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In this paper, we numerically investigate the BBM-Burgers
equation with a nonlocal viscous term

ut + ux − βutxx +
√

ν√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds + γuux = αuxx,

where 1√
π

∂

∂t

∫ t
0

u(s)√
t−s ds is the Riemann-Liouville half deriva-

tive. In particular, we implement different numerical
schemes to approximate the solution and its asymptotical
behavior. Also, we compare our numerical results with those
given in [1, 2] for similar models.
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1 INTRODUCTION

The mathematical modeling and analysis of water wave propagation are challenging topics. In their
work, J. Bona et al. have derived a family of Boussinesq systems from the two-dimensional Euler
equations for free-surface flow in [3]. Modeling the effects of viscosity on the propagation of long
waves is an important challenge that has been investigated since the time of Stokes and has received
a lot of interest in the last decade (see [4, 5] and references therein). Besides, P. Liu and T. Orfila
[6], D. Dutykh, and F. Dias [7] have independently derived viscous asymptotic models for transient
long-wave propagation including viscous effects. These effects appear as nonlocal terms in the form
of convolution integrals. The derivation of this model holds in 3 D and 2 D cases. Using a one-way
wave reduction (see [3, 8] for details), the authors in [9] investigated a reduced nonlinear model that
reads
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ut + ux + βuxxx +
√

ν√
π

∫ t

0

ut(s)√
t − s

ds + γuux = αuxx, (1)

where 1√
π

∫ t
0

ut (s)√
t−s ds is the Caputo half-derivative. Here u is the horizontal velocity of the fluid, −αuxx

is the usual diffusion, βuxxx is the geometric dispersion,
√

ν√
π

∫ t
0

ut (s)√
t−s ds stands for the nonlocal diffusive-

dispersive term. The parameters β, ν, γ, and α are dedicated to balance the effects of viscosity and
dispersion against nonlinear effects. Moreover, in the recent work [2], one of the authors has considered
the following water wave model

ut + ux + βuxxx +
√

ν√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds + γuux = αuxx, (2)

where 1√
π

∂

∂t

∫ t
0

u(s)√
t−s ds is the Riemann-Liouville half derivative.

Particularly, it is proved the local and the global existence result and decay estimates for the
integro-differential equation (2) when β = 0, ν = α = γ = 1 supplemented with the initial condition
u0 ∈ L1(R) ∩ L2(R). Precisely, the following theorem is stated

Theorem 1.1 (I. Manoubi, [2]) Let u0 ∈ L2(R), then there exists a unique local solution
u ∈ C([0, T); L2

x (R)) of (2).
Moreover for u0 ∈ L1(R) ∩ L2(R), there exists a positive constant C0 > 0 that

depends on u0 such that if �u0�L1(R) is small enough, there exists a unique global solution
u ∈ C(R+; L2

x (R)) ∩ C1/2(R+; H−2
x (R)) of (2) given by

u(t, x) = [KRL(t, ·) � u0](x) − N � u2(t, x), (3)

where KRL and N are given by

KRL(t, x) = 1
2
√

πt
e− x2

4t e−x−
(

1 − 1
2

∫ +∞

0
e− μ2

4t − μ|x|
2t − μ

2 dμ

)
,

and

N(t, x) = 1
4
√

πt
∂x

(
e− x2

4t e−x−
(

1 − 1
2

∫ +∞

0
e− μ2

4t − μ|x|
2 − μ

2 dμ

))
.

with x− = |x|−x
2 = max(−x, 0), � represents the usual convolution product and � is the

time-space convolution product defined by

v � w(t, x) =
∫ t

0

∫

R
v(t − s, x − y)w(s, y)dsdy.

whenever the integrals make sense. In addition, we have the following estimate

max(t1/4, t3/4)�u(t, ·)�L2x (R) + max(t1/2, t)�u(t, ·)�L∞x (R) ≤ C0. (4)

The proof of this theorem is presented in [2].
In addition, in the recent work [10], the authors succeeded to remove the smallness condition on

the initial data in Theorem 1.1. Moreover, they proved the weak convergence to zero of the solution.
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DUMONT AND MANOUBI 3

Furthermore, in their recent work [1], S. Dumont and J.-B Duval investigated numerically the decay
rate for solutions to the following water wave model

ut + ux − βutxx +
√

ν√
π

∫ t

0

ut(s)√
t − s

ds + γuux = αuxx, (5)

The approximation of time fractional operators has received a lot of interest during last decades for their
wide application in fluid, in solid mechanics and in visco-elasticity. The formulation of a numerical
stable scheme is crucial but also a difficult issue because of the nonlocal feature of such operators.
The classical methods used in the literature [11–17] consist in the approximation of these fractional
operators using either convolution integrals or the so-called Gear scheme for fractional operators.
Recently, number of authors in the automatic community developed an alternative method, called
the diffusive realization, which is devoted to causal pseudodifferential operators [18–21]. Different
applications of this approach can be found in [22–25]. The main idea of this method is to replace the
nonlocal operator by a linear differential equation. The resulting diffusive model is infinite dimensional,
but local in time. Hence, the new model is more easy to solve for both analytical and numerical points
of view.

In this paper, we are interested in the following equivalent Benjamin-Bona-Mahony (BBM) model
of (2)

ut + ux − βutxx +
√

ν√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds + γuux = αuxx. (6)

We implement two numerical schemes to approximate the solution of (6). The first one is detailed
in [1, 2, 13] and is based on the Gear scheme for the approximation of the Riemann-Liouville
half-derivative. The second method is based on the diffusive realization of the nonlocal operator
supplemented with a splitting scheme (see [8, 26] and references therein). We perform numerical sim-
ulations on the solutions and on the decay rates for different values of the parameters β, ν, γ, and α. We
compare between these schemes. Furthermore, we compare our numerical results with those given in
[1, 2, 10].

Remark 1 We note that the well-posedness of the model (6) may be proved mathemati-
cally for initial data u0 ∈ L2(R) using the diffusive realization of the half-order derivative
and following the same steps as presented at [10].

The outline of this article is as follows: in Section 2, we develop the dispersion relation of the model
(6). Then, in Section 3, we present a first numerical scheme of (6) and numerical results using the Gear
scheme to approximate the nonlocal term. In Section 4, we perform a second numerical scheme based
on the diffusive realization of the nonlocal term followed by several numerical simulations for model
(6). A comparison between the two schemes is also performed.

2 DISPERSION RELATION

We discuss, in this section, the dispersion relation for the linearized asymptotic model. Similarly to
[9], we take β = 1, γ = 0, α = ν and we consider a Laplace-Fourier analysis due to the presence of
the nonlocal term.

Consider the linear BBM-Burgers equation

ut + ux − utxx = νuxx. (7)
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4 DUMONT AND MANOUBI

We seek a plane wave solution of the form u(t, x) = v(t)eikx with v(0) = 0. Substituting this solution
into (7), we get

(1 + k2)vt + (νk2 + ik)v = 0. (8)

We now apply the Laplace transform to (8). We recall that the Laplace transform in time of a function
v of exponential order α is defined by

L(v)(τ) = ṽ(s) =
∫ +∞

0
v(t)e−tτdt,

for all τ such that Re(τ) > α. Hence, we get

(1 + k2)τ + (νk2 + ik) = 0. (9)

The real part of τ namely, �(τ) = − νk2

1+k2 represents the dissipation relation. The imaginary part,
denoted by ω = −Im (τ) = k

1+k2 , represents the dispersion relation. In the sequel, we linearize (2).
Thus, we get

ut + ux − utxx +
√

ν√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds = νuxx. (10)

Substituting the plane wave solution into (10), we get

(1 + k2)vt +
√

ν√
π

∂

∂t

∫ t

0

v(s)√
t − s

ds + (νk2 + ik)v = 0. (11)

We now apply the Laplace transform to (11). Since v(0) = 0, we get

(1 + k2)τ + √
ντ + νk2 + ik = 0. (12)

In order to solve equation (12), we consider the change of variables: τ = z2 using the principal
determination of the logarithm, such that �(z) > 0. Hence

(1 + k2)z2 + √
νz + νk2 + ik = 0. (13)

Equation 13 has two solutions. We consider the solution z such that �(z) > 0, namely

z = −√
ν + √

ν − 4(1 + k2)(νk2 + ik)

2(1 + k2)

Then

− z2 = −τ = −ν

2(1 + k2)
2 +

√
ν

2(1 + k2)
2

√
ν − 4(1 + k2)(νk2 + ik) + νk2 + ik

1 + k2

2282 DUMONT and MANOUBI



DUMONT AND MANOUBI 5

By restricting to the regime ν << k << 1, we obtain

√
ν − 4(1 + k2)(νk2 + ik) = √−4ik

√
1 + o(1)

= 2e−i sgn(k)π/4
√

|k| + o(
√

|k|). (14)

Therefore,

−τ = −ν

2(1 + k2)
2 +

√
ν

(1 + k2)
2

(
1√
2

− i
sgn (k)√

2

) √
|k|

+ νk2 + ik
1 + k2 + o

( √
ν|k|

(1 + k2)
2

)
. (15)

This implies

−τ =
( −ν

2(1 + k2)
2 +

√
ν|k|√

2(1 + k2)
2 + νk2

1 + k2

)

+ i
(

k
1 + k2 − sgn(k)

√
ν|k|√

2(1 + k2)
2

)
+ o

( √
ν|k|

(1 + k2)
2

)
. (16)

After simplifications

Im (−τ) =
(

k − sgn(k)

√
ν|k|√

2

)
+ o

( √
ν|k|

(1 + k2)
2

)
. (17)

We observe that −Im (τ) has only one nonlinear term: −sgn(k)
√

ν|k|√
2 which represents the nonlocal

dispersion. This term is coming from the nonlocal viscous effect. We would like to point out, as in [9]
for the KdV equivalent model (2), that if ν << k << 1 the viscous dispersion is dominant with respect
to the geometric dispersion coming from the term utxx. Actually, the viscosity provides dissipation that
is of importance. Nevertheless, it depends on parameters. We will see in examples below (Table 2)
that the term −utxx also plays a role.

3 A FIRST NUMERICAL SCHEME

This section deals with the numerical solution of the nonlinear equation

ut − βutxx +
√

ν√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds = αuxx − ux − γuux, (18)

supplemented with an initial condition u0. Here, β, ν, α, and γ are non-negative parameters.

3.1 Presentation of the scheme
We develop here a first numerical scheme using the Gear scheme. For that purpose, we follow the
approach proposed in [1, 2]. First, we present the outline of the Gear scheme developed by A.-C Galucio
et al. in [13]. Let u be a time dependent function known only in its discretized values un at each time
tn, where n is a positive integer. The function un is approximated by u(tn) with tn = nΔt, where Δt,
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TABLE 1 The first five coefficients gn+1 of the formal
power series (22)

j α = 1/3 α = 1/2 α = 3/4

0 1 1 1
1 − 4

9 − 2
3 −1

2 − 7
81 − 1

18
1

12

3 − 104
2187 − 1

27 − 1
108

4 − 643
19683 − 17

648 − 1
96

5 − 4348
177147 − 19

972 − 7
846

which is supposed to be fixed, is the time step. Furthermore, let us introduce a delay operator given by
(δ−u)

n = un−1. Let G be the Gear operator defined by

G = 1
Δt

[
3
2

I − 2δ− + 1
2
(δ−)

2
]

, (19)

that approximates the first derivative of u with respect to time. Then the fractional differential operator
Gα is given by

Gα = 1
Δtα

(
3
2

)α[
I − 4

3
δ− + 1

3
(δ−)

2
]α

,

which is directly obtained by evaluating the α-power of (19). Then, using Newton binomial formula
to compute the term in brackets, we get

Gα = 1
Δtα

(
3
2

)α ∞∑
j=0

j∑
l=0

(
4
3

)j(1
4

)l

(−1)jCj
α(−1)lCl

j (δ
−)

j+l, (20)

where (−1)jCj
α is given in terms of the Gamma function

(−1)jCj
α = Γ(j − α)

Γ(−α)Γ(j + 1)
.

Then the α-derivative of u at each time tn can be approximated by

(Gαu)
n = 1

Δtα

(
3
2

)α ∞∑
j=0

gj+1un−j, (21)

where gj+1 are rational numbers. For illustrative purposes, we present the first five Gα-coefficients in
Table 1 for three values of α : 1

3 , 1
2 , and 3

4 .
As it was mentioned in [12], the Gear operator (19) leads to a three-level step algorithm, backward in

time and second order accurate, for the approximation of classical time derivatives. As a consequence,
it is a first-order accurate for the approximation of the half derivative. It is worth to note that numerical
tests on the convergence of the Gear scheme have been performed in [13], that confirm this property.

2284 DUMONT and MANOUBI



DUMONT AND MANOUBI 7

Let us notice that since we consider functions u that are vanishing for t < 0, the infinite sum in (21)
becomes finite

(Gαu)
n = 1

Δtα

(
3
2

)α n∑
j=0

gj+1un−j. (22)

To write the numerical scheme associated to (18) we follow [1, 2]. For the first iteration, namely for
n = 0, we use a Crank-Nicolson discretization in time for the linear terms and a fixed-point method
for the nonlinear term. To this end, we rewrite the nonlinear term as uux = 1

4 (u
2)x + 1

4 (u
2)x. Then we

approximate the first term of the right-hand side explicitly and the second one implicitly. Hence the
approximate solution u1 verifies the semidiscret scheme

(1 − β∂xx)
u1 − u0

Δt
+ 1

2

√
3ν

2Δt
((g2 + g1)u0 + g1u1)

= α
u1

xx + u0
xx

2
− u1

x + u0
x

2
− γ

2
(u0)

2
x + (u1)

2
x

4
. (23)

Then, for n ≥ 1, we discretize the right-hand side of (18) as in [27]. We use a Crank-Nicolson
discretization in time for linear terms and Adams-Bashforth discretization for the nonlinear term.
Hence, the proposed discretized equation in time of (18) reads: for all n ≥ 1

(1 − β∂xx)
un+1 − un

Δt
+ √

ν(G1/2u)
n = α

un+1
xx + un

xx

2
− un+1

x + un
x

2
− γ

2
(3un)2

x − (un−1)
2
x

4
, (24)

where

(G1/2u)
n = 1

2
G1/2(un+1 + un)

= 1
2

√
3

2Δt

(
n+1∑
j=0

gn+2−juj +
n∑

j=0

gn+1−juj

)
.

In the case ν = 0, this scheme has local truncation error of order (Δt)2 and a second-order convergence
is observed (for more details, see [27]).

Applying the Fourier transform in space to (23)–(24) provides the scheme:

(1 + βξ2)(û1 − û0) + 1
2

√
3νΔt

2
((g2 + g1)û0 + g1û1)

= −Δt(αξ2 + iξ)
2

(û1 + û0) − iγΔtξ
8

( ˆ
(u0)

2 + ˆ
(u1)

2
)

. (25)

for all n ≥ 1

(1 + βξ2)(ûn+1 − ûn) + 1
2

√
3νΔt

2

(
n+1∑
j=0

gn+2−j ûj +
n∑

j=0

gn+1−j ûj

)

= −Δt(αξ2 + iξ)
2

(ûn+1 + ûn) − iγΔtξ
8

(
3 ˆ(un)2 − ˆ

(un−1)
2
)

. (26)

We note that this first numerical scheme is of order 1 in time. Moreover, this scheme has local truncation
error of order Δt (see [7, 28], so that first order convergence is expected.
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8 DUMONT AND MANOUBI

FIGURE 1 Error of the time discretization using the Gear scheme [Color figure can be viewed at wileyonlineli-
brary.com]

3.2 Numerical results and discussion
Similarly to [1], we choose an initial datum u0 which provides an exact BBM soliton for α = ν = 0
and β = γ = 1.

u0(x) = 3(p − 1)sech2

(
1
2

√
p − 1

p
(x − x0)

)
. (27)

We take x0 = 100 and p = 2. For the numerics, we consider periodic boundary conditions in space
over an interval [0, L] with L large enough. In all the simulations hereinafter, we take L = 800, the
space step size h = 0.1 and the time step size Δt = 0.1. We note that we expect the decay rate of the
solution to be as �u(t, ·)�L2x

≈ Cta or �u(t, ·)�L∞x ≈ Cta� for t large with a, a� < 0. Thus, we have the
following estimates on the ratios

lim
t→∞

R2 = lim
t→∞

log

(�u(t + Δt, .)�L2x

�u(t, .)�L2x

) (
log

(
t + Δt

t

))−1

= a,

lim
t→∞

R∞ = lim
t→∞

log
(�u(t + Δt, .)�L∞x

�u(t, .)�L∞x

) (
log

(
t + Δt

t

))−1

= a�.

In Figure 1, we justify the convergence in time of the numerical scheme (25)–(26). To this end, we
fix the parameters values to α = β = 1, γ = 0.5, and ν = 0.1. Since we do not know the analytical
solution, we denote by un

Ref the reference solution when Δt = 0.04. Let un be the numerical solution
when increasing the time step Δt from 0.05 to 0.2. Then, we denote by En(Δt) = �un

Ref − un�2 the
L2-norm of the error in time. We recall that the solutions are calculated up to time T = 100. We plot
En with respect to Δt. We observe that the error En is decreasing when the time step Δt is decreasing.
Besides, this figure deals with the order in time of the scheme (25)–(26) which is given by the slope
of the curve. We see that the measured values are close to a straight line with slope 1.5. This means
that the convergence with respect to the time step of discretization is faster for this example than the
expected one, equal to O(Δt).
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DUMONT AND MANOUBI 9

In Figure 2, we simulate the scheme (25)–(26) with parameters values ν = 1, β, α and γ = 0 or
1. We present the solution at time T = 500 and the ratios R2 and R∞. We observe that the shapes
of the numerical solutions are very close. We conclude that the influence of the parameters α, γ, and
β is less significant than the nonlocal term on the values of the solution. However, these parameters
influence the decay rates. Moreover, in the case β = 0, the decay rates of the numerical solution match
the theoretical results, presented in [2], very well. In addition, when comparing with the equivalent
Caputo model (5) investigated in [1], we see that in our case the solution decreases significantly. In
fact, in Figure 7 of [1], the maximum values of the numerical solutions are between 0.35 and 0.45.
However, in our case, the maximum values of the numerical solutions are between 0.01 and 0.015.
A similar observation was done when considering the K.d.V-like equation with the Caputo and the
Riemann-Liouville nonlocal terms. For more details, see [2, 9]. Also, we observe that the velocity of
the wave (defined e.g., by the evolution of the maximum of the solution) when using Caputo term
is greater than that with the Riemann-Liouville term. In fact, in Figure 7 of [1], we observe that the
solutions with Caputo term are centered at x = 255. However, in our case, the solutions are centered
at x = 130.

In Figure 3, we simulate the solutions and the ratios R2 and R∞ when ν = 0 for different values
of the parameters β, α, and γ. We observe that the wave moves faster than the case ν = 1 (see Figure
4). Moreover, the amplitude of the solutions in Figure 3 is greater than in the case ν = 1 in Figure 4.
Also, we observe that in the absence of the nonlocal term, the parameter γ describing the nonlinear
term plays an important role in this simulation.

However, the parameter β affects weakly the amplitude of the solution. In addition, numerical
results of decay rates in Figure 3 match very well the theoretical ones for this case. For more details,
we refer the reader to [9, 29] and references therein.

In Figure 4, we study the influence of different parameters on the solution and on the decay rates
in L2 and in L∞ norms. We observe that when the ν = 0.1, the wave moves faster than the case ν = 1.
Similarly to the Figure 3, the parameter β does not play an important role in this simulation. In addition,
comparing to the results given in [1], we observe that the solution with the Caputo half-derivative moves
faster than that with the Riemann-Liouville half-derivative.

In Table 2, we display the values of the decay rates in L2 and in L∞ norms for different values of
the parameters when Δt = h = 0.1. We observe that when β = 0, the numerical results match well
the mathematical results established in [2] for Equation 2. In addition, when β �= 0 the decay rate in
L2 norm is about −0.75 and is around −1 for the L∞-norm. Hence, we deduce that the decay rates of
(18) is close to that of (2) but it is different. This difference is due to the dispersion term.

Finally, we calculate the computational time elapsed to simulate the numerical scheme when
varying the parameters values. Results are displayed in Table 2. We see that using the Gear scheme
is relatively expensive in computation time. This is expected due to the nonlocal feature of the half-
derivative term. We note that this point will be addressed more precisely in the next section.

4 A SECOND NUMERICAL SCHEME

In order to improve the precision and the efficiency of the numerical scheme used before, we construct in
this section a second numerical scheme associated to (6) based on a splitting method as described in [26].
In order to construct this scheme, we use the so-called diffusive realization of the half-order derivative.
We refer the interested readers to [20, 30, 31]. To this end, we denote by I1/2u(t) = 1√

π

∫ t
0

u(s)√
t−s ds,

the Riemann-Liouville half-order integral and by D1/2u(t) = 1√
π

d
dt

∫ t
0

u(s)√
t−s ds, the Riemann-Liouville

half-order derivative. We recall that a diffusive realization of I1/2u is described as follows

DUMONT and MANOUBI 2287



10 DUMONT AND MANOUBI

FIGURE 2 Numerical solutions and the ratios R2 and R∞ using the Gear scheme when ν = 1 and Δt = 0.1 [Color
figure can be viewed at wileyonlinelibrary.com]
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DUMONT AND MANOUBI 11

FIGURE 3 Numerical solutions and the ratios R2 and R∞ using the Gear scheme when ν = 0 and Δt = 0.1 [Color
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Numerical solutions and the ratios R2 and R∞ using the Gear scheme when ν = 1 ou 0.1 and Δt = 0.1
[Color figure can be viewed at wileyonlinelibrary.com]

2290 DUMONT and MANOUBI



DUMONT AND MANOUBI 13

TABLE 2 Decay rates of the solutions when varying the parameters of the Gear scheme with Δt = h = 0.1

Viscosity Dispersive Nonlinear Diffusive L2 L∞ Computational
ν term β term γ term α decay rate decay rate time (sec)

1 1 0 1 −0.73 −0.98 2214.46
1 1 1 1 −0.72 −0.96 2215.47
1 0 0 0 −0.76 −1.03 2258.77
0 1 1 1 −0.25 −0.52 190.12
0 1 0 1 −0.25 −0.5 193.49
0 0 1 1 −0.25 −0.5 191.24
1 0.1 1 1 −0.72 −0.95 2142.32
0.1 1 0 1 −0.79 −1.12 2181.37
1 0 0.1 0.1 −0.75 −1.02 2158.70

�
∂tψ(t, σ) = −σ2ψ(t, σ) + 2

π
u(t), ψ(0, σ) = 0, ∀σ ≥ 0,

I1/2u(t) = � +∞
0 ψ(t, σ)dσ.

(28)

where σ is a new variable not physically relevant. Hence, a diffusive realization of the half-order
derivative D1/2u(t) can be deduced by derivation as follows:

�
∂tψ(t, σ) = −σ2ψ(t, σ) + 2

π
u(t), ψ(0, σ) = 0, ∀σ ≥ 0,

D1/2u(t) = � +∞
0

� 2
π

u(t) − σ2ψ(t, σ)
�

dσ.
(29)

Then we extend the diffusive realization (29) for the functions u depending on time and space as
follows.

�
∂tψ(t, x, σ) = −σ2ψ(t, x, σ) + 2

π
u(t, x), ψ(0, x, σ) = 0, ∀σ ≥ 0,

D1/2u(t, x) = � +∞
0 ( 2

π
u(t, x) − σ2ψ(t, x, σ))dσ.

(30)

4.1 Presentation of the model
The nonlocal model (6) can be written as a PDE-ODE coupled system, using (30), as follows

⎧⎪⎪⎨
⎪⎪⎩

∂tu(t, x) + ∂x(u + γ

2 u2) = −√
ν
� ∞

0 ( 2
π

u(t, x) − σ2ψ(t, x, σ))dσ

+αuxx(t, x) + βutxx(t, x), t > 0, x ∈ R
∂tψ(t, x, σ) = −σ2ψ(t, x, σ) + 2

π
u(t, x), t > 0, x ∈ R, σ ≥ 0,

(31)

supplemented with the initial conditions

∀x ∈ R, ∀σ ≥ 0, ψ(0, x, σ) = 0,

∀x ∈ R, u(0, x) = u0(x).

In order to approximate the Riemann-Liouville half-order derivative in (6), we need to approximate
the generalized integral in (31). To this end, we use a quadrature formula with Nm points. We note
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by wi the weights and by σi the nodes (or abscissae) of the appropriate quadrature method used in the
approximation. We get

D1/2u(t, x) �
Nm�
i=1

wi

�
2
π

u(t, x) − σ2
i ψ(t, x, σi)

�

=
Nm�
i=1

wi

�
2
π

u(t, x) − σ2
i ψi(t, x)

�
,

Hence, the system (31) is written as a first order system as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu(t, x) + ∂x(u + γ

2 u2) = −√
ν
�Nm

i=1 wi(
2
π

u(t, x) − σ2
i ψi(t, x))

+αuxx(t, x) + βutxx(t, x), t > 0, x ∈ R,
∀i = 1, · · · , Nm,

∂tψi(t, x) = −σ2
i ψi(t, x) + 2

π
u(t, x), t > 0, x ∈ R,

(32)

endowed with the initial conditions

∀x ∈ R, ∀i = 1, · · · , Nm, ψi(0, x) = 0,

∀x ∈ R, u(0, x) = u0(x).

Now, we note by

U = (u, ψ1, · · · , ψNm)T ,

the vector of (Nm + 1) unknowns, by

F(U) = (u + γ

2
u2, 0, · · · , 0)

T
,

and finally

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−√
ν
�Nm

i=1 wi
√

νw1σ
2
1 · · · · · · √

νwNmσ2
Nm

2
π

−σ2
1 0 · · · 0

2
π

0 −σ2
2

. . . 0
...

...
. . .

2
π

0 · · · · · · −σ2
Nm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the problem (32) is written in the following form

∂tU + ∂xF(U) = S(U) + G1∂
2
x U − G2∂t∂

2
x U, (33)

where G1 and G2 are diagonal matrices of order Nm + 1. In the sequel, we introduce the so-called
splitting scheme.
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4.2 The splitting method
Let Δt > 0, for all n ≥ 0, we recall that tn = nΔt and

Un(x) ≈ U(nΔt, x).

From Equation 33, we consider the propagation equation

∂tU + ∂xF(U) = G1∂
2
x U − G2∂t∂

2
x U, (34)

and the diffusive equation

∂tU = S(U). (35)

We note by Ha (respectively, Hb) the discrete operator of the solution of (34) (respectively, the solution
of (35)). Then a Strang Splitting method of order 2 ([32, 33]) between tn and tn+1 is used to solve
respectively (34) and (35) as follows

U (1) = Hb

(
Δt
2

)
Un,

U(2) = Ha(Δt)U (1),

Un+1 = Hb

(
Δ

2

)
U(2). (36)

Here, the constructed operators Ha and Hb are stable and of order 2. Then, the scheme (36) provides
an approximation of order 2 in time to the problem (33).

In the sequel, we present the discretization of (34) and (35).
The propagation equation (34). Here u is a solution of the BBM equation. We perform a semidis-

crete in time scheme: we use a Crank-Nicolson scheme for the linear part and Adams-Bashforth scheme
(see [27]) for the nonlinear part. For the space discretization, we use standard Fourier methods.

First, we note that the first approximate solution û1 is performed using a fixed-point method that
verifies the semidiscrete scheme (of order 2).

(1 + βξ2)
û1 − û0

Δt
= û1 + û0

2
(−αξ2 − iξ) − iγξ

8

( ˆ
(u0)

2 + ˆ
(u1)

2
)

. (37)

Then for n ≥ 1, the discret scheme is given by

(1 + βξ2)
ûn+1 − ûn

Δt
= ûn+1 + ûn

2
(−αξ2 − iξ)

− iγξ

8
(3 ˆ(un)2 − ˆ

(un−1)
2
). (38)

Diffusion equation (35). We can solve mathematically (35) as follows

Hb

(
Δt
2

)
U = eS Δt

2 U. (39)
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In addition, for all Nm > 0, the exponential of the matrix S Δt
2 is calculated numerically using the

“scaling and squaring” method with a (6, 6) Padé approximation [34] (corresponding with Matlab® to
the function “expm(S Δt

2 )”). We recall that the (p, q) Padé approximation of eA is given by

Rpq(A) = (Dpq(A))−1Npq(A),

where

Npq(A) =
p∑

j=0

(p + q − j)!p!
(p + q)!j!(p − j)!Aj,

Dpq(A) =
p∑

j=0

(p + q − j)!q!
(p + q)!j!(q − j)! (−A)j.

Hence, the numerical scheme (36) is a three-step scheme.
We note that the scheme (38) as well as the Strang Splitting method are of order two. It follows

that (36) is of order 2. This will be numerically verified in the sequel.

4.3 Quadrature method
In this subsection, we are interested in the choice of the 2Nm coefficients wi and σi of the diffusive
representation given in (32). These coefficients aim to approach the improper integrals in the form

∫ +∞

0
ψ(σ)dσ �

Nm∑
i=1

wiψ(σi). (40)

For seek of convenience, we drop here the variables t and x. The choice of these coefficients is
an important issue, because it affects directly the accuracy of the method and the efficiency of the
approximation. We note that many methods developed in the literature are especially based on the Gauss
quadrature. The choice of the quadrature method was thoroughly discussed in [30] when considering
the KdV equation with the Riemann-Liouville half-derivative. Based on this work, we present the
quadrature method that will be used in the remaining of this article.

Gauss-Jacobi quadrature method. Here, we aim to approximate the generalized integral (40)
with the Gauss-Jacobi quadrature method. It consists in transforming the domain of integration from
[0, +∞[ to [−1, 1] then applying the Gauss-Jacobi quadrature to the resulting integral. Hence, we
choose the following change of variables

σ = 1 − z
1 + z

then
dσ

dz
= −2

(1 + z)2 .

It follows that
∫ +∞

0
ψ(σ)dσ =

∫ 1

−1

2
(1 + z)2 ψ

(
1 − z
1 + z

)
dz.

Moreover, letting

ψ̃(z) = 2
(1 + z)2 ψ

(
1 − z
1 + z

)
,
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TABLE 3 Weights and abscissae of the Gauss-Laguerre and
Gauss-Jacobi quadrature formulas for Nm = 8

Gauss-Jacobi

wi zi σi

128.3897 −0.9603 49.3650
10.7575 −0.7967 8.8361
2.7870 −0.5255 3.2153
1.0879 −0.1834 1.4493
0.5179 0.1834 0.6899
0.2696 0.5255 0.3110
0.1378 0.7967 0.1132
0.0527 0.9603 0.0203

we get

∫ +∞

0
ψ(σ)dσ =

∫ 1

−1
ψ̃(z)dz �

Nm∑
i=0

μiψ̃(zi),

where μi (resp. zi) are the weights (resp. the nodes) of the standard Gauss-Jacobi quadrature formula
over [−1, 1]. For illustrative purposes, we present in Table 3 the weights and the nodes of this quadrature
formula for Nm = 8. By identification, we deduce that the quadrature coefficients in (40) are given by

wi = 2
(1 + zi)

2 μi, σi = 1 − zi

1 + zi
.

We note that this strategy was proposed by Diethelm in [8] for the approximation of Caputo
fractional-order derivative.

4.4 Numerical results and discussion.
We begin with justifying the convergence in time of the splitting scheme (37)–(38). To this end, we
choose h = 0.1, L = 800, Nm = 20, T = 100, and α = β = γ = ν = 1. We denote by un

Ref the
reference solution when Δt = 0.05 and un the numerical solution for different time steps Δt. Also, we
denote by En(Δt) = �un

Ref −un�2 the L2-error in terms of Δt. The results are presented in Figure 5. We
see that the error En decreases when the time step Δt decreases. Also, we may determine numerically
the order of the scheme (37)–(38). In fact, the measured values are close to a straight line with slope
2 which means that En(Δt) ≈ CΔt2 where C is a constant. We conclude that the numerical scheme
(37)–(38) is of order 2 in time.

Then, we aim to study numerically the convergence of the splitting scheme (37)–(38) with respect
to the number of Gauss-Jacobi quadrature points. To this end, we consider the parameters Δt =
h = 0.1, L = 800, T = 100 and ν = α = β = γ = 1. We denote by un

Ref the reference solution
for Nm = 20 and by un the numerical solution for different values of Nm. Some other numerical
tests show that convergence is obtained with Nm = 20 (see also [26]). Moreover, we denote by
En(Nm) = �un

Ref − un�2 the L2− error in terms of quadrature points. We plot, in Figure 6, the Error En

with respect to Nm. We see that the measured values are close to a straight line with slope −11, which

means that En(Nm) ≈ C
(

1
Nm

)11
where C is a constant.
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FIGURE 5 Error of the time discretization using the splitting scheme [Color figure can be viewed at wileyonlineli-
brary.com]

Besides, since the error is less than 10−5 from Nm = 15, we choose this number of points to realize
the simulations in the sequel.

Now, we examine the convergence of the decay rates of the Gear scheme (25)–(26) and the splitting
scheme (37)–(38). To this end, we take the parameters values L = 800, Δt = h = 0.1, α = β = 1,
ν = 0.1, and γ = 0.5. We calculate the solutions up to time T = 100. We denote by RGr

p the ratio in
norm Lp of the Gear scheme (25)–(26) and by RSp

p the ratio in norm Lp of the splitting scheme (37)–(38)
where p = 2 or ∞. Also, we denote by Errp = RSp

p − RGr
p the difference with respect to the time of the

decay rate obtained by the two approximations. In Figure 7, we plot Err2 and Err∞ with respect to time
t. We observe that both errors Err2 and Err∞ are decreasing to zero especially for large times for all
the time step Δt chosen, that is the main part of interest of our study. We conclude that the numerical
schemes converges for large time.

FIGURE 6 Error in terms of Nm using the Splitting scheme [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Differences of the decay rates between the splitting and the Gear schemes when Nm = 15, α = β = 1,
ν = 0.1, γ = 0.5, and Δt = 0.1 [Color figure can be viewed at wileyonlinelibrary.com]

In the sequel, we study the time convergence of the decay rates R2 and R∞ of the splitting scheme
(37)–(38). To this end, we fix the parameters values to h = 0.1, L = 800, T = 100, α = 2, β = γ = 1,
ν = 0.5. We denote by RRef

p the ratio in norm Lp when the time step Δt = 0.05 and by Rn
p the ratio in

norm Lp for different values of Δt when p = 2 or ∞. Also, we denote by Errn
p = RRef

p − Rn
p the error

in time of the decay rates. In Figure 8, we present the errors Errn
2 and Errn

∞ when increasing the time
step Δt from 0.05 to 0.25. We observe that both errors decreases when increasing the time step Δt.
Moreover, we observe that the errors are less than 10−3 for large times when Δt = 0.1. Hence, we
conclude that this time step is suffisant to get accurate numerical results.

Finally, we determine the computation time of solutions (in seconds) using the splitting scheme
(37)–(38) for different parameters values when Δt = h = 0.1. Results are displayed in Table 4. As it is
expected, the time elapsed to calculate the numerical solution using the splitting scheme is reduced. It
represents 1/5 of the time necessary to calculate solutions with the Gear scheme (25)–(26). We deduce
that the use of the splitting scheme performs a numerical solution more accurate and in a relatively
shorter time of computation.
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FIGURE 8 Differences of the decay rates between a solution of reference with Δt = 0.05s and solutions obtained
with larger time steps, using splitting scheme where Nm = 15, α = 2, ν = 0.5, and γ = β = 1 [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 4 Decay rates of the solutions when varying parameters of the Splitting scheme with Δt = h = 0.1

Viscosity Dispersive Nonlinear Diffusive L2 L∞ Computational
ν term β term γ term α decay rate decay rate time (sec)

1 1 0 1 −0.74 −0.98 400.95
1 1 1 1 −0.73 −0.97 401.8
1 0 0 0 −0.76 −1.03 408.67
0 1 1 1 −0.25 −0.52 190.12
0 1 0 1 −0.25 −0.5 193.49
0 0 1 1 −0.25 −0.5 191.24
1 0.1 1 1 −0.73 −0.96 399.78
0.1 1 0 1 −0.84 −1.16 394.59
1 0 0.1 0.1 −0.76 −1.02 393.23

2298 DUMONT and MANOUBI



DUMONT AND MANOUBI 21

5 CONCLUSION

In this article, we have constructed two numerical schemes to approximate the solutions and the
decay rates to an asymptotical water wave model where the nonlocal viscous term is described by the
Riemann-Liouville half derivative. We compare our numerical results to those given in [1, 2, 10]. We
show that using the diffusive realization of the nonlocal operator supplemented with a splitting scheme
leads to a very interesting gain of time computing of the numerical solution. This numerical scheme
enables us to approximate nonlocal models in a shorter time when comparing with classical methods
as the Gear scheme. A challenging issue is to address analytically the asymptotical behavior of the
initial value problem. This question will be the subject of a future work.
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