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CHARACTERIZATION OF HYPERIDENTITIES DEFINED
BY THE EQUALITIES (( x, y), u, v) = ( x, (y, u), v) AND

((x, y), u, v) = ( x, y, (u, v))

L. R. Abrahamyan

Artsakh State University
E-mail: liana abrahamyan@mail.ru

The following universal formula from a second-order language with specialized
quantiÞers have been studied in various domains of algebra and its applications and
it was called hyperidentity:

! X 1, . . . , X m ! x1, . . . , xn (W1 = W2), (1)

where w1, w2 are terms (words) in the functional variables X 1, ..., X m and in the
object variables x1, ..., xn . For simplicity the hyperidentity is written without a
quantiÞer preÞx, i.e. as an equality:w1 = w2. The number m is called functional
rank and the number n is called object rank of the given hyperidentity. A hyperiden-
tity is true (or satisÞed) in an algebra (Q; U) if the equality w1 = w2 is valid when
every object variable and every functional variable in it is replaced by any arbitrary
element of Q and any operation of the corresponding arity fromU respectively (it
is assumed that such replacement is possible).

An algebra with binary and ternary operations is called { 2,3} -algebra. A { 2,3} -
algebra (Q; U) is called:

a) functionally non-trivial if the sets of its binary and ternary operations are
non-singleton;

b) 2q-algebra if there exists a binary quasigroup operation inU;
c) 3q-algebra if there exists a ternary quasigroup operation inU;
d) invertible algebra if its every operation is a quasigroup operation.
In this talk we give the syntactic classiÞcation of functionally non-trivial hyperi-

dentities which are deÞned by the equalities ((x, y), u, v) = ( x, (y, u), v) or (( x, y), u, v) =
(x, y, (u, v)) and satisÞed in above classes of algebras.
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LONG RANGE DIFFUSION-REACTION MODEL
ON POPULATION DYNAMICS

Marwan Said Abualrub

Abu Dhabi, UAE
E-mail: marwan.saeed@kustar.ac.ae

A model for long range di!usion-reaction on population dynamics has been cre-
ated, then conditions for the existence and uniqueness of solutions of the model have
been found inL(p, q) norms.
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CENTRAL EXTENSIONS OF FREE PERIODIC GROUPS

S. I. Adian, V. S. Atabekyan

Steklov Institute of Mathematics, RAS, Moscow
Yerevan State Uiversity

E-mail: sia@mi.ras.ru, avarujan@ysu.am

We have proved that any countable abelian groupD can be verbally embedded
as a center in am-generated groupAD such that the quotient group AD / D will be
isomorphic to the free periodic groupB (m, n), where m > 1 and n ! 665 is an odd
number. The proof is based on some generalization of the approach proposed by
S. I. Adian in his monograph [1] for the positive solution of a long-standing open
question in group theory: is there a non-commutative group the intersection of any
two non-trivial subgroups of which is inÞnite.

For constructing the group AD we Þx an arbitrary countable abelian group

D = "d1, d2, ..., di , ...|r = 1 , r # R$,

where R is some set of words in the group alphabetd1, d2, ..., di , ....
Consider the set of all elementary wordsE = %!

! =1 E! in the group alphabet
{ a1, a2, ..., am } deÞned in [1]. The setE is countable and let { Aj |j # N} be some
numeration of E.

Denote by AD (m, n) the group generated by

a1, a2, ..., am , d1, d2, ..., di , ...,

and having the deÞning relations of the form

r = 1 for all r # R ,

ai dj = dj ai for all i = 1 , 2, ..., m j # N,

An
j = dj for all Aj # E j # N.

The following theorem is true.

Theorem.

1. In the group AD (m, n) the identity [xn , y] = 1 holds,

2. verbal subgroups of the groupAD (m, n) corresponding to the wordxn coincide
with the Abelian group D,

3. the center of the groupAD (m, n) coincides with D,

4. the quotient group ofAD (m, n) by the subgroupD is the free Burnside group
B (m, n).
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ON VARIETIES OF TWO DIMENSIONAL REPRESENTATIONS
OF A FAMILY OF ONE-RELATOR GROUPS

A. N. Admiralova, V. V. Beniash-Kryvets

Belarusian State University, Minsk, Belarus
E-mail: al.admiralova@gmail.com, benyash@bsu.by

Let G = !g1, . . . , gm " be a Þnitely generated group andH # GL n(K ) a connected
linear algebraic group deÞned over a ÞeldK which will be assumed to be algebraically
closed and of characteristic zero. For any homomorphism! : G $ H (K ) the set of
elements (! (g1), . . . , ! (gm )) % H (K )m satisÞes evidently all the relations ofG and
thus the correspondence! &$(! (g1), . . . , ! (gm )) gives a bijection between points of
the set hom(G, H (K )) and K -points of some a!ne K -variety R(G, H ) # H m . The
variety R(G, H ) is usually called the representation variety ofG into the algebraic
group H ([1]). In the caseG = GL n(K ) we will denote it simply by Rn(G) and call
it the variety of n-dimensional representations ofG.

The study of geometric invariants of R(G, H ) like the dimension or the number
of irreducible components is of interest in combinatorial group theory ([2]). The
varieties of representations have also many applications in 3-dimensional geometry
and topology ([3]).

Let us consider the groupG = !a, b | am = bn" wherem and n are integers greater
than one. We study the variety of representationsR2(G). Let d = gcd(n, m). It
is not di!cult to see that a curve xn = ym in (K ! )2 has d irreducible components
U1, . . . , Ud. Let ", # %K be elements such that" n = #m = 1 and " '= 1, # '= 1. Let
us consider morphisms

f ij : Ui ( Uj ( GL 2(K ) $ R2(G),

(x1, y1, x2, y2, A) &$
!

A
!

x1 0
0 x2

"
A" 1, A

!
y1 0
0 y2

"
A" 1

"
,

hi,!," : Ui ( GL 2(K ) ( GL 2(K ) $ R2(G),

(x, y, A, B ) &$
!

A
!

x 0
0 "x

"
A" 1, B

!
y 0
0 #y

"
B " 1

"
.

Let Vi,j and Wi,!," be closures of images off i,j and hi,!," in Zarisski topology
respectively. Then the following theorem holds.

Theorem. 1) Varieties Vi,j , where 1 ) i, j ) d, and Wi,!," , where 1 ) i ) d and
" n = #m = 1 with " '= 1 , # '= 1 , are all irreducible components ofR2(G).

!"#$%&'(#)%*)(+'),(#-),$%.-)/+'+)0+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1+'+2,)3%4,5%67%8%9:)+%63%6;<=
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2) The number of irreducible componets of the representation varietyR2(G) is
equal to d2 + d(n * 1)(m * 1).

3) dim Vi,j = 4 , dim Wi,!," = 5 for all i, j, ", # .
4) All irreducible components of R2(G) are rational varieties.
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A SURVEY ON RESIDUAL TRANSCENDENTAL
EXTENSIONS OF VALUATIONS

Kamal Aghigh

Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
E-mail: aghigh@kntu.ac.ir

Dedicated to the memory of Nicolae Popescu (1937-2010). In this paper we
survey some results related to residual transcendental extensions of valuations.

2010 Mathematics Subject ClassiÞcation No.: 11S05, 11S15

Keywords and phrases: Algebraic number theory, RamiÞcation and extension theory.
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TWO RANDOM POINTS IN A CONVEX DOMAIN

N. G. Aharonyan

Yerevan State University, Yerevan, Armenia
E-mail: narine78@ysu.am

Complicated geometrical patterns occur in many areas of science. Their analysis
requires creation of mathematical models and development of special mathematical
tools. The corresponding area of mathematical research is called Stochastic Geom-
etry. Among more popular applications are Stereology and Tomography (see [3]).
The methods of form analysis are based on analysis of the objects as Þgures. For
these sets, geometrical characteristics are considered that are independent of the
position and orientation of the Þgures (hence they coincide for congruent Þgures).
Classical examples are area and perimeter of a Þgure. In the last century German
mathematician W. Blaschke formulated the problem of investigation of bounded
convex domains in the plane using probabilistic methods. In particular, the prob-
lem of recognition of bounded convex domainsD by chord length distribution. Let
G be the space of all linesg in the Euclidean plane. Random lines generate chords
of random length in convex domainD. The corresponding distribution function is
called the chord length distribution function

FD(x) =
1

|! D|
µ{ g ! G : " (g) = g " D # x}

where |! D| is the perimeter of D, and µ is invariant measure with respect to the
group of Euclidean motions (translations and rotations). We choose uniformly and
independently two points from D. How large is the k-th moment of the Euclidean
distance #k(D) between these two points? In other words, we need to calculate the
quantity

#k(D) =
1

[S(D)]2

!

D

!

D

$Q1 %Q2$k dQ1 dQ2, k = 1 , 2, 3, ...

where S(D) is the area of D, and $Q1 % Q2$ is the Euclidean distance between
points Q1 and Q2. dQi , i = 1 , 2 is an element of Lebesgue measure in the plane.
The present problem was stated in [5] (see also [6]). We can rewrite#k(D) to the
following form:

#k(D) =
2|! D|

(k + 2)( k + 3) [ S(D)]2

!!

0

xk+3 f D(x) dx, k = 1 , 2, 3...,
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wheref D(y) is the density function of FD(y). Therefore, if we know the explicit form
of the length chord density function we can calculate thek-th moment of the distance
between two random points in D. It is not di!cult to calculate #k(D) for a disc,
regular triangle, a rectangle, a rhombus, a regular pentagon and regular hexagon.
This formula allows to Þnd an explicit form of k-th moment of the distance for those
D for which the chord lenght distribution is known (see [1], [2] and [4]).
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DESCRIPTION OF CHAOTIC PATTERNS IN MODELS OF COUPLED
OSCILLATORS IN TERMS OF MUTUAL INFORMATION

N. A. Ajabyan

Institute for Informatics and Automation Problems of NAS of RA, Yerevan, Armenia
E-mail: nnajabyan@ipia.sci.am

Systems of coupled oscillators have become an object of intensive investigation
recently. Synchronization within networks of oscillators is widespread in nature,
though interpretation of links connecting the oscillators, their type and strenght are
often subjective and depend on the model developerÕs vision of interaction mechan-
ics. The hydrodynamics provides formidable models of formation of structures with
increasing complexity, but ecology has also explored examples of such complexity,
which include multiplicity of stable states and irregular dynamics. In fact ecological
systems are never stable, at least in stability state by Lypunov. Over past decades
many applications of such models in economics became widespread, while applica-
tions in various Þelds of science, such as chemistry, biology has much longer history.
It is well-known that simple dynamical models can demonstrate complex behavior
was established in the classical work of Lorents, later, in 1971 the concept of the
strange attractor was introduced by Ruelle and Takens (e.g.[1]). The stochastic
behavior of dynamical systems is called chaos, though it is important to underline
that bifurcations and chaos stem from works of Poincar, who was the Þrst person to
discover a chaotic deterministic system which laid the foundations of modern chaos
theory.

Investigators consider chaos as a model for studying transitive behavior in com-
plex systems. The metric entropy serves an apparent criterion of complexity, since
it speciÞes the average rate of a dynamical system orbit divergence. With respect
to ecological models, particularly trophic chains, Yu. Svirezhev [1] brought an ap-
proximate formula for the entropy calculation and numerical investigation of the
strange attractor for the chain of length three. An innumerable plenty of works
exist that investigate approximate entropy as a measure of complexity and routes to
chaos in di!erent systems, we will not refer them here. In [2] it was demonstrated
that the qualitative description of the multidimensional trophic chain to the system
of coupled oscillators was given, which was used for extension of the persistence or
ecostability region estimation and interpretation of a model phenomenon concern-
ing the existence of so called paradoxical trophic chains. The work [3] was focused
on the determination of transition times between the equilibriums due to random
perturbations in multidimensional models. Other application of coupled oscillators
dynamics to spatial ecological models are given in [4, 5,6].
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The synchronization of chaotic oscillators, is a phenomenon that has been in-
vestigated intensively for the last two decades. As it is noted in [7]: ÒWhile the
synchronization of chaotic oscillators with strange attractors has become familiar in
the last two decades, most work on such systems has examined engineered systems,
primarily for application to secure communications, using the low-dimensional signal
connecting the oscillators as a carrier that is di"cult to distinguish from noiseÓ.

This paper focuses on description of states in a system of the two oscillators
with a unidirectional coupling. It is proposed in Fraser [8] that mutual informa-
tion could provide a quantitative characterization of chaotic spatial patterns. The
method includes considering messages as the values that measurements of attractors
might take. It is an easy task to reinterpret the scheme of an ecological network
to communication channel or a chain of connected channels, what are speciÞc char-
acteristics derived from such presentation has been and continue to be a matter of
large discussion in literature. Let X and Y denote the oscillators 1 and 2 corre-
spondingly. It is a simple observation that when the oscillators are sychronized the
mutual information is equal to entropy, in conventional notations for the mutual
information and entropy it is expressed in the form:

I (X, Y ) = H (X ) = H (Y ).

In case they are not the inequality is:

I (X, Y ) < min[H (X ), H (Y )].

In the Þrst case the system produces trajectories that are indistingushable, to specify
a strength of coupling a parameter taking values in the interval [0, 1] is used. For
the data on point oscillators we will consider a model where the data is available,
in particular such as Roissler attractors. A purely statistical model of an ecological
community was explored in [9].

We will implement the recursive method of calculating mutual information pre-
sented in [8] and apply it to identifying threshold parameter values for critical tran-
sitions in ecological networks.
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AN UPPER BOUND FOR THE COMPLEXITY OF COSET COVERING
OF SUBSETS IN A FINITE FILELD

A. A. Alexanian, A. V. Minasyan

Yerevan State University, Armenia
E-mail: araalex@gmail.com

Let Fq be a Þnite Þeld withq elements, andF n
q for an n-dimensional linear space

over Fq (obviously F n
q is isomorphic to Fqn ). If L is a linear subspace inF n

q , then
the set ! + L ! { ! + x|x " L } , ! " F n

q is a coset (or translate) of the subspaceL
and dim(! + L) coincides with dim L. An equivalent deÞnition: a subsetN # F n

q
is a coset if wheneverx1, x2, . . . , xm are in N , so is any a!ne combination of them,

i.e., so is
m!

i =1
" i xi for any " 1, . . . , " m in Fq such that

m!

i =1
" i = 1. It can be readily

veriÞed that any k-dimensional coset inF n
q can be represented as a set of solutions

of a certain system of linear equations overFq of rank n $ k and vice versa.

DeÞnition 1. A set M of cosetsC form a coset covering for a subsetN in F n
q

i! N =
"

C! M
C. The number of cosets inM is the length (or complexity) of the

covering. The shortest coset covering is the covering of the minimal possible length.

The problem of Þnding of the shortest coset covering originally was considered
in F n

2 in relation with a natural generalization of the notion of Disjunctive Normal
Forms of Boolean functions. A subsetN # F n

q can be given in di"erent ways: as a
list of elements, as a set of solutions of a polynomial equation overF n

q etc. Finding
the shortest coset covering means Þnding the minimal number of cosets of linear
subspaces (i.e. systems of linear overFq equations), such that N coincides with the
union of those cosets.

We establish an upper bound for the length of the shortest coset covering based
on some properties of the stabilizer of the subsetN , considering the action of the
General A!ne Group on F n

q .
Consider a!ne transformations of F n

q of the form y = xA + b, where x, y and
b " F n

q , and A is an (n %n)-dimensional non-degenerate matrix overFq. We refer
to an a!ne transformation as a pair ( A, b).The General A!ne Group act naturally
on F n

q , on the set of all subsets inF n
q and on the set of all cosets inF n

q and coset
dimension remain invariant under this action. Thus, if two subsets N1 and N2 are
in the same orbit then, obviously, any coset covering forN1 can be transformed to
a coset covering of the same length forN2 by an appropriate a!ne transformation,
and coset covering properties are invariant under the action of the General A!ne
Group.
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DeÞnition 2. A set T. of a"ne transformations is a coset if whenever (A1, b1),

(A2, b2), . . .,(Am , bm ) are in T, so is
#

m!

i =1
" i Ai ,

m!

i =1
" i bi

$
for any " 1, . . . , " m in Fq

such that
m!

i =1
" i = 1 .

For a given set of a!ne transformations one can consider coset covering and the
shortest coset covering.

DeÞnition 3. Let G be a subgroup in the General A"ne Group. The coset rank of
G is the length of its shortest coset covering, which is denoted byCR(G).

Let N # F n
q and Stab(N ) be the stabilizer of N under the action of the General

A!ne Group. Any subgroup G in the stabilizer Stab(N ) act on N splitting N into
disjoint orbits of elements. We denote the number of orbits by #orbG(N ).

Theorem. The length of the shortest coset covering for a setN # F n
q is not greater

than CR(G) % # orbG(N ) for any subgroup G in Stab(N ). This upper bound is
achievable and cannot be improved.
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THE SINE REPRESENTATION OF A CONVEX BODY

RaÞk Aramyan

Russian Armenian University
E-mail: raÞkaramyan@yahoo.com

The problem of the sin representation for the support function of a centrally sym-
metric convex body is studied. The article deÞnes a subclass of centrally symmetric
convex bodies which is dense in the class of centrally symmetric convex bodies. Also
an inversion formula for the sin transform is found.
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PROPERTIES OF SURJECTIVE REAL QUADRATIC MAPS

A. V. Arutyunov, S. E. Zhukovskiy

Lomonosov Moscow State University,
PeoplesÕ Frendship University of Russia

E-mail: arutun@orc.ru, s-e-zhuk@yandex.ru

The properties of surjective real quadratic maps are investigated. Su!cient
conditions for the property of surjectivity to be stable under various perturbations
are obtained. Examples of surjective quadratic maps whose surjectivity breaks down
after an arbitrarily small perturbation are constructed. Su!cient conditions for
quadratic maps to have nontrivial zeros are obtained. For a smooth even map in a
neighborhood of the origin an inverse function theorem in terms of the degree of the
corresponding quadratic map is obtained.
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REDUCED C! -ALGEBRA OF A GROUP GRADED SYSTEM

Victor Arzumanian, Suren Grigoryan

Institute of Mathematics of the Armenian Academy of Sciences
Kazan State Power University

E-mail: vicar@instmath.sci.am, gsuren@inbox.ru

The concept of group grading arises naturally in considering the crossed products,
especially in the context of irreversible dynamical systems.

In the talk some general aspects concerning group graded systems are considered.
The starting point were the paper [1] and the remarkable book of Exel [2] devoted
to Fell C! -bundles.

We introduce the notion in an equivalent way based on a semigroup with a special
structure. Naimely, if ! is a discrete Abelian group then an involutive semigroup A
is called !-graded system, if it is a union of Banach spacesA! , ! ! !, intersecting
only at 0, the operations of multiplication and involution on the semigroup being
consistent with the linear operations on the component Banach spaces, and
(i) ab ! A"# for a ! A" , b ! A# , (iii) " ab" # " a"" b" for a ! A" , b ! A# ,
(ii) a! ! A! ! 1 for a ! A! , (iv) " a! a" = " a" 2 = " a! " 2 for a ! A! .

Obviously, the central algebra A = Ae (e being a neutral element of !) is a
C! -algebra as well as an involutive subsemigroup of the semigroupA.

The notions of graded subsystem, ideal, moduls, and morphisms between the
graded systems are introduced in a natural way. Moreover, there is a standard
Hilbert module structure on a !-graded system, an inner product deÞning as

< ", # > =
!

! " !

#!
! " ! ,

for ", # ! A, " = { "! } , # = { #! } .
There is a standard (regular) representation of the graded system in an associated

Hilbert module, which we call the reducedC! -algebra.
We present a functional description of this algebra, realizing it as an algebra of

continuous A-mappings on the dual group of !.
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ON ENDOMORPHISMS OF CC GROUPS

H. T. Aslanyan

Chair of Mathematical Cybernetics RAU, Armenia
E-mail: haikaslanyan@gmail.com

We have obtained the description of the automorphisms of semigroups EndG
of groups G having only cyclic centralizers of nontrivial elements. The question of
describing the automorphisms of End(A) for a free algebraA in a certain variety was
considered by di!erent authors since 2002 (see, for example, [1]Ð[4]). In particular,
we prove that each automorphism of the automorphism group Aut(G) of groups
G from this class is uniquely determined by its action on the elements from the
subgroup of inner automorphisms Inn(G). The obtained general result includes the
following cases: absolutely free groups, free Burnside groups of odd periodn ! 665,
free groups of some inÞnitely based varieties (the cardinality of the set of such
varieties is continuum), and so on.
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NEW INVESTIGATING METHOD
IN THE PROBLEMS HALL AND SUM OF THREE CUBES

Armen Avagyan

Armenian State Pedagogical University
E-mail: avagyana73@gmail.com

Two well-known problems are considered in the report, one of them is the pre-
sentation of integer by the sum of three cubes, i.e. the solution of the Diophantine
Equation a3 + b3 + c3 = d, and the other is the Hall problem and its connection
with the Davenport-Zanier polynomials. In this talk,we consider the problem in
more general formulation: to Þnd polynomialsP1(y), P2(y), P3(y) with the highest
possible degree andQ(y) with the lowest possible degree, such that the equality
P1(y)3 + P2(y)3 + P3(y)3 = Q(y)(P1(y)2 ! P2(y)3 = Q(y)) holds. These issues are
closely linked to each other. Using this method, computer solutions have been built
for some speciÞc cases of that problems. Nevertheless, there are more interesting
cases that addressed to the solution of problems related to elliptic curves having
applications in coding.

Keywords: Diophantine equations; sum of three cubes; Hall problem; parametric
solutions; elliptic curves; Davenport-Zanier polynomials.
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ON SOME TRENDS AND PRINCIPLES RELATED
TO ARBITRARY MEROMORPHIC OR

ANALYTIC FUNCTIONS IN A GIVEN DOMAIN

G. Barsegian

Institute of mathematics of National Academy of Sciences of Armenia
E-mail: barseg@instmath.sci.am

The Þrst results (priciples) related to arbitrary meromorphic, particularly ana-
lytic, functions in a given domain were established by Cauchy (19-th century), while
the next results arisen a century later in Ahlfors theory of covering surfaces (1935).

In this survey we present some other (diverse type) results of the same generality
which were obtained since 1970s.

The majority of these results occur in three trends in theory of meromorphic
functions: Gamma-lines, proximity property, and universal version of value distri-
bution theory.

Each of these trends complements the classical Nevanlinna value distribution
theory or Ahlfors theory and also reveals some new type of phenomena.

Content: list of sections.

(The results in each section relate to arbitrary meromorphic or analytic functions
in a given domain.)

1. Two principles related to derivatives.

2. Results related to level sets and Gamma-lines.

3. Three simple consequences related toa-points.

4. Ahlfors fundamental theorems in terms of windings and a new interpretation
of deÞcient values.

5. Universal version of value distribution.

This work was supported by Marie Curie (IIF) award
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THE TYPE PROBLEM AND THE GEOMETRY OF RIEMANN SURFACES

Ara Basmajian
(joint work with Hrant Hakobyan and Dragomir Saric)

City University of New York
E-mail: ABasmajian@gc.cuny.edu

While the geometric theory of Þnite type Riemann surfaces is well developed, the
geometric study of inÞnite type (that is, inÞnitely generated fundamental group) Rie-
mann surfaces is still in its infancy. In this talk we Þrst describe some of the known
results on the geometry and topology of inÞnite type surfaces and then discuss new
results involving the relationship between the hyperbolic geometry of the Riemann
surface and a version of the classical type problem (whether or not the surface carries
a GreenÕs function). Our tools include Þnding the relationship between the extremal
length of curve families leaving the Riemann surface and the growth rates of closed
geodesics on the surface.

!"#$%&'(#)%*)(+'),(#-),$%.-)/+'+)0+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1+'+2,)3%4,5%67%8%9:)+%63%6;<=

30 



GROUPS OF HOMEOMORPHISMS OF THE LINE AND THE CIRCLE.
CRITERIA FOR ALMOST NILPOTENCY

Levon Beklaryan

Central Economics and Mathematics Institute RAS
E-mail: lbeklaryan@outlook.com

In the report, for Þnitely generated groups of homeomorphisms of the line and
the circle in terms of free subsemigroups with two generators and the maximality
condition, a criterion for almost nilpotency is obtained. Earlier, the criteria for
almost nilpotency were also established for the Þnitely generated groups of di!eo-
morphisms of the line and the circle ofC1 smoothness with mutually transversal
elements in terms of free subsemigroups with two generators. Moreover, in the case
of groups of di!eomorphisms it was possible to obtain structural theorems and to
show the typical character of a number of characteristics of such groups [1,2]. It is
established that in the space of all Þnitely generated groups of di!eomorphisms with
a given number of generators and ofC1 smoothness, the set of groups with mutu-
ally transversal elements contains a countable intersection of open everywhere dense
subsets (a massive set) [3,4]. In the paper [5], for a Þnitely generated group of dif-
feomorphisms of theC1+ a, a > 0 smoothness interval in terms of free subsemigroups
with two generators, Navas also established a criterion for almost nilpotency.
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MATRIX RINGS AS ONE SIDED ! ! (S,1) RINGS

Vijay Kumar Bhat

School of Mathematics, SMVD University, Katra, India
E-mail: vijaykumarbhat2000@yahoo.com

Let R be a ring and ! an endomorphism ofR. We recall that R is called an
(S,1)-ring if for a, b " R, ab = 0 implies aRb = 0. We involve ! to generalize this
notion. We say that R is a left ! ! (S,1) ring if for a, b " R, ab= 0 implies aRb =0
and ! (a)Rb = 0. We say that R is a right ! ! (S,1) ring if for a, b " R, ab = 0
implies aRb = 0 and aR! (b) = 0. R is called a ! ! (S,1) ring if it is both right
and left ! ! (S,1) ring. In this paper we give examples of such rings and a relation
between! ! (S,1) rings and 2-primal rings.

We show that a certain class of matrix rings, with suitable endomorphisms! are
left ! ! (S,1) but not right ! ! (S,1), and vice versa.

2010 Mathematic Subject ClassiÞcation: 16S 36, 16N 40, 16P 40, 16W 20.

Keywords and phrases: 2-primal, associated prime, automorphism, left! ! (S,1)
ring, Ore extensions.
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ON OPTIMAL CRYPTOGRAPHIC FUNCTIONS

Lilya Budaghyan

Department of Informatics, University of Bergen, Norway
E-mail: Lilya.Budaghyan@uib.no

We will give a brief overview of the recent progress on optimal cryptographic
functions such as almost perfect nonlinear (APN) and almost bent (AB) functions.
When used as S-boxes in block ciphers these vectorial Boolean functions possess the
best possible resistance against the two main crypto attacks di!erential and linear
attacks. However, the interest to these functions is not restricted to cryptography
because they deÞne optimal objects in di!erent areas of mathematics and informa-
tion theory such as coding theory, sequence design, commutative algebra and Þnite
geometry.

Keywords: Boolean function, almost bent, almost perfect nonlinear (APN), equiva-
lence of functions,
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POSITIVE RESOLUTION OF KRAUTER CONJECTURE ON PERMANENTS

M. V. Budrevich, A. E. Guterman

Lomonosov Moscow State University (Russia)
E-mail: guterman@list.ru

The class of (! 1, 1)-matrices is very important in algebra and combinatorics and
in various their applications. For example, well-known Hadamard matrices are of
this type.

An important matrix function is the permanent:

perA =
!

! ! Sn

a1! (1) á á áan! (n) ,

here A = ( aij ) " M n(F) is an n # n matrix over a Þeld F and Sn denotes the set of
all permutations of the set { 1, . . . , n} .

While the computation of the determinant can be done in a polynomial time, it
is still an open question, if there are such algorithms to compute the permanent.

In this talk we discuss the permanents of± 1-matrices.
In 1974 Wang [2, Problem 2] posed a problem to Þnd a decent upper bound for

|per(A)| if A is a square± 1-matrix of rank k. In 1985 Kr¬auter [1] conjectured some
concrete upper bound.

We prove the Kr¬auterÕs conjecture and thus obtain the complete answer to the
WangÕs question. In particular, we characterized matrices with the maximal possible
permanent for each value ofk.

The work is partially Þnancially supported by RFBR grant 17-01-00895.
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CONDITIONAL MEASURES OF DETERMINANTAL POINT PROCESSES:
THE GIBBS PROPERTY AND THE COMPLETENESS

OF REPRODUCING KERNELS

Alexander I. Bufetov

CNRS, Steklov Mathematical Institute, IITP RAS
E-mail: bufetov@mi.ras.ru

Consider a Gaussian Analytic Function on the disk. In joint work with Yanqi
Qiu and Alexander Shamov, we show that, almost surely, there does not a square-
integrable holomorphic function with the same zeros. By the Peres and Virag The-
orem, zeros of a Gaussian Analytic Function on the disk are a determinantal point
process governed by the Bergman kernel, and we prove, for general determinantal
point processes, that reproducing kernels sampled along a trajectory form a com-
plete system in the ambient Hilbert space. The key step in our proof is that the
determinantal property is preserved under conditioning.

The talk will Þrst address this question for speciÞc examples such as the sine-
process, where one can explicitly write the analogue of the Gibbs condition in our
situation. We will then consider the general case, where, in joint work with Yanqi Qiu
and Alexander Shamov, proof is given of the Lyons-Peres conjecture on completeness
of random kernels.

The talk is based on the preprint arXiv:1605.01400 as well as on the preprint
arXiv:1612.06751 joint with Yanqi Qiu and Alexander Shamov.
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ON NEW BASIS PROPERTIES OF REGULAR AND REAL FUNCTIONS:

 PARITY, ANTIHOLOMORPHY, ABSTRACT AFINITE C-TREE AND  

 POLYHOLOMORPHY  

 V. M. Byrdin  

 Blagonravov Mechanical Engineering Research Institute of RAS, Moscow, Russia 

 E-mail: V M Byrdin@mail.ru

For every holomorphic real function f (z) (real on a real subset), the realu(x, y)
and imaginary v(x, y) parts are respectively even and odd iny. In the proof uses
the Cauchy-Riemann conditions. Even or odd (thinned) power series are derived,
especially compact ones for one and two (y1, y2) arguments. The even and odd
functions f (z) or their even-odd components adequately correspond to their real
and imaginary parts (even-odd both in y and x; one or many z1,...,m ). The simple
elegant asymptotes for smally and for some critical points (previously applied by
the author in the theory of waves) are presented. The conjugation of the argument
øz goes into the antiholomorphy of øf (z). The real and imaginary parts of any regular
function ! (z) are actually and trivial real and holomorphic in two variables x and y,
again complex, (or doubled, form ! 2). And their real and imaginary parts in turn
by 4 or 4m arguments. And so on, unboundedly, bi-, 4-, 8-, ..., poly-holomorphy on
sets of the complex hyperspaceCp (2p axes,p = m2! ! 1, " = 1 , 2, . . .) or simply on
the C-tree: z = x+ iy , x = xX 2 + iy X 2 , y = xY 2 + iy Y 2 , xX 2 = xX 3 + iy X 3 , . . . (Here Cp

in some contrast from n-dimensional Cn, polyholomorphicity from pluriregularity).
And all these parts and functions possess the formulated fundamental properties of
regular real functions. The established polyholomorphy and theC-tree are purely
abstract, have not receive applications.
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ALGEBRAIC IDEAS IN DYNAMICAL SYSTEMS

Tullio Ceccherini-Silberstein

University of Sannio, Italy
E-mail: tullio.cs@mail.dmmm.uniroma1.it

Symbolic dynamics is a fascinating branch of ergodic theory and dynamical sys-
tems, and cellular automata constitute its central topic. In this talk, IÕll survey some
results obtained in collaboration with Michel Coornaert focusing on the algebraic
aspects of cellular automata and of some other, closely related, dynamical systems.
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WORD AND CONJUGACY PROBLEMS IN FINITELY
GENERATED GROUPS

 Arman Darbinyan  

Department of Mathematics, Vanderbilt University, Nashville, TN, USA  

 E-mail: arman.darbinyan@Vanderbilt.Edu

In early 1970Õs Donald Collins posed a well-known question about possibility of
embedding torsion-free groups with decidable word problem in groups with decidable
conjugacy problem. We answer this question by showing that there exist torsion-
free Þnitely presented and Þnitely generated solvable groups with decidable word
problem which do not embed in groups with decidable conjugacy problem.

Generalizing our approach in di!erent directions we are able to obtain other
interesting results as well as answer other open questions.
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SOME REMARKS ON MANOUSSAKISÕ CONJECTURE FOR A DIGRAPH TO
BE HAMILTONIAN

Samvel Kh. Darbinyan

Institute for Informatics and Automation Problems of NAS RA
E-mail: samdarbin@ipia.sci.am

Terminology and notations below follows [1]. We consider Þnite digraphs without
loops and multiple arcs. A digraphD is hamiltonian (traceable) if it contains a cycle
(a path) through all its vertices. Manoussakis [4] proposed the following conjecture.

Conjecture 1 ([4]). Let G be a strongly 2-connected digraph of ordern such that
for all distinct pairs of non-adjacent vertices x, y and w, z we haved(x) + d(y) +
d(w) + d(z) ! 4n " 3. Then D is hamiltonian.

By the theorems of Fraisse and Thomassen [3], and Meyniel [5] the conjecture is
true when D contains at most one pair of non-adjacent vertices ord(x)+ d(y) ! 2n" 1
for all pairs of non-adjacent verticesx, y, respectively. From a result by Darbinyan
[2] it follows that if a digraph D satisÞes the conditions of Conjecture 1, then it
contains a cycle of length at leastn " 1, in particular, D is traceable.

Let D be a digraph satisfying the conditions of Conjecture 1. Moreover, assume
that D contains a pair of non-adjacent verticesx0, y0 such that d(x0)+ d(y0) # 2n" k,
where k ! 2. Notice that for every pair of non-adjacent vertices{ x, y} other than
{ x0, y0} , d(x) + d(y) ! 2n + k " 3.

In this paper we prove the following theorems.

Theorem 1. The conjecture is true if and only if D contains a cycle throughx0

and y0.
Theorem 2. If d(x0) ! n " 4 or d(y0) ! n " 4, then the conjecture is true, i.e., D
is hamiltonian. (In particular, for all n, n # 15, the conjecture is true).

Theorem 3. The digraph D is hamiltonian or contains cycles of all lengthsm,
2 # m # n " 1.

Theorem 4. The digraph D is hamiltonian or for any z0 $ { x0, y0} there is a cycle
of length n " 1, which does not containz0.
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MAGIC ACTION OF o-POLYNOMIALS AND
EA-EQUIVALENCE OF NIHO BENT FUNCTIONS

Diana Davidova

University of Bergen, Norway
E-mail: Diana.Davidova@uib.no

Boolean functions of n variables are binary functions over the vector spaceF n
2 of

all binary vectors of length n. Bent functions, introduced by Rothaus [1] in 1976, are
Boolean functions of even number of variables n, that are maximally nonlinear in the
sense that their nonlinearity, the minimum Hamming distance to all linear functions,
is optimal. Bent functions have attracted a lot of research interest in mathematics
because of their relation to di!erence sets and to designs, and in the applications
of mathematics to computer science because of their relations to coding theory and
cryptography. In general, bent functions are considered up to EA-equivalence, that
is, functions within one class can be obtained from each other by composition from
the left side by an a"ne permutation and by adding an a"ne Boolean function.

It is proven in [2] that so-called, Niho bent functions, introduced in [3], deÞne
o! polynomials and, conversely, everyo! polynomial deÞnes a Niho bent function.
As further observed in the same paper, the projective equivalence ofo! polynomials
deÞnes, for Niho bent functions, an equivalence relation called o-equivalence and, in
general, the two o-equivalent Niho bent functions deÞned from an o-polynomialF
and its inverse F ! 1 are EA ! inequivalent. The study of o! equivalence was further
continued in [4]. In that paper a group of transformations of order 24 preserving
projective equivalence and introduced in [5] was in focus and it was discovered
that there are two more transformations preserving o! equivalence but providing
EA ! inequivalent bent functions.

In our work we study so-called magic action, a transformation ofo! polynomials
preserving projective equivalence introduced in [6]. We prove that this transforma-
tion does not provide further new EA ! inequivalent bent functions.
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PARASTROPHICALLY UNCANCELLABLE EQUATIONS WITH DIVISION
AND REGULAR OPERATIONS

Sergey Davidov, Aleksandar Krapeùz, Yuri Movsisyan
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E-mail: davidov@ysu.am

We consider 48 parastrophically uncancellable quadratic functional equations
with four object variables and two division and regular operations in two classes:
balanced nonÐBelousov (consists of 16 equations) and nonÐbalanced nonÐgemini
(consists of 32 equations). An endo-linear representation on the group (Abelian
group) for a pair of division and regular operations satisfying one of these paras-
trophically uncancellable quadratic equations is obtained. As a consequence of these
results, an endo-linear representation for every operation of a binary algebra satis-
fying one of these hyperidentities is given.
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INVERTIBLE BINARY ALGEBRAS ISOTOPIC TO A GROUP OR AN
ABELIAN GROUP

Sergey Davidov, Davit Shahnazaryan, Senik Alvrtsyan

Yerevan State University, Armenia
E-mail: shahnazaryan94@gmail.com

A binary algebra (Q; !) is called invertible algebra or system of quasigroups
if each operation in ! is a quasigroup operation. Invertible algebras with second
order formulas Þrst were considered by Shaußer in connection with coding theory.
He pointed out that the resulting message would be more di"cult to decode by
unauthorized receiver than in the case when a single operation is used for calculation.

We obtained characterizations of invertible algebras isotopic to a group or an
abelian group by the second-order formula.

DeÞnition. We say that a binary algebra (Q; !) is isotopic to the groupoid Q(á), if
each operation in ! is isotopic to the groupoid Q(á), i.e. for every operation A ! !
there exists permutations ! A , " A , #A of Q, that:

#A A(x, y) = ! A x á" A y,

for every x, y ! Q. Isopoty is called principal if #A = $ ($ - unit permutation) for
every A ! !.

Theorem 1. The invertible algebra (Q; !) is a principally isotopic to a group, if
and only if the following second-order formula

A(! 1A(B (x, B ! 1(y, z)) , u), v) = B (x, B ! 1(y, A(! 1A(z, u), v))) ,

is valid in the algebra(Q; ! " ! ! 1 " ! 1 !) for all A, B ! ! .

Corollary 1. The class of quasigroups isotopic to groups is characterized by the
following identity:

x(y\ ((z/u )v)) = (( x(y\ z)) /u )v.

Theorem 2. The invertible algebra (Q; !) is a principally isotopic to an abelian
group if and only if the following second-order formula:

A(! 1A(B (x, z), y), A! 1(u, B (w, y))) =

= A(! 1A(B (w, z), y), A! 1(u, B (x, y))) .

is valid in the algebra ( (Q; ! " ! ! 1 " ! 1 !) for all A, B ! ! .

Corollary 2. The class of quasigroups isotopic to abelian groups is characterized
by the following identity:

((xz)/y )(u\ (wy)) = (( wz)/y )(u\ (xy)) .
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USING OF 2D HAAR WAVELETS FOR SOLVING OF MIXED 2D
NONLINEAR FREDHOLM VOLTERRA INTEGRAL EQUATION
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In this paper, we suggest introduce a new and e!cient numerical approach for
solving of mixed 2D nonlinear Fredholm - Volterra integral equations. The funda-
mental structure of this method is based on the using of 2D Haar wavelet. Also,
error analysis for method is presented by using the Banach Þxed point theorem, and
this theorem guarantees that under certain assumptions, this equation has a unique
Þxed point. Finally, some numerical examples are given to show the accuracy of the
method, and results are compared with other numerical methods.

2010 MSC: 45P99, 65T60, 37C25.

Keywords: Nonlinear integral equation; Rationalized Haar wavelet; Þxed point the-
orem.
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AUTOMORPHISM GROUPS OF SUPEREXTENSIONS OF SEMIGROUPS

Volodymyr Gavrylkiv
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E-mail: vgavrylkiv@gmail.com

The through study of various extensions of semigroups was started in [12] and
continued in [1]-[10], [13]-[19]. The largest among these extensions is the semigroup
! (S) of all upfamilies on a semigroup S. A family M of non-empty subsets of
a set X is called an upfamily if for each set A ! M any subset B " A of X
belongs to M . Each family B of non-empty subsets ofX generates the upfamily
{ A # X : $B ! B (B # A)} which we denote by%B # X : B ! B&. An upfamily F
that is closed under taking Þnite intersections is called aÞlter. A Þlter U is called an
ultraÞlter if U = F for any Þlter F containing U. The family " (X ) of all ultraÞlters
on a set X is called the Stone-ÿCech compactiÞcationof X , see [20]. An ultraÞlter
%{x}&, generated by a singleton{ x} , x ! X , is called principal . Each point x ! X
is identiÞed with the principal ultraÞlter %{x}& generated by the singleton{ x} , and
hence we can considerX # " (X ) # ! (X ). It was shown in [12] that any associative
binary operation ' : S ( S ) S can be extended to an associative binary operation
' : ! (S) ( ! (S) ) ! (S) by the formula

L ' M =
! "

a! L

a ' M a : L ! L , { M a} a! L # M
#

for upfamilies L , M ! ! (S). In this case the Stone-ÿCech compactiÞcation" (S) is a
subsemigroup of the semigroup! (S). The semigroup! (S) contains as subsemigroups
many other important extensions ofS. In particular, it contains the semigroup #(S)
of maximal linked upfamilies, see [11, 12]. An upfamilyL of subsets ofS is said to
be linked if A * B += , for all A, B ! L . A linked upfamily M of subsets ofS is
maximal linked if M coincides with each linked upfamilyL on S that contains M .
It follows that " (S) is a subsemigroup of#(S). The space#(S) is well-known in
General and Categorial Topology as thesuperextensionof S, see [21, 22].

Given a semigroupS we shall discuss the algebraic structure of the automorphism
group Aut( #(S)) of the superextension#(S) of S. We show that any automorphism
of a semigroupS can be extended to an automorphism of its superextension#(S),
and the automorphism group Aut(#(S)) of the superextension#(S) of a semigroup
S contains a subgroup, isomorphic to the group Aut(S). We describe automorphism
groups of superextensions of groups, Þnite monogenic semigroups, null semigroups,
almost null semigroups, right zero semigroups, left zero semigroups and all three-
element semigroups.
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ON MEDIAL STRUCTURES

Albert Gevorgyan
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In this talk we characterize the structure of invertible algebras, (Q; !), with the
following !" (! )-identities of mediality from the second order Logic:

! X, Y " X !, Y !, Z !! x, y, u, v
!
X (Y (x, y), X (u, v)) = X !(Y !(x, u), Z !(y, v))

"
, (1)

! X, Y " X !, Y !, Z !! x, y, u, v
!
X (X (x, y), Y (u, v)) = X !(Y !(x, u), Z !(y, v))

"
, (2)

! X, Y " X !, Y !, Z !! x, y, u, v
!
X (Y (x, y), Y (u, v)) = X !(Y !(x, u), Z !(y, v))

"
. (3)

Let " Q be the set of all binary quasigroup operations on the setQ.
We say that algebra (Q; !) satisÞes the !" " (! )-identity of mediality (1) if for

every pair of operationsA, B # ! there exists a triple of operations A!, B !, C! # " Q

such that
A(B (x, y), A(u, v)) = A!(B !(x, u), C!(y, v))

for every x, y, u, v # Q.

Theorem 1. If invertible algebra (Q; !) satisÞes the!" " (! )-identity of mediality (1)
then there exists an abelian groupQ($) such that any operationAi # ! is determined
by the rule:

Ai (x, y) = ! i x $ t i $ " i y,

where ! i , " i # Aut Q($) and ti # Q.

The similar results are valid for the other considered second order formulas.

Corollary 1. If in algebra Q(á, A, B, C ) with four quasigroup operations is satisÞed
the identity:

(x áy) á(u áv) = A(B (x, u), C(y, v)) ,

then there exists an abelian groupQ(+) such that

x áy = !x + t + "y,

where !, " # Aut Q(+) and t # Q.

!"#$%&'(#)%*)(+'),(#-),$%.-)/+'+)0+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1+'+2,)3%4,5%67%8%9:)+%63%6;<=

50 



References

[1] Movsisyan Yu. M., Hyperidentities and Related Concepts, I, Armen. J. Math.,
2, 2017, 146Ð222.

[2] Movsisyan Yu. M., Hyperidentities and Related Concepts, II, Armen. J. Math.,
1, 2018, 1Ð89.

51 



DIMENSION OF SHAPE MAPS
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If ( f µ , ! ) : X = ( X ! , p!! ! , !) ! Y = ( Yµ, qµµ ! , M ) is a morphism of inverse
systems in the homotopy category of polyhedra HPol, and if (", µ ) " ! # M , with
" $ ! (µ), denote f µ! := f µ %p" (µ)! .

DeÞnition 1. We say that a morphism of inverse systems (f µ , ! ) : X = ( X ! , p!! ! , !)
! Y = ( Yµ, qµµ ! , M ) in the category HPol has dimension dim(f µ , ! ) & n if every
µ " M admits a " $ ! (µ) such that the H-map f µ! : X ! ! Yµ factors in HPol
through a polyhedron P with dim P & n, i.e., there are H-mapsu : X ! ! P,
v : P ! Yµ such that f µ! = v %u.

DeÞnition 2. A shape morphismF : X ! Y between topological spaces hasshape
dimension sdF & n, n $ 0, provided F admits a representation (f µ , ! ) : X ! Y
with dim( f µ , ! ) & n.

Particularly, a map f : X ! Y has shape dimension sdf & n if its shape image
by the shape functor S : HT op ! Sh has sd(S(f )) & n.

We put sdF = n (or sdf = n) provided n is the least m for which sdF & m
(resp. sdf & m).

Theorem 1. A topological spaceX has shape dimensionsdX & n if and only if
the identity map of X has shape dimensionsd(1X ) & n.

Theorem 2. Let F : X ! Y be a shape morphism of topological spaces. IfsdX & n
or sdY & n then sdF & n.

Corollary 1. Let f : X ! Y be a continuous map. Ifdim X & n or dim Y & n,
then sdf & n.

The following theorem characterizes the shape dimension of map.

Theorem 3. A map f : X ! Y has shape dimensionsdf & n if and only if for
every maph : Y ! P into a spaceP " HPol, the composition h %f homotopically
factors through a polyhedronP! with dim P! & n, i.e., there are maps u : X ! P !

and v : P ! ! P such that h %f ' v %u.

Theorem 4. Let f : X ! Y be a pro-morphism in the category HPol. Ifdim f & n,
then for every Abelian groupG and an index k > n the homology pro-morphism
Hk(f ; G) : Hk(X ; G) ! Hk(Y ; G) is a zero-morphism of pro-groups.

Mathematics Subject ClassiÞcation: 55P55, 54C56
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EXISTENCE OF MAXIMUM ENTROPY PROBLEM SOLUTION
IN A GENERAL N-DIMENSIONAL CASE

R.A. Gevorgyan, N.D. Margaryan
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E-mail: ruben gevorgyan@yahoo.com, narekmargaryan@outlook.com

Maximum entropy methodology applied in European call options seeks a risk
neutral probability measure p, such that

Ap = b (1)
n!

i =1

pi = 1 , pi ! 0 (2)

S(p) = "
n!

i =1

pi ln (pi ) is maximal (3)

where b is the vector of current option pricesÕ future values for each strike and
A is the matrix of pay-o!s. We denote AÕs columns bya0, a1, . . . , an (note that
an = an! 1 + tI for somet). Consider the following n + 1 hyperplane - vector pairs
(we denote hyperplanes byhp(á) and convex hulls by conv(á)).

"
##$

##%

hp(a1, a2, . . . , an! 1, I ), a0
...

hp(a0, a1, . . . , an! 2, an! 1), I

(4)

For each hyperplane we denote byNi its normal ÒpointingÓ in the direction of
the associated vectorai . It is obvious that there exists a Þnite t, s.t. 1, 2 are satisÞed
if and only if the following inequalities take place.

"
##$

##%

#N0 " a1, b" a1$ ! 0
...

#Nn, b$ ! 0

(5)

Assuming that condition 5 is true, the following lemmas and the corresponding
theorem are true.

Lemma 1. %µ > 0, s.t. &t for which b ' conv(a0, . . . , an! 1, an), t ! µ > 0.

Lemma 2. If for some t0 b ' conv(a0, . . . , an), then this also holds for anyt > t 0.
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Lemma 3. Let T be the set of alltÕs, s.t.b ' conv(a0, . . . , an), then t = inf T ' T.

Theorem 1. If condition 5 is satisÞed, the angle betweenb and I isnÕt0 and bn > 0,
then b ' conv(a0, . . . , an), where an = an! 1 + tI and the factor of an! 1 is 0 in the
linear representation of b by vectorsa0, . . . an . The minimal value of t, t is given by

t =
bn(K n " K n! 1)

bn! 1 " bn
(6)

References

[1] Alhassid Y., Agmon N., Levine R.D., An Upper Bound for the Entropy and Its
Applications to the Maximal Entropy Problem, Chem. Phys. Lett., 53, 1978,
pp. 22.

[2] Alhassid Y., Agmon N., Levine R.D., An Algorithm for Finding the Distribution
of Maximal Entropy, Journal of Computational Physics, 30, 1979, 250Ð258.

[3] Margaryan N.D., An Algorithmic Approach to Solving the Maximum Entropy
Problem, Proc. of Engineering Academy of Armenia,14 (3), 2017, 371Ð374.

[4] Margaryan N.D., A Boundary for the Existence of Solution to the Maximum
Entropy Problem Applied in European Call Options, Proc. of the Yerevan State
University, 52 (1), 2018, 3Ð7.

55 



FORMATION OF MASSLESS BOSE PARTICLES WITH SPINS 1 AS A
RESULT OF RANDOM FLUCTUATIONS OF VACUUM FIELDS

A. S. Gevorkyan
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E-mail: g ashot@sci.am

Fluctuations of quantum vacuum Þelds are a fundamental property of nature.
Since the energy of the vacuum is an essentially greater part of the energy of the
universe, then, obviously, its research is an actual problem of modern theoretical and
mathematical physics. Note that quintessence (dark energy) and cosmic acceleration
are often discussed in the framework of various approaches describing the quantum
vacuum (QV), which necessarily include scalar Þelds. Recall that the properties of a
quantum vacuum Þelds (QVF) can be studied within the framework of quantum Þeld
theory (QFT), ie quantum electrodynamics and quantum chromodynamics. Note,
that QFT could accurately describe QV if it were possible to exactly summarize the
inÞnite series of perturbation theories, that is typical of Þeld theories. However, it is
well-known that the perturbation theory for QFT breaks down at low energies (for
example, QCD or the theory of superconductivity) Þeld operators may have non-
vanishing vacuum expectation values calledcondensates. Moreover, in the Standard
Model precisely the non-zero vacuum expectation value of the Higgs Þeld, arising
from spontaneous symmetry breaking, is the principled mechanism allowing to ac-
quire masses of other Þelds of theory. To overcome these di!culties and to conduct
a consistent and comprehensive study of the QVF, we developed a nonperturbative
approach based on a system of complex stochastic equations of the Langevin-Weyl
type describing the motion of a massless particle with spin 1.

DeÞnition. Let us consider the following stochastic di"erential equations (SDE):

! t ! ± (r , t) ! c
!
S á!

"
! ± (r , t) = 0 , " á ! ± (r , t) = 0 , (1)

where c is the Þeld propagation velocity, which di"ers from the velocity of light c0

in vacuum, ! ± (r , t) denote a random wave functions describing, the particle with
the spin projection +1 and -1, respectively, andS = ( Sx , Sy, Sz) denotes the set of
matrices:

Sx =

#

$
0 0 0
0 0 # i
0 i 0

%

& , Sy =

#

$
0 0 i
0 0 0

# i 0 0

%

& , Sz =

#

$
0 # i 0
i 0 0
0 0 0

%

& . (2)

Theorem. If the QVF obeys the Langevin-Weil SDE (1)-(2), then massless Bose
particles with spin 1 can form in the statistical equilibrium limit.
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Figure 1: The coordinate system{ X, Y, Z } divides the 3D space into eight spa-
tial regions by help three planes. The boson of a vector Þeld with projection of
spin +1 is a 2D- structure consisting of six components localized on the following
planes" +

x [(# Y, Z) $ (Y,# Z )], " +
y [(# X, Z ) $ (X, # Z )] and " +

z [(# X, Y ) $ (X, # Y)],
respectively.

The latter means that the vector of the Hilbert space on a Þnite time interval #
(the relaxation time) self-averaging and independent of time:

%! ± (r , t)&! =

#

$
" ±

x (r )
" ±

y (r )
" ±

z (r )

%

& . (3)

As for the projections of the wave vector, they consist of two terms" ±
" (r ) =

" ± (r )
" (r ) + i" ± (i )

" (r ), each of which has the form described by the wave function
of a hydrogen-like atom localized on the corresponding plane (see Fig. 1):

" ± (r,i )
x (r ) = # nl (r )Yl,m ($, %), # nl (r ) =

(b)3/ 2(br)l e! br/ 2L 2l+1
n! l ! 1(br)

'
2n(n # l # 1)!(n + l)!

, (4)

whereb = (2 /na p) and L 2l+1
n! l ! 1(br) is the generalized Laguerre polynomials,Yl,m ($, %)

is a spherical function, the principal quantum number n = 1 , 2, ... and the integer
l ' n # 1. Note that the set of bosons with spin projections± 1 form vector Þelds.
It is possible also formation of bosons with zero-spin by entangling of two bosons,
respectively, with spin projections +1 and -1. Such set of bosons form scalar Þeld.
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IS THE HAMILTONIAN MECHANICS AND IN GENERAL CLASSICAL
MECHANICS REVERSIBLE?

A. S. Gevorkyan
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E-mail: g ashot@sci.am

It is well known that the classical equations with respect to the evolution pa-
rameter -the time ÓtÓ, are invertible. This fact allows us to formulate the Cauchy
problem for studying motion of a system of bodies. However, as shown by numerous
theoretical and numerical studies, starting with a three-body system, the dynamic
problem is usually not integrable and, moreover, often exhibits chaotic behavior
in signiÞcant areas of the phase space. The latter circumstance again raises the
question of the irreversibility of classical mechanics as one of the most important
problem in the theory of dynamical systems and, accordingly, of modern physics and
mathematics [1].

Theorem. If the total interaction potential between the particles depends only on
their relative distances, then the Newtonian general three-body problem reduces to a
system of the sixth order, in addition, the representation is irreversible with respect
to the evolution parameter:

ú! 1 = a1
!

(! 1)2 ! (! 2)2 ! (! 3)2 ! ! 2"
+ 2 ! 1!

a2! 2 + a3! 3"
, ! 1 = úx1,

ú! 2 = a2
!

(! 2)2 ! (! 3)2 ! (! 1)2 ! ! 2"
+ 2 ! 2

#
a3! 3 + a1! 1"

, ! 2 = úx2,

ú! 3 = a3
!

(! 3)2 ! (! 1)2 ! (! 2)2 ! ! 2"
+ 2 ! 3!

a1! 1 + a2! 2"
, ! 3 = úx3, (1)

where ú! = d!/ds and s is the length of arc along of the geodesic curve (timing
parameter).

Note that the system (1) is deÞned on the Riemannian manifold,M =
$
{ x} =

(x1, x2, x3) " M t ; gij ({ x} ) =
%
E ! U({ x} )

&
" ij

'
, where, a1({ x} ), a2({ x} ), a3({ x} )

and !( { x} ) are a some regular functions of coordinates,E and U({ x} )- full energy
and interaction potential of the system, in addition, ds =

(
gij dxi dxj .

The transformations between the set of Jacobi coordinates{ #} and the local
coordinate system{ x} is given in di"erential form:

d#1 = x 1dx1 + x 2dx2 + x 3dx3,

d#2 = y 1dx1 + y 2dx2 + y 3dx3,

d#3 = z 1dx1 + z 2dx2 + z 3dx3, (2)
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where the sets (x1, x2, x3), (y 1, y2, y3) and (z1, z2, z3) are solutions of an incomplete
system of algebraic equations at the current point{ #0} :

x2
1 + y 2

1 + $33(#0)z2
1 = g({ #0} ), x1x2 + y 1y2 + $33(#0)z1z2 = 0 ,

x2
2 + y 2

2 + $33(#0)z2
2 = g({ #0} ), x1x3 + y 1y3 + $33(#0)z1z3 = 0 ,

x2
3 + y 2

3 + $33(#0)z2
3 = g({ #0} ), x2x3 + y 2y3 + $33(#0)z2z3 = 0 , (3)

where $33(#0) is a regular function that is exactly deÞned in the problem.
The proof of the theorem enables us to obtain the following reduced Hamiltonian:

H
%
{ x} ; { úx}

&
=

1
2

g({ x} )
# 3)

i =1

%
úxi &2 +

$
J/g (x)

' 2
*

,

where J - the full angular momentum of the system and g({ x} ) = gii ({ x} ). The
latter obviously leads to irreversibility in the system of equations (1).

Thus, with the example of the three-body problem, we proved that there is a
hidden irreversibility in Hamiltonian mechanics, which is the main cause of the onset
of dynamic chaos in the phase space.

Proposition. Let the metric of Riemannian spaceg({ x} ) undergoes to the random
ßuctuations (quantum vacuum ßuctuations):

Qf : g({ x} ) #$ g({ x} ) + %(s), (4)

where Qf displays a random inßuences, while%(s) is a random function satisfying
the following conditions:

%%(s)&= 0 , %%(s)%(s!)&= 2&"(s ! s!), (5)

& is the power of ßuctuations. Taking into account (4), the system of equations (1)
may be transformed to the system of stochastic di!erential equations using which for
the joint probability distribution of the quantum scattering can be found the following
equation:

'P
's

=
3)

i =1

'
'! i

%
Ai P

&
+

3)

i,j, l, k =1

(ij
'

'! l

+
B il '

'! k

%
B kj P

&,
. (6)

where Ai and B ij are regular functions.
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FINITE APPROXIMATIONS OF TOPOLOGICAL ALGEBRAIC
STRUCTURES

E. I. Gordon

Eastern Illinois University, Charleston, USA
E-mail: yigordon@eiu.edu

Two approaches to Þnite approximation of topological algebraic structures will be
discussed in this talk. The Þrst one was introduced in [1] in terms of nonstandard
analysis. The second one was presented in [1] by means of model theory. We
show the deÞnition of approximation of the paper [1] translated in the language
of model theory is stronger, then the deÞnition of the paper [2]. For example,
all locally compact Þelds are not approximable by the Þnite associative rings in
the sense of [1], while algebraically closed ones are approximable in the sense of
[2]. We also formulate in terms of nonstandard analysis a weaker deÞnition of
approximation of locally compact structures by Þnite ones, according to which the
Þeld R is approximable by Þnite associative rings. Reformulation of this deÞnition
in standard terms or in terms of model is much more complicated.
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SELF-SIMILAR GROUPS, AUTOMATIC SEQUENCES, AND
UNITRIANGULAR REPRESENTATIONS

Rostislav Grigorchuk

Texas A& M University
E-mail: grigorch@math.tamu.edu

In the talk I will speak about natural linear representations of self-similar groups
over Þnite Þelds. If the group is generated by a Þnite automaton, then matrices of
these representations are automatic (i.e. automatically generated). This shows a
new relation between two separate notions of automaticity: groups generated by
automata and automatic sequences (like the Morse-Thue sequence). If the group
acts on the p-adic tree by p-adic automorphisms, then the corresponding linear
representation is a representation by inÞnite triangular matrices with automatic
diagonals. A special attention will be paid to the inÞnite 2-group of intermediate
growth constructed by the speaker in 1980.

The talk is based on joint results of Y. Leonov, V. Nekrashevych, V. Suschansky
and speaker.
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HYPERIDENTITIES OF ASSOCIATIVITY IN SEMIGROUPS

Heghine Ghumashyan

Vanadzor State University, Armenia
E-mail: hgumashyan@mail.ru

The present paper is devoted to the study of balanced{ 2, 3} -hyperidentities of
the length of four in invertible algebras and { 3} -hyperidentities of associativity in
semigroups.

The following second order formula is called hyperidentity:

! X 1, . . . , X m ! x1, . . . , xn (W1 = W2) (1)

where X 1, . . . , X m are the functional variables, and x1, . . . , xn are the object vari-
ables in the words (terms) W1, W2. Usually, a hyperidentity is speciÞed without
universal quantiÞers of the preÞx of the equality:W1 = W2. According to the def-
inition, the hyperidentity W1 = W2 is said to be satisÞed in the algebra (Q, !) if
this equality holds when every functional variable X i is replaced by any arbitrary
operation of the corresponding arity from ! and every object variable xj is replaced
by any arbitrary element from Q.

If the arities of the functional variables are: |X 1| = n1, . . ., |X m | = nm , then the
hyperidentity W1 = W2 is called { n1, . . . , nm } -hyperidentity.

A hyperidentity is balanced if each object variable of the hyperidentity occurs in
both parts of the equality W1 = W2 only once. A balanced hyperidentity is called
Þrst sort hyperidentity, if the object variables on the left and right parts of the
equality are ordered identically. The number of the object variables in a balanced
hyperidentity is called length of this hyperidentity.

The algebra (Q, !) with the binary and ternary operations is called { 2, 3} -
algebra. A { 2, 3} -algebra is called non-trivial, if the sets of its binary and ternary
operations are not singleton.

The present paper aims at classifying of the balanced{ 2, 3} -hyperidentities of
length four in invertible algebras and the description of the invertible algebras in
which these hyperidentities hold, as well as at the description of the semigroups that
polynomially satisfy ternary associative hyperidentities.

The following main results will be presented in the talk.
1. The balanced Þrst sort{ 2, 3} -hyperidentities of length four in non-trivial invert-
ible algebras are classiÞed;
2. The invertible { 2, 3} -algebras with a binary group operation and with the bal-
anced Þrst sort 2, 3-hyperidentities of the length four are described;
3. The invertible { 2, 3} -algebras with ternary group operation and with the balanced

!"#$%&'(#)%*)(+'),(#-),$%.-)/+'+)0+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1+'+2,)3%4,5%67%8%9:)+%63%6;<=

62 



Þrst sort { 2, 3} -hyperidentities of length four are described;
4. The classes of the semigroups, which polynomially satisfy the associative{ 3} -
hyperidentities are described.

References

[1] Pßugfelder H. O., Quasigroups and Loops: Introduction, Helderman Verlag
Berlin, 1990.

[2] Movsisyan Yu. M., Introduction to the theory of algebras with hyperi-dentities,
Yerevan State University Press, Yerevan, 1986 (Russian).

[3] Movsisyan Yu. M., Hyperidentities and hypervarieties in algebras, Yerevan State
University Press, Yerevan, 1990 (Russian).

[4] Movsisyan Yu. M., Hyperidentities in algebras and varieties, Uspekhi Matem-
aticheskikh Nauk, 53, 1998, 61-114. English translation in Russian Mathemat-
ical Surveys53, 1998, 57-108.

[5] Movsisyan Yu. M., Hyperidentities and hypervarieties, Scientiae Math-ematicae
Japonicae,54 (3), 2001, 595-640.

[6] Hazewinkel M. (Editor), Handbook of algebra, 2, North-Holland, 2000.

[7] Bergman G. M., An invitation on general algebra and universal con-structions,
Second edition, Springer, 2015.

[8] Smith J.D.H., On groups of hypersubstitutions, Algebra Universalis, 64, 2010,
39-48.

[9] Denecke K., Koppitz J., M -solid varieties of Algebras, Advances in Mathematic,
10, Spriger-Science+Business Media, New York, 2006.

[10] Denecke K., Wismath S. L., Hyperidentities and Clones, Gordon and Breach
Science Publishers, 2000.

[11] Belousov V. D., Systems of quasigroups with generalized identities, Uspekhi
Matematicheskikh Nauk, 20, 1965, 75Ð146. English translation in Russian
Mathematical Surveys, 20, 1965, 73Ð143.

63 



DISTRIBUTIVE LATTICES WITH STRONG ENDOMORPHISM KERNEL
PROPERTY AS DIRECT SUMS
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The concept of the strong endomorphism kernel property for an universal algebra
has been introduced by Blyth, Silva in [1] as follows.

Let ! ! Con(A) be a congruence onA. We say that a mapping f : A " A is
compatible with ! if a # b(! ) implies f (a) # f (b)( ! ). An endomorphism of A is
called strong, if it is compatible with every congruence ! ! Con(A).

An algebra A has the strong endomorphism kernel property(SEKP) if every
congruence relation onA di!erent from the universal congruence "A is the kernel of
a strong endomorphism ofA.

Let V be a variety. Let Ai , i ! I be algebras fromV such that they all have
one element subalgebra and we have chosen (distinguished) elementseA i ! Ai such
that { eA i } is one element subalgebra ifAi . We denotesupp(f ) = { i ; f (i ) $= eA i } for
f !

!
(Ai , i ! I ). Now let us consider the following subalgebraB of

!
(Ai , i ! I ):

B = { f !
!

(Ai , i ! I ); supp(f ) is Þnite} . We shall denote it as
"

((Ai , eA i ); i ! I ),
a direct sum of algebrasAi with distinguished elements.

Unbounded distributive lattices which have strong endomorphism kernel prop-
erty (SEKP) were fully characterized in [2] using Priestley duality. The characteri-
sation is as follows.

Theorem 1. Let L be an unbounded distributive lattice. Then L has SEKP if and
only if L is locally Þnite and there existsc ! L such that for everyx < c or x > c
intervals [x, c] (if x < c ) and [c, x] (if x > c ) are (Þnite) Boolean.

We shall call elementsc from (2) of this theorem boolean elements ofL .
In this note we shall show that an unbounded distributive lattice L which has

SEKP can be written as a product L %= A & B & C, where
Ð A is a special sublattice of

"
((C3, a); i ! U) Ð of a direct sum ofU copies of 3

element chainC3 = { 0, a,1} , 0 < a < 1, with distinguished element a
Ð B is

"
(( { 0, 1} , 1); i ! V ) Ð a direct sum of V copies of 2 element chain with

distinguished element 1 (top element) and
Ð C is

"
(( { 0, 1} , 0); i ! W ) Ð a direct sum ofW copies of 2 element chain with

distinguished element 0 (bottom element)
for appropriate sets U, V , W (any of which can be empty).
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Moreover, B & C is isomorphic to a (convex) sublattice consisting of all boolean
elements ofL . Also, each product of such three lattices (direct sums) is the un-
bounded distributive lattice which has SEPK.
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EXTREMAL LENGTH AND SOME APPLICATIONS IN TEICHMULLER
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Extremal length of families of curves is a conformal invariant introduced by
Beurling and Ahlfors in 1950Õs which has been studied extensively since then. In this
talk we will study the asymptotic behavior of moduli of certain degenerating families
of curves, and will describe two consequences of these estimates in Teichmuller theory
and hyperbolic geometry. The Þrst application is a joint work with Saric, where we
show that there is an open and dense set of geodesic rays in the universal Teichmuller
spaceT(D), i.e. the space of all normalized quasisymmetric mappings of the unit
circle, which converge at inÞnity to points in the Thurston boundary of T(D). The
second application is a joint work with Basmajian and Saric, where we provide
several novel su!cient conditions on an inÞnite Riemann surfaceX (in terms of the
hyperbolic geometry ofX ) implying that X does not support a Green function.
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ON THE USAGE OF LINES IN GCn-SETS
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A node set X , with |X | =
! n+2

2

"
, in the plane is called GCn-set if each node

possesses fundamental polynomial in form of a product ofn linear factors. We say
that a node uses the lineAx + By + C = 0 if Ax + By + C divides the fundamental
polynomial of the node. It is a simple fact that any used line, i.e., a line which is
used by a node, passes through at least 2 nodes and through at mostn + 1 nodes of
X . A line is called k-node line if it passes through exactlyk-nodes ofX . An (n + 1)-
node line is called a maximal line. The well-known conjecture of M. Gasca and J. I.
Maeztu [1] states that everyGCn-set has a maximal line. Until now the conjecture
has been proved only for the casesn ! 5 [2]. Here we adjust and prove a conjecture
proposed in [3]. Namely, by assuming that the Gasca-Maeztu conjecture is true, we
prove that for any GCn-set X and any k-node line ! the following statements hold:

¥ The line ! is not used at all, or it is used by exactly
! s

2

"
nodes ofX , where s

satisÞes the condition" := 2k " n " 1 ! s ! k.

¥ If in addition " # 3 then the line ! is necessarily a used line.

At the end, for each n and k with " = 2 we bring an example of aGCn-set and a
nonusedk-node line.
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Yuri R. Hakopian
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The Moore-Penrose inverse is the most popular type of matrix generalized in-
verses which has many applications both in matrix theory and numerical linear
algebra. It is well known that the Moore-Penrose inverse can be found via singular
value decomposition. In this regard, there is the most e!ective algorithm which
consists of two stages. In the Þrst stage, with the help of the Householder reßec-
tions, an initial matrix is reduced to the upper bidiagonal form (the Golub-Kahan
bidiagonalization algorithm). The second stage is known in scientiÞc literature as
the Golub-Reinsch algorithm. This is an iterative procedure which with the help
of the Givens rotations generates a sequence of bidiagonal matrices converging to a
diagonal form. Acting in this way, an iterative approximation to the singular value
decomposition of the bidiagonal matrix is obtained.

The principal intention of the report is to develop a method which can be con-
sidered as an alternative to the Golub-Reinsch iterative algorithm. Realizing the
approach proposed in the study, the following two main results have been achieved.
First, we obtain explicit expressions for the entries of the Moore-Penrose inverse of
upper bidiagonal matrices. Secondly, based on the closed form formulas, we get a
Þnite recursive numerical algorithm of optimal order of computational complexity.
Thus, we can compute the Moore-Penrose inverse of an upper bidiagonal matrix
without using the singular value decomposition.
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MULTIPLE HYPOTHESES OPTIMAL TESTING
WITH REJECTION OPTION FOR MANY OBJECTS
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narineharutyunyan57@gmail.com

The multiple statistical hypotheses testing with possibility of rejecting of deci-
sion for discrete independent observations is investigated for models consisting of
two independent objects. The matrix of optimal asymptotical interdependencies of
possible pairs of the error probability exponents (reliabilities) is studied.

For an asymptotically optimal test the probability of error decreases exponen-
tially when the number of observations tends to inÞnity. Such tests were profoundly
studied for case of two hypotheses by many authors. The sequence of such tests was
called logarithmically asymptotically optimal (LAO). Haroutunian [1, 2] investigated
the problem of LAO testing for multiple hypotheses.

In publications [3]Ð [5] many hypotheses LAO testing for the model consisting
of many independent objects was studied. The multiple hypotheses testing problem
with possibility of rejection of decision for arbitrarily varying object with side infor-
mation was examined in [6] and [7]. This report is devoted to study of characteristics
of logarithmically asymptotically optimal (LAO) hypotheses testing with possibility
of rejection of decision for the model consisting of two independent objects. In the
report two models are studied, the Þrst when the rejection of decision is allowed to
one of the objects and the second when the rejection of decision is allowed to both
objects.

The study is based on information theoretic methods. Applications of informa-
tion theory in mathematical statistics, speciÞcally in hypotheses testing, are exposed
in multiple works and also in the monographs by Cover and Thomas [8], Csisz«ar and
Shields [9], Csisz«ar and K¬orner [10], Blahut [11].
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DIVERGENCE MEASURES FOR COMMUNITY DETECTION EVALUATION

Mariam Haroutunian 1, Karen Mkhitaryan 1, Josiane Mothe2
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2IRIT RA UT2J, Universite de Toulouse, Toulouse, France
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Community detection is a research area from network science dealing with the
investigation of complex networks such as biological, social, computer networks,
aiming to identify subgroupings (communities) of entities (nodes) that are more
closely related to each other than with remaining entities in the network. Various
community detection algorithms are used in the literature to obtain the community
structure [1]. However the evaluation of the algorithms or their derived community
structure is a very complicated task due to varying results on di!erent networks. In
searching good community detection algorithms the various comparison measures
are used actively [2]. Information theoretic measures form a fundamental class and
have recently received increasing interest [3].

In this paper we propose to use somef -divergence measures for community
detection evaluation which can serve as a good alternative to existing measures used
in the literature. Experiments on various community detection algorithms show the
sensitivity of these measures in the special cases.

When particular algorithm is implemented, to assess the quality of the partition,
it must be compared with other partitions or with available ground truth. This
can be done using several evaluation measures. Most similarity measures can be
divided into three categories: measures based on pair counting, cluster matching
and information theory. The information theoretic measures have been employed in
the clustering literature because of their strong mathematical foundation and ability
to detect non-linear similarities.

The mutual information is the most basic similarity measure. The mutual
information between two discrete random variablesX and Y with probability
distributions PX , PY and joint probability distribution PXY is deÞned as:

I (X ; Y ) =
!

y! Y

!

x! X

PXY (x, y) log
PXY (x, y)

PX (x)PY (y)
.

Considering X and Y as two network partitions, mutual information is viewed as
an evaluation measure to compare distinct community structures. Measures such as
normalized mutual information, normalized variation of information and normalized
information distance are modiÞed variants of mutual information that are broadly
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used in the literature because they satisfy the properties of metric and normal-
ization [3]. However, recently the application of these measures has been argued
because of several disadvantages in special cases, such as the large number of com-
munities [4].

We consider the family of f -divergence measures used in information theory
and statistics [5]. Let f : (0, ! ) " R be a convex function with f (1) = 0, and let P
and Q be two probability distributions. The f -divergence fromP to Q is deÞned by

Df (P#Q) =
!

x

Q(x)f
"

P(x)
Q(x)

#
.

Among others f -divergences include the

¥ Kullback-Leibler divergence, wheref (t) = t log(t),

D (P#Q) =
!

x

P(x) log
"

P(x)
Q(x)

#
,

¥ Total variation distance, where f (t) = |t $ 1|,

V (P, Q) =
!

x

|P(x) $ Q(t)|,

¥ Hellinger distance, wheref (t) = (
%

t $ 1)2,

H (P, Q) =
!

x

$%
P(x) $

%
Q(x)

&2
,

¥ Je!rey divergence, wheref (t) = 1
2(t $ 1) log(t),

D j (P#Q) =
!

x

(P(x) $ Q(x)) log
"

P(x)
Q(x)

#
,

¥ Capacitory discrimination, where f (t) = t log(t) $ (t + 1) log(1 + t)2 log(2),

C(P, Q) = D
"

P#
P + Q

2

#
+ D

"
Q#

P + Q
2

#
.

First note that I (X ; Y ) = D(PXY #PX PY ), which needs normalization. Except
KullbackLeibler divergence all measures satisfy the metric and normalization prop-
erties. We claim that above mentioned measures of discrimination fromPXY to
PX PY can serve as a good alternatives to existing measures of community detec-
tion. Experiments on various community detection algorithms show the sensitivity
of these measures in the case of large number of communities.
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ON SPECIAL CLASS OF SUBMANIFOLDS
IN PSEUDOEUCLIDEAN RASHEVSKY SPACE E 2n

n

Samvel Haroutunian

Armenian State Pedagogical University
E-mail: sharoutunian2017@gmail.com

Rashevsky space is a 2n dimensional pseudoriemannian space with metrics of
index n. The structure equations of the pseudoeuclidean Rashevsky space (the
curvature tensor is vanishing) may be presented in the form [1]

d! I = ! I
K ! ! K , d! I = " ! K

I ! ! K , d! I
K = ! I

P ! ! P
K , I, K, P = 1 , 2, . . . , n,

¥ ¥ ¥ ¥
O A B C

n " m m n

Figure. 1

where the linear di!erential forms ! I
K

known as secondary forms generally
donÕt depend on basic forms! 1, ! 2, . . .,
! n , ! 1, ! 2, . . ., ! n and each other, are
deÞned on the bundleT(2) E 2n

n of the
second order frames onE 2n

n .
The present work is devoted to the geometry of the special class of submanifolds

M of dimension 2m (2m > n ) with structure of double Þber bundle, determined by
the system of linear di!erential equations

! m+ i = ! i , ! m+ i = " ! i , i = 1 , 2, . . . , n " m.

The bilinear form d" = ! I ! ! I playing the role of the metrics on M can be
rewritten as follows: d" = ! I ! ! I = 2 ! i ! ! i + ! ! ! ! ! , # = n " m + 1 , . . . , m. A
special class of submanifoldsN # M # E 2n

n , dim N = 2(2m " n) is determines by
structure equations

d! " = ! "
b ! ! b, d! a = 0 , d! " = 0 ,

d! a = " ! "
a ! ! " , d! "

a = " C"#
i Ci

ab!
b ! ! # ,

(1)

where

dCi
ab = Ck

ab!
i
k + Ci

!$%! %, dC"#
i = " C!$

k ! k
i + C!$%

i ! %,

rank (Ci
!$ ) = u, rank (C!$

i ) = v, (2)

$, %= n " m + 1 , . . . , n " m + u; a, b= n " m + u + 1 , . . . , m; u + v = 2m " n.

Theorem 1. Parametric equations of the submanifoldN can be reduced to the
following form: X i = xi , X ! = x! " C!

i (yn! m+1 , . . . , ym )xi , X m+ i = yi , Yi =
yi + Ci (yn! m+1 , . . . , ym ), Y! = y! , Ym+ i = " xi .
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Theorem 2. Di!erential geometric structure (1), (2) is inducing on submanifold
N by integral of the form

" = P(x)Q(y) exp(x" y" + xaya "
1
2

C"
i Ci

axay" )! n! m+1 ! á á á ! ! m ,

where P(x) = P(xn! m+1 , . . . , xm ) and Q(y) = Q(yn! m+1 , . . . , ym ) are integrals of
some positive smooth functions onx and y respectively.
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ABOUT SOME PROBLEMS
FOR REGULAR DIFFERENTIAL OPERATORS

T. N. Harutyunyan

Yerevan State University, Armenia
E-mail: hartigr@yahoo.co.uk

We study the direct and inverse problems for the family of Sturm-Liouville op-
erators, generated by a Þxed potentialq and the family of separated boundary
conditions. We prove that the union of the spectra of all these operators can be rep-
resented as a smooth surface (as real analytic function of two variables), which has
speciÞc properties. From these properties we select those, which are su!cient for a
function of two variables to be the union of the spectra of a family of Sturm-Liouville
operators.
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GENERALIZED HYPERGEOMETRIC SOLUTIONS
OF THE HEUN EQUATIONS

A. M. Ishkhanyan
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E-mail: aishkhanyan@gmail.com

We present inÞnitely many solutions of the general Heun equation in terms of the
generalized hypergeometric functions . Each solution assumes two restrictions im-
posed on the involved parameters: a characteristic exponent of a singularity should
be a non-zero integer and the accessory parameter should obey a polynomial equa-
tion. Next, we show that the single conßuent Heun equation with non-zero (this
is the parameter characterizing the irregular singularity at the inÞnity) admits in-
Þnitely many solutions in terms of the generalized hypergeometric functions . For
each of these solutions a characteristic exponent of a regular singularity of the con-
ßuent Heun equation is a non-zero integer and the accessory parameter obeys a
polynomial equation. Each solution can be written as a linear combination with
constant coe!cients of a Þnite number of the Kummer conßuent hypergeometric
functions. Furthermore, we show that for the Ince limit the conßuent Heun equation
admits inÞnitely many solutions in terms of the functions . Here again a characteris-
tic exponent of a regular singularity should be a non-zero integer and the accessory
parameter should obey a polynomial equation. This time, each solution can be
written as a linear combination with constant coe!cients of a Þnite number of the
Bessel functions. Finally, we present several applications of the listed solutions to
the Schrdinger and Klein-Gordon equations, as well as to the quantum two-state
dynamics.
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ABOUT MEDIAL PAIRS OF CONTINUOUS AND STRICTLY
MONOTONIC BINARY FUNCTIONS

Hakob Israyelyan

Yerevan State University, Armenia
E-mail: hakob.israyelyan.93@gmail.com

Theorem 1. Let M, N : I 2 ! I be binary operations which are medial pair, and
let M and N be continuous and strictly monotonic for a both variables andM be
medial operation. Then, N is also medial.

Theorem 2. Let " , á: I 2 ! I be binary operations which are medial pair, and let
both operations be continuous, strictly monotonic for a both variables and pre-medial,
and let operation " be idempotent. Then operation" is medial.
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CIRCULAR SLIDER GRAPHS

Vadim Kaimanovich

University of Ottawa, Ontario, Canada
E-mail: vadim.kaimanovich@gmail.com

De Bruijn graphs represent overlaps between consecutive subwords of the same
length in a longer word. Under various names and in various guises they and their
subgraphs currently enjoy a lot of popularity in mathematics (dynamical systems
and combinatorics) as well as in the applications to computer science (data networks)
and bioinformatics (DNA sequencing). At this talk I will present a new point of view
on de Bruijn graphs and their subgraphs based on using circular words rather than
linear ones.
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CHANGING POINTS OF APN FUNCTIONS

Nikolay Kaleyski
(joint work with Lilya Budaghyan, Claude Carlet and Tor Helleseth)

University of Bergen, Norway
E-mail: Nikolay.Kaleyski@uib.no

A construction in which a vectorial Boolean function G : F2n ! F2n is con-
structed from a given F : F2n ! F2n by changing its value at precisely one point
of the underlying Þeld is studied in [1] in the context of the open problem of the
existence of Almost Perfect Nonlinear (APN) functions overF2n of algebraic degree
n. Selecting a point u " F2n to change and a nonzero valuev " F!

2n , the function G
can be written as G(x) = F (x) + v(1 + ( x + u)2n " 1) and satisÞesG(u) = F (u) + v
and G(x) = F (x) for all x #= u. A number of characterizations of the properties of
G and F are obtained in [1] and are used to derive non-existence results showing,
for instance, that G cannot be APN if F is a power or plateaued function.

We study a more general construction in which a given functionF over F2n is
changed at several points. More precisely, givenK distinct points u1, u2, . . . , uK $
F2n of the Þeld andK nonzero valuesv1, v2, . . . , vK $ F!

2n , we deÞneG as

G(x) = F (x) +
K!

i =1

vi (1 + ( x + ui )2n " 1). (1)

We discuss di!erent ways of characterizing the properties ofG in terms of F ,
concentrating mostly on the possibility of obtaining an APN function from another
APN function, and also examine the restriction of this general construction to some
particular cases for which the problem of characterizing the relationship between
the properties of F and G become more tractable.
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ABOUT ALGEBRAIC EQUATION WITH COEFFICIENTS
FROM THE ! -UNIFORM ALGEBRA C! (!)

M. I. Karakhanyan

Chair of Di"erential Equation, Yerevan State University, Armenia
E-mail: m karakhanyan@ysu.am

In the present work the algebraic equations of the following type

" n + a1(x)" n! 1 + á á á+ an(x) = 0 (! )

are investigated, bounded and continuous functions given on a some locally compact
Hausdor" space !. The aim of this work is to obtain the conditions which provide
solvability of equation (! ) in the algebra of complex-valued, boundary and continuous
functions on the space !. If we interested not with an individual equation ( ! ), but
with a class of equations (! ), then the question about description of a locally compact
space !, on which any equation of type (! ) are solvable be arised.

We note that for the compacts this problem su#ciently detailed were studied in
the works (see [1]Ð[3]).

Let ! be a locally compact Hausdor" space. We assume that the space ! admits
a Òcompact exhaustion, that is there exists a compactsK p " !, such that K p " K p+1

and ! =
"!

p=1
K p. Recall that locally compact ! is called a Òhereditarily unicoherent

if for any two connect closed subsetK 1, K 2 " ! their intersection is also a connect
set. Simultaneously we note that for a connect Þnite latticed complex ! (see [4]Ð[5])
the question about solvability on ! an algebraic equations of type (! ) is connected
with the fundamental group #1(!), namely a group H 1(!; Z) is isomorphically to
the group Hom (#1(!) , Z). The class of all equations of type (! ) withuot multiple
roots we denoteAn(!) as in [5] and An(!) =

!

k! n
Ak(!).

In [5] it is shown that for a connect Þnite latticed complex ! missing of a nontriv-
ial homomorphism of a group#1(!) in a Artins group of a ÒbraidÓ Bn is equivalently
to the fact that any equation ( ! ) without multiple roots is completely solvable, i.e.
the belong to the classAn(!).

The main rersults of this work are the following approvals, which related to the
topological algebras, more precisely to the! -uniform algebras (see [6]Ð[7]).

Theorem 1. Let ! be a locally connected, locally compact Hausdor! space, which
admits a compact exhaustion andA(!) is such! -uniform algebra on a space! , that
for each f # A (!) there exists a natural numberk = k(f ) " 2 and g # A (!) , such
that gk = f . Then A(!) = C! (!) .
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Theorem 2. Let ! be a connect, locally compact Hausdor! space admits a compact
exhaustion. Then a! -uniform algebra C! (!) will be algebraically closed if and only
if when a space! is a locally connect and hereditarily unicoherent.

Theorem 3. Let ! be a connect, locally compact Hausdor! space admits a connect

compact exhaustion (i.e. ! =
"!

p=1
K p, where K p are a connect compacts). Supposed

that for each K p there exists sequence of inverse spectrum of a connect, Þnite latticed
complexes(K p," ; $" ) converges toK p, such that all #1(K p," ; $" ) are commutative
groups. Then necessary and su"cient condition for a complete solvability for all
equations from the classAn(!) is a condition of division on n! of group H 1(!; Z).

The research is supported by the RA MES SCS, within the frames of the ÒRA
MES SCS Ð YSU Ð RFSFUÓ international call for joint project YSU Ð SFU Ð 16/1.
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QUADRATIC FUNCTIONAL EQUATIONS ON QUASIGROUPS AND
RELATED SYSTEMS

Aleksandar Krapeùz

Mathematical Institute of the SASA, Belgrade, Serbia
E-mail: sasa@mi.sanu.ac.rs

It was almost sixty years ago that the seminal paperGeneralized associativity
and bisymmetry on quasigroups,Acta Math. Acad. Sci. Hungar. 11 (1960), 127Ð
136; was published, where two important generalized quadratic functional equations
on quasigroups

A1(A2(x, y), z) = A3(x, A 4(y, z)) , (1)

A1(A2(x, y), A3(u, v)) = A4(A5(x, u), A6(y, v)) (2)

were solved:

Theorem 1 (Acz«el, Belousov, Hossz«u). If four (six) quasigroups Ai (i = 1 , . . . , 4
(i = 1 , . . . , 6)) satisfy the equation of generalized associativity (1) (of generalized
mediality (2)), then all Ai are isotopic to an (Abelian) group.

The result was not just two important theorems, but also the explosive growth
in the Þeld. All three authors: J«anos. Acz«el [b. 1924], Valentin Danilovich Belousov
[1925Ð1988] and Mikl«os Hossz«u [1929Ð1980] become leading Þgures in the research
concerning functional equations on quasigroups.

There are several approaches concerning generalizations of Theorem 1.

¥ Related to the form of equations (balanced i.e. permutational equations, quadritic
equations, gemini equations, level equations, systems of equations etc.);

¥ Related to number of functions used (with one, two functions or generalized
equations);

¥ Related to underlying algebra (binary, nÐary or inÞnitary quasigroups, division
groupoids, 3Ðsorted quasigroups and GDÐgroupoids etc.);

¥ Related to methods of solving (using homomorphism of trees, graph methods);

¥ Related to underlying logic (1st order logic), hyperidentities (2nd order logic),
equations in fuzzy context, equations in categorical context;

¥ Related to applications (in geometry (kÐnets), in social sciences, in cryptog-
raphy etc.).

We comment on some of these attempts. A particular emphasis is given to results
by mathematicians from Serbia.
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ON A CLASS OF EXTENSIONS BY COMPACT OPERATORS

Alla Kuznetsova

Kazan Federal University
E-mail: alla.kuznetsova@gmail.com

The report is devoted to the operator algebrasC!
! (X ) in the case they are exten-

sions of the algebraC(S1) of all continuous functions on the unit circle by compact
operators.

The starting point is a selfmapping ! : X !" X on a countable setX with Þnite
numbers of preimages of each point. This mapping generates a directed graph with
vertices at the points of the set X and the edges (x, ! (x)). The algebra C!

! (X ) is
generated by a composition operator

T! : l2(X ) " l2(X ), T! f = f # !.

Theorem 1. Let C!
! (X ) contains the algebraK (l2(X )) of all compact operators on

l2(X ). Then the following are equivalent:

1) C!
! (X ) is an extension ofC(S1) by K (l2(X )) ;

2) the Fredholm index ofT! is Þnite.

If index(T! ) = 1 then C!
! (X ) is isomorphic to the Toeplitz algebra.

Let E be the set of irreducible algebras{ C!
! (X )} ! " ! such that index(T! ) $ 0.

Theorem 2. Let C!
! (X ) and C!

" (X ) are in E. Then they are isomorphic if and
only if

1) index(T! ) = index( T" );

2) both mappings! and " simultaneously admit (or not) the Þnite orbits.

We show that the setE can be equipped with the semigroup structure isomorphic
to Z+ . We consider also di!erent examples of nonisomorphic extensions ofC(S1)
by compact operators.
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RESTRICTED SIMPLE LIE ALGEBRAS

Hayk Melikyan

Department of Mathematics and Physics, North Carolina Central University, USA
E-mail: melikyan@nccu.edu

The theory of Þnite-dimensional Lie algebras over Þelds of positive characteristic
p > 0 was initiated by E. Witt, N. Jacobson and H. Zasssenhaus. Sometime before
1937, Witt came up with an example of a simple Lie algebra of dimensionp, which
behaved completely di!erently from the known Lie algebras of characteristic zero.
Over the thirty years following the discovery of the Witt algebra, several new families
of simple modular Lie algebras were found and studied. In 1966 A. Kostrikin and
I. Shafarevich introduced four families of simple Þnite-dimensional Lie algebras that
covered all known simple non-classical Lie algebras. Thus algebras were the Þnite
dimensional analogs of the inÞnite simple Lie algebras of Cartan, over the Þeld of
nonzero characteristic. They called these algebras Cartan type Lie algebras. Same
time they conjectured that over an algebraically closed Þeld of characteristicp > 5 a
Þnite dimensional restricted simple Lie algebra is classical or Cartan type. In 1988
R. Block and R. Wilson proved that a Þnite dimensional restricted simple Lie algebra
is classical or Cartan type which in part conforms the Kostrikin-Shafarevich conjec-
ture. The Block-Wilson classiÞcation marked a major breakthrough in the theory
and, also provided a framework for the classiÞcation of the nonrestricted simple
Lie algebras. Finally, two decades after the Block-Wilson classiÞcation, A. Premet
and H. Strade not only conformed the Kostrikin-Shafarevich original conjecture also
completed classiÞcation simple modular Lie algebras over an algebraically closed
Þeld of characteristic p > 3. The Þnal Block-Wilson-Strade-Premet ClassiÞcation
Theorem states: Every Þnite-dimensional simple Lie algebra over an algebraically
close Þeld of characteristicp > 3 is classical, Cartan, or Melikyan type (exists only
in characteristic p = 5). The classiÞcation of simple restricted Lie algebras over an
algebraically closed Þeld of characteristicp = 2 or p = 3 is still open.

The aim of this talk is to give a comprehensive overview of Melikyan algebras,
their realizations and brief summary of new results and open problems.
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THE GIBBS PHENOMENON FOR STROMBERG SYSTEMS

Vazgen Mikayelyan

Yerevan State University, Armenia
E-mail: mik.vazgen@gmail.com

The Gibbs Phenomenon discovered by Henry Wilbraham in 1848 and rediscov-
ered by Josiah Willard Gibbs in 1899, is the peculiar manner in which the Fourier
series of some function behaves at a jump discontinuity. Then-th partial sum of
the Fourier series has large oscillations near the jump, which might increase the
maximum of the partial sum above that of the function itself. The overshoot does
not die out as n increases, but approaches a Þnite limit.

Stromberg system ism-order spline system onR, particularly, it is a modiÞed
Franklin system in the casem = 0. It was deÞned by Jan-Olov Stromberg in 1983
(see [1]). Stromberg system is obtained using Strombergs wavelet.

The Gibbs Phenomenon has been studied for Fourier series with respect to some
famous systems. We studied the Gibbs phenomenon with respect to Stromberg
systems (see [2]-[6]). We proved that the Gibbs phenomenon occurs for almost all
points of R.
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GEOMETRY OF A CLASS OF SEMISYMMETRIC SUBMANIFOLDS

V. A. Mirzoyan

National Polytechnic University of Armenia
E-mail: vmirzoyan@mail.ru

Let M be a Riemannian manifold with a Riemannian connection! , a curvature
tensor R, a Ricci tensor R1 and curvature operatorsR(X, Y ) = ! X ! Y " ! Y ! X "
! [X,Y ]. If R(X, Y )R = 0, then Manifold M is called semi-symmetric, while if
R(X, Y )R1 = 0, it is called Ricci-semisymmetric. The implication R(X, Y )R =
0 # R(X, Y )R1 = 0 is true. The local classiÞcation of Riemannian semisymmetric
manifolds was obtained by Z. I. Szabo [1]. The basic structure theorem ofRicci-
semisymmetric manifolds states that a smooth Riemannian manifoldM satisÞes the
condition R(X, Y )R1 = 0 if and only if it is either a two-dimensional, or an Einstein,
or a semi-Einstein, or a direct product (locally) of the listed classes of manifolds [2].
Some classes of semi-Einstein submanifolds in Euclidean spaces were studied in [3],
[4]. Herein, we give a geometric description of a semi-Einstein submanifold satisfying
the condition R(X, Y )R = 0.

Theorem. Suppose in an Euclidean spaceEn an m-dimensional normally ßat semi-
Einstein submanifoldM of nullity index µ $ 1 has at each pointq (3 % q % n" m+1)
nonzero principal curvature vectors n1, á á á, nq with equal moduli and multiplicities
p1 $ 2, á á á, pq $ 2, respectively. If the eigendistributions T(1,1), á á á, T(1,q) , corre-
sponding to these vectors, are parallel to each other onM (but not relative to the
nullity distribution T(0) ), then

(1) the vectors n1, á á á, nq form pairwise equal angles andp1 = á á á= pq (= p),
(2) M satisÞes the conditionR(X, Y )R = 0 , i.e. is semisymmetric, and locally

represents a Cartesian productEµ! 1 & P, where Eµ! 1 is plane of dimensionµ " 1,
and submanifoldP carries a (q+1) -component orthogonal conjugate system, consist-
ing of q identical spheresSP

1 (R), á á á, SP
q (R) and a straight line L , and represents a

cone (with a generatorL at each point) over a Cartesian productSP
1 (R)&á á á&SP

q (R),
which in its turn,

(a) is a (pq+1) -dimensional Einstein submanifold of Euclidean spaceEn! µ+1 ,
(b) belongs to the hypersphereSn! µ( øR) of spaceEn! µ+1 ; Radii R and øRare

connected by a condition øR2 = q áR2 and are linear (not constant) functions on L .
If the equality condition for the moduli of the vectorsn1, á á á, nq is replaced by

the condition of minimality of submanifold M , then (b) will be deÞned as follows:
belongs to the hypersphereSn! µ( øR) of the spaceEn! µ+1 and is minimal in this
hypersphere.
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RIGIDITY, GRAPHS AND HAUSDORFF DIMENSION

Sevak Mkrtchyan
(joint work with Nikolaos Chatzikonstantinou, Alex Iosevich and Jonathan Pakianathan)

Department of Mathematics, University of Rochester, NY
E-mail: sevak.mkrtchyan@rochester.edu

We prove that if E ! Rd is any compact set of Hausdor! dimension larger than
sd(k) = d 1

k+1 , then the m-dimensional Lebesgue measure of the set of congruence
classes of (k + 1)-point conÞgurations of points from E is positive. This can be
viewed as a generalization of the Falconer distance problem ([1]) on one hand, and
of the Furstenberg-Katznelson-Weiss (see e.g. [2], [3]) type conÞguration results on
the other. The proof relies on analytic, combinatorial and topological considerations.
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ON RECOVERING THE COMPOSITIONS OF TWO DISTRIBUTIONS FROM
MOMENTS: SOME APPLICATIONS

Robert M. Mnatsakanov1, Denys Pommeret2

1Department of Statistics, West Virginia University, Morgantown, USA
2Aix-Marseille University, Institut de Math«ematiques de Marseille, Marseille, France

E-mail: Robert.Mnatsakanov@mail.wvu.edu, denys.pommeret@univ-amu.fr

We study the problems of approximating and estimating the compositions of two
functions (distributions). Namely, the models when the only available information
about the underlying distributions represents the sequence of so-called transformed
moments are considered. Several applications of proposed approximants in informa-
tion theory and statistics are discussed. In particular, new moment-type approxi-
mates and estimates of the Shannen entropy, the Kullback-Leibler distance, as well
as the quantile density function are derived, and their asymptotic properties are
investigated. It is shown how the rate of approximations are related to the number
of moments used in the proposed formulas. Finally, the modiÞed versions of the
approximants are introduced and the improvements of such versions (in terms of
accuracy) are demonstrated by means of graphs and tables.
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ESTIMATES FOR STRONG-SPARSE OPERATORS

Gevorg Mnatsakanyan

Yerevan State University, Armenia
E-mail: mnatsakanyang@yahoo.com

Let S be a sparse collection of dyadic intervals inRd. Our interest is in weighted
L 2 bound of the operator

S! f =
!

B "S

! B ásup
A# B

1
|A|

"

A
f.

It is trivial, that S! f ! S(Mf ) which gives " S! " L 2(w)$ L 2(w) ! [w]2A 2
. We prove,

the sharp bound " S! " L 2(w)$ L 2(w) ! [w]3/ 2
A 2

. The techniques are those of stopping
cubes, Sawyer-type testing conditions and corona decomposition, in particular a
localization method introduced by Lacey-Sawyer and Uriarte-Tuero.
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AN EXTENSION OF ROMAN DOMINATING FUNCTION

Doost Ali Mojdeh

Department of Mathematics, University of Mazandaran, Babolsar, Iran
E-mail: damojdeh@umz.ac.ir

For a given graph G = ( V, E) with V = V(G) and E = E(G), a subset S ! V
is a dominating set of G if every vertex v " V # S has a neighbour in S. The
domination number ! (G) of G is the minimum cardinality of a dominating set in
G, and a dominating set of G of cardinality ! (G) is called a ! -set of G. A Roman
dominating function on graph G is a function f : V $ { 0, 1, 2} such that if v " V0

for somev " V , then there exist w " N (v) such that w " V2. The weight of a Roman
dominating function is the sum wf =

!
v! V (G) f (v), and the minimum weight of wf

for every Roman dominating function f on G is called Roman domination number
of G, denoted by ! R(G). The original study of Roman domination was motivated by
the defense strategies used to defend the Roman Empire during the reign of Emperor
Constantine the Great, 274-337 A.D. He decreed that for all cities in the Roman
Empire, at most two legions should be stationed. Further, if a location having no
legions was attacked, then it must be within the vicinity of at least one city at
which two legions were stationed, so that one of the two legions could be sent to
defend the attacked city. This part of history of the Roman Empire gave rise to the
mathematical concept of Roman domination, as originally deÞned and discussed by
I. Stewart, (1999) (Defend the Roman Empire!, Sci. Amer. 281 (6) (1999) 136-139)
and C.S. ReVelle, K.E. Rosing, (2000) (Defendens imperium romanum: a classical
problem in military strategy, Amer. Math. Monthly 107 (7) (2000) 585-594.)

Here we want to generalise the concept of Roman domination to a Roman{ 3} -
domination that is deÞned as follows.

DeÞnition 1. For a graph G, a Roman { 3} -dominating function is a function f :
V $ { 0, 1, 2, 3} having the property that for every vertex u " V , if f (u) " { 0, 1} ,
then f (N [u]) % 3.

Here we may call the Roman{ 3} -dominating function with the name double
Italian dominating function that is a generalization of Roman { 2} -dominating func-
tion.

A Roman { 3} -dominating function f relaxes the restriction that for every vertex
u " V, f (N [u]) =

!
v! N [u] f (v) % 3 maybe not necessarily the vertexu assigned

with label 2. Note that for a Roman { 3} -dominating function f , it is possible
that f (N [v]) = 2 for some vertex with f (v) = 2. In terms of the double Roman
Empire, this defence strategy requires that every location with no legion has at least
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a neighbouring location with three legions, or at least one neighbouring location
with two legions and one neighbouring location with one legion, or at least three
neighbouring locations with one legion each, and every location with one legion
has at least a neighbouring location with two legions or at least two neighbouring
locations with one legion each.

We initiate the study of Roman { 3} -domination and show its relationship to
domination, Roman domination. Finally, we present an upper bound on the Roman
{ 3} -domination number of a connected graphG in terms of the order of G and
characterize the graphs attaining this bound.

2010 Mathematical Subject ClassiÞcation: 05C69

Keywords: Domination, Roman domination, Roman { 3} -domination, graph.
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VARIETIES AND HYPERVARIETIES OF ALGEBRAS AND
NEW DISCRETE MATHEMATICAL FUNCTIONS

Yu. M. Movsisyan

Department of Mathematics and Mechanics, Yerevan State University
E-mail: movsisyan@ysu.am

It is commonly known that the free Boolean algebra onn free generators is
isomorphic to the Boolean algebra of Boolean functions ofn variables. The free
bounded distributive lattice on n free generators is isomorphic to the bounded lattice
of monotone Boolean functions ofn variables. In this talk we present the varieties
and hypervarieties of algebras with similar functional representations of free Þnitely
generated algebras.

A number of open problems are formulated.
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INTERASSOCIATIVITY VIA HYPERIDENTITIES

Yu. Movsisyan, G. Kirakosyan

Yerevan State University, Armenia
E-mail: movsisyan@ysu.am, grigor.kirakosyan@ysumail.am

We study interassociativity of semigroups through the following hyperidentities
of associativity ([1]-[3]):

X (Y (x, y), z) = Y (x, X (y, z)) , (ass)1

X (Y (x, y), z) = X (x, Y (y, z)) , (ass)2

X (X (x, y), z) = Y(x, Y (y, z)) . (ass)3

Moreover, in the q-algebras or e-algebras from (ass)3 it follows ( ass)2 and from
(ass)2 it follows ( ass)1.

DeÞnition. The semigroup (S; ! ) is called { i, j } -interassociative to the semigroup
(S; á) if algebra S(! , á) satisÞes the hyperidentities (ass)i and (ass)j , where i, j =
1, 2, 3. If i = j the semigroup (S; ! ) is called { i } -interassociative to (S; á).

We denote by Int{ i,j } (S; á) the set of semigroups which are{ i, j } -interassociative
to semigroup (S; á). If i = j the set Int{ i,j } (S; á) is denoted by Int{ i } (S; á).

Let (F (X ); á) be free semigroup generated by the setX , and (F C(X ); á) be the
free commutative semigroup generated by the setX .

Theorem 1. Int { 1,2} (F (X ); á) = Int { 2} (F (X ); á) = { (F (X ); á)} , where |X | ! 3.

Theorem 2. Int { 3} (F (X ); á) = { (F (X ); á)} .

Theorem 3. Int { 3} (F C(X ); á) = { (F C(X ); á)} .

Theorem 4. Int { 2} (F C(X ); á) = { (F C(X ); " x ) | x # F C(X )} $ (F C(X ); á), where
|X | ! 4, a " x b = axb, a, b# F C(X ).

Theorem 5. If |X | = 1 and X = { a} , then Int { 1} (F (X ); á) = Int { 2} (F (X ); á) =
{ (F (X ); á)} $ { (F (X ); " x ) | x # F (X )} $ { (F (X ); ! )} , where am ! an = am+ n! 1,
m, n # N.

Using the result of [5] we prove the Theorem 1 for|X | = 2 streightforwardly.
In [4] is characterized Int{ 1} (F C(X ); á) and Int { 1,2} (F C(X ); á). In [5] is consid-

ered Int{ 1} (F (X ); á).
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ARTINIAN AF C*-ALGEBRAS WHOSE MURRAY-VON NEUMANN ORDER
OF PROJECTIONS IS A LATTICE

Daniele Mundici

Dept. of Mathematics and Computer Science,
University of Florence, Florence, Italy

E-mail: mundici@math.uniÞ.it

Let A range over all AF C*-algebras whose Murray-von Neumann order of pro-
jections is a lattice. Then the Elliott involutive monoid of A will range over all count-
able MV-algebras. In fact, Elliotts classiÞcationtheoremshows that GrothendieckÕs
K 0 functor induces a one-one correspondence betweenthese two classes of structures.
Using the spectral theory of MV-algebraswe study the Artinian property in these
AF C*-algebras. For background on MV-algebras we refer to the present authorÕs
monograph ÒAdvanced ukasiewicz calculus and MV-algebrasÓ, Trends in Logic, Vol.
35, Springer, 2011.
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THE INDEPENDENCE OF AXIOMS OF HYPERGROUP OVER GROUP

Shant Navasardyan

Yerevan State University, Armenia
E-mail: navasardyanshant@gmail.com

The concept of hypergroup over group arises when one tries to extend the concept
of quotient group in case of any subgroup of the given group. This concept was
introduced in [1] and was developed in [2] and [3]. It generalizes and uniÞes the
concepts of the group, of the Þeld and of the linear space over Þeld. In [3] the
concept of (right) hypergroup over group is introduced as follows. LetH be an
arbitrary group. A (right) hypergroup over group H is a set M together with a
system of structural mappings ! = (" , # , $, %), where

¥ (") " : M ! H " M , "( a, ! ) := a! ,

¥ (#) # : M ! H " H , #( a, ! ) := a! ,

¥ ($) $ : M ! M " M , $( a, b) := [ a, b],

¥ (%) % :M ! M " H , %(a, b) := ( a, b)

are mappings which satisfy following conditions:

P1) The mapping $ is a binary operation on M such that

(i) any equation [x, a] = b with elements a, b # M has a unique solution in
M ;

(ii) ( M, $) has a left neutral element o # M , i.e. [o, a] = a for any element
a # M .

P2) The mapping " is an action of the group H on the set M , that is

(i) ( a! )" = a! á" for any elements!, " # H and for every a # M ;

(ii) a# = a for eacha # M , where # is the neutral element of the groupH .

P3) For any element ! # H , there exists an element" # H such that ! = o" .

P4) The following identities (A1) - (A5) hold:

¥ (A1) a(! á" ) = a! áa
!

" ,

¥ (A2) [ a, b]! =
!
a

b! , b!
"
,
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¥ (A3) ( a, b) á[a,b]! = a(b! ) á(a
b! , b! ),

¥ (A4) [[ a, b], c] = [ a(b,c) , [b, c]],

¥ (A5) ( a, b) á([a, b], c) = a(b, c) á(a(b,c) , [b, c]).

We proved the following result.

Theorem 1. The system{ (P1), (P2), (P3), (A1) , (A2) , (A3) , (A4) , (A5) } of axisoms
of hypergroup over group is independent.
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ON ARITHMETICAL FUNCTIONS
WITH INDETERMINATE VALUES OF ARGUMENTS

S. A. Nigiyan

Chair of Programming and Information Technologies, YSU
E-mail: nigiyan@ysu.am

In this paper the deÞnition of arithmetical functions with indeterminate values
of arguments is given. The notions of computability, strong computability and ! -
deÞnability for such functions are introduced. It is proved that every ! -deÞnable
arithmetical function with indeterminate values of arguments is monotonic and com-
putable. It is proved that every computable, naturally extended arithmetical func-
tion with indeterminate values of arguments is ! -deÞnable. It is also proved that
there exist both ! -deÞnable and non-! -deÞnable strong computable, monotonic, not
naturally extended arithmetical functions with indeterminate values of arguments.

1. Arithmetical functions with indeterminate values of arguments. Let
M = N ! {"} , where N = { 0, 1, 2, . . .} is the set of natural numbers, " is the
element which corresponds to indeterminate value. Let us introduce the partial
ordering # on the set . For everym $ M we have: "# m and m # m. A mapping
" : M ! % M , k ! 1, is said to be arithmetical function with indeterminate values
of arguments [1], [2].

DeÞnition 1. A function " : M ! % M , k ! 1, is said to be computable if there ex-
ists an algorithm [3], which for all m1, . . . , mk $ M stops with value" (m1, . . . , mk) if
" (m1, . . . , mk) &= " , and stops with value" , or works inÞnitely if " (m1, . . . , mk) = " .

DeÞnition 2. A function " : M ! % M , k ! 1, is said to be strong computable if
there exists an algorithm [3], which stops with value" (m1, . . . , mk) for all
m1, . . . , mk $ M .

DeÞnition 3. A function " : M ! % M , k ! 1, is said to be monotonic if
(m1, . . . , mk) # (µ1, . . . , µk) implies " (m1, . . . , mk) # " (µ1, . . . , µk) for all
mi , µi $ M , i = 1 , . . . , k.

DeÞnition 4. A function " : M ! % M , k ! 1, is said to be naturally extended if
" (. . . , " , . . .) = " .

It is easy to see that every naturally extended function is monotonic.

2. On ! -deÞnability of arithmetical functions with indeterminate val-
ues of arguments. Let us Þx countable set of variablesV and deÞne the set of
terms ! [4].
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1. if x $ V , then x $ !;
2. if t1, t2 $ !, then ( t1t2 $ !);
3. if x $ V and t $ !, then ( !xt ) $ !.
We will use the abridged notation for terms: the term (. . . (t1t2) . . . , tk ), where

t i !, i = 1 , . . . k, k > 1, is denoted ast1t2 . . . tk , and the term (!x 1(!x 2(. . . (!x n t) . . .),
where xj $ V , t $ !, j = 1 , . . . , n, n > 0, is denoted as!x 1x2 . . . xn .t.

The notion of a free and bound occurrence of a variable in a term and the notion
of a free variable of a term are introduced in a conventional way. A term that does
not contain free variables is said to be closed.

Terms t1 and t2 are said to be congruent (which is denoted ast1 ' t2) if one
term can be obtained from the other by renaming bound variables. In what follows,
congruent terms are considered identical.

The term obtained from a term t as a result of the simultaneous substitution
of a term # instead of all free occurrences of a variablex is denoted ast[x := #].
A substitution is said to be admissible if all free occurrences of variables of the
term being substituted remain free after the substitution. We will consider only
admissible substitutions.

Let us remind the notion of the $-reduction:

$ = { (!x.t )#, t[x := #])|t, # $ ! , x $ V } .

A one-step $-reduction (%" ), $-reduction (%% " ), and $-equality (= " ) are de-
Þned in a standard way.

We remind that the term ( !x.t )# is referred to as$-redex. A term not containing
$-redexes is referred to as$-normal form (further, simply normal form). The set of
all normal forms is denoted by NF. A term t is said to have a normal form if there
exists a term t! $ NF such that t = " t !. A term of the form !x 1x2 . . . xn .xt 1t2 . . . tk ,
where x, x i $ V , t j $ !, i = 1 , . . . , n, n ! 0, j = 1 , . . . , k, k ! 0, is referred to us a
head normal form. The set of all head normal forms is denoted by HNF. A termt is
said to have a head normal form if there exists a termt! $ HNF such that t = " t !.
It is known that NF ( HNF , but HNF &(NF .

We introduce the following notation for some terms: I ' !x.x , F ' !xy.y ,
" ' (!x.xx )( !x.xx ), )"* ' ", )0* ' I , )n + 1* ' !x.xF )n*, wherex, y $ V , n $ N .
It is easy to see that: the term " does not have a head normal form, the term)n* is
a closed normal form, and ifn1 &= n2, then )n1* and )n2* are not congruent terms,
where n, n1, n2 $ N .

DeÞnition 5. A function " : M ! % M , k ! 1, is said to be ! -deÞnable if there
exists such term# $ ! , that for all m1, . . . , mk $ M we have:

# )m1* . . . )mk* = " )" (m1, . . . , mk)*, if " (m1, . . . , mk) &= " and
# )m1* . . . )mk* does not have a head normal form, if" (m1, . . . , mk) = " .

Theorem 1. Every ! -deÞnable arithmetical function with indeterminate values of
arguments is monotonic and computable.
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Theorem 2. Every computable, naturally extended arithmetical function with inde-
terminate values of arguments is! -deÞnable.

Theorem 3. There exist both ! -deÞnable and non-! -deÞnable strong computable,
monotonic, not naturally extended arithmetical functions with indeterminate values
of arguments.

MSC2010: 68Q01; 68Q05.
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ORIENTATION-DEPENDENT DISTRIBUTIONS OF CROSS-SECTIONS

V. K. Ohanyan

Yerevan State University, Yerevan, Armenia; American University of Armenia
E-mail: victoohanyan@ysu.am; victo@aua.am

Let Rn(n ! 2) be the n-dimensional Euclidean space,D " Rn be a bounded
convex body with inner points and Vn be n-dimensional Lebesgue measure inRn.
C(D , h) = Vn(D # (D + h)) , h $ Rn, is called the covariogram of D . Here
D + h = { x + h, x $ D } . G. Matheron conjectured that the covariogram of a
convex body D determines D within the class of all convex bodies, up to transla-
tions and reßections ( see [1], [2]). Denote bySn! 1 the (n %1)-dimensional sphere
of radius 1 centered at the origin in Rn. We consider a random line which is par-
allel to u $ Sn! 1 and intersects D , that is a random line from the following set:
!( u) = { lines which are parallel to u and intersect D } . Let " r u! D the orthogonal
projection of D on the hyperplaneu" (u" is the hyperplane with normal u and pass-
ing through the origin). A random line which is parallel to u and intersectsD has an
intersection point (denote by x) with " r u! D . We can identify the points of " r u! D
and the lines which intersect D and are parallel to u. The last means, that we
can identify !( u) and " ru! D . Assuming that the intersection point x is uniformly
distributed over the convex body " ru! D we can deÞne the following distribution
function:

F (u, t ) =
Vn! 1{ x $ " r u! D : V1(g(u, x) # D ) < t )}

bD (u)
.

The function F (u, t) is called orientation-dependent chord length distribution func-
tion of D in direction u at point t $ R1, where g(u, x) - is the line which is parallel
to u and intersects " r u! D at point x and bD (u) = Vn! 1(" r u! D ). We can introduce
every vector h $ Rn by h = tu, where u is the direction of h, and t is the length
of h. Let u $ Sn! 1 and t > 0 such that D # (D + tu) contains inner points. Then
C(D , u, t) is di#erentiable with respect to t and it holds that

%
!C (D , u, t)

!t
= (1 %F (D , u, t)) áb(D , u)

i.e. the problem of determining bounded convex domain by its covariogram is equiv-
alent to that of determining it by its orientation dependent chord length distribution.
In R3 two types of orientation-dependent coross-section distributions can be consid-
ered. First is the probability that the random chord generated by intersection of the
spatial line with the domain has length less than or equal to given number. In the
second case random planes and their intersections with the domain are observed.
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The main goal is to enlarge the class of domains for which the form of the orientation
dependent chord length distribution function and the cross-section area distribution
function are known (see [3]Ð [6]).
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ON ISOPERIMETRIC FUNCTIONS OF FINITELY PRESENTED GROUPS

A. Yu. Olshanskii

Vanderbilt University (USA) and Moscow State University (Russia)
E-mail: alexander.olshanskiy@vanderbilt.edu

Let G = !A | R" be a group given by a Þnite generating setA and a Þnite setR
of deÞning relators. Any wordr # R vanishes inG. For any other trivial in G word
w over the alphabet A± 1, there is a derivation w = w0 $ w1 $ á á á $ wt! 1 $ 1,
where 1 is the empty word and everywi is obtained from wi ! 1 after one of the
elementary transformations deÞned byR. The isoperimetric (or Dehn) function
D(n) of the Þnite presentation ofG bounds from above the lengthst of the shortest
derivations for all words of length at most n vanishing in G. Up to an asymptotic
equivalence, D(n) does not depend on the choice of a Þnite presentation forG.
Therefore D(n) is an asymptotic invariant of G measuring the complexity of the
derivation of consequences from the deÞning relations. For example,D (n) is linear,
up to equivalence, i! the group G is word hyperbolic in terms of Gromov.

The speaker will recall known facts and present new results related to the behav-
ior of Dehn functions, especially polynomially-bounded Dehn functions. As corollary,
he obtains results on isoperimetric functions of universal covers for closed Rieman-
nian manifolds.
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CAN GEOMETRY BE REDUCED TO ALGEBRA?

Victor Pambuccian

School of Mathematical and Natural Sciences (MC 2352), Arizona State University
E-mail: VICTOR.PAMBUCCIAN@asu.edu

The question regarding a synthetic approach or an algebraic approach to geom-
etry is an old one, with debates regarding the superiority of the synthetic approach
over the algebraic one being carried on from Newton to Jakob Steiner. The question
has faded from view in the 20th century with the clear victory of the algebraic camp.
Axiomatic approaches themselves appeared to be most interested in arriving at some
representation theorem, a statement linking all models of some axiom system to some
known algebraic structure by means of some segment arithmetic or oherwise. Emil
ArtinÕs classicGeometric Algebra does just that by way of conÞguration theorems
such as DesarguesÕs theorem.

In this talk, we shall examine what can be said from the vantage point of math-
ematical logic about the question whether geometry can be reduced to algebra. We
will see, on the one hand, that this is possible only to a very limited extent, and
will survey what is lost in the process. On the other hand, we will see by examining
examples from reverse geometry, where one asks for minimal assumptions needed to
prove a given theorem, that geometric thinking is more general and not reducible
to algebra, for one notices that very weak axiom systems, that admit no represen-
tation theorem linking them to an algebraic structure, are often su!cient to prove
interesting geometric statements.
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DRINFELD-STUHLER MODULES

Mihran Papikian
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Drinfeld-Stuhler modules are certain function Þeld analogs of abelian varieties
equipped with an action of a central simple algebra. The moduli spaces of these
objects have played an important role in the proof of the local Langlands conjecture
for GL(n) in positive characteristic by Laumon, Rapoport and Stuhler.

We prove some basic results about Drinfeld-Stuhler modules and their endomor-
phism rings, and then examine the Þelds of moduli of these objects, with the goal
of constructing examples of varieties over function Þelds violating the local-global
principle.
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A DISCRETE-TIME SIVS EPIDEMIC MODEL WITH CONSTANT
POPULATION SIZE AND STANDARD INCIDENCE RATE

Mahmood Parsamanesh
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The spread of infectious diseases in populations and how to control and eliminate
them from the population is an important and necessary subject. Mathematical
models are introduced to study what happens when an infection enters in a popution,
and under which conditions the disease will be wiped out from population or persists
in population.The literature about mathematical epidemic models that have been
constructed and analysed for various type of diseases is very reach. Among these
models the susceptible-infected-susceptible (SIS) epidemic models are one of the
well known type of epidemic models. For the purpose of considering the e!ect of
vaccination as a e"cient strategy to control and aliminate infections, it is possible to
add a compartment as the vaccination individuals to the SIS model and obtain the
SIS epidemic model with vaccination namely, SIVS epidemic model. These models
may be deterministic or stochastic, with constant or variable population size, and
with standard or bilinear incidence rate. In this paper, we consider the following
discrete-time SIS epidemic model with vaccination:

St+1 = (1 ! q)A ! !S t I t /N t + [1 ! (µ + p)]St + "I t + #Vt ,

I t+1 = !S t I t /N t + [1 ! (µ + " + $)]I t ,

Vt+1 = qA + pSt + [1 ! (µ + #)]Vt .

The susceptible individuals become infected at standard incidence rate!S t I t /N t .
The number of individuals Nt is variable in this model. But if we take A = µN
and $ = 0, then the population size will remain a constant value. Thus letting
Vt = N ! St ! I t , the coresponding di!erence equation is deleted and the following
system of two di!erence equations is obtained:

St+1 = [(1 ! q)µ + #]N ! !S t I t /N + [1 ! (µ + p + #)]St + ( " ! #)I t ,

I t+1 = !S t I t /N + [1 ! (µ + " )]I t .

We shall obtain some basic properties of this model such as: the equilibria and the
basic reproduction numberR 0. Then stability of the equilibria is given with respect
to R 0 and moreover, the bifurcations of model are studied. Also, the results are
challenged in some numerical examples.
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RECIPROCITY LAWS AND ZETA-FUNCTIONS
(from Emil Artin to Robert Langlands)

A. Parshin

Steklov Mathematical Institute of RAS
E-mail: parshin@mi.ras.ru

Emil Artin has made two fundamental contributions to algebraic number theory.
He proved his version of the reciprocity law and introduced L-functions for non-
abelian representations of the Galois groups of algebraic number Þelds. We give an
overview of these results and show how the famous Langlands program developed
from them.
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DESCRIPTION OF THE BIOMETRIC IDENTIFICATION PROCESS OF
TEETH WITH THE HELP OF COLORED PETRI NETS

G. Petrosyan, L. Ter-Vardanyan, A. Gaboutchian
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International ScientiÞc - Educational Centre of NAS RA

Moscow State Medical-Stomatological University
E-mail: petrosyan gohar@list.ru, lilit@sci.am, armengaboutchian@mail.ru

Biometric identiÞcation systems use given parameters and function on the ba-
sis of Colored Petri Nets as a modeling language developed for systems in which
communication, synchronization and distributed resources play an important role.
Colored Petri Nets combine the strengths of Classical Petri Nets with the power of
a high-level programming language. Colored Petri Nets have both, formal intuitive
and graphical demonstrate presentations. Graphical CPN model consists of a set of
interacting modules which include a network of places, transitions and arcs. Math-
ematical representation has a well-deÞned syntax and semantics, as well as deÞnes
system behavioral properties.
One of the best known features used in biometry is the human Þnger print pat-
tern. During the last decade other human features have become of interest, such
as iris-based or face recognition. The objective of this paper is to introduce the
fundamental concepts of Petri Nets in relation to tooth shape analysis.
Biometric identiÞcation systems functioning has two phases: data enrollment phase
and identiÞcation phase. During the data enrollment phase images of teeth are
added to database. This record contains enrollment data as a noisy version of the
biometrical data corresponding to the individual. During the identiÞcation phase
an unknown individual is observed again and is compared to the enrollment data in
the database and then system estimates the individual.
Depending on given parameters and features teeth identiÞcation system is able to
classify images for di!erent application, among such biometric, dental or anthro-
pological can be presented. Colored Petri Nets are best suited to analyze system
functioning, error eliminating, validation and veriÞcation of biometric data.
In our research we use digital images of separate teeth obtained by means of pho-
togrammetric methods, images of teeth obtained by dental arch 3D model segmen-
tation and images of teeth obtained from segmented dental arch plaster models.

The purpose of modeling biometric identiÞcation system by means of Petri Nets
is to reveal the following aspects of the functioning model:

¥ The e"ciency of the model.
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¥ Behavior of model.

¥ The existence of mistakes and accidents in the model.

¥ Simplify the model or substitute its separate components for more e!ective
components without interfering system functioning.
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GAUSSIANITY TEST FOR MIXTURE COMPONENT DISTRIBUTION

Denys Pommeret

Institut de Math«ematique de Marseille, CNRS, Ecole Centrale de Marseille, France
E-mail: denys.pommeret@univ-amu.fr

In this work we investigate a semiparametric testing approach to answer if the
Gaussian assumption made by McLachlanet al. (2006) on the unknown component
of their false discovery type mixture model was a posteriori correct or not. Based
on a semiparametric estimation of the Euclidean parameters of the model (free from
the Gaussian assumption), our method compares pairwise the Hermite coe!cients of
the model estimated directly from the data with the ones obtained by plugging the
estimated parameters into the Gaussian version of the false discovery mixture model.
These comparisons are incorporated into a sum of square type statistic which order
is controlled by a penalization rule. We prove under mild conditions that our test
statistic is asymptotically ! 2(1)-distributed and study its behavior under di"erent
types of alternatives, including contiguous nonparametric alternatives. Several level
and power studies are numerically conducted on models close to those considered
in McLachlan et al. (2006) to validate the suitability of our approach. Finally we
implement our testing procedure on the three microarray real datasets analyzed in
McLachlan et al. (2006) and comment our results.

Keywords: Asymptotic normality, Chi-squared test, False Discovery Rate, nonpara-
metric contiguous alternative, semiparametric estimator, two-component mixture
model.
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RIGID SOLVABLE GROUPS.
ALGEBRAIC GEOMETRY AND MODEL THEORY

N. S. Romanovskiy

Sobolev Institute of Mathematics, Novosibirsk, Russia
E-mail: rmnvski@gmail.com

A solvable groupG is called rigid, more preciselym-rigid, if there exists a normal
series of subgroups

G = G1 > G 2 > á á á> G m > G m+1 = 1 ,

where all quotients Gi /G i +1 are abelian and when viewed as right modules over
Z[G/G i ], do not have torsion. Free solvable groups and iterated wreath products
of torsion free abelian groups are rigid, as well as their subgroups. A rigid group
G is termed divisible if elements of the quotientGi /G i +1 are divisible by non-zero
elements of the ring Z[G/G i ], i.e. Gi /G i +1 is a vector space over the skew-Þeld
of fractions Q(G/G i ) of the ring Z[G/G i ] (such a skew-Þeld exists). We study an
algebraic geometry over rigid groups and a model theory of divisible rigid groups.
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BARYCENTRIC ALGEBRAS AND BEYOND

Anna B. Romanowska

Warsaw Univeristy of Technology, Warsaw, Poland
E-mail: A.Romanowska@mini.pw.edu.pl

Convex sets may be viewed as algebras equipped with a set of binary convex
combinations that is indexed by the open unit interval I ! of real numbers. Convex
sets generate the varietyB of barycentric algebras, which also includes semilattices
where the semilattice multiplication is repeated uncountably many times.

Barycentric algebras provide a general algebraic framework for the study of con-
vexity. They serve to model convexity and probability, allowing extensions of these
important concepts to complex systems functioning at a number of di!erent levels,
and are used in hierarchical statistical mechanics for the study of complex systems
[2, Ch. 9].

Barycentric algebras are deÞned by three types of hyperidentities forp, q ! I ! :
the hyperidentity of idempotence

xx p = x, (1)

the hyperidentity of skew-commutativity

xy p = yx 1 " p =: yx p", (2)

and the hyperidentity of skew-associativity

[xy p] z q = x [yz q/(p # q)] p # q, (3)

wherep#q = p+ q" pq. They belong to a broader class of (idempotent and entropic)
algebras called modes, and an even broader class of distributive algebras [2, Chs. 5,
7].

Threshold barycentric algebras appeared when trying to answer a question con-
cerning the axiomatization of convexity. Klaus Keimel had asked if the skew-
associativity in the deÞnition of barycentric algebras could simply be replaced by
entropicity. It turned out that this is not possible. The Þrst counter-example has
grown into a family of algebras, calledthreshold barycentric algebras, where the open
unit interval of operations is replaced by a possibly shorter subinterval that contains
1/ 2, keeping the remaining operations trivial. It was possible not only to answer
Klaus KeimelÕs question, but also to show that each such shorter (non-trivial) subin-
terval generates all the operations of barycentric algebras. The threshold algebras
have quite interesting properties, and provide a common framework for a whole

!"#$%&'(#)%*)(+'),(#-),$%.-)/+'+)0+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1+'+2,)3%4,5%67%8%9:)+%63%6;<=

115 



spectrum of algebras, from usual barycentric algebras for threshold 0 to commuta-
tive binary modes (algebras with one binary commutative, idempotent and entropic
operation) for threshold 1/ 2. They have already found some applications [3].
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ABOUT SOME BILINEAR FORMS ON THE LINEAR SPACES OF MATRICES

G. H. Sahakyan

Artsakh State University
E-mail: ter saak george@mail.ru

Let M n,n means linear space of square matrices of ordern.
In this talk bilinear symmetric forms f (A, B ) are deÞned forA, B ! M n,n .

Some of properties of these forms are proved. The obtained results concerning the
main characteristics of matrices, such as trace, determinant, the coe!cients of the
characteristic polynomial of the matrix by the values of this forms.
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ON SANDWICH SETS IN LEGAL SEMIGROUPS
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After introducing the notion of a sandwich set Sl (e, f ) for any idempotents e, f
of a semigroup S belonging to any member of the legal class, it has been proved that
Sl (e, f ) is a rectangular band. We also prove some results about legal sandwich sets
of a semigroup S in any member of the legal class. Then we show that the subsets
Sl (e, f )f and eSl (e, f ) of the semigroup S belonging to any member of the legal
class, for any idempotentse, f in S, are subsemigroups ofS, and the subsemigroups
Sl (e, f ) and Sl (e, f )f × eSl (e, f ) of S are isomorphic.

Keywords: Legal semigroups, sandwich sets, isomorphisms.
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IMPLICATION ZROUPOIDS: AN ABSTRACTION FROM
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State University of New York,
New Paltz, New York, U.S.A

E-mail: sankapph@hawkmail.newpaltz.edu

In 1934, Bernstein [1] gave a system of axioms for Boolean algebras in terms
of implication only; however, his axioms were not equational. A quick look at
his axioms would reveal that, with an additional constant, they could easily be
translated into equational axioms. In 2012, this modiÞed BernsteinÕs theorem was
extended to De Morgan algebras in [10]. Indeed, it is proved in [10] that the varieties
of De Morgan algebras, Kleene algebras, and Boolean algebras are term-equivalent
to varieties whose deÞning axioms use only the implication! and the constant 0.
Furthermore, a simpliÞcation of the (modiÞed equational) axiom system of Bernstein
is also given in [10].

These results motivated me to introduce a new (equational) class of algebras
called ÒImplication zroupoidsÓ in [10].

An algebra A = "A, ! , 0#, where ! is binary and 0 is a constant, is called an
implication zroupoid (I -zroupoid, for short) if A satisÞes:

(I) ( x ! y) ! z $ [(z! ! x) ! (y ! z)!]!, where x! := x ! 0;

(I 0) 0!! $ 0.

It turns out that the variety I of implication zroupoids contains, not only De Morgan
algebras but also, the variety of%-semilattices with the least element 0. In fact, the
structure of the lattice of subvarieties of I is very complex.

In [2]Ð[9], Juan Cornejo and I have obtained several results pertaining to the
structure of the lattice of subvarieties of the variety of implication zroupoids.

In this talk I would like to survey some of our results on implication zroupoids
and mention some new directions for future research.
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QUANTUM CALCULUS

Armen Sergeev

Steklov Mathematical Institute, Moscow
E-mail: sergeev@mi.ras.ru

One of the main goals of the noncommutative geometry is to translate basic
notions of topology, di!erential geometry and analysis into the language of Bahach
algebras. In our talk we shall give several examples of such translation for the objects
of classical analysis. Namely, we associate to real value function spaces, such as
Sobolev space of half-di!erentiable functions or quasisymmetric homeomorphisms,
someC! -algebras of bounded operators in a Hilbert space. This correspondence was
called by Alain Connes the quantum calculus.
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ON BOL-MOUFANG TYPE IDENTITIES

Victor Shcherbacov

Institute of Mathematics and Computer Science, Chisinau, Moldova
E-mail: scerb@math.md

Standard information on groupoids, quasigroups and loops is given in [1, 2].
Identities that involve three variables, two of which appear once on both sides of

the equation and one of which appears twice on both sides are called Bol-Moufang
type identities.

Binary groupoid (Q, á) is called a quasigroup if for all ordered pairs (a, b) ! Q2

there exist unique solutionsx, y ! Q to the equations x áa = b and a áy = b.

In supposed talk we plan to speak about:
the number of groupoids of small orders with some Bol-Moufang type identities;
left (right) cancellation (division) groupoids with some Bol-Moufang type iden-

tities;
Bol-Moufang type identities deÞning commutative Moufang loops;
Bol-Moufang type identities which imply that corresponding groupoid (quasi-

group) has a unit element;
Bol-Moufang type identities which imply that corresponding quasigroup has a

non-trivial nucleus;
Bol-Moufang type identities and some inverse properties.
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SPECIALITY PROBLEM FOR MALCEV ALGEBRAS

Ivan Shestakov
(joint work with A. Buchnev, V. Filippov, and S. Sverchkov)

University of S÷ao Paulo, Brazil
E-mail: ivan.shestakov@gmail.com

A Malcev algebra is an algebra that satisÞes the identities

xx = 0 , J (xy, z, x) = J (x, y, z)x,

whereJ (x, y, z) = ( xy)z+( yz)x+( zx)y. Clearly, any Lie algebra is a Malcev algebra.
If A is an alternative algebra then it forms a Malcev algebraA! with respect to the
commutator multiplication [ a, b] = ab! ba. The most known examples of non-Lie
Malcev algebras is the algebraO! for an octonion algebra O and its subalgebra
sl(O) consisting of octonions with zero trace. Every simple non-Lie Malcev algebra
is isomorphic to sl(O).

The problem of speciality, formulated by A. I. Malcev in 1955, asks whether any
Malcev algebra is isomorphic to a subalgebra ofA! for certain alternative algebra A.
In other words, it asks whether an analogue of the celebrated Poincare-Bikho!-Witt
theorem is true for Malcev algebras. We show that the answer to this problem is
negative, by constructing a Malcev algebra which is not embeddable into an algebra
A! for any alternative algebra A.
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ARTINÕS INDUCTION THEOREM AND QUASIGROUP CHARACTERS

Jonathan D.H. Smith

Iowa State University, Ames, Iowa, USA
E-mail: jdhsmith@iastate.edu

A quasigroup(Q, á) is a setQ with a binary operation áof multiplication , such that
for each elementq of Q, the left multiplication x !" q áx and right multiplication
x !" x áq are permutations of Q. In particular, groups are quasigroups. The
multiplication group of a quasigroup (Q, á) is the subgroup of the full permutation
group Q! on Q that is generated by all the left and right multiplications. For
example, the multiplication group of the quasigroup (Z/ n , # ) of integers modulon,
under subtraction, is the dihedral group Dn of order 2n.

If G is the multiplication group of a quasigroup Q of Þnite order n, consider
the diagonal action g: (x, y) !" (xg, yg) of G on Q $ Q. The incidence matrices
I n = A1, . . . , As of the orbits of G are a basis of a commutative algebra of complex
matrices, which also has a basisn! 1Jn = E1, . . . , Es of orthogonal idempotents.
(Here Jn is the all-onesn $ n-matrix.) Normalized versions of the change-of-basis
matrices between these two bases yield the character table of the quasigroupQ,
specializing to the usual character table whenQ is a group [4]. For example,

1 1 1
1 1 -1%
2 #

%
2 0

(1)

is the character table of (Z/ 4, # ).
ArtinÕs Induction Theorem [1], stating that each character of a Þnite group is

a rational linear combination of characters induced from cyclic subgroups, started
as a tool to help express anL-function as a product of rational powers of abelian
L-functions. We present a version of ArtinÕs Induction Theorem for quasigroup
characters [3], [4,¤7.4]. Here, the scalars in the linear combinations are algebraic
numbers. Indeed, the dimensions of quasigroup characters are algebraic integers
in general. While this phenomenon is not yet fully understood, there appear to be
some connections with quantum statistical dimensions. For example, the dimensions
1, 1,

%
2 from the Þrst column of (1) are the statistical dimensions of the physical

representations of the conformal Þeld theory for the scaling limit of the Ising model
at the critical point [2, (1.57)].
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UNIVERSAL TOPOLOGICAL ABELIAN GROUPS

Onise Surmanidze

Batumi Shota Rustaveli State University, Batumi, Georgia
E-mail: onise.surmanidze@mail.ru

Universal groups are deÞned for weakly linearly compact topological abelian
groups. Some properties of these groups are studied.

For weakly linearly compact primary abelian groups with a distinct open and
compact subgroup, we give the characteristic condition for its decomposition into a
direct sum of groups of rank 1.

We present the following results.

Theorem 1. All ! -primary linearly compact groups are subgroups of the topological
direct sum of groups of typeC(P! ).

Corollary 1. Any p-primary linearly discrete group is a factor group of a direct
algebraic sum of an algebraic sum of groups of typeZp.

Corollary 2. Any p-primary linearly discrete group is a closed subgroup of a direct
algebraic sum of a countable set of groups of typeQp and groups of typeC(P! ).

Theorem 2. A discrete Abelian group G admits a linearly compact topologization
if and only if it is a complete direct sum of groups of typesC(Pn), P ! , Zp and Qp.

Theorem 3. Any p-primary linearly compact group is a subgroup of the groupG
which has the form

G =
!

!

G! : H! ,

where G! are groups of typeC(P! ), and H! are their subgroups of Þnite order.

Theorem 4. Any p-primary linearly compact group is a factor group of the group
G which has the form

G =
!

!

G! : H! ,

where all G! are groups of typeZp and all H ! are their subgroups of Þnite index.

Theorem 5. Any p-primary weakly linearly compact group is isomorphic to a closed
subgroup of the groupG which has the form

G =
!

!

G! : H ! ú+
"

"

G" ú+
!

#

G#,

where G! and G" are groups of typeC(P! ), H ! are their subgroups of Þnite order
and G# is a group of typeQp.
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ALGORITHM FOR SOLVING THE EQUATIONS
2n ± ! á2m + ! 2 = x2

L«aszl«o Szalay

Department of Mathematics and Informatics
J. Selye University, Komarno, Slovakia
E-mail: laszlo.szalay.sopron@gmail.com

The diophantine equations 2n ± 2m +1 = x2 have been completely solved in non-
negative integersn, m and x in 2002. Later F. Luca showed that ! n + ! m + 1 = x2

does not hold if ! is an odd prime. Recently K. Gueth and L. Szalay investigated
the equations 2n ! 3á2m +9 = x2 and 2n +3 á2m +9 = x2, and gave all the solutions,
in the second case with the conditionn " m.

Assume now that ! is a Þxed odd prime such that 2 is a non-quadratic residue
modulo ! . We provide an algorithm for solving

2n + ! á2m + ! 2 = x2 with ( n " m), and 2n ! ! á2m + ! 2 = x2.

Beside the inÞnite family n = 2 t, m = t +1, x = 2 t ± ! , t # N sometimes there exists
sporadic solution(s), for example if! = 5, then ( n, m, x ) = (4 , 0, 6) and (6, 3, 7) both
satisfy 2n ! 5 á2m + 25 = x2. The main goal is exactly the determination of such
sporadic solutions.

Further numerical examples, and experiences will also be published.
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ON SYMMETRIC PRODUCT FINSLER SPACES

Megerdich Toomanian

Iranian Academy of Sciences
E-mail: toomanian@tabrizu.ac.ir

Symmetric structures are deÞned on A!ne and Riemannian spaces. Then spe-
cial symmetries like "-symmetry [1], sigma symmetry [2] and weakly symmetry are
deÞned. Some of them are extended to tangent bundles and product manifolds.
Presently, symmetries are deÞned on Finsler spaces [3]. In this paper we study lo-
cally, globally and weakly symmetries on canonical product Finsler spaces and prove
some theorem om them.

2010 Mathematics subject classiÞcation: 58B40, 53C60.

Keywords and phrases: Product of Finsler spaces, symmetry Finsler space.
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ON MODULAR AND CANCELLABLE ELEMENTS
OF THE LATTICE OF SEMIGROUP VARIETIES

B. M. Vernikov

Ural Federal University, Ekaterinburg
E-mail: bvernikov@gmail.com

An element x of a lattice !L ; " , #$ is called
modular if (%y, z & L) (y ' z ( (x " y) # z = ( x # z) " y),
cancellableif (%y, z & L) (x " y = x " z &x # y = x " z ( y = z).
It is easy to see that a cancellable element is a modular one. Modular elements

of the lattice SEM of all semigroup varieties were examined in [2, 3, 4], while can-
celable elements of this lattice were considered in [1]. In particular, commutative
semigroup varieties that are modular elements ofSEM were completely determined
in [4, Theorem 3.1], and it is veriÞed in [1, Theorem 1.1] that, within the class
of commutative varieties, the properties to be modular and cancellable elements in
SEM are equivalent. The objective of this work is to prove that this equivalence is
false in slightly wider class, namely in the class of all varieties that satisÞes a per-
mutational identity of length 3, that is an identity of the form x1x2x3 = x1! x2! x3!

where ! is a non-trivial permutation on the set { 1, 2, 3} . The following assertion
generalizes Theorem 3.1 of [4].

Theorem. A semigroup variety V satisfying a permutational identity of length 3 is
a modular element of the latticeSEM if and only if V = M " N where M is either
the trivial variety or the variety of all semilattices, while the variety N satisÞes one
of the following identity systems: 1)xyz = zyx, x2y = 0 ; 2) xyz = yzx, x2y = 0 ;
3) xyz = yxz, xyzt = xzty , xy2 = 0 ; 4) xyz = xzy, xyzt = yzxt , x2y = 0 .

In particular, this theorem implies that the variety given by the identities xyzt =
xyx = x2 = 0, x1x2x3 = x1! x2! x3! where ! is a non-trivial permutation on the set
{ 1, 2, 3} is a modular element of the lattice SEM. But we have proved that this
variety is not a cancellable element ofSEM.

This is the joint work with D. V. Skokov. The work is partially supported by
Russian Foundation for Basic Research (grant 17-01-00551) and by the Ministry of
Education and Science of the Russian Federation (project 1.6018.2017/8.9).
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ASYMPTOTICAL PROPERTIES OF THE RANDOM WALKS
ON THE DISCRETE GROUPS:

ABSOLUTE AND POISSONÐFURSTENBERG BOUNDARIES

Anatoly Vershik

St.Petersburg Department of Steklov Institute of Mathematics
E-mail: vershik@pdmi.ras.ru

For any Þnitely generated group with Þxed symmetric system of generators we
can deÞne Laplasian and so called dynamical Cayley graph which is a graph of
trajectories of canonical Markov chain corresponding to the Laplacian. The general
problem is to describe a set of all indecomposable Markov chains with the same
cotransition probabilities. This set was deÞned by speaker and called ÒabsoluteÓ.

The Poisson boundary of the group is the quotient of the part of absolute, cor-
responding to harmonic functions, but absolute is more general notion.

In the several recent papers by Vershik and Malyutin we found absolute for
commutative groups, for free groups, and for some nilpotent groups like Hieenberg
groups.
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LOCAL FINITENESS FOR GREENÕS RELATIONS
IN SEMIGROUP VARIETIES

Mikhail Volkov
(joint work with Pedro V. Silva and Filipa Soares)

Ural Federal University, Ekaterinburg
E-mail: Mikhail.Volkov@usu.ru

A semigroup variety is said to be locally K -Þnite, where K stands for any of
GreenÕs relationsH , R, L , D , or J , if every Þnitely generated semigroup in this
variety has only Þnitely many K -classes. We characterize locallyK -Þnite varieties
of Þnite axiomatic rank in the language of Òforbidden objectsÓ.
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NEVANLINNAÕS VALUE DISTRIBUTION THEORY AND ITS APPLICATIONS

C. C. Yang

Hong Kong University of Science and Technology
E-mail: maccyang@163.com

Recently, Nevanlinna theory has been utilized to study and derive new the-
ory, new problems relating factorization (in the composite sense) and value shar-
ing of meromorphic functions, as well as the problems relating to the existence and
growth of meromorphic solutions of certain types of functional (including di!erential-
di!erence) equations. In the talk, Nevanlinna theory will be brießy reviewed Þrst,
and then some results and related old or new open problems obtained or posed
mainly by the speaker and his co-workers will be reported, for further investiga-
tions.
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ON SUBALGEBRAS OF PROBABILITY DISTRIBUTIONS
OVER FINITE RINGS WITH UNITY

Alexey Yashunsky

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
E-mail: yashunsky@keldysh.ru

We construct sets of probability distributions over a Þnite ring with unity that
are closed under application of ring addition and multiplication to independent ran-
dom variables: i.e. the sum and product of independent random variables with
distributions from the constructed set also belong to this set.
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ASYMPTOTIC ESTIMATES OF THE NUMBER OF SOLUTIONS
OF SYSTEMS OF EQUATIONS

WITH DETERMINABLE PARTIAL BOOLEAN FUNCTIONS

E. V. Yeghiazaryan

Chair of Discrete Mathematics and Theoretical Informatics, YSU
E-mail: e.yeghiazaryan@ysu.am

In this paper is investigated a class of systems of equations with determinable
partial (not everywhere deÞned) Boolean functions. Determined the asymptotic
estimate of the number of solutions of systems of equations for the ÓtypicalÓ case
(the whole range of changes of the number of equations).

Many problems of discrete mathematics, including problems which are tradi-
tionally considered to be complex, lead to the solutions of the systems of Boolean
equations of the form !

f i (x1, . . . , xn ) = 1
i = 1 , ..., l

(1)

or to the revealing of those conditions, under which the system (I) has a solution.
In general problem of realizing whether the system (l) has a solution or not is NP-
complete [1]. Therefore it is often necessary to consider special classes of the systems
of equations, using their speciÞcity, or explore a number of solutions for the ÓtypicalÓ
case.

Let { M (n)} !
n=1 is the collection of sets, such that|M (n)| ! " whenn ! " ,

(|M | is the power of the setM ), and M s(n) is the subset of the all elements from
M (n) , which have the property S. We say, that almost all the elements of the set
M (n) have the propertyS, if

"
"M S(n)

"
" / |M (n)| ! 1, when n ! " .

We denote bySn,l the set of all the systems of the form (1), wheref i (x1, . . . , xn ) , i =
1, ..., l# pairwise di!erent Boolean functions of variables x1, x2, ..., xn . It is easy to
see, that |Sn,l | = Cl

22n .
Let B = { 0, 1} ,B n = { ÷!/ ÷! = ( ! 1, ! 2, ..., ! n ), ! i $ B, 1 % i % n} . The vector

÷! i = ( ! 1, ! 2, ....., ! n ) $ B n is called a solution of (1), if
!

f i (! 1, ! 2, ....., ! n ) = 1
i = 1 , ..., l

We denote by t(S) the number of the solutions of the systemS. In [2,3] it is
shown the asymptotics of the number of the solutionst(S) for almost all the systems
S of the set Sn,l the whole range of parameterl changes, whenn ! " .
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In this work a class of systems of equations with determinable partial (not ev-
erywhere deÞned) Boolean functions is considered. Found the asymptotic behavior
of the number of solutions of systems of equations for a ÓtypicalÓ case.

Partial Boolean function f (x1, . . . , xn ) on the vector ÷! = ( ! 1, ! 2, ....., ! n ) $ B n

or is not deÞned, or is 0 or 1. LetQ(n) denote the set of all partial Boolean functions,
depending on variablesx1, x2, ..., xn . Obviously, |Q(n)| = 3 2n

. Let R(n, l ) denote
the set of all systems ofl equations of the form (1), wheref i (x1, . . . , xn ) , i = 1 , ..., l
are pairwise di!ering partial Boolean functions of the variables x1, x2, ..., xn (f i &= f j

if i &= j condition persists). It is easy to see, that|Rn,l | = Cl
32n . The vector ÷! =

(! 1, ! 2, ....., ! n ) $ B n is called a solution of (1), if!
f i (! 1, ! 2, ....., ! n ) &= 0
i = 1 , ..., l

and at least one of the functionsf i (x1, . . . , xn ) , i =

1, ..., loccurs f i (! 1, ! 2, ....., ! n ) = 1. In other words, allowed the not deÞned on a
vector ÷! partial function redeÞne by the 1.

For the numbers of the solutionst(S)of almost all the systems S of the setR(n, l )
the following statement is true (here and further f (n) ' g(n), if f (n)/g (n) ! 1 when
n ! " , f (n) = o(g(n)) if f (n)/g (n) ! 0 when n ! " . Everywhere under the log
refers to the logarithm to the base 2).

Theorem.

1. If n # "(log 3 # 1) ! " when n ! " , then for almost all the systemsSof the
set R(n, l ) occurs t(S) ' 2n(2l # 1)3" l .

2. If n # "(log 3 # 1) ! #" when n ! " , then almost all the systemsSof the
set R(n, l ) have no solutions.

3. If n # "(log 3# 1) is restricted whenn ! " , then for almost all the systems of
the set R(n, l, m ) the number of the solutionst(S) is restricted from above by
an arbitrary function #(n) , satisfying the condition #(n) ! " , when n ! " .

MSC2010: 06E30, 94C10.

Keywords: Boolean equations, solution of equation, partial boolean functions.
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COUNTING SYMMETRIC BRACELETS

Yuliya Zelenyuk

University of the Witwatersrand, Johannesburg, South African
E-mail: yuliya.zelenyuk@wits.ac.za

An r -ary bracelet of length n is an equivalence class ofr -colorings of vertices
of a regular n-gon, taking all rotations and reßections as equivalent. A bracelet is
symmetric if a corresponding coloring is invariant under some reßection. We show
that the number of symmetric r -ary bracelets of lengthn is 1

2(r + 1) r
n
2 if n is even,

and r
n +1

2 if n is odd [1,2].
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COUNTING RAY CLASS CHARACTERS AND
THE ARTIN PRIMITIVE ROOT CONJECTURE

Joshua Zelinsky

Iowa State University, USA
E-mail: zelinsky@gmail.com

We present estimates on certain sums which are related both to ArtinÕs primitive
root conjecture and to counting certain Artin representations.
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GROUPS SATISFYING POLYNOMIAL IDENTITIES

E. Zelmanov

University of Califrornia - San Diego
E-mail: ezelmano@math.uscd.edu

We will discuss the evolving subject of prounipotent and pro-p groups satisfying
an identity.
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ON FREE k-NILPOTENT n-TUPLE SEMIGROUPS

A. V. Zhuchok, Yul. V. Zhuchok

Luhansk Taras Shevchenko National University, Starobilsk, Ukraine
E-mail: zhuchok.av@gmail.com, yulia.mih1984@gmail.com

Following [1], a nonempty setG equipped with n binary operations 1 , 2 , ..., n ,
satisfying the axioms (x r y) s z = x r (y s z) for all x, y, z ! G and r, s ! { 1, 2, ..., n} ,
is called ann-tuple semigroup. An element 0 of ann-tuple semigroup (G, 1 , 2 , ..., n )
will be called zero if x " 0 = 0 = 0 " x for all x ! G and " ! { 1 , 2 , ..., n } . An
n-tuple semigroup (G, 1 , 2 , ..., n ) with zero 0 will be called nilpotent if for some
m ! N and any xi ! G with 1 # i # m+1, and " j ! { 1 , 2 , ..., n } with 1 # j # m,

x1 " 1 x2 " 2 . . . " m xm+1 = 0 .

The least suchm will be called the nilpotency index of (G, 1 , 2 , ..., n ). For k ! N
a nilpotent n-tuple semigroup of nilpotency index# k is said to bek-nilpotent.

An n-tuple semigroup which is free in the variety of k-nilpotent n-tuple semi-
groups will be called a freek-nilpotent n-tuple semigroup. If ! is a congruence on
an n-tuple semigroup G

!
such that G

!
/! is a k-nilpotent n-tuple semigroup, we say

that ! is a k-nilpotent congruence.
Let X be an arbitrary nonempty set and " an arbitrary word in the alphabet

X . The length of " will be denoted by l! . Fix n ! N and let Y = { y1, y2, ..., yn} be
an arbitrary set consisting of n elements. Let further F [X ] be the free semigroup
on X , F " [Y ] the free monoid onY and # ! F " [Y ] the empty word. Fix k ! N and
deÞnen binary operations 1 , 2 , ..., n on

XY[k] = { (w, u) ! F [X ] $ F " [Y ] | lw %lu = 1 , lw # k} & { 0} by

(w1, u1) i (w2, u2) =
!

(w1w2, u1yi u2), lw1w2 # k,
0, lw1w2 > k,

(w1, u1) i 0 = 0 i (w1, u1) = 0 i 0 = 0

for all ( w1, u1) , (w2, u2) ! XY[k]\{ 0} and i ! { 1, 2, ..., n} . The algebra obtained in
this way will be denoted by FN k

n S(X ).

Theorem. FN k
n S(X ) is the free k-nilpotent n-tuple semigroup.

Corollary. The free k-nilpotent n-tuple semigroupF N k
n S(X ) generated by a Þnite

set X $ { #} is Þnite. SpeciÞcally,|FN k
n S(X )| =

" k
i =1 ni ! 1|X |i + 1 .

We also consider separately one-generated freek-nilpotent n-tuple semigroups
and describe the leastk-nilpotent congruence on a freen-tuple semigroup [2].
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A UNIFORM STABILITY PRINCIPLE FOR DUAL LATTICES

Pavol Zlatoÿs
(joint work with Martin Vodiÿcka)

Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava, Slovakia

E-mail: zlatosfmph.uniba.sk

We will present a highly uniform stability or Òalmost-nearÓ theorem for dual
lattices of vector lattices L ! Rn. More precisely, we show that, for a vectorx from
the linear span of a lattice L ! Rn with the MinkowskiÕs Þrst successive minimum
! 1(L ) " ! > 0 to be "-close to some vector from the dual latticeL ! of L , it is
enough that the euclidean inner productsu x are #-close (with # < 1/ 3) to some
integers for all vectors u # L satisfying $u$ % r , where r > 0 depends onn, ! ,
# and " , only. The result is derived as a consequence of its nonstandard version,
formulated in terms of Þnite elements and the equivalence relation of inÞnitesimal
nearness on the nonstandard extension! Rn of Rn: If x is a Þnite vector from the
internal linear span of an internal lattice L ! ! Rn , such that the inner product
u x is inÞnitesimally close to some integer for each Þnite vectoru # L , then x is
already inÞnitesimally close to some vectory from the dual lattice L ! . The results
generalize earlier analogous results proved for integral vector lattices by M. Maÿcaj
and the author in [1].

Subject classiÞcation: Primary 11H06; Secondary 11H31, 11H60, 03H05.

Keywords: Lattice, dual lattice, stability, ultraproduct, nonstandard analysis.
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