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One of the questions that has recently predominated the literature is the generation and modulation of
strange chaotic attractors, namely the ones with multi scrolls. The fractional theory might be useful in
addressing the questions. We use the Caputo fractional derivative together with Haar wavelet numeri-
cal scheme to investigate a three-dimensional system that generates chaotic four-wing attractors. Some
conditions of stability at the origin (the trivial equilibrium point) are provided for the model. The error
MSC: analysis shows that the method converges and is concluded thanks to Fubini-Tonelli theorem for non-

26A33 negative functions and the Mean value theorem for definite integrals. Graphical simulations, performed
65C20 for some different value of the derivative order « show existence, as expected, of chaotic dynamics char-
32;23% acterizgd by orbiFs with four scro!ls, typica.l to str;?mg.e attractors. Hence, fractional calculus appears to be
33F05 useful in generating and modulating chaotic multi-wing attractors.
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1. Introduction to the model

Even though a huge interest for fractional differentiations and
their properties has only resurfaced during the last two decades,
fractional calculus remains a scientific domain as old integer order
calculus is. Many authors have applied it in various processes
related to real life phenomena, such as acoustic dissipation, vis-
coelastic systems, mathematical epidemiology, continuous time
random walk, biomedical engineering, porous media, control
theory, Levy statistics, fractional Brownian, dielectric polarization,
fractional signal and image processing, electrolyteelectrolyte po-
larization, fractional filters motion and nonlocal phenomena [1-9].
Most of the models used in those analysis are non linear and
require sophisticated techniques to solve them. Hence, number
of numerical methods for the solution of fractional differential
equations have been developed and proposed in numerous works,
in order to provide an improved description of the phenomenon
under investigation. Common numerical methods include finite
difference method, variational iteration method, Crank-Nicholson
method, adomian or homotopy analysis and lastly the one of our
interest in this paper: wavelet method [10-18]. Wavelet analysis
appears to be relatively new in mathematical analysis theory but
is catching interest among scientist, especially those specialized in

E-mail addresses: dgoufef@unisa.ac.za, franckemile2006@yahoo.ca

http://dx.doi.org/10.1016/j.chaos.2017.08.038
0960-0779/© 2017 Elsevier Ltd. All rights reserved.

fluid flow, applied in signal and image manipulation and numerical
analysis, etc.

On the other side, the scientific academy has seen, during the
years, the development and simulation of the so called strange at-
tractors whose unique particularity is to exhibit attractor with a
fractal structure [19-21]. Edward Lorenz [22] is one of the first
to propose strange attractor, Lorenz attractor. However, there are
number of other systems of equations that generate strange at-
tractors leading to chaotic dynamics. Few examples include the
Rossler attractor [23] and Hénon attractor [24], Arneodo Attrac-
tor [25], Lu-chen attactor [26], etc, and lastly the one of our in-
terest in this paper: Four-wing attactor. This paper aims to as-
sess the effect resulted from a combination of fractional deriva-
tive and those strange systems of equations. Whence, the whole
analysis conducted here consists of exploring the existence of four-
wing attractor and stability results for the model (1.3) here be-
low, that belongs to the same family as the chaotic Rdssler system
[23,27,28] given as

d

Ex(t) =-y-2z

iy(t) =x+ay (11)
dt ’

d
az(t) =bx+z(x—c),
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or the Lorenz system [22,27,28]
4ty =oy-»
dt - ’
Loy =x(p—2) -

d
az(t) =Xxy -6z,

with « €[0; 1], B € (0,+00), t >0 where x=x(t), y=y(t), z=
z(t) represent the system state and o, p,8 are real constants pa-
rameterizing the system.

The model of our interest reads as

D¥x(t) = ax + cyz,

DYy (t) = bx + dy — xz, (1.3)

D¥z(t) = ez + fxy,

where a, b, d, ecR, c¢>0 and f<0 with ¢f#0. x=x(t), y=
y(t), z=z(t) represent the system state and a;,ay,bq,cq are real
constants parameterizing the system. The term DY represents a
fractional derivative. In the next section, a comprehensive defini-
tion of the fractional derivative we employ, namely the Caputo
derivative and more other details with properties are provided. Our
approach is to fully analyze the model (1.3) for any order o €[0; 1].
More precisely, we solve the model using the numerical method of
Haar wavelets that is described in Section 3 below. The goal is to
refute or not the (non)existence of a chaotic four-wing attractor for
(1.3). Before that, let us recall the following

Theorem 1.1. It is impossible for the system (1.3) to generate a
chaotic four-wing attractor when « =1 and b= 0.

Proof. The proof follows from [28, Theorem 1] and the fact that

du(t)
Dlu(t) ~ T (1.4)
O
Hence for o = 1, the model (1.3) reduces to the system
X' (t) = ax +cyz,
Y (t) =bx +dy — xz, (1.5)

Z/(t) = ez + fxy

System (4.2) was introduced in [28,29] proved to be chaotic in the
same level as Lorenz or Rossler equations are. Moreover, it gen-
erates a four-wing chaotic attractor with less terms in the system
equations compared to other models. Then, let us analyze the ex-
tended model (1.3) and exhibit the shape of the solutions in order
to compare with those of (4.2).

2. A note on derivative with non-integer order [11,27,30-33]

In this particular domain of calculus, the most popular defini-
tions of derivatives with non-integer order remain the Riemann-
Liouville derivative (RLFD) and Caputo derivative. The first was
named after the work of Bernhard Riemann and Joseph Liouville
more than a century and a half ago. Their main idea started with
the following integral of order «

arpyo L[ f(@
o= F(Ot)/a (t—r)l—“dr

based on Euler transform when applied to analytic function and
Cauchy’s formula for calculating iterated integrals. Hence, the RLFD
of order o was defined for any t> 0 as

DI = I f@),

(21)

n-l<a<n (2.2)

where neN, —co<a<t, b>a and f: (a,b) — R an arbitrary
real and locally integrable function. After that, in 1967, Michele
Caputo proposed another definition closely related to the previous
one and given (for n =1) as

o _ - d
DEf) =TI 77O

where the unknowns are the same as in (2.2), except the function
f that is from the first order Sobolev space

O<ac<1 (2.3)

d
H'(a,b) = {f:f, afeLz(a, b)}. (2.4)
Recently, more investigations conducted by Caputo and Fabrizio
[31] pointed out another definition, the Caputo-Fabrizio fractional
derivative given by

0t (0) = A [ o) exp( ot a))dr,

where M(oz) is a normalization function such that M(0) = M(1) =
1. Soon after that Losada and Nieto [32] improved this definition

as

fpf(t) = W/ f(r) exp( g ;)>dt. (2.6)

and defined a more suitable fractional integral that reads as:
2(1-a)

cf o _

BSO = @) 10+ iy [, ST @)

o €[0, 1] t>0. This anti-derivative represents sort of average be-
tween the function f and its integral of order one. In the same mo-
mentum, Goufo and Atangana [4,11] propose the New Riemann-
Liouville fractional order derivative given for « €[0, 1] by

20 = ) f f@) e (— L))

Again, the NRLFD is without any singularity at t = T in compar-
ison to the classical Riemann-Liouville fractional order derivative
(2.2) and also it verifies

(2.5)

(2.8)

lim /DF f(£) = f(£) (2.9)
and
lim /DF f(£) = £(£). (2110)

In order to address the issue of locality that exists in the above
definitions of fractional derivatives, nonlocal definitions were pro-
posed and generalized [27,33] as follows: Let f be a function
in H'(a;b); b>a; a €[0;1], B € (0, +o0) then, the Caputo-sense
one-parameter and nonlocal fractional derivative of order « is
given by:

P0EF©) = o [ FOEs [—“(f:;)“]dr =% DE (0.
(211)

where M(«) is the same normalization function defined in
(2.5) and E, the one-parameter Mittag-Leffler function.

The Caputo-sense two-parameter and nonlocal fractional
derivative of order o knowing 8 as a parameter is given by:

w0 )= B [ o) e, ,s[ W}dr,

(2.12)

where W(w, ) is a two-variable normalization function such that
W(0,1)=W(1,1) =1, and and E, g4 the two-parameter Mittag-
Leffler function.
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The Laplace transform of the later definition is given by

M(a) s*f(x,s) —s*1f(0)

gpe _
LEDEf(t),s) = d—a) E— (2.13)
where f = £(f(t),s).
3. A note on Haar wavelets
The function
1, for t €[0, 1/2);
H(t)=4{-1, for te[1/2, 1); (3.1)
0, elsewhere.

that is defined on the real line R is called the Haar wavelet [16-
18]. Let t€[0, 1), define for eachi=0,1, 2,3, --- the family

2iHQ2it—k), for i=1,2,--;

3.2
1, for i=0, (3:2)

hi(t) = {
where we keep in mind the remark that each i=0,1,2,--- can
be written into the form i=2/+k with j=0,1,2,--- and k=
0,1,2,---,2J — 1. Hence, it can been proved that resulting fam-
ily {h;(t)}°, forms a complete orthonormal system in the Banach
space of square-integrable function L2[0, 1). Moreover, if we con-
sider the function r taking in the Banach space of continuous func-
tions C[0, 1) then, the series Y °,(r, h;)h; converges uniformly to
r with (r, h;) = [;° r(t)h;(t)dt. We can then decompose the same
function r to have

r(t) =Y chi(t)

i=0
where ¢; = (r, h;). For reasons of practicability, the approximated
solution reads as

k-1

r(t) ~re(t) =Y cihy(t)

i=0
where ke {2/: j=0,1,2,---}.
Let b € N, we are now making use of the translation of the haar
function on [0, b) to define the function
hgi(t)=hi(t—s+1) s=1,2,---,b and i=0,1,2,-.

(3.3)
where h; is given by (3.2). Obviously the same properties that hold
for h; also hold for hg ;. Namely, the family {h;(t)}:2,. (s=
1,2,---,b) forms a complete orthonormal system in the Banach

space of square-integrable function L2[0, b). Hence it is also possi-
ble to exploit the following haar orthonormal basis functions

G = (1) = /0 T O (0dt

to expand the solution r<L2[0, b) as the series

b oo
r(t) = Z ch,ihs,i(t)-

s=1 i=0

(34)

Similarly for reasons of practicability, the approximated solution
reads as

b k-1

re) ~n(t) =YY csihi(t)

s=1 i=0

(3.5)

where ke {2/: j=0,1,2,---}. Note that (3.5) can be expressed
into the compact form

r(t) ~ 1(t) =" Cpperc1Hppn1 (3.6)

where TCpy . ¢ is the transpose vector of

1.0 hio
C1 k-1 hi k4
G0 h2,0
Chkx1 = .Czk ] and  Hppq = ‘hz/ :
K= K=
Cho0 hy o
Chk—1 by 1

4. Model analysis

The equilibrium points of model of system (1.3) are obtained
via the system
0 =D¢x(t) = ax + cyz,
0=Dy(t) = bx+dy — xz,
0=D%z(t) = ez + fxy,

(4.1)

For e > 0, % >0, b%c—4ad > 0, obviously Eq=(0,0,0) is the
trivial equilibrium point and we have four non-trivial other equi-

librium points given by

;<ch l(bzc—4ad)>>,
1 /1 a ea
E3,4 = (2(16'92 <ib+ C(b2c4ad)>\/:f, :l:\/;,

;(bi l(bzc—4ad)>>.

Remark 4.1.

1. This clearly insinuates that model (1.3) with the five equilib-
rium points Eg 1,2 3 4 cannot be topologically equivalent to
the Lorenz model with its three maximum equilibrium points
[27,28,34].

2. The model (1.3) has no non-trivial other equilibrium points if

% > 0, or b’c —4ad > 0.

4.1. Conditions around the stability of the origin Ey = (0, 0,0) when
O<a<l1

To have a look at the stability of the trivial equilibrium point
Ey = (0,0,0) of the model (1.3), we evaluated at E,, the Jacobian
matrix J(E,) for the system given that reads as follows:

a 0 O
](Eo) = Df(Eo) =(b d 0
0 0 e

(4.3)

We know, see [35], that the trivial equilibrium point Ey =
(0,0,0) for a fractional model of type (1.3) is asymptotically sta-
ble if all of the eigenvalues, Aq 5 3 of J(Ep) satisfy the following
constraint:
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-0.5[

Fig. 1. Bifurcation diagram of system state x versus the parameter b, for the control
parameters a =0.25, c=1,d=-045, e=-1, f=-1 and o = 1.0. It shows the
huge importance of parameter b in creating a multi-wing attractor.

a% <largh]  (i=1,2,3). (4.4)

The eigenvalues of J(Ep) are given by A;,3=4d, e, a respec-
tively. Hence, since A , 3 are all real numbers, a necessary con-
dition for the origin Ey = (0, 0,0) to be asymptotically stable is to

have

d<0,e<0 and a<0. (4.5)

Furthermore, the real character of A; , 3 proves that there is no
Hopf bifurcation anywhere near the origin.

The bifurcation diagram of the system (1.3) represented in both
Figs. 1 and 2 show the symmetry of the chaotic attractors versus
parameter b whose value at the centre is b = 0. This means that
parameter b does not affect too much the chaos of the system but
is particularly significant in generating a four-wing attractor.

5. Haar wavelets numerical method for the system 1.3

We analyze in this section the model 1.3
D¥x(t) = ax + cyz,
DYy(t) = bx + dy — xz, (5.1)
D¥z(t) = ez + fxy,
assumed to be subject to the following initial conditions
x(0) = u(x), y(0) =v(y), z(0) = w(2).

To transform the model (5.1) and (5.2) into a compact form, we
define the following vectors for the system states

(5.2)

x(t) x(0) u
r@)={y@®)] and gK,y.2)=r(0)=|y0)|=(v
z(t) z(0) w

and the matrix operator

Fig. 2. Bifurcation diagram of system state x versus the parameter b, for the control
parameters a =0.25, c=1,d=-045, e=-1, f=-1 and o = 0.9. It shows the
huge importance of parameter b in creating a multi-wing attractor.

Ma(r(t).t)
Ma(r(t), t)
Ms(r(t). t)

M(r(t), t) = M(x(t),y(t).z(t).t) =

My (x(t),y(t),z(t), t)
= | Ma(x(t), y(t), z(t), t)
Mz (x(t), y(t),z(t), t)
where
Mi(r(t),t) = ax +cyz,
My (r(t),t) = bx +dy — xz,
Ms(r(t),t) =ez+ fxy

Hence, (5.1) becomes

Dir(t) = M(r(t). t)

equivalently,

D¥x(t) = My (r(t),t)

DEy(t) = Ma(r(t), t)

Dgz(t) = Ms(r(t),t)

assumed to be subject to the following initial conditions
x(0) = u(x), y(0) =v(y), z(0) = w(2).

We can now make use of haar wavelets numerical scheme given in

(3.6) to approximation the Caputo fractional derivative expressed-
model (5.3) that yields

DEx(t) = My (r(6), £) ~ Dxy(6) =" €}y Hpir
Dy (t) = Ma(r(t). ©) ~ DRyx(t) =" €y Hppexr
Dfz(t) = Ms(r(t),t) ~ Dfz,(t) =" € Hproar
Applying the Rienmann-Liouville antiderivative (2.1) on both side
of (5.4) yields

X(t) —u~DEx(t) =" €y 1B b
V) =~ DEY(E) =T Gy B Mot
z2(t) = w~ Dz (t) =" Gy Bt piHbion

(5.4)

(5.5)
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equivalently
X(6) ~ xi(t) =" Chye 1Bt piHbien +
J’(t) ~ .Vk(t) = cbkx]Fb]O(kabl(X] +v (5-6)

Z(t) ~ Zk(t) =T Cikx1 kxkabkxl +w

where Fy . represents the haar wavelets fractional operational
matrix [17,18]. Exploiting at this point the Galerkin’s method based
on collocation points, in order to solve the model (5.1)-(5.2),
the substitution of the approximated systems (5.4) and (5.6) into
(5.1) generates the residual errors given by

1 2 #3 _ Tl Tl
ei(¢'.¢%,¢%,t) = TCh 1 Hpr = M ("Chyei Fip peHbior

T2 o T3 o
Cbkx1Fbk><bk1-1’27k><1 ’ Cbkx1Fkakabk><1 ’ t)

ex(¢". 6%, 6%, t) = T Hoter — Ma("Chy 1 Fit e Hiie 1
T i1 FiticHex 1" ot FcpiHbi1 - )
(f CZ 43 ) = bI<><1kux1 M3(Tc11nkx1Fb0f<xkabl<x1v
CbkxlFbkxkabkxl I CglmFbofcxkabkxl’ t) (5.7)
where
¢l =Clo Ol Chor s Chen
{2=clo o G Coa
P =Clo i Cho s o

with ¢! . representing the components of TCi_ ..
Assuming that

€1 (;1’ 4-2’ ;37 ts,i) =0
ex(¢". 6%, 8% t1) =0
e3(¢". 6%, 8% ) =0
where

, 21
ST 2k

represent a bk number of collocation points, we finally obtain a
system of 3bk equations, with 3bk unknowns given by

+s—1, s=1,2,---,b; i=1,2,---,k

1 1 1 1
Clo  Ck-1 2 Cho o Cpkt
2 2 2 2
Clo k-1 %o " Chr
3 3 3 3
Go Q-1 Cho " Cprt

Therefore, we easily obtain these unknowns and substitution into
(5.6) yields the desired approximated solution

X (1)
r(t) ~ | yi(t)
Zk(t)

6. Convergence of the method through error analysis

Making use of error analysis, we present here exact error
bounds that were used in the proposed numerical method to solve
the model (5.1)-(5.2). For that since relL?[0, b), we assume that
xel?[0, b), yeL?[0, b) and ze 20, b) and define

12
Irlla = (X012 + Iy lI% + l12I1%) (6.1)

where
12

b 1/2 b
||x||Lz=</O |x(t>|2at) , ||y||Lz:</0 Iy(t)lzdt) ,
b 1/2
||z||Lz=(f0 |z(t)|2dt> .

Obviously ||r||, represent a norm. From (3.5) and (3.6) we assume
that similar to (5.6), the fractional derivative D ry(t) is an approx-
imation of D¥r(t) expressed as

b k-1
D?T(t) ~ D?rk(t) = Z Z Cs,ihs,i(t)
s=1 i=0
Equivalently
b k-1
Z Csl th l(t)
s=1 i=0
D x,.(t) b k-1 b k-1
D?yk(t) = D‘tyrk(t) = Z ch.ihs,i(t) = Z chz sz(t)
Df‘yk(t) s=1i=0 s=1 i=0
b k-1
>0 cihgi(t)
s=1 i=0
where ke{2i:j=0,1,2---} and Csi = (DY, hs)p =
I DETi(®)hs (0,

b
— (DExg, hy ;) = / DY, (¢)hs 1 (£)dt
¢, = (DEy hs)y = / DY (t)h(t)dt (6.2)

= D¢z hyy)y = fo D¥z(t)hs, ()t
Hence,

b oo
D?T(t) - D?rk(t) = Z ch,ihs,i(t)

s=1 i=k

b o
chs.ihs,i(t) j=0,12,.-.

s=1i=2J

b o
YD aihai®)

s=1i=2J

b o
=2 i

s=1j=2J

b o
YD i)

s=1 j=2Jj

j=0,1,2,-.- (63)

Now, using the norm (6.1), we can state the following conver-
gence results, that also hold for functions x, y and z in the Sobolev
space H'[0, b).

Proposition 6.1. Let 0 <« <1 and assume that x e H'[0, b), y e H'[0,
b) and zeH'[0, b). If the Caputo fractional derivaive functions
Dfri(t) are the approximations of D¥r(t) obtained via Haar wavelet
schemes, then we have the exact upper bound reading as follows:

IDEr(t) - DE K

ez < KId—a) (6.4)

2(1 0()((3 —3k(1 a>)

where K is a real positive number and Ky = 763

(3-3k(2~2) )-172
2204 )

Proof. From (6.1) and exploiting the haar wavelet expression
(6.3) we have

IDET(t) — DETe(t) [l

12
= (IDFx — D¥x, || % + 1Dy —

DYyt + IDfz - DEz |1 2)

b b
= (/0 IDEx(t) — DX, (t)|*dt +/0 IDfy(t) — Dy, (t)|*dt
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b 12
+ / |D?z<t>—D?zk<r)|2dr)
0

2 2
b| b oo
-~ ZZ clihsi(0)| dt + ZZ h(t)
0
i=k s=1 i=k

b 2 1/2

b S
+ fo Y ihgi()| dt
s=1 i=k

Using Fubini-Tonelli theorem for non-negative functions
[36,37] and the fact that the family {h;(¢)}?°, forms a complete

orthonormal system on [0, b), that is, f(bek(t)Tku(t)dt:]Ibk
(identity matrix),

IDEr(t) — DEre(6)]l2

oo 2it1 oo 2it1
(SEE [ mofas ST ol
s=1 j=0i=2j s=1 j=0i=2J
b oo 2/t 172
2
EEE [ emola)
s=1 j=0i=2J
b oo 20+ b oo 20+ ,
(SEE[ e SEE [l
s=1 j=0i=2J s=1 j=0i=2J
b oo 2/t ) 172
+ZZZ[ 2| dt) (65)
s=1 j=0i=2J
where ng q=1,2,3 are given in (6.2) and where we have con-

sidered the fact that k takes the form of powers of 2 (ke {2/ : j=
0,1,2,---}).
Now computing each Cg,i using (6.2), the definitions (3.2) and
(3.3) of hg ; imply
) i k;—].%fws Bl —14s
¢, = (V2)l DEx(t)dt — /k %

k _ _
—.1+s oH T+s

Df‘x(t)dt:|

k+1 —1+s

——1 S J
= (v2) [ﬁ Dy(t)dt — / Z,Zl—+s D?‘y(t)dti| (6.6)

7_1 +s “ZLJ,’—H—S
S, = (ﬁ)l Dez(t)dt — /k D¥z(¢t)dt
—1+S 2—}’—14—5
Using the Mean value theorem for definite integrals there
1
are two times rxe(ﬁ—l—i-s, k;—jz—l-i-s) and Ty € (——1—1—
s, B —1+5) such that
- (V2 )J<—D°‘x(r )dt — ——DIX(; )dt)
i i i (6.7)

=20+ (Dx(ty)dt — D‘t"x(tx)dt)
Using the formulation (2.3) of Caputo derivative leads to

|cli| = 27G+D) |D"x(rx)dt — Dex(%)dt|

[ @-e e

=2 (2“) A

Ol)

T ~ —ad
- [T@-o X(s)dé‘

Since x e H'[0, b), hence there is a positive constant K such that
1X(€)|| < Kx for all £ (0, ) and & € (0, 7). This yields

Ici,ilf’cxz’(%“)ﬁ /Ox@x—é)"‘dé—/ox(?x—s)"ds‘

Integrating and simplifying finally lead to

K2~ (5+1)
)1 -a)

K2~ (341

<

" (-a)l'd-ow)

= 0 )|
(- ' ' (6.8)

2i(1-a).

where we have used the facts that O<a <1, e (% -1+

ked ~ _ k+d k+1
7—1+s) and rxe(7—1+s, 7—1+s).

In a similar way, we prove easily that there are positive con-
stants Ky and K such that

S,

(i1
EE Ky2 (1) 2i(1-a) (6.9)
sil = AT —a)
and
—(i+1
3] < k27U (6.10)
sl = AT =a)

Define K = max(Kx, Ky, K;). The substitution of (6.8), (6.9) and
(6.10) into (6.5) gives

IDEr(t) — DEme(t) Il

3bK? b oo 21 221“ -®)
= (4(r(1 —a)?(1-a)? ;JZ;'Z;? )

- ( 3p%K?
“\4T A -w)?2(1 —a)?
22a _ 22ak(1—o¢) 220{
X ( 2% _3

_ 22ak(2—20¢) 12
)

22 (1 _k(2—2a)) ) 12

+3

= 2(Td-a)(-a)

2262

224

220[ l_k(lﬂ)
bK <3 ( )

(6.11)
Which ends the proof. O

Fig. 3. Rough representation of a four-scroll attractor of system (1.3) in a chaotic
state, with the control parametersa=4, b=1, c=5,d=5,e=10, f=1and o =
1.0.
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Fig. 4. Chaotic attractor with four wings generated by system (1.3), with the control parameters a =0.25, c=1,d = -0.45, e=—1, f= -1 and « = 1.0. The chaos is shown

to be governed by a fractal structure.

Remark 6.1. If the functions x, y and z do not belong to H'[0, b)
then the only condition x€L2[0, b), y €12[0, b) and z<L2[0, b) is
not enough to state the Proposition 6.1 since the interval [0, b) is
not closed. Hence the functions x, y, z and their first order deriva-
tives might not bounded nor attain their bounds on [0, b).

Hence we have proved the following

Corollary 6.1. Let 0<a <1, xel?[0, b), y€2[0, b), zeI?[0, b) and
assume that x(t),y(t) and z(t) are continuous and bounded on [0,
b). If the Caputo fractional derivative functions D¥r,(t) are the ap-
proximations of DYr(t) obtained via Haar wavelet schemes, then we
have the exact upper bound reading as follows:

K
IDEr(t) — DEme(®) |2 <

SRTd—a) (6.12)

) . _ _gg(-)
where K is a real positive number and K, = %(%

(3-3k(2720) )-172
2204 ’

+

7. Simulations and attractor representations

Now that the error committed by using Haar wavelets scheme
in our context has been successfully analyzed and shown to be
insubstantial, we can provide numerical simulations using the
scheme presented above. It appears here that the model (1.3),
solved using the Haar wavelets is chaotic as expected (see Figs. 3-
5). Fig. 3 exhibits a crude representation of a four-scroll chaotic at-
tractor of the system (1.3) for the control parameters a=4, b=
1, ¢=5,d=5, e=10, f=1. The same analysis is done for
Figs. 4 and 5 but this time, for the control parameters a =
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Fig. 5. Chaotic attractor with four wings generated by system (1.3), with the control parameters a =0.25, c=1,d = —0.45, e=—1, f=—1 and @ = 0.9. Again the chaos is

shown to be governed by a fractal structure.

0.25, c=1,d =-0.45, e= -1, f=—1. The processes in both reg-
ular case (¢ = 1) and pure fractional case (o = 0.9) show chaotic
dynamics. One of the particularities here is the appearance in
those figures of two types of attractors: a global orbital and dy-
namical attractor and a local one. The global attractor does not
count on the initial zones of the orbit. It is characterized by com-
plex orbits around all the equilibrium points and also represented
as a double-scroll and four-scroll chaotic attractor. The local attrac-
tor does count on the initial zones of the orbit and characterized
by a sink, basic periodic orbits and a single-scroll chaotic attractor
(Figs. 4-5). The values of the control parameter « on top of the
other ones (a, b, ¢, d, e, f) provides additional options for modu-
lating the system and hence, represents an extra ingredient in this
powerful recipe for the generation and control of chaotic dynamics
with strange attractors.

8. Concluding remarks

We have used the Haar wavelet numerical method to analyze
a three-dimensional system of Caputo fractional differential equa-
tions. The system is proved to generates chaotic four-wing at-
tractors. Equilibrium points have been studied and conditions of
stability of the trivial equilibrium point (the origin) are provided
for our model. The error analysis has been performed and has
shown that the Haar wavelet method is convergent in the con-
text and conditions of our analysis. Graphical simulations have
been performed for two values of the parameter « and all ex-
hibit existence of a chaotic system characterized by orbits with
four scrolls, which is specific to strange attractors. This is the first
instance where a model of Caputo fractional differential equations
of type (1.3) is solved using a relatively recent method like wavelet
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method. Hence, the Haar wavelets scheme combined with the Ca-
puto fractional derivative appears to be a powerful tool in generat-
ing and modulating strange and chaotic multi-wing attractors.
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