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Design And Understanding 

 
Janet Ainley and Dave Pratt 

Institute of Education, University of Warwick, UK 
Janet.Ainley@warwick.ac.uk  dave.pratt@warwick.ac.uk 

 
We explore ways in which access to technological tools can support new approaches 
to the design of pedagogical tasks and at the same time is providing us with new 
insights about the nature of mathematical understanding. We describe a novel 
approach that situates the challenge of designing pedagogic tasks in the same 
framework as that of locating mathematical understanding. An example of the use of 
this design approach is explored. 

 

Introduction 

In this paper we explore ways in which access to technological tools can support new 
approaches to the design of pedagogical tasks and at the same time is providing us 
with new insights about the nature of mathematical understanding. It is not new to 
argue that technology offers opportunities to re-think both the content and the 
implementation of the curriculum, not only allowing the same curriculum to be 
taught and learnt in new ways, but fundamentally challenging the current sequencing 
of some topics. However, we describe a novel approach that situates the challenge of 
designing pedagogic tasks in the same framework as that of locating mathematical 
understanding. Such a framework promises to point designers towards the search for 
purposeful tasks which are linked to aspects of mathematical understanding that are 
under-researched. 
The Current Context 

More than twenty years ago the Cockcroft Report into the learning and teaching of 
mathematics in the UK expressed the widely held view that ‘Mathematics is only 
‘useful’ to the extent to which it can be applied to a particular situation’ (Cockcroft, 
1982, para 249). Although this view is not unproblematic, the issue of ‘applying’ 
mathematics, or of making links between school mathematics and the ‘real world’, 
continues to concern mathematics educators, researchers and curriculum designers. 
At first glance, the need for mathematical learning to include an understanding of 
how mathematical ideas can be useful may seem obvious. However, even a brief look 
at the typical content of the school mathematics curriculum makes it clear that the 
view which is presented of the uses of mathematics in the real world can be highly 
contrived: 

• Ravi bought a pack of 30 biscuits. He ate one fifth of them on 
Thursday. He ate one eighth of the remaining biscuits on Friday. How 
many biscuits did he have left?(DfEE 1999) 
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There has been a considerable amount of research in mathematics education into the 
difficulties which children have in applying mathematical knowledge, and 
particularly in combining mathematical and ‘real-world’ knowledge appropriately 
when tackling problems set in real-world contexts (see for example Boaler, 1993). 
Cooper and Dunne’s (2000) detailed study of pupils answering such contextualised 
questions in tests has indicated that in order to engage appropriately with the 
mathematical focus of such questions, pupils have to understand complex but 
implicit rules about the extent to which they should attend to features of the real-
world setting. This suggests that the apparent difficulties which pupils have in 
‘applying’ mathematical ideas may in fact be a product of pedagogic approaches and 
assessment. 
A different approach to linking school mathematics to the ‘real world’ is to design 
tasks that offer ‘authenticity’ by resembling out-of-school activities, such as setting 
up a classroom shop. However, the structuring resources provided by this situation 
will be very different from those offered when the child really goes shopping: the 
prices of items on sale may be simplified to an unrealistic extent, getting the correct 
change will not be of the same level of concern, and even with an element of role-
play, the social interactions of the classroom shop will not provide the structure and 
constraints experienced in a real shopping trip (Brenner, 1998). In the classroom 
shop the ‘shopper’ cannot make real choices about what to buy, or how much to 
spend, or indeed choose not to buy anything. In Walkerdine’s (1988) words: “ 
everything about the task is different from shopping ... the goal of the task is to 
compute the answer rather than to make a purchase” (p. 146). 
In contrast to these school-based approaches, we turn to situated cognition research 
which has studied mathematical practices in the real-world contexts of shopping and 
employment (for example, Lave and Wenger, 1991, Nunes et al, 1993), often referred 
to as street mathematics. From such studies we identify the purposeful nature of the 
activity as a key feature which may be transferred to the school context, rather than 
the superficial characteristics of the setting (Ainley, Pratt & Hansen, 2006). Lave and 
Wenger (1991) claim that in out-of-school contexts, “learners, as peripheral 
participants, can develop a view of what the whole enterprise is about”. This 
overview of the purposes on the activity is generally absent in school mathematics. A 
significant difference between learning street mathematics, and learning school 
mathematics, is that the ideas that you learn in school do not enable you to use 
mathematics to get things done in the ways that adults do: indeed children rarely see 
adults using the sorts of mathematics that they learn in school. We argue therefore 
that an important challenge for pedagogic task design is to create tasks which are 
purposeful for learners within the classroom context, rather than attempting to make 
links to (supposedly) real-world settings. Whilst the use of technology is not essential 
to such design, it has enormous potential to provide opportunities for learners to use 
mathematical ideas in powerful and meaningful ways. 
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One source of ideas that has influenced our response to this challenge can be found in 
the Constructionist literature (Harel and Papert, 1991). Although the Constructionist 
ideals have evolved out of early work with the programming language Logo, we have 
found them illuminating in a more general sense. Many authors in this tradition have 
reported on the significance of allowing students control over their own decision-
making as apparent when they are allowed to build a project through the use of Logo. 
In our interpretation, the key notion here is that the students are making decisions for 
themselves in ways more akin to engagement with street mathematics than is 
typically found in classrooms, where control is often strictly in the hands of the 
teacher. Tasks involving building and mending computer-based artefacts are specific 
examples of how control can be transferred from the teacher to the student. 
Purpose and Utility 

We conjecture that engaging purposefully in the use of mathematical ideas in a well-
designed task leads to learning which is different from that which might arise when 
practicing an associated technique or exploring why that technique works in more 
traditional classroom tasks. Based on our previous research, we have developed a 
framework for pedagogic task design which offers a new perspective on the issue of 
creating opportunities for pupils to learn about the ways in which mathematical ideas 
are useful, using the linked constructs of purpose and utility. 
Purpose, as we use the term, refers to the perceptions of the pupil rather than to any 
uses of mathematics outside the classroom context. There is considerable evidence of 
the problematic nature of pedagogic materials which contextualise mathematics in 
supposedly real-world settings, but fail to provide purpose to which the learner can 
relate, either in terms of the overall task, or the ways in which mathematical ideas are 
used within it (see for example Ainley, 2000; Cooper and Dunne, 2000). The purpose 
of a task, as perceived by the learner, may be quite distinct from any objectives 
identified by the teacher, and does not depend on any apparent connection to a ‘real 
world’ context. The purpose of a task is not the ‘target knowledge’ within a 
didactical situation in Brousseau’s (1997) sense. Indeed it may be completely 
unconnected with the target knowledge. However, the purpose creates the necessity 
for the learner to use the target knowledge in order to complete the task, whether this 
involves using existing knowledge in a particular way, or constructing new meanings 
through working on the task. Movement towards satisfactory completion of the task 
provides feedback about the learner’s progress, rather than this being judged solely 
by the teacher (Ainley et al, 2006, Ainley and Pratt, 2005).  
Within such purposeful tasks there is the possibility of creating opportunities to 
understand the utility of mathematical ideas. We define the utility of a mathematical 
idea as how, when and why that idea is useful. Traditional approaches to teaching 
mathematics in school address instrumental understanding of procedures, and 
relational understanding of mathematical concepts (Skemp, 1976), but generally fail 
to address the utility of these ideas. The pedagogic tradition, embodied in textbooks 
around the world, is to begin with procedures and relationships, and to address 



 

 13 

utilities as the final stage in the pedagogic sequence (if at all). We conjecture that 
utility is not merely an application of a concept but a separable dimension of 
mathematical understanding, alongside the instrumental and relational components. 
The potential of technological tools to allow learners to use powerful ideas before 
they need to learn the detail of how to perform calculations greatly expands the 
possibility to introduce ideas of utility early in the pedagogic sequence. 
In order to illustrate the place of utility in mathematical understanding, we shall 
reflect on approaches to teaching proportion. We choose this not only because it is a 
highly significant concept in the school curriculum but also as it was the focus of a 
recent research experiment. 
An illustrative example based around the concept of proportion 

Proportion lies at the heart of mathematical curricula and is commonly regarded as 
one of the most significant challenges for the child’s cognitive development during 
the secondary phase of education. In fact the concept of proportion is, like all 
powerful ideas, a synthesis of many component notions and it is part of the design 
challenge to decide which of those notions to foreground when offering experiences 
to the learner. 
In the UK curriculum for the early years of secondary schooling (DfES, 2001), 
children are expected to: 

“Compare ratios by changing them to the form m : 1 or 1 : m. 

 For example: The ratios of Lycra to other materials in two stretch fabrics are 2 : 25 and 
3 : 40. By changing each ratio to the form 1 : m, say which fabric has the greater 
proportion of Lycra.” (p. 81) 

Using an instrumental approach, a child might memorise a procedure for tackling 
problems of this kind in which the 2 is divided into the 25 to give 1 : 2

112  and 
similarly 3 : 40 is transformed into 1 : 3

113 . A further routine might then be needed to 
decide which of these ratios indicates a higher proportion of Lycra. Of course, there 
are many places where the child’s memory could fail, leading to errors of one type or 
another. 
Skemp (1976) has contrasted such an approach with one which is based on relational 
understanding. Then a child would have a range of strategies that could be used, 
which might include reducing the ratio to a unit as above but might also include 
recognising that other approaches are equally useful. For example, having reduced 
the first ratio to 1 : 2

112 , the problem can be solved by multiplying this by 3 to give 3 
: 2

137 and making the comparison with 3 : 40. Indeed the child who has relational 
understanding might be able to use one method to confirm another. 
Most teachers would recognise the superiority of relational understanding over 
instrumental understanding for most mathematical situations. Nevertheless many 
teachers and text books appear to adopt approaches which are likely to reinforce 
instrumental rather than relational understanding. We argue that a major reason for 
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this is that the kinds of pedagogic tasks which are regularly used, both in teaching 
resources and in assessment, are ones which can be completed using instrumental 
approaches, and provide little incentive to explore the concept relationally. 
Furthermore, the Lycra task, although set in a ‘real world’ context, fails to provide 
any purpose for making the comparison of the composition of the two fabrics, and 
thus offers no opportunity for pupils to appreciate the utility of ideas of ratio and 
proportion. 
We now consider an alternative approach to the design of a pedagogic task for 
proportion. Our starting point is to consider contexts in which the utility of the 
mathematics becomes apparent, and to use such a context to design a task which has 
a purposeful outcome for pupils. 
In a recent experiment, we gave the following task to 11-12 year olds: 

Children in a primary school want to make a ‘dolls’ house classroom’. Use the piece of 
furniture you have been given to work out what size they should make some other objects 
for their classroom. 

Each pair were given an item of dolls’ house furniture, and also had available 
measuring tapes and a spreadsheet. The role of the spreadsheet here is highly 
significant: it provides the calculating power to allow pupils to work with real data, 
however ‘messy’ the results, and at the same times offers a visual space in which to 
record their explorations.  
The Dolls’ House Classroom task focused on scaling, a key idea in ratio and 
proportion. The outcome of the task was to be a set of instructions for another group 
of children to make items for the dolls’ house classroom. The activity of comparing 
the item of dolls’ furniture with its full-size equivalent in the classroom involved 
measuring and discussion, as the pupils decided on which were the most important 
measurements to use. 
We report here on the activity of one pair of boys. Initially the boys tried to relate the 
task to their own experiences. One boy told the teacher about how his grandfather 
used to make dolls’ furniture. The other talked about scaling in maps in response to 
the teacher’s mentioning of the term scale factor. From an early stage, the boys 
questioned the nature of the task that they had been set. (Figures in brackets indicate 
time elapsed in minutes.) 

[6:06] Is this real? Are a Year 6 class really going to do this? 

The researcher admitted that this was not actually going to happen. 
[6:35] Why can’t they just buy the dolls’ house? 

What do we make of these questions? Are they challenges that suggest the boys are 
resisting the invitation of the teacher to engage with the problem? If so, it would be 
hard to explain the subsequent activity, which was marked by the boys’ considerable 
intent and persistence. Rather, we believe that these questions indicate a process in 
which the boys were beginning to take ownership of the task, 
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When students take ownership of a task, the levels of engagement can be very high; 
it is our belief that the opportunity to make choices is influential in helping students 
to make a problem their own. Furthermore, a well-designed task will also enable 
students to follow up their own personal conjectures when they try to make sense of 
the task. 
The boys used the spreadsheet confidently as a tool to support their exploration. 
Their spreadsheet shows several different attempts at ratio. In one set of cells, they 
divided the height of the real table by that of the dolls’ table (68.5 / 4.3 = 15.93). But 
when it came to the width of the table, they divided the dolls’ table by the real table 
(5.5 / 134.2 = 0.040983607). In another part of the spreadsheet, they divided the 
width of a real shelf by the width of a real table (75.5 / 134.2 = 0.562593). Each of 
these calculations has possible utility for their task but whether any particular 
approach has explanatory power depends on how exactly the boys wanted to use the 
result and what sense they could make of the feedback from the spreadsheet. The 
nature of the task allowed them to explore all three routes, and to compare them, 
rather than following a route defined prescriptively by the teacher. 
Such explorations enabled the boys to construct meanings for the divisions being 
carried out on the spreadsheet. The spreadsheet both handled calculations which 
would have been beyond the boys’ competence, and displayed a complete record of 
their work, allowing them to focus on whether the ratio was actually useful to them 
in their task. The purposeful nature of the task produced an emphasis on how the 
scale factor might be useful, admittedly in a situated narrative, rather than on 
technical aspects of calculating a scale factor. 
We claim that these boys were connecting to what we recognise as the concept of 
proportion not through instrumental or relational understanding but by developing a 
sense of the utility of scaling for pursuing their problem. We use the term “their” 
advisedly. The construction of a utility for scaling was dependent upon them 
adopting the problem for themselves and this would only be achieved if they found 
the problem purposeful. 
We see the design of tasks that are likely to be purposeful and yet at the same time 
are likely to yield utility-based understanding as key to resolving the teacher’s 
predicament of how to promote deeper understanding. At the same time, we note 
how poor the Lycra problem was, despite its apparent reference to a real world 
scenario, as a vehicle for promoting such understanding. 
Final comments 

Within our framework, purpose and utility are closely connected. Indeed we see 
purpose as an element of designing for abstraction whilst we frame utility as an 
element of abstraction in context. Appreciation of the utility of mathematical ideas 
can best be developed within purposeful tasks. A focus on purpose in isolation may 
produce tasks which are rich and motivating, but which lack mathematical focus. 
However, if the tasks are designed appropriately, learners may use a particular 
mathematical idea in ways that allow them to understand how and why that idea is 
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useful, by applying it in that purposeful context. This parallels closely the way in 
which mathematical ideas are learnt in out-of-school settings. 
It is generally acknowledged that pedagogic approaches that focus mainly, or 
exclusively, on instrumental learning of procedures will result in impoverished 
learning. However, even approaches that emphasise relational learning tend to give 
little attention to utilities. We suggest that this results in mathematical knowledge 
becoming isolated as weak connections are made to the pupil’s existing knowledge 
of the contexts in which it may be usefully applied. 
Pedagogic design based on the framework of purpose and utility inverts the 
pedagogic tradition of school mathematics by placing the emphasis primarily on the 
utilities of a new mathematical idea, and the use of technology greatly increases the 
scope for this. Thus the learner is able to construct meanings that are shaped by 
strong connections to the application of that idea: in Lave and Wenger’s terms, to 
develop a view of what the whole enterprise is about. 
This inversion is made possible by the power of technology to offer opportunities for 
using a mathematical idea before you learn about its procedures and relationships. 
Technology affords the possibility of pursuing purposeful tasks by working with 
mathematical tools, instantiated on the screen, whilst coming to appreciate the utility 
of those tools, in ways which lead to powerful mathematical learning.  
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Mathematics investigations: Towards curriculum design and implementation 

Mara Alagic, Wichita State University, USA 
mara.alagic@wichita.edu 

 
A teacher’s perspective on the nature of mathematics, the potential of a 

technology, and the training that they receive determines their effectiveness in the 
integration of that technology. How to teach for transfer is yet another crucial piece 
of teacher knowledge for creating and sustaining technology-based learning 
environments. Sense-making, self-assessment, and reflection on what worked and 
what needs improving are teaching practices congruent with metacognitive 
approaches to learning. These practices have been shown to increase the degree to 
which students transfer their learning to new settings and events. The course 
Mathematics Investigations is designed to deal with current demands of digital 
technologies integration and inquiry-based approaches to teaching and learning 
mathematics. The course has five components (of unequal weight): Problem sets, 
Reflections, Self Evaluations, Readings and Final Presentation. As a final product, 
each student compiles a Digital Resource File that consists of five problem sets, a 
final presentation, and additional resources relevant to their future work. Students are 
guided and encouraged to develop their fluency in dynamic geometry, spreadsheets, 
selection and use of virtual manipulatives, and other Web resources. University-wide 
available courseware is used to support complementary online activities, group 
discussions, and the virtual classroom. 

Each problem set focuses on one mathematical idea or concept and begins with 
an open-ended, real-life-related and challenging problem. The problem set consists of 
5-7 additional problems scaffolding “down” the main concept. The final product 
demonstrates a gradual development of a selected concept through a sequence of 
word problems. Although students are encouraged to collaboratively discuss their 
work, each student works on a unique collection of problems and submits their work 
individually. Each problem set utilizes technology tools in an essential way. At the 
end of the problem set, a required metacognitive reflection reports about students’ 
thinking during the process of problem set design. Two self-evaluations per semester 
each consist of (a) a self-report to inform the instructor how the student is 
progressing in the class; (b) dispositions (both for student and instructor), (c) grade 
records (spreadsheet kept by student), and (d) student’s plans for future work related 
to the course.  

Weekly discussions are carried out through the use of online courseware. The 
classroom learning network includes discussion groups, Reflective pods. Each pod 
consists of approximately four students. Students are asked to reflect on certain 
questions that are supporting ongoing classroom activities. On a rotating basis, one 
member of the group summarizes. Summaries are brought in for face-to-face class 
discussions. More details about this course are available at the following address: 
http://www.education.wichita.edu/alagic/319spring06/319spring06.asp. 
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Instrumented techniques in tool – and object perspectives 

Mette Andresen  Danish University of Education, Denmark 
mea@dpu.dk 

The aim of this paper is to report from a study of the role of instrumented techniques 
in the students’ learning process. The paper analyses an episode from a case study of 
students solving differential equations in a CAS environment. The analysis 
demonstrates how tasks can be designed with the aim to encourage the students to 
change between the perspective of tool on a mathematical conception and the 
perspective of object on the conception. Reasons are given in the paper for the 
assertion, that changing between these two perspectives supports the instrumental 
genesis as well as the conceptual development. 

Instrumental genesis and instrumented techniques 

The French theory of instrumental genesis is based on the idea that an artefact, for 
example a CAS calculator, does not in itself serve as a tool for the student. It 
becomes a tool, referred to as an instrument in this notion, only by the student’s 
formation of (one or more) mental utilisation scheme(s). The term instrumental 
genesis denotes the process in which the artefact becomes an instrument. (Drijvers 
and Gravemeijer 2005 pp 165-169). The formation of utilisation schemes and the 
building up of instrumented action schemes proceed through activities in ‘The two-
sided relationship between tool and learner as a process in which the tool in a manner 
of speaking shapes the thinking of the learner, but also is shaped by his thinking’. 
(ibid. p 190). The French framework is underlying the theory of instrumental genesis: 
according to Luc Trouche the scheme concept, encompassing utilisation schemes and 
instrumented action schemes, was introduced by G. Vergnaud as ‘an invariant 
organization of activity for a given class of situations. It has an intention and a goal 
and constitutes a functional dynamic entity. In order to understand its function and 
dynamic, one has to take into account its components as a whole: goal and subgoals, 
anticipations, rules of action, of gathering information and exercising control, 
operational invariants and possibilities of inference within the situation. (Trouche 
2005 p 149) 
The formation of utilisation schemes and instrumental action schemes, thereby, is 
pivotal for the instrumental genesis. Since the utilisation schemes are mental, they 
are not directly accessible for study and analysis. The concept of instrumented 
techniques, taken as the external, visible and manifest part of the instrumented action 
scheme, therefore, is of special interest. An instrumented technique is ‘a set of rules 
and methods in a technological environment that is used for solving a specific type of 
problem.’ (Drijvers & Gravemeijer 2005 p 169). An instrumented technique includes 
conceptual elements as far as the technique reflects the schemes. This leads me to 
two crucial points:  
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A student’s development of an instrumented action scheme can be studied by inquiry 
of the student’s development and use of instrumented techniques related to the 
scheme. 
Development of mathematical conceptions cannot be studied if use of technology is 
considered separate from the student’s other activities.  
The first point stresses the importance of empirical studies of students’ work. The 
second point opposes my research to the standpoint, that teaching may be performed 
independently of what tools the students have at their disposal. This is in line with 
Jean-Baptiste Lagrange who stressed, that ‘the traditional opposition of concepts and 
skills should be tempered by recognising a technical dimension in mathematical 
activity, which is not reducible to skills. A cause of misunderstanding is that, at 
certain moments, a technique can take the form of a skill.’ (Lagrange 2005 pp 131-
132).  
Tool – and object perspectives. 

During a recently concluded research project (Andresen 2006) on the teaching of 
differential equations in upper secondary school in laptop-classes, I have constructed 
and tested a conceptual tool, flexibility. This notion of flexibility encompasses the 
tool – and object perspectives subject to this paper. In the following, the definition of 
flexibility is reproduced without further explanations. For a discussion of details and 
examples, see (Andresen 2006). Definition: The flexibility of a mathematical 
conception constructed by a person is the designation of all the changes of 
perspective and all the changes between different representations the person can 
manage within this conception. The changes of perspective considered are divided in 
three groups:  
a) Dualities of perspectives intrinsic to mathematics: 1. Local – global, 2. General – 
specific 3. Analytic- constructive 
b) Dualities of perspectives linked to the construction of epistemic knowledge: 4. 
Process - object, 5. Situated – decontextualised 
c) Dualities of perspectives linked to the construction of pragmatic knowledge: 6. 
Tool – object, 7. Model – reality, 8. Model of - model for 
Three main representations are considered: graphic representation, analytic 
representation (or formal language), and natural language. A fourth, called technical 
representation (or computer language) is included as well, caused by the use of 
laptops. There is no symmetry between the four representations. 
The conceptual tool flexibility serves to capture and conceptualise certain learning 
potentials experienced by teachers and students, for instance, when using the laptops 
in a modelling-context. One element of flexibility with special relevance for the 
theme of this paper is changes between a tool perspective on mathematical 
conceptions and an object perspective on the same conception. The notion of a tool 
perspective on a mathematical conception is opposed to a pure skill understanding of 
mathematical activity and the notion includes the technical dimension mentioned by 
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Lagrange. The duality composed by a tool perspective on a mathematical conception 
and an object perspective on the same conception appears to be appropriate in 
problem-solving settings, in the same way as Anna Sfard’s process – object duality 
(Sfard 1991) is useful to frame aspects of learning mathematics. The term tool 
perspective here refers to the mathematical processes, carried out to serve a concrete 
purpose. This resembles the use of the term tool synonymously with instrument in 
contrast to artefact. This notion of tool perspective on a given mathematical 
conception is in accordance with Régine Douady’s definition: ‘We say that a concept 
is a tool when the interest is focused on its use for solving a problem. A tool is 
involved in a specific context, by somebody, at a given time. A given tool may be 
adapted to several problems; several tools may be adapted to a given problem.’ 
(Douady 1991 p 115) 
The distinction between the pair of process – and object perspective and the pair of 
tool – and object perspective can be illustrated by the following example: a tool 
perspective on the conception of derivative of a function could be the derivative seen 
and used as a means for finding out how the function changes over time. The 
corresponding object perspective could be the derivative, characterised or categorised 
by its merits and demerits when it was assessed in the context of solving a specific 
problem. In contrast, a process perspective of derivative could be focusing on the 
actual determination or calculation of the derivative in question. The corresponding 
object perspective could be the derivative, generally characterised or categorised by 
its qualities within in a structure of functions. Mathematical activities, then, are 
considered from a tool perspective when they are part of a (problem solving) 
technique, regardless of its being instrumented or not. The generation of the 
instrument, then, is in a crucial way linked to the change to object perspective: From 
the object perspective corresponding to a tool perspective, a unit is considered which 
may encompass intension, goal, conditions and prerequisites, restrictions, function 
and dynamics. Like in the case of process – object, the object perspective implies an 
encapsulation of the conception as a tool. So for the student, the development of an 
object perspective gradually leads to master the techniques in which the conception is 
embedded and to complete the formation of the connected instrumented schemes. 
Change of perspective to support learning 

Basic to the research, which lead to the construction of the conceptual tool flexibility 
was the idea that learning is supported by alternating diving into the process of 
solving a problem and taking a distant look upon the activities and efforts (Andresen 
2004). Edith Ackermann presents this idea in (Ackermann 1990) as a mean to 
integrate, roughly speaking, Jean Piaget’s and Seymour Papert’s views on children’s 
cognitive development. In her paper, Ackerman combines the Piaget’ian construction 
of invariables with Papert’s situated learning in her dynamical approach to cognitive 
growth. Flexibility incorporates this basic idea in the form of the aforementioned 
changes within dualities of perspectives on given mathematical conceptions. One aim 
of the research project was to inquire how the teacher can provoke and support the 
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students’ change of perspective in both directions within these dualities, and to 
interpret the role of such changes for the students’ ongoing mathematical activities.  
In the actual case, a group of three students used several instrumented techniques 
during three episodes. The episodes were analysed and interpretations of the 
techniques’ role in the students’ learning process are presented.   
Case 

The case presented in this paper is part of the data from my Ph.D. project. These part 
of the project’s data were produced from a small scale, qualitative inquiry which 
encompassed classroom observations in four classes, 50 lessons in all, field notes, 
students’ written reports and teaching materials prepared for a sequence of teaching 
differential equations from a dynamical point of view using the software Derive. 
A group of three students were working with a differential equation model of the 
transformation of cholesterol in the human body. The students were in third year of 
an experimental class in upper secondary school, where all the students had their own 
laptops at their disposal from first year on. The CAS software Derive was installed 
on the laptops. This case is based on group’s work during one lesson which was 
video recorded. The students’ written report and the teaching materials were 
examined in relation to the analysis of the case.  
The students were preparing a written report on a series of tasks, which concerned 
exploring a model for transformation of cholesterol, presented in the textbook. The 
tasks aimed to stimulate the students’ learning about equilibrium point and general as 
well as specific solutions to differential equations. Further, the tasks concerned 
relations between general and specific solution and connections between analytic 
and graphic representation, both mediated by computer language. In the case, the 
group was in an early phase of their work, concentrating on this text from the 
teaching materials (Hjersing et.al. 2004): 

... another handy form is: 

                               
0.1(265 )

dC
C

dt
= −

            (8.2)  

 

(Bubba changes his diet at t0 = 0, with C0 = 180 mg/dl,  the new daily cholesterol intake 
is E = 250 mg/day. ) 

If we let t0 = 0 be the time where Bubba starts eating at the grill and if Bubba’s 
level of cholesterol at that time is supposed to be C0 = 180 mg/dl, then Bubba’s 
cholesterol level is expressed:  

  

0.1(265 )

(0) 180

dC
C

dt

C

= −

= (8.3) 

Tasks 
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1. Find the equilibrium point for (8.2) and analyse the variation of the sign of the 
right side. 

Is the equilibrium point a sink or a source? Use the answers to sketch (in hand) 
more solutions to this differential equation. 

2. Find the general solution to the differential equation (8.2) (Show calculations) 

3. Find the specific solution to the initial value problem (8.3) 

4. If Bubba keeps this high cholesterol level diet for a very long time (one year or 
more), at what level will he end? Explain how you reach the conclusion?  

During the case, the students used several instrumented techniques: First, in episode 
1, they used the Derive command RK1 to obtain a graph of the solution to the 
differential equation (8.2) with the initial conditions t0=0, C(t0)=180. In episode 2, 
they used their compendium of formulas supplied by paper and pencil techniques to 
find the general solution to the equation. The solution was typed into the computer 
and the students used the Derive command VECTOR to get a family of graphs of 
solution curves, as kind of an intermediate between general and specific solution. To 
answer the next question, they substituted the initial values in the formula for the 
general solution, calculated the constant d (determined by the initial values) and 
substituted it into the expression. To answer question 4. in episode 3, the students 
repeated graphing the same solution curve as they graphed in the first episode, but 
this time based on the expression obtained from the preceding answer. Their answer 
to question 4., then, was based on visual inspection of this later graph.   
Episode 1 

To answer question 1., the students sketched the graph and wrote: 
 ‘ The function nears 265, so, 0.1 is the rate of growth and 265 is the point of 
equilibrium. 

The right-hand side is positive if his start C is below 265 and negative if it is above. The 
equilibrium point is a sink, that is, a stable equilibrium.   

The students made at least one guess before they reached this result: their first try in 
the written report was a RK command, which was impossible to graph because the 
capacity of the computer-memory was exceeded. So, their strategy implied a trial-and 
error use of an instrumented technique that can be described as follows: 1) substitute 
the left side from the differential equation into the RK command, 2) type in the 
names of the independent and the dependent variables, 3) type in the initial values 
and 4) try to find values for the x-increase and the number of tangent-segments, 
which allows for: 5) graph the solution. Apparently, the students identified the 
horizontal asymptote by inspection of the graph and then graphed the function y=265 
to verify the result visually. Afterwards, the equilibrium point was identified with 
this horizontal asymptote. So, since the graph with its asymptote was used to 
                                           
1 stands for the 4.order Runge Kutta method of numerical solution 
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determine the equilibrium point, the graph with asymptote was in this case seen in a 
tool perspective and it was obtained using the instrumented technique sketched 
above. 
The second part of the answer must be obtained from analysis of the differential 
equation. Therefore, the graphic method used in the first part of the solution serves to 
link graphic and analytic representations closely.  
Episode 2 

To answer question 2, the students wrote: 
General solution: 

The equation for cholesterol is of the type dy/dx=b-ay and may be solved as follows: (b 
is a constant) 

First, the students used paper and pencil and they looked in their compendium of 
formulas to find the general solution. They tried to identify the type of equation. 
The paper and pencil technique implied to 1) identify the type of equation, 2) 
recognise it in the compendium, 3) identify and substitute the actual values of the 
constants in the expression for the solution. The students typed the results into the 
computer stepwise, as they were asked to show the calculations. Apparently, they 
then wanted to graph the result, which is, obviously, impossible. The students used 
the command VECTOR to graph a family of solution curves, which could be seen as 
kind of an intermediate between general and specific solutions. The report reveals, 
that they did not completely manage this instrumented technique at that stage of their 
work so they must have made more than one trial: The command VECTOR(C = 265-
….) would not result in graphs as shown, as far as ‘C = 265…’ is evaluated logically. 
To succeed in graphing that family of curves it is necessary to delete the ‘C=’.  
Intermezzo 

The students answered question 3 by 1) substituting the initial values in the formula 
for the general solution, 2) calculating the constant d and 3) substituting it into the 
expression. Though, the dialogue in the group revealed no clear signs of having 
developed a general perspective of solution to the differential equation (Andresen 
2004).   
Episode 3 

When starting to answer the last question in this task, question 4, it was clear from 
the dialogue in the group that the students did not try to estimate the result, based on 
the preceding answers. Apparently, the fact that the students found equilibrium for 
the general solution earlier in the lesson did not ‘ring a bell’ when they were asked to 
argue for their latest result.The students spent some time in the group discussing how 
long time they had to take into account. Two of the three refused to consider the fact, 
that they found an asymptote. 
In the final report, the students wrote:  
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‘Based on the graph we conclude, that the equilibrium point does not change even if the 
starting point is different. The general as well as this solution therefore near to the same 
equilibrium point and whatever long he keeps the high level, the equilibrium point does 
not change.’ 

In the final version of the report, the students simply graphed the specific solution 
from episode 1 once more. Since the window was changed it is obvious that they re-
graphed it. The written comment reveals that the students did not expect the 
coincidence between the equilibria points for the general solution and the specific 
one in question. This fact questions the students’ adoption in advance of the general 
perspective on solution to differential equation. In line with this the last statement, in 
my interpretation, reveals unfamiliarity with the conceptions of asymptotic behaviour 
and of equilibrium.  
Conclusion 

In the case, the students’ work with the task concentrated on two mathematical 
conceptions, represented by the example of one differential equation: 1) equilibrium 
point for differential equations and 2) solutions to differential equations. The 
equilibrium point was closely connected to asymptotic behaviour of the solution 
curve. So, an instrumented technique of solving and graphing the solution curve, 
encompassing the RK command and seeing the curve with its asymptote in a tool 
perspective, was used by the students to build and strengthen their conception of 
equilibrium point.  
Determination of the general solution was carried out with a combined paper & 
pencil- and computer-instrumented technique, where the last part concerned change 
to graphic representation. Especially, the computer-instrumented part of the 
determination served to link between a family of solution curves, on the one hand, 
and the specific solution curve, examined earlier, on the other hand. The family of 
solution curves served as pseudo-graphing the general solution.  
The experiences of asymptotic behaviour and of coincidence between the asymptotes 
of these solution curves, provoked by the task, supported the students’ change of 
perspective on the two conceptions in question: Realising that ‘whatever long he 
keeps the high level, the equilibrium point does not change’ is one step to adapt an 
object perspective on equilibrium interpreted by horizontal asymptote. Likewise, the 
family of graphs are visually convincing about the fact, that the general solution 
should encompass the specific solution.  
The case illustrates genesis of Derive-commands as an instrument in an ongoing 
process. The first use of RK had the character of trial and error in episode 1 (omitted 
from the data presented in this paper). The fact, that changes to graphic 
representation were not carried out with full routine, is revealed in the report in the 
case of VECTOR. But it was very clear, that especially the possibilities of graphing 
shaped the students’ thinking. So, the tool influenced: 1) Their strategy, which 
implied to choose asymptote as the tool for finding the equilibrium, 2) Their thinking 
of general solution by making it tangible by pseudo-graphing into a family of 
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solution curves and 3) Their idea of verifying the asymptotic behaviour by visual 
inspection and comparison with the graph of y=265.  
The idea of provoking changes between tool and object perspective can be realised, 
for example by the asking of questions and tasks which involves ready-made 
procedures as well as self-developed instrumented techniques for solving modelling 
problems.  The analysis of the case shows how the idea can facilitate proceeding of 
students’ work as part of their learning process. 
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We have been investigating the potential of a web-based collaborative workspace, 
Knowledge Forum (Bereiter & Scardamalia, 2003), to support Grade 4 students in 
generalizing with patterns as part of our research in early algebra. Our hypothesis 
was that incorporating Knowledge Forum, with its underlying knowledge building 
principles, might offer an authentic platform for developing students’ mathematical 
discourse. We present analyses of the Knowledge Forum database from a recent 
study in which three diverse urban classrooms were linked electronically to 
collaborate on solving a series of generalizing problems. Analyses of contributions to 
the database revealed that the opportunity to work on a student-managed database 
supported students in developing a community practice of offering evidence and 
justification for their conjectures. The database also provided students with the time 
and software capability to revisit and revise their notes and to develop a level of 
discourse that elicited high-level mathematical problem solving.  

Research context the mathematics of patterns and functions  
Patterning activities have been heralded as an important foundation for the 
development of mathematical functions. It has been proposed that patterning 
activities can support students in understanding functional relationships and provide 
a rich context for generalizing. In fact in recent years the inclusion of patterns can be 
seen in elementary curriculum documents and text books in many countries. 
However, substantial evidence from past research suggests that with current 
instruction the “route from perceiving patterns to finding useful rules and algebraic 
representations is complex and difficult” (Noss et al, 1997). Further, even when 
students find rules, they do so with an eye to simplicity rather than accuracy, commit 
to their first conjecture even in the face of invalidating data, and do not attempt to 
support or justify their conjectures (e.g., Stacey, 1989; Mason, 1996; Lee, 1996). 
 The research that we have been conducting has focused on a study of new 
approaches to support students in working with patterns. In line with suggestions of, 
for example, Mason (1996) and Lee (1996), we have been working to broaden 
students’ conceptualization of patterns as a means of understanding the dependent 
relations among quantities that underlie mathematical functions, and further, as a 
means of developing students understanding of generalizing by seeing “the general 
through the particular, and the particular in the general” (Mason, 1996).  
 An important part of our work with grade 4 students has been our investigation 
of whether Knowledge Forum (Bereiter & Scardamalia, 2003), and its underlying 
knowledge building principle of epistemic agency, can promote inquiry-based 
mathematics learning. Knowledge Forum (KF) is a networked multimedia 
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community knowledge space created by community members. Our conjecture was 
that incorporating KF would allow students access to multiple pattern “seeings” 
(Mason, 1996) and that the discourse structure would provide an authentic context 
for collaborative problem solving and extended discussions that would necessitate 
the provision of evidence and justifications. Although the scope of this paper does 
not allow for a discussion of KF, we will briefly describe how KF works and outline 
the theoretical principle of epistemic agency, which we believed would contribute to 
our research goals. 
Knowledge Forum How Does It Work? 

Knowledge Forum was developed as an online forum for discussion and knowledge 
building by learning theorists Bereiter & Scardamalia based on their early work in 
intentional learning (please see Bereiter & Scardamalia, 1989). When students work 
on KF they have the opportunity to contribute individual ideas or to build onto the 
ideas of others by writing and posting “notes”. A note (Figure 1) contains a space for 
composing text, and metacognitive scaffolds designed to encourage students to 
engage in theory building while they write their notes (Scardamalia, 2002). These 
scaffolds include 

 my theory, I need to understand, new information, 
a better theory, and putting our knowledge together. 
Students can also use the graphics palate to create 
illustrations, or scan drawings, function tables or 
photographs. When notes are contributed to the 
database, the notes are automatically labeled with 
the author’s user name (usually first and last initial) 
and the note’s title. 
 Students’ notes are contributed to problem 

spaces called “views’. Figure 2 presents a view of the Perimeter Problem, one of six 
generalizing problems used to create the six views in our database. The small squares 
represent student notes and the connecting lines represent discussions created as 

students read and respond to each other’s 
contributions. Some of these notes have 
small circles that are referred to as “build-
ons”, i.e., responses to notes posted by 
other students.  A unique feature of KF 
that distinguishes it from other CSCL 
(computer supported collaborative learning) 
environments is the physical layout of the 
problem space as students contribute their 
ideas. The database views are continuously 
evolving interactive discourse spaces, 

where each thread of conversation is documented, webs of interchanges graphically 
displayed, and collective understandings captured as they progress.  
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Epistemic Agency and Higher Order Mathematizing 

 While we believed that establishing a database to house discourse and promote 
collaboration would contribute to our research goals, the theoretical frame 
underpinning KF, particularly the emphasis on student agency and the centrality of 
student ideas, was a fundamental reason for incorporating KF in our study. Bereiter 
and Scardamalia (e.g., Bereiter, 2002; Scardamalia, 2002) use the term epistemic 
agency to characterize the responsibility that the group assumes for the ownership 
and improvement of ideas that are given a public life in KF. In this discourse 
structure, it is not the teacher who asks for clarification and revision of the ideas or 
conjectures that the students have contributed, but rather the students themselves who 
take on this responsibility with an eye towards moving the theorizing forward. We 
wondered if this responsibility would result in an increased engagement in the 
language of and disposition for mathematical discourse.  
 We developed three specific research questions to allow us to determine how 
the principle of epistemic agency was manifest in this study, and the extent to which 
it underpinned the progression of students’ mathematical thinking.  
Our research questions 

1. Will students provide evidence and justifications for their conjectures, and will 
this disposition develop as students gain experience working through problems 
on KF? 

2. Will students revise their ideas? 
3. Given that the database is entirely student-managed, will students take on the 

responsibility of developing their mathematical understanding by moving 
thinking forward through working collaboratively? 

Procedure 

Students from three different Grade 4 classrooms (8-9 year olds) in two different 
schools (n=51) were linked electronically and invited to collaborate in solving six 
generalizing problems, for which students were asked to discern a functional 
relationship between two sets of data and express this as a “rule”. There were three 
pairs of problems, which were matched for structural similarity and increasing 
difficulty. The first two problems (Linear Pair 1) both had an underlying functional 
rule of y=mx+b. The second two problems (Linear Pair 2) had an underlying function 
of y=mx-b. The final two problems (Quadratic Pair) were based on the quadratic 
function, x2-x/2, which posed an unfamiliar challenge to the students since they had 
previously worked only with linear functions. The KF database was available to 
students over an eight-week period, and on average each student had approximately 
30 to 45 minutes per week to work on-line. The time that the students had to work on 
the database varied depending on the classroom and the availability of computers. No 
teacher or researcher posted notes on the database, so that it was clear to students that 
it was their responsibility to work together to find and “prove” the solutions to these 
problems. 
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 The data for the present study come from the 247 notes that the students in the 
three classes posted in response to the six generalizing problems. Each note was read 
and coded by the researcher (first author) and one or more research assistants. 
Evidence and Justifications  
All notes were rated for the level of evidence and justification offered and were 
coded as Level 3 (high), Level 2 (medium), or Level 1 (low). Notes designated Level 
1 were those in which only a conjecture was offered - My theory is that the rule is x4 
-4. Notes coded as Level 2 offered a conjecture with some sort of explanation of 
problem solving strategy. I figured out the rule and it is the number times 4 (the four 
sides) minus 4(because you use one twice at each corner). Notes coded as Level 3 
were those that offered a conjecture and evidence within the context of the particular 
problem, and included multiple representations, and/or a detailed account of a 
problem-solving strategy.  
 The note below (PP19) titled “I got it!” was offered by a student, JF, as an 
explanation for the Perimeter Problem (Steele & Johanning, 2004). In this problem 
students are asked to find a rule that will allow them to ascertain how many squares 
are in the perimeter of an nxn grid. This note is as an example of a note coded as 
Level 3 because it includes a proposed rule and contextualized explanations based on 
this student’s particular way of perceiving the problem: 

. 
I got it! - JF 
 i got  x+x+(x-2x2)and i tried it out for a lot of them and it worked: 
5+5+(5-2x2) 
5+5=3x2 
5+5+6 
10+6 = 16 so that means the rule is x+x+(x-2x2) and that's it! if you seperate the 
question into two you have 5+5 and +(5-2x2) so let's focus on 5+5 and that equals 
10 and that means that we can do this 

 So now we can focus on this part: =(5-2x2) so 5-2=3 and the space left in 
the square is 6 and 3x2 is 6 so it's x+x+(x-2x2) 

 
Our analyses revealed that there was an 
even distribution of the three levels of 
notes throughout the database, with 82 
notes coded as Level 1, 81 notes coded as 
Level 2, and 84 notes coded as Level 3. 
However, when we looked at the level 
note as a function of the three problem 
pairs, we found that the proportion of 
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high-, medium-, or low-level notes was different for each of the problem pairs with 
the highest proportion of Level 3 notes posted for the third pair of problems (40%), 
and the lowest for the first pair (13%). Our analysis of the database revealed that the 
majority of students moved through the problems in chronological order starting with 
the first pair of linear problems and finishing with the quadratic problems. Thus, as 
students became more experienced at working in KF, they became more 
sophisticated and more mathematically oriented in their offering of evidence and 
justification. Table 1 shows the levels of notes as a function of Problem Pair. 
 The students established a community practice of routinely offering notes that 
included justifications for their answers using language, tables of values, symbols 
and/or images to justify their conjectures. 
Revision of notes 
An important feature of KF is that notes can be revisited and revised at any time. To 
answer our second research question we counted the number of times that students 
revised their own notes in each problem view. Each time a student added or modified 
an idea in their note, it was counted as a revision. There were 194 revisions, with a 
spread of 0-11 revisions per note. Although it might seem self-evident that revisions 
would lead to a higher level of note, we wondered about the nature of these revisions 
given that this was a student-managed database. We discovered that there was a 
relationship between number of revisions and level of note. The Level 3 notes went 
through an average of 3 revisions (M=3.1, min 0- max11), the Level 2 notes went 
through an average of 1 revision (M=1.4 min 0 max 5) and the Level 1 notes went 
through on average less than 1 revision (M=0.6, min 0 max 2). This indicated to us 
that when students revised their notes, they did so by improving upon and adding to 
their previous ideas, thus adding to the overall level of mathematical knowledge.  

 When we examined notes that had been revised by the author, we could see 
that the impetus to revise was either based on other students’ responses to an offered 
conjecture, or based on the student’s own dissatisfaction with their solution. To 
illustrate the former, we present the following discussion, which began when a 
student, SR, posted a note containing his strategy for solving the Perimeter Problem 
in the form of a table of values. In response to SR’s note, two students posted notes 
(PP24 and PP25) requesting that SR provide a rule to explain his data. SR then 
posted a revised note in which he described his rule using diagrams, a table of values, 
and an explanation for his rule. 

PP23 My thinking – SR 

square grid             shaded squares       
     3x3                            8 
     4x4                           12 
     5x5                           16  
     6x6                           20 
PP24 rule? – SV 
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I need to understand what is your rule, evidence and how did you get 

your rule. 

PP25 Finish please – BA, MD, 

We do not think that is a rule , so can you  explain 
the rule as well as you  can show it. We also agree 
with you because your T-table is right. But your 
rule needs improving. 
PP26r4 My thinking – SR 

    3x3                            
8 
4x4                           12 

5x5                           16  
6x6                           20 
My theory is that the rule is that the rule is x4-4 

Rule: Output equals Input x4-4Evidence: It is x4 in the rule because the number of 
sides a square has is 4. It is -4 because when you are multiplying 4 each corner you 
are repeating the number of squares one more. 
SR was prompted by others to refine his ideas. In contrast some students recognized 
that their original conjectures contained only a partial solution, and used the time to 
think provided by working on an asynchronous database to continue to revisit and 
revise their initial ideas. The following note entitled “Relationships” was written by a 
student, NS, who posted a solution to the Perimeter Problem but recognized that her 
solution was not fully explained. As she commented in her note; “I think I still have 
to think a little more to explain my theory”.  

PP19 Relationships – NS  
My theory is that the Output # is = to the input # times 4 - 4. 
My evidence is that 3x4=12 and -4 is 8 which is the output. You need to 
multiply the input x 4[only one side] because without multiplying you 
wouldn't get 12. Then when you minus another #  besides 4 the output 
wouldn't be 8. The same rule applies for all the other numbers. 
Like: 100x4= 400-4=396    10x4=40-4=36       14x4=56-4=52     
I think I still have to think a little more to explain my theory. 

 
When we analyzed NS’s contributions we could see that she revised this original note 
a total of five times over the course of three weeks. In her final revision (PP19r5), 
posted three weeks after her original entry, she contributed an addition to her original 
idea that included a more conceptual orientation to the problem structure.  

PP19r5 A better theory – NS 
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You need to x 4 because you need 4 sides to make a square. Like 3x3 
means 3 is the length and the other 3 is the width so one length or width 
x 4 = to the whole perimeter.  

This kind of revision and rethinking was typical of many of the efforts of other 
students as well.  
Progressive Mathematical Discourse 
In knowledge building communities members make progress not only in improving 
their personal knowledge, but also in developing collective knowledge through 
progressive discourse (Bereiter & Scardamalia, 2003). We found many instances of 
students making concerted efforts to move the understanding of the group forward. A 
numerical count revealed that 65% of notes were written in response to other 
students’ notes, indicating that students were reading each other’s contributions and 
building onto the ideas of others, rather than simply posting individual ideas. There 
were many instances of exchanges in which individuals extended the ideas of others. 
Also, there were strings of discussions that revealed commitment to the notion of 
moving the discussions forward to include broader issues of mathematical 
understanding. To conclude we present two discussions taken from two different 
problems, both of which involved students from all three classrooms. 
 The first is from the Perimeter Problem. This discussion began with a solution 
posted by a student, AW, (PP 38) which she titled ‘Eureka!’. The solution strategy 
that she proposed involved calculating the total number of squares in the grid, 
calculating the total number of squares in the centre of the grid, and subtracting the 
centre blocks to find the number of squares in the perimeter. 

 PP38 Eureka! AW  
 for the 5x5 question you do 5x5=25 the square of 25 is 5 and you minus 
two from the square and square  that then minus it from your original 
number and you have your answer! 
 First i drew the five by five grid and there was nine in the middle to take 
away - 3x3=9 

  so then i figured out a 6x6 square was 36 and i know that inside there 
would be a 4x4 square to take away  so the difference between 6 and 4 is 2 - 
so it was 36-16=20 
 nxn=nsquared -(n-2)squared -  
 so minus (n-2)squared from nsquared 

In response to AW’s note, SI offered a note in which he proposed a different rule for 
the problem based on multiplying one side of the grid by 4 then subtracting out the 
overlapping corners . 

PP40 Another rule – SI 
I have another rule for you and it is the output x4-4.In the rule it is x4 
because 
there is 4 sides in a square. It is -4 because when you multiply 4 you are 
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repeating the 
corners twice so you –4.  

In her response to SI, (PP41), AW postulated that there may be more than one 
solution to the problem. 

PP41 2 rules – AW 
but there might be two rules because we got the same answer so i think 
there is more then 1 way to figure the problem out 

Another student, GA, then questioned AW’s rule not on the basis of whether it yields 
the correct answer, but rather on the basis of elegance. She titled her note “Both 
right?”  

PP42 Both right? - GA 
I agree with you and disagree with you because you've got the answer 
but in a complicated way. I disagree with you because there's an easier 
way than taking the square of 25, subtracting 2 from it and square that 
and then subtract that from your original answer. I got the rule times 4 -
4 because a square has 4 sides and you don't count the corners twice. I 
agree with you because for the first few questions you got it right.  

At this point in the discussion AW became firm in her conjecture that there is 
more than one solution to the problem. 

PP43 Two Ways – AW 
Why can't there be two ways. There are different ways to do lots of 
different problems i think you can have two ways nxn=nsquared -(n-
2)squared -  
so minus (n-2)squared from nsquared works and x4-4 works 

 This last discussion comes from the Handshake Problem. This problem, which 
has been shown to be difficult for much older students (e.g. Cooper & Sakane, 1986), 
asked students to find the quadratic rule to determine how many handshakes there 
would be if everyone shook hands with everyone else in any size group. Initially 
many students came up with a recursive numeric pattern, as the note HP5 
exemplifies. However, in contrast to findings of other research with older students, a 
number of notes were posted by students who realized the limitations of this 
recursive approach, and questioned one another as to how to find the explicit 
functional rule. As M and J state in their note (HP8), “the thing about math is to 
figure out the fastest and most accurate way to do things.” 

HP5 Follow the Next Output Number - TH 
 If there is 3 people there are 3 handshakes. If there is 4 people there are 

6 handshakes. So I think that it is like 2+1=3 that is the next handshake 
output. So 3+3=6 that is the next handshake. My rule will be the 
input+output=next output.  
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Number of people       Number of handshakes 
2 1 
3 3 
4 6 
5 10 

HP8 M and J’s Theory – MT 
 I was wondering could you do this rule for 149 378 people? Because the 

thing is in our theory you have to know the number of handshakes 
before the one you’re doing…but the large numbers are so big it would 
take forever to figure it out! The thing about math is to figure out the 
fastest and most accurate way to do things. 

HP9 I need to Understand – VT 
 I need to understand if there is another way to get the answer? I want to 

solve how many handshakes would 10 people do without making a T-
chart. 

HP10 Thinking – SR 
 My theory is that the rule is the number x the number – 1 divided by 2. I 

think that it is the number x the number – 1 because a person can shake 
with the number of people 1 less than the person because the person 
cannot shake with itself. It is divided by 2 because 2 people make a 
handshake. 

Discussion 
Throughout the database we found evidence of what Bereiter and Scardamalia have 
termed epistemic agency. Students revised their own notes, and encouraged others to 
revise and reconsider their initial theories. Epistemic agency was also seen in 
students’ disposition for offering not just solutions for problems but offering 
evidence and justifications as well. Furthermore, our analyses revealed that the level 
of justifications increased as the students gained more experience on KF. By the third 
pair of problems students routinely offered evidence to support their theories and 
frequently contextualized their justifications within the structure of the problem. 
Finally, it was clear in this student-managed database that students worked 
collaboratively not just to find the solutions of the problems given, but that their 
discussions broadened to include such themes as the elegance of finding explicit 
functions from recursive numeric patterns, and the possibility of multiple rules for 
mathematical problems.  
How our work addresses the themes of the ICMI Study 17 

 Although our work is aligned with the general questions of classroom 
connectivity in particular Theme 7, in addition our research has raised several 
interesting issues that relate to other themes of ICME Study 17. 
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 Theme 2 – In assessing the notes posted in the database, we have come to 
understand that KF has the potential to capture significant moments of learning. 
 Theme 3 – Not only does KF allow teachers to step back and assess student 
thinking, whilst simultaneously allowing the progression of ideas to become the 
responsibility of the students, teachers in our study were also introduced to a new 
view of student learning in general and of mathematics in particular. Some questions 
that have arisen centre on how to support teachers as they implement a knowledge 
building pedagogy, and how to organize classrooms to optimize a knowledge 
building pedagogy. 
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Providing mathematics e-content 
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Mathematics learning seems to be hard and exhausting task for many learners. 
Mathematics educators and teachers always try to stimulate the public and specially 
students for studying mathematics.  
Certainly ICT is an effective tool for providing an interesting atmosphere for 
mathematics learning. Using this tool, one can make some virtual spaces such as 
exact diagrams and figures, attractive animations, and most important, making games 
and parametric programs to provide mutual interactions between learners and 
teaching media, such that they can change the parameters and see the results in 
figures or in the processes of the programs and much easier understand the concepts.  
Isfahan Mathematics House(IMH) was trying to organize content provider teams of 
these specialists and professionals as its member: Mathematics educator, 
Mathematicians, Scenarists, Graphic experts and Programmers and multimedia 
experts. The team was making up some mathematics contents, but it faced to a big 
problem. It was the lack of communication between these people since many of them 
don’t understand others with different background. For example the art experts don’t 
understand mathematics and vice versa. 
As a solution we tried to train some “interpreters” who can understand or have more 
feeling of both sides, and finally some successful results raised. In this article we are 
trying to report these activities with many useful experiences for all interested in the 
process of providing mathematical e-content. 
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Designing Didactical Tools And Microworlds For Mathematics Educations 
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This paper reports on the extensive design activities by the Freudenthal Institute over 
the last few years in the field of small didactical tools and microworlds (java applets). 
New technologies have led to new ideas on visualising and learning mathematics. 
The effort made in several development and implementation projects have resulted in 
a collection of robust and well-tested didactical tools. Many of these applets have 
found their way to the practice of mathematics education and many schools work 
with these new tools. More research is still needed though (and planned) to obtain a 
detailed image of the possibilities and constraints of these new tools and their role in 
longer learning trajectories. 
 
Introduction 
The objectives of the Freudenthal Institute are research and curriculum development 
for innovation and improvement of mathematics education. From the very start of the 
introduction of the computer in mathematics education the possibilities of this 
medium were seriously investigated, and software development has always been 
practised at the institute. About 8 years ago, new technologies and programming 
tools that facilitate faster computer graphics led to a glut of new ideas for visualising 
and new ways of learning mathematics and creative programmers and designers 
produced some quite exciting prototypes. Of course this was just the first stage in the 
development of robust, well-tested and researched didactical tools. In the next stage 
further development, field testing and refinement were performed in several research, 
development and implementation projects, in real educational settings and in close 
co-operation with teachers. A considerable collection of applets have found their way 
to the practice of mathematics education and there is much appreciation for these 
new tools in schools. Yet more research is needed (and planned) to obtain a detailed 
image of the possibilities and constraints of these new tools, especially regarding 
their role in longer learning trajectories.  

To give an insight in the design activities and the development process, some 
paradigmatic examples of applets are described. First a distinction is drawn between 
three different kind of applets. The borders between these three categories are not 
very rigid, but this classification helps to structure the underlying design choices. 
• Applets that offers a 'virtual reality'. These applets are used for representing and 

simulating real-world objects and processes that form the basis of mathematical 
reasoning. 
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• Applets that facilitate the use of 'models'. These applets offer interactive models 
that can be helpful in building and understanding the more abstract mathematical 
objects and concepts. 

• Applets that offer a mathematical microworld. In these applets mathematical 
objects like formulas, equations and graphs can be constructed and transformed. 

For each category one or more examples are described and used to illustrate and 
discuss typical issues and problems in the design process. 
 
Theoretical Framework 
The theoretical foundation is mainly based upon the theory of Realistic Mathematics 
Education (RME). The main idea of RME is to create opportunities for students to 
come to regard the knowledge they acquire as their own knowledge. Therefore, 
contextual problems which students recognise as relevant and real, and which also 
evoke productive solution strategies, play an important role. In RME, the intended 
goals are built progressively upon the students’ informal ideas and strategies 
(Freudenthal, 1991).  
For RME to work, it is necessary to know how students model new situations. 
Students are confronted with problem situations for which they do not have the 
appropriate models at their disposal; i.e. models which describe possible structures or 
patterns in the situations. At this point, theories on symbolising – individual as well 
as social aspects – are useful (Gravemeijer et al., 2002). 
 
Applets that offer a 'virtual reality' 
In the RME theory, real-world situations and experiences form the starting point of 
mathematical activities. Educational designs should for that reason contain carefully 
chosen real-world situations that are suitable for being mathematised. Software that 
simulates these situations can be used to recall old experiences and extend these with 
new ones by purposefully provoked interactions.  

3D-Geometry has shown to be a very fruitful subject for this approach. We 
developed a number of applets on this subject for students of all levels.  
The term 'virtual reality' is possibly somewhat misleading. In common virtual reality 
software the aim is to create a 'world' that should be experienced to be as real as 
possible. In the applets the aim is to make a firm connection with real-world 
experiences, but also to make a step to more model-like representations, in which 
certain mathematical concepts can emerge. The design challenge lies in finding a 
balance between giving the user freedom in his constructions and explorations in the 
virtual environment and imposing constraints to guide the user to the intended 
experiences. For example, the block building environment (figure 1) gives the user 
freedom in making his own constructions, but the environment also enforces a cubic 
structure that draws the attention more easily to orthogonal co-ordinates as a means 
to model space. 
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 A quite different example of this category is the applet Fruit Balance (figure 
2). It offers a real pair of scales that can be used to compare the weights of three 
different pieces of fruit. The task is to find the weight of all of them, when one is 
given. It is a nice example of the RME approach. A meaningful problem is 
introduced, without offering ready-made mathematical tools like standard solving 
algorithms for a set of equations with multiple variables, but offering a tool to 
explore the problem situation. The often informal strategies that students put forward 
can become the start of a learning trajectory on solving equations, based on 'guided 
reinvention', one of the important aspects of RME. Of course the most important 
thing is the design of such a trajectory, in which the student's explorations, reasoning 
and solutions are shared, discussed and generalised to other problems. Otherwise the 
applet activity would be just a nice puzzle without a substantial role in the learning of 
mathematics.  

 
Applets that facilitate the use of 'models' 
Geometrical shapes and objects are not only used in the mathematical domain of 
geometry. Often they appear as model for representing more abstract mathematical 
concepts and processes. A nice example of such a model is the number line that can 
be used in arithmetic. Processes such as addition and subtraction can be modelled by 
making step or jumps on the number line. For a developer of it-tools is a challenge in 
making those models dynamic, and in developing interactions or games in which 
especially the dynamic processes can be made visible and controllable. The applet 
"Jump tool" offers such a dynamic and interactive version of the more static 
representations of the number line. 

Figure 1 

Figure 2 
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 Another example of a geometrical way to model mathematical objects is the 
'area model' for algebraic quadratic expressions. Variables are used in the width and 
height of rectangles, and quadratic expressions represent their areas. Several applets 
were designed using this model. 'Geometric Algebra 2d' is one of them (figure 3). In 

this applet, line  
segments of both constant and variable length can be combined to compound line 
segments and rectangles. By constructing these rectangles, the resulting algebraic 
expressions for the area are produced. Other, equivalent expressions can be made by 
splitting and joining the rectangles. Some interactive game activities were designed, 
in which students have to make factorisations by combining a number of small 
rectangles to a single one (figure 4).  
 Although students liked to work with these applets, it appeared that their skills 
in manipulating the rectangles did not automatically enhance their abilities with and 
insight in algebraic manipulations. Explanations of these shortcomings can be found 
in the RME theory. Especially the part on emergent modelling is useful 
(Gravenmeyer, 1994). In the RME view it is important that formal mathematics can 
be developed as a tool for solving problems that are real for students. One should 

separate 

join split 

split  
completely 

join 
samen 

separate 

Figure 3 
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start with investigating phenomena and problem situations that can be structured and 
solved by the mathematics that has to be learned. In working on these problems 
models can be used as mediating tools that bridge the gap between informal solving 
strategies and the formal mathematics. So a model is more than a (visual) 
representation of a piece of abstract mathematics. First, it has to be developed as a 
tool for structuring a real situation or problem. The strong relation between the 
rectangles in the applet and the algebra is obvious to experts, but for learners for 
whom algebra is still a unknown area, the world of rectangles can become isolated 
and not transferable. This is especially the case if there is no proper attention for the 
problems for which the model, and in the end the algebra, offers a generic tool. The 
sketched model development requires a carefully designed learning trajectory of 

which the applet activities are just a part. 
Another applet, 'Algebra Arrows', is based on the well-known 'machine' model 

for functions and formulas, in which functions are represented as input-output 
machines. In this applet the designer has tried to facilitate the model development, as 
described above, more extensive. The applet offers students a tool to build their own 
models to structure and solve problems. It has several levels of application and is 
meant to facilitate a step by step development of the function and formula concept 
and to get acquainted with commonly used mathematical objects and representations 
(Boon, 2005).  
 
Applets that offer a mathematical microworld 
The third category contains applets that work on formal mathematical objects, like 
formulas, graphs equations etc. In this sense they are comparable with mathematical 

Figure 5 

Figure 4 
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tool like the graphic or symbolic calculator or CAS. The difference is that the applets 
are didactically designed and do not aim at merely carrying out the standard 
operations and algorithms. Most of them allow interactions and transformations on 
the objects that are not common in the standard mathematical tools. They often have 
a built-in task for students to perform. Some of the routine work is performed by 
(CAS) facilities of the applet, other parts, always carefully chosen, are left for the 
student to do, supported by proper feedback. In this way it is possible to focus on 
certain concepts and skills.  

An example of an applet in this category is 'Solving equations with the cover-
up strategy' (figure 6). Using this applet students can solve a certain type of equation 
by selecting a part of the expression with the mouse and giving it a value. (Figure 6 
shows a solving scenario.) The applet doesn't impose a blind algorithm. It lets the 
student interact with the expression and gives insight in its structure. With growing 
insight, it becomes possible to make larger and more efficient steps in the solving 
process. 

In the design of these environments it is important to find a balance in 
directing the student to desirable skills and giving room to personal strategies and 
exploration. When the latter is missing the applet becomes just a training tool for 
ready-made algorithms. For understanding the features of this kinds of tools, it is 
important to reflect on the role of (solving) algorithms in mathematics education. In a 
mechanical approach of mathematics education, algorithms are seen as the starting 
point of a learning trajectory. The learning objective is a proper application of these 
given algorithms. In the RME approach algorithms themselves and the understanding 
of how they work are products of the learning trajectory as well. So it is important to 
work on problems that involve mathematical objects in a way that permits 
explorations and student’s own alternative strategies. Of course there should be 
guidance and negotiation towards the known and most efficient strategies, but not by 
imposing them from the start. Another important requirement of the RME approach 
is that the elementary mathematical objects that are the 'building blocks' of the 
activities in the applets are 'real' for students, that is to say they already have a 
meaningful foundation, based on processes of a lower order.  
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Challenges and future development 
In the different development and research projects carried out at the Freudenthal 
Institute, the applets discussed in this paper to have additional value in RME-
designed learning trajectories. It was noticed too that a proper design of the whole 
learning trajectory is vital for exploiting the benefits of single applets. Our division in 
three different categories also defines more or less their possible places in such 
trajectories.  

Especially learning trajectories with applets that help students in developing 
the founding models for 'inventing' the formal mathematical tools are interesting, but 
also difficult to design. One of the problems is that applets that support model 
development often tend to impose a ready-made model that is not flexible enough to 
evolve. For applet designers it is a challenge to exhaustively explore the dynamics of 
this new medium and apply them to overcome this problem. For development 
researchers the challenge lies in the design of convincing learning trajectories that 
integrate these new tools. 

Applets are distributed over the world wide web, which makes them accessible 
quite easily. But the web offers other features as well, such as easy to use and place-
independent communication and registration facilities, that can also be used to 
enhance education as well. At the Freudenthal Institute an environment was 
developed that can be used by schools and individual students to store the results of 
their applet activities. It has been noticed that working with the applets could be 
fleeting because of the lack of persistence of the achieved results, the impossibility to 
reflect on them later and to share them with the teacher or other students. In a new 
planned research project on tool use, these new storage and registration features will 
be integrated with the applets and other activities in a new and innovative learning 
arrangement for mathematics.  
 
Note 

Figure 6 
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At www.fi.uu.nl/wisweb/icmi2006 a collage of some of the Freudenthal applets is 
shown. The entire collection can be found at www.wisweb.nl  
References 
Boon, P & Drijvers, P. (2005). Chaining operations to get insight in expressions and 

formulas. Paper submitted to the CERME4 conference, februari 2005. 
Freudenthal, H. (1991). Revisiting Mathematics Education - China Lectures. 

Dordrecht, the Netherlands: Kluwer Academic Publishers. 
Gravemeijer, K.P.E.. (1994). Developing realistic mathematics education . Utrecht, 

CD-b Press. 
Gravemeijer, K.P.E., Lehrer, R., Van Oers, B. &Verschaffel, L. (Eds). (2002) 

Symbolizing, modeling and tool use in mathematics education. Dordrecht: Kluwer 
Academic Publishers. 

 



 

 46 

 

Developing a joint methodology for comparing the influence of different 
theoretical frameworks in technology enhanced learning in mathematics: the 

TELMA approach 

 

TELMA (KALEIDOSCOPE) European Research Team2: < Artigue M., Bottino 
R., Cerulli M., Mariotti M., Morgan C.> & <Alexopolou E., Cazes C., Chaachoua 
H., Georget J.P., Haspekian M., Kynigos C., Lagrange J.B., Latsi M., Maffei L., 
Maracci M., Papadopulou A., Pedemonte B., Psycharis G., Robotti E., Souchard 
L., Trgalova J., Vandebrouk F.> 

 

This contribution deals with the work of the European Research Team TELMA 
(Technology Enhanced Learning in Mathematics) of the Kaleidoscope network 
towards understanding the role played by theoretical frames in design and research 
in that area, and building tools to improve communication between researchers from 
different cultures. We present two facets of TELMA work: a ‘cross-experimentation’ 
project in which each TELMA team experimented with an Interactive Learning 
Environment (ILE) for mathematics designed by another team; and the design of a 
methodological tool for systematic exploration of the role played by theoretical 
frames in the design and analysis of uses of ILEs. We focus on the methodological 
dimension of this work, showing how we employ the construct of didactical 
functionalities as a means of comparing and integrating the research conducted by 
the teams. We provide some preliminary results of the joint experiment and use of the 
methodological tool. 

 

Introduction 

This contribution originates from TELMA, a European Research Team (ERT) 
established as one of the activities of Kaleidoscope, a Network of Excellence (IST–
507838) supported by the European Community (www.noe-kaleidoscope.org). The 
contribution reports on the work developed within TELMA for analysing the 
influence of different theoretical frameworks in the design and/or use of digital 
technologies for shaping mathematics teaching and learning activities and discusses 
some of its outcomes that we think of interest for this ICMI Study. It is especially 
related to theme 4 of the ICMI Study: “Design of learning environments and 
curricula”. Indeed it addresses some of the research questions raised in this theme: 
“How can theoretical frameworks be helpful for understanding how design issues 
impact upon the teaching and learning of mathematics?”, “What kind of 
mathematical activities might different technologies and different theoretical 

                                           
2University of Paris, France; National Kapodistrian University of Athens, Greece; Consiglio 
Nazionale delle Ricerche, Italy; MeTAH and Leibniz - IMAG, France; University of London, UK; 
University of Siena, Italy. 
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backgrounds shape and how can learning experiences (including the tools, tasks and 
settings) be designed to take advantage of these affordances?”, and, last but not least, 
“Which methodologies can be developed and applied to understand and compare 
different approaches, theoretical frameworks, and backgrounds?”. 
Background: Kaleidoscope and TELMA 

Kaleidoscope's central aim is to address the lack of harmonised research in the field 
of Technology Enhanced Learning (TEL) in Europe by integrating various existing 
initiatives and research groups. The aim is to develop, on the one hand, a rich and 
coherent theoretical and practical research foundation, and, on the other hand, new 
tools and methodologies for an interdisciplinary approach to research on learning 
with digital technologies at a European level. The network is doing this by 
supporting a range of integrating actions, including European Research Teams (ERT) 
such as TELMA. ERT are integrating activities, which aim to network European 
excellence through specific research challenges. The key idea of creating an ERT is 
to stimulate the mutualisation of knowledge and know-how of a number of 
recognized research teams on the identified issues, and to favour the construction of 
shared scientific policy, building complementarities and common priorities.  

TELMA is specifically focused on Technology Enhanced Learning in 
MAthematics. It involves six European teams with the aim of building a shared view 
of key research topics in the area of digital technologies and mathematics education, 
proposing related research activity, and developing common research methodologies. 
Each team has brought with it particular focuses and theoretical frameworks, adopted 
and developed over a period of time. Most of the teams have also contributed 
learning environments integrating digital technologies for use in mathematics 
learning, designed, developed and tested in accordance with their own theoretical 
perspectives3. We will refer to these as Interactive Learning Environments (ILEs). 

The starting phase of TELMA was very challenging, requiring six teams with 
different backgrounds, work methodologies, and ILEs, to begin to share knowledge, 
developing a common language and common topics of interest. This demanding task 
was addressed by working on a number of topics considered important for mutual 
knowledge and comparison (including research areas and goals, theoretical frames, 
ILEs implemented or used, contexts, work methodologies). Each team had 
responsibility for one topic and, on the basis of materials sent by the other teams, 
produced a report analysing the different contributions and developing them into an 
integrated presentation (the result is available the TELMA web site 
(www.itd.cnr.it/telma).  

This first effort, based on the descriptions provided by the teams and analysis 
of papers they had published, helped to identify some common sensitivities to, for 
example: the contextual, social and cultural dimensions of learning processes; the 

                                           
3 For instance Ari-Lab2 (CNR-ITD), Pepite and Casyopée (DIDIREM), Aplusix (MeTAH), E-slate 
(ETL), L’Algebrista (CNR-ITD and UNISI). 
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role played by semiotic mediation; instrumental issues. It also made it evident that 
the diversity of the theoretical frames we employed4 affected the ways we dealt with 
these common sensitivities in the design or use of ILEs. But reading and exchanging 
descriptions and research papers left us unsatisfied as we felt that our understanding 
of the underlying processes and their possible effects on practice remained too 
superficial. For that reason, we decided to develop a strategy allowing us to gain 
more intimate insight into our respective research and design practices. This strategy 
consisted of a ‘cross-experimentation’ project and simultaneous development of a 
methodological tool for systematic exploration of the role played by theoretical 
frames in teaching and learning in mathematics using digital technologies.  

In this contribution, we focus on this second phase of our collaborative work, 
introducing first the idea of “didactical functionality”, which we used as a tool for 
approaching the relationships between theory and practice.  
The notion of “didactical functionality” of a tool 

The notion of didactical functionality of an ILE (see Cerulli, Pedemonte, Robotti, 
2005) was developed as a way to link theoretical reflections to the real tasks that one 
has to face when designing or analysing effective uses of digital technologies in 
given contexts. It is structured around three inter-related components: 

• a set of features / characteristics of the ILE; 
• an educational goal; 
• modalities of employing the ILE in a teaching/learning process related to 

the chosen educational goal. 
These three dimensions are inter-related: although characteristics and features 

of the ILE itself can be identified through a priori inspection, these features only 
become functionally meaningful when understood in relation to the educational goal 
for which the ILE is being used and the modalities of its use. We would also point 
out that, when designing an ILE, designers necessarily have in mind some specific 
didactical functionalities, but these are not necessarily those which emerge when the 
tool is used, especially when it is used outside the control of its designers or in 
contexts different from those initially envisaged. In the second phase of TELMA 
work, this notion of didactical functionality thus took a central and unifying role: 

• on the one hand, the cross-experimentation aimed to explore the 
didactical functionalities the different teams involved would associate with ILEs they 
had not designed, and how their particular educational contexts and the theoretical 
frames they used would influence their constructions; 

• on the other hand, this notion was also used to structure the 
methodological tool for exploration of the role played by theoretical frames.  

                                           
4 These were mainly: activity theory, socio constructivism, Vygotskian theories of semiotic 
mediation, social semiotics, theory of didactic situations (TDS), anthropological theory, Rabardel’s 
theory of instrumentation, situated abstraction, AI theories.   
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In what follows we present these two facets of TELMA work, focusing on the 
methodological dimension. 
The cross-experimentation 

The idea of cross-experimentation is a new approach to collaboration, seeking to 
facilitate common understanding across teams with diverse practices and cultures and 
to progress towards integrated views.  
Some important methodological choices: 

There are three principal characteristics of this cross-experimentation: 
• the design and implementation by each research team of a teaching 

experiment making use of an ILE developed by another team;  
• the joint construction of a common set of guidelines expressing 

questions to be answered by each designing and experimenting team in order to 
frame the process of cross-team communication; 

• the specific role given to PhD students and young researchers.  
Each team was asked to select an ILE among those developed by the other 

teams. This decision was expected to induce deeper exchanges between the teams, 
and to make more visible the influence of theoretical frames through comparison of 
the vision of didactical functionalities developed by the designers of the ILEs and by 
the teams using these in the cross-experimentation. 

The cross-experimentation involved a rich diversity of ILEs, educational 
contexts and theoretical frames, but important attention was paid to the control and 
productive exploitation of this diversity, especially through the joint construction of 
guidelines, developed through an on-line collaborative activity. On-line collaboration 
allowed the teams to communicate the results of their within-team discussions and 
resulted in an agreed joint set of guidelines 
(http://www.itd.cnr.it/telma/documents.php), negotiated between the teams to be as 
relevant as possible to their interests and theoretical frameworks, while remaining 
feasible in light of the constraints of time and empirical settings. These guidelines 
structure and support a priori and a posteriori reflective analysis of the cross-
experimentation.  

In order to allow as much comparability as possible between the research 
settings, it was also agreed to address common mathematical knowledge domains 
(fractions and algebra), with students between years 7 and 11 of schooling in 
experiments lasting approximately one month. Table 1 summarises the ILEs chosen, 
the teams who developed the ILEs and the teams conducting the experimentation. 

An important role has been given to young researchers and PhD students. 
Starting from three draft sets of questions addressing the issues of contexts, 
representations and theoretical frames, they developed the guidelines through the 
Kaleidoscope Virtual Doctoral School platform, and have taken charge of the 
experimentation. This role is coherent with the general philosophy of TELMA and 
Kaleidoscope. It also has the benefit of allowing “fresh” eyes to look at the teams’ 
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approaches, theoretical frameworks, and consolidated practice in order to make 
explicit those factors that often remain implicit in the choices made by more 
experienced researchers. 

ILE Developer’s team Experimenting team(s) 

Aplusix MeTAH-Grenoble CNR-ITD, UNISI 
E-Slate ETL-NKUA UNILON 
ARI-LAB 2 CNR-ITD MeTAH, DIDIREM, ETL-NKUA 
Table 1: The tools employed by TELMA teams in the cross experiment 

The selection of research questions, experimental settings and modes of use of 
the ILE, methods of data collection and analysis were all determined by each 
experimenting team after a period of familiarisation with the ILE itself, following the 
common guidelines developed through the on-line activity. Each team thus 
conducted an independent study of the use of an ILE. At the same time, however, the 
framework of common questions provided a methodological tool for comparing the 
theoretical basis of the individual studies, their methodologies and outcomes.  
The current state of the project 

The experimentations took place during the first term of this academic year. A priori 
analysis of the experiment, according to the guidelines, has been produced by each 
team. The a posteriori analysis, following the guidelines, is in progress. Comparison 
and discussion of similarities and differences between the reflective analysis carried 
out by the PhD students and young researchers and the analyses, expectations, and 
results obtained by the ILE designers is planned in the following months. However, 
preliminary comparison of each team’s results has highlighted interesting issues and 
indicates directions for future investigation, as described in the following section. 
Some preliminary results from the cross-experimentation  

In order to point out and compare the preliminary results of the cross experiments a 
meeting was held. Each team reported on its own experiment focusing on the 
defined/employed didactical functionalities of the ILE used, trying to make explicit 
the relationship between such didactical functionalities and the team’s theoretical 
assumptions. In order to structure this preliminary analysis each team was asked to 
complete a form before the meeting, focusing on the three dimensions of didactical 
functionalities. The form followed the principle of “necessary conditions” in the 
sense that not all the details of the experiments needed to be given, but only those 
that the team believed to be necessary conditions for the experiment to be successful 
according to the team’s theoretical assumptions 
(http://www.itd.cnr.it/telma/documents.php). 

Comparison of the forms completed by each team, and of the oral reports of 
the experiments, highlighted a set of issues that seem promising in terms of future 
investigations and in relation to the key question: How can the use a given ILE within 
a specific context be characterized by specific theoretical frameworks and by cultural 
and/or institutional constrains?  
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During the cross experiment some difficulties arose when teams attempted to 
use a given ILE in a context (both in the sense of school and of research context) 
different from that in which it had been developed. For example, the software 
Aplusix has been designed (by the French team MeTAH) to facilitate the teacher’s 
work, and to offer him/her a good level of autonomy with respect to standard algebra 
curricular activities. The software allows students to build and transform algebraic 
expressions freely and to solve algebra exercises by producing their own steps as on 
paper; for each step the system gives an indication of correctness as feedback. 
Aplusix was designed to support the standard activity of algebraic manipulation, 
based on the solution of calculation tasks like expand, factorize, solve the equation, 
etc. However, the CNR-ITD team, adopting a socio-constructivist approach, faced 
the problem of planning open-ended tasks. According to this theoretical framework, 
open-ended tasks favour pupils’ construction of meanings through exploratory 
activities. This was achieved by interpreting the feedback concerning the correctness 
of steps as feedback concerning the equivalence of expressions and/or statements. 
This change of perspective implied also that Aplusix was no longer used 
autonomously by students, but required the teacher to orchestrate the activity by 
asking the students to make their strategies explicit, to justify them and to discuss 
them with their classmates.  

Adapting the way in which an ILE is used to a changed context, even if 
possible, may also be complicated by the role played by different curricular 
constraints and school praxis. As an example, we consider ARI-LAB2 (developed in 
Italy by the ITD team). ARI-LAB2 is composed of several microworlds designed to 
support activities in arithmetic problem solving and in the introduction to algebra. 
One of these is the “fraction” microworld, which provides a graphical representation 
of fractions on the real line, allowing the user to build fractions by means of 
commands based on Thales theorem. Some teams encountered difficulties using this 
microworld in their school context due to the fact that Thales theorem is usually 
introduced in the curriculum later than fractions. The MeTAH team tried to use it as 
a “black box” but found this caused problems when pupils needed to make sense of 
feedback. Similarly, the DIDIREM team decided to switch to other microworlds of 
ARI-LAB2 because they judged it was not realistic to ask a teacher to change the 
mathematics organisation of the school year.  

During the cross-experimentations another aspect has been highlighted related 
to the influence of theoretical frameworks on the use of ILEs. This is related to the 
role assigned to feedback by different teams. For example, the DIDIREM team, 
drawing on the theory of Didactic Situations, found the feedback provided by ARI-
LAB2 too limited with respect to what is generally expected from a “milieu” offering 
an a-didactic potential for learning. On the contrary the ITD team, who had 
developed the ILE, drawing on a more general constructivist framework, considers 
the feedback sufficient because the teacher’s role and feedback are considered as 
fundamental as those of the ILE. 
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These examples show how, in order to employ an ILE in a context different 
from that taken as reference by its designers, one has to face a set of problematic 
issues. To sum up, the highlighted issues include: 

• educational goals 
• typologies of tasks proposed to the students  
• computer’s feedback and autonomy of the ICT tool and/or of the pupils 
• settings and role of teachers 
These issues point to significant investigative directions to be addressed in the 

next year of the work of TELMA. In fact, in order to refine the comparison between 
the experiments, our preliminary analysis raises the need to refine the lenses through 
which the experiments are analysed and compared. Starting from the idea of 
didactical functionality, we need to address its three dimensions in more detail, and 
in order to do so, a first methodological tool has been developed in parallel with the 
preliminary analysis and will be refined and employed in the next year. Below we 
present the tool and indicate the kinds of analysis it can help to bring forward, 
showing how it was employed by one of the TELMA teams. 
A methodological tool for systematic exploration of the role played by 
theoretical frames 

Some preliminary remarks  

In the design of this methodological tool, we were inspired by the work already 
developed in TELMA about theoretical frames, the common sensitivities and the 
evidence of differences in the ways these were dealt with, and also by the meta-study 
previously developed by DIDIREM researchers involved in TELMA (Lagrange & 
al., 2003). This led us to consider this methodological tool as a multidimensional tool 
structured around the notion of didactical functionality, and to associate to each 
component of the notion of didactical functionality a set of ‘concerns’, expressed in 
the most neutral way. Analysis using the tool will try to determine for each of these 
concerns whether and how it is addressed, and to elucidate the role played both 
explicitly and implicitly by theoretical frameworks. It is assumed that such a tool will 
help to establish productive links between different frames, and will support partial 
integrative views when these appear accessible and possibly productive, keeping in 
mind that a global integration is certainly out of reach, and even not desirable, the 
strength of any approach being attached also to the specific lens it chooses for 
approaching the complexity of the reality we study.  
The methodological tool    

a) Analysis and identification of specific ILE characteristics : 
The analysis of an ILE using the definition of didactical functionalities 

generally involves two different dimensions, questioning on the one hand how the 
mathematical knowledge of the domain is implemented in the ILE, and on the other 
hand the forms of didactic interaction provided by the ILE. Both the implementation 
of the knowledge of the domain and the didactic interaction can be approached 



 

 53 

through different perspectives, which are neither independent nor mutually exclusive. 
We have thus selected according to this dimension the following concerns:  
- concerns regarding tool ergonomy 
- concerns regarding the characteristics of the implementation of mathematical 
objects and of the relationships between these objects 
- concerns regarding the possible actions on these objects 
- concerns regarding semiotic representations 
- concerns regarding the characteristics of the possible interaction between student 
and mathematical knowledge 
- concerns regarding the characteristics of the possible interaction with other agents5 
- concerns regarding the support provided for the professional work of the teacher 
- concerns regarding institutional and/or cultural distances  

b) Educational goals and associated potential of the ILE  

It is more the relationship between potentialities and goals rather than each of these 
considered separately which can contribute to illuminate the role played by 
theoretical frames in relation to this dimension, complementing what is offered by 
the information provided by the analysis of the ILE. It seems interesting to 
investigate the relative importance given in the definition of educative goals to 
considerations of an epistemological nature - referring to mathematics as a domain of 
knowledge or as a field of practice, considerations of a cognitive nature - focusing on 
the student in her relationship with mathematical knowledge, considerations focusing 
on the social dimension of learning processes, and finally institutional considerations. 
Thus the concerns we selected for this dimension are: 
- Epistemological concerns focusing on specific mathematical content or practices 
- Cognitive concerns focusing on specific cognitive processes or difficulties 
- Social concerns focusing on the social construction of knowledge and on 
collaborative work  
- Institutional concerns focusing on institutional expectations and on compatibility 
with the forms and contents valued by the educational institution 

c) Modalities of use 

The design of modalities of use and the a priori analysis of their implementation 
supposes a multiplicity of choices of diverse nature. It is reasonable to hypothesize 
that only a small part of these are under the control of theoretical frames, explicitly or 
even implicitly, many other being dictated consciously or unconsciously by the 
educational culture and the particular context within the realization takes place. The 
categories are: 

                                           
5 Other agents can be other students, the teacher, tutors as well as virtual agents such as the 
companions  implemented in some ILEs.  
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- Concerns regarding contextual characteristics 
- Concerns regarding tasks proposed to students, including their temporal 
organisation and progression 
- Concerns regarding the functions given to the tool including their possible 
evolution 
- Concerns regarding instrumental issues and instrumental genesis 
- Concerns regarding social organisation, especially the interactions between the 
different actors, their respective roles and responsibilities 
- Concerns regarding interaction with paper and pencil work 
- Concerns regarding institutional issues, especially the relationships with curricular 
expectations, values and norms, the distance from the usual environments 

Using the methodological tool  

The methodological tool has been used first in order to explore the role played by 
methodological frames in the preparation of one experiment: that carried out by 
DIDIREM. There is no space here for a detailed presentation of this analysis which is 
accessible on the TELMA website (Artigue, 2005). It shows that, in this 
experimentation involving two different microworlds offered by ARI-LAB2, nearly 
all the concerns mentioned above were addressed, but with evident differences in 
emphasis (four different levels of emphasis were distinguished). The analysis also 
shows how the three main theoretical frames used: instrumental approach, theory of 
didactic situations, anthropological approach (together with didactic knowledge 
about the mathematical domain at stake) influenced the choice of the selected 
microworlds and the design of the experiment. However, an interview with the young 
researchers of the team involved in the project also shows that many of their choices 
were not under the explicit control of these theoretical frames. Some of the choices 
can be explained a posteriori by referring to theoretical frames but had been used as 
naturalized and implicit conceptual tools. Others were dictated by institutional and 
cultural habits. We can hypothesize that, from one team to another one, differences in 
the implicit theoretical tools and cultural habits will be made visible by the 
exchanges organized around the cross-experimentation, offering us insights into the 
real influence of theory on research and design practices that the reading of papers 
hardly offers.     
Conclusion 

In this short text, we have tried to make clear the kind of contribution we can offer to 
this ICMI Study. This work tries to overcome the difficulties generated by the 
existing diversity of theoretical frames and the lack of communication between these, 
through a better understanding of the role played by theories, the development of 
methodological tools and cross-experiments. This is on-going work and, by the time 
of the Conference associated to this study, all the analysis being completed, we hope 
to be able to offer a sound contribution on these difficult but crucial issues.  
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Looking through zones at the teacher’s role in technology-rich teaching and 
learning environments (TRTLE’s) 
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The equilibrium of teachers and teaching is inevitably altered by the availability of 
electronic technologies. It is imperative to establish what it is that enables teachers 
to perceive, attend to, and exploit affordances of the technology salient to their 
teaching practice and likewise for students in their learning about function. This 
paper focuses on one teacher and his teaching where technology use is expected by 
curriculum authorities. The aim is to show how Valsiner’s zones and Gibson’s 
affordances have been used as a theoretical framework to document the teacher’s 
role in integrating electronic technologies into his teaching. The students’ 
subsequent use of technology to support their learning is also examined. Thematic 
matrices have been used to identify manifestations of affordances, affordance bearers 
used, and the conditions enabling perception or promoting enactment of particular 
manifestations of affordances. These conditions, the latter indicative of the Zone of 
Promoted Action, have been used to identify teacher’s role as he canalises students’ 
current and future thinking about concepts and methods taught. The teacher’s 
approach also impacts on the Zone of Free Movement/Zone of Promoted Action 
complex of the future. 

 

Introduction 
A broad variety of electronic technologies has the potential to be used in 
mathematics classrooms today. The presence of these in the classroom can 
fundamentally change how we think mathematically and what becomes privileged 
mathematical activity. Classroom tasks can include those that are transformed by 
electronic technology use rather than technology being used to produce or check 
results but not necessarily contribute to the development of understanding, and 
concept and skill development. Whilst acknowledging that teaching and learning are 
inseparable, this paper focuses on the teacher and teaching by reporting a case study 
of a teacher and the Technology-Rich Teaching and Learning Environments 
(TRTLE’s) within which he is a participant, these being environments where 
electronic technologies are readily available. Affordances and Valsiner’s Zone 
Theory are being used “to analyse the role of the teacher in orchestrating technology-
integrated mathematics learning” (ICMI 17 Discussion Document, p. 7). 
Affordances 
A technology-rich teaching and learning environment affords new ways of engaging 
students in learning mathematics. Teachers and students equally have to learn to 
become attuned to the affordances of such environments. The construct, affordances, 
is used here following Gibson (1979) who made up the term to explain what is 
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perceived, and Scarantino (2003), whose more recent elaborations of the construct 
support its interpretation in an educational setting. Affordance to Gibson is a 
construct to help explain what motivates human behaviour (Reed, 1988). Brown, 
Stillman, and Herbert (2004) outline some of the different uses and meanings of the 
term and it potential usefulness as a framework to support analysis of TRTLE’s. 
More specifically, affordances of a TRTLE are the offerings of the TRTLE for 
facilitating and impeding teaching and learning. They are potential relationships, 
involving interactive activity, between the teacher and/or students and the 
environment. In line with Gibson, the environment includes both animate and 
inanimate objects such as technology. To take advantage of opportunities arising, 
both teachers and students need to perceive affordances and act on them (Drijvers, 
2003). This action may well be the rejection of a particular affordance in favour of 
another. This perception and subsequent enactment depends not only on “the 
technological tool, but [also] on the exploitation of these affordances embedded in 
the educational context and managed by the teacher” (Drijvers, 2003, p. 78).  
Following Gibson and Scarantino, specific objects within the environment, the 
TRTLE, that enable an affordance to be enacted are affordance bearers. The 
manifestation of an affordance in a TRTLE in background circumstances [C] 
involves an event [E] in which both the affordance bearer [AB] and the actor [A] are 
involved (e.g., a teacher [A] brings pictures of real world examples into the 
classroom for illustration of quadratic functions [E] on a laptop computer connected 
to a data projector [AB], given the relevant photographs were inserted into a 
PowerPoint presentation [C]). The affordance described here is communicate-ability 
a ‘technological - communication affordance’ (Kaput, 2004). 
Situating the Research 
The research reported here is situated within the Australian Research Council 
Linkage Project 2004-2006, Enhancing mathematics achievement and engagement 
by using technology to support real problem solving and lessons of high cognitive 
demand (the ‘RITEMATHS’ project). Within and across project classrooms the 
uptake and use of technology has been different. However, every teacher and student 
involved has the opportunity to use a selection of technology ranging from hand held 
graphing calculator, calculators including computer algebra systems, computers 
applications available on laptop or desktop computers to applets available on the 
internet. The broad aim of RITEMATHS is to discover the most effective ways to 
use technology to stimulate higher order thinking in mathematics classrooms, in the 
context of using real world problems. Within the project a design research 
methodology is being used, thus the teachers and researchers are partners working 
together toward this aim. This methodology values contributions of teachers equally 
with those of researchers, giving the practitioners a voice and further acknowledging 
that it is ultimately the teacher who orchestrates the learning of their students.  
The study reported here is part of a larger study (Brown, 2004; 2005a; 2005b) within 
RITEMATHS to establish what it is that enables teachers to perceive, attend to, and 
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exploit affordances of the technology salient to their teaching practice and likewise 
for students in their learning about function. This paper focuses on one teacher and 
the aim is to show how Valsiner’s zones have been used to document his role in 
integrating electronic technologies into his teaching. The students’ subsequent use of 
technology to support their learning is also examined. Particular emphasis is placed 
on determining what use students make of technology when given opportunities to 
choose the type of technology and the purpose they make of the technology selected. 
Valsiner’s Zone Theory 
The theoretical underpinnings of this study also draw on zone theory from 
developmental psychology. Elsewhere, Valsiner’s Zone Theory has been applied to 
the development of algebraic reasoning in primary settings (Blanton & Kaput, 2002), 
technology enriched teaching and learning environments (Galbraith & Goos, 2003), 
teacher education focusing on the learning of pre-service teachers (Blanton, 
Westbrook, & Carter, 2005; Evans, Galbraith, & Goos, 1993), and to preservice and 
beginning teachers using technology in mathematics classrooms (Goos, 2005). It is 
applied here to teaching and student actions in TRTLE’s where the learning focus is 
mathematics in an attempt to elucidate the teacher’s role.  
Valsiner (1997) expanded on Vygotsky’s Zone of Proximal Development (ZPD) and 
proposed two additional zones describing the structure of “the environment of the 
developing child” (p. 186) both between people in the environment and in terms of 
regulating an individual’s “own thinking, feeling, and acting” (p. 188). “The zones 
are always temporary, constantly changing structures that organise the immediate 
construction of the future state out of a here-and-now setting” (p. 319). The Zone of 
Free Movement (ZFM) is described by Valsiner as dynamically “providing a 
structural framework for the child’s cognitive activity and emotions … . when 
internalized ZFMs regulate the relationships of the person with the environment” (p. 
189). Valsiner (1984) links the affordance and Zone Theory frameworks.  
Within the field of objects and affordances related to them in the environment of the 
child, the zone of free movement (ZFM) is defined for the child’s activities. The 
ZFM structures the child’s access to different areas of the environment, to different 
objects within these areas, and to different ways of acting upon these objects. (pp. 67-
68)  
In TRTLE’s this includes affordances, allowable actions, and technology and other 
learning artefacts available to a student acting in the TRTLE at any given time. The 
ZFM “has a counterpart oriented toward the promotion of new skills” known as the 
Zone of Promoted Action (ZPA) (Valsiner, 1997, p. 192). Importantly, particularly in 
a secondary school setting, the ZPA is non-binding in nature. The ZPA describes “the 
set of activities, objects, or areas in the environment, in which the person’s actions 
are promoted” (p. 192) by the teacher in the TRTLE as they attempt to guide their 
students’ “actions in one, rather than another, direction” (p. 317). Valsiner argues 
that these two zone concepts should not be separated, rather they should be 
considered as a ZFM/ZPA complex working together “by which canalisation of 
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children’s development is organized” (p. 195). Following Valsiner, the ZPD is “a 
narrowed down extension of Vygotsky’s concept made subservient to the ZFM/ZPA 
complex” (Valsiner, 1997, p. 199). It “entails the set of possible next states of the 
developing system’s relationship with the environment, given the current state of the 
ZFM/ZPA complex and the system” (p. 200). In the TRTLE the notion of ZPD helps 
capture those aspects of the student’s learning that are in the process of being 
actualized. 
Methodology 
Capturing technology use as enacted by teachers and students is no simple task. 
Close scrutiny of TRTLE’s where access to, and substantial use of, technology by 
both teachers and students is assumed, enables a comprehensive picture of what is 
occurring in such environments to be obtained. Increasing understanding of such 
situations subsequently supports others becoming more effective users of 
technologies in mathematics classrooms where the use of technology is expected by 
curriculum authorities. A qualitative approach provides such a picture. Technology is 
not only a focus of what is being studied, but also it is through the use of digital 
technologies for data collection, such as audio and video recordings of the TRTLE’s, 
that a detailed picture of the environment is constructed and subsequently analysed. 
In addition, the use of a Key Recorder (available www.fi.uu.nl/wisweb/en/) enabling 
keystrokes of graphing calculators to be recorded and the subsequent reconstruction 
of actions taken and screens viewed adds to the richness of the collected data. 
An instrumental approach (Stake, 1995, p. 3) is being followed. The case presented 
here is part of a collective case study (p. 4). The larger study aims to construct a 
grounded theory establishing what conditions enable students and teachers to 
perceive and enact affordances offered by TRTLE’s for the teaching and learning of 
functions. Evidence is presented here for one case detailing the role of the teacher in 
manifestations of affordances within the TRTLE, and the conditions that enabled or 
promoted their enactment. In this study the environment, that is, the TRTLE, 
includes electronic technologies and other objects, ways of acting with these objects 
by the teacher and students, and the teacher and students themselves.  
The case being studied includes one teacher, James, a very experienced teacher of 
mathematics, and two of his classes, his Year 11 Mathematical Methods students 
(16-17 year olds) and his Year 10 Mathematics class (15-17 year olds). Students had 
access to both laptop computers and Texas Instruments graphing calculators (83/84 
Plus) on a daily basis and this was the case in the previous year of their schooling. 
Use of electronic technologies is expected by the statutory authority overseeing the 
curriculum at both levels. Functions was one of the curriculum foci in both TRTLE’s, 
but of a more introductory nature for the Year 10 class.  
Within the larger study conducted by this researcher, data have been collected from 
teachers at all six project schools with more focused data collection from four of the 
schools, including eight teachers and nineteen TRTLE’s over the first two years of 
the three year study. These data and subsequent analysis inform the analysis of the 
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two TRTLE’s that are discussed here. Data collection included field notes, audio and 
video recordings, photographs, student scripts, graphing calculator key recordings, 
post-task student interviews, teacher interviews and reflections, and documentary 
materials from lesson observations. 
For the Year 11 TRTLE, for example, observation included nineteen 50 minute 
lessons, two teacher designed task implementations (Quadratic Function Task [QF], 
Cubic Function Task [CF]), and a researcher designed task implementation, Platypus 
Task [PP]. The teacher designed tasks included students taking physical 
measurements involving hanging chains, curved sticks, and chromatography as 
shown in Figure 1. CF involved the use of only flexible sticks shaped into functions. 
Both tasks required students to relate coordinates of key features to particular forms 
of the given function type and make links between algebraic and graphical 
representations, refining the final unknown (dilation) parameter to identify the 
equation of the function being modelled. In the researcher designed task, students 
were presented with two sets of data representing a platypus population before and 
after an intervention project and asked to find a model to represent platypus numbers 
over time for both data sets. Students then considered questions such as, did the 
intervention improve the situation, what was the predicted population a decade later, 
and when would the population return to the initial value? The task required students 
to make use of functions once identified and promoted the use of a broader 
understanding of functions, including various manifestations of function calculate-
ability, and function view-ability. 

Figure 1. Data collection by students for Quadratic Functions Task 
The intent of the diagrams in Figure 2 is to portray the differences between the 
ZFM/ZPA for the teacher and researcher designed tasks. Representing a zone whose 
boundary is fuzzy, partly indeterminate, and dynamic is clearly fraught with 
difficulties. The outer circle represents the ZFM, and given its later timing in the 
function unit, one would expect that the ZFM existing at the time of PP was greater 
than for the teacher designed tasks. The focus is however on the relationship between 
the two zones constituting the complex at the time of task implementation. Both 
teacher designed tasks involved repetition of the same sub-task, but for different 
general forms of the function. The ZPA for students when undertaking these two 
tasks was much smaller than their ZFM with students being told what actions they 
were to undertake. In the researcher designed task, the range of actions was greater 
and there was little repetition across sub-tasks. In addition, students had to decide 
what methods they should undertake to solve any sub-tasks. Hence, students had to 
select actions that they believed were appropriate from within their individual ZFMs. 
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The promotion by the task of student choices of actions resulted in the ZPA being 
significantly closer to their ZFM than was the case for the teacher designed tasks. 

 
 
 

Figure 2. The ZFM/ZPA complexes for a) Quadratic and Cubic Functions Tasks b) 
Platypus Task 
Analysis and Results 
The identification of manifestations of affordances, affordance bearers, and the 
circumstances in which these occurred was facilitated by preliminary coding after the 
data were entered into a NUD*IST database (QSR, 1997). To identify conditions 
enabling and promoting enactment of affordances subsequent examination of both 
the coded data and re-analysis of the case record was undertaken. A thematic 
conceptual matrix (Miles & Huberman, 1994, p. 131) was developed to show 
manifestations of affordances, affordance bearers, and conditions enabling 
perception or promoting enactment of particular affordances of this TRTLE for 
student understanding of function. Table 1 shows one row of the matrix, one 
manifestation of the particular affordance: Function View-ability, that is, how 
particular views of a function can be observed. For illustrative purposes only the 
manifestation resulting from set viewing window to given values is reported. Other 
manifestations of this affordance included those resulting from using current window 
settings, editing viewing window to include key features or get a better/global view, 
editing viewing window to allow key feature to be clearly visible, using 
TABLE/TRACE to provide information regarding appropriate viewing window, and 
using context to select appropriate viewing domain, viewing range or an endpoint of 
either of these. 

Table 1.  
Manifestations of the affordance: Function View-ability (Affordances of TRTLE’s 
allowing particular views of functions to be observed) 
Manifestations of 
the Affordance 

Affordance 
Bearers 

Conditions 
Enabling 
Perception 

Conditions 
Promoting 
Enactment 

Setting Viewing 
Window to given 
values 
S108 sets viewing 
window of graph of 

WINDOW 
S108 adjusts his 
WINDOW Settings 
to those given. [Obs 
16Mar05 36] 

Lesson Element, 
Window Settings 
given 
Slide 15: … WINDOW. Set 
Xmin = -2, Xmax = +2 and 
Ymin = -9 and Ymax = +9. 

Quadratic function 
test 
(b) Sketch a graph [of a 
function given for T in terms 
of S] between Smin = 0 and 
Smax =360. 

ZFM 

ZPA 

ZFM 

ZPA 
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y = (x - 1)(x + 2)(x 
- 4) to -3 < x < 6, -
12 < y < 12. [Obs 
16Mar05 18] 

GRAPH. [Obs 16Mar 44] [Quadratic function test] 

 

The first column in the matrix includes summary phrases describing the 
manifestation of the affordance and representative illustrative actions. The second 
column indicates the affordance bearers utilised in the enactment of the affordance, 
the WINDOW settings that allow direct manipulation of the viewing window. The 
final two columns describe the conditions existing either during or prior to the 
manifestation of the affordance being considered. The conditions are those either 
enabling perception (column 3) or promoting enactment (column 4) of a particular 
affordance. A condition enabling perception is a circumstance where a teacher or 
student action allows a particular affordance to be perceived. Conditions enabling 
perception include those where a learning experience is provided during which the 
student experiences a particular affordance, as is shown in Table 1 where students are 
expected to follow the instruction and experience the particular affordance thus 
facilitating future enactment. A condition promoting enactment is a circumstance 
where a teacher or student action promotes enactment of a particular affordance. In 
this case it is through the wording of the task that the teacher promotes the direct 
setting of the viewing domain of the graphing calculator. 
To consider data at a more conceptual level, content analytical summary tables were 
constructed. Table 2 shows an example for the affordance function view-ability. The 
final column of Table 2 is indicative of the ZPA. The teacher’s organisation of the 
students’ ZPA canalises (Valsiner, 1997) the students’ current and future thinking 
about the concepts and methods being taught.  
For, example, James observed that determining settings for the graphing calculator 
allowing particular views of a function to be observed is no simple task, echoing 
earlier findings by Brown (2003) who found diverse initial actions and subsequent 
views as teachers began looking for a global view of a ‘difficult’ function. Many of 
the resulting views would be potentially problematic for students. James observed a 
similar difficulty with his students.  
James: Interestingly, a lot of kids find the notion of setting a WINDOW to a 
particular graph [difficult], especially if you are doing real, in inverted commas, 
applications where you do some linear modelling and you might have so many books 
sold for so many dollars which … is a problem that kids can relate to. And inevitably 
[you] see them with a graph with the four quadrants. And when you say to them, 
‘Now is it realistic to have a negative number of books?’ 'No', or ‘A negative amount 
of dollars?’ and, 'No'. ‘Well then, are those values realistic to have on your graph?’ 
'No'. ‘Well, you would have more efficient use of your graph if you deleted those bits 
and use your WINDOWs’. 'But I don't know how to use WINDOWs, I don't 
understand'. [Interview 21Feb 05] 
Table 2 
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Affordances of TRTLE’s allowing particular views of functions to be observed 
Manifestations of 
the Affordance 

Conditions  
Enabling Perception 

Conditions  
Promoting Enactment 

Using current settings Serendipity Task - find graph of data/function 
Task - identify model of physical curve 

Setting viewing window to 
given values 

Lesson Element, Window 
Settings given 

Quadratic function test, sketch function over a 
specified domain 

Edit Viewing Window to 
include key feature, get a 
better/global view 

Lesson Element focused on 
setting of a ‘good’ window 
Functions task requiring 
exploration of graphs of 
families of functions 

Teacher Promotion - Can you Show me a bit more 
of your graph? 
Contextualised task requiring a suitable WINDOW  
Functions task requiring students to explore graphs 
of families of functions 

Editing viewing window 
to allow key features to be 
clearly visible 

Teacher scaffolding - 
understanding of the effect of c 

Lesson element, adjusting WINDOW Settings to 
view key features. 
Contextualised task requiring a suitable WINDOW  
Functions task requiring exploration of graphs of 
families of functions 

Using TABLE/TRACE to 
provide information 
regarding appropriate 
Viewing Window 

Did Not Observe Lesson element- find global view of a function 

Using context to select 
appropriate viewing 
domain, viewing range or 
an endpoint of one of 
these 

Did Not Observe Lesson element, context (biggest box) used to 
determine WINDOW Settings 
Contextualised task requiring a suitable WINDOW  
Functions task requiring students to explore graphs 
of families of functions 
Teacher belief in importance 

 

Thus he sees function view-ability as an essential affordance for his students to enact 
and actively enables its perception and promotes its various manifestations. On one 
occasion James was observed promoting use of context (finding the biggest box 
volume) to select an appropriate viewing domain. 
James: When you do those cut-outs, of x, what is the biggest value of x that you can cut-out? If you have a look at your 
picture, what did you put for your diagram? If you started to make those corner cut-outs bigger, what would be the 
biggest cut-out that you could make? 
Cam: Five. 
James: Five. That is right. So for your WINDOW, you would set Xmin to be zero. And Xmax to [pause]? 
Cam: So that, is that [wrong]? 
James: No, you are right up to there. 
Cam: So we didn't have to do that much? 
James: But, beyond here [x = 5] it is not a realistic part of the problem. Because the biggest value of x you could ever 
cut out is 5. Okay? 
Cam: Yeah. 
James: So you would set your WINDOW to? [Obs30Mar05TB5 177-187] 

Here James has deliberately organised the learning experience so that this particular 
manifestation of the affordance is promoted. Thus through the ZPA he hopes to 
canalise the students’ future cognitive actions as they internalise the conditions he 
has orchestrated for their learning. In promoting use of the context to support the 
determination of a suitable viewing window for the function and the subsequent 
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successful problem solution, James is also hoping that in future situations his 
students will be able to independently perceive and enact this affordance where 
appropriate. 
Concluding Remarks 

Valsiner’s zones together with Gibson’s affordances have provided a suitable vehicle 
for elucidating the role of the teacher in technology-rich teaching and learning 
environments. The teacher makes use of the ZPA to promote particular student 
actions involving technology in an effort to give them experience of particular 
affordances of the TRTLE and to increase the future ZFM of the students. 
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A model for teaching mathematics is developed based on problem-solving and the 
use of technology in education. The research model stems from a ten year-old 
intensive Calculus project containing workshops designed over Computer Algebra 
Systems (CAS). Emphasis is placed on distance learning attributes such as creativity, 
critical thinking, autonomous learning, group work and the capacity to evaluate 
results, study errors, and contextualize the study area. The pedagogical model is 
centered on the student's talents for deep learning via the solution of problems with 
real applications that require understanding, creativity, the use of technological 
tools, and the development of an appropriate language for documentation, 
communication and socialization. Technological tools for education include systems 
that allow the visualization of concepts, simulation and experimentation, operation 
strength and self-evaluation environments.  
 

Teaching centered around student learning  

The model studies the elements of teaching based on the student's ability to learn 
under the premise that the student assumes responsibility for the learning process. 
Accordingly the student must be responsible and motivated to learn and furthermore 
be willing to perform group work, utilize technology and appreciate self-evaluating 
environments.  
A dynamic distance learning environment is generated by first considering what 
pedagogical activities must be developed. This is the study of the student's 
interaction with three learning instances, as shown in Figure 1 below. 
Working alone: The student must be able to work alone and develop autonomously 
the necessary cognitive abilities to learn and apply the acquired knowledge to 
practical tasks and open problems.  
For this aspect tools must be provided for effective self-evaluation and result 
verification. 
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Figure 1. Relational model 

 
Interaction with the teacher: The student must learn to rely on the teacher's 
orientation and professional knowledge. 
  For this the teacher must guide the student in a personal fashion by  
 evaluating the progress and providing the necessary indications,  
 materials and support.  
Collaborative work: The student must learn to appreciate groupwork as a strategy for 
the construction of knowledge and problem-solving. Interaction with other students 
provides another way to answer arising questions while interacting in a workplace 
environment.  
  For this collaborative tools must be developed as well as verification  
  and self-evaluating environments. 
The study of the relational model leads to the choice of appropriate learning theories 
and pedagogical strategies to support the teaching model. These are shown around 
the relational model in Figure 2 and figure 3.  
Finally, the model must include stages of evaluation where the instructor may 
evaluate the implementation of the strategies and their effect on student learning to 
further vary the activities accordingly. 
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Figure 2. Pedagogical model 

 
Figure 3. Stages of the strategy 

 
Structural design of the laboratory workshop 

Once the pedagogical components are established a laboratory workshop is designed. 
The model relies on certain talents from the interested student some of which are: 
Discipline: Students must be able to maintain their own learning rhythm without the 
physical guidance of a teacher. 
Responsibility: Students must acquire a sense of responsibility of being the principal 
element of the learning process. They must understand the objectives of the learning 
program and take them as their own.  
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Scheduling: the effective management of time is essential to reach the objectives of 
every course.  
Curiosity, research and analysis: Students must learn to obtain and discern what is 
the pertinent information needed at any particular instance.  
The relationship between the didactic model and the structure of the lab as a distance 
learning element is presented in Figure 4. 

 
Figure 4. Learning components of the workshop. 

  

Components of the workshop: 

Problem-solving: The solution of theoretical and applied problems is the pedagogical 
basic tool of learning assumed throughout the work. Problems related to the area of 
knowledge and to predetermined standards are chosen. Emphasis is placed on both 
theoretical concepts and solution methods and techniques.  
Individual work and hand calculations: Students must internalize the structure and 
the meaning of the problems by manipulating symbols with pencil and paper and 
performing the appropriate operations and calculations. Designing the strategy of the 
solution autonomously is very important. Afterward, the student will be allowed to 
verify results with technology.  
Group work: Discussion is the basis of collaborative problem-solving. It allows for 
the presentation of different points of view and strategies of solution present in 
different levels of understanding. Above all it permits the creation of a language and 
of an abbreviated system of symbols the pertains to communication.  
Research: Comprises various talents such as search techniques, information 
confrontation and discernment of core elements, translation skills and use of 
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technology, among others. For this probing activities are developed for the 
enhancement of knowledge and problem-solving.  
Technological components with Maple: 

The technological platform used was the symbolic mathematical software Maple V. 
Activities were presented in a standardized format. These activities will be explained 
further: 
Guided exercises: A problem is presented to the student with all phases of solution 
explicitly designed in Maple. The student must actively perform the operations and 
learn the method, algorithms, arguments and styles as well as the Maple commands. 
 The guided problems offer guided examples of methods of proof. The student 
learns to do and structure mathematics while solving itemized parts of a bigger 
complete solution of a complex problem. Real problems are presented and their 
solutions are explored step by step by using Maple commands. The student must 
analyze the arguments and answer both conceptual and operational questions at each 
step. Other problems are proposed to check the apprehension of procedure. The 
technological platform allows the student to perform and check difficult operations. 
Interactive exercises: Problems presented where the student must provide the answer 
by reasoning, hand calculations or use of technology. These may include steps 
towards a solution or simply a specific answer to a problem. Feedback in provided 
for self-evaluation and knowledge enhancement. Feedback includes generally the 
complete solution to the problem sometimes with other examples. Feedback for 
errors may include partial solution to the problem and possibly examples and 
counterexamples.  
 The interactive problems allow the student to appreciate and solidify what has 
been learned by offering an opportunity of self-evaluation. The tools permit the 
construction of solutions whose validity can be checked without the presence of the 
teacher. The problem is called interactive because the student gets feedback even if 
the solution is wrong and hints are given towards the real solution or reasons are 
given for the mistakes. The problem can be solved any way and only solutions or 
steps of solutions are checked. This was done by programming over the software 
program Maple is built on. Programming allows for the prediction of errors of many 
types and the presentation of corresponding correct solutions to operational 
problems, procedure problems or conceptual problems. 
Interactive solutions to problems: Explicit versions of the previous type of exercise 
where solutions are framed against arguments of solution. 
Use of Internet: Mostly utilized in a bibliographical or communications context. For 
example, workshops can be downloaded and worked on collectively through chats or 
message boards. 
Feedback and self-evaluation: Classical feedback provided by an instructor is 
itemized and studied via explicit indicators of the actual relationship between the 
objectives wanted through problem-solving and the activities presented in the 
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workshop. Some of the feedback is classical via examinations, papers or simple 
instructor observations. Yet the core idea is to provide the tools necessary for self-
examination.  
Finally, the feedback and evaluations are studied so the material can be restructured 
and emphasis can be placed on what the student needs to reorganize and enhance 
knowledge. The teacher is an important player in this part of the process and must be 
able to guide new understanding and abilities to the effective crystallization of basic 
ideas and knowledge in the area.  
The evaluation phase 
Evaluation allows for consistency and quality of the learning process and provides 
the teacher with the appropriate feedback on the learning of each individual student. 
In Figure 5 evaluation processes and components are established which will allow to 
design and efficient pedagogical model for self-learning.  
Standards are taken as the bases of the evaluation process. These are defined as 
follows: 
Standards are clear and public criteria that provide knowledge of what students 
should learn and apply in solving problems of their environment and constitute a 
reference point of what should be known and applied in a particular area of 
knowledge and a specific level of proficiency. These may depend on social, cultural 
and political needs of a community. Especially created in order to change the 
emphasis on concepts in education, mathematical and geometrical standards are 
included in the laboratory workshop design. 

 
Figure 5. Conceptual structures of evaluation 
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Indicators: Are characteristics or components of the standards that allow for the 
determination of the level of proficiency of the student in that particular task 
associated with the standard. The breakup of abilities allows for the evaluation of 
strength of knowledge and of weakness and errors. The classification of levels of 
abilities permits the evaluator to understand and measure the attainment of objectives 
in a specific fashion. 
Rubric definition: A mathematical rubric is the specific talent or ability that must be 
attained by the student in order for learning or acquiring knowledge in an area of 
mathematics and a certain level of proficiency.  
Rubric evaluations study certain aspects or indicators and assign well-determined 
levels in such a way that: 
Two evaluators must reach the same results of evaluation, in this work this should 
include one evaluator being the student. 
The aspects are well-defined and do not allow for the consideration of irrelevant 
factors. 
The result must correctly and pertinently evaluate the status of the student with 
respect to the standards. 
Evaluation: It is important to utilize both formative and summative evaluation. On 
the one hand, it is important to determine not only the tools that allow for the 
learning of a particular subject area but those that allow for the correct feedback. On 
the other hand, evaluation of the problem solving abilities and strategies must be 
included with that of the conceptual understanding and the operational proficiency in 
the production of a correct solution. The study of the abilities as a whole: the correct 
utilization of concepts learned, the abilities of creating problem solving strategies, 
and the abilities to assess the validity of a solution change the emphasis of a solution 
from that based on simple procedural and operational proficiency to one that allows 
the use of technology correctly in every day life. Diagnostic evaluation must be 
utilized for the correct planning of the activities of the course and can be applied at 
various stages. Well-chosen rubrics allow the ERRORS to be determined 
diagnostically also. Therefore every evaluation can be used as feedback for the 
present and future design of the course. 
To conclude, the study focuses on learning via problem solving intending to use 
technology as a support for self-learning in providing self-evaluation tools such as: 
well-defined and easy to determine rubrics consisting of specific indicators of 
abilities tied to each problem and subject area and which are presented at an 
appropriate time and in a pertinent setting of a workshop; tools for communication, 
development of language, and research; operation, procedure and solution 
verification; and through these tools the personalized guidance of the teacher. 
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This submission focuses on the design of learning environments and curricula and 
describes a twenty-five year evolution of integrating digital technology8 in the 
teaching and learning of mathematics at Brock University. It provides information 
on actual uses of technology in university level programs for students, majoring in 
mathematics, or taking mathematics for their major in another discipline, or aiming 
to be teachers. A brief history explains the ever increasing use of established 
mathematics and statistics computer systems in courses and programs until the 
Department had gained enough experience with technologies to institute a new core 
mathematics program MICA (Mathematics Integrating Computers and 
Applications). Student interest in the MICA program is demonstrated by a threefold 
increase in mathematics majors. The submission pays special attention to the role of 
the teacher. First, a new faculty member reflects on the teaching adjustments she 
made to teach in a department that has built an array of technologies into its 
courses. Second, it explains how technology, in a first year core mathematics course, 
helps to shift the mediator responsibilities from the teacher to the student. Of 
particular significance is the students’ enthusiasm and willingness to work beyond 
all expectations on their main project in which they construct Learning Objects.  
 
Introduction 
There are many publications (for examples Kallaher (1), and Baglivo (2)) that 
describe the integration of established Computer Mathematical Systems (for example 
Maple) and Computer Data and Statistical Analysis Systems (for example SAS (4)) 
into mathematics and statistics education at the university level. Because of this 
wealth of publications and because the Department of Mathematics at Brock 
University had, by the mid 1990s, integrated such systems in the majority of its 
courses, we will focus our discussion on the Department’s next evolution. We 
describe how the Department integrated communication technology (e.g. Internet) 
and environment building technology (e.g. VB.NET (3)), into an innovative core 
mathematics program called MICA (Mathematics Integrating Computers and 
Applications). For us it is evident that this step was only possible because the 
majority of faculty had substantial teaching experience in courses that integrate 
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technology in a significant way. The MICA courses provide working examples of 
mathematics learning environments that integrate technologies. Furthermore, within 
these courses, students learn how to construct technological environments to explore 
mathematics. Future teachers have an important place in these courses as they learn 
to develop technological learning environments that focus on the didactical 
development of mathematical concepts.  

This submission is made by two practitioners who, in the words of the 
Discussion document, ‘can make solid practical and scientific contributions to ICMI 
Study 17’. The reader will find; in Section 1 a brief 25 year history of the integration 
of technologies in mathematics programs at Brock; in Section 2, a discussion of one 
role that evolving technologies can play in mathematics education; in Section 3, a 
summary of important aspects of the MICA courses; in Section 4, a description of 
some didactical considerations that were introduced in MICA specifically for future 
mathematics teachers, and; in Section 5, a reflection by Buteau on the challenges and 
adjustments that were required in her teaching in order for her students to achieve the 
learning expectations of MICA. 
Section 1: A brief history of the evolving integration of technologies 
In 1985, at the time of the first ICMI Study, the Department of Mathematics was 
making innovative use of technology in some of its courses. In large enrolment 
service courses, some faculty (3) were generating individualized sets of problems for 
each student and Muller (4) was assessing an experimental Calculus course with over 
100 students who worked with Maple in a laboratory setting. In this presentation we 
reflect on the Department’s subsequent sustained development of the use of evolving 
technologies in its undergraduate mathematics programs. Although one can point to 
certain years when major changes were implemented, the reality is that evolution and 
innovation in university mathematics education is a slow process. One reason for this 
is that few mathematics doctoral programs require teamwork or provide opportunities 
for reflection on the teaching and learning of mathematics. Yet these experiences are 
necessary for faculty in a department to work as a team and for its faculty to critically 
redesign a mathematics program. There is much evidence that technological 
innovations that are instituted in a course by a single faculty member rarely survive 
when the course is taken over by another colleague. Therefore, for changes to 
permeate beyond a set of courses, a consensus needs to be built with the majority of 
faculty in a mathematics department. The changes that occurred at Brock required 
many hours of discussions between colleagues and demanded that they approach the 
subject with open minds. In retrospect, a major argument for the use of technology 
and for a complete review of the mathematics programs was generated from faculty 
experiences in Maple laboratories. There they observed student activity and 
involvement. In general they found that students in laboratories were much more 
engaged than in the traditional tutorials and that they were also asking more 
significant mathematical questions. 
 By 1995 a majority of students in all mathematics programs were using 
technology in a significant way. In general students were working with Computer 
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Mathematical Systems or Statistical Analysis Systems. By this time, faculty who 
were keeping up with the evolution of technologies, especially in the areas of 
communication and computer environment building, were convinced that learner 
experiences in mathematics could be further enriched and that these experiences 
could be structured so as to lead students towards more independence in learning. 
Over the next five years an innovative core program in mathematics was developed 
and approved. The philosophy and aims of this program, MICA are described in the 
Brock Teaching journal (5). Student interest in the MICA program is demonstrated 
by an increase in mathematics majors from 52 in the first year of the program, 2001, 
to 140 in 2005. In the following sections we explore how the faculty worked to meet 
MICA guiding principles, including 1) encouraging student creativity and intellectual 
independence, and 2) developing mathematical concepts hand in hand with 
computers and applications. 
Section 2: Evolving roles of technology in mathematics education at Brock 
In this discussion we describe the evolution of the use of technologies in Brock’s 
mathematics programs. In order to facilitate our points of view we shall use the 
following definitions : 

• Digital information – data, algorithms, responses, etc. that are available through 
technologies; 

• Knowledge – the acquaintance of information obtained through experience or 
instruction; 

• Understanding – the power or ability to acquire and interpret knowledge. 
A principal aim of integrating technologies into mathematics programs at Brock is 

to teach students how to transform information into understanding. Initially the 
teaching and learning process matched the one that the Department used before the 
birth of digital information, namely 
 
 
 
 
 
 

Figure 1 
This model also works well with mathematical technologies such as Maple, 
Mathematica, Minitab, SAS, etc... These are more than repositories of information, 
they are intelligent9, in the sense they are capable of generating new information. A 
challenge for undergraduate mathematics education continues to be that such systems 
can, for the knowledgeable user, provide solutions to most well structured problems 
that arise in the first three years of a traditional university mathematics program. The 
integration of these technologies into the Brock mathematics programs changes the 
                                           
9 In this text we use the term ‘intelligent’ to distinguish from technologies that are passive, i.e., 
strictly provide data. 
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first box in Figure 1 and adds digital information to traditional forms of information 
(texts, lecture notes, etc.). This addition provides many ways in which to enrich the 
base of student knowledge, for example: faculty can spend more time on the 
development of mathematical concepts because they and the students can rely on the 
technology to provide technical information; alternative representations are often 
easily generated; students can work on problems and applications that are not bound 
by traditional course information, and; learners can explore conceptually advanced 
mathematical concepts which are normally deferred until all the analytical skills have 
been addressed. In summary, by the mid 1990s, information technologies were well 
established in a majority of mathematics Brock courses. 
 By that time some faculty became aware of the great potential of 
communication environment building technologies. Their vision was that a program 
would be developed to integrate these and to motivate its students to take on, more 
and more, the responsibility of mediator in their own mathematics learning (second 
and fourth box in Figure 1). Ralph (7) summarizes the situation as follows: “The 
central challenge of any mathematics program is to create an environment in which 
students become internally directed and personally invested in moving themselves 
along the long road to mastery. The problem with traditional undergraduate 
mathematics programs in this regard is that if students try to take the initiative in 
creating and investigating problems and applications of their own devising, they 
quickly come up against difficulties that they cannot handle with purely analytical 
tools. For this reason, traditional programs must be very tightly choreographed 
around the problems that can be solved by hand and over the years this approach can 
become “canned” and regimented. Technology can offset the rigidity of a traditional 
mathematics program by providing students with access to an endless supply of 
problems and applications that can be investigated both computationally and 
analytically.” Therefore the aim of the proposed MICA program was to change the 
model in Figure 1 to the following: 

 
 
 
 
 
 

Figure 2 
In many ways this parallels the development that one would hope for in a 
mathematics program that has a core of modelling courses. However students in the 
MICA program build on a knowledge base that is more extensive as the information 
they have access to includes both passive and intelligent digital sources. 
 How does one educate a student to become her own mediator and how is this 
done as early as possible in their university mathematics experience? At Brock 
students take, in their first semester, a course in Calculus and one in Linear Algebra. 
Both of these courses include extensive experiences with Maple and with Journey 
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Through Calculus (8). A brief discussion on the first MICA course that students take 
in the second semester and upper year MICA courses will highlight the approach that 
the Department has taken to encourage creativity and intellectual independence as the 
students develop mediator skills. 
Section 3: MICA courses – directions and the integration of technologies 
In the first part of the MICA I course, students are exposed to a rich context for 
conjectures: prime numbers and Collatz conjecture. During lectures10, students work 
in small groups of 3 or 4 and raise original questions and conjectures about the 
topics. These are written on the board and a discussion on their testability follows. 
For their first assignment, each student designs a program (vb.NET) in which they 
explore a conjecture of their own. In the second part of the course, students are 
introduced to modular arithmetic leading to the theory behind RSA encryption. The 
speed of the theoretical presentation is determined by the students as they lead the 
way by making observations and conjectures from explorations, computations and 
theorems. Of course the lecturer guides students but importantly he/she reacts to class 
questions/ observations/ conjectures that are constantly encouraged and raised. 
Students then implement the complete algorithm of RSA encryption. The last topic in 
the course is discrete and continuous dynamical systems. Each student designs a 
program that outputs numerical values and graphs the cobweb diagrams of the 
logistic function. This topic concludes with an exploration, in the lab, of the system 
stability which students simultaneously test and visualize the theory with their own 
program.  

A major part of MICA I is the original final project that encompasses a 
computer program and a written report. Each student selects a mathematical topic in 
which they are particularly interested and intrigued. Mathematics students focus on a 
mathematical investigation. Future teachers design a learning program about an 
elementary or high school mathematical concept. Students from another core 
discipline investigate a mathematical application to their own discipline. In this 
project students essentially construct and implement a Learning Object — an 
instructional component that focuses on one or two mathematical concepts and that is 
designed for another person. These objects are interactive, engaging, easy to use, and 
are designed to mediate the user from information to understanding. In the MICA 
program Learning Objects may include exploration of a mathematical conjecture or 
of a mathematical application. The main goal in MICA I course is to bring students 
to experience becoming the mediator through the design of original Learning 
Objects.  

The first experimental project on Learning Objects at Brock was undertaken in 
the summer of 2002. It involved a team composed of mathematics professors, 
practicing mathematics teachers, future teachers, and mathematics and computer 

                                           
10 Presently the course runs with two hours of lectures and two hours of labs per week.  The 
experience of the Department is that this type of course works best with a maximum enrolment of 
35 students in each section. 
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science students. Examples of finished products can be viewed on the departmental 
website (9). Other examples of Learning Objects developed by students in the MICA 
courses are also available (10).  

It is our experience that the construction of a Learning Object not only builds 
on the designer’s mathematical and didactical knowledge but it reveals these 
understandings in a visual and interactive way. 

In the MICA II full year course the focus is on mathematical modelling of 
diverse types including, for example, discrete dynamical systems, stochastic models, 
Markov chains, empirical models, and queuing models. These topics, covered in the 
MICA way, are all implemented (mainly in VB.NET and Maple) by students and are 
concluded with simulation and conjectures. For example, students design (VB.NET) 
a Learning Object to explore the distribution histograms and graphs of random 
variables. This is done before the students see the Central Limit Theorem in their 
Statistics course. Therefore students are guided through different computations, and 
are asked to develop conjectures based on their observations. Not all students are 
able to conjecture the theorem on their own, but after a full class discussion about 
plausible conjectures they are able to identify examples of the theorem in their 
results. When students finally see the theorem in their statistics class, it is no longer a 
theorem outside them, but indeed, it is somehow internalised since they personalized 
it within the design and use of their Learning Object. MICA II students work on two 
main original projects for which they personally decide on a topic. Their projects are 
significantly more sophisticated than in MICA I, since they have a better mastery of 
the technology and importantly, they have become more confident in their role of 
mediator. 

The MICA III full year course is focussed on partial differential equation 
modelling including for example heat flow and wave propagation. Guided 
assignments and projects (mainly in Maple and C++) each include an original part in 
which students have to fully use their role of mediator. For example, students were 
assigned to extend and improve some MAPLETs that animate solutions of particular 
PDEs. Two students presented their remarkable MAPLET extension at the Maple 
Summer Workshop in Summer 2004. With mastery of technology and with their 
ability to mediate their own learning, undergraduate students can contribute to the 
development of new mathematics.  
Section 4: Technologies and the education of future mathematics teachers 
Teacher Education in Ontario follows a consecutive model. This means that 
individuals interested in teaching must first graduate with a university degree and 
then apply to a Faculty of Education for a one-year program. After completing this 
additional year they receive a teaching certificate. For future elementary and middle 
school teachers and for future mathematics teachers at the secondary level, the 
consecutive model clearly places important responsibilities on departments of 
mathematics. How can these future teachers be best educated in mathematics to meet 
their specific and desired goals? Unfortunately many universities do little more than 
to pay lip service to this population of students. Within the Brock community, Muller 
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has been proactive in negotiations across different Faculties in order to develop and 
establish concurrent education programs. In these programs, students follow 
integrated studies between a Faculty that offers a teachable subject11 and the Faculty 
of Education. For those students who enter university with a desire to become 
teachers, concurrent programs provide opportunities to reflect on didactical issues 
starting from their first undergraduate year.  

The Mathematics Department at Brock has taken its responsibilities for future 
teacher education very seriously and has developed programs or courses for all levels 
of school teaching. Appropriate technologies such as Geometer’s SketchPad and 
other Ministry of Education school licensed programs are used in appropriate 
courses. Concurrent education students who aim to specialize in mathematics and to 
be certified for teaching at the middle and high school levels, take a majority of the 
MICA courses which play a fundamental role for them. They provide a unique 
opportunity for these future teachers to reflect on their own development as a 
mediator. Furthermore in their MICA projects they construct Learning Objects which 
have strong didactical components.  
Section 5: Reflections by a new faculty, Chantal Buteau 
I am currently in my second year as faculty in the Department and I’m coming from 
a rather traditional mathematics education. I knew that I was joining a department 
that makes extensive use of technologies in its courses. Therefore I had mixed 
feelings, anxiety, insecurity and excitement. In service courses (Calculus and 
Statistics for large classes) my main concern was and is to focus on concepts rather 
than on computational techniques that can easily be handled using technology. I 
admit that it is a constant battle for me. When I was taught these concepts there was 
equal emphasis on concepts and computation abilities. Diverse and rich discussions 
with colleagues help me to find a good balance. Also, my class preparations keep 
changing as I rethink what should be first discovered by students in a guided 
assignment using technology rather than directly presented to them. My conception 
of assignments and exams also had to be changed. As a new lecturer, it has been a 
genuine and enriching challenge not to copy the teaching model I had experienced. 
 In the MICA I course I faced teaching an innovative course in which the how 
to present the theory was more important than the what. On top of this, the how was 
supported by a programming environment. Fortunately, during my PhD, I had 
experienced some experimental mathematical investigations supported by 
technology. This was my beacon together with uncountably many discussions with 
my colleague Bill Ralph who has been teaching this course since the MICA program 
was first launched. It did take me some time to understand my role in the course. 
How can I best assist the students to become the mediator of their own mathematical 
development? What mediation should or should not be provided at any particular 
time? I had to adjust to the fact that a class can sometimes take a direction different 

                                           
11 Teachable subjects are specified by the Ministry of Education as being appropriate major 
disciplines for future teachers 
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from what I had planed. This is not a secure position for a fairly new lecturer, as I 
had to build on class interactivity and not reject it. I challenge students to explore 
mathematics on a personal level. Students challenge my traditional education of 
mathematics teaching. 
 The astonishing pride of MICA I students for their final projects confirmed 
that the department is for me a great environment for learning how to teach 
mathematics in the XXI century.  
Conclusions 
Technologies are evolving so rapidly that there are many avenues that mathematics 
departments can take to integrate them into their mathematics programs. This 
submission describes one route that the Department at Brock has taken to structure 
technological environments to help students engage in abstract mathematics. We 
have found that the approaches, activities, and experiences in the MICA courses are 
able to harness the students’ motivations thereby empowering them to become their 
own mediators in the development of their mathematical knowledge and 
understanding. 
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This paper is concerned with the use of spreadsheets within mathematical 
investigational tasks. Considering the learning of both children and pre-service 
teaching students, it examines how mathematical phenomena can be seen as a 
function of the pedagogical media through which they are encountered. In particular, 
it shows how pedagogical apparatus influence patterns of social interaction, and 
how this interaction shapes the mathematical ideas being encountered. Notions of 
conjecture are considered, and the trajectories learners negotiate as they settle on 
subgoals, reflect on output, and further develop their emerging theory. The 
particular faculty of the spreadsheet setting is examined with regard to the 
facilitation of mathematical thinking. Employing an interpretive perspective, a key 
focus is on how alternative pedagogical media and associated discursive networks 
influence the way that students form and test informal conjectures.  
Introduction 
The pace of development in digital technologies is rapid, with an understandable lag 
between innovation and well documented classroom-based, educational research. 
There is benefit from examining more easily accessed software over extended 
periods, through a multitude of perspectives, so as to inform educational 
communities in different ways. It allows, for instance, the potential to move beyond 
the influence of a particular software package on a particular mathematical content 
area, to more generic pedagogical issues. Compared to some digital tools, 
spreadsheet software is relatively accessible and could therefore be considered to 
offer a more equitable digital environment, in both local and global situations. The 
study described was part of an ongoing research programme exploring how 
spreadsheets might function as pedagogical media, as compared with pencil and 
paper methods. In being used as a tool for investigation, how might spreadsheets 
colour the learning experience and, in particular, how might this influence learner’s 
perceptions and understandings of mathematical phenomena? One aspect of this 
programme, to be pursued here, was to identify the ways in which participants 
approached mathematical investigations, from how they negotiated the requirements 
of the tasks, to how they produced their conjectures and generalisations. The paper 
then is positioned in the theme of learning and assessment, and has as its most 
prevalent approaches the contribution to learning mathematics and theoretical 
frameworks. 
Literature Review 
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Greater emphasis on inquiry methods, activates interplay between the task of the 
individual learner, and the way in which that is understood as an engagement within a 
more social frame. While the introduction of a social frame is inevitable, this will 
vary according to how the activity is constructed and the perceived environment 
within which this takes place. The mathematical activity is inseparable from the 
pedagogical device as it were, derived as it is from a particular understanding of 
social organisation, and hence the mathematical ideas developed will inevitably be a 
function of this device (Brown, 1996). A hermeneutic, phenomenological perspective 
is concerned with interpretation where the subject views the world by means of a 
variety of cultural forms through which understandings are filtered. In this context, 
particular pedagogical media can be seen as cultural forms and different forms model 
different ways of knowing (Povey, 1997). Ricoeur’s (1983) notion of the hermeneutic 
circle emphasises the interplay between understanding and the narrative framework 
within which this understanding is expressed discursively, and which helps to fix it. 
While these ‘fixes’ are temporary, they underpin the understanding that follows and 
the way this comes to be expressed. The internalisation is manifest in what they say 
and what they do. This enables the contention that examining the participants’ social 
interaction and output, will give insight into the ways they internalize mathematical 
understandings. This can be reconciled with other theoretical perspectives (Mariotti, 
2002) that position language, being cultural artifacts, as semiotic mediators. 
 
The prevalence of digital media generally has begun to challenge the map of 
mathematical ideas encountered in schools. Access to many key elements of school 
mathematics has been altered, as different technologies offer new ways in which 
certain constructs are created and understood. Studies involving the dynamic 
geometry software, Cabri-geometre, (Laborde, 1999, Mariotti, 2002) assert that 
conceptualization of mathematical phenomena, will be different when engaged 
through the particular software lens. Meanwhile spreadsheets have been found to 
offer an accessible medium for young children tackling numerical methods. 
Researchers have highlighted their suitability for an investigative approach as 
students learn to pose problems and to create explanations of their own (Ploger, 
Klinger and Rooney, 1997), and simultaneously link symbolic and visual forms 
(Baker and Beisel, 2001). Other characteristics, including their interactive nature 
(Beare, 1993), and the capacity to give immediate feedback (Calder, 2004) appear to 
give the learner the opportunity to develop as a risk taker; to make conjectures, and 
immediately test them in an informal, non-threatening, environment. This permits the 
learner opportunity to reshape their conceptual understanding in a fresh manner.  
 
The capacity to provide instantaneous feedback also allows for conjectures to be 
immediately tested and perhaps refuted. Lin (2005) claims that refuting is an effective 
learning strategy for generating conjectures. Mathematical conjectures often have 
speculative beginnings and as Dreyfus (1999) implies, have elements of logical 
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guesswork. Other researchers often consider them as generalised statements, 
containing essences distilled from a number of specific examples (Bergqvist, 2005). 
In their embryonic form they emerge as opinions, mathematical statements, 
generalisations, or positions. These can then be challenged or confirmed with 
explanation, leading to mathematical thinking. Suggesting counter-examples, or 
exposition of how two mathematical explanations are similar, indicate a more robust 
form of examination of the conjecture (Manouchehri, 2004). The learner’s 
perturbance, when gaining immediate access to counter-intuitive outcomes to 
inputted data, and the subsequent influence of that tension on the investigative 
process, also influence the investigative trajectory 
  
Approach 
The paper considers two settings where investigation takes place in a spreadsheet 
environment. The first situation located groups of three, first year, primary, pre-
service students in a typical classroom setting while groups, from the same class, 
worked in an ICT laboratory, doing the same investigation using spreadsheets. Their 
discussions were recorded and transcribed, each group was interviewed after they had 
completed their investigation, and their written recordings were collected. This data, 
together with informal observation and discussions, formed the initial basis for the 
research. Five weeks after the first data was gathered, a similar approach for data 
collection was used, with the students using the same medium, but a different 
investigation. The second situation involved ten-year-old students, attending five 
primary schools, drawn from a wide range of socio-economic areas. There were four 
students from each school, eleven boys and nine girls, of mixed ethnicity. The data 
was produced in the same way as the first situation. The transcripts from both were 
then systematically analysed for patterns in the dialogue, within and between the 
settings.  
 
Results and Analysis 
Two aspects were considered in the formation and testing of conjectures. Firstly, the 
data is examined for differences the pedagogical media may have evoked, with 
particular regard to the pre-service teaching students. An episode with the ten-year-
old learners is then analysed with regard to the notion of subgoals 
 
Comparison of two pedagogical media 

The dialogue in each situation demonstrated a contrast in the initial approach to 
engaging in the mathematics. In the classroom situation it began with a group 
member initiating the negotiation of the meaning and requirements of the task with a 
single discrete numerical example. For example, group one. 
Karl: Lets try each number one at a time. One times 101 is 101. 
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Group two likewise used this to begin the process of solving, but also to help 
determine the nature of the task; what it was asking them. For example: 
Sarah: So if we had twenty three times a hundred you would have twenty three 
hundred…Lets say we do twenty three times a hundred and one, we would get twenty 
three hundred plus twenty three ones 
As they made further sense of what the problem was about, they began to predict, 
verify and reflect in a discrete numerical manner. 
Rachel: We went through one at a time and solved them. We solved them on paper 
and we solved them with a calculator.  
In contrast, those groups working in the spreadsheet setting used the spreadsheet to 
get a broad picture; they utilised the formulae and copy down functions to create a 
numerical table that could then be examined for any pattern. They used more 
algebraic language, while the pencil and paper groups had more numerical reference. 
For example: 
Kyle: I haven’t predicted. I was just going to put in A1 times 101 and drag it down. 
Josie: So we’re investigating the pattern of 1 to 16 times 101 
This appears a more direct path to the patterning approach, and these groups quickly 
recognised a pattern, and explored further based on visual aspects. It also introduced 
a difference in terms of the technical language utilised. “Drag it down” is functioning 
language rather than mathematical, but the inference is clearly that there is a pattern, 
which might possibly lead to a generalisation; and that the spreadsheet by nature will 
enable users to quickly access that pattern. Most significantly, the social interactions 
appear to shape the analysis of the patterns in distinct ways. Given that the path to, 
and manifestation of, the patterns differs, the dialogue indicates a different approach 
once the patterns are viewed. Those using the spreadsheet used a more visual 
approach. They were observing and discussing visual aspects eg the situation of digits 
or zeros. For example: 
Jo: With two digits you just double the number. You take the zero out.  
Those using pencil and paper were more concerned with the operation aspects that 
generated the patterns. For example: 
Sarah:  Basically, if you times your number by a hundred, and then by 
one, you would add them together, and get your answer. 
To generalise a pattern in terms of the sequence of digits is significantly different to 
generalising in terms of an operation. In this aspect, the different settings have 
certainly filtered the dialogue and approach to forming conjectures, and by inference 
the understanding.  
 
The influence on sub-goals 

The characteristic of spreadsheets to produce immediate responses to inputted data 
permitted new sub-goals to be promptly set, assisting the emergence of a theory. The 
data produced relates to an investigation involving exploring terminating and 
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recurring rational numbers, when one is divided by the counting numbers. In the first 
case they negotiated to gain some initial familiarisation of the task. 
Sara: One divided by one is one - it should be lower than one. 
They entered 1 to 5 in column A and =A1/1 in column B to get: 
1  1 
2  2 etc 
This posed an immediate tension with their initial thoughts. After exploring various 
formulae and associated output, they settled on a way to easily produce a table of 
values to explore. The spreadsheet environment shaped the sense making of the task 
and the resetting of their sub-goal. Critically, it had enabled them to immediately 
generalise, produce output, then explore this visually. They generated further output: 
1  1 
2  0.5 
3  0.333333..  
4  0.25 
5  0.2;   
6  0.166666..etc. 
Sara: So that’s the pattern. When the number doubles, it’s terminating. Like 1, 2, 4, 8 
gives 1, 0.5, 0.25, 0.125.  
Jay: So the answer is terminating and in half lots. Lets try =0.125/2; gives 0.0625-
which is there. (Finds it on the generated output from) 
The structured, visual nature of the spreadsheet prompted the children to pose a new 
conjecture, reset their sub-goal and then allowed them to easily investigate the idea of 
doubling the numbers. The table gave them some other information however. 
Jay:  1 divided by 5 goes 0.2, which is terminating too. (Long pause) 
After further exploring, they reshaped their conjecture, incorporating their earlier 
idea. 
Sara:  If you take these numbers out they double and the answer halves. 
Jay: That makes sense though, if you’re doubling one, the other must be half. Like 
125 0.008;  250 0.004. 
Sarah: What’s next. Let’s check 500 
Jay: Let’s just go on forever! 
They generated a huge list of output; down to over 4260. 
Jay: 500 0.002; 1000 0.001. When you add zero to the number you get a zero 
after the point 
Although this particular group didn’t fully explore the relation of the base numbers to 
the multiples of ten, they have made sense of, explored, and generalised aspects of 
the investigation. The pedagogical medium through which they engaged in the task 
has influenced the contextualization and approaches they have taken. When asked: 
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“When you saw the problem, how did you think you would start?” the children’s 
responses corroborated this perspective.  
Sara: Re-read to get into the math’s thinking, then straight to a spreadsheet formula. 
Greg: I type what I think and try it 
As well, the spreadsheet groups progressed more quickly into exploring larger 
numbers and decimals. This appears to indicate a greater propensity for exploration 
and risk taking, engendered by the spreadsheet environment. It seems the 
spreadsheets have not only provided a unique lens to view the investigation, but have 
drawn a distinctive investigative response. 
Fran: Using a spreadsheet made it more likely to have a go at something new because 
it does many things for you. You have unlimited room. You can delete, wipe stuff 
out. 
Chris: Columns make it easier- they separated the numbers and stopped you getting 
muddled. It keeps it in order, helps with ordering and patterns. 
 
Conclusions 

This study demonstrated that the different pedagogical media provided a distinct lens 
to contextualise the mathematical ideas, frame the formation of informal 
mathematical conjecture, and condition the negotiation of the mathematical 
understanding. As Brown (1996) argued, the mathematical understanding is a 
function of the social frame within which it is immersed, and the social frame evolves 
uniquely in each environment. The data supported the supposition that the availability 
of the spreadsheet led the students to familiarise themselves with, then frame the 
problem through a visual, tabular lens. It is clear also that it evoked an immediate 
response of generalisation, either explicitly through deriving formulas to model the 
situation, or implicitly by looking to fill down, or develop simple iterative 
procedures. Tension, arising from differences between expected and actual output, 
and opportunities, arising from possibilities emerging from these distinctive 
processes, led to the setting and resetting of subgoals. These, in turn, further shaped 
the understanding of the investigative situation, and the interpretation of 
mathematical conjectures. 
 
The spreadsheet approach, perhaps due to the actual technical structure of the 
medium, led more directly to an algebraic process, with the language interactions 
containing both algebraic and technical terminology. It seemed, in fact, that the 
spreadsheet setting, by its very nature, evoked a more algebraic response. The 
participants in these groups were straight away looking to generalise a formula that 
they could enter and fill down. Their language reflected this, but the interactions also 
contained more language of generalisation, and it took them generally less 
interactions to develop an informal conjecture. Those working in the classroom 
setting used a discrete numerical example to engage in the problem; to make sense of 
its requirements as well as initiating the process of solving. They tended to try, 
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confirm with discussion and then move more gradually into the generalisation stage. 
Their conjectures were slower to emerge not only due to variation in computational 
time, but also due to the approach the spreadsheet evoked. The way they thought 
about the problem was different. Their initial dialogue seemed more cautious, and 
contained comments requiring a degree of affirmation amongst group members 
before moving into developing their conjecture. As a consequence the descriptions of 
the process undertaken and the mathematical thinking were more fulsome. This may 
be evidence of more fulsome understanding too. 
 
The children also identified speed of response, the structured format, ease of editing 
and reviewing responses to generalisation, and the interactive nature as being 
conducive to the investigative process. While this particular medium has unfastened 
unique avenues of exploration, it has as a consequence fashioned the investigation in 
a way that for some learners may have constrained their understanding. The 
approaches and outcomes, as reflected in the dialogue, are different. If the dialogue 
between learners filtered the mathematical thinking and formation of conjectures in 
different ways, according to pedagogical media, then perhaps complementary 
approaches would give opportunity to enhance mathematical understanding. As well, 
how gestures might mediate the learning, and how the findings of this ongoing study 
might resonate with those investigating other software, for example Cabri-geometry, 
are key aspects to also consider.  
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Investigating on E-Exercise Bases (EEBs) is a necessity. This presentation 
successively focuses on teachers, students and mathematics. The anthropological 
approach and the methodological individualism frame account for some regularities 
and disparities in teachers’ and students’ attitudes towards these tools and specify 
the kind of mathematical work accomplished. The results presented here are based 
upon observations in various French high schools and universities.  
 
The purpose here is to enquire about the use of E-Exercises Bases (EEBs) in teaching 
and learning mathematics. It is especially related to theme 2 of the ICMI Study 
“learning and assessing mathematics with and through digital technologies”. Indeed, 
some aspects of “how students learn mathematics with -these- digital technologies 
and the implications of the integration of -these- technological tools into mathematics 
teaching for assessment practices” are investigated. According to the discussion 
document of the ICMI Study, several approaches are given. After exposing the nature 
of EEBs and why we should inquire about their use, the three usual poles (teacher, 
student and mathematics) are successively analysed in an EEB environment. This 
study is supported by emblematic examples taken from quite an important number of 
observations in ordinary classes in France.  
The nature of EEBs 
EEBs mainly consist of classified exercises and propose in addition to these an 
associated environment which can include advice, solutions, corrections, 
explanations, tools for the resolution of the exercises, score and even sometimes 
corresponding courses etc. They differ from microworlds or computer algebra 
systems (CAS) which are open environments in which generally no specific tasks are 
predefined. 
As an example, let us look at a particular EEB : Wims (http://wims.auto.u-psud.fr). 
This software is a collaborative one, available in six languages and initially 
developped by French Professor Xiao Gang. All examples given hereafter will stem 
from this EEB. Wims is a library of on-line interactive mathematics resources which 
includes exercises for all levels: from primary to tertiary education. Teachers can 
choose some of these exercises and build their own on-line worksheets for their 
students. Students can do the same exercise several times in order to improve their 
marks. In such case, the structure of the exercise will remain the same, but its 
numerical values will differ. 
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Faced with the variety of EEBs, some tools were designed to describe and to evaluate 
them, under various aspects. In a recent paper, Tricot (2003) uses three key concepts 
that are linked: usefulness, usability and acceptability. To show this variety, here are 
some variable characteristics of an EEB. Each time, we classify Wims in this variety. 

• The EEB may be « opened » or « closed » to the teacher. Wims is opened 
because teachers may choose the exercises and the parameters linked and design 
the exercise sheet wanted. To create exercises, some computer knowledge is 
required. 

• Expected answers differ from one EEB to another. For Wims, answers are 
numerical values, MCQs or short mathematical expressions but not sentences. 

• Feedbacks are another EEB characteristic. Wims’s feedbacks are: “right” or 
“wrong” with the right answer given and a mark. In several exercises feedback 
can be more interesting as we will see later. Wims does not provide any proof. 

• Help or advice is also variable. Wims suggests some generic tools such as 
formal calculators and graphic tools but no specific helps adapted to any 
particular exercise.  

Why investigate exercises set on line?  

An inventory of didactic research in the area of ICT tools has shown the importance 
given by researchers to microworlds and CAS (Lagrange & al, 2000). On the 
contrary, research works especially devoted to questions raised by the use of EEBs 
are scarce. However, the number of EEBs is growing every day and EEBs themselves 
evolve very quickly. Moreover, it is not relevant to apply the results obtained with 
other ICT tools to EEBs. A lot of studies with microworlds and CAS consist in the 
building and the study of didactic situations where the “milieu” produces 
contradictions, difficulties and disequilibria (Brousseau, 1997); whereas, in EEB 
situations, the “milieu” is often friendly. Therefore, the economy of the mathematical 
work is altered. 
The institutional encouragement to integrate the digital technologies into the curricula 
and educational practices is another reason to investigate EEB’s use. For instance, in 
France, the network connection of educational establishments has allowed the 
introduction of new pedagogical tools called “Espaces Numériques de Travail” 
(global digital learning environments). Each student has access to a set of personal 
and general resources through the network. Some of these pedagogical resources can 
be EEBs. Another example of French institution commitment is a regional project 
focusing on the use of EEBs at high school level. Some specific results presented 
further stem from this project.  
This trend is general. In their survey regarding the use of technology in mathematics 
courses in England, Ruthven and Henessy (2002) also observe that working with 
EEBs is often mentioned by teachers as a help to organise sessions where the students 
can work at their own pace. 



 

 92 

The questions are: how to work with an EEB in a classroom? How do teachers 
manage the computer sessions? How do students work with this tool? And (part 4) 
what kind of mathematics are they doing?  
How do actors (teachers and students) cope with the use of an EEB? 

The use of an EEB brings modifications in the classroom. After having specified the 
observed sessions and the framework, we report in this part on teachers’ and 
students’ adaptations to these modifications.  
Observed sessions  

We observe ordinary classes and we are not concerned with the building and the 
analysis of didactical engineerings. All observed sequences in high school or 
university are training exercises and most are organized in the common following 
way. Before the sequence, the teacher builds a digital exercise sheet or designs a path 
in the EEB. During the sequence, students work, alone or in pair, in computer and 
paper/pencil environments. According to the EEB and the exercise, they may or may 
not put some advices into practice or ask the teacher. They enter their answer on the 
computer. The EEB then provides a mark, a comment, the correct answer or all the 
details of the proof. During the sequence, the teacher helps students individually. 
Most of the time, the program is long so that no student can finish it during the 
sequence. The end of the sequence is the end of the time granted: the teacher either 
says “you have to finish at home” or “we shall finish next time” or even nothing 
concerning the completion of the exercise sheet.  
Framework 

In part 2, we saw, that the institution must be recognised as essential in the process of 
ICT integration. However, students can have different paces during the observed 
sessions, and can also follow different paths among exercises. It is thus necessary to 
choose a framework to articulate these two aspects: institutional pressure vs 
individual approach. This is why we first turn our attention to the anthropological 
approach developed by Chevallard (1999). This approach with its institutional basis 
gives a proper place to institutional issues. To articulate this frame with the actors’ 
individuality the analysis of EEB integration is supported by methodological 
individualism. The later is a philosophical method aimed at explaining and 
understanding broad society-wide developments as the aggregation of decisions by 
individuals. In sociology, Jon Elster among others follows this lead: "to explain social 
institutions and social change is to show how they arise as the result of the actions 
and interaction of individuals. This view, often referred to as methodological 
individualism, is in my view trivially true." (Elster, 1989). According to Bernoux 
(2000), the viability of a modification in a community is the result of collective rules 
and of the individual meanings linked to them. Notice that these individual meanings 
are not easy to identify.  
The teacher’s role 
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Analysis discussed here stem from observations at high school level. As mentioned 
previously all the observed sequences are training exercises in which teachers help 
students individually. However, there are some differences from one class to another 
and from one teacher to another. In our view point, the chosen framework can help to 
understand both regularities and diversities. 
For teachers, rules come from the institution which encourages the use of ICT tools 
and allows the teachers some flexibility. For example, teachers involved in the 
regional project can, from a panel, choose their preferred EEB and the Region will 
finance the EEB which is not free. Another important rule exists even if it is not 
directly linked to ICT tools: the mathematics syllabus for high school requires 
teachers to manage specific sessions with pupils in difficulty. Observations show that 
teachers often use EEB to manage such sessions. EEBs allow them to respect the 
working pace of each student and to help them individually if necessary. So, it is a 
way to satisfy this double injunction which comes from the institution: to use ICT 
tools and to support individually students. It may be a way for teachers to make sense 
of the integration of ICT tools. Therefore EEBs are easier to integrate into their 
practice than other kind of ICT tools. This idea can be linked with Cuban’s results 
(2001): « the point is that teachers change all the time. It is this kind of change that 
needs to be specified. Champions of technology wanted fundamental change in the 
classroom practice. The teachers that we interviewed and observed engaged mostly in 
incremental change.” However, to keep this teacher’s individual meaning, it is 
necessary for the institution to guarantee a good technical material and to maintain 
the student’s individual help injunction.  
Among these regularities, some disparities exist. First of all, teachers do not choose 
the same EEB. Interviews show that their expectations are also different. They do not 
choose the same didactical organisation. For instance, they may organize EEB 
sessions with weak students or with strong ones to have more time to work face to 
face with weak ones. They may also design different paths in the EEB according to 
the students. A difficulty observed and expressed by students and teachers, is to keep 
written tracks of the work done and, more generally, to articulate paper support with 
support screen. Teachers also have different choices about this point. For instance, 
some of them ask students to use a specific notebook for EEB sessions, others insist 
on the same notebook and a third group- frequently teachers recently involved with 
EEB- will have no notebook for EEB sessions.  
The student’s role 

In this part, the discussion is based on observations at tertiary level. The chosen 
framework allows to discuss both observed regularities and diversities. 
As in any classical exercises’ session, the rule for students is to solve the exercise 
sheet and to ask for help if needed. However, students seem to work really hard 
during the observed sessions, may be more than in classical exercises sessions. Our 
explanation is that the rule is not exactly the same. Students know that if they do 
nothing, nothing will happen. In particular, there is no common solving moment they 
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can wait for. Actually, students have more responsibilities. They may choose their 
own path among the exercises: decide to use or not helps or to have a glance at 
solutions, decide what to keep on their written notes etc. Hence there is an obligation 
to act and a multiple choice of actions. We think that these two points help students to 
give personal meaning to these sessions. So the hypothesis to explore here is: 
working with an EEB introduces some liberty which enhances students’ activity by 
adding more meaning to their work. Notice that these new responsibilities require 
them to produce more difficult cognitive efforts.  
However, if all students seem more active in EEB sessions, the type of activity is 
different. We, sometimes, observe strategies such as scoring (students always solve 
the same kind of exercises to have a good mark) or random answering (especially in 
MCQ). Log files when available also show that, on the contrary some students work a 
very long time at home on the EEB. These different attitudes could also be linked 
with another rule: to pass the exam. In some interviews, some students said “working 
with an EEB is funny but we will never have such exercises at the exam”. So a 
consequence from the dialectic between rules and individual meaning is: the more 
EEB sessions are linked to the exam, the stronger the students’ efforts are. Thus to 
ensure a successful integration the first challenge for the teacher should be to build 
didactic organisations linking together classical sessions, EEB sessions and exams.  
We have seen that EEB sessions can increase students’ activity. Now let us inquire 
about what kind of activities.  
Mathematical activities developed by an EEB use  

Personal and institutional practices can be explained in terms of praxeologies in 
Chevallard’s approach. They are described by three main components: the type of 
tasks, the techniques used to solve these tasks and the technologico-theoretical 
components that is to say the discourses and the mathematical basis which are used in 
order to both explain and justify the techniques. The advance of knowledge requires 
the routinisation of some techniques and in a more general idea, a work on the 
techniques. In this part we would like to stress out that EEBs can make this process 
easier. Moreover, we notice that EEBs enable to highlight some specific techniques. 
The importance of the mathematical work dedicated to the technique 

As previously mentioned, all observed sessions with EEBs are training exercises and 
students work on already learned techniques. The process of routinisation may 
require a critical quantity of exercices and EEB sessions is one way for students to 
reach their own necessary quantity. For instance, EEB sessions may allow to learn 
technical solving methods step by step. In the following example, students must 
choose the successive adequate operations and the computer executes them, giving 
the new equation after each step. At the end the computer assesses both the result and 
the number of steps to obtain it.  
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Fig. 1 
This exercise is interesting because it allows to train oneself in one specific part of 
the technique: the choice of the operations. The computer takes in charge the 
calculation. Some of these exercises could not be suggested to students without EEB 
and would otherwise be sent back implicitly to a possible personal work.  
Mathematical techniques highlighted  

Due to the MCQ form of some exercises, student may use techniques such as testing 
or eliminating. For instance, here is a Wims exercise to work in algebraic and 
geometric frames. According to Douady (1986), this kind of tasks is known to be 
useful in the learning process because it creates a link between algebraic frame and 
graphic frame. 

 
Fig. 2 

It is necessary to discuss all these techniques: they are mathematical’ ones and not 
classical’ ones. Because they ask students to have a control over their result, it can be 
very interesting to train them into this type of reasoning. 
Of course, it is also possible to search such exercises in a paper and pencil 
environment but, with EEB, it seems easier to generate as many exercises as 
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necessary for each student. Sometimes, EEBs also offer tasks which are impossible to 
work with in a traditional environment as in the following Wims’ example. 
Students must find an algebraic expression whose curve is the closest to the given 
one (here a lower red line). The student’s answer is the formula g(x)=(x/2)+1. EEB’s 
feedback is the representative line corresponding to this answer. The student may 
then realise that his/her answer is wrong and try to adjust it with a better one. The 
answer is wrong however it is not far off and the student may find the right answer on 
his/her own, making links between algebraic and geometric modifications. One can 
examine this exercise, in terms of didactical situation theory (Brousseau, 1997). In 
this example, the milieu is antagonistic and the student may acquire knowledge 
thanks to the feed-backs. 

 
Fig. 3 

 

Conclusion  

EEBs are specific ICT tools consisting of classified exercises with an associated 
environment. The contribution wants to explain that specific research on EEBs’ use is 
necessary for three reasons. More and more EEBs exist. Due to institutional 
injunctions in particular, their use will increase. Previous studies are frequently 
irrelevant as they differ from other ICT tools, for instance they provide mostly an 
allied “milieu”. Based upon different EEBs’ use observations in French context, this 
contribution focuses successively on teachers’ and students’ attitudes and on 
mathematics embedded in EEBs sessions. The anthropologistic approach and the 
methodological individualism frame allow us to focus on the actor’s attitude. 
Regarding teachers, EEBs appear as a way to organise individual support. This 
organisation may differ from one teacher to the next or even from one class to 
another. That is the result of the dialectic action of norms coming from the institution, 
and personal meaning coming from teachers. Students’ norms, passing the exam and 
solving the exercises, and their individual meaning linked to the EEB session imply 
some regularities and singularities in their attitude. At last, EEBs seem particularly 
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adapted to work on techniques. Some techniques like testing, eliminating, solving 
step by step, or solving by trials and errors are highlighted by EEBs’ use. 
The continuation of the study will benefit from the work of TELMA, analysing the 
influence of different theoretical frameworks in the design and/or the use of digital 
technologies. TELMA is a European Research Team (ERT) established as one of the 
activities of Kaleidoscope, a Network of Excellence (IST–507838) supported by the 
European Community (www.noe-kaleidoscope.org).  
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In this discussion I wish to tackle the issue of how digital technologies (DTs) shape 
teaching and learning of mathematics. Teachers and students of mathematics use DTs 
in a multitude of ways to enhance mathematical understandings but there is limited 
information about the directions and nature of shifts in the conceptual ground gained 
by the learners and its relationship to pedagogical strategies adopted by teachers. The 
issue will be examined within the framework of schemas as epistemological 
structures. Working on the view that schemas provide visual representations of what 
is learnt, I propose to analyse a series of activities by students and teachers that 
involve the active use of a variety of DTs. The impact of DTs on students’ and 
teachers’ prior knowledge, and the extension of that knowledge will be a principal 
consideration. 
  
Introduction 

The nature of mathematics and mathematics learning continues to be a dominant 
theme in current debates about reforms in mathematics teaching and curriculum. In 
so doing, the mathematics education community at large is focusing on issues 
concerning how individuals come to understand mathematics and how teachers can 
better scaffold deep learning. Against this background, the perceived and actual role 
of digital technologies in mathematical pedagogies of practitioners has received 
particular attention.  

In this discussion paper my aim is to a) characterize the development of 
mathematical knowledge by drawing on schemas as epistemological structures and b) 
examine the potential and actual role of digital technologies (DTs) in supporting the 
growth and transfer of such structures for learners and teachers of mathematics. The 
above aims are expected to address three themes that are the focus of the 17th ICMI 
Study: Roles of different digital technologies, Contributions to learning mathematics 
and Role of the teacher. 
Theoretical framework 
Learning mathematics can be seen as the continuous process involving the 
assimilation and accommodation of new understandings into existing understandings. 
This Piagetian notion as it relates to mathematical learning is consistent with the 
view that mathematics constitutes a corpus of knowledge constructed and used by 
members of a community. This knowledge and the accepted conventions may appear 
to be static or ‘given’ at a particular point in time. However, these conventions and 
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facts about mathematics are subject to change as the community evolves, and other 
models are developed to make sense of the environment. Thus, there is a need to 
consider frameworks about learning and teaching that would provide windows into 
how DTs mediate thinking and construction of new forms of meanings.  

Proponents of Activity Theory argue that DTs can be seen as cultural tools as 
that mediate thinking and thereby create new forms or levels of understanding. How 
can we characterize the trajectories of understandings that learners follow? While the 
notion of trajectories of understandings seems to impose boundaries to the path of 
understanding, we need some way to characterize changes in learner’s attempt to 
make sense of the mathematical knowledge and its utility. The construct of schemas 
provides a solid base from which to examine this issue. 
Schemas and mathematical knowledge development  

One group of cognitive psychologists adopt the network perspective in making 
judgments about mathematical knowledge development (Anderson, 1977; Marshall, 
1995; Sweller, 1989). According to this view conceptual growth and mathematical 
understanding can be interpreted in terms of conceptual nodes and relations between 
nodes. As students’ experiences with a concept or a set of concepts increase, they 
come to form organised meaningful wholes called schemas. Schemas can be 
visualised as knowledge structures or networks having one or more core concepts 
that are connected to other concepts by relational statements. The relations that are 
found between concepts that form a schema could denote a number of features 
including information about (a) similarities and dissimilarities between those 
concepts, (b) procedures for using the concepts for solving problems and (c) affective 
factors about those concepts. Chinnappan (1998), for example, provided data that 
showed that schemas in the domain of geometry could be organised around axioms 
or theorems about Euclidean geometry. 

According to Anderson (2000), two variables determine the quality of a 
schema: the spread of the network and the strength of the links between the various 
components of information located within the network. A qualitatively superior 
schema can be characterised as having a large number of ideas that are built around 
one or more core concepts. Further, the links between the various components in the 
network are robust, a feature which contributes to the accessing and use of the 
schema in problem-solving and other situations. A high quality schema can also 
benefit students by helping them assimilate new mathematical ideas because such a 
schema has many conceptual points to link with. As a theoretical construct schemas 
provide a useful way to interpret the growth of advanced mathematical knowledge by 
identifying pedagogically important relations.  
Role of schemas in problem representation 

It is assumed that performance in mathematical tasks is to a large measure dependent 
on accessing and using prior knowledge that is organised in the form of schemas. A 
major advantage of having knowledge stored in clusters or chunks is that they 
facilitate retrieval of the required knowledge from the long-term memory into the 
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working memory during information processing. In problem-solving contexts 
schemas play an influential role during the construction of a representation for the 
problem. Cognitive psychologists argue that the solution of mathematical problems 
can be greatly enhanced if students are taught to construct useful representations of 
problems (Frederikson, 1984, Kaput, 1987). 

Building a problem representation can be a deliberate process in which 
students attempt to establish meaningful links between bits of information in the 
problem statement and knowledge embedded in their schemas that can be related to 
the problem. Students’ repertoires of problem-related schemas could include, but not 
are restricted to, (a) knowledge of procedures and strategies associated with tackling 
a group of problems that are similar to the problem in question, (b) mathematical 
concepts and (c) knowledge about previous experiences with similar problems. 
Hence, building a representation of the problem involves, among other things, 
making decisions about what to select from the above range of schemas. This point 
was made by Hayes and Simon (1977) who have suggested that ‘the representation of 
the problem must include the initial conditions of the problem, its goal, and the 
operators for reaching the goal from the initial state’ (p.21). 

The construction of representations is a cyclic event where students continue to 
refine one representation or change to a different one until the correct match is found 
between schemas that have been accessed and the goal. The goal could be unknown 
value that has to be determined or a mathematical result that has to be proved via a 
chain of reasoning. 

The above model suggests that instructional methods that would help students 
decompose problems into sub-problems would benefit them in three ways. Firstly, 
students might be expected to access previously acquired schemas from their 
memory by examining what is given in the problem. Secondly, the accessed schemas 
could be deployed in solution of sub-problems. Thirdly, students could relate the sub-
problems in ways that would help them reach the problem goal. The net effect of 
teaching for problem representation is that students are encouraged to access and use 
a greater proportion of their previously learnt knowledge. 

In order for students to develop a sophisticated schema, say, about functions, 
they need to increase the number and quality of connections between the definition of 
functions, families of functions and use of functions among others. As the schema 
expands one might expect information about related concepts such as derivatives and 
optimisation become more easily incorporated. In other words, an existing schema 
that has the relevant prerequisite knowledge supports students’ understanding of 
derivatives and optimisation. In this way schemas can be argued to provide a 
measure of the depth of understanding students develop about mathematical ideas. 
More critically, schemas provide a useful tool for the analysis of conceptual links 
between university and secondary mathematics. 
Teaching based on schema analysis 
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Once we have some information about the gaps and weaknesses in the students’ 
schemas, we are in a better position to devise strategies to help students develop 
appropriate schemas or modify existing schemas by drawing on a range of digital 
technological tools. Let’s us assume that students are experiencing difficulty in 
grasping the concept of functions. We could adopt the following three strategies in 
order to develop schemas and facilitate the transition to more advanced schemas 
involving a system of three or more linear functions.  

Firstly, tutorial-type classes can be effective in ‘reteaching’ the target ideas 
such as systems of equations, variables, solution of equations and geometric 
interpretation of solution of two equations. The nature of the target ideas will 
naturally depend on the prerequisite knowledge that lecturers consider as necessary 
for the next level course. 

Secondly, students could be encouraged to work in groups on a series of 
activities that are developed in response to improving the above schema. For 
instance, we could provide a practical problem that requires the generation and 
solution of a system of two linear equations. Student could attempt to solve this as a 
group, after which they could brain storm the problem and their solution in terms of 
the three concepts above. This activity has the potential to facilitate the construction 
of new links that were non-existent in the schema of the students in the first instance. 
Teachers could act as critical friends during this exercise. 

The teacher’s own understanding of the focus concept (functions) and his 
knowledge about how the DTs can be used effectively to aid students’ thinking about 
the concept are key to the successful orchestration of the lesson and the above 
instructional strategies.  
Digital technologies and mathematical problem representation 

Teachers can use DTs such as computer softwares in multiple ways during the course 
of problem solving. Firstly, softwares could be used as an evaluative tool to check 
the quality of students’ prior knowledge schemas. A useful strategy here would be to 
ask students to compare and contrast concepts and procedures that are found in the 
solutions produced by computers with that of their own. For instance, we could ask 
students to find the limit of a rational function, f (x) with and without the use of 
computers. Students’ own solution attempts would reveal attributes of their schema 
in this area. Students could then be required to find the limit of the same function 
with the aid of computer programs. These programs have in-built facilities that help 
them visualise the function as well generate a table of values that demonstrate the 
link between values of x  and the limit of f (x) . That is, softwares provide relatively 
easy and rapid access to multiple representations of the problem and associated 
concepts. Palmiter (1991) advocated this technique of using technology to help 
students build and refine schemas that are rich in conceptual information about 
calculus. 

The comparison of students’ answers and that produced by the computer 
softwares could thus be used as an important learning and diagnostic activity. The 
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more enriched interpretation of the problem provided by the computer solution has 
significant pedagogical value in that it would help students not only understand the 
limitations of their schema, but more importantly, demonstrate in a dynamic manner 
the relationship between the x , f (x) and the limit of f (x) . We can go a step further by 
asking students to justify their solutions and computer-generated solution to peers, 
and explain any apparent contradictions. This activity would further enlarge their 
schema for the concept of limit. 
Teacher and student knowledge schemas 

The learning environment is one in which teachers and students engage in ways that 
would help teachers share his or her understandings with the students. This 
engagement can be mediated by the use of DTs with the aim of getting students to 
build the range of connections that are present in the teacher’s schema As an 
illustration, some students tend to develop a limited understanding of the concept of 
fractions particularly as these relate to making sense of real-life applications. 
Teachers are expected to have a wider network of fraction schemas including the 
prevalence of fractions in the interpretation of gradient and/slope of an inclined 
plane. Students could be encouraged to access this feature of fractions by examining 
contexts where the idea of gradient comes into play. Students could search these 
contexts on the Web, and teachers could ask them to engage in discussions, say about 
part-whole relations. The ensuing discussions could aid in the Aid in the discovery of 
new ways of thinking about fractions and contribute to improved connectedness, the 
construction of robust schemas. Here is a case of how DTs mediate thinking and 
active involvement of the learners. The ways tools mediate thinking and knowledge 
construction has been a central issue for mathematics educators (Gutierrez, Laborde, 
Noss & Rakov, 1999). 
Teacher knowledge and student knowledge involving DTs 

Engaging teachers  

In a study of use of graphic calculators, Chinnappan and Thomas (2003, 2004) 
showed that an experienced teacher used digital tools to model the more abstract and 
complex areas of algebraic understanding. In a related study, beginning teachers 
engaged in online discussions to discuss the intricacies of teaching multiplications to 
young children (Chinnappan, 2003). These discussions were conducted via WebCT 
and other resources available on the Internet. 
Engaging students  

Chinnappan’s (2001) work with young children’s understanding and use of fraction 
concepts during problem solving also demonstrated the pedagogical value of 
softwares in supporting learners to reflect on their prior understandings. In this study, 
a software based on JavaBars mediated children’s cognitive actions. Ekanayake, 
Brown and Chinnappan (2003) investigated the conceptual terrain of secondary 
students as they attempted to solve a series of geometry proof-type problems. The 
researchers developed a software to guide students to better access their prior 
knowledge of theorems as well reflect on the areas they need to work in order to 



 

 103 

make progress with their problem-solving efforts. The need to develop softwares that 
would scaffold schema development was also supported in another study by 
Chinnappan, Lawson, Gardner, (1998). 
Conclusion 

How DTs support deep learning and teaching of mathematics is an important issue 
for the 17th ICMI study. My analysis here suggests that we need to examine the way 
we can map the learning trajectories of individual students, and what teachers do in 
using DTs to scaffold learning in the process. Schemas as epistemological structures, 
it would seem, provide a powerful alternative model to analyse the issue. 
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Integrating Graphic Calculator into the Singapore Junior College   
Mathematics Curriculum: Teacher Change 
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In Singapore, the revised junior college mathematics curriculum implemented in 
2006 has specifically identified the graphic calculator as an important tool in the 
teaching and learning of advanced level mathematics topics (MOE, 2004). The study 
described here, which is part of my PhD thesis, investigates teacher change, in a time 
of transition from a classroom without graphic calculator use, to teaching in a 
classroom where graphic calculator has the potential to be an integral part of 
students’ learning of mathematics. This study carried out in 2006 specifically seeks 
to describe how the concerns of teachers, the teaching strategies of teachers and the 
roles of teachers change when they integrate graphic calculator into the junior 
college mathematics curriculum. The study also aims to identify important features 
among teachers who are successful in integrating graphic calculator into the 
curriculum. This study is anticipated to complete by end 2006. The contributions 
from this study will be discussed in anticipation to theme B on teachers and teaching. 
 
Introduction 

The graphic calculator is a powerful handheld device that is becoming 
increasingly affordable and accessible to students and teachers in the classroom. The 
capabilities of the graphic calculator include drawing of graphs and the execution of 
numerical, matrix and statistical calculations. There is a large amount of research 
supporting the use of calculators in teaching and learning of mathematics (Dunham 
& Dick, 1994; Heid, 1997; Husna, Munawir & Suraiya, 2005; Penglase & Arnold, 
1996). The graphic calculator reduces the drudgery of applying arithmetic and 
algebraic procedures when these procedures are not the focus of the lesson. Students 
are free to spend more time on problem solving. The graphic calculator also makes it 
possible for students to visualize data in more than one way. With graphing 
calculators, students can switch between graphical and numerical representation of 
data (Waits & Demana, 2000).  

The graphic calculator has brought about changes in the curriculum, the 
assessment mode and the way teachers teach mathematics in various parts of the 
world. In Singapore, with the revised mathematics curriculum in 2006, graphic 
calculator will form an integral part of the teaching and learning process in schools. 
The use of graphic calculators will be expected for all three Advanced Level 
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mathematics papers (H1, H2 and H312) offered at junior colleges (MOE, 2004). This 
provides a rare opportunity to investigate teacher change in a time of transition. 
Rationale and Purpose of the Study 

Since the 1980’s, many countries have realized the potential of graphic 
calculators and have integrated or have made recommendations for its integration 
into the mathematics curriculum. The availability of graphic calculators has resulted 
in the teaching of mathematics to be reexamined at both the secondary and collegiate 
levels (Dunham & Dick, 1994). The National Council of Teachers of Mathematics 
(NCTM) has long advocated the use of calculators at all levels of mathematics 
instruction, and graphic calculators are no exception (NCTM, 1989, 2000). In 1989, 
in the Curriculum and Evaluation Standards for School Mathematics, the National 
Council for Teachers of Mathematics (NCTM) made the following 
recommendations: “Scientific calculators with graphing capabilities will be available 
to all students at all times” (p.124). NCTM’s most recent standards document, 
Principles and Standards for School Mathematics (2000), placed greater emphasis on 
the implementation of technology in the teaching and learning of mathematics by 
making technology one of its main principles. This principle states: "Technology is 
essential in teaching and learning mathematics; it influences the mathematics that is 
taught and enhances students' learning" (NCTM, 2000, p. 24).  

At present, there is much research being done on graphic calculator usage 
(Kor, 2004; Noraini, 2005). The majority of research on graphic calculators seems to 
fall into two categories; namely, student performance, and attitudes and beliefs. Most 
research studies on graphic calculators involve the investigation of the teaching of a 
certain mathematics topics using graphic calculator and report on its impact on 
student performance and understanding of concepts (Burrill, 2002). Authors of 
various reports have concluded that benefits in student achievement can be derived 
from appropriate graphic calculator use (Heid, 1997; Husna, Munawir & Suraiya, 
2005). The other category of research investigates how teacher attitude, belief and 
conception of mathematics affect the use of graphic calculator in the classroom (Jost, 
1992; Simmt, 1997; Tharp, Fitzsimmons & Ayers, 1997). So far, there is no study 
done to investigate how the concerns of teachers change as they integrate graphic 
calculator into mathematics curriculum at secondary or tertiary school levels. The 
revised mathematics curriculum in 2006 provides a rare opportunity for me to 
investigate teacher change. 

There is limited research on teaching strategies employed by teachers when 
they integrate graphic calculator into mathematics curriculum (Barton, 1995; Fox, 
1997). The relationship between teachers’ knowledge and pedagogical strategies and 
their use of graphic calculator is largely unexamined (Doerr & Zangor, 2000). 

                                           
12 H1 level: Half of H2 in breadth but similar to H2 in depth; H2 level: Equivalent to current ‘A’ 
level subjects; and H3 level: Allows for a greater range of learning and research options. Must offer 
subject at H2 level. 
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However, a recent study was conducted by Ball and Stacey (2005) to describe the 
teaching strategies that teachers can use to produce students who are judicious users 
of technology. The four teaching strategies mentioned are (a) to promote careful 
decision making and technology use, (b) to integrate technology into curriculum, (c) 
to tactically restrict the use of technology for a limited time, and (d) to promote 
habits of using algebraic insight for overview and monitoring. This study aims to 
describe and analyze how the teaching strategies of teachers change when they 
integrate graphic calculators into junior college mathematics curriculum. 

There are a few studies which investigate the role of teachers teaching with 
graphic calculator in the classroom (Barton, 1995; Doerr & Zangor, 2000; Farrell, 
1996; Simmt, 1997). Doerr and Zangor (2000) conducted a qualitative classroom-
based research study on role, knowledge and beliefs of a precalculus teacher. Five 
patterns and modes of graphic calculator tool use were identified, supported by rich 
field notes. The results of the study suggested that nature of the mathematical task 
and the role, knowledge and belief of the teacher influenced the emergence of rich 
usage of the graphic calculator. The descriptions of various modes of graphic 
calculator use seem to illuminate certain roles of teachers like being an explainer and 
interpreter of results. Thus, this study aims to investigate how such roles of teachers 
change when they integrate graphic calculator into mathematics curriculum in junior 
colleges.  

There is limited research on the factors that impact the integration of graphic 
calculator into the mathematics curriculum (Arvanis, 2003; Bynum, 2002). Arvanis 
(2003) investigated the extent Illinois high school Algebra I teachers used graphic 
calculators and what factors impacted this use. Algebra I teachers reported that the 
factors that most influenced their use were personal beliefs, ‘offers something 
different to do’, workshops and other teachers. The factors that limited their use of 
graphic calculators were emphasis on basics, cost, availability, not enough time, lack 
of training, and lack of materials. This study aims to further investigate factors that 
impact the successful integration of graphic calculator into the junior college 
mathematics curriculum. 
Research questions 

The purpose of this study is to pursue answers to the following research 
questions:  
1. How do the concerns of teachers change when they integrate graphic 

calculator into the junior college mathematics curriculum? 
2. How do teaching strategies of teachers change when they integrate graphic 

calculator into the junior college mathematics curriculum? 
3. How do the roles of teachers change when they integrate graphic calculator 

into the junior college mathematics curriculum? 
4. What features seem common among teachers who are successful in integrating 

graphic calculator into the junior college mathematics curriculum? 
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Significance of the study 

This study aims to contribute findings and knowledge of change in teacher 
concerns, teaching strategies and teacher roles when they integrate graphic calculator 
in the junior college mathematics curriculum. From this research, the changes in 
teaching strategies and changes in roles of teachers identified will serve to inform the 
wider community of mathematics educators resulting in improved pedagogy and 
practice in the mathematics classrooms. Knowledge of teaching strategies and 
teacher roles can also be used as a base for meaningful pre-service and in-service 
programmes. Another significant contribution will be the development of a 
framework which describes factors identified from findings in the Singapore context 
that results in the successful integration of graphic calculator into junior college 
mathematics curriculum. The success factors identified will serve to inform policy 
makers what factors demand greater attention at various stages of implementation of 
new technology in mathematics curriculum.  
Research Methodology 

The methodology used is case-study approach. Following Merriam’s (1997) 
suggestions for case study research, data will be collected by means of classroom 
observations, interviews and document analysis. 
Subjects 

A formal letter will be drafted and sent to principals of junior colleges to 
request for mathematics teachers who would like to participate in this study. The 
mathematics teachers have to teach the revised syllabus mathematics (H1, H2) in 
2006. A total of 9 subjects from 3 junior colleges agreed to participate in the study. 
Instrumentation 

Every subject in this study will be visited by me once a school term for three 
terms. Every school term consists of 10 weeks of study. The duration of study is from 
January 2006 to September 2006. During each visit, the sequence of events will be 
lesson observation, administering Teacher Concern on Graphic Calculator Use 
(TCGCU) questionnaire and interview. Data collection will involve the following 
aspects: lesson observations, teacher self-reflection of other lessons, a Teacher 
Concern on Graphic Calculator Use (TCGCU) questionnaire and interviews. 

A significant part of the data collection is by means of classroom lesson 
observations. Only lessons that involve teachers using graphic calculators as part of 
their instructional strategy will be observed. Every lesson observation will be audio-
taped. Detailed field notes about how each lesson is conducted will also be made. 
The times at which activities change and the times at which significant classroom 
events occur will be noted in the lesson observation checklist. After checking the 
audiotape, a comprehensive set of observations about the lesson will be made, 
describing up to 20 characteristics of the lesson. Characteristics that are monitored 
include lesson preparation, lesson proper, teaching strategies, classroom management 
and technical issues. The teacher interactions with individual students and the whole 



 

 109 

class will be recorded. The teachers’ use and students’ use of graphic calculator will 
also be recorded. Thus the teaching strategies and roles of teachers are carefully 
monitored through examination of the types of instructional activities planned, their 
questioning techniques and how teachers explain concepts.  

Based on three sources, a Teacher Concern on Graphic Calculator Use 
(TCGCU) questionnaire will be constructed: concerns of teachers found in the pilot 
study, concerns identified from relevant literature research and concerns found in 
Stages of Concern Questionnaire by Hall and Hord (2001). Care will be taken to 
attempt to fit concerns into seven different stages proposed by Hall and Hord. The 
seven stages are: Awareness, Informational, Personal, Management, Consequence, 
Collaboration and Refocusing. In each stage, the items which are statements of 
concern typical of that stage are obtained by adapting items from Stages of Concern 
questionnaire and writing as appropriate some new items to suit the local context. 
The Teacher Concern on Graphic Calculator Use (TCGCU) questionnaire will have a 
total of 35 statements of concern.  
 A preliminary version of the interview protocol has been developed based on 
review of selected literature (Simonsen & Dick, 1997). This interview protocol will 
be piloted by three mathematics teachers who have experience in teaching 
mathematics with graphic calculators and appropriate changes will be made. The 
final format of the interview protocol will be derived after additional input from two 
authorities in mathematics education research. The interview protocol contains 
primarily open-ended questions grouped into four areas comprising: (a) teacher 
concerns, (b) teaching strategies, (c) teacher roles, (d) success factors. Specifically, 
teachers in the interview will be asked twelve questions. Some of the questions are 
adopted from Simonsen and Dick (1997). For example, under teaching strategies, the 
teacher will be interviewed on how the presence of graphic calculator has helped 
them teach the mathematics topic differently to illuminate students’ learning of 
mathematics. The teachers will also be interviewed if there are any specific functions 
in the graphic calculator that deliberately made them enthusiastic about their 
teaching. 
Conclusion 

This study carried out in 2006 specifically seeks to describe how the concerns 
of teachers, the teaching strategies of teachers and the roles of teachers change when 
they integrate graphic calculator into the junior college mathematics curriculum. The 
data collection is anticipated to complete by end 2006. The findings from this study 
will be discussed in anticipation to theme B on teachers and teaching. Being offered 
an opportunity to participate in the discussion will definitely be beneficial and 
enriching to me as a new researcher and as a PhD student. 
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Graphs ‘N Glyphs as a Means to Teach Animation and Graphics to Motivate 

Proficiency in Mathematics by Middle Grades Urban Students 

Jere Confrey, Alan Maloney, Lewis Ford, and Kenny Nguyen 
Washington University in St. Louis 

 

The Graphs ‘N Glyphs mathematics education initiative aims to provide a model for 
filling the need of under-resourced urban students to become proficient both in the 
mathematics necessary to successfully pursue high school and advanced 
mathematics, and in electronic technologies required for robust economic and 
employment prospects. Grounded in learning progressions and modeling approaches 
to multiplicative reasoning, the multi-representational software provides a 
microworld-type environment in which students learn the mathematics underlying 2-
D and 3-D animation and computer graphics, in order to produce their own 
increasingly realistic and complex computer animations. Ultimately the project aims 
for students to build explicit mathematical proficiency with rational numbers, ratio, 
proportion, fractions and decimals, as well as periodic functions and early 
trigonometric reasoning, in a motivating context of a computer animation and 
graphic design. Level one of the project focuses on object construction on the 
coordinate plane; congruence, similarity, reflection and scaling through 
tessellations; ratio as the foundation of both translation and scaling; and, finally, 
designing original animations.  
Introduction 

Students are typically told that they must study mathematics in order to keep open 
their options to pursue quantitatively-oriented careers in math, science, technology, 
or engineering. For most of them, this is a very distant and abstract motivation, 
especially for students whose familial network does not include members who 
currently engage in such work. Indeed, it is estimated that only 10% of students in 
the United States complete the prerequisites necessary to take Calculus (Roschelle et 
al., 2000), which provides evidence that these long-term motivational statements are 
not very successful in convincing students to persist. Yet, these same students live in 
a world permeated by the use of technology—the Internet, satellite communications, 
cell phones, and the management of virtually all the systems within which they live 
(economic, transportation, demographics, medicine, etc.). In the 2003 U.S. census it 
was estimated that approximately 55% percent of people in the U.S. have cell phones 
(U.S. Census Bureau, 2004, 2005) and ever-increasing access to related digital 
technologies, video, cameras, etc. In order to secure even a middle-class income, 
students must be competent in the use of these new technologies (Murnane & Levy, 
1998). We refer to this as a key technology-knowledge gap, especially ironic in that 
those countries with the most access to the products of these revolutions are often 
demonstrating the least progress in developing the underlying necessary student 
proficiencies. 
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We are currently developing an exciting new software environment that 
addresses this gap while teaching basic transitional mathematical ideas to students in 
grades 5-8. The research is specifically targeted to encourage and engage the 
participation of urban students, many of whom live in poverty and whose access to 
adequate preparation for advanced mathematical study is severely limited. The 
environment, called “Graphs ‘N Glyphs” (Confrey & Maloney, 2006), is designed to 
introduce students to how computer animations are produced and to permit them to 
create, edit, share, and publish their own animations. Thus, through this software and 
project, we invite them to participate in a compelling animation microworld while 
making the underlying mathematical and computational elements visible and 
comprehensible. In doing so, we aim to teach students the fundamental mathematical 
ideas of integers and rational numbers operations, similarity and scaling, graphing 
and tables, basic geometric concepts, transformations, and ratio reasoning. Other 
targets include angles, elementary trigonometry, percents, and decimals. The context 
of animation provides opportunities to strengthen and connect students’ numerical 
and geometric knowledge, and to build on the foundations that can be established in 
early childhood, as synthesized recently by (Clements, 2004). The software 
environment, when fully developed, will also teach students about optics and 
acoustics, permitting them to explore further ideas in geometry, trigonometry and 
periodic functions, and the science that underlies onscreen modeling that produces 
realistic objects and animations.  

While our presentation for this work is limited to level one (simple 2-D 
animations), we developed a short movie to excite students about Graphs ‘N Glyphs, 
with our collaborators at Virtual Ed, Inc. The movie introduces students to Fritz the 
Robot who, initially, is consigned to the 2-D world 
(http://www.virtualed.biz/wu/applet_1_framework.html). As the movie progresses, 
Fritz is brought into the 3-D world and students are confronted with the question 
“How do animators use math and science to make a robot such as Fritz look and act 
real?” We use this question throughout our work with students to try to get them to 
understand why mathematics is needed to make objects look realistic. In short, we 
are trying to make them understand that mathematizing the (3-D) world is how 
animators model the real world on a (2-D) television screen or computer monitor. 
Theoretical Approach 

Our software design draws on four major thematic approaches from mathematics 
learning theories: a) modeling, b) project-based instruction, c) learning progressions, 
and d) microworlds. The work extends these four theoretical themes by linking the 
software directly to professional use software for animation and graphics, i.e. a tools 
and professions-based approach. In this way, the work draws upon the study of 
communities of practice (Lave & Wenger, 2002) and on how their practices can be 
useful in drawing students into the pursuit of quantitatively linked careers (Hall, 
1999).  
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The theme of modeling through the development and revision of inscriptions 
(graphics, tables, transformation records) that permit one to render graphical and 
acoustic animations on the computer is the underlying philosophy behind the work 
(Latour, 1990). We use the definition of modeling by Confrey & Maloney (in press), 
and build on the work of Lehrer and Schauble (2000, in press), in which one 
conceives of a student learning via a continuum of models from physical microcosms 
to hypothetical-deductive.  

Our intervention consists of a combination of elements on and off the 
computer; we emphasize the importance of building in different levels of abstraction 
in the software (Lehrer et al., 2002).  

The activities and their individual tasks form a learning progression akin to 
learning trajectories described by Simon (1995), (Gravemeijer et al., 2004), and 
Clements & Sarama (2004), and conceptual corridors as described by Confrey (in 
press).  

These elements are drawn together with the development of the concept of 
microworlds defined first by Papert (1980) and extended by Weir (1987) and then 
Hoyles (Hoyles et al., 1991). In Graphs ‘N Glyphs, we draw upon the changed 
definition of Microworld, from “teaching computers to solve problems” to 
“designing learning environments for the appropriation of knowledge and, as a 
consequence of this change in focus, the transitional object takes on a central role” 
(Hoyles, 1993, p. 2). In our microworld, students explore the potentially rich 
environment of animation and use it as a means for mathematical inquiry. By 
working through the activities and tasks, they begin to explore their own definitions 
of mathematizing environments, distance, scaling, and so on. 
Software Design 

The software interface comprises four primary windows and a graphical display for 
the animations. Students build objects in a graphing window that consists of a local 
and global plane, use a table for displaying the point values in relation to the local 
and global planes, a transformational record by which the animations are enacted, 
and an object palette for saving and reproducing objects and their characteristics. The 
windows are linked dynamically and can be adjusted to support predictions, data 
gathering, and feedback. Feedback consists not only of interface and usability hints 
but also allows students to assess their progress on the various activities and tasks in 
the curriculum. Students who feel they have not mastered certain concepts can 
choose to keep the detailed feedback available even as they move on to more 
advanced topics. 
 The software is collaboratively designed by a team of mathematics educators 
and game and graphics designers. The design team has sought to build software that 
acts as a genuine transition to the use of professional animation and graphics tools 
such as Photoshop, Freehand, Flash, and 3-D Studio Max. At the same time, the 
mathematics educators sought to ensure that the (usually invisible) mathematics that 
underlies animation and graphics packages would become visible to the student. 
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Mastery of this mathematics accompanies and is required for creation of the 
animations. Pedagogically, the designers also sought to implement conceptual 
corridors in the way tasks are sequenced. Practice is required, and assessments are 
continuously and periodically gathered. The design, finally, depends for its final form 
on implementation in classrooms where student interactions are encouraged and 
teacher guidance and monitoring are assumed.  
Research 

Research on the use of the software is underway through the use of clinical 
interviews. These interviews consist of working with urban students in St. Louis 
through a series of tasks, many of which themselves develop the basic skills 
necessary for working with the software. The interviews will heavily inform eventual 
evolution of the software from its current state as a developmental alpha to a beta 
version that we will use during the spring and summer of 2006 on groups of students. 
Results of these interviews will be incorporated into our conference presentation. 

Conceptual Trajectories Embedded in Task Design and Articulation  

We outline the conceptual trajectory embedded in the first level of our materials and 
describe how we have developed and sequenced the tasks to incorporate increasing 
resources for building animations and to complete subtasks along the way. Each 
subtask must be related to both the goal of proficiency in mathematics, as evidenced 
by performance on embedded and external assessments, and in the use of the 
software as a tool for potential transition to professional graphics and animation 
software. 

The overall trajectory of level one of the project can be described in five phase 
as follows: 

I. Introduction to the Cartesian plane and to building objects on the plane 
II. Introduction to Congruence, Similarity, Reflection and Scaling through 

Tessellations 
III. Translations along a diagonal line as a manifestation of ratio 
IV. Mazes: Ratio in translations and scaling  
V. Designing original animations 

Example 1: Introduction to Cartesian plane and constructing objects (phase I). In the 
first set of activities using Graphs ‘N Glyphs, students learn about graphing on the 2-
D plane (introducing metrizability of the Cartesian Plane and reinforcing whole-
number addition and subtraction), a simple dot-to-dot model for reproducing and 
modifying basic shapes, and “Taxicab Geometry”, a non-Euclidean geometry closely 
related to Euclidean geometry (differing by one axiom and arguably developmentally 
accessible earlier as a better model for human-created cities) (Krause, 1975).  

Activities to reinforce operating, locating, and graphing on a coordinate plane 
(and screen animation space) include a Battleship-type game and predicting 
geometric shapes from point coordinates. Integer addition and subtraction are 
reinforced through navigation, using both magnitude and direction, to destinations on 
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a one-dimensional map (a street). These integer operations are extended to two 
dimensions via Taxicab Geometry, which combines horizontal and vertical 
movements to get from point to point, rather than diagonal definition in Euclidean 
geometry). Thus integers (and, shortly thereafter, rational numbers) are interpreted 
graphically. The graphical representation sets up the use of rational numbers in 
multiplicative operations, including ratio and similarity. 
 Students then combine these skills in creating their own objects using a dot-to-
dot representation. Not only will they need to master coordinate graphing (in order to 
place their dots) but they are asked to make an existing drawing “more realistic” with 
additional points. 
Example 2: Congruence, Similarity, Reflection, and Scaling through Tessellations 
(phase II). Fundamental to this part of the level one learning progression is the 
understanding of the multiplicative (ratio) relationships underlying the concepts of 
similarity (Lehrer et al., 2002) and scaling (Confrey & Scarano, 1994). Students 
identify and develop their concept of what constitutes a similar figure in 2-D space, 
and are introduced to ratios as mathematical tools to preserve the similarity of 
figures. Students are challenged to construct and use congruent copies of screen 
objects to build tessellations, and then to scale those objects to build different 
tessellations. Students distinguish between additive incrementing and multiplicative 
change of objects’ side lengths, and to recognize the role of ratio multiplication in 
preserving similarity. The scaling of figures by means of whole-number ratios, 
followed by composition of ratios to generalize the utility or the concept and improve 
their proficiency with and understanding of ratio is supported by the software as 
students build tessellations with larger versions of the initial objects, and experiment 
with decimal values for the scaling factor. This conceptual development then 
supports more sophisticated use of the animation tools in the next activity.  
Example 3: Mazes (phases III and IV). Graphs ‘N Glyphs maze activities 
complement the development of the ratio concept in scaling by employing it in 
translations as well. Students are provided (and later design) characters that must 
traverse a maze—moving their character (object) across the screen, through or 
around obstacles, and finishing at a goal with particular spatial or action 
requirements. The activities comprise increasingly complex animation tasks. To 
avoid or pass through obstacles, students must scale their characters, which 
reinforces and expands the scaling proficiencies established in the Tessellations 
activity. Moving their characters across the screen, however, promotes a different 
recognition and use of ratio, though still within the context of animation. The initial 
mazes can be negotiated solely with vertical and horizontal translations. Subsequent 
mazes, and the goals of the tasks, however, provide a need for diagonal movements. 
Some mazes can be traversed with a combination of horizontal and vertical 
translations, but this is time-consuming. Other mazes include channels or paths that 
are themselves diagonal. Students construct schemes to utilize ratios to combine the 
vertical and horizontal components of slope (Confrey & Scarano, 1995), and then use 
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similarity to recognize the ratio relationship implicit in a long straight diagonal and 
accomplish a long diagonal translation in a single step. Students’ fluency and 
flexibility of ratio use is promoted, in part, through the students challenging each 
other with mazes they construct themselves.  

At the end of these three activities, the students will possess the necessary 
mathematical and software skills to create animations using Graphs ‘N Glyphs (phase 
V). Thus, the final project, worked on intermittently throughout the project, will be to 
create an original animation and share it with other students, teachers, and parents. 
Students will be given a project description that includes criteria on which their 
projects will be assessed. In addition, they will take pre- and post- assessments on 
their knowledge and understanding of the relevant mathematical concepts. Finally, 
they will be asked a set of questions, tailored to their animation, to explain the 
interrelationships among the three representational spaces, and will be assessed on 
their ability to apply mathematical concepts to explain the representations.  
Conclusions  

Computational environments represent a powerful link between the use of the 
mathematics and the deeper understanding of how the use of (ubiquitous) animation 
and computer graphics work. Traditionally, we speak to students about the utility of 
studying mathematics without providing them compelling illustrations. Microworlds 
like those created in Logo (Papert, 1980) provided interesting ways to link the 
graphical display from the turtle to concepts of programming and geometry, and in 
doing so, strengthened students’ understanding of all three ideas. In this way, it did 
provide a form of a career trajectory, as a means to transition to other computer 
languages.  
 The vast changes in graphics capabilities, driven by both game environments 
and simulations capabilities (flight simulations, military applications, engineering 
environments) have largely failed to influence the teaching of mathematics at the 
elementary and middle grades. Some exceptions include gaming environments like 
Sim City (Bos, 2001; Squire, 2005) and, to a smaller effect, Civilization (Squire, 
2004). 
 As an extension of these efforts, our research team has chosen to concentrate 
on providing students access to intermediate or transition tools for animation to draw 
students into the question of how images on computers are made lively, realistic, or 
3-dimensional on discrete, pixel based, two-dimensional video screens. In pursuing 
this question, we have created two kinds of multi-representational symbolic 
inscription tools, (1) tabular displays of objects and the effects of the transformations 
on ordered coordinate pairs, and (2) a transformational record which creates the 
sequence of animation actions.  
 Through this research, we will assess how successful the conceptual 
trajectories are in building the students’ mathematical understanding, in assessing the 
sophistication and comprehensiveness of the student-created animations and their use 
of various resources and tools, and the relationship between the two, as well as the 
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ways in which students’ sense of themselves as potential students of math, science 
and technology changes, over the course of the participation in the interviews and 
subsequent workshops.  
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Reflecting on the actions and activities that are enabled by a new technology can 
catalyze a reconceptualization of the content and methods of teaching mathematics. 
Software might provide tools that enhance students’ actions and imagination. The 
five years long research has been developed on two phases. The first phase was to 
analyze problematic dimensions of teaching mathematics in schools using computer-
based technologies and searching the most suitable software for the National 
curriculum of mathematics. The next step was to investigate (also to localize) the 
Geometer’s Sketchpad and to built the various sets of dynamic sketches for teaching 
and learning mathematics in basic schools. More than 800 dynamic sketches have 
been developed within 9th and 10th grades (years 16 and 17) mathematics curriculum. 
Two CDs and descriptions have been prepared and published. The paper explores 
the main questions of developing dynamic sketches for mathematics curriculum of 
basic school in Lithuania.  

 
Introduction 

Together with the rapid increase in the number of computers in schools a similar 
increase in the number of software products of the new technology has come. 
Mathematics is one of the main subjects in schools which require a lot of students’ 
efforts. Using technology while teaching mathematics is not only necessary but 
rather inescapable [Balacheff, 1996; Hoyles & Jones, 1998; Posmastier, 2003).  

Regarding the Strategies of Information Technologies Implementation of 
Education in Lithuania a wide attention is paid to educational software’s 
implementation to curricula of various subjects: schools are supplied with such 
software and prepared methodical materials on it, besides different kind of 
workshops to teachers to introduce them the software are being held. That is one of 
the most important means to direct the computerization of schools towards the 
positive direction of upbringing improvement. 

Mathematical literacy in school is continuously gaining the stronger emphasis – 
that is one of the aims suggested by the politicians of the European Union. All pupils 
have to perceive the basic elements of mathematics. That’s why they need a fair 
motivation. In this case the implementation of information technologies is one of 
such inviting solutions. “Computers have much more to offer than drill and practice; 
in fact, they can be used in conjunction with all parts of the constructive learning 
process, when embedded in classroom culture where there is communication and 
cooperation. There are several ways in which computers can be used; for example in 



 

 121 

practicing of skill in a way that incorporated understanding or in simulations that 
enhance concept building” (Becker, 1996). 

Dynamic sketches created by computer provide the possibility of a deeper 
acquaintance with mathematical definitions, theorems, and properties. Often 
geometry is presented in static form in which the true and deeper meaning of a 
theorem does not get the true exposure it should. Thus the sketches developed by 
using computer-based technology help to look deeper to theorems of mathematics of 
secondary education (Jackiw, 1988). D. Tall in his paper stresses that students using 
paper and pencil drawings of graph saw them as geometric shapes rather than a 
process of inputting x and outputting y (Tall, 1996). The field of dynamic 
experimentation has been opened to new objects, the conics, where one can 
manipulate hyperbolas, ellipses, parabolas or their equations. 

 
The main properties of software that supports teaching of mathematics  
When implementing IT in Lithuanian schools the computer applications that could be 
helpful for the implementation of the purposes, aims and didactical attitudes that are 
introduced in National Curricula and Educational Standards, and at the same time 
simple to use and handy for introducing of the wider scope of mathematical topics 
were searched.  

With reference to these criteria in 2001 the educational software “Geometer’s 
Sketchpad 3.11” [www.keypress.com/sketchpad/] was bought to all Lithuanian 
schools; it was localized, and in 2004 the localization was cardinally updated 
presenting the Lithuanian version of “Geometer’s Sketchpad 4” (Jackiw, 2006). This 
educational software helps to implement the purposes, aims and didactical attitudes 
that are introduced in National Curricula and Educational Standards.  

According to Jackiw (2006) Geometer's Sketchpad 4 is "a software system for 
creating, exploring and analyzing a wide range of mathematics. You can construct 
interactive mathematical models ranging from basic investigations on shape and 
number to advanced, animated illustrations of complex systems." It allows an 
organized set of primitive actions to be turned into complex one using 
macroconstructions. The drawing produced at the surface of the screen can be 
manipulated by grapping and dropping around any point having sufficient degrees of 
freedom (Jasutiene et al, 2005). Therefore teaching pupils to draw sketches helps to 
develop their creativity, algorithm thinking, carefulness, accuracy, and mathematical 
skills. The sketches created by pupils or teachers may be used for demonstration or 
research purposes. Dynamism of sketches created by the software may replace 
multiplex actions of drawing geometrical shapes on paper or on the desk. 
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Modeling and using dynamic sketches 

Drawing of sketches 
The experience of other countries indicates that sketches are often used to solve 

particular task, for example, to demonstrate Pythagorean theorem, the Golden 
Rectangle Revisited, and so on (Key Curriculum Press). There is, however, a group 
of sketches created to study particular mathematical or even physical topics.  

In order to construct a meaningful sketch you need: 1) to choose a topic which 
visualization can be supported by “The Geometer’s Sketchpad” possibilities, 2) to 
model the sketch, and 3) to construct the sketch. The Geometer’s Sketchpad is 
convenient to introduce approx. 50% of math topics introduced in secondary schools, 
i.e. plane geometry, plane analysis, basics of geometrical functions and their charts, 
basics of mathematical analysis, trigonometry, part of stereometry (part since the 
software does not support 3D system), differential equations’ directional fields, 
number line and basic arithmetic operations, as well as vectorial algebra and complex 
numbers.  

After the proper topic of mathematics is chosen it is needed to analyze for which 
purpose the sketch will be created, i.e. which definition, property, or theorem must be 
demonstrated by the sketch. Special regard has to be paid in order to avoid the 
situations when the created sketch could serve as an obstacle of learning process or 
could bring confusion to pupils’ minds.  

The modeling of sketch should begin after these considerations are taken into 
account. The modeling of sketch is quite difficult stage and requires different skills 
and knowledge: 1) knowledge on mathematics theory, 2) skills of methodology of 
mathematics teaching, 3) deep sophistication on software, and 4) ability of 
information structuring. Possibilities of the Geometer’s Sketchpad allow creating 
sketches that universally approach geometrical objects and their relations. For 
example, functions may be analyzed regarding two different aspects: changing 
functions’ coefficients as parameters, selecting concrete and definite values or using 
the scroll bar for changing coefficients and observing function’s chart as well as 
changing function’s chart (dragging one of the chart’s points) at the same time 
observing how the coefficients of function are changing. 

Therefore when modeling the sketch on paper the common picture of mathematics 
is needed to be seen and the context of the future sketch has to be anticipated. After 
getting acquaintance with the software, the creation of dynamic image of the 
modeled sketch becomes not so complicated. However, programmer, who is intended 
to create the sketch, besides the understanding of the software, has to obtain deep 
knowledge of algebra, geometry and methodology of teaching mathematics as well 
as skills on algorithm approach.  

Principle of the Geometer’s Sketchpad is rather simple: we have an empty sheet of 
paper, ruler, pencil, calculator, and several drawing commands, thus we have to 
create. Very often quite complex dynamic images have to be created by using the 
merest means. In such case quite a few steps have to be performed. For example, to 
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create a decision model of inequality the algorithm of approx. 200 has to be 
implemented. The Geometer’s Sketchpad does not limit the possible number of 
algorithm steps. It rather depends on the computer facilities as well as person’s 
invention.  

When creating a sketch the ordinary means that are not included in the software 
often may be necessary, e.g. the scroll bar for changing coefficients or angles’ 
marking arc. Such means may be created by user and then implemented in various 
sketches. However, when looking at the final sketch all drawing steps remain 
invisible. In most cases just desired result, i.e. the complete image, is displayed. 
Thus, to create a sketch there is a need of time, knowledge of the theory and teaching 
of mathematics as well as familiarity with software possibilities. 

 
Set of dynamic sketches for mathematical lessons  

In 2003 the research on software implementation in Lithuanian comprehensive 
schools has been performed and it has revealed that just 27% of schools are actually 
using the Geometer’s Sketchpad during lessons (Ministry of Education, 2003). It is 
not an easy task to the teachers themselves to develop sketches. The main reasons of 
this are the following: lack of time to properly prepare (teachers have many lessons), 
fear of technology and insufficient computer skills. Therefore the decision was made 
to help teachers to create sketches that are needed according to the National 
mathematics curriculum and to provide instructions on implementing those sketches 
in their lessons.  

Senior grades (16-17 year) were selected as target group of the research since: 1) 
the curricula of these grades embrace the most part of mathematics’ topics that can 
be visualized by dynamic sketches, 2) in these grades the major part of new 
definitions, properties, and proofs (although most of them do not need to be 
demonstrated, their sense is still obscure to students; students remain not persuaded 
in their correctness) are introduced, 3) in these grades the summarized course, which 
has influence to further studies, is provided.  

Regarding these criteria the curricula of mathematics in 9-10 grades was analyzed 
and the topics that can be directly visualized by the Geometer’s Sketchpad were 
selected. For 9th grade the following topics were chosen and sets of sketches were 
developed (the number of sketches are presented in brackets): linear function (146), 
quadratic function (90), systems of linear equations (21), similarity of triangles (78), 
solution of quadratic equations (19), and circle and circular disk (116). Similar 
actions were applied to 10th grade curricula – after analysis the following topics and 
sketches were selected: graph of a function (95), set of equations and inequalities 
(23), quadratic inequalities (39), trigonometry functions of acute angles (83), and 
exploration of triangles (74).  

Although the Geometer’s Sketchpad possibilities depend on invention of user, 
there was no visualization provided for combinatorics, probabilities, solid geometry, 
and percentage. Visualization of these topics using the Geometer’s Sketchpad is too 
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complicated and in some cases even impossible or inadequate in order to introduce 
certain topics in understandable way for students.  

All sketches were developed implementing solid methodology: 1) a short 
description, containing the information on what to do with the sketch and where 
attention should be paid, was provided together with sketch, 2) sketches were 
dynamic, i.e. it’s possible to drag objects, change parameters and therefore the 
possibility to go back to the initial state always remains, 3) there is a help provided to 
user and upon the demand the answers can be given as well.  

All sketches are provided in CDs with descriptions, that help to use the sketches, 
theoretical material of a textbook, and recommendations on how to solve certain 
tasks regarding mathematics’ textbook in efficient way.  

Two types of dynamic sketches have been developed: 1) visualizing theory and 2) 
visualizing problems. The dynamic sketches that visualize problems have several 
properties: 1) one dynamic sketch embrace whole group of problems and 2) in many 
cases they widen the problems’ conditions. The dynamism of Geometer’s 
Sketchpad’s sketches provides an opportunity to visualize a whole group of problems 
by using one sketch. Solution of quadratic equation may serve as an example. By 
solving a parametric quadratic equation the whole set of such equations may be 
solved.  

By creating sketches the complete image of mathematics had to be demonstrated 
and therefore sketches of problems provide more information than it is required 
regarding the condition. For example, a student is asked to calculate length and width 
of the rectangle when the area and the perimeter of the shape are provided; in this 
case the dynamic sketch provides the graphs of functions related to rectangle’s 
perimeter and area as well. This is the way how the simple problem of solid 
geometry becomes related with function and the relation between different 
mathematical topics appears.  

Thus, The Geometer’s Sketchpad helps to look at mathematics as an entirety rather 
than jumble of separated topics. However, when developing sketches their creators 
were avoiding to “overweight” them and were trying to organize material in such 
way that it wouldn’t bother the main idea of a problem.  

In 2003–2005 more than 800 dynamic sketches were developed: compact disks 
“Mathematics 9 with Geometer’s Sketchpad” and “Mathematics 10 with Geometer‘s 
Sketchpad” (Jasutiene et al, 2003; 2005).  

 
Teaching by using dynamic sketches: an example 

There is an example of dynamic sketch that illustrates the 10th grade topic “system 
of equations when one equation is non-linear”. According to the National 
mathematics curriculum [4] a student should: 1) approximately calculate the solution 
of system of linear equations containing two variables, 2) solve ordinary equation 
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systems where one equation is linear and another quadratic (either in graphic way or 
in alteration way).  
For this topic three dynamic sketches have been developed: 1) graphical solution of 
the system of two linear equations, 2) graphical solution of the system of two 
equations where one equation is linear one and another’s graph is a circle, and 3) 
graphical solution of the system of two equations those graphs are circles. The first 
sketch analyses how the changes of the coefficients a, b, and c, result the graph of the 
equation ax+by=c and provides the graphical interpretation of system of two linear 
equations.  

By changing the coefficients of linear equations students examine the whole group 
of linear equations’ systems and may find the answer to the following sketch’s 
problem question: how many solutions the system of two linear equations may have? 
This is the way to remind students the graphical method of solving the system of two 
linear equations, that was introduced them in the 9th grade.  

The second sketch is intended to analyze: 1) how the change of the coefficients 
result the graph of equation ax+by=c, 2) how the change of the values d, e, and f 
result the graph of equation (x-d)2+(y-e)2=f2, and 3) the graphical interpretation of the 

solutions of the equation system 




=+

=⋅+⋅

 fe)-(yd)-(x
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222

(Fig. 1).  

 

   
 
Fig 1. The graphical solution of sets of equations: a) system of two linear equations, 

b) system of linear and circle equations, c) system of two circle equations 

 
Such dynamic sketch is not complicated to develop – approx. 30 steps is enough, 

since The Geometer’s Sketchpad possibilities provide an opportunity to develop 
graphs of functions directly (Jackiw, 2006). The short description on what should be 
changed or moved and what to notice is provided together with the sketch. 

The sketch illustrates the whole group of systems of equations where one equation 
is linear one and another’s graph is circle. When changing the values of equations’ 
coefficients-parameters, the obtained systems and the interpretation of their graphical 
solution may be observed. That is the most important feature of such sketch [8, 9]. 
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To provide the entire picture of the topic the third dynamic sketch is developed; it 
illustrates: 1) how the change of values of the coefficients a, b, and c result the 
equation graph (x-a)2+(y-b)2=c2, and 2) the graphical interpretation of the solutions 

of equation system 






=+

=+

 fe)-(yd)-(x

 ,cb)-(ya)-(x
222

222

. In fact, when examining the given 

examples in the sketch the whole trick is to answer the question how many solutions 
such system can have.  

Developed dynamic sketches help to reveal the whole picture of mathematical 
topic and the sketch of extended course may incorporate itself in the common context 
of the given topic. Dynamic sketches are easy to control since all of them have a 
similar structure; by examining the first sketch it’s already possible to guess what the 
second and the third one will be about. Usage of these dynamic sketches helps to 
examine the systems of equations and it brings valid convenience as well, i.e. teacher 
doesn’t have each time to draw new examples of graphs of systems of equation on 
the desk.  

 
Conclusions  

ICT enhance teaching mathematics and motivate students for investigation. The first 
step is to provide schools with the software proper to teach mathematics. The further 
step of particular importance is to prepare action plan that would embrace teacher 
training, information dissemination, development of methodological and educational 
aids, guidance for assessment, etc. 

In Lithuania The Geometer’s Sketchpad country license was purchased in 2001 
and right after that teacher training and information dissemination were initiated, 
however that was not enough. Just small part of teachers began to use the software 
during their lessons. The main explanation of this was lack of time to prepare for the 
lessons.  

Regarding this the decision to reconsider the mathematics curriculum for basic 
school and relate it with scripts developed by using the Geometer’s Sketchpad 
(dynamic sketches and proofs) was made.  

For 9th and 10th grades (16-17 years) more than 800 dynamic sketches and scripts 
according to the mathematics curriculum were prepared. Two CDs and descriptions 
of them have been developed. 

The model and examples described in the paper emphasize educational aids for 
basic school curriculum. The developmental model should be modified to other 
levels and grades. However, the basic procedures would be quite similar. 
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The constraints of a Computer Algebra System are generally classified as internal 
constraints, command constraints and organization constraints. In fact, a fourth kind 
of constraints exists, namely motivating constraints. These constraints consist in 
features or commands of the CAS whose understanding demands sometimes from the 
user to acquire more mathematical knowledge than what has been taught in a 
standard course. Theorems can appear which necessitate learning beyond the 
syllabus framework. Such "new" theorems appear generally in two situations, namely 
when using a pedagogy-embedded feature of the CAS (either a posteriori help, or a 
priori hints), or when using certain commands and trying to analyze the results. We 
describe a research frame in the first year Foundation Courses in Mathematics, in 
our Engineering College. With this research, we wish to understand more deeply the 
instrumentation processes at work with the students and to check motivations for a 
change in the institution's culture.  

 
 Levels of intervention of a Computer Algebra System.  
 

As an assistant to mathematical learning, a Computer Algebra System (a CAS) offers 
three levels of help: 
a technical tool performing technical tasks; 
a tool whose performances help to develop more conceptual understanding; 
a technological help to bypass a lack of conceptual knowledge, where such 
knowledge is out of reach, at least in ”the next future”. 
 
The first level is the blackbox level and has no great pedagogical value. Maybe it 
allows the teacher to save time for reflexion and theoretical understanding, but a 
perverse effect is the loss of manual computation skills, as noted by (Herget et al., 
2000). Integration techniques, techniques for solving equations, either linear or non-
linear, are abilities which could disappear. The following claim has been heard in a 
professional meeting: "nowadays, there are computers who make the computations; 
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thus there is no need anymore to teach integration techniques". We disagree with this 
claim, and wish to show that, on the contrary, Computer Packages enable to learn and 
to understand more Mathematics than expected. 
 

We can distinguish a level 1 , where the student uses the CAS for verifying results. 
There are at least two kinds of verifications: 
Verify either a numerical result or a "closed" algebraic expression. The mathematical 
correctness of the verification is not always evident. For example, two different CAS 
or even two different commands of the same CAS, or a CAS and hand-work, can 
provide different algebraic expressions, both valid. As inert expressions, they are 
different, but when defining functions, which are dynamical objects, different 
expressions can define the same function. The verification issue has been addressed 
by Lagrange (1999) and Pierce (2001). 
Perform the passage from n to n+1 in a recurrence, after the CAS enabled to 
conjecture a formula (see (Garry 2003) page 139). 
 
Steiner and Dana-Picard (2004) commented aspects of level 2. Low-level commands 
are important for cognitive processes attempting to afford a good conceptual insight. 
A CAS command is called a low-level command if it performs a single operation, 
while a macro is a command programmed to perform a sequence of low-level 
commands. Low-level commands act as the atoms of every computerized process for 
solving a problem. 
Because of syllabus limitations and of time limitations, level 3 is less commonly 
considered. It appears close to the frontier of the syllabus, either for exercises aimed 
to broadening knowledge beyond this frontier, or for problem solving when the 
necessary theorems have not been taught and will not been taught "in the next 
future". Technical use of the CAS fills the gap; see (Dana-Picard 2005b). 
 

A fourth level exists: a CAS is a device whose performances may incite the user to 
acquire more mathematical knowledge. The reason can be one of the two following: 
Multiple commands are available for seemingly the same purpose. For the user to 
make an intelligent decision which command to use, he/she must have a good 
knowledge of the Mathematics implemented in the algorithms.  
There exist situations where a unique algorithm is available, either because of the 
theoretical state-of-the-art or because of the decisions of the developers. This limits 
the diversity offered by the CAS; this issue is studied by Artigue (2002), page 265. In 
such a case, the theorem transformed either into an algorithm or into a command is 
not always a standard theorem taught in a standard course; see the example with 
Derive in section II. 
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In every case, the implemented Mathematics has to be understood. In order to afford 
a real understanding of the process, the user has to learn new Mathematics. We called 
this occurrence a motivating constraint of the software (Dana-Picard 2006). 
  

Generally, the word constraint evokes a limitation, an impossibility to go beyond a 
certain borderline. For a software package, this can be a limitation on the size of 
numbers, on the number of successive parentheses, etc. Among the most documented 
internal constraints are the finiteness of the screen for graphical applications, and the 
fact that the real numbers are always approximated by rational numbers. Following 
Balacheff (1994), Guin and Trouche (1999) distinguish three types of constraints of 
the artifact, called respectively internal constraints (linked to hardware), command 
constraints (linked to the existence and syntax of the commands), and organization 
constraints (linked to the interface artifact-user).  
 

The constraint that we meet here is of a totally different nature: instead of limiting 
the user within the borders of a certain topic, the CAS demands from the user to go 
further, to learn a new theorem, a new technique. It is a motivating constraint, which 
leads to a broadening of the student's mathematical landscape. After its apparition, 
the mathematical knowledge is not supposed to be only shown anymore, the student 
is incited to learn the new theorem, and then becomes able to manipulate this 
knowledge, either with or without the help of the technology.  
 
Pedagogy-embedded CAS. 
 

Until recent times, the CAS did not give hints in order to find a pathway towards the 
solution of the given problem. This is not true anymore: pedagogical features have 
been implemented into Computer Algebra Systems. We call such systems pedagogy 
embedded CAS. 

 

Derive 6 has a step-by-step feature, well developed for Calculus commands. Every 
step corresponds to one low-level command, as it implements one single theorem 
such as an integration formula. There exist surprising situations, e.g. the following 
formula is a central item: 
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negative real parameter. For p=0,1,2, the computation is straightforward, but for 
larger integer values and for non integer values of the parameter, the work is non-
illuminating. For given a, and for p=1/3, other CAS, where this formula seem not to 
be implemented, cannot generally compute the integral in a reasonable amount of 
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time. Knowing the formula (*) enables to compute the integral with paper and pencil, 
within a few steps, and last but not least, for the general parameter: 
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Formula (*) is not trivial; it is commented, and examples are given, in (Dana-Picard 
2005b). An experienced lecturer, working in another institution, told to one of the 
authors: "I would not dare to ask my students to know such a theorem". We think that 
this implementation is a good opportunity to teach the theorem and some of its 
applications. As A. Rich says: “The transformation rules Derive displays are those it 
uses to simplify an expression. They may or may not be the same as those currently 
taught to students. However, if teachers see an advantage to an unfamiliar rule used 
by Derive, they may want to ask their students to verify the validity of the rule and 
then the students will have an additional tool in their arsenal” (Böhm et al., 2005, 
page 36).  
 

This parametric integral has been proposed to an average student, named Ori, during 
the preparation to an oral examination. At first glance, as he thought that the 
parameter is a non negative integer, he proposed to decompose the integrand into a 
sum of partial fractions. The tutor showed him the Derive's step-by-step-solution. 
Tutor: Do you recognize a known formula? 
Ori shows Formula (*), then says: No, actually we have not been taught this. 
Tutor: Can you apply the formula? 
Ori: Yes. (works for a while); oh, I never saw this, you must teach this! 
 

During another session, Ori is proposed the integral 
−+
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I . He says: this 

is the same case I saw last time; let us apply the formula. 
Finally, at the end of the same tutorial session, he "receives" the following integral: 
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Ori: It's not a power, but it must work the same way, as it's the same structure.  

Tutor: And what about   +
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Ori: Surely the same thing. 
He makes the work and claims: Oh yes! You must teach this in classroom!" 
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Maybe that without the step-by-step, the user would not have discovered the formula. 
Therefore, we consider this feature as part of the software's motivating constraints. 
 

Maple is pedagogy embedded (via the Student package); here the conception is 
different from Derive's step-by-step philosophy, and the learning process induced by 
them develops otherwise. We present here an example in a different context. 

Consider the following initial value problem: 
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. Working with paper and 

pencil, a student is generally taught to use an integrating factor.  
 
When using Maple's assistant for Ordinary Differential Equations, the student can 
choose the method: Lie methods, Classification methods, etc., but the usage of an 
integrating factor is not available for this exercise. A noticeable fact is that the 
pressing a button is accompanied by the (optional) translation of the command in 
Maple's language. The option "Laplace Transforms" leads to a much more 
complicated form. Therefore the student is incited to learn what these methods are, 
how they work and which benefit he/she can afford from their usage instead of what 
has been taught in regular class.  
Tools shape the learning environment (Trouche 2004b), and the last influences the 
mathematical contents. The two embeddings of pedagogical features that we saw 
above, and the learning processes spanned by them are different. Note that each kind 
of software follows general algorithms, starting from pattern recognition, and whose 
sequential steps are based on the implementation of general theorems. The human 
brain works less sequentially, therefore intuition can lead to other pathways towards 
the solution of the exercise. With the integral of section II, we presented earlier an 
example of such a situation. This does not mean that technology has not been 
programmed properly: a proper usage of technology does not require from the 
technology to mimic human actions.  
 
Let us compare briefly the two ways. On the one hand, Derive's step-by-step feature 
gives an indication on how the software works; if the student did not know how to 
solve the exercise, he/she has now an opportunity to understand by some kind of 
"post-mortem" analysis. Maybe an unknown theorem appears, as in our example, and 
the student can wish not only to discover it and to use it afterwards, but to try to have 
a more profound insight in its proof and its mathematical meaning. On the other 
hand, Maple's assistant lets some freedom of choice to the student, by offering 
different options before the computation is performed. This is still more evident 
when using the tutor for computing integrals. In this case, all the rules are presented 
as "buttons"; after a button has been pressed, an immediate indication is given 
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whether the rule can be applied or not. If not, the student is invited to choose another 
rule, and so on.  
 

Finally, we wish to note that even without a specific pedagogical feature, a CAS can 
be an instigator to further mathematical learning. This is the case in (Kidron 2003) 
for the conceptual understanding of the limit notion in the derivative, and deep 
learning of the theory is motivated by the usage of Mathematica. 
 
Instrumentation. 
 

At the beginning, we saw Derive’s step-by-step as providing the student with “a 
posteriori assistance”, in order to understand what he/she would have been required 
to do. Actually, the usage of the step-by-step feature of the software can be 
considered as an “a priori” usage, in one of the following fashions:  
The user can discover a way of solving the problem either different from his/her way; 
 Suppose that the student did not find how to solve the problem; he/she can ask for 
the first step (pressing the appropriate button) and the CAS opens a pathway. At 
every step, the student can abandon the step-by-step session. This is based on general 
theorems that the student does not automatically know.  
 

When such a situation occurs in classroom, the teacher can build various activities, 
enriching by a large amount the mathematical knowledge and culture of the learners. 
If at the beginning, the student influenced the software’s behavior in order to obtain 
the needed result, in the second scenario the software forces the educator to teach and 
the student to learn a new topic, a new theorem.  
We have here elements of an instrumentation process (Chevallard 1992, Lagrange 
2000, Artigue 2003 page 250, Trouche 2004a): “Les potentialités et les affordances 
d’un artefact (en occurrence le CAS) favorisent le développement de nouveaux 
schèmes (ou font évoluer les schèmes antérieurs) de résolution d’un type de tâches 
(ici le calcul d’une intégrale définie)” (Trouche 2005; private e-mail). More briefly: 
“Instrumentation is precisely this part of the process where the artifact prints its mark 
on the subject” (Trouche 2004b, page 290).  
Of course, this process is not reduced to the acquisition and internalization of one 
single theorem; the present examples are only one occurrence of the mechanisms 
involved. 
 

Contribution to the institution’s culture. 
 

We use the word "institution" in the sense of (Artigue 2002). Each institution has to 
decide whether to introduce the usage of a CAS in Mathematics courses or not to do 
so; not to deal with this issue is also a kind of decision. For example, the institution 
named JCT decided to teach MatLab and to use it in every engineering cursus.  
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Both authors act as coordinators of first year Foundation Courses in Mathematics, i.e. 
courses in which all Engineering students at JCT are involved. In a small subset of 
classes, which can also be viewed as an institution, the authors adopted other 
packages; for example, a course in Ordinary Differential Equations has been given 
last year together with practice sessions based on the usage of a CAS. The 
"institution culture" has already changed in certain classes, and is susceptible to 
change the institution’s culture in a larger scale (e.g., all the first year Foundation 
Courses in Mathematics at JCT): 
 “Tools are not passive, they are active elements of the culture into which they are 
inserted.”(Noss and Hoyles 1996), page 58). 
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Teachers & Teaching: 
Technology and Teacher Education — Some Thoughts 
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Today as in earlier times, there is much rhetoric about the revolutionary impact on 
students' learning that will result from brining a new technology into the classroom. 
In the past, it was the motion picture, or the radio — the usual teaching aids and 
instructional television. None of these fulfilled expectations. Now, it is the computer 
that is believed to herald a new era of more effective learning. With respect to the 
mathematics classroom, computers are claimed to have the potential to change 
pedagogical approaches radically and to improve students' learning. Traditional 
classroom teaching methods related to mathematics have been associated with direct 
teaching, black-board demonstration, use of textbooks or work-books, drill and 
practice activity, homework and so on — a positivistic, behaviourist model. Teachers 
who generally teach mathematics this way will most likely use technology similarly. 
But this traditional classroom and teaching techniques are creating an environment 
that tend to undermine higher order learning skills, such as creativity, independent 
thought, inquiry and innovation. It is fundamental to our homogeneous medium for 
learning that we allow others to tell us what to learn, how to learn and even why we 
are learning. These mean pupils are being deprived of the scientific approach of 
teaching — learning systems being the generation of this technological era. Basic 
differences in the new evolving paradigm will be put the learner in charge. To create 
such an environment, it is necessary to introduce new technologies like computers, 
websites on the Internet and DVDs in classroom teaching. So, the objective of this 
paper is to discuss how the would-be teachers and teachers can be oriented with the 
use of new technology. What kind of programme should be arranged for the trainees 
in teacher education courses; to familiarise them with the uses and importance of 
these technologies? The importance of a mathematics laboratory will also be 
discussed in this context. 
 
Mathematics has always occupied an important position in the school curriculum. 
Mathematical skills and applications form an indispensable tool in our daily life. In 
the present era of technology, mathematics plays a very important role. There is 
hardly any discipline that does not owe anything — directly or indirectly — to 
mathematics.  

However, mathematics is still characterised as a 'dull' and difficult subject, 
primarily due to its hierarchical concepts, deductive approach in proofs and abstract 
nature of content. A phobia about mathematics has been created in the minds of 
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children; a fear that mathematics is 'difficult to learn'. As a result, students seem not 
to express enough interest in the subject and thus become weak. 

Its abstract nature and hierarchical concepts are not the only reasons 
contributing to distaste for mathematics. Traditional methods of teaching the subject 
in schools are also responsible for this. Every year, at the time of the practice-
teaching period, I supervise 45 to 50 mathematics lessons from standards VI-VIII, 
executed by my trainee students, visiting different schools in Kolkata. My 
observation is that the traditional 'chalk & talk' method cannot be a solution to the 
inherently abstract nature of mathematics. On the other hand, if trainees use various 
types of teaching aids, students respond better than usual to the typical mathematics 
lesson. These aids, including the use of concrete objects and visual presentation, have 
a hugely positive impact on teaching and learning mathematics. This approach, and 
similar ones, will motivate students towards learning mathematics. However, to 
interact with the present-technology based educational system, we need something 
more — aware, and able teachers. But more on that later. School students should be 
provided with a dynamic system of teaching — a learning facility to achieve the goal 
of mathematics.  

So, our first objective is to find out how the new/digital technology can be 
blended with the 'chalk & talk approach' in schools. To bring in computers, CD-
ROMs, DVDs and the Internet into classroom teaching, we have to first familiarise 
our teachers with the uses and importance of these.  

Secondly, we have to remove the 'fear' of handling computers or any other 
computer-related technology. All these are possible through short-term 
courses/training/re-training programmes on the use of technology and its implications 
in the teaching-learning process, for teacher-trainees and freshers who plan to take up 
teaching as a profession.  

An alternative approach is the inclusion of some technology-based concepts 
and their uses in the curriculum of the Teacher Education Course. With this view, the 
Technology Based Teaching Strategy (technology based instruction, CD-ROM, 
websites, DVD) has been introduced in the Teacher Education course of Calcutta 
University from the year 2004. But no provision has been allotted to develop 
practical experience. Only theoretical concepts would not inspire teachers to adapt a 
technology-based instructional approach in the classroom. 
 

The proposed Programme: 

In teacher education colleges, there should be provision for a mathematics 
laboratory with the following equipment: 
 
a) Tables, Charts on different topics of Arithmetic, Algebra, Geometry, 
Trigonometry, Mensuration, Calculus and Coordinate Geometry. 
b) Models of different mathematical shapes. 
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c) Experiments to verify different results/formulae in different branches of 
mathematics. 
d) Computer, CD-ROMs, an Internet facility, Data-Projector to prepare lessons 
(courseware). 
e).  Books and Journals 
f).  Portraits of Mathematicians  
 
Not just the facilities; the adequate practice of these tools is important.    
 

In this laboratory, trainees should also be provided with the practical 
experiences. Like other scientific subjects, laboratory experience in mathematics is 
important in providing direct access to teaching accessories, so that these can be used 
confidently by trainees to make the teaching lesson effective and also enhance their 
own concepts.  

The type of programme that can be adopted in the teacher education course to 
acquaint mathematics teachers with the use of digital technology, and to train them to 
enhance their concepts using the mathematics laboratory to prepare courseware, is 
elaborated below. 
 
Details of the program:  

 
  Trainees (trainee-teachers and would-be-teachers) have to prepare 5 or 6 

simulated lessons in his/her total training period.  
 
 Concept & Purpose : 

The dictionary meaning of the word simulation is 'pretence' or 'imitation'. A 
simulated lesson is a micro-lesson that is taken up for teaching in a make-believe 
classroom situation. The primary purpose is to enable a teacher to practice 
teaching with the focus on a single teaching skill, as well as to develop the skill 
of operating the computer as a teaching tool.  
At this stage, trainees will take the help of charts/models and can perform 
 experiments to develop a clear concept to prepare the simulated lesson. The 
prepared simulated lesson has to be presented on the computer to his/her peer-
group. 
 

 
 The characteristics of a simulated lesson are as follows:  

a) The roles of student, teacher and observers are to be played by the trainees (by 
rotation). 
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b) The lessons have to be short, aiming to maximise the use of a particular 
teaching skill 
c) The ultimate aim is to make the teacher aware of the behaviour he/she displays 
in the class, of its purpose, and relevance to teaching learning. 
d) Suggested skills for practice: 

• Skill of Introducing a lesson 
• Skill of Questioning. 
• Skill of Explaining. 
• Skill of Reinforcement. 
• Skill of Closure. 
• Skill of using the black-board where necessary 
 

 Preparation of courseware: 
In the mathematics laboratory, trainees will be provided with the following 
experiences:  
a) The teacher educator will explain the concept of a simulated lesson and will 
explain the components of each skill before preparing the lesson. 
b) Before preparing a lesson, trainees will select a topic and will try to get more 
ideas using related charts or model or performing hands-on experiments. If 
necessary can collect information from the books and journals . 
c) Trainees will then prepare the courseware as per the guideline of simulated 
lesson and then offer a presentation. 
d) Working strategies: 

• Trainees in the mathematics group are to be divided into small batches of 8 to 
10 members each as per the strength of the class. This will be called a 
practice cycle. 

• In a practice cycle, all the trainees will play the role of teacher one by one and 
two others will be the observers and the rests will be students by rotation. 

• Subject teacher (teacher educator) may check the lesson before 
commencement of the practice. 

 
 Suggested distribution of time: 

a) Concepts developed from charts, models or hands on experiment: 15-20 
minutes (common for all). 

b) Preparation time for courseware: 30 minutes (common to all). 
c) Teaching time: 7-8 minutes. 
d) Feedback by observers: 4-5 minutes. Teacher supervising the practice may 

comment on the skill after one complete cycle. 
e) Feedback will be provided by observers in a given format. Observations will 

also be explained. 
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 Evaluation: 
a) Trainees will maintain a notebook that will be presented at the final 

examination and duly signed by the Supervisor (teacher educator). The 
notebook will comprise the following: 
• Name of the skill, and its brief description.  
• Teaching mode used. 
• The courseware/simulated lesson 

 
Theme/Topic Outline content 

 
components Courseware 

    
 

• Format of feedback: 
 
Compo
nents 

Excellent 
(7) 

V.Goo
d 
(6) 

Good 
(5) 

Average 
(4) 

Below 
Av.(3) 

Poor 
(2) 

V.Poor 
(1) 

        
 

With this thought, the Institute of Education for Women, Hastings House,  
Kolkata, a Teacher Education College under CU is going to start its Mathematics 
Laboratory. 
 
Model of a simulated lesson: 
 
   Skill of Introducing the Lesson 

    For Class-IX 
 

Before preparing the lesson, trainees should go through the available charts, 
models, books and journals in the mathematics laboratory to select the appropriate 
steps and fulfill the objective of this presentation. 
 
 
Theme/Topic 

 
Out line content 

 
Component 

 
Procedural details 
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Theorem: 
 
Triangles with 
same base & 
height have the 
same area 

 
Development of 
concept about 
the area of the 
different 
looking 
triangles with 
the same base 
and height 
 
 

 
1. Securing 

attention 
— a 
multitude 
of 
triangles 
are 
projected 
on the 
screen in 
front of 
the 
students. 

The figures 
will be in the 
moving 
state. 
 

 
            X          C           Y 
      2cm                              
 
               A       4cm      B     
 
             X                   C    Y 
                                      2cm 
 
                A      4cm     B 
 
          X                        C     Y 
   2cm                              
 
               A        4cm   B        

  
The height of 
the triangles are 
changed using 
dynamic  
software, 
keeping the 
same base. 
(Fig- 2) 
Students watch 
the change in 
real. 
 
 

 
2. 
Assessment 
of 
motivational 
level/arousal 
of 
motivation  
(true impact 
of 
technology) 

           E  D                              F         
 
                                                  3cm                                                         
 
                 A        4cm       B  
               E                                 D F 
        1.6cm      
                     
                     A         4cm            B 
 
                  E                D              F 
            2cm 
                                 
                        A        4cm        B 

T: Discuss the change and ask 
for observations. 
Since students know the area of 
triangle formula, and have seen 
the change in the area of the 
triangles with the change of 
height, they are convinced that 
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if height and base of a triangle 
are fixed, the area will remain 
unaltered, no matter what the 
triangle looks like.  

  
Relation 
between the 
heights of the 
triangles lies 
within the same 
parallel lines 

 
3. Linking 
past 
knowledge 
and 
experience 
 
 

T:  What can you say about the 
pair of parallel lines given in 
the figures for each type of 
triangle in fig-1? 
S: The heights of the triangles 
remain the same as they lie in 
the same pair of parallel lines. 

   
4.  
Specifying 
the main 
points 
 
 
 

T: We have already seen that: 
i) Triangles having same bases 
and same heights will be equal 
in area. 
ii) Triangles in the same pair of 
parallel lines have same height.  
 
From these two properties it is 
inferred that "triangles on the 
same base and within the same 
pair of parallel lines have same 
area". 
Now we will learn the formal 
proof of the theorem.  

  5. Using 
appropriate 
devices 
 

Charts, computer & CD 
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In this way, trainees will practise six skills of teaching. They will benefit in 

multiple ways through this programme: 
 
• Teacher-trainees will be able to use technology comfortably in the classroom.  
• Teacher-trainees will be able to integrate technology as a complementary tool for 

teachers in the classroom. This is a balanced approach.  
• The variety of experience provided to students through this dynamic approach 

will go a long way in removing the abstractness of mathematics as a subject.  
• This will also motivate students towards learning mathematics and provide a 

meaningful experience towards holistic learning. 
 
Note: The author regrets that examples of other teaching skills couldn't be elaborated 
upon due to shortage of space. This will be provided at the time of a formal 
presentation. 
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This paper discusses the role of a multimedia learning environment, MILE, for the 
learning processes of prospective teachers. MILE is a Multimedia Interactive 
Learning Environment for prospective primary school teachers, with content for 
primary mathematics teachers’ education programs. We summarize an investigation 
on student-teachers’ use of language and how they give meaning to mathematics and 
didactics. Our analysis shows: (1) the evolving and shifting nature of meanings and 
processes of signification; (2) the important role of experiences from the past, but in 
particular from their work as trainees at primary schools; (3) the use of 
mathematical language and the consequences for a didactical way of thinking; (4) 
how student-teachers’ observations lead to hypotheses and local theories. In our 
conclusions, we related our findings to the construction of a teacher education 
course that allows student-teachers to use MILE to develop mathematic and 
didactical insights on materializing. Teacher educators need help to capitalize on 
crucial moments in the interaction amongst student teachers. The study showed that 
the teacher educator needed resources to recognize those moments and to optimize 
class discussions.  
 

Introduction 

MILE is a Multimedia Interactive Learning Environment for prospective primary 
school teachers, with content for primary mathematics teachers’ education programs 
(Dolk, Den Hertog & Gravemeijer, 2002). It is computer based and provides a 
database of real classroom teaching open for didactical investigations, allowing 
student teachers to investigate many aspects of mathematics education in primary 
schools. Besides the video database, the environment consists of communication 
tools for learners, a search engine—allowing users to search for classroom footage in 
a video database, and accompanying students’ and teachers’ materials—, a student 
teacher’s journal, and thematic suggestions for investigations. These investigations 
offer student teachers opportunities to develop conjectures about teachers’ practical 
knowledge and teaching behavior and about the effect of the teacher’s behavior. The 
environment allows them also to analyze students’ learning over time, and to 
investigate parts of the process through which students develop mathematical 
understanding.  
We want prospective teachers to learn more about the RME. Mostly, these 
practitioners had learned some mathematical principles in secondary school. They are 
used doing mathematics without learning what it is to be a mathematician. 
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Mathematical reasoning and heuristic approaches are no daily practice for them. 
Moreover, they mainly learn about mathematics education through experience in the 
full practice of primary school, first in an internship, later on as teachers. That means 
that the biggest part of their competences in mathematics education is acquired by 
teaching primary students. 
Initially, the expectations were that it would be possible for prospective teachers to 
learn in an investigative way within the MILE-environment. Quickly, it proved that 
these student teachers had no proper attitude and the teacher educators had not the 
abilities at one's disposal to coach them in a proper way. That is the reason that 
mostly, one uses this environment only with forms of directed guidance and learning 
questions at hand. This tension between ideal and reality necessitate research. 
The Study 

Theoretical framework 

In the following we describe parts of the theoretical framework, taking a particular 
look at the Sociomathematical and -pedagogical norms (Stephan 2003). Paul Cobb 
emphasized that learning mathematics is a matter of a process of cognitive 
construction and of acculturation. Prospective teachers undergo all kinds of 
influences during their training: on the one hand the culture of teacher education, on 
the other the primary school where they server their traineeship, and added to that 
their social group. Their system of values is therefore determined in several different 
areas. We look also to the Mathematical and pedagogical conceptions. Many 
teachers, Cobb (1987) and Gravemeijer (1989) said, tend not to distinguish between 
Vorstellung and Darstellung. In their view, it would be better for teachers to think 
from an ‘actor’s point of view’, in which the students’ reality is put in a central 
position. Teachers themselves also attribute meanings, and these by no means have to 
correspond with those students give.  
We are also using a semiotic perspective (Van Driel 1995, Bakker 2004, pp. 187-
198). In Charles Sanders Peirce’s way of thinking, every sign points to a concept. 
Then there is also the form the sign assumes (since a sign does not have to be a 
material), that which he called the representamen. This can occur in any number of 
forms: words, images, sounds, odors, flavors, acts or objects. But such things have no 
intrinsic meaning and become signs only when we invest them with meaning. 
‘Nothing is a sign unless it is interpreted as a sign’, declares Peirce. And then there is 
the meaning the sign evokes: the interpretant. How does the idea arise that a specific 
meaning belongs to a sign? At first similarities and experiences will stimulate that. In 
Peirce’s words that lends a kind of iconicity. On the second level the term 
indexicality is used. This experience is emphatic, because it is based on the 
experience of the actual proximity of two phenomena. The third level of experience 
leads to symbolization. All kinds of conventions and agreements play a part in 
symbolic meanings, such as the scale in the drawing of the tiled square. 

Aim of the study 
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This research study, of which this report is a part, is an ongoing one. It is an 
explorative research and we want to know more about: 

the evolving and shifting nature of meanings and processes of signification;  
the important role of experiences from the past, but in particular from their 
work as trainees at primary schools;  
the use of mathematical language and the consequences for a didactical 
way of thinking;  
how student-teachers’ observations lead to hypotheses and local theories. 
Participants and data sources   

This pilot case study involved four students in their third year of education. They 
have finished most of PABO’s standard program, and now only have to do their 
practical, in-service, training. Their participation in this study was voluntary. All 
these students are interested in mathematics education. The group consisted of one 
man and three women, all of them 21 years old.  
The observations were partly participating, we interviewed also. In accordance with 
the hypothetical learning trajectory of Martin Simon (1995) the activities were 
developed in advance and we made hypotheses about the learning processes if the 
student teachers. During the research we audiotaped and we made reports. 

Task Design 

The study took place over four meetings which had a cyclical character, allowing for 
in between evaluation of the data and preparation of the next cycle. The cycles could 
be typified as follows: 
Orientation on materialization. The students became aware of the formal and 
informal knowledge they possessed on the topic.  
2. Observing some situations from practice and giving meaning from the 
materialization approach. 
3. Putting more detail on the observations and their interpretation. 
4. Evaluating newly gained knowledge. 
It had been agreed in advance with the participants that they would spend twenty 
hours on the study: four two-hour meetings, an hour and a half of preparation and an 
hour and a half for processing the results. In preparation for a meeting they were 
given information about materializing with some questions as guidance. They 
afterwards made an evaluative report as well. Every meeting consisted of a number 
of parts: an initial activity, a discussion of the article and the preparations, followed 
either by work in MILE, working on the computer in pairs or using the video 
projector with the whole group. Every activity ended with a moment of evaluation 
and reflection, during which we analyzed our findings and observations.  
Analysis of student activity 

When we asked the student-teachers to make multiplication problems and support 
their ‘thinking’ with materials we saw that they took an observer’s point of view. 
When the question arose ‘Why do you use mathematical materials in daily practice? 
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One of the participants gave as her opinion that it is done to make education more 
fun and because it helps to explain. Another participant wonders whether materials 
would still be necessary in grade 6. You should not use a material, such as the 
arithmetic rack, if children can do without. In the end, together the students reach a 
kind of ‘definition’ of material: 
You can touch it. 
It is 3D 
Visualizing is what matters: the students can see what they are doing. 
When the participants afterwards observed in MILE in pairs we saw that their view 
of the situation was fairly global, and afterwards their main interest is in 
understanding the greater picture. Questions such as ‘Have the students worked with 
tiled squares before?’ and ‘What materials are normally used in grade 2?’ emerge. 
Based on their observations, they made an hypothesis: ‘Every time the students learn 
something new, they fall back on materials. The materials visualize what you are 
doing, and you will visualize the materials later on’.  
In the evaluation the students explain they find observing in MILE a difficult part. 
Roelien thinks she chose the wrong fragment: ‘This is about organization’. The other 
students explain to her that the teacher makes remarks about the way of thinking to 
solve the problems. Together, we conclude that teaching a mathematics lesson does 
unavoidably lead to things being interlaced. The students say they have so little 
insight into the order of the lessons, that they did not have time to reflect on the 
aspect of materializing in the video-clips.  
It seems that if these four prospective teachers put the iconic interpretations of the 
material first. As yet, they have little experience and little theoretical knowledge, 
which means they are not inclined to making indexical and symbolic interpretations. 
Yet they are open for a more conceptual way of thinking. They have learned in the 
past about strategies and about the use of contextual situations and they are using that 
kind of knowledge all the time. They barely shift to an interpretant that is a part of 
the network of mathematical and didactical knowledge.  
The students tended to keep talking from an observer’s point of view and their 
interpretants mostly suited their earlier experiences. Which reflections lead to 
thinking of the mental processes going on in the children’s heads? In this meeting we 
established how curious these students were about ‘good’ mathematics teaching. To 
find it, they mainly zoom in on the ‘what’ and the ‘how’ of the activities, rather than 
the ‘why.’ Especially with MILE, it is noticeable that they want to know how the 
lesson is set up, though we had hoped for a deeper analysis, which was not yet 
possible. That raises the question of how we can get students to really research 
something. What indicators are needed? How do we deepen their insight into existing 
theories about the use of material? 

Personal experiences  
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In the various conversations the four participants gave direct (and sometimes 
implicit) information about their needs, values and thoughts. Mostly, they centralize 
their own experiences, both those from their primary school past and from their 
traineeship. We missed in such situations a careful reflection and an attitude to learn 
from this kind of experiences. The four prospective teachers showed that emotions 
govern their way of thinking. Maybe, their learning style is reproductive (we didn’t 
test that). In that case, they want examples of good practice, ready-made solutions for 
practical situations.  
Dutch teacher training colleges develop more and more programs with student-
centered approaches. Learning from and by experience is an important approach. We 
see the influence of the ideas of Donald Schön (1987) who emphasized that 
practitioners require forms of action learning. Reflections on and conversations with 
the situation are important constituents of learning to master complex situations in 
the future. How can we encourage prospective teachers to construct new knowledge? 
In our opinion there are two possible entrances. We want to discuss with them the 
mathematical language in relation to the thinking processes. Second, we try to let 
them formulate hypotheses and local theories. 

Mathematical language  

The importance of language in the development of mathematical thinking has 
recently been acknowledged by many authors (Van Oers, 2002). The precise relation 
between language and mathematics however is not a straightforward one. The 
adoption of mathematical language does not automatically amount to genuine 
mathematical thinking. Van Oers (2002) observed that the development of children’s 
mathematical activity can stay on the line of symbol development for given 
meanings, or the line of meaning development. By treating terms in a mathematical 
way, reflecting and structuring their meanings, these gradually evolve into 
personalized mathematical meanings.  
Prospective teachers thinking about their own language in relation to the language of 
the young students can be helpful to give a change to an actor’s point of view. Then 
the teachers realize that their language – especially in mathematics – differs from the 
way in which students are talking about mathematical topics. So, to observe real life 
educational situations – and there are a lot of them in the MILE-environment – can 
be very helpful in understanding that different meanings of the same concept exist. It 
will be helpful to explain the dialogues between teacher and students and to 
hypothesize on mental processes and concepts. 
By discussing a MILE-situation where a teacher who is instructing a grade 2 class, 
encourages the children to think of tiled squares the question arose: what exactly did 
the teacher say, and what did she mean by it? In the evaluation of the observation it 
emerges how difficult it is to describe that precisely. The student teachers think they 
know what the teacher said, but when we listen again, it turns out to be slightly 
different. One question that emerges is whether the teacher said to make problems for 
the tiled square or of it. This led to a discussion about aspects of mathematical 
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language and how children interpret it. What formulation is needed to make children 
grasp the intention? There are two options, 5x7 and 7x5. If you want children to 
explore these, how should you say it? Bas concludes: ‘If you say “make problems 
‘of’ it,” the children will do 7x5 and 5x7, if you say “make problems ‘for’ it,” they 
will just make a whole list of problems.’  
The next possible question is: ‘What are the thinking processes of the children in 
these specific cases?’ A way in which we stimulate prospective teachers to take an 
actor’s point of view with a more language based orientation is to let them describe a 
primary student’s inner dialogue based on a situation from MILE. This assignment’s 
purpose is to make the students put themselves in the child’s place and realize 
everything that is involved in a mathematical situation. 

Hypothesis and local theories 

Students can create their own educational narratives based on the situations in MILE. 
Such narratives are more than stories about the situation. Mason claimed that 
description is a cornerstone of all research. ‘Any description is based on making 
distinctions and drawing attention to relationships, through the process of stressing 
some features and consequently ignoring or down-playing others.’ Mason formulated 
the following as being problematic in writing: ‘If what we perceive is what we are 
prepared to perceive, and what we are prepared to perceive is what we have 
perceived in the past, how then do we ever come to perceive anything new?’ This is a 
question about constructing knowledge. Within communications among educators 
these considerations will contribute to the development and sharing of educational 
knowledge (Gudmundsdottir, 1995; Mason, 2002). Constantly we challenge the 
student-teachers to develop local and global theories. On the one hand, they have to 
limit their investigation and the justification of their understanding to the multimedia 
cases; on the other, they have to extend their understanding into their future 
profession in the form of hypotheses. During their investigations they had to switch 
continually between these two perspectives. Here we give an example. 
In the evaluation of a discussion where a teacher, instructing a grade 2 class, 
encourages the children to think of tiled squares the four prospective teachers started 
asking all kinds of questions, such as: ‘why is a tiled square used for multiplication 
problems?’ and: ‘what is needed first when children are learning to multiply: “pencils 
in trays or tiled squares?” Apparently their schooling did not include an overview of 
the learning trajectory. One of the guys finally comes up with a ‘theory,’ in which 
notions of materializing, context and the use of models pass in review. She relates 
how young children start with counting, but quickly move on to ways of counting. 
Gradually they start to see the possibility of using groups. This kind of shortening 
leads to jump counting. Then shortening reaches the point where applying ‘times’ 
becomes more and more obvious. You mainly use the tiled square to show on the one 
hand the jump character, and on the other to also show that 7x5 and 5x7 give the 
same result. One of the other participants summarized this in his report: 
What is the purpose of the problem? 
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We discuss the problem and what its purpose is. At what point in the learning 
trajectory for tables and area/content will this form of mathematics be on offer. 
Roelien’s theory: Counting for kindergartners -> ways of counting (2, 4, 6, 8, 10 of 3, 
6, 9) -> groups -> ‘times’ problems -> squares -> area -> content. 
Of course, posing questions, developing local theories, etc. are no miracles. But when 
there is a good environment with experienced teacher-educators, a shifting 
interpretant is within reach. For us the program of the teacher education is more 
successful if the prospective teacher is used to discuss his own opinion. We can learn 
a lot of Descartes’ methodic emphasis on doubt, rather than on certainty. We 
observed that prospective teachers are directed to teacher thinking most of the time. 
But does that yield enough profit? We hope that prospective teachers will see that 
their didactizing is more successful if they know more about the mental processes in 
the heads of their young students.  
Concluding Remarks 

In this study we focused on the evolving and shifting nature of meaning and 
processes of signification. We saw that the four prospective teachers tended to put 
the iconic interpretations of the material first. It was also clear that our small group 
gave their personal experiences as first points of reference: from their school career, 
but in particular from their working as trainees. In the Dutch situation the programs 
of the teacher educations are more and more student-centered. We want the student 
teachers to do forms of action learning, but when their own experiences are too 
dominant, there are no good conditions for growth. 

We proposed two methods for an effective approach: to discuss the use of 
mathematical language and see the consequences for a didactical way of thinking and 
to let them make observations in the MILE-environment and lead them to hypotheses 
and local theories. In that process we try to bring the student teachers to an actor’s 
point of view instead of their usual observers’ point of view. Of course, we discussed 
a very small part of the math education, for example, we did not talk about the way in 
which the student-teachers use theoretical knowledge. We reflected upon potentials 
to prepare prospective teachers for their role in creating opportunities for students to 
reinvent mathematics. The final goal is that they build up knowledge of their 
understanding of students’ developmental possibilities, so that they can make plans 
for instruction and interact with students in the classroom. 

Guided reinvention is a leading characteristic behind the development of a 
curriculum for primary school mathematics. To guide student-teachers into their 
reinvention of didactical theories, teacher-educators need to have deep insights into 
student-teacher’s thinking, feelings, beliefs, theories, assumptions, etc. This study 
forms the groundwork for this latter knowledge.  
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In this paper we present and discuss an activity realized with K-8 level students using 
robots to learn functions in the mathematics classroom. Research presented in this 
paper is framed by project DROIDE which is a three years project. We are now in 
the first one. The aims of DROIDE are: 

• to create problems in Mathematics Education/Informatics areas to be solved 
through robots; 

• to implement problem solving using robotics in three kinds of classrooms: 
mathematics classes at K-9 and K-12 levels; Informatics in K-12 levels; 
Artificial Intelligence, Didactics of Mathematics and Didactics of Computer 
Science/Informatics subjects at high level;  

• to analyze students activity during problem solving using robots in this different 
kinds of classes.  

In spite of we are just beginning the research, first data collected show them as 
promising and we can already point out some implications for mathematics teaching 
and learning when robots are used as mediators between students and Mathematics.  

 
Introduction 

In late years it become widely acceptable that learning is not a merely individual 
activity, isolated from social, cultural and contextual factors (Lave, 1988; Collins, 
Brown & Newman, 1989; Cobb, 1994; Confrey, 1995, in Núñez, Edwards and 
Matos, 1998). Learning occurs in social contexts that influence (and are influenced 
by) kinds of knowledge and practices that are build (Lave and Wenger, 1991; 
Wenger, 1998 e Wenger, McDermott e Snyder, 2002). 
Thus, we can not neglect the real world where actual students live – a world more and 
more informatized and consequently more mathematized. What is important to learn 
in our days is not the same at the time when students’ parents were children.  
The evolution of technical capacity of computing equipment and network 
communication possibilities brought new work dimensions and possibilities. But the 
great majority of classrooms does not reflect this turn that carried new pedagogical 
challenges (see Fernandes, 2004).  
In Portugal, a lot of research, focusing in the use of information and communication 
technologies, has been driven, either in teachers’ education programmes or with 
                                           
14 Centro de Investigação em Educação da FCUL. 
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pupils of K-5 to K-12 levels. This research has concerned mainly with the use of a 
certain kind of software (e.g. GSP, Cabri-Géomètre, Modellus, etc.) and calculators 
(graphic or not) in the classroom.  
Informatics teaching is a recent curricular area in Portugal. Thus, there is few 
research concerning with that problematic.  
Either in Mathematics Education or in Informatics teaching and learning area there 
are still questions that deserve our attention, namely, the use of robots to teach and 
learn mathematics and Informatics. 
The Project and its Aims 
DROIDE15: “Robots as mediators between students and Mathematics and 
Informatics” is a three years project and we are now on the first year.  
We place three kinds of aims for the project:  
• to create problems in Mathematics Education/Informatics areas to be solved 

through robots; 
• to implement problem solving using robotics in three kinds of classrooms: 

mathematics classes at K-9 and K-12 levels; Informatics in K-12 levels; 
Artificial Intelligence, Didactics of Mathematics and Didactics of Computer 
Science/Informatics subjects at high level;  

• to analyze students activity during problem solving using robots in this different 
kinds of classes.  

Thus, we established the following research problem: to describe, analyse and 
understand how students learn mathematics/informatics having robots as mediators 
between them and mathematics/informatics. 
Within a perspective of interpretative nature – in which empirical work constitutes a 
guide to the search – we posed a set of questions that we would like to answer with 
this search: 
(a) How do students appropriate certain mathematical concepts using robots?  
(b) How do they use robots to learn how to develop algorithms? 
(c) What is the role of robots in mathematics/informatics learning? 
(d) In which way do robots facilitate mathematics/informatics learning? 
(e) How can robots help in developing mathematical and Informatics knowledge? 
(f) What is the role of robots in developing students’ mathematical competency? 
(g) How does creating mathematical/informatics problems to be solved through 

robots influence upon teachers and future teachers’ methodologies of work in the 
classroom? 

                                           
15 The authors of this paper would like to acknowledge the collaboration of the other two 
colleagues of the project: Elci Alcione dos Santos and Luís Gaspar. We also acknowledge the 
support from Mathematics and Engineering Department  (DME) and from Local Department of  
Ministry of Education (SRE).  
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(h) How does the use of robots in teachers’ education programmes develop 
competencies in teaching Mathematics and Informatics?  

This paper relates an activity realized with K-8 students using robots Lego® 
Mindstroms™ Robotic Invention System™ in a mathematics class to teach 
functions16.  
Theoretical Background 

The research took into account Situated Learning Theories (Lave & Wenger, 1991, 
Wenger, 1998, Wenger et al, 2002). The notion of community of practice, such as it 
is used on theoretical perspectives of Jean Lave and Etienne Wenger, which consider 
learning as a situated phenomenon, are used to reflect upon emergent learning within 
students mathematical and computer science/informatics practices.  
According to Wenger et al (2002) practice17 is constituted by a set of “work plans, 
ideas, information, styles, stories and documents that are shared by community 
members” (p.29). Practice is the specific knowledge that the community develops, 
shares and maintains. Practice tends to evolve as a collective product integrated in 
participants work and organizing knowledge in ways that make it useful for 
themselves insofar as it reflects their perspectives (Matos, 2005). 
Wenger (2002) proposes three dimensions of the relation by which practice is the 
source of coherence of a community: mutual engagement, joint enterprise and shared 
repertoire.  
Mutual engagement: a sense of “doing things together”. Sharing ideas and artefacts 
with a common commitment to the interactions between members of the community.  
Joint enterprise: having some object as an agreed common goal, defined by the 
participants in the very process of pursuing it, not just a stated agenda but something 
that creates among participants relations of mutual accountability; that become an 
integral part of the practice (Matos, Mor, Noss and Santos, 2005). 
Shared repertoire: agreed resources for negotiating the meanings. This includes 
artefacts, styles, tools, stories, actions, discourses, events, concepts.  
Methodology 
Methodology adopted is organized in three stages according to the aims of the 
project: 1st – problems creation; 2nd – classroom implementation and data collection; 
3rd – data analyses. 

                                           
16 These robots are used at classrooms because students can interact with mechanical parts and see 
results immediately. This allows students to employ certain theoretical concepts and to understand 
how they work in reality. It is important to point out that it is not necessary to have prior knowledge 
in robotics neither in computer programming.  
17 The term practice is sometimes used as an antonym for theory, ideas, ideals, or talk. In Situated 
Learning theories that is not the idea. In Wenger’s sense of practice, the term does not reflect a 
dichotomy between the practical and the theoretical, ideals and reality, or talking and doing. The 
paper extension does not allow the development of the idea of practice. For discussion of practice 
related with mathematics education see Fernandes (2004).  
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First stage – analyses of School Mathematics and Informatics curriculum by 
researchers, to choose didactical units where robotics can be used. Creation of 
problems/tasks (to be solved in Mathematics and Informatics classes).  
Second stage – Problems/tasks implementation in Mathematics and Informatics 
classes.  
Data collection - Data are being collected recording, on video, the activity of students 
observed. 
Third stage – analyses of students activity at the time when they work (in 
mathematics/informatics) with robots. Methodology used has an interpretative nature. 
Data analysis is supported by Situated Learning Theories. The unit of analysis 
considered was “(...) the activity of persons-acting in setting” (Lave, 1988, p.177).  
Using Robots to Learn Functions: One Problem Proposed  

In this part we will present a brief description of the context, of general plan of work 
for the unit of functions, of problem that were solved, and of mathematical activity 
and mathematics involved on the problem.  
Context 

Basic School of Caniçal, created in 1996, is situated at the East extreme of Madeira 
Island, at Caniçal village, whose population is about 5500 residents. Fishing is 
traditionally the economic base of the village. Building construction is an alternative 
as well as seasonal emigration whose implications in familiar structure is visible 
seeing that, grand parents and close parents are who care with young people. That 
fact is reflected on school performance of students.  
In mathematics class students worked in small groups. The work involved, in a first 
phase, robots construction and programming to solve simple tasks using Windows® 
visual environment programming that come with robots kits. Subsequently, students 
used robots to recognise and apply coordinates system in robots programming, 
understand function concept, represent one function (direct proportionality) using and 
analytic expression and, to relate intuitively straight line slope with the 
proportionality constant, in functions such as kxx  . 
General plan of work for functions unit  

First mathematical unit to be worked was functions. For that didactical unit we 
prepared four sets of problems. With Problem 1 we pretend that students recognize 
examples and counterexamples of functions in correspondences presented in such 
different ways and identify functions as examples of correspondences of daily 
situations. With Problem 2 we aim that pupils deal with other kinds of graphs, behind 
straight lines and recognize then as functions as well, if it is the case. With Problem 3 
we pretend students to learn direct proportionality, as a function. Direct 
proportionality definition as a function emerges of the mathematical activity of 
students using robots. Finally, Problem 4 is about topics related with affin function, 
such as y-intersect, slope and the relation between the graphic of that kind of 
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functions with the graphic of the function of direct proportionality ‘associated’ to the 
first.  
The robot travel 

Now we present part of a problem that has been solved by students:  
1. We asked Pedro and João to imagine and draw a graphic that 
represents a robot travel from a certain start. They presented the 
following graphics: 
 
 
 
 
 
 
 
 
 

Fig. 1 
 
1.1. Now you have to study the graphics presented by Pedro and João. Describe 
the robot travel relatively to its distance to the starting point.  
1.2. Try to programme the robot in such a way that it realizes the proposed 
travels. Test it, and, if it is possible, confirm the results. Write the program(s) 
that you have done. 
1.3. Did the robot realize both proposed travels? Present the difficulties that you 
found in programming the robot to such travels. 
1.4. What is the necessary condition in order that one graphic represents the 
‘possible travel’?  

Description of students practice  

Students solved the problems in small groups, collaborating in problem solving, 
arising hypothesis and discussing their viability. Below we present a transcription18 of 
part of a class where students were solving question 1.1.  
 

                                           
18 In this transcription (due limitations of space) we mainly present students exhibiting the result of 
the discussion they had on the group to the teacher. We choose to cut the episode in this way 
because we can ‘see’ on the transcription students building, intuitively, the concept of function.   
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In Rui’s group the solution of question 1.1. emerged only of the analyses of the 
graphics. The same happens with Ricardo’s group, maybe because these two groups 
were very close on physical space, and listened the discussions among elements of 
the groups and between those and the teacher. In other groups to programme Pedro’s 
travel was important to understand the graphic; to understand that the graphic is not 
translating the route of the robot but the relation between time and distance in the 
travel done by the robot. The work with the first graphic allowed students to 
understand the second graphic and consequently, to capture intuitively the concept of 
function.  

Rui: Teacher…Teacher… This graphic is not good! [Pointing 
to the second graphic] 
Teacher: It’s not good? Why? 
Rui: It’s not good because in this way the robot is walking 
backwards. And the robot has always to go ahead.   
Teacher: I do not understand what you mean [trying that Rui 
made explicit what he was thinking] 
Rui: I don’t know … 
Rui looked to the graphic again and goes back to the discussion 
with the other group elements. 
Rui: Teacher… we already know. Could you, please, come 
here? 
Teacher: Yes?  
Rui: This line is not what the robot route. It’s the distance. 
Teacher: Distance? 
Rui: The distance from the starting point. And here is time. 
And we can not do that. 
Teacher: What can’t you do? 
Rui: The robot can’t do this route.  
Meanwhile, Ricardo [a student of another group that was close 
to Rui’s group and very attentive to the discussion] answered: 
Ricardo: Can’t be because the robot cannot walk backwards in 
time.  
Teacher: What will happen if the robot walks backwards in 
time?  
Rui and Ricardo [almost at the same time]: I don’t know.  
Teacher: Observe and study the graphics.  
A few minutes later… 
Rui: I already know! I already know! The robot had to be at to 
places at the same time, isn’t it teacher?  
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When every group had solved the 
problem, teacher discussed with all the 
group mathematical ideas involved in the 
problem trying that, they together, make a 
synthesis of the main mathematical 
concepts.  
In all this process of solving the questions 
a shared repertoire emerged. The 
vocabulary they used to approach 
problems and questions is a mix of 
vocabulary of two distinct domains 
(mathematics and robots). They are 
analysing a graphic but they talk about 
what a robot can and cannot do. Using the 
robots and its programming as a taken-as-
shared resource allow students to 
negotiate meaning among them (in the 
group) and between the group and the 
teacher and give meaning to students 
mathematical activity.  

To have a join enterprise (that can be to solve the question, to please the teacher, to 
understand the meaning of mathematical concepts involved or only to play with the 
robots) is very important to motivate students to engage in the activity and is an 
integral part of students practice.  
The co-definition of mutual engagement is visible through:  
- a growing sense of responsibility in solving the questions posed by the teacher 

and in understanding what they are doing together and what is the meaning of 
what they are doing;  

- not giving up until they found the problem solution; 
- a pleasure in going deeper into their ideas and in building a solution to the 

problem and meaning to their answers.  
In these three dimensions of the practice we talk about meaning. In fact Wenger 
(1998) argues that the social production of meaning is the relevant level of analyses 
for talking about practice.  
But when meaning is discussed in the sphere of mathematics education usually it 
concentrates on the meaning of (mathematical) concepts. Questions such as the 
following become important: What sort of meaning can be associated with certain 
mathematical concepts? What is the meaning of particular concepts to students? What 
sort of meaning can be associated with this concept from a mathematical point of 
view? What is the meaning of this concept from the perspective of the teacher? What 
is the shared meaning of this concept? (Skovsmose, 2005)  
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Findings 
To analyse students practice in mathematical classes is fundamental as element that 
helps to understand learning. It is important that students’ engagement in school 
mathematics activity is not only to accomplish a curricular programme but that they 
have a genuine interest by the domains they work and the use of robots have a 
relevant role as a mediator element in all this process.  
In spite of we are now in an initial phase of data analyses we can already foresee 
some findings that show themselves as promising.  
• Students felt comfortable both when building robots and using programming 

environment. 
• Using robots in mathematics class promotes an increment either in discussion 

between students and between students and teacher and in collaboration on the 
resolution of proposed problems. 

• Students recognize impossibility of executing a task without assuming it as an 
inability of them. This fact was evident, for instance, at the time when they are 
solving the previous described problem. 

• Function concept was apprehended in a significative way. The definition of 
function emerged as a final conclusion of students work and not as a starting 
point.  
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In recent years we have been researching a range of issues associated with the use of 
digital technologies – computers, graphics calculators, and CAS calculators – in 
secondary mathematics classrooms. Gender and other equity considerations were a 
focus in some of the work; teachers’ and students’ beliefs about and attitudes 
towards the technologies were also central. In all of the studies, comparisons were 
made. The views of male and female students and teachers have been examined, 
students’ and teachers’ views compared, the perspectives of teachers in different 
countries contrasted, teachers’ views on computers and calculators distinguished; 
and the examination results of male and female students using different digital 
technologies explored. In this proposal, synopses of various dimensions of a 
selection of the studies are presented. Taken together the studies reveal that gender 
differences favouring males with respect to technology use are evident, that teachers 
are generally supportive of the use of digital technologies for mathematics learning, 
and that curricular and school factors are associated with the classroom use of 
technologies and beliefs about their efficacy in fostering student learning. 

 
Introduction 

In Victoria, Australia, technology use across the curriculum has been strongly 
advocated and financially supported by government for some years. In the 
curriculum document for grades P19-10, the Curriculum and Standards Framework II 
[CSFII] (Victorian Curriculum and Assessment Authority [VCAA], 2002), the “full 
use of the flexibility and value for teaching and learning programs provided by the 
increased application of information and communications technology (ICT)” 
(VCAA, 2002a) is strongly advocated. In the Mathematics section of the CSFII, the 
use of a range of digital technologies for mathematics learning is strongly supported 
and, by implication, assumed: 
Recent developments in the availability of calculators, graphics calculators and 
computer software have led to a major re-evaluation of school mathematics 
curricula in terms of content and strategies for teaching and learning mathematics. 
The Mathematics KLA supports these developments, by placing clear emphasis upon 
the sensible use of technology in concept development, as well as in technology-
assisted approaches to problem-solving, modelling and investigative activities… At 
all times, the choice of the appropriate technology and the extent to which it is 

                                           
19 P is the grade level prior to grade 1 
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employed should be guided by the degree to which these tools assist students to learn 
and do mathematics. [VCAA, 2002b] 
Grades 11 and 12 in Victoria are considered the post-compulsory levels of schooling 
and involve a two-year program, the Victorian Certificate of Education [VCE]. Grade 
12 VCE results are used for selection into tertiary institutions. At the grade 12 level, 
three mathematics subjects are offered and one of the outcomes stipulated for VCE 
Mathematics is “the effective and appropriate use of technology to produce results 
which support learning mathematics and its application in different contexts” 
(VCAA, 2005, p.7). In one of the three VCE mathematics subjects, Mathematical 
Methods, graphics calculators have been mandated for several years. In 2003-2005, a 
small number of students were involved in an pilot program, Mathematical Methods 
[CAS], in which CAS were used in place of the graphics calculator. In 2006, the two 
parallel versions of Mathematical Methods will be open to all students; at the same 
time, the assessment program will alter in that one of the two examinations for the 
subject will be calculator-free. By 2008, all students in Victoria taking Mathematical 
Methods will be using CAS calculators.  
The studies discussed in this proposal were all conducted in Victoria. Each involved 
students and/or mathematics teachers from the secondary grades, 7-12. One study 
was focussed on the use of computers, one on computers and graphics calculators, 
one on graphics calculators only, and one on CAS calculators. One of the studies also 
involved mathematics teachers from Singpapore. Each study involved comparisons 
being made. Students’ and teachers’ views were examined for gender differences as 
were students’ mathematics achievements, teachers’ and students’ beliefs were 
compared, comparisons were made between the views of teachers from Singapore 
and Victoria, and teachers’ views on computers and calculators were contrasted.  
A synopsis of each study, with selected major findings, is presented below. 
Study 1. A three-year study of computer use in Victorian grade 7-10 

mathematics classes. 

The overall aims of the three year study into computer use in Victorian grade 7-10 
classrooms included: (i) determining perceived effects of using computers on 
students’ mathematics learning outcomes, (ii) identifying factors that may contribute 
to inequities in learning outcomes (equity factors included: gender, socio-economic 
background, language background, Aboriginality, and geographic location) and (iii) 
monitoring how computers are being used for mathematics learning. The research 
design for the three years involved: 
Year 1: surveys of mathematics students in grades 7-10 (N=2140: F=1015, M=1112, 

?=13) and their teachers (N=96: F=52, M=44); survey of grade 11 students 
(N=519: F=237, M=281, ?=1 ) reflecting on previous use of computers for 
mathematics learning – 29 co-educational schools were involved. 

Year 2: in-depth studies of 7 grade 10 mathematics classrooms at three schools – 
surveys, observations, interviews. 
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Year 3:  repeat of Year 1 surveys in same schools – only 24 schools participated – 
grades 7-10 students (N=1613: F=810, M=794, ?=9), their teachers (N=75; 
F=41, M=34); and grade 11 students (N=376: F=166, M=210). 

The findings from this study have been widely reported (e.g., Forgasz, in press a, in 
press b, 2005, 2004a, 2004b, 2003, 2002a, 2002b, 2002c). A brief summary of some 
of the main findings is presented below: 
• Computer ownership by mathematics teachers was high (>80%), teachers 

considered themselves well-skilled with computers, and most had used 
computers in their mathematics teaching (≈ 70%); <10% had not and were not 
planning to do so. Computers were more widely used in single content areas 
than fully integrated across the mathematics curriculum. Teachers wanted more 
professional development to extend skills, increase confidence levels, and 
become more familiar with software applications. 

• The most widely used mathematic-specific software applications were 
Geometer’s sketchpad (22% of teachers) and Graphmatica (22%); the most 
frequently used generic software applications were spreadsheets (62%), word-
processors (49%), and Internet browsers (32%). CD-ROMs accompanying 
textbooks were also widely used (26%). 

• Teachers were generally supportive and confident about using computers in 
their classrooms. They identified greater access to hardware, more technical 
support, the availability of high quality software, and on-going professional 
development as the significant issues to be addressed if they are to use 
computers more in their mathematics teaching. 

• Teachers (≈ 60%) were not fully convinced that computers aided students’ 
mathematical understandings; males, however, were more positive about the 
effects than females. Students were even less convinced of this than their 
teachers (≈ 30%); again, males were more positive than females.  

• Students attending schools in lower SES locations, government schools, and at 
lower grade levels, were more convinced than their respective counterparts that 
computers assisted their mathematical understandings.  

• Compared to their respective counterparts, students from non-English speaking 
backgrounds, males, and those with high self-ratings of mathematics 
achievement, had higher computer ownership and held more positive attitudes 
towards computers for mathematics learning. 

• Some teachers believed there were differences in the ways boys and girls work 
with computers. Compared to boys, girls were generally considered less 
confident, less competent, and less interested in using computers. 

• Data from grade 11 students indicated that computers served as stronger 
motivators for males’ than for females’ enjoyment of mathematics, and in 
persisting with mathematics at higher levels of schooling and beyond. 
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Study 2. A comparative study of Victorian and Singaporean teachers’ 
perceptions of computer and graphics calculator use. 

The aim of this study, conducted in 2005, was to investigate and compare the use of 
and perceptions towards computers and graphic calculators among mathematics 
teachers at senior secondary levels in two settings: grades 11 and 12 in Victoria and 
junior college years 1 and 2 in Singapore – the two final years of schooling leading to 
tertiary entrance (Tan & Forgasz, n.d.; Tan, 2005). 
Since 2002, only a small group of mathematically inclined students taking the subject 
Further Mathematics at the senior secondary levels in Singapore have been allowed 
to use graphics calculators in their examinations; the majority studied the subject 
Mathematics and graphics calculator were not permitted in the examinations. 
Graphics calculators will be introduced more widely into the revised mathematics 
curriculum at the senior secondary level in 2006. 
A survey questionnaire was administered to 35 (19M, 16F) mathematics teachers 
from 14 independent (non-government, non-Catholic) schools in Victoria, and 33 
(16M, 16F, 1?) teachers from five junior colleges in Singapore. It was found that 
graphics calculators were extensively used by the Victorian teachers, and that high 
proportions of the Singaporean and Victorian teachers had not or had hardly ever 
used computers with their mathematics classes. Interestingly, Victorian teachers’ 
self-ratings of their graphics calculator skills (beginner, average, or advanced) were 
much higher than the Singaporean teachers’; only one Victorian indicated being a 
beginner and 18 claimed to be advanced, while 19 Singaporean teachers identified as 
beginners and only two to having advanced skills. The difference in perceived 
competency resonated with other findings that showed that a higher proportion of 
Victorian than Singaporean teachers had personal access to graphics calculators and 
had used them for a longer time. The Victorian teachers were found to be more 
strongly in support of graphics calculator use over computers, while the Singaporean 
teachers were more supportive of computer use over graphics calculators. 
The teachers in both settings identified factors that affected their decisions to use the 
technologies. The data suggested that mandating technology tool use in an 
assessment program, as was the case in Victoria, plays an important part in 
explaining the extent of their use by teachers, and may also account for the Victorian 
teachers’ preference for graphics calculators over computers. 
Study 3:  Perceptions of the impact of graphics calculators among teachers 

from Victorian Catholic schools 

The aim of this study was to investigate teachers’ perceptions of the impact of 
graphics calculators on their teaching practice, on student learning, and on the 
mathematics curriculum in grades 10-12 in Victorian Catholic secondary schools 
(Griffith, 2005).  
A survey was conducted with 47 (25M, 22F) senior secondary mathematics teachers 
from 16 Catholic schools (6 girls-only, 6 boys-only, and 4 co-educational schools). It 
was found that the teachers had used graphics calculators with all of the grade 10-12 
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classes they taught, and that all students owned their own graphics calculators. The 
teachers indicated that students in grades 10-12 were using the graphics calculators 
for in-class activities, problem-solving tasks, computational tasks, during 
investigations, and to do tests and School Assessed Coursework [SAC] tasks. In 
general, students were not using graphics calculators to write programs, play games, 
or to do puzzles or quizzes. 
Some differences were noted in the views of male and female teachers on issues 
associated with graphics calculators use. While all believed that using graphics 
calculators had enhanced their mathematics teaching and changed how they taught, 
the female teachers felt more strongly than the male teachers that their students were 
able to solve non-routine problems on the graphics calculator that would otherwise 
be inaccessible using algebraic techniques, and that students were able to engage 
with challenging problems; they believed less strongly that students accepted 
answers given by the calculator and rarely checked for reasonableness. The females 
also believed more strongly than the males that the introduction of technology-free 
examinations (2006 change to the VCE mathematics assessment program) was a 
positive development. 
In summary, the teachers generally believed that graphics calculators have had a 
positive impact on their teaching and on students’ learning outcomes, and that the 
curriculum has been enriched. Female teachers tended to hold these views more 
strongly than their male counterparts.  
Study 4.  CAS calculators: Gendered patterns of achievement in a high stakes 

examination pilot program, and teachers’ expectations of their 
imminent mandated use in such courses.  

The focus of this two-part study was on the introduction of CAS calculators for use 
in the high stakes grade 12 VCE mathematics examinations (Forgasz & Griffith, 
n.d.). For some years, it has been mandatory for students to use graphics calculators 
in some VCE mathematics examinations. Since 2002, a pilot study has been 
conducted involving small groups of grade 12 students using CAS calculators instead 
of graphics calculators in one of the three VCE mathematics courses on offer, 
Mathematical Methods (the subject most widely required as a pre-requisite for 
tertiary study). From 2006-2008 the CAS calculator will be optional, that is, there 
will be two parallel Mathematical Methods courses available for all students to study 
– one in which graphics calculators must be used, the other mandating CAS 
calculators. From 2008, only CAS calculators will be allowed.  
Part 1 of this study involved an exploration of male and female students’ results in 
Mathematical Methods over three years, 2002-2004. Comparisons were made 
between the achievements of the students in the CAS pilot study and those of the vast 
majority of students who used graphics calculators. Male and female results at the 
top two achievement levels awarded (A+ and A) in each of the three assessment tasks 
(one school-based, two external examinations) comprising the VCE Mathematical 
Methods subject for the year 2004 are shown in Table 1.  
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Table 1.  Mathematical Methods and Mathematical Methods (CAS) results at top 
three achievement levels, by gender, 2004 

 Mathematical Methods Mathematical Methods (CAS) 

 Male Female M:F2 Male Female M:F 

 N %1 N %  N % N %  

Grade Task 1 (school-assessed) 

A+ 1747 18 1261 15 1.20 42 17 20 13 1.31 

A 2003 21 1939 24 0.88 57 23 28 19 1.21 

 Examination 1 

A+ 1102 12 793 10 1.20 35 14 16 11 1.27 

A 1306 14 1030 13 1.08 40 17 19 13 1.31 

 Examination 2 

A+ 1013 11 593 7 1.57 33 14 12 8 1.75 

A 1074 11 874 11 1.00 34 14 20 14 1.00 
1 Within gender cohort percentages. 
2 Male to female ratio (M:F) = Male % : Female % 
3 Shaded ratios – when M:F>1 ie. greater % males than females 
4 Bolded M:F ratio – higher M:F ratio for the two subjects 
The data in Table 1 reveal that when within gender cohort percentages were 
considered, higher proportions of males than females were awarded the A+ grade for 
all three tasks in Mathematical Methods (CAS) than in Mathematical Methods with 
graphics calculators) for all three tasks; this was also true for 2 of the 3 tasks at the A 
level of achievement (Task 1 & Examination 1). Overall, the there was a wider 
gender gap favouring males in performance at the highest achievement levels for 
Mathematical Methods (CAS) than for Mathematical Methods with graphics 
calculators. Similar patterns were observed for the 2002 and 2003 results. 
In Part 2 of the study, 38 teachers’ views of the likely impact of the wider use of 
CAS calculators from 2006 and beyond were examined. None of these teachers was 
involved in the Mathematical Methods (CAS) pilot study. In one section of a survey 
questionnaire, teachers were asked to respond to the open-ended question, “From 
2006 onwards students will be able to use CAS (Computer Algebra Systems) 
calculators in VCE Mathematics examinations. Please describe in your own words 
the impact you think CAS calculators will have on: your teaching, student learning, 
and curriculum”. Separate spaces were provided for teachers to answer about 
teaching, student learning, and the curriculum. 
In general, the teachers tended to respond positively about the introduction of CAS 
calculators in each of the three categories that they were asked to comment on: 
teaching (positive: 68%, negative: 32%), student learning (positive: 65%, negative: 
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35%) and curriculum (positive: 70%, negative: 30%). None mentioned any 
potentially differential impacts on male and females students. 
General conclusions from the four studies 

Overall, the results of the four studies indicated support among Victorian teachers for 
the use of digital technologies in the secondary mathematics classroom. The teachers 
considered themselves fairly well-skilled in using the technologies, but called for 
more professional development to enhance their skills and confidence. Not all 
teachers were convinced of the effectiveness of computers on students’ mathematical 
understanding; students were even less convinced than their teachers. Yet, the 
teachers use the technologies fairly regularly, and have found that their teaching, 
students’ learning, and the curriculum, have been affected – particularly in using 
handheld technologies. With respect to gender, the findings seem to support Hoyles’ 
(1998) contention that more emphasis on computer use might negatively impact on 
girls. Other equity factors (e.g., socio-economic, language background, and 
geographic location) appeared to influence access to and attitudes towards 
computers. There were indications that males may be advantaged over females in 
using the sophisticated CAS calculators in high stakes examinations. Based on the 
comparisons between Singaporean and Victorian teachers, another important finding 
was that curricular expectations and requirements seem to influence teachers’ beliefs 
about and use of particular digital technologies. 
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This paper examines the possibilities for and principles of developing and 
implementing a new math curriculum into the Latvian secondary education. To get a 
better understanding of the Latvian situation, we are offering a brief insight into the 
existing educational system. The existing standard and sample curricula for teaching 
math have become outdated and work is being done on developing a new standard 
and curriculum. The real life situation in Latvia with regard to the serviceability and 
availability of computers and the pupil’s access to computers for learning math has 
been identified. The conclusion is that pupils use computers mainly in classes of 
computer studies, but very in little in math classes. Some research which directly 
deals with this particular problem is presented. When designing the new curriculum, 
our attention is focused on how to use the computer in teaching math while 
preventing its use as a means in itself.  

Our approach is underpinned by objectives, tasks and philosophy of teaching 
math that would result in engaging the modern day technologies. In Latvia a new 
extensive project has started - “Curricula development and further education in 
science, mathematics and technology related subjects”. A brief overview of the 
project performance with project objectives and developed products is presented. 
Some of the potential problems are considered that need be avoided in order to 
ensure the projects sustainability. The project is unique to Latvia and one of its 
central objectives is (through the standard, curricula and teacher support material) 
to demonstrate to teachers what, how and why to teach math in secondary school 
with the help of the computer. The project’s implementation will allow us to 
introduce a unified concept for the teaching of science and math at the national 
level. 

 

The tasks of education are to prepare a pupil for life and for further education. In 
order to accomplish that, the main focus should be placed on three activities: 
imparting knowledge, evaluating and making it practical (including creativity). 
Learning mathematics is essential for all three activities mentioned above. 
 
Education System in Latvia 

 

 The Law of Education in the Republic of Latvia determines following levels of 
education: 

- Preschool education 
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- Primary education 
- Secondary education 
- Higher education 

For all the residents of Latvia primary education is mandatory, but secondary 
education and higher education are optional. The Cabinet of Ministers approves the 
standard of education, which determines the mandatory content of primary and 
secondary education. The curriculum standards are parts of the education standard.  
 The Center for Curriculum Development and Examination for each subject 
develops a sample program, which serves as a guide to teacher. Each school and each 
teacher has rights to develop the corresponding study program for their school.  
 In the former Soviet Union the teaching of mathematics was centralized in the 
whole country, including Latvia. After the fall of the Soviet Union, as Latvia was 
developing as an independent nation country, the first curriculum standards were 
developed (in 1992). In 1998 work was begun to development new curriculum. In the 
process of the development of the new content of subjects, the results of various 
international studies were used, for example, international program of pupil’s 
assessment in OECD countries [1]. Now we have new subject curriculum standards 
developed in primary education. The implementation /introduction began in the 
school year 2004/2005, and it is planned to completely finish this process in three 
years. Up to now the teaching of mathematics in Latvia has had more academic 
approach, and not offering the student practical tasks and not showing the connection 
of mathematics to real life. Now the new content of secondary education is being 
developed. In the summer of 2005 a new and important project, “The development of 
curriculum and further education in the natural sciences, mathematics and 
technologies in secondary education,” was started, which is financed with the support 
of the European Social Fund.  
 
Accessibility and the use of digital technologies in Latvia 

 
 Now in Latvian schools the computer is widely used in teaching computer 
studies, but only a little in other subjects, including mathematics.  
In October / November 2001, at the request of the Ministry of Education and Science 
of the Republic of Latvia, the Center of Research of the Market and Public Opinion 
conducted the research “The attitude of 5th –12th grade pupils towards information 
technologies and its use in schools, existing access to computers and the Internet”. 
The research showed, that more than 90% of the pupils have access to computers [2], 
60% of the pupils have access to the Internet. Almost all the pupils (95,6%) have 
acknowledged, that it is necessary to increase the number of computer classes in 
school.  

In 1997 a project “Latvian Education Information Systems” (LIIS) was begun 
[3]. That ensured the introduction of information and communication technologies in 
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schools. In each school one computer classroom was set up and in 60% of the 
schools was provided direct access to the Internet. 70% of the teachers of Latvia have 
been trained in regular courses. In regions and in the larger cities regional computer 
centers are established, in which more knowledgeable teachers are training their 
colleagues. As a part of this LIIS project, training materials in various school subjects 
have been developed (volume – 100 000 pages) and can be found in the Internet, as 
well as a lot of learning programs and games. Unfortunately one should admit, that 
the majority of the materials related to mathematics, not always can be used daily by 
the pupil. The target group for those materials are the pupils, who have deeper 
interest in mathematics, in preparation for educational Olympics and for teachers. 
There is a lack of interactive materials, which are developed for the interesting 
independent studies in mathematics.  

Presently computer is practically not being used in the learning process of 
mathematics in Latvia. As a part of the project “Curriculum Development and further 
education of teachers in the subjects of natural sciences, mathematics and 
technologies” the survey was conducted, in which 692 10th graders from 12 pilot 
schools participated.  

Asked about “The use of the computer in mathematics classes”, 73% of 
participants  responded, that opportunity to use computer in mathematics has not 
been offered.   
 

Computer usage in mathematics class

There is no choice

Liked very much

Liked very much

Did not like

Not offered

 
Among those pupils, to whom such option to study mathematics using a computer 
was given, 14 % liked it and 10 % liked it very much. Only 3% of pupils did not 
enjoy learning mathematics with a help of computer.  
 Currently, one of the most widely accessible applications of the computer in 
mathematics would be to work with different information sources, for example, the 
Internet. Responding to the question about “Gaining information from different 
sources”, 42% of students responded, that this form of work was not offered.  
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Gaining information from different sources 

There is no choice

Liked very much

Liked 

Did not like

Not offered

 
 
The development of the content of mathematics for the secondary school, using 
the computer as one of the means of teaching 

 
Currently in Latvia work is being done in the project of developing new 

subject standards in secondary education and corresponding subject sample program. 
In developing new curriculum for mathematics, two main approaches in teaching are 
being observed, which are shown in the chart [4]: 
 What is mathematics? The main question in a 

mathematics course?  
Technology based 
approach 

Mathematics is the 
means for serving 
other branches of 
science and practice 

How? 

 

Research based 
approach 

Mathematics is also 
intellectual and 
cultural value in itself 
 

Why? 

 

 
In the technological approach it is considered that the student has to be given 

an idea about as many issues as possible at the operational level without fundamental 
explanations. Much attention is given to motivation: Why are we introducing one or 
another mathematical tool, what practical problems one can solve using that, or what 
can be described, etc. It is typical for this approach to use mathematical algorithms. 
In the content there are many rules which tell what to do in one or another situation. 
However, once the pupil goes beyond the stated rules, he/she becomes quite helpless. 

When carrying out the curricula and training methodology reform, it is 
important to avoid being carried away by one approach over the other. Realising the 
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possibilities afforded by the computer, its use in mathematics classes should cater for 
a balance between both approaches in teaching mathematics. 

In the framework of the project “Teaching contents development and further 
education in mathematics and technology related subjects”, extensive work has been 
started on creating a new math teaching standard, program sample and teacher 
support material. This is work that has no precedence in Latvia and as a result of that 
we expect to obtain a completely new insight into the teaching of math in the 
secondary school. The project has enlisted the help of math teachers, university 
lecturers, members of the publishing community which altogether form a 
professional team for the implementation of the project. The materials produced by 
the project are to be approbated and implemented on a common national basis. 

The methodological teacher support material in math includes: samples of 
classes, samples of various level problems, research assignments, test work, samples 
of IT use and possibilities, interactive course for pupils. The objective of our work is 
to provide ready for work tools: fully fledged electronic teaching aids, work sheets 
for PC work, and references in subject teaching curriculum on how to use the 
computer in teaching math. 
 

Visualization is a key element in the teaching process. A feature which we 
plan to introduce into the training process is the dynamic math application 
GEONEXT [5] which offers a new approach to teaching and learning math. We 
chose this software because it is widely available, free of charge and has a translated 
Latvian version. Thus we are hoping to foster a proactive research based approach 
that would facilitate formation of math oriented thinking in pupils. 

There is a plan to also include in the curriculum Internet addresses relevant to 
each topic. Into the specific training content we plan to include assignments and 
research projects that require information processing with the help of spreadsheets. 

One of our project’s most essential products for pupils is the interactive 
training material which meets the standard and curriculum requirements. It is 
comprised of the theoretical material, problems with solutions, practice problems 
with solutions, and self-testing. Although similar teaching material is available on the 
Internet, it unfortunately does not address the specific circumstances in Latvia and is 
not available in the native language of the pupils. It is important that the interactive 
material is developed for each secondary school topic. The pupil, when working with 
the interactive teaching material, may proceed at his or her own chosen pace and 
determine what to study at a specific point in time. 
 The implementation stage performed by the teacher at schools is integral to the 
development of all the material (class samples, samples of different level problems, 
research projects, tests, samples of IT use and possibilities, interactive course for 
pupils). Therefore it is necessary to prepare the teacher for working with the material. 
To avoid risks associated with insufficient teacher training, the project framework 
provides for a 72 hour training course. The plan is that all secondary school teachers 
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in Latvia will undergo this course. This further education course for teachers will 
also include training into the use of computers in teaching math. 
 
Due awareness of the potential problems relating to the implementation of the project 
is also important for ensuring the project’s sustainability. 
These are some of the risks we have identified: 

• insufficient teacher training for conducting classes in computer room and for using 
PC for demonstration purposes; 

• underfunding for updating PC resources - the service life of computers in schools 
might be 5 years; 

• deviation away from a balanced split between the use of technology and research 
oriented approach to teaching math, resulting, for example, in pointless use of 
computers in math classes. 

 
Although we are now only into the six month of the project we have 

accomplished quite a lot. Material for form 10 is developed and approbated in 12 
pilot schools. Returns form pupils and teacher evaluations on the developed material 
is being compiled and used in further evolution of the material. Already by 
September 2006, new research data will be collected, which we would be pleased to 
present during the December conference together with the developed material. 

In our move to modernizing the teaching content we are now facing an 
enormous challenge and would appreciate very much the opportunity to take part in 
this conference, thus learning more about other countries’ experience and 
achievements in this area. 
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 In this paper I will report from research on use of ICT tools to promote students’ 
learning of mathematics. The work is largely situated in a learning community with 
teachers and didacticians working together on planning for an inquiry approach to 
learning mathematics. A sketch of theoretical framework is presented with emphasis 
on seeing ICT as a personal technology, developing into an instrument for the 
learner and with considerations of affordance and constraints to analyse the 
activities. I will present and analyse cases of teachers and students’ work on 
mathematics in the classrooms using ICT tools. I will focus on how the teachers plan 
for and support the students’ learning in the classroom. In particular I will focus on 
how mathematical concepts and relations are represented in the work.  
 

Background 

There has been long time effort to integrate use of Information and 
Communications Technology (ICT) in Norwegian schools to support teaching of 
different subjects. Computer studies, (EDB), IT, ICT and recently “digital 
competence” has been an issue in several curriculum guidelines since 1987, 
emphasising use of computers or calculators for teaching and problem solving in 
mathematics. The new curriculum plan, which is in effect from august 2006, states 
“digital competence” as one of five fundamental competencies in every subject in the 
curriculum (2005b).  

However, in spite of the efforts, little has been achieved concerning integrating 
ICT in particular subjects, in mathematics particularly, in a way that affect the 
subject content and ways of teaching (Erstad, 2004). A lot is claimed to have been 
achieved in general concerning use of ICT in schools, but my impression from 
contact with teachers informally and from reports, is that the work mainly is 
concerned with general organisation, use of Learning Management Systems, internet 
to search for information, text processing and so on. Little has been implemented 
when it comes to utilising the potential of ICT in teaching and learning mathematical 
subject content except for schools involved in ICT projects or with particularly 
enthusiastic teachers. Recent reports support this. An evaluation of the 
implementation of the current plan reveals little use, and hardly anything was 
reported from the classes observed during the evaluation (Alseth, Breiteig, & Brekke, 
2003). A recently published report (Ola Erstad, Vibeke Kløvstad, Tove Kristiansen, 
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& Morten Søby, 2005) reveals that the use of ICT-tools20 in schools has decreased 
since the previous report in 2003. Thus the development of ICT use in mathematics 
generally in Norway is a rather slow process.  

Similar experience is also documented in other countries (Hennesey, Ruthven, 
& Brindley, 2005). Teachers have problems to find out how to implement ICT and 
there is considerable resistance and constraints, for example from caution on some 
uses, requirements in the syllabus and assessment system, and by teachers largely 
using ICT to support existing practice rather than transforming into new approaches 
to mathematics. 

On many occasions when I have met teachers at conferences, courses or at 
school visits I understand from the conversation and they also expressed directly that 
they do not really know how to utilise ICT tools in mathematics teaching. They often 
express interest but also claim they have not sufficient insight in the ICT tools and 
how to use them for mathematics. Quite often teachers ask for good examples of 
tasks or teaching plans in order to understand how technology can help. This can also 
be caused by lack of knowledge and limited experience with ICT and suitable 
software.  

 
Intentions in the curriculum  

Digital competence in the new curriculum plan is one of five fundamental 
competencies in all subjects together with ability to express oneself orally and in 
written, read and calculate (UFD, 2005). The notion digital competence in 
mathematics is further elaborated to involve use of computers and calculators for 
games, investigations, visualisation and publishing. On higher levels in schools it 
deals with using digital tools for problem solving, simulations and modelling and in 
addition searching for information, analyse, and present data and be critical to 
sources and results. Furthermore it is important to be able to judge and utilise digital 
tools and know their limitations. The aim described here is similar in the current plan 
which has been in use since 1997.  

In addition to the general aims described above, more details are given in 
different sections in the plan; like use of a spreadsheet with simple models for 
calculations, presentation of statistics in tables and diagrams, experiment with 
geometry, and use digital tools for work on functions.  
 
Research question  

A main focus in this paper is to research how the teachers can provide a 
learning environment for students’ work with ICT tools in the mathematics 

                                           
20 ICT- tools is here used in the wide sense, computer software and calculators, without specifying 
characteristics. 
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classroom and how teachers can support students’ work to learn mathematics using 
ICT.  
 
1. How are the mathematical concepts and relations visible in the students’ work on 
computers? 
2. What affordances and constraints do the students’experience with the ICT support 
for a mathematical task or problem? 
 

The relation between the students’ work on computers and the way the teacher 
provide support is a part of the questions. The teachers work is done in the context of 
a project working on developmental research. Development of learning environment, 
task design and study of the implementation is a central issues in the research, and 
our experiences can illuminate questions about how teachers can be supported when 
implementing ICT tools and what we can learn from their experiences in classes 
(ICMI-17, 2005). Some of the questions concerning design of learning environment 
can also be illuminated.  
 

Theoretical background 

Introducing ICT in mathematics classrooms aiming to influence teaching and 
learning have implications for the way tasks and lessons are designed. The aim is, 
with support from ICT tools and teachers planning for learning, the student will learn 
mathematics and gain deep and flexible understanding of the subject and how it can 
be represented with the use of digital technology.  
 The aim according to the curriculum, is that the students should be able to 
judge and decide when and which digital tools to choose for a specific task. To 
achieve this goal the students have to know ICT tools in a personal way, not just 
know the technical features, but know and appreciate what kind of mathematical 
representations and models can be build and make connections to the actual tasks or 
problems they are going to solve. This requires a deeper knowledge and sense of 
what opportunities the tools can provide, in Gibsons’ terms (1977; Greeno, 1994), 
what affordances and constraints the ICT tools provide in a specific mathematical 
situation. 

Implementing ICT tools as a part of the learning environment have 
implications for the way teachers and students’ work. The teaching and learning 
environment have to be considered in relations to how computers can be regarded, as 
an amplifier or a reorgansator (Dörfler, 1993). Amplifier implies doing the same as 
before, more efficient but without changing the basic structure, methods and 
approaches. In this way we will not be utilising the potential of the tools. Dörfler, and 
also others, claim that introduction of computer tools implies reorganising. Similar 
arguments are expressed by Goos, Galbraith, Renshaw, & Geiger (2005): “ The 
amplification effect may be observed when technology simply supplements the range 
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of tools already available in the mathematics classroom, for example by speeding 
tedious calculations or verifying results obtained already. By contrast re-organising 
occurs when learners’ interaction with technology as a new semiotic system, 
qualitatively transforms their thinking, ….. ”. I think of this as a personal process 
whereby students develop their understanding of the tools and the mathematics 
involved.  

This personal transforming of the students’ thinking with the tools, seems to 
me to have ideas in common with more recent ideas from the French didacticians 
concerning turning the artefact, ICT tools, into a mathematical instrument (Guin, 
Ruthven, & Trouche, 2005). The students build their own personal instruments from 
the artefact through his (her) activity with it. This is a two way process, named 
instrumental genesis, whereby the students interact with the artefact forming their 
own schemes in order to work on specific tasks (Trouche, 2005). The resulting 
instruments consist of a combination of the artefact and the students’ corresponding 
schemes. This process is influences and supported by the way the teacher provide for 
students’ learning, named the teachers orchestration for the learning.  

ICT tools represent both affordances and possibilities for the user and 
constraints for the work with tools (John & Sutherland, 2005). The affordances and 
constraints are not just connected to the tools, but can also be due to the classroom 
organisation, curriculum issues or other factors influencing the teaching. Constraints 
are not just negative obstacles, but can also support and frame the development of the 
working situation (Kennewell, 2001). A task that is too open can be difficult for the 
students to solve. In this sense constraints rather complement the affordances than the 
being opposite. According to Kennewell (2001) “the role of the teacher is to 
orchestrate affordances and constraints in the setting in order to maintain a gap 
between existing abilities and those needed to achieve the task outcome, a learning 
gap which is appropriate to the development.”  The study of affordances and 
constraints can provide a framework for analysing the effects of ICT in combination 
with other factors influencing the teaching and learning (Watson, 2006; Kennewell, 
2001).  

I am aware that the presentation of the theoretical considerations here is short, 
and perhaps unclear. My intention for the suggested paper is to develop this further, 
and with these concepts providing a framework for the study. 
 
Recent and on-going projects 

In a development and research project named the “ICT competence project” 
the aim was to develop the students’ competence to use ICT tools such that they 
would be able to judge hat ICT tools are appropriate to use for a specific task and 
choose for themselves, not just rely on the teacher to tell what tools to use. The 
projects followed seven classes from grade 8 to 10 in schools with six teachers taking 
part and concluding in 2004.  
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Project meetings with teachers and project leaders were arranged every term 
for discussion of teaching ideas, experiences and further plans. The first two years 
had a main focus on development, but in the last year data were collected for 
research in the form of observations, collection of students’ work on computer files 
and paper, questionnaire and interviews with a selection of students and teachers. In a 
working period in the final part of the project the students’ work were observed, and 
afterwards they were given a questionnaire about their experiences in the work, what 
tools they chose to use and why (Fuglestad, 2005b; Fuglestad, 2005a).  

In an on-going project ICT and mathematics learning (ICTML), the aim is to 
build a learning community, involving schools, teachers and a group of didacticians 
at the university college. The project collaborates closely and has a common 
conceptual model with the project Learning Communities in Mathematics (LCM)21. 
A central aim in the projects is to develop inquiry communities in mathematics 
(Jaworski, 2004). Some schools take part in both projects. The ICTML project has a 
focus on use of ICT-tools, in particular computer software, and how these can be 
utilised as support for mathematics teaching and learning and students’ inquiry into 
mathematics.  

Teachers and didacticians collaborate in workshops at regular intervals on 
developing competence with ICT tools and discussing ideas for teaching in schools 
and experiences. Furthermore didacticians take part in meetings at the school 
discussing and development of tasks or draft of lesson plans using ICT.  

All kinds of activities in the project are audio or video recorded and material 
like students’ work in written and on computer files are collected. This gives rich 
opportunity to study the development in the different parts of the projects.  
 

Data for analysis 

The focus of this paper is to analyse some representative cases of teachers’ 
implementation of ICT tools to support mathematics learning and how the students’ 
work on the mathematical content in the tasks or problems provided.  

I will present cases of students’ work on mathematical tasks in order to 
highlight different ways of setting the tasks and orchestrating for students’ learning 
environment.  

In the final part of the ICT competence project the students had a working 
period where they could choose what tasks and tools to work with, either ICT tools 
or others. I observed a group of students working on a task that they found rather 
difficult. I partly acted as a helping teacher, but gave only limited help. The task was 
to find the smallest surface area of a rectangular box with length the double of the 
width, and volume 500. I observed their work, which was started in one lesson and 
taken up again a few days later. The students chose to work on a spreadsheet and set 

                                           
21 Both projects are funded by the Research Council of Norway, http://www.forskningsradet.no  
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up formulae for the surface and volume, but did not use a formula for the connection 
between length and width of the box. There were a lot of arguments and frustrations, 
they needed a lot of time but after some hints they succeeded.  

In a school taking part in the ICTML project one of the teachers made a draft, 
a collection of small tasks, on different sheets in Excel. On the first sheet, the 
students were asked to fill in two numbers, which are numerator and denominator of 
a fraction. Then as a result some equal valued (similar) fractions emerged for the 
students to observe and reflect on. The students were asked to write about their 
observations and comment on what they found. On the next sheet the students moved 
on to a similar more challenging task. The teacher had planned for increasing 
openness and difficulty of the tasks as the students moved on to the following sheets 
in the file.  

At a meeting with the other teachers and didacticians the task was presented 
and discussed. New elements in the task were discussed and the participants learned 
from the others about ways of implementing and improving parts of the spreadsheet 
tasks. So both didactical and technical issues were discussed. A few days later the 
tasks was used in a class and observed. The task was discussed in a new project 
meeting. In discussing the experiences and the task several changes was made and 
new ideas for tasks developed.  

The planned paper will present and analyse these and other cases in order to 
illuminate the research questions and hopefully reveal some critical elements in the 
teachers’ planning and the students’ work on mathematics using computers.  
 
Conclusion 

The proposed paper will focus on students and teachers’ work in the class with 
use of a computer with suitable software. The cases that will be presented will 
highlight critical points in the teachers’ orchestration for students’ learning and 
development of the ICT tools into an instrument for learning and solving 
mathematical problems.  

The analysis is ongoing and more will be completed during the spring term 
2006. Since the work is not finished I will not provide any conclusions. 

The main contribution from the proposed paper will be on the two themes 
Teachers and teaching, and Design of learning environments.  
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This paper theorises an extension to a framework that describes students’ use of 
technology when engaged in mathematical activity and discussion. The framework 
describes students’ interaction with technology through a series of metaphors: 
technology as master; technology as servant; technology as partner; and technology 
as extension of self. These metaphors allow illustration of potential relationships 
between students’ intentions, technological engagement and actions. The framework 
is conceptualized from within a socio-cultural perspective of learning/teaching 
mathematics and extends the Vygotskian principle of Zone of Proximal Development 
(ZPD) by elevating computer and graphing calculator technologies beyond that of 
simple cultural tools to that of quasi-partner or mentor. The framework was 
developed through an ethnographic case study of a single class of students over a two 
year period. It describes different types of interaction between technology and 
students as they are challenged by new ideas and concepts or as they explore non-
routine, contextualized mathematical problems. A component of the framework is 
used to analyse two episodes of student/student and student/technology interaction 
while working on a specific mathematical task. Implications are discussed for the use 
of the extension of this framework as a means for the promotion of more 
sophisticated uses of technology in mathematics classrooms.  

 

Through their inclusion as mandatory elements in Australian state syllabuses and 
assessment regimes, policy makers have authenticated the arguments of researchers 
(e.g., Morony & Stephens, 2000) in favour of the inclusion of mathematically 
enabled technologies and applications (META) because of their potential to 
transform learning and teaching in Australian mathematics classrooms. Similar 
change is evident outside of Australia in response to the influence of bodies 
concerned with curriculum reform in mathematics (e.g. NCTM, 2000).  
Considerable research effort has been directed towards understanding how META 
can be used to enhance students’ learning in mathematics (Dunham & Dick, 1994; 
Weber, 1998; Barton, 2000) and, in particular, how these technologies can act as 
catalysts for more active engagement in learning and, consequently, greater 
conceptual understanding (Barton, 2000). Other proponents (e.g. Asp, Dowsey, & 
Stacey, 1993; Templer, Klug, & Gould, 1998) have argued that these technologies 
can allow students the freedom to explore new ideas and concepts.  
This paper outlines a framework that describes students’ action and interaction with 
technology from a socio-cultural perspective and identifies META as an element, 
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within this framework, that plays a role beyond that of a simple tool. In doing so, this 
paper addresses the theme of Learning and Assessing Mathematics With and Through 
Digital Technologies. This theme will be approached through the perspectives of 
Theoretical Frameworks and Contribution to Learning Mathematics.  
Theoretical Framework  

Sociocultural perspectives on learning emphasise the socially and culturally situated 
nature of mathematical activity, and view learning as a collective process of 
enculturation into the practices of mathematical communities. A central claim of 
sociocultural theory is that human action is mediated by cultural tools, and is 
fundamentally transformed in the process (Wertsch, 1985). The rapid development of 
computer and graphical calculator technology provides numerous examples of how 
such tools transform mathematical tasks and their cognitive requirements. From a 
sociocultural perspective, technology can be regarded as a cultural tool – sign 
systems or material artefacts – that not only amplify, but also reorganise, cognitive 
processes through their integration into the social and discursive practices of a 
knowledge community (Resnick, Pontecorvo and Säljö, 1997). Amplification takes 
place when a tool provides a more efficient procedure or pathway for engagement in 
a task, for example, the use of a calculator or spreadsheet to deal with a series of 
tedious numeric calculations. Cognitive reorganisation, on the other hand, occurs 
when the use of technological tools mediates a qualitative change in an individual’s 
way of thinking about a mathematical idea or concept, or their approach to a problem 
solving task. This type of transformation is evident when students are encouraged to 
develop the capacity to take a multiple representational approach to solving non-
routine problems. The freedom to assign equal privilege to different problem solving 
approaches provides opportunity to break free of the straightjacket of traditional 
algebraic reasoning and represents a completely different way of thinking about how 
to initially engage with a problem solving task and then how to progress after this 
engagement.  
While the approach taken here is essentially Vygotskian, Galbraith, Goos, Renshaw 
and Geiger (2001) have argued previously that the widely known definition of 
Vygotsky’s Zone of Proximal Development (as the distance between what a child can 
achieve alone and what can be achieved with the assistance of a more advanced 
partner or mentor) can be extended to conceptualisation of the ZPD in egalitarian 
partnerships and by the way the ZPD concept creates a challenge of participating in 
a classroom constituted as a community of practice. The first extension suggests that 
peer groups of equal expertise can promote new learning via contributions from 
individuals with incomplete, though relatively equal, expertise that sum to something 
greater than their individual parts, and so through interaction collectively progress 
knowledge and understanding. This is different from the purely Vygotskian view in 
which productive learning arrangements require that at least one individual in a group 
possesses greater expertise in an area of learning endeavour. The second extension 
argues that through the establishment of a small number of repeated participation 
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frameworks such as teacher-led lessons, peer tutoring, and individual and shared 
problem solving, students are challenged to move beyond their established 
competencies and adopt the language patterns, modes of inquiry, and values of the 
discipline. Such a classroom environment, representative of an active community of 
learners, is augmented by the availability of technology as a means to amplify and 
reorganise ways of communicating within the community; for example, by allowing 
students to contribute to collective discussions either as private individuals (via a 
computer screen) or publicly (via a display available to all participants). An important 
observation of this study was that students who were less prone to contribute to more 
conventional classroom discussion did so readily through electronic media.  
This paper will argue that while technology plays a role as a cultural tool, as outlined 
above, it can, in the minds of students, assume a more active and interactive role in 
the process of cognitive reorganisation – that of an almost peer with expertise that 
can be drawn upon in the same way as other members of a learning community.  
A Framework for Analysing Students’ use of Technology  

There are a number of studies that have sought to develop taxonomies of student 
behaviour in relation to the use of technology while learning mathematics. Doerr and 
Zangor (2000), for example, in a case study of pre-calculus classrooms identified five 
modes of graphics calculator use: computational tool, transformational tool, data 
collection and analysis tool, visualisation tool, and checking tool. Alternatively, Guin 
and Trouche (1999) developed profiles of behaviour in relation to students’ use of 
graphing calculator technologies. The modalities outlined in the profiles were 
characterised by random, mechanical, rational, resourceful, or theoretical behaviours 
in terms of their ability to interpret and coordinate calculator results.  
It is from the perspective of learning as a sociocultural experience, however, that 
Galbraith, Goos, Renshaw and Geiger (2001) have developed four metaphors for the 
way in which technology can mediate learning. These metaphors, technology as 
master, technology as servant, technology as partner, and technology as extension of 
self, describe the varying degrees of sophistication with which students and teachers 
work with technology. While these metaphors are hierarchical in the sense of the 
increasing level of complexity of technology usage teachers and students may attain, 
it does not represent a developmental progression where once an individual has 
shown they can work at a higher level they will do so on all tasks. Rather, the 
demonstration of more sophisticated usage indicates the expansion of a technological 
repertoire where an individual has a wider range of modes of operation available to 
engage with a specific task. This means, for example, that a very capable individual 
may well use technology as a servant if the task at hand is mundane and there is no 
reason to invoke higher levels of operation.  
A description of these metaphors is outlined in below: 
Technology as Master. The student is subservient to the technology – a relationship 
induced by technological or mathematical dependence. If the complexity of usage is 
high, student activity will be confined to those limited operations over which they 
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have competence. If mathematical understanding is absent, the student is reduced to 
blind consumption of whatever output is generated, irrespective of its accuracy or 
worth.  
Technology as Servant. Here technology is used as a reliable timesaving replacement 
for mental, or pen and paper computations. The tasks of the mathematics classroom 
remain essentially the same – but now they are facilitated by a fast mechanical aid. 
The user ‘instructs’ the technology as an obedient but ‘dumb’ assistant in which s/he 
has confidence.  
Technology as Partner. Here rapport has developed between the user and the 
technology, which is used creatively to increase the power that students have over 
their learning. Students often appear to interact directly with the technology (e.g. 
graphical calculator), treating it almost as a human partner that responds to their 
commands – for example, with error messages that demand investigation. The 
calculator acts as a surrogate partner as students verbalise their thinking in the 
process of locating and correcting such errors. Calculator or computer output also 
provides a stimulus for peer discussion as students cluster together to compare their 
screens, often holding up graphical calculators side by side or passing them back and 
forth to neighbours to emphasise a point or compare their working.  
Technology as an Extension of Self. This is the highest level of functioning, where 
users incorporate technological expertise as an integral part of their mathematical 
repertoire. The partnership between student and technology merges to a single 
identity, so that rather than existing as a third party technology is used to support 
mathematical argumentation as naturally as intellectual resources. Students working 
together may initiate and incorporate a variety of technological resources in the 
pursuit of the solution to a mathematical problem.  
The Study  

The research reported here describes one aspect of a three year longitudinal study 
although the data analysed in this paper are sourced from a single mathematics 
classroom over a two year period (Years 11 and 12, the final two years of secondary 
schooling; students are aged 16-17 years.). The author was also the teacher of this 
class. The students were studying a challenging mathematics subject designed for 
students intending to pursue serious study of mathematics at a tertiary level. The 
intended culture of this classroom is one consistent with the sociocultural perspective 
of learning and teaching (see Goos, Galbraith, & Renshaw, 1999) including the 
acceptance of emergent uses of technology. This means a variety of interactions that 
involve mutuality are encouraged, including: student/student interaction; 
student/teacher interaction; subgroup and whole class investigation and discussion of 
specific tasks or of a variety of projects simultaneously. Interactions between 
participants and artefacts such as texts and more importantly electronic technologies 
also characterise the way students explore and investigate new mathematical ideas 
and concepts.  
Data Sources  
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On average a lesson was videotaped every one to two weeks, or more frequently if a 
technology intensive approach to a topic was planned. Audiotaped interviews with 
individuals and groups of students were conducted at regular intervals to examine 
factors such as the extent to which technology was contributing to the students’ 
understanding of mathematics, and how technology was changing the teacher’s role 
in the classroom. At the beginning of the course and at the end of each year students 
completed a questionnaire on their attitudes towards technology, its role in learning 
mathematics, and its perceived impact on the life of the classroom. A final class 
interview/discussion reviewing the two-year program was videotaped. This paper 
presents two vignettes, drawn from observation and transcript data, to illustrate the 
role technology can play as a Partner in the generation and repair of new knowledge 
and understanding.  
Vignette 1 

Students (Year 12) were asked to develop programs for their calculators that found 
the angle between two three dimensional vectors as an application of the scalar 
product of vectors and as a means of validating results found from pen and paper 
techniques. The teacher provided only minimal instruction in basic programming 
techniques, and expected individual students to consult peers, who had varying 
degrees of knowledge, for assistance. Volunteers then demonstrated their programs 
via the calculator viewscreen, and examined the wide variation in command lines that 
peers had produced. This public inspection of student work also revealed 
programming errors that were subsequently corrected by other members of the class. 
For example, the class disputed the answer obtained by executing the program shown 
in the first part of Figure 1.  

 
Fig. 1. Correcting errors in a student program 

His actions guided by fellow students, the presenter scrolled down through the 
program and replaced the plus sign in the denominator with a multiplication sign 
(Figure 1, second screen). The amended program again produced an incorrect answer, 
and yet another correction (Figure 1, third screen) – suggested by students, not the 
teacher – was required before the correct output was obtained.  
Vignette 2  

In this episode we observed how one student consistently rejected the teacher’s 
invitations to discuss his thinking with peers, participate in whole class discussions, 
and generally take some responsibility for advancing his mathematical understanding. 
This situation began to change when the student participated in the activity described 
in Vignette 1. The student presented the program which included the initial screen 
illustrated in Figure 2 and then the second and third last screens (Figure 2, second and 
third screens).  
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Fig. 2. Presentation of the Dodge program 

The choice of option 1, in response to the question posed in screen 3, resulted in the 
display of the answer to the calculation the program was designed to deliver (screen 
4). The choice of option 2 resulted in no answer being provided (screen 5) in the 
manner of a taunt.  
Now while the student had used the task to demonstrate dissent in relation to his 
current experience of mathematics, his clever use of the very method of discourse the 
teacher has been encouraging the student to use persuaded the teacher not to issue a 
reprimand of any type. The student responded, over subsequent lessons, by increased 
involvement in classroom presentation whenever technology was used to mediate 
discussion. This included the presentation of improved, and increasingly 
sophisticated, versions of his initial program. This was followed by an animated 
program he had created that depicted the adventures of mathematical objects (various 
irrational numbers) as human-like characters – Dodge: The Movie. The enthusiastic 
and admiring response to his “movie” (and the sequel – Dodge II: The Revenge of 
Dodge) was significant in drawing this student into the kind of mathematical 
discussion he had previously resisted, and he became a willing participant in 
subsequent discussions both technology-focused and otherwise.  
Discussion  

Technology is often viewed as a neutral tool useful for the illustration of 
mathematical ideas and concepts but with little potential for mediating interaction. 
Doerr and Zangor (2000), for example, found that the use of the graphics calculator 
as a private device led to the breakdown of small group interactions. The two 
vignettes above demonstrate the potential of technology, including associated 
presentation tools, for drawing in students who are initially reluctant to engage in, or 
in some cases resist, the social and cultural norms of a community of learners.  
In the first vignette, technology supported the interaction of peers of roughly equal 
expertise in repairing a faulty calculator program. The technology not only provided 
the medium in which the students worked but it also stood alone to make public a 
particular student’s work; holding it up for scrutiny and providing the opportunity for 
supportive critique. In this case, technology has assumed the role of almost equal 
partner in the interaction. It has offered to the group a skill or expertise that they 
lacked to get the job done. Once injected into the interaction it allowed the group to 
progress the development of an individual who had encountered difficulty in 
progressing by himself. The significant contribution technology has made in this 
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episode is more than that of a simple tool; it is an instance where the boundaries 
between tools and human learners is blurred.  
The second vignette features a student who uses the method of discourse he had 
previously resisted to register dissent in relation to the way mathematics classes were 
conducted in this course. Having received positive reinforcement from his peers (and 
no negative feedback from the teacher) he is slowly drawn into the ways of 
interacting with his learning community that he has previously shunned; initially 
when technology was involved and then, eventually, at other times. Technology, 
again, has acted as more than a simple tool. Firstly, it acted as a partner that assisted 
him to express the personal frustration that lay in a conflict between his view of how 
to learn and do mathematics and the social and cultural norms for doing the same in 
this particular classroom. Technology had acted as a partner in crime in this instance. 
Secondly, however, technology has almost acted as a supportive go-between that has 
encouraged him to move from the fringes of his learning community into the 
mainstream.  
Implications for Learning and Teaching  

The conceptualization of technology as a quasi-peer offers the following insights into 
the process of integrating META into mathematics classroom. 
Technology can be regarded as more than a passive cultural tool to be appropriated 
by teachers and students to enhance mathematics learning and teaching. Rather, 
META can make contributions to social and cultural activity beyond that of merely 
mediating interaction. The vignettes presented above highlight instances where 
technology has played a far more important role that that of a simple presentation tool 
that assists in mediating discussion and interaction. In these instances, technology has 
almost taken on its own persona and has offered contributions to these learning 
episodes that students, by themselves, would not have been able to replicate. This is 
emphasized, particularly in the second vignette, where a student is empowered by a 
technological partner to voice a controversial view via a method of expression 
sanctioned by the learning community from which he had excluded himself. Further, 
he was then led by the same technological partner back into a human community 
from which he had previously dissociated himself.  
The notion that META can be regarded as quasi-peer within a community of practice 
extends Vygotsky’s notion of a ZPD to include technology as contributing member to 
a group of learners rather than merely a cultural tool. This implies that META should 
be afforded even greater attention in terms of its pedagogical power than has been 
previously assigned and so has implications for both teacher pre-service instruction 
and for in-service professional development.  
References  

Asp, G., Dowsey, J., & Stacey, K. (1993). Linear and quadratics graphs with the aid 
of technology. In B. Atweh, C. Kanes, & M. Carss (Eds.), Contexts in 
Mathematics Education (Proceedings of the 16th annual conference of the 



 

 189 

Mathematics Researchers Group of Australasia, Gold Coast, pp.51- 56). Brisbane: 
MERGA.  

Barton, S. (2000). A review of research on student achievement and attitude in 
computer and calculator enhanced mathematics courses. In Wei-Chi Yang, Sung-
Chi Chu & Jen-Chung Chuan (Eds.), ATCM 2000 (Proceedings of the 5th Asian 
Technology Conference in Mathematics, Chiang Mai, Thailand, pp. 73-85) 
Blacksburg, USA: ATCM.  

Doerr, H. M., & Zangor, R. (2000). Creating meaning for and with the graphing 
calculator. Educational Studies and Mathematics, 41, 143-163.  

Dunham, P.H., & Dick, T.P. (1994). Research on graphing calculators. The 
Mathematics Teacher 87(6), 440-445.  

Galbraith, P., Renshaw, P., Goos, M. & Geiger, V. (2001). Integrating technology in 
mathematics learning: What some students say. In J. Bobis, B. Perry & M. 
Michael Mitchelmore (Eds.), Numeracy and beyond (Proceedings of the 24nd 
Annual Conference of the Mathematics Education Research Group of Australasia, 
pp. 223-230). Sydney: MERGA.  

Goos, M., Galbraith, P. & Renshaw, P. (1999). Establishing a community of practice 
in a secondary mathematics classroom. In L. Burton (Ed.), Learning Mathematics: 
From Hierarchies to Networks (pp. 36-61). London: Falmer Press.  

Goos, M., Galbraith, P., Renshaw, P. & Geiger, V. (2000). Reshaping teacher and 
student roles in technology rich classrooms. Mathematics Education Research 
Journal, 12 (3), 303-320.  

Guin, D., & Trouche, L. (1999). The complex process of converting tools into 
mathematical instruments: the case of calculators. International Journal of 
Computers in Mathematics Learning, 3, 195-227.  

Morony, W. & Stephens, M. (Eds.) (2000). Students, mathematics and graphics 
calculators into the new millennium. Adelaide: Australian Association of 
Mathematics Teachers.  

National Council of Teachers of Mathematics (2000). Principles and standards for 
school mathematics. Reston, VA: NCTM.  

Resnick, L. B., Pontecorvo, C. & Säljö, R. (1997). Discourse, tools, and reasoning. 
In. L. B. Resnick, R. Säljö, C. Pontecorvo & B. Burge (Eds.), Discourse, Tools, 
and Reasoning: Essays on Situated Cognition (pp. 1-20). Berlin: Springer-Verlag.  

Templer, R., Klug,, D., & and Gould, I. (1998). Mathematics laboratories for Science 
Graduates. In C. Hoyles, C. Morgan & G. Woodhouse (Eds.), Rethinking the 
Mathematics Curriculum (pp. 140- 154). London: Falmer Press.  

Weber, T. E. (1998). Graphing technology and its effect on solving inequalities. 
(Unpublished doctoral dissertation, Wayne State University). Dissertation 
Abstracts International, 60, 01A, 88.  

Wertsch, J. V. (1985). Vygotsky and the Social Formation of Mind. Cambridge, MA: 
Harvard University Press.  



 

 190 

Understanding technology integration in secondary mathematics:  
Theorising the role of the teacher 

Merrilyn Goos, University of Queensland, Australia 
m.goos@uq.edu.au 

 
Previous research on computers and graphics calculators in mathematics education 
has examined effects on curriculum content and students’ mathematical achievement 
and attitudes while less attention has been given to the relationship between 
technology use and issues of pedagogy, in particular the impact on teachers’ 
professional learning in specific classroom and school environments. This 
observation is critical in the current context of educational policy making, where it is 
assumed – often incorrectly – that supplying schools with hardware and software 
will increase teachers’ use of technology and encourage more innovative teaching 
approaches. This paper reports on a research program that aimed to develop better 
understanding of how and under what conditions Australian secondary school 
mathematics teachers learn to effectively integrate technology into their practice. 
The research adapted Valsiner’s concepts of the Zone of Proximal Development, 
Zone of Free Movement and Zone of Promoted Action to devise a theoretical 
framework for analysing relationships between factors influencing teachers’ use of 
technology in mathematics classrooms. This paper illustrates how the framework 
may be used by analysing case studies of a novice teacher and an experienced 
teacher in different school settings. 
 

Mathematics, science and technology education in Australia are currently 
experiencing major impetus for innovation and reform. The Australian Government’s 
policy statements on educational innovation and teacher quality (Commonwealth of 
Australia 2003) emphasise that Australia’s future lies in its potential as a knowledge-
based society built on the intellectual capabilities and creativity of its people. 
Teachers and students are expected to become partners in a learning society 
underpinned by science and mathematics and successful schools are portrayed as 
those drawing on the resources of technology to facilitate learning. Throughout 
Australia there are moves to encourage – and in some cases mandate – the integration 
of digital technologies into school education through curriculum initiatives, funding 
for infrastructure, and the development of professional standards for teachers. In the 
current context of educational policy making it seems to be assumed that supplying 
schools with hardware and software will increase teachers’ use of technology and 
encourage more innovative teaching approaches that produce improved learning 
outcomes for students. Yet internationally there is research evidence that that 
improving teachers’ access to educational technologies has not, in general, led to 
increased use or to movement towards more learner-centred teaching practices 
(Cuban, Kirkpatrick & Peck, 2001; Wallace, 2004). 
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Windschitl & Sahl (2002) have identified two factors that appear to be crucial to the 
ways in which teachers might embrace, ignore, or resist technology. First, teachers’ 
use of technology is mediated by their beliefs about learners, about what counts as 
good teaching in their institutional culture, and about the role of technology in 
learning. Second, school structures – especially those related to the organisation of 
time and resources – often make it difficult for teachers to adopt technology-related 
innovations. Clearly, there is a need to interrogate assumptions about relationships 
between access to technology and its use by teachers. This paper does so by offering 
a framework for theorising interactions between pedagogical knowledge and beliefs, 
school structures and other institutional constraints, and professional learning 
opportunities, together with analyses of examples of teacher learning and 
development drawn from a series of socioculturally oriented research studies carried 
out in Australian schools. The paper addresses the ICMI Study 17 theme of Teachers 
and teaching by considering the role of the teacher viewed through the lens of this 
theoretical framework. 
Theoretical Framework 
Early research in this area examined the effects of technology use on students’ 
mathematical achievements and attitudes and their understanding of mathematical 
concepts, often using quasi-experimental designs that compared technology and non-
technology users (Penglase & Arnold, 1996). However these studies did not 
distinguish between the use of technology and the context of that use, and little 
attention was given to issues of pedagogy and the nature of teachers’ professional 
learning within and beyond the school environment (Windschitl & Sahl, 2002). To 
address some of these issues my colleagues and I have carried out studies informed 
by sociocultural theories of learning involving teachers and students in Australian 
secondary school mathematics classrooms (e.g., Galbraith & Goos, 2003; Goos, 
2005). Sociocultural theories view learning as the product of interactions with other 
people and with material and representational tools offered by the learning 
environment. Because it acknowledges the complex, dynamic and contextualized 
nature of learning in social situations, this perspective can offer rich insights into 
conditions affecting innovative use of technology in school mathematics. 
In this research program Valsiner’s (1997) zone theory, originally designed as an 
explanatory structure in the field of child development, was adapted to apply to 
interactions between teachers, students, technology, and the teaching-learning 
environment. This framework extends Vygotsky’s concept of the Zone of Proximal 
Development (ZPD) – often defined as the gap between a learner’s present 
capabilities and the higher level of performance that could be achieved with 
appropriate assistance – to incorporate the social setting and the goals and actions of 
participants. Valsiner describes two additional zones: the Zone of Free Movement 
(ZFM) and Zone of Promoted Action (ZPA). The ZFM structures an individual’s 
access to different areas of the environment, the availability of different objects 
within an accessible area, and the ways the individual is permitted or enabled to act 
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with accessible objects in accessible areas. The ZPA represents the efforts of a more 
experienced or knowledgeable person to promote the development of new skills. For 
learning to be possible the ZPA must be consistent with the individual’s potential 
(ZPD) and must promote actions that are feasible within a given ZFM. When we 
consider teachers’ professional learning, the ZFM can be interpreted as constraints 
within the school environment, such as students (their behaviour, motivation, 
perceived abilities), access to resources and teaching materials, and curriculum and 
assessment requirements, while the ZPA represents opportunities to learn from pre-
service teacher education, colleagues in the school setting, and professional 
development. 
Previous research on technology use by mathematics teachers has identified a range 
of factors influencing uptake and implementation. These include: skill and previous 
experience in using technology; time and opportunities to learn (pre-service 
education, professional development); access to hardware and software; availability 
of appropriate teaching materials; technical support; institutional culture; knowledge 
of how to integrate technology into mathematics teaching; and beliefs about 
mathematics and how it is learned (Fine & Fleener, 1994; Manoucherhri, 1999; 
Simonsen & Dick, 1997; Walen, Williams & Garner, 2003). In terms of the 
theoretical framework outlined above, these different types of knowledge and 
experience represent elements of a teacher’s ZPD, ZFM and ZPA, as shown in Table 
1. However, in simply listing these factors, previous research has not necessarily 
considered possible relationships between the teacher’s setting, actions, and beliefs, 
and how these might change over time or across school contexts. Zone theory 
provides a framework for analysing these dynamic relationships. 

Table 1. Factors affecting technology usage 

Valsiner’s Zones Elements of the Zones 
Zone of Proximal 
Development 

Skill/experience in working with technology 
Pedagogical knowledge (technology integration) 
General pedagogical beliefs 

Zone of Free 
Movement 

Access to hardware, software, teaching materials 
Support from colleagues (including technical support) 
Curriculum & assessment requirements 
Students (perceived abilities, motivation, behaviour) 

Zone of Promoted 
Action 

Pre-service education (university program) 
Practicum and beginning teaching experience 
Professional development 

Background to the Research Program 
The research program referred to above has used Valsiner’s (1997) zone theory to 
investigate relationships between factors influencing how novice and experienced 
teachers use technology in the mathematics classroom. Examples from two separate 
studies are analysed later in the paper. A brief outline of the research design and 
methods for each study is provided below. 
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The first study, conducted in 2001, aimed to analyse processes through which 
mathematics teachers learned to use technology as an educational resource (Galbraith 
& Goos, 2003). Participants were a group of ten experienced teachers who 
volunteered for a training program, conducted intensively over a single week-end, 
that prepared them to deliver professional development workshops on the use of 
graphics calculators. These sessions engaged participants as learners in technology-
rich activities that could be used in secondary school classrooms, and in discussion of 
associated teaching and learning issues. We followed the progress of three teachers 
who subsequently delivered professional development workshops at conferences or 
in their own schools, and interviewed them on how their views about technology had 
been affected by the training program. 
The second study followed successive cohorts of pre-service teachers into their first 
years of teaching from 2000-2004. Its main aims were to identify factors that 
influence how beginning teachers graduating from a technology rich pre-service 
course integrate computers and graphics calculators into their mathematics teaching 
practice (Goos, 2005). One element of the research design involved individual case 
studies that captured developmental snapshots of experience during the final practice 
teaching session and towards the end of the first year of full-time teaching. 
Participants were visited in their schools for lesson observations, collection of 
teaching materials and audio taped interviews. 
Case Study of a Novice Teacher Learning to Integrate Technology 
Sandra was one of the pre-service participants in the second study selected for 
individual case study. Her practicum placement was in a large school in the State 
capital city. At this time the mathematics syllabuses merely encouraged teachers to 
use computers and graphics calculators, although new syllabuses to be introduced the 
following year would make technology use mandatory. The school was well 
equipped with computer laboratories and had recently purchased its first class set of 
graphics calculators. However, none of the teachers had yet found time to learn how 
to use the calculators. Sandra was very familiar with computer applications such as 
Excel and regularly searched the internet for teaching ideas and resources. She used 
both these technology resources in her mathematics teaching during her practice 
teaching sessions, although she had not observed other teachers in the school use any 
kind of technology with their classes. Before starting the pre-service course Sandra 
had no experience with graphics calculators but she was now keen to explore the 
possibilities this technology might offer for developing students’ understanding of 
mathematical concepts. 
Sandra was teaching linear programming, a topic that deals with the kind of 
optimisation problems commonly encountered in engineering and economics. As 
graphical methods are usually used to solve linear programming problems in 
secondary school treatments of this topic, Sandra decided this presented an ideal 
opportunity for students to use the graphics calculators instead of drawing graphs by 
hand. She adapted an activity from the internet that asked students to work out the 
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optimal quantities to be produced of two different kinds of pasta, using three 
different varieties of cheeses, so as to ensure maximum profit for the manufacturer. 
Because the students had never used graphics calculators before, she also devised a 
worksheet with keystroke instructions and encouraged students to work and help 
each other in groups. 
Unexpectedly, Sandra encountered strong resistance from the students, which seemed 
to stem from their previous experiences of mathematics lessons. Other mathematics 
teachers in the school tended to take a very transmissive approach and focused on 
covering the content in preparation for pen and paper tests, so the students were not 
interested in learning how to use technology if this would be disallowed in 
assessment situations. According to Sandra, the students’ attitudes could be summed 
up as: “Just give me enough to pass … I don’t want to know how to do group work, I 
don’t want to know how to use technology”. 
In theoretical terms, the Zone of Promoted Action offered by the teachers in the 
school was not a good match with the ZPD defined by Sandra’s pedagogical beliefs 
and her knowledge and skills in using technology to teach mathematics. Neither did 
her supervising teacher’s ZPA provide a pedagogical model consistent with the 
technology emphasis of the pre-service course. Some elements of Sandra’s Zone of 
Free Movement, such as her easy access to calculators that no other teacher knew 
how to use, presented favourable opportunities to use technology. However, most 
other aspects of her ZFM – students’ attitudes and lack of motivation, curriculum and 
assessment requirements that excluded technology – represented constraints. Yet 
Sandra was not discouraged by this experience and remained committed to enacting 
her pedagogical beliefs about using technology. 
After graduation Sandra moved from the city to a smaller rural school that was much 
better resourced with respect to graphics calculators but lacking in experienced 
teachers who knew how to use them effectively. All Grade 11 and 12 mathematics 
students had continuous personal access to graphics calculators via a hiring scheme 
operated by the school, and there were two additional class sets available for teachers 
to use with other classes – although Sandra was the only teacher to use these with 
younger students. She was also beginning to use temperature probes and motion 
detectors which could be used in conjunction with graphics calculators to collect and 
analyse data from experiments. 
Compared with her practicum experience, Sandra’s first year of teaching offered a 
more expansive Zone of Free Movement: motivated and cooperative students, good 
access to technology resources, and new syllabuses that mandated use of computers 
and graphics calculators in Grades 11 and 12. Yet there was no Zone of Promoted 
Action within her school environment, and geographical isolation, compounded by a 
very slow internet connection, made it difficult for her to access professional 
development and teaching materials (an external ZPA). While she was still able to 
draw on the knowledge gained during her university program (the pre-service ZPA), 
Sandra recognised her need to gain new ideas via collaboration with other more 
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experienced teachers beyond the school in order to further develop her identity as a 
teacher for whom technology was an important pedagogical resource. 
Case Study of an Experienced Teacher Learning to Integrate Technology 
Teachers who completed their pre-service education before computers and graphics 
calculators were introduced into school classrooms rely on formal or informal 
professional development to learn how to use technology. By comparison with 
Sandra, Lisa was a very experienced teacher but a relative novice in the use of 
technology when she participated in the research study associated with the graphics 
calculator training program described earlier. When reflecting on her initial 
professional development experiences in this field, she commented that she “got lost 
in the first ten seconds, and was really turned off so didn’t touch them again for a 
while”. After several more workshops she felt confident enough to use graphics 
calculators in her teaching, “but not confidently and not proficiently. Not really 
realising how much they improved the thinking, more just as a tool to do graphs and 
things”. 
The training program proved to be a turning point for Lisa as it emphasised the 
impact of technology in developing students’ understanding of mathematical 
concepts and in facilitating classroom discussion, something that had been missing 
from her previous professional learning experiences: 

It was out of that week-end that I really understood the impact that [graphics 
calculators] had on the pedagogy. Up to then I saw it as a tool to draw 
graphs and analyse statistics. But at that workshop, just one little thing from 
that workshop, how we were working in groups, and they explained to us 
how kids start trying to help. So when we were doing that we were grabbing 
somebody else’s calculator and sharing our data, so it made the group work 
thing a whole lot better. And I really valued the part where we, as groups, 
we went out and used the overhead projector and we presented our 
information back to the group. So I just, I really started to see different ways 
of using it that I hadn’t thought of before. So it really enhanced group work, 
it really showed me that you could do a lot more hands on stuff, the practical 
activity with the motion detectors. That graphics calculators are good for 
inspiring all those other good things in teaching, like the hands on, the group 
work, and really starting to think when we were fitting functions to the data. 
Really having to think and understand what the intercept and the gradient 
mean. We weren’t just doing, we were really understanding at a higher level. 
I found that really powerful. Because I had thought that all they do is save 
you that boring part of maths. 

Environmental constraints and affordances (ZFM) seemed to play little part in Lisa’s 
learning, possibly because as Head of her school’s Mathematics Department she had 
considerable autonomy in obtaining desired resources and in managing curriculum 
and assessment programs. Instead, the re-construction of her identity as a teacher can 
be understood in terms of the changing relationship between her goals and interests 
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(ZPD) and the ZPAs offered by the professional development and training she 
experienced. She described previous workshops she had attended as “off-putting”, 
because the emphasis was on procedural aspects of operating the calculators and the 
mathematics presented was too difficult for participants to engage meaningfully with 
the technology. She contrasted this with the approach taken in the week-end 
workshops offered as part of this research project: 

I didn’t really feel super confident until I went to the workshop. And I think it 
was then, understanding the bigger concepts, rather than just pushing 
buttons. Because at the pushing buttons level you never really understand 
how they operate. And after that I was just so inspired. It was just that whole 
valuing and that sharing and learning from each other, and just to realise 
that other people are out there. So that was really the turning point for me to 
say that this is really exciting stuff. 

Lisa seemed to find a professional development ZPA that matched her need to focus 
on pedagogical, rather than procedural, aspects of using technology, and 
acknowledged the potential for experienced teachers to learn from each other. 
Discussion 

This paper has analysed relationships between mathematics teachers’ access to 
technology resources and the ways in which they incorporate these resources into 
their pedagogical practices. Evidence from research studies carried out in Australian 
classrooms suggests that simple notions of “access” and “use” are inadequate for 
understanding the roles that technology plays in mathematics teaching and learning. 
The case studies of Sandra and Lisa showed that teachers interpret access to 
technology in relation to what they believe is beneficial for students and feasible in 
the light of their own expertise and institutional context. 
Teachers’ learning can be conceptualised in terms of relationships between 
Valsiner’s (1997) Zones of Proximal Development, Free Movement and Promoted 
Action, and this provides a useful way of analysing the extent to which teachers 
adopt innovative practices involving technology. The ZFM can be interpreted as 
teachers’ institutional context, the ZPA represents their experiences in learning about 
teaching with technology, and the ZPD is influenced by their knowledge of how to 
integrate technology into their teaching and their pedagogical beliefs. The case study 
of Lisa illuminated issues facing experienced teachers who are unfamiliar with new 
technologies such as graphics calculators. While her ZFM presented few constraints, 
she had to search for professional development (ZPA) that would extend, rather than 
only accommodate, her existing ideas about teaching with technology (her ZPD). On 
the other hand, novice teachers like Sandra who are knowledgeable and enthusiastic 
about using technology may encounter obstacles in their professional environment 
(ZFM) that hinder implementation of preferred teaching approaches. Thus the 
theoretical approach outlined in this paper provides a way of interpreting teachers’ 
actions in mathematics classrooms and may generate informed discussion about 



 

 197 

conditions that support or inhibit teachers’ learning and adoption of new 
technologies. 
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The role of the Internet in teaching and research has been given too little attention in 
mathematics education, particularly in developing countries and underserved 
segments of the population of developed countries. Those with inadequate Internet 
connectivity lack access to the research of others and experience difficulty in 
achieving recognition for their own work. Exchange of ideas in their formative stage 
as well as the distribution of completed writing is essential for full participation in 
the research community. Similarly, use of the Internet to share experience and 
innovation in teaching and to train teachers in-service and pre-service is a cost-
effective means of instituting widespread improvements, particularly with respect to 
increasing access for groups such as girls, adult learners, rural or disadvantaged 
populations, and the learning disabled. For the learners themselves, the ability to 
acquire information via the Internet can transform their educational experience. 
Although there is concern about the hegemony of developed nations in the Internet 
environment, the solution is inclusiveness, not isolation, as well as sharing within 
domestic culture. Although investment will be required, new technology and focus on 
community-based access will reduce the costs of providing adequate communications 
infrastructure. 

 
 In spite of the focus on the use of technology in mathematics education, there 
has been insufficient attention to the importance of the role of the Internet in teaching 
and research, particularly with respect to access, equity, and socio-cultural issues. In 
developing countries with limited resources, to the extent that Internet connections 
exist, they are generally confined to entrepreneurial enterprises, from local Internet 
cafes to outposts of multinational corporations.22 Although the Internet first arose in a 
largely academic context, for the most part it is only in highly developed countries 
that university faculty and students, much less teachers and students in primary and 
secondary schools, have extensive access.  
 Computers are not as rare in developing countries as one might think and even 
the Internet has experienced rapid superficial growth, far surpassing already Bill 
Gates’ 1997 prediction of 500 million users by 2007. However, educational use of 
the Internet is very limited outside of developed countries. 
 

                                           
22 This observation is based in part on the author’s extensive experience in the Middle East, 
including pre- and post-invasion Iraq, and to a lesser extent in Asia and Africa. 
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 Extensive surveys have been conducted of the dispersion of the Internet in 
developing countries, including a number using a six part paradigm: pervasiveness, 
geographic dispersion, connectivity infrastructure, organizational infrastructure, 
sectoral absorption, and sophistication of use (Wolcott et al, 2000). Going beyond 
such simple metrics as numbers of hosts, the researchers measured dispersion of 
points of presence or toll-free access, domestic and international backbone width, 
collaborative arrangements and public exchanges, usage rather that just access, and 
whether the usage is conventional or innovative. By all measures, developing 
countries have a long way to go. Although they have not focused in much depth on 
the education sector, the general finding has been that while most universities have 
some Internet access, a single terminal may serve as many as a thousand students, 
and while secondary schools may have computers, they seldom have Internet access. 
As for primary schools, use of computers either for educational or administrative 
purposes is rare in most developing countries. However, business use, including 
commercial cybercafes, has expanded greatly, showing the potential for broader 
application of the technology. 
 
 This presents an obvious equity issue as between countries, but also means that 
there are inequities within the countries themselves—it is the urban, prosperous who 
acquire the information and skills available via the Internet. We discuss the existing 
situation and propose remedies. 
 
Research 

 

 The obvious disadvantage to those having limited access to the Internet is that 
they experience difficulty in keeping up with the research of others and in making 
known their own contributions. Universities and research institutes in developing 
countries have few print journals available in mathematics or mathematics education 
(or any other field); whereas a typical US medical school library may subscribe to 
around 5000 journals, the best university medical school library in many developing 
countries may have no more than 20, if indeed it has any at all. Textbooks providing 
up-to-date information are in similarly short supply. There are programs, 
supplemented by pleas for assistance from particular institutions, providing such 
journals, but they are not only inadequate, but misguided. Internal and outside 
resources currently committed to these projects should be redirected to securing on-
line access through JSTOR and other services and databases. The reasons to prefer 
online access—in addition to the fact that the cost in the long run is likely to be 
less—include the fact that the electronic journals can be made simultaneously 
available to many users, storage is not a problem, and searching for particular topics 
is much easier. Moreover, increasingly journals are published directly online. 
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 Not only do those with inadequate Internet connectivity lack access to the 
research of others, but also they may have difficulty making their own work known. 
Exchange of ideas in their formative stage as well as the distribution of completed 
writing is essential to full participation in the research community. In addition, 
notices of conferences and other opportunities for collaboration come to most 
researchers via the Internet. Increasing amounts of information about scientific and 
technological developments are now available only on the Internet. Use of the 
Internet can improve resource mobilization and make it possible to carry on 
collaborative research among distant sites. 
 
Teaching 

 

 The usefulness of computers in teaching has been well recognized, but too 
little emphasis has been placed on their enhanced value if there is Internet 
connectivity. The amount of educational material in all fields readily available free 
on the Web is huge and ever growing. True, discretion is required in deciding what is 
worthwhile and what is not, but that there is selectivity needed is not a reason for 
choosing not to avail oneself of the riches waiting to be discovered.  
 
 There is justifiable fear about the hegemony of American and European culture 
on the Internet and complaints about the necessity of knowing English to acquire 
much of the information found there. However, one should consider the benefits of 
having a language that also enables communication among developing as well as 
highly developed countries throughout the world in order to share knowledge and 
experiences. Moreover, the Internet can be used to preserve and nurture one’s own 
language and culture through domestic exchanges online. 
 The benefits of using Internet resources in teaching are extensive and varied. 
There are voluminous lists of web sites providing, just as an example, up to date 
maps and statistics to which schools would otherwise be unlikely to have access. No 
longer must students hunt for stories and pictures of women or minority 
mathematicians nor must teachers seek in inadequate libraries for the story of the 
development of the concept of zero. Hieroglyphics, Mayan glyphs, Babylonian 
cuneiform—they are all there. The history of mathematics—and not just from a 
European perspective can be vividly incorporated into the teaching of mathematic via 
this application of technology. The audience can be widened to provide more equity 
in learning, but also in subject matter learned. 
 
 Interesting and relevant applications of mathematics and statistics, tutorial 
help, and innovative and effective teaching techniques can be found on the Web. In 
many developing countries resources are not available for in-service training of 
widely dispersed teachers. Topics such as dealing with learning disabilities are often 
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neglected in pre-service training as well. The ability of teachers to share their own 
ideas with colleagues in their own culture is another important benefit of Internet 
access. 
 
Equity 

 

 The digital divide can be within a country as well as between countries, but 
this need not be. The Internet properly used has great potential for reducing this 
divide, for bringing the information age—and with it mathematics education—to 
rural areas, to girls and women, and to other underserved populations. 
 

 Distance learning applications of the Internet have great potential, especially to 
reach rural areas and to maximize use of scarce teaching resources. The development 
of adequate material can be capital intensive, but sharing from country to country as 
well as within a country can help. Convincing those in charge of the return on initial 
investment is key to establishing distance learning in terms of both hardware and 
teaching material. 
 
 It should also be understood that “distance” learning need not be over long 
distances. Particularly for part-time learners who must continue in full-time 
employment, the ability to get specialized training at convenient urban locations can 
be crucial to economic and social development. 
 Girls by no means have equal access to education in many developing 
countries. For example, in sub-Sahara Africa only six of ten girls attend primary 
school (compared to eight of ten boys) with the situation becoming even more 
disparate beyond primary school (LaFraniere, 2005). Long distances, lack of sanitary 
facilities, and sexual harassment problems can be overcome through distance 
learning. Setting up Internet access points, particularly in rural areas, can transform 
girls’ prospects for education; the locations can also be used for adult reading and 
quantitative literacy programs, especially for women with small children. Such local 
access centers could also be used for teacher training. 
 
 But it is not only in developing countries that inequities need to be addressed 
and where investment in Internet access for the schools could be instrumental in 
doing so. Although public primary school students in some areas in developed 
countries may be designing their own web sites, there are others who have no access 
at all to the benefits of the Internet. 
 

What is needed? 
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 Distance learning has great potential, especially to reach rural areas and to 
maximize use of scarce teaching resources. The development of adequate material 
can be capital intensive, but sharing from country to country as well as within a 
country can help. Convincing those in charge of education that the return on initial 
investment can be massive is key to establishing distance learning support of both 
hardware and teaching materials. 
 

 The correlation between the number of Internet hosts and the UNDP Human 
Development Index is high, which suggests that substantial investment will be 
needed to increase Internet access to the point where it can play an important role in 
teaching and research. Rather than focusing on individual access, the goal should be 
more socially beneficial community-based access. 
 
 Studies have shown that the major handicap in the broad use of the Internet is 
deficient telecommunications infrastructure. However, the answer is to leapfrog over, 
for example, the lack of landline connections. In India a nationwide cellular network 
was installed without an inch of copper wire, which might later be cut or stolen in 
any case, at a cost less than one-third of a landline installation. More generally, while 
there are always problems in the introduction of innovative technology, that the 
population in developing countries is relatively young is a big advantage. 
 

 Instructive is the burgeoning of Internet usage in China (in spite of the 
restrictive government policies that hamper the openness that should be part of 
Internet use). Chinese universities decided some years ago to make Internet 
connectivity a priority, with economic reforms providing the capital for the 
investment needed; the primary and secondary sectors have not, however, seen 
similar progress. Universities in developed countries have also made Internet access 
an important goal, although, at least in the United States, the access is uneven, 
depending on the institutions’ resources. Essential to the Chinese experience was a 
prior decision to invest in telecommunications infrastructure and human resources. 
 
 In discussing Internet-inspired development, Shirin Madon (2000) asserts: 
 
 “The establishment of a strategic infrastructure is considered critical  for 
developing countries where the marginal impact of improved  network 
communications can be very high, leading to improved  economic productivity, 
governance, education and quality of life,  particularly in rural areas.” 
 
 However, skepticism regarding the potential of technology includes a fear of 
increasing dependency on international resources in the form of financing or 
technical skill. Thus an important component of technological development must be 
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the training of the domestic workforce. In fact the Internet itself can play an 
important role in this preparation. For example, the Village Internet Programme of 
the Grameem Bank (Madon, 2000) helped to create technology-related jobs for rural 
poor and Cuba’s school networking project (Press, 1998) stressed grassroots 
participation of schools in rural areas. In the field of mathematics education, even in 
developed countries, rural areas or depressed urban areas may have difficulty 
securing access to qualified teachers and material. Educational authorities must be 
encouraged to see investment in informational communication as a way to help 
relieve inequities. Too often education budgets are a source of cuts when savings 
need to be made in national budgets. 
 
 Governments need to understand their role in creating and disseminating 
knowledge. Because of the worry of the dominance of developed countries in the 
Internet environment, there is likely to be resistance to the notion of substantial 
investment. Therefore, “do it yourself” is an important concept for the development 
of information technology. To limit external dependency, human resource 
development for network users means concentration on training in data handling, 
software, monitoring, and management, not just technical matters. 
 
 Often nations are willing to commit funds for technology for commercial 
development purposes, but it makes no sense to invest in information superhighways 
while cutting down on the prerequisite, solid and adequate education for all. They 
must be ready to exploit the potential of the Internet for this purpose. 
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Internet resources proposing mathematics exercises with an associated environment 
are frequently used in class, in many countries and for all levels. I address here the 
question of the theoretical approaches that can be used to describe and understand 
the way students work and learn mathematics with these resources. I study in 
particular the possibilities offered by the instrumental approach, complemented by 
the notion of didactical contract. The resources considered are complex. In order to 
study their use by students, is thus necessary to consider two activity levels: the 
resolution of one exercise, where students use the elements of the exercise’s 
environment (feed-back, hint etc.) and the level of a whole session, where students 
develop working patterns. I describe on examples extracted from various teaching 
designs how the instrumental approach, and the notion of didactical contract, can 
help on each level to interpret the students’ behavior with the resource. It permits to 
establish links between the behaviors and the mathematical knowledge involved, and 
to make a first step towards the consequences on the learning processes. 

 
Introduction 

The use of internet resources in the teaching of mathematics is now widespread in 
many countries. The resources I consider here propose mathematics exercises with a 
given environment that can comprise for each exercise tools like a calculator; 
suggestions, or different kinds of advice; that can send a feed-back, or attribute a 
mark to the student (see Cazes &al. (2005) for a grid describing the possible 
features). I term it an e-exercises resource in what follows. These resources can serve 
for distance learning, or be inserted in some collaborative learning settings. But they 
are also frequently used in class with a teacher, at least in France. These classroom 
uses raise many questions: why do teachers use such resources, that can seem poorer 
than, for example, microworlds? Which are the consequences of this use on the 
teaching and learning processes? Like Hoyles and Noss (2003) mention it, these 
questions have been little studied yet. In fact most of the works that consider internet 
resources in mathematics are very recent. Engelbrecht and Harding (2005) propose a 
very precise taxonomy of mathematics web sites, and discuss associated pedagogical 
issues. Their study is mainly directed towards the design of online courses and of 
settings using such courses. Bookman and Malone (2003) make precise observations 
about the way college students learn in an interactive environment (the connected 
curriculum project). They build a research agenda with three categories of questions: 
about the technology itself, about the role of the teacher, about the students behavior. 
But they do not discuss the possible associated theoretical frameworks.  
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In this paper I study the way students work and learn with e-exercises. That subject 
belongs to the second theme of the ICMI study : “Learning and assessing 
mathematics with and through digital technologies”. I discuss more precisely the 
question of the theoretical approaches that can help to understand how the use of 
these resources can favor or on the opposite hinder learning. The instrumental 
approach is now currently used to study the consequences of the integration in 
mathematics classrooms of computer algebra systems. Can it also apply to Internet 
resources? Which phenomena can it illuminate, which other theories can complement 
it? I try here to contribute to answer to these questions, by analyzing examples 
stemming from various teaching designs and research projects.  
In part two, I present the main principals of the instrumental approach, and start 
discussing its potential applications to the use of e-exercises. I also briefly recall the 
notion of didactical contract, that I use to complement the instrumental approach. In 
part three, I present on some examples how the instrumental approach can be used to 
analyze the behavior of a student solving an exercise on the computer. Part four is 
dedicated to the subject of students paths and working patterns with an Internet 
resource. 
 

Theoretical frames and e-exercises  

Many theoretical frames permit to study mathematical learning in computerized 
environments. We retain here the instrumental approach, which is grounded in 
cognitive ergonomy. Rabardel (1995) stresses the difference between an artifact, 
which is just a given object, and an instrument. The instrument is a psychological 
construct; constituted of an artifact and of a psychological component defined 
through the notion of scheme. A scheme is considered here as an invariant 
organization of behavior for a given class of situations (Vergnaud, 1996). It has 
several components: goals, rules of action, of information and control, and operative 
invariants. These operative invariants are implicit knowledge, termed by Vergnaud 
theorems-in-action: propositions believed to be true by the subject. 
Rabardel terms “utilization scheme” of an artifact a scheme organizing the activity 
with an artifact to realize a given task. He distinguishes between “usage schemes” 
corresponding to the management of the artifact, and “instrumented action schemes”, 
directed towards the realization of the task. These schemes result from personal 
construction but also from appropriation of socially pre-existing schemes.  
The instrument built by the subject comprises the artifact, and the schemes organizing 
the activity of the subject. The building process of the instrument is called “the 
instrumental genesis”. Using an artifact influences the students’ activity, and the 
activity influences the way the instrument is built. A detailed presentation of the 
instrumental approach can be found for example in Artigue (2002) and Trouche 
(2004). It has been mainly used to understand the impact on the learning processes of 
the introduction of computer algebra systems, especially through the identification of 
the schemes constructed by the students (see for example Lagrange 1999). It also 
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helps to understand unexpected uses of a given artifact: the subject constructs 
unexpected schemes, thus an unexpected instrument. 
How can the instrumental approach be used to illuminate how students work and 
learn in a setting comprising such an e-exercises resource? 
The possibilities offered by an e-exercises resource: access to exercises chosen 
according to their title or to their mathematical theme, help, feed-back etc. are easily 
understood by the students. For that reason, I will not refer here to “usage schemes”, 
but only to “instrumented action schemes”. The first step towards the description of 
such schemes is the identification of the possible tasks. An e-exercises resource can 
certainly be considered as an artifact. If it becomes an instrument, which kind of 
actions can be realized with that instrument? A computer algebra system, for 
example, can help to solve a mathematical problem. An e-exercises resource 
comprises tools that can help to solve a problem; but it also proposes problems, 
which makes a big difference. 
Thus I consider here that it is necessary to distinguish between two levels of activity 
with an e-exercises resource. The first level is the level of one given exercise. The 
second level is the level of a whole classroom session. For both levels, several kinds 
of tasks can intervene, according to the scenario in use retained by the teacher, and 
more generally to the didactical contract (Brousseau & Warfield, 1999). The 
didactical contract has explicit, but also implicit rules, determining the roles of the 
teacher, of the student, and here also of the computer. For example, the e-exercises 
resource can send to the student a feed-back “right” or “wrong”, a responsibility 
which is usually in the teacher’s domain. 
For the first level, the exercise’s level, the task can be to find a numerical answer and 
type it in the “answer zone” of the computer. But it can also be to write the complete 
solution on a paper, if the teacher asks for it. Or on the opposite, the student can 
consider that the task is to obtain a feed-back “right” from the computer, and not to 
find a proper solution: this can be a consequence of the modification of the didactical 
contract induced by the e-exercises resource. According to the characteristics of the 
resource, several artifacts can be available for these tasks. A calculator; but also the 
feed-back of the computer, or the advice associated with that exercise. The way these 
artifacts become instruments naturally depend on the task retained by the student. 
For the second level, the task can be to solve a given set of exercises. Things start to 
be really different from the exercise’s level when the scenario in use retained by the 
teacher permits a freedom of paths within a certain range of exercises. In that case 
students can develop different working patterns, and thus assign themselves different 
tasks: tackling the maximum number of available exercises, or solving in detail only 
a few exercises for example. The artifact here is the effective resource made 
accessible by the teacher, thus it is not always the same for all the students in the 
same computer lab. These working patterns can certainly be interpreted as schemes. 
However, the description of these schemes involves rules of the didactical contract. 
Thus the contract appears as the main explicative tool for that level. 
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These first remarks are further discussed and illustrated by examples in the two 
following sections.  
 
Instrumented action schemes for the exercise’s level 

When a student is solving an exercise, proposed by a given e-exercises resource, the 
artifact is the associated environment. Is it possible to identify instrumented action 
schemes constructed for that artifact? I try to answer this question on the following 
examples, stemming from observations realized in class at various levels. 
The first example is the case of Alice. Alice is a sixth grade student. She works on an 
e-exercises resource proposing proportionality word problems. All the expected 
answers are numerical. The resource allows two attempts, with a feed-back “right” or 
“wrong” after the first try before attributing a mark. I observed Alice during four one 
hour sessions. She developed a very stable strategy; I describe it for the following 
exercise: 
A car uses 20 liters of gas for 400 km. How much does it require for 100 km?  

Alice knows that computations must be done, that these computations are likely to be 
division or multiplication, and that the expected result is a whole number. Thus she 
uses the calculator to make some tries, 100 times 20 for example. However, she 
controls the size of the result, and only proposes it if it sounds reasonable. Her first 
proposition is thus 4, obtained by computing 400/100 on the calculator. She naturally 
gets a feed-back “wrong”. Then she goes on computing. Finally, she makes 100/20 
on the calculator, finds 5, and proposes that answer. She gets a feed-back “Right”. 
Alice constructed here an unexpected scheme, relying on a mathematical theorem-in-
action: “The answer to a proportionality problem whose text comprises only whole 
numbers is a whole number obtained by multiplying or dividing the given numbers”. 
Alice also controls the size of the numerical answer. The artifact helped that scheme 
to develop, because the calculator made it easier to try the possible computations; and 
that scheme governed the way the artifact was used, the feed-back was used here to 
test an answer that sounded acceptable. The pre- and post- test administrated indicate 
no improvement in her ability to solve such missing value problems. In her case, the 
unexpected scheme clearly hindered learning. 
The use of the feed-back to develop attempts and errors strategies is frequent. These 
strategies are often grounded on mathematical knowledge; they are in fact schemes 
associated to the feed-back artifact. Let us give a second example. In an advanced 
linear algebra course where graduate students work on an e-exercises resource, the 
following exercise was proposed: 
“Let E be a 35-dimensional vector space, and f an endomorphism of E, such that 
dim(Im(fof))=13. Determine the minimum value of dim(Kerf).” 
The students made several attempts; each time, the resource gives a feed-back with 
the right answer, and proposes to restart the exercise with new numerical values. 
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After a few tries, all the students were able to guess the general formula (and none of 
them was able to prove it):  
Min (dim(Kerf)) = Integer part (1/2(dim E – dimIm(fof) + 1)). 
The mere feed-back would not lead to the formula with only a few tries. The 
complete constructed scheme associates the attempts, the observation of the right 
answer sent by the feed-back, and the following theorem-in-action: “To deduce the 
dimension of a kernel from the rank of an endomorphism, it is necessary to subtract it 
somehow from the dimension of the whole space”. 
That behavior was expected by the teacher, who proposed afterwards in a usual 
tutorial session a class discussion about the exercise, the formula and its proof. The 
exercise was finally solved during this session, and writing the complete solution was 
given as homework. The teacher wanted the students to face a puzzling situation, 
which motivated them to look for the complex proof. 
Can all invariant behaviors of the students solving an e-exercise be explained by 
schemes? In fact, the central point is more: do all the descriptions in terms of 
schemes tell us something about mathematical knowledge? It is clear when a 
mathematical theorem-in-action is involved. But the operative invariant of the 
schemes are not always mathematical.  
Let us consider the general case of the suggestions: different kinds of texts designed 
to help the students in their solving processes. They can be explanations, methods, 
hints etc. They are part of the artifact, they are a specific kind of tools that can be 
termed “cognitive tools” (Rogalski & Samurçay 1993) because they comprise 
knowledge. In a teaching design about sequences for university first year students 
using an e-exercises resource, I observed that some students always opened the 
“suggestions” window just after reading the text of the exercise, and before any 
personal attempt. It was a very stable, naturally unexpected, behavior. It is expected 
to make a personal attempt, and have a look at the suggestions if necessary only after 
a significant personal research. That unexpected behavior can be considered as a 
scheme; but the description of this scheme leads to an interpretation in terms of 
didactical contract. These students break the implicit rules of the contract by opening 
too quickly the “suggestions” window. They leave a part of their mathematical work 
to the computer. 
In the next section further interpretations in terms of didactic contract are developed. 
 
The session’s level: working patterns 

The possibility for students to work at their own pace, or to follow different paths, is 
often mentioned as a positive aspect of e-exercises. But do all kinds of paths favor 
learning? One can easily figure that a student choosing to work during a whole one 
hour session on the same simple exercise is not likely to learn much. I observed on 
many occasions that regularities appear in the paths chosen by the students; for that 
reason I use the term “working patterns”. These working patterns naturally depend on 
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the features of the resource and of the associated scenario. For example, some 
resources send after a given number of exercises a feed-back comprising an advice 
about the next exercise to try; others even impose the next exercise. Anyway, at least 
when it is possible, students develop different working patterns.  
I present here briefly an example issued from a research with sixth grade students 
working on proportionality problems with an e-exercises resource. This resource 
proposed sets of five exercises, identified by a title (the titles’ list is displayed on the 
first screen). It attributed a mark over five for such an exercises set. When the mark is 
3 over 5 or less, the resource suggests to restart the exercises set. If students restart, 
they are proposed the same five exercises with new numerical values. I observed 
several working patterns of the students working with this resource. The most 
frequent were: “Making one time each exercise” for students who solve one exercise, 
and then tackle the following one, independently of their success or failure; and 
“Following the computer’s suggestions”: for students who always restart when the 
resource suggests it. These working patterns remain stable. They can be interpreted in 
terms of schemes; but the description of these schemes leads anyway to didactical 
contract effects that organize the students’ behavior. For that reason, I focus here only 
on these contract effects. 
“Making one time each exercise” corresponds to students who work with the 
computer as they would do it with a paper exercises sheet. They consider the Internet 
resource as a textbook, and place themselves in the usual didactic contract, ignoring 
the feed-backs. By “following the computer’s suggestion” the students clearly 
attribute to the computer responsibilities that usually belong to the teacher’s domain. 
These students work within a didactical contract modified by the presence of the 
computer. 
The designers of the resource clearly expected the second working pattern. It 
indicates a belief about the learning processes: a student learns by making several 
times similar exercises. It is a typical drill and practice choice. In the research 
mentioned here, we studied the evolution of the students’ ability to identify and solve 
proportionality problems before, during and after their work on the computer. We 
observed real improvements, but no significant difference between the groups 
corresponding to each of the two working patterns described here. It means that 
students learn by drill; but they do not seem to learn more than the one who work like 
in a usual environment. However, we do not know what the students who practiced 
drill would have learnt if the scenario, or the resource banned that behavior. Further 
research is necessary to decide whether leaving the two possibilities has positive 
consequences for learning. 
 
Conclusion  

For students solving a given e-exercise, the instrumental approach provides a 
framework to describe instrumented action schemes associated to the “environment” 
artifact. It permits in particular to anticipate behaviors likely to hinder learning.  
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On the more global level of a whole session on an e-exercises resource, stable 
working patterns can be observed and interpreted in terms of didactic contract. It is 
then necessary to evaluate the consequences of these working patterns on learning.  
Stating such results can be useful to design further resources, or to improve the 
existing ones. But it can also be simply used by teachers to choose appropriate 
scenarios for a given resource, in order to avoid undesirable behaviors and foster 
learning. The scenario plays indeed a central role to determine the explicit, and some 
of the implicit rules of the didactic contract. 
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This article aims to introduce the research agenda that is currently guiding activities 
in the group Tecnologias e Meios de Expressão em Matemática23 (TecMEM) of 
PUC-SP. It describes how wide scale attempts to insert digital technologies into 
Brazil’s public schools system have tended to emphasise the computer as a catalyst 
for pedagogical change, without acknowledging the epistemological and cognitive 
dimensions associated with such change or the complexity associated with the 
appropriation of tools into mathematical and teaching practices. To focus research 
efforts on learning ecologies as complex interacting systems, the paper presents how 
our group is adopting as a research strategy the involvement of teachers and 
students in the process of collaborative tool design.  

 
Integrating (?) Technology in the Brazilian Education System 

In the late 70s and early 80s, university researchers in Brazil started to develop 
studies relating to the use of the computer as an instrument in the processes of 
teaching and learning. Their experiments were based on the use of programming 
languages inspired by the evolving constructionist perspective of Papert (1980). The 
introduction of computer technology into the public sector of the Brazilian Education 
system began later in the 80s, when the Ministry of Education (MEC) funded 
projects such as EDUCOM and FORMAR. In these projects, the role attributed to the 
computer was that of catalyst for pedagogical change (Valente & Almeida, 1997). 
The idea being that the possibilities offered by computer technology would enable 
innovative approaches to education, helping to form reflective citizens who would 
use exploit technology in the search, selection and interrelation of information and in 
the construction of knowledge and hence enable them to better understand and 
transform their own socio-historical context. A huge challenge given that the 
dominant pedagogical approach of the time almost exclusively focussed on teaching 
as transmission of ideas. 

Despite, or perhaps because of, the innovative nature of the Brazilian proposal 
for the insertion of computer in the education system, none of the government-funded 
programs have yet resulted in the intended transformations in educational approach. 
The pedagogical aspects implicit in the use of the computer have turned out to be 
much more complex than originally predicted and, in practice, compounded by the 
fact that, within the public education system in Brazil, access to technological 
resources continues to be sporadic and unevenly distributed throughout the country’s 

                                           
23  Technology and Media for Mathematical Expression 



 

 214 

schools. One important result, however, has been the recognition of the critical need 
to understand the role of the teacher in every step of the integration process. 

It is important to stress that although research in mathematics education has 
been a part of the insertion process described above, its role has not been central. In 
attempts to prepare teachers to make use of technology, there seems to have been less 
emphasis on what to teach – or even what is being taught – and much more on how it 
could/should be taught. Epistemological concerns regarding mathematics (or indeed 
any other curriculum area) or the meanings for mathematics constructed during 
technology-mediated activity seem to have been largely absent from the debates 
concerning the integration of computers into the Brazilian education system. Indeed, 
in the official guidelines for the Brazilian Mathematics Curriculum published by 
MEC (PCN, 1998), again it is principally pedagogical concerns that figure in relation 
to the use of digital technologies in the mathematics classroom. The use of 
technological resources (such as calculators, video and computers) is one of a set of 
three pedagogical approaches emphasised, the other two being the use of historical 
resources and games. 

 
Digital tools and mediated agency  

It seems that the privileging of the (supposed) impact of digital technologies 
on pedagogical approach in the Brazilian context had the result of largely ignoring 
the important reciprocal relationships between technology and thinking – that the 
resources available for the negotiation of meanings for mathematics, both shape and 
are shaped by these developing meanings. According to Borba (2000), the same 
could be said of much of the work generated by Brazilian researchers working 
specifically in the field of mathematics education. He suggests that, until recently, 
investigations of the role of different media in the teaching and learning of 
mathematics have been limited to treating technological tools as didactical aids 
which might help (or not) the learning of particular material. Drawing from the work 
of Levy and Latour, Borba suggests that rather than individual learners we should 
focus our attention on the collective "seres-humanos-com-mídias" (people-with-
media), a construct reminiscent of the socio-cultural unit of analysis proposed by 
Wertsch and Toma (1994), individual(s)-operating-with-mediational-means or 
mediated agency. According to this perspective, the inclusion of the (any) tool in 
activity alters the course both of the activity and of all the mental processes that enter 
into the instrumental act.  

This suggests that in order to understand learning ecologies that include digital 
resources, it is important to consider the ways these resources interrelate with both 
epistemological and cognitive dimensions. Recent research has also emphasised the 
need to theorise more precisely about the ways in which learners come to make use 
of the technological resources available in the learning environments in which they 
interact or, to put it in the terms of Verillon and Rabardel (1995), to understand the 
process of instrumental genesis by which artefacts become transformed into 
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instruments24. The potential role of digital tools cannot be expected to be transparent 
– neither to teachers nor to learners – and if they are to be integrated in a significant 
form into mathematics classrooms, an understanding of how to engender the process 
of instrumental genesis is crucial. It could be conjectured, then, that one of the 
weaknesses of the Brazilian teacher education programs was (and largely still is) that 
little attention was given to the process by which the digital artefacts introduced 
might be appropriated by teachers and integrated into their practice. In the case of 
teacher education, it may even been that the instrumental genesis process is yet more 
complex since its ends become twofold: artefacts need to become instruments not 
only in the mathematical practices of teachers but also in their didactical practices. 

Research into the use of technology in mathematics education within Brazil, 
and more specifically the emerging research agenda of the group Tecnologias e 
Meios de Expressão em Matemática – TecMEM has begun to take on board these 
issues our research is increasingly focused on what meanings for the mathematical 
objects concerned are afforded (and constrained) as particular tools are appropriated, 
how these meanings evolve as the tools are transformed by their users in practice and 
how both tools and the meanings associated with them impact upon the way we think 
about the mathematics in question. In considering the constraints and affordances of 
particular resources, as we bring epistemological and cognitive questions into play, 
and as sociocultural perspectives on tool mediation come to the fore, we believe it is 
important not to relegate pedagogical aspects to a second plane. The challenge is to 
focus on the learning ecology as a whole, considering the interactions between 
different dimensions – epistemological, technological (or perhaps instrumental), 
cognitive and pedagogical – concomitantly. 
 
Approaches to tool design 

TecMEM is a research group of the programme of post-graduate studies in 
mathematics education of the Catholic University of Sao Paulo (PUC-SP). 
Geographically, the group is based in the university’s Centre of Exact Sciences. 
Because of this location, the group counts on participants from a diversity of 
backgrounds: researchers in mathematics education and mathematics teachers are 
joined by computer scientists and engineers. As a group, we are involved in 
understanding the processes by which mathematical knowledge is constructed in the 
presence of digital technologies, while building learning environments that support 
engagement in these processes. Given the particular background of the group, it is 
perhaps not surprising that tool design represents a significant aspect of the group’s 
                                           
24  Verillon and Rabardel (1995) use term artefact to describe a given human-made object. For 

any individual person, the artefact becomes an instrument as he or she develops a set of schemes 
associated with its use, allowing the artefact to be appropriated and integrated into the 
individual’s practices. As Trouche (2004; p. 285) puts it “an instrument can be considered as an 
extension of the body, a functional organ made up of an artefact component (an artefact, or the 
part of an artefact mobilized in the activity) and a psychological component”. 
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work. To a certain extent, we have come full circle back to the constructionist 
beginnings of computer use in education in Brazil, and underlying our research is a 
continued desire to design tools that will provoke changes in the way mathematics is 
experienced in Brazilian schools. But the theoretical basis which informs our 
research has developed considerably, opening new windows through which to 
investigate mediating between learners’ personal knowledge of mathematics and the 
official mathematical discourse they are supposed to learn.  

In terms of tool design, it is possible to distinguish between two contrasting 
approaches to supporting connections between conventional and personal 
mathematics, usually described using the metaphors top-down and bottom-up. 
Software designed from the top-down have their genesis in expert practice, in 
“crystallised expert mathematical knowledge” as Gravemeijer (1997) puts it. They 
offer to learners a set of tools to enact conventional techniques or methods. Examples 
include Computer Algebra Systems, many educational statistical packages (see, 
Biehler, 1997, Konold, 2002). Dynamic geometry systems can also be included 
within this group: Laborde and Laborde (1995), for example, describe how Cabri-
géomètre, was designed to bring students in touch with a model as close as possible 
to traditional Euclidean Geometry. On the other hand, are software designed from the 
bottom-up, their basis in the learners’ practices and reasoning, perhaps the most 
classic example of which is Turtle Geometry, which “started with the goal of fitting 
children” (Papert, 1980; p. 53) and the hope that students would bring what they 
know about their own bodies and their movements to bear as they learn a formal 
geometry.  

A problem with these metaphors is that they place learners, mathematics 
always on a lower plane. The devaluing of individual knowledge in favour of the 
conventional can be avoided if instead the terms filling inwards (FI) and filling 
outwards (FO) are employed (Healy, 2002). This has the added advantage of 
stressing a major difference between constructivist and sociocultural approaches: the 
primacy assigned to the individual or the cultural in the learning process. Hence, 
these approaches are not limited to tool design considerations and can be interpreted 
more generally as two different didactical models. Filling outwards approaches 
correspond to constructivist-rooted approaches to mathematical teaching (such as 
realistic mathematics education, didactical engineering and the emergent approach of 
Cobb et al., 1997, for example), which emphasise an outwards flow whereby 
interventions are intended to guide personal understandings gradually towards 
institutionalized knowledge, with mathematically significant issues arising out of the 
student’s own constructive efforts. A reverse filling-inwards flow of instruction 
characterises sociocultural accounts of teaching, with interventions aimed at 
supporting learners in internalising institutionalized knowledge to construct new 
understandings, hence enabling mathematically significant issues to become 
appropriated during the learner’s constructive efforts.  
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Returning to the issue of tool design, it might be hypothesised the process of 
instrumental genesis is rather different according to whether a filling outwards or 
filling inwards approach is adopted. For experts, the integration of FI-based tools into 
their mathematical practices might be relatively straightforward, but for those less 
fluent in the expert practice, the path from artefact to instrument might be more 
tortuous. In contrast, FO-based tools might be more easily incorporated into learner’s 
activities since they have been designed on the basis of what they can be expected to 
know. But in this case, facilitating the process of instrumental genesis may not have 
the effect of guiding towards conventional mathematical expression. This results in a 
somewhat paradoxical situation. When we design tools on the basis of the practices 
of learners rather than experts, enabling learners to express their own meanings in 
ways that do not necessarily match conventional expressions, teachers are not always 
willing to accept the validity of the tools. On the other hand, when our design 
decisions are guided by conventional mathematical expressions instead of what we 
know about learners' understandings, although the legitimacy of the tools we design 
is less likely to be questioned by teachers, the tools themselves do not always enable 
learners to interact with the mathematics in question.  
 
Our current research agenda 

So the challenge the participants of TecMEM are currently confronting is how 
to design tools that make sense to learners, connect with their points of view and 
resonate with what they already know, while, at the same time enabling them to 
express their ideas in ways that are considered mathematically legitimate by their 
teachers. Tools that illuminate the mathematical structures and relationships 
embedded in them to learners and to teachers alike.  

We are choosing to concentrate our design efforts particularly in areas of 
mathematics whose current coverage has been highlighted as problematic in the 
Brazilian context. This includes, for example, statistics and probability, whose 
emphasis in the official mathematics curriculum has significantly increased in recent 
years25, geometry, pinpointed as a domain that mathematics teachers have a tendency 
to avoid, and proof, an aspect of mathematics considered rarely, if at all, in the 
mathematics classrooms of the public school system26. Because of the make-up of 
our group, it would be possible to divide the research tasks, with researchers and 
computer programmers responsible for task and tool design respectively and the 
mathematics teachers involved principally in implementing these activities in their 
                                           
25  A description of some of the mathematically issues that emerged in the design of tools for 

the simulation of data distributions, see Healy (in press). 
26  We are currently engaged in a CNPq funded project, AProvaME (Argumentação e Prova na 

Matemática Escola, No. 478272/2004-9) which is involving 26 mathematics teachers from public 
schools in the state of sao Paulo in investigation the strategies of proof and justification of their 
students and in building technology-intergrated learning scenarios to support these students in 
further developing their competencies in proving. 
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classrooms. The problem is, if teachers bypass the design phase, they will not 
necessarily come into contact with either the epistemological, didactical or cognitive 
considerations that contributed to the conception of the activities. Without this 
contact, teachers may not feel ready to come up with new activities of their own or 
even to adapt existing activities according to the particular needs of their students.  

The strategy we are investigating, then, is to involve all group members not 
only in the design of activities to support mathematical reasoning, but also in the 
design of the computational environments which form the context in which this 
reasoning is to take place. Our aim is not that we create well polished “finished” 
softwares, rather that, in line with the constructionist agenda that continues to guide 
our work, we create microworlds that represent our tinkering and can be 
subsequently tinkered with by others (Papert, 1991). In our strategy, the process of 
instrumental genesis begins with the genesis of the artefact itself, that is, it could be 
said that, for the designer, the artefact is always an instrument. The conjecture that 
drives the projects currently underway is that the design of digital tools for 
mathematics learning will necessarily involve participants in making explicit their 
own knowledge about the mathematical issues concerned, their beliefs about the 
learning trajectories their students follow and their thinking about how best to 
mediate between their students’ (and perhaps their own) personal knowledge and the 
mathematics they are aiming to teach. As such, in relation to the integration of digital 
technologies into mathematics classroom, the questions to which we are seeking 
evidence are: 
• Will participating in design of tools for simulating data sets encourage designers 

as learners to reflect upon mathematics concepts incorporated in the tools under 
development? 

• Will participating in the design process encourage designers as teachers to reflect 
upon the kinds of representations that might permit their students to access and 
explore these same ideas? 

• And what didactical approaches do designers as researchers build into the 
learning scenarios in which their developing tools are embedded? 

So, one strand of our research work involves mathematics teachers in the 
collaborative design of tools for mathematics learning. A second strand involves the 
students themselves in this collaborative design process.  
In this second strand, we are working with learners whose developmental trajectories 
are not yet well represented in the research literature: blind learners and learners with 
severe visual impairments. As researchers, we recognise that we still know relatively 
little about the mathematical interpretations developed by blind learners and whether 
the mathematical meanings they construct and the narratives through which they 
make sense of mathematical problems follow significantly different patterns to those 
of sighted learners. However, in Brazil, there is currently a strong drive within the 
public education systems towards the inclusion of learners with special needs into 
mainstream schooling. Because of this policy, a number of the mathematics teachers 
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of TecMEM are already facing the challenge of teaching classes in which one or 
several of the forty or so students are blind. One of the particular difficulties is that 
not only can the learners not see the inscriptions of mathematics presented to the rest 
of the class, the mathematics teachers cannot, in general, read the inscriptions 
produced by their blind learners, until they are translated from Braille, making. This 
makes it extremely hard to know if and when to intervene, and especially to adopt a 
filling-outwards didactical approach. We are currently working on the design of 
musical microworlds and microworlds composed of speaking and conversing 
mathematical objects, which, combined with tactile tools, aim to allow blind learners 
to explore, express and communicate mathematical ideas associated with rational 
numbers, function and geometry. Although this work is only beginning, we are 
finding that the participation of the learners, right from the conception of the tools is 
critically as we simply do not know enough about the stories they construct to make 
sense of the mathematics they encounter to proceed without them27. 
 
A final word 

From the beginning, the attempts to insert digital technologies into Brazilian schools 
did not represent a response to an expressed need from the grass-roots of the 
classroom. To a greater or lesser extent this continues to be true today. On the other 
hand, it might be that digital technologies do have considerable potential to offer in 
confronting current challenges at the chalk face. Our research seeks to involve 
teachers and their students in the process of collaborative tool design, in order that 
they might assess and, where appropriate, begin to harness this potential to resolve 
the particular complexities of the classrooms in which they work. By its very nature, 
our approach, not unlike the process of instrumental genesis, is complex, time-
consuming and linked to local considerations such as the characteristics of the 
learning setting, and the participants’ activities, knowledge and former methods of 
working.  
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This contribution presents the comparisons made by two students, each the most 
advanced in their classes, of the relative functionality of a variety of technological 
tools, the ones they had used to learn basic geometric notions and properties. This 
work is part of a line of investigation specializing in the functionality of artifacts 
involved in teaching sessions (Verillon and Rabardel, 1995) and the development of 
classroom discourse (Sfard, 2001). It revisits the case of “Guillermo” (Hoyos, 2003), 
a junior high school student who learns the topic of geometric transformations via 
utilization of Cabri-II and pantographs or articulated machines. Also reviewed is the 
case of “Marcel”, a sixth grade student which takes up problem resolution involving 
the notions of angle, turn, and their measurement via Logo and Cabri-II. The paper 
argues for complementarity between the tools utilized for the construction of use 
schema, which objectified certain mathematical notions involved; and for the 
internalization of instruments in use (Mariotti, 2002). 

 
Theoretical Framework 

As Mariotti (2002, p. 697) argued, since school use of computers and new 
technologies is on the rise, it becomes urgent to identify key points around which to 
organize their use in fostering diverse educational processes. 
In addition to incorporation of computers in schools, she and other Italian researchers 
(Bartolini et al., 1998; Boero et al., 1997; Mariotti et al., 1997) particularly have 
recommended using artifacts and contexts of geometric practice which employ 
mechanical or jointed models of drawing and tracing machines as a school’s way to 
generate complex mathematical ideas or notions.28 

                                           
28As an example, in the case of the study of geometrical transformations, each one of the used 
machines was made of a set of articulated metal bars mounted on a wooden stage in accordance 
with different geometrical configurations representing the elemental geometric principles of 
reflection, symmetry, translation, and dilation. The bars are fifteen to twenty-five centimeters long, 
the wood base measures about fifty by sixty centimeters. One of the more well-known pantographs 
may be the one that enlarges or reduces a drawing by a given ratio. This research employed this 
artifact, as well other similarly constructed, which were designed to study symmetry, reflection, and 
translation. The materials were originally constructed by the University of Modena (UNIMO), in 
Italy. For further detail on the pantographs and other UNIMO instruments, refer to 
www.mmlab.unimo.it. 
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Actually, current investigations have focused on incorporating use of diverse 
technological tools, with the idea of comparing the results from manipulating 
different learning environments (cf. Hoyos, Capponi and Genèves, 1998; Vincent et 
al., 2002; Hoyos, 2002; Hoyos, 2005) or in the attempt to overcome difficulties 
associated with solving mathematical complex tasks, like the proof of geometrical 
basic properties. (See Vincent et al., 2002; Hoyos, 2005) 
For example, participant observation of sixth grade students (Hoyos, 2005) revealed 
that, although Logo’s turtle (figure 1) can move forward in any direction, it does so 
linearly in such a way that it is not evident for children that the same turn procedure 
is being applied both forward and backward. 

 

Fig. 1 

Mathematical turn rules are usually referred to clockwise, and using Logo it might 
not be evident to children that the turtle procedure of turning to the right (the rt 
command) could be associated with clockwise motion, and counterclockwise in the 
case of left turns (the lt command). We predict that a broader significance assigned to 
turns implemented by this tool would aid students to improve their handling of Logo. 
Based on these considerations, and thinking about the advantage of having interactive 
tools that could measure the various magnitudes presented in the problems, we used 
other materials in addition to Logo, particularly the Cabri-II computer environment. 
Briefly, all the technological tools used in that context would provide specific, 
functional features to enable students to efficiently leave behind drawing difficulties 
related with giving the turtle convenient instructions — a task which requires 
anticipating turtle turn direction. 
Verillon and Rabardel (1995, p. 77) affirmed the potential for artifacts to address 
particular learning difficulties related to the functionalities of the artifacts in play.  
Among the most important contributions these authors offer is to point up the 
substantial differences in the products of knowledge derived from unlike 
manipulation experiences. On the one hand are those (cf. Piaget and Inhelder, 1958) 
in which the subject manipulates various sizes and shapes of metal bars or liquids 
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transferred between containers, and on the other are those that involve exploration or 
use of technologies, such as activating a robot. 
Concerning use of Cabri-II dynamic geometry software in both exploratory studies, 
one of the central hypotheses (Hoyos, 2006) was that if from the beginning of the 
activities the learners had available a formal language they had not yet used or 
experienced29, it would permit tracking their progress in mathematic discourse, as far 
as they construct or assign meaning to these referents. 
Sfard (2001) takes as an instance of the development of mathematic discourse a 
classroom interaction in grade seven on the learning of negative numbers. She shows 
how disorganized the information becomes when these numbers had only recently 
been introduced, as well as the students’ shallow comprehension. Sfard argues that 
this type of basement is insufficient to immediate advancement toward capitalization 
in, for example, operational handling of the new terms. For Sfard (2001, p. 28), the 
“introduction of new names and new signifiers is the beginning rather than the end 
of the story.” 
Sfard emphasizes that the introduction of new symbols acts as a piston, driving and 
creating new semantic spaces which appeal to the needs for new meanings and new 
discursive habits (ibid, p. 32). 
This author identifies the act of communication with the act of thinking, and thus the 
development of discourse in a two phased process. The first phase is characterized by 
the use of terms with a template at hand and the second by objectification or 
objectified use of the symbols.  
Finally, from the approach Sfard proposes to learning as the development of 
discourse, it becomes interesting to obtain descriptions of student identifications of 
the symbols or terms in use, given that learning some topic creates the capacity to 
extend discursive capacities so that in some moment the learner will be able to 
communicate on the theme. (ibid, p. 26) 
 
Aims, Methodology, and Some Results 

The two case studies reviewed here (Hoyos, 2003; Hoyos, 2005) were constituted on 
the basis of the productions made by the most advanced students in each of the 
classes observed. Different technologies were alternated in both cases so that the 
learners would be able to strengthen or compare the results from manipulating 
distinct learning environments (cf. Vincent et al., 2002; Hoyos, 2002; Hoyos, 2003). 

                                           
29 Note that Cabri-II includes a Help command that displays a legend at the bottom of 
the screen. This legend gives the students a formal description of the geometric 
construction in turn, just as is the case with the menu for geometric transformations. 
In fact, that legend constitutes a formal guide for the student in order to execute the 
required construction or action.  
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During the first case study, “Guillermo” (Hoyos, 2003), a very advanced student in a 
ninth grade Math class (fifteen years old, approximately), was introduced to explore 
Cabri-II and pantographs as a means to approach the theme of basic geometrical 
transformations.  
With ease and accomplishment he worked all the tasks presented in a long series of 
practical activities implemented in the classroom (Hoyos, 2006). Video logs were 
obtained of all of Guillermo’s movements, especially because he was asked to 
describe what they had done at the end of each assigned activity. At the end of the 
reflection and translation learning activities, during his description of what he had 
done, Guillermo makes reference to the various moments of the activities performed 
during the two learning stages that were set. 
Here it is going to be briefly mentioned what happened using Cabri-II when he 
activated the Reflection command. The student describes it as making the initial and 
image objects “move in opposite directions”: 
 
Guillermo (hereinafter G): What we saw with this machine [the jointed machine for 
reflection or axial symmetry] was the same as for axial symmetry, what we were 
seeing, for example ... Like if we took these by the movement points [manipulates 
the jointed machine, moving its drawing guide] they go opposite ways. Like [what] 
we were seeing in the Cabri software... 
What we were proving here [with the jointed machine] was that axial symmetry is 
practically a reflection of the original figure, if we move [the guide] to the left ... It’s 
like when we move the original figure from left to right, the reflection goes … From 
right to left.  
 
As can be clearly observed from the work report Guillermo wrote after have finished 
the work sessions with the software, he was able to quite coherently express the 
properties of dilation. For example, it is presented here his answer to the question 
“Give a general definition of dilation”, which was on the scripted worksheet for the 
computer exploration: 
 
G: The image [is] on another scale, with proportional movements to what you 
do [in relation with the initial figure]. 
 
The final passage that is going to be presented here concerns with comparison of 
tools in use. In the last interview with Guillermo he was asked to offer his opinion on 
the work he carried out in all the sessions. 
 
I: Let’s see, Guillermo, tell me how you feel about these work sessions. 
G: Yea, well, alright. 
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I: Right. Has what we’ve done been interesting for you? 
G: Yea, because it made us think awful hard. 
I: Yes. Did you like the computer work? 
G: Yea, just that it’s easier with the computer than doing it here, firsthand. 
I: But the work with the machines [the pantographs], does it seem productive? I 
mean, it leaves you with something. Interesting, isn’t it? 
G: You learn more [there], than with computers, cause you do the work. 
I: You learn more with computers, is that what you think? 
G: No, you learn more there, [points to the pantographs] cause here you do the 
work and the tracing, and on the computer the only thing you do is guide it. 
Along the second case study (Hoyos, 2005), the hypothesis was advanced that Logo 
and Cabri-II functions were complementary when applied to the learning of angle and 
turn. Activities based on manipulating these learning environments and other 
concrete materials permitted the students to overcome difficulties with the direction 
of turn and the measurement of angles greater than 180º. 
In the previous to the last session it was introduced Cabri-II as a teaching technique, 
because it was likely to allow the students to overcome the difficulties still 
demonstrated in the Stage 4 of that study, which had to do with measuring angles 
greater than 180º and the direction of turns. 
The Cabri-II activities may be briefly characterized as simulating both directions of 
clock movement by placing the hands in various positions and using its Angle 
command to measure angle sizes, especially those greater than 180º. At this juncture 
it is worth noting that Cabri’s Angle command only works with angles less than or 
equal to 180º, requiring reflection or planning on how to calculate those of greater 
dimension. These may be the reasons why comprehension about measuring that kind 
of angles might finally be achieved. 
In sum, what happened during the work session with Cabri-II was that the children 
were asked to measure an angle like that indicated by an arc in greater than 180º. 
Nonetheless, the measurement the software displays when one selects three points —
one on the little hand, one in the center of the circumference, and one on the big 
hand— (as Angle measurement shows in the Help legend,) is a measurement of 
148.9º, which is less than 180º! 
Instructor (I): So, what’s up with the measurement the machine is giving us [that of 
148.9º]? How can I do to know how much the angle labeled by the arc is? 
Marcel (M) [The most advanced student in that study case-]: Do you know why it’s 
showing up like that? [He is referring to the software] What the computer is doing is, 
what I suppose, is it isn’t marking on this side, but from here to here [M points to the 
other side of the angle, which in effect measures less than 180º]. ‘Cause it wasn’t 
labeled exactly. [You, sir] put the three points, but the computer can make mistakes, 
[it doesn’t know] if it’s to here or to here [M successively indicates each of the two 
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dos angles determined by the clock hands simulated in Cabri-II]. It didn’t label right 
which angle to go to. 
I: Marcel is right, since you have to label three points to measure an angle, as the 
legend in Help says, the angle the software is looking at could be the one marked by 
the arc or its opposite. Perfect. 
I:… What should I do to measure the angle labeled by the arc? 
M: I see how I can do it. 360º-148.9º, this is the angle labeled by the arc, [because] 
the 148.9º is the one that the arc didn’t label. So, if this is what this angle measures, 
it’s less 360, and so we get the other degrees left over. That’s why we know what 
[that, the result from subtraction] the other angle is. 

Briefly, at the conclusion of the work sequence on problem solving with Logo, the 
instructor asked the children their opinion on working with Logo, or Cabri-II, and 
whether they had enjoyed working with these programs: 

M: Cabri seems easier to me, ‘cause there you go to your tools and you get 
everything. But here [with Logo] you have to calculate ‘n’ everything. It looks harder 
to me. It’s a bit harder for a kid … Because there you gotta be calculating degrees … 
But in that one [Cabri] you’ve got your tools ‘n’ everything. So for a kid it’s easier to 
get what you need from the tools, not in that one [Logo], you gotta be calculating ‘n’ 
everything [gestures to his head]. 

 
Towards a Conclusion 

One of the lines of research into the question of semiotic mediation (Mariotti, 2002) 
looks into the cognitive processes of instrumental genesis, with the source of its 
analysis being the self-same nature and manipulation of the artifacts employed. 
Preliminary results obtained in both explorations indicate that, in effect, coordination 
is possible between all technological instruments deployed. Besides, the working 
hypothesis that appears to gain credence on the basis the comparison the children 
made between the instruments used (Cabri-II and pantographs in the first study; Logo 
and Cabri-II in the second one) is that students might naturally tend to assign greater 
value to tools and to learning gained once an objectification process has taken place, 
as they will contrast their current capacities against those they had been able to 
perform during a previous stage.  
In addition, both cases would appear to be evidence of an accomplished 
internalization process (Mariotti, 2002), because it is probable that idiosyncratic use 
of contextual terms to evaluate used tools might be evidence of cognitive attainment 
that probably is only reached through accomplished internalization of instruments in 
use. 
 



 

 227 

References 

Clements, D., Battista, M. and Sarama, J. (2001). Logo and Geometry. Journal for 
Research in Mathematics Education, Monograph Number 10. Reston, Virginia: 
NCTM. 

Hoyos, V., Capponi, B., and Genèves, B. (1998). Simulation of drawing machines on 
Cabri-II and its dual algebraic symbolization…. In Proceedings of CERME1, 

 http://www.find.uni-osnabrueck.de/ebooks/erme/cerme1-proceedings/cerme1-
proceedings.html. Germany: U. of Osnabrueck. 

Hoyos, V. (2002). Coordinating mediation of activity in the learning of geometrical 
transformations. Proceedings of PME-NA 2002. Athens, Georgia: ERIC. 

Hoyos, V. (2003). Mental functioning of instruments in the learning of 
geometrical transformations. Proceedings of International PMEXXVII. 
Hawaii (USA): University of Hawaii. 

Hoyos, V. (2005). Coordinating Technological Tools In Problems On Measuring 
Angle And Turn. Proceedings of 7ICTMT. UKGB: Institute of Education of 
Bristol. 

Hoyos, V. (2006). Funciones Complementarias De Los Artefactos En El Aprendizaje 
De Las Transformaciones Geométricas En La Escuela Secundaria. Enseñanza 
de las Ciencias, Vol. 24 (1). España: Universidades de Barcelona y Valencia. 

Inhelder, B. & Piaget, J. (1958). The growth of logical thinking from childhood to 
adolescence: An essay on the construction of formal operational structures. 
ISBN: 0465027725 

Magina, S. and Hoyles, C. (1991). Developing a map of children’s conceptions of 
angle. Proceedings of XV PME, Vol. II. Assisi, Italy. 

Mariotti, A. (2002). The Influence of Technological Advances on 
Students’Mathematical Learning. In Lyn D. English (ed.), Handbook of 
International Research in Mathematics Education. New Jersey: LEA, Pub. 

Sfard, A. (2001). Learning Mathematics as Developing Discourse. Speiser, R., 
Maher, C., & Walter, Ch.(eds.), Proceedings of PME-NA XXIII. ERIC: 
Snowbird, Utah (USA). 

Verillon, P. and Rabardel, P. (1995). Cognition and Artifacts: A Contribution to the 
Study of Thought in Relation to Instrumented Activity. European Journal of 
Psychology of Education. Vol. 10, No. 1. 

Vincent, J., Chick, H., and McCrae, B. (2002). Mechanical linkages as bridges to 
deductive reasoning: A comparison of two environments. Proceedings of PME 
XXVI. U.K.: University of Norwich. 

 



 

 228 

Tools rather than Toys: Fostering mathematical understanding 

through ICT in primary mathematics classrooms 

Diana Hunscheidt & Andrea Peter-Koop, Dept. of Mathematics 
University of Oldenburg, Germany 

hunscheidt@mathematik.uni-oldenburg.de 
peter-koop@mathematik.uni-oldenburg.de 

  
The proposed paper addresses the theme “teachers and teaching” by reflecting how 
far a new methods course on the use of technology in primary mathematics prepares 
pre-service teachers to critically select and use digital and electronic technologies in 
classrooms. While the motivational benefit with respect to the use of ICT in 
classrooms is certainly an important issue, this paper seeks to highlight in how far 
the careful selection and reflected implementation of technologies in classrooms can 
help to extend mathematical understanding beyond mathematics teaching and 
learning with traditional classroom materials. The paper focuses on two learning 
environments that have been developed in the context of a university methods course 
and trialed in the form of teaching experiments in grade 4 classrooms by pre-service 
teachers. The two learning environments go beyond the use of special software 
designed for (primary) mathematics classrooms and involve a robot and a 
monitoring device. Both learning environments will be briefly introduced in terms of 
their technical description. In addition, selected tasks from the teaching experiments, 
classroom observations and examples of students’ work will be presented. More 
detailed information as well as an evaluation of the pre-service teachers learning 
processes (currently in progress) would be provided during the conference 
presentation. 
 
The context: An ICT module within the teacher preparation programme at the 
University of Oldenburg 

The teacher preparation programme focussing on future primary mathematics 
teachers at the University of Oldenburg30 involves a compulsory 4-hour-module on 
the use of digital and electronic technologies in the primary mathematics class-room. 
The course is based on research findings that students learn more mathematics, more 
deeply with the use of technology (e.g. see NCTM 2000) and the understanding that 
technology does not replace the mathematics teacher (e.g. see Way & Beardon 2003). 

                                           
30  All teacher preparation programmes at the University of Oldenburg have been re-developed 

in the last two years in order to meet the criteria of the Bologna declaration (UNESCO-CEPES 
1999). For future primary and lower secondary teachers the University of Oldenburg offers a 
three-year bachelor programme (Bachelor of Arts/Science) focussing on two subjects and 
educational studies followed by a one year master-programme (Master of Education). 



 

 229 

The more theoretical parts of the course critically reflect the current international 
literature on the impact of ICT on the teaching and learning of primary mathematics 
with respect to the following questions: 
 

 How far can ICT improve the learning of mathematics? 
 How can ICT support effective mathematics classroom practice? 
 How far does the use of ICT effect mathematics contents? 

 

In the more practical oriented parts of the course, pre-service teachers are 
given the opportunity to explore ICT such as teaching and learning software, 
construction and logo programmes, small robots and monitoring devices in small 
groups in order to understand their functions and their role as essential tools for 
mathematics learning. However, while critical theoretical reflections and practical 
investigations are seen as crucial elements of the course, they are not regarded as 
sufficient in terms of teacher preparation. 

Guskey’s (1985) investigation of teachers’ professional development processes 
suggests that in-service teachers’ classroom practice is a critical variable for class-
room change. He argues that teachers predominantly define their professional success 
through the improvement of their students’ learning. Hence, the opportunity to 
explore ICT in mathematics classrooms and to observe and assess students’ learning 
processes is seen additionally as a critical factor for teacher pre-service training. In 
order to facilitate these classroom experiences, the course also involves the 
development, classroom implementation and evaluation of appropriate learning 
environments in primary mathematics.  

The development of the learning environments is guided by the paradigm that 
ICT serve as tools not toys in the classroom (Buchanan 2003) which foster the 
extension of mathematical understanding and the introduction of new content areas. 
 
Two examples of ICT based learning environments 
In the following paragraphs two innovative examples of ICT tools suitable for 
primary mathematics are introduced. Both have been chosen because they support 
the extension of mathematical understanding beyond traditional classroom materials. 
Introducing Pip 
„Pip” is a small robot on wheels which can be 
programmed to move in centimetres, turn in degrees 
and wait in tenths of a second. It can be 
programmed via a keyboard – overall a maximum of 
48 commands can be entered in one programme. A 
pen can be attached through the whole in the centre of 
the device which allows to record its movements on a 
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sheet of paper for subsequent analysis.  
When it is first introduced, many primary students (and pre-service teachers) get the 
impression that Pip is a great toy and they certainly enjoy “playing” with it. 
However, pre-service teachers in the methods course have been challenged to 
develop a learning environment based on Pip that enables fourth graders active 
discovery of new mathematical contents, such as angles. 
 
Using Pip to teach angles 

Primary mathematics curricula in Germany require that students in grade 4 get 
to know and understand the 90° angle. This is usually taught introducing a protractor. 
More innovative approaches would also include suitable paper folding activities. 

However, Pip allows the introduction of the angle concept in a hands-on and 
discovery based environment that involves and challenges the exploration of a 
number of angles other than 90° and their relationships. 

Goal of the learning environment developed by the pre-service teachers was 
the understanding of 90°, 180° und 360° angles as a basis for finding and estimating 
other angles in between. 
 
For the classroom exploration a drawing of a 
circle with 10° intervals on a large piece of 
paper was prepared and Pip was positioned in 
the centre of the circle with the arrow facing 
0°/360°.  
 
The grade 4 students were given the following 
tasks: 
 

Exploring different sized angles with Pip 

 Program Pip so that it turns 90°/ 10°/ 180°/240°/360° clockwise (anti-
clockwise). 

 Program Pip so that it turns 40°/60°/20° clockwise. To which degree is the 
arrow pointing, when it would then turn 60°/30°/180° anti-clockwise? 

 The degrees of the circle are hidden: We want Pip to turn 45°/135°/ 70° 
clockwise. Show where it will stop!  
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Another task aimed at the understanding of the 90° angle with respect to the concept 
of perpendicular. A pen was attached so that Pip’s movements created a drawing.  

 

Constructing 90° angles 

 Program Pip so that it turns 40° anti-clockwise going all the way to the circle’s 
outline, then turns 180° again going to (the opposite side of) the circle’s outline. 

 Then program Pip so that it draws a perpendicular line through the centre      of 
the circle. 

 Finally program Pip so that it draws a parallel line to the perpendicular line. 
 

Apart from understanding and programming different angles and finding 
and programming the right length, these tasks require reasoning and 
anticipatory mathematical thinking. 

 
 

 
 

 

 

 

 
 
 

In this context, Pip is either an effective addition or an alternative to the use of 
the protractor that fosters experimentation and visualisation. Mistakes quickly 
become obvious and are generally understood in a constructive way. Through 
empirical approaches and ‘trial and error’ Pip enabled the students to independently 
control and – if necessary – advance and correct their thinking and modify their 
actions. They could develop estimation skills with respect to the size of different 
angles beyond 90° and deepen their understanding of the angle concept.  

Overall, Pip provided an enjoyable and stimulating approach to angles for 
primary students. This frequently lead them to ‘invent’ and explore their own tasks, 
e.g. by imagining that the circle line is a clock: Can we program Pip so that the clock 
shows 5 o’clock (2 o’clock, 9 o’clock …)? 

 

Using Pip to explore lengths 
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Using Pip in the context of length measurement encourages children to estimate 
distances and to check their estimates. Challenging tasks might also involve the 
combination of angles and lengths with respect to estimation: 
 

 

Practising estimation 

 Program Pip so that it goes to the child that is sitting directly opposite to 
you. 

 Program Pip so that it goes to Anne/Tom/Erkan .  
 
 
Path diagrams created by Pip are another opportunity to combine the estimation of 
lengths and angles. Depending on their prior knowledge and individual capability 
students can be challenged to program Pip so that it follows given path diagrams 
(either with 90° or other size angles). 
 
 
 
 
 
 
 
 
 
Pip has also been used successfully in grade 4 classrooms with respect to the 
following topics: Axial symmetry, sum of angles in quadrilaterals, features of 
geometric shapes. 
 
Understanding graphs with the „Ranger“ 
The „Ranger“ is a monitoring device (data logger) 
that allows the monitoring of movement in a straight 
line. In combination with the computer programme 
LogIT it provides the construction of graphs that 
show the relationship between time and distance.  
In using the Ranger primary students can develop 
basic knowledge about graphs in an experimental 
environment. They observe and discover how the 
Ranger reacts to their movements and learn to 
interpret graphs by developing their understanding of 
the relationship between time and distance.  



 

 233 

 
In traditional approaches to the development and understanding of time – 

distance graphs without the computer, children would walk forward and backwards 
between points A and B, timing themselves with stop-watches, then draw a graph of 
their results. But it would be difficult to understand and correct misconceptions, e.g. 
wrong distances or a graph that implies that one could go back in time. 
With the aid of the Ranger and LogIT the movements can be monitored and recorded 
as graphs which can then be compared with the graphs predicted by the children. 
Introductory activities could involve the following tasks: 
 
 

Recording time – distance relationships with the Ranger 

 Stand 3 metres in front of the Ranger. Cross your arms and then slowly walk 
towards it. 

 Stand 3 metres in front of the Ranger. Cross your arms and then quickly           
walk towards it. 

 Stand 3 metres in front of the Ranger. Cross your arms and then slowly walk   a 
few steps forwards and backwards. 

 
 
Then the three graphs can be compared by analysing the time-distance relationship 
that they display. 

 
The computer programme also allows children to 
overlay. This is useful if one wants to set up a walk 
beforehand and ask others to copy. 
Alternatively, peers can orally describe a given walk 
that one child has to copy without seeing the graph. 
 
 

 
Another activity involved given graphs that had to be interpreted by the 

students, for example by telling or writing the ‘story’ belonging to the graph (see 
picture on the bottom left). The examples chosen by the pre-services teachers 
deliberately included graphs that do not describe a time-distance relationships and 
require children’s reasoning why these graphs cannot be reproduced by the Ranger. 

Other groups of children had been given little stories and the students were 
encouraged to draw the graph that would capture the story. 
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Concluding Remarks 

The tasks and classroom examples introduced above refer to very recently conducted 
teaching experiments during the current winter semester. Pre-service teachers 
involved in the classroom explorations are in the process of documenting their 
experiences and reflecting their professional learning. In addition, they have been 
given a questionnaire that seeks to investigate their knowledge, beliefs and attitudes 
with respect to the use of ICT in primary mathematics.  
In the next couple of months this data will be analysed with respect to the key 
questions identified in the introductory section of this paper. Findings and artefacts 
from these analyses would be provided during the presentation at the Study 
Conference. 
With respect to the question in how far ICT might effect mathematics contents, the 
two learning environments based on “Pip” and “Ranger” illustrated increased 
mathematical understanding with respect to angles and graphs. 

Without the introduction of Pip, the treatment of angles most likely would 
have been limited to the isolated introduction of the 90°, 180° and 360° angles. The 
construction of perpendicular lines that form a 90° angle as shown in photos above, 
certainly would not have been included. While perpendicular lines can easily be 
drawn by using a protractor, this task rather requires procedural understanding. The 
construction of perpendicular lines as described above by using Pip, in contrast 
requires a conceptual understanding of angles. The pre-service teachers involved in 
the teaching experiments were clearly surprised that grade 4 children were able to 
demonstrate that level of understanding. 

Furthermore, the understanding of time – distance graphs is not a topic that is 
frequently dealt with in grade 4 classrooms in Germany. Traditional approaches to 
graphs in grade 7 are often based on text book tasks that do not involve student 
experiments. But even more innovative approaches so far were limited to hand drawn 
graphs of movements between two points A and B timed with stop watches. 
However, while these drawings would reveal students’ misconceptions, it would be 
difficult for students to understand and correct their mistakes due to a lack of 
empirical experiences. In this context, the Ranger enabled fourth graders to explore, 
monitor and record time – distance relationships and hence to develop a deep 
understanding of graphs. 
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While both devices certainly were seen as fun toys by many children, ‘playing’ 
with these toys in suitable learning environments turned them into powerful tools for 
mathematics teaching and learning. 
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Based on our research in designing mathematics activities for the grade 3-5 
classroom, we outline central issues confronting the deployment and integration of 
Dynamic Geometry software in the elementary school curriculum. We remark in 
particular on contributions of the elementary setting to specific theoretical and 
pedagogic issues confronted in Dynamic Geometry use in real classrooms not 
directly instrumented through researcher interventions, and to specific effects of 
Dynamic Geometry technology on students’ mathematical understanding and 
practice. 
 
Introduction 
In this paper, we report preliminary findings from our work using The Geometer’s 
Sketchpad (Jackiw, 2001) to design mathematics activities for use in grade 3-5 
classrooms in the United States. We emphasize how our emerging understanding of 
Dynamic Geometry’s reception and impact differs in this situation (age-group, 
curriculum, and classroom setting) from the upper-middle-school and secondary 
mathematics settings more commonly addressed by Dynamic Geometry research (see 
King and Schattschneider, 1997).  
 
Background and examples 
The context of these remarks is Sketchpad for Young Learners of Mathematics 
(SYL), a research and materials development initiative that grew out of a 2003 
conference on uses of visualization software in the early grade levels. The research 
focus of this project is on technology-supported curriculum design models; the 
development focus is on a collection of classroom materials using Sketchpad to 
support, specifically and concretely, several curricular programs in current 
widespread use in the United States (the National Science Foundation “reform 
curricula” such as Everyday Mathematics (UCSMP, 1998), and the Connected 
Mathematics Project (Lappan et al., 1995)). The project aims for impact at national 
scale, and thus emphasizes the conditions of widespread adoptability of project 
materials and sustainability of their dissemination and reuse by teachers without 
direct project support in the way of additional tools, professional development, or 

                                           
31Portions of this work were funded by the National Science Foundation (Dynamic Mathematics 
Visualization, ESI#02-43196, 2003, and Sketchpad for Young Learners of Mathematics, DMI-
0339703/0521981, 2005). Opinions expressed here are those of the authors, not the Foundation. 
More information: www.keypress.com/sketchpad/syl/. 
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other resources. Design therefore proceeds as much in reference to practical, cultural, 
and political exigencies of the intended user community as in reference to theoretical 
models of cognition, social interaction, or educational formation. Activities from the 
early phases of the effort are freely available; through the end of 2005, more than 
three thousand school teachers had requested and received them. 

In this section, three representative activities illustrate the project’s output and 
establish a context for our subsequent discussion. Each activity features one or more 
sketches—interactive Dynamic Geometry microworlds—as well as teacher 
discussion documents and student activity sheets. Their discussion here suffers from 
the typical problem of describing dynamic imagery and interactive technology in 
static print—we make do with a few representative screen shots and verbal remarks, 
but in doing so mourn the loss of some of the sketches’ dynamic character.  
Grouping. In this activity, designed for whole-class participation, students encounter 
a population of wandering bugs—green dots on the screen—that can be marshaled 
into group formations, and make predictions and observations about the bugs and 
their groupings (see Figure 1). Initially (a) the screen contains an unsorted collection 
of insects, two buttons (123 and Redlight), and an editable number statement: group 
size = 5. Pressing the 123 button (b) causes the insects to wander randomly across the 
screen, but pressing Redlight causes them to sprint into (c) organized groups of the 
same number of bugs.32 As students orient themselves to the environment, the 
activity asks them to begin mathematizing it. How many groups of bugs are there? 
How many bugs in each group? How many left over? (One group in (c) has only four 
members!) How many bugs are there, in total? Either through experience with earlier 
activities, or through explicit teacher prompting, students discover they can alter the 
value of the group size parameter, and that this value controls the size of the groups 
into which bugs cluster. Image (d) shows the bugs frozen by Redlight with a group 
size of three. More questions explore this idea of variation: if grouping by five made 
four leftovers, what other group sizes will have four leftovers? Students in grade 4 
are very concerned with fairness: how can you group them so that no bugs are left 
over? Further questions and oriented discussion seek more subjective responses: how 
could you group them to best show that there are exactly 24 bugs?  

                                           
32 The names for the buttons here come from a popular children’s game—“red light,  green light”—
where players move as far and as fast as possible during a count (1, 2, 3…); then stop still on the 
cry of “red light!” 
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(a) a “large” collection of bugs… 

 
(b) wander aimlessly about the 
screen… 

 
 (c) until students “collect” them  
into groups… 

 
(d) whose size is determined by the  
given parameter. 

Figure 1. Grouping 
Jump Along. This second activity (figure 2) resituates the ideas of Grouping in a 

more familiar representation—the number line (a)—governed by two parameters, a 
number of jumps and an amount to jump by. Pressing Jump Along causes a point 
to hop rightwards (from zero) by the number and size of jumps requested by the 
parameters. In (b), six jumps of four units lands on 24. Activity questions seek first 
concrete and then generalized descriptions of observed patterns and inferred rules of 
the environment. How else might you land on 24? Image (c) shows a related pattern 
(four jumps of six) superimposed on the first (six groups of four). Thus the 
commutative principle emerges from students’ exploration of co-variation of the two 
parameters (both land on 24—six fours equal four sixes), while visual imagery 
retains the obvious distinction between these two propositions (six fours is not the 
same thing as four sixes). Further development in the activity strives to build 
additional “visual personalities” for number and number properties through the 
jumping metaphor. A destination like 24 ultimately accumulates a densely-
overlapped set of jump factors, while prime numbers emerge with an equally distinct 
visual signature (numbers that can be reached only by the smallest jumps).  
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(a) the basic number line… 

 
(b) shows n jumps of m 
units… 

 
(c) for student choices of n 
and m. 

Figure 2. Jump-counting along the number line 
Flatland. This third activity provides an interactive model of the universe of 

Edwin Abbott’s 1884 parable of higher-dimensional visualization. Abbott’s 
protagonist, A. Square, is a two-dimensional being living inside the plane. He thus 
perceives other inhabitants of his world always “edge-on:” objects appear with width 
but no height, and their depth can only be sensed through relative brightness. 
(Ambient gloom in Flatland causes things farther away to appear darker.) Where 
Abbott’s masterpiece develops these optical principles in analogic pursuit of three- 
and higher-dimensional thinking, the grade 5 Sketchpad activity focuses on two-
dimensional visualization and the development of intrinsic geometry perspectives. 

The Sketchpad microworld (Figure 3) is divided into two panels—a “spaceland 
view” looking down on the plane from above and a “flatland view” looking across 
the plane from within it, specifically from the vantage of the brown square. In (a), the 
spaceland view at top shows the square looking (in the direction of its lower left 
vertex) at the plane’s other inhabitant, a triangle of separately-colored sides. The 
flatland view at bottom—the broad horizontal stripe—shows the triangle as the 
square sees it: only its red and blue edges are visible, and they occupy roughly the 
same amount of the square’s field of view. (But they are not equally long! The right-
hand edge fades to a much darker red at its extremity, indicating that edge recedes 
sharply into the distance.) The sketch is also interactive. Students control the position 
and orientation of the square either by dragging it (and its “eye”) directly with the 
mouse, or by navigating indirectly through turtle-like controls. The most important 
button, Hide Spaceland, eliminates the top-down view and leaves only the edge-on 
view of the triangle. Guided exercises develop students’ footing in the flatlandscape, 
and then probe their understanding. In the square’s view (a) of the triangle, can you 
determine with certainty whether the red and blue edges meet at all, or if one simply 
eclipses the other? What maneuvers might improve or disprove that conjecture? 
What other shapes could masquerade as perspective (a)? Eventually the activity 
moves offline: without recourse to trial-and-error experiment, what sort of spaceland 
geometries could lead to the four flatland perspectives shown in (b)? 
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(a) Corresponding views of a 
triangle in Spaceland (top, 
viewed from above the plane) 
and Flatland (bottom, viewed 
“within the plane” from the 
moveable position of A. Square 
in the upper-right). 

 
(b) Where was A. 
Square and the 
triangle when these 
photos were taken?  

Figure 3. Interactive Flatland 
 
Curriculum: discrete vs. continuous 
In contrast to the content domains in which Dynamic Geometry is widely studied at 
the middle school and higher levels (notably geometry, but also others), much of the 
mathematics at the elementary level is discrete in nature. Students begin with whole 
numbers, then move to integers, fractions, and decimals—which themselves appear 
not as markers of a real continuum, but rather as another counting system of 
somewhat smaller steps. At first blush, these discrete concepts and representations 
seem at odds with the continuous motions and visualizations that form the heart of 
Dynamic Geometry dragging. To rephrase as a challenge: what relevance has a 
technology fundamentally about continuous evolution and dynamic manipulation of 
geometric shape, to curricula focused on discrete counting systems and number 
representations? 

Three possible responses are evident in the SYL activities. We note the most 
obvious first: not all of the elementary curriculum in the US concerns number. 
Informal geometry (particularly the study of shape properties and hierarchies) is 
pursued intermittently through qualitative and relational approaches that—because 
non-quantitative—avoid the discrete formulations so common elsewhere. Thus 
activities like Flatland, which centrally feature continuous variation and deformation 
of shape, remain relevant. While such activities may appear as novel Sketchpad 
treatments in terms of their intended age level, their use of Dynamic Geometry is 
conventional. 

A second observation is that some common discrete mathematical representations 
that appear at these grade levels are conventions of, rather than essential to, 
conceptual objects of study. This opens up the possibility of substituting, in the 
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dynamic environment, continuous for discrete representations, while remaining 
focused on shared underlying mathematical concepts. Within our project, such 
substitutions were well-accepted by field-testing teachers provided that the alternate 
representations themselves were not identified as “properly belonging” to other 
locations within the scope and sequence of their curriculum. In an attempt, for 
example, to reinterpret a textbook lesson in data analysis, a draft Sketchpad activity 
placed several draggable data markers on a horizontal axis. Each marker displayed its 
numeric value, and bright arrows displayed the location and value of the mean and 
median of the data set. Where the corresponding textbook activity depicted only 
integer-valued data, the sketch displayed values to two decimal places, to provide 
suitable numeric feedback to the act of dragging values left and right on the axis. But 
these values led to the draft’s rejection by field-testing teachers, under the strongly-
held conviction that this was intended as—and that the curriculum called for—an 
activity about central tendency, not an activity about decimal numbers. A subsequent 
draft removed numeric values from the dynamically-displayed data-markers and 
central measures, and relied instead on graphical and positional visualizations of 
these quantities. This draft—substituting a continuous, visual representation for the 
integerized textbook illustration—met with greater teacher ratification. Thus in many 
of our field-test classrooms, the mathematical role of technology is clearly to 
innovate within parameters well established by an external curriculum framework—
both in terms of what it may address and what clearly it must avoid.33 Provided 
Dynamic Geometry respect that principle, from our teachers’ perspectives, 
continuous representations though often new were not per se judged inappropriate 
(see also Assude and Gelis, 2002). From students’ perspective, such substitutions 
tended to de-emphasize counting and computation skills, and re-emphasize 
qualitative behaviors and comparative relationships. 

A final response is that the general-purpose tools such as Sketchpad provide 
sufficient capabilities to permit advanced users—in this case, curriculum 
developers—to simulate discrete or quasi-discrete representations out of the 
continuous ones that come easily in Dynamic Geometry. For example, step-functions 
can be used to round or truncate the decimal portion of real quantities, and settings 
for the preferred number of visible decimal digits can be adjusted to display these as 
whole numbers. In addition, one can take advantage of subtly discrete behaviors that 
already exist in the software’s mathematics.34 Pursuing “highly authored” activity 
design through such techniques of course has its own consequences in terms of the 
                                           
33 Since there is no national curriculum all schools most follow in the US, this “external curriculum 
framework” in many cases was defined simply by the classroom textbook, or by school- or district-
wide teaching policies and content expectations. 
34 For example, an intersection of two line segments continuously moves, in Sketchpad, as a result 
of motion of the segments—until they no longer intersect, at which moment the intersection point 
“blinks out” of existence. Thus on top of the continuous phenomenon of point location is layered a 
discrete notion of point existence. Sophisticated users manipulate such behaviors as constructive 
building blocks of other discrete and categorical phenomena or effects. 



 

 242 

software’s use and instrumentalization by students. We develop some of these 
consequences in the next section, and in our presentation will discuss further the 
Sketchpad software functionality we found particularly adaptable to, or relevant in, 
young learner activity design.  

To close this discussion of the discrete and the continuous, we note similar issues 
impact Dynamic Geometry experiences at all levels, not just in the elementary 
setting. An example so common it deserves a name of its own—the “defective 
triangle defect” problem, perhaps—strikes most users when they first measure the 
interior angles of a dynamic triangle, and sum the resulting values. The sum appears 
as exactly 180°. But inspection shows that hand-adding the three displayed addends 
themselves gives a different answer—180.1° or 179.9°. The issue, of course, is not 
one of internal software accuracy, but of decimal representation and measurement. 
The three angles are continuously-varying geometric quantities; there may be no 
finite number of decimal digits that measures them exactly. Thus the individual 
values display rounded to some adjustable, but finite, precision. Their summed result, 
on the other hand, is exactly representable in whole-number decimal degrees. The 
heart of the issue is how one’s assumptions have been fed by prior textbook 
illustrations of triangles in which all angles “happen” to have exact whole-degree 
magnitudes. In the infinite bestiary of possible triangles one encounters in dynamic 
geometry, such triangles are vanishingly rare, and one confronts the realization that 
although discrete decimal numbers can usefully measure—that is, estimate—an 
arbitrary angle’s magnitude, they infinitely rarely describe it exactly. These sorts of 
tension between the discrete and the continuous are fundamental to the mathematical 
domain itself; but they are brought into particular focus by Dynamic Geometry’s 
novel and accessible representation of mathematical continuity. At the elementary 
school level, occasionally-weaker content knowledge combines with greater 
curricular emphasis on whole number operations to make their outbreak more 
frequent, unless steps are taken in curriculum design to anticipate and manage their 
consequences. 
 
Students: pre-algebraic thinking, motion, and instrumental genesis 
While we have yet to study student learning and engagement with these activities 
directly, our field-test observations of classrooms and discussions with teacher 
research participants identify several distinct features of the young learner 
appropriation of Dynamic Geometry tools and activity settings.  

The object known within Sketchpad as a “parameter” seems strongly implicated 
in students’ proto-symbolic thinking. Parameters consist of two attributes—a textual 
name and a (possibly dimensioned) numeric value. (Group size = 5, in the Grouping 
activity, and number of jumps = 4 and jump by = 6 in the Jump Along activity, are 
parameter objects.) When users create a new parameter, they specify initial values for 
both halves, which subsequently display together, as in the arrangements of Figures 1 
and 2. Users then access a variety of tools to change the halves separately: a text-
editing tool, for renaming the parameter; a number-editing tool, for typing-in a new 
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numeric value; an adjusting tool, for incrementing or decrementing a present value; 
and an animating tool, for varying the value continuously across some preset numeric 
domain. The dual name/value appearance of Sketchpad parameters scaffolds 
students’ conception of variation and, more generally, of “variables.” Many SYL 
activities involve changing parameter values. Thus both over time within the 
activity’s unfolding on a single computer, and at any single moment in time across 
multiple computers (in a lab or class cluster), the “same” parameter appears with 
different values. In communicating with each other and with a teacher, students move 
from referring to parameters by value—“let’s change the three to a four”—to 
referring to them by name: “change jump by to four.” In these pre-symbolic uses, 
the name clearly acts both a placeholder for a current value and as a summary of all 
possible values (as in: “jump by can be as big as you want”—elementary students 
like big numbers!—“but you don’t necessarily wind up on the same spot”). 

From a broader pre-algebraic perspective, we note students at this age display 
greater degrees of comfort and dexterity negotiating technical formalisms imposed 
by constraints of interaction with a computer program than with those imposed by 
teachers. Where a definition, rule, or requirement stated by a teacher may vex 
students as arbitrary, insufficiently justified, or otherwise opaque, students appear to 
expect inflexible responses from machines. The Sketchpad command to measure, for 
example, requires a student to pre-select two points identifying that distance. This 
requirement operates as a mathematical formalism that students navigate to proceed 
in an activity. If a student incorrectly proposes that distance might be measured as a 
property of a single point, the software simply refuses to cooperate: the command 
stays disabled. Because this response has none of the overtones of error, fault, and 
correction that would accrue to similar human responses (by teachers or other 
authorities), students view it less as a rebuke than as a challenge: “how do I get the 
computer to do it?” Where students encounter computational representations and 
operations that parallel mathematical representations and operations, the software 
milieu offers unique opportunities to support their acquisition. 

We turn to consider the role of motion. If motion—particularly, the mathematical 
motion of geometric objects under dragging or animation—is the most signal 
ingredient of Dynamic Geometry experiences, it appears motion takes on somewhat 
different functions in elementary activities than in the standard class of triangle-
dragging activities well-studied by the Dynamic Geometry literature. First we note 
several different categories of motion within the activities described in Section 2. In 
Jump Along, the motion of jumping particles is strictly determined by given 
parameters, and exactly replicable for any setting of them. Students choreograph and 
explore this motion only indirectly, by setting parameter values and then “jumping.” 
The Grouping activity combines this sort of deterministic motion (the grouping 
formations) with the more organic motion of freely-wandering bugs. Students impose 
the former on the latter, which they may initiate (by pressing 123) and terminate 
(Redlight) but not otherwise control. In Flatland, motions are open-ended and 
entirely under the agency and direction of the student, who may move, position, and 
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spin objects either through direct manipulation of their physical shapes or through a 
variety of indirect controls. 

These diverse types of motion sustain diverse roles and functions of motion 
within SYL activities. An important purpose of motion in activities like Jump Along 
and Grouping is to invest some form of continuous dynamics to traditionally or 
fundamentally discrete mathematical representations and concepts (see Section 3). 
Continuity in turn endows changing mathematical forms with durable identities, and 
temporalizes abstract relations and propositions, thus literally animating 
mathematical representations. The central idea of jumping, in Jump Along, takes 
place in time and space: motion interprets 24 = 6 x 4 as six jumps (in time) of four 
units each (in space). Thus student discussion of systems in motion focus on the 
behavior of mathematical situations rather than on their properties or attributes. 
Secondarily, we find in the SYL project that motion frequently defines the narrative 
matrix of an activity’s story or context (see Sinclair, 2005). The Grouping activity’s 
bugs “feel like” bugs not because of the precision of their frozen Redlight 
arrangements but because of their ant-like perambulations when 123 wandering. 
Such story contexts themselves play multiple roles in an activity. As authors, we 
hope they motivate and sustain student engagement in problem spaces (but are aware 
of how often such contexts strike older students as sham devices, to be stripped and 
discarded as the first step of solving “real” problems). Perhaps more importantly, we 
see that story contexts provide a mechanism for teachers and students alike to 
transport discoveries, experiences, and conclusions formed within the technology 
activity milieu into other contexts and situations. Weeks after encountering the 
Grouping activity, a student struggling with division may not be able conveniently to 
return to Sketchpad. His teacher asks “remember what had to happen for the bugs to 
group up with nobody left out?” and resurrects, through story, the situated activity 
experience. Finally, we note that where direct motions and manipulations—dragging 
a vertex, rotating a polygon—provide the most immersive form of free geometric 
inquiry, activity situations in which motion is initiated and determined indirectly—
for example, by pressing buttons—often leads students to patterns of more explicit 
conjecture formation and evaluation.  

Our last observation concerns students’ and teachers’ instrumentalization of the 
software. An intellectually exhilarating ingredient of many users’ first encounter with 
the dynamic geometry “behavior” of a simple construction—say, of a triangle and its 
centroid—is the shortness of the distance between one’s perception of what one 
confronts, and the conviction that you could construct it yourself. (We see this 
shortness as a central feature of what Hoyles and Noss (2003) call “expressive 
technologies.”) An initial concern in this project, then, was that the authoring 
techniques required to develop microworlds such as Grouping or Flatland were 
sufficiently advanced—in terms of both mathematical sophistication and Sketchpad 
technique—as to be indistinguishable from the advanced techniques required to 
program a dedicated Flash or Java-based applet of the sort that exist in great number 
on the web. The internal construction defining the dynamic behavior of Grouping or 
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Jump Along is not trivial; and a desirable degree of transparency—how does this 
work?—is lost. Happily, though, we find frequent evidence of the dynamic geometry 
environment’s classroom remaining value even when used in conjunction with 
microworlds whose assembly techniques are ultimately opaque. Even where the 
mechanisms behind a microworld may appear as a black-box, the available and 
interesting mathematics emerging from that microworld, as well as the questions and 
techniques students bring to probing it, are not confined to such boxes. Since over the 
course of multiple activities, students become exposed to a general stable of 
Sketchpad techniques (e.g. changing a parameter, measuring a distance, coloring an 
existing shape or constructing a new one), over time these techniques develop into 
vertical skills that users re-apply even in contexts not intentionally structured for 
them. When a student—departing from an activity script—recolors one of the green 
bugs red, to trace its migration from group to group under different group size 
values, she expresses her acquisition of the software as an intellectual tool, rather 
than merely as an activity-delivery environment; and alters her relation to both the 
activity and its setting. A teacher responding to a spontaneous student question by 
measuring some quantity within an activity sketch similarly demonstrates vertical 
appropriation of the software. While novice users certainly remain distinguishable 
from Sketchpad experts, both exist in continuum and in flux, rather than in fixed 
camps of activity-producing developers and activity-consuming users. Teachers, 
students, and curriculum developers alike appear across the usage spectrum. 
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As noted in the ICMI 17 Discussion Document, much has changed since the original 
ICMI 1985 study. The advent of highspeed Internet and web-based technologies has 
in many ways revolutionized the educational project, touching all areas of research 
and practice. For example, on-line course offerings in continuing teacher education 
are rapidly becoming standard features for faculties of education involved with the 
professional development of in-service teachers. However, instructors of 
mathematics education courses which are offered in a full-distance context must 
navigate certain formidable obstacles in the planning and delivery of their on-line 
learning experience. In an era of reform-oriented mathematics education (National 
Council of Teachers of Mathematics, 2000; Ontario Ministry of Education, 2005), 
which emphasizes the increased use of manipulatives, technology, groupwork, and 
communication, the “virtual” instructor must develop creative methods for 
modelling these important aspects of teaching and learning. Based on three years 
(eight courses) of instructor/course evaluation feedback and on the author’s own 
observations, the following paper presents four key strategies for bridging this 
technological gap in the delivery of quality on-line professional development for 
mathematics educators. In addressing both professional development and distance 
education, this paper speaks to specific questions found in both the Teachers and 
Teaching (3) and Connectivity and Virtual Networks for Learning (7) themes, and 
approaches these in terms of digital technologies and the role of the teacher. 

 
Introductory 

 On-line learning is quickly becoming a commonplace feature of the post-
secondary education landscape (Varnhagen, Wilson, Krupa, Kasprzak, & Hunting, 
2005). This reality is clearly, and in an ever-expanding manner, evidenced within 
pre-service and in-service teacher training programs across North America. Full-
distance education has both benefits and drawbacks for the candidate and for the on-
line instructor. Mathematics education, by the very nature of the its content and 
delivery, brings with it a unique set of obstacles and opportunities when taught on-
line, particularly from a reform-oriented perspective such as that encouraged by the 
National Council of Teachers of Mathematics (National Council of Teachers of 
Mathematics, 2000).  

 While teaching in an Additional Qualifications (AQ) on-line learning 
environment for the past three years at the University of Western Ontario in Ontario, 
Canada, I have attempted to develop several strategies that I believe, based on 
candidate feedback and my own observations as facilitator, enhance the overall 
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professional learning experience for mathematics educators who are enrolled in such 
teacher development courses. I would like to share with you four of the most 
effective strategies in this article. 
 

Building Community with Class Profiles 

 Like in any regular classroom, the first few instructions given and 
interactions experienced within the on-line forum are of extreme importance in terms 
of setting the tone or “creating the ambience” for learning (Kimball, 1995, p. 55). 
Adult learners enrolled in my Honours Specialist Mathematics courses are first asked 
to “sign in” on-line within the “Aftermath Café” folder, sharing various details about 
their professional experiences and personal interests. After several days, I have found 
it very useful for both myself and the candidates to take the time to collate this data 
in two forms: a simple table or chart (see Table 1) with columns highlighting their 
location, school, courses taught, years teaching, and other miscellaneous information; 
and a geographical map (see Figure 1) upon which each individual is situated 
according to location and name. These files are shared with candidates on-line, and I 
ask them to provide me with feedback regarding any possible errors or omissions. As 
the second and sometimes third drafts are created and posted, I, as instructor, am 
already modelling collaboration, interest, and direct involvement within the course. 

 
Table 1. Class Profile Chart of Professional and Personal Information 

     

Imran 
Toronto, 
Ontario 

AASS Mathematics/Business 2a 
Worked in Business; MBA; 

likes new technologies 

Jean-Jacques 
Montreal, 
Quebec 

BBSS Mathematics/Computers 18a 
Physics/Science background; 
enjoys cycling and climbing 

Elizabeth 
Ottawa, 
Canada 

CCSS Mathematics/Visual Arts 7a 
Black belt in karate; loves to 
sketch, paint, and integrate 

 

 The table or chart provides the instructor with instant access to important 
facts which often become helpful throughout the course in terms of mentally 
“locating” an individual, asking good questions, and mindfully drawing upon 
candidate expertise as one extends or redirects on-line interaction. The map serves to 
actually situate learners within a visual context, allowing them to obtain a general 
“feel” for what the course looks like in terms of geographical representation, and 
rendering a sense of “place” in an otherwise distant or disconnected context. One 
obvious benefit of on-line learning is that it allows the learner to not only participate 
at her/his leisure, but also permits she/he from studying at great distances or while on 
the move. I’ve had candidates take my London-based mathematics education courses 
while teaching in China, working in western Canada, and touring Europe with a 
backpack and laptop.  
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Figure 1. Class Profile Map of Candidate Locations. 

 Because the instructor and course participants are often denied the visual element 
(i.e., as in onsite settings or teleconferencing situations) in much of distance 
education, this chart/map class profile is very much a part of building community and 
constructing individual “portraits” of each learner. Mounted near my monitor for the 
duration of the course, the class profile provides for quick identification regarding 
who is who, and who is where.  
 

Engaging Minds with Rich Problems 

 The second strategy which I’ve found to be very effective is that of posting 
engaging mathematics problems throughout the course and asking candidates to 
delay sharing their ideas/solutions concerning these problems until a specified date, 
thereby allowing all participants more time to grapple with a given problem (see 
Figure 2 for sample problem and related instructions; this is a classic ratio problem 
rewritten using Tolkien’s Lord of the Rings characters in order to provide a more 
interesting context). 
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Problem: Strider and Boromir are sitting at a back table in a dark, smoky tavern of 
Middle Earth known as the Prancing Pony. Strider has three loaves of bread; Boromir 
has two. Just before they eat, however, in walks Bilbo Baggins, obviously famished, 
and asks if he may share their meal. They agree, and each of the three characters eat 
equal amounts of bread. Before departing, Bilbo pulls out five identical gold coins 
and says, “Please accept these few coins as thanks.” Strider and Boromir watch the 
hobbit depart but then become puzzled as to how they should distribute the gift. 
Unable to solve the riddle, they take it to Gandalf the Grey and ask him for advice. 
As this represented a difficult “two-pipe” problem, they had to wait some time 
outside the wizzard’s dwelling. Finally, he emerged from the interior, and delivered 
his recommendation.  
  
Question: What was Gandalf’s conclusion, and why was it the only fair and just way 
to divide up the golden coins? Further, think of as many different ways (at least 
three) to tackle this mathematical problem as possible. What role would the teacher 
play in these? At what grade levels might this problem be appropriate, and where 
might it be used in terms of curriculum?  
 

N.B. Again, please wait until Monday July 18th before posting 
solutions/ideas/comments, so that all of the hobbits will have a chance to think 
through the problem. (N.B. If you are not a Tolkien fan, you can substitute other 
names or leave the characters anonymous.) 

Figure 2. Sample Engaging Problem, Question, and Response Posting 
Instructions. 

 

 These problems and subsequent response posts are located in a separate 
folder and are thereby kept organized and easily accessible. Four or five such 
problems are selected for the course, one being featured for each of the on-line 
modules which may last one or several weeks, depending on the course structure. Not 
only does this process model the use of rich problems in mathematics classrooms, but 
the multiple solutions that are often presented by candidates lead to important 
pedagogical discussions surrounding issues of mathematical communication, teacher 
questioning, consolidation of learning, and the encouragement of invented algorithms 
and novel approaches to problem solving among students.  
 
Creating Anticipation with Live Technology Tutorials 

A third on-line teaching strategy is the use of scheduled chatline technology 
tutorials in which candidates meet virtually, at scheduled dates/times to share 
comments/questions/insights regarding the many software/website resources and 
related explorations that I, as instructor, have posted earlier in the course. Like with 
the math problems, I have found it beneficial to maintain a separate folder 
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specifically focussed on mathematics technology, in which I can post these various 
resources and links. Candidates are asked to have relevant software “up and running” 
and/or available during the virtual class sessions wherever possible, and to have 
specific questions/comments prepared in advance. During the scheduled tutorials, the 
instructor acts as facilitator, sometimes answering specific questions but more often 
than not simply guiding the conversation and offering insights where possible.  

 As technology is now such a vital part of reform-oriented mathematics 
education (Gadanidis, Gadanidis, & Schindler, 2003; National Council of Teachers 
of Mathematics, 2000, pp. 24-27; Ontario Ministry of Education, 2005, pp. 27-28; 
Richards, 2002; Sinclair, 2005), and since on-line learning prohibits the use of 
technology software/hardware in an actual classroom, this teaching strategy serves to 
address this important area of pedagogy within the distance education forum. I 
currently have candidates examine five areas of technology (see Figure 3) with 
related introductory activities (e.g., graphing calculators and spreadsheets; dynamic 
geometry and data software; on-line learning objects [interactive Applets] and virtual 
manipulatives; Statistics Canada’s E-Stat on-line learning resources; and various 
websites related to the teaching and learning of mathematics). 

  
 

Graphing Calculators (Texas Instruments): http://education.ti.com/us/product/graphing.html 
Geometer’s Sketchpad Dynamic Geometry Software (Key Curriculum Press): http://www.keypress.com/sketchpad/ 
Fathom Dynamic Data Software (Key Curriculum Press): http://www.keypress.com/fathom/ 
On-line Learning Objects and Virtual Manipulatives: 
 NCTM Illuminations (VA, USA): http://illuminations.nctm.org/ 
 CAREO Repository (AB, Canada): http://www.careo.org/ 
 CLOE Repository (ON, Canada): http://cloe.on.ca/ 
 National Library of Virtual Manipulatives (UT, USA): http://matti.usu.edu/nlvm/nav/vlibrary.html 
Statistics Canada E-Stat Educational Resource (ON, Canada): http://www.statcan.ca/english/Estat/licence.htm  
Mathematics Education Reference Websites: 
 eWorkshop (ON, Canada): http://www.eworkshop.on.ca/  
 Leading Math Success (ON, Canada): http://www.edu.gov.on.ca/eng/document/reports/numeracy/index.html  
 Targeted Implementation and Planning Supports (ON, Canada): http://www.curriculum.org/occ/tips/index.shtml  

 

Figure 3. Sample Web-Based Resources for On-line Technology Explorations. 

 

 The web-based resources are obviously widely available, and the Key 
Curriculum Press software titles listed above (i.e., Sketchpad and Fathom) are 
licensed for Ontario teachers under the Ontario Software Acquisition Program and 
are also available to candidates as free downloadable evaluation copies. Therefore, 
apart from the graphing calculators—most teachers taking Honour Specialist courses 
either have purchased their own machine or can borrow one from their school for the 
duration of the on-line course—all of these technology resources are readily 
available, and so access is not an issue.  
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 To date, I have only made these chatline tutorials optional/voluntary, in 
terms of candidate participation, and they have therefore not been assessed as part of 
the course evaluation. However, I could see incorporating these sessions as a formal 
requirement, thereby encouraging all candidates to explore the posted activities 
beforehand and to offer comments/questions during the virtual gatherings. 
Depending on the configuration of the distance education system, it may be to the 
instructor’s advantage to divide up the participants into smaller groups based on 
software/hardware topics and/or the most convenient gathering times for candidates. 
For those not able to join the group on-line during selected dates/times, transcripts of 
the sessions are converted to PDF and posted for everyone following the chatline 
sessions. As one teacher shared following the tutorial: “I found the on-line chat the 
most fun part of the course. It was quite engaging and I would encourage you to 
include more live chat sessions.”  
 
Providing Specific and Ongoing Feedback with Candidate Assessment Files 

 Like all students, adult learners desire meaningful and ongoing feedback 
throughout the on-line learning experience. I have found that the best way to respond 
to this need in a consistent and appropriate manner is to construct what I’ve simply 
labelled as “Candidate Assessment Files (CAFs).” Sent privately to each participant 
via the on-line MailBox, all four instalments of this CAF provide candidates with 
both general and individual comments regarding course progress and assignment 
achievement, respectively. These CAFs are Word files with each candidate’s name 
typed on a title page with course information and colourful graphics. Inside, each 
course module is briefly synopsised and then individual comments are made 
regarding the modular assignments. Particularly effective, in terms of feedback, is the 
copying and pasting of specific quotations made within the candidates’ assignments, 
accompanied by related instructor comments, questions, and/or suggested readings. 

 Even in the very first instalment of the CAF, all modules and assignments 
are represented in blank outline form. Also included are rubrics for major 
assignments (i.e., the cells of which are simply shaded to indicate achievement upon 
assessment), a “Course in Review” page with all assignments listed and their 
respective value (i.e., these left blank for the moment), and a copy of the university 
grading scales (e.g., what characteristics constitute a mark of “A” or “B+”). This 
complete CAF, although primarily blank at the point of first instalment, provides 
each candidate with a clear framework for assessment in the on-line course. They can 
be confident that there will not be any surprises in terms of how or when they will be 
evaluated. By providing both general (i.e., course reading and on-line discussion 
highlights) and individual (i.e., referencing specific assignment quotations and on-
line participation tracking) comments, not only is the instructor more likely to be in 
tune with all participants and the course in general, but candidates are reassured that 
their instructor is carefully monitoring all that transpires. 
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Towards On-line Teaching Excellence 

When I first started teaching on-line courses in the spring of 2003, I assumed 
that they would be very limiting in terms of possible interaction with candidates and 
my ability to deal, in any meaningful way, with the immensely important area of 
technology within mathematics education. In looking back now, however, and 
comparing my eight university courses taught on-line with the same number taught 
onsite in faculty of education classrooms, I must honestly say that not only have I 
enjoyed the on-line immensely, but that in developing and implementing the above-
detailed strategies, I have been much more “connected” to candidates and able to 
closely monitor what and how they were thinking as a given course progressed. 
Although I could not “see” them, in the end I felt that I actually “knew them” better.  

By creating detailed class profiles, posting rich and engaging mathematics 
problems, hosting virtual technology tutorials, and providing ongoing and 
meaningful assessment files, I have grown as an instructor and feel that I’ve been 
able to provide mathematics educators with quality on-line professional 
development. On-line learning does have its inherent limitations, to be sure; yet the 
opportunities it affords the “virtual” instructor of mathematics education, and the 
participating candidates, are indeed worth investigating.  
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Designing learning environments entails drawing on theoretical perspectives on 
learning while, at the same time, being cognisant of the affordances and constraints 
of the technology. This paper reflects on the design process through utilising 
evidence from the design stage of the development of a dynamic visualisation 
software environment called 3DMath. During the development of 3DMath, a dynamic 
three-dimensional geometry microworld aimed at enabling learners to construct, observe 
and manipulate geometrical figures in a 3D-like space, the key elements of visualisation 
– covering mental images, external representations, and the processes and abilities of 
visualisation- were taken into consideration. The aim of this paper is to illustrate how 
the design of this particular software was informed by these elements of visualisation, as 
well as by theories related to the philosophical basis of mathematical knowledge and by 
semiotics. The paper illustrates how the features of software may be designed to take 
account of relevant theoretical notions and to satisfy the characteristics of instructional 
techniques that are appropriate to theoretical perspectives on learning.  
 
Introduction 

A prime aim of the 8th World Conference on Computers in Education, held in July 
2005, in Stellenbosch, South Africa, was to develop and produce a “global vision for ICT 
in education”. The vision document produced at the conference, known as the 
Stellenbosch Declaration (IFIP, 2005), sets challenges for all stakeholders in ICT in 
education - teachers, practitioners, researchers, academics, managers, decision-makers 
and policy-makers- all with a view to increasing the access to education for everyone 
around the world.  

While acknowledging that the development of well-designed ICT-based 
educational material is growing, the Stellenbosch Declaration sets out a radical agenda 
for research, specifying the need for the research community both to bridge the gap 
between technology and pedagogy, and to ensure the development of solid theoretical 
frameworks for software design and utilisation. This is because, the Declaration argues, 
“in the field of ICT-supported learning, pedagogy and technology have often been treated 
separately; pedagogy often being based on what the technology appears to permit, rather 
than fully integrated as a basis for technological design” (emphasis added) and that “the 
possibility of relying on solid theoretical frameworks is one of the key factors that can 
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enable conception of the many positive experiences already taking place in order to reach 
the definition of reliable innovative reference models” (ibid, p4, emphasis added). The 
Declaration also insists that “the output of research should be made widely available, as 
open source, for improving practice, decision-making, and resources development”. 

This paper is offered as a modest contribution to meeting the challenges to 
research set out in the Stellenbosch Declaration. It does this by reporting on the 
theoretical perspectives underpinning the design of a dynamic visualisation software 
environment called 3DMath (Christou et al, 2006) aimed at enabling learners to 
construct, observe and manipulate geometrical figures in a 3D-like space. 
 
Theoretical Perspectives on Design 

Traditionally, three-dimensional geometry is taught using static pictures of 
geometric solids presented in textbooks. Students, however, are known to have 
difficulty reasoning from two-dimensional representations of three-dimensional 
objects (Raquel, 2002; Parzysz, 1988). Moreover, developing visualization skills is 
difficult in a traditional lesson environment using the standard chalkboard because 
representing 3D objects by a 2D sketch is complicated and time consuming. Such 
difficulties remain even when commonly available 2D dynamic software is used. For 
example, Dixon (1995) showed that 2D software can be effective in improving 
students’ two dimensional visualisation but was not effective in improving students’ 
three dimensional visualisation.  

In an attempt to overcome these difficulties, and to take account of relevant 
theory, this paper reports on the design of a 3D software named 3DMath. The main 
objective of the software development project is to develop a dynamic three dimensional 
geometry microworld, which enables students to construct, observe and manipulate 
geometrical figures in 3D-like space on the computer screen. To meet these purposes, 
the design of the proposed software followed three major fields of educational theory:  

(a) the constructivist perspective about learning which argues that learning is 
personally constructed and is achieved by designing and making artifacts that are 
personally meaningful (Kafai & Resnick, 1996), 

(b) the semiotic perspective about mathematics as a meaning-making 
endeavour which argues that any single sign (e.g. icon, diagram, symbol) is an 
incomplete representation of the object or concept, and thus multiple representations of 
knowledge should be encouraged during learning (Yeh & Nason, 2004), and  

(c) the fallibilist nature of mathematics which argues that mathematical 
knowledge is a construction of human beings and is subject to revision (Ernest, 1994).  

In addition, the aim of developing the 3DMath software was to develop abilities 
and processes in students that are closely associated with the idea of visual imagery as a 
mental scheme depicting spatial information (Presmeg, 1986). It is generally accepted 
that learning 3D geometry is strongly associated with spatial and visual ability 
(Dreyfus, 1991) and that incorporating spatial visualisation and manipulation into 
learning activity could improve geometry learning (Tso and Liang, 2002). 
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Spatial ability has had many definitions in the literature. For example, Tartre 
(1990) defines spatial ability as the mental skills concerned with understanding, 
manipulating, reorganizing, or interpreting relationships visually, while Linn and 
Petersen (1985) defines it as the process of representing, transforming, generating, 
and recalling symbolic, non-linguistic information. Lohman (1988) proposes a three 
factor model for spatial ability, including “spatial visualization”, “spatial 
orientation”, and “spatial relations”. “Spatial visualization” is the ability to 
comprehend imaginary movements in a three-dimensional space or the ability to 
manipulate objects in imagination. “Spatial orientation” is defined as a measure of 
one’s ability to remain unconfused by the changes in the orientation of visual stimuli 
that requires only a mental rotation of configuration. “Spatial relation” is defined by 
the speed in manipulating simple visual patterns such as mental rotations and 
describes the ability to mentally rotate a spatial object fast and correctly. 

The core visual abilities that should be taken into account in developing 3D 
dynamic geometry software could be said to be the following (following Gutiérrez, 
1996):  

(a)  “Perceptual constancy”, i.e., the ability to recognize that some properties 
of an object are independent of size, colour, texture, or position, and to remain 
unconfused when an object or picture is perceived in different orientations,  

(b) “Mental rotation”, the ability to produce dynamic mental images and to 
visualize a configuration in movement,  

(c) “Perception of spatial positions”, the ability to relate an object, picture, or 
mental image to oneself,  

(d) “Perception of spatial relationships”, the ability to relate several objects, 
pictures, and/or mental images to each other, or simultaneously to oneself, and  

(e) “Visual discrimination”, the ability to compare several objects, pictures, 
and/or mental images to identify similarities and differences among them.  

In addition, given Yakimanskaya’s (1991) claim that the creation of mental 
images is possible because of the accumulation of representations that serve as the 
starting point, 3D dynamic geometry software should aim to provide the learner with a 
variety and richness of spatial images.. The richer and more diverse the store of spatial 
representations, the easier is to use images in solving problems. 
 

Design Principles for 3DMath 

Based on the above theoretical perspectives, and the rich concept of visualisation 
noted above, the following guided the design and the construction of the 3DMath 
software: 

(a) The software needs to allows students to see a geometric solid represented 
in several possible ways on the screen and to transform it, helping students to acquire 
and develop abilities of visualization in the context of 3D geometry.  

(b) Given Gutiérrez’s (1996) view that when a person handles a real three-
dimensional solid and rotates it, the rotations made with the hands can be so fast, 
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unconscious, and accurate that the person can hardly reflect on such actions, then the 
software could usefully place some small limits on the directions and speed of 
rotation, thus forcing students to devise strategies of movement and to anticipate the 
result of a given turn. 

(c) The interface of the software needs to be intuitive and to provide an open 
and generative environment that enables learning to learn through making and designing 
personally meaningful artefacts. It also needs to employ rich semiotic resources that 
enable multiple perspectives and representations for mathematical meaning-making (for 
example, students need to be able to represent a solid in 3D, or its correspondence in 
2D).  

(d) The software needs to be designed to provide the means for students to 
focus on the mental images they create, and the processes and abilities of visualization 
they use to solve problems. Given that a mental image is any kind of cognitive 
representation of a mathematical concept by means of spatial elements, 3DMath needs 
to makes it straightforward for students to construct different solids and perceive them in 
a concrete or pictorial form. This is because the repetition of this process helps students 
to formulate a “picture in their mind’s eyes” (Presmeg, 1986). In addition, the software 
needs enables students to see solids in many positions on the screen and consequently 
gain a rich experience that allows them to form richer mental images than from 
textbooks or other static resources. 

(e) In terms of external representations, a visual representation means the 
manipulation of visual images and the transformation of one visual image into another 
(Bishop, 1980). The form of software developed by the 3DMath project aims to be rich 
in the ability to manipulate and transform solids - see Christou et al (2006) for an 
example of how the 3DMath software aids the user in distinguishing between a 
representation of a pyramid and an octahedron. 

(f) Bishop (1980) identified two relevant processes of visualisation: 
interpreting figural information and the visual processing of abstract information; the 
translation of abstract relationships and non-figural data into visual terms, the 
manipulation and extrapolation of visual imagery, and the transformation of one 
visual image into another. The 3DMath software incorporates Bishop’s ideas by 
focusing on the processes of observation, construction and exploration (see Christou et 
al, 2006, for examples) in that  

- observation allows students to see and understand the third dimension by 
changing the spatial system of reference (axes), choosing perspective and displaying 
visual feedback on objects. The 3DMath software is being designed so that students can 
rotate a geometric figure in reference to the three axes and thence obtain a holistic view 
of it. The speed and the direction of the rotation are e controlled by the user of the 
software and the drawing style of the object can be in a solid colour view or in a 
transparent line view. Students can select, label and colour the edges and faces of the 
objects. 

- construction entails providing users with the facilities to allows a dynamic 
construction of geometrical figures from elementary objects (points, lines, planes) and 
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construction primitives (intersection, parallel, etc.). Students can also construct 
geometrical figures by selecting the appropriate 2D figures and then forming the solids 
by dynamic animations. 

-  exploration allows students to explore and discover geometrical properties of 
the figure. This is the main procedure adopted in most of the teaching scenarios being 
designed to accompany the 3DMath software. 

(g) The 3DMath software is being designed in such a way as to accommodate 
the development of the following visualisation abilities (see Gutiérrez, 1996): (a) the 
figure-ground perception, (b) perceptual constancy, (c) mental rotation, (d) perception of 
spatial positions, (e) perception of spatial relationships, and (f) visual discrimination. 
The following features are that are thought to contribute to the development of the 
abilities are being integrates into the software:  

- the dragging capability of the software is being designed to enable 
students to rotate, move and resize 3D objects. Rotation can be executed in all 
directions by controlling a rotation cursor and determining the speed of the rotation. 
In addition, students can resize proportionally all the dimensions of the object or 
resize it only in one dimension, according to the requirements of the problem.  

- tracing is a particular instance of the interface where only parts of the 
figure are displayed. The intended purpose of this feature is to provide the learners 
with a way to perform a visual filtering of the main construction represented on the 
screen, i.e., to allow them to extract and observe parts of the construction in an 
independent view.  

- as in 2D dynamic geometry software, students can carry out useful 
measurements, in the case of 3DMath measures of the length of edges, the area of 
faces, and the volume of a solid. All measurements are dynamic as solids are resized 
by dragging. The dynamic characteristic of the measurement facility allows the 
exploration of properties within and among figures e.g. users can measure the 
volume of a cone and then double its height and see how its volume is altered.  

- a textual feature, which represents the declarative description of the 
figure, provides the learners with a textual and chronological list of all the 
geometrical objects involved in the construction of the figure. Additionally, the 
History file can be used as input to the system. For example, a History file created by 
one student in one country can be used by another student in another country to 
reconstruct (or re-use) the same model. Using this feature, it would be possible to 
construct not only Interactive models, but also Declarative models (by importing 
History files) and Interactive Programming models. 

- a diagrammatic feature provides a representation of the structural 
dependency graph of the figure.  

(h) Other features being developed include:  
- the ability to export constructions as images (BMP, JPEG, etc), or in other 

rendering format (PS, XML, etc). This should help teachers to create supporting 
educational materials, preparing reports, printed material, etc.  
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- the locking/unlocking of features (primitives), making them hidden from 
view. For example, the primitive to find the distance from a point to a plane might be 
initially locked (or hidden). To find that distance, students must solve the problem by 
making appropriate constructions. Once they do this correctly, the primitive may be 
unlocked (or made visible) so that it can be used freely in further constructions. 
 
Concluding Comments 

As illustrated by this paper, the design of 3DMath is informed by theories based 
on philosophy of mathematical knowledge, such as constructivism, and by semiotics. 
The main purpose of 3DMath is to enhance students’ understanding of 3D geometry 
with an emphasis on visualisation. Thus, during the developmental process the key 
elements of visualization, as defined by Presmeg (1986), Bishop (1980), Clements 
(1982) and Gutiérrez (1996) (mental images, external representations, processes, and 
abilities of visualization), are carefully taken into consideration.  

In developing the 3DMath software we are seeking to bridge the gap between 
technology and pedagogy, and develop solid theoretical frameworks that inform the 
software design. This is so that the pedagogy is fully integrated as a basis for 
technological design, rather than the pedagogy, as is often the case, being based on what 
the technology appears to permit a The output of this research, as the IFIP (2005) 
declaration recommends, is to be made widely available, as open source, for improving 
practice, decision-making, and resources development in mathematics education. 
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We present a Space Travel Games Construction Kit designed to enable students to 
learn while building a computer game. Games are built in the context of a metagame 
that provides motivation, structure, guidance, and background in game making. A 
key design decision was to encourage layered learning through specially-designed 
program fragments, which the students could customise and assemble. We present 
some scenarios and report on the results of testing a version of the kit with students, 
which suggest that designing levels in the game is an avenue for further development.  
 
Introduction and design principles 

In this paper, we discuss the hypothesis that learning of a subject domain can be deep 
and richly interconnected if it involves exploration within a computer game which 
combines designing and building as well as game playing. Additionally, we will 
argue that this approach to learning could potentially widen access to the possibilities 
of digital technologies, given that it allows diverse layers of engagement and exploits 
the interconnectivity available on the web.  
Our prior research concerning computer games (Noss & Hoyles, in press) has 
indicated that games designed for learning authored by students tend not to suffer the 
difficulty noted with educational games more generally around poor production 
values. In the case of constructed games, even if they are relatively simple and crude, 
the students become dedicated to their creations. However acquiring the skills to 
make computer games requires a major investment in time and effort. Here, we 
present some novel design research that will illustrate an approach that is designed to 
reap the advantages of learning by programming games without the disadvantages of 
having to know a priori how to program.  
Our starting point derives from the principle that the most powerful way for students 
to learn mathematics is through their long-term engagement in collaborative projects 
for which they take responsibility individually and collectively (see, for example, 
Harel & Papert, 1991). From this basis we have developed the following principles 
for designing for this learning: 
sequenced activities that can engage students at a variety of levels in what we name 
layered learning;  

                                           
35 We acknowledge the funding of the BBC, and the helpful comments of colleagues in the London 
Knowledge Lab, notably of Gordon Simpson and Diana Laurillard 
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flexible tools that have adjustable parameters, can be combined in different way and 
can be also be programmed, and thus allow students to investigate each activity for 
themselves36;  
collaborative interactions as part of the activity sequence through which students 
discuss their emerging ideas in the context of their game design and finally 
multi-player game playing either at one computer or over the web. 
 
The second design requirement is worthy of particular attention, as it implies that 
designers can both empower and constrain students by offering a set of components 
or modules that can be customised to suit diverse students' goals, as well as tuned to 
the knowledge domain. Programmable modules have the added advantage of 
providing a consistent way to combine and modify tools, in the control of the learner.  
There have been numerous attempts to design a programming-based approach to 
learning over the years. The most successful have achieved tangible learning 
outcomes across various topics (music, mathematics, language, physics (some of 
these are discussed in Noss & Hoyles, 1996). They have also provided important 
pointers to the possibilities of learning that transcends the procedural and superficial 
by encouraging a playful – yet mindful – spirit of enquiry on the part of learners, 
aiming to break down the curricular silos that so often characterises traditional 
schooling. For the most part, what has been missing has been generalised success in 
tapping into students' own interests on a wide scale and engaging them in debate, 
investigation and production. To achieve this aim, we have built and tested a space 
travel construction kit along with a narrative 'metagame' to assist learners in 
navigating their way through the sequence of activities of design and game playing. 
Description of the game environment 
The Space Travel Games Construction Kit  
We began by considering the classic computer game of Lunar Lander. In the process 
of trying to land upon the moon, a player engages with the laws of motion, playing in 
a virtual world where the laws of gravity and momentum are not obscured by friction 
or atmospheric drag as they are on Earth. We have built and tested a Space Travel 
Games Construction Kit (using Imagine Logo, Blaho A., Kalas I., 2001) that can be 
used to build a variety of games similar to Lunar Lander. The construction kit 
provides small program fragments together with tools for customising and 
composing them. Thus the software extensions allow layered exploration appropriate 
for populations of students with differing backgrounds and ages; that is, users can 
choose how far to delve into the workings of the tools.  
The innovative aspects of the software include: 

                                           
36 In the current research aiming to involve groups spread geographically it was important that the 
tools could be accessed through a web browser - although this is not a 'principle'. 
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1. A child-friendly interface for the composition and parameterisation of pre-built 
program fragments; 

2. An underlying computation model that has been simplified and made 
composable by building upon multiple independent processes. This is critical 
for the deeper levels of engagement where students inspect and edit program 
code; 

3. An underlying physics model based upon conservation of momentum that is 
simpler than the one commonly used based upon first and second derivatives 
of position and the first derivative of momentum. Yet it is capable of 
modelling the same phenomena; 

4. The concept of a “metagame” where games are made within an overarching 
narrative game structure. 

 
The narrative metagame 
The metagame starts with the player being hired as a game developer at a game 
company. The player receives help from a team of simulated experts including a 
programmer, a scientist, a historian, an assistant game designer, and an animator. A 
player may skip over all this and jump into game making, but the metagame provides 
structure, background information, guidance, and a gradual introduction of new 
features and capabilities.  
The metagame embodies the design of a learning sequence. The learners are 
presented with a goal and need to interact with their virtual teammates in order to 
acquire both the needed components and the knowledge to proceed. The response of 
each teammate to a visit by the player is scripted but also depends upon both the 
current state of the game being constructed by the player and the history of the 
player’s interactions with all the teammates. This gives the player freedom to visit 
the teammates in any order and with any frequency. Furthermore, each game 
component has an associated help button. When a component’s help button is 
pressed, the player is informed which teammates have something to say about it. For 
example, the programmer, the scientist, the historian, and the game designer all have 
a unique perspective when giving an explanation of the component which 
implements gravity. 
The Activity Sequence 
Phase 1: exploration of game making 

Moving in outer space: An astronaut is adrift and needs to reach her space ship. 
Build a game by acquiring program fragments and artwork, which can be 
accomplished using only components involving horizontal motion that is achieved by 
‘throwing’ rocks (previously collected by the astronaut). 

Agreeing some constraints: for example, will the astronaut get back safely? Is she 
going too fast when she hits the spaceship?  
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Creating a new game: Now invent a new game. For example, the space ship has 
started to move off in a vertical direction. Can the astronaut reach it now? The final 
challenge in this sequence involves making the game into a cooperative game 
between two players over a network.  

Phase 2. Building and playing a Lunar Lander game 

To proceed to this phase, all the required game-making tasks in Phase 1 need to be 
performed. Here gravity is introduced.  

Landing on the Moon: for example, what speed constitutes a safe landing? At this 
point we introduce dynamic configurable gauges to measure speed, acceleration, 
mass etc which monitor and graph these values and can help in the task of landing 
safely on the moon. Added challenges are introduced: do not use too much fuel.  

Using the Autopilot: The settings of any ‘manual’ landing that is all the variables and 
how they are changed can be captured by an autopilot. The next challenge is to 
construct the best autopilot program, by recording what is deemed a good landing 
and then tweaking the parameters of the recorded landing to produce an optimal 
landing.  

Multiplayer game over the web: Players can compete for example to land with the 
safest landing speed using the least amount of time or fuel. Students are also 
challenged to invent new games to play. 

The potential layers of learning 
Both the metagame and the construction kit were designed to support layered 
learning. At the first layer, engagement is mainly through reading, watching and 
making conjectures based on observation and for example describing a motion and 
reflecting on it. The tools for this layer are basic, perhaps only a handful to control a 
simulation on video, or the timing of movement. At a second layer, the learner can 
begin to manipulate motion and predict and test out the effects of different values. At 
a third layer, the learner might explore further how variables relate to each other, for 
example position, velocity and acceleration, by reference to the values set by sliders. 
And finally, a fourth layer that engages with these relationships either by modifying 
existing programming code or by writing new programs or fragments of programs.  
Game construction: the interface 
When the player is ready to build the game, a game panel with images of the 
astronaut and lander is presented (see Figure 1). Beside it is a control panel with a 
start button. Pushing the start button initially does nothing, since none of the game 
elements have been given programs. The control panel also has a button that causes 
the behaviour gadgets panel to appear (Figure 2). It contains behaviour gadgets that 
consist of one or more code boxes. A picture can be given a behaviour by placing a 
behaviour gadget on its back. The behaviour can be altered by setting sliders on the 
gadget’s settings page. The code boxes of a behaviour gadget can be removed, 
whereupon they expand to display the code that implements the behaviour. Portions 
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of the code that can safely be edited without programming expertise are colour 
highlighted. 

 
Figure 1. The initial game 
construction page 

 

Figure 2. Behaviour gadgets can be dragged 
from the Behaviour Gadgets Panel. Initially, 
the behaviour gadgets panel contains only a 
horizontal velocity gadget and a horizontal 
rock throwing gadget. As the metagame 
progresses, the behaviour gadgets panel 
acquires more elements. 

The total mass of rocks (i.e., total fuel), the largest rock (the maximum rate of fuel 
usage), and the rock velocity (the propellant velocity) can all be adjusted by moving 
sliders. As one does so, the system makes calculations to show derived values such 
as force and to perform unit conversions. These parameters reflect real engineering 
tradeoffs. For example, adding more rocks/fuel does increases the duration of 
manoeuvrability but at the cost of a greater total mass and hence a smaller 
acceleration from identical rock throws.  
Limitations of space prevent us from illustrating a range of further panels, behaviours 
and other objects that control instrumentation (for example, gauges that monitor any 
of 13 values in graphical or numerical displays, including velocity, acceleration, 
remaining fuel, total mass, the application of thrust (by throwing rocks out in the 
opposite direction), autopilot facility (a recording of all the changes to thrusters made 
manually), and a two-player version of the Lunar Lander game typically involving a 
race to be the first to land safely on the moon. 

 

 
Figure 3 – A snapshot of game play with three active gauges. 

Alternative epistemologies underlying design 
When designing a toolkit to be used to construct scientific models (and games based 
upon these models) one needs to determine the underlying ontology of the system. 
How should time be modelled? How should concurrent processes behave? What are 
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the primitive notions of motion and space and which concepts are to be constructed 
from those primitives? Are the usual ways of conceptualising the laws of motion that 
are based upon algebra and calculus optimal for computational modelling?  
Here we simply discuss the epistemological question is how to model forces. Should 
forces define acceleration, which in turn defines velocity, which defines position? A 
sequential program that models all the processes could be built this way. But it would 
lack the modularity and composibility of the concurrent processes that we rely upon, 
and although this provides a coherent epistemological perspective, it may not be 
optimal for learning. Consider the difficulties that would arise if one process 
implemented gravity by setting the acceleration to the appropriate value, while a 
thruster process implemented force by adding to or subtracting from the current 
acceleration. Clearly, the order in which the gravity process and the thruster 
processes run will drastically affect the model.  
Instead, we chose to build upon the conservation of momentum, rather than F = ma. 
One reason for this is that it provides a concrete and discrete way to think about 
forces. It is likely to be more accessible than the alternative, which relies upon a 
notion of continuous rates of change. It also makes the mechanism underlying rocket 
thrust transparent. Throwing a one kilogram rock once per second is the same 
mechanism as real rocket thrusters that “throw” a trillion trillion molecules (“rocks”) 
per second. Force is the derivative of momentum and as such is a more complex and 
difficult notion than the discrete change in momentum that we build upon. 
 
Some illustrations of learning  
We now very briefly outline some of the learning issues that are emerging from the 
iterative design/test cycle with three groups of students: two drawn from a large, 
urban comprehensive school (one "Year 7" class aged 11-12; one "Year 8" class, 
aged 12-13) and a small group of 3 students (aged 12-14) from a second school in an 
after-school setting.  
Developing understandings of Newton's third law: In the first task the Year 7 
students began with a relatively low knowledge of the physics concepts involved. For 
example, R suggested, “you could throw some rocks away and that would make her 
lighter so she would move.” They were unaware that the effect of gravity in space is 
negligible (in the terms in which the software was devised). Through the course of 
the activity and experimentation with the horizontal rock thrower they appeared to 
develop an understanding that throwing a rock would develop an opposite movement 
proportional in velocity. Indeed, later in the session two of the students worked with 
the theory that “throwing larger rocks makes her move faster.”  
Minimising time (of astronaut to spaceship, or lander to moon) proved a motivating 
task, particularly for the Year 7 students. Most students used an iterative strategy e.g. 
Tom and Alex were delighted to refine their strategy again and again by optimising 
the use of the horizontal rock thrower against the speed of reaching the spaceship.  
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Using the gauges: Throughout the sequence much use was made of the gauges and 
interpretation of their output. Students found this relatively easy to put in place and 
tended to refer to them constantly as a guide to their use of the rock thrower or thrust. 
When landing on the moon some students applied far too much thrust causing the 
lander to move upwards and disappear off the screen. Reading the vertical velocity 
gauge which they had set up for the lander they predicted how the lander would 
“keep on getting slower until zero. Then it will fall back again because of gravity.” In 
the 2 player game the ability to attach gauges to the opponent’s lander was a 
particularly successful feature, enabling one group to make a close comparison with 
the other and to adjust the strategy second by second.  
Composing horizontal and vertical velocities: Coming up with the hypothesis that to 
achieve diagonal movement a combination of horizontal and vertical thrusts would 
be needed, appeared almost effortless and was tested by, for example, using both 
horizontal and vertical rock throwers to the astronaut and using both simultaneously.  
Gravity: The Year 7 students did not immediately make a connection between the 
rock throwing astronaut and the rock throwers for the lander, although Year 8 needed 
no prompting. The Year 7s also only had a more sketchy concept of gravity. Only 
two – Tess and Alex – volunteered that the lander game would be different from the 
astronaut in that there would be a gravitational pull (Alex) near the surface of the 
moon.  
Collaboration, competition and motivation: Beating previous best scores proved 
highly motivating, especially for the team of Year 7 boys. Collaboration centred 
around agreeing what the two teams should have in common; the total mass of the 
projectiles, an agreed safe landing action, a value for gravity and the vertical starting 
position of their landers, for which they sought and found a new gauge, previously 
not used.  
Attempts to minimise fuel use became more sophisticated. The boys realised that 
with their agreed safe landing speed of 30 metres per second, they needed only to 
keep just below this figure to ensure a safe landing and minimal fuel consumption. 
Before this they had been trying to reduce the velocity to the minimum regardless of 
fuel use.  
In summary, the competitive element of the two-player version was an enormous 
motivation to the students: they loved seeing the opposition’s ship on their screen and 
being able to monitor its progress through gauges. The students became wildly 
excited during landings.  
 
Reflections on design 
Overall the software did allow access to diverse students at many layers of learning, 
it stimulated huge interest and discussion and students used quite sophisticated ideas 
in pursuit of their game making and playing. The students evaluated the sessions and 
were all positive: but came up with many ideas for improvement. For example, they 
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suggested the need to reduce the amount of reading required in the initial stages and 
simplify some terminology that was too complex in places. The students suggested 
that a choice should be offered between reading and listening to instructions and that 
more complex instructions might be communicated through demo buttons or tutorials 
– for example showing them how to set up a gauge or to use a behaviour gadget. 
Perhaps the most interesting suggestion was that the software might be structured 
into what they described as “levels”, such as those commonly found in computer 
games.  
Where the lunar lander software failed to meet the initial expectations was in giving 
students easy access to the programming code and in creating situations where they 
would want to analyse and adjust that code. It would seem possible that if the 
software were remodelled into a series of levels – corresponding in some way to the 
previously defined expected layered learning model – analysis and use of the 
relationships inspectable in the programming code or as recorded by the autopilot 
could become not just a real possibility but an integral part of the game. 
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Introduction 

The Singapore’s second Masterplan for IT in Education (2002 – 2008), following the 
first masterplan37, provides the overall direction on how schools can harness the 
possibilities offered by IT for learning. For mathematics education, the emphasis is 
increasingly on using IT to enable and support the teaching and learning. To achieve 
this would require curriculum and pedagogical changes, the professional 
development of teachers, and a paradigm shift in teaching and learning. 
Integration of IT and Pedagogy 

The Singapore school mathematics framework has 5 inter-related components, 
namely, Concepts, Skills, Processes, Attitudes and Metacognition. (As shown) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The framework was developed in 1990, and has been updated in 2000 and 2005.The 
new emphases include “Reasoning, communication and connections” and 
“Application and modelling”. IT can play an important role in supporting the 
development of these. 

                                           
37  The first masterplan (1997 – 2002) has created an IT-enriched learning environment. All schools 
have an IT infrastructure with a good range of learning resources. Teachers generally have acquired 
basic proficiency in IT knowledge and skills. 
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A Pedagogy-Driven Model  

The development of IT-supported learning resources involves 3 aspects, namely, 
pedagogy, technology and resources. A successful development would depend much 
on an effective integration of IT and pedagogy. We would like to propose the 
following pedagogy-driven model for the development of learning resources for 
mathematics: 
 
 
 
 
 
 
 
 
The model involves the development of IT tools to support certain pre-determined 
pedagogical approaches. Students will use the IT tools to help them understand 
mathematics concepts and processes. The tools, in turn, will allow students to 
construct mathematics concepts and models, and to share and discuss their 
constructions, and the system will provide feedback to facilitate the learning process. 
Thus students will be actively engaged in an interactive and collaborative learning 
environment. 
Conclusion 

We are constantly improving the way we teach mathematics, paying greater attention 
to the processes of learning mathematics. For example, the Concrete-Pictorial-
Abstract approach38, grounded in Bruner’s theory of constructivism39 and Vygotsky’s 
theory of zone of proximal development40, has proven to work in our Primary 
Mathematics curriculum. This approach is now extended to learning algebra, for the 
development of conceptual understanding through carefully planned, 
developmentally- and age-appropriate strategies. With IT support and enhancement, 
students will develop not only deep understanding of algebra concepts and processes, 
but also the skills of reasoning and communication, which are required by our school 
mathematics framework. The aim is to prepare students to meet the challenges of the 
21st century. 

                                           
38  This approach was developed by MOE in the 1980s, and has become the basis of our mathematics education. It was 
inspired by Bruner’s classical book: The Process of Education (1960) in which he presents three levels of representation 
of knowledge: enactive, iconic and symbolic representations. 
39  Bruner defines constructivist learning as an active process in which learners construct new ideas or concepts based 
upon their current and past knowledge.  
40  Vygotsky defines the zone of proximal development as the distance between the actual developmental level for 
independent problem solving and the level of potential development with adult guidance or with more capable peers. 
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We investigate the influence of the technology and in particular the influence of the 
discrete continuous interplay, which can be demonstrated by the technology, in 
enhancing students’ mathematical thinking. We analyze how students' awareness of 
the limitation of discrete numerical methods, combined with error analysis, lead to a 
better understanding of the continuous methods. We identify the new potential offered 
by the instrumented work, the way students are influenced by their interaction with 
the Computer Algebra System and the presence of mental images created by this 
interaction, even when the computer is turned off. We also identify the inability of 
some students to differentiate between error due to mathematical meanings and error 
due to meanings specific to the    "instrument". Our intention is to employ the 
possibilities offered by the technology, to elaborate activities based on the discrete-
continuous interplay and to investigate their influence on students’ thinking 
processes in relation to the notion of limit in the derivative concept. 

 

Introduction 

The cognitive difficulties that accompany the learning of concepts that relate to the 
continuous such as limit and derivative are well known. Our empirical approach 
leads us to consider the interplay between the continuous and the discrete, and to 
examine how to use it to help students enhance their conceptual understanding of 
these central notions. The discrete continuous interplay is not new. It existed before 
the computer age. The founders of the mathematical theory developed numerical 
discrete approaches to better understand dynamic continuous processes. In the last 
decade, the use of technology, especially the Computer Algebra Systems (CAS), 
offers a new mean in the effort to overcome some of the conceptual difficulties. We 
focus on the “instrumentation process” (i.e. how the tool becomes an effective 
instrument of mathematical thinking for the learner) in analyzing students' reactions 
in the context of activities based on the complementary aspect of discrete and 
continuous approaches.  
The instrumentation theory 

The instrumental approach is a specific approach built upon the instrumentation 
theory developed by Verillon and Rabardel (1995) in cognitive ergonomics and the 
                                           
∗  This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No.  1340/05). 
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anthropological theory developed by Chevallard (1992). The term ‘instrumentation’ 
is explained in Artigue (2002): The “instrument” is differentiated from the object, 
material or symbolic, on which it is based and for which the term “artifact” is used. 
An instrument is a mixed entity, in part an artifact, and in part cognitive schemes 
which make it an instrument. For a given individual, the artifact becomes an 
instrument through a process, called instrumental genesis. This process leads to the 
development or appropriation of schemes of instrumented action that progressively 
take shape as techniques that permit an effective response to given tasks.  
The instrumentation theory focuses on the mathematical needs for instrumentation, 
on the status of instrumented techniques as well as on the unexpected complexity of 
instrumental genesis (Artigue (2002), Guin and Trouche (1999), Lagrange (2000)). 
We can take advantage of the new potentials offered by the instrumented work, for 
example, by means of discretization processes. Artigue (2002) warns us that the 
learner needs more specific knowledge about the way the artifact implements these 
discretization processes. Thus, it is important to be aware of the complexity of the 
instrumentation process. Working with a CAS introduces the learner to a system of 
“double reference” (Lagrange, 2000): on the one hand, he is introduced to 
mathematical meanings; on the other hand, he is introduced to meanings that are 
specific to the constraints of the instrument. Being aware of the limitation of the 
instrument might be helpful. Steiner and Dana-Picard (2004) demonstrate how to 
make advantage of the analysis of the error due to the limitation of the CAS to help 
students understand the theory of integration. 
As a background to the present study, we present some cognitive difficulties that 
accompany the understanding of the limit concept.  
 
Conceptualization of the continuous 

In previous studies concerning the way students conceived real numbers, Kidron & 
Vinner (1983) observed that the infinite decimal is conceived as one of its finite 
approximation “ three digits after the decimal point are sufficient, otherwise it is not 
practical” or as a dynamic creature which is in an unending process- a potentially 
infinite process: in each next stage we improve the precision with one more digit after 
the decimal point. This is not in accord with the mathematical view as expressed by 
Courant (1937). Courant wrote that if the concept of limit yielded nothing more than 
the recognition that certain known numbers can be approximated to as closely as we 
like by certain sequences of other known numbers, we should have gained very little 
from it. The fruitfulness of the concept of limit in analysis rests essentially on the fact 
that limits of sequences of known numbers provide a means of dealing with other 
numbers which are not directly known or expressible. Thus, the limit concept should 
lead to a new entity and not just to one more digit after the decimal point. 

The derivative function is defined as 
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animation and elementary programming in a Computer Algebra System, students can 
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visualize the process of 
h

xfhxf )()( −+  approaching  )(' xf for decreasing h. The 

dynamic picture might reinforce the misconception that one can replace the limit by 

x
y

∆
∆  for x∆  very small. How small? If we choose x∆ =0.016 instead of 0.017, what 

will be the difference? There is a belief that gradual causes have gradual effects and 
that small changes in a cause should produce small changes in its effect (Stewart, 
2001). This belief might explain the misconception that a change of, say, 0.001 in 

x∆ will not produce a big change in its effect. 
 
The discrete continuous interplay 

We were interested in a counterexample that will demonstrate that one cannot replace 
the limit “

x
y

x ∆
∆

→∆ 0
lim ” by 

x
y

∆
∆  for x∆  very small and that omitting the limit will 

change significantly the nature of the concept. The counterexample was found in the 
field of dynamical systems. A dynamical system is any process that evolves in time. 
The mathematical model is a differential equation dy/dt = y’ = f(t,y) and we 
encounter again the derivative 

t
yy

t ∆
∆=

→∆ 0
lim' . In a dynamical process that changes with 

time, time is a continuous variable. Using a numerical method to solve the differential 
equation, there is a discretization of the variable time and the passage to a discrete 
time model might totally change the nature of the solution. In the following 
counterexample (the logistic equation), the analytical solution obtained by means of 
continuous calculus is totally different from the numerical solution obtained by 
means of discrete numerical methods. Moreover, using the analytical solution, the 
students use the concept of the derivative 

x
y

x ∆
∆

→∆ 0
lim . Using the discrete approximation 

by means of the numerical method the students use 
x

y
∆

∆  for small x∆ . We will see 

that the two solutions, the analytical and the numerical, are totally different.  
 

The design of the learning experiment 
The learning experience is described in a pilot study (Kidron, 2003). We report it 
here for the convenience of the reader. The students (first year College students in a 
differential equations' course) were given the following task: a point )y,(t 00  and the 
derivative of the function dy/dt=f(t,y) are given. Plot the function y(t). The students 
were asked to find the next point )y,(t 11  by means of )y,f(t)t)/(ty(y 000101 =−− . As t 
increases by the small constant step ttt 01 =− , the students realized that they are 
moving along the tangent line in the direction of the slope )y,f(t 00 . The students 
generalized and wrote the algorithm: ),f(tt y nn1n n

yy +=+ for Euler’s method. They 
were asked how to better approach the solution. They proposed to choose a smaller 
step t .  
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The logistic equation dy/dt = r y(t) (1-y(t)), y(0) = 0y was introduced as a model for 
the dynamics of the growth of a population. An analytical solution exists for all 
values of the parameter r. The numerical solution is totally different for different 
values of t  as we can see in the graphical representations of the Euler’s numerical 
solution of the logistic equation with r = 18 and y(0)=1.3.  
 
 

 
Fig. 1 

 
In the first plot, the solution tends to 1 and looks like the analytical solution. In the 
second, third and fourth plot, the process becomes a periodic oscillation between two, 
four and eight levels. In the fourth plot, we did not join the points, in order that this 
period doubling will be clearer. In the fifth and sixth plot, the logistic mapping 
becomes chaotic. We slightly decrease t  in the seventh plot. For the first 40 
iterations, the logistic map appears chaotic. Then, period 3 appears. As we increase 
t  very gradually we get, in the eight plot, period 6 and, in the ninth plot period 12 
and the belief that gradual causes have gradual effects is false! The fact that a 
small change in a parameter causes only a small effect, does not necessarily imply 
that a further small change in the parameter will cause only a further small change in 
the effect. We knew this long ago. We just did not realize there was a mathematical 
consequence. Take, for example, the proverb: the last straw breaks the camel back 
(Stewart, 2001)  
 
Findings and Discussion 
First year college students in an innovative differential equations’ course (N=60), 
were the participants in the research. The first author taught the course. The students 
interact with the Mathematica software in the exercise lessons which were held in the 
PC laboratories. Mathematica was also used during the lectures for demonstrations.  
We examined the students’ reactions when they realized that the approximate 
solution to the logistic equation by means of discrete numerical methods is so 
different from the analytical solution. The students were given written questionnaires 
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before and after being exposed to the logistic equation. Some of the students were 
also interviewed and invited to explain their answers. We present the analysis of the 
students' reactions in the light of the instrumentation theory. 
 
Awareness of the limitations of the numerical method 

Before being introduced to the logistic equation, the students were asked if a very 
small value for the step size t  in Euler's method will assure a good approximation to 
the solution: 80% of the students claimed that a small value for t  might be not small 
enough. They connect their claim to the limitations of the numerical method. Some 
students also pointed out the fact that the error in the numerical method accumulates.  
 
The influence of previous experiences in the PC lab on the students thinking 
processes 

The students were influenced by previous experiences in the PC lab even if these 
experiences took place in other courses. 
 
Irit: We worked on several examples in which we noticed that the more points, the 
smaller t  and the better the approximation BUT I think that not every function will 
behave this way. We encountered in the lab, in relation to another subject, a function 
with a special behavior: In spite of the fact that we added interpolation points, the 

function did not behave the way we expected. I think it was ( )21
1

)(
x

xf
+

= . Usually, 

the more points, the better is the approximation but it is not always the case.  
 
Irit referred to Runge's example. The students worked in the lab looking for 
polynomial approximations to the function with equidistant interpolation points.  
 

The belief that gradual causes have gradual effects 

Before being exposed to the logistic equation, the students were asked to express 
their opinion about the following statement:" If in Euler’s method, using a step size 
t = 0.017 we get a solution very far from the real solution, then a step size t = 
0.016 will not produce a big improvement, maybe some digits after the decimal point 
and no more”. The belief that gradual causes have gradual effects was expressed in 
53% of the students' answers "it seems to me that if with t = 0.017 we didn't get a 
good solution, then t = 0.016 will not produce a big improvement either". 31% of 
the students who claimed that gradual causes have no necessarily gradual effects 
explained their answer by the fact that “There are functions which oscillate very 
quickly" or by means of the accumulating effect 
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 "I think that we use an iterative procedure to find 1ky + , namely, we perform the 
algorithm on ky  in order to find 1ky +  and so on… After several iterations, we 
accumulate differences in the value of 1ky +  that might be significant therefore we 
might get a big improvement even with a slightly smaller t ". 
 

The (in)ability to differentiate between error due to mathematical meaning and error 
due to the instrument 

After being exposed to the logistic equation, the students were asked to characterize 
the source of error in Euler's method. We investigate whether the students realize that 
the source of error is the fact that in the numerical method the limit has been omitted 
in the definition of the derivative. 
• The students' attention might be distracted by the round off error 
The students’ attention might be distracted by the round-off error especially if in 
previous experience with the computer they encountered such kind of round off error. 
This happened to a student, Hadas, which attributed the error to the round-off effect 
 
Hadas: I remember from an exercise in the Calculus course that the solution with 
Matlab was 0 but the solution using the symbolic form was 0.5. When we tried to 
understand why this happened we realized that MatLab computes only 15 digits after 
the decimal point.  
 
Hadas refered to an episode in the Calculus course in which the students were given 
the function 126 ))/xcos(x-1 (f(x) =  and they had to explain why some graphs of f might 
give false information about f(x)lim 0x→ . The limit is ½ but both Mathematica and 
MatLab give the answer 0 when we evaluate the function for x = 0.01. Working the 
exercise in the PC lab, the students understood that the computer with its limited 
precision gives the incorrect result that )cos(x-1 6 is 0 for even moderately small values 
of x. 
By means of error analysis, we planned to help the students to better understand the 
continuous methods and the concept of limit. But, working with a CAS, there are 
other unexpected effects that are directly linked with the “instrument” and the way it 
influences the students’ thinking. In addition to the error due to the discretization 
process, to the fact that an algorithm that belongs to a numerical method is used to 
solve the logistic equation in place of the analytical method, there are other sources of 
error that are directly related to the “tool”. 
• The students' attention might be distracted by the accumulative effect 
22% of the students explained the error by means of the accumulative effect. 
• Round off and accumulating effect could not be the only source of error but the 

students cannot find the exact source of error 
This view was expressed in answers like the following: 
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"The software has some limitation concerning the number of digits after the decimal 
point and it seems that this fact has enough strength (due to the accumulative effect) 
to influence the solution with Euler’s method. But this fact by itself could not cause 
the crazy behavior of the function" or: 
 
"The round-off is not the crucial part. There is a change in the analytical behavior. 
We do expect for a change due to the round off, but we expect to a change "in 
numbers" not in the qualitative behavior". 
 
• The students relate the error to discrete - continuous considerations, but without 

a mention of the limit or of the formal definition of the derivative. 
23% of the answers expressed well developed qualitative approach to differential 
equations, adequate to explain why there is an error, but inadequate to give a formal 
account how the discrete method employed the derivative concept. 
• The students relate the error to the fact that in the numerical solution the limit is 

omitted in the definition of the derivative. 
This was expressed in 19% of the answers. Some students reached this conclusion by 
means of mental images created by previous experiences with the instrument. These 
images were also present when the computer was turned off. This is expressed in the 
following:  
 
“We have worked this week an exercise that demonstrates that a small change in the 
initial condition of a differential equation might cause a large change in the solution. 
Maybe the small error made in the Euler's method induced big changes in the graph 
of the solution curve also in our case”  or: 
“A difference of 0.001 might be crucial if it leads to the crossing of an equilibrium 
solution and therefore to a transition to a zone with totally different slopes like in the 
example..” 
The student related to a figure describing a previous experience in the lab  
“In the absence of an equilibrium solution, the error would have increased but there 
would not have been crucial changes. The error increased but we noticed it only 
because the equilibrium solution”. In connection to the metaphor of the straw and the 
camel's back, the student added: if there was no equilibrium line, the camel would not 
have fall down! 
 

Concluding remarks 

The emphasis in this research study is laid on the way we take advantage of the 
discrete continuous interplay to identify the new potentials offered by instrumented 
work but also on identifying the constraints induced by the instrument. The 
“instrument” plays a very important role. It enables the students to “see” the 
significant difference between the discrete and the continuous methods. It also helps 
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the students to analyze qualitatively the behavior of the solution and to connect it 
with former experiences. Mathematica enables to change very slightly the value of a 
parameter and to plot the solution. The role played by the instrument is very 
important and enable the new potentials offered by the instrumented work. However, 
the percentage of students who did not find the source of error in the numerical 
method, demonstrated that it might have not been enough to expose the students to a 
counterexample. Students have to be faced with the necessity of developing schemes 
that will help them to differentiate between error due to mathematical meanings and 
error due to meanings specific to the instrument (Artigue, 2002). 
 

References 

Artigue, M. (2002). Learning Mathematics in a CAS environment: The genesis of a 
reflection about instrumentation and the dialectics between technical and 
conceptual work, International Journal of Computers for Mathematical 
Learning 7, 245-274.  

Chevallard, Y. (1992). Concepts fondamentaux de la didactique: Perspectives 
apportées par une approche anthropologique. Recherches en Didactique des 
Mathématiques 12(1), 77-111. 

Courant, R. (1937). Differential and Integral Calculus, (p.39), Blackie & Son  
Guin, D. & Trouche, L. (1999). The complex process of converting tools into 

mathematical instruments: The case of calculators, International Journal of 
Computers for Mathematical Learning 3(3), 195-227. 

Kidron, I. & Vinner, S. (1983). Rational numbers and decimals at the senior high 
level- Density and Comparison,  Proceedings of the 7th International Conference 
for the Psychology of Mathematical Education, (pp. 301-306). Israel. 

Kidron, I. (2003). Is small small enough? Conceptualisation of the continuous by 
means of the discrete. Proceedings of the 5th International Mathematica 
Symposium, (pp.145-152). Imperial College Press, London, England. 

Lagrange, J.B. (2000). L’integration des instruments informatiques dans 
l’enseignement:Une approche par les techniques. Educational Studies in 
Mathematics 43, (1), 1-30.  

Steiner,J. & Dana-Picard, Th.(2004). Teaching Mathematical Integration:Human 
thinking versus Computer Algebra, International Journal of Mathematics 
Education in Science and Technology, 35 (2), pp.249-258 

Stewart, I. (2001). What shape is a snowflake (p.148). W.H. Freeman. 
Verillon, P.& Rabardel, P. (1995). Cognition and artifacts: A contribution to the 

study of thought in relation to instrumented activity. European Journal of 
Psychology of Education10(1),77- 101.  



 

 278 

Learning about equivalence, equality, and equation in a CAS environment: the 
interaction of machine techniques, paper-and-pencil techniques, and theorizing 

Carolyn Kieran, Université du Québec à Montréal, Montréal, Canada 
Paul Drijvers, Freudenthal Institute, Utrecht, the Netherlands 

kieran.carolyn@uqam.ca, p.drijvers@fi.uu.nl 
with the collaboration of André Boileau, Fernando Hitt, Denis Tanguay, 
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The study presented in this report is part of a larger project on the intertwining co-
emergence of technique and theory within a CAS-based task environment for learning 
algebra, which also includes paper-and-pencil activity. The theoretical framework 
consists of the instrumental approach to learning mathematics with technology, in 
particular Artigue and colleagues’ adaptation of Chevallard’s anthropological 
theory. The theme presented herein is that of equivalence, equality, and equation. 
Two 10th grade classes were taught by the same mathematics teacher during two 
successive years, using project materials designed by the research team. Classroom 
observations, student interviews, student activity sheets, and posttest responses were 
the main data sources used in the analysis. Findings attest to the intertwining of 
technique and theory in algebra learning in a CAS environment. In addition, the data 
analysis revealed that probably the most productive learning took place after the 
CAS techniques provided some kind of confrontation or conflict with the students’ 
expectations, based on their previous theoretical knowledge. Even if such conflicts in 
applying CAS techniques may seem to be hindrances to students’ progress, in fact 
our experience suggests that they should be considered occasions for learning rather 
than as obstacles. However, a precondition for these conflicts to foster learning is 
their appropriate management in the classroom by the teacher. 

 

Introduction 

School algebra has traditionally been an area where technique and theory collide, 
with technique usually claiming victory. While a parallel with the terms 
skills/procedures and concepts may suggest itself, both technique and theory are 
broader in meaning than procedures and concepts (Artigue, 2002). The notion that 
school algebra can be an arena for the interaction of both theory and technique has 
not taken hold until recently. The advent of computer algebra systems (CAS) 
technology in schools, along with the development of theoretical frameworks for 
interpreting how such technology becomes an instrument of mathematical thought, 
have both been contributing factors. 
The instrumental approach to tool use encompasses elements from both cognitive 
ergonomics (Vérillon & Rabardel, 1995) and the anthropological theory of didactics 
(Chevallard, 1999). An essential starting point in the instrumental approach is the 
distinction between an artifact and an instrument. Whereas the artifact is the object 
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that is used as a tool, the instrument involves also the techniques and schemes that the 
user develops while using it, and that guide both the way the tool is used and the 
development of the user’s thinking. The process of an artifact becoming an 
instrument in the hands of a user -- in our case the student -- is called instrumental 
genesis. The instrumental approach was recognized by French mathematics education 
researchers (e.g., Artigue, 1997; Lagrange, 2000; Trouche, 2000; Guin & Trouche, 
2002) as a potentially powerful framework in the context of using CAS in 
mathematics education.  
As Monaghan (2005) pointed out, one can distinguish two directions within the 
instrumental approach. In line with the cognitive ergonomic framework, some 
researchers (e.g., Trouche, 2000; Drijvers, 2003) see the development of schemes as 
the heart of instrumental genesis. Although these mental schemes develop in social 
interaction, they are essentially individual. Within the schemes, conceptual and 
technical elements are intertwined. More in line with the anthropological approach, 
other researchers focus on techniques that students develop while using technological 
tools and in social interaction. The advantage of this focus is that instrumented 
techniques are visible and can be observed more easily than mental schemes. Still, it 
is acknowledged that techniques encompass theoretical notions. The focus on 
techniques is dominant in the work of Artigue (1997, 2002) and Lagrange (2000) in 
particular.  
 
The study  
Theoretical framework: Task-Technique-Theory 

Chevallard’s anthropological theory of didactics, which incorporates an institutional 
dimension into the mathematical meaning that students construct, describes four 
components of practice by which mathematical objects are brought into play within 
didactic institutions: task, technique, technology, and theory. (By technology, 
Chevallard means the discourse that is used to explain and justify techniques; he is 
not referring to the use of computers or other technological tools.) In their adaptation 
of Chevallard’s anthropological theory, Artigue and her colleagues have collapsed 
technology and theory into the one term, theory, thereby giving the theoretical 
component a wider interpretation than is usual in the anthropological approach. 
Furthermore, Artigue notes that technique also has to be given a wider meaning than 
is usual in educational discourse.  
Lagrange (2003, p. 271) has elaborated this latter idea further: “Technique plays an 
epistemic role by contributing to an understanding of the objects that it handles, 
particularly during its elaboration. It also serves as an object for a conceptual 
reflection when compared with other techniques and when discussed with regard to 
consistency.” It is precisely this epistemic role played by techniques that is a focus of 
our study, that is, the notion that students’ mathematical theorizing develops as their 
techniques evolve. It is noted, as well, that our perspective on the co-emergence of 
theory and technique is situated within the context of technological tool use, where 
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the nature of the task plays an equally fundamental role. Thus, the triad Task-
Technique-Theory (TTT) served as the framework not only for constructing the tasks 
of this study, but also for gathering data during the teaching sequences and for 
analyzing the resulting data. 
 
Aim of the study 

The research study, of which this report is a part, is an ongoing one. It has as a central 
objective the shedding of further light on the co-emergence of technique and theory 
within the CAS-based algebraic activity of secondary school students. Because of 
severe space restrictions, this report will highlight the design and findings from one 
task set, that of equivalence, equality, and equation.  
 

Participants  

The research involves six intact classes of 10th graders (15-year-olds) in Canada and 
Mexico, as well as a class of older students in Oregon. Five of the 10th grade classes 
were observed during the 2004-05 school year; the sixth class, the following year. 
Two of these 10th grade classes are featured in this report – one from the 2004 study 
and the other from the 2005 study. Both classes were taught by the same teacher, with 
five years of experience. He is a teacher who, along with encouraging his pupils to 
talk about their mathematics in class, believes that it is useful for them to struggle a 
little with mathematical tasks. He elicits students’ thinking, rather than quickly giving 
them answers. The students in this report had already learned a few basic techniques 
for solving linear and quadratic equations during their 9th grade mathematics course 
and had used graphing calculators on a regular basis; however, they had not had any 
experience with the notion of equivalence, one of the theoretical ideas developed in 
the project materials, nor with symbol-manipulating calculators (i.e., the TI-92 Plus 
CAS machines used in this project).  
 

Data sources  

All project classes were observed and videotaped (12-15 class periods for each of the 
seven project classes). Students were interviewed, alone or in pairs, at several 
instances -- before, during, and after class. A posttest involving CAS was 
administered after the task set on equivalence had been completed. All students were 
pretested. Thus, data sources for the segment of the study presented in this report 
include the videotapes of all the classroom lessons, videotaped interviews with 
students, a videotaped interview with the teacher, the activity sheets of all students 
(these contained their paper-and-pencil responses, a record of CAS displays, and their 
interpretations of these displays), written pretest and posttest responses, and 
researcher field notes.  
 
Task design 
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The research team created several sets of tasks that aimed at supporting the co-
emergence of technique and theory. Because paper-and-pencil techniques were a 
fundamental part of the algebra program of studies of the schools where the research 
was carried out, and because we believe in the importance of combining the two 
media, they too were included in the teaching sequences. Task sets were planned to 
take from one to five periods. For the task set described in this paper, one class took 
three periods, and the other, four. Each task set involved student work, either with 
CAS or paper-and-pencil or both, reflection questions, and classroom discussion of 
the main issues raised by the tasks. In designing the tasks, we took seriously both the 
students’ background knowledge and the fact that these tasks were to fit into an 
existing curriculum; but we also did our best to ensure that they would unfold in a 
particular classroom culture that reflected a certain priority given to discussion of 
serious mathematical issues. Tasks that asked students to write about how they were 
interpreting their work and the related CAS displays aimed to bring mathematical 
notions to the surface, making them objects of explicit reflection and discourse in the 
classroom, and clarifying ideas and distinctions, in ways that simply “doing algebra” 
may not require. 
 

The task set on equivalence, equality, and equation  
The underlying motive of this task set is the subtle relationship between arithmetic 
and algebra: on the one hand, the numerical world is the most important motive and 
model for the world of algebra, on the other hand algebra goes beyond the numerical 
world, which is in fact part of its power. This two-sided relationship is reflected in the 
notion of equivalence of algebraic expressions (see Kieran & Saldanha, 2005; 
Saldanha & Kieran, 2005). Equivalence of two expressions relates to the numeric as 
it reflects the idea of ‘equal output values for each of an infinite set of input values.’ 
However, equivalence of two expressions also relates to the algebraic in that the 
expressions can be rewritten in a common algebraic form. 
At the start of the teaching sequence, numerical evaluation of expressions by using 
CAS and comparison of their resultant values are used as the entry points for 
discussions on equivalence. One of the core tasks here aims at students’ noticing that 
some pairs of expressions seem to always end up with equal results, and thus evokes 
the notion of equivalence based on numerical equality. The algebraic expressions 
included in the task were fairly complex so as not to permit the evaluation of 
equivalence by purely visual means. The task is followed by a reflection question on 
what would happen if the table of values were extended to include other values of x. 
The task and the CAS substitution technique lead to the following definition of 
equivalence of expressions, with deliberate inclusion of the idea of a set of admissible 
values: 
We specify a set of admissible numbers for x (e.g., excluding the numbers where one 
of the expressions is not defined). If, for any admissible number that replaces x, each 
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of the expressions gives the same value, we say that these expressions are equivalent 
on the set of admissible values. 
The impossibility of testing all possible numerical substitutions to determine 
equivalence motivates the use of algebraic manipulation and the explicit search for 
common forms of expressions in the second part of the task set. Different CAS 
techniques can be used: Factor, Expand, Automatic Simplification. An additional 
technique is the “Test of Equality,” which involves entering an equation, followed by 
the Enter button. In this test, the CAS checks both sides of the equation for 
equivalence, by means of automatic simplification and other ‘black-box’ means.  
 
The CAS will come up with ‘true’ in cases of equivalence (see Figure 1). Restrictions 
are ignored, just as with Automatic Simplification. The Test of Equality technique 
has probably the most ‘black-box’ character, and the output it produces is the most 
difficult to interpret, especially for cases of non-equivalence. This CAS technique 
was deliberately introduced in the design of the tasks so as to provoke student 
questioning of its output.   
 

 
Fig.1: Illustration of the “Test of Equality” and the way that the 

TI-92 neglects restrictions 
 
In the next part of the task set, the relation between two expressions being equivalent 
or not, and the corresponding equation having many, some, or no solutions is 
explored in both CAS (Solve now introduced) and paper-and-pencil tasks. For 
example, students are asked to generate a pair of equivalent expressions, and, in a 
similar follow-up task, two non-equivalent expressions. The ensuing reflection 
question concerns the relation between the nature of an equation’s solution(s) and the 
equivalence or non-equivalence of the expressions that form the equation.  
 
Analysis of student activity 
Three theoretical elements were found to be intertwined and related to the techniques 
and tasks of this segment of the data analysis, and thus serve to organize the 
discussion of results: i) The numeric and algebraic views on equivalence; ii) The 
issue of restrictions; and iii) Coordination of the notions of equivalence and solution 
of an equation.  
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The numeric and algebraic views on equivalence  

Students seemed to have an intuitive idea of equivalence as having always the same 
numerical value, even if this was sometimes expressed in an informal way. This 
notion was clearly supported by the CAS substitution technique, which makes 
numerical substitutions easy to carry out. The repeated substitution with the CAS 
presented the students with the phenomenon of equal values, which invited algebraic 
generalization. Still, the relation between the algebraic and the numeric was 
somewhat vague. The Factor, Expand and Automatic Simplification techniques are 
on a more algebraic level, but seem to foster the notion of common form as ‘simple’ 
form. That is, some students tended to interpret the simplified forms produced by 
these commands as ordinary or basic or common, and thought that this was what we 
meant when we asked them to express a pair of expressions in a common form. The 
Test of Equality technique is probably the most interesting one from the conceptual 
point of view, as it seems to act at the borderline between the numeric and the 
algebraic. This technique provides ‘true’ in cases of equivalence, but just returns the 
(sometimes transformed) equation in other cases. The latter was difficult to 
understand for many students, as they would have expected something like ‘false’; 
whereas returning an equation -- so two expressions with an equal sign in between -- 
unjustly suggested equivalence to them. 
The verbatim in Figure 2 illustrates that Suzanne found the output of this CAS test 
surprising. She tried to interpret it by means of her existing theoretical thinking, but 
was unable to do so satisfactorily. In spite of the confusion that she expresses in the 
last line, we appreciate that she takes it as an incentive to rethink about her 
conceptions. In fact, that is what the tasks and techniques, if dealt with properly by 
the teacher, can provoke: a rethinking of the theoretical knowledge. The classroom 
discussion that followed did help to move Suzanne’s thinking forward.  
 

Suzanne  Uhm, I entered the problem )5)(2)(13()123)(20( 222 +−−−=−+−+ xxxxxxxx and it 
gave me pretty much the same problem back, but rearranged, it’s the same answer. 
When you think that the other one said “true,” it is kind of puzzling. ... The answer 
that it gave me. I figure that that’s this statement, like the first expression equals the 
second expression is true. … When I see an equal sign, I figure they are equivalent, 
the same. 
[…] 
Interviewer How would you now interpret such a display when you enter in two 
expressions like that? 
Suzanne Uhm, that it can be right sometimes, but isn’t always right. With specific 
numbers, it is correct. 
Interviewer So, when you mean correct? 
Suzanne That you would get the same number in the end on both sides. But only 
sometimes. 
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Interviewer Only for some numbers. 
Suzanne Yah. 
Interviewer   So how do you feel about that? 
Suzanne I’m still confused. With the “true”s and the “=”s, to me it all has sort of 
the same meaning. I guess I just have to change my way of thinking. 

Fig. 2. Confusion about the CAS returning the equation for the case of non-
equivalence 

 
A second issue that is related to the role of techniques in the evolution of the 
students’ thinking about equivalence concerned the coordination of different 
techniques as a means to check consistency. In several cases, students used different 
techniques, both paper-and-pencil and CAS, to verify the consistency of their 
theorizing. Surprising CAS results in some cases gave rise to conflicts that invited 
reasoning. For example, at first Andrew was puzzled when the CAS simplified 

)21)(2( xx −−  as (x − 2)(2x −1). After some thinking about this, he found a justification 
that involved the technique of substitution: 
“I think since it’s switching them both that it works out. Let’s just say x was 
represented by 6, -4 times -11, which is 44. And the other one it’s 6  2, which is 4 
times 11, which is also 44. It’s just two negatives, since it’s switching both of them 
it’s OK.”  
By the way, this verbatim shows the student’s returning to the numerical to check 
algebraic relations -- not a bad habit of course. Still, when so asked, Andrew 
indicated that he had several means to check algebraically the equivalence of 

)21)(2( xx −−  and )12)(2( −− xx , such as entering the corresponding equation or 
expanding them both. The other students also used these CAS techniques to check 
their consistency with by-hand results. 
 
The issue of restrictions 

The question of how to deal with restrictions, both with CAS and paper-and-pencil 
techniques, played a role in the algebraic view on equivalence. It also disclosed 
limitations in certain students’ thinking about zero in fractions and dividing by zero. 
This was the case for Andrew when dealing with the equivalence of two particular 

expressions: (3x −1)(x 2 − x − 2)(x + 5) and (x 2 + 3x −10)(3x −1)(x 2 + 3x + 2)
x + 2

. At first, he had 

difficulties with identifying the restriction of 2−=x . The question to consider the 
denominator revealed a misconception: “If x were -2 then the denominator would be -
2 plus 2, which is zero and anything over zero is equal to zero. One over zero equals 
to zero,” he said. After some intervention, Andrew concluded that the result of 
division by zero is undefined, but it remained unclear about whether another zero 
might appear somewhere. To check this out, he substituted 2−=x  into the first 
expression and got –84 as a result, clearly not zero. So, he concluded: “Basically, it 
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will work with everything except the −2.” Then he substituted 2−=x  into the 
expanded form of the first expression, which of course gave −84  once more. This 
seemed to be a check for consistency, although he was not completely sure about 
what to expect. Then he wondered about the value of the second expression when 

2−=x  would be substituted. He expected -84, but the calculator displayed 
‘undefined.’ He explained this as follows: 
“That’s what I figured out that it should be, undefined, but I didn’t think the 
calculator would show it. Just based on all the other results, just based on the fact that 
this came out to -84, and this came out to –84. … Well like it substitutes it and then it 
fills everything in and anything divided by zero is undefined, no matter what the 
equation is on top, it’s still divided by –2 plus 2, so it’s undefined.” 
Andrew’s fuzzy thinking about rational expressions, division by zero, and 
substitution of inadmissible values into the numerator interacted with his expectation 
of a certain CAS output. He was, however, eventually able to provide a technical 
interpretation that made sense to him about how the CAS produced ‘undef’ – as 
disclosed by his last comment. 
 
Coordination of the notions of equivalence and solution of an equation 

Results concerning the coordination of solutions and equivalent/non-equivalent 
expressions were mixed. For example, after students had generated a pair of 
equivalent expressions and were asked what they could say about the solutions of the 
equation formed from this pair -- but without actually solving the equation -- half the 
students’ responses included true, equal, equivalent, and did not refer explicitly to 
solutions of the equation. Furthermore, the word solution itself seemed problematic. 
While some students were able to relate the set of equation solutions to the 
equivalence of the two expressions involved, this remained unclear for others. The 
Solve technique in itself was not a problem for the students; but its coordination with 
the other techniques on equivalence required a change of perspective, which was not 
easy. Evidence suggests that a language issue is involved here as well: students use 
the word ‘solve’ for any operation leading to a result, the result being called the 
‘solution.’ 
 
Concluding remarks on equivalence, equality, and equation 

If we consider our findings on the task set of equivalence, equality, and equation in 
retrospect, two main issues come to the fore: the relation between students’ 
theoretical thinking and the techniques they use for solving the proposed tasks, and 
the specific role of the confrontation of CAS output with students’ expectations. To 
elaborate on the first point, our findings suggest that the relation between Theory and 
Technique, as it is established while working on appropriate Tasks, can hardly be 
underestimated. On the one hand, the development of students’ theoretical thinking 
was guided by the techniques that the tasks invited; on the other hand, students’ 
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conceptions influenced the development of these techniques. More specifically, 
students’ numerical view on equivalence of expressions was found to be related to 
three techniques: the numerical substitution technique, and, to a lesser extent, the 
Test of Equality and the Solve technique. The fact that students seemed to give 
priority to a numerical view on equivalence was tied to their use of the numerical 
substitution technique to check equality. In the emergence of an algebraic view on 
equivalence, the CAS techniques Factor, Expand, Automatic Simplification, and Test 
of Equality played important roles, even to the extent that the factored and expanded 
forms were considered as common forms. Finally, with regard to relating the numeric 
and the algebraic views on equivalence, students had difficulties with the 
coordination of the Solve technique and the techniques on equivalence; nevertheless, 
classroom discussion of these techniques turned out to be quite productive.  
To elaborate on the second point, the data analysis revealed that probably the most 
productive learning took place after the CAS techniques provided some kind of 
confrontation or conflict with the students’ expectations, based on their previous 
theoretical knowledge. The students’ seeking for consistency evoked theoretical 
thinking and further experimentation. Also, the fact that the CAS Automatic 
Simplification technique and the Test of Equality both neglect restrictions led to an 
increasing awareness of the importance of these ‘exceptions.’ Finally, the CAS just 
returning an equation in cases of non-equivalence struck the students, and gave rise to 
interesting discussions on the interpretation of the output, as did the interpretation of 
‘true’ and ‘false’ in cases of numeric or algebraic application of the Test of Equality. 
Even if such complications in applying CAS techniques may seem to be hindrances 
(see Drijvers, 2002) to students’ progress, in fact our experience suggests that they 
should be considered occasions for learning rather than as obstacles. However, a 
precondition for these complications to foster learning is their appropriate 
management in the classroom by the teacher.  
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Educational tool such as the graphics calculator (GC) is increasingly being used in 
school and college mathematics worldwide. In Malaysia, the Ministry of Education 
together with a couple of GC distributing companies (such as CASIO and TEXAS 
INSTRUMENTS) has conducted a series of GC workshops to train the secondary 
school mathematics and science teachers. To date, undergraduate mathematics 
integrating the use of GC has already been offered in the local universities. This 
paper emphasizes on the impact of GC in the learning of statistics. Even though many 
research findings have reported favourable use of GC in the teaching and learning of 
mathematics, the effect and the impact of GC however, could be different in a diverse 
learning environment. In the study conducted, students’ thinking and feeling towards 
engaging GC in their learning process were explored through observation, students’ 
written self-reflection and interviews. Analysis of the data highlighted three major 
changes in the students’ learning process that engaged the use of GC. These three 
changes are students’ perceived value of GC, changes in the norm classroom 
practices and changes in the perceived peer status. 

 
Background  

Educational tool such as the graphics calculator (GC) is increasingly being used in 
school and college mathematics worldwide. New ideas for graphing technologies are 
continuously being featured at international conferences as well as published in 
mathematics educational journals. The integration of such innovative technology in 
the mathematics classroom is anticipated to bring about changes in the approach in 
completing a mathematical task. Studies over the past (Arcavi & Hadas, 2000; 
Selinger & Pratt, 1997) have shown that GC can be used in ways that can promote 
and enhanced learning of mathematical concepts through visualization, symbolic, 
algebraic and graphic presentations. In addition, there are studies (Cedillo, 2001; 
Ruthven, 1990) that shown using of GC might enhance students’ thinking skills in 
mathematics such as analyzing, reasoning and translation to algebraic or symbolic 
form. 
In Malaysia, the integration of GC in the teaching and learning of mathematics has 
received much attention from the Ministry of Education (MOE), though the pick up is 
still slow. Since mid-2003, the MOE has been sponsoring educational officers and 
mathematics teachers to attend short-term GC training courses or workshops as part 
of their professional development program. With the support of the MOE and the 
initiative given by a couple of GC distributing companies (such as CASIO and 
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TEXAS INSTRUMENTS), a series of GC workshops was conducted to train the 
secondary mathematics and science teachers in 388 schools throughout Malaysia. 
Besides these training, each participating school was given a classroom set (40 units) 
of GC from the MOE. This program is planned to continue until the majority of the 
mathematics teachers are familiar to the practice of using the GC technology. In 
addition, the teachers training colleges have also taken drastic measure to gain access 
to the portable mathematical tool in order to equip more trainee teachers with the GC 
knowledge. 
 
To date, undergraduate mathematics applying the GC knowledge has been offered in 
certain local universities (Rosihan et. al, 2002; Rosihan & Kor, 2004). However, the 
use of GC in mathematics at school level is still very limited. Nevertheless, more and 
more schools and higher institutions throughout Malaysia are encouraged to use GC 
in the teaching and learning of mathematics. For example, the latest curriculum 
specification of the Secondary Mathematics Syllabus 2005 has explicitly 
recommended the use of GC and GSP in the teaching and learning activities. 
Consequently, new mathematics textbooks that incorporate graphing technologies as 
part of the solution steps inevitably help to provide impetus to intensify the use and 
integration of graphing technologies in the present mathematics classroom. 
 
Rationale of the study 

Statistical literacy is vital to all aspects in our lives that deal with data based 
information. The importance of statistical literacy can be seen by the recent move 
taken by all colleges and universities in Malaysia to require their undergraduates to 
pursue compulsorily a first course in statistics regardless of their future profession.  
 
Even though many research findings (Kissane, 2004; Rosihan & Kor, 2004) reported 
favourable use of GC in the teaching and learning of mathematics, the effect and the 
impact of GC however, could be different in a diverse learning environment. 
Apparently, the Malaysian mathematics classroom that comprises of Asian students 
with a different learning culture is a worthwhile case to study. A study of this kind 
complies with Koc’s (2005) assertion that awareness of cultural differences in 
technology could help instructional designers and trainers to build more culturally 
and socially sensitive materials for educational purposes. With these in mind, this 
study was conducted to examine how students’ engagement with GC changes the 
norm practice of their learning of statistics. 
 
Method 
The respondents in the study comprised of 76 second year Diploma in Business 
students. All were non-mathematics majors who had no prior classroom experience in 
using the GC. The statistics course in this study was conducted using the TI-83 Plus. 
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The topics taught were Measures of Central Tendency, and Correlation & Simple 
Linear Regression. The researcher conducted the whole course in twelve lessons. One 
lesson was two hours long and there were two lessons a week.  
 
Students were required to write down their reflection corresponding to five open-
ended questions given after each lesson. Interviews were conducted twice during the 
twelve lessons to explore students’ thinking and feeling towards engaging GC in their 
learning process. Four independent facilitators were also employed to observe the 
classroom climate. Respondents’ written reflection, the audio taped interviews and 
observation notes were collected, transcribed and analyzed.  
 
Results and discussions 
Analysis of the data highlighted three major changes in the students’ learning process 
that engaged the use of GC. These three changes are students’ perceived value of GC, 
changes in the norm classroom practices and changes in the perceived peer status. 
 
(A) Changes in students’ perceived value of GC  

(i) GC as a technological tool 
During the interview, the respondents expressed that they were not too convinced of 
the capability of the GC at the beginning of the lesson. They thought it would be just 
another calculator with more advance features and is solely used to assist them in 
doing more complicated computation. After a few lessons, many respondents were 
very impressed with the many functions a GC can perform. They were especially 
attracted to the graphs that appeared on the screen at the press of a button. The 
respondents responded by saying, 
 
The first time we see a GC, we did not expect it to be able to draw graphs like what 
we do now… you just need to key in the right data and press the right button and 
there is the graph. 

 
Another group found that the GC enriched their understanding on a set of data by 
presenting the data in different forms because “we saw that the same set of data can 
be represented in many different forms”. These students’ responses highlighted the 
significance of GC as a tool for learning. They learned that data is not just about a set 
of numbers but can be presented in many different forms within the switch of the GC 
screens.  
 
However, there were some who dislike the use of GC voiced different view about GC 
such that, “learning to use GC is very difficult. There are so many steps to follow… 
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so many functions to remember…very confusing … cannot tell us if we have keyed 
in the wrong data or have pressed the wrong button!” 

 
(ii) Use of GC provides a new approach in learning statistics  
An appropriate use of technological tool such as GC has the potential to bring about 
students’ cognitive activities rather than just to amplify their human capabilities. 
There was description about using GC to “work backwards” with the existing data 
when there is an uncertainty in solving a particular problem. One average achiever 
who favours GC presented a refreshing perspective by saying that 
 
Sometimes I used GC to find the answer to a problem that I am not sure of doing … 
use the answer to work backwards to get the solution… like a box plot looks… can 
use GC to plot the box plot with the data I had and then use the “TRACE” key to locate 
the points and transfer these points to my graph paper to complete a box plot. 
 
One group mentioned that they worked out the solutions with GC repeatedly until the 
final correct answer was achieved. They elaborated further, “To locate a point on a 
regression line for example, we can zoom repeatedly and trace the point that is not in 
the range until we get it.” 

 
(iii) Perceived personal gains  
Interestingly, respondents’ views about the new GC-enhanced statistics lessons were 
a mixture of great expectation and cynicism. Some respondents expressed that GC 
enhanced their learning, they said, “… there is reinforcement when we learn to solve 
a problem in two different methods: the calculator and the manual methods. By doing 
it twice we can remember better.” 
 
In addition, some related their bad experience when using GC such as, “It is very 
difficult to remember the functions in GC. We cannot see anything meaningful on the 
GC screen as compared to learning with manual method.” One facilitator observed 
that, “The students seemed to show disappointment when they failed to follow the 
instructions on how to use the GC to plot a regression line.”  
 
(B) Changes in the norm classroom practice 

(i) Classroom learning atmosphere 
Before the GC engagement, the study sample was observed to be serious and 
followed the lessons passively. They were seen taking notes from the white board and 
occasionally exchanging words in a whisper with their neighbours. The learning 
atmosphere was solemn. However, the inclusion of GC seemed to change the 
classroom norm. It was observed that the classroom atmosphere was lively and 
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cheerful. Time passed by without anyone noticing as most of the respondents were 
busy sharing their findings with each other. One facilitator strongly believed that the 
invigorating classroom climate reflects that learning is in progress as she commented, 
“The class was noisy but it is a good sign of learning because they were busy asking 
questions. Discussions were seen among the students and between students and 
lecturer.” 

 
(ii) Students’ learning attitudes 
In general, the engagement of GC in the statistics lessons had motivated students’ 
interest in statistics as well as improved their confidence in the learning process. A 
typical remark that explains the transformation was, 
 
I find that I work harder now in this subject… always rush to finish off the given 
exercises in the classroom. I would try out again and again if I fail to get the 
answer… want to get it done because nobody can offer you help on GC other than the 
lecturer …all of us are still new to this thing. 
 
Another respondent reported the excitement when using GC as, “I can draw 
frequency polygon faster than the traditional method. I am excited …using GC to 
learn is really interesting.”  

 
However, some expressed difficulties in using GC to learn because they could not 
concentrate on doing two things at the same time.  

 

… need to listen to the instruction given by the lecturer and at the same time we need 
to understand the concepts…it’s very difficult…we could not catch up with the 
others. We were always left behind in the lesson. It creates tension and phobia in us.  
(iii) Classroom participation 
Compare to the normal class, more respondents were seen offering peer tutoring 
among themselves. It was recorded by the facilitators that, “When they (respondents) 
were confused in receiving instruction from the lecturer, they overcome this by 
encouraging and helping each other.” 

 

The learning process was dynamic. Group discussions and didactic conversation 
between lecturer and students and among students were a common sight. One group 
explained the reason why they asked more questions than the normal class. They said, 
“We are forced to ask many questions because there are many new things that we do 
not know about GC.” 
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Conversely, weak students who dislike using the GC revealed their problems that 
kept them from active participation. This is because, “We were hardly active in the 
group discussion… we were not confident of contributing anything about GC. We 
were afraid that we might say the wrong thing… we just kept quiet and let the others 
do the talking.” 

 
(c) Changes in perceived peer status 

Some respondents seemed to associate GC with the state-of-the-art modern electronic 
device. They were optimistic that GC as a new technological gadget can create an 
appeal to the future statistics classroom. They developed a sense of pride from the 
knowledge gained from GC. There were two groups of respondents who used the 
analogy of “hand phone” while another two groups used “computer” to describe the 
GC. There were groups who felt that learning statistics with GC is compatible with 
the present computer age. These respondents considered themselves as technology 
savvy and more knowledgeable after learning how to use GC in statistics. They said, 
“GC is like a hand phone … when we compare ourselves to those without the GC 
knowledge, we are more professional and proficient in doing statistics.” 
 

Conclusion 

The findings of this study suggest that GC can bring changes to the statistics 
classroom culture of learning. These changes include the cognitive changes in the 
pattern of learning and doing statistics, the norm classroom practice and changes in 
the students’ perception and feelings about the new tool and the new GC knowledge. 

 

Although there were reports that the respondents were confused in the process of 
handling GC, the number was relatively small in the study sample. Apparently not all 
respondents in the study recommended highly the engagement of GC in doing and 
learning statistics. Nevertheless, majority admitted that GC enhanced their 
understanding through visualization and multiple representations. One of the most 
common complaints among the respondents was the frustration they faced in 
mastering the GC skills. Inevitably, respondents who were incompetent in GC skills 
often encountered with technological problems. As a result, the weak students often 
find using GC annoying.  
 
In fact, the success of GC implementation depends much on tool competency of the 
users. Poor mastery of GC could lead to high frustration and subsequently reduce 
learners’ motivation to learn the subject. Consequently, this study advocates strongly 
that the more experiences the learners have with GC prior to instruction, the more 
likely they are to perform better through the course. This study also shows that many 
weak students did not possess the necessary GC skills and sound understanding of 
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the statistics content that allowed them to work collaboratively in a group. Therefore, 
it is pertinent that special attention must be taken when including a GC into a mixed-
ability classroom. This study supports Lindsay’s (2003) attestation that student-
centred activities, inquiry-based approaches of mathematics teaching might be more 
suitable for average and high-achievers only. For weak students, it is important that 
their skills in handling GC should always be evaluated and monitored throughout the 
learning period. Furthermore, the facilitator must provide ample guidance and gives 
immediate feedback to reinforce the learners’ short-term memory. 
 
In sum, we observed that the Malaysian students’ experience in engaging GC to learn 
statistics was not far different from the global norm. However, it remains our concern 
on how to exploit the use of educational tools such as GC so as to make the learning 
of mathematics more enticing and motivating to students of all abilities.  
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This paper presents description of authors’ current and proposed work using Tablet 
PCs mobile computer lab in future teachers’ preparation classes. Faculty from the 
Colleges of Education and Science at the University of Texas at El Paso worked 
together to study the effects of incorporating Tablet PC technology in pre-service 
teachers’ math education. We assessed the significance of the technology by 
evaluating and comparing students’ final project and course grades. We did a 
statistical comparison of two groups: the treatment group where students extensively 
used Tablet PCs to work on mathematical investigations and lesson plans and the 
control group where students worked on identical math investigations and created 
lesson plans without utilizing any technology. The outcome shows a greater 
improvement in the treatment group’s mathematical content knowledge versus that of 
the control group’s. Current and future work involves evaluation of the change in 
acquiring mathematical pedagogical knowledge by pre-service teachers. Future 
teachers (in both groups) are asked to create original math lessons using unique 
manipulatives and hands-on activities. Students in the treatment group are required 
to use Tablet PCs to create hands-on activities. Groups’ pedagogical knowledge will 
be compared using pre/post tests, questionnaires and knowledge and attitude surveys.  

Introduction 
The concept of a “digital divide” separating those with access to computers and 
communications technology from those without is simplistic.  
Research (Peslak, 2005) shows that computers per students and total number of 
computers in a school significantly effects student learning, but surprisingly there is a 
negative impact of this metric on standardized reading and math scores. 
Another study (Warschauer, 2005) shows that kindergarten through 12th grade 
students from a higher socioeconomic status are more likely to use computers for 
experimentation, research and critical inquiry; students from a lower socioeconomic 
status usually engage in less challenging drills and exercises that do not fully utilize 
the advantages of computer technology. 
To benefit from computers teachers should have access to good educational software 
and be familiar with the available software. Ideally teachers should be able to use 
appropriate software to create math activities that guide students to higher order 
thinking. Pre-service (future) teachers should be confident and knowledgeable about 
effective instructional strategies that incorporate variety of digital technologies. 
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Located on the Rio Grande River in the far western edge of Texas along the borders 
of Mexico, New Mexico and Texas, El Paso is a bustling urban area of 700,000 
people, more than 74% of whom are Mexican in origin. Widely known as a major 
passageway for land travel through the mountains from Mexico to the U.S., El Paso 
sits in close proximity to the Mexican City of Juarez, with a population of more than 
1.2 million; together El Paso and Juarez represent the largest metropolitan along the 
2,000- mile U. S. /Mexico border. Generations of Mexicans and Mexican-Americans 
view El Paso as a place where they can pursue their hopes, aspirations, and dreams. 
Almost a quarter of El Paso’s population is foreign born, and more than 50% of El 
Paso’s households speak Spanish as the language of preference. The University of 
Texas at El Paso prepares a large number of bilingual educators to work with the 
growing Hispanic population.  
In the beginning of 2004 the team of researchers from the College of Education and 
College of Engineering received a grant from Hewlett Packard that allowed UTEP to 
organize a mobile Tablet PC lab. This lab was readily available for use in the math 
and math methods classes taught in a field-based environment. It was this HP grant 
which provided us the necessary technology for this study.  
In this paper we present the study on the effects of Tablet PC technology on 
mathematical content knowledge of pre-service teachers. We also in the process of 
collecting data and evaluating students’ math pedagogy, attitudes toward digital 
wireless technologies, and effects of this technology on collaborative learning of 
mathematics. Thus, the scope of this paper addresses the following research 
questions (from Discussion Document http://www.math.msu.edu/~nathsinc/ICMI/): 
roles of different technologies in teaching and learning mathematics, assessing 
learning of mathematics using digital technologies, and how can technology-
integrated environments be design so as to capture significant moments of learning. 
The significance of Tablet PCs: recently, at Technology Review’s Emerging 
Technologies Conference held at MIT, Nicholas Negroponte, a founder of MIT's 
Media Lab, showed off a laptop design he hopes can be sold for just $100. These 
small laptops work similarly to Tablet PCs, using “digital ink” thus providing 
students the opportunity to write on the screen using a specially designed stylus pen. 
With the affordability of these computers, schools will be able to provide every child 
with a computer.  
The Study 
In spring semester of 2005, 38 pre-service elementary teachers were enrolled in math 
content and math methods courses. These students were also enrolled in internships at 
local elementary schools. The students’ internships and class placement was random. 
Our study focused on two groups of students. The treatment group consisted of 15 
students that regularly met in a professional development school where they were 
provided with 14 Tablet PCs for use in their math and math method classes. The 
control group consisted of 23 students who were enrolled in the same courses with 
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the same instructor but met at different times and location. In this control group 
Tablet PCs were not used.  
All math and math methods classes were team taught using a series of rich math 
investigations, in-depth discussions on topics in the methods textbook (Van de Walle, 
2004) and group lesson preparations and implementations. Specifically, math and 
math methods course were designed to foster conceptual understanding of 
mathematics and pedagogy in the following major strands: rational numbers, 
geometry, algebra, number theory, and functions. All projects were designed to 
include open-ended problems that required thorough investigations to achieve 
successful solutions. Instructors utilized collaborative learning and inquiry based 
methodology while students worked in small groups.  
The treatment group used Tablet PCs to explore the investigations or projects. This 
technology allowed students to explore each activity fully without being limited to 
paper and pencil drawings. The real time feedback in the various programs and 
websites used gave students a good evaluation tool of their problem solving methods. 
In addition, the ability to iterate calculations allowed students to focus on the “big” 
picture without getting bogged down with repetitive calculations.  
Besides the rich investigations, students from both groups planned individual/group 
lessons and implemented them in local elementary schools. Students created these 
lesson plans by applying the concepts investigated in their math and math methods 
courses. Students in the treatment group successfully implemented Tablet PCs in 
their individual and group teachings allowing pupils to engage in meaningful 
technology based activities.  
By the end of the four month period both groups had completed and presented several 
investigations. The students’ final exam was an oral presentation covering the 
functions and algebra investigation. The students’ final grade was a cumulative grade 
indicative of the students’ performances in each investigation, presentation, teaching 
and methods review.  
Implementing the Tablet PCs in a technology-enhanced classroom 
Tablet PC’s are fully functional PC’s running an enhanced version of Windows XP 
Professional. One of their most interesting feature is the “digital ink” that allows a 
user to write on the screen using a stylus pen. The same pen is also used as a mouse. 
The handwriting recognition software allows the written text to be converted to 
digital text in Microsoft Word. Traditional keyboard and mouse are also available. 
Tablet PC’s also have built-in wireless connectivity, so they can communicate with 
each other even if there is no internet connection present (ad hoc mode). They can 
also wirelessly connect to the internet. In newer Tablet PCs battery life can be up to 
six hours, however in our case our Tablets only have a battery life of three hours.  
Students had the opportunity to utilize the Tablet PC during their presentations by 
connecting the Tablets to a data projector. In addition since we had 14 Tablets and 15 
students, then students were able to work with the Tablet PCs individually or in small 
groups. Faculty used special software to communicate with the students. First, using 
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VNC software (http://www.realvnc.com/what.html) and internal wireless capability, 
faculty could connect to any of the students’ Tablet PCs and check their work, help 
them and project their successful solution on the screen. Second, Discourse software 
(www.ets.org/discourse) was used for assessment. Using this software, faculty is able 
to ask various types of questions including open-ended or multiple-choice questions. 
Each question can be accompanied by an image guiding students to explore this 
particular question. In addition to images, faculty can guide students to a specific 
internet site relevant to the question. Students can answer their questions concurrently 
or on their own pace.  
The faculty is also able to simultaneously monitor each student's answer in real time. 
Some of the students prefer typing the answers; others can open a writing pad, and 
record their answer on the pad. This writing pad automatically converts it to digital 
text. Also, students can have discussions using the “chat” option (that can be disabled 
by faculty).  
Pre-service teachers employed the Tablet PCs in their university courses and during 
their internship teaching in a number of ways. The most popular program was a 
program called Microsoft Journal, which comes free on Tablets and is used as an 
electronic whiteboard. The Power Point program was extensively used for 
presentations and for the creation of animated virtual manipulatives. The students 
were very successful in creating virtual manipulatives for solving word problems, 
place value tasks, fractions, and geometrical designs. Similarly, Kidspiration and 
Inspiration software was used for the creation of math activities and games. Students 
also used this software to create concept or mind maps. 
Variety of specialized free software was also used. One of the most interesting 
software is Java Bars  
(http://tt.uga.edu/tt/jwilson.coe.uga.edu/olive/welcome.html) that provides a creative 
workspace to explore fractions. Another software used extensively was the Tangram 
editor that will no longer be available for free. Excel was used in mathematical 
projects by utilizing the different spreadsheet capabilities such as graphing and 
formula calculator. Another interactive site used for fractions was Cynthia Lainus’ 
website from Rice University where students could explore fractions with pattern 
blocks. Students also used a variety of internet sites such as the National Library of 
Virtual Manipulatives, NCTM Illuminations, Math Playground and InterMath 
Investigations. Preservice teachers used a WebCT portal provided to all students by 
the university to submit their work for grading and discussion as well as for 
submitting questions outside of class time. 
Results, Conclusions and Future Work 
We statistically compared the effectiveness of our technology enhanced method for 
mathematics, using the Tablet PC, to the standard inquiry based method. This 
comparison is based on the results of two distinct items. The first is the students’ 
Final Exam given at the end of a 4 month learning period. The second is the students’ 
Final Grades which is a cumulative grade based on all the investigations throughout 
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the semester. Of a random sample of 38 students, 15 were taught by the technology 
enhanced method and were considered our treatment group. The other 23 students 
were taught by the standard inquiry-based method and were considered out control 
group. All 38 students were taught by the same qualified instructors under similar 
conditions. 
 We computed students’ grade point average (GPA) using only their previous 
mathematics courses. The average math GPA for the treatment group is 2.99 while 
the average math GPA for the control group is 2.98. This indicates that both groups 
had approximately the same mathematical background and content knowledge prior 
to the study. We developed descriptive statistics for both samples and both teaching 
methods see (Table 1). 
 
 

       Final Exam 
 

         Final Grade 

Group      
n 

Mean       
X  

Var  
2σ  

St.Dev. 
 

     
n 

Mean 
X  

Var 
2σ  

St.Dev. 

Treatment 
 

  15 90.8 14.31 3.78 15 93.04 8.95 2.99 

Control 
 

    
23 

84.9 77.55 8.81 23 87.70 42.49 6.52 

 
Table 1: Sample’s Descriptive Statistics 

Based on our observations during the previous semesters, we expected that the new 
teaching method is more effective. If we can show a statistically significant 
difference between these groups, we can conclude this observation to be valid. To do 
this, we set up a null hypothesis that the two sample means are the same (or the two 
groups come from the same population), and attempt to reject that hypothesis. 
The standard approach for this situation is to use the small-sample t-test. The first 
theoretical assumption about the independency of observations is satisfied, based on 
the information provided about the sampling procedure. The second assumption is 
about Normality (the histograms of all four distributions are bell-shaped and 
approximately symmetric). To verify the Normality in more rigorous way, we used 
the 2 – test for the Final Exam and Final Grades for both groups. The results of four 
tests are represented in (Table 2).  
The test shows that for all four distributions the calculated value chi-square is less 
than the critical value for the indicated degrees of freedom and . There is 
insufficient evidence to reject the null-hypothesis about the Normal distribution for 
given samples. Consequently, each sample data set appears to come from a 
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population that is approximately Normal. Moreover, as we know, the t-test is robust 
to moderate departures from Normality.  
The third and weaker assumption is that the two samples come from distributions 
with approximately the same variance.  
For our samples we can see that the ratio of the larger to smaller standard deviation is 
greater than two, so the unequal variance test should be used. In the case where the 
sample sizes and variances are different (n1 n2 and 1

2  2
2), an approximate small-

sample test can be obtained by modifying the standard deviation and the degrees of 
freedom associated with the t-distribution.  
 

 Final Exam 
Group n 2 df  2

critical 

Treatment  
 

15 3.53 1 0.05 3.84 

Control 
  

23 4.37 1 0.025 5.02 

 Final Grade 

Group n 2 df  2
critical 

Treatment 
   

15 1.52 1 0.05 3.84 

Control 
 

23 0.78 2 0.05 5.99 

 
Table 2: The Results for 2 – test for Final Exam and Final Grades 

We used the Approximate Small-Size Procedure (McClave, Sincich, 2003, p.390, 
J.Devore, 2004, p.373) when 1

2  2
2. We let 1 and  2 represent the population 

mean for the Final Grade of the treatment and control groups, respectively. The null 
hypothesis H0: (1 -  2) = 0 signifies that samples do not differ significantly. The 
alternative hypothesis is  H1: (1 -  2) > 0.  

Test statistic      1 2

2 2
1 1 2 2

X X
t

s n s n

−
=

+
  where t is based on degrees of freedom equal to  

( )
( ) ( )

22 2
1 1 2 2

2 22 2
1 1 2 2

1 21 1

s n s n
df

s n s n

n n

+
=

+
− −

 

Table 3 (test results) shows that the t-values for both tests are much bigger than the 
critical value of the t-test with the 5% Type I Error. The table of t-distribution 
(J.Devore, 2004, p.747) shows that the area under the 32 degrees of freedom t-curve 
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to the right of 2.851 for the Final Exam test is 0.0035. So the p-value for the upper-
tailed test is also 0.0035, that corresponds to the probability 0.35%. For the Final 
Grade test the p-value is only 0.001 or 0.1%.  
 

Confidence Interval      t df  tcritical 

Lower limit Upper 
limit 

                     
Final Exam  

2.851 32 0.05 1.694 2.40 9.45 

                     
Final Grade 

3.418 33 0.05 1.693 2.70 8.00 

Table 3: The results of the Small-Size t-test 
With a confidence level 0.95, we estimate the difference in the mean of the Final 
Exam scores between treatment group and the control group to fall in the interval 
(2.40, 9.45). This means that with 95% confidence we estimate the mean Final Exam 
score for the new method to be anywhere from 2.40 to 9.45 points more than the 
mean of the Final Exam score for the standard inquiry-based method. 
The 95% confidence interval for the Final Grade is (2.70, 8.00), so we estimate the 
mean of the Final Grade for the new method to be anywhere from 2.70 to 8.00 points 
more than the mean of the Final Grade for the standard inquiry-based method. In 
other words, the new method is associated with higher mean scores.  
Therefore there is enough evidence to indicate that (1 -  2) differs from zero and that 
(1 -  2) > 0. Using a significance level of 0.05, we can reject the null hypothesis that 
the two sample means are the same in a favor of the alternative hypothesis which 
states that the treatment group mean is significantly bigger then the control group 
mean for the both the Final Exam and the Final Grade.  
Consequently, the statistical analysis of the data collected shows that the technology 
enhanced group achieved significantly higher mean scores than the control group. 
These higher mean scores obtained by the treatment group translates into the 
treatment group having a greater understanding of math content when compared to 
the control group. This greater understanding can be directly contributed to the 
effective implementation of the Tablet PC technology in the math and math methods 
courses. Thus, we simultaneously achieved two goals. We increased students’ math 
education software literacy and math content knowledge.  
This study was conducted in math and math methods classes. The natural extension 
of our   work is to evaluate the change in acquiring mathematical pedagogical 
knowledge by pre-service teachers. Future teachers (in both groups) are asked to 
create original math lessons using manipulatives and hands-on activities. Students in 
the treatment group are required to use Tablet PCs to create hands-on activities and 
virtual manipulatives. Groups’ pedagogical knowledge will be compared using 
pre/post tests, questionnaires and knowledge and attitude surveys. Preliminary 
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observations show that even students who did not improve significantly their math 
content knowledge benefit from using Tablet PCs in terms of mathematical 
pedagogy. They become more creative in developing hands-on activities, become 
very confident in searching the Internet and develop good skills to critically analyze 
existing mathematical activities posted on the Internet.  
Another important aspect that will be studied is how well the collaboration helps pre-
service teachers to learn mathematics and pedagogy. Collaboration is recognized as 
an important forum for learning (Bransford, J. D., Brown, A. L., Cocking, R. R., 
Eds., 2000.), and research has demonstrated its potential for improving students’ 
problem-solving and learning (Slavin, R. E, pp. 145-173, 1992, Johnson, D. W. and 
Johnson, R. T., pp. 23-37, 1990). In both treatment and control groups students are 
working in teams. However in the treatment group Discourse software is extensively 
used for teaching, learning and assessment by both faculty and students. Important 
feature for collaboration evaluation is “chat” option. Students are encouraged to chat 
only on the topics discussed in the class session. These chats can be saved in the 
archive file and then be analyzed to evaluate the level of cooperation, team members’ 
participation in collaborative work on the project as well as level and complexities of 
content questions asked. 
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What can be learned from metacognitive guidance in mathematical online 
discussion? 

Bracha Kramarski 
School of Education, Bar-Ilan University, Israel 

E-mail: kramab@mail.biu.ac.il 
 
This study compares two mathematical online learning environments: Online learning supported either with 
explicit metagognitive guidance (MG) or with no metagognitive guidance (NG). The metacognitive guidance 
was based on three aspects: Using the IMPROVE self-metacognitive questioning method for problem solving 
(Kramarski & Mevarech, 2003), discussing features of mathematical explanations, and practicing ways of 
providing online feedback. The effects were compared between mathematical online problem solving of a 
real life task and students’ mathematical and metacognitive discourse. Participants were 79 ninth-grade 
students in Israeli junior high schools. Results showed that MG students significantly outperformed the NG 
students in online problem solving with regard to mathematical explanations. We also found that the MG 
students outperformed their counterparts in various criteria of mathematical and metacognitive discourse. 
The practical and theoretical implications of supporting online learning with metacognitive guidance will be 
discussed at the conference. 

 
Introduction 

New advances in technology have brought challenges and opportunities to 
mathematical education and instruction methods. Online environments provide 
students with dynamic, interactive nonlinear access to a wide range of information 
represented as text, graphics, and animation as well as to self-directed learning in 
online discussion (e.g., Jacobson & Archodidou, 2000). 
Discussion mediates shared meaning. Through critically examining others’ reasoning 
and participating in the resolution of disagreements, students learn to monitor their 
thinking in the service of reasoning about important mathematical concepts (e.g., 
McClain & Cobb, 2001). Online discussion allows asynchronous exchanges and 
permits both one-to-one as well as one-to-many interactions. The students exhibit 
motivation, learn independently, and transfer and apply the knowledge to real-life 
situations. Learning in such an environment requires students to self regulate their 
learning; that is, to make decisions about what to learn, how to learn it, when to 
abandon and modify plans and strategies, and to increase effort. Specifically, students 
need to analyze the learning situation, set meaningful learning goals, determine which 
strategies to use, assess whether the strategies are effective in meeting the learning 
goal, evaluate their emerging understanding of the topic, and determine whether the 
learning strategy is effective for a given learning goal. Students’ need to monitor their 
understanding and modify their plans, goals, and strategies (e.g., Zimmerman & 
Schunk, 2001). However, research indicated that too few students are skilled at 
regulating their learning to optimize self-directed learning. For the most part, studies 
have found that students learn little in online environments and they do not deploy 
key self-regulatory processes and mechanisms such as effective cognitive and 
metacognitive strategies during learning (e.g., Azevedo & Cromley, 2004). 
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Recent research has begun to examine the role of students’ ability to regulate several 
aspects of their cognition, motivation, and behavior during learning environments 
with explicit metacognitive guidance as self-questioning and providing feedback 
(e.g., Azevedo & Cromley, 2004; Kramarski & Mizrachi, in press; Kramarski & 
Mevarech, 2003). 
There is little research in the field of mathematics to accurately determine the benefits 
and pitfalls of new technology such as online discussion particularly when compared 
to a learning environment embedded with metacognitive guidance. Gaining 
knowledge about process and outcomes of online discussion with and without 
metacognitive guidance, help educators and researchers to gain insight on students’ 
problem solving of real-life task and online discourse. 
The purpose of the study is two-fold: (a) To investigate the ability to solve online 
real-life tasks of students’ who were exposed either to metacognitive guidance (MG) 
or with no such guidance NG; and (b) to examine the online discourse of students’ 
who were exposed to these instructional guidance with regard to mathematical and 
metacognitive aspects. 
 
Method 

Participants 

Participants were 79 (boys and girls) ninth-grade students who studied in two classes 
within one junior high school in central Israel. Each instructional approach was 
assigned randomly to one of the classes. No statistical differenced on a mathematical 
pre test were found between the two groups (M=83.30; SD=16. 80; M=80; 
SD=15.70; t(78)= 2.01; p>.05). 
 
Measurements 

The study utilized two measures: (a) an online real life task; and (b) online discourse. 
(a) An online real life task 
A real-life task was administrated in online discussion adapted from PISA (2003). 
The task describes an orchard planted by a farmer. The students are asked to find 
patterns in change and relationships by comparing the growth of apple trees planted 
in a square pattern and conifer trees planted around the orchard and to explain their 
reasoning. Relationships are manipulated in a variety of representations, including 
graphical, tabular, and symbolic. 
Scoring: Each item on the task was scored from 0 (not responding, or wrong 
response) to 1 point (correct answer/explanation). The scores were translated into 
percents. The quality of explanations were analyzed based on two criteria of 
arguments: Mathematical arguments (e.g., formal or daily arguments); and 
Procedural arguments (e.g., calculation example). 
(b) Online discourse 
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Students’ online discourse during the solution of the real-life task was analyzed in 
two aspects: Mathematical discourse and metacognitive discourse. Mathematical 
discourse refers to four criteria: Number of statements, mathematical terms, 
mathematical representations and final solution. Metacognitive discourse refers to 
three criteria: Errors identification, process description and mathematical 
explanations. 
Scoring: Sum of references provided to each category during the online discussion 
was calculated. 
 
Instructions 
General online discussion instructions: Students from both groups (MG & NG) 
participated in an asynchronous forum based on problem solving discussion of real-
life tasks. Students practiced problem solving in pairs for a four-week period once a 
week in the computer lab (45 min). Three stages were implemented in the online 
discussion: First, each pair were asked to solve the task and to send the solution to 
another pair online as a text in the forum. Second, each pair were asked to provide 
and receive feedback to the solution from a counterpart pair. During the third stage 
each pair corrected the solution and sent it as a text to the forum and as an attachment 
file to the teacher. The teacher encouraged students to be engaged in the whole forum 
discussion by providing mathematical explanations and feedback, and resent their 
corrected solutions. 
Metacognitive online discussion guidance: The metacognitive guidance was based on 
two parts: The first part was based on the IMPROVE metacognitive questioning 
method (Mevarech & Kramarski, 1997 and Kramarski & Mevarech, 2003) and the 
second part was based on practicing explicit strategies for providing mathematical 
explanations and feedback. The IMPROVE method utilizes a series of four self-
addressed metacognitive questions during problem solving: Comprehension, 
connection, strategic, and reflection. 
Comprehension questions prompted students to reflect on the problem/task before 
solving it (e.g., “What is the problem/task all about?”); Connection questions 
prompted students to focus on similarities and differences between the problem/task 
they worked on and the problem/task or set of problems/tasks that they had already 
solved (e.g., “How is this problem/task different from/similar to what you have 
already solved? Explain why”). Strategic questions prompted students to consider 
which strategies were appropriate for solving the given problem/task and for what 
reasons (e.g., What strategy/tactic/principle can be used in order to solve the 
problem/task?" and WHY). Reflection questions prompted students to reflect on their 
understanding during the solution process (e.g., “What am I doing?”; “Does the 
solution make sense?”). 
In the second stage students were engaged in a discussion about the question “what 
does it mean to provide a good mathematical explanation”. They were exposed to 
features of mathematical explanation such as, mathematical expressions, 
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representations, conclusions and clarity. In addition, students practiced how to 
provide feedback technique by reflecting and discussing examples. The 
metacognitive questions and instructions on how to provide explanations and 
feedback were printed on an index card and students referred to this guidance in the 
following circumstances: During their turn to solve the task, during the discussion 
about the solution, and their providing explanations and feedback regarding peers’ 
solutions. 
 
Results 

The primary purpose of our study was to investigate students’ online real-life 
problem solving with regard to mathematical explanations. 
 
Table 1: Means1, and standard deviations on online real-life task by method of 
guidance 
  MG 

N=43 
NG 
N=36 

F(1,77) 

Means 86.68 74.46 Problem 
Solving S.D 19.90 26.87 

7.98* 

Means 39.93 27.90 Mathematical 
explanations S.D 21.09 21.17 

9.94* 

Note: 1range 0-100; *p<.001 
 
We performed a one-way ANOVA on real-life task scores. Results indicated that the 
online MG students significantly outperformed their counterparts (NG) on 
mathematical problem solving and providing mathematical explanations. In addition, 
we found that at the end of the study more MG students provided mathematical 
arguments than the NG students (72%; 50%, t(77) = 3.97, p<.05 respectively), 
whereas no significant differences were found between the two environments on 
procedural arguments (17%; 20%, t(77) = 0.57, p>.05 respectively). 
The second purpose of our study was to examine students’ online discourse with 
regard to mathematical and metacognitive aspects. 
 
Table 2: Means1, and standard deviations on online mathematical discourse by 
method of guidance 

  MG 
N=43 

NG 
N=36 

F(1,78) 

Mean 5.44 .94 Number of 
statements SD 3.38 1.28 

29.80* 
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Mean 1.39 .44 Mathematical 
terms SD .90 .50 

17.82* 

Mean 11.04 .15 Mathematical 
representations SD 15.71 .02 

11.15* 

Mean 18.22 12.03 Mathematical 
solution SD 19.72 26.31 

2.05 

Note: 1range: Sum of references provided to each category. *p<.001 
 
We performed a MANOVA and an ANOVA on each criteria of mathematical and 
metacognitive discourse. Table 2 indicated that the MG students significantly 
outperformed their counterparts (NG) on mathematical discourse regarding three 
criteria of providing feedback: Using number of statements, mathematical terms, and 
reference to mathematical representations. No significant differences were found on 
providing feedback regarding the final solution. 
 
Table 3: Means1, and standard deviations on online metacognitive discourse by 
method of guidance 
 
  MG 

N=43 
NG 
N=36 

F(1,78) 

Mean 2.40 .13 Errors 
identification SD 6.11 .04 

5.39* 

Mean 7.84 4.17 Process 
description SD 14.15 12.67 

2.8 

Mean 16.64 4.17 Mathematical 
explanations SD 19.18 12.68 

5.53* 

Note. 1range: Sum of references provided to each category. *p<.05 
 
Similarly, Table 3 indicated that the MG students significantly outperformed their 
counterparts (NG) on metacognitive discourse regarding two criteria of providing 
feedback: Errors identification, and mathematical explanations. No significant 
differences were found on providing feedback regarding process description. 
 
Discussion and conclusions  

Our findings indicated that metacognitive guidance in an online learning environment 
might be a vehicle for students’ mathematical problem solving and discourse. There 
are possible reasons for the beneficial effect of the metacognitive guidance. It seems, 
that IMPROVE guidance integrating with discussion about mathematical 



 

 308 

explanations and providing feedback might help students access and interact with the 
content functionality, think about the deeper concepts and structure of disciplinary 
relations, and avoid superficial details. Our findings extend other findings in non-
technology environments which indicated that the IMPROVE method had a cognitive 
effect on students' mathematical reasoning (e.g., Kramarski & Mevarech, 2003). 
We recognize the need to understand more about how mathematical problem solving 
and students’ discourse emerge in different advanced technology environments. Our 
study focuses on questions such as how do students learn mathematics with 
technology and what mathematics do they learn. The metacognitive framework, 
findings and implications will contribute to the discussion of theme 3 (contribution to 
learning mathematics). 
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HALF-BAKED MICROWORLDS IN CONSTRUCTIONIST TASKS 
CHALLENGING TEACHER EDUCATORS’ KNOWLEDGE 

Chronis Kynigos, Educational Technology Lab, Dept. of Education, School of 
Philosophy, University of Athens, Greece 

kynigos@cti.gr 
 
This paper illustrates how five teacher educators in training were challenged with 
respect to their epistemology and perceptions of teaching and learning mathematics 
through their interactions with expressive digital media during a professional 
development course. The research focused on their experience of communally 
constructing artifacts and their reflections on the nature of mathematics and 
mathematics teaching and learning with digital media. We discussed three different 
ways in which this media was used by the teachers; firstly, as a means to engage in 
techical-applied mathematics to engineer mathematical models; secondly, as a 
means to construct models for students to engage in experimental-constructivist 
activity; thirdly, as a means to engage in a discussion of a challenging mathematical 
problem. 

 
This paper addresses theme 3 and in particular the kind of professional 

development programs which might be appropriate to prepare teachers for using 
mathematical microworlds in their classrooms. It discusses ‘half-baked microworlds’ 
as tools in tasks designed to generate teacher educators’ reflection on pedagogy and 
mathematical ideas based on the experience of jointly constructing and re-
constructing such microworlds. Half-baked microworlds are programmable pieces of 
software designed so that teachers would want to build on them, change them or de-
compose parts of them in order to carry out some mathematics for themselves or to 
build microworlds for students. They are meant to operate as starting points, as idea 
generators and as resources for building or de-composing pieces of software. They 
are not built and presented as ready made environments to be understood by the 
teachers and then used by students. Instead, the point is to change and customize 
them and thus to gain ownership of the techniques and the ideas behind microworld 
construction. A crucial characteristic of half- baked microworlds is that they invite 
construction and re-construction of structural parts of the software, i.e. they are not 
just ‘containers’ of content which teachers can put in or take out. They are thus based 
on technological platforms which allow for deep structural access (diSessa, 1997). It 
is the very nature of the structure and the tools for structural change which are an 
integral part of the mathematics at hand. The platform used in the study described in 
this paper is ‘E-slate’ (Kynigos 2004, 2002), a programmable construction kit similar 
to diSessa’s ‘Boxer’, but different in that the elements for construction are generic 
pieces of software themselves (diSessa, 2004).  

In this paper, I describe the process by which one of these E-slate half-baked 
microworlds was developed and changed within respective tasks in a course for 
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teacher educators, focusing on its potential for generating mathematical, pedagogical 
and professional reflections amongst them. The paper is a synopsis of alarger paper 
describing this research and including different half baked microworlds.  

The study was carried out within the context of an innovative systemic 
initiative to employ three university sites to prepare experienced teachers to take on 
the role of teacher educators in the use of ICT in educational practice. At the 
Educational Technology Lab, , these teachers participated in courses, constructed 
digital artefacts and corresponding materials for student learning and engaged in 
teacher education courses as part of their training. A particular aspect of the 
pedagogical design of the course was to support these teachers to acquire some 
experience not only with the technology but most importantly with pedagogical 
knowledge about constuctionist (Papert et al, 1991) experiential mathematics and at 
the same time with the process of joint reflection on the practice of this kind of 
mathematical activity. Korthagen and Kessels (1999) discuss Aristotle’s notion of 
episteme versus phronesis, i.e. theoretical de-contextualized knowledge applicable to 
a wide spectrum of situations versus situation – specific knowledge derived directly 
from experience within that situation and aimed at meeting a problem within the 
situation itself. In arguing for a realistic teacher education pedagogy, they suggest 
that building on teachers’ phronesis is critical to their understanding a theory and 
most importantly in building a constructively reflective habit of mind in the teachers, 
helping them perceive their profession as a developing one. Our particular focus was 
on the ways in which half-baked microworlds designed as tasks for doing 
mathematics with, were used in phronesis-generating situations, i.e. within the 
process of action, discussion and reflection during the course. My agenda for 
supporting these kind of situations was formed mainly because of the context of the 
Greek Education system where a frontal encyclopedic and revelatory educational 
paradigm coupled with minimal teacher education mechanisms makes it very hard 
for such mathematical activity to be understood, valued and practiced.  
Context 

Describing the context in which a course like this is situated is a complex thing 
to do, since one can select a large variety of contextual characteristics, from the 
macro-level of the educational system and the cultural – historical and political time 
in which the course took place, to the specifics of the institutional dynamics and the 
roles of the actors engaged in the course. The course described here, for instance, was 
in itself an innovation within the Greek education system.  

The context of this system is characterized by a centralized nation-wide 
administration coupled with a single national curriculum. In this sense, the teacher is 
placed in the role of the technical implementer of this curriculum rather than in the 
role of a professional implementing a developing personal pedagogy. With such 
constraints, it is very hard to distinguish innovation from systemic reform, and it is 
difficult to imagine individual teachers involved in curriculum design and in trying 
out alternative teaching methods, both of which were central to the aims of the 
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course. Furthermore, at the secondary level there is almost non-existent teacher 
education at both pre-service and in-service levels, only some optional courses are 
provided in undergraduate programs, while at in-service level there is mainly a range 
of Masters’ level university based courses. It would be thus fair to suggest that from 
a systemic point of view, the teacher profession is considered as that of a non-
developing practitioner. In this kind of context, it was unlikely that teachers would 
start constructing things with a piece of educational technology unless this was done 
through starting up a program for teacher education that aimed to institutionalize not 
only the use of technology in schools, but also the idea of teacher professional 
development supported by the system.  

The course was a constituent element of a middle-scale initiative from the 
Ministry of Education involving the installation and use of digital technologies in 
10% of secondary schools (‘Odysseia’ project1, Maritsas et. al., 1992). The objective 
of the teacher education course described here was to train experienced teachers, 
selected by the Ministry of Education, to become teacher educators in the use of 
digital technologies for teaching and learning in their respective subject. It was one 
out of three such courses funded by the Odysseia project and was carried out by the 
(Author’s site). During and after completion of the course, these teacher educators 
were relieved from their school duties and given the task to engage in in-service 
teacher education programs in 3-5 schools neighboring their own.  

The course at the (Author’s site) was thus designed on the premise that, from 
an educational point of view, digital technologies can at best provide the educational 
community with sources of information and media for communication and 
expression (Author, 2001). With respect to mathematics education, if this technology 
is put to educational use it may support richer learning activity based on symbolic 
expression, construction, experimentation, investigation, data handling. It may also 
support the generation of social learning modes where authentic questioning, 
research, use of human and artificial feedback, argumentation become recognized 
and valued in school. A course to train teacher educators would thus need to perceive 
teacher education as a systematic, life–long professional development activity 
addressing teachers’ epistemologies, practices, pedagogies and subject–related 
knowledge. It would entail teachers supported to adopt the role of reflective 
practitioners personally engaged in co-implementing the innovation. This role for 
teacher educators cannot be prescribed and handed to them by their administration 
when it constitutes such an innovation. Rather, it needs to be actively claimed and 
shaped through practice.  

The project (code name ‘E42’) involved a year - long course2 to train 15 
selected secondary teachers (five from each mathematics, science and humanities 
disciplines). The aim of the course was a) to provide the teachers with methods; 
knowledge and experience in in-service school based teacher education, and b) to 
educate them in the pedagogical characteristics and uses of exploratory software and 
communication technologies. The E42 project involved a “sandwich” course where 
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teachers would alternate between full time presence at the University and practice at 
in-service teacher education in three schools to which they were each assigned. The 
content of the course ranged from teacher education methods to teaching and 
learning with subject specific exploratory software. In this paper, the focus is on 
work with the five mathematics teachers.  
Technology  

During the course, the five mathematics teachers worked with four kinds of 
digital media for learning mathematics:  

Data handling software (they used ‘Tabletop’, see Hanckock, 1995) 
CAS software (they used Function Probe, see Confrey, 1993) 
DGS software (they used Geometer’s Sketchpad, Jakiw, 1991) 
Programmable microworlds software (they used Turtleworlds and E-slate 

software, see Author, in press)  
In this study, the focus is on the teachers’ work towards the end of the course, 

when they were learning to use the fourth category. During the whole of the course, a 
central feature of the method used to encourage the teachers’ engagement with and 
appropriation of the technology, was to start each time with what we called ‘a half-
baked microworld’. Half-baked microworlds are pieces of software designed so that 
the teachers would want to build on them, change them or de-compose parts of them 
in order to carry out some mathematics for themselves or to build microworlds for 
students. They are meant to operate as starting points, as idea generators and as 
resources for building or de-composing pieces of software. In a sense, they operate 
like diSessa’s toolsets (diSessa, 1997) in that they are not built and presented as 
ready made environments to be understood by the teachers and then used by students. 
Instead, the point is to change and customize them and thus to gain ownership of the 
techniques and the ideas behind microworld construction as outlined earlier. In this 
paper, I describe the process by which two of these half-baked microworlds were 
developed and changed through the experience of the course, focusing on its 
potential for generating mathematical, pedagogical and professional reflections 
amongst the teachers.  
Method 

A design research method was selected as appropriate for the study, the 
researcher taking on the role of participant interventionist. The data collected 
included research journals, the to-be educators’ reports from their pilot courses with 
colleagues, the instructor’s reports on observations of a sample of these courses, a 
semi-structured interview on their perceptions of mathematics and mathematics 
teaching with digital media and the various versions of the software they constructed. 
The analysis of the data is presented in the form of a story addressing a key aspect of 
the research findings. The research focused on the trainee teacher educators’ 
experience of communally constructing artifacts and their reflections on the nature of 
mathematics and mathematics teaching and learning with digital media. The story 
respectively discusses the way in which this media was used by the teachers; firstly, 
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as a means to engage in technical-applied mathematics to engineer mathematical 
models; secondly, as a means to construct models for students to engage in 
experimental-constructivist activity; thirdly, as a means to engage in a discussion of a 
challenging mathematical problem.  
A half-baked microworld: creating functional relations between number lines 

The ‘connected number lines’ microworld consists of a series of sliders 
connected through Logo scripts so that moving the pointer on the first would result in 
a mathematically related corresponding movement on the others. The version the 
teachers started with had an additive relationship between first and second slider 
(+100), a multiplicative one between first and third (x2) and an exponential one 
between first and fourth (power of 2). In that sense, the first slider ‘x’ is the 
independent variable in three distinct cases. In each of these, sliders y, z and w are 
respectively the dependent variables in the three corresponding functional 
relationships. The interesting aspect of this microworld is the representation of 
function in one dimension rather than two in an ortho-canonical system. Since the 
number lines are aligned, dragging the cursor on the x slider causes simultaneous 
movement on the others. The additive function resembles a movement where x and y 
have the same velocity, the multiplicative function resembles y moving at greater but 
constant speed than x and the exponential one resembles acceleration. The 
microworld thus provides a sense of the ‘effect’ the independent variable has on the 
dependent one in each case.  

So, in this teacher educator course, the strategy was not to provide the 
participants with exemplary tools to master, but rather to engage them in situations 
where phronesis (in the sense of Korthagen and Kessels, 1999) would be built, as a 
result of their own experiences with designing courses with the technology. The half-
baked microworld was thus designed as phronesis – generating tool, in the sense that 
it was not imposed on the participants as exemplary or complete case. What they 
would do with it was left open at the beginning, so that discussion and challenge 
related to constructivist learning theory would emerge from pragmatic situations. 

Findings: Teachers’ theoretical mathematics  

The teachers were shown the half-baked connected number lines microworld. 
They were shown by the instructor how the sliders-number lines were connected 
through the E-slate authoring mechanism of writing Logo scripts defining the 
connections between component pieces of software, which in this case were 
replicates of one simple such component, the slider. The commands of the script 
were shown and explained and subsequently, the behavior of the software and the 
didactical design behind it was discussed. The idea of what the slider representations 

‘this is a framework which aims to engage the students in the activities through 
problem solving, the problem being within the framework of the curriculum… to 
engage students in generalization processes’. 
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show seemed interesting and teacher B referred to the idea of rate of change which he 
had read in a math education paper by Kaput. That is, that the slider connected with a 
multiplicative function seemed to go steadily faster than the independent one, 
whereas the one connected with an exponential function seemed to behave very 
differently. The teachers were then asked to think up microworlds of their own, based 
on the connected slider idea.  

Not surprisingly, at first, focus was on re-creating a connection between two 
sliders so that the syntax and the mechanism would be understood. Soon however, 
the discussion centered on the mathematical relations between the sliders. What kind 
of representation do the sliders provide? How can we make something interesting 
happen? A teacher then had the idea of composite functions, i.e. making one slider 
dependent on the next and so forth. They inserted a functional relationship of x-1 
between first and second slider and another of 3x between second and third and 
observed what happened when moving the first. In mathematical notation terms, we 
have: f(x) = x-1, g(x) = 3x, f(g(x)) = 3(x-1). In slider notation terms we have: sa, 
sb=sa-1, sc=3sb (sa, sb, sc are the slider names respectively). The discussion centered 
for a while on what kind of tasks we could give to students. For instance, if slider sa 
has a range of 30, what range should slider sb have so that the pointer covers it when 
we drag the pointer of slider sa the whole distance? How can I make a currency 
conversion machine (drachmas to euros)? 

At some point, however, this style of designing exercises for their students 
suddenly changed. Teacher B suggested trying to create a model of an interesting 
mathematical investigation he himself was engaged in a short while back involving 
fractal geometry. Teacher B was the ultimate ‘bricoleur’ (do it yourself) personality. 
He enjoyed using technology and spent a lot of time developing elaborate 
constructions especially with Geometer’s Sketchpad. He perceived computers to be 
“a tool to play with ideas” as he said during the interview. Also that ‘mathematics is 
a means for solving any problem, it’s creative. It’s an interplay between theory and 
practice’. However, he was quite overwhelmingly proficient in relation to the other 
teachers. This influenced his teacher education pedagogy, at least at the beginning as 
shown by one of the instructors’ reports.  

The other teachers agreed to build the model suggested by teacher B. He 
explained the problem, which involved the process of repeatedly forming the 
composition of a function with itself. He represented that by starting with an 
independent slider and then consecutively linking sliders, each taking double the 
value of the immediately previous one. What is formed in this way, is a series of 

Teacher B (instructor’s report): He himself organized what the topic and the 
precise use of the software would be. This was good because it helped focus on 
specific functionalities of the software. However, it did not allow the trainees to 
act personally and to make decisions on what functionalities they needed for the 
activity.  
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compositions starting from the function f(x)=2x, then onto f1(x)=2(f(x))=22x, then 
onto f2(x)=2(f1(f(x)))=23x and so on. By placing these sliders in vertical alignment, 
the slider cursors represent the values of x. The formation of these cursors is 
equivalent to the graphical representation of plotting the number of iterations with 
the value of fn(x). In teacher B’s representation, the variation tool was inserted (the 
emergent connecting of pieces of software as a microworld construction progresses is 
characteristic of E-slate authoring, see Kynigos, 2004) to signify the value of the 
parameter, in a generalization of the problem where the initial function is f(x)=ax. 
What was interesting and was part of teacher B’s reading and investigating, is that for 
a given value x, changing the value of the parameter created different cursor patterns.  

The teachers discussed the mathematical issues in theoretical terms, away from 
the medium, occasionally sketching on paper. However, this whole discussion was 
initiated from selecting a problem which was interesting and challenging to them as 
mathematicians (from a mathematical, not an educational/teaching point of view), 
representing it with a digital medium so that it could be dynamically manipulated. 
The manipulation ignited discussion on the behavior of the representation which 
quickly went on to a discussion of the mathematics behind it.  

Being immersed in an activity where the mathematics itself was a challenge 
may have allowed the teachers to feel what doing mathematics is like. Even though 
teacher D had stated that ‘new knowledge comes form the teacher and the book’, in 
another part of the interview, he allowed for students’ generation of mathematical 
meaning through experimentation with the tool.  

In discussing his own teacher education pedagogy, he also referred to the value 
of teachers’ experiences in using computers and in mathematical pedagogy based on 
experiential learning with this technology. 

So, the use of this story was not to point out that such experience will in itself 
change teachers’ beliefs in a predictable and reproducible way. Rather, stories like 
that constitute situations rich in potential for phronesis-style experiences to take 
place. This is because they are based on construction and representation activity with 

Teacher D (interview): There are times when the student discovers things from 
trying them out on the computer and observing what happens. I’ve seen students, 
because of the tool, find solutions which were unexpected, yet they were correct. 
Once, the teacher I was observing scolded a student for doing his own thing. That 
teacher was greatly surprised when he realized that the solution was correct, after I 
had pointed this out to him.  

Teacher D: For teacher education to take effect, the teacher needs hands-on 
experience with the tool.  
Teacher D: I believe computers will be widely used when teachers understand that 
this tool differs from the classical method when everything had to do with the 
teacher’s brain. 
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the software and on discussion related to the constructs and their designed use. An 
integral and crucial part of the activity was the interchange of roles played by the 
teachers which in this case was model constructors, microworld designers and 
mathematicians. Bringing these changes into awareness and turning them into 
material for reflection operated as a means for associations with different aspects of 
pedagogical knowledge. The pedagogical milieu orchestrated by the instructor is of 
course crucial to the emergence of clear associations with episteme style knowledge 
and the potential for that knowledge to be put to use in subsequent teaching.  

The research shows how the emergence of these uses was a process which 
challenged teachers’ knowing with respect to teaching and learning mathematics, but 
also regarding their view of the nature of mathematics itself. In a sense, it was the 
process of experience with the half-baked microworld which seemed to play a critical 
role in bringing genuine mathematical discussion and activity into the context of 
professional practice. In parallel, the same process encouraged reflection on 
mathematical teaching and learning issues. In that sense, I argue that constructionist 
mathematics may not necessarily be an agenda only for student tasks. There is a 
place for constructionist mathematics in task design in contexts where the 
pedagogical agenda for teacher education is the generation of knowledge based on 
phronesis. What this study suggests is that it might be worthwhile to consider this 
perspective as a design factor for tasks in teacher educator development contexts.  
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The question addressed by this contribution is how teachers organize the conditions 
for an instrumental genesis and to what extent they foster mathematics learning 
through an instrumental genesis, in the case of geometry learning and teaching 
based on the use of a dynamic geometry software. The contribution is based on a 
French project aimed at studying the integration processes of dynamic geometry at 
primary school and the beginning of middle school. 
Integrating ICT into teaching and especially the teaching of mathematics is supported 
by official institutions for education in several countries. It is now well known that 
such a political will is not a sufficient condition for a real integration of digital 
technology into the everyday teaching practice. The present paper addresses the 
problems teachers are faced with in a context of institutional support of use of 
technology when they make practical decisions for organizing the use of technology 
in their teaching. This issue is discussed on the basis of a research project developed 
in France. There is currently in France an institutional injunction for using ICT in the 
teaching. However there is still a long way until teachers view technology as a tool 
for fostering learning. In our approach, we consider that teachers are faced with a 
professional problem. They must turn institutional demands into everyday decisions 
by making choices within a system of constraints.  
The aim of our contribution to ICMI study 17 is to make explicit the constraints and 
conditions of integration of digital technology into the teaching practice and by 
means of theoretical tools to propose indicators allowing researchers to evaluate the 
degree of this integration in a teaching practice. The focus will be on the instrumental 
dimension (Artigue, 2002). We refer here to the theoretical approach developed by 
Rabardel and Vérillon (1995) according to which the individual must learn how to 
use a tool (or an artifact) for carrying out a task by means of the tool. When the tool 
is complex and offers the possibility of performing operations referring to theoretical 
domains, this process of instrumental genesis may be long and may need the help or 
intervention of a more expert person. What we would like to stress here is that, as 

                                           
41 We are grateful to the French Ministry of Education supporting this project with the status of a 
Technological Research Team in Education called MAGI (Mieux Apprendre la Géométrie avec 
l’Informatique) 
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technology involved in mathematics education embodies mathematics, the technical 
and the conceptual parts are intrinsically intertwined (Artigue ibid.): the use of 
technology shapes the knowledge constructed by students (Hoyles et al. 2004). The 
question addressed by this contribution is how the teachers organize the conditions 
for an instrumental genesis and to what extent they foster mathematics learning 
through instrumental genesis in the case of geometry learning and teaching.  
Our contribution comes within the theme « Teachers and teaching » by addressing 
the two following questions: “What theoretical frameworks and methodologies 
illuminate the teacher’s role in technology-integrated environments for mathematics 
teaching?” and “What kinds of pedagogical approaches and classroom organisations 
can be employed in technology-integrated environments and how can they be 
evaluated?”  
Context of the research work 

It is carried out in the frame of a national project (Technological Research Team in 
Education) entitled MAGI (“Mieux Apprendre la Géométrie avec l’Informatique”, in 
English “Better Learning of Geometry with Computers”). The project is a 
development and research project involving twenty researchers, teacher educators 
and teachers divided into groups located in different places in France: It is aimed to 
study the integration processes of dynamic geometry software, namely Cabri-
geometry, into ordinary teaching contexts at primary school and beginning of 
secondary school. The project consists of two parts:  
designing and implementing scenarios of use of Cabri in several classes of primary 
and secondary schools (in about ten classes) 
study of the impact of teacher preparation sessions to the use of Cabri onto their 
classroom practice. 
Dynamic geometry is conceived in this project as a tool for helping students to move 
from a purely visual conception to the construction of geometrical theoretical 
concepts such as collinearity, perpendicular, parallel, congruence… Therefore the 
school levels, primary school and the beginning of secondary school, were chosen. 
The entry to a « theoretical geometry » must be prepared in France at primary school 
and achieved in the first years of secondary school. In addition, geometry is not a 
favoured subject for primary school teachers who view the teaching of geometry as 
essentially the teaching of a vocabulary and not as the construction of a coherent 
model of spatial phenomena and objects. Dynamic geometry can change their view 
of geometry and motivate them for changing the teaching geometry. This is why it 
seemed particularly interesting to investigate the integration of dynamic geometry at 
this school level. 
Theoretical framework: mode and degree of instrumental integration 
Our analysis of technology integration into teaching is based on a multidimensional 
approach (Assude & Gélis 2002, Artigue 2001, Guin & Trouche 2004, Lagrange 
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2001, Trouche 2005) that takes into account several dimensions: epistemological, 
cognitive as well as instrumental, institutional and anthropological.  
What do we mean by “degree of instrumental integration”? It measures to what 
extent mathematical knowledge and knowledge of handling a tool are intertwined in 
the organization of the instrumental genesis by the teacher. We could consider that it 
can take any value in a continuum from zero to one, zero meaning no integration at 
all and one the highest level of integration. However it is difficult to assign such a 
precise degree to an observed teacher practice and we prefer to define modes of 
integration, characterizing a teacher practice on a period of time, a session or part of 
a session, or sequence of teaching sessions. 
To determine these different modes, we use several indicators:  

• focus of the tasks given to pupils: is the focus on the tool or on mathematics?  
• techniques for solving these tasks: do they come mainly within mathematics or 

technology or within both, or in other words does the task require mainly 
instrumental abilities (IA) or mainly mathematical knowledge (MK), or both 
are equally important?  

• extent of the intertwining of instrumental abilities and mathematical 
knowledge involved in the task (IA/MK).  

Until now we propose to distinguish four modes of integration: instrumental 
initiation, instrumental exploration, instrumental reinforcement, instrumental 
symbiosis. We distinguish between two cases of instrumental abilities: either pupils 
are beginners or novice in using the artifact (low IA or no IA) or they already have 
got knowledge of the artifact but they have not yet a good knowledge how handle all 
the facilities (average IA). 
Pupils are beginners: 
In the instrumental initiation, the teacher’s aim is mainly that the pupils learn how to 
use the technology (pupils must learn some IA). Pupils are given tasks focusing on 
the way to use Cabri. The relation between IA and MK is minimal. 
In the instrumental exploration, the teacher aims at improving both some IA and 
MK. Pupils explore the technology through mathematical tasks. The relationship 
between IA and MK can vary according to the mathematical task and to the content 
teacher interventions: the teacher may just give information items of how to use a 
specific facility of the artifact or (s)he may express links between IA and MK. 
Pupils are already introduced to handle the artifact:  
In the instrumental reinforcement, pupils are faced with instrumental difficulties 
when solving a mathematical task. The teacher gives them elements of information 
about how to use a specific item of the artifact to allow them to overcome the 
technical difficulties. The teacher’s aim is improving mathematical knowledge. The 
relationship between IA and MK may vary according to the way the teacher 
formulates his/her help for using the artifact (see below § 4.1 the case of Robert on 
regular polygon).  
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In the instrumental symbiosis, pupils are faced with mathematical tasks that allow 
them to improve both their IA and MK because these ones are connected. The 
relation between IA and MK is maximal: each one allows the other to increase and 
the connection between paper-pencil work and Cabri work is strong. An example of 
such symbiosis is the construction of a square with given side AB. The difficulty of 
the task essentially lies in using a circle as a tool for transferring length and thus 
conceiving a circle as a set of points equidistant of a given point.  
These different modes of instrumental integration led us to classify the integration 
practices from the lowest level (where the only instrumental integration taken into 
account is the instrumental initiation) to the highest level (where the different modes 
are taken into account according to the adequacy of the moment).  
Characterizing the design of a sequence by means of degrees of instrumental 
integration 
Part of the work carried out by the Grenoble subgroup of our team was to build a 
teaching sequence aimed to initiate 11 year-old pupils to deductive reasoning and to 
introduce them to the use of Cabri. Actually, the drag mode in Cabri-geometry 
provides a means for distinguishing between the properties that belong to the 
geometrical figure (hypotheses and their consequences) and the ones that belong are 
valid only for a specific diagram (a particular case). The first ones are preserved by 
dragging and not the second ones. Thus, Cabri-geometry seems to be a relevant tool 
to be used by the pupils at the very beginning of the learning of deductive reasoning.  
Within this purpose, the mathematical learning objectives are strongly intertwined 
with the ability to use the software. In fact, the pupils give a mathematical sense to 
the effects of the dragging as far as they understand the geometrical properties of a 
figure. To reach its objectives related to deductive reasoning, the sequence has to 
support the instrumental genesis that turns the dragging into a pupil’s instrument to 
state about the validity of a geometrical property. For the design of the sequence, we 
paid attention to create a strong interaction between the discovery of Cabri, the 
development of instrumental abilities and the learning of mathematics.  
An example of the design of a task: 
Four diagrams were displayed in Cabri. They have not been obtained by the same 
construction process but they were all looking like a triangle and an inscribed 
quadrilateral in the triangle (Fig.1). The pupils were asked to answer questions about 
parallel or perpendicular lines: are lines BC and GF perpendicular? Are lines GF and 
DE parallel? Are lines EG and DF parallel? To answer, the pupils were supposed to 
move every free point of the diagram and to observe whether the property was 
preserved or not (Figs 2 & 3). This kind of task is possible only after a significant 
work about moving objects and interpreting mathematically what happens on the 
screen. With pupils already introduced to Cabri, this task can be considered as 
coming within instrumental symbiosis. The task is of instrumental and mathematical 
nature: pupils need to decide 1) to drag elements 2) to drag enough points elements in 
order to decide about the validity of mathematical properties. 
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Fig. 1 The initial state of all four diagrams Fig.2 Dragging D Fig.3 Dragging A, B or C  
in one of the diagrams 

 
Dragging D is not enough to state about the parallelism of lines ED and GF. Because 
these lines look always parallel when A, B or C are dragged, pupils must find a 
mathematical reason in the construction program (obtained in Cabri with the facility 
Replay construction): ED and GF were both constructed as perpendicular to line BC 
and dragging D has no influence on the quadrilateral because F is the reflected point 
of D with respect to the midpoint of segment BC. However the relationship between 
dragging and mathematics may strongly vary according to the prior knowledge of 
pupils. Pupils may be attracted by the only fact that “it moves”, once they drag points 
but do not pay attention in a more precise way to what happens while dragging or 
misinterpret the phenomena because they do not relate it to geometrical properties. In 
this case, the expected instrumental symbiosis turns into instrumental exploration 
since the pupils may be considered as beginners with respect to the interpretation of 
drag mode and the aim of the teacher becomes to reintroduce dragging as a tool for 
checking properties. In the same vein, the activity may turn into instrumental 
reinforcement, if pupils do not know how to get information on the construction 
program of the diagram, the teacher may give information about the existence and 
use of the tool “Replay construction” and extend the instrumental abilities of the 
pupils. 
The observation of the teacher during two years showed us that the instrumentation 
of the drag mode takes a very long time. In the first year, it took seven weeks until 
pupils decide to drag points on their own with a mathematical intention. 
When the gap between the planned mode of integration and its actualization in 
classroom is important, it reveals the incomplete instrumental genesis of the pupils 
and thus may be a research tool for analysing the integration of technology.  
Characterizing teachers’ practices with degrees of instrumental integration 
Two subgroups of our project, one in Toulon and one in Amiens, worked with 
primary school teachers who had no knowledge of dynamic geometry before the 
project. They were introduced to dynamic geometry in a short training session (half a 
day) for The Toulon subgroup and in a longer session (one week) for the Amiens 
subgroup. Each group worked with three teachers, in charge of 10 year-old pupils in 
Toulon, and of 9 and 10 year-old pupils in Amiens. The agreement was made with 
the teachers that they would integrate the use of the software in relation to the whole 
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work of their class, that they were completely free to choose activities with the 
software and that the role of researchers was restricted to observing teachers without 
intervening on the choice and the design of the activities as well as on the 
management of the class. We wanted to bring out the conditions and constraints of 
integration of the software by ordinary teachers who had to construct « everything » 
including a relationship with Cabri. Analyses are done by means of observation 
notes, videos, students’ notebooks, and interviews with teachers. The teachers of 
Toulon were observed during one year, those of Amiens during two successive years. 
It is interesting to note that in both subgroups, the number of sessions devoted to the 
use of the software varied according to the teachers: from 5 to 15 sessions in Toulon, 
from 3 to 11 sessions in Amiens. 
Two contrasted cases in the observation of teachers 
These cases were observed by the Toulon subgroup.  
A low level of instrumental integration: the example of Ingrid 
Teacher Ingrid42 proposed two initiation sessions to the pupils. During these sessions 
pupils created and dragged successively a point, a straight line, a circle, a segment 
and they named points. They did it from reading a form indicating all the actions they 
were required to do and there was no collective institutionalization43 of these 
Instrumental Abilities. The teacher did not point at the status of points, and though 
pupils dragged, the teacher did not insist on the interest of dragging to check the 
constructions. 
In these sessions, the type of task was a Cabri task whose aim was to build and drag 
some basic mathematical objects. The relation between IA and MK is minimal. We 
consider that these sessions come within an instrumental initiation. In addition, these 
sessions did not insist enough on the changes in the didactical contract: the function 
of dragging the constructions and the contribution of Cabri to an experimental 
approach of geometry were not expressed at all. Such an initiation is aimed at 
creating mathematical objects on the computer instead of emphasizing the kind of 
work the software allows to do with those objects. In the following sessions the 
teacher was reluctant to use instrumental reinforcement (although it sometimes 
occurred) and instrumental symbiosis.  
The mode of instrumental integration was limited to an instrumental initiation and 
that fact leads us to make the hypothesis that during the first year during which 
teacher Ingrid tried to integrate Cabri software, she did not pay enough attention to 
the instrumental dimension (although there were initiation sessions). From this point 
of view the degree of instrumental integration can be estimated as low. 
A medium level of instrumental integration: the example of Robert 

                                           
42 Teachers are given fictitious names 
43 By institutionalization we mean that the teacher is synthesizing knowledge used in the task, 
which is part of the official knowledge and must be learnt.  
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Teacher Robert did not propose initiation sessions to his pupils. They discovered 
Cabri through exploring the software tools to achieve some mathematical tasks. In 
such a case the IA constitute a tool for mathematical tasks (instrumental exploration) 
but the relation IA/MK is minimal because the link between them was not made 
explicit. The mathematical task proposed by the teacher was to construct the 
perpendicular bisector of a segment. This kind of task as well as the notion itself of 
perpendicular bisector was new for the pupils and the focus of the teacher was on 
solving problems; pupils were expected to make hypothesis on what is a 
perpendicular bisector of a segment by handling Cabri. They also discovered how to 
create a segment, a midpoint of a segment and the perpendicular bisector of a 
segment by exploring the menu items. As the teacher asked them to justify their 
answers, pupils were also faced with other IA, such as measuring a segment or 
checking whether a line and a segment were perpendicular. This instrumental 
exploration can reach its limits if the teacher doesn’t institutionalize some IA at one 
moment or another, and if they remain under the private control of the pupils. 
Later we could observe what we call instrumental reinforcement when teacher Robert 
brought additional information on how to measure segments when they were not 
created as such. The pupils had to construct a square and to check that they obtained 
a square: they used the Cabri tool “regular polygon and wanted to measure the sides 
of a square. In that case, Cabri provides the measure of the perimeter, but not the 
measure of the side of the square. As long as the teacher didn’t inform the pupils that 
they needed to create segments to be able to measure them (IA), they could not 
perform the mathematical task. 
We consider that teacher Robert carried out an instrumental integration of medium 
degree: he took into account several instrumental integration modes according to the 
pupils’ mathematical needs. However he did not institutionalize the instrumental 
abilities needed to perform the mathematical work and he did not take into account 
relations between IA and MK, and relations between Cabri tasks and paper-pencil 
tasks. 
Observation of the instrumental dimension on a teacher long term practice 
In the Amiens group, teachers were observed during two years. This long term 
observation allowed us to observe evolution in the modes of instrumental integration. 
An increase in the level of instrumental integration: the example of Sara 
The first year, the objective of teacher Sara was to come back to geometrical 
concepts studied at the beginning of year in paper/pencil environment while using 
dynamic geometry and construction programs. Sara organised three types of session: 
an initiation session: pupils created and dragged a point, created a segment or a line 
from two points, created and dragged a point on a segment, created the intersecting 
point of two lines. Each action to perform on the software was described on a 
worksheet. Then pupils analyzed the constructed objects to study their properties and 
answer the questions. Finally teacher Sara institutionalized the three kinds of points, 
by linking instrumental abilities and geometrical knowledge. 
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two strongly guided sessions: pupils performed given construction programs (right-
angled triangle, square) in the environment and analysed the obtained constructions;  
eight less guided sessions: pupils had to use these programs to construct or reproduce 
simple diagrams drawn on paper. Pupils had time for searching and teacher Sara 
brought information only when pupils had instrumental difficulties. But Sara must 
bring a lot of instrumental assistance in an individual way. In a collective synthesis, 
Sara established the link between properties of a figure and the used functionalities of 
the software. 
In the first year, the initiation session aimed at both exploring the software 
instructions and improving mathematical knowledge in interaction with instrumental 
abilities. It can be viewed as an instrumental exploration. Later during tasks about 
reflection, teacher Sara gave information to build symmetric points (instrumental 
reinforcement). But there was no relationship between software tasks and paper-
pencil tasks. Furthermore, Sara proposed only construction tasks in which the aim 
was just to obtain a diagram and the software did not contribute to an experimental 
approach of geometry. From this point of view, we consider that the degree of 
instrumental integration is low. 
During the second year, Sara alternated software tasks and paper-pencil tasks. Unlike 
the first year, Sara divided the initiation phase into two parts and in the first part gave 
more written instructions about the use of the software. She didn’t organize any 
collective institutionalization of these instrumental abilities. But then she articulated 
geometrical tasks and software tasks to approach the concepts of circle, reflection 
and parallelogram. The aim was to analyze figures and to make conjectures about 
geometrical properties. On the other hand, Sara proposed less construction tasks than 
the previous year.  
The first part of the initiation phase can be considered as an instrumental exploration 
in which the ratio between mathematical knowledge and instrumental abilities 
became minimal. But in the following sessions, Sara changed the didactic contract: 
the function of dragging the constructions and the contribution of the software to 
support an experimental approach of geometry have been developed. Sara also 
organized instrumental reinforcement when it was necessary to construct new 
geometrical knowledge by means of the software. Even if the same modes were 
observed in the first year and in the second year, Sara changed the organisation of the 
instrumental genesis by increasing the relationship between instrumental abilities and 
mathematical knowledge. 
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Although the first ICMI study was almost exclusively concerned with the integration 
of technology into university-level mathematics, there has been little focus on this 
phase of education as technology-related research has become dominated by school-
level studies. Computer Algebra Systems have quietly become an integral component 
of university-level mathematics, but little is known about the extent of CAS use and 
the factors influencing its integration into university curricula. School-level studies 
suggest that beyond the availability of technology, teachers’ conceptions and cultural 
elements are key factors in technology integration into mathematics teaching and 
learning. In this proposal I report on an ongoing project and summarize results of 
the first phase of this study, which is based on interviews and observations of 22 
mathematicians in three countries, Hungary, UK, and US. In addition, I outline the 
development of the second-phase in which a questionnaire will be sent to a sample of 
3500 mathematicians in the participating countries to investigate the extent of 
current CAS use and to examine factors influencing CAS integration into university-
level mathematics education. My research contributes to the ICMI-17 by considering 
cultural diversity, reflecting on actual uses of technology and addressing potential 
impact of CAS upon mathematics teaching and learning in universities. 

 
The first ICMI study in 1985 reviewed the history, the potentials, the constraints, and 
the impact of computers on mathematics and its teaching and learning (Churchhouse 
et al., 1986). Despite difficulties articulated by several of its authors, the study 
presented an optimistic future for technology integration into mathematics education. 
Some years later, due to increasing accessibility to both computers and calculators, 
Kaput (1992) predicted that technology would become rapidly integrated into all 
levels of education. However, the accumulated evidence of the last fifteen years 
indicates that this prediction has not been realized with technology still playing a 
marginal role in mathematics teaching and learning (Cuban, Kirkpatrick, & Peck, 
2001; Ruthven & Hennessy, 2002).  
 

The first ICMI study was almost exclusively concerned with the integration of 
technology into university-level mathematics (Holton, 2001). More recently, despite 
a small number of studies reporting on innovative technology-assisted teaching 
practices and examination of university students’ learning, technology mediated 
mathematics education research has been dominated by school-level studies 
(Lagrange, Artigue, Laborde, & Trouche, 2003).  
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Papers in the ICMI-11 study discuss, inter alia, the role of technology in a variety of 
mathematics courses taught in universities, accounts of the ways in which technology 
can be used to enhance students’ learning, and the impact of technology on 
classroom communication (King, Hillel, & Artigue, 2001). However, the study 
provides neither an overview of the extent of technology use in universities nor 
discusses the reasons for the slowness of technology integration, preferring to offer 
examples of particular practices in particular universities in particular countries. The 
totality of the report suggests that technology use remains ‘cosmetic’ (Hillel, 2001). 
 

Even though little is known about the state of technology use in universities, recent 
surveys tell us much about its use in school mathematics and the factors influencing 
its classroom integration at both national (Becker, 2000; Ofsted, 2004) and 
international levels (Gonzales et al., 2004; OECD, 2004). These studies suggest that 
investment in technology can enhance, but not guarantee, increased use of ICT in 
education, although the TIMSS 2003 study implies that funding for educational 
technology may not increase the actual use of ICT44 in classrooms (Gonzales et al., 
2004). Other studies, which have investigated the cause of slow technology 
integration, suggest that, beyond the accessibility of technology and policy pressures, 
teachers’ beliefs and attitudes as well as cultural aspects are vital factors influencing 
technology integration (Hennessy, Ruthven, & Brindley, 2005; Ruthven & Hennessy, 
2002). In addition, international comparative studies have reinforced the importance 
of cultural aspects by demonstrating that teachers’ didactical beliefs and conceptions 
of the subject, as well as the characteristics of their classrooms and their relation to 
technology, are heavily affected by teaching traditions and geographic locations 
(Andrews & Hatch, 2000). Results from such school-based studies may be applicable 
to the university setting, but a systematic investigation essential. 
 

Aims of the study 
 

Due to the paucity of university-level research outlined above, I designed a study to 
investigate the current use of technology together with the factors that influence its 
integration into university mathematics education. In my study, I focus on a specific 
technology application, Computer Algebra Systems (CAS), because this type of 
software package is the most widely used in university mathematics education. CAS 
is explicitly designed to carry out mathematical operations (not a general technology 
application such as a web-based homework system); and CAS has the potential to 
become a mathematical tool in students’ future studies and career (Artigue, 2005). 
Specifically, my study aims to examine: 

 the extent and manner of CAS use in university mathematics departments; 

                                           
44 Information and Communication Technologies (ICT). Frequently used as a reference to 
technology (-ies) in the UK. 
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 the pedagogical and mathematical conceptions of university mathematicians 
regarding CAS, including the factors influencing their professional use of 
CAS; and 

 the extent to which nationally situated teaching traditions, frequently based on 
unarticulated assumptions, influence mathematicians’ conceptions of and 
motivation for using CAS.  

 

I decided to adopt an international comparative approach in order to understand more 
completely different teaching traditions and subject-related conceptions (Andrews & 
Hatch, 2000) at the university level. The participating countries, Hungary, the United 
Kingdom (UK), and the United States (US), pose a variety of cultural and economic 
considerations. Obviously, my selection has also been influenced by my personal and 
professional background, as well as by my familiarity with the higher education 
systems of these countries. However, international comparative literature advocates 
the comparison of considerably dissimilar (Hungary vs. UK, US) and similar (UK, 
US) teaching traditions to elicit similarities and differences (Kaiser, 1999). 
 

Methodology, methods, and preliminary results 
 

To investigate the outlined aims I designed a two-phase study following a mixed 
method methodology (Johnson & Onwuegbuzie, 2004). The first, qualitative, phase 
of the study explored those issues that influenced university mathematics lecturers’ 
CAS-assisted teaching. In this phase, I interviewed 22 mathematicians, observed 
classes, and collected course materials in Hungary, the UK, and the US. Data were 
analysed by means of a grounded theory approach (Glaser & Strauss, 1967; Strauss 
& Corbin, 1998). Building on the results of the first phase, I am designing a large-
scale quantitative study to further examine the issues that emerged from the analysis 
of the first phase data, to gauge the extent of CAS use in universities, and to uncover 
additional issues that did not surface in the initial phase of the study. 
 

The analysis of the first phase data identified three clusters of issues: 
 

1. Personal characteristics 
2. External factors (institutional and technology issues) 
3. Mathematicians’ conceptions (of mathematics, mathematics teaching/learning, 

CAS, CAS teaching/learning) 
 

Many of these issues will be further investigated in the second phase of my study, but 
space does not permit a detailed discussion here. (A more complete list of the 
subcategories of these issues can be found in Lavicza (In review). However, I 
highlight three of the more interesting findings of this phase below. 
 

Firstly, similarly to results of school-level studies, academics’ conceptions, proved to 
be a crucial factor in technology integration into mathematics teaching. Moreover, 
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their conceptions appear more important an influence than for schoolteachers 
because, due to the academic freedoms of university life, they are less prone to policy 
pressures. Also, mathematicians are less constrained than schoolteachers by 
prescribed curricula and uniform examinations. Therefore, mathematicians have 
better opportunities than schoolteachers to experiment with technology integration in 
their teaching. However, academics are frequently more concerned with research 
than teaching and so experiments with technology in their teaching may be seen as 
counterproductive.  
 

Secondly, mathematicians’ primary use of CAS in their teaching is to enhance the 
transmission of mathematical concepts. Many described using CAS to illustrate 
mathematical concepts and I did not encounter any instance when they referred to 
CAS use as a motivational tool. In contrast, school-level studies report that teachers 
often emphasize the use of technology as motivational and classroom management 
tools (Hennessy et al., 2005; Ruthven & Hennessy, 2002). This result challenges the 
applicability of school-level findings to university settings while presenting new 
possibilities for collaboration that may enhance the integration of technology at all 
levels of mathematics education. 
 

Thirdly, school-level studies demonstrated noteworthy differences in teachers’ 
conceptions of mathematics and its teaching owing to nationally situated teaching 
traditions (Andrews & Hatch, 2000). In my study, no distinctive teaching traditions 
of technology use at the university-level were identified. This may be due to the fact 
that the participants of my study constituted an internationally mobile group with 
many experienced in or aware of international university-level teaching practices and 
research. In addition, the use of technology in university teaching is a fairly recent 
endeavour. This result accords with Atweh, Clarkson, and Nebres’ (2003) idea that 
mathematics research and mathematics education have become an international 
enterprise, particularly at the university level. 
 

For the quantitative phase of the study, I am designing a web-based questionnaire for 
sending to 350045 mathematicians in Hungary, the UK, and the US. In part this will 
draw on the results of the first phase but will also attempt to uncover additional 
issues relating to the aims of the study. Therefore, sections of the questionnaire will 
enquire about: 
 

1. the current use of CAS by selected participants; 
2. participants’ personal characteristics and institutional settings;  

                                           
45 This preliminary estimate is based on the estimated population of 35,000 mathematicians in the 
selected three counties and the desired 20% response rate for the web questionnaire. Detailed 
sampling strategy is available upon request. 
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3. participants’ variety of conceptions of CAS, CAS-assisted teaching, role of 
CAS in the field of mathematics and mathematics teaching. 

It is my expectation that the analysis of the questionnaire data will expose 
relationships between participants’ personal characteristics and institutional settings, 
their CAS use in teaching and research, their conceptions of mathematics, and their 
CAS-related conceptions. Furthermore, I plan to exploit factor analytic and structural 
equation modelling techniques to uncover additional factors that influence CAS 
integration at universities.  
 

My study will contribute to our knowledge of CAS and its use at the university level 
by  
 

 providing an overview of CAS use at a large number of universities; 
 identifying factors that influence CAS integration at universities and highlight 

similarities and differences between university- and school-level results; 
 allowing insight into mathematicians’ understanding of and thinking about 

CAS and the impact of their teaching/cultural traditions; 
 pinpointing some effects of nationally based teaching traditions of CAS use at 

the university level and mathematicians’ conceptions of CAS-assisted 
teaching. 

 

Results of the study will enable researchers and practitioners to 
 

 pinpoint directions for improvements and show limits of CAS applicability at 
universities; 

 align research into local practices with international trends; 
 assist in the possible development of CAS training workshops;  
 improve the mathematical preparation of university students. 

 

Once this second aspect of the study has been completed a number of possible 
research directions present themselves. The study may reveal issues for examination 
by means of a qualitative study. If, as I hope, the questionnaire proves effective, the 
study could be replicated in a larger set of countries. In addition, a similar study 
could be conducted in schools to uncover similarities and differences in university- 
and school-level use of technology. Furthermore, it would be possible to collaborate 
with mathematicians as well as school teachers to develop curricula, supporting 
materials, and a variety of workshops to enhance the use of technology in 
mathematics education.  
 

If invited to the ICMI-17 conference, I would be able to report on the data collection 
of both phases of my study and outline the preliminary results of the entire research 
project.  
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Contributions to the ICMI-17 study 
 

The research reported in this proposal supports the aims of the ICMI-17 study, as set 
out in the discussion document, in the following ways. 
  

My work aims to identify and analyze aspects of technology integration, primarily in 
universities (diverse curricular organizations), but also consider connections with 
pre-university level mathematics education. In addition, my study incorporates and 
investigates cultural diversity as it takes an international comparative approach to 
compare the use of technology in a less developed (Hungary) with more developed 
countries (UK, US) in terms of ICT resources and investment in educational 
technology . My study addresses well the following aim of the ICMI-17 study:  
 

ICMI Study 17 will also seek to take account of cultural diversity and how 
issues of culture alongside those related to teacher beliefs and practice all 
shape the way digital technologies are used and their impact on mathematics 
and its teaching and learning. (Hoyles & Lagrange, 2005, p.4) 

 

My work is also in line with the following two ICMI-17 study aims: 
 

1) to reflect on actual uses of technology in mathematics education, avoiding 
mere speculations on hypothetical prospects  

2) to address the range of hardware and software with a potential to impact upon 
or contribute to mathematics teaching and learning. (Hoyles & Lagrange, 
2005, p.4) 

 

Although my study concentrates on a particular software package its results should 
be applicable to a wider range of applications. The examination of CAS is significant 
for technology-related research because such packages explicitly focus on 
mathematical activities and do not only reorganize communication in classrooms. 
 

I believe that my research best fits Theme 3 – Teachers and teaching – as it 
contributes to many of the questions raised in the Study’s discussion document. 
Particularly, it addresses the three questions: 
 

 How are teachers' beliefs, attitudes, mathematical and pedagogical knowledge 
shaped and shaped by their use of digital technologies in mathematics teaching 
and how are these issues influenced by access to resources and by differences 
in culture? 

 What can we learn from teachers who use, or who have tried to use, digital 
technologies for mathematics teaching? 

 How can teachers be supported in deciding why, when and how to implement 
technological resources into their teaching practices? (Hoyles & Lagrange, 
2005, p.8)  
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This paper presents the development of manipulative tasks in a dynamic geometry 
environment as a tool for learning and assessment in geometry. In a research study, 
groups of junior secondary students were asked to manipulate dynamic geometry 
figures, in the form of Java applets, by dragging movable points to create particular 
configurations satisfying specified conditions. The tasks are designed in such a way 
that students are expected to easily make use of learnt knowledge in school geometry 
to produce the required results. They had to consider real-time measurements 
provided and constraints on the variation of the figures. As part of design of the tool, 
students’ results of dragging can be recorded as an image and in terms of numerical 
parameters for later analysis. Students’ responses to the tasks were analyzed by first 
examining quantitatively the variety of configurations produced, followed by clinical 
interviews probing into the process of students’ working on selected tasks. The 
analysis reveals the complexity of students’ interaction with and interpretation of 
dynamic figures. Based on these results, some major questions are suggested to 
further explore the nature of dynamic geometry figures and implication of uses of 
these manipulative tasks in the context of classroom learning and assessment. 

Introduction 
Dynamic geometry environment is a powerful milieu in which the teaching and 
learning of plane geometry could be re-conceptualized due to the drag-mode (see for 
example the discussion in Lopez-Real & Leung, 2004). Indisputably, dragging in 
dynamic geometry plays a crucial role in the formation of geometrical concepts and 
conjectures (see for example, Arzarello et al, 2002; Leung and Chan, 2005). In 
particular, the epistemological values of robust and soft constructions with respect to 
dragging have been the foci of many studies in dynamic geometry (see for example, 
Laborde, 2005). Though fruitful insights have been obtained, there is yet a deep 
understanding on how students perceive the relationship between the spatio-graphical 
representations (what they actually see on the computer screen) and the theoretical 
knowledge (the traditional school geometry they learnt). The variation visualized 
from the drag-mode in dynamic geometry may give students a new reasoning pattern 
that diverges from the traditional deductive thinking. In particular, the (pseudo) 
accurate representation of geometrical objects and measurements under dragging 
offers a confluence of simultaneities that could bring about discernments that might 
be different from a static paper-pencil environment. Sinclair (2004) concluded in her 
study on Grade 12 students working on pre-constructed dynamic geometry sketches 
that “students who focused on visual information and drew conclusions based on the 
appearance of the onscreen image did not have the tools to develop and communicate 
a proof based on visual concepts” and this was due to students’ unawareness of the 
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accurate representation in dynamic geometry sketches. It would be interesting to 
probe into the impact of accurate representation and variation under dragging on 
students’ spatio-graphical reasoning that leads to explanations of phenomena in 
dynamic geometry environments. In this respect, we initiated an experimental 
instrument to assess students’ geometrical understanding in the context of IT activity 
in a mathematics competition for regional primary schools in Hong Kong (Lee, Wong 
& Tang, 2004; Wong, Lee & Tang, 2005). The instrument was in the form of 
dynamic geometry manipulative tasks in which students can vary a point (a 
dimension of variation) in a geometrical configuration via dragging. Students were 
asked to drag the point to a position that would satisfy certain required condition. A 
coded and varying (as the point was dragged) numerical value was associated to the 
point for the purpose of recording students’ answers. This opened up a new arena for 
quantitative analysis in dynamic geometry research that might yield interesting 
collective information on students’ different ways of interpreting spatio-graphical 
data in dynamic geometry environment. In this proposal, we continue the quantitative 
experiment with groups of secondary 1 and 2 (Grade 7 and Grade 8) students in Hong 
Kong. After patterns are observed in the quantitative analysis, selected students are 
invited for one-to-one clinical interviews during which they will work on a specific 
manipulative task while the interviewer will probe them with questions on 
geometrical understanding of the task. 
Design of dynamic geometry manipulative tasks 

Each task requires students to manipulate geometric objects on screen by using the 
mouse to drag around movable points. The dynamic figures are created with the 
software C.a.R. (“Compass and Ruler” by R. Grothmann, http://mathsrv.ku-
eichstaett.de/MGF/homes/grothmann/java/zirkel/doc_en/) and presented as Java 
applets so that students can access them through common browsers. These are 
basically pre-constructed geometric figures in which certain geometric properties are 
preserved during dragging. Students need not know the hidden construction nor 
perform additional constructions on the figure. What they observe will be the 
constrained movement of dependent parts and some displayed real-time 
measurements (of length, angle size, etc.) as a result of their dragging of movable 
points. By making use of such observation or information, the students try to turn the 
figure into a required configuration. 
We begin by considering situations in which students may make use of their 
knowledge and understanding of geometric properties to complete a task. For 
illustration, let us consider parallelism and angles. In some of the tasks, students are 
required to make a line parallel to another or to make two lines intersect at a 
particular angle. In a given figure, students can drag movable points (while the rest 
are fixed or dependent on others) to re-position lines or segments while seeing 
measurements of angles continuously updated. Specific solutions, whether there is 
only one or more, are expected. However, we are not simply interested in the 
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correctness or accuracy of students’ solutions, but the variety of results of students’ 
manipulation initiated from the task. 
Two of the tasks are explained here to illustrate our considerations. 
Task 1 

Figure 1a shows the initial configuration of a dynamic figure. The task is to move the 
point P to make angle a equal to 120°. All the lines are fixed except the one 
containing P, which will be turned about a fixed point outside the viewing window. 
Figure 1b shows the result of dragging P to the right and the only position of the 
variable line that gives the required angle. 
 

    

Figure 1a Figure 1b Figure 2a Figure 2b 
 
Task 2 
This task starts with the figure 2a, in which A, B and C are fixed points while D can 
be moved freely in any direction. The task is to make a quadrilateral with at least one 
pair of parallel sides. Figure 2b shows only one among many possible ways fulfilling 
the requirement. 
Collecting and analyzing students’ responses 
The open source software C.a.R. is modified to allow students to submit 
electronically the final configuration of their dynamic figures in the browser when a 
task is finished. We are therefore able to record and retrieve students’ responses as an 
image and numerical values specifying final state of key variable parts. In the 
examples above, the coordinates of point P (in task 1) and point D (in task 2) will be 
recorded when students submit their results.  
The test was conducted in 9 junior secondary classes from 4 schools with different 
academic backgrounds in Hong Kong around June 2005. These students had learnt 
about properties among angles related to parallel lines and transversals, in the same 
or previous academic year. We first examined distribution of students’ responses to 
individual tasks. By reducing students’ submitted configurations into one or two 
numerical descriptors, we were able to capture the variety of students’ results and 
identify interesting patterns, which provided a useful picture before we probed into 
individual students’ attempts to a task.  
For the task 1, we examined students’ positioning of the movable point along a 
horizontal track, which corresponded to different angles formed between the variable 
transversal and the fixed lines. Nearly half of the students could accurately generate 
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the required angle. Meanwhile, we noticed an unexpected outcome from about one 
eighth of the students, giving 3 angles in progression, as shown in Figure 3b. 
 
Distribution of x-coordinates of point P in task 1 from 169 students. 
Values at about 7 (red column) correspond to result shown in figure 3b. 

Figure 3a Figure 3b 
 
Scatter plot of position of point D in task 2 from 162 students. 
Positions along the diagonal line (dots in red) give a pair of equal 
opposite angles, as shown in Figure 4b. 

 
Figure 4a Figure 4b 

 
For the task 2, we considered the scatter plot of all final positions of the vertex D of 
the quadrilateral. Most students could put the vertex along a line parallel to either 
fixed side of the quadrilateral, in particular the intersection where the figure resulted 
in a parallelogram. Among the rest seemingly without pattern, we noticed a special 
diagonal line attracting some points (about 28 students). Putting the free vertex along 
this line (near but except the intersection) produced a pair of equal opposite angles 
but no parallel sides. 
After this preliminary quantitative analysis, we proceeded to interview individual 
students and observe their processes of working on selected tasks from the test. We 



 

 338 

interviewed 24 students from 4 schools with similar background but had not done the 
test in the first stage. Even from such a small sample, we realized the complexity of 
students’ processes of working with the dynamic figures despite overall fairly good 
results from the test. Even though some students did eventually come to a correct 
result, the process could be far from a straightforward application of their knowledge 
of school geometry on the manipulation of the dynamic figures. Students’ 
explanation of their work reflected their incomplete or conflicting conceptions 
regarding basic geometric notions such as parallel lines and angle relation. This may 
be due to their inexperience in articulating their geometric thoughts, or unfamiliarity 
with behavior of dynamic figures and interpretation of real measurements.  
A student working on task 1 started with a slow and careful dragging of point P 
across the screen. He stopped at the position in fig. 3b and declared that it was the 
required angle. He explicitly pointed out that the “angles differ by 2° and then 2°”, 
leading to his belief that angle a was 120° at that position. (Note that the given angles 
made by the transversal on the right kept differing by 2° as P varied.) Yet he also 
noticed by himself the given angles on the left (84°, 86°, 84°) were not “considered”. 
He started to wonder if the lines were parallel, partly based on their appearance and 
partly based on their angles between the transversal. He tried to relate the 
“imbalance” of the lines to the difference in the angles. He finally chose to ignore the 
middle line, which “deviates from the other two”. He proceeded to adjust his answer 
to that of fig. 1b, where the angles on the upper and lower lines “look symmetric”. At 
the end he was sure that the upper and lower lines were parallel, following his 
previous inspection of the angles and inclination of the lines. Yet this was not a 
simple deduction of the angle properties from relevant geometrical theorems, which 
we may assume from students giving a correct result. On the other hand, we also 
noticed how the student tried hard to make sense of the real representation and 
varying measurement during the process. 
The results of Task 2 as mentioned above reveal an interesting fact that students 
attend to a pair of equal opposite angles rather than a pair of angles associated 
directly with one pair of parallel lines. Some students in our interviews on this task 
made explicit attempts at making  BAD equal to  BCD (Figure 4b). We find this point 
even more intriguing when we look at students’ responses to another similar task but 
with different given conditions. On the one hand, similar responses along a diagonal 
(as in Figure 4a) are observed. On the other hand, interviews on this task show clearly 
this undue attention to the opposite angles. Suffice to mention one telling example. A 
few students first came to a parallelogram (Figure 5a) but provided with a strong 
reason that each opposite angle gives the same sum of 99°. When a student was 
prompted by the interviewer to produce another answer – i.e. a quadrilateral with at 
least one pair of parallel lines, she managed to produce one with an equal pair of 
alternate angles (Figure 5b). But she failed to recognize it as an answer and explained 
that the sum of angles at one corner ( °=°+° 996633 ) was not equal to the other 
( °=°+° 1023666 ). 
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Figure 5a Figure 5b 

 
Questions for Investigation 

Through the design of the DG manipulative tasks and analysis of students’ responses 
in both quantitative and qualitative manner, we attempt to develop new perspectives 
on the role of DG in the classroom learning and assessment. We start with a 
fundamental question. 
• How do students understand the dynamic figures presented in this kind of 
manipulative tasks? In particular, when they drag a figure, how do they interpret the 
given measurements together with the varying shapes? And, when they want to 
achieve a certain target diagram, how do they decide on the pertinence of various 
geometric properties? 
We go on to elaborate this question in the context of teaching and learning and then 
assessment. 
• How will this kind of DG manipulative tasks be useful in learning and 
teaching? 
Usually, when setting a mathematics question for students, a teacher has a good idea 
of what knowledge (e.g. a geometric property in its precise expression) is to be 
applied. This kind of conception leaves little room for exploration in the student’s 
problem-solving process and thus does not appear to be consonant with the potential 
benefits granted by the DG environment. Nevertheless, a manipulative task of this 
kind has a very precise goal but leaves a reasonable scope of exploration (by very 
limited number of movable points or constrained movements). On a task with such 
reduced complexity, we seek to understand how students perceive the spatio-
graphical representations presented and what geometric knowledge (from the formal 
curriculum) is to be enacted. The collective quantitative information from a large 
number of students and the qualitative data from the interviews should provide us 
with evidence.  
Inspired by the distinction between soft and robust construction and also the benefits 
of the former in teaching (Laborde, 2005), we consider this kind of manipulative 
tasks more like the “soft” ones in the sense that a manipulative task of this kind 
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requires a student to attain a figure that meets a certain condition by dragging a pre-
constructed figure. The important point is that the pre-constructed figure does not 
have all the necessary invariant properties that lead to the target condition – otherwise 
it is already a robust construction. By a careful design of what is allowed to vary and 
what is kept invariant in the background, the student would be helped to visualize 
how a particular property emerges from a varying figure and to realize the inter-
dependency between the geometric properties. Collection of all students’ responses 
on the other hand can help teachers or researchers to visualize the ‘locus’ of the 
points resulted from students’ examples chosen to satisfy some particular conditions. 
Interview data in the current research project would help us understand better how 
students perceive a geometric figure and, in particular, what geometric features of it 
are taken into consideration when they are trying to make it satisfy a certain 
geometric condition. Understanding on this aspect will guide us on another path of 
developing the tasks for classroom use in the process of learning and teaching. 
Can students’ performance in this kind of DG manipulative tasks be assessed with the 
aid of the quantitative measures? If yes, what are we assessing and what can we tell 
out of the quantitative results? 
Traditional paper-and-pencil assessment used to test whether a student can make use 
of basic geometric properties to find an unknown geometric measure or to produce a 
written proof of an unfamiliar property. This accounts at least partly for the concern 
of most teachers with what students know (a product-oriented curriculum) rather than 
how they come to know (a process-oriented curriculum). Just as DG and the research 
thereof seem to have suggested more on the latter but not the former, many teachers 
are hesitant to bring DG into the curriculum.  
This new type of DG manipulative tasks suggests a potential use for assessment (Lee, 
Wong & Tang, 2004). With a parameter assigned to describe the relevant geometric 
feature(s) of the DG figure, a numerical value as a result of a student’s manipulation 
is obtainable. The value in turn reflects, to a certain extent, how well a student has 
fulfilled the requirement of a certain manipulative task. Despite various difficulties 
pertaining to the design of the task as well as the designation of an appropriate 
parameter, this quantification of student performance in the dynamic geometry 
environment offers a possibility for assessment. Apart from a numerical score given 
to individual students, collective information from a large group of students may also 
reveal common mistakes and help serving the diagnostic purpose of the assessment 
(Lee, Wong & Tang, 2004). Numerical data collected also allows various quantitative 
analysis. Wong, Lee & Tang (2005) has attempted Factor Analysis and, in their 
interpretation and characterization of the factors, the authors start to be convinced of 
a distinctive element of exploratory interaction as opposed to working with formulas 
and computation in accounting for student performance. If successful in this 
integration of DG in assessment, we would be in a better position to materialize such 
new learning objective (e.g. in the curricular context of Hong Kong) as “to explore 
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and visualize geometric properties.” Analysis of the data in the current research 
project will shed more light on this aspect. 
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Using technology in the teaching of mathematics at Lesotho National University  

Moneoang Leshota National University of Lesotho, Lesotho, 
mjmakoele@nul.ls 

Introduction 

In 1993 while I was studying for my Masters degree in the UK, I came across the 
book “Computers in the Mathematics Curriculum” by the Mathematical Association. 
After reading through this book, I felt an uplifting in spirits which had not happened 
in a long time. How wonderful it would be to get into my Pre-entry programme class 
back in Lesotho and draw all these different graphs (linear, quadratic) using excel 
spreadsheet instead of pencil and a graph sheet. I recalled how it used to be: The 
pencil should have a very sharp tip, and should actually be “HP” so that it does not a 
make a mess on the graph sheet when one rubs it off. To draw the quadratic graph, 
one should not move their hand as the graph might have bumps. 
This happened around the time when I was about to finish my dissertation 
“Discontinuities in Mathematics Education between High School and University in 
Lesotho: Bridging the Gap”. I had learned most profoundly how technologies could 
aid in the teaching and learning of mathematics, and had experimented with “Derive” 
and “Cabri-Geometre”. 
My view was that, the usage of computers and other technologies was quite a break-
through in my teaching of mathematics, and for my students as, whom the biggest 
concern at the time for them was their poor and seemingly deteriorating performance 
in mathematics at o’ level and beyond.  
I returned home in 1993 and was about to experiment with my new-found knowledge 
on using technology to teach the Pre-Entry Science class just about to enter into first 
year of their BSc degree. Then reality hit home. 
Socio-Economic factors in Lesotho 

Lesotho is a country of approximately 30000 km2 in area, with a population of just 
over two million people. According to the Human Development Report 2005, 
Lesotho is ranked 149th out of 177 countries on the Human Development Index with 
a HDI value of 0.497. It is one of the low human development countries with GNP 
per capita (PPP US$) of 2561, and 49.2% of the population living below the income 
poverty line, therefore, quite a poor country. 
In terms of technology and technology development, Lesotho has 16 telephone 
mainlines per 1000 people, 47 cellular subscribers per 1000 people, 14 internet users 
per 1000 people, and 42 researchers per 1000 000 people (HDR, 2005). Therefore, 
for most of the population of Lesotho acquiring a computer would be quite 
impossible, so that the usage of computers is done mostly from the work-place by 
adults instead of school children. 
Political factors 

At the National University of Lesotho (NUL), in 1993 when I got back from my 
studies, there were about one hundred and twenty students joining the faculty of 
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science and technology at first year level. The computer laboratories available in the 
university were stocked with about fifty (50) machines which were used exclusively 
by students at second year level and above, who measured in computer science.  
In recent years, the university has introduced a computer literacy course for all 
students of the university making it compulsory for each student to have done at least 
this computer literacy course by the time they graduate. To this effect, the university 
introduced a few computer laboratories stocked with computers to serve this purpose. 
All first year students in all faculties of the university excluding the faculty of 
science do the computer literacy course. 
The faculty of science and technology has two streams of first year students. The first 
stream, the “specialized programme” has about one hundred and twenty students 
majoring in Computer Science, Information Technology and Statistics. The second 
stream is the BSc general stream of some four hundred students following common 
first year programme. Both streams follow a similar curriculum for mathematics in 
the first year, namely, “M1501 – Algebra, Trigonometry and Analytical Geometry”, 
and “M1502 – Calculus I”. The implications here are that for the specialized 
programme, one can introduce the usage of computers in the teaching, but not for the 
general stream, as this stream would only have access to computers in their second 
year. 
The National University of Lesotho is mostly funded by government for its activities. 
At present, top on government agenda are issues of HIV and AIDS which is 30% 
prevalent in Lesotho, and issues of poverty reduction. Hence, the need for acquisition 
of more computers would have to be prioritised with all these other national 
programmes. Since the acquisition would be just for supplementing the teaching of 
mathematics there would have to be a major political support on the side of the 
university to place its demand on computer acquisition to government. 
Lesotho and the Republic of South Africa 

Lesotho has an unusually distinct feature of being completely landlocked by another 
country, the Republic of South Africa. This makes South Africa Lesotho’s immediate 
neighbour at all points. This is one rich neighbour ranking 120th on HDI scale, with 
GNP per capita (PPP US$) of 10346 and 192 researchers per 1million people, 
features which cannot be compared at all with those of Lesotho. 
Due to this proximity and South Africa’s international position academically, most of 
the students from Lesotho attend school in South Africa, from primary level up to 
university level. It is obvious that those students who start schooling in South Africa 
and are able to continue throughout university there would have better access to 
computers. 
On the other hand, most of the students only manage to get to South Africa at tertiary 
level. These students would have to work extremely hard to compete with the best of 
South African students who have had access to computers from early schooling. 
Mathematics education in Lesotho 
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It is my opinion that mathematics education in Lesotho has not transformed in any 
major way in the last two decades or so. Factors affecting student performance in 
mathematics at high school and university were grouped into three categories way 
back in 1993 (Makoele: M.Sc Dissertation), namely: 
Teaching Methods used in the schools 

There was evident lack of teaching approaches such as investigation and problem-
solving. It was believed by both students and lecturers interviewed at the time that 
the teaching was not geared to understanding due to pressures of examinations at the 
end of three years and five years respectively for the Lesotho schools, so that the 
teaching was seen to encourage rote learning. 
I have not found reason to believe that things have changed for the better in recent 
years as I teach more new students at university coming directly from the schools. 
Mathematics at University 
On this particular issue, important factors were:  

i. The method of lecturing, which is traditionally followed at university requires 
some adjustment in the learning habits of students.  

Big classes at university of about 400 students taught together as opposed to 
classes of 40 to 50 students at school. The syllabus which in other countries 
would be covered over a period of two years at A’level, is done over nine months 
at the NUL. 

ii. Textbooks.  
Due to foreign exchange rates, the cost of textbooks is very high, hence there 
would be not much variety in the books for reference purposes. It has been the 
case that at NUL for some years there had not been prescribed books and students 
depend entirely on lecture notes. 

iii. Research.  
In my opinion, research in mathematics education is virtually non-existent. Where 
there has been some research done, it would be uncoordinated, and hence 
unavailable to the public. In particular, at NUL, the departments of mathematics 
education and mathematics fall under two different faculties, their only interaction 
being of students in mathematics education taking mathematics courses in the 
department of mathematics. The department of mathematics education main focus 
is on the teaching of mathematics at school level, so that it does not work on 
research issues in undergraduate teaching of mathematics. 
On the other hand, there is a feeling among the members of the department of 
mathematics that issues of undergraduate teaching of mathematics fall under 
education and therefore have no place really in the department of mathematics.  
This has caused a major neglect of this important sector in the teaching of 
mathematics, so that at NUL there is no study or research whatsoever about the 
teaching of mathematics at undergraduate level, let alone the usage of digital 
technologies in the teaching of undergraduate mathematics. 

Mathematics Education in the World  
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The Lecturers at NUL are expected to be conversant with the stuff that they teach to 
students like everyone else. In the light of unavailability of textbooks as mentioned 
earlier, they depend largely on the wide world web for reference. Here one finds 
lecture notes of other lecturers teaching the same subject in their own universities, 
research on current issues on specific subject matters, and innovations in the 
development of mathematics teaching. In as much as the stuff from the internet is 
fascinating, it is also very intimidating to some extent. For example, in teaching a 
topic in complex functions, I was distraught when introducing the concept of 
“complex maps”, until I discovered a web page where someone did the very mapping 
using computer technology. This was so helpful to me that I conducted the next 
lecture to some 30 students in my office showing them how the functions map. And 
the next thought was, if only I could do that for all the courses and to all students that 
I teach. The possibilities created by technology in the teaching of undergraduate 
mathematics cannot be overemphasized, but the challenges posed by inaccessibility 
to these technologies and to be part of the “global village” that researches first hand 
on issues of using these technologies in the teaching of mathematics are similarly 
devastating to those interested in the technologies. 
Conclusion 

I believe that for many of us in the developing countries, the possibility of using 
digital technologies in the teaching of mathematics would be a great advantage. It is 
true that these technologies do not come cheap, but if they could be available, then a 
lot of work done in specialised programmes such as “bridging and remedial” 
programmes instituted for the science students entering tertiary education would be 
minimised, and there would be better results from these remedial and bridging 
programmes observed than without the technologies.  
Despite all these, I agree with Harold Wenglinsky who says that “Computers can 
raise student achievement and even improve a school's climate. But they have to be 
placed in the right hands and used in the right ways”.(Education Week).  
What is needed is research on the aspects of the teaching of mathematics at all 
sectors of education, that is, from primary throughout to tertiary level so that 
individual efforts made could be adequately monitored and publicised. The research 
would help in giving guidance for educators to know exactly where and how to use 
the digital technologies. 
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Instrumental Genesis in Dynamic Geometry Environments 
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Over the past decade, much research has been done on dynamic geometry software 
investigating how this virtual environment can change our perception of mathematics 
and doing mathematics (in particular geometry), in the hope of enriching the 
pedagogical practices of mathematics teaching/learning. This proposal attempts to 
employ Vérillon and Rabardel’s theoretical construct – instrumental genesis – to 
study the evolution of utilization schemes by persons engaging in dynamic geometry 
explorative tasks; a first step in a programme to probe deeper into how geometry is 
conceptualized and learnt in dynamic geometry environments (DGE). In this study, 
the theory of variation in the phenomenographic research approach is used as an 
interpretive tool. In particular, the drag-mode in dynamic geometry is perceived as 
an artifact, hence an instrument. Consequently, instrumentation/instrumentalization 
of dragging via functions of variation (contrast, separation, generalization, fusion) 
and dragging modalities will be a main focus of DGE instrumental genesis. In the 
proposal, a pair of Hong Kong pre-service mathematics student-teachers’ DGE 
exploration episode is presented and briefly analysed. A possible variational 
dragging scheme is then proposed for their process of discovery. The studying of the 
conversation between the two student-teachers during their collaboration in the DGE 
task further identified a few DGE utterances which illuminate ways to conceptualize 
discourses in DGE. 

 

The proposal 

Over the past decade, much research has been done on dynamic geometry software 
investigating how this virtual environment can change our perception of mathematics 
and doing mathematics (in particular geometry), in the hope of enriching the 
pedagogical practices of mathematics teaching/learning (see for examples, 
Educational Studies in Mathematics 44:1-161, 2000; International Journal of 
Computers for Mathematical Learning 6:229-333, 2001; Math ZDM 34(3), 2002; 
Leung and Lopez-Real, 2002; Lopez-Real and Leung, 2004). Dynamic Geometry 
Environments (DGEs) opened up a milieu for the integration of experimental 
mathematics into classroom didactic and consequently brought forth the role of ICT 
as a key contributor to mathematical discourse. A key feature of DGE is its ability to 
visually represent geometrical invariants amidst simultaneous variations induced by 
dragging activities. This dynamic tool - dragging - induces potential dialectic 
between the conceptual realm (abstraction) of mathematical entities and the world of 
virtual empirical objects. Because of this possibility, dragging has been a major focus 
of research in DGE resulting in fruitful discussions on promising dragging modalities 
and strategies that seem to be conducive to knowledge construction (see for 
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examples, Hölzl, 1996; Arzarello et al, 2002). Indeed, when the drag mode “acts” on 
a virtual empirical object in DGE, the object undergoes transformations in a domain 
in which the dual nature of mathematical object (Sfard, 1991) can be “lived out”. 
This domain is a complex network that covers various aspects of DGE and human 
behaviours (physical, psychological and cognitive) where artifacts/tools could be 
turned into instruments/psychological tools. It thus provides an integrated 
environment (DGE plus human) where situated (mathematical) abstraction (Noss and 
Hoyles, 1996) could be constructed and “behaviour of mathematics” could be 
studied. The transition from concrete to abstract (epistemic transformation), or vice 
versa (pragmatic transformation), in this integrated environment spans a zone where 
creativity resides. This zone is the object of study for most of the DGE research. It is 
where experiences and “imagination” in DGE meet, merging to shape geometrical 
concepts. The idea of instrumental genesis proposed by Vérillon and Rabardel (1995) 
is a suitable framework to begin the exploration in this transition zone.  
Instrumental genesis differentiates an artifact (a man-made object/tool) from an 
instrument (a psychological construct) by defining the latter as formed by an artifact 
together with one or more associated utilization schemes that emerge from SIA 
(Situated Instrumented Activity). SIA (Vérillon, 2000) is an inter-activities web 
formed by a triad that consists of a subject (as user), an instrument (as tool) and an 
object (as epistemic transformation, e.g. geometrical knowledge). Tools are artifacts 
that can amplify or modify our abilities to transform the world around us. They are 
shaped and fashioned in ways that contain the potential to reify human imagination. 
Hence, the value of a tool is inseparable from the one who uses it, in particular, how 
one uses it. We learn mathematics with tools. A pair of compasses gives us a vision 
of the ideal circle, a ruler is a representation of straightness, a calculator enables us to 
see patterns behind the complexity of routine calculations, and the list goes on. A 
user turns a tool into an instrument for a specific mathematical task by associating 
with it a scheme of use. A scheme is a systematic procedure on how to use a certain 
tool to achieve a certain purpose. Thus, an instrument is a psychological construct in 
the cognitive ergonomic domain (Vérillon and Rabardel, 1995). This is the user-
oriented micro-genetic process of instrumentation in instrumental genesis. At the 
same time, specific functionalities, even purposes, are attributed by the user to the 
tool (not necessarily intended by the designer of the tool) in the instrumental genesis 
process. Rabardel (1995) called this instrumentalization of the artifact. Hence, an 
instrument is a dual entity – artifactual and psychological.  
 
A user-oriented utilization scheme is somewhat reminiscent of Kant’s schema – 
“representation of a universal procedure of imagination in providing an image of a 
concept” (Kant, as cited in Tasi, 2001, p.11). In a sense, a utilization scheme in 
instrumentation can be thought of as a local realization of a schema; however, this 
raises the important question of whether different utilization schemes would converge 
to the same concept object. Mariotti contended 
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“The artifact, although incorporating mathematical knowledge and integrated by 
appropriate utilization schemes, might not function in generating mathematical 
meaning; its user might not access the meaning incorporated in the artifact.” 
(Mariotti, 2002, p.704) 
 
Hence a utilization scheme can be just a routine procedure for a particular task and 
remains a situated abstraction that might not explicitly harvest the universal 
mathematical meaning behind it. Instead of artifact and instrument, Mariotti favoured 
the Vygotskian distinction between the mediating functions of technical tools and 
psychological tools (or signs: a mental construct) and preferred using semiotic 
mediation as an umbrella over instrumental genesis. Instead of focusing on the 
evolution of a utilization scheme in instrumental genesis, meaning construction 
becomes the core activity in a process of internalization where technical tools are 
being transformed into psychological tools for the purpose of shaping new meanings. 
In semiotic mediation, the focus is not on distinction between artifact and instrument; 
rather it is on the externally or internally oriented usage of the tool that could bring 
about the construal of mathematical meanings. 
 
How do we gain geometrical knowledge in DGE? This is the ultimate question that 
we seek to answer. Instrumental genesis and semiotic mediation are promising 
theoretical frameworks that could pave a path to  start the journey. Any path to 
knowledge construction should be an experiential one. How a person experiences the 
world of DGE will determine the kind of knowledge that he/she gains in DGE. The 
utilization schemes in instrumental genesis are schemes on how to experience the 
potentiality of a tool/artifact. This somewhat echoes to Vergnaud’s notions of scheme 
and operational invariant (Vergnaud, 1999). In semiotic mediation, the process of 
internalization concerns the transformation of experiences; a change in the way of 
seeing something via a change in the nature (pragmatic, epistemic) of the tools. 
Experiences, discernment, variation and simultaneity are the central concepts in the 
phenomenographic research approach in which learning and awareness are 
interpreted under a theoretical framework of variation. 
 
“The unit of phenomenographic research is a way of experiencing something, …., 
and the object of the research is the variation in ways of experiencing phenomena.” 
(Marton and Booth, 1997, p.111). 
              
   
Phenomenography literally can mean the act of representing an object of study as 
qualitatively distinct phenomena. In particular, it concerns the second-order 
nondualistic (neither internal/mental nor external/physical) categories of description 
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of the variation in ways of experiencing something (phenomena), and is about 
categorizing the limited number of qualitatively different ways of seeing, or 
experiencing, a phenomenon in a hierarchical fashion. DGE is rooted in variation in 
its design. It is a milieu where mathematical concepts can be given visual dynamic 
forms subject to our actions, powerful or not and mathematical concepts can be 
developed through experiencing invariance under different dimensions of variation 
mediated by the tool/artifact in DGE. DGE is a natural experimental ground to 
experience variation since it has the built-in mechanism that enables the generation 
(via intelligent construction and dragging by us) of various qualitatively different 
ways of literally seeing a geometrical phenomenon in action. In this respect, Leung 
(2003) and Leung and Chan (2005) made initial attempts to discuss how functions of 
variation (specifically contrast, separation, generalization and fusion) in the 
phenomenographic research approach could be realized under different DGE 
dragging strategies in problem-solving and conjecturing episodes. It seems to be a 
worthwhile research to consider the functions of variation as functions of dragging 
and investigate how these functions can be realized through different dragging 
modalities in different DGE contexts (for examples, construction, problem solving, 
conjecturing, proving), or vice versa. That is, how to use which dragging modalities 
for different functions of dragging in different DGE contexts; in other words, an 
instrumentation of dragging in DGE via functions of variation and dragging 
modalities. Hence, the overarching question is how to integrate the theory of 
variation in the phenomenographic research approach into instrumental genesis and 
semiotic mediation in the study of how geometry is learnt (experienced) in DGE, 
which might lead to sound pedagogical content knowledge in DGE. In particular, 
here are a few possible (inter-related) research questions: 
 
1. Explore how the functions of variation interact with features (e.g. dragging 

modalities/strategies) in DGE and investigate how this interaction contributes to 
the formation of utilization schemes in the process of instrumental genesis. 

2. Can ways of experiencing geometry in DGE be categorized in some sort of 
hierarchical schematic fashion? If yes, how does this hierarchy contribute to the 
conceptualization of geometrical knowledge? 

3. DGE is somewhere between physical and psychological, hence may be regarded 
as a kind of non-dualistic field of experience, a natural niche for the 
phenomenographic assumption. Does the idea of non-dualistic tool for semiotic 
mediation in DGE make any sense? If so, in what ways? 

 
These are questions that need in-depth research to reach some sort of answers. 
Extensive research has been done on instrumental genesis in Computer Algebra 
System (see for examples, Artigue, 2002; Guin and Trouche, 2002, Trouche, 2004; 
Guin, Ruthven and Trouche, 2005); however, there seems to be a gap in the literature 
on instrumental genesis in DGE. In the following, we describe a portion of an episode 
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in which two pre-service mathematics student-teachers studying at the University of 
Hong Kong for the Postgradutae Diploma in Education (PGDE) were taking part in a 
conjecture making activity in DGE. The DGE they used was C.a.R. (Compass and 
Ruler, a DGS developed by R. Grothmann,  
http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/java/zirkel/doc_en/). During 
their exploration, an implicit dragging 
scheme was evolved for the problem they were 
working on that eventually led them to the 
discovery of a (correct) conjecture. This 
dragging scheme composed of (a) key 
functions of variation mentioned in the 
discussion above and (b) dragging modalities 
that have been identified in research and 
practices (the student-teachers were not aware 
of these). The problem they were working on was finding a relation that was 
essentially the necessary condition in Ceva’s Theorem. In particular, they were given 
a C.a.R file (see figure on the right) in which A, B, C and P are independent 
draggable points while X, Y and Z are points dependent on P. The task was to find a 
relation connecting the lengths of the segments BX, XC, CY, YA, AZ and ZB. These 
two student-teachers had undergraduate degrees in mathematics-related subject areas 
but they didn’t know Ceva’s Theorem. They were introduced to C.a.R. in a two-hour 
session in the PGDE programme and they had no knowledge of the above mentioned 
functions of variation. At the beginning of the exploration, they spent a few minutes 
familiarizing themselves with the C.a.R environment and they measured the length of 
all the segments in question. The following is a brief outline and description of a 
dragging scheme that seemed to have evolved out of their exploration. 
 
A Variational Dragging Scheme in DGE 

1. Create contrasting experiences by wandering dragging until a dimension of 
variation is identified.  

P was dragged to different positions inside triangle ABC in a wandering fashion 
while focus was put on the numerical values of the length measurements. Side BC (in 
particular, the point X) was chosen as a controlling variable (a dimension of 
variation) and while X varies as P was dragged, focus was given to the length 
measurements of CY, YA, AZ and ZB. 
2. Fix a value (usually a position) for the chosen dimension of variation. 
The midpoint, ′X , of BC was constructed. 
3. Employ different dragging 

modalities/strategies to separate out 
critical feature(s) under the fixed value 
(i.e. a special case for the configuration) 
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P was dragged to keep X and ′X as close as possible (see figure on the right) and 
attention was given to the length measurements of CY, YA, AZ and ZB. This was a 
guided dragging/drag-to-fit strategy. A numerical pattern was observed: the product 
of YA and ZB “appeared to be somewhat equal” to the product of CY and AZ (a 
calculator was used). Consequently, YA, ZB and CY, AZ were separated out as two 
related pairs. During this exploration, some DGE utterances were developed between 
the two student-teachers: “very difficult to control”, “try best to keep on the line”, 
“try to squeeze it”, etc. 
4. Simultaneously focusing, hence “reasoning”, on co-varying aspects during 

dragging. A preliminary conjecture is fused together. 

Further refinement of the dragging techniques (as reflected by the DGE utterances) 
confirmed the speculation in 3. This is a fusion experience in which co-varying 
aspects (numerical values, position of P and X, the changing line segments) were 
simultaneously experienced together. A preliminary conjecture was proposed: when 
X is the midpoint of BC, the product of YA and ZB equals the product of CY and 
AZ. 
5. Attempt to generalize by a change to a different value for the chosen dimension 

of variation. 

P was dragging in a wandering fashion, however, with random patterns. For example, 
it was dragged horizontally for a while. After a period of fruitless exploration, the 
student-teachers decided to place X at a different special position: CX : CB = 1 : 3. 
6.  Repeat steps 3 and 4 to find compromises or modifications (if necessary) to the 

conjecture proposed in step 4.  
The dragging and reasoning strategies developed in steps 3 and 4 were employed to 
this modified situation (a new value for the chosen dimension of variation). The 
student-teachers at this moment were more experienced with the “utilization scheme” 
that they have developed and used it again to tackle a new situation. More DGE 
utterances were developed: “the point moves, all will be changed”, “it feels like the 
property has to do with length”, “put it on top”, etc. They discovered that the product 
of YA and ZB was not equal to the product of CY and AZ in this case; rather, they 
found that the product of YA and ZB is 3 times the product of CY and AZ. A 
modified conjecture was then proposed: the product of YA, CX and ZB is equal to 
the product of CY, XB and AZ. 
7. Generalization by varying (via different dragging modalities) other dimensions 

of variation 

The vertices (instead of P) A, B and C were being dragged in a wandering fashion 
and different values were assigned to the position of X; literally trying to see whether 
the modified conjecture still holds. In particular, P was dragged to move X 
continuously along BC. By seeing that the conjecture remained invariant under 
variation (by dragging) in all dimension of variation (expect when P was outside the 
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triangle which could be seen as a design fault for the moment), the student-teachers 
were convinced that they had a generalized conjecture. 
 
The 7-step variational dragging scheme described above may serve as a good starting 
point to investigate research question 1 and it is the intention of this proposal to 
undertake such an attempt. To begin with, more in-depth analysis will be done on the 
above episode (only the first portion of the episode was analyzed here; for the rest of 
the episode, the student-teachers continued the exploration in DGE and eventually 
proved the conjecture successfully). As mentioned above, DGE utterances were 
developed by the student-teachers during their exploration, it would be interesting to 
note the evolution of a DGE discourse as another strand of study. Further exploration 
tasks will be designed and persons with good mathematical background (students or 
teachers from secondary or tertiary) will be invited to participate in the research. It is 
hoped that by researching into how instrumental genesis in DGE could take place 
under the framework of variation, research questions 2 and 3 could become more 
well-defined and tangible.  
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This study shows that dynamic geometry using the "analysis" method systemized by 
the Greek mathematician Pappus in the 3rd century AD can provide a good learning 
environment to teach deductive proof for secondary students. Traditionally, in 
teaching deductive proof the axiomatic or synthesis method to deduce a new result 
from assumptions has been far more emphasized at the expense of the mathematical 
discovery process. The method systemized in Euclid’s Elements is not an honest way 
for teaching deductive proof in that it shows only final results by mathematicians and 
does not help students to appreciate why and how to prove. To improve deductive 
proof abilities through the analysis method, a dynamic environment in which 
geometric figures can be easily manipulated are required for an "active justification" 
to find the heuristics for proof. This paper suggests four phases to solve construction 
problems in dynamic geometry: First is the understanding phase to recognize 
problem conditions and goals. Second is the analysis phase to assume what to be 
solved is done and to find the proof ideas by the analysis method. Third is the 
synthesis phase to construct a deductive proof as a reversed process of the analysis 
and finally, the reflection phase to reflect on the problem solving process as a whole. 

 
Deductive proof is a process used to deduce a new result from assumptions existed in 
the problem, axioms, what was previously proven, etc. Since the 6th century BC, it 
has been the flower of mathematics and marks a distinction between mathematics 
and other science. Euclid’s Elements written in the 3rd century BC has been used as 
a textbook to develop students’ deductive proof over 2000 years. However, the 
axiomatic method used in Euclid’s Elements has been criticized in the sense of 
showing none of mathematical activities as imagination, intuition, experiment, 
thoughtful guessing, trial and error, making mistakes, etc. (Clairaut, 1741; Lakatos, 
1976; Vincent, 2005). Similarly the proof process that appears in secondary 
mathematics textbooks shows only the final result produced by some mathematicians 
and does not help students to see why and how to prove. Students have few meaning 
in the proof explained by teachers based on textbooks and lose confidence in 
constructing proof. eventually.  
This paper argues that the axiomatic method of Euclid’s Elements and current 
mathematics textbooks are not honest ways for teaching deductive proof, and in order 
to improve students’ proving abilities, an “active justification” to find the heuristics 
for proving by students themselves should be required rather than a “passive 
justification” that occurs through teacher’s explanation or persuasion about the 
process. This paper introduces one strategy for active justification to improve 



 

 355 

students’ deductive proof: ‘Analysis’ with dynamic geometry software. Dynamic 
geometry provides a good environment for students to develop deductive proof 
abilities when it is combined with the ‘analysis’ method systemized by Pappus, who 
criticized Euclid’s ‘synthesis’ method which shares the same order as the proof 
process that appears in secondary geometry textbooks. 
 
Analysis and Synthesis Mathematical heuristics related with proof goes back to the 
Greek era. In the 3rd century, the Greek mathematician Pappus systemized in his 
book “Collection” the “analysis” which was also emphasized by Euclid but did not 
appear in his book “Elements”. The analysis method, which is the oldest mathematics 
heuristics in the history of mathematics, assumes “what is sought as if it were already 
done and inquire what it is from which this results and again what it is the antecedent 
cause of the latter and so on, until by so retracing the steps coming up something 
already know or belonging to the class of the first (Hearth, 1981, p.400).” The 
synthesis as the reverse of the analysis take as already done that which was last 
arrived at in the analysis and arrives finally at the construction of what was sought by 
arranging in their natural order as consequences what before were antecedents and 
successively connecting them one with another.  
Greek mathematicians thought the dialectic integration of analysis and synthesis to be 
a substance of mathematical thought. However, Euclid’s Elements considered only 
synthesis to reduce theorems from the foundation as a way to guarantee the truth of 
mathematics. As same as Euclid’s Elements, current secondary geometry textbooks 
introduce only the synthesis. The analysis also should be introduced in order to 
develop students’ proof abilities.  
 
Design of an instructional scheme to improve deductive proof ability 

Dynamic geometry One problem is that the analysis method is very difficult to be 
applied in the paper and pencil environment because various dynamic operations such 
as manipulating geometric figures are required for the method. Particularly, the paper 
and pencil environment is worse for normal level students than for high achievement 
studentsIt might be because of the lack of proper dynamic tools that the analysis 
known well by such Greek mathematicians as Plato and Euclid had not emphasized in 
schools since the Greek era. Dynamic geometry, which has been developed since the 
late 1980s, can provide a circumstance for the revived use of the analysis in that it 
allows students to drag and transform geometric figures.  
Four phases of problem solving In this paper four phases of problem solving is 
suggested as an instructional scheme to improve deductive proof ability: First is the 
understanding phase to clearly recognize problem conditions and goals. Second is the 
analysis phase to assume what solving is to be done and to find the construction ideas 
by using the analysis. Third is the synthesis phase to construct a deductive proof as a 
reversed process of the analysis and finally, the reflection phase to reflect on the 
whole problem solving process. 
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Problem situation There are two kinds of geometry problems: Proof problems or 
construction problems. There are two kinds of analysis. The first kind of analysis is to 
find proof process by getting a series of previous sufficient conditions of the 
conclusion to be proven under the assumption that what is required to be proven is 
already proven. The second kind of analysis is a problem solving strategy for 
construction problems. This is a strategy to find the construction process by 
extracting a series of necessary conditions from the assumption that what is required 
to be constructed has already constructed. In this paper, geometric problems are 
limited to problems of construction although the analysis method can be applied to 
both construction and proof 
 

Analysis & synthesis phase for a proof problem 

There is a triangle ABC. Make three equilateral 
triangles ABD, BCE, AFC by using each side of the 
given triangle ABC. Then prove that quadrilateral 
BEFD is a parallelogram 

The following axiomatic or synthesis proof process usually appears in secondary 
school textbooks: 

1. ABD, ∆BCE, ∆AFC are equilateral triangles  

2. FCA and ECB are 60° and FCB is common ( DAB and FAC are 60° and 
FAB is common) 

3. ACB = FCE and AC = FC, BC = EC ( BAC = DAF and AC = AF, AB = AD) 

4. ABC  FEC ( ABC  ADF) 
5. AB = FE (DF=BC) 
6. BD = FE (DF=BE) 
7. Quadrilateral BEFD is a parallelogram 
Here, thought flow 1!  2!  3 !  4 !  5 !  6 !  7 is a series of sufficient conditions in 
that 1 is a sufficient condition of 2 and 2 is a sufficient condition of 3 and … and 6 is 
a sufficient condition of 7. However, this synthesis process does not explain to 
students why they have to consider “∆FCA and ∆ECB are 60° and ∆FCB is 
common” from ∆ABD, ∆BCE, ∆AFC are equilateral triangles. Actually it is for 
showing ∆ACB = ∆FCE. Therefore students should consider ∆ACB = ∆FCE first, 
then they have to find the reason why ∆ACB = ∆FCE. The reason is “∆ECB is 60° 
and ∆FCB is common”. Similarly, students should consider ∆ABC  ∆FEC before 
considering “∆ACB = ∆FCE, AC = FC, BC = EC” and AB = FE before considering 
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∆ABC  ∆FEC, BD = FE before AB=FE and finally “quadrilateral BEFD is a 
parallelogram” before considering BD=FE. 
Thus, the most natural thought in order to prove this theorem is to assume first that 
quadrilateral BEFD is a parallelogram. Then to find a series of sufficient conditions 
6, 5, 4, 3, 2, 1. That is, thought flow 7 6 5 4 3 2 1 is more natural than 
1 2 3 4 5 6 7. Here, Pappus called this natural thought flow “analysis” 
and the reversed thought flow “synthesis.” 
 

Analysis & synthesis phase of a construction problem 

There is a circle O and there are two lines 
m and n which are perpendicular to each 
other. Construct a circle whose center is 
located on the line n and to which the 
circle O and the line m are tangent 
  
 
 

                                       
According to the textbook, the synthesis proof process is as follows (See Fig 1): 
1. Draw a circle H with radius OG.. Then let F be the intersection point 
2. Draw a perpendicular bisector of OF. Let P be an intersection of the perpendicular 
bisector and line n. Then ∆OPF is an isosceles triangle. 
3. Then, TP = PH 
4. Then a circle can be drawn with the center P and the radius PH. Draw a circle P 
with radius PH. That is the circle to find.  

 
Fig. 1 
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Here, thought flow 1!  2 !  3 !  4 is a series of necessary conditions in that 1 is a 
necessary condition of 2 and 2 is a necessary condition of 3 and 3 is a necessary 
condition of 4. However, in this synthesis process students cannot understand why 
they have to draw the circle H with radius OG in order to obtain the circle P tangent 
to the given circle O and the given line m. What is important is how to find point F 
such that OG = HF. Students have to find the way to get point F by themselves. 
Similarly, they cannot appreciate why they have to draw a perpendicular bisector of 
OF. Students also cannot appreciate the relation between point F and Point P. 
Through only the analysis method, they can understand the relation between the 
circle H and the tangent circle P.  
The analysis process of the problem is as follows (See Fig. 2 and Fig. 3):  
1. Assume that the circle P is constructed satisfying the given conditions. Let T be a 
tangent point to the circle O and H be a tangent point to line m.  
2. Then TP=PH 
3. Draw a circle P with radius OP and Let F be an intersection point of the line n and 
the circle. Then, ∆OPF is an isosceles.4. Then OT=HF. Draw a line perpendicular to 
OF passing through P. Then E is a mid point of OF 
Of course, this analysis process is not an easy route. Students have to find a series of 
necessary conditions starting from line 1 by using operational activities in dynamic 
geometry. In this phase, students need special help from their peers and teacher 
through discussions or dialogues with them. And, after finishing the analysis phase, 
students have to go to the synthesis phase as the reversed process of the analysis to 
improve their deductive proof abilities.  

  
Fig 2 
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Fig 3 

 
Reflection Phase in a construction problem  

In the reflection phase, students look for another proof. The analysis process is as 
follows (See Fig 4): 
1. Assume that the circle P is constructed satisfying the given conditions. Let L be a 
tangent point of two circles O and P. 
2. Draw OP which passes through L. And, draw OQ which is perpendicular to m. 
And, make two isosceles triangles OQL and PHL 
3. Then segments QL and LH makes one segment QH i.e. Angle QLH is 180° 

The synthesis proof is as follows (See also Fig 4): 
1. Draw a perpendicular line to m passing through O and let Q be an intersection 
point of the given circle O and the line. Then draw QH and let L be an intersection 
point of the line and the circle O. 
2. Draw a line OL and let P is the intersection point of the line OL and line n. Then 
∆LPH is an isosceles triangle. That is, LP=PH. 
3. Draw a circle P with the radius PH  
In the reflection phase, students can check whether the construction process by the 
synthesis is right or wrong. If the relation among components of the figure 
constructed by synthesis is preserved while dragging it, the construction process can 
be considered as a right procedure. 
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            Fig 4                                    Fig 5 
 
The functions of dynamic geometry for the analysis method 

Three functions of dynamic geometry for the analysis method are as follows: First, 
dynamic geometry can help students draw a precise figure. To find more easily a 
series of necessary conditions to a final conclusion, students have to show relations 
among components in the problem situation. In a figure roughly drawn on the paper it 
is very difficult for students to find the relation. Second, dynamic geometry has a 
measure function. It makes students determine a good starting point for analysis by 
continuously measuring length or angle while dragging the point continuously. In a 
paper circumstance, it is very difficult for students to make a precise enough 
measurement to find a good starting point for analysis. Third, dynamic geometry is 
dynamic. It can make students perform various experiments to find necessary 
conditions by drawing, erasing and manipulating figures easily as well as 
dynamically. In a paper and pencil circumstance, it is almost impossible to perform 
analysis because the figure drawn on the paper cannot be manipulated. Finally, 
dynamic geometry is a reflective tool. If the relation among components of the 
picture constructed by synthesis is preserved while dragging it, the construction 
process can be considered as a right procedure. In a paper and pencil circumstance, 
there is no way to check whether the construction process is right or not.  
 
Conclusion 

In the late 1980s, Cabri and GSP were designed as dynamic tools for students to 
investigate the properties and relations within and between figures through operating 
figures on the computer screen directly. It is a very powerful environment in which 
much more activities than in traditional construction using normal compasses and 
rulers made possible: Construct, erase, drag and transform figures, measure segments 
and angles etc. A dynamic method for Euclidean geometry was proposed by Clairaut, 
a French mathematician of the 17th century (Laborde, 1999). However, then neither 
did he have the proper tool for the dynamic method. In dynamic geometry, students 
can make a conjecture to geometric properties and confirm them informally and feel 
the need to prove the conjectured and informally confirmed geometric facts. In 
dynamic geometry, students can improve their proof abilities by using the analysis 
method. Dynamic geometry is a very excellent tool for the analysis method which is a 
good mathematical strategy proposed by Greek mathematicians but that has been 
forgotten for a long time, perhaps due to the lack of a proper tool. In mathematics 
textbooks, the conclusion is a conclusion. In mathematics education, the conclusion 
should be a starting point rather than a conclusion. Dynamic geometry can provide a 
better and safe route from the starting point to the development of deductive proof by 
normal students.
 



 

 361 

References 

Clairaut, A.C. (1765). Elements de geometrie. (translated in Korean by H.W. Chang).  
Lakatos, I. ( 1976). Proofs and refutation - The logic of mathematical discovery 

(edited by J.Worrall and E. Zahar). Cambridge University Press. (translated in 
Korean by J.H.Woo) 

Hearth, A. (1981). A history of Greek mathematics(v. 2). Dover Publishications, Inc.  
Laborde, J.M. (1999). Some issues raised by the development of implemented 

dynamic geometry as with Cabri-Geometre. Plenary Lecture at the 13th European 
Conference on Computational Geometry (held in Antibes, France, INRIA, March 
15-17, 1999). 

Polya, G. (2004). How to solve it: A new aspect of mathematical method. Princeton 
University Press. 

Vincent, J.(2005). Interactive geometry software and mechanical linkage: 
Scaffolding students’ deductive reasoning. In W.J. Masalski & Elliot, P.C.(Eds.), 
Technology-supported mathematics learning environments, Sixth-seventh 
yearbook. Reston, VA: the National Council of Teachers of mathematics. 



 

 362 
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Cabri 3D is a relatively new software which has great potential in the teaching and 
learning of both 2D and 3D geometry, in enhancing student ability to visualize, in 
modeling physical structures and motion and in developing new mathematics. In 
order to facilitate the instrumental genesis of this software an approach based on a 
web-based integration of text, hypertext, both static and dynamic “pictures” and 
interactive demos is being developed. This approach may well be useful with other 
applications. 
Introduction 
When I first saw a prototype of Cabri 3D demonstrated in 2001, my reaction was “so 
what?” Oldknow (2005) suggests that this might be a common response “It is 
possible to view…Cabri 3D to be just for fun and of no curricular relevance!” After a 
year of experimentation with Cabri 3D I am now convinced that it is an important 
software with the potential to radically alter our perceptions of geometry, open up 
new mathematics and provide engaging mathematical environments for students. 
This paper will discuss a number of areas in which Cabri 3D could be important 
together with some issues that may arise and will also discuss a particular approach 
to its instrumental genesis. 
Three-Dimensional Geometry 
Laborde (2005) sees mathematics as a science dealing with variable objects. 
Theorems in geometry, which state that certain geometrical properties remain 
invariant as a figure varies are comparable to algebraic identities, which remain true 
as the variable changes. Interactive geometry software is hence of particular 
importance in that students, in being enabled to manipulate tangible variable objects 
are introduced to this essential feature of mathematics. 

Cabri 3D shares many basic features with 2D interactive geometry softwares 
such as Cabri 2+ and The Geometer’s Sketchpad (Jackiw, 2001). In particular, Cabri 
3D is about such tangible variable objects, objects which are constructed in 
geometrical relationships which are preserved when the position of initial objects is 
changed. Hence much of the research evidence concerning 2D interactive geometries 
is likely to generalize. For example, in a summary of research findings on proof, 
Mariotti (2006, p. 193) states that interactive geometry environments have been 
successful in enabling students to link informal explanations with formal proof.  

There is as yet little research specific to Cabri 3D: however, Laborde (2005) 
has shown how the idea of soft construction, an important aspect of generalization in 
which certain properties are deliberately constructed by eye in order to empirically 
explore the locus of possible figures, can apply to Cabri 3D in exploring the altitudes 
of a tetrahedron. 
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Cabri 3D has some important differences with 2D interactive geometry, which 
can act as both affordances and constraints. One difference is that many of the 
features of Sketchpad or Cabri 2+ are still in the process of being developed. The 
most significant feature lacking in dealing with three-dimensional geometry, 
particularly in the context of the school curriculum, is measurement, although, as will 
be seen in the section on pedagogical models, this does not rule out the use of Cabri 
3D in this area. Other features not yet implemented are macros and loci. However, 
some of the limitations are also enabling. For example, the absence of number made 
the construction of the volume and cross-product pedagogical models an interesting 
mathematical challenge, rather than just a useful task.  
 Cabri 3D also has features not shared with 2D interactive geometries, such as 
the ability to create polyhedra, cut these polyhedra to form new polyhedra, and to 
create the nets of polyhedra.  

A more fundamental difference is that, while a 2D interactive geometry 
represents 2D space with no loss of information, in the 2D representation of 3D space 
provided by Cabri 3D there is an inevitable loss of information (Parzysz, 1988) as 
any point on the screen represents a line in space. This is overcome to some extent by 
the ability to change the viewing angle, but has the consequence that creating or 
dragging any unconstrained object may have unexpected results: what looks like a 
small difference from one viewing angle may create a large change . Hence free 
“play” with object creation may be less satisfying than in 2D. On the other hand, 
geometric properties have greater importance: the student is forced to continually 
consider the geometric relationship between objects, as any apparent spatial 
relationship is unlikely to hold true.  

It is also not possible to easily infer the properties of objects on the basis of 
spatio-visual information. Accascina and Rogora (2005) found that students using 
Cabri 3D found it difficult to infer the properties of objects on the basis of spatio-
visual information. They were unable to decide whether all parallelogram cross-
sections of a cube were rectangles. On the other hand, the consequent uncertainty 
may act as incentive for proof (Hadas, Hershkowitz &Schwarz, 2000). 

Cabri 3D is a good 2D representation of 3D, with a choice of perspectives and 
objects rendered to give an impression of distance, but inevitably has the limitation 
that the verisimilitude of the representation is dependent on the precise position of 
the viewer with respect to the screen, which will vary. Hence, experience with the 
software is needed in order to perceive objects as realistically three-dimensional. 
Cabri 3D in 2D geometry 
Constructions in 2D geometry may be performed on any plane, and hence can be 
easily viewed from different directions, which may enable students to more readily 
distinguish between incidental spatio-graphical properties such as the position or 
orientation of an object and the necessary links between its spatio-graphical 
properties which arise from the way the object was constructed. This distinction is 
critical for understanding the nature of these links (Laborde, 2005). This is illustrated 
by the two views of the construction of an equilateral triangle below. 
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Looking directly down on the 
base plane. The orientation of 
this figure is readily changed. 

A view from an oblique angle: an accurate 
construction which has given rise to an 
“inaccurate” diagram, necessitating separation of 
the visual and the geometrical for its interpretation. 

Cabri 3D also provides a link between 2D and 3D geometry. Familiar 2D 
objects need to be constructed in new ways, or change substantially in 3D, as 
illustrated below: 

  
A circle is defined by a point and 
an axis. 

The perpendicular bisector of a segment is a 
plane. 

Rather than 3D space being an extension of 2D space, 2D objects may hence 
be seen as embedded in 3D space, which may consist of a “cartoon” world, with links 
to the world of experience. Here is an example which uses a character called Claude 
to mediate the mathematical meaning of reflection: 

  
The Claude “behind” the mirror is a 
reflection. 

Claude, reflection, and mirror seen from 
above. 

Visualisation 
Visualization is an important aspect of doing mathematics, the ability to visualize is 
not developmental and hence a major issue is the development of “effective 
pedagogy that can enhance the use and power of visualization in mathematics 
education” (Presmeg, 2006, p. 227). Research evidence shows that dynamic 
computer software facilitates visualization processes (Presmeg, 2006, p. 220).  

Cabri 3D may facilitate 3D visualization through allowing students to 
manipulate structures which are not limited by gravity or solidity and which can be 
given varying degrees of visibility. In a computer environment, such manipulation 
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involves an explicit awareness of the nature of actions such as rotation upon objects 
(Gutiérrez, 1996). Here are some questions using Cabri 3D which are designed to 
require student visualization: 

   
What shape is this 
cross-section? 

What happens to the 
cross-section as the plane 
moves towards the bottom 
vertex? 

What characterizes this 
hexagon? Is it possible to get a 
regular hexagon as a cross-
section? 

Physical Modelling 
One of the reasons for the early importance of Logo was its connection with body 
motion: the turtle represented an object turning in the physical world. However, the 
lack of correspondence between the geometry of Logo and the Euclidean geometry 
of the school curriculum has been problematic (Laborde, Kynigos, Hollebrands & 
Strässer, 2006).  
Cabri 3D can also be 
used both to embody 
motion and to create 
models of real-world 
structures, and 
depends upon the 
Euclidean geometry 
of the school 
curriculum. 

  

 Little House by Jean-Jacques 
Dahan 

Tower Bridge by Adrian Oldknow 
(file available at 
www.counton.org/cabri/index.htm)  

Unlike real-world model building, the creation of these structures requires the 
use of geometrically based tools and hence an explicit awareness of the geometric 
relationships embodied in the structure.  

This is also true when modeling 
motion: to create Claude on the swing 
with a shadow requires the use of the 
rotation and parallel line tools. To make 
Claude row requires a specific 
awareness of bodily motion and the 
means by which this may be modeled 
geometrically. 
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A Microworld? 
The objects above show that in Cabri 3D there is certainly scope for students to 
design and create using mathematical tools, in which mathematical problem-solving 
and experimentation is required. However, with no textual interface or ability to 
create macros, it cannot be called a microworld in the sense defined by Hoyles and 
Noss (2003). Is the distinction important? It may be, if we find that the integration of 
symbolic and visual learning is universally important. 
Pedagogical Models 
These models, which cannot be entirely reproduced in the physical world, are 
designed to illustrate mathematical dependencies: 

   
Effect of changing length, 
width or height on volume 
and surface area. 

The cross product of two 
unit vectors as the angle 
between them varies. 

A cone of variable height 
and radius can be 
transformed into a sector. 

 
New Mathematics 
As well as enabling new results in research mathematics (e.g. Oldknow (2005) 
generalized the Soddy line of a triangle to a tetrahedron), objects may be created 
which give rise to areas of new mathematical exploration which are both attractive 
and accessible to students. An example is the “net” of a truncated icosahedron in 
which the dihedral angle between connected polygons is progressively being 
decreased (Mackrell, 2005a): 
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The unexpected emergence of the final three objects, with high degrees of 

symmetry, gives rise to the question “why”, which leads to further investigation and 
proof. 
Problem:  
Given the potential of Cabri 3D, how do we engage learners? In the early years of the 
use of technology, it was assumed that learning would emerge simply from the 
interactions between the student and the machine. It is now recognized, however, that 
the choice of task and learning environment is crucial (Laborde, Kynigos, 
Hollebrands, & Strässer, 2006, p. 279). An initial problem is that of instrumental 
genesis: how can we provide a learning environment in which Cabri 3D progresses 
from being an artefact to becoming an instrument (Rabardel, 2002) which can be 
used in problem-solving or design where appropriate and laid aside in favour of other 
instruments when inappropriate? 

Laborde, Kynigos, Hollebrands, & Strässer (2006, p. 280) recognize that there 
is an intrinsic link between mathematical knowledge and knowledge about how to 
use a tool and that hence developing the ability to use a tool may also involve 
developing mathematical knowledge. This accords with my experience with teacher 
education students engaged in learning how to use Cabri or GSP in Ontario and the 
UK. Many learners have very little geometrical awareness and hence cannot easily 
distinguish between a geometry problem and a problem of not knowing how to use a 
particular tool. For example, a student, unable to create a sequence of equally spaced 
points on a line commented that this was due to not knowing how to use the 
“equidistant” tool.  

Hence, for many learners, teachers as well as students, the process of 
instrumental genesis must also include enhancing geometrical understanding. This is 
an important justification for using interactive geometry software in a classroom: 
with relatively straightforward interfaces, learning how to use the software is mainly 
about coming to grips with the underlying geometry. In the process the software will 
become the geometry in some sense for the student (Mariotti, 2002), and its 
particular features may have a profound effect on geometrical thinking. A concept 
image of “perpendicular bisector” based on the use of a straight edge and compass 
will differ from that of students creating a concept image through using the Cabri 3D 
“perpendicular bisector” tool.  
Possibilities: 
An early effort with multi-leveled text was a resource consisting of three documents 
for learning how to construct a kaleidoscope using GSP or Cabri. The first document 



 

 368 

gave a framework for the task and asked specific questions and suggested extensions. 
The other two documents showed the process in detail, using screenshots, one with 
Cabri and the other with GSP. Learners were encouraged to use the documents as 
they felt comfortable: the confident could use the framework as a set of challenges to 
meet whereas those lacking in confidence could follow the process in detail. This has 
had a positive response in a number of workshops for teachers. It allows learners to 
work at their own pace, choose their level of challenge and create a mathematically 
and aesthetically pleasing object.  

I correspondingly designed an introduction to Cabri 3D, consisting of activities 
now posed at three levels of challenge with details communicated by screenshots, 
followed by extension questions (Mackrell, 2005b). One issue, however, is that all 
hints and details are visible and it is hence hard to ignore the details. Another is that 
younger learners may not feel encouraged to continue exploration. Using similar 
materials showing how to create Claude on the swing, a mathematically able sixteen 
year old felt challenged, but was able to create the figure. A 12 year old with 
extensive experience with Cabri was able to follow the materials and create the 
figure, but showed no interest in further work with Claude. 

I have recently been designing interactive demos using the software 
TurboDemo. These show brief movies of the steps involved in solving a problem, but 
also ask the viewer to anticipate what might happen next, to consider mathematical 
questions and to engage in extension activities. The viewer is in control, choosing 
whether to proceed at the end of a step or to view the step again. Combining this with 
the idea of multi-layered text, I am now in the process of writing an HTML resource 
to introduce fold-up polygons such as the truncated dodecahedron shown above. This 
includes hypertext (with links to a glossary), popups for hints, pictures, embedded 
Cabri 3D files and interactive demos. Part of this resource may be found at 
http://educ.queensu.ca/~mackrelk . 

In trying out this resource, it has become clear that 12 year olds can easily 
follow a demo and create a fold-up dodecahedron. A major question, however, is 
whether students are learning a sequence of moves to follow or are learning about the 
rotation which is the purpose of these moves, particularly as little interaction with 
text is required when following a demo. This will be the subject of further research. 

In conclusion, Cabri 3D has great potential, but, as with any interactive 
geometry software, instrumental genesis is problematic due to lack of geometric 
understanding on the part of both teachers and students. New approaches are needed 
to overcome these difficulties and a web-based approach is being developed. 
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Bakker (2002) identified two categories of learning software in mathematics: 
landscape-type software and route-type software. Route-type software was designed 
to guide learners through a hypothetical learning trajectory with a fairly fixed 
destination. Alternatively, landscape-type software is designed to support learners in 
conducting open-ended investigations. The use of these dynamic software tools for 
the learning of mathematics and statistics has gained increasing prominence in 
schools because of its ability to support multiple purposes defined by the user rather 
than the software. Little is known, however, about the diversity of approaches in 
which learners use these software packages to conduct investigations. This paper 
reports on a study of eighteen prospective secondary mathematics and science 
teachers’ approaches to conducting a statistical investigation using the dynamic data 
analysis software Fathom™ (Finzer, 2001). Three distinct approaches were 
identified by the research—Wonderers, Wanderers, and Answerers—each with 
measurable differences in their approach. This paper describes qualitative and 
quantitative differences in these approaches as well as their potential epistemological 
roots.  

 
Introduction 

Bakker (2002) identified two categories of learning software in mathematics: route-
type software and landscape-type software. Route-type software was designed to 
support a predetermined learning trajectory with a fairly fixed destination. 
Alternatively, landscape-type software is identified by its ability to support learners 
in conducting open-ended investigations by providing them with dynamic tools—for 
purposes defined by the user rather than the software. The use of these dynamic 
software tools for the learning of mathematics and statistics has gained increasing 
prominence in schools because of its ability to support multiple learning routes with 
varied destinations. Little is known, however, about the diversity of approaches in 
which learners use these software packages to conduct investigations. This paper 
reports on a study of eighteen prospective secondary mathematics and science 
teachers epistemological approaches to conducting a statistical investigation using the 
dynamic data analysis software Fathom™ (Finzer, 2001). 
 

Dynamic statistical learning software 

Two significant shifts have been made in the teaching and learning of statistics, 
largely due to the influence of technology and improved theories of learning in 
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mathematics. The first shift, beginning around the time of the first ICMI study on 
technology (late 1980s), was largely due the availability of computing software such 
as Excel, SPSS, and SAS which freed the user from tedious calculations. This change 
affected primarily upper secondary and tertiary instruction in formal statistics 
coursework (e.g., hypothesis testing, regression) as statistics was deemed too 
challenging for younger students. The shift provided an opportunity for instruction to 
evolve from a focus on learning formulas and practicing calculations towards a 
greater emphasis on conceptual development. These newer approaches to teaching 
statistics relied more heavily on technology for calculations, putting new emphasis on 
activity-based learning, development of conjectures and data collection, and more 
complex analysis of larger data sets. Like in mathematics, this opened opportunities 
in statistics for learners with a variety of backgrounds and learning styles, including 
access to powerful statistical tools for secondary students. 
The drawback of employment of software to calculate statistical measures and 
hypothesis testing, however, was its use as a black box. That is, students would input 
data into the software, apply a few keystrokes to request a particular graph, 
calculation, or statistical test, and the results would be “spit out” by the computer. 
This generated much complaint by researchers that learners were developing a black-
and-white view of statistics (Abelson, 1995; Gardner & Hudson, 1999), a 
deterministic mindset of data as a means for providing “answers” to complex 
questions. An opposing epistemological stance was of statistics as a tool for inquiry 
and analysis which acknowledges a complex world. 
Statistical software packages developed in the past few years counter this “black box” 
approach by taking a more visual approach to statistical analysis. Software packages 
such as Fathom™ (Finzer, 2005) and Tinkerplots™ (Konold & Miller, 2004) were 
developed as learning software for doing statistics, by encouraging learners to 
visualize statistical relationships and develop skills in informal inference. Software 
packages designed to support statistical learning through open-ended investigations 
with data have the potential to provide users with multiple opportunities to become 
data wonderers, those who explore a series of “I wonder” questions as they explore 
data, generate and test hunches, seek insight into the phenomenon being investigated, 
and communicate statistical evidence for discussion and debate. Whether these 
software packages actually support learners in this way, however, has not been 
investigated. This is the goal of this paper. 
Study context and method 

A study conducted at a large university in the United States examined preservice 
teachers’ development of statistical reasoning through exploration of assessment data 
(Makar, 2004; Makar & Confrey, in press). The participants in the study were 
eighteen prospective mathematics and science teachers enrolled in an innovative 
course on assessment developed and taught by the authors. The course themes 
examined standardized and classroom testing, analysis of data using technology, and 
focused on developing analytic tools to highlight issues of equity in test data. 
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Structured investigations were used throughout the course to introduce the teachers to 
ways in which interpreting data distributions could uncover hidden issues in high-
stakes testing (Confrey & Makar, 2005). 
The primary purpose of the study was to examine the interaction between the 
prospective teachers’ understanding of variation and distribution and their use of data 
as statistical evidence in an open-ended data investigation of equity in testing. This 
paper will focus on the epistemological approaches that the preservice teachers made 
use of the software Fathom™ to conduct a semi-structured data investigation. 
Individual interviews were videotaped as each teacher conducted an investigation in 
Fathom; their work on the computer was also captured. Videotape data, linked to 
their computer capture, were transcribed and analyzed qualitatively using Grounded 
Theory (Strauss & Corbin, 1998). One analysis focused on individual actions 
performed (e.g., observations, evaluations, and conclusions) and a second macro-
level analysis documented patterns of inquiry. The action-analysis was coded by two 
researchers independently, with 95% agreement. 
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Figure 1: Representation created by nearly all participants 

A random sample of data on 273 students’ scores on a state exam was provided to the 
prospective teachers for the investigation. The dataset contained fourteen variables 
(demographic information, current and previous test scores, economic level, English-
language background, etc.) on sixteen-year old students of Hispanic descent from 
rural and urban communities. Before seeing the dataset, the teachers were asked to 
state a conjecture about the relative performance of Hispanic students in urban and 
rural schools. After stating their conjecture, they were told to investigate their 
conjecture in Fathom until they felt they were ready to reach a conclusion. They were 
given the data set but no representations (tables or graphs). Most of the participants 
began by creating a graph similar to Figure 1. The upper distribution is of urban 
student test scores and the lower distribution is of rural student test scores. 
Results 

All of the preservice teachers demonstrated facility with the software in conducting 
their analysis and did not find the process difficult, even though the dataset was 
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relatively large. An analysis of the patterns of inquiry resulted in three categories of 
epistemological approach to conducting their investigation: Wonderers, Wanderers, 
and Answerers. Briefly, Wonderers are those who took an inquiry approach through 
cycles of “I wonder” questions: investigating the phenomenon by following a hunch, 
then seeking further explanations in the data through refined conjectures. Rather than 
using the data to investigate hunches, Wanderers, used the data to create hunches. 
They systematically examined graphs or summary statistics on each variable until 
they found a pattern that looked “interesting”. Finally, Answerers developed an initial 
hunch, used the data to test their hunch, and quickly ended their investigation. Further 
analysis is provided below for each category. 
Wonderers  
Six of the eighteen participants (33%) were classified as Wonderers. This group 
exhibited the kind of behaviour for which dynamic software was likely designed. 
They developed a conjecture of what they expected to find, then were lead through an 
investigation by cycles of “what if” questions, before finally settling on a conclusion 
(Figure 2). These questions refined their theories of understanding about the 
phenomenon being investigated. Their investigations in the data were guided by these 
theories.  

 
Figure 2: Model of Wonderer behaviour 

Wonderers were distinct from the other participants in two measurable ways. First, 
they spent a significantly longer period of time conducting their investigation (p = 
0.02), spending on average 26.2 minutes (s = 12.1) compared to an average of 10.3 
minutes (s = 5.1) by the other participants. Wonderers used their time differently as 
well, making significantly fewer unfocused observations (statements about the data 
not connected to the context or conjecture) than other participants (p = 0.03), making 
on average 2.6 observations per 5 minutes (s = 1.2) compared to a mean of 4.4 (s = 
2.2) by other participants. Although their investigations were longer, they were 
focused in their exploration into the situation. Their use of the software appeared to 
be as a tool for inquiry – to seek insight into the context of their investigation. 
Wanderers  
The largest category of investigative behaviours was by those identified as 
Wanderers, with eight of the eighteen participants (44%) being categorized as such. 
Wanderers used the software to go through the variables available in the data, often 
systematically, until a relationship “popped out” at them. They did not enter their 
investigation with any particular theory in mind (Figure 3) nor did they conduct their 
inquiry in a purposeful way. They appeared to possess a belief that the data would 
“speak for itself” and that any relationships to be found would emerge on their own. 
Once a particular interesting relationship was found, they used their understanding of 
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the context (rather than the data) to try and explain the phenomenon they had found. 
To them, relationships pre-existed and their job was to discover these relationships.  

 
Figure 3: Model of Wanderer behaviour 

The Wanderers used their time primarily making observations (statements not 
connected to the context or conjecture, such as comparing sample sizes) or drawing 
preliminary conclusions; few of their statements were evaluative in nature 
(interpreting the data with respect to the context). One of the participants summed it 
up well when she said during her investigation “Well, I always like to look at 
everything”. Their use of the technology was as a filter to “catch” potential insights. 
The Wanderers (mean = 1.7, s = 0.44) posted a significantly higher rate of conclusion 
statements per five minutes (p = 0.02) compared to the Wonderers (mean = 1.0, s = 
0.46) and posted an average of 70% more observations per five minutes (mean = 4.4, 
s = 2.4) than the Wonderers (mean = 2.6, s = 1.2), although the difference was not 
significant (p = 0.09). In general, the Wanderers did not appear to seek insight into 
the phenomenon being investigated, but looked for significant results in the data 
devoid of context. 
Answerers  

The third group of behavior types recorded, the Answerers, used the software as a 
tool to locate a particular piece of evidence in the data to test a conjecture (theory) 
and then were quickly ready to draw a conclusion (Figure 4). Four of the eighteen 
participants (22%) were identified as Answerers. To this group, the computer was an 
efficiency tool that they could use to answer a question they had. This group was 
identified by their decision process: they looked for a particular, single piece of 
evidence and once they found it were satisfied that they had “answered” the question 
put to them. Their approach was somewhat similar to the use of computers to support 
statistical analysis using traditional statistical software. Rather than be a tool to 
explore, it was used as a way to test and decide upon the validity of a hunch. 

 

 
 

Figure 4: Model of Answerer behaviour 
 

Answerers were distinct from the other two approaches in two measurable ways. 
First, their investigations were significantly shorter (p < 0.01) than the other two 
groups, with a mean time of 5.7 minutes (s = 2.6 minutes) compared to the other 
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participants (mean = 18.5 minutes, s = 10.8 minutes). Second, they spent significantly 
greater proportion of their time (p = 0.03) drawing conclusions (mean = 2.4 
conclusions per 5 minutes, sd = 0.55) compared to the other participants (mean = 1.4, 
sd = 0.55). Their investigations were very efficient and appeared to use the software 
to test their conjecture rather than seek insight into the phenomenon under 
investigation. 
 
Discussion 

The three approaches to conducting data-based investigations with dynamic software 
revealed three different epistemological approaches by learners to computer 
supported inquiry. Wonderers approached their investigation by developing a hunch 
or theory about the phenomenon in question. They then used the data to both test 
their hunch and refine their conjecture. Wonderers possess curiosity in a way that 
Dewey (1910/1997) argues is vital for reflective thinking and inquiry. “Such curiosity 
is the only sure guarantee of the acquisition of the primary facts upon which 
inference must base itself” (p. 31). It is likely that this was the model of a learner that 
the software developers had in mind when the software was designed, although this 
category emerged in only one-third of the participants. This approach reveals a 
learner who acknowledges that their role as an inquirer is to construct a deeper 
understanding of the phenomenon by creating more and more refined conjectures and 
demonstrates a deeper epistemological grounding. 
Two different approaches, however, also emerged in the analysis. Wanderers were 
identified by the lack of purpose in their investigatory approach. Rather than use the 
data to test a hunch, they are more opportunistic in their approach, sifting through the 
data until something interesting caught their eye. From their findings, they try and 
develop a theory which they believe the data are telling them, however they explain 
their theory not with data but by anecdotal evidence. This epistemological approach 
is one in which the learner believes the data “speak for themselves” and their role as 
investigators is to seek out predetermined messages hidden in the data. Unlike the 
Wonderers who take charge of the investigation, Wanderers are led through the 
investigation by the data. Dewey again describes this group well, saying that their 
conclusions are “generated by a modicum of fact merely because the suggestions are 
vivid and interesting” (p. 20), and that they “find it difficult to reach any definite 
conclusion and wander more or less helplessly among them” (p. 36). Because the 
software was designed to make graph construction easy through its ‘drag-and-drop’ 
technology, it is possible that it may encourage this kind of behaviour in some 
learners. This can be of concern when the goal is to develop curious investigators, not 
those who wander aimlessly through graph after graph until an interesting results 
“pops out” at them, then explaining it post-hoc. If the number of relationships 
examined by the Wanderer is high, it is possible that the investigator will happen 
upon a significant result just by chance. 
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Finally, Answerers use the software as an efficiency tool by developing and testing a 
hunch to find an “answer” to their question. Rather than see the data as an 
opportunity to seek further meaning of a phenomenon, Answerers see data as having 
the potential to reveal answers to questions under investigation. This is consistent 
with Dewey’s description of learners hardened by routine: “A conclusion reached 
after consideration of a few alternatives may be formally correct, but it will not 
possess the fullness and richness of meaning of one arrived at after comparison of a 
greater variety of alternative suggestions” (p. 36). Dewey highlights the importance 
of taking one’s time in inquiry: “Time is required to digest impressions, and translate 
them into substantial ideas. Failure to afford time for leisure conduce to habits of 
speedy, but snapshot and superficial, judgment. The depth to which a sense of the 
problem, of the difficulty, sinks, determines the quality of the thinking that follows” 
(p. 38). The Answerers’ approach is similar to one taken by many learners who use 
traditional software packages; they allow the user to input data, select a particular 
measure, graph, estimate, or model, and then present the user with the result. It 
requires a highly creative user with a strong conceptual understanding of both 
statistics and the context under investigation to use traditional software packages as 
something more than a black box, often bemoaned by teachers who recognize 
students’ black-and-white approach to statistical analysis.  
The epistemological approach taken by the user is of critical importance if the goal of 
innovative software is to support the learner in the construction of knowledge through 
inquiry-based approaches. The desire is not just to guide the learner through a set of 
facts and procedures as it may have been previously. Rather, these software packages 
are developed to enable mathematical thinking that goes beyond facts and 
procedures. The purpose is to develop skills in inquiry as well as a mindset of 
mathematics as a human construction developed through the refinement of proofs and 
refutations (Lakatos, 1976).  
The findings of this study allow us to now investigate how we can support each of 
these categories of user. For example, how can one encourage a Wanderer to envision 
a goal of structured inquiry? What kinds of tasks must be developed in order to 
encourage Answerers to seek further insight into their initial findings? These are 
important questions for the mathematics community. 
The use of new dynamic software packages has provided learners with powerful tools 
to support a more visual approach to informal statistical inference. A critical next step 
is to investigate ways that learners are using these tools. This includes both 
acknowledging the diversity of approaches to learning that they support as well as 
ways in which tasks can be developed which encourage productive inquiry skills. 
  
Acknowledgements 

This research was funded by the National (U.S.) Science Foundation under their 
Collaborative for Excellence in Teacher Preparation program (DUE-9953187). 
 



 

 377 

References 

Abelson, R. (1995). Statistics as principled argument. Hillsdale, NJ: Lawrence 
Erlbaum. 

Bakker, A. (2002). Route-type and landscape-type software for learning statistical 
data analysis. Paper presented at the Sixth International Conference on Teaching 
Statistics, Cape Town, South Africa. 

Confrey, J. & Makar, K. (2005). Critiquing and improving data use from high stakes 
tests: Understanding variation and distribution in relation to equity using 
dynamic statistics software. In C. Dede, J. P. Honan, & L. C. Peters. (Eds.), 
Scaling up success: Lessons from technology-based educational improvement. 
San Francisco: Jossey-Bass, 198-226. 

Dewey, J. (1910/1997). How we think. Mineola, NY: Dover Publications. 
Finzer, W. (2001). Fathom [computer software, v. 1.1]. Emeryville, CA: KCP 

Technologies. 
Gardner, H. & Hudson, I. (1999). University students’ ability to apply statistical 

procedures. Journal of Statistics Education 7(1). 
Konold, C. & Miller, C. (2004). Tinkerplots. [computer software, v. 1.0] Emeryville, 
CA: KCP Technologies. 
Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press. 
Makar, K. (2004). Developing statistical inquiry: Prospective secondary mathematics 

and science teachers’ investigations of equity and fairness through analysis of 
accountability data. Doctoral dissertation: University of Texas at Austin (USA).  

Makar, K. & Confrey, J. (in press). Moving the context of modeling to the forefront: 
Preservice teachers’ investigations of equity in testing. In ICMI Study 14: 
Applications and modeling in mathematics education. Dordrecht, the 
Netherlands: Kluwer. 

Strauss, A. & Corbin, J. (1998). Basics of qualitative research: Techniques and 
procedures for developing grounded theory. Sage Publications. 



 

 378 

New artefacts and the mediation of mathematical meanings 
Maria Alessandra Mariotti 
University of Siena, Italy 

mariotti.ale@unisi.it 
 
The paper proposes a theoretical reflection, based on a long-term research project. 
The aim is that of presenting a Vygotskian perspective for interpreting the 
functioning of new technical tools within the theoretical framework of social 
construction of mathematical knowledge. Our study has developed the relationship 
between a general hypothesis, concerning the teaching and learning process 
mediated by artefacts, and specific hypotheses concerning the semiotic potential of 
specific computational tools. The original notion of semiotic mediation has been 
elaborated in order to become a theoretical construct both inspiring the design of the 
teaching experiments and guiding the analysis of the collected data, according to the 
methodology of research for innovation. The discussion proposed aims to situate the 
notion of semiotic mediation in relation to other theoretical constructs, in particular, 
to the notion of instrument and instrumental genesis, as introduced by Rabardel and 
now developed in the field of mathematics education. 
 
The impact of new technology 
In spite of the great expectation expressed by many educators more than twenty years 
ago, it is hard to say that new technologies have found a real integration in school 
practice. For this reason it becomes more and more urgent to identify key points 
around which to organise the discussion on the way to exploit the potentialities that 
new technologies (computers and all the new technologies related to them) offer to 
education: how and why new technologies are going to influence education and in 
particular mathematics education in the future.  
This paper aims to contribute to the debate from a theoretical perspective. Drawn 
from a number of long term teaching experiments, developed within different 
research projects in the last years, the proposal of a theoretical perspective will be 
discussed to explain the functioning of different tools in the construction of 
mathematical knowledge. Such a perspective has the both modern computational 
tools and old artefacts, but mainly seems suitable to express this functioning in terms 
of educational goals. 
 
Historic and social perspective 
Human history is accompanied and punctuated by technological innovations. 
Generally speaking, artefacts and their use can be considered characteristic of human 
activity and their contribution at the cognitive level (Norman, 1993) is largely 
acknowledged. Besides this general statement, it seems that there is something in 
computer related technology which makes it a very peculiar artefact in respect to 
education and mathematics education in particular. Since the very beginning, even 
before the appearance of the personal computer, computational technology has been 
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considered as a powerful tool to be used for educational purposes. Papert (1981) 
certainly had the merit to firstly point on this aspect: interacting with a computer 
offers many different opportunities of meaningful activities, often neglected in school 
practice, but involving ways of thinking recognisable as typical of mathematics. 
The appearance of new technologies and in particular of new tools related to 
mathematical activity, led mathematics educator to foresee a deep transformation in 
the relationship between problems and knowledge, both in respect to the type of 
problems to be proposed to pupils and the solution processes that new resources may 
affect.  
That is obviously the case of all the environments which have a direct relationship 
with mathematical knowledge: for instance, symbolic manipulators, such as 
DERIVE, or more sophisticated products such as Maple or Mathematica; but it can 
be also the case for other applications which have no direct relation to mathematical 
knowledge, but never the less incorporate it, for instance professional software such 
as EXCEL (Sutherland & Rojano, 1993) .  
Much work has been done in order to study the effects of acting in computer 
environments on intellectual processes involved in problem solving and concept 
formation. As clearly pointed out by Noss and Hoyles (1996, p. 44), availability of 
computational objects has drawn a deep transformation, in particular, concerning the 
classic distinction, historically rooted in the western culture, between abstract and 
concrete. Reification of mathematical objects and relations (Dörfler, 1993) has 
challenged longstanding assumptions about what mathematics is to be taught and 
claims for a radical change of perspective (Noss & Hoyles, 1996; Lagrange, et al. 
2003; Trouche, 2005). 
The cognitive-oriented research, carried out for many years has been principally 
centred on the learner, but it has also highlighted the need to enlarge the investigation 
in order to study the effect that activities in computer environments may have on the 
mathematical classroom as a whole.  
In fact, although strictly related and deeply affected by practice, and in particular by 
practice mediated by tools, the process of construction of mathematical meanings is 
not directly and simply related to practice. To go back to the origin consider the use 
of the compass and the meaning of circle  
The definition of the geometric figure is certainly related to the use of compass, 
which on the other hand realises graphic representation of circles. But the passage 
from the use of the compass to trace round shapes to the conception of the circle as 
“the locus of the points equidistant for the centre” is not immediate (Bartolini Bussi 
et al., 1996) neither is it the nature of the definition which can be formulated and used 
in the solution of geometrical problems, for instance construction problems (Mariotti, 
2000).  
In conclusion, mathematical meanings, rooted in the use of artefacts, might remain 
inaccessible to pupils: they may remain “in the eyes of the observer”. 
This phenomenon can be evaluated differently, according to what possible learning 
achievements are expected, however the discussion on the results of the interaction 
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with a computer seems to become more and more complex, I would relate it to a 
general issue that can be condensed in the following crucial question (Mariotti, 
2002): 
 
Is it possible to co-ordinate the autonomy of the student to construct his/her own 
knowledge, and the authority of mathematical knowledge, as a cultural domain of 
knowledge?  
 
The relationship between artefacts and mathematical meanings asks a particular 
analysis, taking into account the fundamental role played by the emergence of signs, 
related to the instrumented activity, and their evolution within social interaction. 
 
The instrumental approach  
An instrumental approach, developed in the domain of mathematics education in a 
number of research studies and rooted on the work of Rabardel (1995), provides a 
very powerful frame for describing situations where the use of tools is involved, in 
particular, to account the differences that might appear in students’ use of a tool and 
the relationship they may construct between the use of a tool and the mathematics 
knowledge . 
In the analysis, carried out by Rabardel ( 1995), the main point consists in separating 
the bare object from the ways of using it in relation to accomplishing a task. In other 
terms, he proposes the following distinction between:  

• the artefact, i.e. the particular object with its intrinsic characteristics, designed 
and realised for purpose of accomplishing a particular task: 

• the instrument, that is the artefact and the modalities of its use, as are 
elaborated by an individual in accomplishing different tasks.  
The introduction of an instrumental approach makes it possible to analyse and to 
interpret the cognitive complexity of an instrumented action and in particular, to see 
its potential in terms of socially shared meanings related to this action. The cognitive 
development (instrumental genesis), related to the acquisition and evolution of 
utilization schema of an artefact, carefully described by the author and subsequently 
elaborated in different studies (Artigue, Lagrange, Trouche, Drijvers), may contribute 
to explain some of the difficulties encountered by students, and at the same time 
fruitfully inspire the design of classroom activities. 
 
Semiotic mediation at school: the role of the teacher 
In the process of instrumental genesis the evolution of the artefact into an 
'instrument', may support the emergence of sign, and consequently of meanings, 
related to those utilisation schemes. As clearly explained by Radford: 
“In other words, to arrive at the goal, the individuals relay on the use and articulation 
of several artefacts and semiotic systems through which they organize their actions 
across space and time. […] these artefacts and varied systems of signs that individual 
use in social meaning making process to make apparent their intention and carry out 
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their actions in order to attain the goal of their activities I call means of semiotic 
objectification.” (Radford, 2001, pag. 4) 
Meanings are expressed through signs, words, gestures, drawings … and in so doing 
they may become socially shared and evolve. Imagine this process in the school 
environment, in particular in the community of the mathematics class, where social 
interaction means not only general interchange between human beings, but also 
interchange oriented by the common goal of teaching/learning mathematics.  
Signs sprouting from activities with the artefact are socially elaborated: in particular, 
they can be intentionally used by the teacher to exploit semiotic processes, aiming at 
guiding the evolution of meanings consistent with mathematical meanings that are 
objectives of the educational activity. In this case one can say that the artefact, used 
by the teacher for her/his educational objectives, is functioning as a "tool of semiotic 
mediation".  
In summary, the process of semiotic mediation develops on two different levels: 
- The pupil uses the artefact, according to certain utilisation schemes, in order to 
accomplish the goal given by the task. In so doing the artefact may function as a 
semiotic mediator, i.e. meanings emerge from subject's involvement in the activity in 
relation to particular utilization schema and to particular emerging sings. 
- The teacher uses the artefact and the signs derived from its use in specific activities, 
according to a specific educational motive, that is the evolution towards 
mathematically consistent meanings.  
The mathematical meaning, related to the artefact, become accessible to the learner 
by its use, but the construction of meanings is supported by the guidance of the 
teacher, as long as specific activities are organised, the motive of which is the 
evolution/construction of meanings recognisable and acceptable mathematically.  
According to that perspective the following hypothesis can be stated. 

Meanings are rooted in the phenomenological experience (actions of the user 
and feedback of the environment, of which the artefact is a component) but their 
evolution is achieved by means of social construction in the classroom, under 
the guidance of the teacher.  

In the dialectics between these two levels the social construction of mathematical 
meanings occurs, as the product of a process of internalisation guided by the teacher.  
 
The organization of the activity 
The process aimed to guide the development of the dialectics between the two levels 
(the individual and the social) has different components, which can be separately 
studied although has to be considered as a whole. Consider, for instance, the notion of 
instrumental orchestration (orchestration instrumentale) introduced by Trouche, as 
the author explains:  
 
"Orchestration instrumentale est exactement l’agencement systématique par un agent 
intentionnel des éléments (artefacts et humaines) d’un environnement en vue de 
mettre en oeuvre une situation donnée et, plus généralement, de guider les apprenants 
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dans les genèses instrumentales et dans l’évolution et l’équilibrage de leurs systèmes 
d’instruments".  
(Trouche, 2005, p. 126) 
 
In same paper, the author carefully examines the aspects of the orchestration centred 
on what he calls specific configurations didactiques, related to different types of 
organization of classroom work with the artefact; the author proposes some examples 
of configurations where the teacher guides the students through the process of 
evolution of the instrumental genesis.  
Consistently with the general hypothesis formulated above, in the last years  a long 
term research projects have been carried out, with the aim of testing the effectiveness 
of this theoretical hypothesis, in the case of particular artefacts and particular 
mathematical meanings. According to a methodology of “research for innovation” 
(Arzarello & Bartolini Bussi, 1998) teaching experiments have a dialectic relation 
with specific theoretical framework, on the one hand the theoretical framework shape 
the design of the particular teaching experiment, on the other hand results coming 
from the analysis of the collected data lead the researchers to develop their 
assumptions, and generally speaking to develop the theoretical framework. 
The long term teaching experiments followed a common methodology, consistent 
with the hypothesis concerning the functioning of specific tools of semiotic mediation 
and aimed to further elaborate the theoretical perspective. The methodology is based 
on the following basic points.  
- Selection of the artefact. Analysis of the artefact and of its use from an 
epistemological and cognitive point of view; the objective is that of identifying its 
semiotic potentialities, in rapport to a mathematical ideas, processes, …, that can be 
generally referred as meanings.  
- Design of the teaching intervention. Design of a sequence of activities, including 
different types of tasks; some of the tasks are centred on the use of the artefact, other 
centred on semiotic activities related to the use of the artefact, and aimed to generate 
germ signs (for instance writing reports on lab experiences, or writing the 
mathematics notebook). Among these semiotic activities a special role has been 
played by collective discussions (Bartolini Bussi, 1998), where germ signs have to be 
developed under the guidance of the teacher. 
- Analysis of the experimental data, in particular the analysis of the collective 
activities, recognising in social interaction that interpersonal context where the 
evolution of signs may occur. Results showed, both within a single collective 
discussion and along a sequence of successive discussions, the evolution of what can 
be called a semiotic net, i.e. a system of related meanings progressively merging 
towards the mathematical meaning. A complex and delicate semiotic process is 
accomplished, rooted in the activities with the artefact, but put into place only thanks 
to the active direction of the teacher (Mariotti, 2000, 2001; Mariotti& Cerulli, 2001; 
Cerulli & Mariotti, 2003; Mariotti et al. 2003; Falcade et al., 2004).  
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Since the beginning, the role of the teacher has been considered crucial, and the fine 
grain analysis of the semiotic process, taking place during the collective discussions 
has shown both its effectiveness and its complexity. In particular, specific actions 
have been described, that the teacher intentionally, but also automatically put in 
place, with the aim of guiding and prompting the emergence and the evolution of 
meanings, consistent with the mathematical meaning which is the goal of its teaching 
endeavour . 
The analysis of the teacher’s actions highlights that, besides the general categories of 
actions, directed to manage the didactic contract in the class, the teacher has to put in 
place specific actions directed to promote the semiotic process (Bartolini Bussi & 
Mariotti, 1998). This has opened a new and promising field of investigation and a 
specific research project is now in progress aimed to develop this direction of study.  
 
Conclusions  
Taking an instrumental perspective and exploiting the process of semiotic mediation 
that artefacts make possible permit to consider new technologies in a broader 
problematique context: computer technologies, as "older" technologies, have a 
potential which comes from their being products of human culture, embedding 
knowledge and expertise (Bartolini Bussi et al., 2005; Bartolini Bussi & Mariotti, 
1999), but overall being able to evoke mathematical knowledge consistent with 
possible educational goals.  
Moreover, the instrumental approach articulated in the semiotic perspective, 
presented in this paper, has the great advantage of proposing a common perspective 
for any kind of tools, as a consequence the discussion on new technologies may profit 
from the comparison with the results coming form research studies concerning "old" 
technologies (Bartolini Bussi & Mariotti, 1999; Bartolini Bussi et al. 2005), and more 
generally any kind of artefact that presents semiotic potential consistent with our 
educational goals.  
A conscious use of available technologies in terms of 'semiotic mediation' requires an 
attentive and careful planning of classroom activities, taking into account the double 
use of the artefact in play, both form the point of view of students' actions with the 
tool and from the point of view of teacher's actions with the tool as an instrument of 
semiotic mediation. Besides a deep knowledge about the artefact and the evolution of 
the instrumental genesis, which overcomes the simple familiarity with the use of the 
artefact itself, it is necessary to analyse the artefact and its potentialities in terms of 
instrument of semiotic mediation in order to organise and carry out classroom 
activities according to this function.  
All that represents a great challenge in the field of math education research, in order 
to provide teachers the knowledge and the support that they need. Further studies and 
investigations are requested, mainly concerning the identification of patterns of 
actions that teachers may accomplish to exploit semiotic mediation. 
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Introduction 

There is a growing body of research oriented towards theoretical approaches to the 
use of digital technologies in mathematics education. One thinks of the work of the 
“French school” in Computer Algebra Systems (CAS) (Artigue, 2001; Lagrange, 
1999), Kaput (2001) in visualization and dynamic relationships, and the likes of 
Stroup and Wilensky (2000) in networked classrooms. There remains a considerable 
amount of work to be done showing how certain theoretical approaches to the 
understanding of digital technology, and its place in the classroom, inform how 
students learn in a technology rich environment and how we can harness that 
understanding to improve student learning. In this paper I will offer a theoretical 
framework, based on my research (Meagher, 2004) and inspired by the work of Brian 
Rotman (1993, 1995), for understanding the place of digital technology in student 
learning. The research was based on the use of CAS in students learning calculus but 
I believe the framework applies well to digital technology generally. 
 
Digital technologies and theory 

Perhaps one reason that theoretical frameworks are running behind use of digital 
technologies is that calculators/computers are, in many ways, a stealth tool in the 
classroom. Use of digital technologies in the classroom demands innovation (at least 
inasmuch as any new agency on a classroom demands innovation) but doesn’t make 
clear the operationalisation of that innovation. Indeed it is impossible to judge those 
demands in advance as they are manifestations of the difference between what 
Moursund (2002) has called first-order use of technology (amplification) and second-
order use. Moursund argues that, in the first instance, we use technology to do what 
we can do already, but to do these things faster and more accurately. The classic 
example of this is the car which was first thought of as a “horseless carriage.” 
Therefore, the car was first conceived of as a technology which would move people 
from A to B just as a carriage does, only faster. The second-order effects of cars are 
now well-known to us: complete transformation of the very conception of the city, 
dismantling of public transport, rampant pollution, raise in the age for legal drinking, 
etc., but were certainly not part of the design and conception of cars. The following 
example shows how digital technology introduced into the classroom setting, without 
attention to theory-informed use of technology, can bring second-order effects to the 
fore which corrupt and subvert the work of the classroom.  
 
An example of technology use 
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In typical high school algebra classes students learn to factor quadratics in order to 
solve quadratic equations and are subsequently introduced to the relationship 
between the solutions of such equations and the roots of the graphs of quadratic 
functions. I have seen students being taught to use the functionality of the graphing 
calculator to find the roots of a function from a graph and, using those roots, work 
backwards, to factor quadratic expressions. I offer this example not so much to 
criticise this approach but, rather, to point out the contradictions that can become 
manifest in the coherence of the standard mathematics curriculum when digital 
technology is introduced into the classroom. Students often think of mathematics as a 
school-based game which they can play well or not. When digital technology is used 
in this way to subvert a curriculum is it any wonder that students perceive 
mathematics as such a “bag of tricks”? (A perhaps more enlightened approach is to 
recast the approach to teaching of this subject to concentrate on functions, as opposed 
to equations with equations becoming particular instantiations of functions.) 
 
I discuss this example at some length because it serves to show the nature of the 
change that the introduction of digital technologies in the classroom can impose on 
the classroom environment. Furthermore it begs the vital question that needs to be 
asked when digital technology is introduced: In what way is my classroom now 
different? This is the key question toward the path to theoretical approaches that 
illuminate learning in a technology rich environment. As we see in the example 
above the classroom is not the same: the goals have changed, the paths to those goals 
are new, the dynamics of interaction are new. This is an example of Moursund’s 
(2002) second order effects.  
 
The benefits of graphing calculators are many and obvious: an entire strand of 
dynamic visualisation is added to the classroom and student’s ability to experiment 
with parameters of functions and their effects on graphs is clear. We see, however, in 
this example a second-order effect: suddenly the learned procedure of factoring 
quadratic equations is brought into question. If the goal is simply to solve the 
equation then, surely, using the digital technology is more effective. A second order 
effect has occurred whereby the goal of factoring shifts perhaps to an understanding 
of the relationship between the algebraic form and the coordinate geometry being the 
driver of the concept rather than a noticed consequence once the student has gone 
through the conceptual path from algebra to coordinate geometry. Another possible 
shift is that what matters in terms of factoring quadratics is an awareness of algebraic 
structure: some quadratic forms can be written as products of linear forms. In this 
case the second order effect of the technology is to force the broader, structural 
mathematical issues to the forefront of the understanding of the concept. In either 
case, and there are many other cases, the introduction of the digital technology does 
more than simply “soup up” the existing status and dynamic of the class. 
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Approaching theoretical approaches 

As suggested above, as a first step to exploring theoretical approaches to the use of 
digital technology it behooves us to draw on experiences of using technology in 
teaching and ask what is different about the classroom when digital technology is 
introduced. 
 
Another example: When I first taught with CAS it was in an Algebra I class where 
the students had hand-held devices (TI-92s) with inbuilt CAS capability. The 
beginning of one of the worksheets was as follows: 
Type 3a + 2a. Press enter and record the result 
Type 4b + 5b. Press enter and record the result 
Type 3x + 2y. Press enter and record the result 
What do you think will be the result of 3m + 2m? Record your guess and check. 
What do you think will be the result of 3r + 2q? Record your guess and check. 
Do you observe a pattern or rule? State the pattern or rule. 
 
The students worked through this sheet with great success and their attempts to 
articulate the rule provided a good opportunity for discussion of definitions, 
vocabulary, and concision in mathematical definitions and descriptions. What struck 
me as curious about all of this is when I thought to myself: would this be different if 
I, as the teacher, went to the blackboard and wrote “3a + 2a = 5a; 4b + 5b = 9b” etc. 
and asked the students to do the examples and tell me the pattern/rule. Having taken 
both approaches I can attest that each approach plays out very differently in the 
classroom. Students regard the mathematical authority of a calculator/computer 
differently to how they regard the authority of a teacher. There is a clear sense in 
which students felt they were discovering something when getting feedback from 
technology rather than responding to my probing. This difference begs many 
questions about how students relate to a calculator/computer (as opposed to a person) 
and, in particular, how students relate to the authority of a calculator/computer. The 
way that I found to characterise, and theorise about, the interaction that was going on 
was to regard it as a “trialogue” between the students, the technology and the 
mathematics.  
 
In looking for theoretical approaches to help illuminate students' learning of 
mathematics in technology-integrated environments this tripartite relationship led me 
to the Rotman Model of Mathematical Reasoning (1993, 1995). 
 
The Rotman Model of Mathematical Reasoning 
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Drawing on the work of C. S. Pierce, Rotman’s (1993, 1995) semiotic reading of 
mathematics discourse constitutes mathematical reasoning as the unison of three 
agencies: the Subject, the Person, and the Agent (Fig. 1.1).  
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: The Rotman Model of Mathematical Reasoning 

 
Rotman’s (1993, 1995) theoretical model is concerned with ontological questions 
about mathematical objects and processes. Its principal value for my purposes is its 
tripartite nature with the student, the mathematics, and the technology at the vertices 
of the triangle. Nevertheless, it is worth looking in some detail at what Rotman has to 
say because of his understanding of agency in mathematics and where that agency 
resides. In his model the Subject is “the agency [which] reads/writes mathematical 
texts and has access to all and only those linguistic means allowed by the Code” 
(p.396), the Code being, essentially, mathematics as sanctioned by the mathematical 
community. The Person is the agency who works within the Metacode “the entire 
matrix of unrigorous mathematical procedures” (p.396), such as stories, ideograms 
and pictures. Finally the Agent is the agency who “acts on mathematical objects in a 
purely formal way” (p.397), i.e. with a Virtual Code. Mathematical reasoning in this 
formulation is considered to arise from the interplay between a learner, mathematics 
as a subject, and a disembodied agent who carries out mathematical procedures 
accurately and without prejudice. For my purposes the disembodied agent is the 
digital technology. For Rotman, mathematical reasoning is “an irreducibly tripartite 
activity in which the Person … observes the Subject … imagining a proxy – the 
Agent … - of him/herself” (p.397), and is persuaded by the closeness of the Subject 
and the Agent of the validity of the mathematical activity. My argument is that digital 
technology can be interpreted as the Agent of mathematics with which students 
interact to gain access to calculus. This adaptation of the Rotman model is seen in  
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Figure 1.2: 
 
 
 
 
 
 
 
 
 
 

Figure 1.2: The Adapted Rotman Model of Mathematical Reasoning 

 
Thus one avenue for the development of mathematical reasoning could be engaged in 
creating or facilitating intellectual space where the learner can experiment and play 
within the realm of the Metacode i.e. the “stories, motives, pictures, diagrams, and 
other so-called heuristics” (p.396), through which the learner gains access to the 
Code but with reference to the Virtual Code i.e. the acting on of mathematical objects 
in a formal way. My research (Meagher, 2004) shows, in the realm of CAS, that 
technology can furnish just such intellectual space in mathematics education. My 
research found that CAS allows students to take experimental steps in working with 
mathematical objects. Which is to say that CAS provides a Virtual Code 
(Mathematica) allowing students to act experimentally and observe the consequences 
of those actions within the Virtual Code (Mathematica) to examine, or negotiate, a 
relationship with the Code (Calculus) itself. More importantly my research shows 
that the Model, as I am using it, provides a way of understanding the place of 
technology in the mathematical activity of the learner. (Digital technology can be 
thought of, perhaps, as providing various microworlds in the Papertian sense, CAS as 
an algebra microworld, Cabri as a geometry microworld etc.) The important part of 
the model is its triangular nature which affords separate agency to three entities: the 
learner, the technology, and the mathematics. What I mean by agency here is that 
none of these entities is neutral but that each has a relationship with the other two, 
effecting and being effected by the other two in a manner such that each contributes 
continually to the students mathematical reasoning. Each of these entities acts on the 
other two and thus has agency. 
 
Application of the Model 

My research (Meagher, 2004) explored each of the three sides of the triangular model 
above with significant conclusions found on each side. The temptation to describe the 
digital technology to mathematics relationship simply as “the machine has been 

MATHEMATICS 

Code 
 

TECHNOLOGY 
Virtual Code 

 

STUDENT 

Metacode 



 

 391 

programmed to perform accepted algorithms” is belied by closer examination. For 
example, if one looks at the different inputs necessary to “ask” different CASs the 
same question, and one looks at the different outputs from different CAS systems in 
response to those questions, it becomes quickly apparent that, while the mathematics 
and algorithms might be agreed upon by the different programmers, the interfaces of 
the programs and the presentation of results are radically different. 

 

Mathematica, a program originally written when memory was at more of a premium 
than it is nowadays, is a program which depends on the user learning a very 
particular syntax. This syntax is not reflective of mathematics as it is written in 
textbooks or mathematical journals and cleaves more closely to high level 
programming languages. Another memory saving device of Mathematica’s is the 
rendering of graphs. Graphs are regularly displayed in a non-standard format (for 
example the axes do not intersect at (0, 0) in a way that is efficient but may not be 
easy for the user to interpret. DERIVE, by way of contrast, is a program which was 
designed, particular in later versions, which considerable attention paid to the fact 
that the user may be trying to learn mathematics using DERIVE. The program is 
essentially menu driven, looking more like graphing calculator interfaces and word 
processing programs than Mathematica. In addition, graphs in DERIVE always 
include the origin and error messages tend not be as intimidating as those in 
Mathematica. 

 
In the realm of graphing calculators we see privileging of certain forms such as the 
“y =” form of equations of lines in order to facilitate graphing. On an even more 
basic level students need to learn particular syntax orders to perform, for example, 
exponentiation. This order is different from what they see in text books or typically 
write in the class. 

 
Understanding digital technology as a separate agency is crucial to exploring students 
response to and use of technology. My research showed, in particular, that the 
transition to a new form of digital technology (graphing calculator to CAS) is a 
delicate moment and the students’ relationship to the new technology was heavily 
dependent on both their history with the old technology and how the transition to the 
new technology was facilitated. This is further evidence that the introduction of 
digital technology is not merely a passive add on to the current situation but 
dynamically impacts students behaviour and achievement in a technology rich 
environment. 

 
Students’ relationship to mathematics itself is also highly influenced by their use of 
technology in learning. My research showed that students whose idea of success in 
mathematics is oriented towards successful implementation of algorithms and a 
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strong sense of “getting the right answer” can feel somewhat cheated by digital 
technology. This is particularly true in the use of CAS where the machine is doing 
the work which students often take as their domain of success and an emphasis is 
placed on explanations and reasoning which some students consider to be less 
authentic mathematical activity. 
 
Conclusion 

The theoretical approach outlined above is important in providing a step away from 
reductive thinking of technology as a simply a mediator between the student and 
mathematics. The Adapted Rotman model provides a more sophisticated and 
authentic picture of the learning relationship between students, digital technologies 
and mathematics. It can also be thought of as residing in a larger network structure 
which would include, in a more explicit sense, the role of the teacher and teaching in 
technology-rich environments. 
 
The model is, in many respects, consonant with constructivist theories of learning but 
emphasises the extent to which the students’ knowledge is constructed by the 
technology: digital technologies become, very explicitly, part of the sociocultural 
framework of the classroom. However, as explained above, digital technologies have 
a different agency from other students or a teacher in the classroom environment. 
The model should also be an important consideration in curriculum design since it 
places great emphasis on students understanding of the role of technology in their 
learning and places a non-traditional emphasis on what is considered authentic 
mathematical activity.  
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Comments for ICMI STUDY 17: "Digital technologies and mathematics teaching 

and learning: Rethinking the terrain" 
Hartwig Meissner, 

Univ. of Muenster, Germany 
meissne@math.uni-muenster.de 

 
The paper will reflect the process of learning and understanding mathematics when 
working with calculators or computers. How do we succeed in developing powerful 
mental representations, which in German we call “Vorstellungen”? We distinguish 
two types of Vorstellungen, but the traditional kind of teaching mathematics gives 
strong emphasis only to one of them, to a reflective, logical and analytical thinking. 
Most teachers or students or even researchers in mathematics often are unaware of 
their spontaneous and intuitive Vorstellungen.  
But only the interaction of both types, the interference of “reflective” Vorstellungen 
with “intuitive” Vorstellungen, develops powerful mental concepts, procepts, frames, 
micro worlds, … The use of calculators or computers seems to further this 
development. Working with a computer we often see a typical guess and test 
behavior or trials to discover properties or repeating similar key stroke sequences just 
to make sure …  
We regard this mainly unconscious behavior as a vehicle to further the development 
of “intuitive” Vorstellungen and we designed a special teaching method which we 
called “One-Way-Principle” (abbr. OWP). The OWP is an intermediate step to 
discover in a set of examples intuitively common properties to move on then to 
generalize these observations algebraically. Examples will be given. 
Cognitive Aspects 

Studying the Discussion Document for the ICMI STUDY 17, I appreciate very 
much the broad, deep and balanced discussion of the topic field. In this paper I will 
concentrate on cognitive aspects related to the use of digital technologies. The 
comments basically will discuss aspects of theme 2 "Learning and assessing 
mathematics with and through digital technologies". But also aspects related to the 
themes "Mathematical practices in the class room" ,"Teachers and teaching" and 
"Design of learning environments" will be touched. 

In our research group in Muenster we think the final version of the ICMI 
STUDY 17 document should reflect in some detail also psychological aspects related 
to the use of teaching and learning mathematics when using digital technologies. 
What do we know about advanced mathematical thinking (TALL, VINNER)? Does the 
use of technology further the development of procepts (GRAY, TALL e.a.) or enhance 
processes of encapsulation (DUBINSKI)? Being confronted with challenging software, 
which is the role of reification (SFARD)?  
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The document also should include investigations on the interaction processes 
between the external representations of a problem, which we call Darstellungen46 
and the related internal mental images or cognitive structures of the problem solvers, 
which we call Vorstellungen47 (MEISSNER 2002). The following picture gives a 
survey. For a possible scenario of interactions between Darstellungen and 
Vorstellungen see page 3 (example decimal grid). 

 
 
 
 
 
 
 
 
 
 
 

Two types of Vorstellungen 

"Vorstellungen" are like “Subjective Domains of Experiences” (in German 
"Subjektive Erfahrungsbereiche", BAUERSFELD 1983), they are personal and 
individual. The goal of mathematics education is to develop mathematical 

                                           
46 We call external representations of mathematical ideas Darstellungen. Darstellungen we can 
read, or see, or hear, or feel, or manipulate, ... These external representations or Darstellungen can 
be objects, manipulatives, activities, videos, pictures on the screen, graphs, figures, symbols, tags, 
words, written or spoken language, gestures, ... In such a Darstellung the mathematical idea or 
example or concept or structure is hidden or encoded. There is no one-to-one-correspondence 
between a mathematical idea, concept, etc. and a Darstellung. 
47 Human beings are able to "associate" with these objects, activities, pictures, graphs, or symbols a 
meaning. That means each Darstellung evokes a personal internal image, a Vorstellung (cf. 
concept image, TALL & VINNER). Thus Vorstellung is a personal internal representation, which can 
be modified. Or the learner develops a new Vorstellung. A Vorstellung in this sense is similar to a 
cognitive net, a frame, a script or a micro world. That means the same Darstellung may be 
associated with many individual different internal representations, images. Each learner has his/her 
own Vorstellung. And again here, there is no one-to-one-correspondence between a Darstellung 
and a Vorstellung. 
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"Vorstellungen" which are extensive and effective, which are rich and flexible. We 
distinguish two kinds of "Vorstellungen", which we will call intuitive Vorstellungen 
and reflective Vorstellungen. Thus we refer to a polarity in thinking which already 
was discussed before by many other authors48.  

“Reflective Vorstellungen” may be regarded as an internal mental copy of a net 
of knowledge, abilities, and skills, a net of facts, relations, properties, etc. where we 
have a conscious access to. Reflective Vorstellungen mainly are the result of a 
teaching. The development of "reflective Vorstellungen" certainly is in the center of 
mathematics education. Here a formal, logical, deterministic, and analytical thinking 
is the goal. To reflect and to make conscious are the important activities. We more or 
less do not realize or even ignore or suppress intuitive or spontaneous ideas. A 
traditional mathematics education does not emphasize unconsciously produced 
feelings or reactions. In mathematics education there is not much space for informal 
pre-reflections, for an only “general” or “global” or “overall” view, or for 
uncontrolled spontaneous activities. Guess and test or trial and error are not 
considered to be a valuable mathematical behavior. But all these components are 
necessary to develop spontaneous Vorstellungen. And these spontaneous 
Vorstellungen mainly develop unconsciously or intuitively. 

Both types of Vorstellungen together form individual “Subjective Domains of 
Experiences” (SDE). For a well developed and powerful SDE both is essential, a 
sound and mainly intuitive “common-sense” and a conscious knowledge of rules and 
facts. Both aspects belong together like the two sides of a coin. And whenever 
necessary the individual must be able, often unconsciously, to jump from the one side 
to the other. Along the following example the reader may realize this situation. 
Example Decimal Grid 

Select a path from A to B (see grid on the next page). Change the direction at 
each crossing. Multiply (with a calculator) the numbers of each step you go. Mark 
each path in one of the small grids. Find the path with the smallest product. You have 
4 trials. (Worksheet for each child (age > 10), first individual work, then discussion 
of the results) 

At a first glance, the problem is easy, children start immediately ("reflectively"):  
(1) Find the shortest path (minimum of steps) or 
(2) Select at each corner the smallest factor 

But then ("intuitively") 
(3) Perhaps there are better rules than (1) and (2) 

                                           
48 BRUNER discusses analytic vs. intuitive thinking. VYGOTZKI talks about spontaneous and 
scientific concepts. GINSBURG compares informal work and written work. STRAUSS discusses a 
common sense knowledge vs. a cultural knowledge. He especially has pointed out that these two 
types of knowledge are quite different by nature, that they develop quite differently, and that 
sometimes they interfere and conflict (“U-shaped” behavior). 
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(4) Let us try just another path to find out 
And after some trials suddenly cognitive jumps (SDEs get changed): 

• Multiplication not always makes bigger 
• More factors may give a smaller product 
• Running in a circle forth and forth (i.e. … 0.3 x 0.8 x 0.6 x …) 
• infinite path (→ intuitive concept of limit)  

And finally at the end: The smallest number will be ZERO! And even one step 
more: ZERO on the number line? Or ZERO on the calculator display? 

 

 
Summarizing, we distinguish two types of internalizing our experiences from 

interacting with "Darstellungen". On the one hand we develop conscious reflective 
Vorstellungen and on the other hand we create (mainly intuitively) “spontaneous” 
Vorstellungen. Both types together create or modify an individual “Subjective 
Domain of Experiences” in which this situation is imbedded then. 

  
Reflecting the Role of Digital Technologies 

As already mentioned, the emphasis of the traditional mathematics teaching 
obviously lies on the development of powerful and conscious “reflective” 
Vorstellungen. Overemphasizing the algorithmic and procedural approach we must 
face the danger that our children get trained in skills but not in getting enough 
insight. This is true for the four basic operations as well as for using sophisticated 
CAS programs or others. "The importance of the ability to serve as a poor imitation 
of a $4.95 calculator is rapidly declining" (KAPUT). 
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Despite the existence of digital technologies we still observe a lack of chances for the 
learner to create their own ideas, to develop or to verify or falsify their own 
assumptions, to invent theories and to apply them, or to explore facts or properties or 
relations in given situations. The chance to develop intuitive Vorstellungen is limited.  
The One-Way-Principle 

In this situation we designed a special teaching method that we called “One-
Way-Principle”. To explain the method we will start with a few examples. In the first 
and second we train number sense, in the third percentage feeling and, in the last two 
examples, function sense. 
Hit the Target   

Hit the Target is a calculator game which furthers an 
intuitive understanding of multiplicative structures: An 
interval [A,B] is given and a number n. Find a second 
number x so that the product of n and x is within the  

 

            ×n   
  x                    [A,B] 
 

interval. Our more than 1000 guess-and-test protocols show that the students after a 
certain training develop excellent estimation skills (guessing the starting number) and 
a very good proportional feeling (very often less than three guesses to find a correct 
solution).  
Big Zero and Big One     

In the calculator game "Big Zero" we hide a subtraction operator and ask "Which is 
the input for getting 0 in the display? In the game "Big One" we hide a division 
operator and ask "Which is the input for getting 1 in the display? Discovering these 
hidden operators by guess-and-test develops an intuitive understanding of additive 
respectively multiplicative structures. Playing these games we observe after some 
training excellent approximation skills. 
Teaching Percentages       

There are calculators that work syntactically like we speak in our daily life.  
635 + 13 % =  ... needs the following key stroke sequence: 
 

   6      3      5      +      1      3      %     =   
 We taught percentages with the percent key, without using formulae or reverse 
functions or algebraic transformations of formulae. If necessary the missing values 
had to be guessed and verified by pressing always the same key stroke sequence from 
above. The students became excellent in guessing each 
value and they developed an astonishing “%-feeling”. 
We administered the same test 
with 6 problems in our experimental group (white 
bars, N ≈ 250) and in a control group with the 
traditional “reflective” approach (N ≈ 500, dark bars). 
The results are shown in the graph below. 



 

 399 

 

 

 

Functions  

Use your plotter software to find via guess and test an algebraic term to plot the 
following graph. (Graphs given on a work sheet) 

Trigonometric Functions  

Use the calculator to find via guess and test at least three different values for x in sin 
x = 0.2, tan x = -0.2, cos x = 0.5, sin x = 1.5, tan x = 2.5, cos x = 1, tan x = 4. 
        The idea of the One-Way-Principle 
(OWP) is to solve with calculators or 
computers a package of related problems 
always with the same key stroke 
sequence, independent of which variables 
are given and which are wanted. That 
means there is only one way to solve all 
problems. Either we work syntactically 
just pressing the buttons along the once 
given sequence or, instead of applying 
algebraic transformations or using 
different formulae, we work semantically 
by guessing and testing, still using the 
same sequence of buttons.  
        Via the semantic guess and test the 
user usually develops unconsciously a 
feeling for the global “entity of input, 
function and output", see table on the 
right. The shadowed “?” may be an 
operator (examples 4.1 or 4.2) or a 
function (examples 4.3 or 4.5) or a 
software (example 4.4). 
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And of course we must work with intervals because the quality of a good estimation 
depends on the size of related intervals. 

Working along the OWP method is similar to the working with simulation 
software (to learn car driving or flying an airplane, etc.). In mathematics education 
the OWP is an intermediate step between simple examples and algebraic 
generalizations. The OWP is a method to develop intuitive and spontaneous Vor-
stellungen about the relations between and about the order of magnitude of the many 
variables of a mathematical concept before we start with introducing “reflective” 
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Vorstellungen with formulae or functions and reverse functions and algebraic 
transformations. 
Research Results 

Our research group, TIM (“Taschenrechner Im Mathematikunterricht”), have 
worked with calculators for more than 25 years (and with “computers” more than 18 
years). Our goal is to develop ideas on how to integrate the new technologies into the 
existing mathematics education on the base of empirical findings. A main 
investigation was done by LANGE (1984). She trained mental arithmetic and number 
sense in a primary school project (age ~ 9) where the calculators were on the table of 
the students all the time. In the post-test she found that the subjects did significantly 
better in mental arithmetic than the students of a control group. 

Almost 20 years later we repeated an international inquiry about the use of 
calculators in primary schools. The feed back from about 25 countries was 
disappointing. In almost all of the countries the use of calculators in primary schools 
just was not allowed. Thus we started a new project by the help of our teacher pre-
service students and many teachers (8 schools, 186 students, age ~ 9). Title and goal 
of the project: “Use the calculator to become independent from it”. The results were 
similar those in LANGE’s project, details see MEISSNER (2006). 

A systematic application of the OWP also was administered in our percentage 
projects (see 4.3) and in the dissertation from MUELLER-PHILIPP (1994). She 
concentrated on linear and quadratic functions. Her students succeeded impressively 
in building up intuitive Vorstellungen between the gestalt of a graph and the related 
algebraic term.  

In case studies we also used the OWP to teach the topics “Interest”, “Compound 
Interest”, “Growth and Decay”, and others. Our observations showed that the 
students were working very concentrated with quite different strategies. Very often 
they got an unconscious feeling about the new concept before they could explain 
their discoveries or their good guesses. Thus we urged them to write down protocols 
from their guess and test work because these protocols are excellent Darstellungen 
from their Vorstellungen. By reflecting the protocols also unconscious Vorstellungen 
may become conscious.  

When guessing and testing became boring the students themselves started 
asking for more efficient solution procedures. Then we could introduce reverse 
functions and algebraic transformations. And when they got lost in the algebraic 
approach, they could go back to their guess-and-test procedures and to their intuitive 
Vorstellungen. 

Important, in all our investigations the students got a conscious or unconscious 
feeling for the mathematical relations and properties which also were available when 
they just had to guess or to estimate, especially also in situations where a calculator 
or computer was not available. In this sense the use of machines had furthered a 
certain independence from these machines. 
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Evolution for a revolution: professional development for mathematics teachers 
using interactive whiteboard technology 

Dave Miller and Derek Glover, Keele University, Keele, UK 
eda19@educ.keele.ac.uk 

The interactive whiteboard (IAW) is a presentation technology currently being used 
extensively in mathematics lessons in England. A growing research base shows that 
although use of the IAW initially improves pupil motivation it need not necessarily 
improve teaching and learning. It is suggested that to maximise impact teachers need 
to move through 3 stages to that called ‘enhanced interactive’ where thinking and 
pedagogy change. At this stage lessons have become more interactive and involve 
more discussion and pupil activity. However professional development is required to 
move teachers most rapidly to this stage. Based on observations of over 100 
mathematics lessons, discussions with teachers and pupil surveys we believe that 
there is value to be gained by considering the role of gesture as mathematics 
teachers use IAWs. We also note that where the IAW has been fully exploited there 
appears to be a dynamic between activities at the IAW, on the pupil’s desk and, we 
contend, ‘in the pupil’s head’. Finally we suggest that in order for a revolution in 
teaching and learning using an IAW there needs to be an investment in professional 
development to enhance reflective practice and to support pedagogic change. 

Background 

An interactive whiteboard system consists of data projector linked to a 
computer which in turn is linked to a large ‘touch sensitive’ e-screen - the actual 
interactive whiteboard (IAW) itself. The size of the IAW can be up to 2 metres 
across by 1 metre high. Usually the IAW is fixed to a wall, the data projector to the 
ceiling (though both can be ‘mobile’) and the computer is away from the IAW. 
Images from the computer are displayed onto the e-screen and can be ‘touched’, 
usually by a finger or a special pen, in order to control the computer from the IAW in 
the same way that a mouse can be used with a standard computer. Figure 1 shows 
one schematic arrangement.  

 
Figure 1: An interactive whiteboard system with its components 

 
The IAW usually comes with its own software that allows it to be used in one 

of three ways: with standard or subject specialist software; overwriting other 
application software (as you would on a transparent sheet placed over a normal 
computer screen); and with the software that accompanies the IAW. The key point is 



 

 403 

that you stand at the IAW and use a finger or pen. The cost of the equipment usually 
depends on the make of the interactive whiteboard and the software provided with it. 

During the past decade the interactive whiteboard (IAW) has passed from 
being a novelty to being part of the equipment of many mathematics teaching rooms 
within the UK (especially England), and to a lesser extent within parts of Western 
Europe, North America, S.E .Asia and Australasia. Widespread national introduction, 
like in England, has followed largely as part of government policy aimed at learning 
for the globalised digital age by the provision of additional finance. In England 
special funding for IAWs has followed but purchase of IAWs is also a reflection of 
self-government within schools and their intention to support individualised pupil 
motivation and learning through more appropriate pedagogy. Other countries where 
IAW use is increasing include Brazil, China, Mexico, Singapore and South Africa 
with some involving government initiatives (e.g. Mexico and Singapore). 

Early evidence into the use of IAWs in mathematics classrooms suggests that 
practitioners pass through stages of developing both technology and pedagogy 
(Glover et al, 2003), but that the availability of equipment alone is no guarantee of 
enhanced teaching and learning (Miller et al, 2004). Recent government reports in 
2005 by the Office for Standards in Education and the Qualifications and Curriculum 
Authority in the UK point to the need for teachers to become more aware of the 
inherent value of interactivity at the heart of a changed pedagogy. 

Our contention is that as the technology becomes more widely available it is 
essential that teachers should be offered professional development that fosters a rapid 
move to technological competence and pedagogic flexibility. To this end we draw on 
evidence from on-going research at Keele University, UK, involving analysis of over 
100 video-recorded lessons filmed with mathematics teachers, mostly with pupils 
aged 11-14, in 25 schools from varying socio-economic contexts. All videos have 
been analysed using agreed criteria for assessment of lesson structure, content, 
approach, teaching and learning strategies, and conceptual and cognitive 
development. Teacher and pupil use of the IAW has also been analysed according to 
techniques, tactical deployment and pedagogic interactivity. Associated survey work, 
discussion with teachers and pupils, and peer group problem solving has led us to 
offer a schematic outline for professional development that could encourage 
competent and flexible use of technology so that pupil engagement and attainment 
can be enhanced. 

There are stages of development that can be considered in the drive to 
introduce and use IAWs, so some teachers have just a data projector and computer in 
their classroom, others include the IAW, while others extend this by adding a tablet 
PC. In some classrooms the tablet PC is used with just a data projector, this option is 
usually cheaper than purchasing an IAW and computer. To a large extent the more 
expensive the system the more that it appears to offer for teaching and learning, 
however without adequate support and training teachers have been observed to use 
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the more expensive systems in the same that they could use a computer and data 
projector (Glover et al., 2004). 

The introduction of any of these systems into a mathematics classroom brings 
with it the opportunity for teachers to use mathematical and generic software as part 
of their teaching, but surprisingly this is initially overlooked by many teachers. Our 
evidence suggests that for maximum impact teachers need to have available a 
geometry program (such as Geometer's SketchPad, Cabri-géomètre), a graphing and 
statistical package (such as Autograph), a spreadsheet and interactive software 
designed to be used with an IAW (such as EXP Maths). In addition access to the 
internet provides further opportunities to use appropriate resources. The importance 
of using specially designed IAW programs, also under-estimated, allows teachers to 
see how the potential of the IAW might be used to benefit teaching and learning – 
often, though not always, bringing with them new ways with which to work with 
pupils and encouraging interactive teaching. The aim of such is to develop pupils’ 
knowledge and understanding of mathematics as well as their competence and 
‘technical’ skills. However some such programs consist of PowerPoint presentations, 
or equivalent, that provide colourful material but lack an interactive pedagogy. 

Research into the use of IAWs generally and in mathematics has been so far 
emanating from those countries where there are many systems in place primarily the 
UK, to a lesser extent the USA (mostly small scale at a teacher level), though work is 
now being undertaken in, amongst others, Mexico, Singapore and South Africa. 
 
Developmental framework 

Our earlier work (Glover et al., 2004) led to the proposition that teachers pass 
through a 3 stage process in developing personal confidence in the use of 
IAWs.These are: 

supported didactic: the teacher makes some use of the IAW but only as a 
visual support to the lesson and not as an integral tool to conceptual 
development; there is little interactivity, pupil involvement or discussion 
interactive: the teacher makes some use of the potential of the IAW to 
stimulate pupils’ responses from time to time in the lesson and to demonstrate 
some concepts; elements of lessons challenge pupils to think by using a variety 
of verbal, visual and aesthetic stimuli 
enhanced interactive: this approach is a progression from the previous stage 
marked by a change of thinking on the part of the teacher who seeks to use the 
technology as an integral part of most teaching in most lessons and who looks 
to integrate concept and cognitive development in a way that exploits the 
interactive capacity of the technology; teachers are aware of the techniques 
that are available, are fluent in their use and structure the lesson so that there is 
considerable opportunity for pupils to respond to IAW stimuli either as 
individuals, pairs or groups, with enhanced active learning; the IAW is used as 
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a means of prompting discussion, explaining processes, developing hypotheses 
or structures and then testing these by varied application; a wide variety of 
material is used - ‘home-grown’, Internet, IAW specific, specialist and 
commercial software designed for use on the IAW. 
Evidence from our research projects has shown that ‘missioner’ teachers 

(Glover and Miller, 2002) recognise the value of rapidly moving to the enhanced 
interactive stage. Continuing work with teachers in 7 schools has shown that teachers 
initially cling to didactic approaches as they gain fluency in the use of the IAW and 
that the rate of progress towards enhanced interactivity depends on the extent to 
which they have received support, shared software and experience, and the 
opportunity for mentoring or coaching to overcome specific problems that are usually 
related to general information technology skills and understanding how to use the 
IAW in a way different from non-IAW teaching (i.e. the new pedagogy of the IAW). 
Enhancing motivation – understanding techniques 

Pupil comment throughout the work has shown that the IAW brings benefits. 
Our findings lead us to think that enhanced motivation is secured initially through the 
use of a range of techniques that attract pupils to what is presented, and then ‘once 
caught’ prompt learning through the use of visual and kinaesthetic impact. At its 
simplest it may be that computer generated numbers and text are easier to read but 
the use of colouring, highlighting and shading for emphasis add interest to 
conventional material. It was noticed that the opportunity for over writing material on 
the IAW was seen as an advantage for early users but this can cause them to cling to 
didactic approaches and that early encouragement to use more dynamic techniques, 
known as manipulations, leads to teaching which is more readily appreciated by 
pupils. These include dragging and dropping elements around the IAW (for example 
in showing balance in equations); hiding items and revealing them later (answers to 
calculations); colour and highlighting for emphasis (to show similar items); matching 
items to show some relationship (equivalent fractions); movement or animation (to 
show the stages in a proof); and immediate response to one of these (by a computer 
response or a comment from the teacher or another pupil). However, there is strong 
evidence that teachers seek to have even more options available. These are 
collectively summarised as virtual manipulatives and usually are software mini-
programmes that allow immediacy of response when teacher or pupil working at the 
IAW use them to illustrate some aspect of mathematics. 

For example using a word processor a teacher can create with pupils a fraction 
wall and while doing this discuss the concept of fractions. A fraction wall virtual 
manipulative, such as one shown in Figure 2, can then be used on the IAW where a 
moveable rectangle can be used to discuss with pupils equivalent fractions and ideas 
of addition and subtraction of fractions. Pupils can then work in pairs with their own 
fraction wall (a manipulative) and use tracing paper to create and move rectangles in 
the same way that they have seen the teacher do this on the IAW.  
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Figure 2: A fraction wall – a virtual manipulative on the IAW  

Applying techniques 

As teachers develop facility in using the techniques marking the move from 
didactic to interactive approaches they seek to use them in a range of mathematical 
processes. Observation of teachers during their personal learning period suggests that 
these fall into three groups. The first show the use of verbal-visual approaches 
including annotating of data on the IAW, connecting elements of a process or 
argument with coloured lines, framing similar stages or responses in processes, 
grouping with the use of identification symbols, and emphasising either with 
highlighting or underlining. The next stage involves the use of the emergent data by 
discriminating as in the sorting of a range of integers or formulae; sequencing as in 
using successive IAW ‘screens’ to build up an understanding of the relationship 
between sides and the angles of a polygon; matching where differing representations 
of data can be analysed, and, as pupils gain competence and confidence in the use of 
the IAW as a medium for them to explain their own mathematical thinking. At this 
point the observed teachers appear to undergo a change in their pedagogic 
approaches. One expressed this as ‘realising that we have a tool of potentially 
shattering importance, that it depends upon developing interactivity as a way 
forward, and recognising that our own lesson planning needs to be more precise and 
totally different in structure’. 

Further discussion with a group of similarly ‘convinced’ teachers shows that at 
the final stage they then seek to maximise the potential of the technology through the 
use of the IAW as a means of group and individual assessment either with pupils 
showing their responses on individual mini-boards or, as in one or two schools, 
through the use of electronic tablets. Assessment is but a means to an end and good 
practice included: rapid feedback through the use of recalled screens which had 
supported the teaching stages; the development of differentiated materials which 
were readily recalled to support individual learning; and recapitulation with differing 
explanations or materials so that primarily visual, numeric or kinaesthetic learners 
can be offered suitable materials. It was noticed that fluent users of IAW technology 
and interactive pedagogy become adept at building up a catalogue of curriculum 
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related screens that can be used in successive lessons, revisited in successive years, 
and shared with other departmental colleagues when satisfactorily developed. 
Changing approaches 

Enhanced understanding of the ways in which the use of the IAW can be a 
positive support for teachers and hence learners, thus leads to changes in the way in 
which they think. Three elements indicate this. Initially teachers recognise the need 
for improvement in their own personal understanding of the processes involved in 
explaining, illustrating and developing mathematical understanding … often 
achieved through ‘having the time to reflect not just on what is to be taught but how 
this can be broken up into sufficiently small learning chunks often with their own 
assessment criteria so that we have concept maps and know what we need to get 
them across’. Consideration of all the evidence from 9 of the most successful 
practitioners suggests that this then becomes reflexive so that pedagogic re-
assessment becomes an ingrained behaviour both during the lesson and in planning 
future learning strategies. 

From this emerges a second element – that of changing lesson structure. There 
are many schools in England already following lesson structure based upon the use of 
a brief and stimulating starter, an extended main section of the lesson, and a whole 
class plenary. Inspection reports in the UK indicate that such structures are more 
successful because they use different thinking skills, promote pace in the lesson, and 
overcome potentially boring ‘chalk and talk’ lessons. Effective IAW users favour 
such approaches because they ‘draw on the full range of what the IAW has to offer – 
the fun of a dynamic and mind challenging starter, the material to support staged 
learning, and the opportunity to reflect upon what has been learnt and how it fits into 
the bigger scheme of things’. Our evidence is that early users who have not already 
developed the use of such a structure tend to revert to explanation, illustration and 
worked examples without using potentially stimulating software or the opportunity 
for pupils to develop their own reflective skills. They can rely on presentation 
software and reproduced series of screens that offer little interaction. 

Thirdly, where concepts have been analysed, understood and developed and 
where practice and reflection become part of the normal lesson routine pupils 
develop greater confidence in offering explanations, using mathematical language 
and reasoning. Survey evidence shows that 13% of pupils feel that one of the positive 
gains from IAW use is that there is now more group work both at the IAW and in 
preparing materials and arguments for presentation to other pupils. This suggests that 
the IAW may be prompting a shift in the focus of the mathematics classroom away 
from the teacher who becomes learning facilitator towards the pupils who are 
becoming keen to use IAW resources in response to challenge. As one 14 year old 
expressed this ‘lessons with Mr. X are ace because he really makes it seem 
understandable by using the IAW to show us different explanations, and makes it fun 
too ... and we rise to the challenge’. It is significant that the class concerned had not 
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dispensed with their teacher but they had discovered some joy in learning 
mathematics. 
Evolution to revolution? 

An opportunity was provided by the observation of over 100 lessons to 
ascertain how the changed focus from teacher to IAW might need a reassessment of 
both mathematics learning and teacher development. Although not restricted to those 
lessons taught with an IAW it became clear that teachers who had developed an 
enthusiasm for the use of the technology also communicated their enthusiasm for 
learning mathematics - shown in their use of gestures. This is beyond the scope of the 
current position report but our findings echo the work undertaken by Goldin-Meadow 
(2003) and Rotman (2005) and show that as the focus shifts to the IAW both teachers 
and pupils develop gestures that enhance personal understanding and group 
communication, but that after each learning period gesture falls back indicating that 
concepts and processes have been internalised. If there is to be any value in training 
teachers to analyse their gestures and those of pupils it must lie in the transferability 
of gesture patterns. Rasmussen et al (2004) suggest that gesture and argumentation 
(visual and verbal explanations) together support the establishment of ‘taken as 
shared’ ideas and that once established these can then be used in similar but different 
situations – a vocabulary of gesture develops as a result. Our evidence is that IAW 
use may lead to patterns of teaching that may enhance gesture development and do so 
with some consistency in the same schools. 

This shared secondary language is a reflection of the dynamic nature of 
mathematical learning where the IAW has been exploited to the full but our 
observations indicate that teachers are moving to an enhanced understanding of the 
learning process so that they can offer learning mediation. This leads to a greater 
understanding of a three way dynamic of learning which we believe can help the 
teacher enhance pupils’ understanding: 

At the IAW – teachers are recognising that the learning process is changing 
and there is evidence that they are constantly developing a new vocabulary of 
explanations linking concept and explanation for a variety of learning styles. 
Their thinking is however not directed towards alternative verbal or verbal-
visual explanations but to the incorporation of kinaesthetic momentum. They 
link their IAW activities and use of virtual manipulatives, like the fraction 
wall, to pupil activities. 
On the pupil’s desk – teachers note a changed practice away from the use of 
the IAW as the sole source of explanation towards tasks that emulate similarly 
lively techniques - so manipulatives, like the fraction wall, are used in a 
kinaesthetic way by the pupils on their desks. There is a continued use of 
conventional textbooks and worksheets on the desk, but to a lesser extent. 
In the pupil’s head – our subsidiary investigation of pupil attitudes to learning 
mathematics has shown that motivation and attainment are fostered where the 
teacher provides frequent opportunities for pupil discussion and offering of 
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ideas and theories followed by assessment of what has been understood. We 
believe that linking activities at the IAW with those on the pupil’s desk can 
help focus learning in the pupil’s head on understanding rather than calculation 
capability. 

Our early contention is that teachers who are offered access to the technology but 
who have to take time to go through the stages outlined above may fail to ensure that 
the IAW is a worthwhile investment unless they are offered access to the exploration 
of the link between interactivity and mathematical development, coaching to support 
the use of the range of presentational and pedagogic opportunities and continuing 
group support to enhance reflective practice … and then the revolution could come! 
It could be that this evolution begins with the development of a bank of materials for 
distance learning supported by mentors within schools. 
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This paper addresses secondary teachers using technology. It considers cultural 
matters and offers a cultural account. This account is not a model or a theory but a 
consideration of cultural factors in teachers’ use of technology. Different cultures 
need not be ‘far way’ and cultural differences within a locality are recognised. 
Artefacts are considered as fundamental constituents of culture. Artefacts include 
hand tools and modes of action of using such tools such as beliefs and classroom 
norms. Pedagogy is viewed as a cultural undertaking. A review of literature suggests 
that many papers on using technology are ‘acultural’. A set of papers is introduced 
that are considered relevant to building a cultural account. Constructs from these 
papers include teachers’ routines, establishing a dialogue with teachers, teacher 
privileging, the software of the teacher, motives and goals, emergent goals, ergonomic 
and anthropological approaches (including orchestration and epistemic and 
pragmatic values ascribed to techniques) and situated abstractions. These constructs 
are used to suggest both a cultural account of teachers using technology and ways of 
working with teachers from other cultures. Mutual respect for teachers from other 
cultures is emphasised. An end-note considers differences between primary, 
secondary and university teachers. 

 

Introduction 

The essence of this paper is that (secondary) teaching is a complex undertaking 
that varies across and within cultures and that introducing technology into teachers’ 
class-rooms adds to this complexity. After this introduction I consider artefacts and 
culture. I then provide a selected review of research on teachers using technology in 
which I pay particular attention to studies I regard as useful for formulating a cultural 
account of teachers using technology. I then present this cultural account and look at 
the implications of it for working with teachers who intend to use technology in their 
classrooms. 
Artefacts and culture 

Culture, in a short paper, must remain a tacit construct but “artifacts are the 
fundamental constituents of culture” (Cole, 1996, p.144) Cole’s argument, very 
briefly, is that the things people do in their everyday settings involve a multitude of 
coordinated artefacts which mediate their social interactions and their actions on the 
nonhuman world. Technology is a subset of artefacts, but what are artefacts? 
Wartofsky’s (1973) three levels of artefacts is a widely respected account. Primary 
artefacts, e.g. hand tools. Secondary artefacts, representations of, and modes of action 
using, primary artefacts. Tertiary artefacts are imagined worlds, arenas of ‘free’ play. 
In considering teachers, technology and culture, attention should be given to 
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secondary artefacts as these encompass beliefs, conventions and norms which are 
important aspects of culture and pedagogy. 

Pedagogy is a central consideration to teachers using technology. The 
important thing to note about pedagogies is that there are many pedagogies. 
Pedagogy concerns why and how teachers do things with artefacts around them (and 
how these artefacts shape and are shaped by what teachers do). There are many 
things a teacher can do and many things a teacher can use, but what they do and use 
is intrinsically bound up with their culture – the culture of their country or 
community and the culture of their school. Pedagogy is a cultural construct and many 
people not working in education have clear opinions on suitable and unsuitable 
pedagogies. Daniels (2001, p.69) calls pedagogy “the fundamental social context 
through which cultural reproduction-production takes place”. 

It appears reasonable to say that pedagogies from affluent countries have been, 
implicitly and explicitly, offered to (or adopted by) educators from developing 
countries. Nkhoma (2002) investigates attempts to shift teachers’ practices from 
being teacher-centred to learner-centred in Black South African schools. He found 
that the poor material conditions of the environment and the culture of Black 
township schools were not condusive to Western style learner-centred classrooms but 
found that rich learning experiences can be provided by committed teachers who 
teach from the front. He concludes: 

It is not beneficial to stereotype classrooms practices into, simply, teacher-centred 
therefore bad, and learner-centred therefore good ... rich experiences can be provided 
in practices that appear teacher-centred. (ibid, p.112) 

Both the material conditions of life and the secondary artefacts which weave culture 
are important in considerations of teachers using technology. Noss & Hoyles (1996, 
p.185) consider doctoral studies which examined Portuguese and Turkish teachers 
using technology and ascribe differences in attitude to and use of technology (Logo) 
to different educational contexts and beliefs. 
Teachers using technology, a review of literature 

I consider the literature in two parts: that which I do not regard as particularly 
informative for accounting for cultural differences and that which may be 
informative for this purpose. 
Part 1 

The majority of mathematics education academic papers, especially older 
papers, on teachers using technology are, in my opinion, written ‘aculturally’, i.e. 
they do not describe the culture of the situations they examine and sometimes make 
recommendations which do not pay regard to the coordinated artefacts of other 
cultures. I do not have space for an independent review in this paper and so I call on 
two refereed reviews to make my points. 

Lagrange et al. (2001) is a meta study of literature on technology in 
mathematics education, 1994-99. The approach has many dimensions, not all of 
which are possible to describe here. The study involved quantitative and qualitative 
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analyses. I summarise their qualitative analysis which was restricted to the 
educational use of computer algebra systems (CAS). They found that papers 
considered could be classified into five types of problématique (I consider the first 
and last type here). The first type is technical descriptions of possibilities (53%), 
optimistic accounts which stress capabilities that the authors consider educationally 
relevant. As a personal note I usually find such papers, e.g. Using CAS to introduce 
exponential functions, most enjoyable. My point with regard to the focus of this 
paper, however, is that expecting the teacher or student behaviours described to 
‘jump’ contexts/ cultures is expecting too much. The fifth type is papers focusing on 
the integration of the technology, the conditions of use (7%). It is only these kind of 
reports, I believe, that can inform the focus of this paper; only by focusing on the 
conditions of primary and secondary artefact coordination can we provide a cultural 
account of teachers’ use of technology. Monaghan (2004) is neither a meta study nor 
a comprehensive literature review but it does attend in some detail to the division in 
the literature between papers which are ‘prescriptive’, e.g. encourage teachers to 
relinquish didactic roles and papers that recognise the complexities of practice. He 
notes a gradual increase in papers of the latter type over time. 
Part 2 

The following summarises studies which I consider contain elements that have 
the potential to contribute to a cultural account of teachers using technology. 

Olson (1992) presents a way of viewing teaching and teachers. This book is 
not explicitly concerned with the use of technology although an important study that 
contributed to this book was on Canadian primary teachers using Logo. Routines are 
central to Olson’s account of teaching. Routines are not ‘thoughtless’ but they are 
based on ‘tacit knowledge’ which precedes articulated knowledge. “Routines express 
culture” (ibid., p.24). Teaching is essentially a moral undertaking and teachers have a 
vision of what is good for their students. Innovations, e.g. exhor-tations to 
incorporate technology into teaching, must match teachers’ visions. “Classroom 
routines are not what computers will replace, they are where computers must fit if 
they are to be useful to teachers.” (ibid., p.26). With regard to working with teachers 
for change “A dialogue needs to be established instead of compliance.” (ibid., p.90). 
Although a background study to this work involved primary teachers I believe that 
comments on routines, morality and visions apply equally to secondary teachers. The 
approach values teachers as people and this, I strongly believe, is important in any 
cultural approach; any approach which treats teachers as ‘subjects’ in a scientific 
study does not deserve consideration here. 

There is no contradiction in treating teachers as individuals and as 
representatives of their cultures, the oft used phrase ‘shaped and shaped by’ applies 
to individuals and their cultures. Two PhD studies which focused on individual 
teachers’ use of technology are Kendal (2001) and Lins (2002). Kendal worked with 
three Australian teachers who designed and taught an introductory calculus 
programme using symbolic calculators. She found great differences in the emphases 
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these teachers placed which was manifested in the differential performance of their 
students in specific domains (graphic skills, procedural competence and conceptual 
understanding) although overall test results for the classes were similar. Her analysis 
used the construct of ‘privileg-ing’ (elevating one form of mental functioning over 
another, e.g. algebraic over graphical reasoning), a term she took from Wertsch 
(1991). Teacher privileging, over different cultures and within specific cultures, is, I 
believe is a useful construct to incorporate into a cultural account of teaching with 
technology. Lins worked with four British teachers, two using Cabri and two using 
Excel. Her theoretical framework was ‘anti-essentialist’ – technology as a ‘text’ that 
teachers ‘read’. The meanings produced by the teachers for Cabri and Excel were 
different. Lins introduces the construct of ‘the Excel and the Cabri of the teacher’. 
This idea, the software or the tool of the teacher, is potentially important for a 
cultural account of teaching with technology. The fact that a tool was not a neutral 
‘given’ in one culture suggests great variation in the appropriation of technology over 
cultures. 

Another aspect of the non-neutrality of technology is why one uses it, the goal 
and the motive. These are essential components of activity theory, e.g. Leont’ev 
(1978). With regard to mathematics teachers globally and any specific mathematics 
software it would, I believe, be absurd to assume that the goals/ motives are the 
same. Ostensibly ‘objective’ issues here (what will I do?) are intricately tied up with 
affective matters (why do I want to do this?). In the construct frame of Wartofsky 
primary and secondary artefacts are interrelated, e.g. teachers attitudes to technology 
use in mathematics classes shape and are shaped by teachers’ cultural identity. 
Monaghan (2004) introduces another dimen-sion of teachers’ goals in using 
technology, ‘emergent goals’ as described by Saxe (1991). Emergent goals come into 
being and fade away according to the situation. Saxe examines emergent goals with 
regard to four parameters: activity structures; social interactions; conventions and 
artefacts; and prior understandings. Monaghan used data from a project on teachers 
using technology to examine how these parameters interact in the development and 
resolution of emergent goals. His analysis presents some uncomfortable ‘home 
truths’ for advocates of tech-nology, e.g. how the emergent goal of a teacher, whose 
ostensive goal was to provide a rich spreadsheet activity for her students, was 
managing the printer queue and managing the behaviour of students waiting for work 
to be printed.  

Work following the ergonomic and the anthropological approaches contains 
many important constructs relevant for a cultural approach. It comprises a large body 
of academic papers, not possible to list in this paper, so I refer to a recent critique of 
this work, Monaghan (2005). Work in the ergonomic (instrumental) approach 
addresses how a tool, a material object, becomes an instrument, a psychological 
construct. It emphasises the subject-tool dialectic (the tool shapes the actions of the 
subject and the subject shapes the tool). It examines schemes, the structure of actions, 
which have pragmatic, heuristic and epistemic functions. ‘Gestures’ are the bits of 
schemes we can see and techniques are sets of gestures. A role of the teacher is to 
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guide students’ ‘instrumental genesis’, the evolution of a tool-scheme dialectic. How 
a teacher does this with a class is termed ‘instrumental orchestration’. Guin and 
Trouche (1999) is a study of a particular technological classroom environment that 
includes students with TI-92s and exercise books, a rotating (amongst the class) 
‘sherpa-student’ who operates the viewscreen, a viewscreen, a blackboard, specific 
tasks and a teacher. In commenting on how to support instrumental genesis they 
argue for strong teacher involvement. Sherpa-student orchestration is culturally 
specific but what is important for a cultural account of teachers using technology is 
that, whatever one calls it, some form of instrumental orchestration, even if it is 
minimal, will take place and that forms of orchestration are unlikely to transfer 
between cultures. 

Papers by Artigue and Lagrange tend to follow the anthropological approach 
of Chevallard where practices are described in terms of: tasks; techniques (used to 
solve tasks); technology (discourse used to explain techniques),); and theory. These 
four Ts are essentially cultural constructs and it would be a mistake of any cultural 
account of technology to ignore them. An important aspect of techniques is that they 
have pragmatic (efficiency, breadth of application) and epistemic values. The 
interplay between different values in traditional and technology classes introduces 
many complexities. 

Noss & Hoyles (1996) discuss, amongst other things, two constructs, 
‘webbing’ and ‘situated abstraction’ which are ostensibly about student learning but 
which have cultural implications for teachers using technology. Webbing is about 
making connections and concerns building a structure a student or teacher can use to 
(re)create meaning. Situated abstractions concern how people construct mathematical 
ideas in a specific setting, with a specific tool or set of tools. We come to a 
mathematical task with knowledge artefacts (mathematical objects and relationships 
between them) and tool using capabilities. We must see something prior to new 
learning or we could not approach the task. Bit by bit, moving between established 
and emerging knowledge, we focus on new knowledge artefacts. The two constructs 
are interrelated and complementary. They are consistent with a view of using 
technology celebrating cultural diversity – we build knowledge from that which we 
know. 
Towards a cultural account of teachers & technology 

The need for a cultural account of teachers using technology 

Speaking of the marginalisation of technology in mathematics education 
around the world Hoyles et al. (2004, p.311) point to “... a failure to theorise 
adequately the complexity of supporting learners to develop a fluent and effective 
relationship with technology in the classroom”. There is an equal need to provide a 
theoretical account of mathematics teachers using technology, if for nothing else, to 
avoid advocating ways of working that do not help real teachers develop and assist 
their students. Such an account must, I hold, be a cultural account and must address 
the history, curricula opportunities and constraints, the routines and the motives of 
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groups of teachers of different cultures. Focusing on the use of digital technologies of 
teachers from developing countries, as the ICMI 17 Discussion Document suggests, 
is important, both in principle as a mark of respect and for the insights these 
contributions may provide. But a cultural account which provided a framework for 
these individual accounts would be a step forward. 

My considerations are an ‘account’ rather than a theory or model because it is 
far from fully developed. I am, of course, interested in the practices of teachers from 
different countries but I feel strongly that such an account should also address 
differences within countries. This is grounded in my experience of working with a 
large number of teachers in England on using technology in their classrooms: their 
motives for using technology, the affordances and constraints offered by their 
school/departmental practices and the resources that are available vary tremendously. 
These, at a local level, are cultural differences. 
Aspects of a cultural account of teachers using technology 

I could present a ‘ready made’ cultural account of practice and simply tailor it 
for the case of mathematics teachers. This would have the benefits of being 
authoritative and more likely to be consistent than a specially developed account. If I 
did this, then I would look to Cole’s (1996) brand of cultural-historical activity 
theory as he, more than anyone, puts culture at the forefront. But mathematics is a 
special case and the considerations of mathematics educ-ators, noted in ‘Part 2’ 
above, provide insights not addressed by Cole because he is not a mathematics 
educator. Of activity theory, however, I believe a cultural account must retain artefact 
(of various levels) mediation and goal-directed actions. One need not accept all the 
tenets of activity theory to accept this. 

The special case of mathematics is due, in part, to its history; mathematics is 
the oldest subject in the school curriculum and we cannot, even if we wanted to, 
ignore this history when we address the use of technology in its teaching and 
learning. This is, in effect, one of the points of Artigue and Lagrange, when they 
speak of the epistemic and pragmatic values of techniques. Beyond the ‘breadth of 
application’ pragmatic value and the ‘facilitating understanding’ epistemic value of 
techniques, however, there are the values accorded to this ‘breadth’ and these ‘forms 
of understanding’ over hundreds of years (we cannot ignore history in any attempt to 
answer why it is ‘good’ to be able to factorise a2 – b2). Lagrange (2000, p.3, my 
imperfect translation) states “the impossibility to conceive or to analyse teaching 
with these symbolic systems without taking into account the new and the usual 
techniques that interact in the mathematical activity of the students”. This 
‘impossibility’ is, in large part, due to the history of our subject and its historically 
privileged techniques (I assume that there will be some commonality and some 
variation in ‘historically privileged techniques’ in different cultures). The work of 
Artigue, Lagrange and other on values is in its infancy. To date this work has been 
largely restricted to work with CAS. Apart from considering other software, 
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however, it is important to locate epistemic and pragmatic values in other cultures’ 
school mathematics. 

Instrumental genesis and a form of orchestration will be enacted, more or less 
successfully, by all teachers using technology but how it is enacted and the criteria 
for success will, I believe, vary across cultures. Recognising the diversity of ways in 
which people communicate with and through technology, Hoyles et al. (2004) put 
forward ‘situated abstraction’ as a complement to instrumental genesis through the 
construct of a boundary object, a shared, between different communities of practice, 
knowledge artefact. Boundary objects take form though do not bring meaning with 
them when they cross communities of practice. Meaning, however, can be negotiated 
over communities of practice. Gestures in a software system can generate situated 
abstractions that others (re)construct, “orchestration becomes a mutual act, rather 
than something one community does to another” (ibid., p.321). These are general 
claims and putting them into practice is a significant undertaking. My belief is that 
many unforeseen problems will arise and that these will be due, to an extent, to 
emergent goals which arise over and within cultures in different ways. Monaghan’s 
(2004) application of Saxe’s model may help us to understand these problems. 

Mutual acts are, I believe, an important factor in any consideration of one 
group of teachers learning from another (especially so if one group represents a 
dominant culture and the other does not) and are consistent with Olson’s (1992) call 
for a dialogue in place of compliance. Mutual acts are founded on mutual respect of 
the kind Olson puts forward: respect for visions and routines that may not be the 
same as ours, respect for teachers of other cultures whose coordinated systems of 
primary and secondary artefacts have a different historical foundation. Mutual acts 
are also founded on individual differences between and within cultures. The work of 
Lins (2002) and Kendal (2001) highlight, respectively, how individual teachers 
within similar institutions in a single country appropriate software differently and 
privilege different aspects of the same software with their students. We should expect 
differential appropriation and privileging to increase in teachers from others 
countries and cultures. Clearly research in this area would be useful but Lins’ and 
Kendals’ work provides a basis for appreciating, and working with, these expected 
differences. 
 

Endnote on primary, secondary and university teachers 
I have focused on secondary teachers. Like Noss & Hoyles (1996) I think it 

unlikely that primary and secondary teachers will have the same roles or beliefs; their 
routines are different and one group is exclusively focused on mathematics. I further 
think that, in general, a difference between how secondary teachers and university 
teachers use technology is likely. I suspect that university lecturers’ focus on 
mathematics over pedagogy creates different goals and different roles. 
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Our research team has developed and experimented software for the learning of 
algebra, named Aplusix, with the idea of being usable and useful for all the classes 
having access to computers, and of helping teachers to teach the curriculum. In this 
paper, we list 19 principles that we consider relevant to this goal and we briefly 
describe the Aplusix system. This system is distributed in France since early 2005 
and will be distributed in many countries from 2006. It has proven to be efficient 
(students learn) and to facilitate the teacher’s work. 
 
Introduction 

Interactive Learning Environments (ILEs) is a term used in the AI-ED community 
(Artificial Intelligence in Education) for computer systems designed to help students 
learn a domain in an interactive way49. ILEs can be produced by research teams or 
companies. Research teams generally develop prototypes50 in order to implement and 
experiment ideas; generally, they do not develop products51 that can be used in 
ordinary classes by teachers who just want to teach the curriculum. Companies 
develop products to be used in ordinary classes. Most of these products do not 
include advanced functionalities and have a poor interactivity, which is sometimes 
limited to multiple choice questions. 

Many mathematics teachers complain they do not have enough time to teach the 
curriculum. This produces a strong limitation to the use of ILEs because these 
systems consume a lot of teachers time (study of the system, preparation of learning 
situations) and time of their students (it replaces well known activities by activities in 
the computer room having an efficiency which is not obvious). 

This paper is devoted to ILEs in mathematics (more particularly in algebra) to be 
used in the usual framework of classes that can access to computers, both in 
developed and developing countries. We particularly focus on ILEs that can help 

                                           
49 ILEs do not include all the pieces of software that can be used at school, for example CASs and 
spreadsheets are not ILEs, they are professional software. The fact that they can be used in classes, 
at some level, in well-prepared situations, does not make them ILEs. 
50 A prototype is an application which is not well finished and debugged and cannot be distributed 
as a professional system. 
51 A product is a well finished and debugged application which can be distributed as a professional 
system. 
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students learn the curriculum with little modification of the class functioning and 
without the goal of changing what is learnt. We consider that this is the first kind of 
ILE that most of the teachers in the world need. However, we do not mean that this is 
the only interesting kind of ILE. 

In section 2, we list principles of ILEs for the usual framework of the class and a 
few algebra ILEs are situated with regards to these principles. In section 3, we 
present the Aplusix ILE project in algebra. After a first period where prototypes were 
built and experimented, we adopted the goal of building an algebra ILE for the usual 
framework of the class and we redesigned our system according to this goal. At the 
present time, experiments have shown that the system verifies these principles. We 
are now entering in a deployment phase. 

 
Principles of ILEs for the usual framework of the class 

The principles we consider are oriented towards the students or the teacher. 
1. The tasks proposed by the ILE must be part of the curriculum. 
2. The activities must be close to the usual activities of the curriculum. This 

includes a place for errors and a general interaction mode with little 
scaffolding (there is scaffolding when the system executes a part of the 
task). 

3. The main representations at the interface must be close to the usual ones. 
Other representations must be added only for didactical reasons. 

4. There must be transfer on paper. After an adequate amount of activities 
with the computer, students must have better scores on paper tests. 

5. Teacher must be able to use the ILE in the theoretical framework, either 
explicit or implicit, they are used to. 

6. The domain of the ILE must be large. 
7. The manipulation of the representations must be natural (not involving 

intermediary representations) and easy. 
8. The ILE must be in the natural language used in the school. 
9. The familiarization with the system must be easy. When the overall 

interaction is complex, there must be different stages so that the 
familiarization of each stage is easy. 

10. When important features of the system depend on human choice, 
parameters must allow teacher’s decision on the behavior of the system. 

11. The ILE must present some added value compared to traditional 
environment. 

12. The ratio between the time for familiarization and the duration of learning 
activities must be low (maximum 20%). 

13. The interaction modes and the feedbacks must allow a good level of 
autonomy of the students when they use the ILE, so that the load for the 
teachers is not heavy. 

14. The time the teachers need for preparing learning situations must be short. 
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15. Information concerning the student activities must be accessible to the 
teachers. 

16. The teachers must be involved in the global learning process. 
17. The price of the system must be adapted to schools. When the system 

requires the use of another system, like a CAS, this system must not be 
expensive, and must be easy to obtain or included in the installation 
package. 

18. The installation of the system must not be complex, because it is often done 
by teachers who have no advanced knowledge in computer science. 

19. The organization developing the ILE must be durable (10 years or more), 
because an ILE must evolve (correction of bugs, development of new 
functionalities, etc.).  

Principles 1 to 6 are adequacy and utility principles. Principles 7 to 10 are 
usability. Principles 11 to 14 are economical principles at a cognitive level. 
Principles 15 and 16 exclude AI systems that would take in charge the entire learning 
process and leave no place to the teacher. Principles 17 to 19 are general economical 
principles. 

Cognitive tutor for algebra [Koedinger et al., 1997] is an example of ILE for the 
usual framework of the class. Its domain is elementary algebra: word problems, 
linear equations and systems. It has been designed by the Carnegie Mellon University 
of Pittsburgh and is distributed by the Carnegie Learning company 
[CarnegieLearning], which is a spin-off of this University. It is oriented to the US 
curriculum. The Website of Carnegie Learning announces “325 000 students using 
the system over 750 school districts across the United States” and better scores of 
students using this system with regard to other students. 

MathXpert [Beeson, 1996] is an ILE for algebra and calculus designed at the 
University of San José and distributed by the MathWare company [MathWare]. 
Experiments have proven that students benefit from the use of MathXpert. However, 
MathXpert does not follow the principle 2: it provides strong scaffolding (at any 
time, the student selects a sub-expression and the system provides a menu with the 
rules that can be applied to this sub-expression) and makes no place for errors (the 
student chooses a rule in the menu and the system applies this rule). This non respect 
of the principle 2 may be a reason of a weak success of the system.  
 
The Aplusix ILE 
Brief history of Aplusix 

During the nineties, we developed an ILE for algebra [Nicaud et al., 1990]. It was 
a command-based ILE like MathXpert with rules in menus and calculations done by 
the system. The main differences with MathXpert were: (1) more abstract rules; (2) 
Presentation of all the rules (not only the applicable ones); (3) Demand of the values 
of the rules variables; (4) A small domain (factorization of polynomials). Several 
experiments were conducted and provided good results.  
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Figure 1. The Aplusix ILE. 

As researchers in computer science and developers of an ILE, we were not 
satisfied with the usage of the system: it was used only in small experiments driven 
by researchers. So, we decided to redesign the systems with the goal of being 
attractive and usable by many teachers and students. At this moment, we did not have 
the ILE for the usual framework of the class idea but a will to have a system that can 
be widely used like dynamic geometry software [Laborde, 1989]. So we built the 
Aplusix system [Nicaud et al., 2004], see figure 1, with the following main features: 
(1) To allow the student to freely build and transform algebraic expressions and solve 
algebra exercises by producing his/her own steps like on paper; (2) To produce the 
first fundamental feedback, the indication of the correctness of the steps, in a non 
intrusive way, see figure 2. This follows principles 2, 3, and 7. According to the 
principle 17, we decided to develop ourselves the entire system (without using a CAS 
or some other piece of software). For feature (1), we developed an advanced editor of 
algebraic expressions and for feature (2), we developed a module of formal 
calculations including the calculations of the equivalence of expressions.  

 
Figure 2. A correct step in the left, with an equivalence sign; an incorrect step in 

the middle, with a red crossed equivalence sign; a step without feedback, in the 

right. 

The teachers and the students who used the first version of this new Aplusix were 
very interested and the first tests showed that the students learned well. However, the 
teachers had soon demands of new functionalities: (1) A second fundamental 
feedback, the indication of the correct end of the exercises; (2) A mode without 
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feedback; (3) Exercises ready to be used. At this moment, we entered in the ILE for 
the usual framework of the class idea. 
 
Short description of Aplusix 

First versions of the new Aplusix were principally pieces of software devoted to 
students, based on the concept of microworld, with a rich replay system usable by 
students, teachers and researchers. In last versions, we continued to improve the 
microworld aspect of our environment, but we worked to nest it into some kind of 
exerciser where the work done by students could be automatically analyzed and 
scored, fundamental feedbacks can be hidden to permit use of Aplusix for tests, 
exercises could be automatically generated, solutions could be automatically found 
out. Both students and teacher were targeted by these new components, and their 
works have been facilitated. But we have worked for teachers specifically too, trying 
to provide them with tools for the administration of their classes and of their students, 
tools for the edition of specific exercises, list of exercises, or richer exercises (for 
word problem, or problems with many linked sections), and last, tools for statistical 
analysis of student’s results, see figure 3. 

 
Figure 3. Statistical analysis of student’s results. Fist the total of  
well-solved exercises, second, the total of attempted exercises. 

As a consequence, the main student’s activity envisaged with Aplusix is no more 
an exploration activity with the microworld but a training activity on a list of given 
exercises under the control of fundamental feedbacks or a test activity when these 
feedbacks are hidden, these new activities are closer to the one practiced in class. We 
have added also a new activity, we call self-correction, where students, after a test 
(i.e., without fundamental feedbacks), can benefit from fundamental feedbacks to 
correct their errors. The last activities are visualization of past activities, either 
globally (the final form of the exercise) or action by action. 

The organization of work with Aplusix according to activities has been a solution 
to reduce the use of the parameters. A set of parameters allows customizing the 
system for each class and situation. Parameters continue to exist and can define for 
examples: the mode and scope of the verification of the equivalence; how the system 
must manage an incorrect or ill-formed step; the access to the solutions and to the 
CAS-like commands, the order of exercises obtained from a list (randomized or not); 
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the introduction of strong invitation to students to comment their steps. See figure 4. 
Activities do not set all the parameters but the most important ones and reduce the 
number of those which still need to be set. Because of the complexity of the use of 
parameters (set of parameters can be assigned to each class, for each session), there 
was a real need to find a way to have customized version of the system without big 
effort. Activities have been our solution to make the system easier to use. 

 
Figure 4. Teacher’s panel for choosing the values of the parameters. 

The domain available for explorations and exercises concern algebra: numerical 
calculations (from integers to square roots), expansion of polynomial expressions of 
several variables, factorizations of polynomial expressions of one variable and 
maximum degree 4, polynomial equations and inequations of one unknown and 
maximum degree 4, rational equation leading to polynomial equations of one 
unknown and maximum degree 4, system of linear equations up to 10 equations and 
10 unknowns. 

For more precise information consult documentations at http://aplusix.imag.f 
 
Current state of the global project 

Aplusix has been developed in French. We have developed tools allowing to 
easily translate the texts and the help file of the system. Aplusix has now been 
translated in English, Portuguese, Italian, Vietnamese, and Arabic. Translations are 
ongoing in Spanish and Japanese.  

Until the end of 2004, several experiments have been carried out [Nicaud, 2005a] 
in different countries (France, Brazil, Italy, Vietnam, and India) and contexts (a few 
sessions, regular use during the entire school year, one student per computer, two or 
four students per computer) for a total of about 15 000 students*hours. At the present 
time, principles 1 to 18 are verified. In particular: (1) students gain autonomy and 
improve their knowledge; (2) Aplusix facilitates the teachers’ work (because of 
students’ autonomy and of already-made lists of exercises). Furthermore, enquiries 
showed that all the students worked with pleasure with Aplusix. 

Early 2005, a contract was signed between our University and a French publisher, 
and Aplusix began to be marketed in France. This type of contract appears to be 
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unsatisfactory with regards to duration (principle 19), because, according to French 
law, the royalties received by the University cannot be used to pay engineers for 
maintaining and developing the system. So we decided to move the development 
structure. First, it will go for 4 years to a company, which is an affiliate of the 
University; then a spin-off company will be created. We have contacts, for several 
months, with publishers who are willing to sell Aplusix out of France. We will be 
able to sign contracts with them in March or April 2006. We will adapt the price to 
the gross domestic product of the countries.  

 
Discussion 

The above list of principles has been built from our view of ILEs for the usual 
framework of the class. As Aplusix has this goal for several years, it is not by chance 
if it follows these principles. However, we may have forgotten some principles in the 
elaboration of this list and ideas are welcome.  

This list may also be used to estimate the distance between an ILE (an existing 
ILE or an ILE to be developed) and the for the usual framework of the class concept. 
An important distance does not mean a poor ILE (the ILE may be very good), but we 
think that an important distance means a limited possible use. In that case, the benefit 
of the development of the ILE is only at a research level (doing experiments, 
producing results of these experiments, publishing papers), not at a usage level. 

In the case of Aplusix, we are developing new functionalities that will help 
students and teachers (through students’ autonomy): (1) a companion as an ideal 
student of a given level who can provide suggestions, explanations and calculation 
steps; (2) a tutored mode in which the students’ calculation steps will be analysed 
and when a misconception is diagnosed [Nicaud at al. 2005b], an adequate feedback 
is provided, for example: When you move an additive expression from one side to the 
other side of an equation, you must change its sign. 
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Computing technology can offer teachers a means to incorporate more open-ended 
tasks and problem solving into their repertoire of pedagogical strategies. But can this 
be done within the parameters set by traditional curricula, textbooks and classroom 
cultural contexts? What are the pedagogical approaches that will facilitate this task? 
How can teachers be helped in making decisions regarding the use of such technology 
in their classrooms? What are the theoretical frameworks that will support the 
teacher’s work? What are the implications of the use of such technology for teacher 
development programs? In this study, we use the case study of a teacher-researcher 
collaboration in a classroom to offer some suggestions on these aspects. The study was 
conducted in a secondary school classroom in India and offers some insight into the 
use of a tool that is still in its nascent stages in developing societies.  

 
 Historically, society has had two important goals in mind while establishing 
schools for children. One, schools were a useful means of conveying to children 
aspects of learning that a society had accumulated over a period of time. Two, 
schools provided children a means of honing and achieving their potential in 
different spheres of life. Thus, schools were expected to fulfill societal and individual 
aspirations in a compatible fashion. As institutions that are geared towards the goals 
of individuals in particular, and society in general, it is expected that schools will 
change with the changing needs of a society and help young learners to emerge from 
them with a broad understanding of the world that they inhabit and the potential to 
contribute to it in a meaningful manner. Thus, the skills and knowledge that learners 
acquire in a school system change over a period of time so as to keep pace with 
changing societal goals and aspirations. 
 However, in developing countries such as India, traditional approaches to 
teaching and learning have dominated the school scene for a very long time. The 
educational scenario in India, in particular, has remained remarkably impervious to 
changes not only in the global society but also to local, fast paced economic and 
social changes. School curricula and syllabi, textbooks, teaching strategies as well as 
classroom contexts have changed little in the past several decades. Naturally, teacher 
education programs – both preparation programs as well as professional development 
ones – have reflected this strong resistance to change both in their content and 
approach to education. It is only in recent years that some of the winds of change 
sweeping across other spheres of life in Indian society have permeated across the 
school scene, and even though such changes remain confined to few areas, in terms 
of both – content and geography, they have begun to play an important role in 
bringing about changes in the wider educational arena.  
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 Mathematical teaching and learning in particular has suffered much as a result 
of the static modes of curriculum design and transaction that have prevailed in the 
classroom. Students in schools and colleges learn mathematics by and large by the 
chalk-and-talk method (both instruments – chalk and talk – being pretty much the 
exclusive domain of the teacher!) and remain largely mute spectators to the entire 
process of teaching that goes on in the classroom.  
 It is into this dismal and depressing scenario that some brave teachers are now 
venturing forth to disturb the prevailing status quo. Various influences have worked 
to create this situation. Individual educators who have a broader vision, pressure 
from some (limited) sections of society who want children to be part of the larger 
global society, educational researchers who are geared towards helping learners 
become independent thinkers rather than machines that regurgitate memorized facts, 
a multitude of private business houses who are marketing their wares in India -- 
either textbooks (very few) or tools such as hand held technological implements or 
computing software. Whether intentionally or not, all these factors are beginning to 
create a demand for change in Indian mathematics classrooms and slowly but surely, 
the old guard is coming face to face with a host of novel challenges. 
 We may need to offer some information about the Indian schooling system at 
this point. Broadly speaking, there are two kinds of schools in India – the state 
administered schools, also called “government schools” and schools run by private 
bodies such as individuals or trusts, also called “private” or “public” (actually a 
misnomer since these are managed by private bodies) schools. Private schools 
usually charge far higher amounts as fees as compared to the government schools 
where the fee is very nominal. The quality of education offered in the former 
institutions usually ensures that all parents who can afford to will send their children 
to private schools. Another important distinction between these two kinds of schools 
is that almost all private schools across the country use English as the medium of 
instruction (regarded as an international language) whereas in government schools, 
regional languages are used for instruction.  
 Regardless of whether they are government or private schools, the majority of 
schools in India work within a curriculum prescribed by a national autonomous body 
called the National Council of Educational Research and Training (NCERT). This 
body is responsible for framing syllabi and course guidelines, and creating textbooks 
that are largely followed as such by most schools in India.  
 At the end of first ten and then twelve years of schooling, students are 
expected to take examinations that are conducted by national or state bodies that are 
responsible for holding them. The outcomes of these examinations are extremely 
important for most students as much of their future depend upon these results. Thus, 
to a large extent, much of the teaching in the final three years of schooling is geared 
towards these so called “board examinations” (as they are conducted by central or 
state level boards) and preparing students to take them. 
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 As in many other countries, reforms in the educational system are driven by 
changes in the social and economic spheres, but for any such changes to become an 
integral part of the entire school system requires changes in the mindset of the people 
who are part of the institutions that look after the administration of the schooling 
system – the NCERT, the analogous organizations at the state levels called the 
SCERT’s, and the boards that conduct the board examinations. However, at the 
initial stages, these changes are made at the individual level by people and 
institutions willing to take the initiative to bring about such reforms. Through such 
individuals (people or institutions), the reforms may spread to others so as to become 
more widespread.  
 The use of technological tools in Indian classrooms has been one such reform 
that has been very slow in coming, and having made its initial appearance has been 
even slower to spread. Attitudes and beliefs about mathematics and its learning as 
well as the cultural heritage of mathematics in this country where people have prided 
themselves on developing mental skills to perform rapidly various operations that 
have long and complicated standard algorithms have been partly responsible for the 
slowness of such changes. “Mathematics is about thinking and how can any 
technology help us to think?” has been the traditionalists’ response to the use of 
digital technology in mathematics classrooms.  
 In such a culture, this then is the central question: “How can we use 
technology to help students to think better in mathematics?” We must also remember 
that this question must be answered within the context of the prevailing educational 
system – the curricula, the syllabi, the mathematics textbooks and the traditionally 
prepared teachers. It is therefore heartening that there are some teachers within this 
system who are willing to take the risk – to make some efforts towards answering 
this question. Obviously, they cannot be expected to face this challenge alone. Thus, 
for educational researchers, the crucial question is: How best can we help teachers in 
using available technology in their classrooms? Even more importantly, we would 
like to know whether the use of such technology would help in learning or teaching 
mathematics in this traditional set up.  
 It is in seeking answers to such questions that we have set out to do this study. 
We would like to know: (a) how can we help teachers to decide if, why, when, and 
how can technology be integrated within the prevailing contexts to provide a better 
mathematical experience to students? (b) what kind of pedagogical approaches can 
help us to use technology in the mathematics classrooms?, and (c) if technology can 
be integrated into the classroom, then what are the lessons for teacher preparation 
and professional development programs that must prepare teachers for future 
classrooms? Thus, in this paper, we have chosen to work on the theme “Teachers and 
Teaching” (with reference to the Discussion Document of ICMI 17) and the broad 
approach that will define our work is the role of the teacher. Naturally, this approach 
will be complemented by discussions on the kind of mathematics learning that takes 
place with the use of a specific technology in the classroom. We would also make 
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suggestions on how curricula may be modified to take into account the mathematics 
learning that occurs in technology-integrated classrooms. 
 The interventionist design experiment that is the basis of this study took place 
in a local private school in New Delhi, India, that is well established and has been 
known to take the lead in placing different kinds of reforms on its agenda. A 
supportive principal and governing body of the school make it possible for teachers 
to seek and implement a variety of innovative teaching strategies. One of the senior 
school teachers of mathematics in this school, Dr. Jayanti Gopal, has been 
responsible for bringing about a lot of change not only in the kind of mathematics 
teaching that happens in this school but also for taking the lead in spreading 
awareness and information about such changes to other schools in the city.  
 Jayanti set up a mathematics laboratory in her school at a time when the 
concepts of mathematics and laboratory did not go together in this country. She used 
the mathematics laboratory as a means of having students work on simulated real life 
problems that could be connected to their regular school curriculum. It goes to the 
credit of the school that in a packed school curriculum, Jayanti was able to find the 
time and space for an activity -- the mathematics laboratory -- that was nowhere on 
the regular mathematics curriculum. Jayanti invited mathematicians to help her set up 
the laboratory and devise activities that would introduce students to varied and 
fascinating aspects of mathematics. Gradually, motivated students helped her to 
extend the frontiers of her laboratory. Jayanti then invited students and teachers from 
other schools to visit the laboratory. She also organized an annual mathematics day at 
which teams of students could present mathematical projects designed by them. A 
variety of other related mathematical activities such as talks by research 
mathematicians, different kinds of mathematical quizzes and contests, and 
professional development programmes for teachers helped to set up Jayanti’s 
mathematical laboratory as an important landmark in the mathematical firmament of 
school mathematics within the city.  
 My own association with Jayanti helped me to discuss ideas related to school 
mathematics with her on a regular basis. I visited her laboratory on numerous 
occasions and I have been involved in different capacities in the mathematical 
activities that she organizes in her school. Jayanti has also shown her keenness to 
understand different theoretical perspectives that prevail in mathematics education, 
particularly those related to the teaching and learning of school mathematics. For me, 
the opportunity to work with her on different projects has given me an insight into 
different aspects of the field. Thus, over time, we have developed a working 
relationship that has helped to foster and feed into each of our individual interests.  
 The introduction of the Geometer’s sketchpad (hereafter called the sketchpad) 
in India provided Jayanti and me the opportunity to work on a project that is of 
interest to both of us. I had used the sketchpad while working on developing some 
activities for pre-service elementary school teachers in the United States. Thus, I was 
somewhat familiar with the software and believed that it would provide a useful 
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learning environment in geometry, a neglected area of school mathematics. Jayanti 
felt that the software was interesting enough that it would capture the imagination of 
her students. Both of us believed that it would challenge students to look at different 
aspects of geometry from a problem solving perspective. Together, we hoped to 
utilize the software in Jayanti’s laboratory with middle school students in order to 
answer a variety of questions that challenged us regarding the use of technology in 
the mathematics classrooms.  
 Besides stimulating our academic interests, the use of different kinds of tools 
and implements in the learning of mathematics has acquired additional interest in the 
Indian context because of some other developments that are currently taking place in 
the school education scene in this country. A year ago, the government made the 
mathematics laboratory a mandatory component of middle school mathematics. 
Thus, all schools are now required to create a mathematics laboratory and have their 
middle school students visit them at least twice a week. The government’s directive 
in this regard has left many teachers quite confused. Many of them have very little 
idea of how to go about setting up a mathematics laboratory, and even if a room is 
designated as such by the school, teachers do not how to put them to use. They are 
seeking some guidance in this area. A second important development has been the 
revision of syllabi and textbooks in all subjects at the school level. As curricula in 
mathematics undergo changes there is need to look at the research in areas related to 
mathematics education and to utilize the results of this research in order to help 
learners adjust to the changing needs of a global society. Thirdly, there are a number 
of schools that are willing to invest in computing technology and want their teachers 
to find ways to make use of this tool in their classrooms. Parents are also keen to see 
their children become adept users of computing tools in their everyday lives. Thus, 
teachers and educators are under pressure to find appropriate spaces whereby learners 
can use digital technology as a means of learning different subject areas, particularly 
mathematics, as it is seen as a subject that is in close affinity to this kind of 
technology. 
     The collaborative model of learning that Jayanti and I worked with is based to 
some extent on the teacher development model described by Cobb and McClain 
(2001) where the researcher and the teacher are part of a professional team that 
situates its learning within the classroom and the development that evolves is 
grounded in the interactions that take place in the classroom.  
 The model was particularly useful for both of us as the learning environment 
had novel features and allowed us to complement each other. For the first time, we 
were looking at the kind of mathematical learning that evolves amongst secondary 
school students through the use of digital technology. Both of us believed that this 
research study would provide us with ideas on how to integrate such technology 
better in the classroom. For me, additional lessons were to be learnt in the context of 
professional development of pre- and in-service school teachers. Besides, our areas 
of knowledge and expertise complemented each other – Jayanti knew her students 
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quite well as she had been working with them for several months and so she was 
aware of their strengths and the places where they would need help. Her laboratory 
and the use of different kinds of technological tools in it bore testimony to the fact 
that she believed that school students could be helped to learn mathematics through 
the use of tools and emerging technology. My own expertise lay in the theoretical 
perspectives that would help us to contextualise and frame the study as also to design 
the working model within the classroom with the students, and between Jayanti and I. 
Together, we developed the tasks that we would have our students use in the 
laboratory. 
 Thus, in this case, we believe that the first condition for bringing about any 
change in classroom practice was fulfilled – the teacher supported the developments 
and was assured of its usefulness in helping her students to learn mathematics. As 
Ruthven (1999) states, “A more promising source of guidance on improving the 
effectiveness of teaching is research into classroom processes and their effects. Here 
in particular, some researchers have been able to identify core features of effective 
teaching, and then to test the robustness of their findings through intervention 
studies, leading to the identification of what can be broadly characterized as active 
teaching.” (p. 208). While we are still some distance away from being able to 
identify the exact aspects of the usefulness of technology that we will benefit from in 
the classroom, we hope that we will able to use it to foster a sense of exploration 
among our students. Through such explorations, we hope to have our students draw 
conjectures and verify them. We also hope that the visualization strategies that 
students will be using during the mathematical activities with the sketchpad will 
encourage them to use these in other situations.  
 Moreover, the students themselves were keen to use the tool. Early results 
from the study showed that students were able to manipulate the sketchpad tools and 
tried to use it in contexts that had not been stipulated by us, showing both their 
ability to handle such tools and their eagerness to explore ideas using this 
technology. As the study progresses, we look forward to asking our students more 
specific questions regarding their own interest in this tool, and other ideas that they 
would like to explore through it.  
 Discussions between Jayanti and me together with the work done by the 
students will help us to evaluate the effectiveness of the tool and our strategies. We 
will also conduct interviews with students as they work on the tasks in small groups. 
Thus, our own observations, interviews with students, records of their work, our 
discussions and regular diaries of our reflections will help us to document and 
develop strategies for effective teaching within our contexts.  
 As we develop this case study, we hope that there will be aspects of it that can 
be extrapolated and used in other secondary school classrooms. Primarily, our 
interest is in pointing to specific attributes of technology that can be useful in the 
mathematics classroom. While we are doing this study within the confines of the 
current classroom contexts, we hope to identify some elements of the curriculum that 
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need to be modified given the availability of technology. In particular, we now have 
visual strategies possible that help students to see the connections between algebraic 
and graphical representations of different concepts. Finally, we hope that we will be 
able to make some suggestions for changes in pre- and in-service professional 
development programs for teachers. These suggestions will not be merely geared 
towards skill based knowledge that teachers may require in the future. In fact, we 
hope to address the attitudes and beliefs regarding mathematics and its teaching and 
learning that hinder the incorporation of digital technologies in traditional classrooms 
in societies where they have been conspicuous by their absence. We believe that this 
is essential if mathematical learning has to keep up with the changing needs of our 
society, and we are to fulfill the aspirations of our learners.  
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This paper draws on a study investigating the development of the proving process in 
a dynamic geometry environment in the context of open geometry problems at 
secondary school level. Starting with a paradigmatic example, the paper will explore 
how the modalities of interaction with Cabri that students show, influence the 
construction of different ‘dynamic geometry instruments’ and direct the proving 
process in different directions. The modalities of interaction with the software will be 
interpreted within the instrumental framework (Verillion & Rabardel, 1995) and 
illustrated by students’ protocols. 
 

A Paradigmatic example: the Cabri of Bartolomeo and the Cabri of Tiziana 

The paper starts with a paradigmatic example, taken from a study (Olivero, 2002), 
that shows how interactions with a dynamic geometry software in the context of the 
same problem differ for two students working in pairs, and impact on the shaping of 
the proving process. Bartolomeo and Tiziana are 15-year-old Italian students who 
have used Cabri a couple of times before they were given the problem ‘Perpendicular 
bisectors of a quadrilateral’52 to tackle in Cabri in pairs53. They both have an average 
mathematical background and considerable Cabri experience.  
Tiziana has the mouse. After constructing the figure, the students start exploring the 
situation and quite soon they get to this extract that leads to the formulation of the 
conjecture ‘If ABCD is a parallelogram then HKLM is a parallelogram too’, through 
an episode of dragging. 
 

69  
Bartolomeo: what have you done, a rectangle? (Figure 1) 

70  
Tiziana: yes, well… 

71  
Bartolomeo: so… it is a point… try to make it bigger… 

75  
Tiziana drags D up and stops to observe and think (Figure 2) 

                                           
52 You are given a quadrilateral ABCD. Construct the perpendicular bisectors of its sides: a of AB, 
b of BC, c of CD, d of DA. H is the intersection point of a and b, K of a and d, L of c and d, M of c 
and b. Investigate how HKLM changes in relation to ABCD. Prove your conjectures. 
53 For more information about the methodology of the project this example is taken from see 
Olivero (2002). 
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76  
Tiziana: excuse me! This (she points at LM) follows what this (AB) 

does, this (LK) follows this (AD) … (she laughs) 
77  

Bartolomeo: let’s examine some more cases 
78  

Tiziana drags A up and gets Figure 3 
79  

Bartolomeo: ah, when it’s a rectangle it’s always a point… (he writes down 
the second conjecture) […] 

80  
Tiziana: No, because now it's a point too. Tiziana drags B so that ABCD 

is no longer a rectangle but inside there is still a point (Figure 
4).  

 
 
 
 
Tiziana  

Figure 1 

 
 
 
Bartolomeo 

 Figure 2 Figure 3 
 

D

C B

A
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 Figure 4 

 

 
The students start from the same figure (a rectangle) but use Cabri in two different 
ways, that open a window on their aims, and potentially direct the proving process in 
different directions: by the end of the process Tiziana discovers the most general 
conjecture for this problem, while Bartolomeo goes on with a systematic exploration 
of particular cases, as the one explored in this extract. 
 
The Cabri of Bartolomeo 

In 72, 77 and 79 Bartolomeo shows how he wants to use Cabri: to produce and check 
conjectures in a very systematic way (“let’s examine some more cases” – 77). During 
this episode of dragging, he pays attention only to the initial and final figure (Figure 1 
and Figure 3), as two snapshots, as his aim is clear: checking if HKLM is always a 
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point when ABCD is a rectangle54. And, as soon as Tiziana stops in Figure 3 he 
formulates a conjecture (79). 
This episode represents well the overall interaction with Cabri shown by Bartolomeo 
throughout the proving process. He shows a quite ‘controlled’ use of the software, 
and seems not to be absorbed by it. He does with Cabri something that he could have 
done on paper too. He has a precise strategy, which is to examine particular cases and 
to use dragging as a tool for validating conjectures, as is made clear at the beginning 
of the process ("let’s see what happens in every case, shall we?"): the software is used 
to carry out this plan. Photo-dragging55 (Olivero, 2002) characterises his behaviour56 
because dragging itself is only used to transform a figure into another one, and the 
attention is focused only on the initial and final state of dragging. 
This ‘controlled’ use of Cabri, in which the software is incorporated in a pre-
determined solution process, is limited to the exploration of particular cases/ 
conjectures and may hinder the discovery of new properties/conjectures. 
 

The Cabri of Tiziana 

Tiziana’s use of Cabri in this episode is different from Bartolomeo’s. Tiziana is 
observing the figure over the dragging which takes her from Figure 1 to Figure 3, 
through Figure 2, ‘reading’ what the figure suggests her. She stops in 75 and reads a 
relationship between elements of the configuration (the sides of ABCD and the sides 
of HKLM), which opens up a new thread in the proving process and will be 
transformed into a general conjecture later on in the process57. At the end of this 
episode, Tiziana does not stop on the rectangle configuration but moves to another 
‘unknown’ configuration in which there is still a point inside (80), opening up 
another new thread for exploration58.  
This episode represents Tiziana’s prevalent type of interaction with Cabri. She does 
not show a pre-specified plan of action and she shows a more open use of Cabri: she 
uses Cabri in order to experiment, explore the situation, get ideas and discover new 
properties. With a metaphor we can say she is ‘dragged by dragging', in that she reads 
what is happening in Cabri while she is dragging. Her modality is film-dragging59 

                                           
54 For Bartolomeo “always” means in two cases only. 
55 Photo-dragging incorporates “modalities which suggest a discrete sequence of images over time: 
the subject looks at the initial and final state of the figure, without paying attention to the 
intermediate instances. The aim is to get a particular figure” (Olivero, 2002, p.141). 
56 Sometimes it is ‘indirect’ dragging when it is Tiziana who is in fact using the mouse. 
57 The general conjecture is: ABCD and HKLM are similar. 
58 Which will lead to another general conjecture: if ABCD is cyclic then HKLM is a point. 
59 Film-dragging incorporates “modalities which suggest a film: the subject looks at the variation 
of the figure while moving and the relationships among the elements of the figure. The aim of 
dragging is the variation of the figure itself” (Olivero, 2002, p.141)  
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(Olivero, 2002): she focuses on the intermediate state of the figure while she is 
dragging and stops whenever she sees something interesting. Cabri does for her 
something that she would not be able to do on paper and is an integral part of her 
actions. 
This more open use of the software transforms Cabri (and dragging in particular) into 
a tool for discovering new relationships and facts, leading to general conjectures. The 
overall process is determined by what emerges from observing what happens in 
Cabri. 
 
The research problem 

The paradigmatic example has shown different ways in which the students exploit 
and incorporate the software in their solution processes and how this affects in 
different ways the development of the proving process. What is the research problem 
suggested by this example? 
Educational innovations tend to take on an objectified character in popular thinking. 
Innovators advocate and administrators endorse the educational use of this new 
technology or that, as if the instrument were invariant and its use determinate 
(Ruthven, 2005). This shows how the risk of the "fingertip effect" (Perkins, 1985), 
that is simply making a support system available and expecting that people will more 
or less automatically take advantage of the opportunities that it affords, is always 
there. However, research has shown that technologies do not work by themselves and 
people do not automatically take on board the technology or software: "The computer 
is an expressive medium that different people can make their own in their own way" 
(Turkle & Papert, 1990). This leads to the exploration of students’ constructions of 
dynamic geometry, to be interpreted within the instrumental framework, as developed 
by Verillion & Rabardel (1995) and elaborated by Mariotti (2002), that may help us 
understand why this is the case. The research questions we may ask are: 

• What are the instruments-Cabri constructed by the students starting from the 
artefact-Cabri? 

• How do students make Cabri their own instrument-Cabri? What elements play 
a role in the process? 

 
The instrumental framework 
The instrumental approach elaborated by Verillion & Rabardel (1995) provides a new 
perspective on the effect of technical devices60 on learning processes.  

                                                                                                                                           
 
60 This approach considers the use of tools in generals, not necessarily new technologies. 
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According to the instrumental approach, any technical device has a double 
interpretation: on the one hand it has been constructed according to a specific 
knowledge which assures the accomplishment of specific goals, and on the other 
hand, there is a user who makes his/her own use of the device. In other terms, in this 
perspective it is important to highlight the distinction between artefact, which is "the 
particular object with its intrinsic characteristics, designed and realised for the 
purpose of accomplishing a particular task" and instrument, that is “the artefact and 
the modalities of its use, as elaborated by a particular user" (Mariotti, 2002, p.702) 
within a given activity. "For a given individual, the artefact at the outset, does not 
have an instrumental value. It becomes an instrument through a process, or genesis, 
by the construction of personal schemes" (Artigue, 2002, p. 248), or schemes of use. 
As different and co-ordinated schemes of use are successively elaborated, the 
relationship between user and artefact evolves, in a long-term process called 
instrumental genesis, which is linked to: the characteristics of the artefact (its 
potentials and constraints) and those of the subject (its knowledge and former work 
habits) (Verillion & Rabardel, 1995). Therefore the instrument does not exist in itself, 
an object becomes an instrument when the subject has been able to appropriate the 
artefact for himself/herself and has integrated it with his/her activity. At different 
moments different instruments can exist even if the artefact used is the same and it 
may happen that an artefact is never transformed into an instrument. 
The Cabri of Carla: A conflict is generated 

This section shows how the instrument-Cabri a student constructs is not appropriate 
for the situation at stake. Carla and Alessandra are 15-year-old students solving the 
Varignon’s problem61. They have a weak mathematical background and only used 
Cabri twice before this problem. After having formulated the conjecture ‘if ABCD is 
a square then HKLM is a square’, they prove it correctly on paper. Afterwards, they 
go back to Cabri to ‘check’ their proof, but the Cabri figure does not show what they 
have just proven. So their conclusion is that “it’s all wrong”. 

 
 
Figure 5 (on paper) 

 
Figure 6 
 

 

                                           
61 Varignon’s problem: Draw any quadrilateral ABCD. Draw the midpoints L, M, N, P of the four 
sides. Which properties does the quadrilateral LMNP have? Which particular configurations does 
LMNP assume? Which hypotheses on the quadrilateral ABCD are needed in order for LMNP to 
assume those particular configurations? 
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215 Carla: all this stuff…these…they are congruent (the 
halves of the sides of ABCD - Erreur ! Source 
du renvoi introuvable.). [Then Alessandra 
writes down the thesis: LM equals MN, equals 
NP, equals PL. Meanwhile Carla uses a ruler to 
measure the sides of LMNP]. so PL equals MN. 
The same for …PDN triangle and LBM triangle 
 PN equals LM…Should I do a cross 
comparison? PDN triangle and PAL triangle  
PN equals PL. What’s missing? These two are 
done, these two are done…. […] They all have 
equal angles. So it is a square! Ok! […] 

225 Carla: the problem …is that this is not a square (ABCD) 
[…] look… no…(Erreur ! Source du renvoi 
introuvable.) Because if you say that this equals 
this (PD and DN) and you say they have an equal 
angle (D) and then this equals this (PN and LM) 
and this and this (PL and MN)…then this 
becomes a square (LNMP), but we’ve just seen 
that it is not a square. So it’s all wrong! 

228 Teacher: why? What puzzles you? 
227 Carla: because…if this is the midpoint (she points at P) 

then it divides this side in two equal parts (she 
points at AD and AP and PD) so it should be: if it 
is a square, the quadrilateral inside is a square 
too. Why the figure doesn't show that? 

228 Teacher: What do you trust more, the figure or your proof? 
 
In this episode, a conflict between a theoretical result (proof) and the empirical 
answer given by Cabri (the figure does not look like a square) arises. This happens 
because the students try to validate their proof in the spatio-graphical field (Laborde, 
2004; Olivero, 2002). This would require looking at the figure from another point of 
view, not only empirical, as it may happen at the beginning of the exploration 
process, but also theoretical. When validating the proof the pupils ‘read’ the figure at 
an empirical level, they 'read' the properties of LMNP from the measurements: it has 
not equal sides therefore it cannot be a square. The students do not consider that their 
hypothesis is ABCD square while the Cabri figure is not a square because the angles 
are not right angles. Instead of 'reading' the Cabri figures, they should have looked at 
them from a theoretical point of view, according to which ABCD and LMNP are both 
'approximations' of squares. The proof would have then been validated. 
If we look at this episode in terms of the research problem highlighted above and in 
the context of the instrumental framework, we can see that the Cabri instrument they 
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construct has the following characteristics: the Cabri feedback is interpreted in a 
visual-perceptual-numerical way and the students do not show a theoretical control 
over Cabri62. The students take on board the software to the point that the answer 
they see on the screen is believed to be true even if it contradicts what they found 
without the software, by proving and using geometric properties of the figure. This 
particular instrument in the context of this problem provokes a conflict. 
From this example we can see how the interaction with Cabri in the context of open 
geometry problems needs to be mediated by the use of the theory that allows a 
control over the Cabri spatio-graphical field. Also the intervention of the teacher 
becomes crucial to solve possible conflicts between what the software does/shows 
and the mathematical theory and to mediate the construction of an appropriate 
instrument (228). 
 

Students’ constructions of Cabri: the role of the cabri/ mathematics experience 

The two examples discussed in this paper illustrate how the process of construction of 
a particular Cabri instrument affects the proving process. From the analysis of the 
case studies that formed the research Olivero (2002), a pattern emerged in relation to 
what sort of Cabri instrument was constructed in the context of the problems used in 
the study63. An instrument is constructed in order to solve the given task, which 
involves the construction of conjectures and proofs. Can we characterise the type of 
instrument that the students construct and identify what this depends on? The 
research showed that what play a role in the process of construction of the instrument 
is the mathematical theory and the use of Cabri, which evolve together throughout the 
proving process. 
It was observed that students with considerable Cabri experience and average 
mathematical background seem to manage better the interaction with Cabri, showing 
a wide range of dragging modalities and a successful proving process. They generally 
do not use paper. They are able to link the spatio-graphical and theoretical field in a 
productive way, which leads to the production of many conjectures and proofs. In this 
case, the artefact Cabri is transformed by the students into an instrument that is 
appropriate to deal with the situation they are presented with. There is a theoretical 
control over Cabri, which is used as a discovery tool within processes of 
conjecturing, and is then re-interpreted and used as a validation tool or support for 
thinking within processes related to the actual construction of proofs. This is the 
result of both mathematical and Cabri long term experience, which allow the students 
to transform Cabri into an internally oriented tool (in the sense of Vygotsky (1978)). 
Some students falling in this category often talk about dragging and the way they are 

                                           
62 For a detailed analysis of this episode see Olivero (2002). 
63 Open problems (Arsac, Germain, & Mante, 1988) requiring conjecturing and proving in 
geometry. 
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using it, there is a control over what they are doing in Cabri and they understand well 
what Cabri can do and show. 
A second case is when students have with very little Cabri experience but have a 
strong mathematical background: in this case they do not fully exploit the 
possibilities offered by the software. In general they show more controlled 
exploration in Cabri. It seems that the artefact Cabri is never transformed into an 
instrument for these students. It remains an artefact which is used occasionally but is 
not really taken on board by the students. The students prefer to use other tools (as for 
example paper and pencil) they are more used to and show a successful production of 
conjectures and proofs. Given their mathematical strength, it seems that these 
students are less eager to experiment with new tools they are not familiar with. This 
behaviour can be observed with ‘experts’ at different levels; Cabri offers possibilities 
of exploring and opening up spaces that the ‘expert’ does not necessarily need. 
Finally, students with very little Cabri experience and weak mathematical 
background, like Carla and Alessandra, usually experiment a lot with Cabri but do 
not always use it successfully. Conflicts may arise between results produced in the 
spatio-graphical field and possible theoretical explanations, and the focusing process 
may take a wrong direction, as shown in the case of Carla above. In this case, the 
process of instrumental genesis develops through different steps and the intervention 
of the teacher is needed in order to direct students towards the construction of the 
appropriate instrument which allows the evolution of the focusing process in the 
construction of conjectures and proofs. The artefact Cabri is first turned into an 
instrument based on a scheme of use that relies on a visual-perceptual-numerical 
interpretation of the software's feedback. This is not the instrument which serves to 
accomplish the goal of the problem situations. A new instrument needs to be 
constructed by the students, based on a theoretical way of 'reading' the Cabri figures. 
The role of the teacher is crucial in developing this new scheme of use and provoking 
students to see the same figure from a different point of view which leads them to 
conjecturing and finally proving. 
 
Conclusions and Implications 

To conclude, this paper shows how, given the same tool (dynamic geometry 
software) and the same activity (proving open problems), students develop different 
proving processes, both in terms of the way they interact with the software and in 
terms of the conjectures and proofs they produce. The instrumental approach explains 
this through the fact that students are constructing different instruments by 
transforming the same artefact (Cabri). The mathematics and Cabri experience affect 
and influence the instrumental genesis. Understanding the different instruments and 
how they are constructed is important because the construction of the instruments 
affects the development of the proving process in terms of production of conjectures 
and proofs. Further research will focus on a detailed analysis of the development of 
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the schemes of use related to the particular elements of dynamic geometry software, 
as for example dragging and measurements. 
The fact that students construct different instruments shows that the integration of 
dynamic geometry in the classroom practice is not a straightforward process but 
requires a careful analysis. A key challenge for the integration of technology into 
classrooms and curricula is to understand and to devise ways to foster the process of 
instrumental genesis towards the construction of the appropriate instrument for a 
given task. The role of the teacher emerges as important, showing that dynamic 
geometry per se does not guarantee a successful proving process that manages well 
the key relationship between the spatio-graphical field and the theoretical field. The 
teacher constructs different instruments too (Lins, 2003; Ruthven, 2005), which 
influence the instrumental genesis the students develop and their appropriation of the 
software. The teacher should act in ‘transforming’ the tool used by the students into a 
“semiotic mediator” (Mariotti, 2002) in the proving process so that a process of 
internalisation of the tool itself takes place and the artefact is then transformed into an 
appropriate instrument for the situation at stake. 
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An important question in considering the introduction of new technologies in 
mathematics curricula is that of their effectiveness in enhancing (or damaging) the 
real capabilities of students. To answer this question the paper sketches a theoretical 
framework, which frames the new technologies for mathematics as representational 
infrastructures: as such, they are analysed both as cultural semiotic systems and as 
cognitive energizers. The two concepts allow defining suitable adequacy criteria for 
testing the new technologies in the classroom. A teaching-learning environment 
integrated with technology is described as a concrete realisation of a technological-
oriented Italian curriculum. An example of how learning can happen in this 
environment is described and a few final comments are drawn with respect to some 
questions asked in the Discussion Document of ICMI Study 17.  
Introduction 
The focus of this paper is on the theme 4 of the Discussion Document. To do that we 
introduce a theoretical framework suitable to test how the environments integrating 
digital technologies are adequate for the effectiveness of maths learning (§1). Then 
we exemplify this definition illustrating a concrete learning-teaching environment 
where the learning experiences take advantage of the affordances supported by the 
new technologies (§§ 3, 4). The environment is developed within a concrete 
technological integrated Italian curriculum, which is sketched in advance (§ 2). In the 
end (§ 5) we discuss how our theoretical framework and the methodologies 
illustrated in the examples are useful in understanding the impact upon the 
teaching/learning of mathematics.  
Theoretical Framework  
The introduction of Information and Communication Technologies (ICT in brief) in 
mathematics curricula has been stressed and encouraged in these last years. However 
the benefits from such an introduction are neither necessary nor automatic; the matter 
must be considered carefully, looking at its many aspects and possible negative 
effects. In fact, as shown in Artigue et al. (2001), much of the theoretical and 
empirical research dealing with the use of ICT in mathematics education is 
prevalently concerned with the added-value component provided by the technology 
and rarely faces critically an approach to ICT based on an ecologically sustainable 
use. A major disadvantage consists in the fact that papers on ICT are more concerned 

                                           
64 Research program supported by MIUR and by the Università di Torino and the 
Università di Modena e Reggio Emilia: Significati, congetture, dimostrazioni: dalla 
ricerche di base in didattica della matematica alle implicazioni curricolari (PRIN n. 
2005019721). 
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in “learning how to use technical tools incorporated in the computer ... than [in] 
understanding the theory behind those tools” (ibid.), namely in what can be called a 
blind use of technology. This often corresponds to a-critical practices in the 
classrooms, which are limited to control the functioning of the tool, which is 
“insufficient for a successful mathematics outcome” (Thomas & Hong, 2004). 

What is needed is an aware use of technology, which means to understand if, how 
and when the technological artefacts can mediate/support/carve the construction of 
the student’s mathematical knowledge in the classroom. To do that, one must 
consider ICT’s in a wider setting, namely to analyse them from a multiple 
perspectives: that is, from a didactic point of view (e.g. considering the role of the 
teacher, of social interactions induced by the used technology, and so on); from a 
cognitive point of view (e.g. considering how technology changes the mental 
structures of the learners);from a cultural point of view (e.g. considering the 
framework of rationality towards which the use of technologies may push the 
student). An interesting analysis in this direction has been developed by Kaput et al. 
(2002), who introduced the notion of representational infrastructures (= RI): 

The appearance of new computational forms and literacies is pervading the social 
and economic lives of individuals and nations alike.…The real changes are not 
technical, they are cultural. Understanding them… is a question of the social 
relations among people, not among things. The notational systems we use to 
present and re-present our thoughts to ourselves and to others, to create and 
communicate records across space and time, and to support reasoning and 
computation constitute a central part of any civilization’s infrastructure. As with 
infrastructure in general, it functions best when it is taken for granted, invisible, 
when it simply “works”. 

The challenge today is how to design learnable systems within suitable and up-to-
date representational infrastructures. Roughly speaking, the major point consists in 
seeing how the ICT involved in a system fit within RI according to the following two 
criteria: a) as Cultural Semiotic Systemsb) as Intrinsic Cognitive Energizers. Cultural 
semiotic systems (Radford, 2003) are those systems which make available various 
sources for meaning-making through specific social meaningful practices; such 
practices are not (only) to be considered within the strictly school environment but 
within the larger environment of the whole society, embedded in the stream of its 
history. For example, Kaput & Schorr (2002) claim that the development of algebra 
in the history of mathematics was made possible by an entirely new mode of thought 
“characterized by the use of an operant symbolism, that is, a symbolism that not only 
abbreviates words but represents the workings of the combinatory operations, or, in 
other words, a symbolism with which one operates”.  

Intrinsic Cognitive Energizers are here defined as systems which make available 
varied sources for meaning-making through specific cognitive meaningful practices; 
such practices do enter intrinsically in positive cognitive resonance with the subjects, 
because of cultural and biological reasons. Examples are given by the quick and 
mainly visual interaction with the information provided on the computer screen in 
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computer games and in access to all kinds of information provided by the internet 
system.  

In the next two paragraphs we shall illustrate this framework introducing a 
concrete teaching-learning environment developed within a technological integrated 
curriculum of mathematics. We’ll sketch the latter in next paragraph and discuss the 
former in the successive § 3.  
An example of technological integrated curriculum: the Umi65 proposal and the 
mathematics laboratory 
Modern society requires massive use of mathematical knowledge and skills. A 
significant act with this respect is the UNESCO resolution in 1997, that underlines 
how “mathematics education has a key role, in particular at the level of primary and 
secondary school, in the comprehension of mathematical concepts and in the 
development of rational thinking” (http://www.unesco.org/science/physics.htm). 

The UMI proposal of mathematical curricular innovation is inspired by the 
UNESCO resolution and, in particular, take into account both the instrumental and 
the cultural functions of mathematics. The essential core of UMI curriculum provides 
a foundation for pupils’ mathematical competencies through 4 content areas 
(numbers and algorithms; space and shapes; relations and functions; data handling 
and previsions) and 3 processes areas (argumentation, conjecturing, proving; 
measuring; solving and posing problems). The 7 areas are essentially the same for 
the whole pre-university school from 6 to 19 years. The teacher is supposed to tackle 
these themes in an integrated manner, trying to connect them to other topics and to 
other subject disciplines. The UMI curriculum (66) contains also some reflections on 
the Mathematics Laboratory that are very important for the scope of this paper. In 
fact, the Mathematics Laboratory is conceived as a teaching-learning environment 
based on the use of instruments and aimed at the construction of mathematical 
meanings. It is not intended as a physical place other than the classroom, but as a 
structured set of activities with the goal of building the meaning of mathematical 
objects. As such, it involves people (students and teachers), structures (classroom, 
instruments, organization of space and time) and ideas (plans for didactical activities, 
experiments). In this sense, it passes the two adequacy criteria, stated in § 1. This is 
shown also by a metaphor introduced in the UMI document, where the Mathematics 
Laboratory is compared to what happened in the Bottega d’Arte of Renaissance 
artists, where the novices learned through a cognitive apprenticeship, namely by 
doing and watching what was done by experts, communicating with one another and 
with the experts, who pointed out the cognitive difficulties that the newcomers would 
encounter. The construction of meanings within the Mathematics Laboratory is 
strictly linked to the instruments used when carrying out the given activities and to 
the interactions among the participants in the activities (Bartolini et al., 2004). It is 
important to remember that tools are the result of a cultural evolution: they have been 
                                           
65 Unione Matematica Italiana (Association of mathematicians and mathematics Italian teachers) 
66 The curriculum is available at: http://www.dm.unibo.it/umi/italiano/Didattica/ICME10.pdf  
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produced with specific aims and, as RI, represent ideas in a culturally shared and 
technologically up to date way. This has important didactical implications: first of 
all, meanings do not live only in the tools and cannot emerge purely from the 
interaction of the pupils with the tools. Meanings are rooted in the aims for which the 
tools are used as culturally shared artefacts, and in the strategies related to the use of 
those tools that are elaborated in the course of the activities, which make palpable 
their cultural content. Moreover, the appropriation of the meanings requires 
individual reflection on the objects of study and the proposed activities. The 
construction of meaning is strictly linked to the communication and sharing of 
knowledge in the classroom, through collaborative or cooperative group work and 
through the mathematical discussion orchestrated by the teacher.  
An example of a technological integrated teaching-learning environment 
The UMI document has also many examples of teaching activities; however it does 
not contain indications on specific didactical paths that suggest how to develop its 
contents. How its curricular indications can be transformed into structured and 
concrete didactical paths in the classroom is an affair that has been left to the schools 
and to the teachers, in accordance with the Italian curricular tradition. For this reason 
a group of upper secondary school teachers has designed a didactical plan from the 
curricular indications of the UMI proposals and according to the educational 
framework illustrated in §1. The result has been a teaching-learning environment, 
where the ICT are integrated as RI, called Mathematics in the Web (indicated as 
MW-project in the following). 

The main features of this environment are sketched in the following points:  
a) using ICT’s to design, to build and to realize mathematical activities, which 

make sense (attività sensate in Italian); the Italian word is used with three different 
meanings: reasonable (that is attentive to the specific possibilities and constraints of 
the class); linked to the natural abilities and particularly to perception; ruled by the 
intellect and specifically by a theory (the last two meanings were used by G. Galilei 
to feature what he called sensate esperienze);  

b) using a long-term didactics (contrasted to short term educational projects), 
with particular attention to the construction of the meaning of the mathematical 
concepts and to the development of a critical thought in the students, considered 
essential for citizens’ awareness in nowadays society; 

c) engaging students in explorations, building, scaffolding, communicating 
activities, so that that the teacher can have information not only about their products 
but also about their thinking processes; 

d) gradually introducing the students to theoretical knowledge (different from the 
factual one), where such questions like “why does it work?” make sense and where 
the answers give reason not only for links among related facts but also in terms of 
logical consequence between the phenomena that one is trying to explain and the 
statements that are the foundations of the theory within which the facts are framed. 

As far as the specific goals of the project are concerned, there are three main 
conceptual areas, which are developed according to the UMI curriculum:  
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(i) beginning probabilistic thinking; (ii) beginning the study of changing 
quantities: specifically modelling activities of phenomena that evolve and change in 
time, in order to describe them and to foresee their evolution; (iii) fostering students 
spatial intuition in all activities where they use exploring, observing, finding 
abilities.  

We shall make some comments only on point (ii), which is particularly akin to the 
topics discussed in this paper. These activities concern the context of change and of 
movement, within the core area Relations and functions in UMI curriculum and 
approach some of the basic concepts of Calculus: from functions as modelling tools 
for phenomena of changing quantities to derivatives and integrals. The project uses 
systematically a variety of different ICT devices which incorporate suitable different 
aspects of change & motion phenomena (e.g. motion detectors connected to 
computers). As widely discussed in Kaput et al. (2002) such devices are genuine new 
representational infrastructures, which can produce a positive cognitive resonance in 
pupils and support their learning. There are many projects in the world that are 
developed according to this philosophy, e.g. Simcalc, Playground, Data Capture, 
WebLabs1project. The use of ITC for the mathematics of change is a good example 
of a teaching design which fits very well the adequacy criteria a) and b) stated in §1. 

Essentially the concept of function is approached within a very powerful RI, 
where cultural and cognitive aspects are in deep resonance. 

Specifically, the MW-project is based on some ideas by D. Tall on the approach 
to Calculus, which are widely sympathetic to the general philosophy discussed 
previously. In fact the approach to the main concepts of Calculus is built up starting 
from the three following fundamental cognitive roots (Tall, 2000): the notion of local 
straightness as a cognitive root for differentiation; the idea of a graph that “pulls flat” 
when it is stretched more horizontally than vertically for the mathematical concept of 
punctual continuity; the notion of area under a graph of a continuous function and the 
graph that “pulls flat”, for the relationships between integration and differentiation. 

The project develops such concepts using the software TI-InterActive!, which 
works as a generic organizer, in the sense of Tall (Tall, 2000). Such a software is an 
interesting example of an ICT, which fulfils the adequacy criteria of §1. In fact, it 
collects the functions of different products into a unique environment: a numerical, 
graphical and symbolic calculator; a word processor; a spreadsheet; the possibility of 
importing data from different environments, specifically from graphic-symbolic 
calculators and from probe devices that get measures of physical quantities; a 
browser to navigate in the web and to interface with other environments and software 
(in § 4 we shall show an example where the students use the software Graphic 
Calculus). The project uses TI-InterActive! to design work-sheets in its teaching-
learning environment for exploring activities that foster the production of conjectures 
by students, as well as their validation. In all this work the activity of the teacher is 
essential to coach all the different processes. Successively, the teacher supports 
students in structuring and scaffolding the learnt concepts within a theory. In the end 
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the work-sheets can mediate part of the theory, which organizes and systematizes the 
learnt concepts and the algorithms in a coherent framework.  
An example of a teaching experiment 
To give an idea of the type of learning that happens in such an environment, we shall 
present some excerpts from the protocols of students who are approaching the 
concept of the derivative dy/dx as the limit of the rate of change y/x. The excerpts 
illustrate in an emblematic way how the interaction with Graphic Calculus, suitably 
coached by the teacher, can support conceptualisation processes in pupils. In the 
work-sheet, which is built with TI-InterActive!, the students are required to explore 
Gradient, a modulus of Graphic Calculus and, successively to write their results in 
the TI-InterActive! page. The space does not allow to enter into details and we shall 
limit ourselves to some spots. The students are in the 11th grade of a scientifically 
oriented school, participate to the MW-project and are introduced to the fundamental 
concepts of Calculus since the beginning of high school (9th grade). They are used to 
work in small groups and to participate to collective discussions orchestrated by the 
teacher. As said above, they are also accustomed to use technological devices, e.g. 
sensors to investigate motion experiments. In the example, they must study the graph 
of the function f(x) = 0,5 x3 - 5x2 + 3. As shown in , the software generates: the 
graph of the function; its tangent, which moves dynamically along the graph, while a 
point traces it; the graph of the slope value of the tangent, while it is moving. 

The figure shows some emblematic steps in the genesis of the rate of change 
concept. It is precisely the interaction with 
the software to generate in the students the 
first germs of the relationships between the 
rate of change and the slope of the tangent. 
In fact they have produced the graph of a 
secant to the graph of the function, which 
joins couples of points on the graph whose abscissas differ for a constant value x, 
determined by the students themselves. They fix successively x equals to 0.1, 0.01, 
0.001, and so on, so that the secant becomes a quasi-tangent (Fig. 1). It is interesting 
to observe in the pictures of Fig.2 how the gestures of the student (more than his 
words) show the way he is acquiring the rate of change notion.  
Stud1: This straight line must join [Fig 1a], ok, the X interval...it is [always?] the same [Fig 2b],   
Teach.: The X interval is the same; delta X [x] is fixed  
Stud1: Delta…eh, indeed, however there are some points where to explain it, one can say that this 
straight line must join two points on the Y axis, which are farther each other hence it is steeper 
towards... [Fig 2c] 
Stud1: Let us say from here, when, here, when however it must join two points, which are farther, 
hence there is less distance [Fig 2d] [...]  
Teach.: is it decreasing? [Fig 2e] [...] 
Stud1: They are less and less far; in fact we can say that the slope is going towards zero degrees.  
Teach.: Uh, uh 
Stud1: Let us say so 
Stud2: Ok,  y over x at a certain point here it reaches points, ... 
Stud1: The points are less and less far [Fig 2f] [...] 



 

 449 

Teach.: What does this object represent, when h represents this distance, this small interval? ... 
Stud3: No, It is neither a tangent, it is a ... secant...the more I make this small, when I have h very 
small, then it represents the slope of the tangent in that point, exactly in that point and hence... [...] 
Stud2: It is something, which is useful to determine the slope in X; since we cannot do it directly; 
that is we need the X + h, which when multiplied by a certain number of things , you see it through 
computations, then it goes to zero; so we can eliminate it and we have ... 
It is a dynamical idea that contains: the limit process with x that becomes smaller and smaller 
(Fig. 2 a, b), the relationship between the slope and the rate of change (Fig. 2c); the relationship 
between the x (here constant) and they (Fig. 2 d, f).  

The data of our teaching experiment, with all their limits, confirm that this 
approach to ICT is an useful research tool to understand the ways in which 
technological artefacts can support the construction of the student’s mathematical 
knowledge. In fact, the analysis of the cultural and cognitive ingredients of the ICT 
used in the classroom allows to consider the added-value component provided by the 
technology not limited to its purely technical features. In particular, the analysis of 
ICT according the two dimensions (cultural and cognitive) stresses students’ learning 
that happens in such an environment: a rich interplay between the perceptuo-motor 
and the symbolic-reconstructive learning, as discussed in Arzarello et al. (2005).  
Some conclusions 
Our example and the whole MW-project illustrate how the mathematical content and 
the methodological issues of a curriculum must take into account suitably the rich 
resources made available by RI. It is the same concept of mathematical literacy to 
change within such new technologically integrated environments. A major goal of 
today math education consists in contributing, together with all other subject 
disciplines, to the cultural development of citizens, in order to enable them to take 
part in the social life with awareness and a critical eye. The competencies required 
for a citizen, to which mathematics education can contribute, include for example: 
communicating information appropriately, perceiving and imagining, solving and 
posing problems, planning and constructing models of real situations, making 
choices in conditions of uncertainty. These goals are much more ambitious than the 
old ones, like making computations and remembering a corpus of knowledge, which 
was supposed essential for a mathematical culture. The new literacy requires a strong 
mathematical experience and the habit of working with mathematical objects and 
within mathematical environments integrated with the new ICT. As such, ICT are 
specific for mathematics but share a lot of common features with other RI.  

The main design principles according to which the new ICT are to be articulated, 
should satisfy a twofold principle. From the one side, they should make available rich 
and multimodal experiences to approach mathematical conceptualisation within a 
rich and meaningful RI. From the other side, the experiences made in such 
environments should be ‘easier’ and more motivating for the students because of 
cultural and cognitive reasons. In fact, concepts should be tackled starting from their 
cognitive roots and the environment should represent them in a powerful dynamic 
and interactive way, so that it can support and enhance a perceptuo-motor approach 
to them, namely an approach that involves massively action and perception and 
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produces learning based on doing, touching, moving and seeing (like in the excerpt 
of our example). But the ultimate rationale of any ICT remains the teacher: it 
depends heavily upon her/his teaching project if the students will be satisfied, 
provided they know simply what to do or how to do something, or on the contrary if 
they will ask themselves also why things they have found or they are using are 
effectively so.  
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As the call for papers of this study expressed, since 1992 there have been 

substantive developments in digital technologies, both in terms of hardware and 
software. However, the networked use of the Internet, empowering the interactions 
among people and contents, states the most significant difference between the first 
ICMI study and this one.  

The Web is only a medium of delivering learning and instruction that has the 
potential to support the creation of significant learning environments providing 
opportunities for communication, collaboration, and learner-centered learning. 
However it is necessary to change the instructional paradigm to match the 
requirements of the information age. A shift is required from a focus on presenting 
materials to a focus on making sure that learners’ needs are met, from passive to 
active learning, and from instructor-directed to learner-directed (or jointly directed) 
learning. Teaching online, faculty have to deal with learners who interact in a 
completely different way and all have to reflect on their learning assumptions in 
order to understand their new roles.  

The change in the instructional paradigm that teaching online requires is a 
challenge for all disciples, although math has additional difficulties due to the 
intensive interactions with content that it necessary to establish in order to produce 
the learning process. 

Online math teaching requires the design of interactive material that could be 
very expensive in time and money if each teacher would design completely a course. 
However this can be faced chunking the course content in learning objects and 
sharing them. A learning/knowledge object is the smallest 'chunk' of instruction or 
information that can stand alone and still have meaning to a learner. 

Currently the Web is plenty of math knowledge objects: The Mathlets. They 
are the equivalent of a good example that can be explored by learners in an 
interactive way. Creating object libraries, different learning programs can share the 
same objects using them repeatedly, even for different purposes, reducing 
redundancy, lowering costs, and enabling the customization of learning because the 
configuration of the objects can be dependent on the needs of learners. E-learning 
solutions based in objects can be quickly reconfigured to meet changes in user's 
needs. The same knowledge object can be used (and reused) to build different 
learning solutions associated to different learning goals and instructional strategies. 
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The algorithmic idea has been a kind of necessary mathematics quality for modern 
people in this information society. In China the algorithm was represented fully as 
one of the new mathematics contents in the secondary level for the first time when 
The Standards of Mathematics Curriculum for the Senior High School was 
promulgated in 2003, so the research about the teaching of algorithm undoubtedly 
has its practical implications for mathematics education. In this paper, with the 
conceptual framework of The Mathematics Task Framework as the research tool, an 
algorithmic teaching case based on LOGO software was introduced in detail, and 
data including observations, interviews and worksheets were collected, then the case 
was analyzed, and the results showed that the teaching of algorithm is feasible and 
effective in the LOGO environment. In the last, some beneficial implications about 
the instructional design of algorithm were discussed. 

 
Introduction 

An algorithm refers to the step-by-step systematic procedure used to accomplish an 
operation, which characterized as finiteness, definiteness, input, output, effectiveness 
and named by the ninth-century Arabian mathematician Mohammed al-Khowarizmi. 
Due to the way of mechanical operation, the algorithm hasn’t been emphasized much 
in the long history of mathematics education (Peng, 2004).  
With the rapid development of modern information technology, the algorithm begins 
to play a fundamental role in the development of science, technology and society, and 
even penetrates into every aspects of life. Being considered as a kind of necessary 
mathematics quality for modern people, the algorithmic idea is gradually emphasized 
in educational circles, which arouses the interests of the related research from 
mathematics education. The initial work can trace back to 1978, in which Engel 
outlined the comprehensive topics of the mathematics curriculum at school from an 
algorithmic standpoint (pp.255, 274). Similarly, Ziegenbalg argued that the concept 
of algorithm belongs to one of those fundamental concepts of mathematics (pp. 239, 
241). 
At present, as the process of problem solving and mathematical application in the 
authentic life are highlighted in modern mathematics teaching reform, the learning 
and understanding of the algorithmic process is especially emphasized. It’s promoted 
about mathematics teaching reform in almost every country that the traditional way 
of teaching algorithm should be changed to teach students to design their own 
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algorithms and to solve realistic problems through using the algorithmic ideas, 
furthermore more, students should decide their own approaches and steps (Xu, 2001).  
Although algorithmization is a distinctive feature of mathematics in ancient China 
(Ma et al, 1991), the term algorithm hasn’t been represented in the mathematical 
textbooks for schools until 2003, when The Standards of Mathematics Curriculum for 
the Senior High School was promulgated in China and the algorithm was represented 
fully as one of the new contents for the first time. From it we can understand that the 
research about algorithm is a new issue and the reason why there is not much work in 
this field in China, except the research from the angles of cognitive psychology (Xu, 
2003), curricular value (Li, 2004; Liu, 2003) and the significance of learning 
algorithm (Li, 2004 ). In particular, the problems about which undoubtedly should 
have the practical implications for mathematics education, such as how to design the 
mathematics teaching according to students’ real level, especially, how to integrate 
the information technology into the algorithmic teaching, are topics worthy of 
research while still are scarce.  
In the following, an algorithmic teaching case in which the main classroom task is to 
draw a pentagram based on LOGO software will be introduced in detail, and data 
including observations, interviews and worksheets will also be collected, then in-
depth analysis will be shown with the conceptual framework of The Mathematics 
Task Framework as the research tool. In the last, some beneficial implications about 
the instructional design of algorithm will be discussed. 
 
Conceptual framework 

The framework that guided much of this study stems from work done in the 
QUASAR project67. Based partly in the ideas and research of Stein and her 
colleagues at QUASAR developed a framework that focuses on the cognitive demand 
of mathematical tasks and the various phases tasks pass through in their instructional 
use (Stein, Grover, & Henningsen, 1996; Stein and Smith, 1998). This framework is 
depicted in Figure 1. 
 

                                           
67 QUASAR (Quantitative Understanding: Amplifying Student Achievement and 
Reasoning) was a multi-year teacher capacity-building initiative sponsored by the 
Ford Foundation to change mathematics teaching practices at six middle schools 
ended in 1995. 
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Figure 1: Mathematical Tasks Framework 

 
In describing the framework, Stein, Grover, and Henningsen (1996) write: 
“Instructional tasks are seen as passing through three phases: first, as curricular 
materials; second, as set up by the teacher in the classroom; and third, as 
implemented by students during the lesson” (p. 460). Certain cognitive demands are 
inherent in the way that a mathematical task is written. For example, tasks that ask 
students to memorize a fact or to perform an algorithm rotely encourage a certain 
type of mathematical thinking. Tasks that ask students to look for patterns, 
generalize, make connections, or think conceptually encourage a different kind of 
thinking (Stein & Smith, 1998). 
In my research, the Mathematical Tasks Framework guides of my data collection, 
analysis, and reporting. It made sense to use this framework as a research tool 
because I was particularly interested in understanding how the students perform their 
classroom tasks pertaining to the ideas found in the Mathematical Tasks Framework. 
While organizing the teaching case, I was guided by my use of the Mathematical 
Tasks Framework in making decisions about what data to collect. These data could 
have been analyzed in a way that I was guided by my use of the Mathematical Tasks 
Framework in choosing “a coherent way of thinking about how to organize and 
interpret the data” (Eisenhart, 1991, p. 204). 
 
The mathematics teaching case 

Task: drawing a pentagram 

The content of drawing a pentagram is chosen from the colorful LOGO-figures 
world, a subsection of a learning textbook, LOGO experiment, as a help of new 
textbooks compiled according to The Standards of Mathematics Curriculum during 
Compulsory Education. What should be mentioned is that although the case is taken 
from junior high school, the results showed that it can realize the notion of The 
Standards of Mathematics Curriculum for the Senior High School, so it’s helpful not 
only for the instructional design of algorithm in senior high school, but also for how 
to develop algorithmic idea in junior high school. 
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The students have learned some basic geometry knowledge, and they can use some 
basic and simple LOGO orders to operate. Everyone has one computer in the well-
furnished computer laboratory, which is linked by local area network, through which 
students and teacher can communicate freely. 
 
Teaching process 

Stage 1 Review (about 3 minutes) 
The teacher guides students to review the LOGO orders, FD (FORWARD), BK 
(BACKWARD), RT (RIGHT), LT (LEFT), which will be used in this lesson, through 
the strategy of asking-answer way.  
 
Stage 2 Learning the new LOGO order (about 10 minutes) 
The students begin to learn the new order REPEAT, with the help of the teacher, 
through drawing the triangle, quadrangle and pentagon. In this stage, students can 
describe the complex recycling process and use the format:  
REPEAT 3 [FD 60 RT 120] 
REPEAT 4 [FD 60 RT 90] 
REPEAT 5 [FD 60 RT 72] 
 
Stage 3 Exploration of the experiment (about 27 minutes) 
The teacher shows a model of a pentagram and encourages students to draw it 
through computer. 
As we all know that pentagram is a very popular geometry figure, it can be seen 
everywhere, such as the Chinese National Flag. 
Many students are very excited when the teacher asks them to draw a pentagram, 
because they are familiar with it, and most of them have the experience of drawing a 
pentagram in a paper-pencil way. But in the face of computer based on LOGO, they 
feel out of place, for it’s difficult for them without considerable mathematics 
knowledge and the thinking way of precise expression. 
The angle is the core of solving the algorithmic problem. Based on the knowledge of 
measure of angle in the seventh grade, the teacher guides students to review the 
conception of supplementary angles and adjacent angles, then tells them the 
characteristics of the pentagram(for example, every angle is 36°) 
Students devote themselves to draw right now, and some who are good at computer 
can color the pentagrams. 
The students find the following approaches to draw pentagrams: 
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Figure 2 Regular pentagram 
 

Figure 3 Hollow pentagram 
 
After discussion with students about the meaning of the data 5, 60, 144, 25, 72, the 
teacher gives another approach of drawing. 
 

Figure 4 Solid pentagram 
 

Stage 4 Exploration and innovation (about 5 minutes) 
 
 

 

Fill in the blanks !    

REPEAT 5 [RT  FD 100 RT]  

RT 90                                  

REPEAT 5 [FD 100* LT 72] 

LT 90 

END    
Figure 5 Pentagon and pentagram 

 
This practice provides an approach through connecting the diagonal of the pentagon, 
especial and meaningful, which is a bridge of the pentagram and pentagon. It 
motivates students to further understand the algorithm of drawing a pentagram, and 
do prepare for the continuing learning of the pentagon in the future. 
 
Discussion and conclusion 

This lesson is designed from the aspect of how to explore algorithm and how to 
design various algorithm, aimed at developing and deepening students’ algorithmic 

Solid pentagram added by the teacher  
REPEAT 5 [FD 25 LT 18 BK 25 * 1.9  
        FD 25 * 1.9  RT 162 FD 25 LT 72 ] 

Hollow pentagram four algorithms  
REPEAT 5 [FD 25 RT 144 FD 25 LT 72] 
REPEAT 5 [FD 25 LT 144 FD 25 RT 72] 
REPEAT 5 [FD 25 RT 72 FD 25 LT 144] 
REPEAT 5 [FD 25 LT 72 FD 25 RT 144] 

Regular pentagram two algorithms  
REPEAT 5 [FD 60 RT 144] 
REPEAT 5 [FD 60 LT 144] 
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idea through the experience of the algorithmic diversity. We’d like to analysis the 
obtained goal from the exploration of algorithm, algorithmic diversity and mistakes 
during the study of algorithm. 
Students’ exploration of algorithm 
In this case, taking advantage of the characteristics of LOGO language, such as 
intuitive and easy-operate, the teacher guided students to explore the way of solving 
problem during the operation, to develop their own algorithmic ideas step by step and 
foster their ability to solve realistic problems (drawing a pentagram from many 
aspects) by using the algorithmic ideas. 
Students can experience the algorithmic characteristics of finiteness, definiteness, 
input, output and effectiveness during drawing the pentagram, and deeply impressed 
with the input language of FD … and RT …. recycling language of REPEAT … 
The following are their feeling and thoughts about exploration of the algorithm, 
which we got from the observation and interview in the classroom. 
It’s easier to understand the approaches of drawing a pentagram through computer, 
when we can think carefully as well as looking at the turtle moving (the order is 
operated by a turtle). 
It’s interesting to draw different colors and sizes of pentagrams (by using the order of 
color, students color red, yellow and blue for the pentagrams). 
Programming is not a difficult thing (students can summarize the step of drawing a 
pentagram as a program, and then put different numerical data into the parameter, 
thus making the pentagram variable in size. In fact, it has realized the transition from 
mathematics language to procedure language). 
The turtle can finish my demands well, for which I’m highly required that no 
mistakes would happen during the operation.  
What the above mentioned show that with the guiding of the teacher in the teaching 
of algorithm, it’s effective to arouse students’ enthusiasm and develop their 
algorithmic ideas, while letting students take active part in exploring algorithm by 
themselves. 
 

Students’ various algorithms 

There are six algorithms of drawing a pentagram developed by the students, which 
can be divided into two types of algorithms. According to the moving way of the 
turtle, the first type is based on the drawing through connecting the diagonal of the 
pentagram (there are two approaches, see figure 2), and the second type is based on 
the drawing through moving along the sides of the pentagram (there are four 
approaches, see figure 3). 
Other two students used this approach: [FD 60 RT 144 FD 60 RT 144 FD 60 RT 144 
FD 60 RT 144 FD 60 RT 144], which we call regular algorithm, for it don’t need the 
order of REPEAT, only but FD and RT. It seems like the ordinary paper-pencil way, 
which can be finished step by step. 
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From 55 students’ procedure records, we get 49.There are 18 students who used the 
first or second type of algorithm, and there are 4 students who used both (see Table 
1). 
 
 

Types of algorithm First Second First & Second Regular Wong 
Numbers of student 18 18 4 2 7 

 
Table 1: The types of the algorithms and the corresponding number of students 
 
According to our interview, the students who used the first or the second were 
affected by the order of REPEAT taught by the teacher, because it can simple the 
repeated process. There are only 2 students who used the regular algorithm, and we 
know that they didn’t catch the meaning of REPEAT, so they chose the way of step 
by step. 
These results indicate that:  
Teacher’s action has highly active or negative effects on students’ learning of 
algorithm; 
The algorithmic structure of pentagram in students’ mind and LOGO language can 
help students to express the algorithmic model; 
Students’ past mathematics knowledge and skills have effects on the subsequent 
learning of algorithm. The first type of algorithm is simpler in expression than the 
second and more difficult to get. While the results show the number in any of these 
two types are the same. It is recorded by the students that because of the transition of 
the ordinary paper-pencil drawing, they form the habit of connecting the vertex of 
pentagram to draw. As for the second, it is intuitional, although relatively complex in 
expression and easier to find for them. 
 

Students’ mistakes 

There are 7 students whose algorithms are wrong, of course, they didn’t get the 
pentagram on computer. There are some ordinary mistakes in their algorithms, for 
example, procedure of REPEAT 5 [FD 25 LT 144 FD 25 RT 72] is replaced by the 
procedure of REPEAT 5 [FD 25 RT 144 FD 25 LT 36]. The mistakes result from the 
failing to understand the mathematics basic knowledge. Some students know that 
every angle of the pentagram is 360 with the help of the teacher, so 1440 of the 
parameter of LT, rather than 360, which can be learned only though computing 
according to the theorem of the total of internal angles of a triangle. It shows that 
students haven’t deeply understood the relationship between the angles. Further 
more, the angle of LF or RT is also important, which easy to be mistaken without a 
logic and precise thinking way. 
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From the above analysis, we can conclude that the students have obtained the 
expected goals and the teaching of algorithm is feasible and effective in the LOGO 
environment. 
 

Implications for the instructional design  

In this section, we’ll look back some characteristics of the instructional design of 
algorithm in this case.  
 

Roles of the teacher and students 

The learning of algorithm is a kind of uncreative learning in the psychology. In this 
case, the teacher didn’t indoctrinate the existing algorithm, but let students try 
themselves to draw a pentagram to experience the initiative of the algorithm through 
their constructive learning in the LOGO environment, thus transiting the learning of 
algorithm into a kind of creative learning. It’s helpful to eliminating their fear and 
hate to mathematics and algorithm, also promote students to understand the 
constructive process of algorithm (P. Dowling & R. Noss, 1990). It’s more interesting 
if students can create an algorithm, then it means that he or she has not only 
understood the algorithm, but also has known how to apply the algorithm to ordinary 
life. 
So the role of the teacher is to create actively environment for students and to help 
them take part in exploring and constructing their own algorithm, rather than to teach 
the existing algorithm. Also, from the time of students’ participation, total to 32 
minutes, we can see that students are the dominant of the learning. 
 
Task-directed to arouse the motivation 

The motivation can arouse students’ enthusiasm for learning, provide the direction 
and goal of learning. In this case, an interesting and familiar problem (drawing a 
pentagram) was given, catching students right now, and then resulted in requirement 
of recognition in the algorithm learning during the operation, thus the mathematics 
knowledge need to be taught and learned naturally. In the LOGO environment, the 
teacher can choose much more realistic problems, by using the strategies of task-
directed to guide the students. 
 
Taking advantage of the LOGO network  

LOGO is such a good mathematical environment that it can help students toward 
more intuitive mathematical strategies rather than avoid analytic and it together, also 
it’s something of scaffold for the learning (C.Hoyles & R.Noss, 1992). Its good 
characteristics of friendly face, convenient language and simple operation, is easy to 
be learned and well liked by students. The most important is its open system that can 
allow students to create new orders, namely creating new algorithms. In the teaching 
of algorithm, we should make use of it. 
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On the other hand, everyone have a computer, which allows them to devote to the 
exploration of algorithm freely. Further more, through the monitoring system, the 
teacher can see everyone, and every student can ask for help from the teacher. 
Students can communicate their algorithms and cooperate with one another to share 
resources and make progress together. 
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Building up the notion of Dependence Relationship between Variables: A case 
study with 10 to 12-year old students working with Math Worlds68 

Elvia Perrusquía Máximo Teresa Rojano Ceballos 
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epmaximo@ilce.edu.mx trojano@cinvestav.mx 

This paper reports the results from a study with 10 to 12-year old students working 
on activities involving various functional representations (graphs, tables, and 
numerical relationships) in a motion phenomena simulation environment such Math 
Worlds. Results from the study suggest that pupils that have not been received formal 
instruction in algebra symbolism are able to evolve towards a better understanding 
of functional relationships, when working with a variety of representation systems. 
Duval’s registers theory was used for activity design and data analysis. This study is 
part of a broader project entitled Enseñanza de las Matemáticas con Tecnología 
(EMAT) (Teaching Mathematics with Technology), which was developed by the 
Mexican ministry of education at the end of the 90s (Rojano, T., 2003). 

Introduction 

At the end of the 90s, Mexico’s Secretariat of Public Education (SEP) together with 
the Latin American Institute of Educational Communication (ILCE) undertook the 
initiative of implementing an educational innovation and development project known 
as Teaching Physics and Mathematics with Technology (EFIT-EMAT). The 
principles listed below were the underpinnings of the project conception: a) Didactic 
principle through which classroom activities are designed following a 
phenomenological treatment of the concepts taught. b) Specialization principle 
through which tools and pieces of content software are chosen. The selection criteria 
were derived from the specific didactics of each subject (Physics and Mathematics). 
c) Cognitive principle through which tools are chosen that enable direct manipulation 
of mathematical objects and phenomenon models through executable representations. 
d) Empirical principle according to which tools proven in some educational system 
are chosen. e) Pedagogic principle through which ICT usage activities are designed in 
order for them to promote collaborative learning and interaction among students, as 
well as among teachers and students. f) Equity principle with which tools are chosen 
that enable secondary school students to have early access to powerful scientific and 
mathematical ideas.  
Specifically EMAT (Teaching Mathematics with Technology) is a model that 
contemplates use of a variety of technological pieces (specialized software and 
graphic calculators) each of which is very closely related to the specific didactics. In 
concrete terms usage of dynamic geometry software was included for topics of 
geometry; spreadsheets were included for teaching of algebra, arithmetic-algebraic 
                                           
68  Part of the contents of this study was presented at the Twenty-sixth Annual Meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education 
(PME-NA) held in Toronto, Ontario, Canada. 
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problem solving, and probabilities topics; graphic calculators were included for 
introduction of algebraic syntax and problem solving; simulation software and 
software to represent movement phenomena were included to teach mathematics of 
variation. This article reports on the findings of a pilot study on the activities 
designed for work with mathematics of variation. 
Background 

There has been recently a growing interest on children’s potential to learn algebra at 
early stages of their development. In some of these early algebra studies the 
possibility of teaching algebra to young students (7 to 8 year old) has been explored 
through problem solving activities that elicit the algebraic nature of arithmetic 
competency (Carraher et al, 1999 and 2000). Other approaches emphasize the role of 
young children drawings and representations in word problem solving processes as a 
basis to develop algebraic ideas (Dougherty and Zolliox, 2003). Smith and Davis 
(2001) say that the history of algebra may be used as a source of information about 
the possible difficulties faced by young students when they are introduced to 
algebraic thinking. L. Lee stresses out the idea of considering the relevant aspects of 
different methods used to teach algebra (as a language, a way of thinking, a tool, or 
generalized arithmetic) to encourage the learning of algebra (Lee, 2001). Every study, 
however, has reported the feasibility of introducing young students to the algebra 
domain either by using algebra symbolism or through other representations. The 
purpose of this study is to investigate the possibility of introducing fundamental 
algebraic ideas to students from elementary schools through the use of representation 
systems such as Cartesian graphics and numerical tables generated by a learning tool 
that includes a motion phenomena simulation environment. 
Theoretical Framework 

Theoretical references on representation devices are based on R. Duval (1999), who 
describes how semiotic registers provide an effective way to materialize knowledge 
and deal with mathematical objects. In this regard it is necessary to promote a kind of 
learning, where several representation devices are integrated and coordinated in such 
a way that the student does not mix up the mathematical object and its semiotic 
representation, and relates the mathematical object to several representations. R. 
Duval claimed that it is necessary to encourage three cognitive activities: 1) 
formation (create a representation to describe an object); 2) treatment (transform the 
representation into the device); and 3) conversion (transform the representation of a 
device into another). 
Our research takes these elements as a basis for the development of a didactic 
strategy to design learning activities, which enable students to approach up algebraic 
concepts such as functional variation through the cognitive activities of treatment, 
conversion, and formation. 
We must highlight the fact, however, that in certain situations students may or may 
not be aware of such cognitive activities; for example, when they create a functional 
table from position graphics (corresponding to a phenomenon of constant and 
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positive speed). This was possible because a software application (a simulator) was 
used as a mediation tool to create links between the students’ algebraic knowledge 
and cognitive processes. The idea was to introduce 10 to 12-year old students, who 
had never received formal education on algebra, into the notion of functional 
relationships through the use of the SimCalc Math Worlds computing environment.  
Math Worlds provides animated worlds, where animations move according to 
changes in graphics. Graphics are represented through rectangles meaning speed: The 
height of a rectangle means "how fast", and the width means "how long". Position, 
speed, and acceleration graphs are dynamically linked. If there is a change in speed, 
the corresponding changes in the position or acceleration graphs are instantly 
displayed. 
As for environmental usage, theoretical references are taken from J. Roschelle (1998) 
and J. Kaput (1998). Ideas such as functions, equations, and variables are used to 
promote the development of skills in the initiation of algebra. 
In this paper we discuss the results from the students’ analysis of position and speed 
graphics that help them gain a better understanding of dependence relationship 
between two variables, as well as to provide concepts such as “it goes faster” or “this 
is quicker” with a mathematical meaning. 
As other studies based on a functional approach to algebra (Kieran et al, 1996; 
Nemirovsky, 1966: Heid, 1966), our study used the computing environment to design 
modeling activities that allowed students to explore quantitative changes in variables, 
and analyze how these changes modify functional representations. 
Methodology 

•  12 activities were designed to encourage the three cognitive operations of 
formation, treatment and conversion among registers (Duval, R. 1998, 1999). 

•  Such activities are used to promote i) the use of more than one representation 
register: a) interpreting position graphs, b) building up tables and position 
graphs, and c) interpreting speed graphs; ii) the notion of constant speed 
(functional relationship); and iii) problem solving in a motion phenomena 
simulation environment. This paper is focused on aspects i) and ii).  

•  A database consisting of: a) a diagnosis questionnaire on basic notions of 
physics (speed), pre-algebraic operations, arithmetic, and reading and gathering 
data from tables and graphs; b) structured guided interviews (A. Brown et al, 
1998); c) students production from learning activities with Math Worlds (student 
records); d) videos from interviews; e) learning activities aimed to encourage the 
formation, treatment and conversion of registers to gain evidence on the students 
understanding of notions such as variable, functional relationship, speed, and 
others.  

•  The participants were 10 to 12-year old children from elementary schools, who 
had never received formal education on algebraic symbolic language, and were 
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selected from their answers to the diagnostic questionnaire. This paper reports 
on the results from the six-student group working with Math Worlds. 

Diagnosis Questionnaire Results 

Based on a diagnosis questionnaire, subjects were grouped in three levels, according 
to their arithmetic competency, register-handling abilities (data gathering from tables 
and graphs), and notion of constant speed. Levels I, II, and III vary from a substantial 
proficiency on arithmetic (Level I) to a limited competency (Level III). 
Based on this questionnaire, six students (3 from 5th grade and 3 from 6th grade) were 
chosen to participate in the study. They took part in 12 sessions, working with the 
computing environment on: a) the use of more than one representation system to 
interpret position graphs; build up position graphs and charts; interpret speed graphs; 
b) the notion of constant speed as a functional relationship; c) relating problems to 
motion phenomena.  
In the middle and at the end of each session sequence individual interviews were 
carried out with all six students to analyze the strategies they use to interpret different 
representations as they went on solving the proposed activities. This paper discusses 
the results related to a) and b). 
10-year old Students working with SimCalc. 

All three students required the use of simulations along the learning activities to 
verify their answers, complete tables or build up graphs. Only the Level I student 
(Erick) built up continuous graphs from the first activity, compared to the other two 
students, who did it in a discrete way, by running the simulation step-by-step or 
making operations to identify the next section on the graph. In addition, Level III 
student (Rodrigo) found out in the last two activities that he could build up the 
position graph continuously by knowing the total distance and duration of a path, as 
shown in the following table: 
The two students from levels II and III seemed to focus their attention on the use of 
graphs to calculate speed, while Erick showed at first some reluctance to use tables to 
identify speed when requested to do so, but once convinced, he worked on the table 
to identify the required information and calculate the answer. 
Toward the notion of speed (10-year old children) 

Level I (Erick).  

Math Worlds incorporates motion of various characters, such as frogs or lifts 
(according to the World chosen). From the first sessions he shows to deal with a 
notion of speed involving both variables, and providing explanations such as “the 
frog moves forward four meters every second, and the clown two meters.” After 
becoming familiar with the simulator, his explanations were “the frog moves forward 
twice as fast as the clown”, or “it moves three times faster than the green lift.” As his 
identification of the variables improves, his answers to the notion of speed include 
elements such as “frog 2 moves forward three meters per second, and frog 1 one and 
a half meter per second.” 
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In the middle of the activity sequence, Erick is requested to give a definition of speed. 
His answer, “speed is what it runs in one second,” could be considered as focusing 
his attention on one of the variables. At the end of the sequence he was requested 
again to provide a new explanation of speed. This time he uses a specific example, 
but after a few questions he comes out with a more general notion pointing out both 
variables:  
Er: It is... it moves forward one point five meters (the character’s speed in the 
simulation);  
E: And speed involves... what?;  
Er: Seconds and distance. 
Level II (Ana Karen)  

At the beginning of the session she provided explanations such as “The frog’s steps 
are four meters long,” or “The clown’s steps are two meters long.” After comparing 
the speed of some characters she expressed the following: “The truck goes faster, and 
the car slower.” After moving on through the activities, Ana managed to include a 
little more information: “The slower clown moves five meters, and the faster clown 
moves eight meters.” 
In the middle of the sequence her definition of speed is “the number of kilometers a 
car or anything else moves forward.” At this point she also perceived the possibility 
of using distance and time to calculate the speed from the information contained in 
the position graph. By the end of the sequence she employed a particular situation to 
explain the notion of speed, taking into consideration the time and distance variables, 
but on a particular example:  
E: How would you explain speed?;  
Ak: Speed is the distance and time a car travels;  
E: How do you read speed?;  
Ak: If we take meters and seconds, then it will be 81 meters per second.  
Level III (Rodrigo) 

His first explanations about motion took into account the physical features of 
characters, with definitions such as “The clown is small, and that is why his legs go 
slower,” or “The tires of the truck are bigger, and that is why it goes faster.” After 
completing the first activities he included in his explanations elements related to the 
characters movement, such as “the red one moves slow, and the green one moves 
fast,” until he finally takes into consideration both variables: “It advances one third 
every second,” or “the red one goes up two floors every second.”  
When first asked about his notion of speed, his answer was “every lift goes up a 
number of floors per second,” making use of an example to generate an explanation. 
Once the activities sequence was concluded, his notion of speed evolved to include 
both variables, distance and time, making it easier for him to calculate speeds from a 
position graph, but avoiding any oral explanation:  
Ro: Then we looked at the graph;  
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E: And what did we notice there?;  
Ro: The hours (he writes his answer: “We looked at the graphic, and paid attention to 
the hours and kms”);  
E: Ok. Now, how would you explain speed to your schoolmates?;  
Ro: I don’t remember (he could not provide an explanation). 
11 to 12-year old Students working with SimCalc. 

On both ends of the table, Level I student (Eduardo), and Level III student (Rafael) 
draw graphs step by step, and it was not until the last activities that they started on 
building up continuous graphs, using as reference the total distance and period. With 
this information they didn’t have to make any further calculations to identify every 
portion of the graph. On the other hand, Level II student (Clara) drew continuous 
graphs from the beginning, when she was asked to build up a register.  
As for the verification process, all three levels repeatedly used simulation to get data 
and match their results. In those situations where the environment didn’t provide 
directly the required information, they made calculations using pencil and paper, an 
electronic calculator or mentally. For the final activities the use of the simulator in all 
three cases was restricted to the analysis of situations rather than to getting 
information to give an answer.  
As for the preference on the kind of representations, only Clara (Level II) showed a 
clear disposition to use graphs rather than tables to get information. Eduardo and 
Rafael used indistinctively data from graphs and tables to make calculations, solve 
problems, and answer questions.  
Toward the notion of speed (11 and 12-year old children) 

Level I (Eduardo) 

From the beginning he took into consideration the two variables to build up the 
notion of speed, with answers such as “Because the frog went over more meters in a 
second than the clown,” or “Clown 1 goes six meters in one second, and clown 2 
goes eight meters.” These answers were consistent along the sequence. When he was 
asked to give a definition of speed, he said:  
E: How would you explain to your schoolmates what speed is?;  
Ed: Through distance and time. You can say that it represents how fast two people or 
two objects go.  
Together with the comments above, he recognizes the need to divide distance by time 
to calculate speed either from a table or a graph: “We can see how far did he go, and 
the time, and all that.” 
Level II (Clara) 

Her first explanations about the movement of characters indicate her focus on the 
physical conditions of the phenomena: “It runs more and gets first”, or “It walks 
slower”. After the third activity, she includes other elements such as distance and 
time: “The second frog, because it runs more meters per second.” 
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For her first explanation of speed, she uses a specific example: “The number of floors 
per second it climbs, the distance it travels per hour.” Once the sequence is complete, 
she takes into consideration the variables involved in her notion of speed, even if she 
requires a specific example:  
E: How would you explain to your schoolmates the concept of speed?;  
Cl: The distance traveled every second. 
We may consider her definition of speed after completing the sequence as an 
evolution from a very intuitive and inconsistent notion of speed at the beginning of 
the study.  
Level III (Rafael) 

At the beginning of the sessions, his explanations were: “it goes farther than the 
frog”, or “it goes two by two and is slower.” His answers indicate that he takes into 
consideration one variable. From the third activity, however, he includes in his 
explanations both variables as follows: “it goes only a few meters in many seconds,” 
and “the red one, because every second it climbs three floors.” 
His first definition of speed indicates the relationship between the distance and time 
variables: “the distance traveled in a period of time.” This may suggest that he is 
adjusting his notion of speed, since he also recognizes the need to identify distance 
and time in order to calculate speed:  
E: What elements should be taken into consideration to calculate speed?;  
Ra: Floors and seconds. 
In spite of recognizing both variables in the notion of speed, his defective use of the 
division produces false explanations, as the following:  
E: And now what did you do to calculate speed?;  
Ra: A division;  
E: What did you divide?;  
Ra: Hours and meters. 
This was a continuous obstacle throughout Rafael’s work, and it could not be 
overcome.  
Results 

After working with the activities designed for Math Worlds, the participants showed 
an improvement on their understanding of motion phenomena and on the dependence 
relationship between variables. There was, however, a differentiated use of the 
representational means available in the computing environment, according to 
children’s level of arithmetic competency (identified in the pre-questionnaire). In 
addition, it was observed that whereas some children during all the sessions required 
the simulation to analyze the dependence between variables, others were able to focus 
their analyses on mathematical representations (Cartesian graphs and function tables). 
These children in turn succeeded in building up a quantitative notion of constant 
speed. For example, in the final session Erick (11 years old) described his notion of 
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speed as “the frog moves forward four meters every second, and the clown two 
meters” (referring to the characters in the simulation environment). When he was 
asked about his conception of “speed”, he said: “Speed is what it runs in one second.” 
Final Comment 

Results from this study suggest that students at a pre-symbolic stage (pupils that have 
not received formal instruction in algebra symbolism) are able to evolve towards a 
better understanding of functional relationships, making use of a variety of 
representation systems (including simulations) to analyze different aspects of motion 
phenomena. Duval´s registers theory was not only used at the activity design stage, 
but also helped us to define an analysis framework that enables feasible explanations 
of the way children make use of representational systems when solving problems in a 
computing environment. 
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Despite enormous changes in technology over the past twenty years, and numerous 
changes in the UK curriculum, and elsewhere, the content of school mathematics 
remains very recognisably the same, notwithstanding dramatic changes in the 
world’s modus operandi and the need for citizens to deploy a far wider range of 
mathematical skills than before..  

We identify areas where changes in the curriculum could usefully reflect changing 
uses of mathematics and address some of the negative perceptions of mathematics as 
boring, irrelevant and inaccessible; and develop this in the context of our current 
work on reasoning from evidence. 

Reasoning from multivariate evidence is pervasive in political speeches and in the 
media, but is largely absent in UK schools. Currently, we do not prepare young 
people adequately to understand important social debates, decision-making under 
uncertainty in a business environment, nor to make informed decisions about their 
personal well-being.  

Two strands of work will be described. The first presents evidence that students can 
work effectively with multivariate data if they are supported appropriately with good 
computer interfaces. Second, current work with teachers of mathematics, citizenship, 
and geography on curriculum materials to develop skills in reasoning from evidence 
will be reported.  

Introduction 

There are various perspectives from which the rationale for studying maths in the 21st 
Century may be considered: there is a utilitarian aspect, but there are also cultural and 
aesthetic aspects. The report Mathematical Skills in the Workplace (Hoyles, Wolf, 
Molyneaux-Hodgson and Kent, 2002) offered many insights into what mathematics is 
used routinely. Some of the aspects listed on page 5 of the report would be 
recognisable components of the current curriculum but there are substantial areas 
which would not: what is used nowadays in the world of work is quite different from 
‘traditional maths’ and the curriculum should shift in response to this. Much of this 
shift relates to the pervasive nature of the use of ICT in the workplace – many 
activities which employ mathematical skills involve the use of some form of 
technology, and could often be described generically as modelling, but the 
researchers found that often those involved in these activities would not describe 
what they did as mathematical in any sense. This relates strongly to the cultural 
aspects of the curriculum: we need to break the cycle of “I can’t do Maths” and “I 
hated Maths at school” which seems to exist across much of society – where it is seen 
as acceptable to admit to being innumerate: indeed, it is almost a badge of honour to 
many people who take pride in other achievements. Many fewer people would admit 
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to similar sentiments about illiteracy. Understanding the process of modelling is a 
prerequisite to critical engagement with many aspects of modern society. 
For the report by Hoyles et al. a number of case studies were undertaken, and the 
type of activities with any mathematical component were recorded. A high proportion 
of these were related in some way to handling data: these could be at very different 
levels of sophistication – recording, summarising, reporting, interpreting, and 
analysing data are an integral part of many processes, and making decisions based on 
the data and its interpretation can be critical to the success of any business. More 
generally, the skills related to handling data can be viewed as a part of modelling, and 
it is in this area that we see the main imperatives for change, with ICT playing an 
integral role. 
Modelling, and fitting parameters in models, is conceptually accessible at school 
level, and can now be done reasonably [and in realistic contexts] using ICT. 
Technology allows multiple variables to be investigated in complex data: if students 
leave school without ever working with more realistic levels of complexity they will 
find it very hard to make the transition later in their cognitive development. Contexts 
such as biomathematics, psychology, business studies, geography and citizenship 
offer a vast array of examples where mathematics plays an integral part which have 
been largely ignored by the subject itself. Technology offers the opportunity to 
develop short digital video descriptions of applications of mathematics in such areas 
which could be used by teachers to motivate the study of certain topics.  
It is generally accepted that mathematics has a poor ‘image’ with the majority of 
students: it is viewed as hard in many cases, but also as irrelevant and boring. We 
argue that we should consider the inclusion of areas which are made accessible now 
by the use of technology to handle the complex processing required, and which are of 
widespread use in technology today, and that such changes would improve the 
perception of mathematics, and increase its accessibility at the same time. Areas 
include: matrices, vectors, calculus and geometry in 3D, curve sketching, large 
samples in statistics and multivariate data, of which we will say more later. 
Mathematics recently has concentrated too much on small scale activities: largely this 
has been driven by the structure of assessment, and the justification seems to be in 
terms of ensuring reliability. However, the effect of this is that the whole is less than 
the sum of the parts, and the validity of the assessment of mathematics is 
questionable: the abilities to solve problems, to apply simple techniques in new 
contexts, to combine reasoning and techniques from different areas of the curriculum, 
and to critically evaluate arguments and data presented in context are parts of 
mathematics which have been devalued. 
Statistics within the mathematics curriculum – the place of reasoning from 
evidence 

Many branches of mathematics have been invented in response to real-world 
problems. Probability theory and statistics provide vivid examples. In the case of 
statistics, the early development of theory and technique were constrained by the 
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absence of computer power. For calculations to be tractable, strong assumptions were 
made, and a somewhat bizarre process of ‘hypothesis testing’ was invented. This has 
had a regrettable legacy: if a curriculum were to be devised from scratch the light of 
current statistical knowledge, it would not be dominated by univariate parameterized 
distributions and linear bivariate models. It would include bootstrapping methods, 
nonlinear regression and multiple regression models, all of which are computationally 
intensive but conceptually accessible. It might include time series modelling with 
simple autocorrelations, to introduce the concept of feedback loops. 
Very large data sets are now available to schools for analysis. Here, almost any way 
of partitioning the data set is likely to reveal statistically significant differences, 
which will not necessarily have any practical or conceptual importance; that is, 
analysis will often show very small ‘effect sizes’ with no real world ‘significance’. 
Schield (2005) observes that while chance (random error) dominates in small sized, 
well-designed experiments, bias (systematic error) can dominate in poorly designed 
studies regardless of size, and confounding (the influence of a lurking variable) 
dominates in populations or large-scale, well-designed observational studies. 
Many other subjects depend implicitly, if not always explicitly at the school level, on 
reasoning from evidence. While we believe that the core responsibility for teaching 
and learning statistics lies within the mathematics curriculum, it is vitally important 
that statistics is not seen as a set of abstract mathematical techniques (Nicholson, 
Ridgway &McCusker, 2006). There is already pressure on curriculum time, and there 
are demands for greater fluency in other important areas of mathematics such as 
algebra, so something has to give. We believe there is scope for substantially 
reducing the amount of time spent on repetitive, routine tasks such as calculations of 
summary statistics and graph drawing, which are now automated in virtually every 
working environment, and replacing it in mathematics by the core skills of reasoning 
with complex data, supported by the co-ordinated use of those skills in other subjects 
to encourage transferability. This should make the mathematics curriculum more 
relevant and also create some extra time within mathematics to improve other key 
activities such as algebra, while not reducing the total amount of time students spend 
on working with data in the curriculum. 
In UK schools, we teach the statistical techniques of the 1920s, and (on rather rare 
occasions where the curriculum extends beyond the practice of technique) choose 
contexts to which this restricted set of methods can be applied. Reasoning from 
evidence is a central theme that runs through all empirically based subjects, yet is 
dealt with very badly in mathematics. It is not simply the case that students are 
exposed to an impoverished curriculum; we will argue that it is actually a pedagogy 
that trivialises mathematics, and disempowers students, with unfortunate 
consequences for public debate on important social issues. Students are not equipped 
to deal with the world outside the classroom, either to engage meaningfully in 
political debates on topics such as climate change, poverty, health, and crime, or to 
make informed decisions about their own lives that depend on understanding 



 

 474 

multidimensional data – such as their health, career choices, or finances. The second 
unfortunate consequence is more parochial, and concerns the locus and influence of 
mathematics within the curriculum. Mathematical thinking should be at the heart of 
the educational process, not confined within a curriculum box.  
Here, we present evidence that young students can reason effectively with 
multivariate data if supported appropriately with ICT. This offers the prospect of a 
radical, mathematical based, reform of the whole curriculum. Reasoning from 
evidence has a number of features that generalise across domains and mathematics, 
and the community of mathematics educators are ideally positioned to provide an 
integrated framework to develop generalisable skills associated with reasoning from 
evidence in students. There are at least three major challenges to be faced. First is the 
nature of the evidence itself. Much of the data in the public domain is presented in 
indigestible ways – for example, extensive tables of data in a printed form. Second is 
the current mathematics curriculum. Statistics, when it is taught within mathematics, 
focuses on the mastery of a narrow range of statistical techniques that are ill-suited to 
understanding complex problems. Third is our understanding of the nature of the 
development of reasoning from evidence. Here, we explore some key ideas that 
underpin the modelling of complex situations, and identify some components which 
are accessible to young students.  
If reasoning from evidence is to become a key focus in the new curriculum, we need 
to be convinced that students can actually engage in reasoning from evidence, and we 
need accounts of the qualitative stages in the development of reasoning from 
evidence. The latter will be an essential guide for the design of curriculum, pedagogy, 
and assessment.  
Paradoxically, a generic approach that emphasises universal principles in reasoning 
from evidence is likely to provide a firm foundation for modelling global and 
regional data, to the benefit of local, regional, and national communities. If 
educational systems are to help students reason effectively from evidence, then 
accounts of stages, progress, and pedagogy are essential. 
Ridgway, Nicholson, and McCusker (in press) present an analysis of a speech by 
David Blunkett, then Home Secretary, on the social problems apparent in multiethnic 
communities, and the actions that politicians might take to alleviate these problems. 
The paper set out to establish some of the theories about modelling complex 
phenomena implicit in the speech of a thoughtful politician. A number of principles 
were identified, including the following ones: 
• Every complex problem has a number of components, which are influenced by a 

variety of factors. Effects occur over a range of time scales, and at different 
magnitudes; 

• Models of change need feedback loops; 
• Correlation is not the same as causality. Possible moderator variables need to be 

considered. 



 

 475 

Citizens need to understand these principles if they are to engage effectively in 
political debates and if they are to understand arguments and evidence in the media. 
If students are to become responsible citizens, they need to be exposed to these ideas 
in the curriculum. This implies (at least) that their experiences should include: 
• Exposure to multivariate problems: 

- Exposure to non-linear relationships between variables; 
- Working with time lags between causes and effects; 
- Seeing different effect sizes; 

• Analysis of possible causal links between variables, and an understanding of 
moderator variables; 

• Linking data analysis to the situations from which the data were derived; 
• Speculation about possible courses of actions beyond the ones considered. 
Such changes may well be uncomfortable for many teachers of mathematics, who are 
attracted by the certainties that pure mathematics can provide (because of the 
tautological nature of results that derive from reasoning from premises, and 
manipulating systems of rules). In mathematics past attempts to use ICT to support 
mathematical modelling at the school level have been seriously flawed. They have 
emphasised the teaching of mathematical formalisms that have been applied 
successfully in particular domains (such as Newtonian mechanics), but have failed to 
address the process of modelling seriously – either in terms of its philosophical 
underpinnings, or in terms of appropriate pedagogy. 
Digital technologies can make a number of important contributions to mathematics, 
to pedagogic practice and (we believe) to cognitive development, student 
empowerment, and richer public debate on important social issues. Here, we will: 
• Demonstrate the paucity of the statistics curriculum in the UK; 
• Describe some of the key ideas that should be core elements in any attempt to 

model non-trivial phenomena; 
• Show some of our interfaces for presenting multivariate data (extending to 5 

variables); 
• Provide empirical evidence that students can, indeed, reason effectively about 

multivariate data where relationships are non-linear; 
• Show our early explorations of a hierarchy of ‘reasoning from evidence’. 
Two strands of work will be described. The first presents evidence that students can 
work effectively with multivariate data when they are supported appropriately with 
good computer interfaces. A study will be described where 195 students aged 12 to 
15 years were presented with computer based tasks that require reasoning with 
multivariate data, together with paper based tasks from a well established scale of 
statistical literacy. All the tasks fitted well onto a single Rasch scale; computer tasks 
were cognitively more complex, but were ranked as being only slightly more difficult 
than paper tasks on the Rasch scale. Current work developing measures of students’ 
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ability to ‘reason from evidence’ will be described. Several distinct levels of 
reasoning are evident in student responses, associated with comprehending; 
manipulating; and drawing conclusions. Competence ranges from working with 
single values, one step computation, and elementary reasoning, through to fluency 
using a variety of representations, fluency with number, and in synthesising evidence 
and communicating results clearly. We will show examples of computer-based tasks, 
student work, the Rasch scale, and will describe the development of a short uni-
dimensional scale. 
Second, current work with teachers of mathematics, citizenship, and geography will 
be reported. Here, we are creating curriculum materials designed to develop an 
understanding of complex issues in the curriculum, and reasoning from evidence in 
general. Examples of the use of complex survey data on sexually transmitted 
diseases, which students explore using powerful interfaces, will be shown to illustrate 
our approach. 
Implications for assessment, the curriculum, and public presentations of complex 
evidence will be discussed.  
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In this paper we reflect, based on the Mexican experience of massive implementation 
of digital technologies in “real-world” mathematics classrooms, on the role and aim 
of these tools for mathematical learning. The experience in our country has yielded 
inconsistent results and the main aim of improved mathematical learning appears to 
not have been achieved. There have been some positive results (e.g. students’ better 
attitudes and increase of enthusiasm, of motivation, of class participation; the 
possibility of formulating and proving conjectures and of analysing particular cases 
that can lead to generalizations) but many factors not present in laboratory settings 
come into play (from teachers’ abilities to administrative difficulties), when 
attempting a massive implementation such as this one, “out in the real world”. 
Furthermore, the experience has led us to readdress certain questions: a) What is it 
that students are learning when using new technological tools?; b) What kind of 
mathematics skills are they actually developing; c) What mathematics do we actually 
want students to learn with these technologies?; d) Can we put together the learning 
that does or can take place with the use of these tools, with the learning of what we 
usually consider as formal basic mathematical knowledge?  

 
For decades, many research studies have investigated the various possibilities that 
new technologies could offer for improving the teaching and learning of mathematics 
at different levels (e.g. Balacheff & Kaput, 1996; Hoyles & Sutherland, 1989; Dettori 
et al., 2001; Mariotti, 2005). These have implied that there are certain ways of using 
technology that can help students in their learning of mathematics. For example, 
(although it is not our purpose in this paper to synthesize all the available findings) 
among the possible results are that: 
• Technological tools may offer students a means: to learn to formulate and test 

hypotheses; to create and experiment with mathematic models; to work within 
different representational registers; to develop problem-solving abilities (all of 
which can lead to a better understanding of mathematical concepts). 

• Technology can also provide immediate (non-personal) feedback that allows 
students to discover their mistakes, analyse them and correct them; in this way, 
errors become a means to assist learning.  

• The tendency to work on routine problems in an algorithmic way decreases, while 
students can focus more on problem-solving activities. Thus, with technology, 
school mathematics can cease to be a simple mechanisation of procedures and 
instead become a space for reflection and development of concepts.  
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These encouraging results, derived from serious research in different parts of the 
world, in experimental settings of various carefully designed computational 
environments, seemed to be enough guarantee to insure that an adequate use of 
technology for assisting the teaching of mathematics, could produce satisfactory 
results and help improve students learning, in a large-scale implementation. As we 
will discuss in this paper, the step from laboratory setting to a large-scale 
implementation is far from being straightforward.  
On the other hand, the positive results from the use of technological tools in 
experimental settings have led, first, to an over generalisation of their possible 
benefits that has spawn campaigns69 promoting the use of digital technologies in 
classrooms without consideration of the pedagogical design, akin to what happened 
to the Logo programming language when Papert’s (1980) Mindstorms book came out 
and many schools took up Logo without taking into account what to do with it. 
Second, and perhaps more worryingly, now there seems to be a tendency of replacing 
formal mathematics with tool-based approaches that seek to make mathematics more 
accessible, but where the real mathematics is hidden from the user and thus may only 
develop a superficial mathematics understanding. In the following sections, we begin 
by recapitulating the Mexican experience of large-scale implementations of digital 
technologies in classroom, and end with a reflection on the results, difficulties and a 
more general concern of the tendencies for the use of those technologies in schools. 
The Mexican experience 

In Mexico, since the 1980’s, the Mathematics Education community has been 
developing research on the use of computational and other new technologies in 
education and the Mexican government has tried to address this issue. In 1989, a 
government initiative called MicroSep shipped specially-built computers to schools, 
pre-loaded with different tutorials, Basic, Logo, etc. The problem was that it was a 
very naïve initiative: no training was given to teachers and it was an era when 
teachers feared computers enormously, both in how to use them but also in that the 
machine would eventually replace the human teacher. The outcome of the MicroSep 
experience was that most computers remained unused and the project was a failure 
(with the consequence that some of the software that came with the machines was 
also considered a failure, such as Logo). In the subsequent years, there were smaller 
initiatives to introduce computers to schools, all without much success.  
In 1997, the Mexican Ministry of Education began sponsoring a, still-ongoing today, 
national project called EMAT (Teaching Mathematics with Technology), that has 
been led by a group of researchers in Mathematics Education, and which aimed at 
incorporating computational technologies to the mathematical curriculum of 
secondary schools (children aged 12 to 15 years old). Specifically, the EMAT project 
aims at promoting the use of new technologies using a constructionist approach to 

                                           
69 Currently, in Mexico, there is a large government-sponsored campaign, that includes many advertisements in radio 
and television, claiming that computers (without any reference to the way they are used) improve children’s learning.  
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enrich and improve the current teaching and learning of mathematics. A study carried 
out in Mexico and England (Rojano et al., 1996) involving mathematical practices in 
the Science classes, revealed that in Mexico few students are able to close the gap 
between the formal treatment of the curricular topics and their possible applications. 
This suggested that it is necessary to replace or complement the traditional formal 
approach, with a "bottom-up" approach capable of fostering the students' explorative, 
manipulative and communication skills. Some of the fundamental ideas 
characterising the project, as described in the official documents (Ursini & Rojano, 
2000), are the following:  
• A use of computer software or technological tools (e.g. calculators) that  

a) makes it possible to deal with mathematical concepts in a phenomenological 
way;  

b) provides objects or representations of (mathematical) objects that can be 
directly manipulated;  

c) is related with a specific area of school mathematics (arithmetic, algebra, 
geometry, probability, etc.)  

• Specializes the users of the technology (teachers and students) in one or more 
pieces of software and/or tools so they become proficient in its use and are able to 
apply it for the teaching and learning of specific curricular topics.  

• Puts into practice a collaborative model of learning: students work in pairs with 
one computer, thus promoting discussions and the exchange of ideas.  

• Incorporates a pedagogical model where the teacher's role is that of promoting the 
exchange of ideas and collective discussion; at the same time, acting as mediator 
between the students and the technological tools (the computational environment), 
aiding the students in their work with the class activities and sharing with them 
the same expressive medium (tool).  

The first phase of the EMAT project began in 1997 with a pilot phase during which 
the technology-based educational models were put to trial in secondary schools using 
relevant results from previous computer-based educational studies carried out in 
different countries. The project was designed with utmost care drawing from the 
expertise of the international and national scientific advisors, and was set up in stages 
so that adequate assessment and corrections in the implementation could be made 
before massive expansion. The stages of the project were also meant to allow for an 
adequate training of human resources, which is perhaps where the most emphasis in 
the development of the project should be placed. Nearly 90 teachers and 10000 
students at the secondary school level participated in the project in the first three 
years. Since 2000, hundreds of schools across the country have incorporated the 
EMAT materials into their programmes, and we have discovered that many more are 
doing so in an unofficial way. Recently, a curriculum reform aims to officially 
incorporate technological tools into math and science education. 
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A main criterion for the choice of the software and tools used in the project (Ursini & 
Rojano, 2000) was to have open tools; that is, where the user can be in control and 
has the power of deciding how to use the software. This allows for the construction 
of learning environments where students are able to decide on how to proceed, as 
opposed to other types of computer software that direct the student and the activity. 
These open tools have to be flexible enough so that they can be used with different 
didactical objectives, such as those of the activities designed for the project. The 
technological tools and software used during the pilot phase were Spreadsheets 
(Excel), Cabri-Géomètre, SimcCalc-MathWorlds, Stella, the TI-92 algebraic 
calculator, and the Logo programming language, all aiming at covering curricular 
topics such as arithmetic, pre-algebra, algebra, geometry, variation and modelling. 
For each tool, activities and worksheets were developed by national experts, in 
collaboration with external international advisors. The calculators and the 
spreadsheets, and later the Logo programming activities, were easily incorporated. 
Cabri-Géomètre has also been well received, despite some difficulties due in part to 
the lack of preparation of teachers in the area of Geometry as well as licence 
problems. These tools have continued to be incorporated in the expansion phase of 
the project, but Simcalc and Stella were dropped because it was hard to fit these tools 
into the curriculum without more teacher-training that was hard to achieve due to 
administrative reasons. 
Some results from the EMAT project and the problem of large-scale 
implementations 

The pilot phase of EMAT, despite some difficulties had a positive impact (see 
Sacristán & Ursini, 2001). That phase was groundbreaking in changing the role of the 
teacher and the traditional passive attitude of children. It created an irreversible 
change allowing for technologies to be incorporated into the Mexican school culture, 
hopefully in an adequate way.  
On the other hand, what became apparent since that pilot phase is that factors not 
present in laboratory settings come into play, when implementing a project such as 
this one, “out in the real world”. The more outstanding issues have been: lack of 
adequate mathematical preparation on the part of the teachers; lack of experience 
working with technology by both teachers and students; difficulties in adapting to the 
proposed pedagogical model; teachers’ lack of free time to prepare anything outside 
the established curriculum (all of these factors have contributed in making the 
activities much more directed than originally planned); lack of adequate follow-up 
teacher training and support because of administrative issues; many other 
bureaucratic difficulties; and lack of communication between the different levels of 
authorities.  
Since the year 2001, we have tried to assess through different studies whether there 
have been improvements in the mathematical learning of the children using the 
technological tools. We have not been too surprised to find inconsistent results. One 
study (Sacristán, 2005), has correlated students’ results in multiple-choice 
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mathematics tests, with teachers’ performance (e.g. understanding and employ of the 
proposed pedagogical model and of the materials) as well as teachers’ attitudes 
towards the technological tools. Putting it bluntly, “good teachers” achieve good 
results: they are able to take advantage of the technological tools and their students 
benefit from those experiences; but less experienced, poorly trained teachers, or 
simply teachers who dislike the technological tools, do not do so well. In the EMAT 
proposed pedagogical model, the role of the teacher is considered very important, as 
it is she/he who has the job of making students aware of the mathematics they are 
exploring with the tools (otherwise the knowledge constructed remains “situated” 
within the technological context); as Clements (2002, p.165) put it: “children do not 
appreciate the mathematics in Logo [or technology-based] work unless teachers help 
them see the work mathematically”; but one thing is the theory and another the 
practice… 
By and large – from several studies that have used mathematics tests to compare 
EMAT students (i.e. students who are using computational tools) with non-EMAT 
students— the tested large populations of students who have been using the 
technology-based tools have NOT shown much benefit, if any, from that use, some 
groups even do slightly worse (Ursini et al., 2005).  
We are aware that many factors come into play: not only the teacher’s role, but also 
the amount of use of the tools (which we have detected is also very inconsistent), and 
most likely, many other factors; on the other hand, the benefit of the use of the tools 
is perhaps not so much in the development of specific knowledge-content but in the 
development of mathematical abilities that the instruments used in the studies 
described above do not measure. 
But the crux of the problem is this: the EMAT programme was designed to improve 
the learning of curriculum-based mathematics. Yet, in curriculum mathematics tests, 
the use of the tools doesn’t show benefits when the populations tested are part of 
large-scale implementations were many factors are beyond the control of the Project 
designers or main instructors. This leads us to ask ourselves the following questions, 
some of which we discuss in the next section: a) What is it that children are learning 
when using these tools?; b) What kind of mathematics skills are they actually 
developing; c) What mathematics do we actually want children to learn with these 
technologies?; d) Can we put together the learning that does or can take place with 
the use of the technological tools, with the learning of what we usually consider as 
classic basic mathematics?  
We must, however, also give the positive results of the EMAT experience. In 
general, the use of the computational tools has had a very strong positive impact on 
children’s attitudes towards mathematics. A study developed with 24 teachers and 
1113 students (Ursini et al., 2004) shows that there is a clear increase in their 
enthusiasm and motivation; and although the impact is different for girls and for 
boys, the behavioral changes observed seem to lead to more gender equity. 
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Another positive results is the changes in classroom dynamics that have modified the 
traditionally passive attitudes of children and empowered them, giving them a status 
almost equal (and sometimes even higher than the teacher) when involved in 
mathematical explorations with the tools.  
What is it all about? Some reflections and words of warning 

We would like here to go a bit beyond the EMAT experience and reflect on some of 
the questions we posed before, as well as raise others:  
First, what mathematics do we actually want children to learn with these 
technologies? If we want children to learn classical school mathematics, it is not so 
straightforward because, as some evidence shows, it doesn’t always work. The 
failure could be attributed to an approach of simply adding technology to teach the 
same mathematics; but projects such as EMAT have tried NOT to do that, but to 
actually introduce technology as a means to explore mathematical ideas and concepts 
and enrich the current curriculum. But they still don’t work. If we want something 
else from the use of the technological tools, then that is what needs to be made 
explicit and evaluated. Introducing technologies to enrich an actual curriculum “out 
in the real world”, no matter how well thought out the implementation may be, is 
perhaps a contradiction. The use of new technologies seems to require making 
fundamental changes in the theoretical and pedagogical conception of the curricular 
structure and contents.  
What is it that children are actually learning when using these new 
technological tools?  

Outside experimental approaches, there are hardly any large-scale implementation 
studies or even theoretical research approaches for doing so (in great part due to the 
difficulties in evaluating such massive results of the kind of new knowledge that is 
being generated) that can give us data on what students actually learn in technology-
assisted environments. In Mexico, we are attempting to do this kind of large-scale 
research for the EMAT programme, as discussed earlier in this paper. Some of the 
initial results that we can report can be useful but also depend on many factors. First, 
we can say that what is learned is extremely dependent on the specific technological 
tool being used, how the implementation is conceived, the mathematical knowledge 
of the teacher and his/her ability to link and make explicit the knowledge developed 
and situated within the technological environment, and formal mathematics.  
Nevertheless, we do know that the use of technological tools does develop 
motivation, a more positive attitude towards mathematics, an increase in student 
participation, in student abilities to defend their ideas; that the technology-based 
environments allow students to generate and test conjectures and to go from the 
particular to the general. 
Therefore, if what students are learning is to develop certain abilities, then the use 
and implementation of the technological tools should not be conceived as an aid to 
improve current mathematics learning, but simply to develop those abilities that 
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underlie mathematical knowledge. In fact, that is what a tool like the (classic) Logo 
programming language does. 
But, where are we going?  

We would like to address several tendencies in the use and implementations of digital 
technologies for mathematics education that worry us. First, there is the idea that 
with technological tools, mathematics can be made more accessible through “new 
infrastructures” for the great majority. For example, there is a tendency to present 
students to representations of (often advanced) mathematical ideas, sometimes called 
by many “microworlds” – though contradicting Papert’s vision of that term (since in 
this case the user doesn’t create: s/he only explores)— but that we would simply call 
‘models’ or ‘interactive software structures’ (such as applets or other closed 
structures over more open platforms). This tendency is further encouraged as 
officials and educators try to accommodate to the fast changing pace of technologies. 
The aim of these structures is for students to explore ideas that may be too difficult 
for them if presented in purely mathematical terms; the problem is that more and 
more often the actual mathematical concepts that create those models are not 
transparent or open for the user to see. While these tools may be useful for building 
intuitions, it is very questionable as to what actual mathematical knowledge students 
can derive or understand. Thus, while we may be thinking that we are making hard 
mathematics accessible to all, what we may really be doing is training people to use 
tools blindly while the mathematical design is not accessible. Even in EMAT, that 
had as theoretical guideline the use of open tools for students to create and explore, 
we find many activities that follow the above tendency. The problem with the above 
tendency is: who will finally benefit from this? It seems to us that deeper formal 
mathematics knowledge is in jeopardy of being reserved for a small elite. Some 
would argue that a new mathematical paradigm, based on the new infrastructures, 
may emerge; but even in that case we are in danger of creating elites of those with 
access to the technological tools and leaving out large sectors of the population that 
do not have access to those tools. 
Related to the use of these models or structures, we are also worried about the 
tendency to rely only on the “point-and-click” method and the use of icons. Fifteen 
years ago, many in the mathematics education community called for the 
incorporation of more visual elements into mathematics teaching to complement the 
dominating algebraic/symbolic approach of mathematics, and researched how the use 
of digital tools could help in this endeavour. Today, some of us are worried that the 
use of symbolic and algebraic expressions is taking a back step in favour of easier, 
but perhaps less formal, forms of expression. The main question rises again: what 
will be the consequences of doing this and who will finally benefit from it?  
Finally, another tendency is to want to use “state-of-the-art” technological tools: 
always the latest, fastest, most advanced, etc… This doesn’t allow for creating a 
stable use of a technology; furthermore research of any particular technology thus 
soon becomes obsolete, so with this tendency, whatever is being used is relatively 
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untested (except perhaps for general implementation philosophies). True, we should 
acknowledge and research new tools, but this shouldn’t imply abandoning 
technologies that have proven to have the potential to be beneficial.  
So, why are we actually teaching mathematics and what happens to formal 
mathematics?  
New technologies should always serve the learning and teaching of mathematics and 
not the other way around. Let us not forget that there is some basic mathematical 
knowledge that children should still learn. After all, mathematics is part of culture 
and not only a tool for solving problems. We thus would warn against loosing sight 
that what we want is for students to learn mathematics and not just that kind of 
implicit mathematics that may remain situated within a technological context. What, 
of course would be ideal is to make a use of the technologies that could allow to 
make the formal mathematics (e.g. algebra) accessible for all. Is this possible? How 
should we use the technology to reach this goal? 
What Seymour Papert and his colleagues had in mind when they developed the Logo 
programming language, had this potential as there was an emphasis on symbolic 
descriptions that were truly mathematical. We would like to end by reflecting on this 
valuable tool.  
Logo has probably been researched perhaps more than any other and proven its 
benefits under appropriate conditions. Yet, we believe the potential of this tool was 
never adequately developed and now, sadly, in many places, particularly in the 
Western world, Logo has been abandoned because it is considered old or even 
obsolete, and has been replaced by other tools. But what Logo provides is not as 
easily found in other tools: to begin with it provides an invaluable tool for symbolic 
expression and for symbolically describing geometric figures. The benefits of Logo 
are well-known and it is not our intent to review them here. What we do want to 
claim, is that Logo – even when we refer to what we call “classic Logo” and not 
second generation Logo-based environments – is far from obsolete and is still an 
invaluable tool. Classic Logo activities were incorporated in the fourth year of the 
EMAT project. Most students who have used Logo in EMAT, claim it is their 
favourite tool; furthermore, there are instances where the use of the other tools has 
been enriched by the Logo experience: children demand a different use of 
Spreadsheets or Cabri, where they feel they can program these tools, like they do in 
Logo; they begin using the tools more according to their own needs and projects, 
rather than simply following preset activities. All of this from a tool that many 
consider outdated. The purpose of this reflection on Logo is a call to attention to look 
back on the valuable pedagogical lessons that we learned from that tool and that we 
can still learn, in particular in terms of a use of technologies that fosters the 
development of true mathematical knowledge. 
Summary 

We have attempted, in this paper, to reflect, based on the Mexican experience of 
massive implementation of digital technologies in “real-world” mathematics 
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classrooms, on the role and aim of technological tools for mathematical learning. The 
experience in our country has yielded inconsistent results leading to the necessity of 
making a deeper reflection of some questions. We have considered some of these 
here, but our main aim is to provoke reflection for further discussion during the study 
conference. 
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This paper considers the design of learning environments and curricular, with a 
particular focus on automatic assessment. Mainstream computer algebra systems 
(CAS) are currently being used to support assessment, particularly in higher 
education. For example, the CAS can establish the algebraic equivalence of the 
student's and teacher's answers. This application of CAS is quite different from the 
traditional use, which is to model in an exploratory manner rather advanced 
mathematical ideas. While mainstream CAS have been used successfully for this 
application for the last five years, this paper examines the affordances and 
constraints of using CAS in this way. By using CAS-supported assessment it is 
possible to use open-ended questions which are traditionally difficult to assess, but 
which the educational literature suggests can be pedagogically valuable. In assessing 
an answer to such a question the CAS is used to establish various mathematical 
properties of the student's response. To focus this paper we concentrate exclusively 
on the assessment function, while bearing in mind the place of assessment in learning 
cycles and online learning environments.  
 

Introduction 

Mathematically rich computer based learning environments are increasingly being 
used at all levels of mathematics learning to support various functions in the learning 
cycle. It is the design of learning environments and curricular, with a particular focus 
on learning and assessing mathematics with and through technologies which is the 
issue addressed here. This paper is a discussion of some affordances and constraints 
of using computer algebra systems (CAS) to underpin such assessment. This a 
relatively novel use of CAS, an understanding of which is important given the crucial 
place of assessment in any learning cycle, and its role as the primary driver of many 
student's learning.  
As an illustration, consider the situation in which a student enters his or her response 
to a mathematical question into a computer aided assessment (CAA) sub-system of a 
learning environment. The CAA system then uses a CAS to subtract the student's 
response from the teacher's response and to simplify the resulting expression 
algebraically. If the result is zero an algebraic equivalence between the student's 
answer and the teacher's answer has been established. Note the important pedagogic 
principle being implemented: the CAA system evaluates the student's answer which 
contains mathematical content, rather a selection from a list of teacher provided 
answers, such as in multiple choice or multiple response questions. A mathematical 
property of the student's answer has been established, with algebraic equivalence as 
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the prototype. Appropriate action, such as providing feedback, assigning a mark and 
storing these outcomes in a database, can then be taken.  
To focus this paper we concentrate exclusively on the assessment function, but keep 
firmly in mind the place of assessment in the learning cycle and as an integral part of 
a coherently designed online learning environment.  
 

Approaches 

Roles of different digital technology 

Until around 2000, the use to which CAS had been put in the learning and teaching of 
mathematics was "almost exclusively [...] to model in an exploratory manner rather 
advanced mathematical ideas", (Hoyles and Lagrange, 2005). However, during the 
last five years a community of practice has developed for automatic assessment of 
mathematics which makes significant use of CAS for the following.  
1. Random generation of structured problems, (see Section 2.2)  
2. generation of feedback,  
3. to establish mathematical properties of the student's answer.  
One of the most commonly cited advantages of CAA is the ability to generate 
feedback almost instantly. A CAS can be used to manipulate the answer of the 
student, and calculations based upon this can be incorporated into this feedback. For 
example, if a student makes an incorrect attempt at an integration problem, feedback 
of the following type might be given.  
The derivative of your answer should be equal to the function which you were asked 
to integrate. However, the derivative of your answer with respect to x is …, so you 
must have done something wrong!  
Here, the … is automatically replaced by the derivative of the student's answer, and 
such feedback encourages the student to check the result for themselves by 
differentiating. The ability to do this requires CAS tools within the assessment 
system.  
The third function CAS enables within a CAA system is establishing a range of 
mathematical properties of a student's response. Algebraic equivalence with a correct 
answer is the prototype property, however algebraic equivalence with expressions 
arising from a range of mistakes common to the particular question can also be 
established. In this case feedback can be given, all of which may take place in the 
context of random question versions.  
There are many other properties which we might look for in a student's answer, 
including whether an expression is factored, "simplified" or perhaps a solution to a 
given equation. In establishing these properties a CAS manipulates a student's 
expression, and as a further illustration, we consider how a CAS might establish if a 
student has found the general solution to a differential equation such as  
y’’(t) - 9y’(t) + 18y(t) = 0.  (1) 
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First the CAS substitutes the response of the student into the left hand side of the 
equation and simplifies, which includes performing the differentiation of the student's 
expression where necessary. If the result of this calculation is zero, the property of 
primary importance has been established: the student's answer satisfies the 
differential equation. Other tests can be devised to ensure the expression is a general 
solution. In particular, that the answer consists of the superposition of two linearly 
independent solutions, and the presence of general constants, can be established. 
However, the choice of which letters used to express the general constants can be at 
the discretion of the student. The CAA system does not use a CAS to simply establish 
the algebraic equivalence of the student's answer with an expression such as  
Ae3t+Be6t. 
While solving (1) is a relatively standard problem, the use of a CAS allows the 
teacher to set and assess questions which would require significant computation to 
establish the required properties, or have non-unique or complex solutions. We 
examine such questions in more detail in Section 2.2 below.  
The first system to make CAS a central feature was the AiM system (Klai et al. 
2000). This system operates using Maple, as does the Wallis system of Mavrikis and 
Maciocia, (2003), and Maple's own proprietary MapleTA. Other systems have access 
to a different CAS, such as CalMath which uses Mathematica, CABLE, (Naismith 
and Sangwin, 2004), which uses Axiom and the STACK system (Sangwin and 
Grove, 2006), of the author, which uses the CAS Maxima, see 
www.stack.bham.ac.uk. Private correspondence indicates that Derive is being used in 
a similar way.  
A common feature of these systems is their use of an existing CAS. There are 
significant differences between CAS implementations, which have been discussed 
elsewhere, for example Grabmeir et al., (2003), or Wester, (1999). These and other 
comparisons are from the point of view of the research mathematician or student 
essentially using CAS as a "super calculator". The functionality required for the 
application of CAA is quite different. We give concrete mathematical examples to 
illustrate some of the issues involved.  
The problem of recognizing that an expression entered by a student is factorized 
(over some field), is significantly more subtle than comparing the student's 
expression with the result of applying the CAS's "factor" command to the teacher's 
answer. For example, a CAA system may have to respond to any of the following 
expressions  
(x-3)2,    (3-x)2,    (x-3)(x-3),     (3-x)(3-x),     9(1-x/3)2. 

Only the first of these is returned by the "factor" command, while the others could 
all be argued to be correct factored forms. Similar problems occur with other 
syntactic forms, such as partial fractions. To be useful as part of a CAA system, 
functions which establish properties, either syntactic or semantic, are needed.  
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The reader might consider all the different senses in which the word "simplify" is 
used in an average textbook on elementary algebra. Often "simplify" seems to be a 
synonym for "do what I have just shown you". Two different examples occurs with 
what Nicaud et al., (2004) terms sorted and reduced form, when a polynomial is 
represented as x2+2x+1 rather than x+1+x+x2. If a CAA system is to provide useful 
feedback to students it must be capable of distinguishing between expressions which 
are not fully simplified in various senses, and respond. However, such functions are 
usually not present in a CAS designed for computation and subsequent automatic 
simplification to canonical forms. Indeed, most CAS perform automatic 
simplifications which cause technical problems for CAA, and do not currently 
provide the level of fine grained control necessary for this application at the most 
elementary levels. Despite the fact that CAS-supported CAA is now commonly used 
in higher education, specifying the characteristics required of a CAS for CAA is a 
substantial project which has yet to be undertaken. It will require close collaboration 
between mathematics educators, research mathematicians and computer scientists. 
This is an important issue in the design of learning environments.  
It should be noted that a CAS is not required for the three functions described in this 
section. Indeed, there are very many examples of highly mathematical CAA and 
computer based learning systems which accept and respond to student's answers 
without using a CAS. However, the authors of such CAA systems often replicate 
libraries of CAS-like functions, which represent and manipulate mathematical 
expressions. Hence, while they do not make use of a recognized mainstream CAS we 
would argue that they are in fact implementing computer algebra in its broadest 
sense. Examples of such systems are the CALM system of Ashton et al., (2005), the 
Aplusix system of Nicaud et al., (2004) and the Metric system of Ramsden, (2004). 
The issues raised here are just as relevant to these, and similar, systems.  
Contribution to learning 

Mathematically rich CAS functions are ideally suited to generating random versions 
of a particular problem within carefully structured question spaces. Worked 
solutions, with various steps, can similarly be constructed from templates. Such 
problems can be used for repeated practice or to reduce plagiarism. Indeed, so far 
CAS supported CAA has predominantly been used to provide traditional practice of 
routine techniques. Since the systems cited above originated in higher education they 
have also seen application to questions from linear algebra, vector calculus and 
differential equations.  
It might be argued that since the CAS can perform simplifications and other 
calculations, the student should not be required to do so fluently themselves. Even if 
fluency in the actual calculations is not necessary, basic competence will always be 
and so practicing routine manipulations will remain a valid application.  
However, by harnessing CAA within a learning cycle group work can be encouraged 
to aid understanding of a topic, with each student evidencing their own learning by 
completing their unique set of tasks. Often no one cares about the actual answer 
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itself, and the numbers used in a typical mathematics questions are themselves 
unimportant. Hence, the ability to randomly generate questions within constrained 
variation may be used to help students perceive the structure of the problem 
underlying that which their version represents. This embeds the assessment into the 
learning cycle, ensuring it is integral to the experience of the student.  
Given that CAS enabled CAA establishes properties, rather then simply checks for 
"the correct answer", more open-ended questions can be set and assessed. As an 
example, consider the following question. "Give an example of a function with a 
stationary point at x=1." To assess this, the CAS differentiates the student's answer 
with respect to x, substitutes x=1 simplifies. Hence there is an infinite family of 
correct responses and as one student commented, in an anonymous feedback 
questionnaire to a course taught by the author, after answering this question using the 
AiM CAA system:  
Recognising [...] the functions produced in question 2 was impressive, as there are a 
lot of functions [...] and it would be difficult to simply input all possibilities to be 
recognised as answers.  
More than one property can be requested, such as the following.  
Give an example of a function with a stationary point at x=1 and which is continuous 
but not differentiable at x=0.  
The CAS functions are used to establish whether the student's answer (eg |x|(x-2)) has 
each of the required properties.  
In questions such as this the student must decide what properties are required, and 
then construct a mathematical object, such as a function, which satisfies them. The 
cognitive processes required are quite different from following or repeating a routine 
procedure given by the teacher. The pedagogic potential for this style of question is 
well documented in the educational literature, for example Watson and Mason, 
(2002) or Michener, (1978). The work of Dahlberg and Housman, (1997), suggests 
that it "might be beneficial to introduce students to new concepts by having them 
generate their own examples or having them decide whether teacher-provided 
candidates are examples or non-examples, before providing students examples and 
explanations".  
Such questions are usually absent from contemporary teaching, probably because of 
the practical constraints of time under which teachers operate. Using CAS-enabled 
CAA to assess such questions is considered in, for example, Sangwin, (2005). 
Considering how CAS-enabled CAA supports learning in this way is an important 
issue of curriculum design, and of learning environment design to support this.  
 

Role of the teacher 

Using CAA forces the teacher to consider the properties required of an answer, and 
describe carefully what outcomes should result in advance of the assessment being 
set. For example, how should the system respond if a student enters 0.5 as part of an 
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expression? While this is five tenths, ie 1/2, the use of floating point numbers is often 
discouraged. Conversely, if a student approximates a rational number using a floating 
point number, such as 0.3333 for 1/3 the CAA system will not establish algebraic 
equivalence even if the student is essentially correct. Hence, it is no longer sufficient 
for a teacher to be able to recognize a correct or worthy response when a student 
provides one. They have to consider carefully the various possibilities and be able 
articulate what they require in CAA terms. The issues of how teachers author CAA 
materials in this new context is addressed in Sangwin and Grove, (2006), which 
argues that teachers are themselves "neglected learners".  
The open ended problems described in Section 2.2 require a different classroom 
approach from the teacher. Work of the Standards Unit in the United Kingdom has 
piloted very similar activities with students using personal white boards, and sets of 
cards containing mathematical expressions. The freedom of expression which very 
open ended questions affords students requires the teacher to think on their feet when 
responding to students. While the CAA system can help with computations to 
establish properties, the explanations for various outcomes will still be given by the 
teacher.  
When using CAA a teacher risks becoming detached from their students. Marking 
written work by hand, while immensely time consuming, gives an insight to a 
particular group of students' learning which CAA cannot currently replicate.  
 
Impact on mathematics 

Novel forms of assessment should be subject to close scrutiny from the mathematics 
community. However, this should be a comparison of the new with the strengths and 
weaknesses of traditional methods of assessment. Assessment drives learning, and 
any novel assessments will hence affect what is learned and how this learning takes 
place. Given the central role of assessment, the perception of what constitutes 
mathematics is likely to be altered by new assessment regimes. This is not the place 
to engage in epistemic argument about the nature of mathematics, other to 
acknowledge that we send out strong messages about what we, as a community, value 
by what we assess.  
Detailed inspection by the author of high stakes public examinations in the United 
Kingdom, indicates that much of what is currently actually assessed are routine tasks 
rather than open-ended problems and these can be automated by CAS supported 
CAA. However, it is hard to envisage how such systems would ever be used to assess 
method or the quality of the type of argument one might expect in a proof. Hence, it 
is imperative that the community establish what is really valued in the mathematical 
work of students before adopting CAA to simply replace existing paper-based work.  
In CAS supported CAA the student interacts with the system, both to enter a response 
which contains mathematical content, and to read mathematical expressions on the 
computer screen. Hence, one specific area where CAA is likely to have an impact on 
mathematics is in the area of notation and symbolism. When used as a sophisticated 
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calculator, all existing CAS allow a linear syntax for expression entry. Here a user 
has the ability to edit their input, look up the syntax in the online help and possibly 
experiment. In computer aided assessment the stakes are higher: the user is being 
evaluated on their input. By implication this evaluation mixes their ability to express 
themselves using the correct linear syntax and their ability to actually solve the 
problem in hand. The work of Ramsden and Sangwin, (2005) details significant 
variations between CAS as to what symbols mean. The inconsistencies between 
linear syntaxes have implications for CAA, particularly if used in high stakes 
assessments. Other methods, such as an "equation editor" or pen-based character 
recognition, are also in use for CAA, however they also suffer from many of the same 
fundamental problems.  
 

Conclusion 

It appears likely that automatic assessment will become increasingly important at 
various points in learning and teaching. To make such assessment mathematically 
rich it is necessary that these include a CAS, or CAS-like functionality. In doing this 
we can automate the assessment of pedagogically valid and rich questions which are 
traditionally impractical. This application is rather different from the traditional use 
of CAS as a "super calculator". This is an existing and rapidly expanding field but 
one in which many challenges, both pedagogic and technical, remain.  
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We document and discuss themes and aspects of mathematical practice that appear 
relevant during the development and implementation of activities associated with a 
research project whose aim is to analyze students ways of reasoning that emerge in 
problem solving classes that promote the use of diverse computational tools. In 
particular, we focus on identifying (i) the types of questions and conjectures, 
including arguments to support them, that students exhibit as a result of using 
dynamic software, (ii) the students’ construction of mathematical relationships that 
come out from examining dynamic geometric configurations that are formed by 
simple mathematical objects, and (iii) the curriculum changes that we need to think 
of in order to validate and promote mathematical practices that favor the use of 
digital technologies.  
The availability of computational tools to represent and explore mathematical ideas 
has influenced notably the ways to generate or develop mathematical knowledge. In 
this context, the formulation of questions or problems, the problématique, and 
mathematical practices, including methods, used to investigate those questions are 
shaped and mediated by the use of those tools (Moreno & Santos, submitted). In 
school mathematics, the use of Computer Algebra Systems (CAS) or dynamic 
geometry software has increased the awareness for students to develop numeric, 
symbolic and geometric sense during the study of the discipline. Thus, it becomes 
important to document and contrast features and mathematical processes shown by 
students that emerge in problem solving environments that enhance the use of 
technology. 
Professional worlds as well as society at large have a pragmatic relationships with 
computational tools: their legitimacy is mainly linked to their efficiency…The 
educational legitimacy of tools for mathematical work has thus both epistemic and 
pragmatic sources: tools must be helpful for producing results but their use must also 
support and promote mathematical learning and understanding (Artigue, 2005, p. 
232).  
What type of reasoning do students develop as a result of using distinct digital tools 
in their mathematical learning experiences? What type of mathematical 
representations of problems or mathematical objects do students construct during the 
process of understanding mathematical ideas or solving mathematical problems? 
How do students and teachers participate or interact during the learning and the 
development of instructional activities in educational scenarios that promote the use 
of technology? These are relevant questions that guide the development of an 
ongoing research project that aims at documenting the type of mathematical 
competences that students develop when they systematically use dynamic software, 
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Excel and algebraic calculators during their problem solving approaches. This project 
also aims at understanding how mathematical concepts and objects are transformed as 
they are given a new life through the use of digital tools.  
The project began two years ago and we have worked directly with high school 
teachers who have been implementing series of mathematical tasks in their regular 
mathematical classes. Fundamental principles that helped structure and frame the 
project involve: (i) the recognition that students need to think of their mathematical 
learning as a problem solving activity in which contents, problems or phenomena are 
seen as dilemmas that need to be examined, explained, and solved in terms of 
formulating and pursuing questions or inquiry methods (Schoenfeld, 1994); (ii) the 
importance for students to think of distinct ways to represent, explore or solve 
mathematics problems. That is students need to develop distinct modes of thought 
and habits that reflect the proper use of mathematical resources and strategies 
(Cuoco, 1998); (iii) The relevance for students to use various computational tools to 
represent mathematical objects in order to identify, explore, and support 
mathematical conjectures or relationships. Here, we argue that different tools offer 
students different opportunities and ways to think of a problem or situation and as a 
consequence, it is important for them to use several tools to develop diverse problem 
solving approaches to solving those problems (Santos, et. al, in press).  
At this stage, we have collected data regarding the process of designing the tasks that 
help student think and reason mathematically, ways in which the tasks were 
implemented within instructional scenarios favoring students’ development of 
mathematical ideas, all with the mediation of digital technologies. Based on the 
analysis of the gathered data, some preliminary results have begun to emerge and we 
would like to focus on relevant aspects related to: 
(i) The type of conjectures and arguments that students propose as a result of 
representing the problems dynamically using dynamic geometry software. 
(ii) The process of using simple objects (segments, lines, triangles, perpendicular 
bisector, etc) to ensemble a geometric configuration that becomes a platform to pose 
and pursue question that lead students to reconstruct or develop series of 
mathematical results or relationships. 
(iii) The contents and curriculum transformations that seem relevant to make explicit 
when the use of the new mathematical instruments become relevant in mathematical 
instruction. As Hoyles and Noss (2003, p. 325), stated “…exploiting the real power 
of technology requires such innovative approaches, that comparison to a traditional 
class is inappropriate”. 
To elaborate on each of the above themes, we have chosen examples that illustrate 
students’ ways of reasoning or thinking of mathematical problems that have emerged 
while using digital tools during their mathematical problem-solving experiences.  
  
1. Formulation of Conjectures and their validation.  
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With the use of dynamic software, students can construct executable representations 
of mathematical objects and problems that reflect changes or invariants in different 
contexts. Thus, in general, students tend to construct dynamic representations of 
problems that lead them to quantify attributes (lengths of segments, perimeters, 
angles, areas, etc.) and observe their behaviors or loci as a result of dragging 
particular elements within that representation. Students also tend to examine the 
viability and pertinence of a particular conjecture in terms of using the software to (i) 
identify the conjecture visually and dynamically, (ii) examine whether the conjecture 
includes a structural relationship (dragging test), (iii) construct a macro that 
crystallizes the construction and verify whether the conjecture is held in objects 
generated by the macro, (iv) quantify and verify properties of mathematical objects to 
detect patterns, and (v) present formal arguments to prove the emerging conjecture. 
An example illustrates the way students deal with a conjecture. 
 
The problem: Cross’s Theorem: 
Squares are drawn on the three sides 
of a triangle. Show that the areas of 
the four shaded triangles are the 
same (figure 1) (Faux, 2004). 

 
Fig.1: Are the triangles’ shaded 
areas the same? 

 
Students represented the problem dynamically and provided distinct arguments to 
support it. They also had opportunity to examine a related conjecture: What about if 
we draw rectangles instead of squares on each side of the given triangle, how are the 
shaded areas? While representing dynamically figure in this question, students 
noticed that they could draw many rectangles taken as the base one side on the given 
triangle and as a consequence it was difficult to trace the area behavior of the shaded 
triangles. How can we relate the construction of all rectangles? Discussing this 
question led them to assume that the corresponding sides of the rectangles should 

share the same proportion. They decided for EC

CB
=

GA

AC
=

IB

BA
=

1
2

.  

 
They drew the rectangles holding 
this condition and verified (using the 
software tools at their disposal) that 
the areas of triangles CEF, AGH and 
BDI were the same (figure 2). 
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Fig. 2: Drawing rectangles with 
proportional sides 

The software became a powerful tool to explore both the plausibility of the 
conjecture and the search for ways to validate it. We illustrate the ways students dealt 
with this conjecture: 
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Visuo-perceptual Recognition.  
An important feature while using dynamic software is that mathematical figures can 
be drawn accurately. Students drew triangle ABC and the corresponding rectangles 
(with the same constant of proportionality among their sides) and concluded that the 
area of triangles CEF, AGH, and BDI were the same. The initial (perceptual) 
conjecture is supported with the corresponding areas calculation (figure 3).  

 

 
Fig. 3: Visual recognition of a relationship in triangles CEF, AGH, and BDI 
The Dragging Test.  
Here students explored the validity of the conjecture for a family of triangles. They 
dragged the position of the vertices of the given triangle ABC to generate a family of 
triangles with the same construction, perceiving a structural relationship. They 
observed that when one vertex is moved, the family of triangles generated held that 
the area of triangles CEF, AGH, and BDI was the same (figure 4). 
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Fig. 4: Verifying the conjecture for different positions of triangle ABC 
 

Constructing a Macro.  

Another way to explore and eventually verify the conjecture was that students built a 
macro to reproduce the construction for any given triangle. That is, students 
identified initial objects (triangle ABC and ratio R of rectangle sides) and final 
objects triangles CEF, AGH, and BDI. This procedure adds a formal status to the 
involved figures while trying to validate the conjecture. Applying the macro to 
different triangles, students confirmed the conjecture, that is, they verified that 
triangles CEF, AGH, and BDI all have the same area.  
Quantifying attributes and Patterns.  
In addition to observing the behavior of the triangles areas, students focused on 
comparing (ratios of) areas of triangle CEF and triangle ABC for distinct values of 
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the proportionality coefficient r of the sides of the rectangles (figure 6). Based on this 

information, they notice that area of ∆CEF

area of ∆ABC
= r2  for different values of r. 

Formal Analytic Proof. To prove both conjectures, students followed different 
approaches that were discussed within the whole class. Here, we present an analytic 
proof that was constructed during the class discussion. The idea is to construct a 
triangle with one vertex on the origin of the Cartesian system and other on the X-axis 
and the third a point on the first quadrant. That is, the vertices of the triangle will be 
A (0, 0), B (c, 0) and C (a, b) as is shown in figure 5. 

 
Fig. 5: Identifying coordinates of vertices of the given triangle 

What is the area of triangles AGH, BID, CEF and ABC? Given the coordinates of the 
vertices of those triangles, students recalled that the area of each triangle will be:  
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Based on the information given in (1), (2), (3) and (4) they concluded that: 
)( AGHArea ∆ = )( BDIArea ∆ = )( CEFArea ∆ = 2*)( rABCArea ∆  

Comments  
There is evidence that the use of dynamic representations of the problems and the 
treatment of mathematical objects that students showed with the mediation of the 
software became an experience-enhancing platform to identify and explore 
mathematical relationships. The easiness to quantify mathematical attributes and the 
exploration of visual representations of problems were fundamental activities that 
permeated the students’ process of formulation of conjectures. To assess the validity 
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of the conjecture, students relied on using the tool to explore particular cases visually, 
to examine family of cases by dragging particular elements within the representation 
(perceptually discovering structural relationships), to construct a macro to also 
examine a family of cases (a higher level of formalization), and to observe patterns 
that emerge as a result of exploring invariance in the behavior of particular data 
(recognition of a mathematical object). In this context, the use of an analytical 
method to prove the conjecture came out only as a way to confirm the validity of the 
conjecture.  
A core idea is that the processes of formalization and abstraction are not best served -
from a didactical viewpoint- when we conceive of abstraction as an extraction 
process. It might be better to view it as an additive process (Noss&Hoyles, 1996) in 
which it is important to connect, in terms of mathematical properties and meaning, 
distinct representations of the problem, including those generated with the use of the 
software. Thus, these representations are seemed as abstraction domains from which 
to build mathematical objects and relationships. Here is where the full power of the 
“dragging exploration,” for instance, is revealed. In this process, students think 
deeper: situating mathematical results within a digital environment and generating 
new mathematical explorations. As a result of this activity, new conceptualizations of 
mathematical objects will emerge and will be important to frame mathematical 
practices in classrooms.  
Construction of Relationships 
Another type of activities that students explored with the use of dynamic software is 
the construction of geometric configuration by using simple mathematical objects. 
For example, in one of the problem-solving session, a student constructed a dynamic 
configuration that involves perpendicular lines. That is, line L2 is perpendicular to 
line L1; line L3 is perpendicular to L2 and line L4 is perpendicular to line L1 (figure 6). 
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Fig. 6: Constructing an initial 
geometric configuration 
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Fig. 7: Drawing the perpendicular 
bisector of segment QR 

 

Later, he drew the perpendicular bisector of segment QR that intersects lines L1, L4 
and L3 at S, T, and U respectively (Figure 7).  
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Here, the student moved objects 
within the representation and 
observed path or invariants left by 
other objects. When he moved point 
P along line L1, the path left by point 
S appears in figure 8 
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Fig. 8: What is the locus of point S 
when point P is moved along line L1? 
 

At this stage, the student’s goal was to provide an argument to show that the locus 
actually represents a parabola. It is easy to show that point Q is the focus and L3 is the 
directrix of this parabola. This became an interesting scenario to discuss the classical 
definition of conics. Thus the dynamic environment mediates the construction of the 
definitions and concepts.  
Comments 

An important feature in constructing geometric configurations is that students do not 
have initially a well-established problem to be solved; rather they rely on simple 
objects (line, points, segments, perpendiculars) to build a platform for identifying and 
exploring mathematical relationships. In this case, it is observed that by moving a 
point along a line, a particular path left by other point can be visually identified as a 
parabola. However, it becomes important to provide an argument to actually show 
that the locus corresponds to that conic. Students used distinct arguments to explain 
and “prove” that, in this case, the locus was a parabola. They include verifying 
empirically, using the software, the definition of parabola and other geometric 
arguments. Dragging objects, observing behaviors, formulating conjectures, 
presenting arguments and communicating results seem to be important activities that 
students can practice systematically with the help of dynamic software in order to 
detect and explore mathematical properties. Mathematical objects are, now, evolving 
objects that students constantly explore in terms of using more refined and robust 
resources and strategies. 
Curriculum Transformations 
The use of digital tools seems to offer students the possibility of formulating and 
exploring mathematical conjectures from diverse perspectives. In this context, rather 
than thinking of a sequence of themes or contents to be included in a curriculum 
proposal, what it seems relevant is to structure the curriculum in terms of 
fundamental mathematical ideas and concepts dynamically conceived for students to 
solve problems and use in further studies. Thus, students need to develop 
mathematical resources, strategies and ways of thinking that are necessary to 
comprehend and apply mathematical ideas. It is evident and clear that as part of the 
scaffolding process to conceive of a technology oriented-curriculum, a new way to 
conceptualize mathematical objects and their study is needed. For instance, as 
formalization is relative to the medium in which it takes place, there is a need to 
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reflect on the new ways students have to prove mathematical assertions in the 
classroom. Take for instance, the Hilbert space-filling curve:  
 
  
 
To prove it along classical lines can be an intricate task, but what happens when one 
turns the result into a digital one? For instance, to argue in favor of the validity of the 
theorem, we can translate it: given a (screen) resolution, there is a step in the 
recursive process that generates the curve, that fills that screen. This is a way to 
empower students in order for them to have access to deep results properly translated. 
As Schoenfeld (1994, p.76) stated, “proof is not a thing separable from 
mathematics…is an essential component of doing, communicating and recording 
mathematics”, nevertheless the use of new digital media requires a fresh approach to 
this important mathematical and curricular topic. It is central for a new and needed 
epistemology. 
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The most rapidly growing branch of mathematics is mathematics of computation. 
Today it deals with modern information processing as well as with human reasoning 
and formal acting. Comparatively slow it appears in secondary school curricula. It is 
not evident that computers can effectively support learning in this field, but it 
happened that many key topics of it have been visualised (structural programming, 
parallel processing, interpretation of logical formulas, etc). The visualisation is of 
two kinds: ‘one-to-one’, where all objects and processes of mathematical reality are 
represented on a computer screen, with the only limitations being the object’s size 
and process time, and ‘specialized’, where specific objects and processes are 
represented, but this is enough to form general skills of students applicable for all 
problems of the topic. The major challenge here can be summarized in one word: 
‘integration’. 
Changes in mathematics and changes in civilisation 
Over the last century (starting in 1870s and even before) the content and methods of 
mathematics changed dramatically. One of the most important areas of these changes 
was connected with mathematical investigations of human thinking and acting. The 
first summit of the events was achieved in 1930-s in Gödel’s completeness and 
incompleteness theorems and Church’s thesis. Naturally, the primary results were on 
mathematical thinking (formal mathematical reasoning) and mathematical acting 
(execution of formal mathematical algorithms). They constituted, respectively 
interconnected branches of mathematical logic and theory of algorithms. 
In the following 30 years many results of mathematical logic and theory of 
algorithms were implemented in hardware and software of the rapidly developing 
information industry. In 1930s it was hard to predict development of integration 
circuits, but the “coincidence” in time of ICT and the preceding mathematical events 
are astonishing. The precedence of mathematics appeared further. For example, the 
major concepts of structural programming (constructions, invariants, inductive 
proofs) were fully developed and used for rigorous proof of correctness of a compiler 
by Andrei Markov (Jr.) in the framework of his theory of algorithms based on string 
processing. 
In the next years on the one hand the field of mathematics of computation based on 
mentioned mathematical logic and theory of algorithms became perhaps the most 
massive and rapid development. On the other hand computers became a powerful 
tool of visualisation and became personal. 
We can say that machines of material and energy processing were implementations 
of continuous mathematics, as well as many processes in nature. Computers are 
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today implementations of discrete mathematics, as well as processes of human 
thinking and formal behaviour. We believe that these dramatic changes in 
mathematics and in the world should be resembled in education. As was indicated by 
many people and considered in details by Don Knuth, rigorous thinking on 
algorithms is mathematical and concerns abstract mathematical objects and methods 
of reasoning constitute a special type of mathematical thinking – the algorithmic one.  
There should be a shift from training how to execute routine algorithms that are 
much better executed by machines now to learning, on the one hand how to use these 
machines, and on the other hand, the mathematical basement for these machines’ 
construction, operation and using. 
The content of mathematics of computation on the secondary level 
We believe that the major achievements of mathematics of computation constitute 
today an important part of the general culture. As an example we quote here the 
Russian standards for general school education (1-11) approved in 2004 with minor 
changes for standards that are in the process of development now. 

General notions 

Systems constituted by acting elements, states of elements, signals. Control, 
feedback, stability. Information, information objects of different types 
(symbols, numbers, sounds, images). Universality of discrete (digital, in 
particular, binary) presentation of information, accuracy of presentation. 
Quantity of information. Compression of information. 
Process of information transmission, information transmitter and receiver, 
coding and decoding, distortion of information in the process of transmission, 
transmission speed. 
Storing, transmitting, processing of information in social, biological, and 
technical systems. Information perception, memorising, processing and 
transmitting by living organisms and humans. Value of information. 
Language as medium of presentation for information: natural and artificial 
languages, semantics. Formalisation of description and simulation of real 
objects and processes. Formalisation of problem. Computer simulation. 
Mathematical concepts and their applications 

Transforming of information by formal rules. Algorithms. Different ways to 
describe algorithms, flow-charts. Logical values, operations and expressions. 
Constructing algorithms using names, branching, cycles. Top-down analysis of 
a problem, using sub-algorithms. Objects of algorithmic processes: strings of 
symbols, binary numbers, lists, trees, graphs. Algorithms (the following list is 
flexible): Euclid’s, conversion from binary to digital and vice versa, examples 
of sorting, search (for a winning strategy in the tree of a game). 
Computable functions, formalization of the notion of computable function, its 
completeness. Complexity of computation. Complexity of information object. 
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Non-existence of algorithms. The problem of exhaustive search (P-NP-
problem). 

The quoted approach was a cornerstone in building up Russian curriculum on 
computer science and technology in the mid-1980s. The mathematics of computation 
was originally presented there as a non-computer activity. So, the course was 
introduced in all schools of the Soviet Union and was criticised for “teaching to ride 
a bicycle without a bicycle”. That was evidently correct in the aspect of computer 
technology but was not so true in the aspect of development of algorithmic thinking. 
A little bit later a set of microworlds (see ‘Visualisation’ below) was developed for 
8-bit, 32K or 64K memory computers.  
Can computers help? 
The content given previously can be changed in different traditions cultural and 
technological surroundings. At the same time, the core essence of this content is 
invariant and associated with the concepts of discrete objects and discrete processes.  
The very natural idea of computer application in learning and teaching the field of 
mathematics is that computers can represent any discrete object and discrete process. 
So, if a specific process deals, for example with numbers, the numbers can be stored 
and transformed by a computer. So, we can compare the result of implementation of 
our algorithm in the computer with our intention and verify our design. But the most 
important reason for using computers in learning mathematics of computation is 
visualisation. 
Visualisation 
Visualisation is considered as one of the most powerful processes in mathematical 
discovery and mathematical education. There is a long discussion on different styles 
of mathematical thinking, but in any style there is a space for visual presentation of 
objects and processes.  
So, the background idea of visualisation in learning mathematics of computation is to 
find such specific environments, or micro-worlds, rich enough to present important 
features of algorithmic processes and algorithmic constructions.  
The Turtle 
One of the first and the most famous microworlds is the microworld of Turtle. The 
Turtle lives on a plane – a finite part of an infinite plane, or the same assembled as a 
torus, or a potentially infinite plane. The Turtle can act – move forward to a given 
distance and turn on a given angle. This environment today is extended to different 
directions and has different applications in primary and secondary education: 

• A creative environment for children’s self-expression and development 
through making texts, pictures, and animations; 

• An environment for learning concepts of mathematics such as angle, polygon, 
approximation of a circle by a polygon, probability, etc. 
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• An environment, where a child can control the Turtle (primarily in its moves in 
the plane on the computer screen). The control can be direct and immediate: 
‘command – action’ or, on the later stages, programming it. 

The programming is done in Logo language. The language was originally developed 
by mathematicians and AI researchers from a military oriented company, BBN, and 
Seymour Papert, who joined them. Seymour’s inspiration made the Logo community 
the strongest one in the field of advanced approaches of using computers in schools. 
Logo became associated with the Piagetian constructivist and Papert constructionist 
philosophy of education. 
Turtle microworlds as well as programmed Drawer were used in Russian schools 
among other microworlds (the Robot, discussed later was the most important one). 
Over the last decade a version of Logo (called Icon Logo, or LogoFirst) was 
developed in Russia. The main feature of it is that programming starts there without 
and before textual literacy. Programming itself (not execution of programs only) 
became visual: the primitives of the language are iconic. 
Through visualisation Logo helps students to understand better such important 
essentials of algorithmic thinking as iteration, recursion, top-down analysis.  
The robot and structural programming 
The natural behaviour of the Turtle does not assume conditional branching. Of 
course, we can add to it some additional features like seeing a colour of plane 
underneath. But there is something more natural and more intriguing that involves 
conditionals. This is the microworld of Robot in the maze.  
It needs some additional investigation to find out all origins of this creature. Some of 
these are Slovakia, formerly – part of Czechoslovakia – the native land of robots – 
fantastic creations of great Czech writer of the XX century Karel Capek (pronounced 
Cha:pek), Cornell University where Karel the Robot was used to teach students 
structural programming starting from the beginning of 80s, and Moscow state 
university, where the same happened approximately at the same time, and then was 
used in mid-80s to teach algorithmic thinking to 2.5 million Soviet high-school 
students. 
Let us go to the essence. A maze is a rectangle surrounded by walls. It can also 
contain walls inside. The only limitation is: all walls are vertical or horizontal 
segments with integer ends. The Robot is a creature (or a machine) with four options 
of moving: by one unit up, down, right, left, and four senses: to see a wall 
immediately up, down, right, left. (This definition can be changed, for example we 
can expect the robot to turn to four directions and to see a wall in front of it.) A 
problem is usually formulated as: “program the Robot to move from one position to 
another”. For example, the first position can be unknown a priory, and the second 
one can be upper-left corner. Even more important is that the maze can be also un-
known beforehand, but some restriction on the wall’s position can be given, for 
example: there arbitrary number of wall segments, but all should go in the vertical 
direction. These unknown parameters represent the major feature of algorithms and 
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algorithmic thinking: to invent a general instruction of behaviour that is valid for a 
possible infinite number of situations. 
In the practical school context it is important that the programming, on the one hand 
is presented as text construction, like in Logo and ‘adult’ computer languages. On the 
other hand, the construction is done by using ‘building blocks’ in a structural way, 
not letter by letter. The result is also presented in a structured, visualised way. In the 
process of execution the executed command can be indicated on the screen. 
Investigating different kinds of restrictions we can obtain a big variety of problems 
constituting a natural space of tasks of increasing difficulty up to the problems of 
proving impossibility (non-existing of algorithms). In this case the non-existence is 
not caused by the general limits of computability but by specific limitations of the 
computational model. One more dimension of variety here is the different primitives 
of programming, for example, numeric variables can be permitted or not. 
Lacking the creative power of Logo, as an instrument of doing something relevant 
for the world outside mathematical education, the described microworld is a very 
important environment to learn the basic methodology of structural programming. 
The builder and parallel programming 
One more visual environment used in Russia for teaching algorithmic thinking is a 
microworld of building construction. The process of construction (to be programmed 
by a student) consists of putting together building blocks, and can done in parallel by 
different brigades. A problem is an assignment to build a construction in the shortest 
time with a given number of brigades. 
This microworld is interesting enough and provides some space for variety of 
problems for secondary school. Its major limitation is connected with the fact that 
one program is being constructed for one building only, it is not assumed to work in 
multiple situations. 
An IT extension: Controlling real moving objects  
The natural extension of the visualisation idea can be called “materialisation”. This 
means controlling and programming, not events inside a computer, not visible on a 
computer screen only, but happening in physical reality. For example, a “real” 
electro-mechanical turtle is a popular device in British primary and secondary 
schools. 
An additional dimension comes with an opportunity of assembling the moving 
models from blocks of a construction set. Such construction sets are produced by 
LEGO and other companies. 
Turing Machine 
In the mathematics of computation traditionally more simple devices than abstract 
computers are considered such as Turing machines. We think that considering them 
could be helpful in the development of algorithmic thinking in connection with 
hardware – software relations, understanding more about complexity, specific 
syntactic algorithms, etc. At the same time, Turing machines in their standard 
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presentation are very far from being intuitive. A group in Stanford University 
developed a visualization of the machines. As they write in [1]: 

‘In Turing’s World, a collection of graphical tools lets you design Turing machines by 
directly drawing their state diagrams. When you run a Turing machine in Turing’s World, 
the operation of the machine is displayed graphically, both on the tape and in the state 
diagram window. On the tape, the read/write head moves, making the changes required by 
the machine you’ve designed. In the state diagram, the nodes and arcs highlight to show 
the changing state of the computation. Turing’s World also allows students to display the 
text-based “4-tuple” description of their machines, though we have found that they rarely 
do.’ 

The Turing machine looks out of the scope of the secondary education. At the same 
time finite automata presented in a visual way on computer screen can naturally fit 
into mathematics of computation for secondary and even primary school. (There 
were several attempts to do this even without computer.) So, first – finite automata 
can be presented similarly to Turing machines, second – in the case of finite 
automata are in a course, it is easier for Turing machines to appear. 
The Life Game 
Several attempts were made to implement the microworld of the Life Game of 
Conway. It looks like this microworld can be used not only in mathematics of 
computation study, but also as an environment for student’s investigation of a 
‘natural science’ phenomena (in this case – phenomena of artificial nature). These 
phenomena resemble different phenomena of biology and can be productively 
investigated even on the primary school level. As in other cases it is helpful to start 
with pen and paper exercises and then pass to the computer environment. 
Pre-computer experiences in algorithmic thinking 
Algorithmic thinking and other elements of basic mathematics of computation can be 
developed a non-ICT context. Formally it is outside the subject of the study but we 
believe that some of the non-computer activities should be integrated into the 
learning process, for example:  

• Students can count seeds in a jar and learn divide-and-conquer principles 
• Students can sort LEGO bricks and design sorting algorithms to be 

implemented on computer 
• Students can play games with complete information, construct winning 

strategies, possibly using tree of the game, etc. 
Static microworlds of logic and mathematics of computation 
Some problems concerning objects of mathematics of computation can be pretty 
sophisticated and importantly not being immediately associated with any process. For 
example, it can be a problem of finding the truth value of a formula, or constructing 
an object satisfying a given condition, etc. The objects can be visualised on the 
computer screen.  
‘Tarski’s (Micro)World’ was designed by the mentioned team from Stanford 
University. In this microworld as in some others (Robot etc.) a virtual interpretation 
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of some general concepts is given. Here the general notions of relation is interpreted 
via a handful of (quasi) spatial relations: ‘to be a cube, ‘to be a pyramid’, ‘to be 
small’ ‘solid (or ‘block’),  ‘A is back of solid B’, etc. It looks very limited, but the 
microworld happens to be rich enough to develop in its visual context the major 
skills and heuristics, associated with first-order logics. Visualisation here gives a 
model for a formula and used also in formula interactive analysis. 
Let us mention also another product of Patric Suppes group at Stanford – it is 
Hyperproof. Being beyond secondary level it gives an interesting example of 
visualising syntactical structures and inferences. 
A different example is given by the Informatica microworld, used in teaching basics 
of discrete mathematics including mathematics of computation in thousands of 
Russian schools for last decades. In this case the microworld contains and graphically 
presents on a computer screen such objects as strings, bags, trees and tables (of 
beads, symbols, digits, numbers etc.) as well as provides graphical tools to construct 
objects and to operate with them: add bags, or unite them (maximum operation), 
represent bag as a table, multiply to bags (as algebraic expression), concatenate 
strings, etc. This microworld is supported (or, in many cases, substituted) by ‘pen-
and-paper microworld’ of graphical objects. In this case it is interesting that, as it 
happens in algebra with graphics or in dynamic geometry, the objects of a child’s 
work can be always presented on the screen with the size of them being the only 
limitation. Next to this there are Tabletop and, especially, Tabletop Jr. of TERC – 
instrument for data and operations on data visualising. 
Games 

It would be interesting to construct microworlds for specific (possibly, to be 
invented) games (of two persons with perfect information), where, on the one hand 
dynamic strategy thinking is developing, and on the other hand, understanding of 
quantifiers as opponents’ moves appears. A known example is the Nim game. Here is 
one more brilliant case of such a game from the field of recreational mathematics: 

Let us have a round table and two players with infinite stock of congruent 
coins. They put coins in alternative moves, one by one, non-overlapping. The 
player that has made the last move wins. 

The known winning strategy (to be given in the conference talk) proof needs 
discussion of termination of computational processes, invariants, and inductive 
reasoning as well as general mathematical concepts of symmetry. 
In this field of recreational mathematics and Olympiads there are more problems in 
the field (not games only) that can be visualised and studied with computer. 
Not covered yet 
Naturally, not all topics of mathematics of computation are visualised or can be 
visualised at our level of understanding today. At the same time, we remember, that, 
for example, Euclid’s algorithm was developed as a geometric one. So, experience in 
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visualisation of actions in dynamic geometries (Geometer’s Sketchpad, etc.) can be 
used here. 
Conclusions 

As we can see, there are several virtual environments visualizing objects and 
processes of mathematics of computation including logic and algorithms on the 
potentially secondary and, even primary, level. Some of these environments represent 
some part of mathematical reality in a full form, others are of generic nature, where 
you see and work with some specialization of general notions (e.g. structural 
programming) but can develop general skills, needed in a general context. 
The important interconnected tasks for the future work are: 

• To redesign primitives and interfaces of the microworlds 
• To implement the microworlds in the modern operating systems’ coding, 

possibly, as open source Java, or Flash, etc. code, to cover mobile devices as 
well 

• To provide some kind of unification over the microworld (in the interface 
details, terminology, etc.) 

• To design specific topics and whole mathematics of computation part of the 
modern mathematical curriculum 

• To integrate math of computation into mathematical curricula and into general 
education 

• To reconsider the goals and content of mathematical education on the basis of 
ICT technology, mathematics of computation and modern society needs. 
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The main thesis of an article by Davis and Simmt (2003) is that “mathematics classes 
are adaptive and self-organizing complex systems”. Several years ago I examined 
three technology experiences in light of that thesis, to determine how software, 
organization, and task impact the blossoming of a complex learning system in the 
lab-classroom. Since that time I have continued to think about the implications of 
these ideas in the broader context of implementing, and helping preservice teachers 
implement, technology in teaching mathematics. Complexity theory, as applied to 
education, is a relatively new theoretical framework; however, I believe that it is very 
appropriate. Based originally on biological models, it offers a perspective from 
which to examine multiple intertwining relationships, emergence of new ideas from 
seemingly insignificant events, the creation of unexpected connections, and the 
development of student understandings that are more than the sum of the parts. In 
this paper, in light of some ideas from complexity theory, I reflect on my own 
teaching experiences with technology, and the consequences for my research. 
 

 

For us, perhaps the most important conclusion of complexity science is that, in any 
learning system, complex co-adaptive activity is always happening across several 
levels simultaneously. It is impossible to affect a part of the complex unity without 
affecting its global character, and vice versa.” (Davis & Simmt, in press) 

 

In addition to familiar examples such as anthills, brains, and cities (Johnson, 
2001), Davis and Simmt (2003) argue that mathematics classrooms are instances of 
complex systems - self-organizing, self-maintaining, adaptive phenomena. Like 
living organisms they grow and develop, responding on many levels to even minor 
changes. Davis and Simmt identify five necessary (but insufficient) conditions for 
such a system to be able to learn – internal diversity, internal redundancy, distributed 
control, organized randomness (in recent work (Davis & Simmt, in press) “enabling 
constraints”), and neighbour interactions. Complexity theory says nothing about the 
quality of this learning; for example, a class may learn to be apathetic; but it does 
provide a perspective for analysing the complex entity that is the classroom. 

I suggest that, in a similar way, complexity theory offers a powerful 
framework for analysing teaching with technology. I believe that it can help us 
explain some of the problems we face, particularly with regard to implementation. 

Research has shown that appropriate opportunities to use technology help 
students develop a deeper understanding of mathematical concepts (cf., Clements & 
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Sarama, 2002; Jones, Autumn 2002; Ruthven, 1999). As a result, school districts are 
providing support; for example, the Ministry of Education in Ontario, Canada has 
licensed Geometer’s Sketchpad (GSP) and Fathom for student use, and has released 
new curriculum documents that mandate the use of technology in elementary and 
secondary mathematics. School boards in Ontario have responded with funds for 
inservice and the purchase of hardware and graphing calculators. Yet in many 
(perhaps most) Ontario math classes, technology is used infrequently or not at all.  

The case in other provinces in Canada – and in other countries is similar. For 
instance, Artigue (2000) notes that despite the active support of digital technologies 
by the Ministry of Education in France, integration at the secondary level has been 
minimal. She proposes that this is because: 1) computer technologies, though having 
strong scientific and social legitimacy, have poor educational legitimacy; 2) issues 
around the “computerisation” of mathematical knowledge have been underestimated; 
3) opposition between technical and conceptual dimensions of mathematical activity 
(which is not new) has been affected by the introduction of technologies that make 
the technical aspects easier; and 4) and the “complexity of instrumentation 
processes”, i.e., dealing with the impact (both mathematical and technical) of 
technological tools, has been underestimated. (p. 9) She says: 

 

Various characteristics of the mathematical culture and various constraints act as 
obstacles to integration and the strategies spontaneously developed by the educational 
system are not necessarily the most adequate. A better understanding of the way these 
characteristics and constraints shape teaching and learning processes in technological 
environments and the way they mutually intertwine, is today more than ever a necessity 
for research. (Artigue, 2000, p.9)  

 

Artigue’s analysis indicates that introducing technology in (secondary) 
mathematics has been difficult because of the “intertwined” interactions of numerous 
factors – both mathematical and technical. That is, the situation challenges our ability 
to use a straightforward cause and effect analysis; I suggest therefore that complexity 
theory may be an appropriate theoretical framework within which to investigate 
issues around implementation.  

In a small way, I have used complexity theory to examine some experiences in 
my own practice of teaching with technology.  

Several years ago I wrote about three technology activities I had used with my 
high school students: a linear transformations project using a spreadsheet, a set of 
proof tasks with JavaSketchpad, and an independent study that made use of a variety 
of technological applications – Maple, AsEasyAs, and GSP. I used complexity theory 
as a framework to consider the question: Can we – or how can we – nurture the 
development of a “learning system” in a technology-supported environment? The 
paper examined the three mathematics activities with respect to the five conditions 
mentioned earlier. My analysis suggested that these conditions were present to 
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varying degrees but were affected in the lab environment by: a) lab configuration; b) 
program ease of use and/or depth of options; c) task design; and d) student 
opportunities to share knowledge with peers, and to communicate with the teacher. 
While these practical concerns are still important, I want to focus on other aspects of 
one activity.  

I found that the independent study project environment was the only one that 
satisfied all the conditions for the development of a learning system. The broad range 
of student knowledge (mathematical and technical) guaranteed sufficient internal 
diversity for students to move ahead; shared understandings of mathematical topics, 
common terminology and familiar algorithms provided enough redundancy for 
meaningful communication; the out of class timeslots automatically allowed for 
distributed control, and the individual topics provided the matter over which to 
exercise that control. Although the class did not focus on a single goal, shared 
understandings emerged with regard to the use of technology, and the nature of 
mathematics; for the first time many students saw mathematics as a creative 
endeavour. With regard to “enabling constraints”, I saw in the independent study 
project many examples of “serious play” (Reiber, Smith, & Noah, 1998), that is, 
absorbed, intense, self-directed action. I attributed this to the fact that the tasks were 
proscriptive, rather than prescriptive. [Davis and Simmt (2003) note that tasks that 
are proscriptive (i.e., that tell you what you can’t do), allow more options for 
responding than tasks that are prescriptive (i.e., that tell you what you must do).] 
Students in the classes were free to interact with one another and with other pairs; 
their interactions gave rise to new ideas and explorations. In addition, students 
interacted with the software, the hardware, the reference materials, and the 
mathematical topics; all of these interactions provided fruitful opportunities for 
emergent understandings. Learning flourished as the classes ‘gelled’. I wrote: 
 

Observations of the Independent Study Project groups suggest that a structure 
allowing for sharing, play, and individual choice, that involves activities based on 
broadly applicable and adaptable software can result in the emergence of a 
beneficial complex learning system in a technological environment. (Sinclair, 
2004) 

 

A second critical experience involved a group of students in a masters’ 
geometry course.The students in the course were novices to the investigative study of 
geometric concepts on a sphere. Some had gone beyond the Euclidean geometry 
studied in high school; however, even those students viewed geometry as formal, 
abstract, and logic-based. In-class activities focused on the manipulation and analysis 
of concrete models, but early in the course students were briefly introduced to two 
programs that permit the dynamic exploration of spherical geometry concepts – 
Cinderella, and Spherical Easel. There was neither subsequent use of the programs in 
class, nor any requirement that they be used; yet program screenshots appeared in the 
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assignments of some students. Assignment comments revealed that use of the tools 
had contributed to students’ sense of confidence about what they knew and about 
how they could continue to learn. The programs had provided extended opportunities 
for investigation and allowed the students, outside of class, to deepen their 
understanding of spherical relationships by developing stronger mental images. 

This particular group of graduate students had embraced technology for their 
own purposes, and had used it in a natural way – whenever it seemed appropriate and 
in conjunction with other methods. How different from the behaviour of my 
preservice and undergraduate students. [The undergraduate course is designed for 
teacher candidates or those considering teaching, who want to strengthen their ability 
to “think mathematically”. It is not open to those taking other university math.] Each 
year in my courses I encouraged students to use technology. I uploaded activities and 
resource links to the class conferences, gave sessions in the lab on GSP and EXCEL, 
provided tutorial files, and developed assignments that required technology use. 
Despite this support and encouragement, few student projects even hinted at 
technology use, and I heard many versions of, “It’s nice, but…”  

Nevertheless, my own delight at seeing 3D graphs in Maple, my secondary 
students’ excitement over playing with mathematical ideas, and the graduate 
students’ unexpected and natural use of software to explore spherical geometry, led 
me to look for a new approach to teaching with technology. I pulled back from my 
focus on technological tasks to consider the broader realities. 

We know that technology is important to students. They surf the internet to 
find information; upload, download and edit digital photos and graphics; use word 
processing software to prepare assignments; and talk to one another via email and 
chat. However, it isn’t always part of their mathematical experience. Aside from 
using scientific calculators, many students have never used technology to do math.  

But my students had used technology for mathematics. In the short time 
allotted for a pedagogy course (36 hours) I had provided opportunities for them use 
technology to make connections between numerical, visual, and symbolic 
representations, to work with multiple examples and to examine the behaviour of 
mathematical objects. They had responded enthusiastically to activities in the lab – 
but I recognized that they still did not use technology in their teaching or in their own 
mathematical work.  

What about the teachers at their placement schools? We know that teachers use 
technology in their own lives. They use the internet, use word processing software to 
prepare assignments and tests, and many regularly use email and chat. But teachers 
often see technology as an add-on in teaching mathematics. They may do specific 
technology activities, but deep down they ‘know’ that they can teach math without it. 
After all, if they couldn’t – they wouldn’t have learned mathematics. My students 
admitted that technology use was not being modeled in their host classrooms. 

My research has focused on the design and use of technological tasks for 
mathematics -- and I want to emphasize that these are important areas of research and 
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development work -- however, on reflection, I recognized that in my teaching I was 
not using technology in a natural way, reaching for it at any appropriate time as I did 
in my own mathematical work. Instead, I was teaching applications of technology.  

This year I set out to make technology an integral part of my teaching. In 
addition to scheduling lab sessions I decided to use technology whenever 
appropriate, throughout the course. To ensure that I would follow through, I ordered 
a computer and LCD projector for each session, and planned a very brief use of 
technology for each class (e.g., showing pictures of tilings, examining an applet, 
using a GSP sketch or an EXCEL graph to start a discussion.)  

Over the past four months I have noticed changes in my own attitude and 
practice. Although I only plan a brief use of technology for each class, I have found 
myself using other technology examples, accessing the Internet to explore an idea 
that has been raised, or creating a sketch or graph “on-the-fly” to illustrate a point or 
to provide a shared image for a class discussion. Similarly, while I have not collected 
data in a systematic way, I have noted differences in students’ attitudes towards, and 
use of, technology. For instance, four out of twenty students in one class handed in 
an assignment that contained GSP images (they had obtained Geometer’s Sketchpad 
on their own through the Faculty library); another student asked if she could submit a 
GSP file with an assignment. Many have requested that I upload examples to the 
class conferences, and two have asked for my advice on preparing lessons that made 
use of technology for their math practice teaching.  

It is also clear that the students, through observing, have gained an 
understanding of how to use the software, and how technology can be used to explore 
mathematics. For example, during class students have asked me to create a GSP 
sketch that has particular features (e.g., a quadrilateral with a right angle), to alter a 
sketch or graph for them to analyse the result, and to surf to a particular website they 
have discovered. Thus far, two of the three classes have had lab sessions in which 
they used GSP. Students who had already obtained a copy of Sketchpad were well 
beyond the beginner stage, but even those who hadn’t used the program were aware 
of its capabilities and the contents of the menus. I was impressed that most students, 
after a paper-folding experience and a discussion of the properties of a rhombus, 
were able to use Sketchpad to construct a rhombus with very little help.  

 

Reflection 
Complexity theory played a large part in my thinking as I examined my own 

practice. It enabled me to step back and see the broader picture and to consider 
whether the conditions that Davis and Simmt identified were met. Thinking about my 
classes this way led me to conjecture that these ‘learning systems’ were not ready to 
embrace the use of technology – they lacked a shared, foundational language and 
experience in the area. As a result I concluded that there would be few opportunities 
for neighbouring ideas to bounce off one another, and even fewer opportunities for 
new conceptions of what it means to learn mathematics, to emerge. My decision to 
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build foundational technological experiences for the students by embedding 
technology use in my own teaching grew out of this analysis.  

The experiences of this year have caused me to rethink a project that I, along 
with several other researchers, will be starting soon; it involves evaluating the use of 
a linking system for graphing calculators with grade 9 applied students [the applied 
stream leads to apprenticeship and some college programs]. Originally the plan was 
to inservice a number of teachers on the use of the linking system, encourage them to 
use the system in their classroom, and then to use surveys, interviews and 
observations to evaluate the impact on student achievement. However, Davis and 
Simmt note that “it is impossible to affect a part of the complex unity without 
affecting its global character and vice versa” (in press). If math classes are complex 
learning systems, changes will impact the environment at many levels. An 
implication for research is that any intervention must be designed to take into account 
the possible effects on the whole system, especially in respect to the conditions that 
have been identified as necessary for a system to learn. In the revised proposal 
students will be expected to take their calculators home; the linking system and 
projection equipment will be available and switched on for every meeting of every 
class in the experimental group; and parents will be interviewed and surveyed. 
Teachers will receive professional development sessions on using the technology but 
also on developing mathematical ideas with applied students. The additions address 
the need to create an environment in which technology will be embedded. The 
broadened analysis recognizes that the changes will impact many aspects of the 
learning environment. 

 
Conclusion 

Though these comments on my teaching practice are subjective and limited in scope, 
I believe that they illustrate that the concept of a complex learning system is a useful 
construct for thinking about teaching with technology. While such topics as task 
design, student interactions, and developing understanding of particular mathematical 
concepts are critical foci for research, complexity theory challenges us to see the 
whole system in a new way. Based originally on biological models, it offers a 
perspective from which to examine multiple intertwining relationships, effects that 
are magnified by feedback, emergence of new ideas from seemingly insignificant 
events, the creation of unexpected connections, and the development of student 
understandings that are more than the sum of the parts.  
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Much has been written about technology in the mathematics classroom, in the 
computer lab, and in students' homes. Such technology includes calculators, 
SmartBoards™, computers, Internet access, VCR or DVD recorders or players, 
digital cameras, computer projection apparatus, and other technological solutions to 
particular teaching and learning needs. Many schools, especially those in remote, 
often impoverished locales, cannot provide such a cornucopia of goods and services, 
but there is one technological resource that can provide students in almost any 
location with the very best learning opportunities available anywhere in the world. 
This technology is known as Distance Learning, and even at its most basic level, any 
school with Internet access can open new doors of opportunity for its students. When 
access to interactive video systems can be achieved, Distance Learning can enable 
those students to become acquainted with world-class mathematicians and scientists.  

 

 All schools, including the rural schools which seek to educate almost one third 
of the children in the United States (Beeson & Strange, 2003), make decisions about 
the use of technology on a more or less continual basis, and all schools have similar 
factors to consider — the population they serve, the resources at their disposal, and 
the technological expertise of their staff. According to a recent NCES report, rural 
schools are leaders in U.S. education in at least one area of computer based 
instruction: distance learning (Setzer & Lewis, 2005). In many ways, schools in the 
rural United States are similar to schools in developing countries that have limited 
fiscal resources for education and may be remote geographically. The intent of this 
paper is to provide information and insight into some of the ways that distance 
learning can benefit mathematical learning opportunities in such schools and how 
this technology might be procured and utilized.  
 In the NCES report, distance learning courses are defined as those offered in a 
district with the teacher and the students in different locations. Approximately 46% 
of rural districts in the United States have students enrolled in distance education 
courses, and two-way interactive video, the crème de la crème of distance learning, is 
the technology most often used as the delivery method (Setzer & Lewis, 2005). With 
two-way interactive television, or I-TV, distance learning is instructor-led, class-
based, and synchronous — providing real time instruction and communication 
(Yaunches, 2004).  
 As typically implemented, I-TV is the technology that most closely resembles 
a traditional classroom, and in thousands of rural schools, educators are discovering 
the instructional benefits and cost effectiveness of this technology. According to a 
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report about distance learning opportunities for elementary and secondary students, 
of the 15,040 school districts in the United States, 5480 (44% of secondary schools 
and 36% of all schools) had students enrolled in distance learning classes. 
Administrators were so pleased with the results that 72% of participating schools 
were planning to expand their distance learning programs. Fifteen percent of students 
in distance learning courses were taking mathematics. Nationwide, 14% of students 
in distance learning classes were taking Advanced Placement or college level 
courses, but in more than half (53%) of the rural schools offering distance learning 
classes, students were taking such accelerated offerings. Similarly, for 56% of the 
schools in areas with high poverty, where distance learning was offered, students 
were taking advanced courses (National Center for Education Statistics, 2002). This 
suggests that for students in rural and economically stagnant areas, distance learning 
is vitally important for gaining access to the highest levels of academic work.  

Research comparing distance learning of mathematics to traditional learning 
has been limited, usually at the college level, and often indicates there is no 
significant difference in achievement; but most mathematics educators in rural 
schools would quickly point out that for rural schools, the question is often not a 
choice between traditional and distance instruction but whether an advanced 
mathematics course can be offered at all.  
 A driving force behind rural schools' embrace of distance learning, beyond the 
ability for small rural schools to provide an expanded mathematics curriculum for 
their students and continuing professional development for their teachers, is that 
distance learning is often an effective response to the ever-looming threat of 
consolidation (Yaunches, 2004). Nearly 54% of rural and small town secondary 
schools in the U.S. have enrollments of 400 or fewer students (Hoffman, 2003), and 
state legislatures often turn to consolidation of schools or entire districts in an attempt 
to cut costs and provide better educational opportunities. Research has shown, 
however, that small schools can be effective, with lower dropout rates and higher 
percentages of students graduating (Hobbs, 2004); and, as it turns out, attempts to 
lower costs through consolidation almost always fail (Rural School and Community 
Trust, 2003). The preservation or demise of small schools is a vitally important issue 
for many communities, and providing distance learning opportunities for students, as 
opposed to pursuing consolidation strategies, certainly seems to be a more effective 
solution to the problems spawned by isolation, teacher shortages, and fiscal 
pressures.  
 Having limited numbers of students interested in taking an elective 
mathematics course presents challenges for school administrators who have to 
balance demands for classroom space, teachers, and other resources — and without a 
distance learning alternative, such requests often must be denied. Distance learning 
programs can provide access to such coursework, even for just one or two students. 
Students in need of remedial work, as well as those ready for advanced mathematics 
courses, can benefit from these offerings. At most schools, even those with limited 
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technology, students can be directed to computer resources on an as-needed basis, 
before, during, and after school. Because many colleges and universities in the 
United States offer distance learning courses, high schools with this technology can 
offer dual enrollment for students who are ready for college-level mathematics but 
have not graduated high school.  
 Some schools have found that distance learning can provide a virtual schooling 
alternative across the curriculum. Alternative school programs are commonplace 
throughout much of the United States, many of them relying on computerized 
instruction of some sort; and the high school in Cairo, Georgia, has a novel approach 
to the problem of students who are unable to meet traditional requirements. These 
students spend the school day in a computer lab at Cairo High School taking on-line 
courses offered by Griggs University in Maryland; but this is not a remedial or 
tutorial program. As soon as they have enough credits to complete graduation 
requirements, the participating students receive a high school diploma from the state 
of Maryland (Williams, 2005).   
 Web-based instruction generally refers to distance learning as well as 
instructional programs that include on-line sites for access to data sets, software 
applications, or other instructional materials. Unlike the fixed content in conventional 
computer-based instruction (CBI), Web-based instruction can be modified to meet 
specific needs, is accessible from almost any location, and can be linked to related 
sources of information — factors that establish what has become known as "anytime, 
anywhere" learning. 

Ultimately, successful integration of any technology, including web-based 
instruction, into the mathematics curriculum is dependent on teachers and 
administrators who embrace new technologies and are willing to participate in 
professional development programs designed to help them take advantage of the 
benefits and opportunities embedded in computer-based learning (Huffaker, 2003). 
Much of the research about technology integration assumes that once technological 
tools are in place, everyone will enthusiastically support technology-based 
instructional methods; however, this does not usually occur without a conscientious 
effort by school officials to address a multitude of issues. Schools must explore 
issues dealing with professional development, equitable access to appropriate 
hardware and software, Internet access and controls, and out-of-class availability of 
computers (Alexiou-Ray, Wilson, Wright, & Peirano, 2003).   
 Providing support to teachers may involve extensive and on-going professional 
development. Many distance learning providers expect that a teacher will be 
available to assist students with the course content as well as the technology, and 
those teachers often need additional training – often through web-based professional 
development programs. The InterMath70 Project, a collaborative effort of The 

                                           
70 InterMath web page: http://www.intermath-uga.gatech.edu/homepg.htm 
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University of Georgia, CEISMC - Georgia Institute of Technology, and regional 
technology centers in the state of Georgia, funded in part by the US National Science 
Foundation, is one functioning example of a web-based professional development 
resource for middle school mathematics teachers. InterMath focuses on building 
teachers' mathematical content knowledge through mathematical investigations that 
are supported by technology. The Project includes a workshop component as well as 
an ongoing, web-based, support community that includes a lesson plan database and 
a discussion board.  

Clearly, all of this technology costs money, a commodity often hard to come 
by in rural areas. Initiatives such as the e-rate program, which is a 
telecommunication, Internet access, and internal networking discount program 
administered by the Federal Communications Commission, and technology challenge 
grants from a wide range of sources can alleviate some fiscal difficulties. Many 
school districts band together to develop distance learning consortiums, establishing 
partnerships with other schools, higher education partners, and/or other outside 
vendors to provide cost effective options for distance learning by sharing teachers, 
maximizing the benefits of the I-TV network investment, sharing costs of operations, 
combining classes across multiple schools, providing access to professional groups, 
and maximizing the use of technology by addressing objectives for athletic, 
administrative, health, and other educational staff (Hobbs, 2004). 
 After receiving a grant in 1992, the North Carolina School of Science and 
Mathematics (NCSSM) developed a distance learning program with the goal of 
distance learning becoming a school outreach program. They began with the delivery 
of three courses, AP American History, Precalculus, and Science of the Mind, 
utilizing one-way video and two-way audio. In 1994, NCSSM became a state-funded 
provider of educational programming to teachers and students, utilizing the North 
Carolina Information Highway. Now, with two-way video and audio, their system 
supports full interactivity between school sites and teachers and among school sites 
with each other, sharing resources and curriculum. Through distance education 
NCSSM can provide rural and isolated areas of the state with courses, enrichment 
programs, paired teaching collaborations, workshops, and graduate level courses 
(The North Carolina School of Science and Mathematics, 2002).  
 In Florida, the Florida Virtual School (FLVS) was funded through a $1.3 
billion dollar initiative to ensure that the project did not threaten general education 
funding. Now, while many other states struggle to maintain a virtual-schooling 
option for their students, FLVS has a substantial revenue stream, generating 
approximately $500,000 in profits during 2004 (Wood, 2005). The advance 
governmental support enabled FLVS to provide educational opportunities not only 
for students in Florida but also for students around the world as FLVS has joined the 
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ranks of courseware entrepreneurs, selling to other schools its curriculum and 
offering franchises with hardware, software, curriculum, and professional 
development for teachers (Wood, 2005). 
 Rural schools are not alone in their effort to take advantage of grants as a 
means of financing technology to meet the special needs and challenges facing rural 
educators. In a press release from Merrill Lynch in December 2004, it was 
announced that students in Pennsylvania, Ohio, and Georgia will benefit from a new 
$5 million grant from the U.S. Department of Education's Office of Innovation and 
Improvement to fund the development of a national model for increasing educational 
opportunities for students attending small and rural schools.  
 Over the next five years, the Association of Education Services Agencies 
(AESA) and Catapult Learning, LLC will establish a streamlined contracting and 
purchasing system so that small and rural school districts will have greater access to 
high quality supplemental educational services (PRNewswire, 2004). These 
supplemental educational programs are an integral part of many districts' school 
improvement plans, especially in regards to the provisions of No Child Left Behind 
(NCLB). During the pilot program, 2,300 Pennsylvania, Ohio, and Georgia students 
will receive live, individualized, direct instruction delivered through Catapult 
Learning's online tutoring system (PRNewswire, 2004).    
 Distance learning is not a fad, nor is it a panacea for all of the shortcomings of 
the traditional mathematics classroom, but all evidence indicates that its widespread 
adoption is likely to continue into the future, with students accessing the technology 
at school, public libraries, and their homes – perhaps even via their cell phones. For 
their very survival, rural schools have to provide this technology. Issues such as 
curriculum controls, accreditation, course evaluations, teacher certification, 
accountability, academic integrity, Internet filters, per-student funding, preservice 
teacher training, and professional development need to be addressed as distance 
learning becomes a more substantial part of students' educational experience. 
 There is no benefit to be derived from ignoring the fact that technology is 
essential to today's education environment. In the United States there are ways to 
fund it and ways to train staff to utilize it; but schools, rural and otherwise, need to 
spend their money wisely, critically examine research reports, and realistically assess 
the ways in which various technologies can attend to the needs of the students in their 
schools. In an upcoming research effort, the first author of this paper will be 
examining in depth the mathematics program in a rural school in the southeastern 
United States, and of particular interest will be the extent to which that school, 
located in an area of extreme poverty, has been able to provide access to Web-based 
instruction, including distance learning, to enhance learning opportunities for its 
students.   
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This paper addresses the theme of designing learning environments and curricula 
with a focus on geometry. It approaches the theme by first analysing role(s) that 
digital technology plays in learning by considering the multiple meanings of the 
microworld concept. Highlighting the fundamental role that pedagogy plays in a 
microworld, the paper proposes a descriptive theoretical framework derived from 
Activity Theory to capture those meanings. After discussing the close epistemological 
relationship between technology and the logical structure of geometries, the paper 
compares the differences between Euclidean dynamic geometry environments and 
turtle geometry, and their implications for school curricula. Finally two principles 
for designing digitally-based environments for geometry are illustrated in the case of 
non-euclidean turtle geometry: learner-centred development of tools and activities 
that mediate understanding in specific geometries, and the use of an iterative design 
process. 

Introduction 
What is the relationship between mathematics and digital technologies? Central to 
this paper is the theme of designing digital environments for learning geometry, and 
the dynamics of the relationship between technology and epistemology. The paper 
approaches the theme by considering how designing learning environment using a 
microworld paradigm relates to pedagogy- conceptualised using aspects of Activity 
Theory-and the relationship between of digital technology, geometry and learning. 
Key aspects of designing learning environments for geometry are illustrated by the 
case of a turtle-based microworld for non-euclidean geometries. 
Microworlds and pedagogy 
Papert’s seminal notion of a microworld provided learners with computational tools 
to engage actively in building their own meanings, and control the trajectory of their 
learning. (1980: 122). His turtle geometry microworld enabled young children to use 
powerful computers, with the turtle seen as a transitional object for individual 
learners within a Piagetian inspired framework. More recently he has identified six 
dimensions that draw out the sense in which a microworld contains a model of a 
knowledge domain, a set of tools for learning and a theory of cognitive development. 
(Papert, 2002).  

Other conceptions of a microworld locate its meaning in the relationship between 
learners, technology, knowledge domain and pedagogic setting. Hoyles, Noss and 
Sutherland’s experience in developing a microworld for ratio and proportion led 
them to extend its definition to take account of the pedagogical context. This includes 
“carefully sequenced set of activities on and off the computer, organised in pairs, 
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groups or whole classes each with specified learning objectives.” (Hoyles, Noss and 
Sutherland, 1991:3). More recently, Jackiw and Sinclair (2002) have developed a 
social definition of a microworld which makes whole-class activities the central 
focus of microworld design. Pedagogy takes centre stage in this design process 
which, although present in earlier conceptions, now involves groups of learners and 
teachers. 

Papert’s early notion of a microworld aimed at tapping into the sense of intrinsic 
motivation and play which can drive reflective abstraction. However the implied 
“adidactic” pedagogy led to the “play paradox”-by intervening learners are denied 
the opportunity for pursuing their own interests, yet, learners do not learn what is 
required by the designer. (Noss and Hoyles, 1996). Non-intervention can lead to 
learners not becoming aware of the epistemological base of the microworld, making 
unreflective use of tools, and avoidance of using certain tools or analysis. (Noss and 
Hoyles, 1992). With the emergence of social-cultural views of mathematics and their 
emphasis on the role of context, (Lerman, 2000; Steffe and Thompson, 2000) 
pedagogy has become a central concern in discussion of mathematics education. 
From this perspective, microworlds can be seen as the site of structured social 
interactions that develop over time, involving teachers, learners and technology. 
Modelling Microworlds 
Two implications for designing microworlds follow from these descriptions. First, 
microwolds are systems which can include “capable others” as well as technology 
and learners. A second implication is that a broad range of approaches to pedagogy 
and learning need to be described in connection with microworlds. These span the 
“classic” approach with its focus on individual or pairs of learners using technology 
through to groups working together with a range of resources, including digital 
technologies.  

Edwards (1995) identifies both the structure and function of a microworld in the 
ways that the knowledge domain is made available to learners through the tools and 
activities that they undertake. Drawing on notions of an Activity Structure (Leonte’v, 
1977) and System (Engeström, 1987) microworlds can be modelled to take account 
of their structure, function and variety. As an Activity System, microworlds make 
tools and resources available to both teachers and learners, and structures their 
pedagogical roles and the organisation of their context. As an Activity Structure, 
microworlds have three interdependent levels which connect their purpose and 
outcomes to their structure and sequencing within a context that is constrained by a 
range of factors. Interactions between tools, the roles adopted by the participants and 
their organisation condition the sequence and structure of a microworld’s evolution.  

Figure 1 shows how the outcomes and the structure mutually determine one 
another, and the constraints condition what kinds of structure and outcomes might be 
possible. These could include the type and configuration of hardware available 
ranging from single machines to rooms of more than 12, and types of mathematics 
software DGE, CAS, Graph plotters, browsers, calculators and topic specific 
applications.  
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 Figure 1 Structure of a Microworld. The outcomes, structure, and constraints 

mutually condition one another. 
Table 2 shows spectrum of possibilities for the configuration of tools, roles and 

organisation, drawn from and validated by OECD/CERI (1999) and Hoyles and 
Sutherland (1989), which enables this framework to be used for describing 
microworlds. Combinations of statements from each column can describe a particular 
pedagogical structure, which can be sequenced to give a full account of a 
microworld. 

Organisation Roles Tools 
Teachers working 
with whole group 
Teachers 
teamwork  
Learners teamwork 
Learners working 
individually  
Learners working 
with whole group  

Teachers giving information 
Teachers directing questions 
and answers to reproduce 
facts 
Teachers directing 
conversation 
Teachers stimulating 
reflections or other critical 
analysis 
Learners directing 
conversation with peers or 
teacher. 

Teacher using ICT 
Learners using ICT initiated by 
the teacher 
Learners using ICT initiated by 
themselves 
Learners interacting via ICT, 
initiated by the teacher 
Learners interacting via ICT, 
initiated by themselves 
Learners creating using ICT 
(visual arts, music, 
mathematics) 

Table 2 Spectrum of descriptions for the central section 
A classic microworld might be described by a single phase so that “Learners 

working individually” (Organisation), with “Learners directing conversation with 
peers or teacher.” (Roles) and “Learners using ICT initiated by themselves” (Tools). 
Outcomes for this approach are self-defined by the learners, and they use a single 
machine with appropriate software. Alternatively, there maybe a more complex 
structure with several stages such as Jackiw and Sinclair (ibid.) describe. A teacher 
may start a set of activities that make use of technology in different ways, with 
learners subsequently taking control as they develop their understanding.  
Digital Technologies and Geometries 
Arguably the oldest and most common form of mathematics found in cultures across 
history is geometry. Practical techniques for measuring land, making buildings and 
laying out public and private spaces can be found in writings and sites dating back to 
the dawn of time. (Gray, 1989). Geometry emerged alongside the growth of 
advanced cultures to resolve disputes, and as a means for transforming the natural 

Purpose

Structure & Sequence

Constraints

Outcomes

Tools        Roles

Organisation

Curriculum, Resource Distribution, Policy

Tools        Roles

Organisation
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world into niches suitable for humans. In this sense geometry reverses the Darwinian 
notion of natural selection: humans construct niches in which they thrive rather than 
being selected by those niches. (Berger and Luckman, 1966). 

With the emergence of Euclid’s Elements in the third century BCE, geometry 
became a systematic and organised body of knowledge that provided the paradigm 
for mathematical reasoning. However, the practical origins of the geometry still play 
a significant role: euclidean geometry is synthetic. It relies on the use of a straight-
edge and compass in the process of establishing its results. (Bkouche, 1989). Only 
with Hilbert’s treatment of Euclid at the start of the twentieth century did the 
constructional assumptions and practices implicit in the process of proving results 
become apparent. (Stillwell, 1992). By the same token these technologies also 
constrained what was possible to achieve with the geometry. All problems have to be 
interpreted in a way that the geometry and its technology can be applied.  

This raises the question about what kinds of geometry should be taught and learnt. 
History indicates that euclidean geometry is not unique, and represents a normative 
rather than a natural interpretation of our spatial experience. (Riechenbach, 1957). It 
is arguable that learners need to be able to move between geometries that are 
appropriate to their experience in different situations. Euclidean geometry is 
intimately related to the technology of straight edges and compasses, and has been 
used effectively over “local” distances for millennia. Spherical geometry has been 
used for over four centuries for practical navigation, and is accompanied by a range 
of instruments and mappings for practical uses. (Kreyzig, 1991). Hyperbolic 
geometry and its euclidean models, by contrast, have emerged recently as a working 
tool with the development of computational representations to navigate the web. 
(Lamping et al., 1995). What these examples have in common is the interdependence 
between geometry as a theoretical discipline and the technologies which enable it.  
4. Dynamic geometry-what is it? 
A new generation of computational environments to support learners of euclidean 
geometry combine tools for creating on-screen objects with their direct manipulation. 
Known as dynamic geometry environments,(DGE), they enable learners to construct 
euclidean diagrams, and, through selecting points on the figures, move the diagrams 
around to examine the logical dependences. (Jackiw, 1995; Laborde and Laborde, 
1995; Richter-Gebert, J. and Kortenkamp,1998). DGEs rely for their semantic power 
on learners intuitively identifying DGEs’ functionalities with their own experiences 
of paper and pencil constructions. Most DGEs make use of the technical vocabulary 
of euclidean geometry in menus and icons to represent a range of operations. 
However, there is not a one-to-one correspondence between DGEs and “paper and 
pencil”, since design decisions make DGEs different to euclidean geometry in 
significant ways. (Goldenberg and Cuoco, 1998). It remains to be seen what the 
implications of this semantic disparity are for learners.  

Although DGEs do have tools to animate diagrams and produce loci of points, 
their principle source of dynamism comes from learners who move diagrams 
physically around the screen. Such “external” dynamism contrasts with the internal 
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dynamism of turtle geometry in which movement is an integral part of the commands 
that control the turtle: forward, backward, left, and right. Turtle geometry differs 
from DGEs in two other respects. Although the turtle produces euclidean objects, it is 
conceptualised as syntonic or body geometry. (Papert, 1980). Objects are created by 
learners as they walk the turtle over the shape rather like they might do in a physical 
setting, and express that process in terms of its four commands and other 
programming structures, such as procedures, control structures, and loops. Turtle 
geometry, although it can produce euclidean objects, is essentially differential. It is 
defined locally and intrinsically without reference to an external and global 
coordinate system. (Abelson and DiSessa, 1980). Turtle geometry differs from DGE 
in a second key respect; it’s a space-time geometry. Motion is an integral part of 
defining a turtle’s state, which refers to events rather than spatial objects.  

 The “failure” of turtle geometry to become a central element in mathematics 
classrooms may be viewed not as a lack of will or pedagogic ingenuity. (Noss and 
Hoyles, 1996). The contrast with other more successful dynamic geometry 
environments suggests that the problem lies in the type of geometry that turtle 
graphics enables, and what counts as geometry within the school curriculum. Current 
applications that are normally referred to as DGE (e.g. Cabri, SketchPad, Cinderella) 
are tools for exploring the euclidean model of spatial experience. By contrast turtle 
geometry, which is also dynamic, mediates other kinds of geometry that model our 
spatial experience but do not form part of the school curriculum. It remains an open 
question as to whether the DGE categorisation of software should include just the 
euclidean-based applications.  

Euclidean DGEs success lies in the fact that they have been created principally to 
support the learning of school geometry, since they reproduce and automate many of 
the functions that are routinely undertaken using paper and pencil. Unlike turtle 
geometry DGEs are apparently designed around what their creators perceive as being 
the necessary functionality derived from epistemology of Euclidean geometry, rather 
than what learners might need. (Squires and McDougal, 1994). However given the 
tensions that Hoyles, Noss, and Adamson (2002) identify in relation to what they call 
“superstructure”-what is available to the learner in a microworld, and “platform”-the 
environment in which the superstructure is articulated, focussing on learners is a 
complex and time consuming process. The next section explores the process of 
learner-centred design and its connection to “superstructure” through a specific 
example. 
Learner-centred design: spherical and hyperbolic turtle geometry  
Two principles derived from the construction of a turtle-based microworld for non-
euclidean geometry illustrate the importance of the interplay between design and 
learning. (Stevenson, 1996; Stevenson & Noss, 1999; Stevenson, 2001) 
Learner-centred development of tools and activities that mediate understanding in 
specific geometries. Papert’s turtle was chosen originally for its syntonic link to 
cognitive development, and finding cognitive links for non-euclidean contexts was, 
therefore, a central design issue. The links emerged by working with learners to find 
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what engaged them with the structures of the new geometries. The turtle’s screen 
behaviour was governed by euclidean models obtained from projecting spherical and 
hyperbolic geometry onto the screen “plane”. Three types of links were needed to 
help learners connect with non-euclidean turtle geometry because of the complexity 
of the screen images: physical surfaces, metaphors, and on-screen structures. Tracing 
paths on the physical surfaces with their fingers enabled learners to make sense of 
what they saw on screen by metaphorically linking their action with the screen turtle. 
Using the metaphor “turtles walk straight paths” helped learners identify “straight 
lines” on curved surfaces with straight lines left by the turtle. (Abelson and Disessa, 
1980). A second metaphor used to understand the turtle’s behaviour was the screen’s 
temperature. (Gray, 1989). Spherical geometry projects a surface that increases in 
temperature as one moves towards the screen’s edge, while hyperbolic geometries 
gets cooler towards the edge. Dashing the turtle’s path so that the dashes grew longer 
or shorter according to the geometry indicated that the turtle’s steps were expanded 
or contracted by the “temperature” of the screen. A corresponding speeding up or 
slowing down of the turtle’s movement as it left dashes, coupled with a tool that 
drew the large-scale path which a turtle might take given a particular position and 
heading provided a dynamic structure for learners to build up their understanding. 
The key point is that the microworld’s physical, conceptual, and virtual resources 
emerged through paying careful and systematic attention to learners’ needs in these 
specific geometrical context. As Harel (1991) points out, learning and designing are 
intimately connected both for “learners” and “designers”. 
Iterative design process. Paying careful and systematic attention to learners’ needs 
took the form of a thorough evaluation of the pedagogical, technical, and cognitive 
aspects of the microworld. The microworld emerged through analysis of a series of 
structured activities and observations based on the relationship between the roles, 
tools and organisation of resources in Table 2. Over three cycles of development a 
combination of didactic intervention, reflective discussions, task-based interviews 
and non-participatory observation of learners were used. Each of these roles was 
applied explicitly in designing activities to achieve particular research objectives. In 
terms of Table 2, for example, “didactic intervention” consisted of “teacher working 
whole group”, with “teachers directing conversation” and “teacher using ICT”. 
Reflective discussions, however, consisted of learners working individually with 
teachers (researcher) stimulating reflections and learners using ICT initiated by 
themselves. Interspersed between working with learners were periods of reflection to 
redesign tools and resources, activities, and pedagogic approaches based on analysis 
of video tapes, field notes and dribble files. Each new section of work with the 
learners was carefully sequenced according the pedagogic structure described by use 
of tools, roles, and organisation. 
Conclusion 
Microworlds are essentially pedagogic. The descriptive framework proposed in this 
paper is intended to articulate the range of meanings that microworlds can have, and 
provides a means for designing learning environments. The example of designing a 
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turtle-based environment for non-euclidean geometry illustrates a number of key 
issues. Geometries other than Euclid are available and they form part of our everyday 
experience. They can be mediated by digital technology, but they are constrained by 
the standard euclidean representations of the “screen”. For that reason designing 
learning environments must pay careful and systematic attention to what mediates 
understanding in specific geometries. This implies an iterative approach to design 
that places learners at the centre of the process, and the framework derived from 
Activity Theory provides the means to undertake this systematically. 
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Informed by experiments and experience with Dynamical Geometry Environments 
(“DGE”), the paper elaborates on changes, which are linked to the use of DGE. 
DGEs allow breaking out of the narrow confines of Euclidean Geometry – best 
illustrated by the use of the dragmode to introduce movement into static Euclidean 
Geometry. DGEs offer ways of teaching and learning Geometry, which are not 
available in a traditional paper-and-pencil environment. The macro-functionality of 
DGEs appears to be an excellent possibility of structuring the material and cognitive 
representation of a construction process. On the other hand, the explorative potential 
of DGE often implies a “de-goaling” from the initial task. Worksheets and the 
intervention of the teacher are suggested to cope with these difficulties of learning 
with the help of DGEs. An excursion additionally shows that some of the design 
decisions within (Geometry) software are constrained by unavoidable mathematical 
necessities – with implications for pedagogical and cognitive (dis)advantages. 
Following an‘instrumental genesis’ approach, design decisions should be made after 
close inspection of the ways the users ‘instrumentalize’ the software. Some of the 
findings on DGE can obviously be generalised to other types of mathematical 
software available or forthcoming in the near future. 

Euclidean Geometry left with DGE 

Comparing traditional, especially Euclidean Geometry and its teaching and learning 
with a more recent Geometry education using Dynamical Geometry Environments 
(in the following: “DGE” - like Cabri-géomètre, Geometry Inventor, Geometer’s 
Sketchpad or The Supposer – to name but a few of a whole variety of DGEs, for an 
early description see Sträßer 1992), the most obvious difference is the dragmode, i.e. 
the possibility of moving initial points of a drawing with the mouse while the 
construction is “updated” according to the construction commands used. It is obvious 
that DGEs have left the narrow confines of static Euclidean Geometry (and 
philosophers and historians of Mathematics do name the avoidance of motion as one 
of the characteristic features of Euclidean Geometry). According to the designers of 
DGEs like N. Jackiw (for Sketchpad) or J.-M. Laborde (for Cabri), this was not 
intended when creating these pieces of software. As a consequence of the software 
design and only after some time, the designers, mathematicians, educationalists and 
users realised what DGEs do to Euclidean Geometry (see for instance Laborde 2001). 
They also had not expected the problems linked to this potential of DGE (see section 
3). 
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Looking more closely into DGE use, another major change becomes evident, which 
is not as well researched (and not so widely used in Mathematics education) – 
namely the use of geometrical transformations like reflections, translations and 
rotations. Even if again closely related to movement (especially with translation and 
rotation), DGE nowadays have a functionality to transform geometrical elements as a 
whole, showing the image of a reflection, rotation or translation after one click of the 
mouse.  
Example 1: 
With a DGE like Cabri, it is easy to study the transformation, which takes place when 
a quadrilateral is successively reflected at two different straight lines. We can even 
drag the lines and study the consequences of different respective positions of these 
lines (e.g.: parallel or intersecting). Such an exploration would offer excellent hands-
on experience to study the composition of line reflections, more general: congruence 
transformations in plane Euclidean Geometry.  
The “locus-of-point” feature of Cabri can also be used to go for complete images of 
certain elements of a drawing (for a detailed analysis of this feature see Jahn 2002 
and the underlying PhD-thesis of Jahn). In all, DGEs offer a potential for 
transformational Geometry, which is only seldom exploited – even if disciplinary 
Geometry indicates this possibility (see Felix Klein’s “Erlangen program”).  
In addition to this, the dragmode offers a more fundamental potential within DGEs: 
If appropriately introduced and interpreted, the dragmode can facilitate the 
understanding of the difference und relations between a material “drawing” and the 
underlying geometrical “figure” (for the introduction of these concepts see Parzysz 
1988, related to DGE: Sträßer&Capponi 1991; for a slightly different 
conceptualization see Mariotti 1992). Offering a huge variety of drawings belonging 
to the same figure at a click and drag of the mouse, DGEs can help to distinguish 
between the material representation of a geometrical configuration, its drawing(s), 
and the underlying logico-geometrical relations, which -after the cutting of the 
ontological binding (see Freudenthal)- are most relevant for the mathematician.  
Example 2: The’Varignon’- parallelogram in a quadrilateral 

 
To end this section, it should be mentioned that models of non-Euclidean Geometry 
are also easily available within this type of software (see the set of macros for 
hyperbolic Geometry created for Cabri by Lister 1998 or the possibilities in 
CINDERELLA described in Richter-Gebert&Kortenkamp 2000). 
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Teaching Geometry with DGE 
If we look more closely into the teaching and learning of Geometry with the help of 
DGEs, there is more to DGEs than the dragmode, transformation Geometry and the 
distinction of ‘drawing’ from ‘figure’: For the constructive part of Geometry and its 
analysis, it is most helpful to structure this activity not according to the 
functionalities and menu of the individual software, but to be able to think in units 
defined within Geometry. DGEs normally offer a most helpful feature to meet this 
demand: the possibility of defining macros. After having done a specific construction 
and under certain restrictions, DGEs can be told to repeat a defined part of a 
construction with an input defined by the user and a necessarily unique output (no 
‘if-then’-decisions allowed at present – for a discussion see Kadunz 2002 or Sträßer 
2003).  
Example 3: Square-Macro 
In contrast to a traditional construction of a square (“construct a segment, 
perpendiculars in the endpoints, a circle through one endpoint with the other endpoint 
as centre, …”), a well-defined DGE-macro can draw a square just by indicating a 
segment or two points as input by using a macro pre-defined by the user and stored in 
her/his computer. To appreciate the consequences, imagine you want to draw a 
configuration illustrating Pythagoras’ Theorem! 
A macro definitely reduces the cognitive burden of a construction and gives a chance 
to cognitively structure the construction in a way appropriate for the geometrical 
problem under study – provided a well filled set of pre-defined macros is available 
for the user. Sometimes, the absence of a macro-feature in CINDERELLA is given as 
a reason not to take this piece of software as a full-fledged DGE. 
Even in the early days of DGE, one major problem implied by the use of DGEs to 
help teaching and especially learning with the help of DGEs became obvious: The 
intuitive interface and easily understood handling of the software really facilitated the 
exploration of geometrical configurations, but – when handed over into the full 
responsibility of the learner – DGEs most often lead to a “de-goaling” in terms of the 
initial purpose of the construction. The user often played around with the DGE and – 
being intrigued by the nice drawings – forgot about the task set by the teacher (for an 
early description of this phenomenon see Hölzl 1994). 
From the very beginning, DGE-use for teaching and learning Geometry has to cope 
with a dilemma not only linked to DGE-use: How to handle the non-trivial relation 
between the personal constructions of a learner and the often very precisely defined 
concepts and definitions from disciplinary Mathematics? This dilemma seems to be 
especially difficult to handle in a constructivist approach to learning Geometry, more 
general: Mathematics. 
A suggestion brought forward by practitioners of teaching in the 1990ies not only 
tries to avoid this de-goaling: “Worksheets”, prepared in advance and with clear tasks 
and questions to be answered, try to control the trajectory of the learner’s activities in 
a way to avoid not only the de-goaling problem, but also try to save time by offering 
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prefabricated DGE-files. These ready-made files should directly offer the 
configurations to be explored – saving time and avoiding the construction mistakes 
often made by un-experienced users of DGEs (for this approach see Elschenbroich 
2001 and Heintz 2001). 
A different way to cope with this is a suggestion brought forward by Italian 
colleagues and grounded in a more fundamental approach: As a consequence of a 
social constructive understanding of teaching and learning and inspired by Vygotsky, 
the importance of collective discussions in the classroom are stressed. In order to 
guide the learners in a way to help them arrive at socially, also mathematically 
accepted solutions, the interventions of the teacher are of fundamental importance 
and cannot be left aside (see for instance Bartolini-Bussi 1996). 
Excursion: Mathematics strikes back! 

The end of the last section already illustrated: Using DGEs to teach and learn 
Geometry is not a simple success story. On closer inspection of the dragmode for 
instance, the story gets even more complicated. Two demands on the dragmode seem 
obvious: Using the dragmode should not imply a discontinuity, the drawing should 
change continuously if the dragmode is used (‘continuity’ of the dragmode).  
 
Example 4: 
Try the angle bisector of an angle bisector and move the point defining the initial 
angle to make the initial angle greater than 90°. Construct only one second angle 
bisector to see the jump (e.g. in Cabri). 
On the other hand, the user expects that the drawing should be the same after a drag 
of a point when this point is brought back into the initial position (‘reversibility’ of 
the dragmode, producing ‘deterministic’ drawings; see counter-example next page!). 
Unfortunately, these two somehow natural demands cannot be met together. The 
software designers have to make (and indeed: make) a choice between ‘continuity’ 
and ‘reversibility (as shown by Gawlick 2001). The designers of CINDERELLA for 
instance are proud of having produced a ‘continuous’ piece of DGE (and there are 
even limit cases where the software also produces unwanted jumps), while most of 
the other DGEs go for ‘reversibility’ (for instance Cabri-géomètre), but have to cope 
with discontinuous changes of the drawing produced with the DGE.  
When a straight line g intersects with a circle in E and F (see drawing 1 above), in a 
way, that g can be moved not to intersect g (drawing 2), then moved back to intersect 
g (drawing 3), the intersection points E and F change position. 
The interesting point is that algebraic, differential Geometry can prove that this 
choice is inescapable, a DGE is either ‘continuous’ or ‘deterministic’. As a 
consequence, the software designer has to make a (hopefully deliberate, at best 
pedagogically motivated) choice. 
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Example 5: Non-reversability in CINDERELLA (see Laborde 2001) 

 
I want to add another example of the ‘same’ making: Numbers can be represented in 
software within a finite number of bits - as long as we stay with the usual discrete 
and binary code in digital (!) computers. The different ways to represent and store 
numbers in widely used pieces of software like spreadsheets (as EXCEL: at best 
floating point numbers with clear restrictions about numbers accurately represented, 
numerical analysis provides the details) and Computer Algebra Systems (CAS, 
especially DERIVE with its representation of numbers as quotients of natural 
numbers as long as storage is available, that is: rational numbers accurately 
represented ‘in principle’, hence irrational numbers approximated) also show that 
simple Mathematics does constrain the use of software in doing, teaching and 
learning Mathematics. This implicitly was already an issue in the first ICMI-study, 
where the role of “Discrete Mathematics” (especially for college Mathematics in the 
USA) was fiercely discussed – without reaching a consensus. The question of 
discrete Mathematics seems to be open and still has to be solved for the upper 
secondary school mathematics curriculum worldwide. 
From the two examples above (continuity versus determinism and representation of 
numbers), we can conclude that sometimes it is not a simple, deliberate design 
decision how a piece of software is constructed. Heavy, sometimes unavoidable 
mathematical constraints force software development into decisions, which may not 
be desirable from an educational point of view, but inevitable because of unavoidable 
mathematical constraints. 
From artefacts to instruments  

If we go back to the most obvious characteristic feature of DGEs, namely the 
dragmode, we can illustrate another major lesson to be learnt about teaching and 
learning with the help digital technologies: For mathematics education, (one of) the 
most important insights into DGE-based teaching and learning came from detailed 
user studies undertaken by colleagues from Italy (for a comprehensive overview see 
Arzarello et al. 2002). With a meticulous analysis of the different ways how students 
use the dragmode in a DGE, they offered not only an inventory of the utilization 
schemes of the users, but gave excellent hints how to profit from this most prominent 
feature of DGEs for teaching and learning Geometry. From the analysis published in 
different places, one can develop a position on the most intriguing question related to 
(traditional) Geometry teaching – namely whether DGE-use hinders or enhances the 
teaching and learning of proof in Geometry. In fact, it seems to depend on the 
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occasions and challenges offered by the teacher (or the teaching material), if DGE-
use destroys or necessitates the need for mathematical proofs.  
In my view, the results of this study very well illustrate how a detailed analysis of the 
use of software can enhance the teaching and learning of Mathematics. It is not 
enough to study the artefact as such, to study the features and potentials of a piece of 
software. Only a detailed analysis of the actual software use offers a sound and 
pedagogically useful understanding of its use. To put it into the words of the 
‘instrumental genesis’ approach: the artefact together with its utilisation schemes 
converts digital technology into an instrument of learning! For a short description of 
this approach see Rabardel&Samurçay 2001. Artigue 2002 shows how the approach 
can be helpful for better understanding the use of Computer Algebra Systems (CAS). 
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The use of spreadsheets in a beginning algebra course is considered traditionally 
with regard to their potential to promote generational activities. However, much less 
is known about their possible use to construct and solve equations. The overall 
purpose of this paper is to consider the potential of spreadsheets to enhance 
conceptual understanding of equations and their solutions. For this purpose, we 
analyzed the work of beginning algebra students with an activity that required 
algebraic modeling, solving equations, and interpreting results that were obtained as 
an Excel output. As a result, we recommend expanding the traditional use of 
spreadsheets from mathematical investigations of variations and patterns to include 
a conceptual understanding of algebraic relations and transformations as well.  

This paper is related to Themes 1 and 2: 

1. Mathematics and mathematical practices 

- What new types of mathematical knowledge and practices emerge as a result 
of access to digital technologies? 

- How are new types of technology-mediated mathematical knowledge and 
practices related to current classroom curricula and values? 

- What role can the "mathematics laboratory" play in different educational 
contexts, including secondary education?  

2. Learning and assessing mathematics with and through digital technologies 

- How can the benefits of existing technologies be maximized for the benefit of 
mathematics teaching and learning? 

 

Background 

The use of spreadsheets in teaching algebra – both at a beginning stage and at more 
advanced levels, has been reported in various research reports. Usually the potential 
to produce ample numerical tables, the need to use general expressions to create these 
tables, and the possibility of obtaining a wide variety of corresponding graphs allows 
the use of spreadsheets as a tool for promoting a functional approach in teaching and 
learning algebra (Filloy & Sutherland, 1996; Heid, 1995; Wilson et al., 2005).  
According to Kieran (2004), most investigated spreadsheet activities are conducted at 
a generational or at a meta-global level, and according to Thomas & Tall's (2001), 
categorization of algebraic activities, these activities belong to the domains of 
generalized arithmetic or evaluation algebra.  
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However, the usefulness of spreadsheets for investigating relationships, such as 
solving equations or inequalities (according to Thomas & Tall, manipulation algebra) 
or performing transformational operations (according to Kieran) is less clear. 
Moreover, some studies show that attempts to use spreadsheets as a means of 
strengthening a conceptual understanding of algebraic techniques encountered 
considerable difficulties. Dettori and her colleagues (2001) investigated 13 to 14-
year-old students' work on algebraic problems using spreadsheets and concluded that 
"spreadsheets can start the journey of learning algebra, but do not have the tools to 
complete it. Being able to write down parts of the relations among the considered 
objects, but not to synthesize and manipulate the complete relations, is like knowing 
the words and phrases of a language, but being unable to compose them into 
complete sentences" (p. 206). Friedlander and Stein (2001) investigated the abilities 
and preferences of 14-year-old students in solving linear and quadratic equations and 
systems of two equations with both paper-and-pencil and various technological tools 
(Excel, Derive, and graph plotter). The interviewed students demonstrated a high 
ability to choose, employ, and integrate technological tools into their work, but on the 
other hand, the students' use of spreadsheets for this purpose was quite ineffective. 
The purpose of this presentation is to analyze the potential of spreadsheets in 
promoting understanding the concept of equations, intended for beginning algebra 
students. 
 
The activity 

The activity Elections was administered in two 7th grade classes that attended a 
beginning algebra course based on a functional approach, and on the use of Excel as a 
technological tool (Hershkowitz et al., 2002). For several lessons before beginning 
the activity, the students encountered for the first time the concept of an algebraic 
equation, and solved linear equations of the form ax + b = c by trial and error or by a 
method of "undoing" the operations involved. At this time, the students had not 
encountered any conventional methods of solving linear equations. 
The Elections activity presented the following problem-situation involving a 
campaign for a class committee: 
Avi, Ben, and Gil are candidates for the election. 
Avi received 24 votes more than Ben, and 
Gil received 1.5 times more than Ben. 
 
Next, the students were required to consider several situations of equalities between 
the number of votes received by the candidates, and to model them as equations of 
the form ax + b = cx + d. For these equations, the method of "undoing" or trial and 
error cannot be applied easily. In the activity the students were allowed to use Excel, 
and were provided with appropriate instructions.  
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Excel is not an algebraic manipulator, and it does not have the ability to provide 
directly the solution of a given equation. As a result, the activity presented the 
following procedure: 
• Write in one column several values for the independent variable (i.e. the number 

of votes received by one of the candidates). 
• Use the independent variable to write an equation at the beginning of another 

column. 
• Copy (drag) the equation down the column. 
• The resulting output is a sequence of TRUE or FALSE values - indicating the 

equality or inequality obtained by substituting the corresponding value of the 
independent variable in the equation. 

• A TRUE value indicates that the substituted number is a solution for the 
equation (but not necessarily the only one). 

• A sequence of only FALSE values can be the result of either an equation that 
has no solution or an equation whose solution was not included in the set of 
values selected for the independent variable. 

As a result of the possible situations described in the activity, the students constructed 
four types of equations: 
1. An equation with a unique solution that is also meaningful for the given 

problem-situation. 
2. An equation with a unique solution that has no meaning in the given problem-

situation. 
3. An identity, i.e. an equation with all real numbers as a solution set. 
4. An equation with an empty solution set. 
Because of the space limitation, we will consider the rationale and analyze the 
students' work only for equations of the first two types. 
1. An equation with a unique and meaningful solution. Item 2a referred to the 
possibility that "Avi and Gil receive the same number of votes", and the expected 
algebraic equation is x + 24 = 1.5x (where x represents the number of votes received 
by Ben). The recommended Excel procedure was to insert in column A whole 
numbers from 1 to 50 as possible values for Ben's votes, and to write and drag down 
the equation  
=A2 + 24 = 1.5*A2 in column B. In this particular case, one cell in column B will 
contain a TRUE output (indicating the solution), and all the other cells in the output 
column will contain FALSE values (see columns A and B in Table 1). Next, students 
are expected to interpret the output, and conclude that the situation described in this 
item can occur if Ben received 48 votes, whereas Avi and Gil received 72 votes each. 
Note that the expected solution process includes formulating an equation, (in both 
algebraic and Excel, or only in an Excel format), "dragging" it down, and finally 
interpreting the obtained output. 
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2. An equation with a unique solution that does not apply to the given situation (e.g., 
a fraction or a negative number as a solution). Item 2d referred to the possibility that 
"the number of votes received by Ben and Avi together is the same as the number of 
votes received by Gil". In our particular case, the expected algebraic equation is x + x 
+ 24 = 1.5x (where x represents the number of votes received by Ben), and its 
solution (x = –48) cannot represent a number of votes. Copying down the Excel 
format of this equation (=A2 + A2 + 24 = 1.5*A2) for positive values of A produces 
a column of only FALSE values, since the equation has no solution for the selected 
substitution set (see columns A and C in Table 1). Next, the students were expected 
to interpret the output, and to conclude that the situation described in this item cannot 
occur. 
 
Data collection  

Thirty-seven students worked on the activity, mainly in pairs, for 45 minutes, and 
saved their work in 20 files. In addition, the work of ten pairs was audio recorded. 
The recorded pairs were chosen at random, so we considered their work as 
representative of the whole class. The following analysis is based mainly on the work 
of the ten audio-recorded pairs of students.  
 
Table 1. Excel output for items 2a and 2d. 
 A B C 

1 Number of votes 
received by Ben 

2a: Avi and Gil receive 
the same number of 
votes 

2d: Ben and Avi's votes 
together equal Gil's 
votes 

2 1 FALSE 1 FALSE 2 
3 2 FALSE FALSE 
4 3 FALSE FALSE 
5 4 FALSE FALSE 
6 5 FALSE FALSE 
.    
.    
47 46 FALSE FALSE 
48 47 FALSE FALSE 
49 48 TRUE FALSE 
50 49 FALSE FALSE 
51 50 FALSE FALSE 
1 This output is the result of entering the equation =A2 + 24 = 1.5*A2 
2 This output is the result of entering the equation =A2 + A2 + 24 = 1.5*A2 
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Analysis 

In this section we will present students' answers to items 2a and 2d as representatives 
of their work on a wider, similar collection of items in this activity. 
Item 2a: Avi and Gil receive the same number of votes. 
We identified four types of reactions to this item. 
- Six pairs of students completed independently the solution process (i.e. 

formulated the algebraic and the Excel equation, copied it down the column, 
and interpreted the output). 

- One pair formulated the algebraic equation correctly, entered in cell B1 its 
Excel version, and received FALSE as an output. At this stage, they became 
confused and asked the teacher to help. The teacher encouraged them to 
continue, and as a result, they were pleased to obtain a sequence of one TRUE 
and otherwise FALSE values, and were able to identify the first as the desired 
solution. 

- Two pairs read the item, but did not follow the expected solution path. Instead, 
they used columns A, B, and C to collect their data: similarly to others, column 
A was used to indicate possible values for the independent variable (Ben's 
votes); column B indicated Avi's votes (obtained by copying down =A1 + 24); 
column C contained Gil's votes (=A1*1.5). Next, they searched in columns B 
and C and found a row with the same number of votes for Avi and Gil. The 
teacher accepted their strategy, but asked them to apply the new procedure as 
well. They followed the activity's instructions without any difficulties, and 
were so pleased with the results, that one student's reaction to the teacher was 
"Why didn’t you teach us this method earlier this year?" 

- One pair of students did not understand the situation, and needed the teacher's 
help to obtain the equation, to write it on the spreadsheet, and to interpret the 
results. They could work independently only after receiving the teacher's help 
on two additional examples. 

Item 2d: The number of votes received by Ben and Avi together is the same as the 
number of votes received by Gil. 
All pairs wrote a correct equation (=A2 + A2 + 24 = 1.5*A2), and copied it down the 
column. Since the solution of this equation (–48) was not included in the first 
column, they received a sequence of only FALSE values. The students attempted to 
interpret this output in various ways. 
- Two pairs concluded that there is no solution for this item since "Avi and Ben 

together received 2x + 24, whereas Gil received only 1.5x, and these two 
cannot be equal."  

- Four pairs did not provide an explanation, besides noting that this situation 
"does not make sense". 
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- One pair looked at their neighbors' computer screen and concluded that since 
they received a similar output, apparently their solution was correct.  

- Three pairs concluded that they must be wrong, and asked the teacher for help. 
The teacher encouraged them to think again about the given situation, and only 
then they reached the conclusion that there is no solution to the given item.  

The interpretation of the output for this equation was also considered during the 
summarizing class discussion. 
Discussion 

The main purposes of the activity were  
- to enhance the understanding of the concept of algebraic equations,  
- to provide an opportunity for algebraic modeling, and finally  
- to present a situation that requires interpreting and understanding the meaning 

of the solution of an equation. 
The Excel procedure for solving an equation (substituting a set of numbers in the 
equation and searching for cases of equality) is not efficient as a routine solution tool. 
However, the findings indicate that from a technical aspect, the procedure can be 
learned and applied easily.  
More importantly, this solution process provides opportunities for achieving 
conceptual understandings of important algebraic ideas. The need to interpret the 
logical TRUE/FALSE values encourages students to consider several equation-
related issues. 
- Not all equations can be solved by trial and error or by undoing operations. 
- As shown by the many FALSE values in the Excel output, most equations have 

a large set of values that do not satisfy the given equality. 
- Receiving a sequence of only FALSE values as output indicates an empty 

solution set or that the required solution is not among the values selected and 
substituted for the independent variable. 

Our findings indicate that these insights occurred spontaneously, in the context of the 
activity, and were the result of a natural need to interpret the Excel output, and 
furthermore to solve the problem. Some of these conceptual understandings were 
acquired at the stage where students worked on the activity or during the following 
class discussion. 
Analyses that concluded that spreadsheets are not appropriate to serve as a tool for 
algebraic transformational activities may be based on a tendency to separate or even 
contrast conceptual versus procedural knowledge. An analysis of the Elections 
activity and of student work reveals some interesting possibilities of integrating 
conceptual and transformational approaches into teaching and learning algebra. 
Similar recommendations and conclusions were reached by Kieran (2004) and by 
Star (2005). 
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We consider this approach of a "conceptual solution" of equations particularly 
suitable and important at the early stages of learning algebra. We believe that a deep 
understanding of the involved concepts can provide a basis for learning the routine 
solution procedures employed at a more advanced stage. This notion needs of course 
further validation by additional research. 
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The computer has been in mathematics classrooms for over 20 years now, but with 
widely varying implementation in mathematics teaching and learning. This paper 
describes a ten-year longitudinal research study that has investigated the changing 
nature of how secondary school teachers use computers in their mathematics 
classroom, and their perception of constraints or obstacles to improving, or 
extending, such use. The results show that while there are now many more computers 
available in schools, access remains a key obstacle to their increased use as 
mathematical learning tools. There is also a change in the kinds of software used, 
away from content-specific programs and towards generic software, especially the 
spreadsheet. Teacher attitude remains a key factor in progress. 

Introduction 
While many mathematics educators, including the author have been positive about 
the possible role of computers in the learning of mathematics (see e.g., Thomas & 
Holton, 2003), there have been doubts raised about a) whether computers have any 
real value in learning (Cuban, 2001) and b) whether current teacher use is 
qualitatively and quantitatively sufficient to promote any benefits that might exist. 
Around 10 years ago Askew and Wiliam (1995) reported on a review of research in 
mathematics education in the 5-16 year old age range, and found that “Although 
computers have been in use in mathematics education in this country [UK] for well 
over twenty-five years, the pattern of usage is still very varied and very sparse.” (p. 
34). A UK Department of Education report (DFE, 1995) also noted a low level of 
usage of computers in mathematics, with an average of 15.6 minutes of lesson time 
per week spent using the computer, and in the United States the position was very 
similar (Ely, 1993). While some might hope that this position has changed in more 
recent years, a survey by Ruthven and Hennessey (2002) on school computer use 
concluded that "Typically then, computer use remains low, and its growth slow." (p. 
48).  
There are a number of possible reasons for a low level of computer use in 
mathematics teaching and learning, including teacher inability to focus on the 
mathematics and its implications rather than the computer and many teachers not 
believing that the computer has real value in student learning. Certainly, Veen (1993) 
has argued that teacher factors outweigh school factors in the promotion of computer 
use. More recently Becker (2000a) reported on a national US survey of over 4000 
teachers and concluded that “…in a certain sense Cuban is correct—computers have 
not transformed the teaching practices of a majority of teachers.” (p. 29). However, 
he noted that for certain teachers, namely those with a more student-centred 
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philosophy, who had sufficient resources in their classroom (5 or more computers), 
and who had a reasonable background experience of using computers, a majority of 
them made ‘active and regular use of computers’ in teaching. Becker (2000b) has 
added a description of some characteristics of such an ‘exemplary’ computer-using 
teacher, but concludes that extending these to other teachers would be expensive. 
This paper reports on a ten-year longitudinal study describing the changing pattern of 
computer use in the mathematics classroom in New Zealand. Both the level and 
kinds of use were recorded, together with some of the obstacles teachers perceive to 
increased use. 
Method 
Genuine longitudinal studies, where at least two sets of data are acquired from the 
same population over an extended time span, are relatively rare in mathematics 
education research. This longitudinal study, which has as its population all secondary 
mathematics teachers in New Zealand, began in 1995, when a postal questionnaire on 
computer use was sent to every secondary school in New Zealand. Replies were 
received from 90 of the 336 schools (26.8%), a reasonable response rate for a postal 
survey. Apart from information about the mathematics department in the school we 
received information from a total of 339 teachers in these 90 schools.  
Some of the results of this survey were published at the time (Thomas, 1996). This 
original survey was followed by a second in 2005 in order to gain longitudinal data 
on how the situation might have changed over this period. In the years since 1995 
teaching has become an even more stressful profession in many ways, particularly in 
terms of demands on time. Hence, teachers are more reluctant than ever to spend 
their valuable time filling in forms or research questionnaires. However, we had 
learned some lessons from 1995 and this time stamped, addressed envelopes were 
enclosed for all the schools and it was followed up several weeks later with a faxed 
copy. Using this approach we achieved a response from 193 of the 336 secondary 
schools in the country, an excellent 57.4% response. Completed questionnaires were 
received from a total of 465 teachers in these 193 schools, as well as the school 
information. In both years we are confident, due to the sample size, that the responses 
form a representative sample of the population of secondary school mathematics 
teachers, especially since we received a good proportion of responses from non-
computer users (over 30% in each case). Of the respondents, in 1995 51.5% were 
male and 48.5% female, with a mean age of 41.5 years, whilst in 2005, 52.6% were 
male and 47.4% female, with a mean age of 44.8 years; the teachers are getting 
slightly older. While the questionnaires sent out in the two years were not identical, 
for example questions on the use of the internet were added in 2005, they had a 
considerable number of questions in common. On both occasions they used both 
closed and open questions to provide valuable data on issues such as: the number of 
computers in each school; the level of access to the computers; available software; 
the pattern of use in mathematics teaching; and teachers' perceived obstacles to 
computer use. This data enables us to come to some conclusions about the changing 
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nature of computer use in the learning of mathematics in New Zealand secondary 
schools. 
Q1 Do you ever use computers in your mathematics lessons? 

If you answered 'No' please go straight to Q14 

Yes 

No  

1 

2 

Q2 How often do you use computers in your 
mathematics lessons? 

At least once a 
week 
At least once a 
month  
At least once a 
term  
At least once a 
year  
Never  

1 
2 
3 
4 
5 

Q5 Where are the computers you use usually situated? 

 

In the computer room  

In the mathematics 
room  

1 

2 

Q6 If the computers are in the mathematics room, how many do 
you usually have?  

One 

Two 

Three 

Four 

Other_______________ 

1 

2 

3 

4 

5 

Q10 Please rank these areas of mathematics in the order in which 
you most often use the computer in your mathematics lessons 
i.e. 1 for most often, 2 for next etc. Leave blank any you do not 
use the computer for. 

Graphical Work 

Algebra 

Trigonometry 

Geometry 

Statistics 

Calculus 

Other_______________ 

___ 

___ 

___ 

___ 

___ 

___ 

___ 

Q13 Would you like to use computers more often in your 
mathematics lessons?  

Yes 

No 

1 

2 

Q14 If you answered yes to question 13, what do you see as obstacles 
to your use of them? Please rank in order any of these that 
apply (ie 1 for biggest obstacle, 2 for the next, etc.). 

 

 

Other________________________________________ 

Lack of confidence 

Lack of training 

Computer availability 

Availability of software 

School policy 

Other_______________ 

___ 

___ 

___ 

___ 

___ 

___ 

Q22 Please give the main advantage or benefit you have found, or feel to be true, of using technology in 
mathematics lessons.________________________________________________________________________ 

 

Figure 1: Sample questions from the 2005 survey (some formatting changed). 

Results 
In 1995 67.2% of the teachers said that they used computers in their teaching, and 
this remained steady at 68.4% in 2005. Looking at how often the teachers are using 
the computer in teaching, in 1995 5.9% said they used them at least once a week, but 
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in 2005 this had risen to 13.3%. In 1995 the schools reported a mean of 40.0 
computers per school, with 1.7 computers in the mathematics department. By 2005 
there had been a jump in these numbers, with a mean of 74.4 computers per school 
(excluding an outlier school with 1800 laptops), 21.9 of which are laptops, and 
26.9% of the schools now have over 100 computers. Mathematics departments have 
6.5 computers on average (4.2 laptops). One change has been the increase in the 
number of ICT rooms, up from 71% of schools in 1995 to 96%, with a mean of 2.46 
per school, up from 1.79 in 1995. However, while in 1995 89.1% of mathematics 
teachers usually used computers in labs this dropped to 59.1% in 2005, with 10.7% 
using them mostly in their classroom. The question arises though as to whether these 
increased numbers of computers have changed the pattern of use in the teaching of 
mathematics. 
Computer use in mathematics teaching 
The mathematics curriculum in New Zealand schools is divided up into Number, 
Statistics, Geometry, Algebra and Measurement strands, along with a Processes 
strand. Number and Measurement are principally primary and intermediate school 
activities (secondary school usually starts at age 13 years) so those using the 
computer were asked in which of the remaining curriculum areas (along with specific 
topics of graphs, trigonometry and calculus) they used them (see Table 1). 

Area of Use % of 1995 teachers (n=229) % of 2005 teachers  (n=318) 

 Some Use Most Often 
Used 

Some Use Most Often 
Used 

Geometry 34.1 4.8 28.2 3.9 

Statistics 75.1 38.0 85.4 59.5 

Graphical work 74.2 35.4 75.5 28.0 

Algebra 32.3 4.8 33.4 3.5 

Trigonometry 22.7 3.1 22.5 2.3 

Calculus 24.0 3.9 22.5 2.6 

Table 1: Curriculum areas where secondary teachers are using computers. 

These figures show a significant increase in the use of computers for the learning of 
statistics, both as first choice curriculum area (χ2=24.5, p<0.001), and for some use 
(χ2=9.47, p<0.01). This not surprising since there is a strong emphasis on Statistics in 
New Zealand schools, and it lends itself readily to an approach where the computer 
can be used to perform routine calculations, as well as graphical and investigational 
work. It is rather surprising in view of the excellent packages Cabri Géomètre and 
Geometers SketchPad, that there has been a fall (although not a significant one; 
χ2=2.07) in the use of geometry packages. Cost may well be a factor in this. Of the 
193 schools in the 2005 survey only 20 mathematics departments had a technology 
budget. The amount of money available ranged from NZ$200 to $NZ15000, with a 
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mean of NZ$2762.50 (NZ$1US$0.68), and one head of department commented that 
“Annual [software] fees also take up a lot of the allocated budgets “. 
To gain some idea of the variety of uses that computers are being put to in schools 
each survey asked the teachers to rank in order of regularity of use the types of 
software they employed in teaching mathematics (see Table 2). It appears that there 
has been a significant change in the kinds of software used in mathematics 
classrooms over the period, away from specific content-oriented graphical (χ2=5.59, 
p<0.05), mathematical (χ2=38.7, p<0.001), and statistical packages (χ2=12.3, 
p<0.001), and towards generic software, especially the spreadsheet (χ2=28.0, 
p<0.001), which may handle statistical work well enough for secondary schools.  
Area of Use % of 1995 teachers (n=229) % of 2005 teachers  (n=318) 
 Some Use Most Often 

Used 
Some Use Most Often 

Used 

Spreadsheet 67.2 31.9 86.2 62.6 

Mathematical 
Programs 

61.1 25.8 34.3 5.0 

Graph Drawing 
Package 

61.1 22.3 50.9 17.7 

Statistics Package 44.1 11.8 29.6 5.0 

Internet --- --- 46.1 6.6 

Table 2: Types of software used with computers.  

The trend away from specific graphical packages is a little surprising since there are 
now some excellent programs, such as Autograph, available. Possibly the graphic 
calculator has made inroads into the use of the computer for graphing functions. 
Questions on the use of the internet were new in 2005, and 46.1% of the teachers 
reported some use of it to teach mathematics. 61.1% of the teachers have access in 
their classroom (and 68.4% in a staff room). For the students, only 26.4% have 
classroom access, although 95.6% of schools have ICT rooms connected for them. 
The question of how teachers organise their lessons around computer use arises. 
Since 1995 a number of student-centred  constructivist perspectives on teaching very 
have been widely encouraged in mathematics education circles (e.g., von Glasersfeld, 
1991; Ernest, 1997). Has this influenced how computers are used, as one might 
predict?  
Method % of 1995 teachers (n=229) % of 2005 teachers  (n=318) 
 Some Use Most Often 

Used 
Some Use Most Often Used 

Skill Development 67.7 37.6 58.5 24.5 

Free Use 34.9 3.1 18.9 2.8 

Investigations/PS 68.6 38.4 58.8 27.4 
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Demonstrations 40.6 10.9 59.6 29.7 

Programming 8.7 1.3 6.9 1.6 

Table 3: Teaching methods used with computers. 

We can get some idea of what has happened in the classroom by looking at Table 3, 
which describes the methods that teachers employ when using the computer. The 
constructivist approach broadly encourages student-centred investigation and 
problem solving, rather than teacher-led instruction and enforcing of skills; so one 
might expect teachers to use the computer to do one or the other, but not both. 
However, in both 1995 and 2005 it appeared that a substantial proportion of teachers 
used both methods and did not see themselves on one side of a dichotomous 
ideological fence. This was shown by around 60% reporting computer use for skill 
development and demonstrations, as well as investigations. There was, however, a 
significant decline in the proportion of teachers using the computer for skill 
development (χ2=4.79, p<0.05), and in those allowing free use of the computer 
(χ2=18.0, p<0.001). However, the use of demonstrations significantly increased 
(χ2=19.5, p<0.001), and so the data implies that while directed use and demonstration 
is more common in 2005, it is not as often skill-directed. Again this is not entirely 
what one might expect from a constructivist perspective. We note that the percentage 
of teachers who value programming sufficiently to spend some time on it has 
remained reasonably constant, if somewhat low. It may be that those who are 
convinced that programming may encourage the formation of mathematical thinking 
have strong convictions. More recent ideas related to the value of programming 
suggest that allowing students to interact with games where they are in control, 
programming attributes and functions in microworld-like games software (Noss & 
Hoyles, 2000) may be beneficial for learning. 
Obstacles to computer use 
In the original 1995 survey 93.5% of the teachers responded that they would like to 
use computers more in their mathematics teaching, however, in the latest survey 
those agreeing with this sentiment had dropped to 75.1%. While this is a highly 
significant decrease (χ2=47.0, p<0.001), one must take into account the increased rate 
of use of computers, and hence some teachers may feel that they have reached their 
optimum usage level. In any case there is still a sizeable proportion of the teachers 
who would like to use them more, and so we are led to ask 'what factors do they 
perceive as preventing them from making greater use, or using them at all?' The 
results from the two surveys on this aspect are shown in Table 4.  
Obstacle % of 1995 teachers (n=339) % of 2005 teachers  (n=452) 

 First 
Mentioned 

Mentioned  First 
Mentioned  

Mentioned  

Available 
Software 

17.4 52.5 10.8 39.4 
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Available 
Computers 

43.7 67.8 42.7 58.0 

Lack of Training 17.4 45.4 7.5 31.9 

Lack of 
Confidence 

12.7 34.8 5.3 22.4 

Government 
Policy 

4.1 12.4 --- --- 

School Policy 0.6 8.0 0.4 9.3 

Table 4: Obstacles teachers mention as preventing computer use in teaching. 

In 1995 there were two areas where the teachers wanted to see improvement in order 
to reach their goal of using computers more. They were the provision of resources, in 
terms of available hardware and software and the increasing of their confidence 
through satisfactory training. In 2005 we see that the lack of training has been better 
addressed, with significantly fewer teachers mentioning it (χ2=15.2, p<0.001), 
although only 39.6% of the teachers had recently been on any kind of professional 
development covering use of technology to teach mathematics. Clearly there is still a 
need for training, since when department heads were asked how many of their 
mathematics teachers would not feel confident using technology in their teaching, the 
mean response was 3.1, compared with a total of 7.2 full time and 3.1 part time 
mathematics teachers. In addition, significantly fewer feel that they lack confidence 
in computer use (χ2=15.0, p<0.001), possibly due to greater penetration of computers 
in homes over the period. Further, the need for software may have been covered by 
the greater use of the spreadsheet, which is now provided with virtually all 
computers. However, the problem of the availability of computers remains the major 
issue. Although the number of computers in schools is increasing, since they are 
primarily located in large ICT rooms access to them by mathematics teachers is still 
the primary problem preventing greater use. The 2005 survey asked teachers if they 
seldom used the computer room what was the reason, and 38.7% said that it was 
because of the difficulty with booking the room, and a few said that it was too 
difficult to organize. There were very few other reasons of note given. Typical 
teacher comment were “Access to computers at required time (of year and within 
school timetable blocks)” was difficult, there is a problem “…getting into overused 
computer suites” and “Due to the increased demand for IT classes it is very difficult 
to book a computer room for a class of 20-30 students”. In addition, in 1995 13% of 
teachers mentioned some other obstacle, and in 2005 the figure was 18.4%. These 
included the time and effort needed by both students and teachers in order to become 
familiar with the technology. It appears that some teachers are concerned that this 
instrumentation phase would impact on time available for learning mathematics. 
Conclusion 
What does this research tell us about the changing face of computer use mathematics 
teaching in New Zealand secondary schools? The percentage of secondary 
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mathematics teachers never using them has remained constant, at around 30%. While 
there are many more computers in the schools and an increased frequency of use, 
access to them is still the major obstacle to use in mathematics. They are usually in 
ICT rooms, and 89.6% of mathematics departments do not have their own 
technology budget. The primary uses of the computer are for graphical and statistical 
work, with the spreadsheet and a graph-drawing package the two most common 
pieces of software. There has been a significant decrease in the use of mathematical 
programs and statistical packages, and an expected increase in the use of the internet. 
While teachers are using computers less for skill development, its use is still high, 
and they have increased the use of demonstrations. Use of the computer is directed 
over 80% of the time. This pattern of changing use could not really be described as 
teachers warmly adopting the computer, and there are two important factors worth 
mentioning here. Only 20.7% of the schools had a technology policy in place, and 
when they did it usually comprised general statements such as “Technology should 
be used wherever possible as an aid to learning”, “All teachers are expected to 
integrate ICT into their teaching and learning practices“, “Access for all students to 
internet” or it specified what technology would be used by which year groups, or set 
rules for internet access and computer room use. Only rarely did it include the 
acquisition and replacement of software and hardware or the professional 
development of staff. Such an important omission has been noted previously 
(Andrews, 1999). It is not surprising that without such a policy the use of computers 
in schools will tend to lack clear focus and direction. The second issue arose when 
the 2005 teachers were asked what they thought were the advantages and 
disadvantages of using computers (technology) in mathematics. While just 8% 
believed that it aided understanding (compared with 32% who thought it made 
working quicker or more efficient), 16.8% claimed that it impeded learning or 
understanding. As Manoucherhri (1999, p. 37) reported many “…teachers are not 
convinced of usefulness of computers in their instruction…”, they still feel, like 
Cuban (2001), that benefits are small or exaggerated, and students rely on technology 
too much. As several teachers in this research put it “I feel technology in lessons is 
over-rated. I don’t feel learning is significantly enhanced…I feel claims of computer 
benefits in education are often over-stated.”, “Reliance on technology rather than 
understanding content. “, and “Sometimes some students rely too heavily on 
[technology] without really understanding basic concepts and unable to calculate by 
hand.” Clearly teachers have a crucial role to play, and their beliefs and attitudes are 
major elements in the progress in computer use. This is an area for further research. 
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Encilomedia is a Mexican national project that intends to complement already 
existing materials for primary school classrooms with computer programmes and 
teaching resources that are to be used with an interactive whiteboard. In this paper 
we report on the process of development of resources for teaching and learning 
mathematics with Enciclomedia. Our approach is guided by an enactivist theoretical 
perspective and methodology (Maturana and Varela 1992; Varela, 1999; Reid, 
1996) which invites us to consider our work as a learning process in which we 
continuously refine the resources we develop. Our work includes analysing existing 
teaching materials, having conversations with teachers, reading the literature and 
doing research with the purpose of identifying the kinds of activities the new 
programmes foster in the classrooms. Throughout this work, we discuss the different 
aspects of this process of development of resources. We illustrate our way of working 
through three different mathematical themes: fractions, probability and area. We 
have found that working with the multiple perspectives which are prevalent in our 
group has enriched the production of resources. Finally, the circular nature of the 
process helps us in refining our methods and in questioning our assumptions; that is, 
in developing our own learning and making our educational initiatives more 
effective. 
Introduction 

Enciclomedia is a large-scale Mexican project that has been devised with the purpose 
of enriching primary school teaching and learning by working with a computer and an 
interactive whiteboard in the classrooms. An electronic version of the textbooks that 
are used in Years 5 and 6 in all primary schools is being enhanced with links to 
computer tools designed to help teachers with the teaching of all subjects. Our task, as 
part of the Mathematics group, consists in creating resources which complement the 
textbooks and can help teachers in their teaching of mathematical concepts.  
In this paper we focus on the way of working that has emerged in the practice of 
creating resources and investigating their use in the classrooms. The process includes 
the analysis of the textbooks used by the students; the identification of some of the 
difficulties students and teachers have with the mathematical concepts we are 
addressing, found both in the literature and in conversations with teachers; the 
production of resources and the investigation of the way the materials are used in the 
classroom. We begin by considering some ideas related to enactivism, a theory about 
learning which guides us both theoretically and methodologically. Later, we discuss 
the different aspects of the process we are immersed in and which we outlined above. 
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Finally, we talk about the way in which this process has helped us in refining both 
our ideas and the resources we are creating so that they are more effective in the 
teaching and learning of mathematics.  
Theoretical Framework 

Our ideas about learning are based on enactivism, a theory of knowing which 
considers learning as effective or adequate action (Maturana and Varela, 1992). In 
enactivism, our minds are seen as ‘embodied’ and cognition as ‘embodied action’. 
These ideas of ‘embodiment’ entail two fundamental senses: on the one hand 
cognition is seen as ‘dependent upon the kinds of experience that come from having a 
body with various sensorimotor capacities’ and on the other, individual sensorimotor 
capacities are considered to be ‘themselves embedded in a more encompassing 
biological and cultural context’ (Varela, 1999, p. 12). The first meaning of 
embodiment locates cognition in our bodies, and prevents us from thinking about it as 
an abstract notion that is detached from our everyday experience. The second situates 
our learning in a wider social and cultural context. 

In enactivism learning occurs when individuals interact with each other, 
changing their behaviour, that is, their actions, in a similar way. In a particular context 
or location, the participants create together the conditions that will allow actions to be 
adequate. Learning outcomes cannot be predetermined or predicted, but the criteria 
for the adequateness of actions are, at least in part, specified by teachers and students. 
With this in mind is that we are interested in developing initiatives that can help 
teachers to create contexts in which certain actions, related to the learning of different 
mathematical concepts, can be fostered. 
Learning mathematics with computer tools 
From an enactivist perspective, the use of computer tools is part of human living 
experience since ‘such technologies are entwined in the practices used by humans to 
represent and negotiate cultural experience’ (Davis et. al., 2000, p. 170). Tools, as 
material devices and/or symbolic systems, are considered to be mediators of human 
activity. They constitute an important part of learning, because their use shapes the 
processes of knowledge construction and of conceptualization (Rabardel, 1999). 
When tools are incorporated into students’ activities they become instruments, which 
are mixed entities that include both tools and the ways these are used. They are not 
merely auxiliary components in the teaching of mathematics; they shape students’ 
actions and therefore they are important components of learning (ibid, 1999). 
Every tool generates a space for action, and at the same time it poses on users certain 
restrictions. This makes possible the emergence of new kinds of actions. The 
influence that tools exercise on learning is not immediate. Actions are shaped 
gradually, in a complex process of interaction. In the classrooms, students can 
construct meanings through the use computer tools, in a process of social interaction 
and with the guide of the teacher (Mariotti, 2001). The purpose in, Enciclomedia, is to 
develop programmes which can broaden students’ and teachers’ experiences with 
mathematics.  
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Some ideas about methodology 

‘Enactivism, as a methodology [is] a theory for learning about learning’ (Reid, 1996, 
p. 205). Research is considered to be a way of learning, and therefore researchers are 
seen as individuals developing their learning in a particular context. From an 
enactivist perspective, researchers interpret the world in a particular way, influenced 
by their previous experiences. In addition, in the process of doing research researchers 
influence and shape the context in which they are immersed (Reid, 1996, p. 206). The 
interdependence of context and researchers makes the research process a flexible and 
dynamic one. Research does not occur in a linear fashion; rather, it is seen as a 
recursive process of asking questions. The enactivist ideas apply not only to research 
we carry out in the classrooms, but to the whole process of development of resources 
in Enciclomedia. We think of our educational initiatives as dynamic suggestions 
which are under constant modification. Teachers are intended to work with our 
proposals in their practice which is inevitably an ever-changing process. The 
interactive materials related to specific concepts in the curriculum are used by 
students in a process which is also dynamic. Researchers’ and developers’ ideas will 
be modified as they interact with textbooks, teachers, students, and with each other.  
The process of development of resources 

Analysing the textbooks 
When we work with a particular mathematical concept or process, we usually start by 
looking at those chapters in the textbooks which are related to it. We try to identify 
areas where a multimedia resource could be of help. The approach taken by the 
National Curriculum and the textbooks consists in ‘taking to the classrooms those 
activities which elicit students’ interest [in mathematics] and invites them to reflect, 
to find different ways of solving problems and to formulate arguments that validate 
their answers’ (SEP, 2003, p. 7). We find most problems and activities posed in the 
textbooks challenging and useful; however, we have also noticed limitations in the 
presentation of concepts. The problems in the textbooks require of mathematical 
knowledge which students usually do not have. Complex ideas are often presented 
without providing the students with any strategies for dealing with them. For 
example, we have found that the idea of probability is introduced before the students 
have had enough experiences with random events. Also, sophisticated problems 
involving rational numbers are presented without providing students (and teachers) 
with activities that could assist them in their learning. Our purpose is to complement 
the textbooks providing teachers and students with resources that can help them in 
working with the problems posed in them. 
Conversations with teachers 
As we have already mentioned, we work with teachers through the whole process of 
development of resources. Three teachers who use the resources in their classrooms 
work part-time in Enciclomedia. They carefully go through the materials we produce 
and make comments about them. We visit schools regularly, and we work, in 
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particular, with four teachers from two different schools. We have also worked in 
several workshops including 200 teachers in total.  

Teachers find many of the problems in the textbooks difficult. They often say 
that the books do not provide students with enough exercises for them to learn the 
concepts. Most teachers also say they do not understand the goal of the chapters and 
that they do not know how to solve the more complex activities in the textbooks. For 
example, they often avoid teaching lessons related to probability since they consider 
it too difficult and not relevant. Regarding area and perimeter, even when teachers 
say to have a good understanding of the concepts, they prefer to use conventional 
formulae instead of working with non-standard units as is suggested in the textbooks. 
We have found that teachers’ strategies often differ from the approach taken by the 
National Curriculum and the textbooks. During the lessons they give definitions for 
concepts and work on repetitive exercises. Students are frequently left to work on the 
textbooks’ problems on their own and they verify answers in the group without 
discussing them. Collaborative work is seldom used and students often get distracted. 
Looking at the literature 
Finding out what is said in the literature about the teaching and learning of the 
mathematical concepts we are addressing in our project provides us with valuable 
ideas for our work. We are familiar with different areas of the mathematics education 
literature; some members of our group have experience in doing research on the 
teaching of mathematics with the use of digital technologies and each of us has 
looked at research studies on different mathematical concepts.  

For example, regarding the learning of fractions we have found that many 
studies show that it is a complex process where plenty of difficulties arise (e.g. 
Cramer et al., 2002). Studies often suggest activities that might help children in 
developing meanings for rational numbers, such as the use of multiple concrete 
models. Concerning probability we have found that identifying a random event is 
difficult as students often confuse a random experiment with a sequence of results 
(e.g. Schlottmann, 2001). Children often use non-conventional strategies to find the 
probability of winning a game and many students believe that in all random 
experiments the events are equally likely. Researchers give suggestions such as the 
use of simulations to help students observe the temporal and spatial features of many 
random phenomena and facilitate the development of probabilistic reasoning (Drier, 
2000). As to the learning of the concept of area, research shows that many students do 
not see it as a measure of the spread of a surface, even when they can use formulae to 
calculate it (e.g. Baturo and Nason, 1996). Students often confuse perimeter with 
area, and researchers advise to work with this distinction from the beginning. Early 
introduction of formulae is seen as a contributor to this problem and therefore the use 
of non-standard units and of ways of obtaining areas and perimeters is suggested. 

From the analysis of the textbooks, the conversations we have with teachers 
and the findings from the literature, many questions arise. We ask ourselves what 
kinds of experiences can help teachers and students in their learning of the 
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mathematical concepts we are thinking about and whether digital technologies can be 
of particular help. For example, we start thinking about how multiple representations 
and computer simulations can help teachers and students reconsider their ideas about 
these concepts. We then start the production phase, in which we develop interactive 
programmes and teaching guides. 
Producing the materials 
Computer programmes. We have developed different types of programmes. They 
vary, for example, in the kinds of interactivity they promote and in the types of 
problems they pose to the users. The programmes are closely related to the activities 
in the students’ textbooks, but they are mostly thought of as spaces for mathematical 
exploration. They usually provide users with something they would not get if they 
used the textbook only. Programmes give the students immediate feedback on their 
actions on the computer and they often simulate situations that are difficult to 
recreate or experience in the classroom. For example, the interactive programme 
Dados, which is related to probability, simulates large number of occurrences of 
random events by recreating different games with dice. The Balance, a programme 
that reproduces a problem situation from the Year 6 textbook in which scales need to 
be balanced using fractions, provides the users with feedback that helps them in 
identifying which parts are balanced and which are not. Finally, the programme 
Perimarea invites students to work with non-standard units and with different ways 
of calculating the area and perimeter of different shapes. 
Teaching guides. Our work includes the development of teaching guides with 
suggestions on how to use the computer programmes with the interactive 
whiteboards. We believe learning occurs through interactions, and therefore we 
recommend teachers to promote collaborative work in their classrooms. The 
activities we propose include discussions and small-group work. We also advise 
teachers to promote the manipulation of concrete objects before getting students to 
work with abstract ideas. We acknowledge the complexity of teaching and learning 
and the uniqueness of every classroom. Our intention is to provide teachers with 
guidelines, and to work with them in the development of their practice of the 
teaching of each particular concept.  
Doing research in the classrooms: Back to the beginning 
After a first version of the programme related to a particular topic is completed, we 
start doing research in the classrooms. We make observations and ask questions to 
students and teachers in order to identify mathematical actions they undertake and to 
obtain more information on what their difficulties and strategies are. We investigate 
students’ behaviour and, in particular, their mathematical actions. We look for 
patterns in effective behaviour, which for us define a classroom culture (see 
Maturana and Varela, 1992). We use audio and video recording as well as fieldnotes 
to collect data. 

The data show, for example, that the use of The Balance invites students to act 
mathematically in a number of ways. They work with mathematical concepts such 
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equivalent fractions and they operate on mathematical symbols. They use different 
representations when dealing with fractions and they often ask mathematical 
questions such as ‘why is ½ heavier than ¼?’. We have also observed students giving 
explanations to justify their answers to the group. Justifications are usually 
incomplete although we have also recorded sophisticated explanations, such as using 
graphic representations (of pizzas) to show how a fraction with odd numerator can be 
divided into two equal parts. Classroom observations have also shown that, using the 
program Dados students are able to interpret graphs of frequencies, to identify equally 
likely events and to make predictions taking into account the probability of the events. 
All this is only possible with teachers’ support and intervention. Even when 
programmes prove to be useful as a means of enriching children’s experiences with 
mathematics, teachers’ organisation and strategies are found to be crucial.  

We have also observed students as they use the programme Perimarea, where 
they need to calculate the area for different shapes by counting the squares on a grid. 
We noticed, both during the lessons and on the video from those sessions, that 
students often give the answers by trial and error. They get feedback from the 
programme, showing them graphically whether they are missing or they give too 
many square units in their answers. Many students write random numbers, while 
others count squares. In both cases, they do not relate these actions to the concept of 
area or the formulae they have used beforehand. The original purpose for which we 
developed Perimarea was not accomplished. For this reason, we decided to modify 
the programme so that students were not given automatic feedback and so that they 
could establish relationships between their counting actions and the concepts of area 
and perimeter. We have already done some changes to the programme and others are 
in process. Figure 1 shows the way in which the interface has changed. For example, 
it new button ‘Listo’, which teachers can use whenever they want the programme to 
give feedback to the students, was incorporated.  

 
Figure 1: Changes in Perimarea 

Research on how this version of the programme works in the classroom is currently 
being carried out. We are also wondering whether we can develop more activities 
that can help students deepen their understanding of area. Revisiting the textbooks 
and the literature are places to start. Classroom observations often make us 
reconsider our ideas about the concepts we are working with and about the 
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programmes we are developing; therefore taking us back to the beginning of the 
process (see Figure 2 for a diagram that shows the recursive process of development 
of resources).  

   
Figure 2: The circular process of production of resources in Enciclomedia 

Conclusions 

Research done shows that, when the materials we are developing in Enciclomedia are 
used in the classroom, students look interested in solving mathematical activities. 
They reflect on problems and they give explanations to justify their solutions, which 
are key elements in the approach taken by the National Curriculum. The culture in 
the classrooms includes interaction and collaborative work. We believe that the open 
nature of most of our interactive programmes promotes this kind of work.  

Difficulties have been encountered in the process of incorporating the new tools 
in classroom activities. Teachers are often afraid of using Enciclomedia at the 
beginning and they usually need support and encouragement. Not all the programmes 
have worked in the way we expected them to and therefore, as in the case of 
Perimarea, modifications have been needed. We have also changed teachers’ guides 
when, after having been in the classrooms, we find that teachers need particular 
suggestions. The circular process in which we are immersed has been extremely 
important in the refinement of our materials thus making them more efficient.  
Collaborative work amongst ourselves, the members of the mathematics group in 
Enciclomedia, has been of prime importance in the process of development of our 
initiatives. Throughout the process, we use multiple perspectives, which is another 
feature of the enactivist methodology (Reid, 1996, p. 207). This refers to the 
exchange of ideas with other researchers and also to the examination of different 
kinds of data. Through the comparison of different events we are able to explain 
more. The analysis of the books is done by each member of the team separately; we 
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then discuss our ideas with each other and with teachers. The development of the 
programmes and the teaching guides involves multiple views, as a number of 
programmers, designers, mathematicians, educators and students collaborate with us. 
Doing research in the classrooms also involves the use of multiple views as we 
collect many types of data and we analyse them from different perspectives.  

In the future we will carry on developing our resources as we continue 
exploring classroom cultures in which the digital technologies provided by 
Enciclomedia are used. Our recursive way of working helps us in enriching teachers’ 
practices and in developing our own learning about the teaching and learning of 
mathematics.  
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This paper has been prepared to address the issues and questions of the theme 
‘access, equity and socio-cultural issues’. Findings from two studies are reported. In 
the first study gender issues in mathematical learning environments when computers 
were used were investigated. In the second effective practices for teaching 
disadvantaged or marginalised students with digital technology are canvassed. 
Teaching for equity and social justice in the digital age is complex. Teachers need to 
be aware that their beliefs and classroom practices may exacerbate gender and 
cultural inequalities in mathematics learning. Approaches that are consistent with 
social-constructivist and democratic theories need further investigation.  
 
In this paper a synopsis of previous research of equity issues in computer-based 
secondary mathematics, especially gender issues, and findings from current work that 
is focussing on responding to diversity and disadvantage of students in mathematics 
when using digital technologies, are described. The issues raised in this paper 
concern students’ engagement in and attitudes to mathematics learning with digital 
technologies, teachers’ practices and pedagogical approaches that erode or enhance 
equity and social justice in these environments and the theoretical frameworks that 
inform and arise from the studies. 
Equity involves equal access, equal treatment and equal outcomes in mathematics 
learning, participation and attitudes (Fennema, 1995). Teaching for social justice 
requires a commitment to ‘closing the gap’ and involves fairness, respect, inclusivity 
and redressing power imbalances (Boaler, 2002; Skovsmose & Valero, 2002).  
Impact of digital technology on gender equity 

In an earlier ICMI Study ‘Gender and Mathematics Education’ it was reported that 
the use of technology in mathematics might erode the advances made toward gender 
equity in mathematics (Hanna and Nyhof-Young, 1995). Only a few people have 
investigated gender issues with respect to the use of technology in mathematics. In 
the context of a narrowing gap in gender differences in achievement in Australia but 
persistent differences in senior secondary mathematics participation (Vale, Forgasz 
& Horne, 2004) I began to explore the proposition of threats to equity. 
The research involved a grade 8, grade 9 and grade 10 mathematics class and their 
teachers. The classes were located in two schools where the students came from 
socio-economic backgrounds that were in the mid-range in Victoria, Australia. The 
research focussed on classroom practices and culture when using computers in 
mathematics as previous studies had shown the relationship between classroom 
practices and differentiated learning outcomes (Fennema, 1995). It was naturalistic in 
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the sense that it sought to study what was actually happening in classrooms rather 
than to invoke change or innovation using ethnographic methods. Mathematics 
lessons were observed and video-taped, teachers and students were interviewed, and 
students completed a questionnaire. Teachers determined the content and learning 
approaches used in the classrooms and we negotiated the timing of the study. 
Qualitative and quantitative methods were used to analyse the data collected. 
The grade 8 class was timetabled in a computer laboratory for one lesson each week. 
Students in the grade 9 class owned (or leased) laptop computers that they brought to 
school each day. They were used for some lessons, when appropriate to the content 
as determined by the teacher. Students in the grade 10 class used computers for only 
one topic in the year. They accessed a computer laboratory for three consecutive 
lessons for this topic. These learning settings are typical of the range of contexts in 
which teachers can access computers for mathematics lessons. The content of the 
lessons observed included algebra, number and geometry. Grade 8 students used 
PowerPoint to present and explain the solution of multi-step linear equations and a 
spreadsheet to solve applied problems about percentage change. Grade 9 students 
learned to use dynamic geometry software, completed two guided investigations on 
geometric properties and a project on the construction of various geometric shapes. 
Grade 10 students learned to use Graphmatica and used it to investigate the family of 
quadratic functions and to solve problems about the paths of bouncing balls.  
The classroom cultures and students’ attitudes and the factors influencing these 
findings are presented here. Data are to support these findings are published 
elsewhere (Vale, 1998; Vale, 2002; Vale, 2003; Vale & Leder, 2004). The students in 
these classrooms were motivated to complete the tasks and with a few exceptions 
they worked individually on their computers. While the behaviours and attitudes of 
girls and boys were similar in many respects, the classrooms were masculine 
domains since the behaviours and interests of the boys defined the cultural norms of 
the classroom. The boys were louder and took up more space (and in the year 9 class 
they outnumbered girls 2:1); they were more demonstrative and public about their 
computer knowledge and competitive about their achievements in mathematics and 
with computers, a finding consistent with previous studies of gender (Boaler, 1997; 
Forgasz & Leder, 1996; Schofeld, 1995). Boys benefited in these computer-based 
mathematics classrooms because they took control of their own learning to learn 
more about computers. They did this through their off-task activities such as loading 
software and searching the Internet. Girls and their needs and interests were on the 
periphery in these classrooms; they did not participate in general classroom 
discussions, male students denigrated their achievement and the teachers were 
generally ignorant of their computer skills, especially girls with lower mathematics 
achievement. Some high achieving girls worked individually as ‘silent’ participants.  
Students were positive about the use of computers in mathematics and considered it a 
natural learning environment for the 21st century. However, girls viewed the use 
computers in mathematics less favourably than boys. Boys believed that computers 



 

 566 

were a male domain and that they provided pleasure, relevance and success in 
mathematics. Girls more often commented on whether computers aided their learning 
or enabled success in mathematics and high achieving girls in particular were 
concerned that the use of computers may lead to deterioration in their mathematics 
skills. More positive attitudes to computers by males have been commonly observed 
in studies of computing in education. Forgasz (2002) found that the socio-economic 
status of students mediated gender differences in attitudes to computers in 
mathematics. Students of high and low socio-economic status were more likely to 
gender-stereotype the use of computers in mathematics. 
In these classrooms the students used the computers as a tool for doing mathematics. 
There were relatively few interactions between students about the mathematical 
concepts that they were exploring. When these did occur they were between high 
achieving boys, who were more likely to comment that computers aided learning of 
mathematics. High achieving girls also displayed efficient strategies when using the 
computers to solve problems in the different classrooms. Attitude to the use of 
computers for learning mathematics was more strongly correlated with attitudes to 
computers than to mathematics, and this was more strongly the case for boys than 
girls (Vale & Leder, 2004). Galbraith, Haines and Pemberton (1999) also observed 
this phenomenon among tertiary students of mathematics but they did report any 
findings by gender. 
Teachers’ practices 
Teachers’ practices, beliefs about computers and mathematics learning, expectations 
of students and lack of experience with computers and software in junior secondary 
mathematics, contributed to the culture of these classrooms. The data showed that the 
approaches and views of the teachers were more strongly in accord with the learning 
preferences and views of boys.  
Many of the tasks observed in these classrooms were consistent with a constructivist 
approach to learning mathematics, and they had the potential of promoting 
collaboration in the classroom and engagement in mathematical thinking but this 
rarely occurred and not for lower achieving students. Furthermore, the teachers in 
this study perceived computers to be a tool and an opportunity for student enjoyment 
in mathematics and the grade 8 teacher believed he had a responsibility to teach and 
use generic software in his mathematics program and sought ways to do this. The 
grade 9 teacher believed that high achieving mathematics students would benefit the 
most from using computers.  
Teachers differentiated their interactions between girls and boys in the classrooms 
and according to the mathematical achievement level of students. They were more 
likely to interact with high achieving students about the mathematical concepts. The 
grade 8 teacher spent long periods of time individually instructing students with 
fewer computer literacy skills or confidence. They held gender stereotyped views of 
students and assumed boys’ to be the computer experts in these classrooms and 
called on them to solve problems. They did not acknowledge the computer skills of 
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lower achieving girls who took on different roles in these classroom settings as 
successful tutors. Opportunities to engage these students in mathematical thinking 
while using technology were missed. If mathematics teachers believe boys “know” 
about computers and girls “learn” computers, then teachers will have different 
expectations of students in computer-based mathematics lessons.  
These teachers needed to be more explicit about the mathematical learning objectives 
of these tasks, to facilitate collaboration among students and to discuss the processes 
and findings of their investigations and problem solving in the public forum, for the 
benefit of all students. They could have provided opportunities for students to 
generate their own questions, draw on their own ideas, use other software or 
mathematics knowledge and to work in groups. According to the data gathered from 
student interviews these approaches would have appealed to the girls and boys in this 
study. The findings from this study indicate that teachers need to reflect on their own 
practice and beliefs and the way that these impact on the attitudes and performance 
of the different groups of girls and boys in their classrooms.  
Type of digital technology 
A range of software accessed through computers, either desktops in a laboratory or 
laptops were used. Did this make a difference to gender equity? One might argue that 
the cultural norms would be similar in normal classroom settings for these teachers 
and students. The “control” that students exercised with computers, especially 
laptops, resulted in gendered patterns of activity. Boys used these lessons as an 
opportunity to learn more about computers and to have fun. Girls were less likely to 
have computers at home and had less experience of computers. Girls with fewer 
opportunities to use computers relied on learning their computer skills in classrooms. 
Without adequate support from their peers or the teacher, students who were not 
computer literate were excluded from the mathematical learning. Fennema (1995) 
argued that there has been little progress toward gender equity for lower-achieving 
girls and findings from this study suggest that this phenomenon is evident in 
computer-based classrooms. Would hand-held digital technologies be any different? 
Shaoff-Grubbs (1995) reported positive achievement and attitude outcomes for girls 
using graphics calculators, but there have been few gender-based studies. The 
propensity of girls to use and perform better than boys with by hand methods for 
algebra items in graphics calculator and CAS environments (Forster & Mueller, 
2001; Tynan & Asp, 1998) suggests that further research is warranted.  
RESPONDING TO DIVERSITY AND DISADVANTAGE 
In the current research and work with teachers I have begun to document teaching 
practices that will support the learning of disadvantaged and marginalised students in 
technology-based mathematics. Teachers who regularly used digital technologies in 
their junior secondary classrooms and who gave priority to enabling all students to 
experience success when using digital technologies were selected. Eight junior 
secondary mathematics teachers have been involved in the first stage of this project. 
They are teachers in some of the most disadvantaged schools in Melbourne. Their 
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schools are located in communities with below average socio-economic status, high 
proportions of students from non-English speaking backgrounds where the most 
disadvantaged are recent refugees or students living in poverty. I interviewed each of 
the teachers and we spent one whole day together presenting and sharing teaching 
materials and strategies. 
Each teacher defined equity in terms of equal treatment and fairness, and developing 
mutual respect. Two teachers were also committed to ‘closing the gap’ by improving 
the outcomes of their students relative to students from more advantaged socio-
economic backgrounds. They talked about empowering their students. 
The framework for beginning to document and analyse teaching practices is drawn 
from a number of studies on inclusive practices and social justice (for example, 
Boaler, 2002; Hayes, Lingard & Mills, 2000; Skovsmose & Valero, 2002). It is 
summarised using six main characteristics of teaching for equity and social justice: 
equal access to learning and the use of digital technologies; connected learning; 
collaborative methods; supportive environments; intellectual quality and respect for 
difference. Brief descriptions of these ideas and a few examples gathered through this 
project are presented below. 
Equal access is non-trivial. Ensuring that students in schools that are poorly 
resourced with digital technologies or from poor family backgrounds means that this 
concept extends beyond merely ensuring that students in a class have equal time 
hands on with materials and digital technologies. Furthermore as observed in the 
previous study, the cultural norms of the classroom are critical if students are to be 
included in mathematical practice and thinking. Teachers in the current study talked 
about the strategies that they are using to get access to digital technologies for their 
students and also to find ways of ‘closing the gap’ for their students. These included 
school initiatives to provide computers for some families and the provision of 
additional hands on time in class and homework sessions for students who do not 
have computers or the Internet at home.  
The teachers used some approaches related to constructivist, inclusive and 
democratic theories of connectedness and empowerment. They described learning 
tasks that enabled students to build on their prior knowledge, in particular their skills 
with technology. This was especially the case for two of the teachers who used 
integrated projects that were socially and culturally relevant to their students. In these 
projects students explored mathematical concepts or applications and presented their 
findings using a range of digital media or conducted other inquiries using 
mathematics and statistics with technology to communicate their findings. These 
projects were open-ended and aspects of the tasks were negotiated with students. 
Making mathematics relevant was clearly a goal for teachers. But what are the 
empowering mathematical concepts, skills and teacher practices in the context of 
digital technologies? Four of the teachers believed that a focus on the language of 
mathematics was particularly important for their empowering their students. 
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Selecting or designing tasks based on what students knew and understood about 
mathematics was less apparent in their practise. One teacher described an 
investigation of the relationship between the diameter and circumference of a circle 
after discovering that her grade 9 students held some misconceptions about pi. Each 
student in the class entered data into a spreadsheet on one laptop connected to a data 
projector. This teacher described a strong sense of community inquiry as students 
discussed and asked questions in response to the immediate feedback available by the 
technology being used in this way. 
Collaborative practices recognise the importance of discussion and social interaction 
for the learning of mathematics and students are encouraged to share their knowledge 
and skills and to explain their thinking. Presentation and discussion of findings from 
integrated projects and problem solving tasks was important practice for two of these 
teachers, but group work with technology was not a common practice. Perhaps this 
was because all but one of the teachers used computers rather than graphic 
calculators with their students and they wanted to ensure hands on access for all 
students. Three teachers used particular seating plans in computer laboratories in 
order to facilitate peer tutoring and assistance, but effective practices for group work 
with computers needs to be documented.  
In supportive learning environments students feel safe, free from abuse, and 
respected. Expectations for mathematical thinking and practices are made explicit for 
students and teachers model and scaffold mathematical thinking in the classroom. 
The concept of fairness, equal treatment and respectful relationships with students 
were common meanings of equity and social justice given by the teachers. One 
teacher deliberately used the grouping of students and seating plans in the computer 
laboratory to develop more understanding, respect and harmony among his students 
of diverse cultural backgrounds and educational talents. Each of these teachers 
demonstrated the technical skills to model mathematical practices with technology 
and they used guided investigations. Three of them believed that detailed step-by-
step instructions were important. In three of the schools students accessed learning 
tasks through the school network. One of these teachers included voice-overs and 
another imbedded hints as comments in the instructions and examples that she 
provided her students for problem solving tasks. Another teacher talked about the 
need to design questions in written instructions that would support students to 
interpret the dynamic visual feedback afforded in digital environments. 
High expectations and engagement of all students in meaningful mathematical 
thinking are central to social justice. One way in which teachers in the current study 
conveyed their expectations was through the dissemination of criteria for assessment 
tasks, especially the integrated projects. One teacher showed her students examples 
of similar projects. She gave particular importance to thinking creatively and 
providing the opportunity to display high-level skills with technology. Four of these 
teachers regularly used non-routine problems in digital environments to engage 
students in higher-order thinking and provide challenge. They commented that the 
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instant visual feedback of the digital environment afforded students the freedom to 
experiment without the fear of failure and public disclosure. 
Two teachers in particular talked about the need to understand students’ cultural 
background and create tolerance and respect within their classrooms. While teachers 
generally recognised gender differences and used real data and applications of 
mathematics related to the interests of their students, both boys and girls, only one 
was concerned that they were using mono-cultural contexts for their real life 
applications of mathematics. 
Conclusion 

Australia is one of the few countries that have consistently shown no significant 
gender differences in achievement in the large international studies over the last 
decade (TIMMS and PISA studies) but socio-economic differences in achievement 
are more dramatic in Australia than for the OECD average. The research into gender 
issues summarised in this paper reveals practices that threaten advances toward 
gender equity. Paying attention to gender issues when using digital technology in 
mathematics is necessary if further progress is to be made in achieving gender equity 
in achievement and participation in mathematics around the world. 
Further there is reasonable concern that the use of technology in mathematics may 
focus on the learning and needs of the most successful and socially advantaged 
mathematics students (Hoyles, 1998). Indeed, a report of a recent global survey to 
gather cases of exemplary innovative practises in the use of digital technology in 
education included very few cases that focussed on disadvantaged or marginalised 
groups (Kosma, 2003). I have attempted to shed some light on the practice of 
teachers working with disadvantaged students. We need to continue to work toward 
empowering disadvantaged and marginalised students in the digital age.  
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An effective use of the Internet for teaching and learning mathematics cannot be 
accomplished without a method of displaying and manipulating mathematical 
expressions on the web. There are currently several equations editors used for this 
purpose, but none of them can be regarded as a standard method yet.  
 
This session contains an overview of currently available equation editors, including: 
i) MathType, ii) TeX and related tools such as LaTeX2HTML, TtH, JsMath and 
mimeTeX, iii) MathML and WebEQ, with a discussion their advantages and 
disadvantages. This overview of available methods of mathematics publishing on the 
web demonstrates that at present there is no one single solution which is superior to 
all others in all aspects.  
 
Motivated by the principle that users have various needs and therefore should be 
given options to choose between different platforms in the most convenient way, we 
propose another online equation editor, in which we combine ingredients of ITeX, 
mimeTex and some ideas behind TtH and MathML to offer a solution that can meet 
today's needs as well as take advantages of possible future improvements in 
MathML. We discuss features of the new online equation editor that make it a 
possibly more useful tool for online teaching and learning than other existing 
equation editors, and we demonstrate the use of this equation editor in online class 
activities such as discussion boards, chats, online office hours and tutorials.  
 
As an example of the potential application of the equation editor, we describe a 
project under way at Ohio University on a centralized system of homework, quizzes 
and tests for undergraduate introductory calculus courses. The central idea of the 
project is collaboration between instructors and students to build a database of 
problems with solutions, for which the online equation editor serves as a working 
instrument. We use the well known WebWork for part of our online homework 
system, but we also use resources created by instructors, especially for those tests 
which require detailed written answers. We discuss methods for facilitating the fast 
and efficient entry of mathematics problems into the databases, and for using these 
databases in teaching, learning and students knowledge assessment. Finally, we 
discuss possible collaboration of mathematics teachers between institutions in the 
U.S. and other countries in the creation of online learning content in mathematics.  
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In Singapore, the use of graphing calculators in the pre-university level Further 
Mathematics examinations was first permitted in the year 2001. This study examines 
Further Mathematics students’ performance and usage of GC in solving problems on 
Curve Sketching, Linear Spaces and Statistics. A total of 190 students enrolled in the 
second year of the two-year pre-university course in Singapore who took Further 
Mathematics were surveyed on 3 occasions at intervals from March to September 
2003. The results obtained seem to suggest that graphing calculator users perform 
better academically than non-graphing calculator users. Temporal benefits of 
graphing calculator usage in a timed pencil-and-paper assessment are also alluded 
to. Further in-depth studies need to be performed to ascertain the factors 
surrounding graphing calculator usage, such as teacher proficiency and instruction, 
and a formal teaching scheme that incorporates the use of the graphing calculator on 
a regular basis needs to be developed and systematically carried out to ascertain the 
many facets of graphing calculator usage and its potential as a learning and teaching 
tool at the pre-university level in Singapore. 

 

Introduction 

Ever since its birth more than 40 years ago, the electronic calculator has undergone a 
number of changes as a result of progress in technology: from models that perform 
the four basic operations of addition, subtraction, multiplication and division, to 
complex machines that are able to perform extremely specialised algebraic and 
symbolic computations instantaneously and to do so with precision (Pomerantz, 
1997). Consistent improvements have been made on older models of electronic 
calculators, the products of which are devices with increased speed and more 
sophisticated capabilities. Apart from being used frequently in a large variety of 
vocations, electronic calculators have also gained the attention of mathematics 
educators and researchers in mathematics education as a tool in the teaching and 
learning of mathematics. In the local context of Singapore, scientific calculators have 
been used in the teaching and learning of secondary school mathematics from 
Secondary One through to Secondary Four and in junior colleges (JC; pre-university 
level) for a number of years. However, the use of the graphing calculator (GC) in the 
teaching of pre-university level mathematics is a fairly recent endeavour locally. In 
fact, students were only allowed to use a GC while taking the GCE Advanced Level 
Further Mathematics examinations since the year of 2001. As there is a dearth of 
research on the impact of GC use and JC student achievement in Singapore, the 
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purpose of this study therefore, is to determine whether the use of graphing 
calculators by Year 2 JC students in Further Mathematics enhance academic 
achievement and overall performance in problem solving. 
Since its inception in the learning and teaching of mathematics, a number of 
researchers have studied the use of calculators in the classroom. Campbell and 
Stewart (1993) have found that calculators stimulate problem solving, extend number 
sense and reinforce comprehension of arithmetic operations. Research conducted by 
Hembree and Dessart (1986) also show that students who utilise calculators regularly 
obtain higher achievement scores and improved paper-and-pencil skills in basic 
operations and problem-solving. This directly addresses the concerns that paper-and-
pencil skills will be rendered obsolete with the frequent use of the calculator. 
Suydam (1987) surmised, through scrutiny of over 100 studies, that the use of 
calculators encourages achievement, improves skills in problem solving and 
heightens understanding of mathematical concepts. Some researchers propose that 
the use of calculators make available precious time that was used previously for 
manual computations that allow teachers to introduce more mathematically 
investigative work and therefore let students have the opportunity to access 
previously limited concepts and experiences, specifically in exploration and 
experimentation in mathematics (Fey & Hirsch, 1992; Pomerantz, 1997).  
Despite the rise in popularity of technology, the use of calculators in classroom 
teaching and learning has been an area of contention since its introduction. 
Pomerantz (1997) addresses what she calls “myths” in classroom calculator usage 
that have been raised by various individuals involved in children’s education such as 
mathematics educators and researchers themselves as well as parents. These “myths” 
include notions that calculators are a crutch for lazy students, that they reduce the 
level of challenge of mathematical tasks and prevent students from learning the basic 
mathematics required in many vocations. As a result of frequent calculator usage, 
individuals might also develop overdependence on these instruments which will 
therefore cause helplessness in manual computations should the need for paper-and-
pencil approaches arise. Boers & Jones (1994) found that students were particularly 
concerned about the possible outcomes of over-dependency on graphing calculators 
and Dunham (1991) noted that this was particularly true of female students. Some 
parents have also expressed reservation about the use of calculators in school on the 
basis that acquisition of mathematical concepts and skills requires paper-and-pencil 
computations, algorithms and drill work encompassed in traditional mathematics 
education, which they have been part of. While these are practical concerns that 
could have stemmed from the misuse of calculators in education, research has shown 
that the use of calculators in the teaching and learning of mathematics does have its 
merits. As with all teaching and learning tools, the calculator needs to be utilised 
appropriately in order for students and teachers alike to reap its benefits. 
The value of calculators not only lies in the improvement of students’ mathematical 
cognition and achievement as discussed above. Other studies have shown that 
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calculator usage increases students’ self-concept and fosters a better attitude toward 
mathematics (Dunham, 1995; Hembree & Dessart, 1986). Strong evidence has been 
found that the use of graphing calculators has significant influence on students’ 
mathematical achievement and on the ways they approach the solution to a problem 
(Ruthven, 1995). Later work by van Streun et al. (2000) supports Ruthven’s findings 
but goes further in noting that the calculator does not confer any additional advantage 
in data interpretation. These findings align themselves with research that calculators 
in general are a merely aids in problem solving and do not think on the behalf of the 
student. Calculators remove the tedious computation steps that frequently deter 
students from taking mathematics education to a higher level, which means 
accessibility to more complex mathematics and allows students to focus on 
developing mathematical understanding and their repertoire of problem solving 
techniques (Pomerantz, 1997). 
With the progress of technology in mathematics, there have also been questions 
raised by countries such as Britain regarding students’ use of calculators while they 
are being assessed in mathematical knowledge and skill (Qualifications & 
Curriculum Authority, 1999). Ellis and Brown (1997) propose that assessment modes 
should complement the curriculum since students who are expected to utilise a 
calculator throughout the course of their study need to be assessed fairly. Many 
examination boards in the world have started incorporating technology in the 
teaching and learning of Mathematics curriculum of late. For example, Principles 
and Standards for School Mathematics published by the NTCM in year 2000, 
advocates the use of electronic technologies – calculators and computers as essential 
tools for teaching, learning and doing Mathematics. Also, the various tests 
administered by the College Board (SAT, SAT II, Advanced Placement) either 
permit or require the use of a graphing calculator. From May 2000, the use of 
graphing calculators (GCs) was compulsory for three out of the four Diploma 
Programme Maths course in the International Baccalaureate (IB) curriculum. 
Victoria state in Australia has been approving the use of a GC in many of its 
Mathematics examinations since 1999 and it is looking further into a CAS calculator-
based Mathematics module. In Britain, the Qualification and Curriculum Authority 
(QCA) has listed the use of contemporary calculator technology” as one of the five 
assessment objectives within its “Subject Criteria for Mathematics” (QCA, 1999). 
Other countries, such as Denmark, Norway and Portugal which have a national 
curriculum for 16-19 age group are making the use of GCs compulsory (Edward, 
2000).  
In Singapore, students taking the advanced level Further Mathematics examinations 
at the end of their second year of junior college have been allowed the use of a GC 
since 2001, though the questions set will be GC neutral. This has tremendous 
implications on the learning and teaching of Further Mathematics at the JC level in 
Singapore. As yet, students appear to be underutilising the GC that might be due to 
the lack of familiarity with GC use on the part of teachers and as a result, students 
themselves. The aim of this study is to ascertain whether students’ utilisation of GCs 
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throughout curriculum time have an impact, either positive or negative, on the 
subsequent assessments of local JC students in Further Mathematics. 
Design of Study 

The research participants comprised of all 190 Year 2 students (in Year 2003) who 
took Further Mathematics at a junior college in Singapore. Of the 190 students, 
approximately 60% possessed either a TI83 or TI83 Plus GC. The research was 
carried out by conducting surveys of students’ performance on 3 different tests 
covering 3 different topics over a period of 6 months, from March to September 
2003. The surveys were conducted after each test was marked and returned to 
students. 
Survey 1 involved students’ usage of the GC while attempting Question 6 of the June 
Common Test on Curve Sketching, where students were requested to state whether 
they used a GC in obtaining or checking the graph. Survey 2 on Linear Space which 
was part of a lecture test and required students to indicate the length of time spent on 
the question posed and whether they utilised a GC in obtaining the solution or for 
checking their solutions. The final survey, Survey 3 on Paper 2 of the Preliminary 
Examination was obtained based on students’ academic overall academic score and 
GC usage patterns. 

Table 2: Surveys and their related test items 

Survey Question 

1 

 
Curve Sketching (June Common Test Question 6) 

(a) The curve C has equation  x
xy

β
β ++=

  where 0, 0xβ ≠ ≠ .  

 (i) Find the set of values of β  for C to cut the x-axis at 
two distinct points.  [2] 

 (ii) If  1 < β  < 2, draw a sketch of C, labelling the 
asymptotes, stationary   points and any intersections with the 
coordinate axes, if they exist.   [5] 
[Please indicate on the cover page whether you made use of the 
graphical calculator.] 

2 

 
Linear Spaces (Lecture Test) 
If x is an eigenvector of each of the square matrices A and B with 
the corresponding eigenvalues λ and µ respectively. Show that x is 
an eigenvector of  
(i)  kA, 
(ii) A + B, 
and find their corresponding eigenvalues.     
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 [4] 
Find the eigenvalues and the corresponding eigenvectors of the 
matrix A, where  

    A = 
















−

−−

−−

728

368

331

.   

 [6] 
Hence, find a matrix P and a diagonal matrix D in terms of n such 
that SP = PD where  
       S = A + 2A + 3A + …+ nA,   n∈Z+.  
 [5] 
 

3 

 
Preliminary Examination Paper 2 
One of the questions that GC could be useful is Question 7 as 
follows. 
A certain local authority was looking into the length-of-service 
characteristics of its employees. Jobs were classified as being 
manual, technical or administrative. Records were available 
showing how long each employee had served with the authority. 
150 employees, chosen at random from all the employees of the 
authority, were investigated and the results were as follows: 
 
Type of Jobs                            Length of service  
Manual < 6 months 6 months to 2  years    > 2 years 
Technical 30 11 19 
Administrative 13 13 20 
 9 8 27 

 
Examine whether the data provide evidence of an association 
between the types of job and the length of service of the employee 
at the 1% significance level.  [6] 
 

RESULTS AND DISCUSSION 
The results of study are divided into 3 sections, each based on the corresponding 
survey that was carried out. The outcome of the first survey that is presented in Table 
2 shows that out of the 33 students who responded that they used a GC in either 
checking or obtaining the graph, 20 of them (60.6%) received 4 or 5 marks out of a 
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possible 5. Conversely, 23 students out of the 55 who responded that they did not use 
the GC in attempting the question received 4 or 5 marks (that is, 41.8%). The 
difference between the percentages of students obtaining 4 or 5 marks for with and 
without GC is 18.8%, which seems to suggest that students who used the GC 
obtained better results. Similarly, a comparison between students who obtained 0 or 1 
mark shows that those who utilised a GC are less likely to perform poorly. This 
appears to be in keeping with Dunham’s review of research that students who utilise 
graphing technology have greater overall achievement on questions that require 
graphing solutions (Dunham, 1993). 

Table 3: Results of Survey 1 showing students’ use of the GC and their 
results 

 Marks Obtained (Total = 5) 

 0 or 1 2 or 3 4 or 5 

Graphing calculator used 
(Total of 33 students) 

1 
(3.0%) 

12 
(36.4%) 

20 
(60.6%) 

No graphing calculator used 
(Total of 55 students) 

13 
(23.6%) 

19 
(34.5%) 

23 
(41.8%) 

 
Table 3 shows a breakdown of survey responses obtained from students during the 
lecture test. As the results show, students generally take less time in obtaining the 
solution to the computationally intensive Linear Spaces question when they utilised a 
GC during the problem solving process. 22 of the 34 students in class 06 used a GC 
in getting answers and found that they did not spend a lot of time on the question in 
general. On the other hand, classes where majority of students did not use a GC at all 
show that a considerable number of them spent a significant amount of time on the 
problem (e.g. classes 01 and 09). However, as the duration of “a lot of time” is 
subjective, the results are certainly not definitive, but rather indicative in nature and 
hints at the possibility of the temporal benefits of GC utilisation.  

Table 4: A comparison of the number of students and time spent on a 
Linear Spaces question based on their usage of GC 

Class 
Used a GC in 
getting 
answers 

Spent a 
lot of 
time 

Did not use 
a GC at all 

Spent a lot 
of time 

Used a GC 
for checking 
only 

01 2 0 17 5 0 
02 8 0 14 4 7 
03 3 1 16 1 2 
04 6 1 7 2 9 
05 22 0 2 1 11 
06 10 1 10 4 0 
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07 0 0 17 11 3 
08 6 0 15 7 7 
09 0 0 21 6 1 
10 1 0 13 0 3 
 
In the final survey examines the number of students who utilised a GC and their 
corresponding marks in Paper 2 of the Preliminary Examination. A total of 182 
students took the test conducted in late September 2003. 115 students (63%) used a 
GC in either solving or checking solutions and 67 students (37%) did not use a GC. 
The number of students who utilised the GC increased to 63%, presumably due to 
their improved familiarity with the GC towards the end of the year through increased 
usage or else they might have found that the GC’s capabilities were more suited to 
solving questions on Statistics.  

Table 5: Comparison of student achievement in the Preliminary 
Examination based on usage of GCs 

                Used a GC                Did not use a GC 
Total marks < 45 45 to 70 ≥ 70 < 45 45 to 70 ≥ 70 
No of 
students 30 70 15 21 40 6 

% of total 16.5% 38.5% 8.2% 11.5% 22.0% 3.3% 
% of 
category* 26.1% 60.9% 13.0% 31.3% 59.7% 9.0% 

*Category refers to those who used a GC and those who did not 
The percentage of students who obtained less than 45 marks in total was slightly 
higher for non-users of GC at 31.3% than for GC users at 26.1%. While the 
percentages of students who acquired a total mark between 45 and 70 are comparable 
(60.9% for GC users and 59.7% for non-users of GC), there was a higher percentage 
of students who obtained greater or equal to 70 marks for GC users (13.0%). 
Although a detailed breakdown of marks for Question 7 (see Table 1) was not 
acquired, the student distribution of marks obtained for that particular question might 
be similar to the pattern that is observed through the total marks for the paper. This 
suggests that academic achievement of Year 2 JC students of Further Mathematics 
who use GCs is likely to be in keeping with observations made by researchers on the 
general improvement of student achievement evidenced through the use of 
calculators (Dunham, 1993; Hembree & Dessart, 1986; Kitchen, 1998; Suydam, 
1987). 
Conclusion 

The 3 surveys reveal that the GC is likely to be a useful tool for most of the Year 2 
JC Further Mathematics students surveyed in terms of improved academic 
achievement and might confer temporal advantage during test and examination 
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situations where time is limited. The advantages in using the GC, however, are also 
contingent upon appropriate usage as Burrill et al. (2002) have determined. As 
evidenced from the number of students surveyed who have yet to utilise the GC and 
the results of some GC users, the instrument’s strengths have not been fully 
capitalised in terms of its capabilities in the learning and teaching of Further 
Mathematics. 
The results of GC users in the surveys, while better in general than those who did not 
use GC users were marginal in some cases and there were individuals who utilised 
GCs but yet took a longer time in obtaining the solutions to questions. The reason for 
this is yet unknown in the local JC context. However, this result does indicate that 
there is a possibility that GCs might not contribute to academic achievement and 
improved problem solving skills or that students are not utilising the GC to full 
advantage. From the general trend of the findings in this study and those of others, 
such as Dunham and Dick (1994) and Ruthven (1995), the former is not likely the 
case. Students’ competency in GC usage is liable to be influenced by a number of 
factors, such as accessibility to the GC, familiarity with its functions and the extent to 
which students are exposed to its use, often predetermined by teachers. As such, this 
study is lacking in terms of qualitative data that surround the learning and teaching of 
GC skills. Hence the results obtained, while not definitively conclusive, do intimate 
the potential and pitfalls in the application of GC in the learning and teaching of 
Further Mathematics. 
Further refinement of the current mathematics curriculum needs to be considered as a 
GC-neutral mathematics syllabus does not promote the usage of handheld 
technology. Moreover, maintaining a GC-neutral stance in set problems is difficult to 
achieve as evidenced by the question identified in the Preliminary Examination 
(Table 1). Proficient GC users will therefore gain an added advantage due to their 
skill in the instrument, resulting in what might be construed as an unfair advantage to 
those who choose not to utilise the GC for a variety of reasons, based on the 
knowledge that the syllabus is GC-neutral. Future research needs to look specifically 
into some of the factors outlined above, such as teachers’ competency in GC usage 
and the impartation of GC skills as well as conflicts in local curriculum and 
assessment. 
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In this paper I address questions related to the implementation of curricula. I offer a 
framework for research that build on the assumption that although the uses of digital 
technologies offer ways to redesign curricula with an attempt to create as smooth as 
possible sequence there is no a single design that can achieve this challenge. Thus, it is 
important for research to study the stability of known transitions and to explore new 
critical transitions. A transition is a learning situation that is found to involve a noticeable 
change of point of view. This change could become apparent as an epistemological 
obstacle, as a cognitive discontinuity or a didactical gap. The implementation of new 
curricula and practices in the classroom depends on the ways research would help 
teachers and designers anticipate transitions. Examples of studies that sought rational for 
students’ progress throughout analysis of curricular decisions will be given below. 

 
Long term learning with technology: A role for research 

Technologists and educators speculate about the degree to which new technologies will 
lead to replacement of current curricula with new content (Papert, 1996; Schwartz,1999; 
Noss,2001). How does the use of a new curriculum that is based upon new epistemological 
assumptions change our capability to anticipate students’ difficulties and strengths? To start 
answer the question I would introduce the term: transition. A transition is a learning 
situation that is found to involve a noticeable change of point of view. This change could 
become apparent as an epistemological obstacle, as a cognitive discontinuity or a didactical 
gap. Transition would be identified as a necessity in entering into a different type of 
discourse (in terms of the language, symbols, tools and representations involved) or more 
broadly as changing "lenses" one uses to view the concept at hand.  

Obviously there are transitions in any sequence of learning. In attempting to design a 
smooth as possible sequences Tall (2002) defines cognitive roots to be the kernel of 
continuous cognitive sequences and argues that while cognitive root would not always 
work for all students as creating cognitive continuity it would in many cases offer a 
solution to some critical transitions. Technology, when appropriately designed and used, 
can help to design learning environments that may change to various degrees the 
assumption about previous knowledge and the order new concepts are introduced. In 
designing new technology supported sequences we would expect that some known 
discontinuities disappear but others would not and very probably new gaps will appear. 
Noss (2001) who is elaborating on the implications of rethinking the mathematics learned 
with new technological environments is expecting that the epistemology of the 
mathematics learned with technology would change our ideas about cognitive hierarchies 
and the didactical attempts to construct them. Thus, an interesting challenge for research is 
to question stability of known transitions when new computational environments are 
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introduced to the learning and teaching, to go beyond known transitions to distinguish types 
of transitions and to illuminate the nature of critical transitions in technological based 
curricula. The implementation of new curricula and practices in the classroom depends on 
the ways research would help teachers and designers anticipate transitions that might be 
reflected in students' difficulties. In fact I believe that the degree to which technology is 
likely to be essential productive part of new curricula depend on the availability of studies 
that sought rational for students’ progress throughout analysis of curricular decisions.  
Visual Math: An example of long-term learning sequence 

The Visual Math curriculum (1995) is an algebra, pre-calculus and calculus curriculum 
where technology is being used to help learners develop knowledge from their perceptions 
of the world and to develop conceptual understanding of symbols. The growing research in 
the field of embodied cognition suggest the idea that bodily activities are centrally involved 
in conceptualization of mathematics and that important parts of Algebra and Calculus are 
understood via conceptual metaphors in term of more concrete concepts (Lakoff and 
Nunez, 2000). In particular the notion of continuous functions and directed graphs are 
viewed as mathematical concepts developed through human motion experience. The 
learning of algebra in VisualMath is preceded by semi-qualitative modeling and an 
environment that allows users to construct and model motion generated by the movement 
of the computer’s mouse supports the introduction of modeling of motion. Another 
challenge of the innovative development is rooted in the symbolic world where technology 
that supports multi representations of functions allows students to develop symbolic 
understanding using the feedback from graphs or table of values, generating and viewing a 
rich repertoire of non-prototypic examples. In general, an important goal of this curriculum 
is to help students develop strong symbolic skills and to learn to do a variety of standard 
algebraic manipulations. But, the curriculum is aimed at helping students learn to do such 
manipulations with an understanding of the graphical and tabular meanings of these 
manipulations, as well as a sense of the purposes for which such manipulations are useful. 
Such proficiency involves moving across the various views of symbols, graphs, equations 
and functions and to help students learn to shift their point of view.  

We will look at how such new epistemological structures afforded by digital technology 
impact the cognitive hierarchies; resolve or change the nature of known transitions or mark 
new critical discontinuities in the curricula. 
Known critical moments demanding new transitions  

The lion’s share of the early parts of the Visual Math Algebra curriculum focuses on 
functions of one variable and equations of one variable conceptualized as the comparison 
of two functions of one variable. With this way of thinking about equations that is now 
taken by a few new technological based developments, students acquire alongside the 
algebraic procedures alternative methods to solve equations. Studies report that algebra 
beginners viewing an equation as a comparison of two functions, students who had not 
learned procedures beyond the linear equation can solve problems for which they have not 



 

 584 

yet been taught an algorithmic solution method with and without use of graphic software 
(see for example: Huntley et al. 2000, Hershkowitz et al. 2002).  

In typical algebra instruction, solving an equation in two variables and then a system of 
equations requires to shift from a non explicit form (x+y=2) to an explicit function form: 
y=2-x. One then substitute and use similar solution techniques as in a single variable case. 
While technique does not require dramatic change the shift from an equation in a single 
variable to two variables requires a shift in understanding the nature of the solution: from a 
single definite solution to a set of solutions. For the Visual Math function approach 
students the equal sign of the equation represents a symmetric comparison sign and the 
function equal sign represents an a symmetric assigning sign. Thus, the fact that simple 
manipulations techniques can help move from one form to the other does not seem to be 
useful. Thus many would not choose this option and would keep viewing equations as 
comparisons of two functions f(x,y)=g(x,y). Taking this view the nature of the solution 
does not change brutally – it remains the intersection values of the intersection of the two 
functions. But then they have to overcome another transition: The graphical and tabular 
representations of functions of two variables must be developed in order to help students 
see their connections to the ways of representing functions of one variable with which they 
are familiar. Thus the transition remained critical; either one has to develop new ideas 
about presentations of function in two variables or one has to rewrite the equation in a way 
that violets the distinction between function and equation. It is required to acknowledge 
that simple algebraic technique can change the mathematical objects in hand: from equation 
in two variables to a function in a single variable. Thus, in looking at critical known 
transitions we would have to study the probable different nature of the transition in this 
new domain. 

The second example offers another familiar critical moment that technology might not 
smooth but rather introduce a reformed transition that develops in a different direction than 
in the traditional sequence. 

Using technology such as simulations' software, MBL or other modeling tools that includes 
dynamic forms of representations of computational processes, it is now possible to 
construct graphical models without first writing symbolic expressions with x’s and y’s. 
Several studies suggest that such emphasize on modeling offers students means and tools to 
reason about differences and variations (rate of change). Apparently, throughout the 
curriculum’s focus on qualitative modeling, the students we will describe had developed 
ways of using tools to solve complex problems that concern non-constant rate of change. 
Graphs and what we will call staircases (a graphical depiction of differences in y value for 
a set change in x Schwartz and Yerushalmy 1995) emerged as models of situations, and 
also as models for reasoning about mathematical concepts. Using the grammar of objects 
and the operations on them, young students constructed complex mathematical models, 
based on qualitative analysis of variation. Technology, like the one implemented in Visual 
Math or a spreadsheet may suggest that a closed rule is no longer a more natural way to 
describe a function (for related thoughts based on student performance see Stacey and 
MacGregor 2000). Thus, if students become familiar first with ideas of continuous change 
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and finite differences, explicit closed forms may become less natural aspect of expressing 
phenomenon. For example: in Yerushalmy (2005) I describe students whose earlier 
experience with ideas of differences complicated their use of explicit forms. They were 
seeking help in understanding why two numerical phenomena they identified as 
appropriate: the linearly increasing differences and the squaring describe the same 
quadratic phenomenon. In other words: why does the solution of the difference equation 
f(x+1) –f(x)= ax+b is of the type: f(x)=x^2. This complication might not have arisen if they 
had not had earlier support for recursive reasoning. However, the other option, the one 
most sequences follow of emphasizing explicit rules (closed forms) and then learn to 
describe it as analysis of differences is problematic as well. Thus the affordances of 
technology that made the recursive thinking the natural way to think about a phenomenon 
and to symbolize it in a model is viewed as strength however, it challenges thinking about 
teaching that can support the transition to algebraic close rules. 

A similar state of a known critical difficulty that introduce a transition although the 
technological based curricular sequence has been redesigned is described by Tall (2002) 
and by Schnepp (unpublished). Tall describes the strength of a sequence that is based on 
visual notions of the function to explain the chain rule (the derivative of a composite 
function) coming from the derivative of addition of functions. However, Tall argues, the 
teaching of the product rule (derivative of multiplication) is yet to be supported by this 
sequence. Schnepp points on similar difficulty and argues that the discontinuity can be 
fixed if coming to the multiplication from the composition. Thus known critical transition 
remains a challenge but the use of technology turns the order of the sequence in which this 
transition occurs and reforms the cognitive hierarchies developed and thus the difficulties 
might arise. 
Identifying new critical transition  
The third example challenge what the examples above suggest as stability or partial 
stability and it attempt to support the claim that such critical moments could be 
mutable. I will argue that a new epistemology introduces new critical moments rather 
than just changing the cognitive hierarchies as demonstrated in the first two 
examples.  

Research suggests that mature problem solvers of word problems in algebra devote a 
substantial portion of their work to representation of the problem at the situational level. 
Forming the situational model is a necessary stage in understanding the story of the 
problem and is a major component of model-based reasoning. Recently Gilead (Gilead 
2002) studied Visual Math students and equations' based algebra students solving word 
problems. 87.3% of the 196 solutions given by the Visual Math students for problems in 
context included graphical description of the situation that formed a situation model either 
using a sketch (73%) or an accurate graph (14.3%). A comparative investigation of the 
Visual Math students with comparable algebra students suggest that the students who were 
the more successful students of a traditional algebra sequence which focus on unknowns 
and stress manipulations of equations were substantially less capable to solve the same 
problems that were part of their curricular sequence as well. While 90.8% of the solutions 
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of the Visual Math were correct solutions only 57.2% correct solutions were given by the 
equations' based approach students.  

This same study that was designed to analyze the index of difficulty of algebra word 
problems as related to the approach students learn algebra included a set of problems that 
were hard to the Visual Math students. They succeeded to provide 41.8% correct solutions 
on these problems (while the traditional algebra students provided 51.5% correct solutions.) 
The harder problems were problems that we categorized in another study (Yerushalmy & 
Gilead 1999) as non canonic problems or problems that have Sketchable Situation 
Structure. We define canonic problems to be Graphable: those for which the functions in 
the situational structure can be uniquely described symbolically and graphically as 
functions of time. In fact Gilead found that a main problem in solving Sketchable problems 
is the complexity involved in formulating an equation that represents rules describing 
behavior of unknowns. The following summary of results strengthen this view: While in 
70.9% of the correct solutions of canonic problems the equations were based on coherent 
graphic model only in a single correct solution of a non-canonic problem a situational 
model was coherent to the equation used to solve the problem.  

Function's approach to algebra that we took stressed the algebra signs and symbols and the 
expressions and equations using these symbols to be a meaningful language to express 
ideas. One of the ways to observe meaning is to view equations as describing situations out 
of the mathematics and as graphical models. This habit has been proved to support students 
learning when solving constant rate problems. However, situations that were difficult to be 
described by graphical models that can be easily mirrored in an equation were less natural 
for students. Thus, while known complexities disappeared and students were successful in 
solving new problems as mature problem solvers, we identified a range of problems that 
were found to be complex to the function's approach students and were not at all harder to 
the equation's approach students.  

The study of this transition sprang of a learning experiment and in a way was incidental. It 
led us to a systematical investigation of the structures of algebra word problems that 
suggest new insights on epistemology of constant rate models (Yerushalmy & Gilead 
1999). It also raised a more general question regarding strategies that could guide profound 
studies of curricular decisions to support teaching and learning with new technologies.  
Concluding remark 

I have demonstrated the necessity to study changes of cognitive hierarchies that involve 
learning with technology. Studying these changes is appropriate when one has a chance to 
follow learning and teaching for a substantial period of time, observing students’ strengths, 
identifying the resources for these strengths, watching how the students get involved in a 
transition and analyzing the reasons for the discontinuity. Although, I believe that obstacles 
should be reconsidered when new tools are involved, I suggest that often transitions 
between mathematical views of concepts remain complex and suspect them to be found 
independent of the technology used. Computational technologies allow us to improve the 
design of mathematical learning environments. In order for research to be helpful for 



 

 587 

teaching and learning in the new context it is important to devise and use strategies that 
would support systematic analysis of critical transitions. 
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