the beginning of the light-night period in Northern Iceland.

Thus the summer-misseri begins on a Thursday, and lasts 26 weeks and 
2 days plus Summer’s Extra Week. The winter-misseri begins on a Saturday in late 
October and is 25 weeks and 5 days. Dates are expressed in terms of days of a 
specified week of summer or winter. The following examples are taken from 
the 1920 national census of Iceland:
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Sigurður Jónsson born on Sunday in twelfth week of winter 1859.

Guðlaug Einarsdóttir born on the sixteenth Saturday of summer in 1850 

(National Archives of Iceland, Statistics Iceland ).

The Gregorian calendar was a reform to correct the discrepancies of the Julian calendar. 
By 1700, when the Gregorian calendar was adopted in the Danish Realm, eleven days 
were omitted, November 17–27 (Saemundsson, 1972, p. 131). The First Day of Summer 
was transferred to Thursday in the week April 19–25, and other dates, mid-summer, 
and beginning of winter were adjusted accordingly (Bjornsson, 1993: p. 16).

The Misseri calendar is basically a week-based calendar. However, there 
are also twelve thirty-day months and the four extra nights as quoted in the Book 
of Icelanders. The three last winter months have definite names that have remained 
unchanged through the centuries: Thorri, Goa and Einmanudur. Thorri and Goa were 
also names of pagan gods. Einmanudur means One-Month or Lone-Month. The 
name is believed to derive from the fact that when the month commences there 
is one month left until summer begins (Thorkelsson, 1928). The beginning of 
Thorri marks mid-winter and has been an occasion for mid-winter festivities.

Thorri. (masculine) begins on Friday in the 13th week of winter (in late 
January); this was Husbands’ Day.

Goa. (feminine) begins on Sunday in the 18th week of winter (in late February); 
this was Wives’ or Women’s Day.

Einmanudur. (masculine) begins on Tuesday in the 22nd week of winter (late 
March); this was the Young Men’s Day.

Harpa. (feminine), the first month of summer, begins on Thursday in April 19–25, 
First Day of Summer; this was the Young Girls’ Day. (Björnsson, 1993, pp. 766–783).

The First Day of Summer has been a public holiday in Iceland for centuries. Youth 
and child-care organisations organize festivities in cooperation with local au-
thorities. Furthermore, international Mother’s and Father’s Days are not much 
celebrated in Iceland: rather the first days of Thorri and Goa (Bjornsson, 1993, 
p. 31, 44–45, 766, 778, 780).
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Dactylismus Ecclesiasticus or Finger-Rhyme

Great many calendars were preserved in manuscripts from the twelfth to the 
eighteenth centuries. The two first printed calendars in Icelandic were pub-
lished at Hólar, one of the two episcopal sees, the latter Calendarium: íslenzkt rím 
(1597). It was a perpetual Roman calendar, but also explaining the misseri cal-
endar. The information contained in the calendars was often partly built into 
verses and rhymes (Björnsson, 1990, pp. 68–69, 91–98).

Bishop Jon Arnason published in 1739 a detailed guide, Dactylismus 
Ecclesiasticus or Finger-Rhyme (eður Fingra-Rím), to computing the calendar according 
to the new Gregorian calendar style, both by mathematical formulas and by 
counting on fingers. The title, Dactylismus, is drawn from the Latin word dactylus 
which again is drawn from the Greek word dactylos, meaning finger.

The Dactylismus was reprinted in 1838. On its front page it says that it 
is completely similar to the 1739 edition. A photographic facsimile of the 1838 
printing was published in 1946 as a rare and appreciated book of earlier age. 
The facsimile has been used as a source to this article.

In his foreword, Bishop Arnason wrote:

It is distressing to know that the art of finger-rhyme is mostly extinct in this 

country, which however was in my young days properly applied and used; 

many unlearned men and women could in a moment compute on their fingers 

both the dates of new moons and festivals ... (Arnason, 1739, 1838, p. 11).

The introduction of the Gregorian calendar in 1700 may have adversely affected the 
knowledge of the common people in this respect, but Bishop Arnason was hopeful 
that the lack of knowledge and skills concerning the calendar could be remedied by 
his work. The art had previously been practised with Latin rigmaroles so Arnason 
hoped that his Dactylismus in the vernacular would be a great support. His foreword 
concluded with a statement that he had composed the Dactylismus for the common 
people in the country. In this he differed from foreign authors he mentioned, who 
dedicated their works to the nobility, dukes and counts. The fact that there was no 
such class in Iceland meant that literature had to be aimed at least at the clergy and 
landowners and every common person, who could afford to own books.

The main bulk of the Dactylismus Ecclesiasticus is a guide to computing eccle-
siastical moveable festivals, such as Easter, while a calendar of the ‘farming-year’, the 
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misseri calendar, was attached as a second section. For both calendars, the Gregorian 
and the misseri calendar, so-called Sunday letters, or dominical letters, are important.

Each day of the year is assigned a letter, called calendar letter, A, B, C, D, E, 
F or G. Thus January 1 is assigned the calendar letter A, January 2 has B, January 
3 has C, and so on. February 29 and March 1 have the same calendar letter. Each 
year is then assigned a letter, dominical letter, according to the calendar letter of 
the Sundays that year. As an example, the dominical letter of year 2010 is C as 
January 3 is the first Sunday, and so all Sundays in 2010 have calendar letter C. A 
regular 365-day year begins and ends on the same weekday, which entails that 
the dominical letters of succeeding years are displaced back one place (G for 
the next year after A). The rule is broken on leap years. As the leap-year day has 
the same calendar letter as the following day, the leap years need two dominical 
letters, one for January and February and another for the rest of the year.

Every fourth year is a leap year and the week counts 7 days. The low-
est common multiple of 4 and 7 is 28, so that the sequence of dominical let-
ters, called the Solar Cycle, was repeated every 28 years in the Julian calendar. 
Thus each year is assigned a number in the interval 1 to 28 in the Solar Cycle, 
beginning with 1 in the year 1600. Accordingly, years 1628, 1656, etc. were 
allocated the number 1 (Arnason, 1739, 1838, pp. 200–217).

The relation between the position of a year in the Solar Cycle and its 
dominical letter is found in Table 2. The years of Summer’s Extra Week are marked 
by an asterisk by their dominical letter (Arnason, 1838, pp. 200–217).

Table 2: The Solar Cycle and the corresponding dominical letters.Years of 
Summer’s Extra Week are marked by an asterisk.

Year of the cycle Dominical letter Year of the cycle Dominical letter
1 B, A 15 E
2 G* 16 D
3 F 17 C, B
4 E 18 A
5 D, C 19 G*
6 B 20 F
7 A 21 E, D
8 G* 22 C
9 F, E 23 B
10 D 24 A*
11 C 25 G, F
12 B 26 E
13 A, G* 27 D
14 F 28 C
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In the Gregorian calendar the leap years were skipped in years 1700, 1800 and 
1900, so the Solar Cycles including these years were lengthened to 40 years. This 
is done by subtracting 12 from the number in the sequence at the turn of the 
century. For example the year 1699 is number 16 in the Solar Cycle, while year 
1700 is number 5, year 1799 is number 20, but year 1800 number 9, and year 
1899 is number 24 but year 1900 number 13. Year 1999 was number 28 and 
year 2000 number 1. The turn-of-the-century years, not divisible by 400, have 
only one dominical letter as they are not leap years, the latter letter of the two as-
signed to their number in their sequence (Arnason, 1739, 1838, pp. 200–217).

The Summer’s Extra Week is inserted at mid-summer, beginning on Sunday 
after 13 weeks of summer. The years of Summer’s Extra Week are those which begin 
on Monday, that is, when the dominical letter of the year is G, and those which 
begin on a Sunday, having dominical letter A, the year before a leap year. In that 
case, next year will begin with dominical letter G, only applying to the first 
two months of the year, and the remaining months of the year have dominical 
letter F.

Dominical letter G brings July 22 on Sunday. This means that Summer’s 
Extra Week always begins on Sunday July 22, except in the case of a leap year 
beginning with dominical letter G. In that case, Summer’s Extra Week is inserted the 
year before, beginning on Sunday July 23 in a year with a dominical letter A.

Those Summer’s Extra Weeks next before a leap year, beginning on a 
Sunday with dominical letter A, are called Rímspillir / Rhyme Spoilers in the mis-
seri calendar. The Rhyme Spoiler moves all dates forward one day from Summer’s 
Extra Week until leap-year day. This happens once in the 28-year Solar Cycle, in 
year 24, see table 2 above. In the Solar Cycles that contain the years 1700, 1800, 
1900, 2100, and so on, when leap years are skipped, the Rhyme Spoiler year is 
number 36 of the cycle.

In his Dactylismus, Bishop Arnason explained how the dominical letters 
were remembered by their position on the fingers. Figure 4 shows how years 
number 1 to 28 in the Solar Cycle were assigned dominical letters in reverse 
alphabetical order.

The year 1600 was, as mentioned before, the first year in the Solar 
Cycle and had, as a leap year, two dominical letters, B and A. Thus for example, 
the year 1614 was number 15 in the Solar Cycle and had dominical letter E. The 
year 1623 was number 24 and had dominical letter A. It was a Rhyme-Spoiler 
year, as 1624 was a leap year.
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Figure 4: The numbers in the Solar Cycle 
and their dominical letters placed on palmes and fingers.

When finding a dominical letter for a year such as 1674, one could say 
that it is number 75 in the Solar Cycle, but it is far too high. The remainder 
when 75 is divided by 28 is 19 which becomes the number in the Solar 
Cycle so the dominical letter of year 1674 is G, according to Table 2 and the 
palms in Figure 4. The last year of the century, 1699, is number 100, with 
remainder 16 when divided by 28, so the dominical letter is D.

Due to dropping leap years at the turns of centuries, except when 
the year is divisible by 400, the larger Solar Cycle is 400 years. The Dactylismus 
– Finger-Rhyme helps to find the number of each year in the Solar Cycle, ex-
plained above. To correct the cycles due to missing leap years, the years at 
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the turn of the centuries are assigned new numbers to be remembered on 
the left-hand palm and mid-bones of the fingers as shown in figure 5 below.

Figure 5: A memory scheme to find the number 
in the Solar Cycle at turns of centuries.

Years 1600, 2000, ... # 1
Years 1700, 2100, ... # 5
Years 1800, 2200, ... # 9
Years 1900, 2300, ... # 13

As an example, the years 1700, 2100, etc., instead of being assigned # 17, 
they go back to being #5, marked on the mid-bone of the middle finger. The 
length of the Solar Cycle is thus increased by 12 years to become 40 years. 
The years in-between the turns of the centuries are counted onwards in 28 
year cycles explained earlier. The numbers 9 and 13 similarly correct the Solar 
Cycles due to missing leap years at the turns of centuries 1800, 2200, etc., and 
1900, 2300, etc., respectively.

The numbers 4, 1, 2, 3 at the top bones of the four fingers denote 
the classes of the centuries within the 400-year cycle (Arnason, 1739, 1838, 
pp. 102–103).
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The Misseri-Calendar and Almanacs

Before Bishop Arnason’s Dactylismus, Danish calendars were in use for a few cen-
turies, but these did not meet the needs of Icelanders, most of whom were 
more familiar with the misseri calendar. The Dactylismus therefore must have been 
the main handbook for Icelanders during the 18th century.

Icelandic calendars of the years 1800 to 1836 exist in manuscripts, 
adjusted to the environment in Northern Iceland, but they were not contin-
uous. In response to these, which were deemed to violate the University of 
Copenhagen’s monopoly on publication of calendars, a calendar in Icelandic, 
the Iceland Almanac, was first published in 1837 by the University of Copenhagen. 
The calendars were computed by professors at the University of Copenhagen 
until 1923, and translated into Icelandic by prominent Icelandic scholars. They 
added the misseri calendar with all its features to the regular Almanac, which oth-
erwise contained the ecclesiastical calendar of the Evangelical Lutheran Church 
in addition to local geographical information, such as time of sunrise and sun-
set in Reykjavík, the capital. (Sigurgeirsdóttir, 1969).

Figure 6 below shows the cover of the first issue of the Iceland Almanac. 
In translation it says:

Almanac for year after Christ’s birth 1837, which is the first year after leap year 

but the fifth after Summer´s Extra Week, calculated for Reykjavík on Iceland, by 

C. F. R. Olofsen, Prof. Astronom, translated and adjusted to the Icelandic calen-

dar by Finnur Magnússon Prof. (Sigurgeirsdóttir, 1969).

Figure 6: The cover page of the first issue 
of the Iceland Almanac.

The publication of the Almanac was transferred 
to the University of Iceland in 1917, and 
from 1923 the computations have been made 
by Icelandic mathematicians or astronomers 
(Sigurgeirsdóttir, 1969).
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Why did the Misseri Calendar Survive in a Society of 
Christian Culture?

The misseri calendar had been in use for two centuries before the introduction of the 
Roman calendar used by the Church. It was maintained as a secular calendar by par-
liament, which gathered in summer during the period 930-1800, and the calendar 
was registered in the law (Grágás, 2001; 1980–2000). It is rooted in the medieval 
literary heritage that was preserved and studied in Iceland through the centuries. 
Bishop Arnason respected it in his 1739 Dactylismus, as did the nineteenth century 
scholars at the establishment of the Iceland Almanac and its later calculators did so too.

Registrations of births and deaths, carried out by the Church, were only 
prescribed in Iceland from 1746. For this reason, the official Roman calendar was not 
in common use among the general public until after the 1739 publication of Bishop 
Arnason’s Dactylismus. An inspection of the official census in 1920 reveals that a num-
ber of people, born before or around the 1860s, recorded their birthdates according 
to the misseri calendar, at a certain weekday in a certain week of summer or winter.

In northern latitudes like Iceland, the difference between darkness in 
winter and light in summer is extreme. Celebrating mid-winter Thorri and First Day 
of Summer and counting the weeks and months in between is a tribute to the light, 
and is intimately related to life in northern nature.

Figure 7: Celebration of First Day of Summer in 2008. 

Photographer: Heida Helgadóttir.
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Conclusion – The Misseri Calendar as Ethnomathematics

Iceland was settled while the northern people in Europe were still pagan. The 
settlers formed a new society on their own terms. A new system had to be 
made from scratch. The country lies on the margin of the North Pole area with 
continuous light in summer time and conversely long-lasting darkness during 
winter-time. The first Icelanders observed a new perspective on the heavenly 
bodies, the sun and the moon, the universal facts on which recording the time is 
based. Their intellectual instruments for recording time were deeply influenced 
by this environment. Their farming duties during the short summer also de-
manded more accurate dating than they had brought from their earlier domicile. 
They managed to establish a cleverly made dating system, adjusting a primitive 
week-based calendar to observations of nature phenomena, less visible in more 
southerly regions. The effort to adjust the length of the calendar year to observa-
tions of nature are examples of empirical adjustments of a mathematical model.

D’Ambrosio (2001) has explained the term ethnomathematics in the fol-
lowing way:

In the same culture, individuals provide the same explanations and 
use the same material and intellectual instruments in their everyday activities. 
The set of these instruments is manifested in the manners, modes, abilities, 
arts, techniques – in the tics of dealing with the environment, of understanding 
and explaining facts and phenomena, of teaching and sharing all this, which 
is the mathema of the group, of the community, of the ethno. That is, it is their 
ethnomathematics (D’Ambrosio, 2001, p. 24)

The Icelanders developed new instruments for dealing with their en-
vironment and explaining phenomena, different tics, from those living closer to 
the ‘middle of the earth’, the Mediterranian area, from where the Roman sys-
tem of Julian and Gregorian calendars originated, adjusted to different modes 
of environment and different perspectives. The new environment and instru-
ments created the settlers’ own ways of sharing agreements on time-reckoning, 
manifested by the law, their own mathema.

Later adoptions of the Roman style did not overtake the domestic sys-
tem of the week-based misseri calendar but served to refine it, to refine the tics 
and the mathema of the Icelandic community, the ethno. The Icelandic week-based 
misseri calendar may indeed be considered as an excellent example of the ethno-
mathematical concept.
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Exploring and investigating in 
mathematics teaching and learning

João Pedro da Ponte, Universidade de Lisboa, jpponte@ie.ul.pt

Abstract

This paper assumes that investigating, exploring and solving problems are 
central elements of the mathematical activity. It presents examples of students 
investigating mathematics that illustrate important aspects of an exploratory 
approach to mathematics teaching and its consequences to mathematics learn-
ing. This approach depends on the nature of tasks and on the roles of teachers 
and students in the classroom. It requires an overall organization of content and 
processes in meaningful mathematics teaching units. This kind of teaching is 
rather demanding and teachers’ professional competence in carrying it may be 
developed by collaborating, researching our own practice and getting involved 
in the professional community. The paper analyses the relationships of investi-
gating, teaching, and learning, arguing that, as students explore and investigate 
mathematics, teachers profit in investigating their own practice in professional 
collaborative settings.
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Teaching mathematics as a finished product has always been problematic. For many 
students, this subject is meaningless and it not worthwhile to make an effort to 
learn it. Others, striving to survive, develop partial meanings that often conceal 
deep misconceptions. For a long time, mathematicians and mathematics teachers 
have tried to find alternative ways of presenting mathematics to students. One of the 
most promising of such ways is to regard mathematics as an activity (Freudenthal, 
1973) and emphasizing exploring and investigating mathematics situations.

1. Investigating as a key feature of the mathematics 
activity

There are many perspectives about mathematics. Most dictionaries present this 
subject as the “science of number and form” (Davis & Hersh, 1980). For many 
mathematicians, it is the “science of proof”. This is the notion that Bertrand 
Russell had in mind when he said: “mathematics is the subject in which we 
never know what we are talking about, nor whether what we are saying is true” 
(Kline, 1974, p. 462). Jean Dieudonné put the same idea in a shorter way: “qui 
dit mathématiques, dit demonstration”. The structuralist movement of the first 
half of the twentieth century encouraged the view of mathematics as the “sci-
ence of structures”, and that framed the Bourbaki program and influenced a 
deep educational reform in the 1960s known as “modern mathematics”. Still 
another view claims that mathematics is best described as the “science of pat-
terns”, aiming to describe, classify and explain patterns in number, data, forms, 
organizations, and relations (Steen, 1990).

When we think about mathematics we may focus on the mathemati-
cal concepts or on the body of knowledge encapsulated in articles and books. 
We form an image of a complex building or of a tree with many branches – in 
any case, a finished product. Alternatively, we may focus on the activity of peo-
ple doing mathematics. Regarded in this way, mathematics is indeed a dynamic 
science. That is captured by George Pólya (1945), who says “mathematics has 
two faces; it is the rigorous science of Euclid, but it also something else [...] 
Mathematics in the making appears as an experimental, inductive science” (p. 
vii). That is also sustained by Irme Lakatos (1978) who states that mathematics 
“does not develop through monotonous growing of the number of theorems 
unquestionably established but through the increasing improvement of conjec-
tures by speculation and critique, by the logic of proofs and refutations” (p. 18).
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Mathematics can be an interesting and involving activity not only 
for the mathematician but also for the teacher and the student. Singh (1998) 
refers that Andrew Wiles, now famous for his proof of a long standing theo-
rem, recalls the role of his teacher in getting him involved in mathematical 
explorations:

Since I found for the first time Fermat’s Last Theorem, when I was a child, this 

has been a major passion... I had a high school teacher who did research in 

mathematics and gave me a book on number theory and provided some hints 

on how to attack it. To begin with, I started from the hypothesis that Fermat 

did not know much more mathematics than me... (p. 93)

Another mathematician, Jacques Hadamard (1945) states that there is no major 
difference in the mathematical activity of a student and a mathematician when 
they are working on challenging mathematical situations:

Between the work of the student who tries to solve a problem in geometry 

or algebra and a work of invention [of a mathematician], one can say that 

there is only a difference in degree, a difference of level, both works being of 

a similar nature (p. 104).

Investigating in mathematics is finding out about some issue for which we do 
not know the answer. It includes the formulation of questions, often of many 
related questions that evolve as the work proceeds. It also involves the produc-
tion, testing and refinement of conjectures about those questions. And finally, it 
involves proving and communicating results. In mathematics, the starting point 
for an investigation may be a mathematical or a non-mathematical situation 
from other sciences, technology, social organization, or daily life. As we try to 
get a better perception of the situation, we are “exploring” it. Later, when our 
question is clearly formulated and drives all our work, we may say that we have 
a “problem”. Carrying out a mathematical investigation involves conscious and 
unconscious processes, aesthetic sensibility, and connections and analogies 
with mathematical and non-mathematical situations. It is undertaken in differ-
ent ways by people with different cognitive styles – analytic, visual, conceptual 
(Burton, 2001; Davis & Hersh, 1980). But it is for all of them an involving and 
rewarding activity.
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2. Students investigating mathematics in the 
classroom

Let us consider some examples of students working as mathematics researchers.

Example 1. Working with numbers
The first example comes from a class led by Irene Segurado, a grade 5 teacher 
working with 10 year old students (see Ponte, Oliveira, Cunha & Segurado, 
1998). The task is the following:

1.	 Write in column the 20 first multiples of 5.
2.	 Look at the digits of the units and tens. Do you find any patterns?
3.	 Now investigate what happens with the multiples of 4 and 6.
4.	 Investigate with other multiples.

This task was presented at the beginning of a 50-minute class. The teacher had 
planned for group work, but she found the students very agitated at the begin-
ning of the class and decided to work instead with the class as a whole. She 
asked the students for the multiples of 5 and wrote them on the board. The 
students began looking for patterns:

Tatiana, raising her arm, answered quickly: The units’ digit is always 0 or 5, 
and that was accepted by her colleagues, echoing around the room: it is always 
0, 5, 0, 5...

Teacher: What else? 
Octávio, with a happy face: The tens digit repeats itself: 0-0, 1-1, 2-2, 3-3...
Carlos agitated: I discovered something else... May I explain at the blackboard? (...) 
At the blackboard, he continued: 0 with 5 is 5, 0 with 0 is 0, 1 with 5 is 6, 1 
with 0 is 1, 2 with 5 is 7, 2 with 0 is 2, 3 with 5 is 8, are you getting it? There’s a sequence. It’s 5, 
it jumps one, it’s 6, jumps one, it’s 7... Or it’s 0, jumps one, it’s 1, jumps one, it’s 2... (Ponte et al., 
1998, pp. 68-69)

We see that the students were able to identify different kinds of patterns. They 
noticed simple repetition patterns (such as 0 5 0 5 ...) and more complex pat-
terns combining linear growth and repetition (such as 1 1 2 2 3 3 …). They 
also identified linear patterns as subsequences of rather complex patterns (0 5 
1 6 2 7 3 8 …).
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The class also analyzed patterns in the multiples of 4. Then, they turned to 
the multiples of 6 that were put in a column alongside with the multiples of 5 and 4.

	 0	 0	 0
	 5	 4	 6
	 10	 8	 12
	 15	 12	 18
	 20	 16	 24
	 25	 20	 30
	 30	 24	 36
	 35	 28	 42
	 40	 32	 48
	 45	 36	 54
	 50	 40	 60
	 55	 44	 66
	 60	 48	 72
	 65	 52	 78
	 70	 56	 84
	 75	 60	 90
	 80	 64	 96
	 85	 68	 102
	 90	 72	 108

Students’ discoveries were coming in bunches. They were rather excited, thus 
creating some difficulties to the teacher in recording and systematizing their 
contributions:

The units’ digit is always 0, 6, 2, 8 and 4.
The units’ digit is always even.
The tens’ digit does not repeat from 5 in 5.

The teacher tried to handle this enthusiasm: Take it easy! Let us verify if what your col-
league said is true. Attention! Look! Look how interesting what your colleague discovered! Suddenly, 
Sónia said: There are the same digits that for the multiples of 4. Even before this statement 
made any sense to the teacher, Vânia continued: But they are in a different order. The 
teacher figured out that the students were comparing the multiples of 4 and 6, 
and she indicated that to the class. Other students went on:
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It also begins with 0.
The other digits are in a different order.
There are multiples of 4 that are also multiples of 6.
The multiples of 6, beginning at 12, are alternately also multiples of 4.

The students expressed their generalizations in natural language. They could 
find again complex repetition patterns (such as 8 2 6 0 4 8 2 6 0 4 8…) and, 
more interesting, they were able to compare features of different patterns. In 
this activity they developed their number sense, they got a better grasp of the 
behaviour of multiples, and they did a lot of mental computation. 

In her reflection, Irene Segurado indicates that the students surpassed 
all her expectations. She says: “I had not foreseen the hypothesis of compar-
ing the multiples of the different numbers, because I had never put them side 
by side. Therefore, I experienced their discoveries with great enthusiasm” (p. 
71). She also reflects on the implications of working as a whole class, as com-
pared to small groups: “The contribution of a student was ‘picked’ by all his 
colleagues, yielding a greater number of discoveries” (p. 72). It would seem 
that in curriculum topics such as multiplication facts, multiples, and divisors, 
at the elementary school level, one can just do routine exercises. This example 
shows that, on the contrary, these topics allow for much exploratory and in-
vestigative work.

Example 2. How is the typical student in my class? 
A second example comes from a class of Olívia Sousa, a grade 6 teacher 
working with students aged 11 (see Sousa, 2002). The task was organized as 
a statistical investigation: “Imagine you want to communicate to another stu-
dent in a distant country, or, who knows, to an ET, how students in your class 
are?…” This was meant to have students taking all kinds of measurements 
about their bodies and collecting data about their families, which usually 
raises high levels of students’ enthusiasm.

Six 90-minute blocks were used to carry out this task, with stu-
dents working in small groups. The teacher divided the whole task in four 
main steps: (i) preparation of the investigation questions; (ii) data collec-
tion; (iii) data analysis; and (iv) reporting the results. In each step some 
written instructions were provided to the students. For example, the direc-
tions for step 2, were:
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With your colleagues: 

•	Write as a question each one of the characteristics that you are 
going to investigate.

•	What answers do you expect to obtain for your questions? 
•	How (through observing, measuring or a questionnaire) can you 

get the answers to your questions? 
•	Prepare data sheets to collect the data. 

The statistics measures (mean, median, mode) had not been taught to this class 
yet. A major decision in this experiment was to have the students working with 
their previous knowledge of these notions, instead of teaching them formally 
and after propose application exercises to practice. Therefore, the students were 
asked to find the mode (that is, “the most frequent value”), the median (the 
“middle” value), and the mean (assuming that they knew about it). In fact, 
they had no trouble in finding the most frequent value. To find the median took 
more time, but when they realized that they could order the values, it became 
easier. There were a few problems as some students forgot to count repeated 
values or took the median as the average of the extremes but the class discus-
sion was a good setting to sort these things out. And, finally, the students had 
already a strong intuitive notion of mean as something halfway between two 
values:

Inês: Then we put 1 and 35.
Alexandre: 1 and 40.
Prof. How did you get 1 and 35? (...)
Inês and Estelle: It was an estimation!
Inês: It is not as Mauro (1,20 m) nor as myself (1,50 m),. It is in the middle.
Estelle: It is between.
Inês: It is between the two.
Estelle: Mauro and Inês.

To find the mean of more than two numbers, with the help of the teacher, they 
were able to generalize the intuitive notion of adding two numbers and divid-
ing by two.

In her reflection, Olívia Sousa considered that carrying out this task was 
a significant learning experience, in which the students worked mathematics 
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notions of two domains, statistics and numbers and computation, in an inte-
grated way. Decimal fractions obtained from measuring quantities associated to 
the body, were no longer abstract entities but something with meaning. Working 
with these numbers – comparing, sorting, and operating – in a significant con-
text contributed towards students’ better understanding of them. She considered 
that, regarding statistics topics, the contact with different kinds of variables and 
different ways of collecting, organizing, and representing meaningful informa-
tion, promoted students’ understanding of the statistics language, concepts and 
methods that went much beyond simple memorization. This example shows that 
an investigation based on the students’ reality can be the starting point to develop 
investigation competences, to learn new mathematics concepts (in this case, sta-
tistics notions), and to practice and consolidate previous mathematics knowledge.

Example 3. How to amplify?
The next example concerns an experience carried out by João Almiro (2005), 
a grade 8 teacher:

The Visual Education teacher wants to amplify the picture below but she put the fol-
lowing condition: the area of the amplified picture must be 400 times larger than 
this. The teacher is going to do a overhead transparency with the picture and project 
it in the wall. But she has a big problem: At what distance she must put the overhead 
projector from the wall? How can we help her? Write a report that includes the de-
scription of your investigations, the computations that you made, your conjectures 
and possible solutions. 

(M. C. Escher, 1965)
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The students had to design their own strategies. João Almiro prepared the room with 
four overhead projectors (each one to be used by two groups of students) and gave a 
metric strip and a ruler to each group. The room was a little small for the projectors but, 
anyway, it was possible to work. The teacher did not provide any further instructions. 

The reactions from the groups were very different. Some were lost, not 
knowing what to do. As one student wrote in a final questionnaire: “I felt some 
difficulties with the overhead projectors since in the beginning we did not know 
where to start”. Others, immediately started trying to find ways of doing the task. 
The teacher was pleased to notice that all the groups understood that the projected 
rectangle would need to have length and width 20 times larger than the initial 
picture, so that the area was 400 times larger. The students had solved problems 
involving enlargements before and were able to mobilize this previous knowledge.

The big difficulty of the students was finding the distance that they 
should put the overhead projector from the wall so that the length and the width 
amplify 20 times. All the groups constructed a rectangle with the dimensions 
of the picture. They projected, measured what they found, and then figured out 
how many times the length and width were now larger. They quickly understood 
that they did not have space in the room to enlarge the projected dimensions 20 
times and, therefore, they had to use some strategy to know what distance the 
overhead projector had to be from the wall.

In one of the groups, the students understood that there was a direct 
proportion between the distance of the overhead projector to the wall and the 
number of times that the dimensions were amplified and quickly solved the 
problem. Four other groups, however, had much more difficulty. Helping each 
other, they went on measuring and arguing and when a group arrived to a con-
clusion, they shared it with the others. Sometimes they made conjectures that 
the other groups refuted and showed that were not correct. Finally, they arrived 
to solutions that the teacher considered acceptable. This is the final part of the so-
lution of one of the groups that used the notion of unit rate and cross products:



217

Measuring the picture, they found that it was a rectangle with 11,2cm by 
7,9cm. Enlarging the length 20 times yields 224cm. As they found that with the 
projector 1m from the wall transformed this length in a 44,5cm segment, they 
found the required distance using the cross product. For three other groups 
this was a very difficult task, and they were not able to do it, even with the help 
from the teacher.

Some students (about 1/5) reported a negative view of this work. 
One of them wrote: “I didn’t like these classes (…) I think that I learn more 
in classes doing exercises and asking questions”. However, other students were 
happy and recognized that they had significant learning. As one of them said:

The problems are a bit more complicated that those from other classes, at 

least the overhead one, in which we had to think a lot, develop, we had to 

think different methods, to achieve the ideal method to get the correct result. 

We had to begin by finding out what was to do. In textbooks, the questions 

are direct, they tell us immediately what we have to do.

These responses from students show that not all of them get very excited when 
the teacher presents challenging tasks. It is not because of “motivation” that these 
tasks have an important role in mathematics teaching. It is because they may pro-
mote significant learning. This problem required the students to draw on their 
previous knowledge of similarity, area, and direct proportion. They also had to 
design a strategy to collect data to figure out the relationship of the distance of 
the overhead projector to the wall and the size of the image.

Example 4. Numerical equations. 
This example is drawn from an algebra teaching experiment carried out by 
Ana Matos (2007) in her grade 8 class. This teaching unit included the study 
of numerical sequences, functions, and 1st degree equations. The class had a 
high number of students that were recent immigrants from countries such as 
Angola, Brazil, Cap Verde, Guinea, S. Tomé and Prince, and Romania. The unit 
was carried out in 12,5 classes (90 minutes each). It provided several kinds 
of learning experiences. The first part of the unit included exploratory and in-
vestigative tasks as a mean to foster the construction of new concepts. In the 
tasks about numerical sequences, the students had to explore numerical pat-
terns with different levels of difficulty (some of which presented pictorially). 
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These tasks created opportunities for identifying generalizations, which could 
be expressed in natural language at first but should progressively be expressed 
using algebraic language. In this part of the unit, letters were mainly used as 
generalized numbers and as unknowns in simple 1st degree equations. This is 
the overall plan of the unit:

Classes /Tasks Topics Objectives Aspects to develop

3,5

(Tasks 1, 2, 3)

Number sequences.

- To discover 
relationships among 
numbers;
- To continue sequences 
of numbers: divisors; 
multiples; squares; cubes 
and powers of a number.

- Searching patterns 
and establishing 
generalizations;
- Representing 
numerical 
relationships in 
natural language, 
by other means and 
symbols;
- To construct tables 
of values, graphics 
and verbal rules that 
represent functional 
relationships; 
- To understand the 
use of functions 
as mathematical 
models of real world 
situations;
- To particularize 
relationships among 
variables and 
formulae and solving 
simple equations;
- To solve problems 
represented by 
equations and to 
carry out simple 
algebraic procedures;
- To translate 
information from 
a representation to 
another.

3

Tasks 4, 5, 6 
and textbook 
exercises and 
problems

Functions
- Tables;
- Graphics;
- Functions defined 
by an algebraic 
expression.
Direct proportion as 
a function 

.
- Graphics of the 
functions 

 and 

.

- Read, interpret and 
construct tables and 
graphics for functions 
such as 

.

 or other 
simple ones;
- Relate in intuitive 
way the slope of a 
line with the rate in 
a function such as 

.

6

Tasks 7, 8 
and textbook 
exercises and 
problems

1st degree equations
- Equations with 
denominators and 
parenthesis;
- Literal equations

- Interpret the 
statement of a problem;
- Translate a problem 
by an equation;
- To search solutions of 
an equation;
- To solve 1st degree 
equations with an 
unknown;
- To solve literal 
equations, notably 
formulas used in other 
disciplines, for one of 
the unknowns.
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In the second part of the unit, the study of functions was introduced by two 
tasks involving relationships between variables. Although the letter is used both 
as a generalized number and as an unknown, here the focus was on its use as a 
variable and on the notion of joint variation. In the third part, tasks 7 and 8 con-
tinued the study of equations that the students begun at grade 7 and revisited 
in previous topics, solving new kinds of problems and equations with denomi-
nators. In this phase, letters were mostly used as unknowns and as generalized 
numbers. All tasks allowed the students to use different strategies exploring 
them on their own way. This approach stimulates students’ active participation, 
providing them multiple entry points, adequate to their ability levels.

Working with sequences and functions became an opportunity to use 
the algebraic language as a tool for generalizing and sharing meanings. The 
study of these topics required solving simple equations, which was important 
to create a common understanding among students, allowing them to continue 
learning more complex algebraic ideas. For example, in the first general discus-
sion, the sequence with general term 3n + 5 was considered and the following 
dialogue took place:

Teacher: So, which was the order in which 300 was placed?
Erica: Teacher, 3 x 100…
Teacher: OK, but does that give 300?
Erica: No, that is just with 3n.
Teacher: Oh, but I can’t change the rule like that because we would be working with another sequence, differ-
ent from this one. We just need to know which is the n that makes this expression yield 300.
Sofia: 300 – 5? I don’t know. [Students talk with each other.]
Erica: So, we make 3n = 300 – 5.

Some students did not follow Erica’s suggestion, and went on think-
ing on their own strategies. For example, Pedro claimed with enthusiasm: 
“3 x 98 + 5 = 299; 3 x 99 + 5 = 302. It will not pass on 300!” This discussion 
continued with the contributions of Isabel, who solved the equation at the 
board, using her previous knowledge. The discussion provided a contrast be-
tween Erica’s idea, the formal approach of Isabel and the intuitive process used 
by Pedro to see if 300 was a term of the sequence and supported a discussion 
abut the advantages of each process.

This example shows how students may be encouraged to design their 
own strategies and how these may be discussed and contrasted in the classroom. 
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Such discussion helps them to realize more connections and relationships and to 
become more resourceful to deal with new problems in the future.

An important feature of this teaching unit is the interconnection of 
sequences, functions and equations. The work with sequences leads itself to 
formulating generalizations and using the algebraic language to express them. 
In turn, this language may be used in functions and equations. And equations 
may be used again to solve problems concerning functions and sequences.

3. Direct teaching and exploratory learning

The examples of the previous section illustrate some key ideas about mathemat-
ics teaching and learning that I now address in more general terms.

Tasks
At the core of the former situations there were investigations, explorations 
and problems. It is important to note how these tasks differ from usual exer-
cises. If a student knows about equivalent fractions and use of parenthesis, an 
exercise may be the demand to simplify a fraction such as

  
or an expression 

such as . That is, in an exercise, applying a computational procedure 
or doing a straightforward reasoning provides the answer. Furthermore, the 
question is clear as well as the given conditions. On the other hand, a problem 
may be a task such as: “What is the smallest integer number that, divided 
by 5, 6 and 7 all yield 3 as remainder?” A problem clearly also states what is 
given and what is asked, but there is no straightforward way to find the solu-
tion. And this is an example of what we may call an investigation:

1.	 Write the table for 9s, from 1 to 12. Observe the digits in the different columns. 
Do you notice any pattern? 

2.	 See if you find patterns in the tables of other numbers.

Here the question is somehow open as the reader does not know what kind of 
“pattern” can be found. Whereas a problem states a well formulated question, in an 
investigation, deciding exactly what our question is, is the first thing we need to do.

We can differentiate tasks according to two main dimensions: (i) 
structure, ranging from closed to open, and (ii) complexity, ranging from ac-
cessible to complex as in the figure: 
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Explorations and investigations are both open tasks but with different complexity. 
Explorations are most suitable to assist the development of new concepts and rep-
resentations. Investigations provide the opportunity to students to go through a real 
mathematical experience of formulating questions, posing and testing conjectures, 
and arguing and proving statements. Problems are necessary to challenge students 
with non-trivial mathematics questions. And exercises are important to consolidate 
students’ knowledge of basic facts and procedures. In consequence, the teacher can-
not do his/her job properly using just one kind of task – the issue is to select an ap-
propriate mix, taking into account the students’ needs and interests (Ponte, 2005). 

Of course, tasks differ in other dimensions, such as the time needed to 
do them. For example, investigations that take a long time to complete are usu-
ally called “projects”. Another dimension of tasks is pure/applied. In our exam-
ples, some tasks were framed in “real-life” contexts (Sousa; Almiro) and others in 
“pure mathematics” contexts (Segurado; Matos).

Classroom roles
Usually, a class in which students work on explorations or investigations has three 
main segments (Christiansen & Walther, 1986): (i) introduction; (ii) development 
of the work, and (ii) final discussion and reflection about what was done, its 
meaning, and new questions to study. In the introduction, the task is negotiated 
between teacher and students; during the development of the work the students 
work by themselves; and the final discussion is a key moment of sharing ideas and 
institutionalising new mathematical knowledge. The roles of teacher and students 
change during these three segments. However, at each segment, rather than a one 
way flow of information, centred on the authority of the teacher, we may have a 
classroom marked by multiple and complex interactions.

 
         Accessible 

 

  Exercise   Exploration 

 
Closed      Open 

 

  Problem   Investigation 

 

           Complex 
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In the former examples, tasks were proposed to the students who had 
to discover strategies to solve them. They also had the responsibility of using 
logical arguments to convince the others of the correctness of their solutions. 
Therefore, the student had a voice, not only to ask clarification questions, but 
also to defend his/her claims as an intellectual authority. This is a quite differ-
ent setting from the case in which students receive “explanations” from the 
teacher, who shows “examples” and indicates “how to do things”, where the 
teachers and the textbook remain as the sole authorities in the classroom.

Controlling the class when the students are more agitated, as in the 
case of Irene Segurado, or leaving them to work with large autonomy, as João 
Almiro did, that is a decision that the teacher needs to take according to the 
particular situation. However, in all cases presented, the students are assigned a 
significant role in their mathematical work as a classroom community.

Classroom communication
In a standard mathematics classroom the teacher dominates the discourse, ei-
ther providing explanations and examples or posing questions and providing 
immediate feedback. The operating IRF sequence is well known – the teacher 
initiates with a question, a student responds and the teacher feedback closes down the 
issue, confirming or rejecting this response. We must note, however, that not 
all the questions fall in this pattern. In fact, there are many kinds of questions 
(e.g., focus, confirmatory and inquiry questions) and appropriate questioning 
is one of the main resources that teachers have to lead classroom discourse 
(Pólya, 1945).

In our examples, the students are encouraged to share ideas with their 
colleagues, often working in groups or in pairs. At the end of significant work, 
there are discussions with all the class. These are very important moments in 
which there is negotiation of meanings (Bishop & Goffree, 1986). Different 
representations may be contrasted and the conventional representations may be 
analysed in detail. The proper use of mathematical language is fixed. This is also 
the moment when the main ideas related to the task are stressed, formalized, 
and institutionalized as accepted knowledge in the classroom community.

During group work, communication among students may vary a lot. 
Sometimes, there is a real exchange of ideas and arguments. In other cases, only 
one or two students conduct all the work and the others remain silent. The way 
the teacher interacts with the students of a group is also of great importance. 
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If the teacher does not respond to the students’ questions, these may lose their 
motivation in the task. If the teacher provides all the answers, the possible benefit 
of the task for the students may be lost. This means that the teacher has to deal 
permanently with many dilemmas in conducting the classroom communication.

Teaching units
Just by itself, a very powerful task does not much. If the students are to experience 
some significant mathematics learning, they have to work on a field of problems 
for some extended period of time (at least for a couple of classes), where they have 
the opportunity to grasp the non-trivial aspects of the new knowledge, connect it 
to previous knowledge, and develop new representations and working strategies.

Teachers have to work through teaching units that, on the one hand, 
provide a journey that supports students’ learning trajectory (Simon, 1999) on 
a given theme and, on the other hand, support the development of students’ 
transversal aims for mathematics learning, including their representing, reason-
ing, connecting, problem solving, and communicating capacities. As Witmann 
(1984) indicates, designing these teaching units, according to careful criteria, 
is a major task for mathematics education researchers and classroom teachers.

Summing up
This analysis of different kinds of tasks, roles and communication patterns pro-
vides a characterization of two main styles of mathematics teaching that, in 
different grade levels, we find today in classrooms all over the world. We may 
call them direct teaching and exploratory learning:

Direct teaching Exploratory learning
Tasks
- tandard task: Exercise,
- The situations are artificial,
- For each problem there is a strategy 
and a correct answer.

Roles
- Students receive “explanations”,
- The teachers and the textbook are the 
single authorities in the classroom,
- The teacher shows “examples” so that 
they learn “how to do things”.

Tasks
- Variety: Explorations, Investigations, 
Problems, Projects, Exercises,
- The situations are realistic,
- Often, there are several strategies to 
deal with a problem.

Roles
- Students receive tasks to discover 
strategies to solve them,
- The teacher asks the student to explain 
and justify his/her reasoning,
- The student is also an authority.
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Direct teaching Exploratory learning
Communication
- The teacher poses questions and 
provides immediate feedback (sequence 
I-R-F).
- The student poses “clarification” 
questions.

Communication
- Students are encouraged to discuss 
with colleagues (working in groups or 
pairs),
- At the end of a significant work, there 
are discussions with all class,
- Meanings are negotiated.

Challenges to teachers

One must note that a class with exploration and investigation tasks is much 
more complex to manage than a class based in the exposition of contents and 
doing exercises, given the impossibility of predicting the proposals and ques-
tions that students may pose. In addition, the students do not know how to 
work on this kind of task and need that the teacher helps them doing such 
learning. Notwithstanding its difficulties and limitations, this work is essential 
in a mathematics class that aims educational objectives that go beyond those 
that are achieved by doing structured activities.

We need to ask what is necessary for a teacher to carry out such ex-
ploratory and investigative work in his/her classroom. An analysis of this activ-
ity and its contextual requirements leads us to two main areas. The first area 
concerns the personal relation with mathematical investigations and the second 
the use of investigations in professional practice.

Personal relation with mathematical investigations
1.	 To have a good notion about what a mathematical exploration/investigation is, 

how it is carried out, how results are validated (What is it/How to do it?)
2.	 To feel a minimum level of confidence and spontaneity in carrying out a mathematical 

exploration/investigation; 
3.	 To have a general view of mathematics that is not restricted to definitions, procedures and 

rules, but that values this activity.

Use of investigations in professional practice
1.	 To know how to select and adapt exploratory and investigative tasks adjusted to the 

needs of his/her classes;
2.	 To know how to direct students carrying out investigative work, in the phases of 

introduction, development of the work and final discussion;
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3.	 To have confidence in his/her capacity to manage the classroom atmosphere and the 
relations with students to carry out this work;

4.	 To develop a perspective about his/her role in curriculum management, so that math-
ematical exploration/investigations, in combination with other tasks, have an ad-
equate role according to the needs of the students.

These are not competencies that teachers develop from one day to another. The 
teachers involved in the projects that I mentioned developed professionally for 
an extended period of time. As important as their projects, was the work in 
communicating their experiences, writing papers and presenting conferences 
at professional meetings. This enabled a deeper look at the experiences that 
become an important resource for mathematics education, showing the path 
that curriculum development and change of professional practice may take. The 
development of this competence stands on three main elements: collaborating, 
researching on our own practice, and getting involved with the professional 
community, beginning at the school level.

Collaborating
Joining together the efforts of several people is a powerful strategy to cope 
with the problems of professional practice. Several people working together 
have more ideas, more energy and more strength to overcome obstacles than 
an individual working alone, and they may build on the diversity of competen-
cies. To do that, of course, they need to adjust to each other, creating an efficient 
system of collective work. When one of the members of the group is going 
through a difficult time, he/she receives the support from the others. When a 
member is really inspired, he/she energizes all group. 

Researching professional practice
Teachers’ culture has been essentially that of “knowledge transmission”, bridg-
ing the gap between scholarly knowledge and students. Today, this appears as a 
very limited view of the professional identity. Teachers, although experts in their 
subject matter field, are professionals that face complex problems and need to 
research them. This means that they need to be able to identify problems, gather 
information, consider different sides of the issues, test solutions, analyse data and 
interpret results. They have to present their studies to the other members of the 
profession. This does not depend so much in learning “research methods” but, 
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mostly, in keeping an inquiry stance (Cochran-Smith & Lytle, 1999), in knowing 
about defining issues and problems, and learning about theoretical notions that 
help in interpreting data. Investigating is a new element of the teachers’ profes-
sional culture that requires an integrative view of theory and practice as two 
sides of a single coin since, establishing a dialogue between both is a major step 
towards understanding and solving problems. 

Involvement with the professional community
Valuing a culture of research among teachers does not depend only on an ob-
stinate individual agency. On the contrary, it requires a fundamental role of the 
collective stances where teachers carry out their professional activity, especially 
the schools, pedagogical movements and associative groups. In Portugal, there is 
an important tradition of innovative projects carried out by collaborative groups 
and sharing experiences in associative settings. What is still missing is reflective 
and transformative activity at the school level. Teachers who want to bring about 
change need to carry out their own projects within the schools, showing the re-
sults to other teachers, stimulating reflection, creating the need to know more, to 
experiment, and, hopefully to get other teachers involved in common initiatives.

Conclusion

Mathematical explorations and investigations can be a significant part of the 
mathematics curriculum. This is because of a number of reasons:

•	They constitute an essential part of the mathematician’s work,
•	They favour the involvement of the student in work carried out in 

the mathematics class, indispensable for a significant learning,
•	They provide multiple entry points for students at different levels of 

mathematical competence,
•	They stimulate holistic thinking,
•	They can be integrated naturally in every part of the curriculum,
•	They promote complex thinking, but reinforce learning elementary 

concepts.

With greater or lesser emphasis, either mathematical investigations or key ele-
ments of investigating such as conjecturing, testing, and proving are recom-
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mended in the official curricula in many countries around the world (Ponte, 
Brocardo, & Oliveira, 2003). Investigating, teaching, and learning can be seen 
as an interconnected. The researcher who teaches benefits from the contact 
with students, as he or she listens to their questions. The teacher who investi-
gates can use current examples and open problems, making teaching a stimu-
lating activity. And through investigations, the student may become involved in 
genuine knowledge construction.

Mathematics teachers and teacher educators have interest to investigate 
their own professional practice, seeking to understand students’ and student 
teachers’ difficulties, the factors from the social and school contexts that influ-
ence them, and the power of teaching strategies to promote qualitative changes 
in students’ learning. As students may explore and investigate mathematics, 
teachers and teacher educators may investigate students’ mathematics learning 
and the conditions that enable it (Ponte, 2001).

In mathematics education there are at present two separate worlds. 
One is the world of research, as an intellectual elaboration with high rigour 
but with problematic practical relevance. The other is the world of practice, 
where problems are felt in a cogent way, but where there is often little capac-
ity to theorize and to introduce and sustain innovative solutions. We now have 
an emerging reality, the world of researching practice. One may expect that 
it will deal with questions with strong practical relevance, with proper rigor 
and intellectual elaboration. Working towards such an agenda is a joint task of 
teachers and teacher educators.
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Generating examples:
an intriguing problem-solving activity

Samuele Antonini, Dipartimento di Matematica – Università di Pavia, Italy,
samuele.antonini@unipv.it

Abstract

Generating examples of mathematical objects can be very difficult for students and it can be consid-
ered a problem solving activity. In literature, some potentialities of such activity are suggested, from 
different points of view and for different reasons. Our investigation aims to better identify the char-
acteristics and the potentialities of the processes of constructing examples. The analysis, carried out 
by observing students’ processes, reveals a high complexity of examples generation tasks. In particular, 
giving an example requires continuous integrations between semiotic activities on mathematical ob-
jects and argumentation, between concept image and concept definition, between cognitive and meta-
cognitive resources. The study on these processes highlights the potentialities of generating examples 
activity as a tool for researchers in investigating many aspects of students’ thinking and for teachers 
in promoting students’ understanding and conceptualization.

Keywords
Examples generation, problem-solving, argumentation and proof
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Introduction

The importance of examples in Mathematics is well recognised by mathemati-
cians, mathematics educators and philosophers. Lakatos (1976) has considered 
the production of examples as one of the basic activities in the development 
process of this science. Mathematicians are aware of the relevant contribution of 
examples both in problem solving (see Polya, 1945) and in education, and they 
have provided to collect examples and counterexamples in Analysis (Gelbaum 
& Olmsted, 1964), Probability and Statistics (Romano & Siegel, 1986; Stoyanov, 
1987), Topology (Steen & Seebach, 1978; Khaleelulla, 1982), Graph Theory 
(Capobianco & Molluzzo, 1978), and in general in Mathematics (Gelbaum & 
Olmsted, 1990).

In the last years, there has been an increasing interest in the examples 
also in mathematics education, as we can see by the high number of journal 
publications and sessions dedicated to this topic at the conferences. It is worth 
reminding, for example, the Special Issue (vol. 69, n. 2, 2008) “The Role and Use 
of Examples in Mathematics Education” of the Journal Educational Studies in Mathematics 
and the Research Forum “Exemplification: the use of examples in teaching and learning 
mathematics“ at the Conference of the International Group for the Psychology in 
Mathematics Education in Praha in 2006 (see Bills et al., 2006).

Nowadays, we can read studies on examples in mathematics educa-
tion carried out by different approaches. In this paper, I refer to examples of 
mathematical objects and I consider in particular the examples generation task. 
This is an activity with many potentialities in education (see Watson & Mason, 
2005), which has been studied in different situations from cognitive and epis-
temological points of view, as in defining (Dahlberg & Housman, 1997), in 
generation of conjecture, argumentation (Boero et al., 1999; Antonini, 2003; 
Alcock, 2004) and proof (Balacheff, 1987; Harel & Sowder, 1998). The act of 
generating an example offers also to teachers and researchers a diagnostic tool 
“that provides a ‘window’ into a learner’s mind”, because the examples produced by stu-
dents “mirror their conceptions of mathematical objects involved in an example generation task” 
(Zazkis & Leikin, 2007, p. 15).

One of the important approaches in studying examples production is 
the analysis of cognitive processes involved in it, a study that could answer to 
one of the research questions proposed in (Bills et al., 2006, p. 125): “What is 
entailed and revealed by the process of constructing examples and how does construction of examples 



231

promote mathematical understanding?” In this article, I aim to show the complexity of 
processes involved in examples generation, and at the same time, to present a 
tool to analyse these processes.

Theoretical framework and methodology

Giving an example is often an open problem, without an algorithm to solve it, 
and with a not unique solution (in general and if there exists): “the state of generat-
ing examples can be seen as a problem solving situation, for which different people employ different 
strategies” (Zaslavsky and Peled, 1996, p. 76).
In this article, according to Zaslavsky and Peled (1996), I consider the con-
struction of examples as a problem solving activity. This point of view makes 
the study of strategies for producing examples and of the underlying cognitive 
processes meaningful. The processes are analysed with particular attention to 
both strategies and subjects’ control over the efficacy of the strategies, accord-
ing to the role of these aspects emphasized in the studies about mathematical 
problem solving (see, for instance, Schoenfeld, 1992).

Moreover, the analysis of processes takes into account those aspects 
that are specific in the construction and treatment of mathematical objects: in 
particular, I consider the semiotic representations of objects and the cognitive 
part of concepts. I respectively will refer to the notion of semiotic register of repre-
sentation (Duval, 1995), and to the classic distinction between concept image and 
concept definition (Tall & Vinner, 1981), together with the notion of cognitive cat-
egory, prototype and metaphors, (Rosch, 1977, Presmeg, 1992, Lakoff, 1987).

Collection of data of these studies was carried out through interviews, 
in which students were asked to produce mathematical objects. The subjects 
were students at university level (see Antonini et al., 2007; Antonini et al., 
2008) and PHD students in Mathematics (see Antonini, 2006). The analysis of 
processes carried out by experts is interesting as a form of mathematical think-
ing, and in particular it is common in problem solving research for the rich-
ness, complexity and efficiency of their reasoning.

We present here only the problems that will be analysed in this arti-
cle. All the tasks have an open form (“Give an example, if possible”), so that the stu-
dents must explore the situation to solve the problem. When the example does 
not exist (problem 5), an argumentation or a proof of this impossibility is 
required. In order to stimulate experts’ exploration processes, I propose them 
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the problem 1 and 2 which are particularly difficult. These two problems, in 
general, were not proposed to university students. The following is the list of 
the problems (in brackets we put the label identifying the problem within the 
paper):

1.	 Give an example, if possible, of a real function of a real variable, non con-
stant, periodic and not having a minimum period (the periodic function)

2.	 Give an example, if possible, of a function f:[a,b]∩Q→Q (a,b∈ Q) continu-
ous and not bounded (the function on Q)

3.	 Give an example, if possible, of a binary operation that is commutative but 
not associative (the operation, modified from a problem discussed in Zaslavsky 
& Peled, 1996)

4.	 Give an example, if possible, of an injective function f:[-1,1]→R, such that 
f(0)= -1 and  (the injective function)

5.	 Give an example, if possible, of a twice differentiable function f:[a,b]→ R, 
such that f is zero in three different points and its second derivate is positive 
in the domain (the convex function)

Some students’ solutions of these problems will be presented in the following 
sections.

Three processes

From the analysis of the transcripts, I identified three processes (see Antonini, 
2006) that can be the basic components of more complex processes of generat-
ing examples.

1. Trial and error: 
The example is sought among some recalled objects; for each example the subject only observes whether 
it has the requested properties or not.

Excerpt: Franco (last year of the degree in Physics, the operation example)

“Which operations do I know? Sum, multiplication,... but they are no good.... 

The product of matrices!... No, no, it is associative ... and it is not commuta-

tive at all. Let’s see... division is not associative. No, it is no good, it is not 
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commutative. ... The exponential! No, it is not a binary operation. ... Well, if I 

take ab it is binary... but it does not commutate, so... Which other operations 

are there? [...]”

As we can see, if an example does not satisfy the required properties, another 
example is considered: after any unsuccessful attempt, the process starts from 
the beginning. It is interesting to compare this excerpt with Sandro’s solution of 
the same problem (see the next session). Sandro as well considers the division 
and, differently from Franco, when he realizes that this operation is not com-
mutative, he does not consider another operation, but he modifies the division 
transforming it into an operation which is a solution of the problem.

I underline that in trial and error process the subject does not neces-
sarily recall the objects by chance. For example, Filippa (PHD in Mathematics) 
considers the binary operations in set with one element, then in set with two 
elements, and so on, testing the required properties for every operation. Her 
process is carried out by trials and errors but the examples are generated with 
a precise and planned order.

2. Transformation: 
An object that fulfils part of the requested properties is modified through one or more successive trans-
formations until it is turned into a new object with all the requested characteristics.

Excerpt: Stefano (PHD student, the function on Q example)

“Now… [sketching a graph, figure 1]… where c will be an irrational. Of 

course this one does not have [all] values in Q. Let’s make it have values in Q.”

Figure 1

 

RL | Generating examples: an intriguing problem-solving activity



234

ICME 11 Proceedings

“I might take a sequence [in the rest of the interview it will be clear that the sub-

ject means a sequence of irrational numbers], so… [drawing, see figure 2]… and 

there, in each little interval, taking a sort of maximum or minimum. Well, right, any 

rational number between the maximum and the minimum value. Is it continuous? 

[…] Then on the other side [meaning in the interval between c and b], the same.”

Figure 2

 
Stefano considers a not bounded function and then he modifies it in such a way 
that it assumes rational values.

In general, transformations and adjustments are physically carried out 
on one of the objects’ representations, which works as provider of the raw ma-
terial to be shaped in order to obtain the final object. In fact, Stefano really acts 
on the graph, drawing and transforming signs. In this sense, the transformation 
processes is similar to a process of construction and modification of physical 
objects in real situations.

We can see another solution of this problem. The process is the 
same, but the register of semiotic representation is different. Sandro, a PHD in 
Mathematics, generates his example transforming the analytical representation 
of the function:

“[...] example f(x)=  with f:[0,2]∩Q→R. It is continuous in any points, 

not bounded. Let us look for f:[a,b]∩Q→Q with such properties.

I make it go into Q, but how? …if I take the first three decimal digits?

…well, let us see before by integer part. [...]

f(x)=  [the square brackets denote the integer part]”
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As in Stefano’s solution, Sandro transforms the first function in such a way that 
it is a solution. It is not surprising that Stefano and Sandro start from the same 
function, a familiar object that seems to be a prototype of not bounded and 
continuous function. The only difference between these processes is the choice 
of the function representation and consequently, of the transformations that 
force the function to have values in rational numbers.

At this point, I think it is clear that by transformations I refer here to a 
very wide class including transformations on graphs of functions, movements 
of parts of geometrical figures, transformations of an algebraic formula into 
another (not necessarily equivalent) and so on, that is any transformation of the 
signs representing mathematical objects.

If the transformational process requires an intensive semiotic activity, 
the following process is performed by a sequence of inferences.

3. Analysis: 
Assuming that the object is been constructed, and possibly assuming that it satisfies other properties 
added in order to simplify or restrict the search ground, further properties are deduced up to conse-
quences that may evoke either a known object or a procedure to construct the requested one, that is 
a solution.

Excerpt: Sandro (PHD student, periodic function example)

“It seems to me that if it is continuous it is no good ...or maybe I should 

make it on Q. Well, let’s not complicate things... ... The examples I know are 

continuous enough periodic functions... and even if I adjust them I cannot 

get out of there … no, I must construct it from scratch. ... Example, a function 

that every 1/n is the same.

f(1/n)=f(2/n)......

Ah, so f(p/q) gets the same value! Now it will be enough to put another value 

for non rational numbers, for instance f(x)=0, if x∈ Q and f(x)=1, if x∉ Q.”

I named this strategy analysis for the analogy with the equally named meth-
od used by ancient Greeks for both geometrical constructions and search for 
proofs:
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“in both cases, analysis apparently consists in assuming what was being 

sought for, in inquiring where it comes from, and in proceeding further till 

one reaches something already known” (Hintikka & Remes, 1974, p.1).

Anticipation and transformation

The empirical data show that often all the three processes are involved in gener-
ating examples, even if the transformational process seems the most common, 
both in experts and in students’ solution.

In mathematics education we can read many articles in which pro-
cesses involving a transformation are analysed. Even if these studies are car-
ried out with different points of view and are based on different theoretical 
assumptions, it is often underlined that one of the most important ingredients 
of transformation is anticipation (see, for example, Simon, 1996; Harel e Sowder, 
1998; Boero, 2001): to perform an efficient transformation, one has to foresee 
some aspect of the final shape of what is transformed.

Also in example generation processes, we can observe the role of an-
ticipation in leading the transformations, as we can see in the following excerpt 
(Sandro, PHD student, operation problem):

“[...] So, a non-associative operation is division: a*b=a/b. Well, I should take 

out 0, I will adjust the definition set later. Now, the problem is that it is not 

commutative. Can I use it anyway? ... Ah! I can make it commutative by mak-

ing it symmetrical! a*b=a/b+b/a ...[…]”

Sandro deals with a non-associative and non-commutative operation. Transfor-
mation of the considered operation into a new operation is performed within 
the algebraic register and seems to be caused by the fact that the subject translates 
the commutative property in this register into symmetry between representa-
tion’s symbols and non-commutative property into non-symmetry. This transla-
tion seems to allow the subject to anticipate the possibility of constructing a new 
operation having the commutative property, by means of a treatment1 within the 

1 Duval (1995) describes two types of transformations of semiotic representations: treatments and conversions. The 
former ones are transformations of representations within one single register, the latter ones are trans-
formations of representations consisting of a change of register without changing the denoted object.



237

algebraic register that aims at “symmetrising” the symbolic writing so that the oper-
ation may become commutative (“I can make it commutative by making it symmetrical!”).

From the experimental data, it seems that experts choose the register 
of representation in such a way to perform efficient transformations foreseeing 
some aspect of the final form of the modified object. The lack of anticipation 
makes a transformation a blind attempts and the sequence of transformations 
could become a trial and error process. Some other examples can be found in 
(Antonini et al., 2008).

Metacognitive processes

Metacognitive processes have the function of planning and monitoring and 
have a fundamental role in problem solving (Schoenfeld, 1992). The following 
excerpts show these processes in the particular case of examples generation.

Excerpt: Marco (PHD student, the function on Q example)

“It is like… [he sketches a graph of a function with a vertical asymptote in 

x=c].

[...] This is of the type 
 
 but it is not in Q. How can I map it into Q? I don’t 

really know how I could handle this one [in Italian: “non so proprio come 

potrei aggeggiare”]. [...] Well, the typical one like this is . But how can 

I map it into Q?...... Well, let’s write what the problem asks …”

Marco sketches a graph and writes the analytical expression of a non bounded 
function. Therefore he has two representations of a starting object on which he 
can work and he asks himself how to do. It is interesting the use of the meta-
phor “to handle”: I have translate in this way the unusual Italian verb “aggeg-
giare”, that recalls a manual activity related to the explorative use of a device. 
Marco realizes that the problem is forcing the function to have rational values 
and he makes explicit that he does not know how to do. I underline that Marco 
does not state that there are no transformations but that he, in this situation, 
does not manage to identify transformations that could respond to his goals. 
This awareness leads him to change the strategy initially based on transforma-
tion and to activate the analysis process:
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“[...] Then, let’s write what the problem asks… f:[a,b]∩Q→Q continuous: that is 

∀ a,b∈ Q, f -1([a,b]∩Q) is open and not bounded: ∀n ∃x |f(x)|≥n n ∀n ∃x |f(x)|≥n x |f(x)|≥n, well, actually, 

the absolute value is not so important, if I find it negative I will find also positive.

Maybe it is sufficient the integer part, because I see there |f(x)| ≥ n then it is 

sufficient f(x)=n. Then f(x)= .”

Here Marco studies some properties of the required function until one of the 
properties evokes the integer part and the solution is constructed modifying 
the initial function. Therefore, the analysis process, activated by a metacognitive 
control, has allowed to identify one efficient transformation.

Now I propose an analysis of an excerpt already considered in a previ-
ous section (Sandro, PHD student, periodic function), to highlight the cultural 
origin (see Morselli, 2007, p. 125) of a metacognitive process.

Sandro: “It seems to me that if it is continuous it is no good ...or maybe I should 

make it on Q. Well, let’s not complicate things... ... The examples I know are 

continuous enough periodic functions... “

Sandro conjectures that the continuous functions cannot fulfil the required prop-
erties. In fact, it is possible to prove that a periodic continuous function, is either 
constant or has a minimum period. Sandro is also aware that the periodic function 
that he knows are continuous or “continuous enough”, where with this expres-
sion he probably refers to piecewise continuous functions. In any case, they are 
functions that make valid his conjecture on the existence of a minimum period.

Sandro: “and even if I adjust them I cannot get out of there …”

Sandro anticipates that there are no transformations to modify these func-
tions in such a way they become neither non continuous nor non “continuous 
enough”. We can observe here the use of two metaphors that seem to character-
ize two different points of view in seeing the idea of transformation: the verb 
“adjust” which evokes an action on objects, and the expression “I cannot get out of 
there” which refers to a transformation as a process from a set into another set.

Sandro: “no, I must construct it from scratch. ...”
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Without transformations, Sandro changes his strategy and activates the analy-
sis process. Finally, as seen above, he concludes successfully with the Dirichlet 
function.

Therefore, while Marco analyses his own cognitive resources, available 
in one situation, the Sandro’s process is based on an anticipation with strong 
cultural roots: a conjecture on periodic functions and a consideration on the 
possibility to activate an efficient transformational process.

Prototypes, concept image and concept definition

The examples generation activity can be an efficient tool to observe some ef-
fects and processes that can be described as prototypes effect (Rosch, 1977, 
Presmeg, 1992), or by the notions of concept image and concept definition (Tall & 
Vinner, 1981). In a previous article (Antonini et al., 2008), we have shown as 
referring to a prototype and to some aspect of concept image can efficiently sup-
port the examples production but can also generate conflicts and make difficult 
to solve the task.

Here, we have already seen how prototypes play a significant role in these 
processes (see protocols of Stefano, Sandro and Marco). I add just a brief descrip-
tion of the case of Marisa (PHD in Mathematics, the periodic function problem) 
to show that also for an expert these aspects can be significant in failing the task.

Marisa is astonished because, for her, a periodic function is “periodic if it 
repeats itself in the same way […]… something that repeats itself…”. She concludes that if a 
function is periodic, then it has a minimum period, and she tries to prove it. The 
process is based on a concept image of periodic function that makes impossible 
to solve the problem. We observe how the activity of examples generation, in this 
case, has allowed to make observable this aspect of concept image, strong enough 
to darken the mathematical definition and its use also for a subject with a high 
mathematical culture.

Conceptualization and mathematical definition

The examples generation activities reveal didactical potentialities that requires fur-
ther studies. I report here a transcript in which the process of generating an example 
has given an important contribution to make sense of one aspect of the mathemati-
cal definition of limit (for a more detailed analysis see Antonini et al., 2007).
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Letizia (forth year of the degree in Mathematics, the injective function 
problem), after having sketched and modified a graph, focuses on the values of 
the function at the end points of the interval. The problem is that, in her opin-
ion, the limit of the function should be equal to the value it assumes.

Letizia: “I was thinking… Can I define my function in x=1, by giving any 

value? No, because if I define f(1)=3, then the limit for x tending to 1 of my 

function is 3 [see figure 3].

 […] Maybe, I want the function to be continuous in the intervals where I’m 

defining it, but it could even be not continuous. If I define f(1)= - 2, so that 

it is injective, my problem now is to see what is the value of the limit for x 

tending to 1 of this function. I don’t know what is the value, I mean, looking 

at the graph I would say that the limit is –2 and not 2.”

Figure 3

Interviewer: “Try to think of the definition of limit.”

Letizia: “Ah, but there is a neighbourhood with a hole! I mean, I write you 

the definition of limit [she writes down the definition]. I must exclude the 

point to which the x is tending, then it is ok, the function that I drew is ok, 

it tends to 2 for x tending to 1. What a nice exercise! Eventually I understand 

why in the definition of limit it is necessary to exclude the value of the point, 

I understand the meaning for neighborhood with a hole!”
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The suggestion of the interviewer has been essential and has the role of ex-
ternal metacognitive control. With the last comment (“What a nice exercise! 
Eventually I understand…”) Letizia (a student who have already had some ex-
perience in Mathematics!) makes explicit that this activity has given her the 
possibility to refine her understanding of the meaning of the mathematical 
definition of limit.

Examples generation, argumentation and proof

It is well known that for some students giving some examples is enough to 
prove a statement (see, for example Balacheff, 1987; Chazan, 1993; Harel 
& Sowder, 1998). On the other side, generating examples could be relevant 
also for experts in conjecturing, argumenting and proving (see, for example, 
Alcock, 2004). In a study on explorative processes, Boero et al. (1999) iden-
tify four models of production of a statement, highlighting different roles 
of the examples generation. In Antonini (2003), I analyse some aspects of 
examples that can affect the argumentative processes and the structure of 
argumentation.

By now, the relationships between examples and argumentation has 
mainly seen from the point of view of argumentation. In this article I take 
the opposite point of view, focusing on argumentation processes in examples 
generation tasks. In these activities, it is common to observe argumentation, 
and sometimes mathematical proof, supporting some properties that an object 
should have - as in the analysis process - or the impossibility of generating an 
object. Here, I would like to spend some words about argumentation produced 
to show that an object does not exist.

In general, we can observe three situations:

1.	 The research of examples fails, the subject is convinced that the example 
does not exist but the only argument is his/her failure. In this case, there 
are not useful arguments to construct a mathematical proof.

2.	 In the analysis process, a contradiction is deduced. In fact, through the 
analysis it is sometimes possible to deduce a property that may evoke the 
required object, but in other cases it might happen to deduce a contra-
diction.
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For example, Cristiano (PHD in Mathematics, the periodic function 
problem) is aware of this double possibilities of the analysis and says: “I 
don’t know whether it exists, but I suppose it does, so either I find it or else I prove it does not 
exist”. The subject is not convinced that the requested object exists and be-
lieves that analysis may allow him to either find the function or prove that 
it does not exist.

In this case, the analysis process offers elements for constructing a 
proof by contradiction: there are no examples having the requested proper-
ties, in fact assuming the existence of such an example implies a contradic-
tion. In cases like this, we can observe cognitive unity (in terms of Garuti et al., 
1996) between exploration and proof construction processes, and structural 
continuity (in terms of Pedemonte, 2007) between argumentation and proof. 
On the other side, if the student plans to product a direct proof, as it could 
happens because direct proof is closer to his/her conception of proof (see 
Antonini & Mariotti, 2008), many difficulties could appear because new 
arguments are needed to construct the proof.

3.	 The transformations modify the objects in something that does not fulfil 
the required properties and the impossibility of generating the example is 
based on the reasons of the failure of the transformation process.

In this case, the proving process could be very problematic, in particu-
lar when the subject tries to produce a proof that is close to some of the 
arguments related to transformations. In this case, it is the search of cognitive 
unity between argumentation and proof that causes the main obstacles. In 
other words, the process of generating the conjecture could interfere with 
the proving process, causing significant difficulties, as we can see in the 
following excerpt.

Federica (fifth year of the Mathematics Degree, the convex function problem) 
tries to construct a convex function with three zeros joining two convex func-
tions and she realizes that the problem is in the joining point:

“We should manage to join two functions […] in a smooth way so that the 

result is differentiable. [...] I give you an example [see figure 4], this func-

tion is zero in at least three points but it doesn’t work because there is a point 

where it is not differentiable.”
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Figure 4

“The problem is that, I ask myself if in order to have the derivability in points 

like this, I have necessarily to consider a piece of function that is concave; or, 

if not concave, constant, that is not good because the second derivate is zero.”

I omit a part of the interview in which Federica tries to construct the function 
by defining the analytic expressions in two adjacent segments and in the point 
that separates the segments. After this work she realizes that the problem is 
again in joining the expressions so that the requirements are fulfilled and she 
produces a conjecture and an argumentation:

“I suspect that it is absurd. Because with functions like that I wrote, when 

I define [the value of the function] in one point I lose the second derivate 

everywhere positive. However, if I define it by piecewise it is not easy to joint 

them [the pieces] so that it [the function] is twice differentiable. Then I ask 

myself if it is absurd. Let’s see as this means. I write down the hypotheses. 

Now, if I assume that there exists a function fulfilling the hypotheses I want 

to arrive at an absurdity. I draw my hypotheses [see figure 5].”

Figure 5

RL | Generating examples: an intriguing problem-solving activity
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“I ask myself what the hypotheses mean. If the function were … […] Let’s 

see what happens in n [she is assuming that the function is composed by two 

convex functions joined in a point named n] […] I would like to show that 

the function in n either isn’t continue or isn’t differentiable, in order to arrive 

at an absurdity.”

Subsequently, Federica is involved in the production of a proof that the function 
does not exist but she has many difficulties. The main obstacle seems to be the 
interference of the process of generating the conjecture in the process of the 
proof production, as we can see in her decision of treating the problem of the 
joining point also in the proof.

We can observe here a continuity (in the sense of Garuti et al., 1996 
and Pedemonte, 2007) between the structure of argumentation and that of the 
planned proof. In fact, Federica plans to prove her conjecture by contradiction, 
and it seems that she does not assume only that the function exists, but, in con-
tinuity with the precedent stage, she assumes that the function is composed by 
two convex functions joined in the point n. In addition, she wants to look for 
a contradiction related to the point n, in particular she wants to prove that the 
function in n is not differentiable or not continue.

Only when Federica, after some suggestions of the interviewer, leaves 
the idea of the joining point, she manages to conclude her proof.

Conclusions

In this article, I have presented an analysis of processes involved in examples 
generation, showing their richness, complexity and potentialities. Constructing 
an example is a rich problem solving activity, efficient for didactical and diag-
nostic goals, for what it can reveal on conceptualization of students and with 
big potential from the point of view of education.

The transformation process is very common both in experts and 
students’ protocols. Even if further investigations are needed to explore its 
potentialities, transformation on objects seem to have a significant role in con-
ceptualization, as described by Piaget:

“To know an object is to act on it. To know it is to modify, to transform 
the object and to understand the process of this transformation and, as a conse-
quence, to understand the way the object is constructed ”(Piaget, 1964, p. 176)
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One of the role of the teacher is leading students to the awareness and 
familiarity with transformations of mathematical objects in different registers, 
and promoting processes of anticipation.

The analysis process is sophisticated and not common in students’ 
solution. On the other side, it seems a particularly significant process from 
cultural point of view, for the role that it assumes in scientific and, in general, 
speculative activities.

Further studies are necessary in different directions. It is necessary 
to investigate the identification of other processes, and the relationships with 
conceptualization, argumentation and proof. One open question is the educa-
bility of the processes, even if I think that suitable didactical activities can favour 
their development. Finally, a crucial research question regards the cultural and 
cognitive relevance of the processes of generating examples in Mathematics, in 
Sciences, and, in general, in reasoning.

RL | Generating examples: an intriguing problem-solving activity
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How Mathematics Education can help 
in shaping a better World?

Ubiratan D’Ambrosio, ubi@usp.br

Abstract

As educators we influence the new generations that, in two decades, will be in 
charge of World affairs. I address our responsibility, as Mathematics Educators, in 
preparing them to shape a new civilization, in which social justice and Peace with 
dignity for all prevail. This needs an universal ethics synthesized as 1. respect for 
the other/the different; 2. solidarity with the other/the different; 3. cooperation 
with the other/the different. History tell us that Mathematics is the dorsal spine 
of Modern Civilization, hence Mathematics and Mathematics Education have eve-
rything to do with the State of the World. In an era of increasing globalization 
in all sectors of society, the ethics of respect, solidarity and cooperation is abso-
lutely necessary. In this talk I will discuss why and how the universal ethics of 
respect, solidarity and cooperation, synthesized above, is intrinsic to the Program 
Ethnomathematics. Through Ethnomathematics we may be effectively contribut-
ing to achieve social justice and Peace with dignity for all.

Keywords
Peace, Social Justice, Ethics, Globalization, Ethnomathematics.
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The State of the World

The main issues affecting society nowadays can be synthesized in

•	national security; personal security;
•	government/politics;
•	economics: social and environmental impact;
•	relations among nations;
•	relations among social classes;
•	people’s welfare;
•	the preservation of natural and cultural resources.

Mathematics, mathematicians and mathematics educators are deeply involved 
with all these issues. History tells us that the technological, industrial, military, 
economic and political complexes have developed thanks to mathematical in-
struments, and that mathematics has been relying on these complexes for the 
material bases of its continuing progress.

It is also widely recognized that mathematics is the most universal 
mode of thought and that survival with dignity is the most universal problem 
facing mankind.

It is expected that scientists, in particular mathematicians and math ed-
ucators, who have much familiarity with the most universal mode of thought, 
be concerned with the most universal problem, that is, survival with dignity. 
It is absolutely natural to expect that they, mathematicians and math educators, 
look into the relations between these two universals, that is, into the role of 
mathematicians and math educators in the pursuit of a civilization with dignity 
for all, in which inequity, arrogance and bigotry have no place. This means, to 
achieve a world in peace (D’Ambrosio 2001).

My current concerns about research and practice in math education fit 
into my broad interest in the human condition as understood in the history of 
natural evolution (from the Cosmos to the future of the human species) and to 
the history of ideas.

For over two decades, I have been formally involved with the Pugwash 
Movement and the pursuit of Peace (in all four dimensions: individual, so-
cial, environmental and military). This movement originated from the Russel-
Einstein Manifesto of 1955 (Pugwash 1955). Paradoxically, the amazing 
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progress of Western Civilization did not bring progress in the four dimensions 
of Peace. On the contrary, it provided more powerful material and intellectual 
instruments for the violations of Peace, in all these four dimensions.

My research program is to establish the responsibility of mathemati-
cians and mathematics educators in offering venues for Peace. The Program 
Ethnomathematics, which will be discussed below, is a response to this.

Let me begin with a few basic questions, which guide my research 
program on mathematics, history, education and on the curriculum.

We need a reflection on the nature of mathematical behavior. How 
is mathematics created? How different is mathematical creativity from other 
forms of creativity?

To face these questions, there is need of a complete and structured 
view of the role of mathematics in building up our civilization, hence tp look 
into the history and geography of human behavior.

I emphasize that History is not only a chronological narrative of events, 
focused in the narrow geographic limits of a few civilizations which have been 
successful in a short span of time. The course of the history of mankind can not be 
separated from the natural history of the planet. History of civilization has devel-
oped in close and increasing interdependence with the natural history of the planet.

Why teach mathematics?

The title of this section is the same as Session in the Third International Congress 
on Mathematical Education/ICME 3, held in Karlsruhe, Germany, 1976, when 
I was responsible for the session on “Objectives and Goals of Mathematics 
Education: Why Study Mathematics?”. The main focus of the session was a criti-
cal perception of the objectives of education through history, in different civi-
lizations (D’Ambrosio 1979).

We find, in every civilization and in all the times, some form of educa-
tion. From initiation practices through complex education systems, the major 
goals are always:

•	to promote creativity, helping people to fulfill their potential and rise 
to the highest of their capability, but being careful not to promote 
docile citizens. We do not want our students to become citizens who 
obey and accept rules and codes which violate human dignity.
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•	to promote citizenship, transmitting values, and showing rights 
and responsibilities in society, but being careful not to promote 
irresponsible creativity. We do not want our student to become 
bright scientists creating new weaponry and instruments of 
oppression and inequity.

The big challenge we face in education is the encounter of the old and the 
new. The old is present in the societal values, which were established in the 
past and are essential for life in a community. Since the modern state, this is 
intrinsic to the concept of citizenship. And the new is intrinsic to the promo-
tion of creativity, which points to the future.

I answer the question “why teach mathematics?” simply saying that 
the utmost goal of Mathematics Education is to cooperate in building up a civi-
lization in peace, which is free of inequity, arrogance and bigotry and gives the 
opportunity to every individual to reach the full realization of its capabilities.

The strategy of education systems to pursue goals is the curricu-
lum. Curriculum is usually organized in three strands: objectives, contents, 
and methods. Every educational moment can be identified with the objective 
(why), contents (what) and method (how). This traditional approach must 
accept that three components are in solidarity, just like a point in space, This 
is, indeed, a cartesian model of the curriculum. This model implies accept-
ing the social aims of education systems, then identifying contents that may 
help to reach the goals and developing methods to transmit those contents. 
Traditionally, contents are dictated by the inner structure of mathematics and 
give origin to methods and subordinate vague social aims to achievement of 
the contents.

Let us more closely look into what is going on in teaching mathemat-
ics. We immediately recognize the assumption of a form of universality, since 
what we observe happens in all countries at all levels. This universality is justi-
fied by arguments that I will discuss below.

The character of universality of Mathematics dominates contemporary 
reflections about the curriculum. Indeed, rationality is universal and mathemat-
ics is an expression of rationality. Rationality is the support for the develop-
ment of strategies to deal with space and time, and ways, modes and styles of 
comparing, classifying and ordering, evaluating and measuring, inferring and 
concluding. These strategies have been developed, in very specific form, in the 
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various natural and cultural contexts of the World. The same as religion, lan-
guage, art, dressing, cuisine, medicine, they all are strategies to deal with daily 
life problems and situations and to explain observed facts and phenomena.

In the natural and cultural context of the Mediterranean Basin, specific 
strategies were developed in Sumer, in Egypt, in Israel and in Babylon and, 
through the dynamics of cultural encounters, were absorbed and incorporated 
by the Greeks to their own strategies. This gave rise to a very specific strategy, 
generating a concept relying on a specific concept of proof. This is the es-
sence of what we call Greek Mathematics, which is characterized by practical 
achievements, for example, constructing war machines and architecture, and 
by theoretical aspects, that is, relying on proofs as criterion for truth. But Greek 
Mathematics strongly favored theory. This is clear when we analyze the works 
of Archytas of Tarentum (Ruffman 2007). Romans absorbed, again thanks to 
dynamics of cultural encounters, Greek Mathematics; Although we see signifi-
cant mathematics theoretical achievements in the Roman Empire, for exam-
ple Diophantus and Claudius Ptolemaeue, in Alexandria, the Romans instead 
privileged practice. This is clearly seen in the classical book on Roman sci-
ence De Architecture, by Vitruvius, written in the 1st century BCE (Loeb 1931). 
With the emergence of Christianity, in the 4th century, Greek Mathematics and 
Philosophy were ignored. After the Crusades, 12th and 13th centuries, Greek 
Mathematics, which was preserved, commented and expanded by Muslim 
scholars, particularly by al-Kwarizmi and its Algebra, was incorporated to the 
Roman intellectual centers and to the quotidian. Indeed, Greek Mathematics, 
thanks to Arabic contributions, became a new mathematics which flourished in 
the European Lower Middle Ages.

A relevant feature of this new mathematics was allying numerical rea-
soning to the qualitative reasoning typical of theoretical Greek Mathematics. This 
new mathematics made its way into Education and became the central component 
of the curriculum throughout Europe. It was responsible for the extraordinary 
development of European Commerce and Economics, Science and Technology. 
This still prevails. Since the 17th century, this new mathematics, which is result of 
the dynamics of cultural encounters in the Mediterranean Basin since Antiquity 
became the mathematics of every European country. We clearly recognize this as 
the European Mathematics. Extant local mathematics can be noticed (for example, 
among the Euskaldunak, in Spain, the Gypsies, all over Europe, and other minori-
ties), but they have no importance in the general European scenario.
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Conquest and Colonialism, since the 15th century, imposed European 
education to the entire World, and with it European Mathematics. A tacit as-
sumption of the universality of European Mathematics prevailed in the teaching 
of mathematics. Although it is accepted that no religion is universal, no lan-
guage is universal, no cuisine or medicine are universal, European Mathematics 
is regarded as universal. This is clearly challenged by the eminent Japanese alge-
braist Yasuo Akizuki (1960, p.289), what was went unnoticed by mathematics 
educators, when he says that

“Oriental philosophies and religions are of a very different kind from those of the 

West. I can therefore imagine that there might also exist different modes of think-

ing even in mathematics. Thus I think we should not limit ourselves to applying 

directly the methods which are currently considered in Europe and America to 

be the best, but should study mathematical instruction in Asia properly. Such a 

study might prove to be of interest and value for the West as well as for the East.”

The acceptance of the universality of European Mathematics displaces all other 
ways of quantifying, of measuring, of ordering, of inferring. Although it is 
undeniable that European Mathematics is the imprint and support of the entire 
technological, industrial, military, economic and political behavior of the en-
tire World, to exclude other modes of thinking, using the wording of Akizuki, 
may be detrimental. This was soon recognized by the pharmaceutical indus-
try. Regrettably, the general public believes that Homo rationalis, as an evolved 
species of Homo sapiens sapiens, is characterized by proficiency in European 
Mathematics. This is intrinsic to the mounting social phenomenon of exclusion.

I have been using the concept of filters in education, particularly when 
referring to the prevailing evaluation and degrees system in schools and society as a 
whole. Important discussions on these matters are due to Alexander Grothendieck: 
La Nouvelle Eglise Universelle and Pierre Samuel: Mathématiques, Latin et selec-
tion des elites, in Jaulin 1974, respectively pp.11-25 and pp.147-171.

These views are supported by the results of the conference on “Comparative 
Studies of Mathematics Curricula – Change and Stability 1960-1980”, chaired 
by Hans-Georg Steiner, which took place in Osnabruck, 1980, sponsored by the 
Institute for the Didactics of Mathematics (IDM) and the International Mathematics 
Committee of the Second International Mathematics Study of the International 
Association for the Evaluation of Educational Achievement (IEA) (Steiner, 1980).
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The universality, which was the reason for calling the Osnabruck 
conference, can be challenged with a proper interpretation of a phrase of Ian 
Westbury, 1980, p.23:

“One task of the curricular system in mathematics education is to ensure that 

the stock of resources for an appropriate general education contained within 

the culture of mathematics, as this culture is conceived and practiced within 

industry, higher education and learned societies, is searched and made avail-

able to our students. It also implies that one result in this search should be 

represented in the curricula in mathematics that appropriate numbers of our 

students experience.”

The same challenge goes for the stability in time. In his remarkable conference 
in the International Congress of Mathematicians, in Paris in 1900, David Hilbert 
challenges the permanence of curriculum. The quote below (see Hilbert 1902, 
p.437) clearly states that much of current curricula should be discarded:

“History teaches the continuity of the development of science. We know that 

every age has its new problems, which the following age either solves or casts 

aside as profitless and replaces by new ones.”

This affects much of our mathematics curriculum, particularly contents. It is 
time to recognize that much of what we teach to our students is, in the words 
of Hilbert, profitless and should be replaced by new contents.

Frequently, some topics of the curriculum are justified with the ar-
gument that we have to teach subject A to be able to understand subject B, 
which is needed to follow subject C, and so on. This propaedeutic concept of a 
linear organization of the programs is one of the many myths in Mathematics 
Education, which are based on obsolete learning theories.

A qualitative shift in mathematics education.

Beginning with the social critique that intensified at the end of the last century, 
the social dimension of mathematics education became the object of intense 
study. International congresses, conferences, and commissions, all affirming the 
universality of the discipline, have provided forums for these reflections.
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In the Third International Congress on Mathematical Education/ICME 3, 
already mentioned above, the discussion on “Why teach mathematics?” focused 
on the objectives of mathematics education from a socio-cultural and politi-
cal perspective. Contrary to ICME 1 (Lyon, 1968) and ICME 2 (Exeter, 1972), 
when there was no input from the then called Third World countries, ICME 3, 
in Karlsruhe, had an important presence of participants from all over the World. 
This created an ambience favorable to question, more profoundly, the position 
of mathematics in education systems. Central in the discussions was the nega-
tive effects that can result from a mathematics education that is poorly adapted 
to distinct socio-cultural conditions. This was a major qualitative shift proposed 
since ICME 3.

The qualitative shifts were discussed in two major conferences, held in 
1978, sponsored by UNESCO, on “The Development of Mathematics in Third 
World Countries” organized by Mohamed El-Tom, in Khartoum, Sudan (El-Tom 
1979); and a conference on “Mathematics and the Real World” organized by M. 
Niss and B. Booss at the University of Roskilde, Denmark, in 1978. This latter 
was held immediately preceding the International Congress of Mathematicians 
in Helsinki, Finland (Booss and Niss, 1978), and gave origin to a satellite session 
of the congress on “Mathematics and Society.” I believe this was the first time an 
international congress of mathematicians created space to question mathemat-
ics itself, and its epistemological character. This questioning was also present in 
the Fourth International Congress on Mathematical Education/ICME 4, held in 
Berkeley in 1980 (Steen and Albers, 1981).

The Fifth International Congress on Mathematical Education/ICME 5, 
in Adelaide, Australia, in August 1984, showed a definitive tendency toward so-
cio-cultural interests in mathematics education. Questions about “Mathematics 
and Society”, “Mathematics for All”, the increasing emphasis on the “History 
of Mathematics and its Pedagogy”, and discussions of the goals of mathematics 
education subordinated to the general goals of education, were in the program. 
Surely, ICME 5 marked a qualitative shift in the tendencies of mathematics edu-
cation. Besides the participation of anthropologists and sociologists in the re-
flections about mathematics education, a concern with the political dimensions 
of mathematics education and with the state of the World became part of a new 
concern in mathematics education.

It is impossible to ignore that the repercussions of the student move-
ment of 1968, which was impregnated by a kind of academic cultural mystique, 
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were felt during the 70s. Much of this mystique had a noticeable influence in 
the developments of research in mathematics education in the seventies and 
eighties. But this has not yet been properly studied.

Since the end of World War II, the major goal of education for the 
masses has been an equal education for all, independent of social and economic 
class. This should be provided by all governments. This goal dominated the 
political ideals and aspirations of countries. Thirty years later the illusory, and 
at times negative, effects of such aspirations are felt in many countries. Such 
disillusion also contributed to a climate of doubt, which interferes with the 
necessary qualitative shift.

This is an issue not only affecting less developed countries, but also in 
countries with advanced industrial development. Now, the increasing popula-
tion of immigrants in the more developed countries, calls for priority to face 
socio-cultural issues and to question the universality of accepted canons of 
mathematics education.

The Political and Ethical Dimensions of Mathematics 
Education

As it is generally accepted, the curriculum is organized in three strands: objec-
tives, contents, and methods. It is the classical “Why-What-How”. The political 
dimension of education is sometimes immersed in the discussion of objectives 
of mathematics education, but very rarely has mathematics content and meth-
odology been examined with respect to this dimension. Indeed, some educa-
tors and mathematicians claim that content and methods in mathematics have 
nothing to do with the political dimension of education.

Since mathematics conveys the imprint of Western thought, it is not an ab-
surd to consider a possible role of mathematics in framing a state of mind that toler-
ates war. This is similar to the debate about the eeffects of violent video games on 
aggressive behavior. For more on this, see Anderson (2001). Our responsibility, as 
mathematicians and mathematics educators, is to offer venues of peace (D’Ambrosio 
1998). The possibility that we are conveying to our children the acceptance of the 
inevitability, and even normality, of a World convulsed by wars is disturbing. There is 
an expectation about our role, as mathematicians and mathematics educators, in the 
pursuit of peace. I discussed this role in a recent study commissioned by the Center 
for Global Nonkilling, in Honolulu (D’Ambrosio 2009).
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It is undeniable that mathematics provides an important instrument 
for social analyses. Western civilization entirely relies on data control and man-
agement. “The world of the twenty-first century is a world awash in numbers” 
(Steen 2001, 1). Social critics will find it difficult to argue without understand-
ing and analyzing data. Obviously, to make good use of these instruments, 
which are provided as contents, we must master them, but it is equally im-
portant to have a critical view of their potentialities and of the risk involved in 
misusing them. The critical view is not incorporated in contents and methods. 
Practically all attention is given to skill and drilling, which is supported by in-
adequate testing systems.

This concept of curriculum won’t do anymore for our times. I propose a 
new concept of curriculum, based in three strands, literacy, matheracy, and tech-
noracy, to bring the qualitative change. This is discussed in (D’Ambrosio 1999b).

To be effective in building up a civilization that rejects inequity, arro-
gance, and bigotry, education must give special attention to the redemption of 
peoples that have been for a long time subordinated and must give priority to 
the empowerment of the excluded sectors of societies.

The Program Ethnomathematics contributes to restoring cultural dig-
nity and offers the intellectual tools for the exercise of citizenship which erases 
arrogance, inequity and bigotry in society. Ethnomathematics enhances crea-
tivity, reinforces cultural self-respect, and offers a broad view of mankind. In 
everyday life, it is a system of knowledge that offers the possibility of a more 
favorable and harmonious relation between humans and between humans and 
nature (D’Ambrosio 1999a).

It has, intrinsic to it, the Ethics of Diversity:

•	respect for the other (the different);
•	solidarity with the other;
•	cooperation with the other.

A frequently asked question is: Is Ethnomathematics research or practice?
Ethnomathematics is fundamentally research in History and Philosophy of 
mathematics, and this is the reason for calling it the Program Ethnomathematics. 
But it has obvious pedagogical implications, particularly for curriculum inno-
vation and development, for teaching and teacher education and for policy 
making.
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The Program Ethnomathematics has, intrinsic to it, new historiographical 
approaches to the history of ideas. Basically, the Program Ethnomathematics goes 
deeper into non-Western civilizations and into comparative studies of civilizations. 
It is important the research on established forms of knowledge (communications, 
languages, religions, arts, techniques, sciences, mathematics) in different cultural 
environments. Indeed, the Program Ethnomathematics draws from a broad theory 
of knowledge, which I call the “cycle of knowledge” and from the dynamics of cul-
tural encounters, based on what I call the “basin metaphor”. All this links to the his-
torical and epistemological dimensions of the Program Ethnomathematics, which 
brings new light into our understanding of how mathematical ideas are generated 
and how they have evolved through the history of mankind. For an explanation of 
this historiographical approach see (D’Ambrosio 2000).

It is fundamental to recognize the contributions of other cultures and 
the importance of the dynamics of cultural encounters. Culture is understood in 
its widest form, and includes art, history, languages, literature, medicine, music, 
philosophy, religion and science. Research in ethnomathematics is necessarily 
transcultural and transdisciplinary. The encounters are examined in its widest form, 
to permit exploration of more indirect interactions and influences, and to permit 
examination of subjects on a comparative basis. Although academic mathematics 
developed in the Mediterranean Basin, expanded to Northern Europe and later to 
other parts of the World, it is difficult to deny that the codes and techniques to 
express and communicate the reflections on space, time, classifying, comparing, 
which are proper to the human species, are contextual. Among these codes are 
measuring, quantifying, inferring and the emergence of abstract thinking.

Basically, research in the Program Ethnomathematics starts with three 
basic questions:

•	How are ad hoc practices and solution of problems developed into 
methods?

•	How are methods developed into theories?
•	How are theories developed into scientific invention?

At this moment, it is important to clarify that my view of ethnomathematics 
should not be confused with ethnic-mathematics, as it is mistakenly understood 
by many. This is one of the reasons why I insist in referring to the Program 
Ethnomathematics. The ethnic component of Ethnomathematics is the ethno-
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graphic study of mathematics of a certain social group and culture and it is 
based on gathering empirical data on the form of mathematics practiced in the 
social groups and culture. Data collection is often done through participant ob-
servation, interviews and questionnaires. The Program Ethnomathematics goes 
beyond the ethnographical approach. It tries to explain how is this mathemat-
ics generated, socialized, organized and transmitted in these social groups and 
cultures. It tries to understand and explain mathematics as well as religion, art, 
cuisine, dressing, football and several other abstract and practical manifestations 
of the members of the respective social groups and the peoples of the cultures.

Of course, the Program Ethnomathematics was initially inspired by 
recognizing ideas and ways of doing that reminds us of Western mathematics. 
What we call mathematics in academia is a Western construct. Although deal-
ing with space, time, classifying, comparing, which are proper to the human 
species, the codes and techniques to express and communicate the reflections 
on space, time, classifying, comparing, are undeniably contextual. I gained an 
insight into this general approach while visiting other cultural environments, 
during my work in Africa, in practically all the countries of continental America 
and the Caribbean, and in some European environments. Later, I tried to under-
stand the situation in Asia and Oceania, although with no field work. Cultural 
Anthropology is a strong support for the research.

As I said above, it is important to insist that the Program Ethnomathematics 
is not ethnic mathematics, as some commentators interpret it. Of course, one has 
to work with different cultural environments and, as an ethnographer, try to de-
scribe mathematical ideas and practices of other cultures. This is a style of doing 
ethnomathematics, which is absolutely necessary. These cultural environments in-
clude not only indigenous populations, but labour and artisan groups, commu-
nities in urban environments and, in the periphery, farms, professional groups. 
These groups develop their own practices, have specific jargons and theorize on 
their ideas. This is an important element for the development of the Program 
Ethnomathematics, as important as the cycle of knowledge and the recognition 
of the cultural encounters.

It is important to recognize the special role of technology in the hu-
man species and the implications of this for science and mathematics. Thus, the 
need of History of Science and Technology (and, of course, of Mathematics) to 
understand the role of technology as a consequence of science, but also as an es-
sential element for furthering scientific ideas and theories (D’Ambrosio 2004).
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 Once the role of technology in the development of mathematics is 
recognized, reflections about the future of mathematics propose important 
questions about the role of technology in mathematics education. Besides 
these more immediate concerns, there are long term concerns. Of course, they 
are all related to social behavior and to Ethics. It is important to recognizing 
that the universal ethics of respect, solidarity and cooperation is intrinsic to 
Ethnomathematics, Hence, Ethnomathematics favors the pursuit of Peace in its 
four dimensions (inner peace, social peace, environmental peace and military 
peace), which depends on the universal ethics.

The future of Mathematics Education.

The increasing presence of technology in modern civilization leads, naturally, to 
question about the future of our species. Thus, the importance of the emergent fields 
of Primatology and Artificial Intelligence, Cybernetics and Human Consciousness, 
This is synthesized in the concept of fyborgs (which are a kind of “new” species, 
i.e., humans with dependence on implanted technological devices, such as an elec-
tronic pacemaker). Most of our children will be fyborgs when, around 2025, they 
become decision makers and take charge of all societal affairs. Educating these fu-
ture fyborgs calls, necessarily, for much broader concepts of learning and teaching. 
The role of mathematics in the future is undeniable. But what kind of mathematics?

Understanding how, historically, societies absorb innovation, is greatly 
aided by looking into fiction literature (from iconography to written fiction, 
music and cinema). It is important to understand the way material and intellec-
tual innovation permeates the thinking and the myths, and the ways of know-
ing and doing of non-initiated people. In a sense, how new ideas are diffused 
making abstruse theories and artifacts easier to understand to a non-specialized 
public. In this respect, fiction is in vantage as compared to other forms of nar-
rative. To convey mathematical ideas through fiction, as well as metaphors, may 
be a good strategy for education.

How communities deal with space and time is mainly to understand 
how space and time became sacred in their history. The resources for the sa-
cralization of chronology and topology are, essentially, of mathematical nature.

We have to look into the cultural dynamics of the encounter of genera-
tions (parents and teachers and youth). This encounter is dominated by mistrust 
and cooptation, relying on testing and evaluation practices, which dominate our 



261

civilization. In mathematics education, this is particularly disastrous. Mathematics 
is, usually, seen by youth as uninteresting, obsolete and useless. And they are 
right. Much of the traditional curriculum is uninteresting, obsolete and useless.

Standardized Testing is the main support of traditional contents. There 
is more concern with attaining pre-established goals of proficiency than to en-
hance creativity. Enormous effort and resources are aimed at rising the scores of 
Standardized Testing. In the opinion of Anthony Ralston (Ralston 2002)

“rising scores on standardized tests are not only not a sign of significant 

learning (in mathematics and other subjects) but, as well, they hide continu-

ing serious deficiencies in the mathematical learning of children. Still worse, 

they give politicians and, it must be said, some educationists something to 

crow about when nothing good is happening. Worst of all, they give parents 

a false sense that the learning of their children is improving when it is not.”

The arguments to justify Standardized Testing are based on claims of the impor-
tance of current math contents are fragile. Myths surround these claims. Tests 
penalize creative and critical education, which leads to intimidation of the new 
and to the reproduction of this model of society. This favors the promotion of 
docile citizenship and irresponsible creativity. This is the goal of great financial 
corporations. This is discussed in my paper (D”Ambrosio 2009).

It is important to understand children and youth behavior and their 
expectations. History gives us hints on how periods of great changes affect the 
relations between generations. Regrettably, education, in general, is dominated 
by a kind of “corporate” attitude, in the sense that there is more concern with 
the continuity of a model of society than in giving space for the new, which 
needs the creativity of the youth. Traditional subjects are an instrument to 
achieve societal sameness. This is particularly true with Mathematics Education.

Bertrand Russell and Albert Einstein, in the most critical period of 
the Cold War, said “We have to learn to think in a new way.” (Pugwash 1955). 
Paraphrasing them, we need a new thinking in Mathematics Education, bring-
ing to our practice the interests, the dynamics and the new mathematics of the 
contemporary quotidian and stimulating creativity of the new generations. If 
we do so, there is much space for the growth of Mathematics in the curriculum. 
Otherwise, there lies before us the risk of Mathematics not having a place in the 
curriculum of the future.
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1. Introduction

The Finnish comprehensive school system and its outcomes have received wide 
international attention at the beginning of the new millennium (the so-called 
“PISA effect”). Our education system has become an attractive and internation-
ally examined example of a well-performing system that successfully combines 
high quality with widespread equity and social cohesion through reasonable 
public financing (Sahlberg 2006). Since 2001, hundreds of foreign delegates 
have visited Finland in order to learn the secrets of the high performing sys-
tem. Through these visits, we Finns have benefited at least as much as our visi-
tors. Questions and doubts presented by the visitors have helped us see what 
is valuable in our system and, most importantly, understand that explaining 
the high level of our school system is not a simple and straightforward task. 
Consequently, we have also started to think seriously about the special charac-
teristics and strengths of our mathematics education. What explains the high 
level of mathematics performance in the studies like PISA? What kinds of poli-
cies and improvement strategies have been implemented since the 1970s in 
raising student achievement in mathematics?
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This paper will address some main characteristics of mathematics edu-
cation in the Finnish comprehensive school (Grades 1–9), starting with a brief 
review of Finnish comprehensive school education in general. Drawing on re-
cent articles and reports (e.g. Aho et al. 2006, Kupari 2004, Kupari & Välijärvi 
2005, Kupari et al. 2007, Linnakylä 2004, Linnakylä & Välijärvi 2005, Pehkonen 
et al. 2007, Sahlberg 2006, Simola 2005, Välijärvi et al. 2002, Välijärvi et al. 
2007), the main part of my presentation concentrates on describing essential 
features in our mathematics education such as the curriculum, teaching prac-
tices, assessment policies, and teacher training. Finally, some future prospects of 
mathematics education in Finland will be discussed.

2. Finnish comprehensive school education

2.1 General features of the Finnish comprehensive school system
Finland has nine years of compulsory schooling and children generally start 
school at the age of seven (see Appendix). Usually, for the first six years of 
comprehensive school, the children are taught by a class teacher, who generally 
teaches all or at least most subjects. Then, during the last three years, the dif-
ferent subjects are taught by specialised subject teachers. Almost all of the age 
group (99.7%) completes compulsory schooling. (Välijärvi et al. 2007)

The school network covers the whole country and schools are pri-
marily run by local authorities, with the exception of a small number of pri-
vate schools. For children, the teaching and educational equipment are free 
of charge since education in Finland is publicly financed from pre-school to 
higher education. In addition, the pupils get a free warm meal at school every 
day. Transportation is also arranged by the education provider for distance of 
5 km and over. Presently, the smallest schools have fewer than ten pupils, and 
the largest ones about 900. There are some 3200 comprehensive schools in 
Finland. The amount of schools has dramatically declined because the number 
of pupils has decreased and municipalities have cut budgets.

At present, the National Core Curriculum for Basic Education prepared 
by the Finnish National Board of Education (FNBE) determines the core sub-
jects which all pupils study, and the Finnish government determines the na-
tional goals for education and the number of classroom hours allocated to each 
subject. Besides this, learning usually takes place in heterogeneous groups. This 
means that all pupils study the same core subjects with similar instructional 
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contents. However, about 20 per cent of all classroom hours are reserved for op-
tional subjects freely chosen by the pupil and his or her parents. Furthermore, 
the schools can develop individual profiles by focusing on some area, such as 
languages, mathematics, sciences, sports, music or arts.

There is no actual graduation certificate or qualification to be gained 
upon completing the comprehensive school, but once a student’s compulsory 
education is over, it opens the way to all secondary education options, i.e. dif-
ferent types of vocational training or upper secondary school.

2.2 Strengths of the Finnish comprehensive education
The Finnish comprehensive education system is not only a system. It is also a 
matter of pedagogical philosophy and practice. The comprehensive school is 
for child and, hence, has to adjust to the needs of each child. Instruction and 
pedagogy have been developed to adapt to heterogeneous student groups; no 
student can be excluded or sent to another school. Students’ own interests and 
choices are likewise taken into account at schools when selecting contents, text-
books, learning strategies, methods and assessment devices. Of course, for het-
erogeneous groups to be successful class size must be relatively small. In fact, 
PISA 2003 data revealed that mathematics class sizes were among the smallest 
in the OECD countries (the mean was 18 students). All in all, the comprehen-
sive education calls for a flexible, school-based and teacher-planned curriculum 
along with student-centred instruction, counselling and remedial teaching.

Special education has likewise played an important role in Finnish schools 
in catering for students who have problems following regular teaching. Special 
education is usually closely integrated into normal teaching and is highly in-
clusive by nature. Indeed, only about two per cent of students attend separate 
special education institutions. In practice, a student with problems for example 
in mathematics typically has the opportunity of studying once or twice a week 
in a small group of 2–5 students or even individually with a special teacher. The 
special teacher may, alternatively, also attend regular classes. On the primary 
level (grades 1 to 6), where class teachers have the main responsibility for 
instruction, special education is mostly focused on reading and writing skills 
along with mathematics skills. A student’s right to special education is stipu-
lated in the Finnish school laws.

Every student also has a right to student counselling. Schools are to provide 
students with guidance in study skills, choice of options (e.g. elective courses) 
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and planning of post-compulsory studies. At grade levels 7 to 9, every school 
has a student counsellor, who provides individual guidance to those in need or 
desirous of it.

3. Developments in mathematics curriculum

In this chapter, I will shed some light on the curricular background and devel-
opment of the Finnish mathematics education. Figure 1 below describes the 
different phases of mathematics curriculum taken place in Finland since the in-
troduction of the comprehensive school system in the beginning of the 1970s.

Figure 1. The developmental phases of the comprehensive school 
mathematics curriculum in Finland related to the curricular trends in USA

 

Since 1972 there has been four distinct phases in the development of mathe-
matics curriculum in Finland (cf. Kupari 1994). The figure reveals that the 
curriculum changes have always tended to follow international - specifically 
Anglo-American – reform trends. In order to save some time, I will pass by a 
closer analysis of the first two phases - New Math and Back to Basics – and concen-
trate more on the latest curricular phases.

The agenda of NCTM at the beginning of 1980s (NCTM 1980) raised 
problem solving to a key position in mathematics teaching and it meant the 
start of the new phase in the development of mathematics curriculum in 
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Finland, as well (Problem Solving –phase). In 1985, the school legislation was re-
formed and simultaneously the National Board of Education (NBE) introduced 
the new Framework Curriculum for the Comprehensive School. The objectives 
of mathematics curriculum emphasised strongly both applications and prob-
lem solving and this could be seen very soon in the mathematics textbooks.

The new legislation had also impacts on the practical schoolwork 
especially on the upper level of the comprehensive school (grades 7-9). The 
number of mathematics lessons per week was reduced by one (from 10 to 9). 
Furthermore, the ability grouping (streaming) of students was removed and 
this was a very significant change for teaching and teachers. Mathematics teach-
ers were now compelled to apply internal differentiation within heterogeneous 
teaching groups, but at the same time this change of the teaching environment 
was supported by reducing the size of teaching groups. In mathematics classes, 
there were about 16-19 students and it provided more opportunities for in-
dividualised teaching. During the late 1980s, both mathematics teachers and 
students got used little by little to work in these heterogeneous classes.

In 1994, the NBE issued again a new Framework Curriculum for the 
Comprehensive School. This framework curriculum started a new kind of edu-
cation and curricular culture in Finland. There was a clear shift from a central-
ised curriculum system to a decentralised system. Instead of uniform national 
curricula, the NBE now issues curricular guidelines, while the Ministry of 
Education determines the allocation of lesson hours across school subjects, and 
schools then accordingly make up curricula of their own. Another important 
change was that learning materials no longer needed the approval of the NBE. 
So, schools were given more freedom and responsibility for their own curricu-
lar preparation and development (National Standards –phase).

Despite rather strong aspirations for reform, the 1994 mathematics cur-
riculum included only minor changes as compared to the previous framework 
curriculum from 1985. The objectives of mathematics education thus continued 
the accepted line by emphasising problem solving and application of mathemati-
cal knowledge and skills. The main difference compared with the earlier curricu-
lum was that now the objectives and contents of mathematics education were 
presented in a concise and generic form by school level (about 2 pages in total), 
whereas previously they had been described in great detail and by grade level.

At the beginning of 2004, the NBE introduced the National Core 
Curriculum for Basic Education. This latest mathematics curriculum continues 
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the guidelines and objectives expressed in the 1994 curriculum. However, the 
core curriculum for grades 1-9 is again more detailed than the previous one. 
The overall objective is to create uniform basic education, i.e. a continuum 
through grades 1-9.

In summary, the mathematics curriculum has changed about once in 
ten years during the comprehensive school system. An important issue is that 
the international trends were not transferred into the Finnish practice as such. 
Instead, they were transformed into the solution that fitted our national situ-
ation. Thus, it was not only a question of borrowing a curricular “ideology” 
from some other country. A bigger change in the national curriculum system 
has taken place in 1994 when the directive administration was transferred from 
the central level to the local municipalities (Lampiselkä et al. 2007). This meant 
that the local authorities became responsible for the preparation and imple-
mentation of the national curriculum at school level.

Perhaps the most significant feature behind the Finnish success in PISA 
mathematics has been the systematic development of comprehensive school mathematics cur-
riculum which has continued since the early 1980s. During the last 25 years, 
applications and problem solving have been important goals in the mathemat-
ics curriculum of our comprehensive school. Step by step, these goals have 
become more and more established in mathematics textbooks and teaching 
practice. As we know, the PISA approach particularly focuses on young peo-
ple’s capability to apply their mathematical skills and knowledge in situations 
that are as authentic and close to daily-life needs as possible. Thus, the Finnish 
mathematics curriculum has emphasized and also implemented goals and con-
tents comparable to those assessed in PISA mathematics surveys. In this respect, 
our curricular decisions have been successful and produced great results.

4. Highly qualified mathematics teachers are a necessity

In the following, I will describe the education of Finnish mathematics teachers. In 
Finland, the university-level teacher education was implemented in 1974. Today, a 
research-based approach is a main organising theme integrated into our teacher ed-
ucation programmes. From the very beginning, the objective of teacher education 
has been to educate pedagogically thinking teachers who are able to think reflective-
ly over their teaching. A teacher is seen as a reflective practitioner who has a strong 
personal-practical theory of education. (Lavonen et al. 2007, Kansanen et al. 2000)
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In our comprehensive school system, class teachers are teaching almost 
all subjects - including mathematics - in primary school at grades 1-6. Subject 
teachers are teaching in lower secondary school at grades 7-9. All class and subject 
teachers are educated in Master level programmes requiring 300 credit points (1 
cp. = 27 hours work) which are offered by eight universities in Finland.

The structure of a master’s degree for a class teacher and a subject teacher are 
rather similar. As an example, I will shortly present the content of the subject teacher 
programme in one Finnish university based on the article of Lavonen et al. (2007, 
49-59). A typical structure of the education programme can be seen in Figure 2.

Subject teacher studies are divided into two parts: mathematics is studied 
at the Department of Mathematics and pedagogical studies at the Department of 
Teacher Education and in the Teacher Training School. In general, teacher students 
take a major and a minor in the subjects they intend to teach in school. Typical 
combinations for a mathematics teacher are: mathematics – physics, mathemat-
ics – chemistry and mathematics – computer science but the students are free to 
choose also other combinations of subjects (e.g. mathematics – home economics).

Mathematics in the Finnish universities is very much the same as 
mathematics in the western world in general. The main aim of the mathematics 
studies is to give university level understanding of mathematics covering those 
subject domains taught at Finnish schools. The utilisation of new technology in 
teaching and learning mathematics have recently included in the studies.

Figure 2. A typical structure of a master’s degree of a subject teacher 
(Lavonen et al. 2007)
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During the pedagogical studies, the students’ mathematics knowledge, knowl-
edge about teaching and learning mathematics and school practices are inte-
grated into students’ personal pedagogical theory. The pedagogical studies are 
divided into bachelor’s level studies (25 cp.) and master’s level studies (35 cp.). 
Typical contents within studies are: teaching and learning mathematics, pupils’ 
interest and motivation in mathematics, national and local curriculum includ-
ing curriculum planning, teaching methods, ICT in mathematics education and 
evaluation and research methodologies in mathematics education. One third of 
the pedagogical studies consist of teaching practice (20 cp.) placed both in the 
Teacher Training Schools and municipal network schools. Teaching practice has 
been divided into two parts: the first part takes place during the bachelor stud-
ies and the second part at the end of master studies.

Finally, the mathematics teacher students carry out their master thesis 
(40 cp.) in mathematics. Then they can choose either a pedagogical orientation 
or a mathematics orientation and prepare the thesis in guidance of a professor or 
in a research group.

Summing-up, the teaching profession has always enjoyed great public 
respect and appreciation in Finland, and a lot of resources have consequent-
ly been invested in teacher education. Teachers have also been trusted as true 
professionals of education. This basically means that the educational decision 
makers believe that teachers together with principals, parents, and their com-
munities know how to provide the best possible education for their children 
(Aho et al. 2006). From this it has followed that Finnish teachers have consider-
able pedagogical independency in the classroom and that schools likewise enjoy 
substantial autonomy in organizing their work within the limits of the national 
core curriculum (Välijärvi et al. 2007). Teachers make their own decisions re-
lated to the conduct of the teaching and learning process, they are responsible 
and competent for developing the local curriculum, choosing teaching meth-
ods and selecting learning materials to be used. Especially, Finnish teachers 
are relied on when it comes to student assessment, which usually draws on 
students’ class work, teacher-made exams, projects and portfolios. The role of 
teacher-based assessment is all the more important because at Finnish compre-
hensive schools students are not assessed by any national tests or examinations 
upon completing school or during the school years.

In addition, the teacher’s profession, especially that of the class teacher, 
is greatly valued and popular among Finnish post-secondary students. This can 
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be seen, for example, in the popularity of the class teacher’s programme pro-
vided at universities. Of all the applicants for this programme, only 10-15 per 
cent is admitted, which implies that those accepted are highly motivated and 
multi-talented students with excellent academic skills. Educating class teach-
ers at universities and the scope and depth of their study programme seem to 
be the factors that make Finnish teacher education stand out as special, when 
compared to other countries.

5. Teaching practices in mathematics

Efficient mathematics instruction requires an active role both from the students 
and the teacher. The teacher’s aim is to provide opportunities for all students to 
have versatile and rich learning experiences. Pedagogy in mathematics teach-
ing pays a great attention to individual needs of students. The mathematics 
core curriculum lays a lot of emphasis on the student’s active role in studying 
mathematics, but still the traditional model of the mathematics lesson includ-
ing certain successive stages (cf. Pehkonen & Rossi 2007) is vital.

Typical mathematics lessons in Finland include teacher’s instruction 
and students’ own working in different forms and mathematics textbooks play 
an important role in teaching (e.g. Törnroos 2004). Also the term “pedagogical 
conservatism” has been mentioned in this connection (cf. Simola 2005). The 
textbook dependence is stronger at the primary level (grades 1-6) than at the 
lower secondary level (grades 7-9). For many teachers mathematics textbooks 
have almost the same position in teaching as the curriculum itself (Perkkilä & 
Lehtelä 2007). This means that the mathematics lessons easily follow the order 
and contents of the mathematics textbook.

Several publishers in Finland produce mathematics textbooks for the 
comprehensive school and almost all students have their own textbook. In gen-
eral, the mathematics textbooks are well planned and prepared. The mathemat-
ics curriculum creates the basis for the mathematics textbooks, but naturally 
there can be big differences between the textbooks. One additional reason for 
these differences can be the fact that since 1992 there is no official control of 
textbooks any more.

Teaching heterogeneous student body in mathematics presupposes 
small teaching groups and possibilities to reorganise groups if necessary. The 
PISA 2003 data shows that in Finland the average size of mathematics teach-



273

ing groups (18 students) is among the smallest in the OECD. In addition, the 
time used in mathematics instruction is an essential pedagogical issue. Table 
1 below presents the minimum numbers of mathematics lessons per grade 
in a school week. The schools have the freedom to divide these lessons be-
tween grades. For example, on the grades 3-6 schools have totally 12 lessons 
mathematics, and usually each grade has 3 lessons (45 minutes) mathematics 
in a week.

Table 1. The minimum number of mathematics lessons 
per grade in Finnish school week

 
Subject / Grade 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
Altogether 

 
Mathematics 
 

 
6 

 
12 

 
14 

 
32 

 

Assessment in mathematics is usually carried out by the teacher and it is 
based mainly on the summative tests but also some formative tests and the 
teacher’s observations during instruction are utilized (cf. Lampiselkä et al. 
2007). The teacher’s role in assessment is very important in Finland because 
students are not assessed by any national tests or examinations upon com-
pleting the comprehensive school or during the school years. The final as-
sessment takes place twice a year after the autumn term and the spring term 
and then pupils will have their school report including marks in all their 
subjects. In the Finnish school reports the marks vary from 4 to10, and 10 
is the best mark.

Changes in the pupil assessment reflect changes in the curriculum. 
Until 1994, assessment in mathematics can be characterized rather formal in 
nature but since then more versatile and informal assessment methods have 
been applied. Teachers have started to use for example portfolio assessment 
and other self-assessment tools more frequently. In the 1994 Framework 
Curriculum, a verbal evaluation was introduced to be used on grades 1 to 
4. Five years later in 1999, the NBE introduced the new guidelines for the 
final assessment of the basic education. These guidelines include descriptions 
of good performance (i.e. the mark 8) in all common subjects of the basic 
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education. The main purpose of the guidelines is to ensure that students’ final 
marks would be more equitable and comparable between different schools. 
These guidelines, however, are far from strict, allowing students’ effort and 
activity to be taken into consideration.

National data from the 2003 PISA sample show that Finnish students 
view their mathematics teachers positively, and teachers are seen as strong sup-
porters of studying and learning (Kupari & Välijärvi, 2005). The attitude meas-
ures indicate also that the Finnish school climate for learning mathematics is 
positive and encouraging. Stress and anxiety among pupils and teachers is not 
as common as it is within many other education systems.

In 2007, the Education Evaluation Council organized the evaluation 
of pedagogy in Finnish basic education (Atjonen et al. 2008). The evaluation 
focused on the key features of basic education like the teachers’ pedagogic prin-
ciples, the diversity of teaching methods and the effectiveness of the studying 
environment. The evaluated data consisted of a survey of principals (N = 410) 
and a survey of teachers (N = 2310) as well as 12 visits to schools. According 
to the evaluation results, basic education teaching can be characterized as fair 
and equal, encouraging and appreciative of the student. Basic education teach-
ers aim to at doing their best for their students and prefer applying diverse 
methods of teaching. There were surprisingly small differences in the peda-
gogic characteristics expressed by the teachers of different subject (for exam-
ple between mathematics and mother tongue). However, teachers seem to be 
strongly bound up with the structural terms of teaching environment, and 
therefore they are not very eager to promote changes in the existing pedagogy.

Teaching practices in mathematics are changing slowly. Moving to-
wards active learning requires less teacher’s talk during the time reserved for 
face-to-face teaching (Sahlberg & Berry 2003). Rather than deliver the curricu-
lum and transfer information to students, teachers should become facilitators 
of the mathematics learning process and promoters of social interaction of 
their students. When students learn to communicate their mathematical think-
ing, it will also improve their attitudes towards mathematics and reinforce their 
self-confidence as learners of mathematics (Kupari 2007). During the last fif-
teen years, there has been promising signs of the positive development. For ex-
ample, the development program of mathematics and science education during 
1996-2002 (called LUMA) created new educational opportunities, produced 
active collaboration between teachers and schools and aroused new enthusiasm 
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within mathematics education. Since then, many mathematics teachers have 
actively sought for alternative and more pupil-centered methods in their teach-
ing. Mathematical modelling, activity tasks, learning games, problem solving, 
investigations and project work are all the more applied in mathematics lessons 
(Pehkonen & Rossi 2007). Explanations, argumentations and lively discussions 
are also more common during the Finnish mathematics lessons.

6. Discussion

Attaining high overall performance while, at the same time, evening out dis-
parities in performance is one of the key aims of national education policy in 
most OECD countries. In Finland and also in the other Nordic countries, this 
thinking has a long tradition. Providing all students with equal educational 
opportunities and removing obstacles to learning especially among the least 
successful students, have been leading principles in Finnish education policy 
for the comprehensive school system. In the light of PISA findings, Finland 
seems to have managed extraordinarily well in combining these two principles. 
(Välijärvi et al. 2007)

In this part of the paper, I briefly summarise the essential results related 
to equality in Finnish mathematics performance on the basis of PISA 2003 data.

6.1 Equality in mathematics achievement
The Finnish strategy for improving education is based on the principle of equity, 
and particularly on an effort to minimise low achievement (Linnakylä & Välijärvi 2005). 
One of the most important findings of PISA, therefore, has to do with the fact 
that in Finland the gap between high and low performers is relatively narrow. 
In mathematical literacy, the standard deviation for Finnish student scores was 
the smallest (84) in 2003 among all OECD countries. Likewise, the number of 
low performers – whose performance was at or below PISA proficiency level 
1 – was significantly smaller in Finland (7%) than it was in the OECD countries 
on average (21%). Indeed, it seemed to be a characteristic of the Finnish per-
formance profile that the lowest scoring students performed better than their fellow students in 
the other OECD countries. The difference between the top performers, on the other 
hand, was much less pronounced. This becomes evident when comparing the 
distributions of Finland and some other countries against the OECD average 
distribution on a percentile scale (see Figure 3).

RL | Mathematics education in Finnish comprehensive school
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Figure 3. Means of country percentiles compared to OECD-means (0-level) 
on the combined mathematical literacy scale in PISA 2003

 

The PISA 2003 results also revealed that in Finland, parents’ socio-economic 
status has a relatively low impact on student performance compared to other 
OECD countries. The gender difference was also relatively small – 7 points in fa-
vour of boys. Furthermore, the differences found between Finnish schools were 
among the smallest in the OECD countries. While in 2003 these differences ac-
counted for 34 per cent of the variation in student mathematics performance in 
the OECD countries on average, in Finland only 5 per cent of the total variance 
within the country was between schools (OECD 2004). In Finland, even the 
weakest performing schools achieved the OECD average in mathematics.

Small between-school variation is a characteristic of all the Nordic 
countries. This is largely due to the fact that these countries have non-selective 
education systems in which all students are provided with the same kind of 
comprehensive basic education from age 7 to age 16. In contrast, variation be-
tween schools tends to be more pronounced in countries where students are 
enrolled into different kinds of schools, streams or tracks at an early age. The 
results of PISA indicate that small between-school variation is one of the key 
factors associated with high and relatively equal performance. From this equity 
perspective, the PISA results are most encouraging for Finland, where the differ-
ences among schools, between the different regions, and between urban and ru-
ral areas proved small. In Finland, it matters little where a student lives or which 
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school he or she attends. The opportunities to learn seem to be virtually the same 
all over the country, whether the student lives in the far North, in the remotest 
districts of Lapland or in the Helsinki capital area. (Linnakylä & Välijärvi 2005)

7. Conclusions

The PISA results clearly show that the Finnish comprehensive school yields 
high achievement in mathematical literacy. In all three PISA-studies, Finland 
has been within the best-performing countries in the mathematical literacy. 
Furthermore, the mathematics performance of our seventh-graders was clearly 
above the international average in the TIMSS 1999 –study. However, Finnish 
mathematics education has many challenges to which we need to react in fu-
ture. Here, I will mention just some of them.

One major challenge to Finnish mathematics education seems to be 
students’ attitudes towards mathematics, particularly in the case of girls. Finnish 
students showed surprisingly low interest in mathematics in international com-
parison. Especially girls’ interest in mathematics, girls’ confidence in their pos-
sibilities of learning mathematics and enjoyment in studying mathematics were 
inconsistent with their high performance in PISA 2003. The high prevalence of 
negative attitudes is worrying because interest in and confidence with mathe-
matics is considered to have a strong steering influence when young people 
select their further studies. Increasing students’ confidence and enjoyment in 
learning mathematics is thus a major pedagogical concern that requires a criti-
cal evaluation of the methods of learning and materials used in mathematics 
instruction. Students’ attitudes can be improved, for example, by creating more 
interesting and meaningful classroom practices and by providing positive ex-
periences during mathematics lessons. In part this is, however, a larger cultural 
concern as there seems to be a strong tradition of labelling mathematics as a 
male domain in Finland.

A serious challenge in future relates to a growing number of immi-
grant students in our country. Although Finland is officially a bilingual state, it 
has been a culturally homogeneous country. The official languages are Finnish 
(94 per cent of the inhabitants) and Swedish (6 per cent). Both of these lan-
guage groups are equally entitled to and have equal resources for education in 
their own language from the pre-school up to the university. Other minorities, 
however, are still relatively small.
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The pursuit of equal opportunities to learn has been a leading prin-
ciple in the development of the Finnish educational system. Despite the rela-
tive homogeneity of Finnish population, this pursuit has been put to a severe 
test during the last decades due to a growing number of immigrant students 
and growing cultural heterogeneity. This presents a special challenge to literacy 
education and therefore to mathematics education as well.

During the last decade or so, many suburban schools in Finland have 
experienced increasing social and behavioural problems as more pupils live in 
broken homes, engage in drugs and alcohol at younger ages, and spend more 
time with computers, electronic games, and television. Schools in Finland must 
now compete with media and entertainment more than ever. Sustaining the 
genuine interest of pupils in learning is the premier goal for education devel-
opment in the future. (Aho et al. 2006)

In summary, all experiences in relation to Finnish mathematics educa-
tion give support to the notion that a high average performance can be achieved 
also in mathematics by taking equally care of learning across the whole age 
cohort. The high overall standard of our mathematics education in the compre-
hensive school is an asset that allows providing support for the low achievers 
while also motivating the top performers to use their potential to the full. This 
kind of positive thinking which is founded on our own national strengths pro-
vides a good basis for the development of mathematics education that aims at 
even better achievements.
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Fundamental Ideas of Mathematics

Fritz Schweiger, IFFB Didaktik und LehrerInnenbildung, Universität Salzburg, 
Hellbrunnerstr. 34, A 5020 Salzburg fritz.schweiger@sbg.ac.at

Introduction

Children learn to read because they are surrounded by texts. They learn to write 
because they want to write messages to friends. They use computers and want 
to drive a car. The discussion on the green-house effect stimulates interest in 
environmental studies. Even history and paleontology sell well on television 
(think of recent stories with dinosaurs and mammoths). The need of math-
ematical skills for all has been challenged. One reason is the progressive divi-
sion of labor which leaves mathematical issues to specialists. Another reason 
is the pervasive use of electronic devices. Therefore mathematical education is 
undergoing a substantial transformation which may be expressed in the short 
terms “Less doing mathematics but more learning to understand the role of 
mathematics in society.” Bruner’s concept of Fundamental Ideas could be a 
guideline for this process. In the first part the concept of so-called Fundamental 
Ideas is presented. In the second section these ideas will be illustrated by an 
example of expository teaching.
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Fundamental Ideas

It should be emphasized that my notion of Fundamental Ideas refers to activi
ties. This notion is close to the view of mathematicians like Halmos 1981 (”No 
doubt many mathematicians have noted that there are some basic ideas that keep 
cropping up, in widely different parts of their subject, combining and re-com-
bining with one another in a way faintly reminiscent of how all matter is made 
up of elements”) or Mac Lane 1992 who says that mathematics begins in the 
human experiences of moving, measuring, shaping, combining, and counting. In a similar 
way Bishop 1991 names six basic mathematical activities, namely counting, locat-
ing, measuring, designing, playing and explaining. MacLane 1986 states a similar view: 
“[Mathematics] is not a science of time and space, but a formulation of the ideas 
needed to understand time, space, and motion. This understanding depends on 
ideas” (MacLane 1986:414).

Such catalogues are familiar to anyone who participates in discus-
sions on curricula or mathematical standards (e.g. the Process Standards of the 
NCTM 2000). A short overview of the discussion of such concepts was given 
in Schweiger 1992 and Schweiger 2006. During the last ten years I collected 
some more material on this topic for a forthcoming book (Schweiger 2010). 
However, every year some new ideas were born and some old concepts did not 
look so promising as I thought before. It is not important to have a larger or 
shorter list of Fundamental Ideas but it is important to consider the question 
behind. Can mathematics and mathematical activities be organized as a bundle 
of coherent ideas which are helpful to communicate mathematics and to speak 
about mathematics as a valuable intellectual endeavor? Such a list will reflect 
the personal view of mathematics and stands open for revision. My notion of 
Fundamental Ideas is close to activities in the interplay between form and func-
tion. If you design a house there are some ideas of its form or shape but the 
function as a living place will also guide your considerations. In a similar way, 
if you design pottery the form (a jug, a cup, a plate) will give you some intui-
tion but also possible functions (to contain water or wine) will be important. 
A different approach is taken from the angle of cognitive science by Lakoff & 
Núñez. They emphasize the importance of ideas in mathematics and provide 
some detailed analysis. “The intellectual content of mathematics lies in its ideas, 
not in the symbols themselves (Lakoff & Núñez 2000:xi)”. When they state 
“... a great many of the most fundamental mathematical ideas are inherently 
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metaphorical in nature” (their examples are: number line, Boole’s algebra of 
classes, symbolic logic, trigonometric functions, complex plane) I would agree. 
However these examples do not cover my conception of fundamental ideas. These 
examples are important tools for doing mathematics and their invention or discov-
ery has to do with fundamental ideas.

During the last years four descriptive criteria for Fundamental Ideas 
turned out to be useful (Schwill 1993).

1.	 Fundamental Ideas recur in the historical development of mathematics. 
They are related to “perennial notions” (Barbin 2007). The identification 
of techniques and patterns which recur in history is an interesting and 
important task of historical investigations. Here we can add an important 
observation of MacLane: “Mathematical ideas arise not just from human 
activities or scientific questions; they also arise out of the urge to un-
derstand prior pieces of mathematics” (MacLane 1986:415).The idea of 
recursion and iteration may be a good candidate to illustrate this point.

2.	 Fundamental Ideas recur in different areas of mathematics. The art of rec-
ognizing patterns and designing patterns can be found in algebra and 
number theory as well as in various branches of analysis. The aim to clas-
sify mathematical objects and to recognize prototypes is also widespread. 
This idea encompasses all types of morphisms as well as prototypical 
objects like the normal distribution.

3.	 Fundamental Ideas recur at different levels. The idea of testing and control-
ling illustrates this point. After solving an equation even at an early level it 
is recommended to insert the found solution in the given equation. Tests by 
congruence (modulo 9 or modulo 11, say) are easy to apply. The search for 
testing primality has become en vogue recently.

4.	 Last but not least Fundamental Ideas are related to every day activi
ties. To recognize and to produce patterns is essential to artistic activ
ity. Iteration is a basic human activity in preparing tools, pottery and 
canoes. It is very likely that classification and recognizing prototypes is 
indispensable for the formation of concepts and its counterpart, lan
guage. Otherwise we would not speak of dogs, flowers, houses etc. and 
we could not distinguish between sitting and moving. People test food 
and drinks before they buy greater quantities. The quality of products 
must be controlled.
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After having seen these four descriptive criteria we add the potential use 
of Fundamental Ideas in educational practice. The statement “Teachers 
need to understand the big ideas of mathematics and be able to represent 
mathematics as a coherent and connected enterprise” (NCTM 2000:17) is 
a useful guideline for teacher education. They can be seen as a guide line 
for designing curricula. To some extent curricula are oriented not only on 
mathematical contents but also on mathematical activities. In my opinion 
text books could be designed to make Fundamental Ideas more explicit. 
This can be important in connection with a change to a certain amount 
of expository teaching. Fundamental Ideas should be capable to elucidate 
mathematical practice. The difficult aim to explain mathematics to other 
people should be named here. Furthermore Fundamental Ideas can be use-
ful for building semantic networks between different areas of mathematics. 
The classification of conic sections (illustrated by the prototypes ellipse, 
hyperbola, parabola) is the same idea as the basic classification of mono-
tone dependence (increasing vs. decreasing; illustrated at the elementary 
level by y = ax + b,a > 0 vs a< 0). Therefore Fundamental Ideas should help 
to improve memory. It seems to be common sense that concepts which are 
understood and included in a semantic net are better memorized or can 
more easily retrieved.
Fundamental Ideas could also help to communicate the beauty, joy, and ex
citement of mathematics. Maybe this would especially have some effects on 
pre-and in-service education of teachers. A short glimpse at Nardi’s study 
(Nardi 2008) of mathematics undergraduates in the UK shows that a lot of 
students’ problems seem to be related with a lack of understanding of the 
basic ideas which drive mathematics. In his very revealing essay Thurston 
says: “We mathematicians need to put far greater effort into communicating 
mathematical ideas. To accomplish this, we need to pay much more attention 
to communicating not just definitions, theorems, and proofs, but also our 
ways of thinking” (Thurston 2006:45).

This description immediately leads to proposals for research activi-
ties. The focus could be more “theoretical” or more “practice oriented”.

1.	 Construction of semantic nets between different Fundamental Ideas
2.	 Analysis of teaching materials, curricula, and standards along the lines of 

Fundamental Ideas
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3	 Connections to other important concepts like mathematical literacy, ori-
entation on applications, orientation on problem solving, orientation on 
structures, ‘genetischer Unterricht’

4.	 Experiments with learning materials which are designed according to this 
guideline

5.	 Exploring mathematical beliefs (of students and teachers) and Fundamental 
Ideas

6.	 Validation of some aspects of the human dimension

Compared with other subjects mathematical education lacks environmental in-
put. Clearly, we all are surrounded by numbers. We look at prices of goods and 
inspect our bank account. Good and more often bad news are illustrated by 
figures but the cost of a billion dollars is nothing more than incredibly high. In 
every day live almost everything is done by pocket calculators and computers. 
Clearly, there is much more mathematics around us e.g. geometrical figures and 
shapes, topology in form of the subway network, fractal images and clouds. But 
the mathematics behind the curtain has to be detected. Furthermore our tech-
nological civilization rests on mathematics but the increasing division of labor 
could suggest to leave the mathematics behind to specialists. We all use comput-
ers and television but basically we are happy if engineers provide us with these 
items, ready for use! The intimate connections of mathematics to various parts 
of our culture are demonstrated in Emmer 2004, 2005.

If a society should have some coherence it could be important that there 
is a basic knowledge which is shared by many. Furthermore the communica
tion among specialists needs a common language (Fischer 1993). Therefore 
mathematics education has at least three goals.

1.	 Some basic skills should be provided (comparable with reading and writing).
2.	 A preparation for professions which use more mathematics is important 

but the extent of this preparation could vary at different levels and type of 
school.

3.	 Mathematics as a cultural activity should be taught. A path to this goal can 
be “expository teaching” (Lóvasz 2008).

In my opinion these aims could be enhanced by reliance on Fundamental Ideas. 
The classical quotations which follow are from Bruner 1960. 
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“It is that the basic ideas that lie at the heart of all science and mathematics and the 

basic themes that give form to life and literature are as simple as they are powerful.”

“The early teaching of science, mathematics, social studies, and literature 

should be designed to teach these subjects with scrupulous intellectual hon

esty, but with an emphasis upon the use of these basic ideas.”

“The first [general claim] is that understanding fundamentals makes a subject 

more comprehensible.” 

“The second point relates to human memory.” “Third, an understanding of 

fundamental principles and ideas, as noted earlier, appears to be the main 

road to adequate ‘transfer of training’.” 

“The fourth claim for emphasis on structure and principles in teaching is 

that by constantly reexamining material taught in elementary and secondary 

schools for its fundamental character, one is able to narrow the gap between 

‘advanced’ knowledge and ‘elementary’ knowledge.” 

“We begin with the hypothesis that any subject can be taught effectively in some 

intellectually honest form to any child at any stage of development. It is a bold 

hypothesis and an essential one in thinking about the nature of a curriculum.”

Expository Teaching

As an example of the use of Fundamental Ideas in expository teaching I refer to 
Riemann’s hypothesis. We also try to emphasize the importance of Fundamental 
Ideas related to this example: recognizing patterns, taking a new approach, 
confidence in formal calculations, redefining, and estimating.

Recognizing patterns is a Fundamental Idea. This activity leads to the detection 
of prime numbers. Some numbers like 4, 6, 9, ··· can be laid down as proper rec-
tangles. Others like 2, 3, 5, 7, ··· cannot. If one uses the Sieve of Eratosthenes one is 
confronted with the surprising irregular pattern of prime numbers. Due to Euclid we 
know that there are infinitely many prime numbers but the path to Riemann’s hy-
pothesis uses a different idea. This illustrates the idea of taking a new approach. Since every 
number n ≥ 1 can be written as a product of primes in a unique way the equation
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Is valid for s > 1. If the number of primes is finite this relation should be valid 
for s = 1. Since the so-called harmonic series is divergent this is not possible.

Another proof is also remarkable. We know

If the number of primes would be finite we obtain that ζ(2) is a rational num-
ber but in fact we know that ζ(2) =  and π2 is not a rational number.

Due to the invention (or discovery?) of complex functions it was 
tempting to consider the function

Convergence for σ > 1 is no problem since | ns |= nσ but there is no necessity to 
prove it in an expository teaching. The idea of confidence in formal calculations which leads to 
new areas stands behind. The exponential function ex =  can be extended 
to complex numbers by ez =  or even to matrices by eA =  . The 
idea of redefining is the key for the next step. This activity can be explained at various 
levels. If you look at the function f(x) = x for x > 0 then this function could be part 
of f(x) = x for all real x but it could also belong to f(x) = |x|. Therefore if you have 
a piece of a function several continuations are possible. The formula for geometric 
series shows  as long as | z |< 1. But the function f(z) =  is 
well defined for all complex numbers z  = 1. Now we look at the equation

Since [w] = n for n ≤ w < n + 1 we obtain
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The last equality is very easy to understand.

Therefore this equation is true for σ > 1. But since | [w] − w |< 1 the inte-
gral on the right hand side converges for σ > 0. This gives a definition of the 
ζ-function for σ > 0 (with the important condition σ ≠ 1). The conjecture of 
Riemann now reads as follows. If ζ(s) = 0, 0 < σ < 1, then s =  + it. This con-
jecture was published by Riemann in the year 1854 but up to now withstood 
all attempts of being proved (Riemann 1990:148). In fact σ =  +i14, 13472 
... is the first zero in the upper half plane (with s =  ).

Now we have formulated Riemann’s conjecture (later on called 
Riemann’s hypothesis if one uses this “result” in further investigations) but the 
question remains: Why is this an important conjecture? Let π(x) be the num-
ber of primes p ≤ x then Gauss and Legendre conjectured that π(x) is approxi-
mately . More precisely this means lim  = 1. This result was 
eventually proved by Hadamard and de la Vallée-Poussin in 1896. The Riemann 
hypothesis deals with the difference π(x) − . If the Riemann conjecture is 
true then we would have the best possible result for the error. I will not go into 
further details but just mention that the idea of estimating is a key notion. If 
you know that a value x is correct up to ±x this means that the value x = 100 lies 
between 0 and 200. If you know that the error is ±  then the value x = 100 
lies between 90 and 110. As is well known estimating is important in numerical 
calculations and in statistics.

A good account of the mathematics around the ζ-function is Edwards 
1974 (only suitable for students with a strong mathematical background). An 
interesting presentation of several mathematicians who are connected with this 
problem is Du Sautoy 2007 (readable for the layman). A nice novel around 
Riemann’s life is Naess 2006. This novel could be used as a bridge between lit-
erature and history of mathematics (and may even lead to some mathematics!). 
As Ziegler points out it is very important to familiarize mathematics by present-
ing people you can talk to or write about (Ziegler 2008:341).
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Sociocultural Perspectives on the Learning and Development 
of Mathematics Teachers and Teacher-Educator-Researchers

Merrilyn Goos, The University of Queensland, m.goos@uq.edu.au

In this report I explore what we can learn from research that takes a sociocultural perspective on 
conceptualising “learning to teach”. The first part of the report refers to selected studies of pre-service 
teacher education, the transition from prospective to beginning teacher, and professional development 
programs to illustrate what we might learn from the various sociocultural orientations employed. The 
second part further develops one sociocultural approach – an application of Valsiner’s (1997) zone 
theory, and illustrates its use in my own research involving prospective and beginning mathemat-
ics teachers. The third part of the report examines, from a sociocultural perspective, what it means 
to “learn” from research in teacher education, leading to a proposal that zone theory might offer a 
sociocultural framework for understanding the work of mathematics teacher-educator-researchers.

Keywords
Sociocultural theories; mathematics teacher education; development of mathe-
matics teacher educators.
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The ideas presented in this report have developed from many years of my 
own research using sociocultural theories to investigate students’ mathematics 
learning in secondary school classrooms and, more recently, the learning and 
development of mathematics teachers. In this report I look to extend these ideas 
to help me understand the learning of mathematics teacher educators who are 
also mathematics education researchers.

There is growing interest in theories that view teachers’ learning as a 
form of participation in social and cultural practices rather than as an internal 
mental process. Recent reviews of research in mathematics teacher education 
have noted increasing attention to the social, cultural and institutional dimen-
sions of teachers’ learning as well as attempts to integrate social and individ-
ual levels of analysis (da Ponte & Chapman, 2006; Lerman, 2001; Llinares & 
Krainer, 2006). To explain what I mean by sociocultural approaches to mathe-
matics teaching and learning I take the words of Stephen Lerman (1996), who 
defined such approaches as involving “frameworks which build on the notion 
that the individual’s cognition originates in social interactions (Harré & Gillett, 1994) and 
therefore the role of culture, motives, values, and social and discursive practices 
are central, not secondary” (p. 4, emphasis added).

The report considers the following questions:

1.	 What can we learn from sociocultural research on learning to teach mathe-
matics?

2.	 How might this research provide a framework for theorising the role of 
mathematics teacher-educator-researchers?

In the first part of the report I briefly survey the sociocultural landscape in 
mathematics teacher education by referring to representative studies that use 
different sociocultural approaches. In the second part I elaborate on one so-
ciocultural approach – an application of Valsiner’s (1997) zone theory, and 
illustrate its use in my own research involving prospective and beginning 
mathematics teachers. The third part of the report considers what we can 
learn from mathematics teacher education research using Valsiner’s zone 
theory. The final part develops a proposal that zone theory might offer a so-
ciocultural framework for understanding the role of mathematics teacher-
educator-researchers.
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1. The sociocultural landscape in mathematics teacher 
education

Sociocultural perspectives on learning and development grew from the work 
of Vygotsky in the early 20th century. Vygotsky introduced the now familiar 
concept of the Zone of Proximal Development (ZPD) to explain how an indi-
vidual’s cognition originates in social interaction. He proposed that the ZPD is 
created when a child’s interaction with an adult or more capable peer awakens 
mental functions that have not yet matured and thus lie in the region between 
actual and potential developmental levels.

Recent socioculturally oriented research on teachers’ learning has drawn 
on two perspectives: a discourse perspective and a practice perspective (cf Forman, 
2003). The discourse perspective focuses on the dynamics of mathematical com-
munication in classrooms, an approach exemplified by research undertaken by 
Blanton, Westbrook and Carter (2005). Their study examined how a prospective 
teacher’s classroom discourse changed as her perception of teacher and student 
roles shifted from teacher as teller to student as mathematical participant. This 
change was no accident; it was deliberately planned by the university practicum 
supervisor (Blanton) in the conversations she had with the prospective teacher 
about classroom interactions she had observed and what this revealed about how 
students learned mathematics. Blanton calls this a “pedagogy of supervision”, 
which she claims opens up a ZPD that can challenge a prospective teacher’s mod-
els of teaching in the context of actual practice.

The practice perspective links classroom and professional activity 
structures with learning and identity. Situative and community of practice ap-
proaches typify this perspective (e.g., see Graven, 2004; Greeno, 2003; Lave & 
Wenger, 1991; Wenger, 1998). Peressini, Borko, Romagnano, Knuth, and Willis 
(2004) adapted a situative perspective on learning to develop a conceptual 
framework for learning to teach secondary mathematics, focusing particularly 
on teacher learning within multiple contexts such as university mathematics 
and teacher education courses, practicum experiences, and schools of employ-
ment. They noted apparent inconsistencies between the ways teachers taught 
in different contexts; for example, one teacher used reform-based approaches 
during the practicum but more traditional approaches during her first year of 
full-time teaching after graduation. These are not unusual or surprising obser-
vations, but Peressini et al. concluded that the inconsistencies were responses 
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to the different affordances and constraints of the different contexts, and hence 
teachers’ knowledge-in-practice varies with participation in different contexts. 
This research is useful because it helps us understand how context makes a 
difference to the development of mathematics teachers and their professional 
identities.

Krainer has noted that teacher educators have the dual roles of “interven-
ing and investigating … of improving and understanding” (Adler, Ball, Krainer, 
Lin, & Novotna, 2005, p. 371). Sociocultural studies such as those summarised 
above help us understand how teachers learn from their experiences in different 
contexts. But perhaps sociocultural perspectives have been used less effectively 
to guide research on intervening to improve teachers’ opportunities to learn. This 
has left the role of the teacher educator largely untheorised. I argue that a more 
elaborated sociocultural theory of teaching is needed to complement existing 
sociocultural language and concepts used to describe learning in a community of 
practice or in the ZPD. My approach is based on an adaptation of Valsiner’s (1997) 
zone theory of child development, which is outlined below.

2. Valsiner’s zone theory

Valsiner (1997) sees the Zone of Proximal Development as a set of possibilities 
for development that come into being as individuals negotiate their relation-
ship with the learning environment and the people in it. His theory proposes 
the existence of two additional zones, the Zone of Free Movement (ZFM) and 
the Zone of Promoted Action (ZPA). The ZFM structures an individual’s ac-
cess to different areas of the environment, the availability of different objects 
within an accessible area, and the ways the individual is permitted or enabled 
to act with accessible objects in accessible areas. The ZPA comprises activities, 
objects, or areas in the environment in respect of which the person’s actions are 
promoted. The ZFM and ZPA are dynamic and inter-related, and are constantly 
being re-organised by adults in interactions with children.

2.1 Adaptation of zone theory to mathematics education
Mathematics education researchers have taken two contrasting approaches to 
applying this theory to teaching-learning interactions. The first defines the 
zones from the perspective of the teacher-as-teacher, with the ZPD “belonging” 
to the students as it is they who are learning. A teacher’s instructional choices 
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about what to promote and what to allow in the classroom establish a ZFM/ZPA 
complex that characterises the learning opportunities experienced by students. 
One possible zone configuration is represented in Figure 1; others can be imag-
ined if overlap between zones is allowed to change. This representation implies 
that learning takes place at the intersection of the three zones.

Figure 1. A possible zone configuration (teacher-as-teacher)

This teacher-as-teacher version of zone theory is useful for explaining apparent 
contradictions between the types of learning that teachers claim to promote 
and the learning environment they actually allow students to experience.

My own research has taken a different approach because I have applied 
Valsiner’s theory to teacher learning and development (Galbraith & Goos, 2003; 
Goos, 2005a, 2005b, 2009). Here, all zones are defined from the perspec-
tive of the teacher-as-learner. When I consider how teachers learn, I view the 
teacher’s ZPD as a set of possibilities for their development that are influenced 
by their knowledge and beliefs, including their disciplinary knowledge, peda-
gogical content knowledge, and beliefs about their discipline and how it is best 
taught and learned. The ZFM can then be interpreted as constraints within the 
teacher’s professional context such as students (e.g., behaviour, socio-economic 
background, motivation, perceived abilities), access to resources and teaching 
materials, curriculum and assessment requirements, organisational structures 
(e.g., timetabling, room allocation, grouping of students, subject offerings) and 
organisational cultures (e.g., support for collaborative planning and participa-
tion in professional development). While the ZFM suggests which teaching 
actions are allowed, the ZPA represents teaching approaches that might be spe-
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cifically promoted by pre-service teacher education, formal professional develop-
ment activities, or informal interaction with colleagues in the school setting. 
For learning to occur, the ZPA must engage with the individual’s possibilities 
for development (ZPD) and must promote actions that the individual believes 
to be feasible within a given ZFM. It is significant that prospective teachers de-
velop under the influence of two ZPAs, one provided by the university program 
and the other by the supervising teacher(s) in the practicum school, which do 
not necessarily coincide. A possible zone configuration for teacher-as-learner is 
represented in Figure 2.

Figure 2. A possible zone configuration (teacher-as-learner)

2.2 Application of zone theory: The case of Adam
I illustrate the application of the teacher-as-learner version of zone theory by re-
ferring to a case study of one of my own students, whom I will call “Adam” (a 
pseudonym). Adam was a participant in a three longitudinal study in which I fol-
lowed successive cohorts of my teacher education students into their early years of 
teaching (Goos, 2005a, 2005b). I designed and taught the mathematics methods 
course so that students experienced regular and intensive use of graphics calcu-
lators, computer software, and Internet applications. Thus the course offered a 
teaching repertoire, or ZPA, that emphasised technology as a pedagogical resource.

I developed case studies of selected participants to capture develop-
mental snapshots of their experience at three stages: (1) during their final prac-
tice teaching session, (2) towards the end of the first year of full-time teaching, 
and (3) in their second or subsequent years of teaching. I selected participants 
to sample practicum school settings that differed in terms of the Zone of Free 



297

Movement (professional context) and Zone of Promoted Action (supervising 
teacher approaches) they offered. I visited them in their practicum schools and 
schools of employment for lesson observations, collection of teaching materi-
als and audio taped interviews (see Goos, 2005a for details).

Data sourced from lesson observations, surveys, questionnaires, and 
interviews were categorised as representing elements of participants’ ZPDs, 
ZFMs, and ZPAs. As the zones themselves are abstractions, this analytical process 
focused on the particular circumstances under which zones were “filled in” 
with new people, actions, places and meanings. This approach enabled me to 
explore how personal, contextual, and instructional factors came together to 
shape prospective and beginning teachers’ pedagogical identities.

The school where Adam completed his practice teaching sessions had 
recently bought resources such as graphics calculators, data logging equip-
ment, and software. Every mathematics classroom was equipped with comput-
ers connected to the Internet, a data projector, and a TV monitor for projecting 
graphics calculator screen output. A hire scheme provided calculators to all stu-
dents in the final two years of secondary school, and there were also sufficient 
class sets of calculators for use by younger classes. Some of these changes had 
been made in response to new mathematics syllabuses that mandated the use of 
computers or graphics calculators in teaching and assessment programs. Thus 
the school and curriculum environment offered a Zone of Free Movement that 
seemed to afford the integration of technology into mathematics teaching.

Adam had previously worked as a software designer and was confident 
in using computers and the Internet. Although he had not used a graphics cal-
culator before starting the teacher education course, he quickly became familiar 
with its capabilities and with the support of his supervising teacher began to 
incorporate this and other technologies into his mathematics lessons. At this 
stage Adam was still a little concerned that students might become dependent 
on the technology by “just punching things into the calculator and getting the 
answer straight away”. However, he recognised that he may have formed this 
view because he had only seen other teachers use graphics calculators in class 
as a tool for saving time or for checking work done first by hand. In theoretical 
terms, then, the Zone of Promoted Action organised by the supervising teacher 
was consistent with the ZPA I offered in my university course and also with the 
ZPD that defined Adam’s potential for development. Thus his zone configura-
tion at this stage resembled that shown in Figure 2.
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After graduation Adam was employed by the same school where he 
had completed his practicum. By this time, Adam had developed more sophis-
ticated pedagogical knowledge about how to use technology to help students 
learn new concepts. For example, in a lesson about families of functions, I 
observed him follow the students’ lead when they used their graphics calcula-
tors to explore different ways of transforming an absolute value function y = 
|x|, and he coaxed generalised findings out of the students using their own 
language and symbols. He described his approach to this lesson as follows:

I had a rough plan and we kind of went all over the place because we found 

different things. But I think that’s better anyway because they’re using their 

calculators to help them learn.

One might expect Adam to experience a seamless transition from prospective 
to beginning teacher; yet I found this was not the case when I visited him near 
the end of his first year of teaching. By this time he had discovered that many 
of the other mathematics teachers were unenthusiastic about using technology 
and favoured teaching approaches that he claimed were based on their faulty 
belief that learning is linear and teacher-directed rather than richly connected 
and student-led. He described these beliefs and teaching approaches as follows:

You do an example from a textbook, start at Question 1(a) and then off you 

go. And if you didn’t get it – it’s because you’re dumb, it’s not because I didn’t 

explain it in a way that reached you.

Because he disagreed with this approach, Adam deliberately ignored the work-
sheet provided for the families of functions lesson by the teacher who coordi-
nated this subject. The worksheet led students through a sequence of exercises 
where they were to construct tables of values, plot graphs by hand, and answer 
questions about the effects of each constant in turn. Only then was it sug-
gested that students might use their graphics calculators to check their work. 
Conflicting pedagogical beliefs were a source of friction in the staffroom, and 
this was often played out in arguments where the teacher in question accused 
Adam of not teaching in the “right” way. Compared with his earlier experience 
as a prospective teacher, Adam now found himself in a more complex situation 
that required him to defend his instructional decisions while negotiating a 
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harmonious relationship with several colleagues who did not share his beliefs 
about learning. Adam explained:

[Now I’m willing] to stand up and say “This is how I am comfortable teach-

ing”. I just walk away now because we’ve had it over and over and the kids 

are responding to the way I’m teaching them. So I’m going to keep going 

that way.

In terms of Valsiner’s zone framework, Adam became aware of conflicts between 
his technology-rich ZFM, a ZPA that promoted, at best, fairly mundane uses of 
technology in his teaching, and his personal ZPD. This zone configuration is 
depicted in Figure 3. He responded by paying attention only to those aspects 
of the Mathematics Department’s ZPA that were consistent with his own beliefs 
and goals (his ZPD) and also with the ZPA offered by the university teacher 
education course. This, it seemed to me, was how he was able to reconcile his 
pedagogical beliefs (a part of his ZPD) with the ZFM/ZPA complex within his 
teaching environment.

Figure 3. Adam’s zone configuration for first year of teaching

The next year Adam was transferred to a different school that had fewer re-
sources and a more difficult teaching environment. For example, there was only 
one class set of graphics calculators in the whole school, and most students 
were from low socio-economic backgrounds and could not afford to buy their 
own calculators. The learning environment was disruptive and poorly managed, 
and teachers felt frustrated at a perceived lack of support from the school’s 
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leadership team. Adam found no colleagues in the mathematics department 
who shared his pedagogical beliefs or enthusiasm for using technology to help 
students learn. This school promoted teaching approaches (Zone of Promoted 
Action) that were consistent with the technology-poor environment (Zone of 
Free Movement), but not with Adam’s beliefs and aspirations as a beginning 
teacher (his Zone of Proximal Development). I have represented his zone con-
figuration at this school in Figure 4.

Figure 4. Adam’s zone configuration for second year of teaching

3. What can be learned from sociocultural research 
using Valsiner’s zone theory

Earlier I wrote that teacher education research aims to understand how teachers 
learn and to intervene so as to improve teachers’ opportunities to learn. Let me 
take up these themes once more to consider how using zone theory has helped 
me to understand and intervene in teachers’ learning and development.

In my work with prospective and beginning teachers, I now have a 
better understanding of the scope and limitations of my role as a mathematics 
teacher educator. For example, for many years I addressed separately some of 
the key factors known to influence technology integration. I had my students 
carry out an annual technology audit of their practicum schools so that on 
their return to the university they could report on and debate the significance 
of access to resources and technical support and the effect of curriculum and 
assessment requirements on technology usage. In these post-practicum sessions 
I also structured small group discussion tasks in which students compared their 
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own pedagogical beliefs about the role of technology in mathematics education 
with the technology-related practices demonstrated (or not) by their supervis-
ing teachers. These coursework activities have not changed in their classroom 
enactment. What has changed is the way I now integrate these and other ele-
ments of my course into a single zone-theoretical framework that suggests to 
me how and where I might intervene in the development of prospective and 
beginning teachers’ identities as users of technology.

The question of intervention is more difficult, since I am but one of 
many influences on the learning and development of a beginning teacher. In 
Adam’s case, I decided to try to change the way he viewed his context (ZFM) 
and the influence of other teachers (ZPA) in his second school to bring these 
zones into alignment with his ZPD. I encouraged him to view the single class set 
of graphics calculators as an opportunity he could exploit, because he was the 
only teacher who wanted to use them. I also supported him in increasing his 
involvement in the local mathematics teacher professional association where I 
hoped he would find a ZPA external to the school that would nurture his poten-
tial for further development. Through these quite modest interventions I aimed 
to help Adam change the way he interpreted his circumstances and gain a sense 
of agency in his own development.

I have also used Valsiner’s zone theory to better understand the issues 
facing experienced teachers who are unfamiliar with new teaching or assess-
ment approaches or with new technologies. I use this theory to deliberately 
design professional development interventions that take into account not only 
teachers’ knowledge and beliefs, but also with what they believe to be feasible 
in their professional contexts (e.g., see Goos, Dole & Makar, 2007). Again, my 
aim is to create a sense of agency in teachers by helping them see how they 
could view their circumstances differently and recognise elements of their pro-
fessional context that they can change.

4. Using Valsiner’s zone theory to understand the role 
of mathematics teacher-educator-researchers

Zone theory is useful because it brings teaching, learning and context into the 
same discussion. The work outlined above shows it can be applied in two con-
nected layers: (i) the teacher-as-teacher (TasT in Figure 5) creating classroom 
Zones of Free Movement and Promoted Action that structure student learning; 
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and (ii) the teacher-as-learner (TasL in Figure 5) negotiating the ZFM/ZPAs 
that structure their own professional learning. At the latter layer the teacher-
educator-as-teacher comes into the picture, providing the ZPA. Now let us im-
agine a third layer, with teacher-educator-as-learner (TEasL in Figure 5). This 
theoretical extension of the zone model opens up the possibility for investiga-
tion of how mathematics teacher educators’ knowledge and beliefs define a set 
of possibilities for their continuing development (ZPD), how their professional 
contexts constrain their actions (ZFM), and how they experience and benefit 
from different opportunities to learn (ZPA).

Figure 5. Three layers of application of zone theory: students, teachers, and 
teacher educators.

Let me sketch out what such an analysis might look like by applying zone 
theory to my own practice in the dual roles of researcher and teacher edu-
cator. As a researcher, my Zone of Proximal Development is influenced by 
my growing knowledge of theories and methodologies within my discipline 
(mathematics education) and the sub-fields in which I work (sociocultural 
approaches to mathematics learning and teaching). Disciplinary epistemolo-
gies and beliefs shape my ZPD as a teacher educator in much the same way. 
In many respects, the knowledge needed by mathematics teacher educators 
is similar to that required of mathematics teachers. According to Jaworski 
(2008), this includes:
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… knowledge of mathematics, pedagogy related to mathematics, mathemati-

cal didactics in transforming mathematics into activity for learners in class-

rooms, elements of educational systems in which teachers work including 

curriculum and assessment, and social systems and cultural settings with re-

spect to which education is located (p. 1).

However, mathematics teacher educators also need to know how new teaching 
practices are learned and the pitfalls associated with promoting this learning. 
This includes knowledge of how to design teacher education activities, espe-
cially activities that connect prospective teachers’ learning in the university and 
practicum contexts (Bergsten & Grevholm, 2008).

Mathematics teacher beliefs have been extensively researched, but 
the beliefs of mathematics teacher educators have received little attention 
in studies published to date. As an element of the ZPD, mathematics teacher 
educator beliefs about teaching and learning are likely to be influenced by 
theoretical studies and research (Bergsten & Grevholm, 2008), which sug-
gests a need to identify the theoretical and philosophical positions (e.g., con-
structivist, sociocultural, post-structuralist) that inform mathematics teacher 
educators’ practice.

As a researcher, my Zone of Free Movement is constrained by aca-
demic structures and cultures within and beyond my university. These include:

guidelines for career development, identifying activities that are for-
mally recognised and rewarded; mechanisms for managing academic work-
loads that seek to balance teaching and research; government programs for 
assessing the quality and impact of university research; competitive research 
grant schemes; the process of peer review of articles submitted for publication 
in scholarly journals.

Closely inter-related with these elements of my professional context 
is the Zone of Promoted Action represented by my initial research training 
(doctoral studies, early experiences as a research assistant), participation in re-
search conferences and other activities of educational research associations, and 
formal or informal mentoring by more experienced colleagues. This ZFM/ZPA 
complex helps shape possibilities for my development as a researcher (ZPD) by 
defining what is allowed and what is promoted. The learning opportunities that 
arise in this way are well charted and form part of the enculturation of novice 
researchers into academic life.
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As a mathematics teacher educator, I must negotiate a different zone 
configuration. Here, my practice is constrained by a Zone of Free Movement 
comprising the following elements: student characteristics, such as their math-
ematical knowledge and their beliefs about mathematics teaching and learning; 
curriculum and assessment requirements that are governed by external teacher 
registration authorities as well as university course accreditation processes; lim-
ited access to technology resources in the university; reduction of the hours allo-
cated to teaching methods courses in the pre-service teacher education program; 
difficulties in finding suitable practicum placements for prospective teachers; per-
ceptions amongst colleagues that teacher education is low status work.

My ZPA as a teacher educator is less clearly defined in that it is dif-
ficult to identify people or activities that explicitly promote my development 
in this role, and thus difficult to describe the ZFM/ZPA complex that shapes 
my teacher education practice. Llinares and Krainer (2006) point out that the 
growth of mathematics teacher educators as learners is a new field of study, and 
research in this area has so far drawn on notions of reflective practice rather 
than sociocultural theories that take into account the settings in which practice 
develops. From a sociocultural perspective, I could say that my own research 
in teacher education acts as a ZPA that informs my practice as a mathematics 
teacher educator. My research using zone theory has also influenced how I 
work with prospective teachers – my own teacher education students – to help 
them analyse tensions between the learning experiences offered by the univer-
sity course and the practicum. While this approach helps give coherence to my 
dual roles as researcher and teacher educator, further elaboration of Valsiner’s 
zone theory is necessary to create a conceptual framework that better explains 
how mathematics teacher educators learn from research into teacher education.
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Abstract

This study was intended to explore an innovative integrated model for supporting 
future teachers learning to teach under the impact of teacher education reform 
of Taiwan, particularly, in the internship. It begins by introducing the change 
of teacher education reform issued in 1994, followed by the description of the 
impact of teacher education on quality control. Then, it describes an innovative 
approach of internship through the school-university partnership. The innovation 
approach is intended to enhance mentors’ knowledge and skill, such that men-
tors have better ability in mentoring future teachers. The aspects of innovation 
include the course of the mentoring, the process of mentoring, an integral model 
of mentoring, and its evaluation of the mentoring program. The characteristics of 
the partnership are summarized. Several tensions and difficulties emerged under 
the integrated model of mentoring are described in the end.

Keywords
Mentors, integrated model, internship, school-university partnership.
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1. Introduction

Teacher preparation programs across countries have made considerable efforts 
to improve the content and the process of the practicum (Fairbanks, Freedman, 
Kahn, 2000; Field & Latta, 2001; Nichols & Tobin, 2000; Nilssen, 2003; Strong, 
Baron, 2004; Wang & Odell, 2002). The practicum stipulated allows a future 
teacher (FT) to have field experience in school settings for an entire school year 
with the support of university faculty and school teachers (Booth, 1995). Due 
to fact that the responsibility for mentoring FTs in Taiwan lies with the mentor 
in the schools who are not subject specialists rather than with the university 
faculty, so that FTs have little professional learning with school teachers during 
practicum (National Hsinchu University of Education, 2006).

The Teacher Education Act (TEA) passed in 1994 significantly changed 
the way that teachers in Taiwan are trained. With the influence of econom-
ic, political and social constructs (Fwu & Wang, 2002; MOE, 1994). The TEA 
brought into law two important changes (MOE, 1994): 1) Teacher prepara-
tion can be offered from any institution in which has a teacher education pro-
gram; 2) School-based practicum is reduced to half year from a whole year; 3) 
Teachers are certified by the processes of graduating from a qualified teacher 
certification program (4 years), completing a half-year practicum, and passing 
a certified teacher examination.

 A great deal of teacher education researchers have paid a lot of atten-
tion on the studies of teacher preparation, but these studies are limited on the 
learning opportunities for FTs provided by the teacher preparation program ( 
Huang & Chin, 2003; Lo, Hung, & Liu, 2002; NHUE, 2006). There was rela-
tively little research on the support given to FTs until the privilege of teacher 
colleges or normal universities for teacher preparation was deprived. The focus 
of this study is on the effect of an innovative integrated model of mentoring 
that was designed to improve the skill and knowledge of mentors’ in support-
ing FTs’ quality of teaching during the internship of the elementary school-
university partnership.

2. The Impact of Teacher Education Reform in Taiwan

Several issues regarding teacher education impacted by the teacher education 
reform are addressed as follows.
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2.1 Variance in Teacher Training Among Universities
All four-year public and private universities and colleges are allowed to run 
teacher education programs as long as they meet the requirements of the MOE. 
The teacher education program in any university needs to be approved by the 
MOE which requires the school to meet criteria regarding the staff and faculty, 
curriculum, and facilities of the program(s). However, the process of instruc-
tion, training, and practicum vary with different programs (MOE, 1994). Some 
programs have inadequate number of faculties, while some lack of practical 
experience in internship (MOE, 2005). The enactment of the TEA accelerated 
the number of TE programs set by regular universities from 9 programs in 
1994 increasing up to 88 programs in 2006 (MOE, 2005). Due to these cir-
cumstances, two teacher colleges upgraded to be a comprehensive university 
(MOE, 2005). The declining budget of government for higher education and 
the limited amount of the faculty and facilities made the transformation of uni-
versities of education or to seek for compiling into nearby universities (Cheng, 
2009; Lee, 2008).

2.2 Initiation of National Certified Teacher Examination
Due to the decreasing birth rate (Sheau, 2006), the supply of teachers is much 
more than the demand. The number of teachers to be prepared is reduced by 
50% from 1994 to 2009; when only 9,123 students were admitted to schools 
of education (MOE, 2009).

Although fewer teachers are being educated more institutions are 
involved; to control teacher quality, a National Certified Teacher Examination 
(NCTE) was initiated in 2004. The examination assesses FTs’ knowledge of 
general pedagogy instead of subject matter pedagogy. The items of examination 
do not assess FTs’ pedagogical content knowledge of mathematics.

2.3 FT’s Practical Knowledge Undeveloped in the Practicum
The practicum provides FTs with an opportunity to develop the professional 
knowledge but it often results in FTs developing technical skills of classroom 
management, rather than the wisdom of professional practice (Fwu & Wang, 
2002; Huang & Chin, 2003; Lo, Hung, & Liu, 2002). Within ten years, a great 
deal of studies on teacher preparation show that FTs complained that they are 
required to devote a great deal of time to administrative affairs of schools, due 
to the ambiguity of FT’s role (Lin, 2007; Lo, et. al, 2003; National Hsinchu 
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University of Education, 2006). FTs in school placement were neither a student 
(because of their completion of courses of TE program) nor a teacher (be-
cause of no salary). FTs were required by mentors or by school administrators 
to devote a great deal of time to doing school administrative affairs. The FTs 
were afraid of rebelling school teachers’ authorities because the part of their 
grade of internship was graded by mentors. This leads to lack of professional 
learning during the internship. In addition mentees complained that they were 
mentored by the mentors who did not have enough professional knowledge in 
mentoring (Lo, Hung, & Liu, 2002; Huang & Chin, 2003; Lin, 2007).

To increase the quality of mentoring, the National Science Council 
(NSC) associated with MOE called for research proposals. This study was devel-
oped under the situation. This study began by constructing professional stand-
ards for mentors and for FTs and followed by designing a mentoring program, 
developing a model of mentoring, and evaluating mentoring program.

4. An Integrated Model of Mentoring for Improving 
The Quality of Internship

4.1 Courses of the Mentoring Program
The goal of the half-year mentoring program as part of the study was to en-
hance mentors’ knowledge and skills in mentoring. The mentoring program 
was based on the professional standards of mentors that were conducted by the 
first year of study (Lin & Tsai, 2007).

The program was divided into two sections: summer workshop and 
half school-year mentoring practice. The course of each section covered five 
topics: curriculum, pedagogy, assessment, social mathematics norm, and topics 
about individual students. Curriculum topics refers to the objectives of instruc-
tion, the scope and sequence of the content to be learned, resources of teaching, 
textbook, and the plans and schedules for teaching. Pedagogical topics involve 
the discussions on subject matter knowledge, instructional strategies, clarity 
of explanation, questioning, problem-posing, and analyzing students’ various 
solutions. Assessment analysis is for understand students’ performance as well 
as their progress. The social mathematics norm reviewed the issues about social 
interaction in mathematics classroom, the norms of groups of students in a 
class. Individual students included discussions about the background, learners’ 
needs, behavior, and progress of an individual student (Lin, 2007).
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The courses of the mentoring program were implemented in a six-day 
with 36 hours summer workshop; followed by half school-year with 42 hours 
of instructional time. The summer workshop was to provide a learner oriented 
conception to mentors’ and FTs’ for teaching mathematics, while the half-year 
course was to enhance mentors’ knowledge and skills in mentoring and FTs’ 
knowledge of teaching.

4.2 Partnership of University-School
It is not possible to develop FTs’ professional knowledge if the mentors’ men-
toring knowledge and skills have not been well developed (Cobb, & McClain, 
1999). Thus, developing mentors knowledge and skill of mentoring is pre-
requisite before they mentor with FTs. To reduce mentors’ tension and bur-
den from their participation in the mentoring program, each mentor was 
only trained to specialize in one subject by a teacher educator from mathe-
matics department of the university. For instance, the mentors A, B, C, and D 
were trained to be an expert in mathematics teaching assisted by the teacher 
educator of mathematics education, while mentors P, Q, R, and S were trained 
to be an expert in Chinese teaching assisted by the teacher educator from 
Chinese department.

Four groups involving in the partnership were: mathematics men-
tors group (MMG), Chinese mentors group (MMG), mathematics FTs group 
(MFTG), Chinese FTs group (CFTG), displayed in Figure 1. MMG consists of a 
mathematics teacher educator and four mentors. MFTG consists of four pairs of 
FT-mentor in mathematics.
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The school-university partnership was designed to assist mentors in developing 
mentoring knowledge and skills, and then to enhance FTs’ professional practice 
during the practicum. In developing the school-university partnership, there 
were four main considerations. First, the school to be recruited was dependent 
on the willing of the mentors and the FTs. Second, the school to be recruited at 
least consists of the mentors from mathematics and Chinese. Third, the school 
has a commitment to maximize the FTs’ involvement in the community of 
mentors while at the same time minimizing the possible disruption this par-
ticipation might cause the mentors and schools. Fourth, some kind of ancillary 
benefits and feedback for giving back to the school from the university when 
designing the mentoring program. The collaboration of school and university 
is depicted in Figure 2.

Researcher 

Future Teachers 

Mentors 

Mentors Group 

FTs Group 

Figure 2: Collaborative Model of Mentoring in School-University  

University School 

 

4.3 The Integrated Model of Mentoring
Due to the fact that FTs were to be a primary school teacher who teaches several 
subjects, but mathematics and Chinese are required subjects to be taught by a 
home-room teacher. To this end, an integrated model of the mentoring was 
developed in the study.

The model was called one-subject mentors with multiple-subjects 
future teachers (OSM-MFT). It means that each mentor was only trained to 
specialize in one subject by a teacher educator of the university, while a FT is 
trained in all subjects from two mentors who are interested in mathematics or 
Chinese, as in Figure 1.
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Figure 3 reveals was that each participant FT was mentored by a mentor in 
MMG and mentored by another mentor who is in CMG. Each FT in the mathe-
matics group was mentored by a mentor from MMG and a mentor from CMG..

The integrated model took the critical constructivist perspective on 
mentoring, that knowledge is actively built by learners through the process of 
active thinking (Wang, & Odell, 2002). The teacher educators and the mentors 
were viewed as learners and generators of new knowledge and practices of men-
toring. Likewise, the mentors and the FTs were also viewed as learners and gen-
erators of new knowledge, and they had to count on each other. The integrated 
model stressed mentors’ active construction of mentoring knowledge through 
what they have leaned in practice and constant dialogue with teacher educators. 
There was a one-hour classroom observation on every Thursday morning and 
a follow-up three-hour mentoring group meeting in the afternoon throughout 
each phase of the mentoring program. Each mentor was required to immedi-
ately share with FTs the main ideas discussed in the MMG meeting.

Scheduling proved to be a challenge as two mentors needed to be 
available for each group of mentees: FTm1 and FTc1 in Figure 3 for example. 
FTm1 and FTc1 were arranged to present in mentor A classroom simultane-
ously to watch mentor A’s lesson, and also appeared in Mentor P classroom 
simultaneously to watch Mentor P’s Chinese lesson at other time. The mathe-
matics class of these two mentors was arranged at the same time on the course 
schedule. It is the same for Chinese class. Both FTm1 and FTc1 always appeared 
altogether in the same classroom at the same time.
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4.4 Four Phases of the Mentoring
Four mentors participating in the study had no experience in mentoring. To 
help them put their visions for mentoring into practice, the mentors were sup-
ported in four phases.

Phase 1
The first phase was two weeks long and involved providing mentors support with 
the concept of induction through mutual sharing amongst mentors the teacher 
educator. The mentors were provided with techniques to offer emotional support 
for interns to reduce psychological stresses caused by the conflicts between their 
personal lives and professional requirements. Each mentor took turns to report 
in public how the introduction of the intern to students and parent was accom-
plished in the first few days of the school year. Each FT was asked to report their 
feelings about how the introduction was handled by the mentor.

Phase 2
In the second phase, from week 3 to 6, each mentor was asked to teach several 
lessons for FTs in their own classroom. Before teaching each mentor would ex-
plain the purpose and method of the lesson so the FT could observe the lesson 
with greater understanding and purpose. In this way, each FT could see how 
their mentor taught a lesson. It was followed by a short conversation with the 
mentor concerning the relationship between the syllabus, the lesson plan, and 
the lesson actually taught. This phase provided the mentors an opportunity to 
support FTs on learning how to observe a lesson which was learner focused 
reinforced that the mentors had learned the teaching approach.

Phase 3
The third phase, from week 7 to 10, teacher educator supported the mentors 
and FTs as they worked together in preparing a lesson and a peer observation 
(called as LPPO). The process starts with the FT observing a mentor preparing 
a lesson and then observing the mentor teach the lesson. This was followed 
by other mentors’ observation on how the mentor carried out the lesson, and 
then observing the mentor asking the intern a series of questions, such as ex-
plaining how well the lesson plan was carried out, how well the objectives she 
have achieved in the lesson, identifying the changes she made in the lesson 
compared to the lesson plan. During the third phase, other mentors not only 
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learned from the mentor-intern relationship but also other mentor comments 
about the mentoring process, lesson plan and teaching, but also gave the men-
tor comments or suggestions on mentoring. Each mentor-intern pair took turns 
engaging in the activities of LPPO. The FT of each pair was asked to report what 
she learned in the activity of LPPO.

Phase 4
From weeks 11 – 14 each FT participated in teaching of classes. During this 
phase the mentor was a passive observer, assisting only as needed. The goal 
of this phase was to observe the impact of the mentoring on FT mathematics 
teacher performance. During this phase, each FT was evaluated by other FTs, 
mentors and a researcher. The evaluation of mathematics teaching consists of 
two aspects: teaching preparation and teaching behavior.

5. Data Collection and Analysis

Data collection consists of both qualitative and quantitative data. Pre- and post-tests 
were given to all participants. Mentors completed a self-assessment of the profes-
sional standards, and a survey regarding the workshop and mentoring practices. 
The summer workshop survey asked participants to rate the contents of the course.

Each FT’s teaching was assessed according to the lesson preparation 
and teaching behavior. The indicators of lesson preparation include 7 items: un-
derstanding instructional objectives, structure of materials, mathematics con-
tent, readiness of preparation, activities building on students’ pre-experience, 
adaptation of teaching activities, and lesson plan.

The effect of the integrated model of mentoring is organized at three 
levels in accordance with the model of Kirkpatrick and Kirkpatrick (2006). At 
the reaction level, the mentors were interviewed on the feedback of summer 
workshop and half-year school mentoring activities for measuring what they 
thought and felt about the program. At the learning level, pre-test and post-test 
were conducted aligned with self-assessment 5-scale questionnaire profession-
al standards, to assess the extent to which mentors change attitudes, improve 
knowledge and skill. At the behavior level, classroom observation, interview, 
and mentors’ mathematics journal were measured how mentors transferred 
their knowledge and skill in mentoring as a resulted of the mentoring program. 
Each mentor was also conducted individually with a semi-structure interview.

RL | An Innovative Integrated Model of School-University Partnership
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6. Effect of the Integrated Model of Mentoring

The effect of the integrated model of mentoring includes the participants’ val-
ued to the model and their reactions to the mentoring program.

6.1 Mentors’ and FTs’ Valued the Integrated Model
All mentors were committed to the integrated model because this model cre-
ated the opportunity for them to learn a new pedagogy for teaching Chinese 
from their FTs who participated in the CMG. Conversely, the Chinese mentors 
have the same agreement. Mentors also mentioned that two FTs working with 
each mentor had greater potential to stimulate multiple perspectives than only 
one FT working with each mentor. The suggestion of the model the mentors 
made was that the two FTs worked with two same grade mentors since their 
concerns had the same focus.

For FTs, the integrated model afforded them rich professional learn-
ing. For instance, when creating a lesson plan FTs learned to create a strong les-
son plan for effective teaching, including predicting potential responses from 
students and how to follow-up on those responses by preparing questions. The 
FTs learned to pay more attention to the sequence of the activities to be taught. 
They also learned that the sequence of the activities relied on the objectivities 
of the lesson, the context of the problems to be posed, the numbers involving 
in the problems, and students’ prior knowledge.

6.2 The Effect on Mentor Learning

6.2.1 Reaction Level: Mentors’ Satisfaction with the Course of Mentoring Program
The results show that all four of the mentors were satisfied with all topics cov-
ered during the summer workshop and half-year. The mentors had slightly 
less satisfaction with the lesson plan engaged in the school year ( M =4.5) 
than in the summer workshop ( M =4.25). Su made the comment on lesson 
plan as follows.

….What I learned in design of lesson plan in summer workshop was about 

the essential components, such as students’ anticipated solutions, prior 

knowledge, objectives of the lesson, and key questions to be asked. Based on 

this experience, it helps me to move to observe how Juei worked with her 
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assigned FTs on planning a lesson and then wrote it into a lesson plan. I saw 

that Juei asked her FTs to read the textbook and search for relevant resources 

in advance. She asked them to make sure of the objective of the lesson and to 

be aware of the need of adaptation of the activities covered in the textbook.

6.2.2 Learning level: Improvement of Mentors’ knowledge of teaching and mentoring
Regarding the knowledge of teaching, the percentages of pre- and post-test 
four mentors performed increase from 40% to 80%, from 53% to 80%, from 
40% to 73%, from 40% to 67% respectively. The result indicates that the men-
tors enhanced their knowledge for teaching fractions because of what they 
learned in the program.

With regard to the conception of mentoring, initially, in their view 
of FTs’ expectation for the role of mentors was to provide emotional and 
technical support. Learning to teach, in their view, was to be left FTs’ own ac-
cumulation of teaching experience and lessons based on trial and error. Their 
lack of knowledge was clarified their responses to self-assessment question-
naire. Before entering the program, the mentors had no confidence in per-
forming 7 items out of 16 items (termed as 7/16 ) of professional literacy, 
18/34 items of mathematics teaching, and 22/36 items of mentoring prac-
tice, respectively. Through the process of mentoring, they gained more confi-
dence in teaching and mentoring. The post program survey found that only 5 
items; 2 items of teaching and 3 items of mentoring were not improved. The 
positive impact was note by Juei, who was pleased to her more awareness of 
problem-posing.

6.2.3 Behavior Level: Transfer occurred in Mentoring FTs
The mentors transferred their knowledge of teaching into their mentoring 
practice. The transfers of problem posing and lesson plan are presented here. 
The aspects the mentors attended to when working a lesson plan with FTs from 
Phase 2 to Phase 4 of the mentoring program are described in Table 1. Table 1 
shows that the mentors expanded their perception of lesson plan and improved 
their ability to help FTs in writing a lesson plan. Comparing to Phase 2, two 
more aspects the mentors learned from the mentoring program on preparing a 
lesson were the scope and sequence of the mathematics contents and students’ 
various anticipated solutions. They tried hard to ask FTs to put the possible key 
and follow-up questions on their own lesson plans.
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Table1: Aspects of Lesson Plan the Mentors Attended to in Different Phases 
of Mentoring

Phase 2 Phase 3 Phase 4 

Objectives of the lesson
Objectives of the lesson 
Objective of each activity

Objectives of the lesson 
Objective of each activity

--
Analysis of the scope and 
sequence of the content 

Analysis of the scope and 
sequence of the content 

Pupils’ prior knowledge Pupils’ prior knowledge Pupils’ prior knowledge 
Status of the lesson Status of the lesson Status of the lesson

Sequence of the activities 
Sequence of the activities
including the problems to 
be posed 

Sequence of the activities 
including the problems to 
be posed

The setting The setting The setting

Instructor’s activities
Instructor’s activities with 
key & follow-up ques-
tions to be asked

Instructor’s activities with 
key & follow-up ques-
tions to be asked

--
Students’ activities in-
cluding anticipating stu-
dents’ solutions

Students’ activities in-
cluding anticipating stu-
dents’ solutions

7. Discussion

With reconceptualizing the meaning of a school-university partnership, the 
integrated model of mentoring provides some evidence for the crucial im-
portance of the mentor in the development of the FTs’ professional learning. 
It gives the view that simply placing FTs in school without adequate mentor-
ing support would give FTs little chance to develop their classroom teaching 
skills and understanding. The teacher educators of a university offered the sup-
port with an integrated model of mentoring for mentors in school. However, 
there were several tensions and difficulties which emerged under the integrated 
model of mentoring.

Although the mentors and FTs agreed to participate, many com-
mented that they were not given enough detail on the nature of the program. 
Initially the mentors showed hostility due to a belief that they now had ad-
ditional work. They struggled with the additional work and the improvement 
of professional knowledge. However, the factors of additional work appeared 
not to play a significant part in influencing mentors choosing to take on the 
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role. Gaining professional knowledge and professional confidence became an 
internal incentive. The difficulties mentors encountered in the integrated model 
included additional work, tight schedules, and lack of cooperation from FTs. 
Likewise, additional work and tight schedules were the difficulties for the FTs 
during practicum. The willingness of FTs participating in the integrated model 
of mentoring drastically decreased as time passed, since they have little oppor-
tunity to become an initial teacher in the school. Some of the FTs who planned 
to transit their profession to other occupation lacked professional engagement 
during practicum.

The finding of the study revealed the FTs’ and Mentors’ satisfaction 
with the course of mentors and FTs in the practicum through the integrated 
model of the collaboration of university and school. This indicates that the 
successful model has the following characteristics: (1) The partnership of uni-
versity and school is based on a model of team-work between mentees and 
mentors, and teacher educators who supervise them. (2) We treated FTs not 
only as students but as members of the profession. (3) The integrated model 
is school-led in the sense that mentors in schools take the main responsibility 
for FTs and supervisors in university take the main responsibility for mentors.

RL | An Innovative Integrated Model of School-University Partnership
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The Concept of Identity
Positioning the Self within Research

Margaret Walshaw, Massey University, m.a.walshaw@massey.ac.nz

Introduction

This paper interrogates the concept of identity as it plays out within the re-
search process. It engages general debates about the production of knowledge 
and, within that, more specific debates about reflexivity and the place of one’s 
own subjectivity in the research process. Situated beyond past scientific preten-
tions, it attempts to take into account the place of emotions and unconscious 
interference both in relation to the researcher’s own subjectivity and in rela-
tion to intersubjective relations between researcher and research participants, 
for understanding the practice of research. It begins with Lincoln and Denzin’s 
(2000) vision of qualitative research as “simultaneously minimal, existential, 
authoethnographic, vulnerable, performative and critical” (p. 1048). The focus 
is on performing the self as researcher, both within the data gathering process 
and in the construction of research reports.



323

The performance of self as researcher is not a new theme of course, 
since writing oneself into the research is, if not celebrated or embraced as it is 
in much feminist research, it is at least condoned in mathematics education. 
Putting the researcher into the research is considered a way to move beyond 
subscribing to a particularly modernist set of assumptions informing concep-
tions of what it means to know and what it means to know others. This is a 
set of assumptions to the effect that researchers are able to put themselves in 
another’s (participant’s) place and know his or her circumstances and interests 
in exactly the same way as she or he (participant) would know them. Following 
on from those kind of understandings comes the belief that researchers will be 
able to produce “paradigmatic instances of the best knowledge possible, for 
everyone, in all circumstances” (Code, 1995, p. xi).

This way of thinking has come under interrogation from Foucault 
(1972) who has provided a critical analysis of how the particularly powerful 
modernist discourse determines who has access to the production, the distri-
bution, and the legitimation of knowledge. The disruption of what Derrida 
(1976) has called the end of ‘pure presence’ has represented an immense chal-
lenge to researchers in mathematics education. For one thing, objectivity has 
been close to many a researcher’s heart. Giving up control and mastery and 
the understanding that knowledge is made by the abstract, interchangeable 
individual (researcher), abstracted from the particularities of his or her cir-
cumstances, has forced us to think about a practice that would acknowledge 
researcher complicity in the research process. For another thing, it has required 
us to reassess concepts like reliability, generalisablity and validity that are part 
and parcel of the classical episteme of representation. To this end some have cho-
sen to write themselves into the research—to make their core researcher self 
visible and voiced.

In this paper I am attempting to understand identity and, specifically, 
what it is that structures the narrative experience. In that attempt I have two 
main objectives. One is a theoretical interest that involves examining the issue 
of subjectivity and how intersubjective negotiations take shape in relation to 
data gathering and the construction of research stories. Foucault’s understand-
ings of how subjects are produced within discourses and practices, Lacan’s ar-
guments about narratives of the self, and Zizek’s related examination of how 
subjectivities are constructed across sites and time have all been highly influen-
tial. Their work tells us that self-conscious identifications and self-identity are 
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not simple, given, presumed essences that naturally unfold but, rather, are pro-
duced in an ongoing process, through a range of influences, practices, experi-
ences and relations that include social, schooling and psychodynamic factors. 
This brings up the issue of emotion and unconscious processes. I propose that 
a conceptual frame derived from this body of work offers a way of understand-
ing a sense of self that is simultaneously present, prospective and retrospective, 
as well as rational and otherwise.

A second objective is to speculate what these understandings of the 
researcher’s subjectivity tell us about the production of knowledge. Using data 
from my own research on girls in mathematics schooling, I place my ‘self’ un-
der scrutiny as I explore the multiple layers of performing the art of research. 
This is the point where the interest moves from establishing truth onto an 
understanding of how meaning is produced and created and, specifically, in 
how these productions are influenced by fictions and fantasies. My purpose 
in doing this is to keep the research conversation going and specifically to ac-
commodate the researchers’ subjectivity, intersubjective negotiations, and the 
place of emotions and unconscious interference in these two, in performing 
the art of research.

CONFRONTING KNOWLEDGE PRODUCTION

We have come a long way from wholesale acceptance of the canons of truth and 
method of research. To date, albeit in small bites, the criteria for evaluating and 
interpreting educational research have been questioned and this has informed 
a revised thinking about the concepts of legitimacy and representation. More 
specifically, it has led to a reevaluation of the idea that researchers are able to 
capture lived experience—that they are able to speak on behalf of others. This 
heightened sense of awareness of the limits of research to explain social rela-
tions has crystallised into alternative research reporting approaches and new 
forms of expression. Steering a middle course between supporting long-held 
epistemological and ontological preoccupations that prop up the search for re-
ality, and an effort to understand the conditions of knowledge production itself, 
research in the social sciences has scrutinised the place of the researcher in the 
research process. They have recognised the researcher’s position of privilege in 
knowledge construction and transformed it into “to a more self-conscious ap-
proach to authorship and audience” (Coffey, 2003, p. 321).
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Taking the lead from social science, scholars within mathematics edu-
cation began to suggest that it is not enough to connect the researcher to the 
questions, methods, and conclusions of any research, but that such a relation-
ship should be avowed and should be made transparent (see Burton, 1995, 
2003; Cabral & Baldino, 2004). In writing the reflective self and research voice 
into research texts, contemporary work in the social sciences has emphasised 
the negotiation, physicality, and crafting of personal relationships within the 
research encounter. Driven by an epistemic responsibility to get perceptions 
‘right’, the researcher seeks “the courage not to pretend to know what [she] 
does not know [and] the wisdom not to ignore its relevance” (Code, 1988, p, 
191). Reflexivity, in these accounts, has become a methodological resource for 
authorising the researcher’s self into the account.

…the researcher-self has become a source of reflection and re-examination; 

to be written about, challenged and, in some instances celebrated. In more 

general terms, the personal narrative has developed as a significant preoc-

cupation for many of those who espouse qualitative research strategies…

There is an increasingly widespread assumption that personal narratives offer 

uniquely privileged data of the social world; personal narratives (re)present 

data that are grounded in both social contexts and biographical experiences. 

The personal narratives of the researcher have formed part of this movement, 

to be told, collected and (re)presented in the research and writing processes. 

(Coffey, 2003, p. 313)

Theoretical and methodological issues to do with the concept of the self and 
its textual visibility have been critiqued on a number of fronts (e.g., Adkins, 
2003; Brown & England, 2004, 2005; Walkerdine, Lucey, & Melody, 2003). 
Such writers take pains to emphasise that there is no core self; instead the 
“self, like those of the research participants, is created as both fiction (in the 
Foucauldian sense) and fantasy” (Walkerdine et al., p. 180). It is an effect of 
the experience of interacting with social groups, cultures and institutions. One 
appropriates different ‘selves’ in relation to those interactions. In this line of 
thinking, giving the researcher a voice, as a methodological practice, resonates 
with Beck’s (1992) notion of ‘reflexive modernity’, in which individuals seek 
out by strategic means a coherent life story within a fractured landscape. The 
claim that reflexive forms of action are demanded from contemporary life has 
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been fiercely debated (e.g., Adkins, 2003; Skeggs, 2004; Walkerdine, 2003), 
not least because the reflexive self is based on a foundational conception of the 
human subject, and hence much too cognitive in nature (see Adkins, 2003).

The terms of the reflexive researcher debate centre around the tendency 
to believe that the addition of a researcher layer to the narrative has the effect of 
countering the effects of power, privilege, and perspective, and believing that it 
does this by “guarding against over-familiarity and the effects of context on the 
relationships that are formed in the field” (Coffey, 2003, p. 314). The claim that 
reflexivity has occurred is counterclaimed with the insistence that the insertion 
of one’s self into the account fails to engage the very problem of narrating expe-
rience, neglecting to ask what is it that “conditions and structures the narrative 
impulse” (Pitt & Britzman, 2003, p. 756). As a version of the rational actor the 
reflexive self clearly does not have the effect of making relations between the 
researcher and participant transparent. The self tends to “move uncomfortably be-
tween the individual and the social or cultural without resolving, or satisfactorily 
exploring, the tensions inherent in this tussle” (Bibby, 2008, p. 37).

None of this is to suggest that the researcher should remain an invis-
ible participant. Abandoning the practice of researcher reflexivity is not the 
objective here. Nevertheless, drawing attention to the implicatedness of the 
researcher in the production of knowledge primarily through the researcher’s 
personal story, does not tell us the full story. In understanding the subjectivity 
of the researcher, the subjectivity of the participants, and the intersubjectivity 
of the two, out of which the research account is produced, other factors are 
crucially important. The place of emotions is a case in point. What needs to be 
emphasised here is that the concept of the authorial self, held in place so that 
the voice might surface, has been found wanting.

UNDERSTANDING IDENTITY/SUBJECTIVITY

In taking the authorial self to task, it is helpful to think of the subjectivity of the 
researcher as involving identifications, relationships and experiences, that are 
not in any way straightforward, but are rather, “mediated by multiple histori-
cal and contemporary factors, including social, schooling and psychodynamic 
relations” (McLeod & Yates, 2006, p. 38). What are being raised here are ques-
tions of a fundamental epistemological nature. The bad news is that the theories 
that we typically use in mathematics education do not tend to deal with such 
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issues. We can’t draw on a single theory to capture and explain subjectivity as 
a discursive constitution and to explain relations between positionings that 
work in contradictory, conflictual and emotional ways. The good news is that 
it is possible to work with a number of conceptual tools that allow us to deal 
with the complex interplay between hierarchies of social categories and the 
processes of self-formation that are at work in the practice of research.

One of the ways subjectivity has been explored in recent scholarship 
is through spatial metaphors that model research as a space that seeks to define 
and monitor subjectivities. Research constructs particular positionings for peo-
ple and both creates and lends coherence to the understandings that those in 
the research process construct of themselves. Within the practices of research, 
researcher subjectivity is historically and situationally produced in relation to 
a range of constantly changing processes. In scholarship that draws upon these 
understandings (e.g., Blunt & Rose, 1994; Keith & Pile, 1993; Pink, 2001) the 
notion of a ‘real’ identity or ‘true self’ is an illusion. Pink (2001) elaborates that 
the “self is never fully defined in any absolute way,…it is only in specific social 
interactions that the…identity of any individual comes in to being in relation to 
the negotiations that it undertakes with other individuals” (p. 21).

We can draw on Foucault (e.g., 1984, 1988) to explore the dynamic 
self/social spatiality. For him, identity is historical and situationally produced; it 
exceeds singular definition precisely because it is always contingent and precar-
ious. His concept of discursivity allows us to make connections between social 
process and individual biography. In Foucault’s (1977) formulation, discursive 
spaces trace out what can be thought, said and done by providing people with 
a viewpoint of the social and natural worlds. They are, above all, knowledge 
producing systems (Walshaw, 2007). But describing how the subject is pro-
duced and regulated in multiple and contradictory discourses, is not the same 
as subjectivity—the condition of being a subject.

Understanding how this process operates for the researcher and re-
searcher participants requires conceptualising how they live their subjectivity at 
the crossroads of a range of often competing discourses. In searching for a theory 
of the self that can offer a model of interpretation that extends beyond the histori-
cal and personal, I have found psychoanalytic theory particularly helpful. Arguably, 
psychoanalysis has many shortcomings, yet the theories of scholars, such as Lacan 
and Žižek, provide us with the tools for understanding the self in relation to social, 
cultural and psychic processes (Britzman, 1998; Ellsworth, 1997; Evans, 2000; 
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Felman, 1987; Jagodzinski, 2002; Pitt, 1998; Walkerdine, 1997; Walkerdine, 
Lucey, & Melody, 2002). Grosz (1995) maintains that psychoanalytic theories are 
“wide-ranging, philosophically sustained, incisive, and self-critical” (p. 191) and 
offer complex and well-developed theories of subjectivity.

Subjectivity, for Lacan, is not constituted by consciousness. Rather, 
conscious subjectivity is fraught and precarious. For him, the reduction of in-
terpretation to conscious experience covers over the complexity in which re-
searchers find themselves. Methodologically, the Lacanian understanding of the 
self highlights the difficulty in producing a research account that tries to avoid 
problems concerning speaking for others, even when the researcher exercises 
reflexivity about her relation to the research participants. If, as Lacan suggests, 
the unconscious is the place where our sense of self is developed and the place 
where we find out the kinds of interpretations that we can make (Lacan, 1977a, 
1977b), what does that mean for the subjectivity of the researcher and, for that 
matter, the truthfulness of her research report? Is it possible to tap into uncon-
scious levels of awareness? How can we deal with these issues systematically?

WORKING WITH SUBJECTIVITY

The discussion that follows focuses on two episodes taken from my own re-
search practice (Walshaw, 2005, 2006a, 2006b). It focuses on the subjectivity 
of the researcher and the subjectivity of research participants. The ideas the ex-
amples embrace are used as a counterpoint to current thinking about research-
er reflexivity and as a potential vantage point for highlighting the centrality of 
emotion in the research process. The analysis acknowledges Valero’s (2004) 
argument that “the practices of ‘practitioners’ intermesh with the practices of 
‘researchers’ and the role of the researcher evidences their mutual constitutive 
character” (p. 50). Drawing out instances from the two projects referred to 
above, I have tried to develop a coherent line of thinking that systematically 
deals with traces of recognition and misrecognition and in which issues of 
transference and defence come to the fore.

Understanding who I am and who you see
We start with an interview with a group of girls [aged 11] conducted in a com-
mittee room in the school’s administration block before the lunch break during 
a regular day. The specific group under investigation comprised a cohort of four 
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girls all of whom had attended in the first year of the Girl Power study a small 
urban school servicing a low socioeconomic population. The following year 
into the study, the girls all moved as Year 7 students to an Intermediate school 
for the next two years in the same locality. This is the customary practice in New 
Zealand where this study took place. The latter school’s roll was approximately 
three times the size of their primary [elementary] school. Like the primary 
school, it attracted students from an ethnically mixed urban area.

The previous year I had spent three weeks observing and recording in 
the girls’ mathematics classroom. I had interviewed them individually and had 
also interviewed their mothers. Now, another year on, I was seeking a group in-
terview from them. The girls familiarised themselves with the audio recording 
equipment before the interview by asking each other questions and playing the 
recording back to the group. They had a lot of fun in doing this and as a con-
sequence I prepared myself for a productive interview. The interview schedule 
dealt with questions about the classroom. I told them that what I was interested 
in the group interview were the students in the classroom —the boys and the 
girls. What do the students do and how do they behave?

Shanaia opened the conversation by saying:

Shanaia	 Well, the boys, they’re just like the most disgusting boys I’ve ever 

met on the earth ‘cause you know last year at primary school the boys were a 

lot more behaved, but the ones in my class they’re just disgusting, farting on 

peoples’ desks, throwing bugs in your hair and doing everything.

This was not exactly what I had expected to hear. To be frank, I was taken aback, 
downright shocked, that a student would talk in this way to someone who, I 
imagined, they thought embodied respectability and authority. My classroom 
observations did not substantiate Shanaia’s claim. We will consider this extract 
from the position of Shanaia, as research participant in a group situation, and 
also from the position of me, as researcher. The interview provided Shanaia 
with a power and a voice to oppose masculinities confronted in the classroom 
and to assert herself as “more mature and educationally focused than the boys” 
(Reay, 2001, p. 157). Through her words about what is ‘normal’ and ‘not nor-
mal’ gendered practice in the classroom, she produced an image from her pre-
vious classroom of the normal, conforming male student. Precisely because 
she was well aware from the study’s Information Letter that I was interested in 
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Girl Power, it is possible to understand her response as produced in relation the 
popular media discourse of female power and to what she fantasises I wanted 
to hear. The fantasy is built around complex social processes, involving the 
public, parents, schools, and the media, and in particular, an obsession in the 
popular press with falling standards that have punctuated societal understand-
ings of young persons’ behaviour. It is easy to read the same critical assessment 
of young people’s behaviour as “out of control and a threat to the moral order” 
(Lucey & Reay, 2000, p. 193) that is given an airing in the public arena.

Yet I am feeling most uncomfortable about the response. Shanaia has 
assigned an identity position to me to which I cannot identify. Perhaps her in-
tention is to shock? I do not participate in a network of social discursive prac-
tices in which language such as ‘farting’ is typically used. Nor, do I imagine, do 
the teachers. Lacan’s Symbolic identification places me in a particular position-
ing from where I am being observed by Shanaia and the rest of the group. That 
is to say, coming into this school as researcher has foregrounded a particular 
subjective position. Yet the self-as-researcher that has been designated for me 
through a cultural and hierarchical order, is merely a fabrication that exists in 
the space between the girls and me.

What images do I have of myself in this context? What images do I 
choose to identify with? Because I had no desire to set myself apart from the 
teachers at this school, I had taken steps to ‘fit in’, such as deliberately ‘dressing 
down’, ‘talking the talk’ of the teachers, and being discreet and unobtrusive in 
the classroom. It is the visual-spatial images (and the illusion) of my place in this 
school as ‘fitting in’ that represents what I would like to be at this school dur-
ing this interview. There is a conflict in this image I hold of myself in that I am 
still the researcher in this interview and there is no escaping from the symbolic 
identification assigned to me. The Symbolic works with the Imaginary to inform 
my experience of self in this context. The two Lacanian registers worked together, 
shaping my conflicting experience, producing anxieties and defences about what 
I was hearing and about the direction that this interview might take. They also 
worked together to inform the kinds of interpretations I made about the contents 
of the interview and the ‘truthful’ account that I subsequently produced.

It is my contention that the fantasies, defences, and anxieties, operating 
to deal with self-image, conflict and contradiction in this episode, lend support 
to the notion that subjectivities are multiple and continually in motion. What 
does the notion of multiple subjectivities mean for the notion of reflexivity? In 
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speaking about the researcher’s multiple subjectivities and in taking account of 
emotions and non-rational processes, we go against the grain of speaking about 
the core self embodied in reflexive researcher accounts. In that the stories that 
the researcher and the participants tell are often not thought about and told 
through rational deliberation, the notion of reflexivity is seriously undermined. 
Unconscious processes on the part of the researcher, on the part of the partici-
pant, and within the space between them, will always intervene.

Understanding the self-in-conflict
The second instance is taken from the research on girls and mathematics (1999) 
in which Rachel is talking to me about what it is like to learning calculus for the 
first time in Mrs Southee’s classroom. She had expressed an immediate, enthu-
siastic interest in participating in the research. Mrs Southee, too, had indicated 
Rachel that would “likely be considerable interest” to my research. Rachel pre-
sents as lively and fun-loving. Her liveliness contrasted with the ‘sophistication’ 
and ‘poise’ of the other girls in this class. She has an infectious laugh. “Giggly”, 
is how Mrs Southee put it. Every mathematics lesson, she sat herself at the 
same desk in the middle bank of paired seating arrangements at the front of 
the classroom, alongside her friend Kate. As Year 10 students, the two of them 
were the only two ‘extension’ girls in this Year 12 class, and as such, is obliged 
to wear school uniform. I could not find myself completely in her giggly dis-
position, yet, as researcher, I could identify with being an ‘exotic other’ in her 
mathematics classroom. It is with regard to ‘being different’ in the mathematics 
classroom that I felt a powerful empathy with her story.

Rachel has just told me about her previous year’s success with mathe-
matics and how her achievement promoted her to this class. She explained:

I just seem to be good at doing exams. I’ve got a lot of friends—they know 

the stuff in class and I could sit there and it goes right over my head. But I 

get into an exam and I’m surprisingly clear-headed and a lot of people just 

get stressed out about it and I don’t. It doesn’t worry me because I think if I 

go in there and I don’t know it then I don’t know it. There’s nothing I can do 

about it so there’s no point in worrying. But I did, I worked quite hard last 

year. I spent ages going through the pink Mathematics Workbook and I was going 

over and over and over it. Trig [Trigonometry] was the worst bit. I couldn’t 

do trig last year, and then like two days before the exam I was looking at it 
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and it finally clicked. I spent about six hours just on trig that day and right at 

the end I just got it, and my parents were trying to make me go to bed and, 

no, I’m really understanding this. I’m not giving up now. I just did a lot of 

study. Always read and do examples. Working out answers, checking them 

and making sure, and if I don’t get it I go back and try and figure it out and 

if I still don’t get it I get my brother to have a look at it or I ask someone at 

school the next day.

As researcher listening to her story, I have an understanding of Rachel’s math-
ematical ‘experience’ as fixed and immutable. She is able and she is motivated 
to learn. I have in Grosz’s (1990) words, “branded” her, with “the marks of a 
particular social law and organization, and through a particular constellation of 
desires and pleasures” (p. 65). I wanted to hear about her good fortune, and her 
achievements. I had deliberately chosen her as my ‘case’ in order to question 
the assumptions typically held about girls in mathematics. I wanted to provide 
evidence that research founded on those assumptions, while it claimed to tell 
the truth about girls, in fact regulated them and overlooked other important 
aspects of subjectification which cannot be contained within that discourse. An 
‘extension’ student’s story, I believed, would problematise normalized gender 
patterns in mathematics. Through her accomplishments she would reveal how 
it is possible to subvert the status quo and how to ‘do gender in mathematics’ 
differently.

As she began to tell me what mathematics is like for her this year, there 
was a sense that Rachel’s self was a fabrication—a fiction (in the Foucauldian 
meaning), changing moment by moment within the structures of the discur-
sive situation in which she is located. I found it difficult to understand that the 
self that she was telling me about mathematics this year, was the same self in 
the narrative a few moments previously.

…Mrs S, she tends to go right over my head and I don’t tend to ask questions 

from her because last time I did that she tried to explain and it just went, well, 

I sort of understood half when I asked the question and by the time she’d fin-

ished I understood none of it! I don’t know. But I don’t have a very good rela-

tionship with her, because we’ve had a few arguments in the past. My auntie 

works in the music block and she really likes Mrs S but, the guys, they know 

that I laugh really easily and they keep making me laugh in class and she just 
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gets really frustrated with me because when I start laughing I can’t stop and 

so she starts to get really angry at me. And apparently no one has ever heard 

her raise her voice before she met me. So it’s a bit stressed there. I’m just try-

ing very hard not to let the guys get to me now. Then I don’t have to laugh.

Listening to her story I felt deeply dismayed. In my understanding, Rachel was 
a bright and capable student, caught up in practices and discourses that pre-
vented her from succeeding in mathematics. I felt upset that she was the victim 
of surreptitious classroom practices that appeared to create a detrimental effect 
on her achievements and on her sense of self. I imagined in broaching the is-
sue, she wanted me to know her pain; that she also wanted me to continue 
this line of conversation. But would pursuing this issue mean that I became 
caught up in situation which was beyond my powers or role to address? Who 
am I listening to her story? Who does she see me? I attempt to put my identity 
outside of myself; into the image of myself. Yet I cannot determine that im-
age. Feeling wedged between a rock and a hardplace—between being impartial 
non-involved researcher, on the one hand, and caring about her wellbeing in 
mathematics, on the other—I opted for further clarification as a way of dealing 
with an uncomfortable experience.

[MW: The boys who sit behind you?] Yea. Mostly, Blair and Richard, he’s one of the 

bad ones as well.

[MW: The girls in the class don’t stir you up?] No. Because the only one I re-

ally talk to is Kate. Blair—he just likes really to get me in trouble and he has 

done for the last three years and he’ll just keep on doing it and there’s noth-

ing I can do so I just try not to sit in front of him. And hope that he doesn’t 

sit in the row behind me …

Rachel’s story is full of contradictory mathematical experiences. It is told within 
the space that both of us share in interview and hence cannot escape the ef-
fects of her own desire to relate a coherent and compelling account that al-
lows me, the listener, to attempt to understand. Thus at one level the story is a 
construction of a personal mathematical biography that develops, through a set 
of thematic clusters to do with success and peer and teacher-student conflict. 
And, at another level, the account registers disruptions and tensions that have 
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the effect of undermining the coherent and cohesive story. In looking beyond 
the literal reading of  what she said, her story evokes traces of other events and 
interpersonal relations that create a counter story to the one related to me at 
this moment in time. Together these two ‘stories’ open up important aspects of 
her subjectification as it relates to being a female senior mathematics student.

Rachel sees herself as simultaneously able and struggling in mathemat-
ics. I see her as victimised. What needs to be emphasised here is that between 
the identifications she, and others, like me, have of her, there will always be a 
divide. There is always a trace of mis-recognition that arises from the difference 
between how one party perceives itself and how the other party perceives it. 
As a consequence, Lacan maintains, the very existence of the subject consists of 
closing the gap between images received within the Symbolic and Imaginary 
realms. Both Rachel and I, during the course of the interview, worked inde-
pendently at closing the gap. As Žižek (1989) as put it: The subject “put(s) his 
identity outside himself, so to speak, into the image of his double” (p. 104).

CONCLUSION

Research is about performing an art. It has a lot more to do with fictions and 
fantasies than we might suspect. In working towards a theoretical understand-
ing of the researcher’s self, issues of emotion and unconscious interference 
have come under scrutiny for the part they play in the subjectivity of the re-
searcher, the researched and in the space they both share. It has been argued 
that the performance of self as researcher is about a discursive positioning that 
is constantly changing, in relation to the discourses and practices researchers 
find themselves within, and in relation to their intersubjective relations with 
the researched. ‘Intersubjective relations’ are not mean to convey simply those 
relations operating at the conscious and accessible level of awareness. They are 
intended to include the emotions and unconscious processes. In my formula-
tion of researcher self, fictions and fantasies play a central part.

If it is axiomatic that non-rational connections get caught up in the 
research account, then where does this leave current accounts of reflexivity 
or the authorial self? I would suggest that accounts that write the researcher 
into the process or that practice reflexively speaking for others, promise more 
than they can deliver. An alternative that significantly enhances the practice of 
reflexivity and the practice of writing oneself into the research, is to begin with 
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tools taken from psychoanalysis and to acknowledge the intrusion of the self 
in all research endeavours. In describing episodes taken from specific research 
encounters, I have provided a first steps approach at what this understanding 
might mean for methodology—how we might begin to confront, rather than 
slide over, the delicate issue of emotion within the research process. The ap-
proach offered a way to understand processes within the research encounter 
that give form to difficult, contradictory or conflicting experiences from the 
past, the present and even those anticipated in the future.

Subjectivity is the cornerstone of the research encounter. Centralising 
subjectivity in the research process means just that. It means that the researcher 
can never hope to be detached. Talking about researcher bias is not a particu-
larly fruitful exercise and this is because the subjectivity of the researcher is 
always implicated in the complex and dual-pronged research encounter. The 
researcher self is always performed in and for others. Methodologically, the 
researcher can never truly know what she is seeking and why, because “the 
fictions of subject positions are not linked by rational connections, but by fan-
tasies, by defences which prevent one position from spilling into another” 
(Walkerdine, Lucey, & Melody, 2003, p. 180). Our research accounts need to 
acknowledge that research is more than the elements of trust, doubt, humility, 
and power. It is about fictions and fantasies and the complicity and fragility of 
these in relation to others.
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The rationale for this Survey Team (ST), commanded by the International 
Program Committee of ICME 11, is that:

Notions and concepts of theory play key roles in mathematics education re-

search, as they do in any scholarly or scientific discipline. On closer inspec-

tion, the notion, concept, and nature of what is termed “theory” in such 

research are very varied indeed, as are the roles, uses and implications of 

theories employed in mathematics education research. In other words, the 

term “theory” does not have one universal meaning in our field. Moreover, 

concrete theories put to use with regard to mathematics education originate 

in several different disciplines, many of which are external to mathematics 

education research itself. The task of this ST is to identify, survey, and analyse 

different notions and roles of “theory” in mathematics education research, as 

well the origin, nature, uses, and implications of specific theories pertaining 

to different types of such research.
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This task defines a very important problematique in mathematics education 
research but, even if this problematique is clear, its treatment is problematic. 
Of course, the investigation of this problematique can be different and we can 
produce different answers.

In this paper, to carry out this task, we will consider three levels corre-
sponding to some questions. The first level is a preliminary interrogation about: 
how to do a survey? What are the data? What are the tools for doing this survey? 
What are the criteria? Are these criteria theoretical or empirical? Have we com-
mon or different tools for doing this task? What are our assumptions about this 
task? This level is a methodological level but it is too an epistemological one: 
our practice and assumptions of mathematics education research found what 
we do in order to achieve this task.

A second level is a results level. We produce different surveys and we 
identify and analyse different roles and functions of “theory” in mathematics 
education research. We must point out different results of these surveys and 
these results are depending on the data and tools used in this work.

A third level is a reflexive level. We want to compare our different meth-
odologies and assumptions in doing this task. What are the different types of theo-
ry? What is a theory in mathematics education research? What is the role of theory 
in the autonomy and identity of mathematics education as a scientific domain?

These three levels organise our text in three parts and we conclude 
by some “open questions”. We organized the ST from preliminary individual 
work. We prepared five papers and this common paper is the result of the col-
lective work. Three of us tended to work especially in the first and second level, 
and the other two in the third level but this is just a trend. Sometimes for fur-
ther developments we will make reference to these preliminary papers because 
we cannot include their full content in this paper.

1. First Level: Data, Methodologies, Tools, Assumptions

In this chapter, we will make explicit our different data, methodologies and tools. 
We want to note that some of these surveys are not exhaustive and the results 
depend on the choice of data, methodologies and tools for analysing these data.

Lerman, Herbst and Assude each analysed a sub-section of the re-
search literature in the field of mathematics education. Each researcher de-
veloped a set of categories for that analysis, hence producing a theoretical 
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framework in interaction with an empirical set. We will present here extracts 
from each of these three papers in which the authors describe the methods, 
motives and categories used in each of these papers.

Lerman surveyed how researchers in the mathematics education re-
search community work with theories, both in terms of which theories and 
how they work with them. In carrying out the survey he sampled research car-
ried out between 1991 and 2003 on 12 years of the publications in Educational 
Studies in Mathematics (ESM), Journal for Research in Mathematics Education (JRME), and 
Proceedings of the International Group for the Psychology of Mathematics Education (PME).

In his1 research he developed a tool, in interaction with the data, for 
analysing a whole range of aspects of the research productions of the commu-
nity as evidenced in a sampling of published articles. In this paper he focused 
on just two elements of the analysis, those of use of theory & orientation. By 
orientation he meant to theoretical or empirical inquiry; whether the theories 
used have changed over time; whether researchers revisit the theories used in 
their studies; the relationships established between the theoretical and the em-
pirical; and the focus and methodology of the studies.

By ‘theories’ he intended learning theories, perhaps set in the context 
of philosophical orientations, perhaps informed by psychology, or sociology 
or other fields. It is our expectation that such theories guide the design of a 
research study and the analysis, or perhaps are used retrospectively as lenses 
through which to interpret a set of findings. This approach focuses on theories 
as resources to help towards the achievement of those desired outcomes.

Herbst wants to complement the contribution made in the chapter 
“Theory in mathematics education scholarship” (Silver and Herbst, 2007) with 
some data gathered from a superficial inspection of the 39 articles published in 
the Journal for Research in Mathematics Education from January 2005 to January 2008.

His main objective has been to describe whether and how authors of 
research articles use the word theory (or its cognates such as theorizing, theoriza-
tion, theoretical) in relation to the pursuit of their research. One question has been 

1 The project, entitled “The Production and Use of Theories of Teaching and Learning 
Mathematics” and funded by the Economic and Social Research Council in the UK, project No. 
R000 22 3610. The full text of the project proposal and the research papers published from it 
are at http://www.lsbu.ac.uk/~lermans/ESRCProjectHOMEPAGE.html
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to describe the extent to which the articles in this corpus identify themselves as 
theory building, theory using, or otherwise make no appeal to theory. Subsidiary 
questions are, in the first case, whether the articles contribute to building local 
theories, middle range theories, or grand theories. In the second case, whether the 
articles use theory to describe, explain, predict, or prescribe practices, or whether 
they prescribe research operations. Simultaneously, he’s been attentive to the par-
ticular practices aimed at by articles that use theory and by articles that build theory.

The methodology used for this survey included the following proce-
dures. To constitute the corpus he extracted all research articles from all issues 
of JRME starting in January 2005—this means that he did not include edi-
torials, brief reports, research commentaries, book reviews, telegraphic book 
reviews, or announcements in the sample. Other than that all articles were 
included, totalling as noted above 39 articles. JRME publishes 5 issues per year 
and each of those issues tends to include 3 articles. Once the text of each arti-
cle was available electronically we produced three word searches after “theor,” 
“framework,” and “construct.” He second-guessed the idea of looking only at 
places where authors had used the word “theory” and its cognates based on 
some of the reasons noted in Silver and Herbst (2007) that might propel peo-
ple to shy away from its use.

The word search heuristic based on those three words (theor, frame-
work, construct) was useful inasmuch as it allowed to find intellectual tools 
that researchers have used to do a number of operations in their work. He 
specifically attended to the operations of describing, explaining, and predicting 
phenomena, prescribing educational practices, and prescribing research opera-
tions as examples of the ways in which theory might help researchers connect 
research to practice and to the problems of practice. These tools are used the 
earlier work by Silver and Herbst (2007).

In this survey, theory assists the triadic relationships between research, 
problems, and practices. Drawing on the distinction between local theories 
(e.g., what levels of development exist in students’ learning of fractions?), mid-
dle range theories (e.g., what is classroom mathematics instruction), or grand 
theories (e.g., what is the mathematics education field) he identified those arti-
cles that had a theoretical aim and noted what that aim was.

Assude wants to identify the roles and functions of “theory” in mathe-
matics education research taking a corpus formed by the papers published in 
the review “Recherches en didactique des mathématiques”. This review is an 
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important tool for the researchers’ community, especially the French speaking 
one: it is one of the main tools to disseminate the researchers’ work in this 
domain in France (or among French speaking researchers).

Her data are formed by all the papers published in RDM between 2000 
and 2006. RDM publishes 3 issues per year and 3 papers per issue or so. There 
are 59 papers, 8 in Spanish, 2 in English and 49 in French.

For analysing these data, she needs to precise what is theory in this 
context. In her opinion, theory in mathematics education deals with teaching 
and learning mathematics from two points of view. First a structural point of 
view: theory is an organised and coherent system of concepts and notions in 
the mathematics education field. Second a functional point of view: a theory is 
a system of tools that permit a “speculation” about some reality. This “specula-
tion” is an active one because these tools can allow to observe, analyse, interpret 
a teaching and learning reality (or practices), and can produce new knowledge 
about this reality. According of this double point of view, she can take a theory 
as a tool and a theory as an object. Finally she will take other indicators like: 
internal /external theory in mathematics education if theory is produced or 
not within this domain; local/global theory if the theory concerns a study of a 
problem or a study of a domain; the effective theoretical elements used in the 
work; the functions of these elements (for example, a theory can be a tool to 
conceive a didactical engineering).

She will use this preliminary grid for analysing our data and she 
wants to point out that some functions and roles of theory are not specified of 
one theory, but different theories can assumed the same functions even if the 
knowledge produced by their uses are different.

Radford developed an analytical tool which can be applied to any of 
the theories that are used in mathematics education research. He presents the 
elements of the tool and then exemplifies it by the analysis of three theories; 
the theory of didactic situations; constructivism; and sociocultural theories. 
Radford will deal with the question of the types of theories used in mathemat-
ics education research (Radford’s paper2). His goal is to contribute to clarify 

2 The full version of the paper (“Theories in Mathematics Education: A Brief Inquiry into their 
Conceptual Differences”) can be retrieved from the Publication section of http://www.lauren-
tian.ca/educ/lradford/
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one of the two central themes around which our Survey Team revolves, namely 
the investigation of the notion of theory in mathematics education research, as 
stipulated in the appointing official letter. How will he proceed? He could pro-
ceed by giving a definition, T, of the term “theory” and by choosing some dif-
ferentiating criteria c

1
, c

2
, etc. Theories, then, could be distinguished in terms 

of whether or not they include the criteria c
1
, c

2
, etc. Although interesting, he 

will take a different path. In the first part of his paper, he will focus on a few 
“well-known” theories in Mathematics Education (constructivism, theory of 
didactical situations, social cultural theory) and attempt to locate their differ-
ences at the theoretical level, that is, he will discuss their differences in terms 
of their theoretical stances.

Boero carries out a study of the relationship between key theories in 
the field and the ways in which external frameworks are drawn into the field. 
His analysis will be  presented in the third level.

2. Second Level: Some Results

In this level we are presenting some results of our surveys. Sometimes we use 
the results of the authors’ works before the work in the ST.

2.1. Uses of Theory and orientation: theory as a tool
Lerman’s analysis showed, for the period from 1990 to 2001, that 70.1% of all 
articles in ESM have an orientation towards the empirical, with a further 8.5% 
moving from the theoretical to the empirical, and 21.5% presenting theoreti-
cal papers. This changed little over those years. Most of the papers used theory 
(92.7%), and more than four-fifths (86.4%) were explicit about the theories 
they used in the research reported in the project. Again this has not varied 
across the years. Similarly, 86.2% of all articles in the journal JRME had an 
orientation towards the empirical, with a further 2.2% moving from the theo-
retical to the empirical, and 11.6% presenting theoretical papers. This changed 
little over the years. Most of the papers used theory (83.3%), with a relatively 
higher percentage of papers that did not use any theory, compared to the other 
two journals considered here. Three-quarters (75.4%) were explicit about the 
theories they were used in the research reported in the articles. Again this has 
not varied across the years. Finally, 84.5% of all papers in the PME proceedings 
had an orientation towards the empirical, with a further 6.8% moving from 
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the theoretical to the empirical, and 8.8% staying in the theoretical. This has 
changed little over the years. Furthermore 89.9% of the papers used theory, 
with 10.1% not using any theory, and more than four-fifth (82.4%) were ex-
plicit about the theories they are using in the research reported in the article. 
Again this has not varied across the years.

Regarding the relationship between the theory and the empirical 
study, in 65.5% of articles in ESM the theory informs the empirical, in 2.3% 
the empirical informs the theoretical and in a further 4.0% we determined that 
the relationship is dialectical. 7.3% did not refer to a theory either explicitly or 
implicitly. In JRME, in 71.7% of articles the theory informs the empirical, in 
0.7% the empirical informs the theoretical but there are no cases in which we 
determine that the relationship is dialectical. 16.7% did not refer to a theory ei-
ther explicitly or implicitly. In PME proceedings, in 79.1% of articles the theory 
informs the empirical, in 4.7% the empirical informs the theoretical and in a 
further 0.7% we determine that the relationship is dialectical. 10.1% did not 
refer to a theory either explicitly or implicitly.

A result of this survey is that the uses of theory is important in mathe-
matics education research but the empirical orientation prevails. The role of 
theory is especially a tool.

2.2. Types of Theory: external or internal?
In Lerman’ analyses, some interesting changes have been depicted concerning 
the item ‘theory type’. The predominant theories throughout the period exam-
ined for all three types of text were traditional psychological and mathemat-
ics theories, but there is an expanding range of theories used from other fields. 
The psycho-social theories, including re-emerging ones, and the sociological and 
socio-cultural theories are increasing. The predominant theories were external 
theories in mathematics education as a scientific domain.

This result is not verified in the Assude’s analysis about papers published 
in the journal RDM. In this case, the predominant theories are internal theories in 
mathematics education research: these theories are constructed within this domain.

This difference has perhaps a link with the global project of building a new 
scientific field – mathematics education research – with some autonomy regarding 
to other neighbouring fields like psychology or sociology. Silver and Herbst (2007) 
show that David Johnson (the first editor of JRME) point out the lack of theory in 
mathematics education in 1980 and he suggests to the researchers:
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“first investigate the adaptability of various psychological theories… to the 

learning and teaching mathematics, and [only] in the event such adaptation 

is not feasible, move the creation of a new theory” (in Silver and Herbst 

2007, p.43).

This position – adaptation to mathematics education of theories existing in 
other fields – is a common position yet now. The Herbst’s analyses about 39 
articles published in JRME from 2005 to 2008, confirm these results since they 
show that there is no paper dealing with the construction of a “grand theory” 
(e.g. what is the mathematics education field). But 10 articles are involved in 
theory making to produce a local or a middle range theory while 24 papers are 
involved only in theory using and 5 articles don’t use theory. Here we can say 
again the predominant role of theory as a tool.

2.3. Functions of Theory as a Tool
The Assude’s analyse (Assude’s paper) identifies some functions of theory in the 
researchers’ work (see table 6 for some examples of papers):

•	conception of didactical engineering or didactical device: for example, theory 
can allow to define some didactical variables to produce a 
didactical engineering;

•	methodological development: for example an a priori analysis is a 
methodology based on a theory;

•	didactical analysis: the analysis can be very different according 
	 to the reality (an observation of a classroom, an observation 
	 of a pupil’s work, a curriculum, etc.). Different operations 
	 as describing, explaining, interpreting, justifying can be 

identified;
•	definition of a research problematique: some practical problems in the 

educational system are not research problems. It is necessary to 
transform these problems in a research problem (for example 
doing some hypothesis or doing some categorisations);

•	study of a research problem: theory can be a tool for defining different 
steps in the study of a problem;

•	production of knowledge: theory is a tool to identify some didactical 
phenomena, some new knowledge about some reality.
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In Herbst’s analysis about papers published in JRME, he identifies some functions 
of theory as a tool to describe, explain, prescribe and we precise the different object 
these functions are dealing with such as activity or curriculum. Silver and Herbst 
(2007) analyse the uses of theory in mathematics education scholarship and propose 
to consider theory as mediator between problems, practices and research. In this 
work, the authors identify some functions of theory in the role of mediator between:

•	research and problems: interpretation results; analysing data; producing 
results of research on a problem; giving closure to the corpus of data 
to study a problem; transforming a commonsensical problem into a 
researchable problem; generator of researchable problem; organization 
of a corpus of research on a problem;

•	research and practice: prescription; understanding; description; 
explanation; prediction; generalisation;

•	practice and problems: solution to a problem of practice; comparison; 
designing new practices; justifying choices

There is a great variety of functions for theory as a tool and it concerns all re-
searchers’ activities. These functions are not specific to a particular theory.

2.4 – Functions of a Theory as an Object
We suppose that theory can have two roles: as a tool and as an object. We want 
to give explicit some of the functions of theory as an object. Theory is not 
something static but dynamic: the evolution of theories in a scientific field is a 
means to understand the evolution of this field.

Lerman looked at whether, after the research, the researchers have re-
visited the theory and modified it, expressed dissatisfaction with the theory, or 
expressed support for the theory as it stands, he concluded that authors may not 
revisit the theory at all; content to apply it in their study.

The role of theory as a tool is predominant but some works exists 
where theory making is one of the goals. In Herbst’s survey, he distinguishes 
three types of theories: local theories (e.g., what levels of development exist in 
students’ learning of fractions?), middle range theories (e.g., what is classroom 
mathematics instruction?), or grand theories (e.g., what is the mathematics 
education field?). Ten papers are concerned with theory building: 7 for local 
theories, 3 for middle range theories and none for grand theories.
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In Assude’s survey (Assude’s paper), she identifies that some authors 
use a theory for putting to the test the theory or some concepts or relations in 
this theory. This “theory testing” is a way to produce new theoretical develop-
ments. These are some functions for this “theory testing”:

•	decontextualisation, transposition and generalisation of theory in 
other contexts;

•	relations with contingency;
•	new interpretations of a phenomena;
•	verifying the domain of validity of a theory;

The development of a theory is one of the functions of theory as an object: 
sometimes there is just one theory, sometimes two or more theories exist, and 
the development of a local or middle range theory is done by articulating or 
juxtaposing some elements of different theories.

We can quote Silver and Herbst’ work for complementing this list:

“the role of theory [is] not so much as a mediator of relationships among 

practices, problems and research,(…) but rather (or also) as the collector, 

beneficiary, or target of that interplay in a fundamentally academic theory-

making exercise”.

Theory-making (especially internal theories) has a role in the constitution of 
a mathematics education research as a specific field with an identity different 
from other fields as psychology. This project of constitution is present in the 
beginnings of this domain in some countries: for example Brousseau’work was 
based in the piagetian psychology but it had a theoretical ambition to become 
relatively independent. This idea is developed in Silver & Herbst (2007) too 
and we are going to develop some ideas about the autonomy and identity of 
mathematics education research in the 3th part.

2.5. Conceptual Differences about Theories in Mathematics Education
In the Radford’s analysis, his goal is to contribute to clarify one of the two 
central themes around which our Survey Team revolves, namely the investiga-
tion of the notion of theory in mathematics education research. His choice of 
theories has been guided by what may be termed their “historical impact” in 
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the constitution of mathematics education as a research field. By “historical im-
pact” he does not mean the amount of results that a certain theory produced in 
a certain span of time. Although important, what he has in mind here is rather 
something related to the foundational principles of a theory:

The foundational principles of a theory determine the research questions 

and the way to tackle them within a certain research field, helping thereby to 

shape the form and determine the content of the research field itself.

For him, to ask the question about the types of theories in our field is to ask for 
their differences and, more importantly, for that what accounts for these differ-
ences. Our argument is that these differences are better understood in terms of 
theoretical suppositions. Sriraman and English (2006) argued that the variety 
of frameworks in mathematics education is directly related to differences in 
their epistemological perspectives. He wants to suggest that, in addition to the 
underpinning corresponding epistemologies, differences can also be captured 
by taking into account the cognitive and ontological principles that theories in 
mathematics education adopt.

Radford gives three examples in his paper for the survey: constructiv-
ism, the theory of didactic situations (TDS) and the sociocultural approaches. 
It is not possible to present here this work but we will take just an example.

For constructivism and the TDS the autonomy of the cognizing subject 
vis-à-vis the teacher is a prerequisite for knowledge acquisition. For sociocul-
tural approaches, autonomy is not the prerequisite of knowledge acquisition. 
Autonomy is, in fact, its result. This is one of the central ideas of Vygotsky’s 
concept of zone of proximal development.

The ontological principle of the sociocultural approaches is that 
knowledge is historically generated during the course of the mathematical 
activity of individuals. The epistemological principle of these approaches is 
that the production of knowledge does not respond to an adaptive drive but is 
embedded in historical-cultural forms of thinking entangled with a symbolic 
and material reality that provides the basis for interpreting, understanding 
and transforming the world of the individuals and the concepts and ideas they 
form about it (Radford, 1997). The cognitive principle of these approaches 
is that learning is the reaching of a culturally-objective piece of knowledge 
that the students attain through a social process of objectification mediated by 
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signs, language, artifacts and social interaction as the students engage in cul-
tural forms of reflecting and acting. Learning, from a sociocultural perspec-
tive, is the result of an active engagement and self-critical, reflexive, attitude 
towards what is being learned. Learning is also a process of transformation 
of existing knowledge. And perhaps more importantly, learning is a process 
of the formation of subjectivities, a process of agency and the constitution of 
the self (Radford, 2008b).

3. Third Level: Theories, Autonomy, Identity

In our different surveys, we have not used the same categories and method-
ologies. These choices depend on our research practices and our assumptions 
about what a theory is and which is the role of theory for giving autonomy and 
identity to mathematics education field. This level is a reflexive level. We choice 
here to think about the relationships between the uses of theories in mathemat-
ics education and the autonomy and identity of this field.

If mathematics education aims at growing as a scientific discipline, 
it must develop theoretical work in order to deal with teaching and learning 
problems in a systematic, scientific way. Now this is a rather obvious, widely 
shared position. The problem is that the ways of developing theoretical work, 
and its autonomy or dependence from theories elaborated in other disciplines, 
have been rather controversial since the birth of mathematics education as a 
scientific discipline, in the seventieths. We have seen above the differences of 
theories in terms of theoretical suppositions and we have seen that these theo-
ries are not completely independent from theories in other fields. Then what is 
the autonomy and identity of mathematics education field?

3.1. Permeability and the illusion of a complete autonomy
In Boero’s reflexion, mathematics education as a scientific discipline should nei-
ther work in a completely autonomous, autarchic way, nor transpose paradigms 
and results of other disciplines in its specific field of investigation. According 
to him, we should look instead to the possibility of an autonomous specific 
theoretical work mainly intended as selection, adoption or re-elaboration of 
tools coming from other disciplines, possibly integrated with the construction 
of other tools needed according to the specificity of the content to be taught 
(Boero & Radnai Szendrei, 1998; Kilpatrick & Sierpinska, 1998).
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Among the disciplines that could be relevant for scientific work in 
mathematics education (history of mathematics, epistemology, psychology, so-
ciology, anthropology, etc.), Boero focus on the relationships with epistemology 
and psychology. This choice depends on three reasons: first, in his opinion these 
disciplines have played a major role in influencing important changes in the 
teaching of mathematics during the last century; second, they can assume a cru-
cial role in the development of mathematics education as a scientific discipline 
because they concern the “what” and the “how” teachers teach and students 
learn; third, they challenge autonomy of mathematics education as a scientific 
discipline because research in our field cannot ignore the fact that many results 
of those disciplines concern mathematics as a paradigmatic subject.

Psychological and epistemological investigations do not work (as their 
main aim) for a better learning of mathematics and for a better understanding 
of what is learning and teaching mathematics. When they deal with mathemat-
ics, epistemological theories are aimed at describing and framing some as-
pects of that discipline; most psychological theories dealing with learning of 
mathematics try to describe, interpret and, possibly, predict learners’ laboratory 
behaviour on a given area of paradigmatic mathematical tasks. However, in the 
reality of the school teaching of mathematics, what comes from mathematics, 
epistemology and psychology is filtered and frequently deformed when it meets 
the complex school culture (textbooks, materials, tradition, programs…). In 
general, processes in the noosphere are sensitive to external influences (com-
ing from politics, culture, etc) but they develop with a relative autonomy and 
inertia. What is the role of mathematics educators in those processes?

Some members of the noosphere that have special responsibilities in 
teachers’ preparation and curriculum development (in particular, researchers in 
mathematics education) frequently act as if some epistemological and psycholog-
ical theories would carry the truth about what mathematics is, and how students 
learn it. Frequently they assume an important role in “transposing” those theories 
in the school system, in particular through teachers’ training. Other mathematics 
educators adapt and interpret ideas coming from epistemology and psychology 
by trying to match them with existing teaching devices and habits.

Boero says that mathematics educators frequently adopt ideas coming 
from the exterior (in particular, epistemology and psychology) to promote 
more or less coherent and radical changes in the school teaching of mathemat-
ics. In most cases they do not move from the identification of teaching and 
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learning problems to the choice of theoretical tools suitable for tackling them. 
In those cases we can say that mathematics education mainly develops as a subal-
tern discipline. On the other hand, mathematics educators can not (and should 
not) develop a completely autonomous and autarchic science (or technology) 
of the teaching of mathematics in school. This is an illusion for two reasons: on 
one side, teachers come from a given school or university mathematics culture 
and are embedded in a given cultural environment, and mathematics educa-
tors are prepared in given cultural institutions; thus it is not possible to ignore 
what teachers and mathematics educators know and think about the teaching 
and learning of mathematics, and their scientific preparation. On the other, 
if mathematics educators want to go beyond mere descriptions of what hap-
pens in the mathematics classroom they need to consider what mathematics is, 
and how mathematics is appropriated by student; thus they need to deal with 
scientific results coming from epistemology and psychology. The unavoidable 
reference to epistemology and psychology can be denied or underestimated, 
but in that case what usually happens is that implicit assumptions are made, or 
explicit assumptions are assumed as unquestionable truth.

We can think different positions to develop mathematics education as 
a relatively autonomous scientific discipline, i.e. a research space where tackle 
teaching and learning mathematics problems with its own theoretical tools as 
well as adapted theoretical tools coming from other disciplines, critically con-
sidering their potential and limits, and their consequences on the solution of 
those problems.

3.2. Towards a relative autonomy: adaptation and development
The first position is the use of theories existing in other fields but we need to 
adapt these tools: these adaptations is part of the field autonomy. Boero argues 
that the problem is what choices to make and how to move on from those 
choices, keeping into account the variety of results and perspectives provided, 
in particular, by epistemology and psychology. The task of mathematics educa-
tors is not to choose an epistemological position or a psychological theory as 
an “all purpose” and universal reference (each outstanding epistemological po-
sition being culturally situated, each psychological theory having a limited do-
main of validity). What mathematics educators can do is to identify important 
teaching and learning problems, consider different existing theories and try to 
understand the potential and limitations of the tools provided by those theo-
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ries, possibly adapted to the specific problems in order to tackle them. However 
this statement is still vague for two reasons. First, to identify important teaching 
and learning problems requires some preliminary theoretical assumptions re-
garding the importance and nature of the concerned competence and the way 
to ascertain related learning difficulties. Second, it is necessary to adopt some 
preliminary keys (suggested by epistemological and psychological analyses) 
to avoid a disperse view of the whole panorama of the teaching and learning 
of mathematics. A dialectic process should be developed: our epistemological 
and psychological culture together with our knowledge of what happens in 
school suggest to consider specific educational problems; in order to tackle 
those problems we need to identify and adapt appropriate tools from episte-
mology and psychology (and, in some cases, history of mathematic, sociology, 
etc.). It may happen that such tools oblige us to re-formulate the original edu-
cational problems, or to identify further related problems. When dealing with 
specific mathematics teaching and learning problems, we must recognize that 
in many cases existing tools elaborated by epistemology, psychology, sociology, 
etc. need to be adapted and re-elaborated. Cobb (2006) says:

Mathematics educators should view the various theoretical perspectives as 

sources of ideas to be appropriated and adapted to their purposes. Cobb 

(2006)

The proliferation of theories can be a problem. In his recent article (2006) 
Cobb outlines two criteria through which to facilitate a conversation concern-
ing what researchers should do when faced by a proliferation of theoretical 
perspectives. His first criterion is to focus on the types of questions that can be 
asked within each perspective about “the learning and teaching of mathemat-
ics, and thus the nature of the phenomena that are investigated and the forms 
of knowledge produced.” His second criterion is that of usefulness:

The usefulness criterion focuses on the extent to which different theoreti-

cal perspectives might contribute to the collective enterprise of developing, 

testing, and revising designs for supporting learning. This second criterion 

reflects the view that the choice of theoretical perspective requires pragmatic 

justification whereas the first focuses on the questions asked and the phe-

nomena investigated. (Cobb 2006)
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3.3. Towards a relative autonomy: production
The second position is the production of a new specific theoretical tools for tack-
ling the specific problems of mathematics education domain. In spite of the eclec-
ticism in terms of theory adopted for research, given that the goal is usefulness, 
or what works, elsewhere Cobb argues strongly for the importance of theory, but 
in the sense of the production of theory as a key part of the job of the design 
scientist. He illustrates this in DiSessa and Cobb (2004) by offering one category 
of theory production, that of ‘ontological innovation’, seen as the production of 
new objects, emerging from design experiments, that then prove useful as objects 
for study. Interestingly, one of the two examples offered in that paper is a retro-
spective look at the early work Cobb carried out with Erna Yackel and Terry Wood, 
a long term project based firmly within a constructivist paradigm. Nevertheless, 
the notions of social norms and socio-mathematical norms are presented as ex-
amples of ontological innovations that emerged from those studies, which them-
selves are re-interpreted retrospectively as design experiments.

3.4. Towards a relative autonomy: reorganisation
The third position is the reorganisation of the theoretical field. This reorganisa-
tion can be done by different forms. One example of this reorganization, of 
a new trend has observed in the Fifth Congress of the European Society for 
Research in Mathematics Education (CERME-5, 2007). The European Society 
for Research in Mathematics Education organizes biannual conferences that are 
designed to encourage an exchange of ideas through thematic working groups. 
One of the recurring CERME working groups is the one devoted to theories 
in mathematics education. The goal of this working group was not just to un-
derstand differences, but to seek new forms of linking and connecting current 
theories. More specifically, the idea was to discuss and investigate theoretical 
and practical forms of networking theories. Most of the papers presented at the 
meetings of working group 11 appeared in volume 40(2) of the journal ZDM 
- The International Journal on Mathematics Education. As we mention in the commentary 
paper written for this ZDM issue (Radford, 2008a), this new trend consisting 
of investigating ways of connecting theories is explained to a large extent by 
the rapid contemporary growth of forms of communication, increasing inter-
national scientific cooperation, and the attenuation of political and economical 
barriers in some parts of the world, a clear example of which being, of course, 
the European Community.
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This new trend is leading to an inquiry about the possibilities and 
limits of using several theories and approaches in mathematics education in a 
meaningful way. The papers presented at the conference provided an interesting 
array of possibilities.

Depending on the goal, connections may take several forms. Prediger, 
Bikner-Ahsbahs, and Arzarello (2008) identify some of them, like “comparing” 
and “contrasting” and define them as follows. In “comparing” the goal is find-
ing out similarities and differences between theories, while in “contrasting” 
the goal is “stressing big differences”. Cerulli, Georget, Maracci, Psycharis, & 
Trgalova (2008) is an example of comparing theories, while Rodríguez, Bosch, 
and Gascón (2008) is an example of contrasting theories. These forms of con-
nectivity are distinguished from others like “coordinating” and “combining”. 
In coordinating theories, elements from different theories are chosen and put 
together in a more or less harmonious way to investigate a certain research 
problem. Halverscheid’s paper (2008) is a clear example of an attempt at coor-
dinating theories, in that, the goal is to study a particular educational problem 
(the problem of modelling a physical situation) through the use of elements 
from two different theories (a modeling theory and a cognitive one). In com-
bining theories, the chosen elements do not necessarily show the coherence 
that can be observed in coordinating connections. It is rather a “juxtaposition” 
of theories (Prediger, Bikner-Ahsbahs, and Arzarello’s paper (2008)). Maracci 
(2008) and Bergsten (2008) furnish examples of combining theories.

At least in principle, “comparing” and “contrasting” theories are 
always possible: given two mathematics education theories, it is possible to 
seek out their similarities and/or differences. In contrast, to “coordinate” or to 
“integrate” theories, which is another possible form of connection (Prediger, 
Bikner-Ahsbahs, and Arzarello’s paper (2008), seems to be a more delicate task.

Connecting theories can, in sum, be accomplished at different levels 
(principles, methodology, research questions), with different levels of intensity. 
Sometimes the connection can be strong, sometimes weak. It is still too early to 
make prognostics of how this new trend will evolve.

What is clear, in contrast, is that the investigation of integration of theo-
ries and their differentiation is likely to lead to a better understanding of theories 
and richer solutions to practical and theoretical problems surrounding the teach-
ing and learning of mathematics.
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Understanding “hidden rules”: the challenge of becoming a 
competent member of a mathematics classroom

Eva Jablonka, Luleå University of Technology, Sweden

Introduction

In his invited address to the Special Interest Group in Research in 
Mathematics Education at the annual meeting of the NCTM in 1979, Heinrich 
Bauersfeld spoke about “hidden dimensions in the so-called reality of a mathe-
matics classroom” and argued for researching these dimensions. While suggest-
ing the study of the interactive constitution of shared meanings in classrooms, 
he also reminded the audience of considering the impact of the institutional 
settings. Institutions “constitute norms and roles”, “develop rituals in actions 
and in meanings”, “tend to seclusion and self-sufficiency” and “even produce 
their own content – in this case, school mathematics” (Bauersfeld, 1980, pp. 
35-36). Bauersfeld suggested that ethnomethodology and linguistics provide 
promising theoretical bases for a research agenda that addresses the hidden 
dimensions of mathematics classrooms.
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Whether what is going on “below the surface” in mathematics class-
rooms remains not only hidden to the students and teachers, but also to the 
researcher, is a matter of methodology and theorizing. Since Bauersfeld gave 
his address, many researchers in mathematics education have come to investi-
gate what he indicated by “the hidden dimensions in the so-called reality of a 
mathematics classroom” in order to understand how these afford or constrain 
students’ access to mathematical knowledge. The most prominent theories em-
ployed in empirical classroom research to achieve this goal include Symbolic 
Interactionism and Phenomenology, in particular Ethnomethodology, as well 
as theories that are concerned with the social reproduction through schooling, 
such as those of Bourdieu and Bernstein. But also some theorizing or compila-
tions of other theories that emerged from within mathematics education as a 
research domain addresses the problématique.

Conceptualising “hidden rules”

The following episode from a mathematics classroom illustrates some dimen-
sions of what the title intends to indicate by “hidden rules”. Meyer (2010) 
discusses some episodes from a 4th grade classroom in Germany in which the 
teacher intends to introduce the notions “parallel”, “perpendicular” and “right 
angle”. The terms are written on the board. After asking the students to freely 
associate what comes to their minds, a reproduction of a painting by Mondrian 
is shown to the students.

„Teacher: Why do I fix such a picture on the blackboard? And why are these 

concepts written down on the blackboard? I have a reason to do so. Jonathan, 

it is your turn.

Jonathan: Because the painter has done everything in parallel, perpendicular 

and in right angles.

Teacher: 	 You are right. You seem to know what parallel, perpendicular and 

right angle means. Maybe you can show it to us on the picture.

Jonathan: Perpendicular is this here (points first at a vertical, afterwards at 

a horizontal line). Parallel is this here (points at two vertical lines). A right 

angle is this (pursues two lines he former would have called perpendicular).“

(Meyer, 2010, p. 909)
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Meyer, by drawing on Wittgenstein’s notion of language-games, discusses the 
scene as an instance of establishing the “exemplaric use” of words in this class-
room. He also points out that Jonathan must have been participating in practic-
es of using the words “parallel”, “perpendicular” and “right angle” in a similar 
language-game outside this classroom.
However, the episode shows that Jonathan had to know more than how to 
engage in the language game of ostensive definitions that employ visual rec-
ognition. For producing his positively sanctioned answer, Jonathan also had to 
understand the question as a prompt to associate the notions written on the 
board with the configuration of lines in the painting. Alternative replies that 
might have been produced without understanding the actual illocutionary act 
performed by the teacher’s question, such as “because you like the painting”, 
most likely would have been taken as an expression of sarcasm by the partici-
pants. In addition, Jonathan had to recognise that the teaching here is organised 
as a series of related questions to be answered or discussed by the students, and 
to have access to the criteria for producing an appropriate contribution to a 
description of a piece of art in a geometry lesson, in contrast, for example, to a 
discussion of the style of the painting in an arts lesson.

In this episode, different dimensions of “hidden rules” become vis-
ible. The (emergent) rules for using and producing mathematical signs and for 
a legitimate way of presenting an externalisation of one’s thinking according to 
these rules (orally or in a written form), the rules of the pedagogical principle 
adopted by the teacher that account for the establishment of routines in com-
munication, the rules that constitute the specificity of the school mathematical 
practice and its discourse in relation to other practices and their discourses, as 
well as the norms for favoured behaviour, aspirations and attitudes. As all these 
rules regulate how students relate to and gain access to different forms of math-
ematical knowledge, the challenge for the students is to acquire knowledge of 
these rules in order to develop the skills that are necessary for successful par-
ticipation. This opens up the question of whether al students have equal access 
to these rules. There might be hidden principles in operation that account for 
the stratification of achievement because not all students gain equal access to 
the knowledge code.

At this point, a remark on terminology seems advisable. Because of 
lack of alternatives, in the heading the term rule is used as an umbrella term, 
referring to norms, specific rules, routines and principles. The term norm often refers to 
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established standards to be achieved, sometimes also to typical patterns found 
in social actions. Typical patterns of actions that are carried out repetitiously 
and often are followed unconsciously might be classified as routines (or rituals). A 
specific rule combines a norm that consists of specific criteria with a regulation for 
achieving them. The term principle indicates an underlying invisible mechanism. 
According to this differentiation of meanings, specific rules, norms, and prin-
ciples differ in stability, visibility, accessibility and relations to a wider system.

Specific rules
The notion of a specific rule is used here to suggest that it refers to norms that 
condense a set of specific criteria for an action in a regulation for achieving 
them. Many of such specific rules in a mathematics classroom are about the be-
haviour and the social organisation of the work. The rules might be unspoken, 
but if asked, many students would be able to express them: “When we work 
individually, the we are actually allowed to discuss with the students sitting next 
to us.” “We can ask questions, when we get stuck in a task and the teacher will 
then come to our desk and help us.” “When the teacher writes something on 
the board, we have to copy it into our notebooks.” “We always have to write 
down the answer to a word problem as a full sentence.” “The result of a calcula-
tion has to be double-underlined.” “When the teacher says ‘tell me more about 
this’, she wants us to show how we calculated it.” “She wants us to just work 
on the warm-up and get the answers for it, and then later she asks us for the 
answers so that we can correct ourselves.“ The students are more or less con-
scious of such rules. Consciousness opens up a space for tactical behaviour. And 
only if the students are consciously aware of the rules, they can intentionally 
not comply, which can then be interpreted as an act of resistance.

To the chagrin of many mathematics educators, teachers often in-
troduce explicit specific rules for solving certain types of mathematical prob-
lems. In a comparative study of six year-8 mathematics classrooms1, two of 
which were from Germany, Hong Kong and the United States respectively, 
Jablonka (2004) found examples of explicit guiding manuals for solving tasks 
in classrooms of all three countries. These included manuals for tackling word 

1 The study was part of the Learner’s Perspective Study, see extranet.edfac.unimelb.edu.
au/DSME/lps/)
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problems and careful consideration of single steps conceptualised as rules in 
algebraic transformations. In a Hong Kong classroom, for example, the teacher 
introduced a six-step procedure for setting up equations in two variables (called 
“unknowns”) in order to solve word problems: (1) Examine, (2) Let (short for 
„let x be, let y be...“), (3) Form (two equations), (4) Solve, (5) Check, (6) Answer. 
In line with others, Jablonka (2004) also found a preference on the side of the 
students for step-by-step manuals for solving tasks. Many students referred to 
a set of explicit and detailed rules as a good “explanation” by their teachers.

If criteria for actions are transformed into regulations for achieving 
them, the criteria remain implicit, and validation of the outcome can only be 
achieved through checking the correctness of the procedure, but not in rela-
tion to the criteria. The students will not be able to check the validity of their 
solutions in relation to the problems to be solved, and not get used to invent 
ways of solving unfamiliar problems. Consequently, such a focus on teach-
ing explicit rules has been an ongoing concern of mathematics educators. The 
alternative typically consists in presenting a sequence of problems so that the 
students themselves can construct a general underlying meaning structure. As 
Ernest (2006, p. 75) points out, there remains an unresolvable tension between 
leaving the general principle implicit or rendering it explicit: “Thus the para-
dox is that general understanding is achieved through concrete particulars, and 
specific responses only may result from general statements.”

However, there is a price to be paid for leaving the work of construct-
ing more general mathematical meanings to the students in inquiry based 
mathematics classrooms. For example, Theule Lubienski’s (2000) study in 
what has become called a reform mathematics classroom, shows that students 
did not equally make use of the open whole-class discussions. While high-
socioeconomic status students were able to recognise the importance of look-
ing for generalisations, lower-socioeconomic status students focused more 
on giving correct answers to specific, contextualized problems and could not 
fully appreciate the presentation of a diversity of ideas but preferred more 
teacher direction. Jablonka (2004) found that many of the lower-achieving 
students felt lost as soon as open-ended tasks were introduced that allow for 
different solution strategies. Teese (2000, p. 171) reports from a reform pro-
ject in Victoria, Australia, in which an inquiry-based curriculum has been fol-
lowed. The approach turned out to be of disadvantage for working class girls. 
This group was more successful in the traditional setting. Dowling (2009) 
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shows how an investigative approach to school mathematics introduces new 
skills and “tricks”. What makes such skills or tricks meaningful for the con-
struction of new mathematical knowledge can only tacitly be decided on the 
grounds of previously acquired mathematical knowledge. Similar concerns 
can be raised about approaches that favour teaching mathematics through 
mathematical modelling.

Norms of classroom practice as (emerging) conventions
Emerging norms embody expectations and values that are supposed to be 
shared by the group about what is an appropriate contribution to the practice. 
These norms can be reconstructed from an observers’ point of view by the 
fact that most participants show some signs of having adopted the expected 
actions at some stage. The reconstruction resembles an ethnographer’s re-con-
struction of the “folk-ways”. Such an interpretation of classroom practice will 
be a hermeneutic, immanent one. But it is not done by the participants who 
are involved, except, perhaps, in the case of a breakdown of the smooth flow of 
co-ordinated actions. The “socio-mathematical” and “social” norms (e.g. Yackel 
& Cobb, 1996), the “didactical contract” (Brousseau, 1980), and some of the 
“meta-discursive rules” (e.g. Sfard, 2001) refer to these types of norms.

The focus in studies of classroom practice is often on the changing char-
acter of the norms when the construction of new mathematical knowledge is at 
issue. Voigt (1984) studies regularities in mathematics classroom interaction in 
relation to the learning behaviour of the students. He assumes that teacher and 
students are in the possession of unconscious practices or routines (Schütz & 
Luckmann, 1975) that help them to structure the process of constituting knowl-
edge that eventually counts as shared knowledge. The notion of routine here refers 
to the fact that these interaction patterns are unconsciously accomplished, have 
the function of reducing the complexity of the situation, and yield a harmonis-
ing effect. Voigt (1984) analyses variations of a common whole class pattern of 
interaction in German mathematics classrooms that is called the fragend-entwicklendes 
Unterrichts-gespräch [questioning-developing instructional talk]. There are similar 
terms in other European countries, as for example the onderwijs leergesprek [class-
room teaching talk] in Dutch. In classrooms from the U.S.A., “guided develop-
ment” resembles a similar, perhaps more open form of such a pattern. Successful 
participation in this activity does not imply that all students share the mathemati-
cal meanings the teacher intended to constitute. The students might only have 
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developed the competencies of how to participate in the interactive production 
of knowledge that is institutionalised. The pattern has been criticised as it affords 
acting according to the teacher’s expectations. The students might spend much 
effort in finding out the implicit rules of the “didactical contract”, which is con-
stituted through mutual expectations and interpretations of “specific habits” of 
the teacher by the students and vice versa (Brousseau 1980, p. 180). This descrip-
tion of the didactical contract is reminiscent of the description of interpretive 
procedures described by ethnomethodology (e.g. Voigt, 1984, p. 23 ff.).

Voigt (1984, p. 22) observes that the functioning of the routines for 
the interactive construction of new knowledge is apparently contradictory. As 
there is no shared frame of reference from the outset, the teacher’s initial ques-
tion or task is necessarily ambivalent. But the task is reflexively bounded to its 
solution: Only retrospectively the official solution reduces the ambivalence of 
the question. The institutionalised solution constitutes the meaning of the task 
of which it is a consequence. Voigt (1984, p. 56) gives an example of classroom 
interaction, in which the routine is disturbed. The teacher asks the students to 
articulate “whether they can already notice something” [a pattern in the num-
bers written on the board]. The obligation is to bring about constructive con-
tributions. In the example, a student complains: “What am I supposed to notice 
there?” The teacher replies: “What you are supposed to notice, this you have to 
know yourself. Björn [another student] can you notice anything?” The teacher 
evaluates the student’s question as a violation of the obligation to try to answer 
his question that has to be assumed to make sense and be of (didactical) value.

That initial question necessarily has to be ambivalent in order to make 
the construction of new knowledge possible. The “funnel pattern” observed 
by Bauersfeld (see, e.g., Cobb & Bauersfeld, 1995) is a routine for narrowing 
down the scope of possible responses, without ever revealing what exactly the 
criteria for a valid contribution are. The pattern can be seen as the interactional 
manifestation of what Ernest (2006), from a semiotic perspective, refers to as 
the general-sepecific paradoxon (see above, the section on specific rules). Not 
all students are equally able to acquire and interpret the emerging expectations 
of what an appropriate contribution consists of.

Hidden principles related to a wider social context
The teachers and the students in a classroom are not free to redefine the prac-
tice of school mathematics. There are principles in operation that guarantee 
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continuity of classroom practices. The teacher has an obligation to deliver the 
intended curriculum and reach a result that is defined by curriculum docu-
ments and assessment practices. Teaching is the mediation of the institutional 
culture by local personnel. Patterns of classroom interaction are functional in 
terms of the goals of the institution and are not accomplished at the initiative 
of the participants in a single classroom. One of these goals is channelling dif-
ferent groups of students into different career pipelines.

For analysing classrooms in relation to the institutional context, a layer 
of interpretation has to be introduced that goes beyond the reconstruction of 
the participants’ interpretations (the individual students’ learning) and beyond 
the reconstruction of classroom norms. The participants’ ways of acting is then 
interpreted by using information and theories, which the participants (usu-
ally) are not aware of. This is to reveal the social function of what happens in 
classrooms caused by factors to which the students and teachers have no access. 
It is to re-construct those principles that function in covert ways and serve the 
interest of power in the social system, independently of the actors’ intentions. 
Conceptualisation and investigation of these principles draws on structuralist 
and critical theories. This section outlines some issues and outcomes of re-
search dealing with principles that account for unequal attainment.

Recontextualisation, disruptions and discursive gaps

It has been argued from different perspectives that school mathematics differs 
fundamentally from other types of mathematics, especially from the practice of 
researching mathematicians. School mathematics has a distinct epistemological 
character, its own systems of symbolising and a knowledge structure that is dif-
ferent from other mathematical practices. The culture of the mathematics class-
room brings about a specific type of mathematical knowledge and mathematical 
language (Steinbring, 1998). Anna Sfard (1998) proposes that mathematicians 
and mathematics educators’ views of mathematical knowledge might even be 
incommensurable. The disparity between different institutionalised mathemati-
cal practices and the forms of knowledge developed in these practices can be 
seen as the “raison d’être” of the French “Antropological Theory of Didactics”.

Mathematics classrooms belong to a special type of practice, that is, to 
pedagogical practices. In this classrooms are very different from other practices, 
in which mathematics is used and developed. Pedagogic discourse is achieved 
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by a principle of recontextualising other discourses. Recontextualisation (e.g. 
Bernstein, 2000; Dowling, 2009) points to the transformation of discourses 
that are moved from one social context to another. The process brings about 
the subordination of one discourse under the principles of the other. Bernstein 
(2000, p. 33) sees pedagogic discourse as constructed by a recontextualising 
principle which selectively appropriates, relocates, refocuses and relates other 
discourses to constitute its own order. Hence, pedagogic discourse can never 
be identified with any of the discourses it has recontextualised. School mathe-
matics commonly not only recontextualises academic mathematics, but also 
outside-school practices. As school mathematical discourse is not static, but 
changes according to some progression in the curriculum, learning in a mathe-
matics classroom can be described as moving through a range of practices and 
their constituting discourses, in which students have to successfully participate. 
Many students get lost on the way.

Problems with “intermediary domains”

A common strategy to overcome the discursive gap between everyday discourse 
that has been described as exhibiting a “horizontal knowledge structure”, and 
school mathematical discourse that resembles a “vertical knowledge structure” 
(e.g. Bernstein 2000), is the construction of intermediary domains:

“As Anna Sfard shows us, in discussing the limits of mathematical discourse, 

the differences in the ‘meta-discursive’ rules between everyday discourse and 

mathematical discourse require us to develop a well-defined intermediary 

between the two.”

(Umland & Hersh, 2006, p.9).

Dowling (e.g. 2009) has described these intermediary domains as a collec-
tion of everyday objects and events that are recontextualised from the perspec-
tive of mathematics. This collection constitutes the public domain of school 
mathematics. This domain only becomes “well-defined” through a process of 
institutionalisation.

A recontextualisation brings about a new focus and a change of per-
spective. There are certain aspects to be sought after and others have to be dis-
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missed and a decision is made about what is considered significant and what is 
accidental. New meanings and new relationships between meanings are estab-
lished and at the same time new forms of expressions are introduced as well as 
new rules for elaborating their internal coherence. These changes in focus and 
signification (in “socio-mathematical norms”) are rarely made explicit, except, 
perhaps, in the case of a breakdown of the smooth flow normally guaranteed 
through the interactional routine.

The following example, where the rolling of a dice is involved, shows 
the difficulty of the transition from everyday to mathematical meanings.

T:	 And if I said now roll a number smaller than one?

S:	 … won’t work!

T:	 But this is also an event. Indeed, as you have already said correctly, this 

event…

S:	 … won’t work! … Won’t work!

T:	 Yes. How would we now attach an adjective to this?

S:	 … certain …

S:	 … the uncertain event.

T:	 The uncertain? Let us just call it the impossible event. And now my ques-

tion. What subset is that actually, if I speak about the impossible event?

S:	 That won’t work at all!

(Transcript translated from Steinbring, 1998, p. 164)

The task for the students is to see the activity of rolling a dice from the per-
spective of probability theory using a set-theoretic notation. As they recognise 
rolling dice from playing games, they interpret the teacher’s questions in terms 
of the discourse belonging to this everyday domain, and there is of course no 
expression for rolling a number smaller than one. However, in the next turn, 
the teacher uses specialised language, such as event and subset, while only the lat-
ter might be recognised as such. This is understood at least by one student as 
a hint that this is not about playing games, but about rolling a dice from the 
perspective of school mathematics. When subordinating one practice (rolling 
dice) to the principles of another (school mathematics) it is always ambiguous 
to what extend the subordinated practice remains relevant. And this issue is 
even more complicated if the principles of the other practice are not completely 
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known to the recontextualisers, that is, to the students (see Gellert & Jablonka, 
2009, for further discussion).

Empirical evidence suggests that the institutionalisation of segments 
from everyday discourse within school mathematical discourse has a tendency 
to allocate the everyday insertions to marginalised groups (see, for example, 
Boaler, 1994; Cooper and Dunne, 1999; Dowling, 1998). The recontextualisa-
tion of domestic practices in school mathematics serves as means of stratifica-
tion of achievement.

Epistemological disruption

The discursive gaps are not restricted to the problem with the “intermediary 
domain”. In the course of a year-8 lesson about algebra in a Hong Kong class-
room from the study quoted in the previous section (Jablonka, 2004), a disrup-
tion of meaning of “exact solution” is visible. A student suggests using a ruler 
for measuring the coordinates of the point of intersection in a Cartesian graph 
in order to get an “exact answer” of a system of linear equations. He learns that 
this is “not very accurate”.

T:	 Okay. Continue with your work...everybody. It’s difficult for you to look 

for the answer in question four...very difficult...very difficult.

T:	 What shall I do if I want to find the exact answer?

S:	 Use a ruler.

T:	 Huh? I want a very...very accurate answer.

S:	 Method of substitution.

T:	 Yes. Method of substitution...or?

S:	 Method of elimination.

T:	 Yes. Good. I’m going to look for the lazy bones that have done nothing. 

[Teacher walks around]

What is the meaning of “exact answer”? It is obvious that the student’s sug-
gestion was not satisfactory because the teacher repeats his initially ambiguous 
question in a slightly different version. The students might conclude that there 
is a seamless transition from accuracy of measurement to mathematical exact-
ness, but it is in fact an epistemological difference, a difference in the quality of 
how the knowledge is warranted.
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A discussion of how, what here has been called an “epistemologi-
cal disruption”, is linked to the students’ background is provided by Gellert 
(2008). The analysis contrasts an interactionist with a structuralist analysis of 
an episode from a classroom.

How to guess the essential thing: Recognition and 
realisation rules

The following example may serve as an illustration that the learner must know 
both, what Bernstein (e.g. 2000) calls recognition rules and realisation rules. There is a 
little piece of text. It is a quote from a book:

“They kept on running, even though they were tired.

At eight o’clock we begin studying.

They will soon stop working.

Usually Anita gets her cleaning done on Friday.”

The original language version (in Swedish):

”De fortsatte springa fast de var trötta.

Vi börjar studera klockan åtta.

De slutar arbeta om en stund.

Anita brukar städa på fredagarna.”

What is this text about? Is there any relationship between these statements? Is 
there a storyline? Is this text coherent? What is the principle one has to know 
in order to construct a similar text?

The text is from a language course in Swedish for second language 
learners. The sentences are grouped together only for meta-textual reasons and 
there is no other relationship between the meanings. Hence the text hardly 
makes any sense in terms of everyday discourse. Discovering the meta-textual 
similarity is hard because in everyday contexts when using language, even if 
one is very competent, there is no need to be consciously aware of a distinction 
between meta-textual features and meaning. Knowing the context (a language 
course for foreigners) is necessary, but not sufficient. Command of the recogni-
tion rule is important for being able to locate classroom discourse, that is, to 
distinguish the specificity of this context. One has to pay attention to different 
things and one is positioned differently in relation to the others when one 
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participates in a language course. But recognizing the specificity of the school 
discourse is not sufficient for successful participation. In addition one has to 
be able to utter ones thoughts in an appropriate way. Command of the realisa-
tion rule is important for the production of a legitimate contribution. Without 
command of the recognition rule, the problem is that one does not even know 
what it is that one does not understand. Without the realisation rule, one can-
not participate. Recognition is a necessary condition for production.

Bernstein (e.g. 2000) deconstructs “invisible pedagogy” because of 
its differential effect stemming from the implicitness of the recontextualisation 
principle, which makes invisible the classificatory principle of the knowledge 
to be acquired and students do not have equal access to the recognition and 
realisation rules.

Resumée

Not all the rules operating in mathematics classrooms are equally accessible to 
all students. Understanding or non-understanding shapes the control over par-
ticipation and eventually determines who is included, excluded or marginalised. 
Teachers differ in the ways in which they provide access for the students to the or-
ganising principles of the discourse in ways that some practices are of advantage 
or disadvantage for distinct groups of students. In an ongoing study that involves 
classrooms from Canada, Germany and Sweden, the researchers collaborating in 
the project are concerned with the emergence of disparity in achievement in 
mathematics classrooms2. The project investigates the emergence of disparities 
from a theoretical perspective that examines their social construction in the con-
text of the practices of the mathematics classroom while taking into account 
factors that might lead to the systematic exclusion of some students and to the 
success of others. The project seeks to identify and describe discursive and in-
teractional mechanisms that can explain if and how structural elements can be 
found in classroom interactions. Hence, the questions asked include:

•	How do teachers actually introduce students to the to the 
organising principles of the discourse? Are there distinct groups of 

2 See http://www.acadiau.ca/~cknippin/sd/index.html
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students who benefit from these introductions? Who could benefit 
if this practice were different?

•	At which moment in the course of a teaching unit or of a school 
year, on which occasion, do teachers provide an insight into the 
criteria along which the stratification of attainment within the 
mathematics classroom is achieved – if they do at all?

•	What can the students articulate about the criteria?

As to the practice of teaching, describing the subtleties of the process might 
help to be more aware of it.
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Abstract

The computer algebra systems (CAS) such as Mathematica, Maple, MuPAD, MathCAD, Derive, 
Maxima have potential to facilitate an active approach to learning, to allow students to become in-
volved in discovery and to consolidate their own knowledge, thus developing conceptual and geometrical 
understanding and a deeper approach to learning. Emergence of such mathematical tools and its ability 
to deal with most of the undergraduate mathematics cannot be ignored by mathematics educators. Use 
of Computer Algebra Systems in mathematics teaching is in its infancy in India.

The main idea of this paper is to give introduction to computer algebra systems, its ad-
vantages and disadvantages in mathematics teaching. We include our experiment and experiences in 
Mumbai University, India, where an attempt was made to include CAS-based practicals at the final 
year under graduate mathematics course. However this experiment did not really work. We look at 
some of the reasons due to which this experiment did not work and the lessons we learned from this 
experiment. We also mention some of the challenges one faces in the deployment of CAS in teaching 
mathematics and some steps to be taken to overcome these challenges in India. Some of our experiences 
may also be useful to mathematics educators from other developing countries, which lack the necessary 
infrastructure and technical expertise to implement these ideas.

We believe that mathematics teaching can be made much more interesting, inventive and 
exploratory using CAS. We include a small module developed using a MuPAD Pro to support our claim. 
The role of teachers is very important in order to make the effective use of available mathematical tools.
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1. Introduction

Few working in mathematics education today would be unaware of the growth 
in recent years of computer technologies for teaching, learning and research 
in mathematics. Calculating technology in mathematics has evolved from four-
function calculators to scientific calculators to graphing calculators and now to 
computers with computer algebra system software. The use of CAS in education 
is still relatively rare but the growing body of research and the interest suggests 
that its extended use is imminent.

The underlying concepts and proofs of many mathematical concepts 
involve difficult and abstract ideas that present a mountainous obstacle to many 
students. Computer algebra systems offer both an opportunity and a challenge to 
present new approaches that assist students and teachers to develop better under-
standing of the concepts. They can be used to change the emphasis of learning 
and teaching of mathematical concepts away from techniques and routine sym-
bolic manipulation towards higher-level cognitive skills that focus on concepts 
and problem solving. Two of the key indicators of deep learning and conceptual 
understanding are the ability to transfer knowledge learned in one task to another 
task and the ability to move between different representations of mathematical 
objects. Computer algebra systems are multiple representation systems and they 
have the ability to facilitate graphical, algebraic and numerical approaches to a 
most of the mathematical concepts. Most of the CAS also provide a high-level 
programming language which helps the users to prepare their own set of library 
files to suit their needs. CAS thus allow learners to discover rules, to make and test 
conjectures and to explore the relationship between different representations of 
functions and other mathematical objects using a blend of visual, symbolic and 
computational approaches. Students enjoy the power and versatility of computer 
algebra and are encouraged to become reflective, deep learners.

While use of CAS in many countries in teaching and learning mathe-
matics have made a significant impact at University level, in India the progress 
and awareness of these technology has been really very slow. Mostly, it has been 
confined among the researchers and handful of university and college teach-
ers in well established research institutes, IIT’s and University Departments. In 
this article we look at the advantages and disadvantages of using these tools in 
teaching mathematics at undergraduate and postgraduate levels. We also look 
at some of the challenges and hurdles in using these tools in India and how 
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to overcome them. We present a Mumbai chapter on use of these technology 
where an attempt was made to implement these tools at under graduate level 
partially. However, this has not really made an impact because of several hurdles.

2. Historical perspective

Computer algebra systems began to appear in the early 1970s, and evolved out 
of research into artificial intelligence. Pioneering work was conducted by the 
Nobel laureate Martin Veltman, who designed a program for symbolic mathe-
matics, especially High Energy Physics in 1963. The first popular systems were 
Reduce, Derive, and Macsyma which are still commercially available. A free 
version of Macsyma called Maxima is actively being maintained. The current 
market leaders are Maple, Mathematica, MatLab, SciLab and MuPAD. These are 
commonly used by mathematicians, scientists, and engineers. Some computer 
algebra systems focus on a specific area of application; these are typically devel-
oped in academia and are free.

Here is a list of some of the most popular free and commercial mathemat-
ical software. More informations on these can be found on their respective websites.

Software Year of Start Utility
Mathematica* 1998 General purpose CAS
Maple* 1985 General purpose CAS
MuPAD* 1993 General purpose CAS
MatLab* Late 1970 General purpose CAS
MathCAD* 1985 General purpose CAS
Magma* 1993 Arithmetic Geometry, Number Theory
SciLab 1994 General purpose CAS
Maxima 1998 General purpose CAS
YACAS 1999 General Purpose CAS 
SAGE 2005 Algebra and Geometry Experimentation
Macaulay2 1995 Commutative Algebra, Algebraic Geometry 
GAP 1986 Group Theory, Discrete Math
GP/PARI 1985 Number Theory
Kash/Kant 2005 Algebraic Number Theory
Octave 1993 Numerical computations, Matlab-like
Singular 1997 Commutative Algebra, Algebraic Geometry
CoCoA 1995 Polynomial Calculation
Gnuplot 1986 Plotting software
Dynamic Solver 2002 Differential Equation
R 1993 Statistics

Here star (*) ones are commercial software and remaining are free software. Note that 
the above list is not complete still and there may be many more mathematical software.
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3. Introduction to CAS

Computer algebra systems (CAS) are special kind of mathematical applications 
providing users means for doing symbolic, algebraic and graphical manipula-
tions with computers. This means that instead of only counting with numbers, 
computer algebra systems can also manipulate symbols and, when possible, 
carry out complex calculations exactly. These systems can be roughly divided 
into two main categories: special purpose systems and general purpose sys-
tems. Special purpose systems usually deal with some specialized branch of 
mathematics, viz. dynamical solver for differential equations, singular for alge-
bra and algebraic geometry, KASH for algebraic number theory, gap for group 
theory, magma for number theory, CoCoA, Macauly2 for commutative algebra/
algebraic geometry, Octave for numerical computations etc. General purpose 
system, on the other hand, usually try to cover as many mathematical areas as 
possible. This generality makes general purpose systems ideal for open learning 
environments in most cases.

Most CAS allow the user to write sequential programs for complex 
tasks, and have all features of high-level programming languages. CAS also have 
most of the features of numerical systems for visualization of 2D and 3D-plots, 
numerical computations and animations. It is therefore an ideal tool for di-
recting learning towards multiple-linked representations of mathematical con-
cepts. Through carefully designed activities students can investigate the links 
between different representations of objects, recognize their common proper-
ties and begin to construct their personal structures of mathematical knowl-
edge. Student activities have to be designed with very detailed cognitive steps 
in mind. Appropriate teacher intervention will usually be required to ensure 
that the students follow through the required learning stages, in particular, the 
reflective thinking.

A typical student approach to problem solving is to find a suitable 
worked out example to mimic and then carry out the computation. Clearly 
this strategy is limited by the extent of the students’ memory bank of similar 
problems and inhibits flexible thinking. A better approach is to consider al-
ternatives, experiment, conjecture and test, then analyze the results. A com-
puter algebra system can be a major factor in developing an exploratory 
approach to learning mathematics and, in particular, investigating problems 
from multiple representational perspectives. Using CAS to produce graphs, 
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carry out calculus operations or perform repetitive calculations, students can 
be encouraged to make and test conjectures, to consider alternative solutions 
and to tackle open-ended problems. Removing the burden of manipulation 
and computation allows students to spend the more time on these other 
activities. This approach can make the study of mathematics more enjoyable, 
more relevant and more rewarding to it. At present most of their time is 
spent practicing routine skills. Perhaps it is not surprising that students view 
mathematics as a collection of formulae (to be memorized) and to do maths 
is to compute. If more routine computation is done on a computer more 
time is available for concentrating on concepts, motivation, applications and 
investigations.

With the traditional undergraduate curriculum, students do not often 
regard themselves as active participants in mathematical exploration. Rather 
they are passive recipients of a body of knowledge, comprising definitions, 
rules and algorithms. Computers offer a number of didactic advantages that can 
be exploited to promote a more active approach to learning. Students can be-
come involved in the discovery and understanding process, no longer viewing 
mathematics as simply receiving and remembering algorithms and formulae. 
The power of computer algebra goes beyond routine computation. It has the 
potential to facilitate an active approach to learning, allowing students to be-
come involved in discovery and constructing their own knowledge, thus devel-
oping conceptual understanding and a deeper approach to learning.

We include a sample output using MuPAD Pro 3.1, which explains the 
geometricmeaning of Lagrange multipliers to solve constrained optimization 
problem.

Example 1. Use the method of Lagrange Multipliers to maximize/minimize

y – x2 ubjected to y2 + x2 = 2

For convenience let f(x,y) = y – x2 and g(x,y) = 2x2 + y2 – 2. Geometrically, the 

maximum/minimum of the above problem occur where ever the gradient of 

f(x,y) = y – x2 and gradient of g(x,y) = 2x2 + y2 – 2 are parallel. This is same as, 

the level curves of f and b have common tangents at these points.

Using MuPAD animation, we can show that there are four points on the el-

lipse g(x,y) = 0 at which this happens.
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>>f:=(x,y)-> y-x^2//to define the function f;

>>g:=(x,y)->2*x^2+y^2-2//to define the function g

>>pf:=plot::Implicit2d(f(x,y)=c,x=-5..5,y=-5..5,

	 c=-3..3,Color=RGB::Red,Frames=100,LineWidth=0.5)

>>pg:=plot::Implicit2d(g(x,y)=0,x=-3..3,y=-3..3,Color=RGB::Blue,Line

Width=0.75)

>>plot(pf,pg,Scaling=Constrained);

The output is shown in the figure below

When we animate the graph we see that there are four points at which the 

level curves of f and g have common tangents. This is shown in the next figure.

>>plot(plot::Implicit2d(f(x,y)=c/5,x=-3..3,y=- 3..3,Color=RGB::Red,Lin

eWidth=0.5,

VisibleAfter = c)c=-15..15,pg,Scaling=Constrained)
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Now we can plot (using MuPAD) the gradient at the point at which the level 

curves f and g have common tangent. Look at the Figure below. We are sup-

pressing the MuPAD codes which produced this figure.

All the steps to solve the above problem can be performed using MuPAD 

and it can be shown that there are four points and at which gradient f and g 

are parallel. We are not including the MuPAD codes for the analytic solution 

of the above problem, as we wanted to bring out the geometric behind the 

problem.

4. Advantages of Using CAS

1.	 Helps develop visual/geometrical understanding.
2.	 CAS can help to increase the value of the knowledge and degree of interest 

of students.
3.	 Can explore concepts before “hand skills’’ to do so are available.
4.	 Can explore realistic problems.
5.	 CAS help to increase student motivation and improve students attitudes 

towards Mathematics.
6.	 Due to the potential interactivity of these tools, students are able to attain 

a higher level of abstraction in mathematical problem-solving something 
which clearly represents a significant didactic accomplishment.

7.	 Allows students to concentrate on problem formulation and solution analysis.

RL | Use of Mathematical Software for Teaching and Learning Mathematics



380

ICME 11 Proceedings

8.	 Easy to give math demos and advanced mathematical ideas can be intro-
duced very easily and concretely.

9.	 Users having knowledge of some programming language (C, C++, Pascal, 
Fortran) have greater advantage and can prepare their own library function 
which are suited to their needs.

10.	It will help teachers to develop innovative, challenging and exploratory 
teaching modules.

11.	Researchers do not need to spend more time on tedious computations rath-
er they can spend more time in analyzing and the computation part can be 
easily be done using these tools.

12.	When CAS are not used, the teacher tends to be the sole center of attention 
whereas, when they are used, there is an observable increase in student 
participation, autonomous activity and interaction among students, hereby 
making the process of acquiring and constructing mathematical knowledge 
more student-centred.

13..	Enhances job opportunities for students.
14..	People from other disciplines not having sound mathematical knowledge 

can very easily solve mathematical problems which they come across.

The benefits of using CAS in mathematics teaching is enormous and almost every 
conference on technology for mathematics advocates this. For more detailed dis-
cussion one can refer to ((Albano G., Desiderio M. 2002) , (Artigue M. 2001)}, 
, (Bertemes J. 2006), (Bohm J. CAME 2007), (Mackie D. 1996), (Majewski M., 
2004), Westermann T. 2000), (Yearwood, J.U. A. , 1996) etc.)

5. Drawbacks of using CAS

In spite of so many benefits of using CAS there are some drawback, that is why 
many people advocate against its use and raises some concerns. Through our 
experiences and discussion with teachers and students, we are listing some of 
the drawbacks of using CAS.

1.	 Students tend to use CAS blindly and they do not bother about thevalidity 
of answer obtained through CAS.

2.	 Most often students try to use CAS as an advanced calculator and refuse to 
learn concepts.
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3.	 Decline of students’ paper-and-pen skills.
4.	 Difficulties in evaluation of a course taught using CAS.
5.	 Greater time needed for class preparation.
6.	 Lack of familiarity with the computer and CAS.
7.	 Fear of making syntactical errors in class.
8.	 Lack of administrative recognition of increasing teaching load.
9.	 CAS syntax can be an unreasonable burden on students.
10.	The course can be victimized by equipment failure or inadequate equipment.
11.	Students’ algebraic manipulation skills will deteriorate if they are allowed 

to rely on computer algebra but that these skills are an essential foundation 
for mathematics.

12.	CAS at time can produce meaningless expressions.
13.	Using CAS can potentially prevent students from making the proper connec-

tions between the techniques used and their mental approach to Mathematics.

6. Challenges and how to overcome those

There are several challenges if we want to implement CAS-based mathematics 
teaching in India. However, these challenges can be over come. We list some of 
the major challenges which we/will come across in order to employment of 
such tools in mathematics teaching.

6.1 Challenges and Difficulties

1.	 Availability of computers in the laboratory and to teachers and students is 
still a distant dream.

2.	 Most of the CAS are too costly and hence not affordable to college students 
and teachers.

3.	 Classrooms are not equipped with relevant hardwares which is required to 
integrate teaching using CAS.

4.	 Teachers are not having proper computer literacy and knowledge of CAS.
5.	 Many teachers are not willing to move from traditional teaching style to 

CAS-based teaching wherever necessary.
6.	 Unavailability of innovative and exploratory teaching modules.
7.	 Courses are not designed properly. It does not give space, time and oppor-

tunity of exploring the subject using CAS.
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6.2 Overcoming these challenges and difficulties

1.	 All colleges/institutes to have proper computer labs and to give students 
enough opportunities to explore.

2.	 Use of free mathematical software like Scilab, Maxima, octave etc. to be en-
couraged.

3.	 Development of similar software may be initiated and encouraged.
4.	 Classrooms should be equipped with relevant hardwares.
5.	 A series of teacher-training programmes throughout the country may be 

initiated in order to make them aware of such tools.
6.	 Innovative teaching modules and projects be prepared which make stu-

dents and teachers realize that these tools are not merely advanced calcula-
tors but can be used to solve a very complex problems and help them to 
experiment and explore (one of the vital aspects of learning).

7.	 Courses may be redesigned to encourage the use of CAS and also provide 
time for its use.

8.	 Students must be allowed sufficient time to learn the language and features 
of CAS before using it to enhance their learning.

9.	 In recent years most of the students have knowledge of some programming 
language which will be very useful in order to experiment and explore not 
just existing inbuilt function in CAS but can create their own need based 
functions. This also fosters creativity.

10.	CAS should not be used as a black-box in the beginning of introduction of 
a mathematical concept. Till the topic is not learnt properly, CAS should be 
used as a white-box. Once the topic is thoroughly learnt then it can be used 
as a black-box. Black-box/White-box principle (Buchberger B.,1990) is 
very useful for developing innovative teaching modules using CAS.

We believe that the most appropriate approach involves using programming and 
CAS together to allow students to create the specific necessary functions that will 
allow them to solve the problems involved in the subject matter under study.

7. CAS and Teachers

It goes without saying that the classroom teacher is the key to the successful 
introduction of new methods and new technologies. Of course, it is possible 
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for the student to come across these independently in the case of CAS. With the 
increasing speed of technological development, it is crucial that teachers keep 
themselves informed so that they are in a position to make valid judgments and 
adapt their teaching accordingly.

Teachers, of course, have a crucial role in students learning (with or 
without CAS). Integrating CAS into teaching changes many aspects of class-
room practice which teachers will make on the basis of their prior teaching 
styles and their beliefs about mathematics and how it should be taught. While 
using CAS to solve problems, students sometime make silly mistakes which 
produces a totally irrelevant output.

Teacher support and appropriate intervention is crucial to correct such 
mistakes. Judging the right amount of help at the right time is a skill acquired 
through experience. Computer algebra system use in mathematics teaching and 
learning is in its infancy. Nevertheless there are many teachers and education-
alists who have integrated CAS into their teaching or conducted research into 
student understanding with CAS or who have led curriculum/assessment pro-
jects involving CAS use.

8. Use of CAS-- A Mumbai Chapter

Use of computer algebra systems (CAS) at the University of Mumbai was initi-
ated in late 1990’s by means of workshops integrated with refresher courses 
for degree and engineering college teachers at the Department of Mathematics, 
University of Mumbai. Initially teachers who attended refresher courses were 
made aware of some of the mathematical tools mainly mathematica, WinPlot 
and MuPAD for teaching mathematics. Because those days only few computers 
were available in computer lab, occasionally they were given hands-on practices 
in groups. It was in the year 2003, a three days workshop on use of MuPAD 
2.5 Lite and other related free mathematical software was held for Mumbai 
University degree college teachers teaching mathematics, keeping in mind to 
encourage the use of some of mathematical tools in mathematics teaching at 
college level. Teaching modules for few mathematical topics in analysis, mul-
ti-variable calculus, linear algebra were prepared to help the participants. In 
the beginning there were some concerns that many teachers may oppose this 
move, however after attending the workshops all were very happy and very 
keen to use them. About 100 teachers participated in this workshop very enthu-
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siastically. The participants were also given hands-practices in different groups. 
All the teachers were very happy to see the kind of innovations and motiva-
tions that can be inculcated in teaching mathematics using these tools. Board of 
studies of Mathematics of Mumbai University then recommended that it will 
be compulsory for the final year students of mathematics to include printouts 
of solutions of two problems using MuPAD or any other mathematical software 
in each of the four papers in their syllabus. The main idea behind this endeavor 
was to expose the teachers and the students to some of these tools which will 
help in understanding and visualizing many mathematical concepts.

However, we believe that this has not worked properly. There are num-
ber of reasons behind this:

1.	 Most of colleges did not have required ambiance for teacher to integrate the 
CAS with their teaching.

2.	 College computer laboratory was also not available for this purpose in most 
of the colleges.

3.	 Most of the teachers themselves did not have access to computers at their 
college and their residence.

4.	 Teachers did not take interest in exploring and experimenting with these tools 
themselves and did not encourage their students to experiment these tools.

5.	 There were no follow-up workshops any further.
6.	 MuPAD Lite 2.5 is no longer freely available.

Due to the above difficulties in most of the cases students were just reproducing 
same solutions again and again and the original idea in our opinion got defeat-
ed. Few workshops in Mumbai at University Institute of Chemical Technology 
(2005), Indian Institute of Technology (2006 and 2007) were held to make the 
teachers, research scholars aware of the some of these technologies however 
there are not enough.

With the insights provided by this experience, we can improve the strat-
egy/methodology of deployment of CAS in Mathematics teaching and move for-
ward. We believe that the situation now has improved considerably. Most of the 
colleges do have relevant hardware, good computer laboratory where students 
and teachers can experiment, explore and discover using some of the CAS. Thus, 
if proper guidance is provided, these technology can make an impact and mathe-
matics learning can become much more interesting and enjoyable.
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9. Where do we stand?

Many foreign universities have fully integrated CAS into mathematics teaching 
for several university degrees, to the extent that their use is no longer consid-
ered to be novel or innovative, but rather something common place in such 
courses. CAS-based mathematics teaching at the undergraduate and postgradu-
ate level has not been explored in India much. Therefore, there is a lot of scope 
for improvements. In recent years many government funding agencies have 
provided financial support to setup computer laboratories in colleges and to 
acquire useful software. Therefore, we believe that the situation now is far more 
conducive than what it was few years back, in order to make these tools as a 
part of our curriculum and make teaching and learning process much more 
interesting, insightful and make students involved.

The authors had opportunity to interact with many young college 
teachers and students of undergraduate and postgraduate level of various uni-
versities who were very enthusiastic to learn these tools and incorporate them 
into their teaching. This makes the implementation of CAS-based mathematics 
teaching and learning much easier. What we need is to create proper awareness 
of these tools among the teachers by holding workshops and training pro-
grammes at various places. One of the good things about all these tools is that 
they have a very good inbuilt documentation, tutorials which make the learn-
ing much easier. Already tonnes of tutorials, lessons are available on the web 
which can be used for self-learning.

10. Conclusions

A computer algebra system is a tool not a self-contained learning package or 
encyclopaedia of mathematical knowledge. It is the way in which it is presented 
to and used by students that determines its ability to influence learning. Much 
emphasis these days is placed on student-centered learning and less on the 
teaching but teaching and learning are equally important. It is necessary to first 
understand the learning process and then design teaching and learning activi-
ties to achieve these. Only then will students become deep learners.

Our accumulated experience reveals that CAS are computer tools 
which are easy to use and useful in both pure and applied mathematics courses. 
Use of CAS in the teaching of Mathematics should be channelized to maximize 

RL | Use of Mathematical Software for Teaching and Learning Mathematics



386

ICME 11 Proceedings

the opportunities offered by CAS technologies. Optimal use should be aimed at 
improving student motivation, autonomy and achieving participatory and stu-
dent-centered learning. One powerful idea involves combining CAS resources 
with the flexibility of a programming language.

There are many implications of using computers in the teaching and 
learning of mathematics at university. As students often point out to us it is very 
exciting, enjoyable and productive to use computers in class. They are keen 
to use computers, so the environment becomes more conducive for learning. 
Students’ natural curiosity can be utilized to its fullest potential because they 
are keen to explore and discover.

Irrespective of the software packages used, it is important to remem-
ber that the software should support the learning and curriculum and can not 
substitute good teaching. Traditional teaching methods must be supported with 
modern tools for problem-solving. It does not imply a reduction in the stand-
ard of education or of necessary subjects, but it is vital that the curriculum 
is carefully considered and that passive teaching is replaced in favour of new 
methods which promote active participation of students.

In order to make the CAS based mathematics teaching reality, we must 
take some of the following measures:

1.	 To develop methodology for teaching mathematics with CAS.
2.	 To develop strategies to implement teaching methodologies.
3.	 To produce innovative teaching modules using CAS.
4.	 To organize regular workshops, training programmes for mathematics 

teachers.
5.	 To redesign the course curriculum.
6.	 A lot of research is needed to understand the students attitude and psychol-

ogy of learning mathematics using CAS.
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Abstract

A detailed characterization of school mathematics teaching patterns using the videos that teachers re-
corded themselves as part of the 2005 Chilean national teacher assessment program is presented. This 
is a new compulsory teacher assessment program, but in 2005 teachers volunteered to participate 
in a first version of the program. This research work includes the analysis of more than 700 forty 
minute video recordings, both from elementary and high school classes, from different regions of the 
country, containing lessons on the algebra, geometry, data and numbers strands. One 4 minute slice of 
each video was studied. The slice was randomly selected from the following moments of the class: first 
4 minutes, from minute 10 to 14, from minute 20 to 24, from minute 30 to 34 and the last 4 
minutes. More than one hundred variables were codified by independent coders. The codification meth-
odology was successful and stable across different coders, making the analysis huge amounts of data 
possible. The main findings were: very little autonomous student participation (only one mathematical 
question made by students per 40 minutes class), teachers neither present nor discuss any proofs, no 
use of information technology, almost no use of textbooks, almost no explicit use of metaphors.
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Introduction

This research work intended to study mathematics teaching practices in pri-
mary and secondary school education in Chile: how mathematics is actually 
being taught in the classrooms. With that information at hand, comparisons 
with other countries could be made, but also, and more important, recom-
mendations for public policy towards improving the quality of pre-service and 
in-service teacher training could be made in order to improve the teachers 
classroom practices and in turn, their students achievements.

Considerable amounts of data were already available, consisting of 
hundreds of video recordings made for the 2005 Chilean Teachers Professional 
Assessment (Manzi, 2007). Mathematics teachers (as well as teachers of other 
disciplines) that chose to be evaluated in 2005 had to have a video of one of 
their classes recorded as part of the assessment requirements. These videos had 
been stored by the Ministry of Education after having been used for their origi-
nal purpose. We could get a hold of a total of 720 of those videos, so that they 
could be analyzed in search for a characterization or description of the Chilean 
teaching practices in Mathematics.

The analysis was chosen to focus on didactic aspects such as the mo-
dality of student working arrangement (whole class work, small group work, 
or individual work), degree of student participation in class and level in 
which the teacher encourage it (Mathematics questions asked, for instance), 
motivational strategies and didactic strategies particular to Mathematics, such 
that proofs and use of mathematical metaphors (Lakoff and Nuñez, 2000; 
Richland, Holyoak and Stigler, 2004; National Mathematics Advisory Panel 
for multiple representations, 2008). The class dynamics was also quantified, 
attempting to quantify and find characterizations of the beginning, middle 
and ending of the lectures. Finally, the use of different types of technologi-
cal aids, such as board, computers, text books, paper and scissors, etc, was 
quantified.

Theoretical and methodologically, only objective measurements, that 
cold be consistently repeated by a second observer, were made to account 
for the different aspects to be measured. Also, to be able to work with the 
large amount of videos we had at hand, for each one only a 4 minute (or 
sometimes a 2 minute) slice was randomly selected viewed, corresponding to 
either the first 4 minutes of the class, minute 10 through minute 14, minute 
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20 through minute 24, minute 30 through minute 34, or minute 40 through 
minute 44, given that in Chile there are 45 minute lectures.

The working hypothesis was essentially that there would be rather 
scarce use of proofs and metaphors, and that the percentage of use of modern 
technology such as computers would be low. On the other hand, polls con-
ducted with teachers report that they, in a great percentage, use the textbooks 
that the Ministry gives for free to all children in public schools (Ministerio de 
Educación de Chile, 2002; Universidad de Chile, 2006). However as we will 
see, the results were appalling: no evidence of proofs, metaphors or computers, 
and the textbooks were almost not used at all. Also sadly surprising was the fact 
that student participation, in the way of (mathematics) questions asked, was 
extremely low: an average of one student question in the whole lecture time.

As expected also, some patterns emerged in the way that there was a 
clear characterization of the three thirds of the lecture, and the primary and 
highs school teachers have very distinctive didactic differences.

The fact that the short class slices would allow us to gather relevant 
and statistically significant information about the pedagogical practices of 
mathematics teachers was also a working hypothesis that we could confirm 
within the study. Examples in the literature that that encouraged this approach 
are, for instance, the SPAFF methodology that is able to predict accurately fu-
ture behavior of married couples by watching 3 minute videos of them before 
their marriage (Gottman, 2000; Coan and Gottman, 2007) and the Ambady 
and Rosenthal study of college teacher assessment by students (Ambady and 
Rosenthal, 1993; Gladwell, 2005).

Theoretical Framework

There are various theoretical approaches that can be adopted to design and 
analyze a study of the teaching/learning situation in the school classroom. The 
one chosen for this study had into consideration that the material to be stud-
ied consisted on hundreds of video recordings already made. And these videos 
consisted of one 45 minute class per teacher, and were made at the teacher’s 
request, without any research consideration in mind. Having that sort of mate-
rial does not really allow for questions involving why some teaching strategy 
is used, which would probably involve interviews with the teachers after the 
lecture, or studying in depth the strategy to teach some topics, which might 
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require having whole sequences of lectures, for instance. Instead, the material 
forced us to search for and choose a very pragmatic theoretical framework, 
one in which one uses very objective information to give an account of what 
is globally happening in the classrooms over the country, without really being 
able to describe or analyse each separate class.

Such a framework had already been used by previous video studies, 
such as the TIMSS Video Studies (TIMSS, 1999; LessonLab, 2003; Hiebert, 
Gallimore, Garnier, Givvin, Hollingsworth and Jacobs, 2003; Stigler and 
Hiebert, 2004) . We have adopted it, and, essentially, within it we try to draw 
conclusions about what is going on in the classroom situation based only on 
very objective evidence. Evidence that does not depends on anyone’s opin-
ion, but on objective measurements such as number of mathematic ques-
tions that the teacher asks, or the amount of time the teacher spends writing 
on the black (ore white) board. The variables or indicators to be used also 
enjoy the quality of being repeatable, that is to say, independent of the par-
ticular observer. The idea is that if patterns are obtained using such variables, 
then the conclusions drawn can become very solid evidence of what is hap-
pening countrywide, even though probably no judgement or assessment can 
be made of individual teacher practices, because relevant though more subjec-
tive factors can be important when you come to judge an individual class. For 
such a judgement a different epistemological lens might very likely be neces-
sary (Tuminaro and Redish, 2007; Redish, 2003; Díaz, 2006), and the material 
available for this study would probably be non suitable for the study.

Research Methodology

As described earlier, the class videos had already been recorded without a re-
search study in mind. Therefore our research methodology did not start by 
dealing with the design of the recordings, as it usually happens with this type 
of study, but rather with the design of the means for obtaining the most infor-
mation we could from the already available material.

The videos were available on tape, therefore the first step was to encode 
them into a digital format that would be both, compact and easy to reproduce 
so that more than one observer could view the same video at the same time, 
in different computers. The digital video format XviD was chosen, both for be-
ing open source and an efficient equivalent of the DivX standard. Furthermore 
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there is plenty of computer software that is able to play this format, and under 
a variety of platforms (Windows, Mac, Linux, for instance).

As the videos were encoded, they were given a filename that consisted 
of the national ID number of the teacher of the class, which was among the 
few extra information we had available for each recording. It must be pointed 
out that the ID number is somehow correlated to the age of people, younger 
people typically has higher ID numbers, therefore this number gave us indica-
tions of the approximate age group of the teachers. The videos were classified 
also by the educational level they belonged to, that is to say, middle school or 
high school. 78.8% of the tapes were of middle school level and only 21.2% 
from high school. There were no tapes from elementary school.

In parallel to this encoding, research was performed to find out the vari-
ables and different classifications already used in other video studies, and a large 
number of variables (around 200) were chosen as candidates to be measured in the 
videos. Later, in an iteration process which used an increasing number of randomly 
selected videos, from 10 initially to finish with 100, the suitability of variables was 
tested, and in parallel assistants were trained on the video coding task. Those vari-
ables which did not fit the repeatability criterion (no statistical difference was to be 
found between the values measured by both researchers who recorded those vari-
ables), or those that were not able to be measured because they belonged to catego-
ries simply absent in the group of videos (for instance, metaphors were not found, 
therefore variables that distinguishing different types of metaphors did not make any 
sense for this sample) were dropped, and we were left with a group of 120 variables.

We saw no practical need for using specialized software, such as 
“Transana”, to record the data, because, as we will mention later, only 4 minutes 
or less were coded for each video, and for those lengths it is sufficiently easy to 
find the sought information without the need of special software. Instead, the 
set of variables were divided into two Excel forms, and two researchers were in 
charge of collecting the data to be filled in each of the forms. Thus, each vari-
able was recorded by two people for each video.

The number of videos to be analyzed was considerably large: 720. 
Viewing them all in full was impracticable considering that it was estimated 
that for accurately recording each of the variables to be measured the material 
would have to be replayed about 20 times, which would give about 15 viewing 
hours per video, per form and per reviewer. The decision was then made that 
only a short sample of each video would be processed.

RL | Video Study of Mathematics Teaching in Chile
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There is plenty of encouraging experience on such time sampling of 
videos. For instance, Gottman (Gottman, 2000; Coan and Gottman, 2007) has 
developed a methodology named SPAFF with which he has shown that by re-
cording a 3 minute video of an engaged couple he can predict with great accu-
racy future (several decades, in fact) behavior of the married couple, including 
things like if they will stay together or will get divorced. There is also the classic 
study by Ambady and Rosenthal (Ambady and Rosenthal, 1993), which shows 
that the students evaluation after viewing a 10 second video of a university pro-
fessor class proved to be statistically equivalent to what they would write after 
a semester attending the class. On the other hand, there are studies that claim 
that much longer observation periods are needed to judge teaching practices. 
For instance, Shimizu and Yoshinori ( Shimizu and Yoshinori, 2003) advocate 
for a whole sequence of 10 lectures as a minimum unit to study patterns of 
pedagogical practices. They state that, for instance, homework assignments play 
a linking role between lectures, and would have a significant educational role.

In our case the videos were pre recorded and we did not have access 
to any sequence of classes, and we chose to review 4 minute slices from all the 
recordings available. In fact, we chose to do some checking of the hypothesis 
that even smaller times might be good enough, and in several videos, slices 
only 2 minutes long were viewed.

The segments were chosen so that they would be well distributed over 
the lecture time: one starting at the beginning, one at minute 10, one at minute 
20, one at minute 30 and one at minute 40.

Results and analysis
About the general statistical validity of the choices made, both of vari-

ables and of short slices, the data obtained is encouraging. From both, the pre-
liminary tests and the final coding, the data shows that the different researchers 
coding the same variables obtained statistically similar patterns, thus validating 
the stability and repeatability hypothesis.

Furthermore, there was no statistical difference between the outcomes 
of the variables measuring total time of an event, for the 2 minute slices and the 
4 minute slices (the 2 minute slice times properly scaled, naturally).

However variables counting number of events did not always show the 
same behavior independent on the slice size. In fact, when the events counted 
were rather short ones, the variables behaved the same, but for events essen-
tially longer, the behaviors differed significantly. 
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Let us now review the data gathered and the findings that seem to de-
rive from it. Let us first concentrate in variables or groups of them which give 
us information that one could perhaps think that “common sense” would tell 
us that the results could not be different from the ones suggested by the data. 
We think that even if that is the case, having hard empirical evidence of the 
facts, justifies including this information as relevant results of the study.

The following graph shows the amount of time in seconds, within the 
4 minute slice reviewed, that teachers from middle school (EB) and high school 
(EM) spent at the blackboard. It can be seen that high school teachers spent 
considerably more time at the board.

We also gathered similar data regarding the fact that high school teachers spend 
more time than their middle school peers writing mathematics, that they have 
their students spend less time in activities involving paper, scissors, cartons, 
etc, that their students spend more time solving mathematics problems, and 
that they make less eye contact with the students. All this tells us that there are 
clear differences between didactic strategies of middle school and high school 
teachers.

Looking for regional differences in didactic strategies, we found 
that there is a significant difference between the teachers from the “Región 
Metropolitana”, which is the region where Santiago, the Capital City, is located 
(and which, incidentally, concentrates more than 1/3 of Chile’s total popula-
tion) and the rest of the country. For instance, the following figure shows the 
amount of time (within the 4 minute slices) spent working on teacher hand-
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outs. It is obvious from the graph that the use of hand-outs by teachers at 
Región Metropolitana is neglectible compared with teachers in other regions.

Similar data shows that teachers from Región Metropolitana approach the stu-
dents a lot less than the rest (to check and supervise their work), but they ask 
their students considerably more mathematical questions (and therefore the 
number of answers to mathematical questions by the students is higher). 

Regarding the different sections of the class, meaning beginning, mid-
dle and ending, as could be guessed in advance, there are measurements that 
differentiate them, for instance, next graph shows that in segment 1 (0-4 min-
utes) and 5 (from minute 40) there is no independent student work, and most 
of the time the whole class is passively listening to what the teacher tells them.
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Some more “very obvious” information of a similar sort as the previous one 
can also be extracted from the data. Given the obvious nature, we only mention 
it here, without giving the associated numbers. Teachers walk more around the 
students seats supervising their work when they are not lecturing to the whole 
class. Teachers approach more the students to check their work when they are 
working with concrete materials (cutting and pasting papers, or drawing pic-
tures). There is a different didactic pattern in the geometry strand: as opposed 
to all the rest of the strands (algebra, chance, numbers), the teacher shows 
more objects, or draw more pictures, and the students spend more time cutting 
and pasting papers.

When looking at what happens in the intermediate slices (number 2: 
from minute 10, number 3: from minute 20, and number 4: from minute 30) 
some predictable, although not necessarily desirable, correlations appear.

The following graph shows that when a teacher asks fewer ques-
tions of mathematical nature (fewer than the mean) to their students, he o she 
spends considerably more time supervising student work than the teachers that 
ask more (mathematics) question than the average:

Thus, teachers seem to be divided in two disjoint groups marking clearly dif-
ferentiated didactic patterns: the ones who ask math questions and the ones 
that supervise student work.

It can also be seen from the data that, for instance, when teachers 
asked more than the average mathematical questions to the students, they also 
called more students to work on the blackboard.

RL | Video Study of Mathematics Teaching in Chile
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Another phenomenon found when observing slices 2, 3 and 4, is that 
when students spend more time than the mean working on purely mathemati-
cal (non applied) problems, they spend less time doing activities with paper 
and scissors (not really surprising), but the teachers in turn spend more time 
supervising their work. The following graph illustrates this last statement, by 
presenting teacher’s time supervising students for the cases of less and more 
than average student work on purely mathematical questions.

From segments 2, 3 and 4, it can also be observed that younger teachers seem 
to use some different strategies than older ones. Teachers with ID less than the 
average (less than 6.915.638) ask more questions of mathematical nature, walk 
around the students more and bring the students to the blackboard more than 
the ones with ID number greater than the mean. It must be recalled that ID 
number is correlated with age (higher ID numbers usually mean younger peo-
ple). Of course, it must be pointed out that 82% of the teachers with smaller 
ID number were middle school teachers, and only 68% of the ones with higher 
ID numbers taught in middle schools. This might then be tied to teaching level 
rather than age.

Now, let us look at what is probably the most important, but also most 
disappointing, information that can be extracted from the data in this study:

The students ask very few question of mathematical nature in class. 
Indeed there is, as a group (not each student individually), at most one math 
question per class.

Other sources of bad news:



399

·	There was very scarce use of textbooks in class.
·	There was no evidence of ICT usage in class. No computers or 

educational software at all in the observed segment of any class.
·	There were no mathematical proofs, or evidence of deductive 

reasoning in the observed videos.
·	There were no mathematical metaphors to be observed in class.

One encouraging one, to finish:

·	Teachers did not make mathematical mistakes. There were actually a 
few conceptual errors that were corrected right away, but that was.

Discussion and Conclusions

The conclusions of this study are of two types. One has to do with the valida-
tion of some methodological aspects, and the other with findings coming from 
the observed variable.

About methodology, we could conclude that our coding was stable 
and reliable. Since different coders watching the same slices of the same vid-
eos produced statistically similar patterns, then the information we are getting 
from the variables does not depend on the observer and our results can in a way 
be called objective, or at least repeatable.

It is also a conclusion belonging to the methodology realm that the 
short segments we chose to be viewed in the videos, actually provide relevant 
information. It has already been pointed out that the information provided by 
variables measuring total time duration of events does not degrade consider-
ably when we consider 2 minutes slices instead of the longer 4 minute slices. 
And the same is true with counting variables, provided that the episodes being 
counted are short. For variables counting appearances of longer episodes, the 
quality of the information deteriorates when halving the temporal size of the 
slice. It easy to make up an explanation for the phenomenon, longer events have 
higher probability not to happen entirely during shorter observation period.

In terms of the information provided by the measured variables, as it 
has been mentioned before, there are some conclusions that might seem rather 
obvious, like the one saying that there is no independent student work at the 
beginning or ending of the class. Obviously we too share the view that those 
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are not pioneering findings, but their inclusion here has the virtue of docu-
menting that this is happening, and also quantifying it.

In many other cases, apart from the reasons given above for including 
some “common sense” conclusions, it is also true that those facts do not have to 
be that obvious. For instance, the fact that high school teachers spend more time 
at the blackboard than their middle school colleagues, might be something we 
would expect, but not necessarily something we desire. It might be beneficial for 
high school students to solve problems by themselves in class (a considerable part 
of the lecture time, at least) and have their teachers walking about the classroom 
checking on the student’s work and helping them with it, instead of spending 
that much time lecturing from the board. Also, even though we expected to see 
that emerge from the data, there is no real reason why the use of concrete mate-
rial in high school lectures should be scarce. Leaving aside the obvious example 
of the geometry strand, the teaching of probability, strand which is present in 
high school curriculum, can greatly benefit from playing al sort of chance games 
which usually involve concrete materials (under the form of cards or dice, for 
instance). It could also be arguable that it should be natural to spend less time 
writing mathematics while teaching in middle school than in high school. 

In any case, justifiable or not, it is clear from the data that there are 
didactic differences between middle school and high school.

Somehow puzzling is the data showing that teachers from Región 
Metropolitana (which, as we said, concentrates a large amount of Chile’s popu-
lation, more than one third of it, and by far larger than any other region of the 
country) seem to have a more conservative teaching style. They seem not to 
give hand-outs to the students, then approach the kids a lot less than their col-
leagues in other regions to check on their work. However, they ask more ques-
tions of mathematical nature, and in turn, get more answers from the students. 

Among the data describing slices 2, 3 and 4, there are also some ob-
vious things, for which the major importance of measuring them is to have 
quantified evidence that these things happen, but here there are also some oth-
ers where it could be argued that even though they were to be expected, they 
are not necessarily desirable.

For instance, there is no reason why the supervision of student work 
should mainly be only when they are using concrete material, as it was found.

Also, there is no need for teachers not to be able to supervise student’s 
work and at the same address the whole class, or even ask math questions to the 
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students. The use of technology, and/or games can make it easy for the teacher 
to do both things at the same time.

There is also no obvious reason why the concrete material should be 
used more frequently, as found, while working in applied problems. Such materi-
als, and later the mental representation of them, can often help greatly the solving 
of problems of more mathematical or theoretical nature (National Mathematics 
Advisory Panel, 2008, Chapter 4: Report of the Task Group on Learning Processes), 
especially if the right metaphors are used to approach them.

Clearly, the most alarming finding of this study is that relevant student 
participation, seem to be neglectible. An average of a little less of a question of 
mathematical nature coming from the students per class is obviously much too 
little. The origin of this must be investigated in some other way. Being so few, 
our data does not allow us to correlate the number of student math questions 
to any other variable that we might think is a cause, such as time spent by the 
teacher lecturing from the front of the classroom.

To explain the scarce evidence of textbook usage, international evi-
dence might have the answer. According to a NSF study in the United States 
(Banilower, Boyd, Pasley and Weiss, 2006), the probability of a teacher using a 
textbook is extremely sensitive to the hours spent on professional development 
training for the use of the materials. And even though Chilean state makes the 
great effort of giving every child from public schools a textbook, no teacher 
training for the book usage is offered. Also, the state policy of constantly open-
ing competitive biddings for these textbooks, makes it very likely that a text-
book for a given level change every 2 or 3 years, and it is hard for teachers to 
be constantly readjusting their lectures to ever-changing textbooks.

For the absence of ICT material, and of proofs in the lectures, some 
people argue that the videos we used were for teacher assessment, and the 
teachers probably wanted to record a class that would be evaluated as an excel-
lent one, and they probably did not feel confident enough either with the use 
of technology, or discussing proofs. If that is true, and in “normal” classes there 
might be a bit more proofs and use of technology, the argument also would say 
that teachers are far from feeling confident with these two things, and so there 
is still a big problem with them. Similar arguments apply to lack of textbook 
usage and this sort of argumentation.

This line of argument tells us that we should not feel too happy about 
the absence of conceptual flaws in the classes that were reviewed. They were 
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carefully prepared, and it might be expected that each teacher taught in a sub-
ject with which he or she felt rather confident.

Finally, some other international studies (Richland, Holyoak and 
Stigler, 2004) have found some limited use of them. Perhaps our criteria for 
defining and finding metaphors have to be reviewed and a search for them have 
to be performed again.
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