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Abstract

Let 71 and 7% be two formally symmetric differential operators defined
on the Hilbert space H of square integrable functions on positive half-line.
If T\ and 7% commute, then 7173, their composite, is symmetric. The
converse of this statement is not necessarily true. We have shown how to
construct formally symmetric- diffetential operators from the composites
of two non-commutative formally symmetric differential operators. Sim-
ilarly, it has been proved that a foymally symmetric differential operator
can be obtained from the composite of two non-commutative differential
operators not both symmetric. Finally, by application of Rank-Nullity
Theorem, the deficiency indices of 717% is equal to the sum of deficiency
indices of 71 and 7> when the operators have closed ranges.
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1 Introduction

We consider two differential equations of order 2nth and 2mth that are formally
symmetric given by

ny(@) = v (@) (D—l)k(pk(w)y(k’(x»“") )

k=0
and '
ray(@) = w(z) | D _(-1) (g5 (z)y Py ©)

j=0
)
defined on H, = £2([0,00)). Tor simplicity of computations, we will as-

sume that w(z) = 1 for all z € [0,{)0) so that we have the Hilbert space
H = L£2([0,00)). Not all linear differential equations generate symmetric differ-
ential operators on H. Walker [11] and Weidmann [13] had devised a way of
constructing differential expressions that are formally symmetric. In line with
the results in [11, 13], my(z) and Tay(z) generate formally symmetric differen-
tial operators on H while the differential operator generated by T1m2y(z) is not



|

necessarily a symmetric operator. It is well documented in the literature that
the composite of two commuting symmetric operators is symmetric as shown in
the following Lemma.

Lemma 1.1 Let Ty and Ty be two operators defined on a Hilbert space H and
T1T3 be their composite. Suppose that T; and Ty are symmetric operators with
Ty commuting with Ty, then TyTy is symmetric.

The converse of Lemma 1.1 is not necessarily true as we have discovered, at least,
for unbounded operators. The necessary and sufficient conditions on pr(z) and
g;(z) for (1) and (2) to commute were obtained by Amitsur, see the results in
[1]. The problem of finding two differential operators defined on a Hilbert space
of square integrable functions on a half line whose composite is symmetric -and
the operators are not symmetric nor commutative is equivalent to the problem
of factorisation of linear differential equations. Factorisation of differential equa-
tions have largely been studied-both in terms of differential theories and Galois
theory. In summary, a linear differential equation is solvable (factorisable) in
terms of its quadratures or Liouvillian extensions if and only if the connected
components of the corresponding Galois group is tringularisable. This partic-
ular problem has a long standing hik‘tory being a difficult problem in algebraic
equation algorithims for factorising linear differential equations or polynomials
at the level of resolutions of algebraic equations. For more details, see [6] and
references therein.

In this particular paper, we are motivated to compute the deficiency indices of

- such composite and compare them with the sum of the deficiency indices of the
minimal differential operators generated by 7 and 7 respectively. Similarly,
we have focussed on when the composites of 7; and 75 can generate formally
symmetric differential equations. We have shown here, how one can actually
construct a symmetric differential operator from the composite of two non-
commutative operators, one of which is symmetric and the other non-symmetric.
Such operators are generated by 71y(z) and Toy(z). '

Our results, on the sum of deficiency indices which have been proved by ap-
plication of the Rank-Nullity Theorem, states that if T, and 75 are differential
operators such that T} and T, are closed densely defined operators with 77 and
T having closed ranges in #, then the deficiency indices of the composite op-
erator 7173 is equal to the sum of the individual deficiency indices of 7T} and
T5. For the constructed two second order differential operators, the deficiency
indices of their composite achieve this in the limit point case with the spectrum
of the selfadjoint operator extension as pure discrete. On the other hand, we
have constructed a formula for obtaining a formally symmetric differential op-
erator using the differential operators generated by 71y(z) and 72y(z) that are
not necessarily commutative. !

Deficiency indices results require proper understanding of the asymptotic be-
haviour of the solutions associated to these differential equations. It is, therefore,
prudent to start by giving a result that shows the existence of the basis of so-
lutions of the composite of 71 and 7» in relation to the bases of the solutions of
71y(z) = 0 and 73y(z) = 0 and for more details, see [6].



Lemma 1.2 Let mmoy(z) = 0 be a homogeneous differential equation which is
composite of Ty(x) and Toy(z) with y(z) € H = L2([0,00)). Then there exists
a basis of solutions of the composite that can be determined from the bases of
solutions of homogeneous equations Tiy(z) =0 and T2y(z) = 0.

Proof Suppose that {y1,yz,--.,Y2m} is a basis of solutions of 72y = 0 and
{#1,T2,---,Jon} is the basis of solutions of 71y = 0, then their union is not
necessarily thie basis of solutions of Ti7ay(z) = 0; z € [0;00)- The existence of
the basis of solutions of the composite is obtained as follows. Let Ka(z,t) be
the Green’s function associated with oy = 0, and Wa{(y1,¥2,---,¥2m}(t) be
the corresponding Wronskian det;ermh{lfant. Now define for a fixed a € [0,00) a
function ,

L / Ka(@, )5s(O)dt, s=1,2,...,2n.
a

Then the set {y1,y2,- -, Y2m, Yom+1:Y2m+2; - - - ,Yom+2n} is a basis of solutions
of the composite equation T 72y(z) = 0 for z € [0,00). In order to see that this
is true, consider the equations myx(z) = 0, k = 1,2,...,2m, T2yx(z) = (),

E=2m+1,...,2(n+m) and n1fx(z) = 0, k = 2m + 1,...,2(n +m). This
implies that

nye(®) = 11 (rey(z)) = ngn(z) =0, k=2m+1,..., 2(n + m).

Therefore, for a set of constants {8 : k = 1,2,...,2(n+m)} with the following
linear combination,

By (2)+B2ya(x) ++ - -+ BamYam (%) +Pom+1Y2m+1++ + +B2(n+m)¥Y2(n+m) (z) =0,

successive application of 7, and 72 starting with 72 on both sides with the right
assumptions of basis elements for solutions of each differential map, it follows
that all the constants Bk, k = 1,2,...,2(n + m) are zero.
[

Remark 1.3 This result can easily be generalised by mathematical induction
to the composite of s homogeneous differential equations of even orders. Sup-
pose that 7y(z) = 0 is a homogeneous differential equation of order 2n,,
r = 1,2,...,s and basis of solutions \of each of the homogeneous equation is
known, then by use of corresponding asgociated Green’s function in a successive
reverse of the composite 7172 - - - 7sy(z)) = 0, the right basis of solutions of the
composite of these s differential equations will be determined from the basis of
solutions of the individual » homogeneous equations 7y(z) =0, 7 =1,2,...,s.

In order to solve the deficiency index problem of the composite as well as those of
the operators themselves, one solves the equations nry(z) = 2y(z), ny(r) =
2y(z) and my(z) = 2zy(z) where z is a spectral parameter. Each of these
equations can be converted to their first order form using either quasiderivatives
as given by Walker [11] or any other known methods of reducing higher order
differential equations to first order equations using vector valued functions which
are lower order derivatives of the function y(z) and for details, see [9, 10] and
references therein.

Definition 1.4 Suppose that y[k] = y(*) denotes the kth derivative of y with
respect to z, Y19 = y, then let {y(0, 11, ... y(+m)=11} be set, of vector valued




functions that are square integrable, then one defines the maximal domain of
the composite, D(T*) by

|
D) = {yeL(0,00)) |
!
continuous, in [0,00), T*y € .C2([0,oo))} ,
T*y = mimey(x) for all y € D(T™*).

ol y[%], -, yPOHm=1l e absolutely

D(T*) is the maximum possible domain in L£2([0, 00)) for which the quasideriva-
tives make sense. T* is the Hilbert adjoint of the minimal possible operator
generated by 717,y(x). Weidmann [13] had shown that if T1T2y(z) is symmetric
then 7™ is densely defined and closed. An operator defined by restricting the
domain of maximal operator to only functions y with compact support is known
as a pre-minimal operator. We can denote this operator by T and its domain is
defined by

D(T) = {y € D(T*) | y has compact support in (0,00)}.

Ty = T™y = mimay(z), for all y € D(T). For unbounded domains, T is symmet-
ric, densely defined but not closed. The closure of pre-minimal operator T, T,
is the minimal operator generated by m172y(z) and will be denoted by T'. Here,
T is symmetric, densely defined and closed with T C T*. The minimal and
maximal operators generated by 7; and 75 can be defined analogously.

This paper is organised as follows: Section 1: Introduction, Section 2: Deficiency
Indices of Composite Operators and Section 3: Symmetry of Non-Commutative
Composites. '

2 Deficiency Indices ;(é)f Composite Operators

In this section, we have applied the Rank-Nullity Theorem to prove that the
deficiency indices of the composite of two differential operators is equal to the
sum of the deficiency indices of the individual operators when the operators are
injective and have closed ranges. The madin result of this section is given in
Theorem 2.2.

Before the main results of this section, we define the deficiency indices of a
differential operator as given in [5]. For any operator A : 1 — H, let N(A*—21)
and NV(A* + zI) be null spaces of A* — 2] and A* + 2] respectively for some
complex number z with Imz > 0. Define for the operator A a pair of indices
(N4, N_), where N, = dim N (A* + zI) and N_ = dim N (A* — 2I). The pair
(N4, N-) is known as the deficiency indices of A and will be denoted by defA.

Theorem 2.1 Let H = L2([0,00)) be the Hilbert space of square integrable
functions defined on [0,00) with subspace T closed and assume that T1 and Ty
are minimal differential operators generated by (1) and (2) respectively. Suppose
that Ty and T» are injective with their respective ranges closed. Then

(i) T'T5 is closed and densely defined.
(i) R(T1T), the range of TiTs, is closed.



)
|I
Proof ‘

(i) To show that 7175 is closed, we need to show that the graph of ThT% is
closed. 77 and 75 are differential operators, thus linear and since they are
injective by assumption, it follows that ker(7}) = ker(13) = {0}. 113 is
an injective linear operator and therefore, ker(7173) = {0}. Now assume
that {fn(z)}22; is a sequence of square integrable functions on H such
that f,(z) — f(z) asn — co. By Closed Graph Theorem if T1T5 : H — H
is closed and D(T1T») = H then T1T» is bounded. That is not true in this
case since T17T» is unbounded and D(T172) # H. The operators T and T5
are closed by construction and since their ranges are closed by assumption,
it implies that their exists a closed subspace of H x H, say I', such that

I'= {(u, Tsz’LL) I u € D(TlTQ)}

By injectivity and linearity of 717%, I' is graph of 71713 since for any
(0,9) €T, it follows that g = 0. For any f € D(T1712), there is at most
one g such that (f,g) € T and g = T1Tof, f = f(z) and g = g(z). The
graph of 7175 is closed and the operator 7175 is closed as required.

Now consider D(T17%) which can be expressed as

D(T1Tz) = D(Tz) N Ty *D(Ty).
Since D(T1) and D(T}) are dense in H by construction, Ty 'D(T}) is a
dense subspace of H and thus b)} Baires Category Theorem, the intersec-
tion of D(T3) and T5 *D(T}) is dénse in H. The operator 7175 is densely
defined. ‘
|

(ii) The closure of R(7171%) follows immediately by Closed-Range Theorem
since the operator 7175 is closed and densely defined on H.
Theorem 2.2 Assume all the conditions in Theorem 2.1 above are satisfied.
“‘Moreover, assume that dim R(T2)* is finite, then
dim R(T1T3)* = dimR(T1)* = dim R(T3)*.

Proof
Assume that T} and Ty are Hilbert adjoints of T and T respectively. Then by
definition, ker((T173)*) is a subspace of D((T172)*) defined by

U= ker((Tng)*) = {U S D((Tsz)*) | (Tsz)*’U. = 0}
Suppose that ’~’1* = TY |u, it follows by application of Rank-Nullity Theorem
that

dim ker((1T17%)*) = dim ker(75) + dim Ty (U) (3)
and since ker(T}) = ker(7}) equation (3) becomes
dimker((T173)]) = dimker(T}) + dim T} (). (4)

*

Ty is an injective linear operator, therefore, there exists no h € D((T112)*)
such that T7h # 0 but Tyh = 0. Thus, dim Ty (i) = dimker(T5). (4) finally
becomes

dimker((T172)*) = ditn ker(77) + dim ker(7%).

The proof is now complete by noting I{lat ker((T1T%)*) = R(TWT2)* .
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Corollary 2.3 Suppose that Ty and T are minimal differential operators gen-
erated by (1) and (2) respectively and let T\ Ty be their composite. Moreover,
assume that all the conditions in Theorems 2.1 and 2.2 are satisfied, then

def(Tsz) = defI + defTs.
Here, defT is the defect index of the operator T.

Proof Note that by construction R(T1T3)* = N((TyT2)*) and by definition
defT1T5 = dim R(Tng)J“. The rest of the proof are now immediate from proofs
of Theorems 2.1 and 2.2. :

The injectivity of the operator T} Z{Dnd by extension of T} is necessary since
otherwise there will exist a vectoriv € D((T)T3)*) such that TYv # 0 but
T5v = 0 forcing ! :
TyU = TFU C ker(T3).

This will therefore lead to the famous Rank-Nullity inequality given by

dimker((71)*) < dimker((T173)*) < dim ker(T}) + dim ker(Ty).

3 Symmetry of Non-Commutative Composites

In this section we have shown how to obtain a formally symmetric differential
operator from the composites of non-commuting operators generated by (1) and
(2). Similarly, it has been shown that a symmetric operator can be derived from
the composite of two non-commutative operarors with one symmetric and the
other non-symmetric. Finally, by application of Levinson’s theorem to the case
of the composite of two non-commutative second order differential operators,
the results of Theorem 2.2 have been verified for limit point case. We start by
stating without proof the modified version of Levinson’s theorem and for more
details, you can see the results in [4, 8] and the references stated therein.

Lemma 3.1 Let Y'(z,2) = [A(z,2) + R(z,2)]Y (z,2) be a first order differ-
ential system of order 2n operator. Suppose that A(z, z) = diag(Mk(z, 2)),
k= 1,2,...,2n with the sign of Re(\j(z,z) — \(z,2)) constant modulo in-
tegrable lerms, j # s and |R(z,2)|| € L£L([0,00)), then the solutions of the

system have asymptotic form |
!

yk(x, 2) = (ex(z, 2) + Brp(z, 2)) - exp /OI Ak(t, z)dt.

Here, er(z,z) is the kth normalised unit vector and Ryr(z,2) tends to zero
analytically as T — co. |

In order to obtain the spectral results of the selfadjoint operator extension, H, of
the operator 71T , the deficiency indices of the composite operator defT7 T, must
be equal, that is, (I,1), n < 1 < 2n, for a composite operator of order 2n. The
description of H can be found in the following references [3, 8, 12, 13]. Suppose
that an operator A : H — H is a closed densely defined symmetric operator with



defA = (I,1), then by von Neumann theorems [12], A has selfadjoint operator
extension, H, whose domain can be described by

D(H) = D(A) @ N(A* + zI) @ N(A* — 2I).

The same construction can always be achieved using Cayley transforms of A via
the symmetric extensions of the corresponding Cayley unitary operators.

We now prove the main result of this section.

Theorem 3.2 Let {T1,T,...,Tn} be a set of formally symmetric even higher
order differential operators defined on H that are not pairwise commutative.
Then the differential operator T = ThYTo -+ Ty 1TnTh—1---ToT1 as well as aT
for any real a are formally symmetric.

) \
Proof Note that T} =T}, for all k = q, 2,...,n. Then it follows that

T = (NI ThaTnThor - TT)”
TOT} - T\ TeTS - T3S
AVLRRRY SRV LY SN ERRV L Y AT

= T,

Il

Note that any real constant multiple of symmetric operator is symmetric. This
clears the proof.

The results of Theorem 3.2 in the case of two formally symmetric operators that
are non-commutative lead to an interesting case where a symmetric composite
can be constructed from two operators that are symmetric and non-symmetric.

Theorem 3.3 Let T; and Ty be formally symmetric differential operators of
order 2n and 2l, n,l = 0,1,2,3,..., that do not formally commute. Then the
operators A =TTy, B = T3T) are not necessarily symmetric but T1 B and T A
are symmetric.

Proof The non-symmetry of A and B are immediate from Lemma 1.1 unless the
leading coefficients of their respective differential equations satisfy the conditions
given in [1]. From the assumptions, it is clear that

T =Ty, Ty =Ta, and ThT» # ToT;.

Now if we consider the operator 71 B -:—— T1T5T; then this operator is formally
symmetric since

(Ty\B)* = B*T; = ()T} = T;T;T; = ThTeTy = T} B.

The proof for the symmetry of T5A is done in a similar way.

In the next example, we will show how to obtain a formally symmetric differen-
tial equation from two non-comutative formally differential equations.




Example 3.4
Suppose that - |

Toy(z) = (-1)ky) (z) + p(z)y(z), my(e) = (~1)*y) ().

Then by letting 7oy(z) = Tomy(z) = y“» + (=1)¥p(z)y®¥) (), we can easily
obtain 6kth order formally symmetric differential equation given by

Ty(z) = nrony(z) = nry(e) = (—1)FyF) (z) + (p(z)y>P) R,

which is a formally symmetric differential equation expressed as a composite of
two non-commutative differential equations with one symmetric and the other
one not.

In the next example, we consider simple cases and derive the necessary and suf-
ficient growth and decay conditions on the coefficients of the derived differential
operators for the sum of their deficiency indices to satisfy the results of Theorem
2.2.

Example 3.5 \ |
Consider the differential equations T{): —q(z)y, iy = —y" and 1y = q(z)y".
Then 7971y = Ty is not symmetric,but Ty = —(g(z)y”)"” is symmetric and

any real scalar multiple of 772y will:be symmetric too.

By scaling the differential expression 73y by non-zero real scalar a, we can
consider two differential equations 7 = —ay”, y = y(z), where « is a constant,
then 7y is formally symmetric by construction. Similarly, define a second order
differential equation 7y = ¢(z)y” then 7oy is not symmetric and its Hilbert
adjoint is given by 75y = qy” + 2¢'y’ + qy. Besides 1172y # To1y. It is easy to
confirm that 7379y is symmetric since

Ty = T;le - _a(qy(iv) + 2q/ym + quy//).
Here, g = g(z) is assumed to be continuously differentiable and unbounded. We
proceed to analyse the deficiency indices of the minimal differential operator
generated by 7i7oy(x) and the spectral properties of the selfadjoint operator
extension of the minimal operator via asymptotic integration. Assume that z is
a spectral parameter and we solve the equation 71 72y(z) = zy(z). The following
assumptions on growth and decay conditions are made

| g(z) |= o0, as z — oo, g g e L2, (e7'¢)%,q7 " e L -(5)

Once the fourth order differential equation has been converted to its first or-
der system, the associated characteristic polynomial of the equation 77y =
—a(g(z)y")" = zy when equated to zero gives ag(z)\* 4+ z = 0. Assume
that ag(z) < 0 for all z € [0,00), then we have four eigenvalues of the form
Mx==%|F% |7 and Aot = i | o . From results of Behncke [2], the eigen-
values A14(z,2) need no es’cablislm'lpnt of uniform dichotomy condition since
the pair of eigenvalues will lead to ohe square integrable function and another
non-square integrable function irrespective of the uniform dichotomy condition.
This is because of the different signs of their real parts. Off the real line, that

i)
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is, if z = 2y + in, 2o and 7 real, for some small n > 0, by binomial expansion,

the uniform dichotomy condition will be again satisfied for Ao+ (z, 2) since the

correction term, that is, given by | &;/’\)‘ﬁ | =l I—’rjz- and has different signs
q

for each of the pair Az4(z,2) as the real part . The determination of the de-
ficiency indices will greatly depend on the integrability of | ¢ [~%. If | ¢ |°%
is integrable then y;_(z,z) and all thé two solutions ys4 (z,2) will all be uni-
—formly square integrable. Now assume¢ that the minimal differential operators
generated by T1y(z) = —ay” and szfa:) = g(z)y" are Ty and T3 respectively,
then def(717%) = (3,3). Any selfadjoint operator extension of 1175 has discrete
spectrum at most.
Suppose that | ¢ |_% is not integrable, then y;_(z,2) and ya+(z,2) will be
square integrable with y,_ (z, 2) losing its square integrability as 7 — 0%. Thus
def(T1T3) = (2,2). In this case, the solution that loses its square integrabil-
ity, contributes to absolutely continuous spectrum of the selfadjoint operator
extension of T1T5. Thus the absolutely continuous spectrum of the selfadjoint
operator extension of 7173 is a subset of [ala, ©0), ¢ = liminf ¢(z), of spectral

multiplicity one.

Analysis of the deficiency indices of the individual operators are done in a similar
way. The eigenvalues of T} are £i | £ |’17 whenever « is greater than zero leading
to defTy = (2,2). In this particular case, the absolutely continuous spectrum for
the associated selfadjoint extension can only be obtained within the intervals
[~a~1,a™!] of spectral multiplicity one as n — 0. Meanwhile, if a < 0 then
defTy = (1,1) since the eigenvalues are given by + | Z |2. In this case, only
discrete spectrum can be realised.

In the case of the operator T3, if g(z) < 0, for all z € [0, c0) then the eigenvalues
are given by i | £ |2. Therefore, for | g |~% integrable, defl} = (2,2). On the
other hand if | ¢ |~% is not integ;rable, then defT> = (1,1). Similarly, if g(z) > 0,
the eigenvalues are given by =+ | 2 |% nd defT> = (1,1). Note, here, that T3 is
non-symmetric and no symmetric extension nor selfadjoint extension.

In the results of Example 3.5, we can formulate the following theorem which
conforms to the results of Theorem 2.2.

Theorem 3.4 Let T and Ty be minimal differential operators generated b
ny = —ay" and Ty = q(z)y" respectively on H. Suppose that <0, | g |77
and growth and decay conditions in (5) satisfied. Then

def(ThT>) = defTh + defTs> = (2,2),

and the spectrum of selfadjoint operator extension of TiTs is at most discrete.
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