PROGRAM FOR ICCGNFRT-2019

The four day conference will begin with a keynote talk on 16-th October, 2019 and end with a valedictory function on 19-th October, 2019. There will be 15 sessions consisting of one keynote, 7 plenary, 13 invited and 4 young scholar talks.

TIME	SCHEDULE
8:50-9:50	REGISTRATION
9:50-10:00	INAUGURATION
	MORNING SESSION
	CHAIR PERSON: Prof. Tarlok Nath Shorey
10:00-11:00	KEYNOTE TALK: On the representation of integers by cyclotomic binary forms of
	large degree
	SPEAKER: Prof. Michel Waldschmidt, Institut de Mathématiques de Jussieu, France
	ABSTRACT: For each integer $d \ge 4$, we study the sequence of positive integers which
	are represented by one at least of the cyclotomic binary forms $\Phi_n(X, Y)$, with n a pos-
	itive integer satisfying $\varphi(n) \ge d$. This is a joint work with Etienne Fouvry (to appear
	in Bulletin de la Société Mathématique de France, text in French), a continuation of a
	previous work with Claude Levesque and Etienne Fouvry (Representation of integers
	by cyclotomic binary forms, Acta Arithmetica, 2018, in English).
11:00-11:20	High Tea
	PRE-LUNCH SESSION
	CHAIR PERSON: Prof. Renate Scheidler
11:20-12:00	INVITED TALK: On the abelian group problem
	SPEAKER: Prof. Ayyadurai Sankaranarayanan, TIFR Mumbai, India
	ABSTRACT: We discuss Upper bound for the mean square of the error term related
	to the summatory function of the number of isomorphic abelian groups of order n up
	to x .
12:00-12:10	Discussion
12:10-12:50	INVITED TALK: The size function for imaginary cyclic sextic fields
	SPEAKER: Prof. Ha Thanh Nguyen Tran, Concordia University of Edmonton, Canada

DAY-01 (October 16, 2019, WEDNESDAY)

theory. In this talk, we discuss the rational periodic points of polynomials with rational coefficients. We also discuss Morton and Silvermans uniform boundedness conjecture. It states that the number of periodic points of any rational function with rational coefficients is bounded by a constant depending only on the degree of the function. The conjecture is still unsolved even for quadratic polynomials.13:00-14:30LUNCH at guest housePOST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan14:30-15:30PLENARY TALK: Constructing class groups of imaginary quadratic fields with large <i>n</i> -rank SPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large <i>n</i> -rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very tare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30-16:30INVITED TALK: p^* -Selmer companion modular forms SPEAKER: Prof. Sommath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves I_1 and E_2 over a number field K , Mazur and Rubin have defined them to be n -Selmer companion if for every quadratic twist χ of K , the n -Selmer group of E_1^{χ} and E_2^{χ}	TIME	SCHEDULE
$ \begin{array}{c} coefficients. We also discuss Morton and Silvermans uniform boundedness conjecture. It states that the number of periodic points of any rational function with rational coefficients is bounded by a constant depending only on the degree of the function. The conjecture is still unsolved even for quadratic polynomials. \\ \hline 13:00-14:30 LUNCH at guest house POST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan \\ \hline POST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan \\ \hline POST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan \\ \hline POST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan \\ \hline POST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan \\ \hline POST-LUNCH SESSION CHAIR PERSON: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large n-rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large n-rank for an arbitrary integer n \geq 3, and practical enhancements to improve the efficiency of the scarch procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4. \\ 15:30-15:50 Tea & Discussion \\ EVENING SESSION \\ CHAIR PERSON: Prof. Yasuhiro Kishi \\ 15:50-16:30 INVITED TALK: p'-Selmer companion modular forms \\ SPEAKER: Prof. Somnath Jha, IT Kanpur, India \\ ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist \chi of K, the n-Selmer group of E_1^{$		ABSTRACT: Arithmetic dynamics is a combination of dynamical systems and number
It states that the number of periodic points of any rational function with rational coefficients is bounded by a constant depending only on the degree of the function. The conjecture is still unsolved even for quadratic polynomials.13:00-14:30LUNCH at guest housePOST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan14:30-15:30PLENARY TALK: Constructing class groups of imaginary quadratic fields with large <i>n</i> -rank SPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large <i>n</i> -rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30-15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50 16:30INVITED TALK: p'-Selmer companion modular forms SPEAKER: Prof. Sommath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K, the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular		theory. In this talk, we discuss the rational periodic points of polynomials with rational
coefficients is bounded by a constant depending only on the degree of the function. The conjecture is still unsolved even for quadratic polynomials.13:00-14:30LUNCH at guest housePOST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan14:30-15:30PLENARY TALK: Constructing class groups of imaginary quadratic fields with large <i>n</i> -rank SPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large <i>n</i> -rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30-15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50 16:30INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K , Mazur and Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K , the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipra		coefficients. We also discuss Morton and Silvermans uniform boundedness conjecture.
The conjecture is still unsolved even for quadratic polynomials.13:00-14:30LUNCH at guest housePOST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan14:30-15:30PLENARY TALK: Constructing class groups of imaginary quadratic fields with large <i>n</i> -rank SPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large <i>n</i> -rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30-15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50-16:30INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K , Mazur and Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K , the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		It states that the number of periodic points of any rational function with rational
13:00-14:30 LUNCH at guest house POST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan 14:30-15:30 PLENARY TALK: Constructing class groups of imaginary quadratic fields with large n-rank SPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large n-rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large n-rank for an arbitrary integer n ≥ 3, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4. 15:30-15:50 Tea & Discussion EVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi 15:50-16:30 INVITED TALK: p ^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E ₁ and E ₂ over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E ¹ ₄ and E ² ₂ over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joi		coefficients is bounded by a constant depending only on the degree of the function.
POST-LUNCH SESSION CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan14:30–15:30PLENARY TALK: Constructing class groups of imaginary quadratic fields with large <i>n</i> -rank SPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large <i>n</i> -rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30–15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p ^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if or every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		The conjecture is still unsolved even for quadratic polynomials.
CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan14:30–15:30PLENARY TALK: Constructing class groups of imaginary quadratic fields with large <i>n</i> -rankSPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large <i>n</i> -rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30–15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p ^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n -Selmer companion if for every quadratic twist χ of K, the n -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar	13:00-14:30	LUNCH at guest house
14:30-15:30 PLENARY TALK: Constructing class groups of imaginary quadratic fields with large n-rank SPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have large n-rank has proved to be a challenging practical problem, due in part to fact that we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large n-rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4. 15:30-15:50 Tea & Discussion EVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi 15:50-16:30 INVITED TALK: p ^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, <		POST-LUNCH SESSION
n-rankSPEAKER: Prof. Michael J. Jacobson, University of Calgary, CanadaABSTRACT: Constructing imaginary quadratic fields whose ideal class groups havelarge n-rank has proved to be a challenging practical problem, due in part to fact thatwe believe such examples to be very rare. One of the most successful methods forproducing many fields of relatively small discriminant with large 3-rank is due to Diazy Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to6 in 1987, which still stands as the current record. We describe generalizations to thismethod for constructing fields with large n-rank for an arbitrary integer $n \ge 3$, andpractical enhancements to improve the efficiency of the search procedure. We presentsome preliminary numerical results, including the first known example of an imaginaryquadratic field whose class group has 7-rank equal to 4.15:30–15:50Tea & DiscussionEVENING SESSIONCHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p^r -Selmer companion modular formsSPEAKER: Prof. Somnath Jha, IIT Kanpur, IndiaABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur andRubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majundar		CHAIR PERSON: Prof. Ayyadurai Sankaranarayanan
$\begin{array}{llllllllllllllllllllllllllllllllllll$	14:30-15:30	PLENARY TALK: Constructing class groups of imaginary quadratic fields with large
$\begin{array}{llllllllllllllllllllllllllllllllllll$		<i>n</i> -rank
$\begin{array}{llllllllllllllllllllllllllllllllllll$		SPEAKER: Prof. Michael J. Jacobson, University of Calgary, Canada
we believe such examples to be very rare. One of the most successful methods for producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4. 15:30–15:50 Tea & Discussion EVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi 15:50–16:30 INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K , the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		ABSTRACT: Constructing imaginary quadratic fields whose ideal class groups have
producing many fields of relatively small discriminant with large 3-rank is due to Diaz y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4. 15:30–15:50 Tea & Discussion EVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi 15:50–16:30 INVITED TALK: <i>p^r</i> -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K, the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		large n -rank has proved to be a challenging practical problem, due in part to fact that
y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to 6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4. 15:30–15:50 Tea & Discussion EVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi 15:50–16:30 INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K, the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		we believe such examples to be very rare. One of the most successful methods for
6 in 1987, which still stands as the current record. We describe generalizations to this method for constructing fields with large n-rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30–15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		producing many fields of relatively small discriminant with large 3-rank is due to Diaz
method for constructing fields with large n-rank for an arbitrary integer $n \ge 3$, and practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30–15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p^r -Selmer companion modular formsSPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		y Diaz; this was part of the method used by Quer to find 3 fields with 3-rank equal to
practical enhancements to improve the efficiency of the search procedure. We present some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30–15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		6 in 1987, which still stands as the current record. We describe generalizations to this
some preliminary numerical results, including the first known example of an imaginary quadratic field whose class group has 7-rank equal to 4.15:30–15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		method for constructing fields with large <i>n</i> -rank for an arbitrary integer $n \geq 3$, and
quadratic field whose class group has 7-rank equal to 4.15:30–15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		practical enhancements to improve the efficiency of the search procedure. We present
15:30-15:50Tea & DiscussionEVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50-16:30INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		some preliminary numerical results, including the first known example of an imaginary
EVENING SESSION CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and Rubin have defined them to be n-Selmer companion if for every quadratic twist χ of K, the n-Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		quadratic field whose class group has 7-rank equal to 4.
CHAIR PERSON: Prof. Yasuhiro Kishi15:50–16:30INVITED TALK: p^r -Selmer companion modular formsSPEAKER: Prof. Somnath Jha, IIT Kanpur, IndiaABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K , Mazur and Rubin have defined them to be n -Selmer companion if for every quadratic twist χ of K , the n -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar	15:30-15:50	Tea & Discussion
15:50–16:30 INVITED TALK: p^r -Selmer companion modular forms SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K , Mazur and Rubin have defined them to be n -Selmer companion if for every quadratic twist χ of K , the n -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		EVENING SESSION
SPEAKER: Prof. Somnath Jha, IIT Kanpur, India ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K , Mazur and Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K , the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		CHAIR PERSON: Prof. Yasuhiro Kishi
ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K , Mazur and Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K , the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar	15:50-16:30	INVITED TALK: p^r -Selmer companion modular forms
Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K , the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		SPEAKER: Prof. Somnath Jha, IIT Kanpur, India
the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over <i>K</i> are isomorphic. We will discuss an analogue of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		ABSTRACT: Given two elliptic curves E_1 and E_2 over a number field K, Mazur and
of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar and Dipramit Majumdar		Rubin have defined them to be <i>n</i> -Selmer companion if for every quadratic twist χ of K ,
and Dipramit Majumdar		the <i>n</i> -Selmer group of E_1^{χ} and E_2^{χ} over K are isomorphic. We will discuss an analogue
		of this for modular forms. This talk is based on a joint work with Sudhanshu Shekhar
16:30–16:40 Discussion		and Dipramit Majumdar
	16:30-16:40	Discussion

TIME	SCHEDULE
16:40-17:10	YOUNG SCHOLAR TALK: Irreducibility of some polynomials
	SPEAKER: Dr. Anuj Jakhar
	ABSTRACT:
17:10-17:20	Tea at guest house
20:00-21:30	DINNER at guest house

DAY-02 (October 17, 2019, THURSDAY)

TIME	SCHEDULE
	MORNING SESSION
	CHAIR PERSON: Prof. Anupam Saikia
9:30-10:30	PLENARY TALK: A journey of cryptography in class groups of quadratic fields
	SPEAKER: Prof. Renate Scheidler, University of Calgary, Canada
	ABSTRACT: Cryptography in class groups of quadratic fields dates back to 1988,
	with the advent of the first Diffie-Hellman key style agreement protocol whose security
	resides in the intractability of extracting discrete logarithms in the class group of an
	imaginary quadratic field. Since then, the field has undergone a turbulent history. A
	host of other class group cryptosystems were put forward, founded on both the discrete
	log problem and the integer factorization problem. Following devastating breaks of the
	factoring-based schemes in 2009, the field made a come-back in 2015 with the advent of
	linearly homomorphic encryption in class groups of imaginary quadratic fields, which
	revived research in this area. Class groups also feature prominently in elliptic curve
	isogeny based cryptographic protocols. This talk tells the tumultuous story of class
	group based cryptography, from its beginnings some 30 years ago to ongoing research
	on quantum resistant schemes.
10:30-10:50	Tea & Discussion
	PRE-LUNCH SESSION
	CHAIR PERSON: Prof. Kotyada Srinivas
10:50-11:30	INVITED TALK: A note on the construction and enumeration of Euclidean self-dual
	skew-cyclic codes
	SPEAKER: Prof. Intan Muchtadi-Alamsyh
	ABSTRACT: Skew-cyclic codes or θ -cyclic codes over finite fields are generalization of
	cyclic codes over finite fields. Here, θ is an automorphism in the corresponding finite
	fields. In this talk, we will discuss the construction and enumeration of self-dual skew-
	cyclic or θ -cyclic codes when $(n, \theta) = 1$, where $ \theta $ is the order of the automorphism
	θ .
11:30-11:40	Discussion
11:40-12:20	INVITED TALK: On some properties concerned with the continued fraction expansion
	of \sqrt{d} with even period, II
	SPEAKER: Prof. Yasuhiro Kishi, Aichi University of Education, Japan

TIME	SCHEDULE
	ABSTRACT: For an even positive integer ℓ , let d_{ℓ} be the smallest integer d such
	that the minimal period of the simple continued fraction expansions of \sqrt{d} is equal
	to ℓ , where d runs through non-square positive integers with $d \equiv 2,3 \pmod{4}$. In
	ICCGNFRT-2017, we discussed some properties of partial quotients of the continued
	fraction expansion of $\sqrt{d_{\ell}}$, including the class number of real quadratic field $\mathbb{Q}(\sqrt{d_{\ell}})$ is
	equal to 1 for each even positive integer ℓ with $2 \leq \ell \leq 73478$. In this talk, we give
	some relations between them.
12:20-12:30	Discussion
12:30-13:10	INVITED TALK: Root numbers and Iwasawa Invariants of elliptic curves
	SPEAKER: Prof. Sudhanshu Shekhar, IIT Kanpur, India
	ABSTRACT: Given two elliptic curves E_1 and E_2 defined over the field of rational
	numbers, with good reduction at an odd prime p and equivalent mod p Galois repre-
	sentations, we compare the parity of <i>p</i> -Selmer rank and root numbers of E_1 and E_2
	over number fields.
13:10-14:30	LUNCH at guest house
	POST-LUNCH SESSION
	CHAIR PERSON: Prof. Michael J. Jacobson
14:30-15:30	PLENARY TALK: Non-Galois cubic number fields with exceptional units
	SPEAKER: Prof. Stéphane Louboutin, Aix-Marseille Université, France
	ABSTRACT: An algebraic unit ε is called a special unit if $\varepsilon - 1$ is also a unit. Assume
	moreover that $\mathbb{Q}(\varepsilon)$ is non-Galois totally real cubic number field. Then ε and $\varepsilon - 1$ are
	multiplicatively independent and it is known that $\{\varepsilon, \varepsilon - 1\}$ is a system of fundamental
	units of the cubic order $\mathbb{Z}[\varepsilon]$. Now, the unit index j_{ε} of the groups of units generated
	by -1 , ε and $\varepsilon - 1$ in the group of units of the ring of algebraic integers of $\mathbb{Q}(\varepsilon)$ is
	finite. V. Ennola conjectured that j_{ε} is always equal to 1, i.e. that $\{\varepsilon, \varepsilon - 1\}$ is always a
	system of fundamental units of $\mathbb{Q}(\varepsilon)$. Fix an algebraic closure of \mathbb{Q} . Here we prove that
	for any prime p there are only finitely many cases for which p divides j_{ε} and explain
	how this result makes Ennola's conjecture very reasonable for its possible exceptions
	would be few and far between.
15:30-15:50	Tea & Discussion
	EVENING SESSION
	CHAIR PERSON: Prof. Benjamin Kane
15:50-16:30	INVITED TALK: Iwasawa invariants of <i>p</i> -adic measures

TIME	SCHEDULE
	SPEAKER: Prof. Rupam Barman, IIT Guwahati, India
	ABSTRACT: We introduce Iwasawa invariants of p-adic measures on $(\mathbb{Z}_p)^n$ and their
	Gamma transforms. We prove a relation between the Iwasawa lambda invariants of
	a p-adic measure and it's Gamma transform. We also determine p-adic properties of
	certain Mahler coefficients by exploiting some combinatorial identities. Finally, we give
	some applications of our main result.
16:30-16:40	Discussion
16:40-17:10	YOUNG SCHOLAR TALK: Lower bound for class number of certain real quadratic
	fields
	SPEAKER: Mr. Mohit Mishra, Harish-Chandra Research Institute, India
	ABSTRACT: Let d be a square-free positive integer and $h(d)$ the class number of the
	real quadratic field $\mathbb{Q}(\sqrt{d})$. In this paper we give an explicit lower bound for $h(n^2 + r)$,
	where $r = 1, 4$, and also establish an equivalent criteria to attain this lower bound
	in terms of special value of Dedekind zeta function. Applying our results, we obtain
	some criteria for class group of prime power order to be cyclic. Our bounds enable
	us to reduce the real quadratic families considered in Chowla and Yokoi's conjecture
	to comparatively smaller subfamily. We also give an equivalent criteria for having an
	alternate proof of both the conjectures.
17:10-17:20	Tea at guest house
20:00-21:30	DINNER at guest house

DAY-03 (Otober 18, 2019, FRIDAY)

TIME	SCHEDULE
	MORNING SESSION
	CHAIR PERSION: Prof. Michel Waldschmidt
9:30-10:30	PLENARY TALK: Attempting a non-abelian generalization of Herbrand-Ribet theo-
	rem
	SPEAKER: Prof. Dipendra Prasad, IIT Bomaby, India
	ABSTRACT: Herbrand-Ribet theorem in the title refers to p -class groups of cyclotomic
	number fields in terms of p -divisibility of certain L -values. We discuss one generalisa-
	tion of this theorem involving class group of field generated by p -torsion points of an
	elliptic curve over \mathbb{Q} , with some concrete questions.
10:30-10:50	Photo Session, Tea & Discussion
	PRE-LUNCH SESSION
	CHAIR PERSON: Prof. Valerio Talamanca
10:50-11:30	INVITED TALK: Dynamical systems over finite fields
	SPEAKER: Prof. Chatchawan Panraksa, Mahidol University, Thailand
	ABSTRACT: The iteration of rational functions over number fields has gained steady
	interest in the past three decades. Recently, the dynamical systems over finite fields
	(DFF) have recently attracted researchers from dynamical systems and number theory.
	This is due to intrinsic interests and applications in related fields. This talk will discuss
	the dynamical systems of quadratic polynomials over finite fields. It is related to joint
	work with Atsanon Wadsanthat.
11:30-11:40	Discussion
11:40-12:20	INVITED TALK: Euclidean multi-quadratic fields
	SPEAKER: Prof. Kotyada Srinivas
	ABSTRACT: In this talk we shall discuss the Euclidean nature of number fields of the
	form $\mathbb{Q}(\sqrt{m_1}, \sqrt{m_2}, \cdots, \sqrt{m_l}), l \ge 2.$
12:20-12:30	Discussion
12:30-13:10	INVITED TALK: Selmer group associated to Chow group of an abelian variety and
	weak Mordell-Weil theorem
	SPEAKER: Dr. Kalyan Banerjee, Harish-Chandra Research Institute

TIME	SCHEDULE
	ABSTRACT: The Selmer group and the Tate-Shafarevich group of an elliptic curve or
	more generally of an abelian variety defined over a number field are very interesting and
	important in the study of arithmetic of abelian varieties. Long standing conjecture says
	that the Tate-Shafarevich group is finite for any abelian variety defined over a number
	field. The finiteness of the Selmer group is known and from this the weak Mordell-Weil
	theorem for an abelian variety can be deduced. In this talk we are going construct
	the Selmer group and the Tate-Shafarevich group for the Chow group of an abelian
	variety. We will show that the Selmer group of the Chow group is finite and we prove
	an analog of weak Mordell-Weil theorem for Chow groups. Time permitting I will also
	relate this result to the n-divisibility questions of the class group of number fields.
13:10-14:30	LUNCH at guest house
	POST-LUNCH SESSION
	CHAIR PERSON: Prof. Dipendra Prasad
14:30-15:30	PLENARY TALK: On the Iwasawa μ -invariants of supersingular elliptic curves
	SPEAKER: Prof. Anupam Saikia, IIT Guwahati, India
	ABSTRACT: We explore the relation between the Iwasawa invariants μ^+ and μ^- as-
	sociated respectively with the plus and the minus Selmer groups of two elliptic curves
	E_1 and E_2 over \mathbb{Q} having isomorphic Galois representations $E_1[p^r] \cong E_2[p^r]$ at a prime
	p of supersingular reduction. We prove that $\mu^{\pm}(E_1) = \mu^{\pm}(E_2)$ if either is less than r
	and $\mu^{\pm}(E_1), {}^{\pm}(E_2) \ge r$, if either is greater than or equal to r.
15:30-15:50	Tea & Discussion
	EVENING SESSION
	CHAIR PERSON: Prof. Rupam Barman
15:50-16:30	INVITED TALK: On sequences of integers of quadratic fields and relations with Artin's
	primitive root conjecture
	SPEAKER: Prof. Nihal Bircan Kaya, Cankiri Karatekin University, Turkey

TIME	SCHEDULE
	ABSTRACT: I will consider the integers α of the quadratic field $\mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ is
	square-free integer. Using the embedding into $\operatorname{GL}(2,\mathbb{R})$ we obtain bounds for the first
	$\nu \in \mathbb{N}$ such that $\alpha^{\nu} \equiv 1 \mod p$. More generally, if \mathcal{O}_f is a number ring of conductor f ,
	we study the first integer $n = n(f)$ such that $\alpha^n \in \mathcal{O}_f$. We obtain bounds for $n(f)$ and
	for $n(fp^k)$. We allow any norm $N(\alpha) \neq 0$. The case where α is the fundamental unit in
	a real quadratic number field is of special interest. We also study a certain probability
	distribution suggested by the numerical results. In the second part of my talk I will
	indicate in details how my results relate to Artin primitive root type problems over
	quadratic fields.
16:30-16:40	Discussion
16:40-17:10	INVITED TALK: On the class number of some real quadratic number fields
	SPEAKER: Prof. Claude Levesque, University of Laval, Canada
	ABSTRACT: I plan to speak on some results related to the class number of certain
	families of real quadratic fields.
18:30-20:00	CULTURAL EVENT at auditorium
20:00-21:30	CONFERENCE BANQUET DINNER at guest house

DAY-04 (OCTOBER 19, 2019, SATURDAY)

TIME	SCHEDULE
06:30-09:00	Boat trip towards SANGAM - the confluence of three holy rivers the Ganga, Yamuna
	and Saraswati
	MORNING SESSION
	CHAIR PERSION: Prof. Michel Waldschmidt
10:30-11:30	PLENARY TALK: Irreducibility of Laguerre polinomials
	SPEAKER: Prof. Tarlok Nath Shorey
	ABSTRACT:
11:30-11:50	Tea & Discussion
	PRE-LUNCH SESSION
	CHAIR PERSON: Prof. Chatchawan Panraksa
11:50-12:30	INVITED TALK: Symmetries for heights on split tori
	SPEAKER: Prof. Valerio Talamanca, Roma Tre University, Italy
	ABSTRACT: We will discuss, in a few examples, the group of symmetries for heights
	associated to representations on a split tori. We will also discuss the validity of the
	Northocott's theorem for these heights.
12:30-12:40	Discussion
12:40-13:10	YOUNG SCHOLAR TALK: Arithmetic properties of the integer partitions with even
	parts below odd parts and modular forms
	SPEAKER: Dr. Chiranjit Ray
	ABSTRACT: In this talk, we will discuss some arithmetic properties and distribution
	of Andrews' integer partitions with even parts below odd parts. We also discuss the
	parity of this partition function in any arithmetic progression. We use the arithmetic
	properties of modular forms and Hecke eigenforms to get these results. This is a joint
	work with Dr. Rupam Barman.
13:00-14:30	LUNCH
	POST-LUNCH SESSION
	CHAIR PERSON: Prof. Stéphane Louboutin
14:30-15:00	YOUNG SCHOLAR TALK: Class groups in Kummer towers
	SPEAKER: Dr. Jianing Li, University of Science and Technology, China

TIME	SCHEDULE
	ABSTRACT: I will talk about some explicit results on the ℓ -class group of $K_{n,m}$ =
	$\mathbb{Q}(\sqrt[\ell^n]{p}, \mu_{\ell^m})$ where ℓ and p are two primes. More precisely, I will state a general result
	on odd regular ℓ . In the case $\ell = 2$, we determine 2-class group of $K_{n,m}$ for all n, m when
	p is congruent to 3,5 modulo 8, generalizing the results of Parry about the 2-divisibility $% \left({{{\rm{D}}}_{{\rm{D}}}} \right)$
	of the class number of $K_{2,0}$. I will try to explain the concept of norm-compatible tower
	which is important to the proof. If time permits, I will go through another proof which
	is by some stable results of class groups in cyclic extensions. This is a joint work with
	Y. Ouyang, Y. Xu and S. Zhang.
15:00-16:00	PLENARY TALK: Ternary quadratic forms with congruence conditions and Hurwitz
	class numbers for imaginary quadratic orders
	SPEAKER: Prof. Benjamin Kane, Hong Kong University, Hong Kong
	ABSTRACT: In this talk, we will discuss a question posed by Petersson about co-
	efficients of certain theta functions for quadratic forms with congruence conditions.
	Namely, he claimed that the coefficients of certain such theta functions had formulas
	as some sort of Hurwitz class numbers. We revisit his claim with a modern perspec-
	tive and explain the source of these theta functions. Using that perspective, we find a
	large number of other forms satisfying such formulas. This is based on joint work with
	Kathrin Bringmann.
16:05-16:20	VALIDICTORY FUNCTION at auditorium
16:20-17:40	HIGH TEA at guest house
20:00-21:30	DINNER at guest house