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Abstract: A simple graph is called semisymmetric if it is regular and edge transitive but not vertex transitive. In this4

paper we classify all connected cubic semisymmetric graphs of order 20p , p prime.5

Key words: Edge-transitive graph, vertex-transitive graph, semisymmetric graph, order of a graph, classification of6

cubic semisymmetric graphs7

1. Introduction8

In this paper all graphs are finite, undirected and simple, i.e. without loops and multiple edges. A graph is9

called semisymmetric if it is regular and edge-transitive but not vertex-transitive.10

The class of semisymmetric graphs was first studied by Folkman [9], who found several infinite families11

of such graphs and posed eight open problems.12

An interesting research problem is to classify connected cubic semisymmetric graphs of various types of13

orders. In [9], Folkman proved that there are no semisymmetric graphs of order 2p or 2p2 for any prime p .14

The classification of semisymmetric graphs of order 2pq , where p and q are distinct primes, was given in [7].15

For prime p , cubic semisymmetric graphs of order 2p3 were investigated in [17], in which the authors16

proved that there is no connected cubic semisymmetric graph of order 2p3 for any prime p ̸= 3 and that for17

p = 3 the only such graph is the Gray graph.18

Also connected cubic semisymmetric graphs of orders 4p3 , 6p2 , 6p3 , 8p2 , 8p3 , 10p3 , 18pn (n ≥ 1) have19

been classified in [1, 2, 8, 11, 13, 21].20

In this paper we investigate connected cubic semisymmetric graphs of order 20p for all primes p . Note21

that for orders like 4p , 6p , 10p and 14p which are of the form 2qp for some fixed prime q , the problem of22

classifying such graphs follows from the general result of [7].23

We prove that if Γ is a connected cubic semisymmetric graph of order 20p , p prime, then p = 1124

and Γ is isomorphic to a known graph. We go beyond however and prove that there is no connected cubic25

G -semisymmetric graph of order 20p , for any prime p ̸= 2, 11. This will put us near the classification of all26

connected cubic G -semisymmetric graphs of order 20p : if there is any such graph, then its order must be either27
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40 or 220.1

2. Preliminaries2

In this paper the symmetric and alternating groups of degree n , the dihedral group of order 2n and the cyclic3

group of order n are respectively denoted by Sn , An , D2n , Zn . If G is a group and H ≤ G , then Aut(G), G′ ,4

Z(G), CG(H) and NG(H) denote respectively the group of automorphisms of G , the commutator subgroup5

of G , the center of G , the centralizer and the normalizer of H in G . We also write H �c G to denote H is a6

characteristic subgroup of G . If H �c K �G , then H �G . For a prime p dividing the order of a finite group7

G , Op(G) will denote the largest normal p -subgroup of G . It is easy to verify that Op(G)�
c G .8

For a group G and a nonempty set Ω, an action of G on Ω is a function (g, ω) → g.ω from G × Ω to9

Ω, where 1.ω = ω and g.(h.ω) = (gh).ω , for every g, h ∈ G and every ω ∈ Ω. We write gω instead of g.ω , if10

there is no fear of ambiguity. For ω ∈ Ω, the stabilizer of ω in G is defined as Gω = {g ∈ G : gω = ω} . The11

action is called semiregular if the stabilizer of each element in Ω is trivial; it is called regular if it is semiregular12

and transitive.13

For any two groups G and H and any homomorphism φ : H →Aut(G) the external semidirect product14

G⋊φH is defined as the group whose underlying set is the cartesian product G×H and whose binary operation15

is defined as (g1, h1)(g2, h2) = (g1φ(h1)(g2), h1h2). If φ(h) = 1 for each h ∈ H , then the semidirect product16

will coincide with the usual direct product. If G = NK where N �G , K ≤ G and N ∩K = 1, then G is said17

to be the internal semidirect product of N and K . These two concepts are in fact equivalent in the sense that18

there is some homomorphism φ : K →Aut(N) where G ≃ N ⋊φ K .19

The dihedral group D2n is defined as20

D2n =
⟨
a, b|an = b2 = 1, b−1ab = a−1

⟩
21

So D2n = {ai|i = 0, . . . , n− 1} ∪ {bai|i = 0, . . . , n− 1} . All the elements of the form bai are of order 2.22

Let Γ be a graph. For two vertices u and v , we write u ∼ v to denote u is adjacent to v . If u ∼ v ,23

then each of the ordered pairs (u, v) and (v, u) is called an arc. The set of all vertices adjacent to a vertex24

u is denoted by Γ(u). The degree or valency of u is |Γ(u)| . We call Γ regular if all of its vertices have the25

same valency. The vertex set, the edge set, the arc set and the set of all automorphisms of Γ are respectively26

denoted by V (Γ), E(Γ), Arc(Γ) and Aut(Γ). If Γ is a graph and N�Aut(Γ), then ΓN will denote a simple27

undirected graph whose vertices are the orbits of N in its action on V (Γ), and where two vertices Nu and Nv28

are adjacent if and only if u ∼ nv in Γ, for some n ∈ N .29

Let Γc and Γ be two graphs. Then Γc is said to be a covering graph for Γ if there is a surjection30

f : V (Γc) → V (Γ) which preserves adjacency and for each u ∈ V (Γc), the restricted function f |Γc(u) :31

Γc (u) → Γ (f (u)) is a one to one correspondence. f is called a covering projection. Clearly, if Γ is bipartite,32

then so is Γc . For each u ∈ V (Γ), the fibre on u is defined as fibu = f−1 (u). The following important set is33

a subgroup of Aut(Γc) and is called the group of covering transformations for f :34

CT (f) = {σ ∈Aut(Γc) |∀u ∈ V (Γ) , σ (fibu) = fibu}35

It is known that K = CT (f) acts semiregularly on each fibre [14]. If this action is regular, then Γc is said to36

be a regular K -cover of Γ.37

Let X ≤Aut(Γ). Then Γ is said to be X -vertex transitive, X -edge transitive or X -arc transitive if38

X acts transitively on V (Γ), E(Γ) or Arc(Γ) respectively. The graph Γ is called X -semisymmetric if it is39
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regular and X -edge transitive but not X -vertex transitive. Also Γ is called X -symmetric if it is X -vertex1

transitive and X -arc transitive. For X =Aut(Γ), we omit X and simply talk about Γ being edge transitive,2

vertex transitive, symmetric or semisymmetric. As an example, Γ = K3,3 , the complete bipartite graph on 63

vertices, is not semisymmetric but it is X -semisymmetric for some X ≤Aut(Γ).4

An X -edge transitive but not X -vertex transitive graph is necessarily bipartite, where the two partites5

are the orbits of the action of X on V (Γ). If Γ is regular, then the two partite sets have equal cardinality. So6

an X -semisymmetric graph is bipartite such that X is transitive on each partite but X carries no vertex from7

one partite set to the other.8

According to [5], if there is a unique known cubic semisymmetric graph of order n , then it is denoted by9

Sn . The symmetric counterpart of Sn is denoted by Fn ([6]). There are only two symmetric cubic graphs of10

order 20 which are denoted by F20A and F20B . Only F20B is bipartite ([6]).11

Any minimal normal subgroup of a finite group, is the internal direct product of isomorphic copies of a12

simple group.13

A finite group G is called a Kn -group if its order has exactly n distinct prime divisors, where n ∈ N .14

The following two results determine all simple K3 -groups and K4 -groups [3, 12, 19, 24].15

Theorem 2.1 (i) If G is a simple K3 -group, then G is isomorphic to one of the following groups: A5 , A6 ,16

L2(7) , L2(2
3) , L2(17) , L3(3) , U3(3) , U4(2) .17

(ii) If G is a simple K4 -group, then G is isomorphic to one of the following groups:18

(1) A7 , A8 , A9 , A10 , M11 , M12 , J2 , L2(2
4) , L2(5

2) , L2(7
2) , L2(3

4) , L2(97) , L2(3
5) , L2(577) , L3(2

2) ,19

L3(5) , L3(7) , L3(2
3) , L3(17) , L4(3) , U3(2

2) , U3(5) , U3(7) , U3(2
3) , U3(3

2) , U4(3) , U5(2) , S4(2
2) ,20

S4(5) , S4(7) , S4(3
2) , S6(2) , O

+
8 (2) , G2(3) , Sz(2

3) , Sz(25) , 3D4(2) ,
2F4(2)

′ ;21

(2) L2(r) where r is a prime, r2 − 1 = 2a · 3b · s , s > 3 is a prime, a, b ∈ N ;22

(3) L2(2
m) where m , 2m − 1 , 2m+1

3 are primes greater than 3 ;23

(4) L2(3
m) where m , 3m+1

4 and 3m−1
2 are odd primes.24

Proposition 2.2 ([18], Theorem 9.1.2) Let G be a finite group and N � G . If |N | and |GN | are relatively25

prime, then G has a subgroup H such that G = NH and N ∩H = 1 (therefore G is the internal semidirect26

product of N and H ).27

An immediate consequence of the following theorem of Burnside is that the order of every nonabelian28

simple group is divisible by at least 3 distinct primes.29

Theorem 2.3 [20] For any two distinct primes p and q and any two nonnegative integers a and b , every30

finite group of order paqb is solvable.31

In the following theorem, the inverse of a pair (a, b), is meant to be (b, a). Also for each i , Ai , Bi , Ci32

and Di are certain groups of order i with known structures. We will not need their structures.33
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Theorem 2.4 [10] If Γ is a connected cubic X -semisymmetric graph, then the order of the stabilizer of any1

vertex is of the form 2r · 3 for some 0 ≤ r ≤ 7 . More precisely, if {u, v} is any edge of Γ , then the pair2

(Xu, Xv) can only be one of the following fifteen pairs or their inverses:3

(Z3,Z3) , (S3, S3) , (S3,Z6) , (D12, D12) , (D12,A4) , (S4, D24) , (S4,Z3⋊D8) , (A4×Z2, D12×Z2) , (S4×Z2, D8×4

S3) , (S4, S4) , (S4 × Z2, S4 × Z2) , (A96, B96) , (A192, B192) , (C192, D192) , (A384, B384) .5

Proposition 2.5 [17] Let Γ be a connected cubic X -semisymmetric graph for some X ≤ Aut(Γ) ; then either6

Γ ≃ K3,3 , the complete bipartite graph on 6 vertices, or X acts faithfully on each of the bipartition sets of Γ .7

Theorem 2.6 [15] Let Γ be a connected cubic X -semisymmetric graph. Let {U,W} be a bipartition for Γ8

and assume N �X . If the actions of N on both U and W are intransitive, then N acts semiregularly on both9

U and W , ΓN is X
N -semisymmetric, and Γ is a regular N -covering of ΓN .10

This theorem has a nice result. For every normal subgroup N �X either N is transitive on at least one partite11

set or it is intransitive on both partite sets. In the former case, the order of N is divisible by |U | = |W | . In12

the latter case, according to Theorem 2.6, the induced action of N on both U and W is semiregular and hence13

the order of N divides |U | = |W | . So we have the following handy corollary.14

Corollary 2.7 If Γ is a connected cubic X -semisymmetric graph with {U,W} as a bipartition and N �X ,15

then either |N | divides |U | or |U | divides |N | .16

Following [10](see also [16]) the coset graph C(G;H0,H1) of a group G with respect to finite subgroups17

H0 and H1 is a bipartite graph with {H0g|g ∈ G} and {H1g|g ∈ G} as its bipartition sets of vertices where18

H0g is adjacent to H1g
′ whenever H0g ∩H1g

′ ̸= ∅ . The following proposition may be extracted from [10]:19

Proposition 2.8 Let G be a finite group and H0,H1 ≤ G . The coset graph C(G;H0,H1) has the following20

properties:21

(i) C(G;H0,H1) is regular of valency d if and only if H0 ∩H1 has index d in both H0 and H1 .22

(ii) C(G;H0,H1) is connected if and only if G = ⟨H0, H1⟩ .23

(iii) G acts on C(G;H0, H1) by right multiplication. Moreover this action is faithful if and only if CoreG(H0∩24

H1) = 1 .25

(iv) In the case when the action of G is faithful, the coset graph C(G;H0,H1) is G-semisymmetric.26

Proposition 2.9 [16] Let Γ be a regular graph and G ≤ Aut(Γ) . If Γ is G-semisymmetric, then Γ is27

isomorphic to the coset graph C(G;Gu, Gv) where u and v are adjacent vertices.28

3. Main Results29

Our goal in this paper is to fully classify connected cubic semisymmetric graphs of order 20p . We also derive a30

very restrictive necessary condition for the existence of connected cubic G -semisymmetric graphs of order 20p .31

We prove the following important result. Part (i) is a full classification whereas part (ii) is only a necessary32

condition.33
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Theorem 3.1 Let p be a prime.1

(i) If Γ is a connected cubic semisymmetric graph of order 20p , then p = 11 and Γ ≃ S220 .2

(ii) If Γ is a connected cubic G-semisymmetric graph of order 20p for some G ≤Aut(Γ) , then p = 23

or 11 .4

To prove the main theorem, we need some lemmas.5

Lemma 3.2 The only simple K4 -groups whose orders are of the form 2i · 3 · 5 · p for some prime p > 5 and6

some 1 ≤ i ≤ 8 , are the following three projective special linear groups: L2(2
4) , L2(11) and L2(31) .7

Proof Considering the powers of primes, there is no possibility for such a group in sub-item (4) of item (ii)8

of Theorem 2.1. By inspecting orders of groups in sub-item (1), the only group of the desired form is L2(2
4).9

As for sub-item (3), let L2(2
m) be a group of order 2i · 3 · 5 · p ; then10

2m · 3 · (2m − 1) · ( 2
m+1
3 ) = 2i · 3 · 5 · p11

where m , 2m − 1 and 2m+1
3 are all primes according to Theorem 2.1. This equation has no answer as neither12

2m − 1 nor 2m+1
3 could be equal to 5. Finally consider groups L2(r) in sub-item (2). If for odd prime r and13

for prime s > 3, we have r2 − 1 = 2a · 3b · s and14

2a−1 · 3b · s · r = 2i · 3 · 5 · p,15

then b = 1, a − 1 = i and either s = 5 or r = 5. The equality r = 5 is not possible, since L2(5) is not a16

K4 -group. Also if s = 5, then the equation r2 − 1 = 2a · 3 · 5 gives us only two solutions r = 11, 31 when a17

spans integers 2, 3, . . . , 9. 218

Lemma 3.3 Let p > 11 be a prime and p ̸= 17, 31 . If Γ is a connected cubic G-semisymmetric graph of order19

20p , then G has a normal Sylow p-subgroup.20

Proof Take {U,W} to be a bipartition for Γ. Then |U | = |W | = 10p . For u ∈ U according to Theorem21

2.4, |Gu| = 2r · 3 for some 0 ≤ r ≤ 7. Due to transitivity of G on U , the equality [G : Gu] = |U | holds which22

yields |G| = 2r+1 · 3 · 5 · p . If G does not have a normal Sylow p-subgroup, then Op(G) = 1. We derive a23

contradiction out of this.24

Suppose G has a normal subgroup M of order 10. Due to its order, M is intransitive on the partite25

sets and according to Theorem 2.6, the quotient graph ΓM is G
M -semisymmetric with a bipartition {UM ,WM}26

where |UM | = |WM | = p and | GM | = 2r · 3 · p .27

Let K
M be a minimal normal subgroup of G

M . If K
M is unsolvable, it must be simple of order 2i · 3 · p for28

some i . So K
M ≃ A5 or L2(7). However these are not possible since p > 11. Now if K

M is solvable and hence29

elementary abelian, then by Corollary 2.7, its order must be p implying |K| = 10p . The Sylow p -subgroup of30

K is normal and hence characteristic in K . Therefore it is normal in G , contradicting the assumption that31

Op(G) = 1. So Op(G) = 1 implies that G does not have a normal subgroup of order 10.32

Next, let N ≃ T k be a minimal normal subgroup of G , where T is simple. If T is nonabelian, then33

k = 1 and N = T since the powers of 3 and 5 in |G| equal 1. According to Corollary 2.7, either |N | divides34

|U | = 10p or 10p divides |N | .35

5
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If |N | divides 10p , then |N | = 2 · 5 · p , since |N | should be divisible by at least three distinct primes1

(Theorem 2.3). But there is no simple K3 -group of order 2 · 5 · p according to part (i) of Theorem 2.1. So 10p2

divides |N | . Since the order of every simple K3 -group is divisible by 3, N must be a simple K4 -group whose3

order is of the form 2i · 3 · 5 · p . According to Lemma 3.2, N ≃ L2(2
4), L2(11) or L2(31) corresponding to4

p = 17, 11 and 31 respectively. But these cases are ruled out in the statement of the Lemma.5

Now suppose T is abelian and hence N would be elementary abelian. It follows from Corollary 2.7,6

that |N | divides 10p and so |N | = 2, 5 or p . Certainly |N | = p contradicts the assumption on Op(G). In7

the remaining two cases ΓN would itself be a connected cubic G
N -semisymmetric graph of order 20p

|N | . Take8

{UN ,WN} to be the bipartition for ΓN . Also let M
N be a minimal normal subgroup of G

N .9

If N ≃ Z2 , then |GN | = 2r · 3 · 5 · p and |UN | = |WN | = 5p . If M
N is unsolvable, then it must be a simple10

K4 -group whose order is of the form 2i · 3 · 5 · p . It follows from Lemma 3.2, that p = 17, 11 or 31 which are11

ruled out by our assumption on p . On the other hand if M
N is solvable, then its order should divide |UN | = 5p12

and hence |MN | = 5 or p . If |MN | = 5, then |M | = 10 which is not possible (as we showed at the beginning of the13

proof), and if |MN | = p , then |M | = 2p which contradicts our assumption on Op(G) since a Sylow p -subgroup14

of M would be characteristic in M and so would be normal in G .15

Now if N ≃ Z5 , then |GN | = 2r+1 · 3 · p and |UN | = |WN | = 2p . In this case if M
N is unsolvable, it would16

be a simple group of order 2i · 3 · p for some i and hence according to Theorem 2.1, M
N ≃ A5 or L2(7) implying17

p = 5 or 7. This is in contradiction to our assumption on p . On the other hand if M
N is solvable, then like18

before, we conclude that |MN | = 2 or p which again lead to contradictions as in the previous case. 219

Lemma 3.4 Let p > 11 be a prime and p ̸= 17, 31 . Suppose Γ is a connected cubic G-semisymmetric graph20

of order 20p . Let M be the Sylow p-subgroup of G . If G
M ≃ H , then21

(1) For each vertex u the stabilizer Gu is isomorphic to a subgroup of H .22

(2) G ≃M ⋊φ H for some homomorphism φ : H →Aut(M) .23

Proof For each vertex u of Γ, MGu ≤ G . Therefore Gu ≃ Gu

M∩Gu
≃ MGu

M ≤ G
M . This proves (1). Now24

since obviously the orders of M and G
M are coprime, it follows from Proposition 2.2, that G = MK for some25

subgroup K ≤ G where M ∩ K = 1. So G is the internal semidirect product of M and K and hence it is26

isomorphic to the external semidirect product of M and K ; i.e. G ≃ M ⋊ψ K for some ψ : K →Aut(M).27

Since H ≃ G
M = MK

M ≃ K
M∩K ≃ K , we can write G ≃M ⋊φ H for some φ : H →Aut(M). 228

Lemma 3.5 Let p > 11 be a prime and p ̸= 17, 31 . If Γ is a connected cubic G-semisymmetric graph of order29

20p and if M is the Sylow p-subgroup of G , then G
M cannot be isomorphic to A5 .30

Proof Suppose on the contrary, that G
M ≃ A5 . Then for any vertex u from [G : Gu] = 10p we obtain |Gu| = 631

and hence Gu ≃ Z6 or S3 . By Lemma 3.4, Gu ≤ A5 . Since A5 does not have elements of order 6, we conclude32

that Gu ≃ S3 . Also according to Lemma 3.4, G ≃M ⋊φ A5 . There are only two possibilities for the kernel of33

φ : A5 →Aut(M).34

6
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(a) If ker(φ) = 1, then A5 is isomorphic to a subgroup of Aut(M) ≃Aut(Zp) ≃ Zp−1 which is obviously1

not the case.2

(b) If ker(φ) = A5 , then φ is the trivial homomorphism and so G ≃ M × A5 . Since Γ is G -3

semisymmetric, according to Proposition 2.9, Γ is isomorphic to C(G;Gu, Gv) where u and v are two adjacent4

vertices in Γ. As Γ is connected, according to Proposition 2.8, we must have G = ⟨Gu, Gv⟩ . In view of5

Gu ≃ Gv ≃ S3 , this means that M ×A5 is generated by two of its subgroups, say H and K , both isomorphic6

to S3 . Now for each element (m, a) ∈ H we have (m, a)6 = 1 which means m6 = 1 in M . As |M | = p > 31,7

we conclude m = 1. Therefore the first component of each element of H (and similarly for K ) equals 1.8

Consequently the first component of each element in M × A5 = ⟨H,K⟩ equals 1 which is a contradiction. 29

Consider a semidirect product Zp⋊φ S5 where φ : S5 →Aut(Zp) is a homomorphism. Let H ≤ Zp⋊φ S510

and H ≃ D12 or A4 . We call H of type A if all the elements of H have their second component in A5 . We11

also call H of type D if there is at least one element in H whose second component is not in A5 . Also for12

any x ∈ Zp and any g, h ∈ S5 we define two subsets Rx,g,h, Sx,g,h ⊂ Zp ⋊φ S5 as follows:13

Rx,g,h = {(1, 1), (x, g), (1, g2), (x, g3), (1, g4), (x, g5), (1, h), (x, hg), (1, hg2), (x, hg3), (1, hg4), (x, hg5)}14

and15

Sx,g,h = {(1, 1), (x, g), (1, g2), (x, g3), (1, g4), (x, g5), (x, h), (1, hg), (x, hg2), (1, hg3), (x, hg4), (1, hg5)} .16

As we will see later, these two subsets are sometimes subgroups of Zp ⋊φ S5 .17

The group D12 =
⟨
a, b|a6 = b2 = 1, b−1ab = a−1

⟩
has exactly three Sylow 2-subgroups, all isomorphic18

to Z2 × Z2 , which are listed below:19

P1 = {1, a3, b, ba3} , P2 = {1, a3, ba, ba4} , P3 = {1, a3, ba2, ba5}.20

Lemma 3.6 Let p > 3 be a prime and let φ : S5 →Aut(Zp) be a homomorphism where ker(φ) = A5 . Let21

H ≤ Zp ⋊φ S5 .22

(i) If H ≃ A4 then H is of type A and if H ≃ D12 then H is of type D.23

(ii) Moreover if H ≃ D12 , then there are some x ∈ Zp , some g, g′ /∈ A5 and some h ∈ A5 where24

H = Rx,g,h or H = Sx,g,g′ .25

Proof The image of φ is isomorphic to S5
A5

≃ Z2 . So there is some F ∈Aut(Zp) of order 2 for which26

φ(x) = 1 for all x ∈ A5 and φ(x) = F for any x /∈ A5 . For any two elements (x, g) and (y, h) from27

Zp ⋊φ S5 the multiplication (x, g)(y, h) equals (xy, gh) if g ∈ A5 and equals (xF (y), gh) if g /∈ A5 . It is easy28

to see that for any positive integer n if g ∈ A5 , then (x, g)n = (xn, gn) for all x ∈ Zp , and if g /∈ A5 , then29

(x, g)2n = (xnF (xn), g2n) and (x, g)2n+1 = (xn+1F (xn), g2n+1) for all x ∈ Zp .30

Now to prove part (i), it suffices to prove that for a subgroup H ≤ Zp ⋊φ S5 which is isomorphic to31

either D12 or A4 , both of the following statements are true:32

• if H is of type A, then H ≃ A433

• if H is of type D, then H ≃ D1234

7
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Let H ≤ Zp ⋊φ S5 and H ≃ D12 or A4 . If K := {(x, g) ∈ H|g ∈ A5} then K ≤ H . For the1

homomorphism f : K → Zp defined by f(x, g) = x , the isomorphism K
ker(f) ≃ Im(f) implies that | K

ker(f) |2

divides both 12 and p and hence K = ker(f). Therefore for each (x, g) ∈ H if g ∈ A5 , then x = 1.3

It follows immediately that if H is of type A, then the first component of each element of H equals 14

and hence H is isomorphic to a subgroup of A5 . As A5 has no element of order 6, H cannot be isomorphic5

to D12 and so H ≃ A4 .6

Now suppose H is of type D. For two arbitrary elements (x, g), (y, h) ∈ H with g, h /∈ A5 , we have7

(xF (x), g2) = (x, g)2 ∈ H and (yF (x), hg) = (y, h)(x, g) ∈ H . Since g2 and hg are in A5 , the first components8

must equal 1; i.e. xF (x) = 1 and yF (x) = 1 which imply x = y . In other words, for any pair of elements9

(x, g) ∈ H and (y, h) ∈ H with g, h /∈ A5 we must have x = y . There are always elements in H whose second10

component lies in A5 and hence their first component is 1. Therefore we can write11

H = {(x, g1), (x, g2), . . . , (x, gn), (1, h1), . . . , (1, hm)} (3.1)

where n +m = 12 and where g1, . . . , gn /∈ A5 and h1, . . . , hm ∈ A5 . It also follows that for this specific x ,12

F (x) = x−1 . Let13

H = {(1, h1), . . . , (1, hm)},H1 = {h1, . . . , hm} ;14

then H1 ≃ H , H ≤ H and H1 ≤ A5 . Multiplying all the elements of H from equation 3.1, by (x, gt) for an15

arbitrary t , we again obtain H . Therefore16

H = {(1, gtg1), (1, gtg2), . . . , (1, gtgn), (x, gth1), . . . , (x, gthm)}. (3.2)

Comparing the equalities 3.1 and 3.2 and by taking into account that gtgi ∈ A5 for i = 1, . . . , n and gthj /∈ A517

for j = 1, . . . ,m , it follows that18

{gth1, . . . , gthm} = {g1, . . . , gn} .19

Therefore m = n = 6 and so |H| = 6. Since A4 does not have a subgroup of order 6, we conclude that20

H ≃ D12 .21

We now proceed to prove part (ii). So let D12 ≃ H ≤ Zp ⋊φ S5 . According to part (i) H is of type D.22

We continue to use the notations invented in the proof of part (i). The group D12 has only two subgroups of23

order 6, namely Z6 and S3 . Since H ≤ H and |H| = 6, we have H ≃ Z6 or S3 . Since H ≃ H1 ≤ A5 and A524

does not have elements of order 6, it follows that H cannot be isomorphic to Z6 and hence H ≃ S3 . Also as25

H ≃ D12 , we can write H = {ai|i = 0, . . . , 5} ∪ {bai|i = 0, . . . , 5} . As H ≃ S3 does not have any element of26

order 6, we must have a ∈ H −H ; i.e. a = (x, g) for some g /∈ A5 (see equation 3.1). As for b , there are two27

possible cases; either b = (1, h) ∈ H or b = (x, g′) ∈ H −H .28

If b = (1, h), h ∈ A5 , then29

H = {(x, g)i|i = 0, . . . , 5} ∪ {(1, h)(x, g)i|i = 0, . . . , 5} = {(1, 1), (x, g), (1, g2), (x, g3), (1, g4), (x, g5),30

(1, h), (x, hg), (1, hg2), (x, hg3), (1, hg4), (x, hg5)} = Rx,g,h .31

Also if b = (x, g′), g′ /∈ A5 , then32

8
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H = {(x, g)i|i = 0, . . . , 5} ∪ {(x, g′)(x, g)i|i = 0, . . . , 5} = {(1, 1), (x, g), (1, g2), (x, g3), (1, g4), (x, g5),1

(x, g′), (1, g′g), (x, g′g2), (1, g′g3), (x, g′g4), (1, g′g5)} = Sx,g,g′ .2

23

Lemma 3.7 Let p > 3 be a prime. A semidirect product Zp⋊φ S5 does not have two subgroups U and V with4

all the following properties:5

1) (U, V ) ≃ (D12, D12) or (D12,A4) ; and6

2) Zp ⋊φ S5 = ⟨U, V ⟩ ; and7

3) U ∩ V is a common Sylow 2-subgroup of both U and V .8

Proof Let φ : S5 →Aut(Zp) be a homomorphism. The kernel of φ could not be identity since otherwise S59

would be isomorphic to a subgroup of Aut(Zp) ≃ Zp−1 which is impossible. On the other hand if ker(φ) = S5 ,10

then φ is the trivial homomorphism and so Zp ⋊φ S5 = Zp × S5 . For any two subgroups U, V ≤ Zp × S5 both11

of order 12, the equality (x, a)12 = 1 holds for each (x, a) ∈ U ∪ V . This implies x12 = 1 and hence x = 1,12

since x ∈ Zp . Consequently the equality Zp × S5 = ⟨U, V ⟩ cannot hold.13

The only remaining possibility is to have ker(φ) = A5 . We assume there are subgroups U, V with the14

desired properties and reach a contradiction. So U ≃ D12 and hence according to Lemma 3.6, there are some15

x ∈ Zp , some g, k /∈ A5 and some h ∈ A5 where U = Rx,g,h or U = Sx,g,k . If U = Rx,g,h , then all the Sylow16

2-subgroups of U are as follows:17

RP 1
x,g,h = {(1, 1), (x, g3), (1, h), (x, hg3)} ,18

RP 2
x,g,h = {(1, 1), (x, g3), (x, hg), (1, hg4)} ,19

RP 3
x,g,h = {(1, 1), (x, g3), (1, hg2), (x, hg5)}20

and if U = Sx,g,k , then all the Sylow 2-subgroups of U are as follows:21

SP 1
x,g,k = {(1, 1), (x, g3), (x, k), (1, kg3)} ,22

SP 2
x,g,k = {(1, 1), (x, g3), (1, kg), (x, kg4)} ,23

SP 3
x,g,k = {(1, 1), (x, g3), (x, kg2), (1, kg5)} .24

For some i either RP ix,g,h or SP ix,g,k must also be a Sylow 2-subgroup of V . If V ≃ A4 , then according to25

Lemma 3.6, it is of type A and hence the first components of all the elements of each of its Sylow 2-subgroups26

equal 1. However there are elements in RP ix,g,h and in SP ix,g,k whose first components are equal to x . So if27

V ≃ A4 , then x = 1. Every element of ⟨U, V ⟩ is an alternating product of elements from U and V . Since28

in the semidirect product we have (1, t)(1, s) = (1, ts) for any t, s ∈ S5 , it follows that the first component of29

every element from ⟨U, V ⟩ is 1 and hence ⟨U, V ⟩ ̸= Zp ⋊φ S5 .30

On the other hand if V ≃ D12 , then according to Lemma 3.6, either V = Ry,g′,h′ or V = Sy,g′,k′ for31

some y ∈ Zp , some g′, k′ /∈ A5 and some h′ ∈ A5 . Again all the sylow 2-subgroups of V are known. The first32

component of each element from any sylow 2-subgroup of U is 1 or x and the first component of each element33

from any sylow 2-subgroup of V is 1 or y . Since U and V have at least one common Sylow 2-subgroup34

(namely U ∩ V ), we must have x = y .35

9
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Now define W = ({1} × A5) ∪ ({x} × (S5 − A5)). It is easy to check that W ≤ Zp ⋊φ S5 . Obviously1

U ∪ V ⊂W , and so ⟨U, V ⟩ ≤W . Therefore ⟨U, V ⟩ ̸= Zp ⋊φ S5 . 22

Proof of Theorem 3.1. We first make a general discussion on G -semisymmetric graphs. Let Γ be a3

connected cubic G -semisymmetric graph of order n . Then Γ is regular and bipartite. Moreover it is G -edge-4

transitive and hence edge-transitive. Now if Γ is not vertex-transitive, then by definition it is semisymmetric5

cubic of order n . On the other hand if Γ is vertex-transitive, then it is symmetric cubic of order n , since6

according to [22] a cubic vertex- and edge-transitive graph is necessarily symmetric. Therefore Γ is either a7

bipartite cubic symmetric graph of order n or it is a cubic semisymmetric graph of order n .8

We now set off to prove part (ii) of Theorem 3.1. For p = 3, 5, 7, 17, 31 there is no connected cubic9

semisymmetric graph of order 20p according to [5]. Also for p = 5, 7, 17 no connected cubic symmetric graph10

of order 20p exists according to [6]. As for p = 3, 31, according to [6] there exists only one connected cubic11

symmetric graph of order 20p which is not bipartite. Therefore we conclude that for p = 3, 5, 7, 17, 31 there is12

no connected cubic G -semisymmetric graph of order 20p .13

Now let p > 11 be a prime such that p ̸= 17, 31. Suppose on the contrary that Γ is a connected14

cubic G -semisymmetric graph of order 20p for some G ≤Aut(Γ). Let {U,W} be the bipartition for Γ. Then15

|U | = |W | = 10p and |G| = 2r+1 ·3 ·5 ·p for some 0 ≤ r ≤ 7. If M is a Sylow p -subgroup of G , then according16

to Lemma 3.3, M � G . Due to its order, M is intransitive on both U and W and so according to Theorem17

2.6, ΓM is a connected cubic GM -semisymmetric graph of order 20 with the bipartition {UM ,WM} , where18

GM ≃ G
M and |UM | = |WM | = 10. According to the general discussion we just made, ΓM is either a bipartite19

cubic symmetric graph or a cubic semisymmetric graph of order 20. By [5] there is no semisymmetric cubic20

graph of order 20 and by [6] there is only one bipartite symmetric cubic graph of order 20, namely F20B .21

Therefore ΓM ≃ F20B .22

The automorphism group of F20B has 240 elements ([6]) and GM is isomorphic to a subgroup of23

Aut(F20B) of order |GM | = 2r+1 · 3 · 5. The equality is not possible since GM is not transitive on V (F20B)24

whereas Aut(F20B) is. So |GM | < 240 and hence 1 ≤ r+1 ≤ 3. Also GM is transitive on both UM and WM25

and according to Proposition 2.5, the action of GM on each of UM and WM is faithful. Therefore GM is a26

transitive permutation group of degree 10. Transitive permutation groups of degree 10 have been completely27

classified in [4]. There are 45 such groups up to isomorphism which are denoted T1, T2, · · · , T45 in [4] and the28

only ones whose orders are of the form 2i · 3 · 5 for 1 ≤ i ≤ 3, are T7 ≃ A5 of order 60, and T11, T12 and29

T13 ≃ S5 of order 120.30

First note that GM ≃ T7 is not possible according to Lemma 3.5. Next, we argue that GM could not31

be isomorphic to T11 or T12.32

In [4] all the transitive groups of degree 10 are defined with a set of generating permutations on ten33

points. If34

a = (1, 2, 3, 4, 5), b = (6, 7, 8, 9, 10), e = (1, 5)(2, 3), f = (6, 10)(7, 8),35

g = (1, 2), h = (6, 7) and i = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10),36

then T11 = ⟨ab, ef, i⟩ and T12 = ⟨ab, ef, ghi⟩ . Using the GAP software ([23]) it is easy to verify that H = ⟨i⟩37

of order 2 is a normal subgroup of T11.38

If GM ≃ T11, then according to Theorem 2.6, the quotient graph of ΓM with respect to H which we39

denote by (ΓM )H , would be R -semisymmetric of order 10, where R ≃ T11
H . This implies that R is transitive40

10
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on each partite set and by Proposition 2.5, R would be a transitive permutation group of degree 5. Again1

according to [4] the only transitive permutation group of degree 5 and of order 60 is A5 . So we should have2

R ≃ A5 . Now the stabilizer of any vertex of (ΓM )H under the action of R has |R|
5 = 12 points and the3

only subgroup of A5 of order 12 is isomorphic to A4 . So for an edge {u,w} of the cubic R -semisymmetric4

graph (ΓM )H , we have (Ru, Rw) = (A4,A4) which is not possible according to Theorem 2.4. Therefore the5

assumption that GM ≃ T11, leads to a contradiction.6

Now suppose GM ≃ T12. Calculated by GAP, the stabilizer of 1 under T12 is7

(T12)1 = ⟨(2, 4)(3, 5)(7, 9)(8, 10), (3, 5, 4)(8, 10, 9)⟩8

Again, using GAP one finds out that this group is nonabelian of order 12 which has the following group as a9

normal subgroup:10

⟨(2, 3)(4, 5)(7, 8)(9, 10), (2, 4)(3, 5)(7, 9)(8, 10)⟩ ≃ Z2 × Z211

There are only 3 nonabelian groups of order 12 up to isomorphism: A4 , D12 and the dicyclic group of order12

12. Among these, only A4 has a normal subgroup of order 4. So (T12)i ≃ (T12)1 ≃ A4 for any i = 1, 2, . . . 10.13

However this is impossible by Theorem 2.4.14

Finally suppose GM ≃ G
M ≃ T13. Since M ≃ Zp , by Lemma 3.4, G ≃ Zp⋊φS5 for some homomorphism15

φ : S5 →Aut(Zp). From [G : Gu] = 10p we have |Gu| = 12 for any vertex u . So if {u, v} is a fixed edge of Γ,16

then it follows from Theorem 2.4, that (Gu, Gv) ≃ (D12, D12) or (D12,A4). Of course (Gu, Gv) ≃ (A4, D12) is17

nothing new, since then we can change the roles of u and v .18

Also Γ ≃ C(G;Gu, Gv) by Proposition 2.9. Now it follows from part (ii) of Proposition 2.8, that19

G = ⟨Gu, Gv⟩ and from part (i) of the same Proposition that |Gu ∩Gv| = 4; i.e. Gu ∩Gv is a common Sylow20

2-subgroup of Gu and Gv . But the existence of Gu and Gv with all these properties contradicts Lemma 3.7.21

Since every case for GM is contradictory, part (ii) follows.22

Next, we turn to part (i) of Theorem 3.1. For p ̸= 2, 11 there is no connected cubic semisymmetric23

graph of order 20p according to part (ii). Also there is no such graph of order 20× 2 according to [5] and by24

the same reference, there is only one connected cubic semisymmetric graph of order 20× 11, namely S220 .25
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