
MAA FOCUS | AUGUST/SEPTEMBER 2018 | maa.org/focus18

Building Pythonic Pyramids in
Nigeria
Christopher Thron

T
he International Mathematicians’ Union (IMU) began its Visiting Lecturer Program
(VLP) in 2008, inspired by similar programs from the Centre International de Mathéma-
tiques Pures et Appliquées (CIMPA); London Mathematical Society; and Norwegian
Program for Development, Research and Education. In ten years the VLP has supported
lecturers’ visits to seventeen different countries in Africa, Central America, the Middle East,
and Southeast Asia. Lecturers offer intensive 3–4 week courses that are part of a regular un-
dergraduate or Master’s degree program (see bit.ly/2qF8ccs for more information).

The First Iteration
In Spring 2016, the VLP supported a “Mathematical Software” course which I delivered to second-year
students at the University of Ilorin, Nigeria. Materials were adapted (with permission) from the Univer-
sity of Edinburgh’s “Interactive Introduction to MATLAB” course (MATLAB.eng.ed.ac.uk/): these included a
pdf textbook and YouTube videos (see bit.ly/2J57zk2). Knowing that pirated software is common in Nigeria
(and other African countries), I taught the course using Octave (gnu.org/software/octave/), an open-source

Photo above: Post exam
group photo
Right: Thron with professors
Bamigbola (course facilitator
and host) and Adeniyi (head
of department)

http://bit.ly/2qF8ccs
https://www.matlab.eng.ed.ac.uk/
http://bit.ly/2J57zk2
https://www.gnu.org/software/octave/

maa.org/focus | AUGUST/SEPTEMBER 2018 | MAA FOCUS 19

software that can run generic MATLAB programs without
any modification. Only a few students (maybe 20 percent)
had their own laptops or access to computers outside of class,
so I resorted to an active learning approach, where the bulk
of class time was occupied with hands-on activities. Between
the desktops in the lab and students’ personal laptops, we
ended up with about 3–4 students per computer.

The course was a mixed success. Some students got in lots
of programming practice, but many others watched passively.
Students often got stuck on the in-class exercises, and would
wait for me to come around to their group and help out—but
since there were close to 20 different groups, this meant that
progress was slow. The final exam scores had a rather low
mean and huge standard deviation.

The Second Iteration
In 2017, the IMU approved my application to return to the
University of Ilorin to offer a similar course. I was deter-
mined to address some of the previous deficiencies. First
was the choice of software. Over the previous few months
I had become increasingly aware of the relative benefits of
Python, which holds the #1 spot on the 2017 IEEE list of
programming languages (bit.ly/2wWgUaB), reflecting Python’s
widespread use across disciplinary boundaries. Students that
do not become mathematicians should be equipped with
technical skills that are useful outside of mathematics (and
especially in data science). Python is only slightly more dif-
ficult to learn than MATLAB/Octave—for example there are
some idiosyncrasies with variable types, which are handled
automatically by MATLAB. All features and packages neces-
sary for a course in mathematical programming are included
within Anaconda (bit.ly/2JVHQMc), a free Python distribution
that is available in Windows, Mac, and Linux.

I wanted to keep the active learning format, but to get the
course moving at a reasonable pace, I would have to do some-
thing about the “stuck students” issue. The best way would
be to get class helpers. Inspired by pyramid sales schemes,
I envisioned a “Pythonic pyramid”: train a small group of
advanced students in Python so they could effectively share
their knowledge with other students with the hope that this
knowledge sharing could become a chain reaction, producing
a larger and larger base of Python users. I tried get the pyra-
mid started by running a workshop for selected graduate stu-
dents who would then help out with my undergraduate class.

With only three months to develop my curriculum, I
adapted Hans Fangohr’s online Python resource (bit.ly/
2qL8jmX), which had material in a variety of formats including
Jupyter notebook. Although the list of topics was good, I
ended up completely rewriting and reorganizing the material
for my own target audience to cover at least one mathemati-
cal application. For this, I used a chapter by Brian Storey on
numerical solution of ODEs (bit.ly/2HtAiBH) that is organized

around successively more sophisticated MATLAB programs.
My final list of topics was:

•	 Python user interface (Anaconda and Jupyter)
•	 Algebraic and mathematical operations
•	 Data types (integer, real, complex) and structures (string,

list, tuple)
•	 Arrays: vectors, and matrices with numpy (Python’s nu-

merical math package)
•	 Visualizing data (plotting) using matplotlib (Python’s

MATLAB-clone plotting package)
•	 Control flow (loops and conditional statements)
•	 Functions
•	 Application: Numerical solution of differential equations
The hands-on approach which I planned demanded that

I provide numerous exercises for the students. Fangohr had
labs for his students in addition to class material, but I had
only three weeks (and three different sections), so any student
programming would have to take place during class time.
Designing suitable exercises was a challenging task. If the
exercises were too easy, students wouldn’t be challenged to
think—but if they were too hard, students would sit idle until
an instructor came to assist them. Some students were much
slower than others, so for each topic I put together a minimal
set of exercises to establish basic competency, as well as fur-
ther exercises for faster students who would otherwise be idle
while the rest of the class finished.

Building the Pyramid
I arrived in Ilorin two days before my graduate seminar was
scheduled to begin. The next day was occupied with arrang-
ing the schedule and setting up the lab. The lab computers
were not networked and had no internet connection, so
software was installed by flash drive. This created two main
problems. First, my flash drives didn’t always get back to
me when I loaned them to students to install Anaconda on
their personal computers. Second, and more seriously, many
computers in Africa are infected with a pernicious “short-

https://bit.ly/2wWgUaB)
http://bit.ly/2JVHQMc
http://bit.ly/2qL8jmX
http://bit.ly/2qL8jmX
http://bit.ly/2HtAiBH

MAA FOCUS | AUGUST/SEPTEMBER 2018 | maa.org/focus20

cut” virus that spreads via USB. This virus (which I’d never
encountered in the US) is pervasive in west central Africa,
probably because so much software is shared via USB. Out of
five student laptops, chances are that at least one is infected
with the virus. Fortunately, there is a free program called
Smadav (www.smadav.net/?lang=en) which provides effective
protection—but even Smadav is unable to clean a computer
that is already infected.

Besides logistical issues, there were pedagogical challeng-
es as well. My past experience showed that many Nigerian
students (not too unlike American students) are content to
sit through classes without absorbing anything, then cram
furiously before the exam. I had to come up with some
strong motivation for students to keep up with and actively
participate in the class. I also had to combat a generally lack-
adaisical attitude towards attendance, and especially towards
punctuality—I’d found previously that it was not unusual for
the class to start out almost empty, and have students trick-
le in gradually during the class period. To deal with this, I
started each class session with a short 2- or 3-question quiz of
about 10 minutes.

The preliminary workshop with graduate students went
well with about 30 participants, three times the number that I
originally envisioned. Interest level and motivation was high,
and the students responded well to personal interactions
during periods of hands-on activity. The biggest problem
seemed to be that quizzes were too hard, although they were
very closely modeled on exercises that students had previ-
ously done. It seems there just wasn’t enough time for the
material to sink in.

The Implementation
The undergraduate class began the following Monday. The
original roster had about 90 students, although attendance
at first was somewhat less than this, and by the end of the
course the number enrolled surpassed 100. Students were

divided into three sections, and each section came two days a
week for two 3-hour sessions (morning and afternoon).

Lectures consisted of my showing the Jupyter notebooks
on the screen, with code cell outputs removed, revealing the
code cell-by-cell, and then showing the output. I was fairly
successful at keeping direct presentations at 15 minutes,
then having students work on exercises to reinforce their
familiarity with features I had just introduced. Acoustics
were bad, and the air conditioner was loud, so I had to insist
on no talking whatsoever when I was talking (at times I felt
like a drill sergeant). I also had to consciously resist my lazy
American tendency to blur syllables together. By referring
constantly to the material displayed on the screen, it seems I
was able to achieve fairly efficient information transfer.

Usually three or four students worked together on a single
computer. For the most part, exercises were solved through
collaborative effort. Free discussion among students was fa-
cilitated by the fact that they had already taken several classes
together. As the course progressed, I was encouraged to see
students going around to look at other groups’ progress, rath-
er than waiting for me to come around to help. Some groups
sailed through the exercises on their own, while others need-
ed help at virtually every step. I circulated constantly as they
worked, and explained error messages to the students so that
they would be able to diagnose errors for themselves. I also
emphasized that students needed to think like the computer,
and follow the program line by line—this was quite difficult
for many students, particularly those who were new to com-
puters.

Adding to the excitement was the perpetual threat of pow-
er failure. Fortunately, the projector and lab computers were
connected to UPS, so outages didn’t cause an immediate
standstill. The mathematics department had a (rather noisy)
generator, but it was not working for most of the duration of
my stay. I had also brought a portable projector with a battery
that was good for about an hour. In the end, I only had to
cancel part of one class due to power problems.

Results
Unfortunately, the “pyramid” I had envisioned did not quite
materialize. Graduate students were scheduled to assist me
in each undergraduate class session, but often no one showed
up. Those that did show up didn’t always take the task se-
riously, either talking among themselves, or leaving after a
short time. It would have been better if the graduate seminar
were smaller and consisted only of students that were com-
mitted to building the pyramid. Those times that graduate
students came and persisted, I took pains to explain the exer-
cises thoroughly so that they could circulate and provide ef-
fective help. I am hopeful that their positive experiences will
prepare the ground for future pyramid construction.

As planned, short quizzes were administered at the begin-

http://www.smadav.net/?lang=en

maa.org/focus | AUGUST/SEPTEMBER 2018 | MAA FOCUS 21

ning of each session. Participation in the first quiz was about
40 percent, but reached over 70 percent by the end of the
course.

Since I wanted to highlight the mathematical capabilities
of Python, many of the quiz questions involved basic trigo-
nometry, complex numbers, modular arithmetic, and so on.
Many students seemed unaware of basic mathematical facts
such as the relationship between trigonometric functions and
the unit circle. The departmental faculty told me that indeed
students were having trouble retaining material from earlier
classes (not unlike the situation in my home institution).
This may be due to poor preparation in the lower grades—
students’ technical skills in algebra are poor, so they are still
struggling with algebra while they should be focusing on new
concepts.

Altogether about 10 undergraduate students (besides 20 or
so graduate students) installed Anaconda on their own lap-
tops. One student put Python on his Android tablet, but was
unable to install the ‘numpy’ module which enables vector
and matrix operations. If an easy installation of Python with
‘numpy’ and ‘matplotlib’ (plotting routines) were made avail-
able for Android, Python could reach a far wider audience
among African students since there are online Python servers
that can be accessed via Android, but extensive internet use is
too expensive for many students.

All instructional materials (including examples, exercises,
and in-class quizzes) were uploaded to the class’ Whatsapp
group in pdf and Jupyter notebook format. One day was ded-
icated for review—three review sessions were held, and were
well attended. Scores on the final examination ranged from
4 to 100.

In all, the seminar and course went a long way towards
increasing awareness of Python among students and faculty,
which had been virtually nil before I arrived. The collabora-
tive learning approach took positive advantage of Nigerian
students’ lively social dynamics, and enabled close personal
interaction between instructor and students. As a result, I
was able to get a much clearer idea of students’ progress, and
to address their misunderstandings directly. I also had many
opportunities to talk with students about their opinions and
aspirations (besides appearing in dozens of Facebook selfies).
I have even maintained email contact with some students.
Although no course evaluations were distributed for students
to share their feedback, some students have expressed their
appreciation of my methods. One student emailed me saying
“It was one of the best experiences I’ve had.”

Several general areas for improvement also became evi-
dent. The Pythonic pyramid did not reach the second floor:
no local instructors were sufficiently equipped to teach a Py-
thon class on their own. The graduate seminar contained too
many students who lacked either the interest or the capability
of passing their knowledge on to others. If the pyramid is to

gain significant altitude, intensive mentoring should be pro-
vided to a handful of instructors who see the value of Python
and are willing to commit both to learn and “evangelize” for
themselves.

Students need regular access to computing devices that
can run Python and preferably devices they own themselves.
Python is not too resource-intensive, so if old second-hand
laptops were made available to students at low cost it could
have a big positive impact. The University of Ilorin has a
program for distributing Android tablets to students (bit.ly/
2qESPAE); but as mentioned above, there is no straightforward
procedure for installing Python on Android with the neces-
sary modules. The problem could also be solved with fast,
universal internet (or intranet) access on campus, through
which students could access Python servers on their tablets
or even smart phones.

In today’s world, a mathematically and computationally
savvy workforce is a necessary prerequisite for a competitive
national economy. Programs like this one can improve stu-
dents’ deficient experience with computers, improve their
attitudes towards academics, closing the technology gap
between Nigeria and more advanced countries. I am hopeful
that persistent pyramid-building efforts may eventually pay
off, and students may catch a vision for the possibilities of
Python (and mathematical programming in general) to bring
Nigeria to new levels of development. 

Christopher Thron is associate professor and chair of the Department
of Science and Mathematics at Texas A&M University-Central Texas.
He has taught courses and workshops in mathematics, statistics,
and software in Cameroon, Chad, Nigeria, Sudan, and the People’s
Republic of China.

http://bit.ly/2qESPAE
http://bit.ly/2qESPAE

