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Abstract The aim of the present paper is threefolds. Firstly, we complete the study
of the weighted hyperholomorphic Bergman space of the second kind on the ball
of radius R centred at the origin. The explicit expression of its Bergman kernel is
given and can be written in terms of special hypergeometric functions of two non-
commuting (quaternionic) variables. Secondly, we introduce and study some basic
properties of an associated integral transform, the quaternionic analogue of the so-
called second Bargmann transform for the holomorphic Bergman space. Finally, we
establish the asymptotic behavior as R goes to infinity. We show in particular that the
reproducing kernel of the weighted slice hyperholomorphic Bergman space gives rise
to its analogue for the slice hyperholomorphic Bargamann–Fock space.
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1 Introduction

The classical Segal–Bargmann transform is well-known in the literature [7,16,23] and
made the quantum mechanical configuration space L2(R,C) unitarily isomorphic to
the phase space of all holomorphic C-valued functions on the complex plane that are
e−ν|z|2dxdy-square integrable. Added to this transform, V. Bargmann has introduced
in the same paper [7, p. 203] the integral operator

Aα
holϕ(z) = (1 − z)−α−1

∫ +∞

0
ϕ(t) exp

(
t z

z − 1

)
tαe−t

�(α + 1)
dt (1.1)

mapping isometrically the Hilbert space

L2,α(R+,C) := L2
(
R

+; tαe−t

�(α + 1)
dt

)
; α > 0,

onto the classical holomorphicBergman space A2,α
hol (D,C)= Hol(D,C)∩L2,α(D,C)

consisting of all C-valued holomorphic functions on the unit disk D = {z ∈ C; |z| <

1} that are square integrable with respect to the hyperbolic measure

dλα(z) := (1 − |z|2)α−1 α

π
dxdy. (1.2)

The transform in (1.1) is realized as a coherent state transform associated to the lower
hyperbolic Landau level of a special magnetic Schrödinger operator on the Poincaré
disk [14]. In fact, the involved kernel function is related to the generating function
of the Laguerre polynomials L(α)

n . A q-analogue of the weighted Bergman Hilbert
space and the corresponding integral transform of Bargmann type in the setting of the
q-analysis are considered in [15].

The theory of slice regularity initiated by Gentili and Struppa in [18] extends in an
appropriate way the holomorphic setting on C to H-valued functions of one quater-
noinic variable. It was extensively studied and has foundmany interesting applications
in operator theory, quantum physics and Schur analysis [2–4,6,12,19]. In [5], Alpay
et al. have considered the slice hyperholomorphic Bargmann–Fock space

F2,ν
slice(H) = SR(H) ∩ L2,ν(CI ,H), (1.3)

where SR(H) denotes the space of (left) slice regular H-valued functions on quater-
nion and L2,ν(CI ,H), ν > 0, is theHilbert space ofH-valued functions that are square
integrablewith respect to theGaussianmeasure on an arbitrary sliceCI = R+RI . The
corresponding Segal–Bargmann transform is considered in [13] and maps isometri-
cally the L2-Hilbert space L2(R,H) onto the slice hyperholomorphic Bargmann–Fock
space F2,ν

slice(H). A quaternionic analogue of the Bergman theory in the setting of the
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slice regular functions on the open unit ball (centered at the origin) has been introduced
byColombo et al. [9] (see also [11]). Thus, the slice hyperholomorphic Bergman space
A2,α
slice(BR), for arbitrary radius, is defined to be

A2,α
slice(BR) := SR(BR) ∩ L2,α(BR,I ,H), α > 0, (1.4)

where L2,α(BR,I ,H) is the L2-Hilbert space onBR,I = BR∩CI ofH-valued functions
f subject to the norm boundedness

‖ f ‖2α,slice =
∫
BI

f (z)g(z)

(
1 − |z|2

R2

)α−1
α

πR2 dxdy < +∞. (1.5)

Notice that the parameter α above corresponds to α + 1 in [9,11] and the measure
in (1.5) is the volume measure associated to the quaternionic hyperbolic geometry
on BR induced from the scaled Poincaré-type differential metric ds2

BR
= R4(R2 −

|q|2)−2|dI q|2. The metric ds2
BR

(with R = 1) was defined in [8] by developing a
variation of an approach adopted by Ahlfors [1].

Motivated by these recent investigations in the theory of slice regularity and the
geometrical fact that the euclidean limit of the balls BR (hyperbolic case) gives rise
to the quaternionic space H (flat case), as the radius R goes to +∞, quite natural
questions arise of whether the analogue of the transformAα

hol can be constructed and

wether the two theories on F2,ν
slice(H) and A2,α

slice(BR) can be connected. Our main
purpose in the present paper is to answer these two questions. Namely, we establish a
quaternionic analogue of (1.1) for the slice hyperholomorphic Bergman space (Theo-
rem 4.3). Moreover, related basic properties are studied and the explicit expression of
its inverse is obtained (Theorem 4.5). We also exhibit an orthonormal basis (Propo-
sition 3.6) and give in Theorem 3.1 the closed expression of its reproducing kernel
generalizing the one obtained in [11, Theorem 4.1–Proposition 4.3] for α = 1. We
also provide an integral representation of this reproducing kernel (Theorem 3.9). This
integral representation involves the kernel function of the quaternionic analogue of the
second Bargmann transform for which we present in Theorem 3.11 a closed form of its
explicit formula. The study will be done on the quaternionic ball of radius R centred
at the origin so that the asymptotic behavior as R goes to infinity can be discussed.
We show in Theorem 5.1 that the pointwise limit of the weighted Bergman kernel of
the slice hyperholomorphic Bergman space A2,α

slice(BR), for the specific α = νR2, is
exactly the reproducing kernel of the slice hyperholomorphic Bargmann–Fock space
F2,ν
slice(H). This is to say that one canmove from theBergman universe to theBargmann

universe by taking the “euclidean limit”.
The following structure is adopted. To make the paper self-contained, we review

in Sect. 2 some basic mathematical concepts relevant to slice regular functions. For
more details, we refer the reader to [10,12,19] and the references therein. In Sect. 3
we complete the study of basic properties of the slice hyperholomorphic Bergman
space. Section 4 is devoted to the exact statements and the proofs of our main results
concerning the quaternionic analogue of the second Bargmann transform. The last
section discusses the asymptotic behavior, as R goes to +∞, of some elements in
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the slice heperholomorphic Bergman theory, like measure, basis and the reproducing
kernel function. It will be seen that they give rise to their analogues in the setting of
slice hyperbolic Bargmann–Fock space.

2 Preliminaries

Let H denote the quaternion algebra with its standard basis {1, i, j, k} satisfying the
Hamiltonian multiplication i2 = j2 = k2 = i jk = −1, i j = − j i = k, jk =
−k j = i and ki = −ik = j . For q ∈ H, we write q = x0 + x1i + x2 j + x3k
with x0, x1, x2, x3 ∈ R. With respect to the quaternionic conjugate defined to be
q = x0 − x1i − x2 j − x3k = �(q) − �(q), we have pq = q p for p, q ∈ H. The
modulus of q is defined by |q| = √

qq = (x20 + x21 + x22 + x23 )
1/2. The unit sphere

S2 = {q ∈ �H; |�(q)| = 1} in �H can be identified with S = {q ∈ H; q2 = −1},
the set of imaginary units. Moreover, any q ∈ H\R can be rewritten in a unique way
as q = x + I y for some real numbers x and y > 0, and imaginary unit I ∈ S.
Accordingly, H is the union of the so-called slices, CI = R + RI ; I ∈ S, that are
complex planes inH (passing through 0, 1 and I ) isomorphic to the complex plane C.

The basic notion in this section is the slice (left) regularity (or hyperolomorphicity)
of a function f : � −→ H on a given domain � ⊂ H, provided that f is a real
differentiable function on � and its restriction f I is holomorphic on �I := � ∩ CI .
That is, it has continuous partial derivatives with respect to x and y and the function
∂I f : �I −→ H defined by

∂I f (x + I y) := 1

2

(
∂

∂x
+ I

∂

∂y

)
f I (x + y I )

vanishes identically on �I . The corresponding space, denoted SR(�), is endowed
with the natural uniform convergence on compact sets. It turns out that SR(�) is
a right vector space, over the noncommutative field H. For � being the open ball
� = B(0, R) := {q ∈ H; |q| < R}, a function f is in SR(B(0, R)) if and only if it
admits a power series expansion [12,18,19]

f (q) =
+∞∑
n=0

qnan; an = 1

n!
∂n f

∂xn
(0) (2.1)

which converges absolutely and uniformly on every compact subset of B(0, R). Inter-
esting results for the slice hyperholomorphic functions are stated in the context of the
whole space H as well as of the Euclidean ball BR = B(0, R). These two domains
are special examples of the so-called axially symmetric slice domains. A slice domain
� ⊂ H is such that � ∩R �= ∅ and the set �I := � ∩CI is a domain of the complex
plane CI for any arbitrary I ∈ S, while the axial symmetry means that the whole
sphere x + yS := {x + y J ; J ∈ S} is contained in � for every q = x + y I ∈ �.

We conclude this section by recalling some fundamental results in the theory of
slice regular functions that are of particular interest for us (see [12,19] for details).
The first one relates slice regularity to classical holomorphy.
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Lemma 2.1 (Splitting lemma) Let f be a slice regular function on an open set U.
For every I and J two perpendicular imaginary units, there exist two holomorphic
functions F,G : UI = U ∩ CI −→ CI such that for all z = x + y I ∈ UI , we have

fI (z) = F(z) + G(z)J.

The global behavior of a slice holomorphic function on axially symmetric set is
completely determined by their behavior on a given slice. More precisely, we have

Lemma 2.2 (Representation formula) Let � be an axially symmetric slice domain
and f ∈ SR(�). Then, for any I, J ∈ S and every q = x + y J ∈ �, we have

f (x + y J ) = 1

2
(1 − J I ) f (x + y I ) + 1

2
(1 + J I ) f (x − y I ).

Lemma 2.3 (Extension Lemma) Let I ∈ S and h : �I −→ H be a holomorphic
function on a symmetric domain �I = � ∩ CI in CI with respect to the real axis.
Then, the function ext (h) defined by

ext (h)(x + y J ) := 1

2
[h(x + y I ) + h(x − y I )] + J I

2
[h(x − y I ) − h(x + y I )]; J ∈ S,

extends h to a slice regular function on the symmetric completion of �I defined by
∼
� = ∪{x + yS; x + y J ∈ �}. Moreover, ext (h) is the unique slice regular extension
of h.

Lemma 2.4 (Identity principle) Let f be a slice regular function on a slice domain
U and denote byZ f its zero set. IfZ f ∩CI has an accumulation point in UI for some
I ∈ S, then f vanishes identically on U.

3 The Slice Hyperholomorphic Bergman Space of the Second Kind
Revised

The definition of the slice hyperholomorphic Bergman space on the open unit ball B
(centered at the origin) was first presented in [9]. This was possible by extending the
complex holomorphic functions on the disc to the whole B by the representation for-
mula (Lemma 2.2). For arbitrary radius R, the slice hyperholomorphic Bergman space
A2,α
slice(BR) is defined by (1.4), A2,α

slice(BR) := SR(BR) ∩ L2,α(BR,I ,H). The extra
normalisation factor α/πR2 in (1.5) defining the measure is implemented to simplify
later formulas and mainly to get the asymptotic behavior when R goes to infinity. It

turns out that A2,α
slice(BR)|BR,I :=

{
f I ; f ∈ A2,α

slice(BR)
}
is the usual Bergman space

on the disc BR,I = DI (0, R) ⊂ CI with respect to the norm ‖·‖α,slice in (1.5). More-

over, it is shown in [9, Theorem 3, p. 50] that A2,α
slice(BR) is a reproducing kernel
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Hilbert space with respect to (1.5), whose the reproducing kernel K α
R(q, q ′) satisfies

f (q) =
∫
BR,I

K α
R,slice(q, z) f (z)

(
1 − |z|2

R2

)α−1
α

πR2 dxdy

for all f ∈ A2,α
slice(BR) and every I ∈ S

2. Notice for instance that by the representation
formula (Lemma 2.2), the involved integral does not depend on the choice of I ∈ S

2.
Moreover, it is clear that the restriction K α

R,I := K α
R,slice|BR,I×BR,I of the Bergman

kernel to BR,I × BR,I coincides with the classical Bergman kernel K α
R,hol(z, w) on

BR,I given by

K α
R,hol(z, w) =

(
1 − zw

R2

)−α−1

= K α
R,I (z, w). (3.1)

The explicit expression of K α
R,slice(q, p) for α = 1 and R = 1, is proved in [11,

Theorem 4.1–Proposition 4.3] to be given by

K α
R,slice(q, p) = (1 − 2q p + q2 p2)(1 − 2�(q)p + |q|2 p2)−2 (3.2)

= (1 − 2q�(p) + q2|p|2)−2(1 − 2qp + q2 p2). (3.3)

A direct computation shows that the two expressions (3.2) and (3.3) are the same. For
general α > 0, the expression of K α

R,slice(q, p) can be given in terms of the special
function

I a(q, p) :=
∞∑
n=0

(a)n

n! qn pn, (3.4)

with real parameter a and quaternionic variables q, p ∈ H, which is a particular case
of the left-sided Gauss hypergeometric function

2F
∗
1

(
[q, p]

∣∣∣∣a, b
c

)
=

∞∑
n=0

qn pn

n!
(a)n(b)n

(c)n
(3.5)

defined here for real c and quaternionic a, b ∈ H. Above (a)k denotes the Pochhammer
symbol (a)k = a(a + 1) · · · (a + k − 1) with (a)0 = 1. The above series converges
absolutely and uniformly on K × K ′ for any compact subsets K , K ′ ⊂ BR and is a
special case of involves

Theorem 3.1 The weighted Bergman kernel is given by

K α
R,slice(q, p) = I−α−1

(
q

R
,
p

R

) (
1 − 2

�(q)p

R2 + |q|2 p2
R4

)−α−1

(3.6)
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and

K α
R,slice(q, p) = I α+1

(
q

R
,
p

R

)
. (3.7)

Proof Fix I ∈ S and q ∈ BR,I . The equality (3.6) holds trivially for every p ∈
BR,I since both sides of (3.6) reduce further to K α

R,I (q, p) in (3.1). The assertion of
Theorem 3.1 for arbitrary p ∈ BR immediately follows from the identity principle
(Lemma 2.4) for right anti-slice regular functions. Indeed, the function

p �−→ K α
R,slice(q, p) − I−α−1

( p

R
,
q

R

) (
1 − 2

�(q)p

R2 + |q|2 p2
R4

)−α−1

vanishes on BR,I and is left slice regular for the coefficients in the expansion series
of I−α−1 being reals. Thus, it is identically zero on the whole BR . The proof of (3.7)
can be handled using similar arguments based essentially on the counterpart of the
identity principle for right slice regular functions. This completes the proof. ��
Remark 3.2 The explicit expression of K α

R,slice(q, p) in (3.6) in terms of the special

function I−α−1 in (3.4) can be suggested starting from (3.1) and using the extension
Lemma 2.3 (see the “Appendix”). Being indeed, we have

K α
R,slice(x + y I, p) = 1 − I Ip

2
K α

R,hol(x + y Ip, p) + 1 + I Ip
2

K α
R,hol(x − y Ip, p).

(3.8)

The proof presented here as suggested by the referee is more simpler.

Remark 3.3 For α being a nonnegative integer the expression (3.6) reduces further to
the following

K α
R,slice(q, p) = Pα+1

(
q

R
,
p

R

)(
1 − 2

�(q)p

R2 + |q|2 p2
R4

)−α−1

, (3.9)

where Pα+1(q, p) is the polynomial of degree α + 1 given by

Pα+1(q, p) =
α+1∑
k=0

(−α − 1)k
k! qk pk .

When taking α = 1, we recover (3.2) obtained in [11].

Corollary 3.4 We have the following identity (for the hypergeometric function 2F∗
1

in (3.5)),

I α+1
(
q

R
,
p

R

)
= I−α−1

(
q

R
,
p

R

)(
1 − 2

�(q)p

R2 + |q|2 p2
R4

)−α−1

. (3.10)
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In particular, for α = 1, we have

I 2
(
q

R
,
p

R

)
=

(
1 − 2

q�(p)

R2 + q2|p|2
R4

)−2 (
1 − 2

qp

R2 + q2 p2

R4

)
(3.11)

Proof The identity (3.10) follows by equating the right hand sides in both (3.6) and
(3.7). It can also be obtained using similar arguments as in the proof of Theorem 3.1.
A direct proof outside the framework of slice regular functions seems to be hard to
obtain for the lack of commutativity in the quaternions. The second identity (3.11)
is a particular case keeping in mind the expression of K α

R,slice(q, p), for arbitrary R,
given through (3.3). ��
Remark 3.5 The formula (3.7) and therefore the identity (3.10) can be reproved using
Proposition 3.6 below, since the K α

R,slice(q, p) can be realized as

K α
R,slice(q, p) =

∞∑
n=0

φn(q)φn(p) (3.12)

for any orthonormal total family of functions (φn)n in A2,α
slice(BR). The involved series

converges uniformly on K × K for any compact subset K ⊂ BR .

Proposition 3.6 The monomials en(q) := qn form an orthogonal basis of A2,α
slice(BR)

with respect to (1.5). The square norm of the en is given by

‖en‖2α,slice = n!R2n�(α + 1)

�(n + α + 1)
. (3.13)

Proof The first assertion follows by similar arguments as in the classical case. The
norm of en(q) := qn = rneInθ can be computed easily using the polar coordinates
and making use of the appropriate change of variable t = r2/R2. Indeed,

〈en, em〉α,slice =
( α

πR2

) ∫
BR,I

qnqm
(
1 − |q|2

R2

)α−1

dxdy

= αR2nδm,n

∫ 1

0
tn(1 − t)α−1dt

= n!R2n�(α + 1)

�(n + α + 1)
δm,n .

The last equality follows making use of α�(α) = �(α + 1) as well as of the well-
known Euler’s Beta integral [21, Theorem 7, p. 19]

∫ 1

0
ta−1(1 − t)b−1dt = �(a)�(b)

�(a + b)

valid for �(a) > 0 and �(b) > 0. ��
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As immediate consequence of Proposition 3.6, one can easily obtain the following

〈 f, g〉α,slice =
∑
n�0

n!R2n�(α + 1)

�(n + α + 1)
anbn

for any f (q) = ∑∞
n=0 q

nan and g(q) = ∑∞
n=0 q

nbn in A2,α
slice(BR). In particular, we

assert the following

Corollary 3.7 A given f (q) = ∑∞
n=0 q

nan; an ∈ H, belongs to A2,α
slice(BR) if and

only if the coefficients an satisfies the growth condition

‖ f ‖2α,slice =
∞∑
n=0

n!R2n�(α + 1)

�(n + α + 1)
|an|2 < +∞. (3.14)

Remark 3.8 The identity (3.14) shows in particular that the quantity ‖ f ‖2α,slice is
independent of the choice of the purely imaginary unit I ∈ S.

Now, let define Aα
R,slice to be

Aα
R,slice(t; x + y Iq) = 1 − Iq J

2
Aα
R,hol(t; x + y J ) + 1 + Iq J

2
Aα
R,hol(t; x − y J )

(3.15)
defined on R

+ × BR , where

Aα
R,hol(t; z) := exp

(
t z

z − R

)(
1 − z

R

)−α−1
(3.16)

is the kernel function of the second Bargmann transform (1.1). The following result
shows that slicedweightedBergman kernel K α

R,slice is connected to the kernel function
Aα
R,slice.

Theorem 3.9 For every q, q ′ ∈ BR, we have

∫ +∞

0
Aα
R,slice(t; q)Aα

R,slice(t; q ′) tαe−t

�(α + 1)
dt = K α

R,slice(q, q ′).

Proof Thanks to the identity principle for slice regular functions, we need only to
prove the result for a fixed I ∈ S. In fact, the function t �−→ Aα

R,hol(t; z) belongs to
L2,α(R+,CI ) and satisfies

∫ +∞

0
Aα
R,hol(t; z)Aα

R,hol(t;w)
tαe−t

�(α + 1)
dt = K α

R,I (z, w)

for every fixed z, w ∈ BR,I . This follows readily using the generating function charac-
ter of the kernel function Aα

R,hol(t; z) in (3.16), to wit Aα
R,hol(t; z) = ∑∞

n=0 z
nL(α)

n (t),
combined with the orthogonality property [21, Eq. (4), p. 205–Eq. (7), p. 206]
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∫ +∞

0
L(α)
n (t)L(α)

m (t)
tαe−t

�(α + 1)
dt = �(α + n + 1)

�(n + 1)�(α + 1)
δn,m . (3.17)

Above L(α)
n (t) denotes the generalized Laguerre polynomials defined by [21, p. 203

and p. 204]

L(α)
n (t) =

n∑
k=0

�(α + n + 1)

�(n − k + 1)�(α + k + 1)

(−t)k

k! = t−αet

n!
dn

dtn
(
tn+αe−t) . (3.18)

��
Corollary 3.10 For every fixed q ∈ BR, the function t �−→ Aα

R,slice(t; q) belongs to

L2,α(R+,H) := L2
H

(
R

+; tαe−t

�(α + 1)
dt

)
; α > 0,

the right quaternionic Hilbert space of all square integrable H-valued functions on
the half-real line with respect to the scalar product

〈φ, ϕ〉α,R+ =
∫ ∞

0
φ(t)ϕ(t)

tαe−t

�(α + 1)
dt.

We conclude this section by giving an explicit closed formula of the kernel Aα
R,slice

in (3.15).

Theorem 3.11 For every t ∈ R
+ and q ∈ BR, we have

Aα
R,slice(t; q) = Ãα

R,slice(t; q) :=
(
1 − q

R

)−α−1
exp

(
tq

q − R

)
.

Proof Fix t ∈ R
+. It is clear that the restriction Ãα

R,slice(t; ·) to any BR,I is holomor-
phic and coincides with the kernel function Aα

R,hol(t; ·), given through (3.16), of the
second Bargmann transform for the classical complex holomorphic Bergman space.
On the other hand, the function Aα

R,slice(t; q) is clearly slice regular in q-variable and
coincides with Aα

R,hol(t; ·)when restricted toBR,I . Thus, by Lemma 2.4, we conclude

that Ãα
R,slice(t; ·) = Aα

R,slice(t; ·) on the whole BR . ��

4 An Integral Transform from L2,α(R+,H) onto A2,α
sl i ce(BR)

In this section, we consider and study a special integral transform from L2,α(R+,H)

into A2,α
slice(BR). A complete orthonormal system for L2,α(R+,H) is given by

φn(x) =
(

�(n + 1)�(α + 1)

�(α + n + 1)

)1/2

L(α)
n (x), n = 0, 1, . . . , (4.1)
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where L(α)
n (x) denotes the generalized Laguerre polynomials given by (3.18). Recall

also that the set of functions

fn(q) =
(

�(n + α + 1)

n!�(α + 1)

)1/2 ( q

R

)n
, (4.2)

is an orthonormal basis of the slice hyperholomorphic Bergman space A2,α
slice(BR)

(see Proposition 3.6). Accordingly, by considering the kernel function Aα
R,slice(t; q)

defined on R
+ × BR by (3.15) or equivalently by its explicit expression given in

Theorem 3.11, we can prove the following.

Lemma 4.1 The kernel function Aα
R,slice can be realized as

Aα
R,slice(t; q) =

∞∑
n=0

φn(t) fn(q) =
∞∑
n=0

( q

R

)n
L(α)
n (t).

for every t ≥ 0 and q ∈ BR.

Proof This follows readily from the generating function [21, Eq. (14), p. 135]

∞∑
n=0

ξnL(α)
n (t) = 1

(1 − ξ)α+1 exp

(
tξ

ξ − 1

)
.

Indeed, we have

∞∑
n=0

φn(t) fn(q) =
∞∑
n=0

( q

R

)n
L(α)
n (t) = exp

(
tq

q − R

) (
1 − q

R

)−α−1
.

��
Associated to Aα

R,slice, we perform the integral operator

Aα
R,sliceϕ(q) =

(
1 − q

R

)−α−1
∫ +∞

0
exp

(
tq

q − R

)
ϕ(t)

tαe−t

�(α + 1)
dt. (4.3)

Lemma 4.2 The integral transform Aα
R,slice is well-defined on L2,α(R+,H).

Proof This can be handled easily making use of the Cauchy–Schwarz inequality.
Indeed, we have

|Aα
R,sliceϕ(q)| �

∫ ∞

0
|Aα

R,slice(t; q)||ϕ(t)| tαe−t

�(α + 1)
dt

�
(∫ ∞

0
|Aα

R,slice(t; q)|2 tαe−t

�(α + 1)
dt

) 1
2
(∫ ∞

0
|ϕ(t)|2 tαe−t

�(α + 1)
dt

) 1
2

.



A. El Kachkouri, A. Ghanmi

Now, since t �−→ Aα
R,slice(t; q) belongs to L2,α(R+,H) for every fixed q ∈ H (see

Theorem 3.9), we deduce

|Aα
R,sliceϕ(q)| �

∥∥Aα
R,slice(·; q)

∥∥
L2,α(R+,H)

‖ϕ‖L2,α(R+,H) .

��
Moreover, we can prove the following

Theorem 4.3 The integral operator Aα
R,slice defines a unitary isometry transform

from L2,α(R+,H) onto A2,α
slice(BR).Moreover, we haveAα

R,sliceφn(q) = fn(q),where

φn(x) and fn(q) are respectively the orthogonal bases of L2,α(R+,H) and the slice
hyperholomorphic Bergman space A2,α

slice(BR) given by (4.1) and (4.2), respectively.

Proof Fix I ∈ S. The identification of the sliceCI with the complex planeC andBR,I

with the disc DR = D(0, R) of C leads to the consideration of the unitary isometry
Aα

R,hol from L2,α(R+,CI ) onto A2,α
hol (BR,I ). It is specified by the rescaled version of

the formula (1.1), to wit

Aα
R,holϕ(z) =

(
1 − z

R

)−α−1
∫ +∞

0
ϕ(t) exp

(
t z

z − R

)
tαe−t

�(α + 1)
dt

for z, w ∈ BR,I . Now, for J ∈ S such that J ⊥ I , we split any ϕ ∈ L2,α(R+,H) as
ϕI = F + GJ for some F,G : R+

I −→ CI . Obviously, we have R
+
I = R

+, ϕI = ϕ

as well as

(Aα
R,sliceϕ)I = Aα

R,sliceF + (Aα
R,sliceG)J = Aα

R,hol F + (Aα
R,holG)J

by means of (4.3) and thereforeAα
R,sliceφn(q) = fn(q). Moreover, it is evident to see

that F,G ∈ L2,α(R+,CI ) with

∥∥Aα
R,sliceϕ

∥∥2
α,slice

= ∥∥Aα
hol F

∥∥2
α,slice + ∥∥Aα

holG
∥∥2

α,slice

= ‖F‖2L2,α(R+,CI )
+ ‖G‖2L2,α(R+,CI )

= ‖ϕ‖2L2,α(R+,H)
.

Accordingly, the transformAα
R,slice from L2,α(R+,H) into A2,α

slice(BR) is injective and
an isometry. On the other hand, since Aα

R,hol is surjective, we see that so is Aα
R,slice.

Therefore, Aα
R,slice is a unitary isometry from L2,α(R+,H) onto A2,α

slice(BR). ��

Remark 4.4 The argument of splittingϕ asϕI = F+GJ for some F,G : R+
I −→ CI

with J ∈ S and that J ⊥ I is used in [22] and is the basic idea in the splitting
Lemma 2.1. The result of Theorem 4.3 can also be proved by using (3.15) in order to
rewrite the integral transform Aα

R,slice acting on L2,α(R+,H), in (4.3), as
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Aα
R,sliceϕ(q) = 1 − Iq J

2

∫ +∞

0
Aα
R,hol(t; zq)ϕ(t)

tαe−t

�(α + 1)
dt

+ 1 + Iq J

2

∫ +∞

0
Aα
R,hol(t; zq)ϕ(t)

tαe−t

�(α + 1)
dt.

The second main result of this section is the following

Theorem 4.5 The inverse transform [Aα
R,slice]−1 : A2,α

slice(BR) −→ L2,α(R+,H) of
Aα

R,slice is given by

[Aα
R,slice]−1 f (t) =

( α

πR2

) ∫
BR,I

exp

(
tq

q − R

) (
1 − |q|2

R2

)α−1

(
1 − q

R

)α+1 f (q)dxdy. (4.4)

Proof The inverse of the unitary isometric transform Aα
R,hol in (4.3) is given by its

hermitian conjugate (the adjoint). More explicitly, we claim that

[Aα
R,hol ]−1F(t) =

( α

πR2

) ∫
BR,I

F(z) exp

(
t z

z − R

) (
1 − |z|2

R2

)α−1

(1 − z
R )α+1

dxdy (4.5)

for every F ∈ A2,α
hol (BR,I ). Consequently, the inverse transform of Aα

R,slice in (4.3),
the quaternionic analogue of Aα

R,hol , is given by (4.4). This follows readily from the
splitting Lemma 2.1 combined with (4.5) above. ��

5 Asymptotic Behavior: From Slice Bergman to Slice Bargmann

Intuitively, the space H can be viewed as the euclidean limit of balls BR in H, as the
radius R goes to+∞. This intuitive limit can be justified geometrically. The analogue
of the Poincaré (the real hyperbolic) differential metric on the unit open ball B in the
quaternionic setting is given by ds2

B
= (1− |q|2)−2|dI q|2, where q = x + I y; I ∈ S,

and dI q = dx+ I dy. It was proposed by Bisi and Gentili [8] by developing a variation
of an approach adopted by Ahlfors [1]. The quaternionic hyperbolic geometry on BR

is described by the scaled Poincaré-type differential metric

ds2
BR

= R4(R2 − |q|2)−2|dI q|2.

The associated volume measure is given by

dλα
I,R(q = x + I y) =

( α

πR2

)(
1 − |q|2

R2

)α−1

dxdy.

Therefore, the sectional curvature of (BR, ds2
BR

), given by κR = − 4/R2, tends to 0

which corresponds to the curvature of the flat hermitian manifold (H, ds2
H
) endowed
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with the flat metric ds2
H

= |dI q|2. Moreover, if we parameterize α as α = νR2 for
some fixed ν > 0, we see that the sliced measure dλα

I,R converges pointwisely to the
sliced volume measure on H,

lim
R→+∞ dλνR2

I,R (q = x + I y) =
( ν

π

)
lim

R→+∞

(
1 −

∣∣∣ q
R

∣∣∣2
)νR2

dxdy =
( ν

π

)
e−ν|q|2dxdy.

With respect to this parametrization, the orthonormal basis of the slice hyperholo-
morphic Bergman space A2,α

slice(BR) given by the functions

fn(q) =
(

�(n + νR2 + 1)

n!�(νR2 + 1)

)1/2 ( q

R

)n
,

(see Proposition 3.6), also gives rise to

en(q) =
(

νn

n!
)1/2

qn,

pointwisely, when R goes to infinity. The set of en(q) is in fact an orthonormal basis
of the slice hyperholomorphic Bargmann–Fock space

F2,ν
slice(H) = SR(H) ∩ L2,ν(CI ,H) (5.1)

with respect to the sliced Gaussian measure
(

ν
π

)
e−ν|q|2dxdy. This follows readily

thanks to the Binet formula [21]

lim
x→+∞

�(x + a)

xa−b�(x + b)
= 1.

The main result of this section concerns the pointwise convergence of the reproducing
kernel function.

Theorem 5.1 The pointwise limit of the weighted Bergman kernel K νR2

R,slice of the slice

hyperholomorphic Bergman space A2,νR2

slice (BR) is exactly the reproducing kernel of the

slice hyperholomorphic Bargmann–Fock spaceF2,ν
slice(H) in (5.1). More precisely, for

every fixed (q, p) ∈ H × H, we have

lim
R→+∞ K νR2

R,slice(q, p) = e[νq,p]∗ :=
+∞∑
n=0

νnqn pn

n! .

Proof Recall first that for α = νR2 and R being reals, the expression of the repro-
ducing kernel K α

R,slice given by (3.7) reads

K α
R,slice(q, p) = 2F

∗
1

(
νR2 + 1, 0

0

∣∣∣∣
[ q

R2 , p
])

.
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Accordingly, what is needed to conclude is an asymptotic behavior of the involved
hypergeometric function. Thus, we claim that for every fixed q, p ∈ H and reals
a, b, c, we have (see [17] for a rigorous proof that we can extend to our context by
means of the identity principle for slice regular functions)

lim
ρ−→+∞ 2F

∗
1

(
a + ρ, b

c

∣∣∣∣
[
q

ρ
, p

])
= 1F

∗
1

(
b
c

∣∣∣∣ [q, p]

)
. (5.2)

Moreover, the convergence is uniform on compact sets of H × H. Therefore, one
obtains

lim
R→+∞ K νR2

R,slice(q, p) ==
+∞∑
n=0

νnqn pn

n! = e[νq,p]∗ .

��

Remark 5.2 According to the uniform convergence of the series in (5.2) on compact
sets of H × H, the convergence in Theorem 5.1 of the reproducing kernel function is
uniform in (q, p) in any compact set of H × H.
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6 Appendix

The suggested expression of the weighted Bergman kernel K α
R,slice(q, p) in (3.6) can

be handled as follows (which is in fact a different proof of Theorem 3.1). Fix p ∈ BR

and let q = x + I y ∈ BR . Take z p to be z p = x + Ip y. Then, by the representation
formula and the explicit expression of the classical weighted Bergman kernel given
through (3.1), we obtains

K α
R,slice(q, p) = K α

R,slice(x + I y, p)

= 1

2

(
K α

R,slice(z p, p) + K α
R,slice(z p, p)

)

+ I Ip
2

(
K α

R,slice(z p, p) − K α
R,slice(z p, p)

)

= 1

2

⎛
⎜⎝

(
1 − z p p

R2

)α+1 +
(
1 − z p p

R2

)α+1

(
1 − z p p

R2

)α+1 (
1 − z p p

R2

)α+1

⎞
⎟⎠
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+ I Ip
2

⎛
⎜⎝

(
1 − z p p

R2

)α+1 −
(
1 − z p p

R2

)α+1

(
1 − z p p

R2

)α+1 (
1 − z p p

R2

)α+1

⎞
⎟⎠ .

Straightforward computation shows that

(
1 − z p p

R2

)α+1 (
1 − z p p

R2

)α+1

=
(
1 − 2

�(q)p

R2 + |q|2 p2
R4

)α+1

and

(
1 − z p p

R2

)α+1

±
(
1 − z p p

R2

)α+1

=
∞∑
k=0

(−α − 1)k
k! (zkp ± z p

k)

(
p

R2

)k

.

The equality follows using the binomial theorem for real exponent

(a − b)β =
∞∑
k=0

(−β)k

k! aβ−kbk

valid for |a| > |b|. Consequently, the expression of K α
R,slice(q, p) becomes

K α
R,slice(q, p) =

( ∞∑
k=0

(−α − 1)k
k!

1

2

[
(zkp + z p

k) + I Ip(z
k
p − z p

k)
] (

p

R2

)k
)

×
(
1 − 2

�(q)p

R2 + |q|2 p2
R4

)−α−1

.

Now, making use of the well-established fact

qk = (x − I y)k = 1

2

(
((x + J y)k + (x − J y)k) + I J ((x + J y)k − (x − J y)k)

)
,

for every nonnegative integer k and arbitrary q ∈ H and J ∈ S, we conclude easily
that

K α
R,slice(q, p) =

( ∞∑
k=0

(−α − 1)k
k!

qk pk

R2k

) (
1 − 2

�(q)p

R2 + |q|2 p2
R4

)−α−1

.

References

1. Ahlfors, L.V.: Cross-ratios and Schwarzian derivatives inRn . In: Hersch, J., Huber, A. (eds.) Complex
Analysis, pp. 1–15. Birkhäuser, Basel (1988)

2. Alpay, D., Bolotnikov, V., Colombo, F., Sabadini, I.: Interpolation problems for certain classes of slice
hyperholomorphic functions. Integr. Equ. Oper. Theory 86(2), 165–183 (2016)



The Slice Hyperholomorphic Bergman Space on BR ...

3. Alpay, D., Colombo, F., Sabadini, I.: Schur functions and their realizations in the slice hyperholomor-
phic setting. Integr. Equ. Oper. Theory 72(2), 253–289 (2012)

4. Alpay, D., Colombo, F., Sabadini, I.: Pontryagin-de Branges-Rovnyak spaces of slice hyperholomor-
phic functions. J. Anal. Math. 121, 87–125 (2013)

5. Alpay, D., Colombo, F., Sabadini, I., Salomon, G.: The Fock space in the slice hyperholomorphic
Setting. In: Bernstein, S., et al. (eds.) Hypercomplex Analysis: New Perspectives and Applications.
Trends in Mathematics, pp. 43–59. Birkhäuser, Basel (2014)

6. Alpay, D., Colombo, F., Sabadini, I.: Slice hyperholomorphic Schur analysis. In: Todorov, I.G., Tur-
owska, L. (eds.) Operator Theory: Advances and Applications, vol. 256. Birkhäuser, Basel (2016)

7. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun.
Pure Appl. Math. 14, 187–214 (1961)

8. Bisi, C., Gentili, G.: Möbius transformations and the Poincaré distance in the quaternionic setting.
Indiana Univ. Math. J. 58(6), 2729–2764 (2009)

9. Colombo, F., Gonzlez-Cervantes, J.O., Luna-Elizarrars, M.E., Sabadini, I., Shapiro, M.: On two
approaches to the Bergman theory for slice regular functions. In: Gentili, G. (ed.) Advances in Hyper-
complex Analysis. Springer INdAM Series, vol. 1, pp. 39–54. Springer, Milan (2013)

10. Colombo, F., Gonzalez-Cervantes, J.O., Sabadini, I.: The C-property for slice regular functions and
applications to the Bergman space. Complex Var. Elliptic Equ. 58(10), 1355–1372 (2013)

11. Colombo, F., Gonzalez-Cervantes, J.O., Sabadini, I.: Further properties of the Bergman spaces of slice
regular functions. Adv. Geom. 15(4), 469–484 (2015)

12. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative functional calculus, theory and applications
of slice hyperholomorphic functions. In: Le Tourneau, C.D., Ford, E. (eds.) Progress in Mathematics,
vol. 289. Birkhäuser, Basel (2011)

13. Diki, K., Ghanmi, A.: A quaternionic analogue of the Segal–Bargmann transform. Complex Anal.
Oper. Theory 11(2), 457–473 (2017)

14. El Wassouli, F., Ghanmi, A., Intissar, A., Mouayn, Z.: Generalized second Bargmann transforms
associated with the hyperbolic Landau levels in the Poincaré disk. Ann. Henri Poincaré 13(3), 513–
524 (2012)

15. Essadiq, A., Ghanmi, A., Intissar, A.: A q-analogue of the weighted Bergman space on the disk and
associated second q-Bargmann transform. J. Math. Anal. Appl. 443(2), 1311–1322 (2016)

16. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122. Princeton
University Press, Princeton (1989)

17. Ghanmi, A., Intissar, A.: Asymptotic of complex hyperbolic geometry and L2-spectral analysis of
Landau-like Hamiltonians. J. Math. Phys. 46(3), 032107 (2005). 26 pp

18. Gentili, G., Struppa, D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math.
216(1), 279–301 (2007)

19. Gentili, G., Stoppato, C., Struppa, D.C.: Regular Functions of a Quaternionic Variable. SpringerMono-
graphs in Mathematics. Springer, Heidelberg (2013)

20. Hall, B.C.: Bounds on the Segal–Bargmann transform of L p-functions. J. Fourier Anal. Appl. 7(6),
553–569 (2001)

21. Rainville, E.D.: Special Functions. Chelsea Publishing Co., Bronx (1960)
22. Ren, G., Wang, X.: Slice regular composition operators. Complex Var. Elliptic Equ. 61(5), 682–711

(2016)
23. Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics, vol. 263. Springer, New York

(2012)


	The Slice Hyperholomorphic Bergman Space on mathbbBR: Integral Representation and Asymptotic Behavior
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Slice Hyperholomorphic Bergman Space of the Second Kind Revised
	4 An Integral Transform from L2,α(mathbbR+,mathbbH) onto A2,αslice(mathbbBR)
	5 Asymptotic Behavior: From Slice Bergman to Slice Bargmann
	Acknowledgements
	6 Appendix
	References




