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We consider the special magnetic Laplacian given by Δ ],𝜇 = 4∑𝑛
𝑗=1(𝜕2/𝜕𝑧𝑗𝜕𝑧𝑗) + 2𝑖](𝐸 + 𝐸 + 𝑛) + 2𝜇(𝐸 − 𝐸) − (]2 + 𝜇2)|𝑧|2. We

show that Δ ],𝜇 is connected to the sub-Laplacian of a group of Heisenberg type given by C×𝜔C
𝑛 realized as a central extension of

the real Heisenberg group𝐻2𝑛+1. We also discuss invariance properties of Δ ],𝜇 and give some of their explicit spectral properties.

1. Introduction

The scaled Landau Hamiltonian (special Hermite operator)

𝐻𝜇 fl 4 𝑛∑
𝑗=1

𝜕2𝜕𝑧𝑗𝜕𝑧𝑗 + 2𝜇 (𝐸 − 𝐸) − 𝜇2 |𝑧|2 , (1)

where 𝐸 is the Euler operator and 𝐸 is its complex conjugate,
describes the quantumbehavior of a charged, spinless particle
on the configuration space C𝑛 under the influence of a con-
stant magnetic field. It has been considered and studied from
different point of views in physics as in mathematics [1–7]. It
goes back to L. D. Landau (for 𝑛 = 1) and plays an important
role inmany different contexts such as Feynman path integral
(in Feynman-Kac formula), oscillatory stochastic integral,
and theory of lattices electrons in uniformmagnetic field. See
Bellissard [8] and the rich list of references therein.

In the present paper, we study the spectral properties of
the second-order differential operator

Δ ],𝜇 = 4 𝑛∑
𝑗=1

𝜕2𝜕𝑧𝑗𝜕𝑧𝑗 + 2 (𝜇 + 𝑖]) 𝐸 − 2 (𝜇 − 𝑖]) 𝐸− (]2 + 𝜇2) |𝑧|2 + 2𝑖]𝑛, (2)

acting on the free Hilbert space 𝐿2(C𝑛, 𝑑𝑚). The parameters
] and 𝜇 are assumed to be real such that 𝜇 > 0. The particular
case of ] = 0 leads to Δ 0,𝜇 = 𝐻𝜇. Thus, the Laplacian Δ ],𝜇
can be seen as the Landau Hamiltonian𝐻𝜇 perturbed by the
first-order differential operator𝐷] fl 2𝑖] (𝐸 + 𝐸 + 𝑛) − ]2 |𝑧|2 . (3)

In fact we have Δ ],𝜇 = 𝐻𝜇 + 𝐷]. (4)

Both Δ ],𝜇 and 𝐻𝜇 correspond to an isotropic magnetic field
of constant strength 𝜇. However, Δ ],𝜇 is associated with a
specific magnetic vector potential (see (38)) issued from the
symmetric gauge by a special gauge involving the parameter
]. This gauge is intimately connected to 𝐷]. Geometrically,
as is the case for 𝐻𝜇 (see [9, 10]), Δ ],𝜇 represents a Bochner
Laplacian on the smooth sections of a Hermitian line bundle
with connection over the manifold𝑀 = C𝑛.

The real motivation of considering such magnetic quan-
tumHamiltonian, and therefore the corresponding magnetic
potential vector in (38), lies in the study of the space of
biweighted holomorphic automorphic functions (defined by
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the means of the projective representation discussed in
Section 4). Such space can be considered as the automorphic
picture of the classical Bargmann’s space of entire functions
which has physical implementation. In fact, such phase space
is known to be unitary isomorphic to the quantum mechan-
ical configuration space 𝐿2(R; 𝑑𝑥) on the real line (via the
so-called Segal-Bargmann transform). One can also realize
it as 𝐿2-eigenspace associated with the lowest Landau level
of the Landau Hamiltonian 𝐻𝜇. The same observation holds
when dealing with the so-called holomorphic automorphic
functions. In advantage, such Landau Hamiltonian leaves
invariant such space [11]. Accordingly, the first main object
was the introduction of a special magnetic Schrödinger
operator satisfying the following conditions:

(i) Leaving invariant the space of biweighted automor-
phic functions (not necessarily holomorphic).

(ii) The eigenspace associated with the lowest eigenvalue
reduces to the space of biweighted holomorphic
automorphic functions.

The concrete construction gives rise to themagnetic quantum
Hamiltonian Δ ],𝜇 given by (2).

The main results to which is aimed this paper concern
the realization of Δ ],𝜇 as a magnetic Schrödinger operator
associated with a specific potential vector (Section 4). The
connection to the sub-Laplacian of a group of Heisenberg
type given by C×𝜔 C

𝑛 is also established (see Section 3).
This group is realized as a central extension of the standard
Heisenberg group𝐻2𝑛+1 = (R×C𝑛, ⋅I𝑚𝜔). In this new group,
the symplectic form is extended and replaced by a Hermitian
product (details in Section 2). Invariance properties of Δ ],𝜇

are discussed in Section 3 and concrete description of its 𝐿2-
spectral analysis is presented in Section 5. More precisely,
we show that the spectrum is discrete and independent
of the parameter ] and coincides with the Landau energy
levels of the Landau Hamiltonian 𝐻𝜇 in (1). Moreover, each
eigenvalue occurs with infinite multiplicity. An orthogonal
basis for every 𝐿2-eigenspace is next described and the
corresponding reproducing kernel is given in a closed form.
In Section 6, we use the factorization method [12–16] to
generate eigenfunctions of Δ ],𝜇 in terms of multivariate
version of complex Hermite polynomials. For the case of the
twisted Laplacian of the standard Heisenberg group, one can
refer to [6, 7, 17].

2. The Group𝑁𝜔 = C×𝜔 C
𝑛 as

a Central Extension of the Heisenberg
Group𝐻2𝑛+1 = R×I𝑚𝜔 C

𝑛

In this section, we follow the exposition given in [18] in
order to realize 𝑁𝜔 fl C×𝜔 C

𝑛 as a central extension of
the Heisenberg group 𝐻2𝑛+1 fl R×I𝑚𝜔 C

𝑛, where 𝜔(𝑧, 𝑤)
denotes the standard Hermitian form on C𝑛. Indeed, if (𝐾, ∙)
and (𝐺, ⊙) are two abelian groups and 𝜓 : 𝐾 × 𝐾 → 𝐺 is a
given mapping, then we define on 𝐺 × 𝐾 the ⋅𝜓-law by(𝑧0; 𝑧) ⋅𝜓 (𝑤0; 𝑤) = (𝑧0 ⊙ 𝑤0 ⊙ 𝜓 (𝑧, 𝑤) ; 𝑧 ∙ 𝑤) . (5)

We say that 𝐺×𝜓𝐾 is a central extension of (𝐾, ∙) by (𝐺, ⊙)
associated with 𝜓 if the short sequence0 󳨀→ 𝐾 󳨀→ 𝐺×𝜓𝐾 󳨀→ 𝐺 󳨀→ 0 (6)
is exact and such that𝐾 is in 𝑍(𝐺), the center of the group 𝐸.
This holds if one of the following two equivalent assertions is
satisfied:

(i) 𝜓 preserves the neutral element 𝜓(0𝐾, 0𝐾) = 0𝐺 and
verifies the cocycle relation𝜓 (𝑥, 𝑦) ⊙ 𝜓 (𝑥 ∙ 𝑦, 𝑧) = 𝜓 (𝑥, 𝑦 ∙ 𝑧) ⊙ 𝜓 (𝑦, 𝑧) . (7)

For every 𝑥, 𝑦, 𝑧 ∈ 𝐾.
(ii) 𝐺×𝜓𝐾 fl (𝐺 × 𝐾, ⋅𝜓) is a group.

Now, let R2 = R𝑠 × R𝑡 be the real (𝑠, 𝑡)-plane identified with
the complex plane C = {𝑧0 = 𝑠 + 𝑖𝑡; 𝑠, 𝑡 ∈ R} and C𝑛 denotes
the complex 𝑛-space endowed with its standard Hermitian
form 𝜔 (𝑧, 𝑤) fl ⟨𝑧, 𝑤⟩ = 𝑛∑

𝑗=1

𝑧𝑗𝑤𝑗 (8)

for 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) and 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) in C𝑛. We
define𝑁𝜔 = C×𝜔 C

𝑛 to be the set C × C𝑛 endowed with the⋅𝜔-law given by(𝑧0; 𝑧) ⋅𝜔 (𝑤0; 𝑤) = (𝑧0 + 𝑤0 + ⟨𝑧, 𝑤⟩ ; 𝑧 + 𝑤) . (9)
Under (9), 𝑁𝜔 fl C×𝜔 C

𝑛 is a noncommutative nilpotent
group of step two with center 𝑍(𝑁𝜔) = C×𝜔 {0} = (R ×
R) ×𝜔 {0}. The identity element is (0; 0) and the symmetric
element of given (𝑧0; 𝑧) is (−𝑧0 − ⟨𝑧, 𝑧⟩; −𝑧). Notice for
instance that the ⋅𝜔-law given by (9) can be rewritten in the
coordinates 𝑧0 = (𝑠, 𝑡), 𝑤0 = (𝑠󸀠, 𝑡󸀠), and 𝑧, 𝑤 ∈ C𝑛 as follows:((𝑠, 𝑡) ; 𝑧) ⋅𝜔 ((𝑠󸀠, 𝑡󸀠) ; 𝑤)= ((𝑠 + 𝑠󸀠 + Re ⟨𝑧, 𝑤⟩ , 𝑡 + 𝑡󸀠 +I𝑚⟨𝑧, 𝑤⟩) ; 𝑧 + 𝑤) . (10)

Hence, endowing the setR𝑡 ×C𝑛 with the ⋅I𝑚𝜔-law, given by(𝑡; 𝑧) ⋅I𝑚𝜔 (𝑡󸀠; 𝑤) = (𝑡 + 𝑡󸀠 +I𝑚⟨𝑧, 𝑤⟩ ; 𝑧 + 𝑤) , (11)

makes R×I𝑚𝜔 C
𝑛 a group, which is nothing else than the

classical real Heisenberg group of dimension 2𝑛 + 1. One
can notice easily that (C × C𝑛, ⋅𝜔), in addition of being the
central extension of C𝑛 by C associated with the map 𝜓 = 𝜔,
can also be viewed, due to (10), as the central extension of(R𝑡 × C𝑛, ⋅I𝑚𝜔) by R𝑠 associated with 𝜓 = R𝑒𝜔. This can be
stated otherwise using directly the following definition: the
projection mapping 𝑞(𝑠, 𝑡; 𝑧) = (𝑡; 𝑧), from (R𝑠 × R𝑡) ×𝜔 C

𝑛

onto R𝑡 ×I𝑚𝜔 C
𝑛, is a homomorphism from the group𝑁𝜔 =

C×𝜔 C
𝑛 onto the Heisenberg group 𝐻2𝑛+1 = R×I𝑚𝜔 C

𝑛.
Moreover, the kernel of 𝑞 is given by

ker 𝑞 = {(𝑠, 0; 0) , 𝑠 ∈ R} = (R𝑠 × {0}) ×𝜔 {0} (12)
and is clearly contained in the center 𝑍(𝑁𝜔). Thus, we may
say that the group𝑁𝜔 = C×𝜔 C

𝑛 is a central extension of the
Heisenberg group 𝐻2𝑛+1 = R×I𝑚𝜔 C

𝑛 by (R𝑠, +); that is, we
have (C×𝜔 C

𝑛)/ ker 𝑞 = (C×𝜔 C
𝑛/R𝑠) = 𝐻2𝑛+1. Accordingly,

harmonic analysis on our group 𝑁𝜔 = C×𝜔 C
𝑛 will have

many links to that on the classical Heisenberg group.
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3. Explicit Formula for the Sub-Laplacian L𝜔

on𝑁𝜔 = C×𝜔 C
𝑛

The group 𝑁𝜔 = C×𝜔 C
𝑛 with the ⋅𝜔-law given in (9) is a

real Lie group of dimension 2𝑛 + 2, and its tangent space at
its neutral element is given by 𝑇(0;0)𝑁𝜔 = (C, +) × (C𝑛, +)
viewed as a real vector space of dimension 2𝑛+2. In fact,𝑁𝜔 is
naturally equipped with the standard differentiable structure
on Euclidean spaces, generated by the coordinates system{(C × C𝑛, 𝑥)}, where 𝑥 is the coordinates map

𝑥 : C × C
𝑛 󳨀→ R

2𝑛+2;(𝑧0; 𝑧) 󳨃󳨀→ (𝑠, 𝑡; 𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛, 𝑦𝑛) . (13)

The group action and the group symmetric maps are smooth
under this differentiable structure. Denote by n𝜔 its associ-
ated Lie algebra composed of all left-invariant vector fields
on 𝑁𝜔 and endowed with the standard bracket on vector
fields. For the sake of giving the explicit formula for the sub-
Laplacian L𝜔 on 𝑁𝜔 = C×𝜔 C

𝑛, a basis of n𝜔 formed by
first-order differential operators on functions of𝑁𝜔 is needed.
Define the left action by a fixed element (𝑧0; 𝑧) ∈ 𝑁𝜔 byℓ(𝑧0 ;𝑧) : 𝑁𝜔 󳨀→ 𝑁𝜔;(𝑤0; 𝑤) 󳨃󳨀→ (𝑧0; 𝑧) ⋅𝜔 (𝑤0; 𝑤) . (14)

This map is a diffeomorphism with respect to the Lie group
structure. Hence, it is possible to extend its push-forward to
act on vector fields. Furthermore, its action on a vector field𝑋 is given explicitly by

ℓ𝑔∗
𝑋𝑝𝑓 = 𝑋𝑝 (𝑓 ∘ ℓ𝑔) , (15)

for test data 𝑝 ∈ 𝑁𝜔 and 𝑓 a smooth function of 𝑁𝜔. By
definition, a vector field 𝑋 is said to be left-invariant if the
equality ℓ𝑔∗

𝑋 = 𝑋 holds.
In order to construct a left-invariant vector field basis, we

take a basis of the tangent vectors at the identity and generate
from each vector of the tangent basis a left-invariant vector
field by pushing it forward using ℓ(𝑧0 ,𝑧). Recall that a basis of
the tangent vector space 𝑇(0;0)𝑁𝜔 acting on smooth functions𝑓 is given by

( 𝜕𝜕𝑥𝑖
)

(0;0)

𝑓 fl 𝜕𝑖 (𝑓 ∘ 𝑥−1)󵄨󵄨󵄨󵄨󵄨𝑥(0,0) ;𝑖 = 1, 2, . . . , 2𝑛 + 2, (16)

where 𝜕𝑖 is the ordinary partial derivative with respect to the𝑖th variable.We can now carry out the following computation
in order to find generators for n𝜔:

ℓ(𝑧0 ;𝑧)∗ ( 𝜕𝜕𝑥𝑖
)

(0;0)

𝑓 = ( 𝜕𝜕𝑥𝑖
)

(0;0)

(𝑓 ∘ ℓ(𝑧0 ;𝑧))
= 𝜕𝑖 ((𝑓 ∘ ℓ(𝑧0 ,𝑧)) ∘ 𝑥−1)󵄨󵄨󵄨󵄨󵄨𝑥(0,0) . (17)

We plug in 𝑥−1 ∘ 𝑥 in the middle of the last equation and we
use the multivariable chain rule to get

ℓ(𝑧0 ;𝑧)∗ ( 𝜕𝜕𝑥𝑖
)

(0;0)

𝑓 = 𝜕𝑖 ((𝑓 ∘ 𝑥−1) ∘ (𝑥 ∘ ℓ(𝑧0 ;𝑧) ∘ 𝑥−1))󵄨󵄨󵄨󵄨󵄨𝑥(0,0)
= 2𝑛+2∑

𝑚=1

𝜕𝑚 (𝑓 ∘ 𝑥−1)󵄨󵄨󵄨󵄨󵄨𝑥∘ℓ(𝑧0;𝑧)∘𝑥−1∘𝑥(0,0) × 𝜕𝑖 (𝑥𝑚 ∘ ℓ(𝑧0 ;𝑧) ∘ 𝑥−1)󵄨󵄨󵄨󵄨󵄨𝑥(0,0)
= 2𝑛+2∑

𝑚=1

J𝑚,𝑖 × ( 𝜕𝜕𝑥𝑚
)

(𝑧0 ;𝑧)

,
(18)

where J𝑚,𝑖 fl 𝜕𝑖(𝑥𝑚 ∘ ℓ(𝑧0 ;𝑧) ∘ 𝑥−1)|𝑥(0,0) and 𝑥𝑚 ∘ ℓ(𝑧0 ;𝑧) ∘ 𝑥−1 is
the𝑚th coordinate map of 𝑥 ∘ ℓ(𝑧0 ;𝑧) ∘ 𝑥−1. Explicitly, we have

𝑥 ∘ ℓ(𝑧0 ;𝑧) ∘ 𝑥−1 (𝑠󸀠, 𝑡󸀠, 𝑥󸀠
1, 𝑦󸀠

1, . . . , 𝑥󸀠
𝑛, 𝑦󸀠

𝑛) = (𝑠 + 𝑠󸀠
+ 𝑛∑

𝑗=1

(𝑥𝑗𝑥󸀠
𝑗 + 𝑦𝑗𝑦󸀠

𝑗) , 𝑡 + 𝑡󸀠 + 𝑛∑
𝑗=1

(𝑦𝑗𝑥󸀠
𝑗 − 𝑥𝑗𝑦󸀠

𝑗) , 𝑥1

+ 𝑥󸀠
1, 𝑦1 + 𝑦󸀠

1, . . . , 𝑦𝑛 + 𝑦󸀠
𝑛) .

(19)

Therefore, the J𝑚,𝑖 can be viewed as the components of the
following Jacobian matrix:

J fl J|(0,...,0) =
(((((((((((((
(

1 0 𝑥1 𝑦1 ⋅ ⋅ ⋅ 𝑥𝑛 𝑦𝑛0 1 𝑦1 −𝑥1 ⋅ ⋅ ⋅ 𝑦𝑛 −𝑥𝑛... 0 d 0... d... d... d0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

)))))))))))))
)

. (20)

Reading vertically, column by column, we find the following
basis:

𝑆 = ( 𝜕𝜕𝑠) ,
𝑇 = ( 𝜕𝜕𝑡) ,
𝑋𝑗 = 𝑥𝑗 ( 𝜕𝜕𝑠) + 𝑦𝑗 ( 𝜕𝜕𝑡) + ( 𝜕𝜕𝑥𝑗

) ,
𝑌𝑗 = 𝑦𝑗 ( 𝜕𝜕𝑠) − 𝑥𝑗 ( 𝜕𝜕𝑡) + ( 𝜕𝜕𝑦𝑗

) .
(21)
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Note that we are using the coordinates 𝑧0 = 𝑠 + 𝑖𝑡 and 𝑧𝑗 =𝑥𝑗 + 𝑖𝑦𝑗 with 𝜕𝜕𝑥1
= 𝜕𝜕𝑠 ,𝜕𝜕𝑥2
= 𝜕𝜕𝑡 ,𝜕𝜕𝑥2𝑗+1
= 𝜕𝜕𝑥𝑗

,
𝜕𝜕𝑥2𝑗+2

= 𝜕𝜕𝑦𝑗

,
(22)

for 𝑗 = 1, . . . , 𝑛. We summarize the above discussion on𝑁𝜔 =
C×𝜔 C

𝑛 and its associated Lie algebra n𝜔 in the following
statement.

Proposition 1. The real vector fields

𝑆 = 𝜕𝜕𝑠 ,𝑇 = 𝜕𝜕𝑡 (23)

together with 𝑋𝑗, 𝑌𝑗; 𝑗 = 1, . . . , 𝑛 given by

𝑋𝑗 = 𝑥𝑗 ( 𝜕𝜕𝑠) + 𝑦𝑗 ( 𝜕𝜕𝑡) + ( 𝜕𝜕𝑥𝑗

) ,
𝑌𝑗 = 𝑦𝑗 ( 𝜕𝜕𝑠) − 𝑥𝑗 ( 𝜕𝜕𝑡) + ( 𝜕𝜕𝑦𝑗

) (24)

form a basis for n𝜔. Moreover, they satisfy the following
commutation relations of Heisenberg type:[𝑆, 𝑋𝑗] = [𝑆, 𝑌𝑗] = 0,[𝑇,𝑋𝑗] = [𝑇, 𝑌𝑗] = 0,[𝑆, 𝑇] = 0,[𝑋𝑗, 𝑋𝑘] = [𝑌𝑗, 𝑌𝑘] = 0,[𝑋𝑗, 𝑌𝑘] = −2𝛿𝑗𝑘𝑇

(25)

for all 𝑗, 𝑘 = 1, . . . , 𝑛.
Remark 2. As expected we see, in view of the above proposi-
tion, that the Lie algebra n𝜔 of𝑁𝜔 = C×𝜔 C

𝑛 with 𝜔(𝑧, 𝑤) =⟨𝑧, 𝑤⟩ is also a central extension of the classical Heisenberg
algebra𝐻2𝑛+1 = R×I𝑚𝜔 C

𝑛 generated by the vector fields

{𝑇 = 𝜕𝜕𝑡 , 𝑋𝑗 = −𝑦𝑗

𝜕𝜕𝑡 + 𝜕𝜕𝑥𝑗

, 𝑌̃𝑗 = 𝑥𝑗

𝜕𝜕𝑡 + 𝜕𝜕𝑦𝑗

} ;
𝑗 = 1, . . . , 𝑛, (26)

with the nontrivial commutation relation [𝑋𝑗, 𝑌̃𝑘] = −2𝑇,
where (𝑥𝑗, 𝑦𝑗); 𝑗 = 1, . . . , 𝑛, are the coordinates of C𝑛 = R2𝑛.

Remark 3. To build such left-invariant vector fields, one can
also look for a one parameter group of 𝑁𝜔, that is, a group
homomorphism 𝛾 : (R, +) → 𝑁𝜔 satisfying

̇𝛾 (0) = 𝑑𝛾𝑑𝜀 (𝜀)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0 = (V0; V) ∈ 𝑇(0;0)𝑁𝜔 = C × C
𝑛. (27)

According to the above discussion, we can introduce the
following definition of sub-Laplacian on𝑁𝜔 = C×𝜔 C

𝑛.

Definition 4. Let𝑋𝑗, 𝑌𝑗; 𝑗 = 1, . . . , 𝑛, be the vector fields given
in Proposition 1. Then, the operator

L𝜔 = 𝑛∑
𝑗=1

𝑋2
𝑗 + 𝑌2

𝑗 (28)

is called a sub-Laplacian of𝑁𝜔 = C×𝜔 C
𝑛.

The following proposition gives the explicit differential
expression of L𝜔 in terms of the Laplace-Beltarmi ΔR2𝑛 of
C𝑛 = R2𝑛

ΔR2𝑛 fl
𝑛∑

𝑗=1

𝜕2𝜕𝑥2
𝑗

+ 𝜕2𝜕𝑦2
𝑗

(29)

and the first-order differential operators𝐸𝑥,𝑦 and𝐹𝑥,𝑦 defined
by

𝐸𝑥,𝑦 fl
𝑛∑

𝑗=1

𝑥𝑗

𝜕𝜕𝑥𝑗

+ 𝑦𝑗

𝜕𝜕𝑦𝑗

,
𝐹𝑥,𝑦 fl

𝑛∑
𝑗=1

𝑥𝑗

𝜕𝜕𝑦𝑗

− 𝑦𝑗

𝜕𝜕𝑥𝑗

. (30)

Namely, we have the following result.

Proposition 5. The sub-Laplacian L𝜔 prescribed in Defini-
tion 4 is given explicitly in the coordinates 𝑡, 𝑠, 𝑥𝑗, 𝑦𝑗, 𝑗 =1, . . . , 𝑛, of𝑁𝜔 = C×𝜔 C

𝑛 as follows:

L𝜔 = ΔR2𝑛 + 2 (𝐸𝑥,𝑦 + 𝑛) 𝜕𝜕𝑠 − 2𝐹𝑥,𝑦

𝜕𝜕𝑡
+ (|𝑥|2 + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2)( 𝜕2𝜕𝑠2 + 𝜕2𝜕𝑡2) , (31)

where |𝑥|2 = ∑𝑛
𝑗=1 𝑥2

𝑗 and |𝑦|2 = ∑𝑛
𝑗=1 𝑦2

𝑗 .

Proof. The explicit expression of L𝜔 given in Proposition 5
can be handled by straightforward computations.

Remark 6. If we consider the coordinates (𝑠, 𝑡) ∈ R2 = C

and 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛 with 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗, then the sub-
LaplacianL𝜔 in (31) can be rewritten as

L𝜔 = 4 𝑛∑
𝑗=1

𝜕2𝜕𝑧𝑗𝜕𝑧𝑗 + 2 (𝐸 + 𝐸 + 𝑛) 𝜕𝜕𝑠
− 2𝑖 (𝐸 − 𝐸) 𝜕𝜕𝑡 + |𝑧|2 ( 𝜕2𝜕𝑠2 + 𝜕2𝜕𝑡2) ,

(32)
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where 𝐸 = ∑𝑛
𝑗=1 𝑧𝑗(𝜕/𝜕𝑧𝑗) is the complex Euler operator and𝐸 = ∑𝑛

𝑗=1 𝑧𝑗(𝜕/𝜕𝑧𝑗) is its complex conjugate.

Remark 7. The action of L𝜔 on functions 𝐹(𝑡; 𝑧) on 𝑁𝜔 =
C×𝜔 C

𝑛 that are independent of the argument 𝑠 reduces to
that of the sub-Laplacian

L̃I𝑚𝜔 = 4 𝑛∑
𝑗=1

𝜕2𝜕𝑧𝑗𝜕𝑧𝑗 − 2𝑖 (𝐸 − 𝐸) 𝜕𝜕𝑡 + |𝑧|2 𝜕2𝜕𝑡2 (33)

of the classical Heisenberg group R×I𝑚𝜔 C
𝑛 = 𝐻2𝑛+1.

We conclude this section by mentioning that both oper-
ators L𝜔 and L̃I𝑚𝜔 are not elliptic. But they share many
aspects and nice properties of their spectral theory with
elliptic operators. We will precise this by giving the concrete
description of the spectral eigenfunction problem of the
associated elliptic differential operator

Δ ],𝜇 = 4 𝑛∑
𝑗=1

𝜕2𝜕𝑧𝑗𝜕𝑧𝑗 + 2𝜇 (𝐸 − 𝐸) + 2𝑖] (𝐸 + 𝐸 + 𝑛)
− (]2 + 𝜇2) |𝑧|2 = 4 𝑛∑

𝑗=1

𝜕2𝜕𝑧𝑗𝜕𝑧𝑗 + 2 (𝜇 + 𝑖]) 𝐸− 2 (𝜇 − 𝑖]) 𝐸 − (]2 + 𝜇2) |𝑧|2 + 2𝑖]𝑛.
(34)

Formally, Δ ],𝜇 is related to L𝜔 using partial Fourier trans-
form in (𝑠, 𝑡) with (𝑖], 𝑖𝜇) as dual arguments.

In the next section, we will prove that the operator Δ ],𝜇
can also be regarded as a Schrödinger operator in the presence
of a uniform magnetic field 󳨀→𝐵𝜇 = 𝑖𝑑𝜃],𝜇 on C𝑛 = R2𝑛

associated with a specific differential 1-form 𝜃],𝜇.
4. Realization of Δ ],𝜇 as
a Magnetic Schrödinger Operator and
Invariance Property

A magnetic Schrödinger operator on a complete oriented
Riemannianmanifold (𝑀, 𝑔) on scalar functions is in general
of the form 𝐻𝜃 = (𝑑 + ext 𝜃)∗ (𝑑 + ext 𝜃) , (35)

where 𝜃 is a given C1 real differential 1-form on 𝑀 (mag-
netic vector potential). Here 𝑑 stands for the usual exterior
derivative acting on the space of differential 𝑝-formsΩ𝑝(𝑀),
ext 𝜃 is the operator of exterior left multiplication by 𝜃, that
is, (ext 𝜃)𝜔 = 𝜃 ∧ 𝜔, and (𝑑 + ext 𝜃)∗ is the formal adjoint
of 𝑑 + ext 𝜃 with respect to the Hermitian product on Ω𝑝 =Ω𝑝(𝑀)

⟨𝛼, 𝛽⟩Ω𝑝 = ∫
𝑀
𝛼 ∧ ⋆𝛽 (36)

induced by the metric 𝑔, where ⋆ denotes the Hodge star
operator associated with the volume form. From general
theory of Schrödinger operators on noncompact manifold

𝑀 (see for example [19]), it is known that the operator 𝐻𝜃,
viewed as an unbounded operator in𝐿2(𝑀; 𝑑𝑚), is essentially
self-adjoint for any smooth measure 𝑑𝑚.

In our framework𝑀 is the complex 𝑛-spaceC𝑛 equipped
with its Kähler metric𝑑𝑠2 = − 𝑖2 𝑛∑

𝑗=1

𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑗 = 𝑛∑
𝑗=1

𝑑𝑥𝑗 ⊗ 𝑑𝑦𝑗 (37)

and the corresponding volume form is Vol(𝑧) = 𝑑𝑥1𝑑𝑦1 ⋅ ⋅ ⋅𝑑𝑥𝑛𝑑𝑦𝑛. Associated with the parameters ] and 𝜇, we consider
the potential vector

𝜃],𝜇 (𝑧) fl −𝜇 − 𝑖]2 𝑛∑
𝑗=1

𝑧𝑗𝑑𝑧𝑗 + 𝜇 + 𝑖]2 𝑛∑
𝑗=1

𝑧𝑗𝑑𝑧𝑗. (38)

Some comments on such vector potential are collected in
Remarks 12, 13, and 17 below.Thus, we can prove the following
result concerning the twisted Laplacian defined by (34).

Proposition 8. For every complex-valued C∞ function 𝑓 on
C𝑛, we haveΔ ],𝜇𝑓 = −𝐻𝜃],𝜇

𝑓 = − (𝑑 + ext 𝜃],𝜇)∗ (𝑑 + ext 𝜃],𝜇) 𝑓. (39)

Proof (sketched). Westart bywriting𝐻𝜃],𝜇
fl (𝑑+ext 𝜃],𝜇)∗(𝑑+

ext 𝜃],𝜇) as𝐻𝜃],𝜇
= 𝑑∗𝑑𝑓 + 𝑑∗ext 𝜃],𝜇𝑓 + (ext 𝜃],𝜇)∗ 𝑑𝑓+ (ext 𝜃],𝜇)∗ ext 𝜃],𝜇. (40)

Next, using the well-known facts 𝑑∗ = − ⋆ 𝑑⋆ and (ext 𝜃)∗ =⋆ext 𝜃⋆, we establish the following

𝑑∗𝑑 = −4 𝑛∑
𝑗=1

𝜕𝜕𝑧𝑗 𝜕𝜕𝑧𝑗 ,𝑑∗ext 𝜃],𝜇𝑓 + (ext 𝜃],𝜇)∗ 𝑑= 𝑛∑
𝑗=1

(−2 (𝜇 + 𝑖]) 𝑧𝑗 𝜕𝜕𝑧𝑗 + 2 (𝜇 − 𝑖]) 𝑧𝑗 𝜕𝜕𝑧𝑗 − 2𝑖]) ,(ext 𝜃],𝜇)∗ ext 𝜃],𝜇 = (𝜇2 + ]2) |𝑧|2 .
(41)

One of the advantages of the realization of Δ ],𝜇 as (39),
with the differential 1-form 𝜃],𝜇 in (38), is that we can derive
easily some invariance properties with respect to the group
of rigid motions of the complex Hermitian space (C𝑛, 𝑑𝑠2);𝑑𝑠2 = ∑𝑛

𝑗=1 𝑑𝑧𝑗 ⊗ 𝑑𝑧𝑗. Thus, let 𝐺 denote the group of
biholomorphic mapping of C𝑛 that preserve the Hermitian
metric 𝑑𝑠2. Then, 𝐺 = C𝑛 ⋊ 𝑈(𝑛) is the group of semidirect
product of the additive group (C𝑛, +) with the unitary group𝑈(𝑛) of C𝑛 and can be represented as𝐺 fl C

𝑛 ⋊ 𝑈 (𝑛)
= {𝑔 = (𝐴 𝑏0 1) š [𝐴, 𝑏] ; 𝐴 ∈ 𝑈 (𝑛) , 𝑏 ∈ C

𝑛} . (42)
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It acts transitively onC𝑛 via the mappings 𝑔 ⋅ 𝑧 = 𝐴𝑧 + 𝑏. The
pull-back 𝑔∗𝜃],𝜇 of the differential 1-form 𝜃],𝜇 by the above
mapping 𝑧 󳨃→ 𝑔; 𝑧 is related to 𝜃],𝜇 by the following identity.
Proposition 9. Let 𝜃],𝜇 be as in (38). Then, for every 𝑔 ∈ 𝐺 =
C𝑛 ⋊ 𝑈(𝑛) we have

𝑔∗𝜃],𝜇 = 𝜃],𝜇 + 𝑑𝑗],𝜇 (𝑔, 𝑧)𝑗],𝜇 (𝑔, 𝑧) , (43)

where 𝑗],𝜇 (𝑔, 𝑧) = exp (𝑖𝜙],𝜇 (𝑔, 𝑧)) . (44)

The phase function 𝜙],𝜇(𝑔, 𝑧) is given by𝜙],𝜇 (𝑔, 𝑧) = −]Re (⟨𝑧, 𝑔−1 ⋅ 0⟩)+ 𝜇I𝑚(⟨𝑧, 𝑔−1 ⋅ 0⟩) . (45)

Proof. The identity (43) holds by component-wise straight-
forward computations. Indeed, direct computation yields𝑔∗𝜃],𝜇 (𝑧) = 𝜃],𝜇 (𝑧)

− 𝑖]2 𝑑 [⟨𝑧, 𝑔−1 ⋅ 0⟩ + ⟨𝑧, 𝑔−1 ⋅ 0⟩]
+ 𝜇2𝑑 [⟨𝑧, 𝑔−1 ⋅ 0⟩ − ⟨𝑧, 𝑔−1 ⋅ 0⟩]

= 𝜃],𝜇 (𝑧) + 𝑖𝑑 (𝜙],𝜇 (𝑔, 𝑧)) ,
(46)

where 𝑔−1 is the inverse mapping of 𝑧 󳨃→ 𝑔 ⋅ 𝑧 and 𝑔−1 ⋅ 0 =−𝐴−1𝑏 = −𝐴∗𝑏 for 𝑔 = [𝐴, 𝑏] ∈ C𝑛 ⋊ 𝑈(𝑛). Thus, the result
follows thanks to 𝑑𝑗],𝜇(𝑔, 𝑧) = 𝑖𝑑(𝜙],𝜇(𝑔, 𝑧))𝑗],𝜇(𝑔, 𝑧).

Notice that the relation (43) reads also as 𝑔∗𝜃],𝜇 = 𝜃],𝜇 +𝑑 log(𝑗],𝜇(𝛾, 𝑧)) and shows that the differential 1-form 𝜃],𝜇 is
not 𝐺-invariant. But 𝑔∗𝜃],𝜇 and 𝜃],𝜇 are in the same class of
the de Rham cohomology group. Also it gives insight how
to make, in view of the expression (39), the Laplacian Δ ],𝜇
invariant with respect to a 𝐺-action on functions built with
the help of the following automorphic factor 𝑗],𝜇(𝑔, 𝑧) defined
through (44) and satisfying the chain rule𝑗],𝜇 (𝑔𝑔󸀠, 𝑧) = 𝑗],𝜇 (𝑔, 𝑔󸀠𝑧) 𝑗],𝜇 (𝑔󸀠, 𝑧) (47)

for every 𝑔, 𝑔󸀠 ∈ 𝐺 = C𝑛 ⋊ 𝑈(𝑛) and 𝑧 ∈ C𝑛. Associated with𝑗],𝜇, we define 𝑇],𝜇
𝑔 to be the operator acting on differential𝑝-forms 𝜔 of C𝑛 through the formula𝑇],𝜇

𝑔 𝜔 = 𝑗],𝜇 (𝑔, 𝑧) 𝑔∗𝜔. (48)

OnC∞-complex-valued functions𝑓onC𝑛, it reduces further
to [𝑇],𝜇

𝑔 𝑓] (𝑧) = 𝑗],𝜇 (𝑔, z) 𝑔∗𝑓 (𝑧)= 𝑗],𝜇 (𝑔, 𝑧) 𝑓 (𝑔 ⋅ 𝑧) . (49)

Thus, the following invariance property for Δ ],𝜇 holds.

Proposition 10. For every 𝑔 ∈ C𝑛 ⋊ 𝑈(𝑛), we haveΔ ],𝜇𝑇],𝜇
𝑔 = 𝑇],𝜇

𝑔 Δ ],𝜇. (50)

Proof. Using thewell-known facts𝑔∗𝑑 = 𝑑𝑔∗ and𝑔∗(𝛼∧𝛽) =𝑔∗𝛼 ∧ 𝑔∗𝛽, we get
𝑇],𝜇
𝑔 ((𝑑 + ext 𝜃],𝜇) 𝑓)= 𝑗],𝜇 (𝛾, 𝑧) (𝑑 [𝑔∗𝑓] + [𝑔∗𝜃],𝜇] ∧ [𝑔∗𝑓]) . (51)

Now, by means of the identity (43), it follows that

𝑇],𝜇
𝑔 ((𝑑 + ext 𝜃],𝜇) 𝑓)= 𝑗],𝜇 (𝛾, 𝑧) 𝑑 [𝑔∗𝑓] + 𝑗],𝜇 (𝛾, 𝑧) 𝜃],𝜇 [𝑔∗𝑓]+ 𝑑 (𝑗],𝜇 (𝛾, 𝑧)) [𝑔∗𝑓]= 𝑑 (𝑗],𝜇 (𝛾, 𝑧) [𝑔∗𝑓]) + 𝜃],𝜇𝑗],𝜇 (𝛾, 𝑧) [𝑔∗𝑓]= (𝑑 + ext 𝜃],𝜇) (𝑇],𝜇

𝑔 𝑓) .
(52)

Moreover, 𝑇],𝜇
𝑔 commutes also with (𝑑 + ext 𝜃],𝜇)∗ for 𝑇],𝜇

𝑔

being a unitary transformation. Therefore, by means of the
expression ofΔ ],𝜇 = −(𝑑+ext 𝜃],𝜇)∗(𝑑+ext 𝜃],𝜇) as amagnetic
Schrödinger operator 𝐻𝜃],𝜇

, we deduce easily that Δ ],𝜇 and𝑇],𝜇
𝑔 commute. This ends the proof.

Remark 11. For 𝑔 ∈ C𝑛 ⋊ {𝐼𝑛} = (C𝑛, +), where 𝐼𝑛 denotes
the identity matrix in C𝑛×𝑛, the unitary operators 𝑇],𝜇

𝑔 given
in (49) define projective representations of 𝐺 on the space of
C∞-functions on C𝑛. In fact, they are the so-called magnetic
translation operators that arise in the study of Schrödinger
operators in the presence of uniform magnetic field.

Remark 12. The potential vector 𝜃],𝜇 given through (38) can
be seen as a specific magnetic vector potential that corre-
sponds to an isotropic magnetic field of constant strength2𝜇, since 𝑑(𝑖𝜃],𝜇)(𝑧) = 2𝜇Vol(𝑧). It is issued from the
holomorphic gauge 𝜃ℎ𝜇 and the symmetric gauge 𝜃𝑠𝜇 defined,
respectively, by

𝜃ℎ𝜇 = −𝜇 𝑛∑
𝑗=1

𝑧𝑗𝑑𝑧𝑗,
𝜃𝑠𝜇 = −𝜇2 𝑛∑

𝑗=1

(𝑧𝑗𝑑𝑧𝑗 − 𝑧𝑗𝑑𝑧𝑗) . (53)

More exactly, we have the gauge transformations

𝜃],𝜇 = 𝜃ℎ𝜇 + 𝑖] + 𝜇2 𝑑 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑧𝑗󵄨󵄨󵄨󵄨󵄨2 ,
𝜃],𝜇 = 𝜃𝑠𝜇 + 𝑖]2 𝑑∑𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑧𝑗󵄨󵄨󵄨󵄨󵄨2 .

(54)
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Remark 13. The connection form 𝜃],𝜇 in (38) reads

𝜃],𝜇 (𝑧) = 𝑖 𝑛∑
𝑗=1

(𝜇𝑦𝑗 + ]𝑥𝑗) 𝑑𝑥𝑗 − (𝜇𝑥𝑗 − ]𝑦𝑗) 𝑑𝑦𝑗 (55)

in the real coordinates (𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛; 𝑦𝑛). Its diver-
gence is then showed to be given by div 𝜃],𝜇 = 2𝑖𝑛]. Accord-
ingly, div 𝜃],𝜇 corresponds to the constant term involved
in the expression of the magnetic quantum HamiltonianΔ ],𝜇 given through (34). Therefore, 𝜃],𝜇 is not a radiation
(coulomb) gauge, unless ] = 0, and therefore 𝜃],𝜇 can be seen
as a perturbation of the Coulomb gauge. The perturbation
operator in Δ ],𝜇 is given by

𝐷] fl 2𝑖] (𝐸 + 𝐸 + 𝑛) − ]2 |𝑧|2 , (56)

so that Δ ],𝜇 = 𝐻𝜇 + 𝐷].

5. Spectral Properties of Δ ],𝜇 Acting on

C∞(C𝑛) and on H = 𝐿2(C𝑛, 𝑑𝑚)
We denote by C∞(C𝑛) the Frechet space of complex-valued
functions on C𝑛 endowed with the compact-open topology,
while 𝐿2(C𝑛, 𝑑𝑚) denotes the usual Hilbert space of square
integrable complex-valued functions 𝐹(𝑧) onC𝑛 with respect
to the usual Lebesgue measure 𝑑𝑚. In the sequel, we will
give a concrete description of the eigenspaces of Δ ],𝜇 in
both C∞(C𝑛) and 𝐿2(C𝑛, 𝑑𝑚). To this end, let 𝜆 be any
complex number and denote by 𝐸𝜆(Δ ],𝜇) the eigenspace ofΔ ],𝜇 corresponding to the eigenvalue −2𝜇(2𝜆+𝑛) inC∞(C𝑛);
that is,𝐸𝜆 (Δ ],𝜇)= {𝐹 ∈ C

∞ (C𝑛) ; Δ ],𝜇𝐹 = −2𝜇 (2𝜆 + 𝑛) 𝐹} . (57)

Also, by F2
𝜆(Δ ],𝜇) we denote the subspace of 𝐿2(C𝑛, 𝑑𝑚)

whose elements satisfy Δ ],𝜇𝐹 = −2𝜇(2𝜆 + 𝑛)𝐹. Namely, by
elliptic regularity of Δ ],𝜇, we have

F
2
𝜆 (Δ ],𝜇) fl 𝐿2 (C𝑛, 𝑑𝑚) ∩ 𝐸𝜆 (Δ ],𝜇) . (58)

The first result related to 𝐸𝜆(Δ ],𝜇) and F2
𝜆(Δ ],𝜇) is the

following.

Proposition 14. The eigenspaces 𝐸𝜆(Δ ],𝜇) and F2
𝜆(Δ ],𝜇) are

invariants under the𝑇],𝜇-action given by (49), in the sense that
for every 𝑔 ∈ 𝐺 = C𝑛 ⋊ 𝑈(𝑛) we have

𝑇],𝜇
𝑔 (𝐸𝜆 (Δ ],𝜇)) ⊂ 𝐸𝜆 (Δ ],𝜇) ,𝑇],𝜇

𝑔 (F2
𝜆 (Δ ],𝜇)) ⊂ F

2
𝜆 (Δ ],𝜇) . (59)

Proof. This can be handled easily making use of the invari-
ance property (50) of Δ ],𝜇 by the unitary transformations𝑇],𝜇
𝑔 .

Proposition 15. The set of spherical eigenfuctions of Δ ],𝜇 with−2𝜇(2𝜆+𝑛) as eigenvalue is a one-dimensional vector subspace
of 𝐸𝜆(Δ ],𝜇) generated by𝜑],𝜇𝜆 (𝑧) = 𝑒−((𝜇−𝑖])/2)|𝑧|2 1𝐹1 (−𝜆; 𝑛; 𝜇 |𝑧|2) , (60)

where 1𝐹1(𝑎; 𝑐; 𝑥) is denoting here the usual confluent hyper-
geometric function

1𝐹1 (𝑎; 𝑐; 𝑥) = 1 + 𝑎𝑐 𝑥1! + 𝑎 (𝑎 + 1)𝑐 (𝑐 + 1) 𝑥22! + ⋅ ⋅ ⋅ ; 𝑥 ∈ C. (61)

Remark 16. By a “spherical” (or radial here) eigenfuction ofΔ ],𝜇, we mean any 𝑈(𝑛)-invariant function 𝑓 satisfying 𝑓(ℎ ⋅𝑧) = 𝑓(𝑧) for all ℎ ∈ 𝑈(𝑛) and 𝑧 ∈ C𝑛.

Proof (sketched). To prove the statement, we write Δ ],𝜇 in the
polar coordinates 𝑧 = 𝑟𝜃 with 𝑟 ≥ 0 and 𝜃 ∈ 𝑆2𝑛−1 as

Δ ],𝜇 = 𝜕2𝜕𝑟2 + (2𝑛 − 1𝑟 + 2𝑖]) 𝜕𝜕𝑟 − (]2 + 𝜇2) 𝑟2
+ 2𝑖]𝑛 + 𝐿𝜃

],𝜇, (62)

where 𝐿𝜃
],𝜇 stands for the tangential component of Δ ],𝜇.

The eigenvalue problem Δ ],𝜇𝑓 = −2𝜇(2𝜆 + 𝑛)𝑓 for radial
functions 𝑓(𝑧) = 𝜓(𝑥), with 𝑥 = 𝑟2 reduces to the differential
equation

{𝑥 𝜕2𝜕𝑥2
+ (𝑛 + 𝑖]𝑥) 𝜕𝜕𝑥

− []2 + 𝜇24 𝑥 + 𝑖] − 𝜇2 𝑛 − 𝜇𝜆]}𝜓 = 0. (63)

Next, making use of the appropriate change of function𝜓(𝑥) = 𝑒((𝑖]−𝜇)/2)𝑥𝑦(𝑥), we see that the previous equation
leads to the confluent hypergeometric differential equation
[20, page 193] 𝑥𝑦󸀠󸀠 + (𝑛 − 𝜇𝑥) 𝑦󸀠 + 𝜇𝜆𝑦 = 0 (64)

whose regular solution at 𝑥 = 0 is the confluent hypergeo-
metric function 1𝐹1(−𝜆; 𝑛; 𝜇𝑥).
Remark 17. The existence of the gradient of the function𝜑(𝑧) = (𝑖]/2)|𝑧|2, in the gauge transformation 𝜃],𝜇 = 𝜃𝑠𝜇 +(𝑖]/2)𝑑|𝑧|2, is equivalent to multiplying the eigenstates of
the Landau Hamiltonian 𝐻𝜇; ] = 0, by the phase factor𝑒−(𝑖]/2)|𝑧|2 . In fact, this follows by considering the similarity
transformation generated by the unitary operator 𝑆𝑓 =𝑒−(𝑖]/2)|𝑧|2𝑓 and next showing thatΔ ],𝜇 = 𝑒−(𝑖]/2)|𝑧|2Δ 0,𝜇𝑒+(𝑖]/2)|𝑧|2 . (65)

This is clear from the proof of Proposition 15. In other
words the operators Δ ],𝜇 and Δ 0,𝜇 are unitary equivalent in𝐿2(C𝑛, 𝑑𝑚).
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Remark 18. According to Remark 17, any physical interpre-
tation or application must take into account the parameter
] that is related to the special gauge transformation we have
made.

Remark 19. The key observation is contained in the identity
(65) which will serve as an outline of the proof of Proposi-
tion 15 as well as the proofs of the assertions below, taking
into account the well-established results for Δ 0,𝜇 (see [1, 4–7]
and the references therein).

Accordingly, we claim the following.

Proposition 20. Let (], 𝜇) ∈ R2 with 𝜇 > 0 and 𝜆 ∈ C. Then,
the eigenspaceF2

𝜆(Δ ],𝜇) as defined in (58) is nonzero (Hilbert)
space if and only if 𝜆 = 𝑙with 𝑙 = 0, 1, 2, . . ., is a positive integer
number. Moreover, the spaces F2

𝑙 (Δ ],𝜇), 𝑙 = 0, 1, 2, . . ., are
pairwise orthogonal in 𝐿2(C𝑛, 𝑑𝑚) and we have the following
orthogonal decomposition in Hilbertian subspaces:

𝐿2 (C𝑛, 𝑑𝑚) = ∞⨁
𝑙=0

F
2
𝑙 (Δ ],𝜇) . (66)

Remark 21. A direct proof of Proposition 20 can be handled
using Proposition 15 and the asymptotic behavior of the
confluent hypergeometric function given by [20, page 332]

1𝐹1 (𝑎; 𝑐; 𝑥)
= Γ (𝑐) { (−𝑥)−𝑎Γ (𝑐 − 𝑎) + 𝑒𝑥𝑥𝑎−𝑐Γ (𝑎) } (1 + 𝑂(1𝑥)) (67)

as 𝑥 → +∞. This asymptotic behavior can also be used to
show that the radial function 𝜑],𝜇𝜆 given by (60) is bounded if
and only if 𝜆 = 𝑙; 𝑙 = 0, 1, 2, . . ..
Remark 22. The unitary equivalence of Δ ],𝜇 and Δ 0,𝜇 in𝐿2(C𝑛, 𝑑𝑚) shows that the spectrum of Δ ],𝜇 is purely discrete
and coincides with the one of Δ 0,𝜇. Thus, the energy levels
(eigenvalues) are independent of the ]-parameter and are
quantized as −2𝜇(2𝑙 + 𝑛) for varying 𝑙 ∈ Z+. This is also
contained in Proposition 20. Moreover, each energy level is
infinitely degenerate, since it corresponds to infinite linearly
independent states of the quantum system. The states 𝜓𝑝,𝑞|𝑙,
given by (68) below, with index 𝑙 constitute the 𝑙th Landau
level.

The following result prescribes the elements of the 𝐿2-
eigenspaces of Δ ],𝜇 in terms of the confluent hypergeometric
functions 1𝐹1 and the harmonic polynomials ℎ𝑝𝑞(𝑧, 𝑧) onC𝑛

that are homogeneous of degree 𝑝 in 𝑧 and degree 𝑞 in 𝑧 (see
[21]).

Proposition 23. An orthogonal basis of the infinite dimen-
sional eigengspaceF2

𝑙 (Δ ],𝜇) in (58) is given by

𝜓𝜇

𝑝,𝑞|𝑙 (𝑧) = 𝑒−((𝜇+𝑖])/2)|𝑧|2 1𝐹1 (𝑞 − 𝑙, 𝑛 + 𝑝 + 𝑞; 𝜇 |𝑧|2)⋅ ℎ𝑝𝑞 (𝑧, 𝑧) , (68)

for arbitrary nonnegative integers 𝑝, 𝑞 with 𝑞 ≤ 𝑙. Moreover, a
function𝐹 belongs toF2

𝑙 (Δ ],𝜇) if and only if it can be expanded
as follows:

𝐹 (𝑧) = +∞∑
𝑝=0

𝑙∑
𝑞=0

𝑎𝑝,𝑞𝜓𝜇

𝑝,𝑞|𝑙 (𝑧) , (69)

where the constants 𝑎𝑝,𝑞 satisfy the growth condition
‖𝐹‖2𝐿2(C𝑛 ;𝑑𝑚) = +∞∑

𝑝=0

𝑙∑
𝑞=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑝,𝑞󵄨󵄨󵄨󵄨󵄨2 (1𝜇)𝑛+𝑝+𝑞

⋅ (𝑙 − 𝑞)!Γ2 (𝑛 + 𝑝 + 𝑞)2Γ (𝑛 + 𝑝 + 𝑙) 󵄩󵄩󵄩󵄩ℎ𝑝𝑞󵄩󵄩󵄩󵄩2𝐿2(𝑆2𝑛−1) < +∞. (70)

Proof. The result follows immediately from the similarity
transformation (65) combined with (ii) in Proposition 6 in
[5].

We conclude this section with the following assertion.

Proposition 24. Let (], 𝜇) ∈ R2 with 𝜇 > 0. For fixed 𝑙 =0, 1, 2, . . ., let 𝑃𝑙 be the orthogonal eigenprojector operator from𝐿2(C𝑛, 𝑑𝑚) onto the eigenspaceF2
𝑙 (Δ ],𝜇) with −2𝜇(2𝑙 + 𝑛) as

eigenvalue.Then the Schwartz kernel 𝑃],𝜇
𝑙 (𝑧, 𝑤) of the operator𝑃𝑙 is given by the following explicit formula:

𝑃],𝜇
𝑙 (𝑧, 𝑤) = (𝜇𝜋)𝑛 (𝑛 − 1 + 𝑙)!(𝑛 − 1)!𝑙! 𝑗],𝜇 (𝑧, 𝑤)⋅ 𝑒−(𝜇/2)|𝑧−𝑤|2

1𝐹1 (−𝑙; 𝑛; 𝜇 |𝑧 − 𝑤|2) , (71)

where the factor 𝑗],𝜇(𝑧, 𝑤), 𝑧, 𝑤 ∈ C𝑛, is given by𝑗],𝜇 (𝑧, 𝑤) = 𝑒−(𝑖]/2)(|𝑧|2−|𝑤|2)+(𝜇/2)(⟨𝑧,𝑤⟩−⟨𝑧,𝑤⟩). (72)

Proof (sketched). The proof for ] = 0 is contained in [1, 4,
5]. For arbitrary ], the proof can be handled in a similar way
or making use of the key observation that in 𝐿2(C𝑛, 𝑑𝑚), the
operators Δ ],𝜇 and Δ 0,𝜇 are unitary equivalents and we haveΔ ],𝜇 = 𝑒−(𝑖]/2)|𝑧|2Δ 0,𝜇𝑒+(𝑖]/2)|𝑧|2 . (73)

6. Factorization of Δ ],𝜇 and Associated
Hermite Polynomials

In this section we study the spectral theory of Δ ],𝜇 on𝐿2(C𝑛, 𝑑𝜆) using the factorizationmethod.Thismethod finds
its origin in theworks ofDirac [12] and Schrödinger [13], then
developed by Infeld andHull [14] in order to solve eigenvalue
problems appearing in quantum theory. For a recent survey
see [16].The key observation is that the Laplacian Δ ],𝜇 can be
rewritten as

Δ ],𝜇 = −4 𝑛∑
𝑗=1

(− 𝜕𝜕𝑧𝑗 + 𝜇 − 𝑖]2 𝑧𝑗)( 𝜕𝜕𝑧𝑗 + 𝜇 + 𝑖]2 𝑧𝑗)
− 2𝜇𝑛𝐼. (74)
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The spectral properties of Δ ],𝜇 on 𝐿2(C𝑛, 𝑑𝑚) or onC∞(C𝑛),
discussed in the previous section, can be derived from
Landau’s work (see [22]). In the sequel, we will adopt the
operator Δ̃ ],𝜇 fl −14Δ ],𝜇. (75)

The extra factor −1/4 is present to simplify later formulas.
According to factorization above, we defined for every 𝑗 =1, 2, . . . , 𝑛, the following first-order differential operators

𝑎+𝑗 = − 𝜕𝜕𝑧𝑗 + 𝜇 − 𝑖]2 𝑧𝑗 = −𝑒((𝜇−𝑖])/2)|𝑧𝑗|2 𝜕𝜕𝑧𝑗 𝑒−((𝜇−𝑖])/2)|𝑧𝑗|2 , (76)

𝑎−𝑗 = 𝜕𝜕𝑧𝑗 + 𝜇 + 𝑖]2 𝑧𝑗 = 𝑒−((𝜇+𝑖])/2)|𝑧𝑗|2 𝜕𝜕𝑧𝑗 𝑒((𝜇+𝑖])/2)|𝑧𝑗|2 . (77)

These operators satisfy the commutation relationships[𝑎−𝑗 , 𝑎+𝑘 ] = 𝑛𝜇𝛿𝑗,𝑘, where 𝛿𝑗,𝑘 is the Krönecker symbol. They
are linked to the Laplacian Δ̃ ],𝜇 through

𝑛∑
𝑗=1

𝑎+𝑗 𝑎−𝑗 = Δ̃ ],𝜇 − 𝑛2𝜇,
𝑛∑

𝑗=1

𝑎−𝑗 𝑎+𝑗 = Δ̃ ],𝜇 + 𝑛2𝜇.
(78)

Moreover, we have the following creation and annihilation
identities: Δ̃ ],𝜇𝑎+𝑗 = 𝑎+𝑗 (Δ̃ ],𝜇 + 𝜇) ,Δ̃ ],𝜇𝑎−𝑗 = 𝑎−𝑗 (Δ̃ ],𝜇 − 𝜇) (79)

and allow the determination of the eigenvalues and eigenvec-
tors of Δ̃ ],𝜇. Indeed, if 𝜓 is an eigenvector of Δ̃ ],𝜇 associated
with the eigenvalue 𝜆 we have the following:Δ̃ ],𝜇 (𝑎+𝑗 𝜓) = 𝑎+𝑗 (Δ̃ ],𝜇 + 𝜇)𝜓 = (𝜆 + 𝜇) 𝑎+𝑗 𝜓, (80)Δ̃ ],𝜇 (𝑎−𝑗 𝜓) = 𝑎−𝑗 (Δ̃ ],𝜇 − 𝜇)𝜓 = (𝜆 − 𝜇) 𝑎−𝑗 𝜓. (81)

Thus, we need only to know those associated with the lowest
eigenvalue. In fact, since Δ̃ ],𝜇 is positive semidefinite, all
the eigenvalues are real and nonnegative. Moreover, from
symmetry and ellipticity of Δ̃ ],𝜇 we know that Δ̃ ],𝜇 has an
infinite sequence of nonnegative eigenvalues (see, e.g., [10]):0 ≤ 𝜆0 < 𝜆1 < ⋅ ⋅ ⋅ ↑ ∞. (82)

Therefore, if 𝜓0 is an eigensolution associated with 𝜆0, we
have necessary 𝑎−𝑗 𝜓0 = 0 for every 𝑗 = 1, 2, . . . , 𝑛, thanks to
(81) and therefore 𝜓0(𝑧) = 𝑒−((𝜇+𝑖])/2)|𝑧|2𝑓(𝑧), where 𝑓 is any
arbitrary holomorphic function. This follows readily making
use the expression of 𝑎−𝑗 in (77) involving the exponential.
Consequently,

A0 = ker (𝑎−𝑗 )= span {𝑧𝑚𝑒−((𝜇+𝑖])/2)|𝑧|2 ; 𝑚 ∈ (Z+)𝑛} , (83)

where 𝑧𝑚 for given multi-index𝑚 fl (𝑚1, 𝑚2, . . . , 𝑚𝑛)means𝑧𝑚 fl 𝑧𝑚11 𝑧𝑚22 ⋅ ⋅ ⋅ 𝑧𝑚𝑛𝑛 .Making use of the creation operators we
obtain the following family of multi-indexed functions ℎ],𝜇𝑟,𝑠 ;𝑟 = (𝑟1, . . . , 𝑟𝑛); 𝑠 = (𝑠1, . . . , 𝑠𝑛):ℎ],𝜇𝑟,𝑠 = (𝑎+1 )𝑟1 ⋅ ⋅ ⋅ (𝑎+𝑛 )𝑟𝑛 (𝑧𝑠𝑒−((𝜇+𝑖])/2)|𝑧|2) = (−1)|𝑟|⋅ 𝑒((𝜇−𝑖])/2)|𝑧|2𝐷𝑟

𝑧𝑒−((𝜇−𝑖])/2)|𝑧|2 (𝑧𝑠𝑒−((𝜇+𝑖])/2)|𝑧|2)= (−1)|𝑟|+|𝑠| 𝜇−|𝑠|𝑒((𝜇−𝑖])/2)|𝑧|2𝐷𝑟
𝑧𝐷𝑠

𝑧 𝑒−𝜇|𝑧|2 ,
(84)

where |𝑚| and 𝑚! stand for |𝑚| fl 𝑚1 + ⋅ ⋅ ⋅ + 𝑚2 and 𝑚! fl𝑚1! ⋅ ⋅ ⋅ 𝑚𝑛!, respectively, and𝐷𝑚
𝑧 and𝐷𝑚

𝑧 are defined by

𝐷𝑚
𝑧 fl

𝜕|𝑚|𝜕𝑧𝑚11 ⋅ ⋅ ⋅ 𝜕𝑧𝑚𝑛𝑛

,
𝐷𝑚

𝑧 fl
𝜕|𝑚|𝜕𝑧𝑚11 ⋅ ⋅ ⋅ 𝜕𝑧𝑚𝑛𝑛

. (85)

According to the above discussion, ℎ],𝜇𝑟,𝑠 are eigensolutions
associated with the eigenvalue 𝜆𝑙 fl 𝜇(𝑛/2 + 𝑙); 𝑙 = |𝑟| =0, 1, 2, . . ., of Δ̃ ],𝜇. The following proposition shows that

𝜆𝑙 fl 𝜇(𝑛2 + 𝑙) ; 𝑙 = 0, 1, 2, . . . (86)

are the only eigenvalues of Δ̃ ],𝜇.

Proposition 25. ℎ],𝜇𝑟,𝑠 form a complete orthogonal system in
the Hilbert space 𝐿2(C𝑛, 𝑑𝜆). Moreover, we have the following
decomposition 𝐿2(C𝑛, 𝑑𝜆) = ⨁∞

𝑙=0A𝑙, where

A𝑙 fl span {ℎ],𝜇𝑟,𝑠 ; 𝑟, 𝑠 ∈ (Z+)𝑛 , |𝑟| = 𝑙} . (87)

Proof. The identity (84) shows that ℎ],𝜇𝑟,𝑠 , up to 𝑒𝑖]|𝑧|2/2, are
essentially the high-dimensional analogue of the univariate
complex Hermite functions

ℎ𝜎𝑚,𝑛 (𝜉, 𝜉) fl (−1)𝑚+𝑛 𝑒𝜎|𝜉|2 𝜕𝑚+𝑛𝜕𝜉𝑚𝜕𝜉𝑛 𝑒−𝜎|𝜉|2 ;𝜉 ∈ C, 𝜎 > 0, (88)

considered in [23, 24]. The main idea of the proof is then
to separate the variable 𝑧 in the expression (84) into its
components 𝑧𝑗 to getℎ],𝜇𝑟,𝑠 (𝑧, 𝑧)

= 𝜇−|𝑠|𝑒((−𝜇−𝑖])/2)|𝑧|2 𝑛∏
𝑗=1

(−1)𝑟𝑗+𝑠𝑗 𝑒𝜇|𝑧𝑗|2 𝜕𝑟𝑗+𝑠𝑗𝜕𝑧𝑟𝑗𝑗 𝜕𝑧𝑠𝑗𝑗 𝑒−𝜇|𝑧𝑗|2
= 𝜇−|𝑠|𝑒((−𝜇−𝑖])/2)|𝑧|2 𝑛∏

𝑗=1

ℎ𝑟𝑗 ,𝑠𝑗 (√𝜇𝑧𝑗, √𝜇𝑧𝑗) .
(89)
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This implies that the eigenvalues of Δ ],𝜇 = −4Δ̃ ],𝜇 are{−2𝜇 (𝑛 + 2𝑙) ; 𝑙 = 0, 1, 2, . . .} , (90)

which coincide with the results in Section 5. Notice as well
thatF2

𝑙 (Δ ],𝜇) and A𝑙 refer to the same set.

Remark 26. TheHermite functions ℎ],𝜇𝑟,𝑠 are given explicitly byℎ],𝜇𝑟,𝑠

= 𝜇−|𝑠|𝑒((−𝜇−𝑖])/2)|𝑧|2min(𝑟,𝑠)∑
|𝑘|=0

(√𝜇|𝑟|+|𝑠|−2|𝑘|) (−1)|𝑟−𝑠| 𝑟!𝑠!𝑘! (𝑟 − 𝑘)! (𝑠 − 𝑘)! 𝑧𝑠−𝑘𝑧𝑟−𝑘, (91)

where 𝑟 = (𝑟1, . . . , 𝑟𝑛), 𝑠 = (𝑠1, . . . , 𝑠𝑛), and min(𝑟, 𝑠) fl(min(𝑟1, 𝑠1), . . . ,min(𝑟𝑛, 𝑠𝑛)).
7. Concluding Remarks

The consideration of the unitary transformations 𝑇],𝜇
𝑔 , 𝑔 ∈𝐺 = C𝑛 ⋊ 𝑈(𝑛), and the 𝑇],𝜇

𝑔 -invariance property satis-
fied by the magnetic Laplacian Δ ],𝜇 give rise to new class
of biweighted automorphic functions associated with the
automorphic factor 𝑗],𝜇(𝑔, 𝑧) when we restrict 𝑔 to belong
in a full-rank discrete subgroup Γ of 𝐺. We call them Γ-
periodic functions of biweight (], 𝜇). The considered Δ ],𝜇
leaves invariant this space and therefore the correspond-
ing eigenvalue problem is well-defined. Thus, a detailed
description of the spectral properties of Δ ],𝜇 when acting
on biweighted automorphic functions with respect to any
discrete subgroup of (C𝑛, +) (not necessary of full-rank) is of
great interest. In this context, the particular case ] = 0 andΓ = C𝑛 ⋊ {1}, these functions reduce further the classical one
studied in [11]. We hope to focus on this in a near future.
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