PROGRAM FOR ICCGNFRT-2018

The goal of this conference was to bring various experts on the subject at one place and provide young number theorists an opportunity to learn the techniques in the subject. This four day conference was begun with a keynote talk on October 08, 2018 and end with a valedictory function on October 11, 2018. There were 15 sessions consisting of 1 keynote, 7 plenary, 13 invited and 8 young scholar's talks. The details about this conference is available on the conference webpage "<u>https://sites.google.com/site/iccgnfrt2018/home</u>" the conference web page. We have received very good feedback from speakers as well as participants, and as a request from experts we are going to organize the third version of this conference which will be held at the same place during October 16–19, 2019. We are very much thankful to CDC (IMU) and HRI for supporting us.

DAY-01	(October	08,	2018,	MONDAY)
--------	----------	-----	-------	---------

TIME	SCHEDULE
8:50-9:40	REGISTRATION
9:50-10:00	INAUGURAL PROGRAM
	MORNING SESSION
	CHAIR PERSON: Prof. Sudesh Kaur Khanduja
10:00-11:00	KEYNOTE TALK: On the Landau–Ramanujan constant
	SPEAKER: Prof. Michel Waldschmidt
	ABSTRACT: The Landau–Ramanujan constant α is defined as follows: for $N \to \infty$,
	the number of positive integers $\leq N$ which are sums of two squares is asymptotically
	$\alpha \frac{N}{\sqrt{\log N}} \cdot p$. In a joint work with Etienne Fouvry and Claude Levesque, we replace
	the quadratic form $\Phi_4(X,Y) = X^2 + Y^2$, which is the homogeneous version of the
	cyclotomic polynomial $\phi_4(t) = t^2 + 1$, with other binary forms.
11:00-11:20	Tea & Discussion
	PRE-LUNCH SESSION
	CHAIR PERSON: Prof. Yasuhiro Kishi
11:20-12:00	INVITED TALK: Hypergeometric series in Arithmetic Geometry
	SPEAKER: Prof. Rupam Barman

TIME	SCHEDULE
	ABSTRACT: In 1987, John Greene introduced the notion of hypergeometric series over
	finite fields analogous to classical hypergeometric series (Trans. Amer. Math. Soc. 301
	(1987)). Finite field hypergeometric series were developed mainly to simplify character
	sum evaluations. After 10 years, Ken Ono found interesting relations between Greene's
	finite field hypergeometric series and L-functions of elliptic curves (Trans. Amer. Math.
	Soc. 350 (1998)). In 2013, Dermot McCarthy extended the finite field hypergeometric
	series to the p-adic setting (Pacific J. Math. 261 (2013)). In this talk, I will introduce
	finite field and p-adic hypergeometric series, and show how their values are related to
	L-functions of elliptic curves.
12:00-12:10	Discussion
12:10-12:50	INVITED TALK: Arithmetic Dynamics of Polynomials
	SPEAKER: Prof. Chatchawan Panraksa
	ABSTRACT: Arithmetic dynamics is a combination of dynamical systems and number
	theory. In this talk, we discuss the rational periodic points of polynomials with rational
	coefficients. We also discuss Morton and Silvermans uniform boundedness conjecture.
	It states that the number of periodic points of any rational function with rational
	coefficients is bounded by a constant depending only on the degree of the function.
	The conjecture is still unsolved even for quadratic polynomials.
13:00-14:30	LUNCH
	POST-LUNCH SESSION
	CHAIR PERSON: Prof. Stephane Louboutin
14:30-15:30	PLENARY TALK: On the integer ring of compositum of algebraic number fields.
	SPEAKER: Prof. Sudesh Kaur Khanduja
	ABSTRACT: For an algebraic number field K , let \mathbb{A}_K denote the ring of algebraic
	integers of K. It is well known that if K_1 , K_2 are algebraic number fields with coprime
	discriminants, then $\mathbb{A}_{K_1K_2} = \mathbb{A}_{K_1} \mathbb{A}_{K_2}$ and K_1 , K_2 are linearly disjoint over the field
	$\mathbb Q$ of rational numbers. In this lecture we discuss the converse of this result and show
	that if K_1 , K_2 are algebraic number fields which are linearly disjoint over $K = K_1 \cap K_2$
	such that $\mathbb{A}_{K_1K_2} = \mathbb{A}_{K_1}\mathbb{A}_{K_2}$, then the relative discriminants of the extensions K_1/K
	and K_2/K are coprime. We also give some necessary and sufficient conditions for the
	equality $\mathbb{A}_{K_1K_2} = \mathbb{A}_{K_1}\mathbb{A}_{K_2}$ to hold.
15:30-15:50	Tea & Discussion
	EVENING SESSION

TIME	SCHEDULE
	CHAIR PERSON: Prof. Toru Komatsu
15:50-16:30	INVITED TALK: Class number formula for certain imaginary quadratic fields
	SPEAKER: Prof. Nianliang Wang
	ABSTRACT: In this talk, we shall follow Carlitz's work in 1954 which could have
	reached an analogue of the Voronoi congruence in the more difficult case of $p\equiv 1({\rm mod}$
	4): $h(-4p) \equiv B_{\frac{p+1}{2}}(\chi_4) \pmod{p}$, where $B_{\frac{p+1}{2}}(\chi_4)$ is the generalized Bernoulli number
	with χ_4 being the Kronecker symbol associated to the Gaussian field $\mathbb{Q}(\sqrt{-4})$.
16:30-16:40	Discussion
16:40-17:00	YOUNG SCHOLAR TALK: Primes dividing the index of a trinomial
	SPEAKER: Dr. Anuj Jakhar
	ABSTRACT: Let A_K denote the ring of algebraic integers of an algebraic number field
	$K = \mathbb{Q}(\theta)$, where θ is a root of an irreducible trinomial $F(x) = x^n + ax^m + b$ belonging
	to $\mathbb{Z}[x]$. We give necessary and sufficient conditions involving only a, b, m, n for a given
	prime p to divide the index of the subgroup $\mathbb{Z}[\theta]$ in A_K . In particular, we deduce
	necessary and sufficient conditions for A_K to be equal to $\mathbb{Z}[\theta]$.
17:00-17:20	YOUNG SCHOLAR TALK: On Quadratic non residue non primitive roots
	SPEAKER: Ms. Bidisha Roy
	ABSTRACT: Let $q \ge 1$ be any integer and let $\epsilon \in [\frac{1}{11}, \frac{1}{2})$ be a given real number. In
	this talk, we consider all primes p satisfying
	$p \equiv 1 \pmod{q}, \log \log p > \frac{\log 6.83}{\frac{1}{2} - \epsilon} \text{ and } \frac{\phi(p-1)}{p-1} \le \frac{1}{2} - \epsilon.$
	We will discuss that for those primes there exists a quadratic non-residue g which is
	not a primitive root modulo p such that $gcd\left(g,\frac{p-1}{q}\right) = 1$. This is a joint work with
	Mr. Jaitra Chattopadhyay, Mr. Subha Sarkar and Dr. R. Thangadurai.
17:20-17:30	Tea
20:00-21:30	DINNER at guest house

DAY-02 (October 09, 2018, TUESDAY)

TIME	SCHEDULE	
	MORNING SESSION	
	CHAIR PERSON: Prof. Renate Scheidler	
9:30-10:30	PLENARY TALK: On the Continued Fraction of \sqrt{p}	
	SPEAKER: Prof. Anupam Saikia	
	ABSTRACT: We show that the length of the period of the continued fraction of \sqrt{p} is	
	divisible by 4 when p is a prime congruent to 7 modulo 8, and the length is of the form	
	4k+2 when p is a prime congruent to 3 modulo 8. We further show that for any prime	
	p congruent to 3 modulo 4, the central term in the palindromic part of the period of	
	\sqrt{p} is the largest odd integer not exceeding \sqrt{p} . As a consequence of our approach, we	
	show that Mordell's conjecture concerning the fundamental unit of $\mathbb{Q}(\sqrt{p})$ holds if \sqrt{p}	
	has period of length 4 or 6.	
10:30-10:50	Tean & Discussion	
	PRE-LUNCH SESSION	
	CHAIR PERSON: Prof. Michael J. Jacobson Jr.	
10:50-11:30	INVITED TALK: Finite sequences of ELE type and a lower bound for the class number	
	of certain real quadratic fields	
	SPEAKER: Prof. Yasuhiro Kishi	
	ABSTRACT: The first goal of this talk is to introduce a notion of extremely large end	
	(ELE) for a finite sequence and to give a way to construct it. The second goal is to	
	give a lower bound for the class number of real quadratic fields $\mathbb{Q}(\sqrt{d})$ such that the	
	primary symmetric part of the simple continued fraction expansion of \sqrt{d} is of ELE	
	type. By applying this lower bound to a sequence $\langle 2, \ldots, 2, 2, 1 \rangle$ of pre-ELE type, we	
	get a family of real quadratic fields with non-trivial class number.	
11:30-11:40	Discussion	
11:40-12:20	INVITED TALK: An height pairing on split tori	
	SPEAKER: Prof. Valerio Talamanca	
	ABSTRACT:Let G be a split tori defined over a number field K . We construct an	
	height pairing between the algebraic points of G and the monoid of rational represen-	
	tations of G defined over the algebraic closure of K and discuss some of its property.	
12:20-12:30	Discussion	
12:30-13:10	INVITED TALK: On a Conjecture of Erdös on Squares in Arithmetic Progression	
	SPEAKER: Prof. Shanta Laishram	

TIME	SCHEDULE
	ABSTRACT: A remarkable result of Erdos and Selfridge states that a product of a
	two or more consecutive integers is never a perfect power. Erdös conjectured that if a
	product of k consecutive terms of an arithmetic progression is a perfect power, then k
	is bounded explicitly. In this talk, I will give an overview of the problem with emphasis
	on the squares case and present some new results.
12:50-14:30	LUNCH
	POST-LUNCH SESSION
	CHAIR PERSON: Prof. Anupam Saikia
14:30-15:30	PLENARY TALK: Numerical investigation of fake real quadratic orders
	SPEAKER: Prof. Renate Scheidler
	ABSTRACT: In an unpublished note from 2014, Henri Cohen coined the term "fake
	real quadratic order" for the ring obtained by adjoining the inverse of a prime ideal
	above a split rational prime to an imaginary quadratic order. He demonstrated that
	these objects behave very much like real quadratic orders which can in some sense
	be interpreted as fake real quadratic orders with respect to the infinite prime. This
	invites the question of whether certain well-known conjectures formulated for actual
	real quadratic orders also hold in fake real quadratic orders. Two such conjectures
	include the widely believed Cohen-Lenstra (CL) heuristics and the more controversial
	Ankeny-Artin-Chowla (AAC) conjecture. The CL heuristics assert in particular that
	approximately 75% of all real quadratic fields have class number 1. The AAC conjection-
	ture alleges that if $e = a + b\sqrt{q}$ is the fundamental unit of a real quadratic field of
	prime discriminant q , then q never divides b . Both these conjectures have undergone
	extensive numerical testing: there is ample computational evidence supporting CL, and
	no counterexample to AAC has been found to date. In this talk, we present convincing
	numerical data that speak to these two conjectures in the setting of fake real quadratic
	orders. This is joint work with Mike Jacobson and Hongyan Wang.
15:30-15:50	Photo Session, Tea & Discussion
	EVENING SESSION
	CHAIR PERSON: Prof. Nianliang Wang
15:50-16:30	INVITED TALK: A family of pairs of imaginary cyclic fields with both class numbers
	divisible by p
	SPEAKER: Prof. Miho Aoki

TIME	SCHEDULE
	ABSTRACT: We construct a new infinite family of pairs of imaginary cyclic fields of
	degree $(p-1)/2$ with both class numbers divisible by a given prime number p. The
	pairs are explicitly given using a generalized linear recurrence sequences. For the proof,
	we use the fundamental unit of $\mathbb{Q}(\sqrt{p})$, certain units which are roots of a parametric
	quartic polynomial, the Kummer theory, the Gauss sums and the Jacobi sums, linear
	recurrence sequences, a consequence of the Weil conjecture and a result of Lenstra
	which is a generalization of Artin conjecture on primitive roots.
16:30-16:40	Discussion
16:40-17:00	YOUNG SCHOLAR TALK: Discriminants of pure square-free degree number fields
	SPEAKER: Dr. Neeraj Sangwan
	ABSTRACT: Let $K = \mathbb{Q}(\theta)$ be an algebraic number field where θ is a root of an
	irreducible polynomial $f(x) = x^n - a \in \mathbb{Z}[x]$ of square-free degree n and a is an n-th
	power-free integer. We will look at the discriminant of K and some of its applications.
17:00-17:20	YOUNG SCHOLAR TALK: Fixed Divisors and its Applications
	SPEAKER: Mr. Devendra Prasad
	ABSTRACT: In this talk, we will give a quick introduction to the fixed divisor of a
	polynomial and its applications. For a polynomial $f \in \mathbb{Z}[x]$, its fixed divisor over \mathbb{Z} is
	defined as the gcd of all values taken by f over \mathbb{Z} . This talk is a part of our survey
	article 'A Survey on Fixed Divisors'. We discuss the Bharagava's generalized factorials
	and their connection with fixed divisors. We will present how this can be further
	generalized to the case of several variables. We give applications of fixed divisors to
	the number fields. At the end, we will also discuss few open problems and conjectures.
17:20-17:30	Tea
18:30-19:30	MUSICAL PROGRAM at auditorium
20:00-21:30	DINNER

DAY-03 (Otober 10, 2018, WEDNESDAY)

TIME	SCHEDULE	
	MORNING SESSION	
	CHAIR PERSION: Prof. Michel Waldschmidt	
9:30-10:30	PLENARY TALK: Integrality of L-values, and the Herbrand-Ribet theorem	
	SPEAKER: Prof. Dipendra Prasad	
	ABSTRACT: Following the natural instinct that when a group operates on a number	
	field then every term in the class number formula should factorize compatibly according	
	to the representation theory (both complex and modular) of the group, we are led -	
	in the spirit of Herbrand-Ribets theorem on the p-component of the class number of	
	$\mathbb{Q}(\zeta_p)$ - to some natural questions about the <i>p</i> -part of the class group of any CM Galois	
	extension of \mathbb{Q} as a module for $\operatorname{Gal}(K/\mathbb{Q})$, and about integrality of <i>L</i> -values. This talk	
	will attempt doing this in terms of precise conjectures.	
10:30-10:50	Tea & Discussion	
	PRE-LUNCH SESSION	
	CHAIR PERSON: Prof. Valerio Talamanca	
10:50-11:30	INVITED TALK: An algebraic approach to the Siegel-Weil average for binary quadratic	
	forms	
	SPEAKER: Prof. Benjamin Kane	
	ABSTRACT: In this talk, we will consider the celebrated results of Siegel and Weil	
	about the number of representations by the genus of a quadratic form. By restricting	
	to the case of binary quadratic forms and investigating the question via the associated	
	algebraic theory of quadratic fields and Gauss's composition law, we obtain a new proof	
	that these are coefficients of certain Eisenstein series and obtain nice explicit formulas	
	for their evaluations. This is based on joint work with Pavel Guerzhoy.	
11:30-11:40	Discussion	
11:40-12:20	INVITED TALK: Integral points on a hyperelliptic curve of certain type	
	SPEAKER: Prof. Toru Komatsu	
	ABSTRACT: In this talk, an effective method to find all the rational integral points on	
	a hyperelliptic curve of certain type is given. The method is elementary and requires	
	no data on the Jacobian.	
12:20-12:30	Discussion	
12:30-13:10	INVITED TALK: On the factorization of p-adic L-functions	
	SPEAKER: Dr. Daniele Casazza	

TIME	SCHEDULE
	ABSTRACT: Ever since the introduction of p-adic L-functions in number theory, math-
	ematicians studied their properties and created new techniques to achieve the task. In
	particular, one often finds an interplay between special values and formulas and fa-
	corization formulas. I will discuss about some recent development in this direction,
	in particular for p-adic L-functions associated with tensor products of two and three
	modular forms.
13:10-14:30	LUNCH
	POST-LUNCH SESSION
	CHAIR PERSON: Prof. Jean Gillibert
14:30-15:30	PLENARY TALK: Compact Representations: Applications and Recent Results
	SPEAKER: Prof. Jr. Michael J. Jacobson
	ABSTRACT: Compact representations are explicit representations of algebraic num-
	bers or functions, with size polynomial in the logarithm of their height or, respectively,
	degree. These representations enable much more efficient manipulations of large al-
	gebraic numbers or functions than would be possible using a standard representation,
	and have proved to be useful in a variety of applications.
	In this talk, we will describe two such applications - how compact representations are
	essential for short certificates of the unit group and ideal class group of a number field,
	and how they can be used to speed the resolution of certain Diophantine equations. We
	will also present recent improvements that reduce the size of compact representations,
	efforts to generalize these to hyperelliptic function fields, and applications of the latter
	to speeding the computation of bilinear pairings.
15:30-15:50	Tea & Discussion
	EVENING SESSION
	CHAIR PERSON: Prof. Rupam Barman
15:50-16:30	INVITED TALK: Recent progress on the theory of Egyptian fractions
	SPEAKER: Prof. Francesco Pappalardi
	ABSTRACT: We consider the function $A_k(n)$ which is defined as the number of positive
	integers a such that $a/n = 1/x_1 + \cdots + 1/x_k$ admits a solution in positive integers x_1, \ldots, x_k
	x_k . After having reviewed earlier results we shall present new ones recently obtained
	in collaboration with F. Luca and C. Banderier.
16:30-16:40	Discussion

TIME	SCHEDULE
16:40-17:00	YOUNG SCHOLAR TALK: Generalized Lambert series, Raabe's cosine transform and
	a two-parameter generalization of Ramanujan's formula for $\zeta(2m+1)$.
	SPEAKER: Mr. Rajat Gupta
	ABSTRACT: A comprehensive study of the generalized Lambert series is undertaken;
	transformations of this series are derived by investigating Raabe's cosine transform.
	Using this, we will obtain a two-parameter generalization of Ramanujan's formula for
	$\zeta(2m+1)$; where $\zeta(s)$ is Riemann zeta function. This involves a delicate analysis of an
	in nite sum of Raabe's cosine transform, which is an interesting result in itself. This is
	joint work with Prof. Atul Dixit, Rahul Kumar and Bibekananda Maji.
17:00-17:20	YOUNG SCHOLAR TALK: Geometric progressions in syndetic sets.
	SPEAKER: Mr. Bhuwanesh Rao Patil
	ABSTRACT: In order to investigate multiplicative structure in additively large sets,
	Beiglböck et al. raised a significant open question as to whether or not every subset
	of the natural numbers with bounded gaps (syndetic set) contains arbitrarily long
	geometric progressions. Here we prove that for each $k \in \mathbb{N}$, a syndetic set contains
	geometric progressions of length 2 with common ratios $n^k r_1$ and $p^k r_2$, where $r_1, r_2 \in \mathbb{N}$,
	$p \in \mathbb{P}$ (the set of primes), $n \in \mathbb{N} \setminus \mathbb{P}$, $r_1 \equiv 1 \pmod{n}$ and $r_2 \equiv 1 \pmod{p}$. We also show
	that syndetic sets with bounded gap 2 contain infinitely many geometric progressions
	of length 2 with their respective common ratios being perfect squares.
17:20-17:30	Теа
20:00-21:30	CONFERENCE BANQUET DINNER

TIME	SCHEDULE
	MORNING SESSION
	CHAIR PERSION: Prof. Dipendra Prasad
10:00-111:00	PLENARY TALK: From Picard groups of hyperelliptic curves to class groups of
	quadratic fields
	SPEAKER: Prof. Jean Gillibert
	ABSTRACT: Let C be a hyperelliptic curve defined over Q. Under some mild hy-
	potheses, we prove that any line bundle of degree 0 on C which is not torsion can be
	specialised into ideal classes of imaginary quadratic fields whose order can be made
	arbitrarily large. This generalises a result of Soleng, who treated the case of elliptic
	curves.
11:00-11:20	Tea & Discussion
	PRE-LUNCH SESSION
	CHAIR PERSON: Prof. Francesco Pappalardi
11:20-12:00	INVITED TALK: Discrepancy estimate for generalized polynomials
	SPEAKER: Prof. Anirban Mukhopadhyay
	ABSTRACT: We obtain an upper bound for discrepancy of sequence given by gener-
	alized polynomials. This is a joint work with G. K. Viswanadham and O. Ramare.
12:00-12:10	Discussion
12:10-12:50	INVITED TALK: Class numbers of imaginary quadratic fields
	SPEAKER: Dr. Prem Prakash Pandey
	ABSTRACT: For a given odd integer $n > 1$, we will discuss some families of imaginary
	quadratic number fields of the form $\mathbb{Q}(\sqrt{x^2 - t^n})$ whose ideal class group has a subgroup
	isomorphic to $\mathbb{Z}/n\mathbb{Z}$. This talk is based on a joint work with K. Chakraborty, A. Hoque,
	and Y. Kishi.
13:00-14:30	LUNCH
	POST-LUNCH SESSION
	CHAIR PERSON: Prof. Benjamin Kane
14:30-15:30	PLENARY TALK: Z-basis for Galois-invariants orders and applications
	SPEAKER: Prof. Stephane Louboutin

DAY-04 (October 11, 2018, THURSDAY)

TIME	SCHEDULE
	ABSTRACT: Let α be an algebraic integer of degree $n \geq 2$. Assume that the extension
	$\mathbb{Q}(\alpha)/\mathbb{Q}$ is Galois. Let \mathbb{M}_{α} be the order of $\mathbb{Q}(\alpha)$ generated by the <i>n</i> complex conjugates
	of α . Apart from the case that $\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ is the symmetric group \mathfrak{S}_n , only for $n=3$
	are an explicit \mathbb{Z} -basis and the discriminant of \mathbb{M}_{α} known. In the talk, (i) we prove
	that for any $n \ge 2$ there always exists a \mathbb{Z} -basis of \mathbb{M}_{α} of the form $\{1, \alpha, \omega_2, \cdots, \omega_n\}$
	starting with 1 and α . Then, (ii) bearing on (i) we give a new proof of the foregoing
	known result for $n = 3$ in the hope that (i) could be helpful to settle the unsolved case
	n = 4. Finally, (iii) for $n = 3$, bearing on numerical computations based on our formula
	for the discriminants of these orders, we propose an unsolved problem related to the
	apparent behavior of the sequence of orders \mathbb{M}_{α^k} , $k \geq 1$, and (iv) for ε an algebraic
	unit of any degree $n \ge 2$ we include a proof on the behavior of the orders $\mathbb{Z}[\varepsilon^k], k \ge 1$,
	(without assuming that $\mathbb{Q}(\varepsilon)/\mathbb{Q}$ is Galois). In particular, at least in the Galois cubic
	case, it seems that the orders \mathbb{M}_{α^k} , $k \geq 1$, behave completely differently from the orders
	$\mathbb{Z}[\alpha^k], k \ge 1.$
15:30-15:40	Discussion
15:40-16:00	YOUNG SCHOLAR TALK: Zeros of combinations of the Riemann Ξ -function and the
	confluent hypergeometric function on bounded vertical shifts
	SPEAKER: Mr. Rahul Kumar
	ABSTRACT: In 1914, Hardy proved that in nitely many non-trivial zeros of the Rie-
	mann zeta function lie on the critical line using the transformation formula of the Ja-
	cobi theta function. Recently Dixit obtained an integral representation involving the
	Riemann Ξ -function and the con uent hypergeometric function linked to the general
	theta transformation. Using this result, we show that a series consisting of bounded
	vertical shifts of a product of the Riemann Ξ -function and the real part of a con uent
	hypergeometric function has in nitely many zeros on the critical line, thereby gener-
	alizing a previous result due to Dixit, Roy, Robles and Zaharescu. The latter itself
	is a generalization of Hardy's theorem. This is the joint work with Dixit, Maji and
	Zaharescu.
16:00-16:20	YOUNG SCHOLAR TALK: Biqudratic fields having a non-principal Euclidean ideal
	class
	SPEAKER: Mr. Jaitra Chattopadhyay

TIME	SCHEDULE
	ABSTRACT: In 1979, H. W. Lenstra de ned the notion of an Euclidean ideal class and
	proved that if a number field K has a non-principal Euclidean ideal class then the ideal
	class group Cl_K of K is cyclic. Except for the imaginary quadratic elds, he was able
	to prove the converse, under the assumption of GRH. Later, H. Graves constructed an
	explicit biquadratic eld having an Euclidean ideal class and after a few years C. Hsu
	provided a family of such fields. In this talk, we shall give a new class of biquadratic
	fields other than the ones given by Graves and Hsu. This is a joint work with M.
	Subramani.
16:25-16:40	VALIDICTORY FUNCTION
16:40-17:00	HIGH TEA
20:00-21:30	DINNER