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The central theme for the Conference in Algebra was the Theory of Rings. 
Because of the complexities of programming, the session on Algebraic Geometry 
took place as the first session of the Conference although that session, consisting 
of two stated addresses, was logically the fourth and final session of the Confer
ence. In the first session, on Groups and Universal Algebra, modern aspects of 
lattice theory and group theory were presented. In the second session, on the 
Structure Theory of Rings and Algebras, recent results on the structure and 
representation of various types of rings and algebras were given, and in the 
third session, on Arithmetic Algebra, the arithmetic aspects of ring and field 
theory were discussed. The fourth session on Algebraic Geometry, may then be 
regarded as a continuation of the session on Arithmetic Algebra. The Committee 
on the Conference in Algebra regrets that it was not possible for H. Zassenhaus 
and M. Deuring to attend and to present their papers which were listed in the 
program. 

A. A. ALBERT 



GROUPS AND UNIVERSAL ALGEBRA 

SOME PROBLEMS OF LATTICE THEORY 

GARRETT BIRKHOFF 

I feel no need to stress the importance of lattice theory here. Instead, I should 
like to discuss some of its unsolved problems, with special reference to the list 
of 111 compiled in [1]. 

Such a large list is naturally uneven; three problems on it (nos. 24, 82, 93) 
even have trival solutions. I am glad to report that interesting solutions have 
been given to nine others in the last two years: no. 11 by Nakayama, no. 20 
by Arnold, nos. 32 and 36 by M. Hall, no. 34 by F. B. Thompson, no. 49 by 
Dilworth, nos. 64-65. by Croisot, Sholander, and Vassiliou, and no. 101 by 
Iwasawa. Added in proof. Solutions of nos. 1, 31, 33, 35, 39, 44, and 46-48 have 
now been reported. 

At this rate, about half the others should be solved in the next decade. But 
there are two problems which have already resisted so much effort, that they 
may well defy solution for much longer. 

First, is every finite lattice isomorphic with a sublattice of the lattice of all 
partitions of a suitable finite set (no. 48)? Whitman has shown that every lattice 
is isomorphic with a sublattice of some lattice of partitions. But, just as all 
finite subfields are commutative, there may be some identity true of partitions 
of finite sets, and not true of partitions in general. Although I doubt this, a 
definitive answer should stimulate new developments in combinatory analysis. 

Second, a solution of the decision problem for the free modular lattice gen
erated by four elements—or even by 2 + 1 + 1,—would be most important 
(nos. 28, 29). The nature of the lattice of subspaces, even in three-dimensional 
vector space, generated by four "general" subspaces a, 6, c, d is not now known 
—not even assuming a r^b = c r\ d = 0, a^_jb = CKJ d = J. The general 
problem may have no solution in finite terms, but progress on it should throw 
light on representation theory, as well as being interesting for its own sake. 

Various other lattice-theoretic problems seem to require radically new ideas, 
although their difficulty is harder to appraise as they have not yet been seri
ously attacked. Can every proper sublattice of any lattice be extended to a 
maximal proper sublattice (no. 18) ? Does every infinite Boolean algebra admit 
a proper automorphism (no. 74)? How can one tell whether the congruence 
relations on a given lattice form a Boolean algebra (no. 72) ? Can one enumerate 
all lattices L which are highly symmetric, in the sense that their groups of auto
morphisms admit (say) at most six sets of transitivity? Many such lattices 
should be isomorphic with classical configurations of points, lines, and planes 
(or of curves and surfaces), and a study of these isomorphisms should give a 
fresh approach to configurational geometry. 
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A similar fresh stimulus to group theory has been provided by studies of the 
lattice L(G) of all subgroups of a finite group G. Thus Dedekind's enumeration 
of all groups whose subgroups were permutable has been extended by Iwasawa, 
A. W. Jones, and M. Hall, who have enumerated all groups for which L(G) is 
modular or semi-modular. Again, it is known that if G is Abelian, then L(G) is 
self-dual, but it is not known what non-Abelian finite groups have this prop
erty (no. 37). Neither is it known when L(G) is complemented (no. 38). In the 
hypercentral case, L(G) is complemented if and only if G is the direct product 
of cyclic groups of prime order—for if G is not Abelian, its center can have no 
complement, and if Abelian, the subgroup of all elements of square-free order 
can have no complement. However, the general case of solvable G is less easy, 
while the case of finite simple G promises to be really difficult. Straightforward 
enumeration of subgroups reveals that if G is the alternating group of degree 
five, L(G) is complemented but not relatively complemented. This suggests 
trying to prove that if L(G) is relatively complemented, G cannot be simple. 
(All Sylow subgroups of G must then be elementary.) 

I should like to raise the analogous questions, for the lattice L(A) of all sub-
algebras of a Lie algebra A. Every element of L(A) is a join of "points". Any 
(n + 1)-dimensional complex Lie algebra A, such that L(A) is semi-modular, 
can be shown to belong to one of the two types -

[a, bi] = Xbi and [bi, b3] = 0 (i, j = 1, • • • , n), 

where X = 0 or 1, for suitable basis-elements a, 6i, • • • , bn . In these cases, 
L(A) is a projective geometry. Moreover, any other A contains a three-dimen
sional subalgebra S such that L(S), whi^h ^ an interval sublattice of L(A), is 
not semi-modular. On the other hand, if A is a solvable complex Lie algebra, 
it seems that L(A) must be of length n and satisfy the Jordan-Dedekind chain 
condition, though I have not checked this carefully. But what about other 
complex Lie algebras, and what about real and rational Lie algebras? 

I t would also be interesting to know when L(A) was complemented or rela
tively complemented. A theorem of Knebelman shows that if A is semi-simple, 
the I of L(A) is the join of two points. I suspect that, by an extension of this 
reasoning, one can show that L(A) is complemented, and even that every ele
ment not 0 or 7has a point-complement. On the other hand, I suspect that L(A) 
is rarely relatively complemented. 

Although lattice theory suggests the preceding problems, it does not provide 
the technique for solving them. I shall now turn to possible applications of 
lattice-theoretic techniques. 

The theory of modular lattices has already been successfully applied to give 
the structure theory of groups (and loops) with operators. One might hope that 
the decomposition theory of multiplicative and additive (Dedekind) ideals 
could be derived by using similarly the theory of lattice-ordered semigroups. 
BuL in spite of encouraging recent progress by Lorenzen and Dubreil (based 
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on Artin's earlier ideas), much remains to be done before the derivation can be 
considered fully satisfactory. 

The algebra of relations suggests other interesting problems involving lattice-
ordered semigroups. Thus, no set of postulates for the algebra of binary rela
tions is known, fully consistent with the spirit of modern algebra (no. 94). 

Other interesting unsolved problems concern lattice-ordered groups. Although 
all finite-dimensional vector lattices are known ([1, p. 240]), the theory of Lie 
Z-groups is still fragmentary. Thus it is not even known which abstract Lie 
groups are group-isomorphic with Z-groups (see nos. 98, 100, 106). In attacking 
this problem, it may be useful to remark that the centralizer of any subgroup 
of an Z-group is an Z-subgroup. More generally, nothing is known about "ana
lytic", locally Euclidean lattices. Neither is it known whether every vector 
lattice is a homomorphic image of a subdirect union of replicas of the ordered 
additive group of rational numbers (no. 107). 

Logically related is the following question. Tarski has shown that any com
plete, completely distributive Boolean algebra is isomorphic with the field of 
all subsets of a suitable set. One can also show that any closed sublattice of a 
direct union of complete chains is a complete, completely distributive lattice. 

. The question is (no. 69), are there any other complete, completely distributive 
lattices? This is only one of many interesting problems (nos. 25,' 57, 58, 76, 79, 
104) involving infinitary operations. 

But I do not wish to emphasize only the difficult problems of lattice theory. 
The hardest problems may well be sterile. Thus, in lattice theory, the problems 
least likely to be solved in the next decade are those inherited from set theory 
(nos. 3, 4, 12, 15-17, 19, 86). But, without radical new ideas, their study is 
apt to be sterile. The most important contributions to mathematics often con
sist in the discovery and clear formulation of simple results. Carathéodory's 
abstract measure theory is an excellent example of such1 a discovery. 

Perhaps the most fruitful problem of lattice theory is to develop a conse
quential general theory of lattice-ordered rings. At present, such a theory exists 
only for the ring of continuous real-valued functions on a compact space. Using 
fragments of alenerai theory, I have already [2] obtained a decomposition 
theory for averaging operators. I have also satisfied myself that the theory is 
full of interesting problems. 

In particular, it is not known whether there exists any "natural" simple 
ordering of the ring 9t of all real, single-valued functions of one real variable 
(nos. 2, 14). This problem has many variants. For example, does there exist a 
simple ordering which makes (a) 9t into an ordered group, under the addition 
of functions, (b) any order-automorphism a of the real field R induce one on 9Î, 
through f(x) —» af(oix), (e) f(x) è 0 for all real x imply/ è 0 in 9Î, (d) / à 0 
and g è 0 imply fg è 0? If so, what additional properties of the substitution 
operation f(g(x)) relative to order can also be postulated compatibly? If not, 
what combinations of (a)-(d) are compatible? What if R is replaced by the ra
tional field, or by the domain of integers? 
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As an example of the type of simple result which seems to me worth stating, 
I shall outline a new formulation of Duhamel's principle. This formulation is 
applicable to both Riemann and Lebesgue integrals, if one uses the appropriate 
Boolean algebra A of sets, and the appropriate directed set of partitions of the 
unit I of A. 

To formulate Duhamel's principle, define a measure estimate as a bounded 
real-valued function m[x] on A, such that 

(1) Lim*-! ^2 frc[a^ Aa?J = / 
Ja 

dm 

exists for all a £ A. Here the Arc* are the parts into which x divides I . The lim
iting "integral" so defined is necessarily additive. Two measure estimates which 
define the same limiting integral may be called equivalent] this corresponds to 
the usual notion of "equivalent infinitesimals". 

Next, define a multiple-valued function f(a) to be consistent if and only if 
a â b in A implies that the set of f(a) is contained in the set of /(b) ; this will 
clearly be the case if A represents a field of sets and /(a) is the set of values 
assumed by a given function on the set a. Define /(a) to be measurable if and 
only if, given e > 0, there exists a partition of / into elements Axi, on each of 
which the set of f(Axi) has diameter at most e. 

The following results are then easily proved. If m is any measure estimate, 
and if /(a) is consistent, bounded, and measurable, then m*[a] — f(a)m[a] de
fines a measure estimate, and all choices of /(a) give equivalent measure esti
mates. Further, the product of any two consistent, bounded, measurable func
tions / and g has the same properties, and we have: 

(2) If dm* = / f dm, then / g dm* = I (gf) dm. 

This is DuhamePs principle. 

1. G. BIRKIIOFF, Lattice theory, Rev. ed., Amer. Math. Soo. Colloquium Publications 
vol. 25, New York, 1948. 

2. G. BIRKHOFF, Moyennes des fonctions bornées, Procédé d'un Colloque d'Algèbre, 
Paris, 1950. 

HARVARD UNIVERSITY, 

CAMBRIDGE, MASS., U. S. A. 



COHOMOLOGY THEORY OF ABELIAN GROUPS 

SAUNDERS MACLANE1 

This note will present certain algebraic results obtained by Samuel Eilenberg 
and the author in a study of the relations between homotopy and homology 
groups of a topological space.2 These results yield a homology theory for any 
abelian group II, in which the low dimensional homology and cohomology 
groups of n correspond to familiar constructions on II. They depend upon the 
application of the methods of algebraic topology to algebraic systems. Some 
of the topological aspects of these constructions are presented by Eilenberg in 
another note in these Proceedings. 

An abstract cell complex if is a sequence 

(1) ft * - ^ - ft +-?L- ft •••£„_! iJi- ft---
of abelian groups Cn and homomorphisms dn such that the composition 
dndn+i-C»+i —> Cn-i of two successive homomorphisms is the zero homomor-
phism; furthermore each group Cn is a free abelian group with a specified set 
of free generators <r, called the n-dimensional cells of K. The group Zn of ri
dimensionai cycles of K is the kernel of dn in Cn , for n > 1, and is C\ for n = 1. 
The group Bn of n-dimensional boundaries is the image of dn+i in Cn . Since 
óVóV+i = 0, Bn C Zn CZ Cn . The n-dimensional integral homology group 
Hn = Hn(K) is defined as Zn/Bn . 

The cohomology groups of the complex K may be defined for any abelian 
"coefficient group" G. The group Cn(K; G) of n-dimensional cochains of K is 
the group of all homomorphisms / : Cn —> G, or equivalently the group of all 
functions/ on the w-cells of K to G. The coboundary 5n/is an (n + l)-cochain 
defined as the composite homomorphism fdn+i:Cn+i ~> G. These definitions 
yield a sequence of groups and homomorphisms 

C\K)G) —U C\K;G) — 2 - ^ C\K; G) > ••• 

with dn+18n = 0. As before, one defines the cohomology group Hn(K, G) as 
Zn/Bn, where Zn is the kernel of 5» , Bn the image of ôw_x for n > 1, and B1 = 0. 

Any group Q (not necessarily abelian) has a standard homology theory which 
is the homology theory of the cell complex A°(Q) constructed as follows. The 
n-cells of A°(Q) are all n-tuples [xi, • • • , xn] of elements^ of Q, and the bound
ary homomorphisms dn (we omit the subscript n) are obtained by setting 

(2) d[x9 y] = [y] - [xy] + [x], 

(3) d[x, y, z] = [y, z] - [xy, z] + [x, yz] - [x, y], 
1 These investigations were started while the author held a John Simon Guggenheim 

Memorial Fellowship. 
2 S. Eilenberg and S. MacLane, Cohomology theory of abelian groups and homotopy theory 

I and I I , Proc. Nat. Acad. Sci. U. S. A. vol. 36 (1950) pp. 443-447, 657-663. 
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and, more generally,' 

flfa * " ' i ®n] = [X* , ' " jXn] 

n-1 

(4) + z2 (— l)*tci, " • , Xir-i, x&H i , Xi+2, • • • , a;»] 

+ (-l)n[xli ••• ,.Tn-l], 

in agreement with (2) and (3) for n = 2 and ?i = 3. The verification that dd = 0 
depends only on the associative law for Q. 

The groups of the complex A°(Q) are known as the homology and cohomology 
groups of Q. For example, the group Zx of one-dimensional cycles is the free 
abelian group with generators [x], for x 6 Q. If [Q, Q] is the commutator group 
of Q, the homomorphism of Zi into Q/[Q, Q] given by mapping each generator 
[x] into the coset x[Q, Q] has as kernel the group Bx of one-dimensional bound
aries \y] — \xy] + [#]. Hence the isomorphism 

(5) #i(A0(Q)) S* Q/[Q, Q], under [a;] -> x[Q, Q]. 

A one-dimensional cochain is a function /(a;) defined on the 1-cells fa;] with 
values in G. I t is a cocycle if òf = 0; by (2) this means that/(î/) — /(a;j/) + /(a;) = 
0j i.e., that / i s a homomorphism. Hence 

(6) ^ (A 0 «? ) , G) ^ Horn (Q, (?), 

the group of all homomorphisms of Q into G. Similarly, a two-dimensional co-
cycle / is a function f(x, y) on 2-cells [x, y] with values in (? which satisfies, 
according to (3), the functional equation 

(7) f(y, z) + f(x, yz) = f(xy, z) + f(x, y). 

Any such function is a "factor set" of Q in G. Each factor set determines a 
central group extension E of G by Q; specifically, E is the group of all pairs 
(x, g), for x £ X, g £ G, with the composition 

(8) (a, g)(y, h) = (xy, ghf(x, y)) 

and the homomorphism (x, g) —» x onto Q. The equation (7) insures that the 
product is associative. This extension E is equivalent to the direct product 
extension Q X G if and only if the cocycle / is a coboundary. In this fashion 
one may prove that 

H\A\Q), G) ^ Extcent (Q, G), 

where "Extcent" denotes the group of all central extensions of G by Q. 
Instead of using explicit boundary formulas such as (4) we may characterize 

the cohomology groups of the complex A°(Q) by certain formal properties, 
using the special case when Q is the free group F with a fixed denumerable set 
of generators g±, g2, • • • . In the complex A°(F) a cell [xi, • • • , xn] is called generic 
if each Xi is a product of zero or more generators, such that any one generator 
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Qì appears in at most one of these products Xi. Inspection of the boundary 
formula (4) shows that the boundary of a generic cell is a linear combination 
of generic cells. Hence the generic cells alone span a subcomplex A°(F*) of 
A (F). This "generic subcomplex" has the homology groups 

(9) Hn(A\F*)) = 0, n > 1. 

This property, together with (5), can be used to characterize the homology and 
cohomology groups of any group Q without reference to the specific complex 
A°(Q). I t gives implicitly a rule for the construction of suitable complexes like 
A0: given the cells through dimension n, enough cells in dimension n + 1 must 
be added to make every n-dimensional generic cycle a boundary. 

There are several indications that the homology theory appropriate to an 
abelian group U will not be given by the complex A0(H). In the appropriate 
complex, the proof that dd = 0 should use both the associative and commuta
tive laws valid in H. In dimension 2, the cohomology groups of n should corre
spond to extensions of G by TL which are abelian. For Q abelian, the extension 
E described in (8) will be abelian if the factor set / satisfies the additional con
dition 

(10) Kx,y)^f{y,xy, 

this indicates that two-dimensional "abelian" cocycles / should satisfy both 
(7) and (10). 

We thus propose to construct complexes A(U) for additive abelian groups 
n in such fashion that the generic subcomplex A0 (Ft) for a free abelian group 
Fa will have vanishing higher homology groups, as in (9). The complex A°(IL) 
itself does not enjoy this property; indeed, if g and h are distinct generators of 
Fa , the 2-chain. [g, h] — [h, g] has boundary zero, hence is a generic cycle but 
not a generic boundary. We therefore adjoin to A°(U) a new 3-cell [x \ y] with 
boundary 

(11) afa; | y] = [x,y]~ [y,x]. 

After this adjunction, the generic cycle [g, h] — [h, g] becomes a boundary and 
the 2-dimensional cocycles f(x, y) must satisfy not only the "associativity" 
condition (7), but also the "commutativity" condition (10). In dimension 4, 
we adjoin two more types of four cells [x, y | z] and [x \y, z], with boundaries 

(12) d[x, y\z] = [y \ z] - [x + y \ z] + [x \ z] - [x, y,z] + [x, z, y] - [z, x, y], 

(13) d[x \y9z] = [x\z]-[x\y + z] + [x\z] + [x} y, z] - [y, x, z] + [y, z, x]. 

Indeed, the expressions on the right in (12) and (13) would otherwise be non-
bounding generic 3-cycles when x, y, z are distinct generators of Fa . 

These formulas may be written more conveniently if we define a "shuffle" of 
m letters Xi, • • • , xm through n letters yx, • • • , yn to be any list of these m + n 
letters in an order which preserves both the order of the a's alone and that of 
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the 2/'s alone. The sign of the shuffle is the sign of the permutation required to 
bring the shuffled letters back to the standard order xi, • • • , xm , y\ , • • • , yn . 
Finally, the "star" product [xi, • • • , xm]*[yi, • • • , yn] is defined as the signed 
sum of all shuffles of the letters x through the letters ?/. The boundary formula 
(12) becomes, in this notation, 

d[x, y\z] = [d(x, y) | z) - (x, 2/)* z, 

with similar expressions for (13). 
Generalizing the formulas (12) and (13), we construct the complex Al(Jl) in 

which the cells are symbols a = [o?i | • • • | ap], with each ai %> cell of A0(IL). The 
dimension of a is p — 1 plus the sum of the dimensions of the a»-, and the bound
ary of o- is 

+ 2 ( - 1 ) - ' [«l I • • • I «i*at-+11 • • • | a J , 

where €< = 1 + dim [ai | • • • | at]. The proof that dö = 0 uses both the asso
ciative and the commutative laws in n. 

In the so constructed complexes Ax(n) all the generic cycles of A°(TL) become 
boundaries, but there are new generic cycles, such as the cycle [g | h] + [h \ g] 
of dimension 3. To kill this cycle, we add a new 4-cell [x \\ y] with boundarjr 

CIS) l*\\v]= -lx\y]-b/\xl 

This is the first step in the construction of a new complex A2(IL) which has cells 
[cri 11 • * * || 0"d, with the cri cells of A1 (TL), and a boundary formula resembling 
(14) (but with a new shuffling operation which shuffles only the "blocks" ctj 
of each <rt-). The same construction2 is then repeated inductively to give com
plexes Ak(TL). The final complex A(TL) is the union of all the complexes Ak(TL); 
for a fixed dimension q the cells of A(TL) are simply those of Ak with k = q — 2. 

In the complex A (TL) we may again define for the free abelian group Fa the 
generic subcomplex A(Fa*). 

THEOREM 1. For the construction A the generic subcomplex has the homology 
groups 

(16) Hx(A(Ft)) S Fa , Hn(A(F*)) = 0 , n > 0-

There are many alternative constructions K of complexes K(JT), one for each 
abelian group n, which have as cells various types of w-tuples of elements of 
n, with a boundary "formula" valid for all groups, and such that the generic 
cells of K(Fa) form a subcomplex K(F%). We require also that the 1-cells of 
K(JT) be the 1-cells [x] of A(n). 
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THEOREM 2. Let K be any such construction which has generic homology groups 
as in (15). Then for any abelian group TL, the homology and cohomology groups 
of K(TL) in dimension n are isomorphic to those of A(TL). 

We are thus justified in referring to the cohomology groups of A (TL) as the 
cohomology groups of the abelian group H. 

These groups may be explicitly computed for any given dimension if n is a 
finitely generated group. For certain low dimensions they have been determined 
for any H. Thus, as in (6), 

H\AÇn), G) = H^ÇTL), G) ^ Horn (n, G), 

while, as already indicated in (10) and (11) 

H\A(TL), G) = H2(A\U), (?) ^ Ext (n, G), 

the group of all abelian group extensions of G by TL. 
A 3-dimensional cochain of A1 (TL) is a pair of functions/(x, y, z) £ G, d(x \ y) 

Ç G; they form a cocycle if they vanish on the boundaries (10), (11), and (4); 
that is, if they satisfy the identities 

(17) d(x + y\z)~ d(y \ z) - d(x \ z) + f(x, y, z) - f(x, z, y) + f(z, xty)=0 

(18) d(x\y + z) - d(x \ y) - d(x \ z) - f(x, y, z) + f(y, x, z) - f(y, z, x) = 0 

(19) f(y, z, t) - f(x + y, z, t) + f(x, y + z,t)+ f(x, y,z + t)- f(x, y, z) = 0. 

A two-dimensional cochain is a function h(x, y) 6 G; its coboundary is the pair 
(/, d) with 

(20) f(x, y, z) = h(y, z) - h(x + y, z) + h(x, y + z) - h(x, y), 

(21) d(x\y) = h(x,y) - h(y,x). 

To any cocycle (/, d) we assign the function t(x) = d(x\x) £ G as its trace. 
By (21), the trace of a coboundary is zero, and one may show that any trace 
satisfies the identities 

(22) t(x + y + z)~ t(x + y) - t(y + z) - t(z + x) + t(x) + t(y) + t(z) = 0, 

(23) t(x) = t(-x). 

These are incidentally the formal identities satisfied by a "square" £(a;) = x2; 

hence we call any such function t a quadratic function. 

THEOREM 3. The function assigning to each cocycle its trace induces an iso
morphism of fl^A^n), G) to the group of all quadratic functions on TL to G. 

In the complex A (TL) the three-cochains are the same pairs (f, d), but a co-
cycle must satisfy one additional identity d(x \ y) + d(y \ x) = 0, derived from 
(15). Thus 2t(x) = 0, and we have -

H\A(TL), G) = H\A2(1I), G) ^ Horn (n, 2G), 

where 2G is the subgroup of all elements of order 2 in G. 
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There are parallel results for the homology groups; one has the isomorphisms 

#i(A(n)) s n, JTs(ii(n)) = o, H,(A(u)) & n/2n, 
while Hs(A1(TL)) is the group3 T(n) which has the generators [x] for x £ II and 
the relations 

[x + y + z]-[x + y]-]y + z] + [z + x] + [x] + [y] + [z] = 0, 

[x] = [-*]. 

In dimension 4, H^A1^)) is isomorphic to the abelian group with the|fol-
lowing generators: a generator [s] for each element s of 2II and a generator 
[x, y ; h] for each pair of elements x,y Ç.TL and each integer h such that hx = hy= Q. 
These generators satisfy the following relations for x, y, z with hx = hy — hz = 0 

(24) [a;, 2/ + z\ h] = [x,y, h] + [x, z\ h], 

(25) [3 + y, z; h] = [x, z; h] + [2/, z\ A], 

(26) [a;, rc;Ä] = 0, 

and the relations 

(27) [x, y; kh] = [kx, y\ A], if (kh)x = 0, hy = 0, 

(28) [x, y;2] = [* + y] - M - M, if 2a; = 2y = 0. 

Conditions (24), (25), and (28) imply that [s], for s £ 2n, satisfies the relation 
used to define r(2n), while conditions (24), (25), and (26) imply that [x, 0; A] = 
[0, y; A] = 0 and that [x, y\h] = — [y, x; A]. 

For the complex A2(n), we have an isomorphism 

#4(A2(n))^2n + A(n), 
where A(n) is the abelian group with generators (x, y) for all x, y G n, and 
relations 

(x, y + z)= (x, y) + (x, z)\ (x + y,z)= (x,z) + (y, z); (x, x) = 0. 

Finally, H,(A(TL)) = HA(AZ(TL)) S 2n. 
Closely connected with Theorem 3 is the fact that the symmetric three-dimen

sional cohomology group is zero, in the following sense. 

THEOREM 4. i / the function f(x, y, z) G G on TL satisfies (19) and the symmetry 
condition 

f(x, y, z) - f(x, z, y) + f(z, x, y) = 0, 

then there is a function h(x, y) £ G with h(x, y) — h(y, x) = 0, and 

f(x, y, z) = h(y, z) - h(x + y, z) + h(x, y + z) - h(x, y). 

8 This is the group T(H) used by J. H. C. Whitehead; see his article in these Proceedings. 
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In other words òf = 0 implies / = 5A, when / and A both satisfy symmetry 
conditions,, and ô is the coboundary operator of A°(TL). 

For the case when H is the additive group of integers the homology groups of 
A (TL) can be expressed by means of direct sums of cyclic groups (ra) of order 
ra, as follows: 

H% = Hé = Ha = Hz = 0, JSio = (2) 

H i - ( « ) , #3 = ( 2 ) , tfB=(2) + (3) 

H, = (2) + (2), H, = (2) + (2) + (3) + (5), Hu = (2) + (2). 

U N I V E B S I T T O F C H I C A G O , 

CHICAGO, I I I . , 17. S. A. 



THE COHOMOLOGY THEORY OF A PAIR OF GROUPS 

R E I N H O L D B A E R 

1. The appropriate framework for our discussion is provided by the general 
concept of group representation. Such a representation has three component 
parts: an arbitrary group Q, the group to be represented; an abelian group G7 

the representation modulus (which could be an opera (or group without changing 
an iota of our discussions); the way Q operates on G, i.e., a multiplication qg = gf 

such that for q in Q and g in G the product qg is a uniquely determined element 
gr in G with the usual properties of distributivity [q(g + A) = qg + qh] and 
associativity [p(qg) = (pq)g, lg = g]. The principal problem is to find invariants 
of such representations (Q, G, qg). The cohomology groups Hn(Q, G) constitute 
a family of invariants which is of great interest not only because of their ap
plications in topology, but much more so because of the great, and apparently 
rather disparate, significance of the first members of this chain : H° is the group 
of fixed elements of Q in G [satisfying qf = / for every q in Q] ; Z1 is the group of 
crossed homomorphisms and B1 the principal genus of Q in G; and H is the 
group of group extensions of G by Q (and we note that Z1 is closely connected 
with the automorphisms of the individual group extensions). For a comprehen
sive introduction into this theory see, for instance, Eilenberg [2] whose notations 
we shall use. 

I t is only natural to ask whether these invariants suffice to distinguish between 
nonisomorphic representations. This is not the case, as becomes apparent from 
the following (well-known) theorem which is easily verified by using I. Schur's 
"summation 

If Q has finite order m, and if the mapping g —* mgis an automorphism of tf, 
then Hn(Q, G) = 0 for 0 < n. 

As a matter of fact it is not astonishing that these invariants fail to 
distinguish between different representations, since, for instance, the groups 
Cn(Q, G)/Zn(Q, (?) 9É Bn+1(Q, G) form a further, and as yet apparently neg
lected, set of invariants. But once we have given up hope of using these in
variants to distinguish different representations, we ask immediately the 
complementary question: which representations have the same cohomology 
groups? 

2. Clearly we cannot expect that the cohomology groups of two random 
representations have any similarity with each other. Thus it seems justified to 
compare the cohomology groups of two representations only in case these 
representations are, in some fashion, related to each other. With this in mind we 
are going to consider representations (R, G, rg) and (S, G, sg) with the same 
representation modulus G which operate on each other as follows. 

If r and s are elements in R and S respectively, then r8 and sr are uniquely 
determined elements in R and S respectively, subject to the following rules: 

15 
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(1) r°" = (rY, r1 = r; srr' = ( / ) " , s1 = «; 

(20 (rr'Y = rV s ; (ss')r = srs'r; 

(2") rs r ' = rs; / * ' = sr; 
Im 
(JQ rsr<7 = srsgf for every g in G. 
tTlf these conditions are satisfied, then it is possible to construct the product of 

ùis pair of representations. This is a representation (Q, G,q°g) with the follow
ing properties. 

(a) Q = RS = SR, 1 = R fi S. 

(b) srs = rsr. 

(e) rg = r° g, sg = s o gr. 

Condition (a) has to be understood as requiring that R and S are subgroups of G 
and that every element in G may be written in one and only one way in the form 
rs and in one and only one way in the form sV. The existence of a group Q 
meeting requirements (a) and (b) is a special case of a theorem of Zappa [6]; 
and using this theorem it is possible to prove the equivalence of conditions 
(2') and (2"). 

The importance of products Q [with properties (a) and (b)] has been em
phasized by various authors [Miller, Neumann, Ore, Széps, Zappa]; and this 
would justify an independent interest in the cohomology groups of (Q, G,q° g)\ 
see, for instance, Lyndon [3] for an investigation of the cohomology groups of a 
direct product. For us, however, the cohomology theory of the product repre
sentation will only be a means for obtaining relations between the cohomology 
groups of the "factors." As a matter of fact, it will often prove useful to sub
stitute for (Q, G, q° g) suitably selected representations (Q/N, G, q° g) where 
the elements in N operate trivially on G. 

3. If (R, G, rg) and (S, G, sg) is a pair of representations and (Q, G, qg) their 
product [in the sense of §2], then it is not difficult to prove the equivalence of the 
following properties : 

(I. R) There exists an idempotent endomorphism p of Q such that Qp = R 
and such that qp = 1 implies qg = g for every g in G. 

(II. R) There exists a normal subgroup N of Q such that Q = NR, 1 = N Ci R 
and such that ng = g for n in N and g in G. 

(III. R) There exists a homomorphism rj of S into R such that sg = svg for 
s in S and g in G. 

[By an obvious interchange of R and S we obtain a similar set of equivalent 
properties (I. S) to (III. S).] 

Property (II. R) shows the importance of the representation (Q/N, G, qg) 
mentioned before; and Property (III. R) may be used to see that the following 
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important class of pairs of representations (studied by Lyndon [3]) is a subclass 
of the class under consideration : 

S is a normal subgroup of R and the elements in S operate on G as they do as 
•elements in R;rs = r and sr = ?~V. 

The class of pairs meeting requirement (I. R) has the following important 
property. 

(R) If the pair (R, G, rg), (S, G, sg), and their product (Q, G, qg) meet require
ment (I. R), then Hn(Q, G) possesses [for 0 < n] a direct summand isomorphic 
to Hn(R, (?); in symbols: 

(R*) Hn(Q, G) = Hn(R, G) © D for 0 < n. 
We sketch the proof. The cochain/( • • • n • • • ) in Cn(R, G) may be mapped 

upon the cochain fp( • • • qi • • • ) = / ( • • • qp • • • ) in Cn(Q, (?); and this mapping 
p is a homomorphism of Cn(R, G) into Cn(Q, G) which commutes with the co-
boundary operator, since qg = qpg. A homomorphism p of Hn(R, G) into Hn(Q, G) 
is consequently induced by the homomorphism p of Cn(E, (?) into Cn(Q, (?). 
Next we map the cochain A in Cn(Q, G) "by restriction" upon the cochain hp' 
in Cw(i?, (?) which coincides on R with A. Clearly p' is a homomorphism of 
Cn(Q, (?) into Cn(R, (?) which commutes with the coboundary operator; and 
consequently p' induces a homomorphism of Hn(Q, (?) into Hn(R, (?) which we 
also denote by pf. Since the endomorphism p of Q is idempotent and maps Q 
upon ß , it leaves invariant every element in R. The endomorphisms ppf of 
Cn(R, (?) and of Hn(R, G) are therefore equal to the identity automorphism. 
The homomorphism p of Hn (R, (?) into Hn (Q, (?) is consequently an isomorphism ; 
and the endomorphism pfp of Hn(Q, (?) is idempotent and maps Hn(Q, (?) upon 
the direct summand Hn(R, G)p which is isomorphic to Hn(R, (?). This proves 
(R). 

The principal weakness of this result (R*) is the almost complete absence of 
information concerning the complementary direct summand D. To remedy this 
situation we have to introduce an important new concept. 

4. We consider, as in §2, a pair of representations (R, G, rg) and (S, G, sg) 
linked by the operations r8 and sr. Functions of the form 

hi = f(n , • " ' > U , sx, • • • , Sj) for rh ' in R and sk in S 

may be considered both as i-dimensional cochains of R in C3'(S, G) and as j -
dimensional cochains of S in C%(R, (?). This fact we try to exploit. 

The elements in R and S operate on these functions fif3- according to the 
following rule: 

r °Uj = rf( ' ' " rh • • • si • • • ), s o fid = sf( • • • n • • • sk • • • ); 

and these operations are related by the formula: 

r ° (sr °fid) = so (r8 °fitj). 

Next we define coboundary operators 8R and 58 in the obvious way; for instance, 
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àsUj = (àsfi,j)(ri, •• 

= si ° Ui(n, • • 

• , Ti , fii , • • • 

• , n , s2 , • • • 

" " ' j ri i fil J ' 

, fij+l) 

j S i + l ) 

• • , sks , fij+l) 

+ ( - 1 ) ' U3-(n, • • • , n, s i , • • • , sf); 

and we note the relations: 8% = 0, òR8s = ô5ôA , ôl = 0. 
Now we define the n-dimensional cochains of our pair of representations as 

sequences 

rh — [flQ,n > ' ' ' j H>i,n—i > ' ' ' j "'n.oj 

Their totality forms the group Cn(R, S; G), if we define addition of cochains 
"coordinatewise". For these cochains we define an operator ô by the rule 

Òh = [dsho,n , " • • , ÖßAi_l|7i-i+l + (~"1) 5aAi,n_i , • • • , 5flAn,oJ. 

This operator is a homomorphism of Cn(R, S\ G) into Cn+1(Ä, S; G) which 
satisfies ô2 = 0. Thus it is a true coboundary operator; and we may define as 
usual n-dimensional cocycles and coboundaries and the n-dimensional coho
mology group Hn(R, S; (?). 

This construction made its appearance in various places. The Parisian school 
of topologists [Cartan, Koszul, Leray] has used it [according to a communi
cation of S. MacLane]; a complete exploitation of I. Schur's summation may 
be effected within this framework; and a very similar construction has recently 
been given by J. H. C. Whitehead [5]. 

The importance of this construction for our present needs stems from the 
validity of the following theorem. 

If (Q, G, qg) is the product of the pair of representations (R, G, rg), (S, G, sg), 
then there exists a homomorphism <p of Cn(Q, (?) into Cn(R, S; (?) which commutes 
with the coboundary operator and satisfies 

f = [/(fii, • • • , fin), • • • ,f(n , • • • , rn)) for f in Cn(Q, G). 

Clearly <p induces a homomorphism ofHn(Q, (?) into Hn(R, S;G). 

Our construction of this homomorphism <p is rather intricate and does not 
seem to give any useful information concerning the "inner" coordinates of fv. 
This lack of information seems to be the principal obstacle encountered when 
using the constructions of this §4. [The reader is again referred to Lyndon's 
investigations of the cohomology groups of group extensions. There use is made 
of a certain fundamental homomorphism which may or may not be related to 
the homomorphism <p.] 
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5. Inserting the homomorphism <p [of §4] into the argument used when proving 
the proposition (R) [in §3] we obtain now the following result. 

If the pair of representations (R, G, rg), (S, G, sg), and their product (Q, G, qg) 
satisfy condition (I. R), then 

Hn(R, S; (?) = Hn(R, (?)* 0 HZ(R, S; (?) for 0 < n 

where HV(R, (?)* is isomorphic to Hn(R, (?) and where the group Ho consists 
exactly of those elements in Hn(R, S; (?) which may be represented by cocycles 
of the form [Ao,n , • • • , A»_i,i, 0]. 

To gain further insight into the structure of the "complement" Ho, denote 
by fl"?-i(Z2, S; (?) the totality of elements in Hn(R, S; (?) which may be repre
sented by cocycles of the form [A0|W , • • • , hn-i,% , 0 , • • • ,0] . We obtain a chain 
of subgroups 

0 = # : _ ! ^ • • • S Hï g HU é • • • é HS g Hn(R, S; G); 

and one verifies without any trouble that mapping the cocycle 

[ho,n j * • " j hn-i,i , 0 , • • • , 0 ] 

upon the cocycle hn-iti in Zn~%[R, C%(S, (?)] induces an isomorphism of HU/Hi 
into Hn~l[R, Cl(S, (?)]. (The reader should compare this with Lyndon [3, 
Theorem 4', p. 291] where similar, though apparently different, subgroup chains 
make their appearance.) 

6. We state now without proof a number of theorems that may be obtained 
with the help of the methods developed in the preceding sections. These theo
rems are not the most general results that may be derived in this fashion; but 
they are quite typical. 

A. If the pair of representations (R, G, rg), (S, G, sg), and their product (Q, G, qg) 
satisfy condition (I. R), and if furthermore S operates trivially on R [so thatr8 = r], 
then 

H\S, (?) = 0 /or 0 S i Sn implies H\R, (?) = 0 /or 0 Si S n, 

The general hypotheses of this Theorem A are satisfied, for instance, whenever 
S is a normal subgroup of R. Consequently the first n + 1 cohomology groups of 
R vanish whenever the first n + 1 cohomology groups of some normal subgroup 
S of R do vanish; and this rather striking result may also be obtained as a 
special case of a theorem of Lyndon [3, Theorem A!, p. 291]. 

B. If the pair of representations (R, G, rg), (S, G, sg), and their product (Q, G, qg) 
satisfy conditions (I. R) and (I. S), and if furthermore R and S operate trivially 
upon each other [so that r = r and sr = s], then 

0 = H\R, G) = H\S, (?) for 0^i<n implies Hn(R, (?) S Hn(S, G). 
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I t is a weakness of these two theorems that their hypotheses include the 
vanishing of H°(S, G), since this group is just the totality of elements g in G 
such that sg = g for every s in S [the fixed element group of S in G\. The follow
ing result which does not make use of this hypothesis may therefore be of in
terest. 

C. / / the pair of representations (R, G, rg), (S, G, sg), and their product (Q, G, qg) 
satisfy condition (I. R), and if S operates trivially on R, then 

0 = H\S, (?) = . . - = *Hn(S, (?) 

implies that every cocycle in Zn(R, (?) is cohomohgous to a cocycle with values in 
H\S, (?). 

If in particular S is a normal subgroup of R, then we obtain again a result 
that is a special case of Lyndon [3, Theorem 4', p. 291]. The special cases n = 2 
and n = 3 of Theorem C have been derived in the framework of Galois theory 
by Bergström [1] and Nakayama [4]. 
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THE BETTI NUMBERS OF THE EXCEPTIONAL SIMPLE LIE GROUPS 

C. CHEVALLEY 

The first explicit determination of the Poincaré polynomials of the exceptional 
simple Lie groups has been accomplished by Yen Chili Ta (C. R. Acad. Sci. 
Paris vol. 228 pp. 628-630). We propose to describe briefly the main steps in 
another procedure to achieve the same result. 

I. REDUCTION TO AN ALGEBRAIC PROBLEM 

It has been known for a long time that the Betti numbers of an arbitrary 
compact connected Lie group G can be determined by solving a purely algebraic 
problem. Denote by Ep the space of closed differential forms of class C00 on 
G (i.e., of those differential forms co for which dea = 0) and by (Sp the space of those 
elements in £ p which may be written in the form df, f being a differential form 
of degree p — 1 and class C00. Then de Rham's theorem asserts that the pth Betti 
number Bp of G is equal to the dimension of the factor space E^/©p. 

If s is in (?, let L8 and Rs be respectively the left and right translation by s. 
If to is in E23, and s and t in (?, then L8Rt(o is still in E*\ and congruent 
to co (mod (Sp), because G is connected. The form coi = $(L8Rtto) ds-dt (the in
tegration being made relatively to the product by itself of the Haar measure on 
(?) is again in Ep, is congruent to co modulo ©p and is two-sided invariant (i.e., 
L8o)i = Racoi = co\ for every s in (?). On the other hand, it can be proved that a 
two-sided invariant differential form of degree p on G is in Ep and cannot be in 
®p unless it is 0. The pth. Betti number of G is therefore equal to the dimension 
of the space of two-sided invariant differential forms on (?. 

Let Q be the Lie algebra of (?. Then the left-invariant differential forms of 
degree p of G are in a one-to-one correspondence with the elements of degree p 
of the exterior algebra A(ß) over the dual vector space ß* of ß. Any right trans
lation of G permutes among themselves the left-invariant differential forms of 
(?; this gives rise to a linear representation p of G by automorphisms of the 
algebra A(ß), and the two-sided invariant forms are the invariants of this 
representation of (?. 

There corresponds to the representation p of G by automorphisms of A($) 
a representation 0 of ß by derivations of the algebra A(ß). This derivation may 
be obtained directly from ß as follows; if X £ ß, the adjoint operation ad X of X 
is an endomorphism Y —> [X, Y] of the vector space ß; the restriction of 6(X) 
to ß* is then the operation on ß* contragredient to the operation adX on g, 
and 0(X) itself is the unique extension to a derivation of A(ß) of its restriction 
to ß*. Thus, the operations B(X) can be determined as soon as the constants of 
structure of ß are given, arid the determination of the Betti numbers of G is 
reduced to an algebraic problem (evaluating the ranks of certain systems of 
linear equations). 

21 
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IL T H E THEOREM OF HOPF 

The two-sided invariant differential forms on G form a subalgebra fl"(ß) of 
A(ß). The structure of this algebra has been determined by Hopf (H. Hopf, 
Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen 
Ann. of Math. vol. 42 (1941)): it is isomorphic to the exterior algebra con
structed over a certain vector subspace P(ß) of H(Q), and P(ß) has a base 
composed of a certain number of forms of odd degrees p\, • • • , pi. I t follows 
that the Poincaré polynomial ^2V Bvf of G is U L i (1 + tPh), and the determi
nation of the Betti numbers is reduced to that of the exponents pk (1 û h ^ 0, 
which are called the primitive exponents of G. 

J. L. Koszul has proved the theorem of Hopf in a purely algebraic manner 
(Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France (1950)) 
and has defined explicitly a certain space P(ß) which has the property stated 
above; the elements of this space are called the primitive elements of 4(ß). 

HL REDUCTION TO A PROBLEM OF SYMMETRIC INVARIANTS 

Besides A($), let us now introduce the symmetric algebra S($) over ß*; 
S(ß) may be thought of as being the algebra of all functions of an argument 
X in ß which are polynomial functions in the sense that they can be expressed 
as polynomials in the coefficients of the expression of X with respect to some 
base of ß. We have constructed above a linear representation of G whose space 
was A(ß); the operations of this representation indicate how the right transla
tions of G permute among themselves the left-invariant differential forms on 
G. Similarly, the elements of £(ß) may be identified with the left-invariant 
symmetric tensors on G, and it follows immediately that we have a linear repre
sentation <r of G by automorphisms of £(ß); the operations of this representa
tion indicate how the right translations of G permute among themselves the 
left-invariant symmetric tensors on (?. We shall denote by 7(ß) the algebra 
formed by those elements of $(ß) which are invariant with respect to the oper
ations of the representation we have just described; Z(ß) is therefore the algebra 
of two-sided invariant symmetric tensors on (?. This algebra contains in particular 
the fundamental quadratic form Tr(adZ)2 of Cartan; more generally, the co
efficients of the Killing equation of an X G ß (i.e., of the characteristic equa
tion of ad X), considered as functions of X, are in 7(ß). 

A. Weil has discovered the fact that the structure of the space P(ß) of primi
tive elements is intimately related to that of the algebra Z(ß). Let (coi, • • • , con) 
be a base of ß*, and let P be an element of S(Q); we may express P(X) in the 
form of a polynomial P(x\, • • • , xn) in the quantities Xi = coi(X) (1 ^ i I n). 
On the other hand, the coi 's are differential forms of degree 1 whose differentials 
dcoi are of degree 2 and therefore belong to the center of A(ß); it follows that we 
may substitute the dcoi for the variables Xi in the polynomial P. I t is clear that, 
if P G i(ß), then P(dcoi, • • • , dcon) is in H($), and that it is the coboundary (or 
the differential) of the element 
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V = - 2 ( v~ ) (dux, • • • , dcon)coi. 
n i=i \dXi/ 

But no element ^ 0 of II(ß) can be a coboundary; it follows that P(dcoi, • • • , 
dcon) = 0 and that rj is a cocycle. Moreover, it is easily seen that rj is itself in 
i7(ß). Thus, we obtain a linear mapping P -* ?? of 7(ß) into i7(ß). The study 
of this mapping shows that its range is precisely the space P(ß) of primitive 
elements, and that its kernel is the subspace of 7(ß) spanned by 1 and by the 
products of homogeneous elements of degrees >0 . 

Let pu = 2qk — 1 (1 ^ h S I) be the primitive exponents of (?. Observe that, 
if P is of degree q, rj is of degree 2q—l; it then follows immediately from the 
result quoted above that the algebra 7(ß) is generated by I algebraically in
dependent elements i"i, • • • , 1% of degrees qi, • • • , qi ; in order to find the 
primitive exponents, it will therefore be sufficient to determine the structure of 
the algebra 7(ß). 

IV. REDUCTION TO AN INVARIANT PROBLEM FOR A FINITE GROUP 

Let H be a maximal toroidal subgroup of (?, and let Ï) be the Lie algebra of H. 
It is well known that every element of G is conjugate in G to some element of 
i7, and therefore that every element of ß may be transformed by the adjoint 
group into some element of Ï). If P is an element of 7(ß), then we have 
P(sX) = P(X) for every element s of the adjoint group; it follows that P cannot 
vanish on Ï) without being identically zero. Let 7'(ß) be the ring of polynomial 
functions on Ï) which are obtained by taking the restrictions to I) of the functions 
in 7(ß); 7'(ß) is therefore isomorphic to 7(ß). 

If N is the normalizator of H in (?, then it is known that N/H is a finite group 
W, which I have proposed to call the Weyl group of G. This group may be repre
sented as a finite group of linear transformations on Ï) : it is the group of operations 
induced on I) by those operations of the adjoint group which transform t) into 
itself. I t is then clear that, for any P G 7(ß), the restriction P' of P to Ï) is an 
invariant of the finite group W. It turns out that the converse is also true: if 
Pl is a polynomial function on I) which is invariant with respect to the opera
tions of the group W, then P is the restriction to Ï) of some function P belonging 
to7(0) . 

Thus, the determination of the primitive exponents of G is reduced to the 
solution of the "Formenproblem" for the finite group W. We know in advance 
that the ring of invariants will be generated by I algebraically independent 
elements; this fact can also be established directly by making use of the fact that 
the group W can be generated by a certain number of operations of order 2 
which are symmetries with respect to certain hyperplanes in Ï), relatively to a 
suitable euclidean metric in I). 

The groups W relative to the various exceptional Lie groups are known. 
Moreover, it can be proved a priori that the sum of the primitive exponents of 
G is equal to the dimension of (?, and that the product qt • • • qi is equal to the 
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order of the group W. Making use of these facts, it is possible to compute ex
plicitly the primitive exponents in every individual case. The results are the 
following: 

for ft: 3 ,11 ; 

forF4 : 3, 11, 15,23; 

for# 6 : 3 ,9, 11, 15, 17, 23; 

forEr. 3, 11, 15, 19 ,23,27,35; 

for E8: 3, 15, 23, 27, 35, 39, 47, 59. 

I t will be observed that, in every case, it turns out that we have pk+i — pk = 
pi-k+i — pi-k (1 ^ h < Z). This is also true for the primitive exponents of the 
classical groups; but we lack any rational explanation of this general fact. 

COLUMBIA UNIVERSITY, 

N E W YORK, N. Y., U. S. A. 



STRUCTURE THEORY OF RINGS AND ALGEBRAS 

POWER-ASSOCIATIVE ALGEBRAS 

A. A. ALBERT 

An algebra is a mathematical system SI consisting of an n-dimensional vector 
space over a field g and a product xy which is a bilinear function of its arguments 
x and y. When every element x of 3t generates an associative subalgebra $[x] 
of ?I the algebra ?Jf is said to be power-associative. All of the major classes of 
algebras which have been studied so far are power-associative. The classes are, 
of course, the associative, alternative, Lie, and Jordan classes of algebras. 

Lie algebras of characteristic not two are defined by the identities 

(1) xy = -yx, x(yz) + y(zx) + z(xy) = 0. 

The structure theory for this class of algebras is due to Elie Cartan,1 W. Land
herr, and N. Jacobson.2 It exists only for the case where % has characteristic 
zero. Lie algebras are trivially power-associative since x2 = 0, xn = 0 for n ^ 2. 
Indeed such algebras are nilalgebras, that is, all elements are nilpotent, As a 
consequence there is a sharp divergence between the methods used in the struc
ture theory for Lie algebras and those used in the other major theories. 

Alternative algebras may be defined by the identity (yx)x = y(xx) and the 
flexible law x(yx) — (xy)x. The structure theory is due to M. Zorn3 and, like the 
associative theory, has been developed for the case where g can have character
istic p 9^ 0. The alternative laws imply the theorem of Artin* which states that 
§1 is alternative if and only if the subalgebra %[x, y] generated by any two ele
ments of §1 is associative. The end result of the theory is that all simple algebras 
of the class are either associative or are eight-dimensional Cayley algebras. 

A much richer theory exists in the case of the algebras of P. Jordan.5 These 
algebras are defined by the identities 

(2) xy = yx, x(yx2) = (xy)x2. 
1 The structure theory is due to Killing and Cartan and was published in Cartan's 

thesis, Paris 1894. Real simple Lie algebras were determined by Cartan in his paper Les 
groupes reels simples et continues, Ann. Ecole Norm. vol. 31 (1914) pp. 263-265. 

2 Some of the principal classes of simple Lie algebras over an arbitrary field of charac
teristic zero were determined by W. Landherr in his papers Über einfache Liesche Ringe, 
Abh. Math. Sem. Hamburgischen Univ. vol. 11 (1937) pp. 41-64 and Liesche Ringe von 
Typsus A, Abh. Math. Sem. Hansischen Univ. vol. 12 (1938) pp. 200-241. The remaining 
classes were determined by N. Jacobson, A class of normal simple Lie algebras of charac
teristic zero, Ann. of Math. vol. 38 (1937) pp. 508-517. 

8 Theorie der alternativen Ringe, Abh. Math. Sem. Hamburgischen Univ. vol. 8 (1930) 
pp. 123-147. 

4 A simple proof of a generalization of this theorem was given by M. Smiley, The radical 
of an alternative ring, Ann. of Math. vol. 49 (1948) pp. 702-709. t 

5 These algebras were first defined by P. Jordan in his paper entitled Über eine Klasse 
nichtassoziativer hyperhompìexer Algebren, Göttingen Nachrichten, 1932, pp. 569-575. 
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The first structure theory of such algebras was given in 1934 by Jordan, E. 
Wigner, and J. von Neumann.6 They made the highly restrictive hypotheses that 
g is the field of all real numbers and that 2Ï is formally real, that is, a 
sum x\ + • - • + x2

r — 0 only if xx = • • • = xr = 0. These hypotheses imply 
that 2Ï contains no nilpotent elements and can have no radical. The present 
structure theory, which is due to myself,7 G. Kalisch and N. Jacobson,8 assumes 
only the basic identities (2) and that § has characteristic zero. However the 
properties of a Jordan nilalgebra7 were derived for the case where gf has any 
characteristic p ?* 2. 

The reason why the present theories of Jordan and Lie algebras are restricted 
to the characteristic zero case is that the basic tool in both theories is a trace 
argument. In the characteristic p case of the associative theory the structure 
theorems are proved by using the characterization of the radical as the set of all 
properly nilpotent elements9 of the algebra. The resulting arguments are strictly 
associative, and all attempts at extending the characterization to obtain a tool 
useful for the study of power-associative systems have been fruitless. I t is for 
this reason that a trace argument has remained the only available tool for so 
long a time. 

I have recently analyzed the trace arguments which have been used in the 
studies of algebras similar to associative algebras, and have carried out10 an 
abstraction of the theory as follows. A power-associative algebra St over a 
field g is said to be trace-admissible if there exists a bilinear function T(X, y), 
with arguments x and y in §1 and values in g (an admissible trace function for 
21), such that 

I. r is symmetric, that is, r(x, y) = r(y, x); 

I I . r is associative, that is, r(x, yz) = r(xy, z) ; 

III. r(e, e) ^ 0 if e2 = e j* 0; 

IV. r(x, y) = 0 if xy is zero or is nilpotent. 

Define the radical Sft of % to be the maximal nilideal of 3Ï. Then the principal 
structure theorems will hold for all power-associative trace-admissible algebras 
and so a great deal of structure theory may be deleted. Let us now see what 
structure theorems are like and what the results are in the trace-admissible case. 

6 On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. 
vol. 35 (1934) pp. 29-64. 

7 A structure theory for Jordan algebras, Ann. of Math. vol. 48 (1947) pp. 546-567. 
8 The principal classes of special simple Jordan algebras over an arbitrary field of char

acteristic zero were determined by G. Kalisch, On special Jordan algebras, Trans. Amer. 
Math. Soc. vol. 61 (1947) pp. 482-494, together with F. D. Jacobson and N. Jacobson, 
Classification and representation of semi-simple Jordan algebras, Trans. Amer. Math. Soc. 
vol. 65 (1949) pp. 141-169. 

MDf. Chapter 2 of my Structure of algebras, Amer. Math. Soc. Colloquium Publications 
vol. 24, New York, 1939. 

10 Trace-admissible algebras, Proc. Nat. Acad. Sci. U. S. A. vol. 35 (1949) pp. 317-322. 
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When the radical 91 of a power-associative algebra 9Ï is defined to be the 
maximal nilideal of 31, all Lie algebras become radical algebras and their study 
is then excluded. Every algebra 91 not a radical algebra contains an idempotent 
element e = e2 ^ 0 and we may define 9L(X) to be the subspace of 91 consisting 
of all elements x in 31 such that ex + xe = 2\x for X in F. I t is known11 that X = 0, 
1 or | and that 91 is the supplementary sum 

(3) si = a.(i) + «w*) + suo) 
of the three subspaces 9L(X). Moreover ex = xe = \x for X = 0, 1 and x in 
9Ie(X), the subspaces 3le(l) and Sle(0) are orthogonal and are subalgebras of 3Ï 
in £Ae commutative case. The desired basic structure theorems for all power-
associative algebra theories are then: 

THEOREM 1. If e is principal (that is, 3te(0) contains only nilpotent elements), 
then «.(J) + 8.(0) £ SR. 

THEOREM 2. 7/ §1 is semisimple, that is, 91 = 0, then 9Ï Aas a unity quantity. 

THEOREM 3. Every ideal of a semisimple algebra is semisimple. 

Theorems 1 and 2 are actually equivalent. Of course the final goal of any 
structure theory is a theorem stating the nature of the simple algebras. 

The decomposition properties stated above are easy to prove for all power-
associative rings 9Î whose characteristic is prime to 30 and which are such that 
\x is a unique element of 9? for every x of 9Î. The mysterious integer 30 enters 
because of our use of the property that a commutative ring 9Ì is power-associative 
if and only ifx2x2 = (x2x)x, and this property holds12 if and only if the character
istic of 9Î is prime to 30. However the decomposition and its properties are now 
known13 also for rings whose characteristic is merely prime to two if we assume 
associativity of fifth and sixth powers as well as the associativity of fourth 
powers. The decomposition is extended from the commutative to the non-
commutative case by the following observation. Let 91 be any power-associative 
algebra over a field $ whose characteristic is not two. Then there is an attached 
commutative algebra 9I(+) which is the same vector space as 91 and is defined 
relative to a product x • y expressible in terms of the product xy of 91 by 2x • y = 
xy + yx. The algebra 9l(+) is power-associative when 91 is, and indeed powers in 
9Ï coincide with powers in 9l(+). The provable properties of 91 are then derivable 
from those of 9l(+) by using the linearized form 

11 See Theorem 2 of my Power-associative rings, Trans. Amer. Math. Soc. vol. 64 (1948) 
pp. 552-593. 

12 On the power-associativity of rings, Summa Brasiliensis Mathematicae vol. 2 (1948) 
pp. 21-33. 

18 Mr. Louis Kokoris has proved these results as a part of an investigation in which he 
is trying to extend all of my theorems on commutative power-associative algebras to alge
bras of characteristic 3 and 5. 
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x(yz + zy) + y(zx + xz) + z(xy + yx) 
(4) 

= (yz + zy)x + (xz + zx)y + (xy + yx)z, 

of the identity xx2 = x2x. 
Let us now return to the results in the trace-admissible case. When 9Ï is trace-

admissible, it has been shown that 9Ï and 9l(+) have the same radical and so 91 is 
semisimple if and only if 9l(+) is semisimple. Also the difference algebra 91—91 
is trace-admissible. When 91 is semisimple, it has a unity quantity e and r(x, y) 
is an admissible trace function for 9l(+) as well as for 91. Then it is easy to show 
that 9ï<+) is a Jordan algebra, that 91 is flexible, and that 91 is simple if and only 
if 9l(+) is simple. The simple trace-admissible algebras are then known if one 
knows the nature of all algebras 91 such that 9Ï is flexible and 9t(+) is a known 
simple Jordan algebra. Such algebras have actually been determined14 and I shall 
describe the result later. Let us now list all known simple power-associative 
algebras which are not nilalgebras. 

I have not stated yet what I mean when I say that an algebra is simple and 
I always mean more than the obvious assumption that it has no nontrivial ideals. 
In the associative case it is customary to add the hypothesis that 9Ï is not a 
one-dimensional zero algebra, that is, if 91 = u%, then u2 j£ 0. This hypothesis 
of the associative case is equivalent in that case to the assumption that 9t is not 
a simple nilalgebra, and we shall adjoin the assumption that 9Ï is not a nilalgebra 
to our definition of a simple power-associative algebra. When 9Ï is a Jordan 
algebra, this assumption reduces to the assumption about one-dimensional 
algebras as in the associative case, and so we are led to our first important un
solved question. Do there exist simple commutative power-associative nil-
algebras of dimension n > 1? The question may be rephrased as follows. If 
9Ï is any algebra we define 9I(/) to be the vector subspace of 9Ï spanned by all 
products xy for x and y in 91. Then is it true that if 9Ï is a commutative power-
associative nilalgebra, then 9Ï contains 9K(,) properly? This result would imply 
that a nilalgebra is solvable, that is, that 9Ï => 9t(,) 3 9Ï("> • • • => 9l(r) = 0. 
A beginning in the study of this question has been made by M. Gerstenhaber 
who has shown that if # is a nilpotent element of a commutative power-associ
ative algebra of characteristic zero, the linear transformation a —» ax is nil-
potent. 

The study of simple nonassociative algebras 9Ï is reducible16 to the central 
simple case, that is, to the case where every scalar algebraic extension $ of the 
ground field g yields a simple algebra 91$. If 91 is central simple, we define the 
degree t of 9Ï to be the maximal number of pairwise orthogonal idempotents in 
any 91$ . As yet even central simple power-associative algebras of degrees one 
and two have not been completely classified. A class of algebras with a unity 
quantity e and t = 1 is the sum 9Ï = e% + 33i + • • • + 33™ where 33; = u$ 

14 See Theorem 5.13 of the paper of footnote 11. 
15 See N. Jacobson, A note on non-associative algebras, Duke Math. J. vol. 3 (1937) pp. 

544-548. 
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+ Vi%, Ui = v2 = UiUj = UiVj = 0 for i ^ j , UjVi = — vjU{ = aie for ai ?£ 0 in $. 
These algebras are trivially power-associative since every element x = ote + y 
where y2 = 0. They are easily shown to be central simple. A class of algebras 
with t = 2 and a unity quantity e are the algebras 91 = e% + u2$ + • • • + w,g 

(5) w? = aie, UjUi = —u<uj (i ^ j ; i,j = 2, • • • , s), 

where the a* ^ 0 are in %. These algebras are power-associative for all defini
tions of the products u&ij as long as upii = —uflij • They are also easily seen 
to be central simple if s > 2. They become the central simple Jordan algebras 
of degree t = 2 if s > 2 and u#ij = 0 for i ^ j . 

The algebras of (5) can be alternative only for the values s = 1, 2, 4, and 8 
and we shall use the notation Efl for these alternative algebras. Every Sa has 
an involution (involutorial anti-automorphism) x —> x determined by ë = e, 
üi = — Ui for i = 2, • • • ,s. The algebra (£2 may be only semisimple. Every (£a , 
except the Cayley algebra Es, is actually associative. 

Let us now turn to a description of what we shall call the classical central 
simple Jordan algebras of degree t > 2. We shall describe these algebras only 
in the case where % is algebraically closed since the description in this case will 
be needed later. If © is a central simple Jordan algebra of degree t > 2, there is 
an attached algebra © consisting of all Crowed square matrices X with elements 
Xij in one of the alternative algebras Ë8 described above. When s = 8, we must 
use only the value t = 3. The algebra © has an involution J defined by X = 
(%ij) —> XJ = (xji), and © is the subspace of © consisting of all X = XJ. Indeed 
@ is then a subalgebra of ® (+). The attached algebra © is associative except 
when s = 8 and the other central simple Jordan algebras, defined for s = 1, 2, 
and 4, are special Jordan algebras, that is, they may be imbedded in a Jordan 
algebra © (+) where © is associative. We shall call an algebra 91 a classical Jordan 
central simple algebra if there exists a scalar extension $ of the ground field g 
such that 91$ is either one of the algebras © given above or has degree two. 
All classical Jordan algebras have been determined by Kalisch and Jacobson, 
and all central simple Jordan algebras of characteristic zero are classical Jordan 
algebras. 

Our list of simple power-associative non-nil algebras consists, at this point, of 
the examples of algebras of degrees one and two, and the Jordan algebras. The 
arbitrary associative simple algebra is the set of all 2-rowed square matrices with 
elements in an associative division algebra. In the case where the ground field 
is algebraically closed this reduces to a total matric algebra. We now extend 
the list by including the algebras which arise as a solution of the problem of 
finding all flexible algebras 91 such that 9l(+) is a classical simple Jordan algebra. 

Let 91 be an algebra over a field g and let X 7^ \ be in $. We may then define 
an algebra 91 (X) which is the same vector space as 91 but is defined relative to the 
product (x, y) — \xy + (1 — \)yx where xy is the product in 91. An algebra 91 
over g is now said to be quasi-associative if there exists a scalar extension $ of g 
and an element X in $ such that 33 = 9Ï$(X) is associative. The algebra 9Ï is 
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central simple if and only if 33 is central simple and these are the al
gebras 91 T^ 9ï(+) such that 9Ï is flexible and 9lc+) is a simple Jordan algebra. 
The principal result on trace-admissible algebras 91 of characteristic zero then 
states that a trace-admissible algebra 91 is simple if and only if 91 is either a 
simple Jordan algebra or a simple quasi-associative algebra. 

The results outlined so far are quite well known and I want to continue with 
some new results. I am glad to be able to announce here that I have now been 
able to obtain a structure theory16 for arbitrary commutative power-associative 
algebras over a field of characteristic p p^ 2, 3, or 5. As might be expected, I 
define the radical to be the maximal nilideal, and note that this is really no re
striction in the case of Jordan algebras of characteristic p, a structure theory 
which is included in my theory. The theory succeeds because it begins with the 
study of simple algebras whereas these algebras are usually studied at the end 
of a structure theory. Assume first that 9Ï is a commutative power-associative 
algebra which is not a nilalgebra and thus that 91 contains an idempotent u. 
Then we have the decomposition 9Ï = 9ÏW(1) + 9lM(|) + 9L(0). Let x\ represent 
the arbitrary element of 9L(X) and write z = xy for any two elemento x and y 
of 91. Then the subspaces 91« (X) have multiplicative properties which may be 
expressed by the formulas 

x\y\ = z\, awi_x = 0, 
( 6 ) 

%m = «4 + *i 7 x\Vi= 2* + Si-x 
for X = 0 , 1 . I t follows that we may write 

%m = yì[Sk(xi) + SQìXì)], 

(7) 
aw* = Vì[Tì(X,) + r i fa ) ] , 

where S±(xi) and Ti(x0) are linear transformations17 of 9L(i) as well as linear 
functions of x± and x0 respectively, So(#i) is a linear mapping of 9lw(i) into 
Slw(0), TI(XQ) is a linear mapping of 9L(|) into 9lM(l). The linearized form of 
the relation x2x2 = (x2x)x may then be used to show that 

(8) »(owl) = SifàSìtoù + ÄfoO&fo), 

(9) iSofayù = S^(x1)So(yi) + Sï(y1)SQ(x1), 

(10) ' 8k(yi)Ti(xo) = Tì(x0)Sì(yi), 

(11) 2w$Sì(y1)T1(xQ) = [mT^xoM . 

The relation (8) implies that the mapping 

xi —> 2Si(xi) 
18 The results appear in a paper entitled A theory of power-associative commutative alge

bras, Trans. Amer. Math. Soc. vol. 69 (1950) pp. 503-527. 
17 In the case where SI is a ring, Si and T± are endomorphisms and So and Ti are addi

tive mappings. The results are actually derived in the ring case but their extension to 
the algebra case is immediate. 
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is a homomorphism of 9IW(1) onto the special Jordan algebra consisting of the 
linear transformations Si(xi). The kernel of this homomorphism is an ideal 
83M of 9lw(l)j a n d 33w = Sw , where Ëw is the ideal of 91 of all elements xi such 
that ywi = 0 for every y\ of 9IM(|). When 9Ï is simple, the ideal Sw = 0. It is 
these inner structural properties that have enabled me to prove the following 
rather remarkable ring theorem. 

THEOREM. Let 91 be a simple commutative power-associative ring whose character
istic is prime to 30, and let 91 contain a pair of orthogonal idempotents whose sum 
is not the unity quantity of 91. Then 9t is a Jordan ring. 

The proof of this result begins with a proof of the propertjr that if u and v 
are orthogonal idempotents of a power-associative ring 9Î, then (au)v = (av)u 
for every a of 9Î. Let 91 be simple and ei and e2 be orthogonal idempotents of 91. 
Then 9Ï ^ 9? where 9? is a commutative power-associative ring with a unity 
quantity e and the same characteristic as 91. Moreover 9Î = 9Ï or every nonzero 
ideal of 9Î contains 91. In either case e = e± + e2 + ß3 for pair wise orthogonal 
idempotents e* and we may show that 9Î = 8în + 9Î22 + 9Î33 + 9îi2 + 9îi3 + 9Î23 
where SR« = 9îei(l)> and 9?;y is the intersection of dïCi(i) and 9îe,(|) for i 9^ j . 
Also 9îù-9îjfc £= 9?i& . We then show that if g = e,- + ßy, the intersection of the 
kernel 330 and SR,-/ is zero. I t follows readily that 

33 = 33ei+e2 + 33ei+B8 + S3C2+C8 

is an ideal of 9Î, and that 33 =2 9Ï if 33 -^ 0. This is easily seen to be impossible 
and so 33 = 0, the subrings 9îCl+e,- (1) are Jordan rings. A computation using the 
property x2x2 = (x2x)x will then yield the theorem. 

The result of this theorem and further arguments about ideals may be used 
to show that every simple commutative power-associative algebra has a unity 
quantity. Moreover, every such algebra of degree t > 2 is a classical Jordan 
algebra and also every Jordan algebra of degree t — 2 is a classical Jordan 
algebra. The major structure theorems for commutative power-associative 
algebras then follow readily. However two important unsolved problems remain 
in the study of algebras of low-degree and we shall present them now. 
* Tire first of these problems is that of the nature of a commutative power-
associative algebra 91 with a unity quantity e over an algebraically closed field 
JJ. Assume that e is primitive so that x = ae + y, where a is in g and y is nil-
potent for every x of 91. I have shown that if 91 is simple and g has char
acteristic zero, then Sï = efÇ. I have also proved this result for special Jordan 
algebras of characteristic p. There remains the general case of algebras of char
acteristic p. 

The second problem is concerned with the nature of simple commutative 
power-associative algebras of degree t = 2 even in the case of algebras of char
acteristic zero. I t may be true that all such algebras are classical Jordan algebras, 
but there is no strong indication that this is actually true. 
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The results we have described are, in a sense, negative results. For the simple 
algebras are really the end results of any structure theory of a class of algebras, 
and the quasi-associative algebras, which are the only nonclassical algebras we 
have obtained, are only minor distortions of associative algebras. It therefore 
seems reasonable to propose the question as to whether there are any simple 
algebras behaving like associative algebras in respect to the existence of idem
potents and which are also power-associative. The first real attack on this 
question might then be an attempt to find all power-associative algebras 91 
such that 9l(+) is a central simple Jordan algebra. I have solved this problem 
and obtained18 the construction given in the following theorem. 

THEOREM. Let 9Ï 6e a power-associative algebra over a field % of characteristic 
prime to 30, © = 9lc+) be a central simple special Jordan algebra so that there 
exists a scalar extension S o / g and an associative algebra © over ß such that @$ 
is the set of all J-symmetric elements of ®. Then $ may be selected so that there 
exists a linear mapping T of the set of all J-skew elements of © into © ä such that 
the product x*y of 9Ï is expressible in terms of the product xy of © by the formula 

(12) x-y = %(xy -f yx) + (xy - yx)T. 

Conversely if ® is an associative algebra attached to a central simple Jordan algebra 
@ and 91 is the vector space © of all J-symmetric elements of ©, the algebra 91 defined 
by (12) is a central simple power-associative algebra. 

It should be evident that powers in 9Ï coincide with powers in © and in ©. 
In the case where © = 9l(+) is not a special Jordan algebra the algebra @ is 
not associative, xx2 9^ x2x, in ® even for the elements x of ©. It is then necessary 
to adjoin the hypothesis that T shall annihilate diagonal skew elements of the 
algebra © of all three-rowed matrices of Cayley elements. 

In the case where % is the real number field and © is a formally real algebra 
the algebras defined by (12) are also formally real. Such algebras might have 
physical applications. In any event the new classes of algebras defined by (12) 
should have interesting properties and provide a starting point for new problems 
of structure and representation for power-associative algebras. 

UNIVERSITY OF CHICAGO, 

CHICAGO, I I I . , U. S. A. 

18 These results will appear in a paper entitled New simple power-associative algebras 
which will be published in Summa Brasiliensis Mathematicae. 



ON THE REPRESENTATIONS OF GROUPS OF FINITE ORDER 

RICHARD BRAUER 

1. By a representation of a group G of finite order n, we shall always mean a 
representation of G by linear transformations of a finite-dimensional vector 
space over a given field. We are interested in the following question: To what 
extent are the properties of representations of G determined by properties of 
representations of suitable subgroups? 

As a first result in this direction, we state a theorem which gives the necessary 
and sufficient conditions that a function %(Q) defined over G be an irreducible 
character. As in the classical theory, the underlying field is assumed to be the 
field of complex numbers or, more generally, an algebraically closed field of 
characteristic 0. We shall call a group an elementary group, if it is the direct 
product of a cyclic group and a p-group (i.e., a group whose order is a power of 
a prime p). Then the conditions are as follows: 

I. If H is any elementary subgroup of G and if the argument g is restricted to 
H, then X(Q) is a (reducible or irreducible) character of H. 

II . For g G G, the function x(ç) is a class function, that is, the value of x(o) 
depends only on the class of conjugate elements of G to which g belongs. 

ni. (l/n) E I x(g) 12 = i. 
g 

The necessity of these conditions is clear. The sufficiency can be deduced from 
results concerning induced representations.1 The condition I can be replaced 
by the weaker condition that X(Q) for. g £ H be a linear combination of the 
characters of H with integral rational coefficients, if the condition x(l) > 0 
is added. The result can also be formulated as a theorem on representations 
rather than on characters. If for each elementary subgroup H of G a representa
tion of H is given, we have the necessary and sufficient conditions that, after 
s imi lar^ transformations, these representations can be pieced together to a 
representation of G. 

In the special case where x(l) = 1> ̂ he condition III is a consequence of I. 
Thus, the linear characters of G can be characterized as the class functions 
which yield linear characters for every elementary subgroup of G. Since the 
linear characters are closely related to the commutator subgroup Gf of G, this 
leads to necessary and sufficient conditions that Gf be different from G. By 
applying these conditions to all subgroups of G, we also obtain necessary and 
sufficient conditions for the solubility of G. However, it should be mentioned 
that these results can also be obtained by direct methods developed by Burnside, 
Frobenius, and Schur. 

1 R. Brauer, Ann. of Math. vol. 48 (1947) p. 502. 
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23 I t is a disadvantage of our result that a knowledge of the characters of 
the elementary groups, that is, essentially "of the p-groups, is required if one 
wants to apply it for the construction of characters. We give therefore a second 
theorem where this difficulty is avoided. We keep conditions I I and III and 
replace I by another condition. Consider all pairs of subgroups L, M of G such 
that M is normal in L and L/M is cyclic. Let Mr be a generating element of 
L/M and denote the orders of L and M by I and m respectively. The new con
dition I then is that equations hold 

l/m-l 

S x(prJ) = m Z) Xi9%\ (j = 0, 1, • • • , l/m - 1), 

where p is a primitive (Z/ra)th root of unity and where the Xi are rational integers 
independent of j . 

Again, we obtain a set of necessary and sufficient conditions for irreducible 
characters. For arbitrary groups, the new condition is difficult to handle. How
ever, because of our first theorem, it is only necessary to apply the new theorem 
in the case of an elementary group. In this case, the result can actually be used 
for the investigation of the characters. 

3. The theory of modular representations of groups furnishes further theorems 
which connect properties of representations of G with properties of representa
tions of suitable subgroups. Since at least an outline of these results has already 
been published,2 we shall not go into any details but indicate only the type of 
problems in which these connections appear. If p is a fixed prime number, the 
modular as well as the ordinary absolutely irreducible characters appear dis
tributed into a certain number of "blocks". This distribution is related closely 
to the decomposition of the modular group ring into a direct sum of indecom
posable rings. I t turns out that the structure of the blocks of G is determined 
largely by the structure of the blocks of subgroups. These subgroups are the 
normalizers of the p-subgroups of G and related groups. 

4. We return again to fields of characteristic 0. The theory of group repre
sentations in a field K which is not algebraically closed has been developed by 
I. Schur.3 Let K be an algebraically closed extension field of K. Then in K the 
classical theory applies. Each irreducible representation T of G in K breaks up 
completely in K into a certain number of distinct irreducible representations 
Fi, F2, " • , Fr and each Fi appears in T with the same multiplicity m. This m 
is the Schur index of the representations Fi. The characters xi > X2, • • • , Xr 
of F1, F2, • • • , Fr form a full family of absolutely irreducible characters of G 
which are algebraically conjugate with respect to K. Conversely, each such 

2 R. Brauer, Proc. Nat. Acad. Sci. U. S. A. vol. 30 (1944) p. 109; vol. 32 (1946) pp. 182, 
215. 

3 1 . Schur, Preuss. Akad. Wiss. Sitzungsber. (1906) p. 164 and Trans. Amer. Math. Soc. 
vol. 15 (1909) p. 159. 
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family of conjugate characters gives rise to one and only one irreducible repre
sentation of G in K. Finally, for representations in K, the theorem of complete 
reducibility holds. Thus, if the characters of G in the classical sense are known, 
it remains only to determine the Schur index m for each absolutely irreducible 
character of G in order to have a complete theory of group representations in K. 

Schur also gave a second characterization of m. The representation Fi can 
be written in suitable fields of degree m over the field K(xi) obtained from K 
by adjunction of the character x< of Fi, and m is the minimal degree for which 
this is possible. In fact, if Fi can be written in a field L, then L must of course 
contain x% • If the degree \L:K(xi)] is finite, it is even divisible by m. 

Later, the theory of algebras provided still another interpretation of m. 
Every representation T of G can be extended to a representation of the corre
sponding group ring. If T is irreducible in K, this defines a homomorphism of the 
group algebra A over K on a simple algebra T. Every simple homomorphie 
image T of A corresponds to one and only one representation T. The center Z 
of T is isomorphic to K(x%) with respect to K. If we now write T as a complete 
matric algebra over a division algebra D, then D as a central algebra over Z 
has rank m2. Thus, the Schur indices of the representations are of fundamental 
importance for the study of the group algebra. 

These different characterizations of the Schur index m do not provide a 
method of determining m, and as a matter of fact, this question remained open 
in Schur's theory. We shall deal with it in the following sections. 

6. Let x be a fixed absolutely irreducible character of G. Without restriction, 
we may assume that K contains x since adjunction of x does not change the 
Schur index m. Let p be an arbitrary prime. We need the following lemma. 

LEMMA. There exist elements g of G such that the group H* generated by g and a 
p-Sylow subgroup of the normalizer of the cyclic group {g} possesses absolutely 
irreducible characters o with the following two properties: 1. The degree [K(o):K] 
is prime to p. 2. If x is considered as a character of H* by restricting the argument 
to H*, then w appears in x with a multiplicity prime to p. 

The proof of the lemma can be obtained by a refinement of the method of 
the paper quoted in footnote 1. If the absolutely irreducible characters of G and 
the relations to the characters of subgroups (at least of the type of iJ*) are 
known, then it is actually possible to select OJ. All we have to know about the 
field K (as given originally) is the manner in which the characters are distributed 
into classes of algebraically conjugate characters. 

It follows from the lemma that the highest power of p dividing the Schur 
index m of x is equal to the index m* of the character ca of H * with respect to K. 
Since p was an arbitrary prime, it will be sufficient to obtain the Schur indices 
of the representations of H* in order to find m itself. 

The group H* contains a normal cyclic subgroup {g} whose factor group is a 
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p-group. We shall call a group of this type a semi-elementary group'. In particular, 
every semi-elementary group is soluble. We now have succeeded in reducing 
the problem of the Schur index to the case where the group in question is semi-
elementary. In this case, the degrees of the absolutely irreducible representations 
are all powers of the same prime. 

We have again a result of the type in which we are interested: A property of 
the representations of G is determined by the corresponding property of repre
sentations of suitable subgroups. 

6. In the case of the Schur index, it is possible to obtain a further reduction. 
The basic fact here is that if w is an absolutely irreducible character of a semi-
elementary group f?* and if the degree of ca is greater than 1, there exist normal 
subgroups of H* of prime index for which the character w becomes reducible. 
The final result is that it is possible to reduce the whole problem to the case of a 
group R which has a cyclic normal subgroup S such that R/S is an abelian 
p-group. Even further conditions can be imposed. In the sense indicated above, 
this reduction is independent of the field K. 

The representations of the group R can be constructed explicitly without 
difficulty. The only irrationalities needed are the gth roots of unity where q 
is the least common multiple of the orders of the elements of R. Further, we 
can determine the factor sets of the corresponding central division algebras. 

I t follows from the preceeding statements that if n* is the least common 
multiple of the orders of the elements of the original group G and if the field 
K contains the n*th roots of unity, then every representation of G can be written 
in the field K* Indeed, our reduction leads to groups R which can be written 
in the field K. Hence their Schur indices are all 1, and then the Schur indices of 
G have the same value 1. As is well known, there exist in general other fields K 
which do not contain the w*th roots of unity but which are such that every 
irreducible representation of the given group G can be written in K. The par
ticular role of the n*th cyclotomic field can be explained by the fact that it is 
the field obtained by adjunction of all characters of G and of all subgroups of G. 

As a special result, we mention that the Schur index is always equal to 1 for 
a p-group with odd p. For p-groups with p = 2, we have m = 1 or m = 2. 

7. The problem of the Schur index was reduced in §6 to the case of certain 
metabelian groups and as was mentioned, the corresponding factor sets can be 
obtained explicitly in this case. If we now assume that K is an algebraic number 
field, the theory of algebras provides methods of determining the indices. Ac
tually, we obtain more information concerning the division algebras in question. 
Indeed, since the method works for an arbitrary field K, we can also determine 
the splitting fields of the division algebras. 

UNIVERSITY OF MICHIGAN, 

ANN ARBOR, MICH., U. S. A. 
4 This has already been proved in R. Brauer, Amer. J. Math. 69 (1947) p. 709. 



REPRESENTATION THEORY FOR JORDAN RINGS1 

N. JACOBSON 

It is well known that the theory of Lie algebras is equivalent to the study of 
subspaces of associative algebras which are closed relative to the composition 
[ab] = ab — ba. Similarly, the theory of Jordan algebras has arisen in the attempt 
to study subspaces of an associative algebra which are closed relative to the 
composition {ab} = ab + ba. The characterization of the Lie composition by 
identities is well known ([5] and [21]). (Besides the bilinearity, the axioms which 
characterize [ab] are [ad] = 0 and the Jacobi identity.) On the other hand, we 
do not possess a set of identities for {ab} which characterize this composition. 
It is easy to see that {ab} satisfies 

(1) {ab} = {6a}, {{aa}{ba}} - {{{aa}b}a}, 

and this observation has led to the definition of an (abstract) Jordan algebra 
as a (nonassociative) algebra whose composition ab satisfies the properties (1) 
of {ab}, that is, 

(1;) ab - ba, a2(ba) = (a%)a. 

The algebras obtained from subspaces of associative algebras closed relative to 
{ab} are called special Jordan algebras. It is known that there exist Jordan 
algebras which are not special [1] so that the properties (1) do not give an exact 
characterization of the special systems. However, this may be the best that 
one can do in the way of identities; for it is conceivable that every Jordan 
algebra is a homomorphic image of a special one. At any rate, an extensive 
theory can be built on the axioms (1') (see particularly [16] and [3]). In this 
note we shall be concerned primarily with an extension of this theory of abstract 
Jordan algebras. 

1. Definition and elementary properties of representations of Jordan alge
bras. The second identity (a2b)a = a2(ba) for Jordan algebras is cubic in a. If 
the characteristic is not two or three (and we assume this unless otherwise 
stated), then this identity is equivalent to the multilinear identity: 

(2) xybz + yzbx + zxby = (xy)(bz) + (yz)(bx) + (zx)(by) 

in which we have abbreviated ((xy)b)z to xybz, etc. If we denote the right 
multiplication mapping x —» xa by Ra, then we obtain from (2) the following 
relations: 

1 The main results stated in the first five sections of this paper can be found in [14]. 
The results in the last section are contained in the joint paper [15] by Rickart and the 
present author. 

37 



38 N. JACOBSON 

[RaRbc] H" [RbRac] + [-B<J?aô] = 0 
(3) 

RaRhRc ~f" RcRbRa ~f" R(ac)b == RaRbo "f" RbRac ~\~ RcRab « 

We define a (general) representation of a Jordan algebra in the following way. 
DEFINITION 1. A mapping a —» Sa of a Jordan algebra into a set of linear 

transformations of a vector space 3ft is called a representation if (1) $ a is linear 
in a and (2) Sa satisfies 

[$a#öc] + [$ö#dc] + [£c$a&] = 0 
(4) 

SaSb$c + Sc$b$a + $(ac)& ̂  Sa$bc + $bSac + ScSab . 

This concept is equivalent to that of a Jordan module which has been given 
by Eilenberg [7]. We shall not require the alternative formulation here. 

Evidently the mapping a —» Ra is a representation. As usual we call this 
mapping the regular representation. This representation plays a fundamental 
role in the structure theory. On the other hand, if one recalls the origin of the 
Jordan theory, one is led to consider also mappings a —» Ua of a Jordan algebra 
into linear transformations such that Ua is linear in a and 

(5) U* = UaUb + UbUa . 

Such mappings, which are just the homomorphisms of Jordan rings into the 
special Jordan* rings of • linear/ transformations, have been considered before 
([6] and [11]). I t is noteworthy that these mappings are representations in the 
sense defined here. We call these representations special. Thus the general 
concept of representations can be used to unify to some extent the structure 
theory and the theory of special representations. 

There is another interesting connection between special and general repre
sentations. Let a —> XJa , a —> Va be two special representations acting in the 
same vector space. Assume that these commute in the sense that [UaVb] = Ofor 
alia, 6. Then it can be verified that a —-» Sa = Ua + FaisaTepresentation. In 
particular, if a —» Ua and a —» Va are arbitrary special representations, then a 
—> Sa = Ua X 1 + 1 X Va , where the X denotes Krönecker multiplication, is 
a representation. 

2. Universal associative algebras. Let 21 be a Jordan algebra and let g = 31 © 
3 t X 3 l © 2 l X 2 t X S I © • • • be the free associative algebra determined by the 
vector space 31. Multiplication in g is defined by the distributive laws and the 
rule 

(XiX X2X '" X Xr) X (Sr+1 X • " • X xs) = Xi X x2 X • • • X xs. 

Let S be the ideal in % generated by the elements 

aXbc — bcX a + b X ac — ac Xb + c X ab — ab X c, 
(6) 

aXbXc + cXbXa+ (ac)b — a X be — b X ca — c X ab, 
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and let U = g /$ . We shall call U the universal associative algebra (of the repre
sentations) of 31. The algebra U has the following properties: (1) Any repre
sentation of 31 can be extended to one of U (in the associative sense). (2) Any 
(associative) representation of U defines a representation of 31. A basic result 
in this connection is that U is finite-dimensional if 31 is finite-dimensional. This 
has the consequence that a finite-dimensional Jordan algebra has only a finite 
number of inequi valent irreducible representations. A fundamental problem 
which is as yet unsolved is the determination of these representations. 

We can define also a special universal associative algebra U« for the special 
representations of 31. This is obtained by replacing the ideal $ by the ideal $ , 
generated by the elements aXb + bXa — ab. The algebra UB bears the same 
relation to special representations that U does to all the representations. I t is of 
interest to introduce also another universal associative algebra which can be 
used to study Kronecker sums (Ua X 1 + 1 X Va) of special representations. 
We obtain this algebra by adjoining a (new) identity 1 to U« to obtain Uf. 
Let Ui be the subalgebra of Us X Us generated by the elements as X 1 + 1 X a, 
where as is the coset of a + $s in Ufi . Any Kronecker sum of special representa
tions defines a representation of Us2). 

The algebras Ua and U£2) are homomorphic images of U. Also U* is a homo-
morphic image of U«2). It would be interesting to have more precise results on 
the relation between U and ü£2) for special Jordan algebras 31. At the present 
time we know of no example of a special Jordan algebra for which U ^ U£2). 
Such examples could be used to construct extensions of St which are not special. 

3. Associator structure Lie triple systems. If 31 is a special Jordan algebra 
with composition {ab}, a direct verification shows that the Jordan associator 

(7) A(b,c,a) s {{bc}a} - {b{ca}} = [[ab]c]. 

Hence 31 is closed also relative to the Lie ternary composition [abc] = [[ab]c]. 
A subspace of an associative algebra having this property is called a (special) 
Lie triple system. 

It is possible to give a characterization by identities of Lie triple systems. 
Thus let X be a vector space in which a ternary composition [abc] is defined. 
Assume that this composition is trilinear and that it satisfies the following rela
tions: 

[aab] = 0 

[abc] + [bea] + [cab] = 0 

[[abc]de] + [[bad]ce] + [ba[cde]] + [cd[abe]] = 0 

[[abc]de] + [[bad]ce] + [[dcb]ae] + [[cda]be] = 0 

[[[abc]de]fg] + [[[bac]df]eg] + [[[bad]ce]fg] 

+ [[[abd]cf]eg] + Q + R = 0 

(8) 
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where Q and R are obtained from the displayed terms by cyclic permutation of 
the pairs (a, b), (c, d), (e, / ) . Then it can be shown that SE can be imbedded in a 
Lie algebra 8 in such a way that X becomes a subspace of 2 closed relative to 
[[ab]c] and that [[ab]c] = [abc]. Since every Lie algebra can be identified with a 
subspace of an associative algebra closed under [ab] = ab — ba, X can be identi
fied with a subspace of an associative algebra closed relative to [[ab]c]. 

One can also associate a Lie triple system with every abstract Jordan algebra. 
If 3Ï is such an algebra, we define [abc] = A(b, c, a) = (bc)a — b(ca). Then it 
can be proved that this composition satisfies (8). This can be established easily 
by noting the following consequence of the second relation in (3): 

(9) [[Rai2&]Ec] = R[abc]. 

The system consisting of the vector space 31 and the composition [abc] is called 
the associator (Lie triple) system of the Jordan algebra. As a generalization of 
(9) we have 

(10) [[£a£&]$c] = S[abcl , 

and this shows that if a —» Sa is a representation of 3Ï, then it is also a representa
tion of the associator system, that is, it is a Lie triple system homomorphism of 
2Ï into the Lie triple system of linear transformations. 

I t is possible to define a universal Lie algebra 8W for any Lie triple system X 
in a manner similar to that indicated in the preceding section. If X is a Lie 
triple system contained in a Lie algebra, the Lie algebra generated by X is the 
set X + [XX] of sums a + ]£[&icj. It is clear from this that if X is finite-di
mensional, then so is X + [XX]. In particular the universal Lie algebra of a 
finite-dimensional Lie triple system is finite-dimensional. Thus we can associate 
with every finite-dimensional Jordan algebra a finite-dimensional Lie algebra, 
the universal Lie algebra of its associator system. This association is very useful 
in the representation theory. 

4. Representation theory for finite-dimensional algebras* At the present time 
we are in possession of some of the basic facts on representations of finite-dimen
sional Jordan algebras. These have been obtained by making extensive use of 
Lie algebra theory. Consequently we have had to assume that the base fields of 
our algebras are of characteristic 0. 

We state now two of the main results of the representation theory of finite-
dimensional algebras. 

THEOREM A. Every representation of a finite-dimensional semi-simple Jordan 
algebra 31 of characteristic 0 is completely reducible. 

The analogous result for Lie algebras is required for the proof of this theorem. 
We recall that the Lie algebra result is best proved by establishing first a certain 
cohomology lemma due to Whitehead [9]. In the Jordan case we have found it 
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more convenient to reverse this procedure and prove Theorem A first. Using 
this result we can establish the following analogue of Whitehead's (first) lemma. 

THEOREM B. Let 31 be as in the preceding theorem and let a—> Sabea representa
tion of 31 acting in the vector space SDÌ. Let a —> f(a) be a linear mapping of 31 into 
SDÌ such that 

f(ab) =f(a)Sb + f(b)Sa. 

'Then there exist elements Wi Ç SDÌ and bi £ 31 such that 

f(a) = HWi(SaSbi - Saht). 

The analogue for Jordan algebras of Levi's theorem on Lie algebras has been 
proved recently by Penico [20] : If 31 is a finite-dimensional Jordan algebra of 
characteristic 0, then 31 = © + 9] when 9? is the radical (maximal solvable 
ideal) and © is semi-simple. The analogues of the supplementary results on the 
Levi decomposition which are due to Malcev and Harish-Chandra ([8] and [18]) 
-can be obtained for Jordan algebras by using Theorem B. 

5. Jordan homomorphisms of rings. At the present time little is known on 
the structure of Jordan algebras of infinite dimensions or of Jordan rings (see, 
however, [19]). I t is therefore somewhat premature to consider the representation 
theory for such systems. However, it does seem to be of interest to study certain 
•special Jordan rings obtained from associative rings. For example, the problem 
•of semi-automorphisms of rings which was introduced by Ancochea [4] can be 
regarded as a problem on automorphisms of Jordan rings. If 31 is an associative 
ring, a semi-automorphism S of 3Ï is a 1-1 mapping of 31 onto itself satisfying 

(11) (a + by = as + bs, (ab + bay = asb^ + bsa8. 

Evidently this is just an automorphism of the special Jordan ring 3Ij obtained 
from 31 by replacing the associative composition ab by {ab}. Because of this it 
seems to be more appropriate to call S a Jordan automorphism of 31. Also we can 
generalize this notion and consider Jordan homomorphisms of one associative 
ring into a second one. The second condition in (11) loses a good deal of its force 
if the rings have elements of additive order 2 and in order to be able to treat 
this case, too, it is necessary to replace this condition by 

(12) (a2y = (a*)2, (abay = aflPaP. 

Mappings of this type have been studied by a number of writers ([4], [10], 
[12], and [17]). Recently C. E. Bickart and the present author have undertaken 
a systematic study of Jordan homomorphisms in the sense of (11) [15]. Some 
rather surprising results have been obtained. Thus, for example, we have shown 
that if 31 = S3n is a ring of n by n, n ^ 2, matrices over any ring 93 with an 
identity, then any Jordan homomorphism of 31 is obtained by combining in an 
obvious way an associative homomorphism and an associative anti-homomor-
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phism. A similar result holds also for rings which are locally matrix in the sense 
that any finite subset of elements can be embedded in a subring 93n, n ^ 2, 33 
with an identity. A noteworthy class of locally matrix rings is the class of simple 
rings possessing minimal one-sided ideals. Hence the Jordan homomorphisms 
of these rings have been completely determined. We have also obtained the 
Jordan automorphisms of primitive rings having minimal one-sided ideals. We 
recall that a ring is primitive if it has a 1-1 irreducible module. The Jordan 
automorphisms (and more generally the Jordan homomorphisms of one such 
ring onto another) are either automorphisms (homomorphisms) or anti-auto
morphisms (anti-homomorphisms). 

The methods which we have used are based in part on matrix calculations, 
in part, on the identity 

(13) [(aby - afibs][(aby - tea*] = 0, 

and in part on Lie ring techniques. 
In addition to the Jordan rings obtained from associative rings by using {ab}, 

another "classical" type of Jordan ring is the following: Let 3Ï be an associative 
ring which has an anti-automorphism / of period two. Then the subset §(31, I) 
of self-adjoint elements of 31 is a special Jordan ring. The set of ordinary sym
metric matrices and the set of hermitian matrices are obvious examples of this 
type. Rickart and I have recently considered the problem of the homomorphisms 
of Jordan rings of this type and we have found that a substantial portion of 
the results for the rings 31/ have analogues for the rings §(31, / ) . We hope to 
publish these results shortly. 
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LES IDÉAUX MINIMAUX DANS LES ANNEAUX ASSOCIATIFS1 

JEAN DIEUDONNé 

1. On sait que les idéaux minimaux jouent un rôle fondamental dans l'étude 
classique des algèbres (associatives) de rang fini, et plus généralement dans 
celle des anneaux d'Artin (anneaux satisfaisant à la condition minimale pour 
les idéaux). J'ai montré en 1942 [2] comment la considération de ces idéaux 
dans un anneau (associatif) quelconque conduit aussi à des résultats intéressants, 
et permet entre autres de définir une classe nouvelle d'anneaux simples, qui 
généralisent directement les anneaux de matrices classiques, mais où la condition 
minimale n'est plus vérifiée. Au cours de ses importantes recherches sur la notion 
de "radical" et de "semi-simplicité", N. Jacobson est parvenu indépendamment, 
en 1945, à une partie de mes résultats, qu'il a étendus en 1947 à la catégorie des 
anneaux "primitifs" introduite par lui ([3], [4], et [5]). Je me propose dans ce 
qui suit de rappeler brièvement les points essentiels de la théorie des idéaux 
minimaux, et de montrer comment on peut déduire directement de mes résultats 
de 1942 ceux obtenus par Jacobson en 1947, ainsi que des théorèmes s'appliquant 
à des catégories d'anneaux plus générales. 

2. Un idéal minimal à droite (resp. gauche) d'un anneau A est un sous-
module simple de A, considéré comme A-module à droite (resp. gauche). Si 
r est un tel idéal, on a r2 = r ou r2 = 0; si r, r' sont deux idéaux à droite mini
maux isomorphes (en tant que A -modules), tout isomorphisme de r sur r' est 
de la forme x —> ax (avec a G r ' ) ; en outre, on a rr ' = r si r' est idempotent, 
rr ' = 0 si x' est nilpotent. 

La somme de tous les idéaux minimaux à droite (resp. gauche) d'un anneau 
A est ce que j 'ai appelé le socle droit (resp. gauche) de A. Si XQ est un idéal minimal 
à droite de A, la somme des idéaux à droite minimaux de A isomorphes à r0 

est appelée un pied du socle droit S. On démontre les propriétés suivantes [2] : 
(a) Tout pied du socle droit S est un idéal bilatère de A, somme directe 

d'idéaux à droite minimaux de A tous isomorphes; S est un idéal bilatère de A, 
somme directe de ses pieds. 

(b) Si a est un pied du socle droit S, la somme fj des idéaux à droite minimaux 
nilpotents contenus dans a est un idéal bilatère de A, qui est l'intersection de a 
et de Pannulateur à droite de a dans A. 

(c) Si a2 9e 0, l'intersection de a et de son annulateur à gauche dans A est 
réduite à 0. 

(d) Si a2 5* 0, tout idéal à droite dans l'anneau a est aussi un idéal à droite 
dans A. 

3. Un anneau A est dit quasi-simple à droite (resp. à gauche) s'il est identique 
à un des pieds de son socle droit (resp. gauche) et si A2 9e 0. Soit K l'opposé du 

1 Cette communication était mentionnée sur le programme imprimé sous le titre Mini
mal ideals. 
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corps des endomorphismes d'un idéal à droite minimal de A. On démontre qu'il 
existe un espace vectoriel à gauche E sur K et un sous-espace vectoriel Ef de 
l'espace dual E* de E (espace vectoriel à droite sur K), non réduit à 0, tels que 
A soit isomorphe à l'anneau %(E, E') des endomorphismes u de E, tels que 
u~l(Qi) soit l'intersection d'un nombre fini d'hyperplans de la forme a/'/_1(0), où 
xf G Ef (ce qui implique que u est de mng fini) ; inversement, tout anneau %(E, Ef) 
défini de cette façon est quasi-simple à droite. Tout idéal à droite de %(E, Ef) 
peut être défini de la façon suivante: c'est l'ensemble des endomorphismes 
u G %(E, E') tels que u(E) Cl H, où H est un sous-espace vectoriel quelconque 
de E. 

Si on tient compte des propriétés (a) et (d) du §2, on voit que la structure du 
socle droit d'un anneau quelconque peut être considérée comme complètement 
déterminée. 

4. Pour qu'un anneau %(E, E1) soit simple, il faut et il suffit que la relation 
(x, x') = 0 pour tout xr G Ef entraîne x = 0 dans E. Alors E peut être con
sidéré comme sous-espace du dual E'* de Ef, et on montre que l'application qui, 
à tout endomorphisme u G %(E, Er), fait correspondre son transposé lu, est un 
isomorphisme de %(E, Ef) sur l'anneau opposé de %(E', E). Cela montre en 
particulier que %(E, E') a alors des idéaux minimaux à gauche, tous isomorphes, 
et est somme de ses idéaux minimaux à gauche (autrement dit, est identique 
à un pied de son socle gauche). 

Si on considère sur E la topologie a(E, Ef) (topologie de la convergence simple 
dans Er), %(E, E') peut encore être défini comme l'anneau des endomorphismes 
continus de E qui sont de rang fini. La topologie de la convergence uniforme dans 
E est compatible avec la structure d'anneau de % (E, Ef), et un système fonda
mental de voisinages de 0 pour cette topologie est formé des annulateurs à 
droite des parties finies de %(E, Ef) (qui sont des idéaux à droite de $(E, E')). 
Soit Ë le complété de E (pour la topologie cr(E, E')), identique au dual algébrique 
Ef* de Ef; le complété de l'anneau topologique ^(E, E') peut être identifié 
à l'anneau (£($, Ef) de tous les endomorphismes de È continus pour la topologie 
cr(Ë, E'). U convient de noter que le socle droit de &(Ê, E') est %(Ê, E'), qui 
contient %(E, E') et en est en général distinct; on vérifie en outre aisément que 
tout idéal à droite minimal dans E(Ë, Ef) est fermé dans cet anneau. Enfin, 
les sous-anneaux de (&(É, E'), dont le socle est %(E, Ef), peuvent être carac
térisés comme les sous-anneaux (contenant $(E, E')) de l'anneau &(E, E') des 
endomorphismes continus de Vespace E: en effet, si u est un endomorphisme 
continu de Ê tel que, pour un x G E, on ait u(x) = a $ E, pour l'idéal à droite 
minimal r C $(E, E') formé des endomorphismes v tels quev(E) ClKx, wrest 
un idéal minimal de E(JË, E') qui n'est pas contenu dans %(E, E'). 

6. Après cette étude des anneaux quasi-simples et des anneaux simples ayant 
des idéaux minimaux, revenons à l'étude des socles d'un anneau quelconque A. 
Si A possède des idéaux minimaux nilpotents, les relations entre socle droit et 
socle gauche de A sont assez complexes (voir [1] pour l'étude du cas où A est 
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un anneau d'Artin). Toutefois, si a est un pied du socle droit S de A ne con
tenant pas d'idéal nilpotent, a est aussi un pied du socle gauche Sf de A : en effet, 
û est alors un anneau simple, donc contient des idéaux à gauche minimaux (§4); 
en outre, si I est un idéal à gauche minimal dans Vanneau a, al est un idéal à 
gauche dans A, contenu dans ï, et qui ne peut être réduit à 0, puisque l'annula-
teur à droite de a a une intersection avec a réduite à 0 (§2 b) ; on a donc al = I, 
ce qui prouve que tout idéal à gauche dans a est aussi un idéal à gauche dans A, 
et par suite que a est un pied de S'. 

6. Nous" allons, nous-borner désormais à l'étude desjanneaux. A ne, contenant 
pas d'idéaux nilpotents. U résulte du §5 que, dans un tel anneau, les socles droit 
et gauche sont identiques à un même idéal bilatère S, et que S est somme directe 
d'anneaux simples de la forme }$(Ea , Ea). Désignons par T Vannulateur à droite 
de AS dans A; c'est un idéal bilatère de A, et on a S fl T = 0 puisqu'il n'y a 
pas d'idéaux nilpotents dans A; donc TS d S H T = 0, ce qui montre que T 
est aussi l'annulateur à gauche de S. 

Cela étant, considérons sur A la topologie T dont un système fondamental 
de voisinages de 0 est formé des annulateurs à droite des parties finies de S + T. 
Cette topologie est compatible avec la structure d'anneau de A : en effet, comme 
tout voisinage de 0 du système précédent est un idéal à droite, pour tout zo G A, 
y —» yxo est continue au point y = 0, et (x, y) —> xy continue au> point (0, 0) ; 
enfin y —» xQy est continue au point y = 0, car si a G S + T, la relation 
(axo)y = 0 équivaut à a(x0y) = 0, et ax0 G S + T. 

La topologie Test séparée, car l'intersection de tous les voisinages de 0 est 
un idéal annulant à droite S + T, donc contenu dans T; mais comme il n'y a 
pas d'idéal nilpotent dans A, cette intersection est réduite à 0. 

Soit alors Ä le complété de l'anneau topologique A, S et T les adhérences de 
S et T dans Ä (qui sont isomorphes aux complétés des sous-anneaux S et T 
de A). On a les propriétés suivantes: 

(a) Un système fondamental de voisinages de 0 dans Ä est encore constitué 
par les annulateurs à droite dans Ä des parties finies de S + T; en effet, l'an
nulateur à droite ti dans Ä d'une partie finie F de S + T contient l'adhérence 
de l'annulateur à droite r de F dans A; comme r est un idéal ouvert dans A, 
son adhérence dans Ä est un idéal ouvert dans Ä, et a fortiori Xi est ouvert 
dans Ä; mais comme A est partout dense dans Ä, cela entraîne que ri est l'ad
hérence de r. 7 

(b) Comme la topologie de Ä est séparée, l'annulateur à droite de S + T 
dans Ä est réduit à 0. Soit alors ï y* 0 un idéal à gauche dans Ä, et x ^ 0 un 
élément de I; par hypothèse, il existe a G S + T tel que ax 9e 0; comme A est 
partout dense dans Ä, il existe y G A tel que a (x — y) = 0, d'où ay = ax 9* 0; 
mais ax G ï, donc ay G ï fl A2; en d'autres termes, I fl A2 n'est pas réduit à Û. 
Cela montre aussitôt en particulier que Ä ne contient pas d'idéaux nilpotents. 

(c) La topologie induite par 3~sur S est celle pour laquelle un système fonda
mental de voisinages de 0 est formé des annulateurs à droite (dans S) des parties 
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finies de 8. D'après le §4, S est isomorphe à l'anneau produit des anneaux 
topologiques &(Éa , Ea). En particulier, B admet un élément unité e, et la 
décomposition de Peirce x = ex + (x — ex) montre que Ä est somme directe 
de S et de son annulateur (à gauche et à droite) T\ H> T. 

(d) L'anneau Ti ne contient pas d'idéaux minimaux (en d'autres termes, 
tous les idéaux minimaux de A sont contenus dans B). Supposons le contraire, 
et soit r un idéal à droite de longueur finie dans Ti. Les voisinages de 0 dans r 
pour la topologie induite par celle de Ä sont des idéaux à droite dans Ti, donc 
leur longueur est bornée par celle de r, et une suite strictement décroissante de 
tels idéaux est donc finie, ce qui prouve que la topologie induite sur r est discrète. 
Nous allons en déduire que r fi T = 0. En effet, dans le cas contraire, x Ci T 
serait un idéal à droite non nul de T; comme r est discret, tout idéal à droite 
r' de T contenu dans r H T7 est identique à son adhérence dans r; mais cette 
adhérence est l'intersection de r et de l'adhérence de r' dans A, et par suite 
c'est un idéal à droite dans Ti ; x fi T serait par suite un idéal de longueur 
finie dans T. Or, il n'existe aucun idéal 9*0 de cette nature dans T: en effet, 
si ri est un idéal à droite minimal dans T, x±T n'est pas nul, puisqu'aucun élé
ment 9*0 de T n'annule T; XiT est alors un idéal à droite dans A, contenu dans 
T et par suite égal à r i , et ri est alors un idéal à droite minimal dans A, ce qui 
est contraire à la définition de T. 

Considérons alors le socle U de Ti ; s'il n'était pas nul, chacun de ses éléments 
9*0 appartiendrait à un idéal à droite de T\, de longueur finie, donc ne serait 
pas dans T\ autrement dit, on aurait U fi T = 0; mais cela est contradictoire 
avec (b), puisque U est un idéal à gauche dans Ä. 

(e) Si l'anneau A est sans radical (au sens de Chevalley-Jacobson) il en est 
de même de Ä. Remarquons d'abord que le radical de A est toujours contenu 
dans T, et celui de Ä dans T\ ; tout revient donc à prouver que si T est sans 
radical, il en est de même de Ti. Soit Ri le radical de Ti ; s'il est 9*0, comme 
c'est un idéal à gauche de Ä, sa trace sur T n'est pas nulle d'après (b), donc 
R = Ri fl T, qui est le radical de T, n'est pas nul; nous allons en déduire que 
le radical de T n'est pas nul. D'après (b), R fi T2 n'est pas nul; soit z 9* 0 un 
de ses éléments. Par hypothèse, lorsque y parcourt T, l'ensemble des y + yz 
est identique à T [4, pp. 302-303]; lorsque x parcourt T, l'ensemble des x + xz 
est donc partout dense dans T. Soient alors a et & deux éléments quelconques 
de T7; par définition de la topologie de T, il exister G T tel que a(b — x — xz) = 0, 
c'est-à-dire ab = (ax) + (ax)z. L'ensemble des u-}- uzoùu £ T, contient donc 
T2, et en particulier, il existe u G T tel que — z — u + uz, autrement dit, z a un 
quasi-inverse à gauche dans T. Pour tout c G T7, on a encore cz G R H T2, donc cz 
a aussi un quasi-inverse à gauche dans T, ce qui prouve que z appartient au 
radical de T [4, pp. 302-303]. 

7. Si T = 0, on a JTI = 0, car Ti, idéal à gauche de Ä, doit avoir d'après 
le §6 (b), une intersection avec A non réduite à 0 s'il est lui-même 9*0; dans 
ce cas, on a Ä = B, d'où S CZ A CZ 3, on retrouve un résultat récent de P. 
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Jaffard [6] ; en particulier, si A est primitif et admet des idéaux minimaux, on 
obtient la caractérisation de ces anneaux donnée par N. Jacobson [5]. Mais en 
général, lorsque T 9* 0, on peut avoir T 9* Ti 2 

Remarquons que, dans Ä, l'annulateur de T (à droite et à gauche) est S, 
car il contient S et ne peut contenir aucun élément 9*0 de Ti, sans quoi son 
intersection avec Ti serait un idéal à gauche 9*0 dans Ä, et aurait donc une 
intersection 9*0 avec T (§6 (b)) ce qui est contraire à l'hypothèse. L'intersec
tion S fi A = ASO est donc l'annulateur de T dans A (à droite et à gauche) ; on 
peut aussi le caractériser comme le plus grand idéal de A (à droite ou à gauche) 
contenant S et ne contenant aucun élément annulant S (à droite ou à gauche) : 
car si un idéal à gauche a contient S et un élément xQ $ So, il contient Tx0, qui 
par hypothèse n'est pas nul et est contenu dans T, donc annule S. Remarquons 
encore que S est le socle de l'anneau SQ , car si r est un idéal à droite minimal 
dans So, il contient xS0, qui n'est pas nul puisque xS 9* 0, donc r = XSQ , et r 
est un idéal minimal dans A, donc contenu dans S. 
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2 Soit E un espace vectoriel admettant une base dénombrable (en), et soit E' le sous-
espace du dual E* engendré par les formes coordonnées e n . Dans le produit S (E, E') X Z, 
où Z est Panneau des entiers rationnels, le socle JS est g(i£, E')\ soit A le sous-anneau de 
ce produit engendré par les éléments (s, 2n), où s Ç $(E, E') et n G Z, et par 
l'élément {u, 1), où u est l'application linéaire de E dans lui-même définie par u(en) = 
en+i pour tout n. Comme un tend vers 0 dans Qi(E, E') lorsque n croît indéfiniment, on voit 
aisément que T se compose des éléments (0, 2n), tandis que T\ est formé des éléments 
(0,n). 



ON TWO TOPICS IN THE STRUCTURAL THEORY OF RINGS 
. (GALOIS THEORY OF RINGS AND FROBENIUS ALGEBRAS) 

TADASI NAKAYAMA 

The present address is concerned with two topics in the theory of rings. The 
topics are rather different from each other, but they have in common the fact 
that the writer's study of them is mainly concerned with non-semisimple rings. 

The first is the Galois theory of rings. Galois theory was first extended to skew-
fields by Jacobson [12] some ten years ago; the theory may be called an outer 
one and generalizes the classical Galois theory of fields. A further advance of 
noncommutative Galois theory was made by Cartan ([8], cf. [7]) and Jacobson 
[13], independently, so as to include the theory of commuters (commutators). 
The study was pushed further by Dieudonné [9] in a work which happened to 
have much in common with one by Azumaya and the writer [22]. Hochschild 
[11] has extended to the noncommutative case the non-normal Galois theory, 
so to speak, of Kaloujnine and Jacobson [14]. These are however all concerned 
with skew-fields, or matric rings over skew-fields. On the other hand, Azumaya 
[4] succeeded in extending the (outer) Galois theory (first to simple rings and 
then) to uni-serial rings, in the sense of Köthe (see e.g. [2]). The writer then 
established it for general rings with minimum condition [17]. As for the inner 
Galois theory, i.e., the theory of commuters, the writer studied it also for non-
semisimple rings [18] and obtained a result for them from which the main 1-1 
duality in the Brauer-Noether-Shoda-Artin-Whaples theory (see [1]) of com
muters in simple rings may be drawn. He has then combined these to obtain 
the mixed Galois theory for primary rings [19], which generalizes the Cartan-
Jacobson one for skew-fields. The writer has also studied the non-normal Galois 
theory for general rings [20]. Let him present some features of these studies. 

Firstly, the outer Galois theory is rather satisfactory. Let, namely, R be a 
ring with unit element and satisfying the minimum condition. For an R-two-
sided module m and an automorphism a of R, we can introduce a new R-two-
sided module (a, m) which is isomorphic, or rather identical, with m as .B-right-
module while the left operation of R on it is defined by a-u = affu. Then we 
call a finite group G = {1, a, • • • , r} of automorphisms of R a Galois group of 
R when no module (<r, R) with cr G G, 9*1 has a composition residue-module 
isomorphic to a composition residue-module of R = (1, R). Our theory centers 
on the Galois correspondence :* / / R is directly indecomposable and G is a Galois 
group of R, then the subgroups of G are in 1-1 correspondence with those subrings 
of R which contain the invariant system S of G in R and over which R has inde
pendent right or left bases. G exhausts the automorphisms of R leaving S element-
wise fixed. Our notion of Galois group thus seems appropriate, though rather 

1 Here we neglect another feature in Galois theory which is concerned with the ex-
tendability of isomorphisms of subrings. This the writer wants however to discuss 
elsewhere. 

49 



50 TADASI NAKAYAMA 

special, if we intend to extend the classical Galois theory to general rings. We 
have also the theorem of the normal basis that the group ring (G, S) and R are 
(G, S)- (right-, or left-) isomorphic; we have even the (G, R)-isomorphism of 
R° and (G, R), where Rg denotes the direct sum of g copies of R, g being the 
order of G, and (G, R) is the semilinear group-ring (or, crossed'product with 
unit factor set) of G over R. This holds in fact without the assumption of direct 
indecomposability of R and under the assumption that G induces a Galois group 
in the residue-ring of R modulo the radical N. One of the arguments used in 
our proof may be formulated in the following generalized crossed-product 
argument [17, Lemma 5] : Let E be a ring with unit element and with minimum 
condition, and N be its radical. Let a finite group of automorphism-classes of R 
induce a Galois ciass-group in the residue-ring R/N, where the Galois class-
group is defined similarly as a Galois group. Consider a crossed product (G, R), 
with perhaps a nonunit factor set, and two (G, R)-right-moduli r, 3, which are 
direct sums of Ä-submoduli Ä-isomorphic to directly indecomposable right-
ideal components of R. Now, if x/xN and §/§N are R-isomorphic, then x and 8 
are (G, R)-isomorphic; observe that both the moduli and the operator domain 
are enlarged in the conclusion. The notion of regular moduli is also effectively 
used; we call a right-, say, module m of a ring R with unit element regular when 
mv and Ru, with suitable integers u, v, are isomorphic ; the number u/v, uniquely 
determined, is called its rank. In the above Galois correspondence we may re
place the requirement of the existence of bases with respect to subrings, which 
are associated with subgroups of the Galois group, by mere regularity. Rather 
general considerations of regular moduli and their endomorphism rings together 
with the above crossed-product theorem are sufficient to give half of our Galois 
duality, while further investigations making use of the full property of the Galois 
group are needed in order to obtain the other half [17, §2]. 

As for the theory of commuters, we have the following theorem: Let K be a 
subring of R, & ring with unit element and with minimum condition, containing 
the center of R and such that RiKT has an independent finite basis over Ri con
sisting of elements of Kr, where Ri and Kr denote, respectively, the ring of left 
multiplications of elements of R, and the ring of right multiplications of ele
ments of K on R and where the product is f ormedin the absolute endomorphism 
ring of the module R. Let further R be regular with respect to RiKr. Let S = 
VR(K) be the commuter system of K in R. (It amounts to considering a subring 
S of R such that the $r-endomorphism ring of R has an independent finite Rr 
basis consisting of elements of Rr and such that R is /Sr-regular (or, more specifi
cally, R has an independent $r-basis).) Then, subrings L, T of K, R such that, 
respectively, R is RiLr-regular, RiLrC[Kr = Lr, and R is T-right-regular, T 3 S, 
are mutually in 1-1 correspondence according to VK (T) = VR(T) = L, VR(L) = T. 

Let now R be a primary ring, with unit element and minimum condition, and 
$ be a group of automorphisms of R which satisfies the following conditions: 
(i) the subring K of R defined by Kr = R$> 0 Rr has an independent finite 
basis over the center Z of R, (ii) K mod if fi AT is a skew-field, where N denotes 
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the radical of R, (iii) R is R^-regular, (iv) every (ring-) automorphism of R 
contained in RiKr is contained in $, (v) the (normal) subgroup <£0 = $ H RiKr 

has a finite index in $, and (vi) for a representative system {p,-} (pi = 1) of * 
mod $ 0 , no Ä-two-sided module (pi, R) with i 9* 1 has a composition residue-
module isomorphic to a composition residue-module of R. Then $ exhausts the 
automorphisms of R which leave its invariant system S elementwise fixed, and R 
has an independent S-right-basis of ($:$o)(K:Z) terms. Further, subrings T of R, 
which contain S and over which R has independent right-bases, are in 1-1 corre
spondence with subgroups ^ of$ such that L defined by Lr = R?L' fl Rr have in
dependent bases over Z and all automorphisms of R contained in RiLr are contained 
in SF. Though the setting is rather complicated, this specializes to the Cartan-
Jacobson theory in case R is a skew-field.2 It is desirable to replace here the 
primarity assumption on R by mere direct indecomposability (and the skew-
field property of K/K fì N by simplicity).3 

In general, subrings ( 3 ] ) of 72, a ring with unit clement and minimum con
dition, over which R has independent right-bases are in 1-1 correspondence 
with subrings of the absolute endomorphism ring of R, as module, which con
tain Ri and for which R is regular with the inverse of an integer as rank. This 
may already be considered as the non-normal Galois theory of R, such a subring 
of the absolute endomorphism ring may be called a Galois ring of module-
endomorphisms of R. I t has an independent right-basis over Ri, and in fact 
one which can be obtained by constructing the direct self-product of R over 
the corresponding subring S. This construction is a special instance of what we 
can formulate by means of jR-double-moduli : Let namely in be an Ä-double-
module having an E-right-basis (ui, u2, • • • , um), and u0 be an element of m. 
Let m endomorphisms m of R be defined by au0 = Uia*1 + u2o?% + • • • + uma,lfn 

(a G R). We call the jffi-right- (in fact, two-sided) module generated by ßi, ß2, 
• • • , ßm the relation module of Uo in m; it is independent of the special choice of 
our B-basis of m. If n is a second Ä-double-module having Ä-right-basis and 
Vo G n, then the relation module of u0 + v0 (resp. UOVQ) in m © n (resp. m Xit n) 
is the sum (resp. product) of those of u0, v0 in m, 11. Now, whenever u\, u2, • • • > 
um G Ruo, auo = 0 (a G R) implies a = 0, and our relation module forms a ring; 
it is a Galois ring, of (module-)endomorphisms of R (and conversely). We can 
further study the structure of such a Galois ring in terms of the decomposition 
of the underlying module m. 

However, the difficulties in our above Galois theories of specified types lie 
in showing that certain given rings of endomorphisms of R are really Galois 
rings and moreover that certain special subrings of them have a certain specified 
particular structure, as, for instance, having an Ärbasis consisting of ring-
automorphisms of R rather than general module-endomorphisms of R. In many 
parts of our above theories, not to speak of the non-normal one, the assumption 
of the minimum condition may be replaced by some weaker conditions. Leaving 

2 Cf. footnote 1. 
8 This latter will be treated in a forthcoming work of the writer. 
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however the axiomatic analysis aside, we only mention the case of closed primi
tive rings ([8], [22]).4 

Now we turn to our second topic, Frobenius algebras. A Frobenius algebra is 
an algebra, over a certain field, which has a unit element and whose left and 
right regular representations are equivalent. Its importance was observed by 
Brauer and Nesbitt in connection with their work on modular representations 
of finite groups. In collaborating with them, the writer obtained the structural 
theory of Frobenius and related algebras [16]. It was found convenient to in
troduce a quasi-Frobenius algebra as an algebra having a unit element and such 
that the totality of distinct directly indecomposable components of its left 
regular representation coincides with that of its right regular representation; 
in other words, it is an algebra whose core-algebra (cf. e.g. [16,1, §3] or [18, §4]5) 
is Frobeniusean. Our study starts with a certain structural characterization of 
Frobenius and quasi-Frobenius algebras; they are characterized by means of 
certain simple properties of minimal left and right ideals, contained in directly 
indecomposable left and right components. The characterization enables us 
also to extend the notions to the case of rings, satisfying the minimum condi
tion, rather than algebras. It turns out, now, that a ring satisfying the minimum 
condition is quasi-Frobeniusean if and only if its left ideal lattice is dual-iso-
morphic to its right ideal lattice. In fact, the annihilator correspondence: I —» 
r(l), x —» Z(r) gives such a dual-isomorphism, where I, r represent, respectively, 
left and right ideals, and r, I are the right and the left annihilator operators in 
our ring. The ring is, furthermore, Frobeniusean if and only if there exists such a 
dual-isomorphism satisfying a certain dimension relation, which amounts to the 
duality of the ranks of corresponding left and right ideals in case the ring is an 
algebra. It seems of interest that the representation-theoretical properties 
defining Frobenius and quasi-Frobenius algebras are equivalent to these lattice 
and annihilation properties of ideals.6 A residue ring of a Frobenius ring, modulo 
a certain two-sided ideal i, is Frobeniusean if and only if l(£), r(i) are left-, 
right-principal. This indicates' the significance of Frqbenius rings for the theory 
of principal ideal rings and. provides a viewpoint of looking at the latter.7 

Another interesting feature of Frobenius algebras is the orthogonality relation. 
There exists a certain particular class of automorphisms in a Frobenius algebra 
which describe, in a sense, the representation-theoretical significance of the 
above annihilation duality in it. By making use of those automorphisms, Nesbitt 
and the writer obtained orthogonality relations for the coefficients of the (nor
malized) regular representations of Frobenius algebras (see [6], [24]), which 
generalize the well-known orthogonality relations for the coefficients of (ordi
nary) irreducible representations of (finite) groups. Brauer [6] discussed further 

4 Primitive rings were called irreducible rings in [22], 
6 I t is called also the basic algebra. 
6 The dual-isomorphism of left and right ideal lattices has been considered from some

what different standpoints in [5] and [15]. For the annihilation duality see [10] too. 
7 For principal ideal rings with minimum condition see [2]. 



TWO TOPICS IN T H E STRUCTURAL T H E O R Y OF R I N G S 53 

the arithmetical significance of those orthogonality relations and obtained a 
generalization of Speiser 's theorem on modular behaviour of an irreducible 
representation. 

These are, however, somewhat older results. Somewhat newer is the study of 
almost symmetric rings by Azumaya [3] ; the notion forms a ring approximation 
of symmetric algebras which are Frobenius algebras whose left and right regular 
representations with respect to a common basis can be transformed into each 
other by a symmetric matrix. A ring with unit element, and with minimum 
condition, is Frobeniusean if and only if the left and the right annihilators of 
the radical are right- and left-principal, respectively; in fact, they coincide 
when the condition holds, i.e., when the ring is Frobeniusean. Now, an almost 
symmetric ring is, by definition, a Frobenius ring in which our (two-sided) an
nihilator of the radical is a principal ideal generated by an element of the center. 
In the case of algebras the notion turns out, as Azumaya and the writer showed, 
to be equivalent to that of absolutely weakly symmetric algebras, where weakly 
symmetric algebras are those Frobenius algebras such that the (directly in
decomposable) representations obtained by the left and the right ideals generated 
by the same primitive idempotent element are equivalent (see [23]). 

Some of the properties of Frobenius and quasi-Frobenius algebras may be 
assumed individually and separately as postulates to introduce their weakened 
modifications. A recent work of Thrall [25] is along this line. The properties 
considered by him are mainly representation-theoretical. I t seems of some in
terest to carry out a similar study with respect to the ideal-lattice and annihi
lator properties. 

In closing, and in our context, the writer may cite a recent result, of Ikeda 
and himself [21], that in the case of algebras our above necessary and sufficient 
condition for Frobenius or quasi-Frobenius algebras may be cut in half. Namely, 
if l(r(l)) ~ I for every left ideal I in an algebra, then r(l(x)) = x for every right 
ideal v in it (whence the algebra is quasi-Frobeniusean. If moreover the sum of 
the ranks of I and r(l), over the ground-field, is equal to the rank of the algebra 
for every I, then the algebra is Frobeniusean). 

I t seems to the writer that our topics possess a somewhat deeper connection 
with each other than was said in the beginning. 
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JACOBSONSCHES RADIKAL UND HILBERTSCHER 
NULLSTELLENSATZ1 

WOLFGANG KRULL 

Bekanntlich hat man für das Wedderburnsche Theorem, daß jedes einfache 
hyperkomplexe System ein voller Matrizenring über einem Schiefkörper ist, 
eine denkbar weitgehende und völlig befriedigende Verallgemeinerung gefunden, 
bei der an Stelle des einfachen hyperkomplexen Systems ein einfacher Ring im 
Sinne von Chevalley und Jacobson tritt. Die Einführung des Jacobsonschen 
Radikals lieferte dann auch zu dem zweiten Wedderburnschen Satz, nach dem 
jedes hyperkomplexe System mit verschwindendem Radikal die direkte Summe 
von endlich vielen einfachen Systemen ist, ein ganz allgemeines und äußerlich 
sehr ähnliches Gegenstück: Ein beliebiger (i.A. nichtkommutativer, aber as
soziativer) Ring ist dann und nur dann eine subdirekte Summe von einfachen 
Ringen, wenn sein Jacobsonsches Radikal verschwindet.2 Leider ist aber in 
diesem zweiten Fall die Analogie zwischen dem speziellen und dem allgemeinen 
Theorem nur formal. Der Wedderburnsche Satz enthält eine völlig befriedigende 
Strukturaussage; denn nach ihm übersieht man, angesichts der Definition der 
direkten Summe, alle halbeinfachen Systeme vollständig, wenn man nur die 
einfachen Systeme beherrscht. Dagegen ist der Begriff der subdirekten Summe 
so allgemein und in gewissem Sinne nichtssagend, daß man von vornherein 
nicht hoffen darf, bei einer subdirekten Zerlegung aus der bekannten Struktur 
der Komponentenringe tiefergehende Schlüsse über den Bau des Gesamtringes 
ziehen zu können. In der Tat kann man schon im einfachen Spezialfall der 
kommutativen Integritätsbereiche leicht Ringe von ganz verschiedenem arith
metischem Typus angeben, die sich als subdirekte Summen ein und derselben 
Körpermenge darstellen lassen.3 

Unter diessen Umständen ist es besonders bemerkenswert, daß gerade bei 
den Integritätsbereichen bzw. allgemeiner bei beliebigen ]kommutativen Ringen 
mit Einheitselementen, auf deren Betrachtung wir uns weiterhin beschränken 
wollen, eine gewisse Verschärfung des Jacobsonschen Begriffes eines Ringes mit 
verschwindendem Radikal, wenn auch nicht zu Struktursätzen im Sinne des 
zweiten Wedderburnschen Theorems, so doch zu anderen, in ihrer Art bemerkens
werten Ergebnissen führt.4 Wir gehen aus von der Bemerkung, daß in einem 
kommutativen Ring 9t mit Einheitselement e das Jacobsonsche Radikal gleich 

1 Dieser Bericht wurde aufgeführt im gedruckten Programm unter dem Titel Jacob-
sonches Radikal, Hilbertscher Nullstellensatz, Dimensionstheorie. 

2 Zum Fundamentaltheorem über einfache Ringe vergi, die besonders einfache und 
elegante Ableitung bei Artin [1], Zur Definition und den Grundeigenschaftendes Jacob
sonschen Radikals vergi. Jacobson [1]. Über subdirekte Summen vergi, auch McCoy [1]. 

3 Vergi, hierzu die ausführliche Darstellung in Krull [4]. 
4 Die Terminologie (Ober- und Unterideal, minimales Primoberideal bzw. Radikal eines 

Ideals usw.) ist die von Krull [1]. 
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dem Durchschnitt aller maximalen Ringprimideale ist, wobei wie üblich unter 
einem maximalen Primideal ein Ideal m verstanden wird, das (abgesehen von 
dem Gesamtring 9Î) kein echtes Oberideal besitzt, oder, was auf dasselbe heraus
kommt, ein Ideal m, für das der Restklassenring SK/m ein Körper ist.5 Diese 
Bemerkung legt es nahe, jedem Ideal a aus 9Î den Durchschnitt Xj(a) aller 
maximalen Primoberideale als zugehöriges Jacobsonsches Radikal zuzuordnen; 
denn es stellt ja Xj(a)/a das Jacobsonsche Radikal des Restklassenringes 9t/ct 
dar. Man hat dann zu jedem a zwei Radikale, einerseits das schon definierte 
Xj(a), andererseits das Radikal r(a) im üblichen Sinne des Wortes, das der 
Durchschnitt aller minimalen Primoberideale von a ist und somit stets der 
Beziehung r(a) ^ r,(ft) genügt. Eine ausgezeichnete Rolle spielen nun offenbar 
die Ringe, in denen kein Unterschied zwischen gewöhnlichem und Jacobsonschem 
Radikal existiert, also durchweg r(a) = Xj(a) wird. Wir wollen derartige Bereiche 
kurz als Jacobsonsche Ringe bezeichnen. Wie mühelos aus der Definition von 
r(ct) und x3(a) zu ersehen, gilt der Satz: 9t ist dann und nur dann ein Jacob-
sonscher Ring, wenn jedes Primideal £ aus 9Î gleich dem Durchschnitt seiner 
maximalen Primoberideale wird. Daß auch für Jacobsonsche Ringe kein Struk
turtheorem im Sinne des Wedderburnschen Satzes über halbeinfache hyperkom
plexe Systeme zu erwarten ist, überlegt man sich leicht an Hand der Bemerkung, 
daß jeder Polynomring in endlich vielen Variablen mit Körperkoeffizienten einen 
Jacobsonschen Ring darstellt. Auf der anderen Seite weist aber gerade die 
Betrachtung eines Polynomringes 9Î = K [xi, • • • , xn] über einem Körper K den 
Weg zur fruchtbaren Weiterarbeit. Es ist bekannt, daß der für 9? gültige Hilbert-
sche Nullstellensatz gleichwertig ist mit den folgenden beiden Aussagen: 1. 9Î ist 
ein Jacobsonscher Ring. 2. Jeder Körperhomomorphismus von 9Î bildet 9Î auf 
einen algebraischen Oberkörper von K ab.6 In dieser Fassung kann nun der 
Hilbertsche Nullstellensatz zu einem Theorem über beliebige Jacobsonsche 
Ringe erweitert werden, das an Allgemeinheit und Einfacheit nichts zu wünschen 
übrig läßt. 

PERMANENZSATZ. Ist dl ein Jacobsonscher Ring, so ist es auch jede endliche 
Ringerweiterung © = 9t[ari, • • • , an]. Darüber hinaus ist jeder Körperhomo
morphismus St von © eine algebraische Fortsetzung eines Körperhomomorphismus, 
d.h. ist das Bild von &oei K ein Körper A, so ist das Bild von 9Î bei K gleichfalls 
ein Körper K und es wird A algebraisch über K. 

Um einzusehen, daß der Permanenzsatz tatsächlich eine Verallgemeinerung 
des Hilbertschen Nullstellensatzes bildet, braucht man nur zu beachten, daß 
der im Hilbertschen Nullstellensatz auftretende Koeffizientenkörper K ein 

6 Wegen der Existenz des Einheitselements muß jedes in unserem Sinne maximale Ideal 
von selbst Primideal sein. 

6 Unter einem Körperhomomorphismus von Sft verstehen wir eine homomorphe Abbil
dung von 9? auf (nicht nur in) einen Körper. Zu der Reduktion des Hilbertschen Nullstel
lensatzes auf die beiden angegebenen Bedingungen vergi. Zarisld [1], 



58 WOLFGANG KRULL 

Jacobsonscher Ring einfachster Art ist, und daß jeder Körperhomomorphismus 
von K notwendig K auf sich selbst abbildet. Der Beweis des Permanenzsatzes 
ist ganz elementar. Zunächst sind drei Reduktionen möglich, die auch weiterhin 
eine große Rolle spielen werden: 1. Da jede endliche Ringerweiterung 
9t[«i, • • • , an] Restklassenring eines Polynomringes 9t[#i, • • • , xn] ist, genügt 
es, Polynomringe über 9Î zu betrachten. 2. Es muß sogar nur der Fall 9t[#] 
betrachtet werden, da dann Induktion möglich ist. 3. Ist p ein Primideal aus 
© = $l[x]9 £(r) = p fi 9t, so kann man im Falle p(r) ^ (0) die Betrachtung von 
9t und © nach dem Integritätsbereich % = 9t/p(r) und dem zu ©/p ( r )-© iso
morphen Polynomring § M verlegen. (Man beachte, daß J$f gleichzeitig mit 9Î 
ein Jacobsonscher Ring ist.) Das p in $[x] entsprechende Primideal po genügt 
der Gleichung fy fl % = (0). Derartige gf[x]-Primideale p0 können aber leicht 
genauer charakterisiert werden: Ist ï der Quotientenkörper von g, a(x) ein 
Polynom aus $[x], so möge unter dem Quasihauptideal {a(x)} das Ideal aller 
der c(x) £ gftc] verstanden werden, die in l[x] durch a(x) teilbar sind. Man sieht 
dann sofort, daß die Primideale p0 nichts anderes sind als die Primquasihaupt-
ideale {p(x)}, bei denen das erzeugende Polynom p(x) in t[x] irreduzibel ist. 
Aus 1-3 folgt, daß es genügt, Primquasihauptideale im Polynomring $j[x] über 
dem Integritätsbereich gf zu betrachten. Zu zeigen ist offenbar zweierlei: (a) 
Ist {p(x)} in %[x] maximal, so muß {p(x)} fi g 5̂  (0) in g maximal, d.h. es 
muß gf ein Körper sein, (b) Ist {p(x)} nicht maximal und a(x) $ {p(x)}, so gibt 
es stets ein zwar {p(x)}, aber nicht a(x) enthaltendes, maximales Primideal 
in g[&]. (a) Es sei p(x) — pQxn + pix71'1 + • • • + pn . Ist dann der Jacobsonsche 
Ring gf kein Körper, so gibt es in -gf ein pQ nicht enthaltendes, maximales Primi
deal m{%) 9* (0) und man rechnet unschwer nach, daß {p(x)\ das von %[x] ver
schiedene, echte Oberideal (m(4), [p(x) ) ) • %[x] besitzt, also sicher nicht maximal 
ist. (b) Es sei p(x) = pQxn + • • • + pn, a(x) = Ooxm + • • • + am , r sei die 
wegen a(x) Ç {p(x)\ von 0 verschiedene Sylvestersche Resultante von p(x) 
und a(x), m(l) sei ein maximales, p0-r nicht enthaltendes Primideal aus gf. 
Dann gibt es nach (a) ein maximales Primoberideal m von {p(x)} in gf[z] mit 
m f l g = m(l), und da beim Übergang von g zum Körper K = gf/m aus a(x) 
und p(x) zwei teilerfremde Restklassenpolynome von K[x] entstehen, kann 
m das Polynom a(x) nicht enthalten. 

Daß der Permanenzsatz als eine vollbefriedigende, denWar weitgehende Verallge
meinerung des Hilbertschen Nullstellensatzes angesehen werden darf, zeigen die 
folgenden Bemerkungen: 1. Die Voraussetzung, daß 9Î selbst ein Jacobsonscher 
Ring ist, ist schon im Falle einer einfachen transcendenten Ringerweiterung 
© = 9t[w] nicht nur für die Gültigkeit des ersten, sondern auch für die Gültigkeit 
des zweiten Teiles des Permanenzsatzes notwendig. Die Überlegung, die diese 
Notwendigkeit zeigt, ist nichts anderes als eine geschickte Verallgemeinerung 
des bekannten, für die meisten einfachen Beweise des gewöhnlichen Hilbertschen 
Nullstellensatzes grundlegenden Schlusses von Rabinowitsch. 2. Die Beschränk
ung auf endliche Ringerweiterungen © = 9t[«i , • • - , « „ ] ist keine unnötige 
Spezialisierung. Es ist leicht einzusehen, daß für unendliche Ringerweiterungen 



JACOBSONSCHES RADIKAL UND NULLSTELLEN SATZ 59 

eines Jacobsonschen Ringes weder der erste noch der zweite Teil des Perma
nenzsatzes zu gelten braucht. (Zum ersten Teil braucht man nur zu beachten, 
daß es Oberringe von Körpern gibt, die ihrerseits keine Jacobsonschen Ringe 
sind. Zum zweiten Teil wähle man etwa für 9Î den Ring der ganzen, für © den 
Körper der rationalen Zahlen und betrachte den identischen Automorphismus 
von ©.) 3. Nur in einem Fall scheint es von vornherein aussichtsvoll, den Per
manenzsatz auf unendliche Ringerweiterungen © auszudehnen, nämlich dann, 
wenn ©, d.h. jedes Element von © vom Ausgangsring 9Î ganz abhängt. Wirklich 
gelingt diese Verallgemeinerung des Permanenzsatzes unschwer mit Hilfe der 
wohlbekannten Fundamentalsätze über den Zusammenhang zwischen den 
Primidealen eines beliebigen Ringes 9Î und eines ganz abhängigen Oberringes ©. 

Der Permanenzsatz bedeutet seiner Natur nach einen gewissen Abschluß. 
Über ihn hinaus führt die Überlegung, daß in der Theorie der kommutativen 
Ringe, insbesondere der Integritätsbereiche, die Stellenringe (local rings) eine 
fundamentale Rolle spielen, die nur ein einziges maximales Primideal enthalten 
und infolgedessen bestimmt nicht Jacobsonsche Ringe sind. Hier kommt man 
mit dem u Jacobsonschen Prinzip", das in der Betrachtung der Durchschnitte 
geeigneter Mengen von maximalen Ringprimidealen besteht, nicht mehr weiter. 
Es liegt nahe, das Prinzip dadurch zu verallgemeinern, daß man passende Mengen 
von beliebigen Primidealen zuläßt und insbesondere überall dort, wo, wie im 
Spezialfall der Stellenringe, ein bestimmtes Primideal p ausgezeichnet ist, die 
aus unmittelbaren Primunieridealen* von p gebildeten Mengen untersucht. Man 
stößt dami sofort auf die folgende Frage : Es seien p und q C) ) zwei Primideale 
aus dem Ringe 9Î. Welche Aussagen können, allgemein oder unter besonderen 
Voraussetzungen für 9Î, über die Möglichkeit der Durchschnittsdarstellung 
von q durch unmittelbare Primunterideale von p gemacht werden? Hier zeigt 
sich nun, zum mindesten bei oberflächlicher Überprüfung, kein Weg, der bei 
beliebigen Ringen 9Î zu einem irgendwie befriedigenden Theorem, etwa im 
Sinne unseres Permanenzsatzes führte. Beschränkt man sich aber auf Noethersche 
Ringe (Ringe mit Maximalbedingung), so erhält man ohne Schwierigkeit allge
mein: 

LOKALER DURCHSCHNITTSSATZ. In einem Noethersehen Ring 9Î ist jedes 
Primunterideal q des Primideals p Durchschnitt von unmittelbaren Primunter-
idealen von p. 

Der Beweis, bei dem man sich, wie unmittelbar zu sehen, auf die Betrachtung 
eines nullteilerfreien Stellenringes 9Î mit dem maximalen Primideal p = m 
beschränken darf, hat zur Grundlage einerseits den Hauplidealsatz, nachdem in 

7 Gemeint sind die "drei ersten Primidealsätze" von Krull [1, §1]. 
8 Das echte Primoberideal pi von p heißt unmittelbar, wenn zwischen p und pi kein 

echtes Zwischenprimideal eingeschaltet werden kann. Man beachte, daß ein unmittelbares 
Primoberideal von p kein minimales Primoberideal ist, das einzige minimale Primoberideal 
von p ist p selbst! 



60 WOLFGANG KRULL 

einem nullteilerfreien Noetherschen Stellenring jedes minimale Primoberideal 
eines Hauptideals (a) ' ringminimal ist, also kein von (0) verschiedenes echtes 
Primunterideal besitzt. Andererseits stützt er sich auf den Schrankensatz, 
nach dem die Gliederzahl m einer in 9Î gebildeten Primunteridealkette 
p = p0 ^ pi ^ h ^ • • • ^ pm eine feste Schranke M nicht überschreiten kann.9 

Der Hauptidealsatz, zusammen mit der Bemerkung, daß in einem Noetherschen 
Ring jedes Ideal nur endlich viele minimale Primoberideale besitzt, gestattet es, 
zu jedem nicht in q liegenden Element a ein a nicht enthaltendes unmittelbares 
Primoberideal von q zu konstruieren. Zieht man dann noch den Schrankensatz 
heran, so liefert ein einfacher Induktionsschluß rasch den gewünschten lokalen 
Durchschnittssatz. 

Gleichzeitig mit 9Î ist auch jede endliche Ringerweiterung © = 9t[«i, • • • , an] 
ein Noetherscher Ring. Der lokale Durchschnittssatz gilt also nicht nur für 9Î 
sondern auch für jede endliche Ringerweiterung von 9t, der "Permanenzsatz" 
ist hier kein Problem. Dafür erhebt sich bei den Noetherschen Ringen die 
weitergehende Frage, ob nicht etwa die Dimensionstheorie der Primideale, wie 
sie für einen Polynomring K[x±, • • • , xn] in endlich vielen Variabein mit Kör
perkoeffizienten gilt, in passender Form auf den entsprechenden Polynomring 
© = 9 tb i , • • • , xn] über einem beliebigen Noetherschen Ring 9Î ausgedehnt 
werden kann.10 Es zeigt sich, daß eine derartige Ausdehnung tatsächlich möglich 
ist, wenn wir die schärfere Voraussetzung machen, daß 9Î nicht nur ein Noether
scher, sondern gleichzeitig auch ein Jacobsonscher Ring ist. Unter dieser doppelten 
Annahme erhält man den: 

DIMENSIONSSATZ. ES sei p ein beliebiges Primideal aus © = 9t[ßi, • • • , xn], 
p(r) = p fl 9Î sei das darunter liegende Primideal aus 9Î. Hat dann p(r) die Dimen
sion oo, so hat auch p die Dimension oo. Hat aber p eine endliche Dimension 
d(r), so gilt für die stets endliche Dimension von p die Ungleichung d + n ^ d ^ n 
wobei, sowohl der Fall d(r) + n = dals auch der Fall d(r) = d wirklich vorkommt. 
Die Dimensionsdifferenz d — d(r) kann (für d(r) ^ oo ) genau so körpertheoretisch 
gedeutet werden wie die Dimension d = d — 0 im Spezialfall eines Polynomringes 
© = K[Xi , • • • , Xn]. 

Natürlich ist beim Dimensionssatz in erster Linie der Fall einer endlichen 
Dimension d{r) wichtig. d(r) = d = oo kann als eine praktisch unwesentliche 
Ausnahme angesehen werden. Was die präzise Fassung des letzten Teiles des 
Dimensionssatzes angeht, so sei K($ir)) bzw. ZT(p) der Quotientenkörper des 
Restklassenringes 9t/p(r) bzw. ©/p. Dann kann man K(p) als Oberkörper von 

9 Zum Hauptideal- und Beschränktheitssatz vergi. Krull [lj. Nr. 8. 
10 Zum Dimensionsbegriff der Idealtheorie und speziell den für Ringe aus ganzen alge

braischen Funktionen gültigen Dimensionssätzen vergi. Krull [2]. Dem Primideal p wird 
bekanntlich die Dimension m zugeschrieben, wenn in 9î zwar eine m-gliedrige Primoberi-
dealkette |) C | ) i C ••• C|)ffl aber keine (ra + l)-gliedrige Kette p ID pi 3 • • • 3 pm+1 

existiert. Gibt es in 9? Primoberidealketten p Z> pi 3 • • • 3 pft von beliebig großer Glie
derzahl, so setzt man die Dimension von p gleich oo. 
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9î(p(r)) auffassen, und es wird d — dir) gerade gleich dem Transzendenzgrade 
von tf (p) über K(p(r)). 

Beim Beweise des Dimensionssatzes ist eine ähnliche Reduktion möglich wie 
früher beim Permanenzsatz. Man kommt zu dem Ergebnis, daß nur gezeigt zu 
werden braucht: Ein Primquasihauptideal {p(x)} aus dem Polynomring gf[#] 
über dem gleichzeitig Noetherschen und Jacobsonschen Integritätsbereich gf besitzt 
stets dieselbe Dimension wie das Nullideal von gf, Ist nun d bzw. d(%) die Dimension 
von {p(x)} in g[.r] bzw. von (0) in gf, so gewinnt man die Ungleichungen d ^ d(,) 

und d ä dil) auf zwei völlig verschiedenen Wegen: (a) Bei d g d(0 liegt die 
Hauptschwierigkeit in dem Nachweis, daß in gf[œ] kein Primoberideal pi von 
po = {p(x)} existieren kann, das Erweiterungsideal eines ringminimalen Prim
ideals po° aus g ist, pi = po° •$[#]. Gäbe es nun ein solches pi , so 
wäre p2 = pi + (x) • © ein echtes Primoberideal von pi, und es müßte, wie 
leicht zu sehen, pi das einzige zwischen p0 und p2 liegende Primideal sein. Das 
aber widerspricht dem für gf[œ] geltenden lokalen Durchschnittssatz, (b) Bei 
d ^ d{%) braucht man, anders als im Fall (a), die Tatsache, daß g ein Jacobson
scher Ring ist. Daraus und aus der Maximalbedingung folgt nämlich sofort, 
daß in g für 1 ^ m ^ dil) jedes m-dimensionale Primideal unendlich viele 
(m — 1)-dimensionale Primoberideale besitzt, und auf Grund dieser Bemerkung 
kann in %[x] mit ähnlichen Überlegungen, wie sie beim Beweise des lokalen 
Durchschnittssatzes benutzt wurden, die Existenz mindestens einer dCl)-gliedrigen 
Primoberidealkette {p(x)} = p0 C piC < • • Cpd(o bewiesen werden. 

Daß die Ungleichung d è d{l) nicht mehr zu gelten braucht, wenn g kein 
Jacobsonscher Ring ist, kann leicht durch Beispiele belegt werden. Was die 
Maximalbedingung angeht, so dürfte es einerseits nicht einfach sein, einen 
Jacobsonschen Ring ohne Maximalbedingung zu konstruieren, für den der 
Dimensionssatz nicht gilt. Andererseits könnten nur wesentlich neue Überlegungen 
die Ausdehnung dieses Theorems auf Jacobsonsche, aber nicht-Noethersche 
Ringe ermöglichen. Weit wichtiger als die Frage nach der Entbehrlichkeit der 
Maximalbedingung scheint im übrigen die andere, ob es nicht möglich ist, 
unter schärferen Voraussetzungen über 9Î zu schärferen Dimensionssätzen zu 
kommen. In einem Polynomring K[xi, • • • , xn] mit Körperkoeffizienten gilt 
für alle Primoberidealketten der: 

LäNGENSATZ. Zwei Primoberidealketten p0 C p! C • • • C pm_i C pm und 
p0 = po <Z p( C • • • C pm/_i C pTO/ = pw mit gleichem Anfangs- und Endglied, 
die beide nicht durch Einschaltung von Zwischengliedern verlängert werden können, 
besitzen stets dieselbe Gliederzahl m = m',10 

Es liegt nun auf der Hand zu fragen : Es sei 9t ein gleichzeitig Noetherscher und 
Jacobsonscher Ring, für den der Längensatz gilt. Gilt dann der Längensatz stets 
auch für 9t[#i, • • • , xn]? (Problem der "Permanenz des Längensatzes".) 

Hier scheint es nicht mehr möglich zu sein, mit den bekannten Hilfsmitteln 
zu einer Entscheidung zu kommen. Doch läßt sich wenigstens die aufgeworfene 
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Frage auf eine einfachere zurückführen, die vor allem deshalb bemerkenswert 
ist, weil bei ihr die eigentliche Schwierigkeit der Aufgabe besonders deutlich 
hervortritt. Es sei g ein Noetherscher Integritätsbereich, für den der Längensatz 
gilt. (Der Jacobsonsche Charakter von gf spielt keine Rolle, man dürfte sogar gf 
als Stellenring annehmen.) Ist in gf[#] das Primideal p2 ein echtes Oberideal des 
Primquasihauptideals {p(x)}, und setzt man p2 PI g = p2° , so zeigt man leicht 
mit Hilfe der beim Beweis des Dimensionssatzes unter (a) skizzierten Überlegung
en: Soll zwischen p2 und {p(x)\ ein echtes Zwischenprimideal pi existieren, so 
muß es in g im Falle p2° • g[#] C p2 mindestens eine Primidealkette p2

l) C 
pi0 C (0) und im Falle p ^ • %[x] = p2 sogar mindestens eine Kette pi0 C p{*} C 
po* CZ (0) geben! Die Betrachtung spezieller Beispiele legt nun die Vermutung 
nahe, daß diese für die Existenz eines Zwischenprimideals pi notwendigen Be
dingungen immer auch hinreichend sind, und die Anwendung der schon beim Per
manenzsatz benutzten Reduktionen, sowie eine zwar .umständliche aber 
grundsätzlich nicht schwierige Diskussion zeigt: Der Längensatz ist dann und 
nur dann permanent, wenn die Vermutung über die nicht unmittelbaren Primo
berideale der Quasihauptideale im Polynomring gffcc] richtig ist. 

Mit dieser Feststellung dürfte der eigentliche Kern des Problems erfaßt sein. 
Will man die Primideal Vermutung beweisen, so hat man als Hilfsmittel zur 
Konstruktion eines Zwischenprimideals pi im wesentlichen nur den bei der 
Beweisskizze des lokalen Durchschnittssatzes erwähnten Hauptidealsatz zur 
Verfügung. Aus diesem folgt sofort, daß in einem Noetherschen Ring 9Î stets 
jedes minimale Primoberideal von p + (a) ein unmittelbares Primoberideal von 
p ist, falls p ein beliebiges Primideal bedeutet, für das weder p + (a) = p noch 
p + (a) = 9t wird, und mit Hilfe dieser Bemerkung kann tatsächlich die Zwisch
engliedidealkonstruktion wenigstens in Spezialfällen durchgeführt werden, 
z.B. da, wenn gf ganz abgeschlossen und p2° • gfrc] CI p2 ist. Versucht man aber 
allgemein durchzukommen, so 'steht man der Notwendigkeit gegenüber, die 
Folgerung aus dem Hauptidealsatz zu verschärfen und man erkennt leicht, daß 
es mehr als ausreichen würde, wenn man in ihr unter Beschränkung auf Stellen
ringe das Hauptideal (a) durch ein ringminimales Primideal q* ersetzen dürfte, 
wenn man also den Satz beweisen könnte : 

SATZ. Ist q* ein ringminimales, p ein beliebiges Primideal aus dem Noetherschen 
Stellenring 9Î, so ist für q* + p ^ p stets jedes minimale Primoberideal von q* + P 
ein unmittelbares Primoberideal von p. 

11 Bei den algebraischen Funktionenringen würde unser Theorem besagen, daß auf 
einer beliebigen irreduzibeln (n + l)-dimensionalen Mannigfaltigkeit ilfa+i der Schnitt 
einer irreduzibeln ra-dimensionalen Untermannigfaltigkeit mit einer irreduzibeln n-dimen-
sionalen Untermannigfaltigkeit stets in endlich viele nicht eingebettete, irreduzible 
Teilmannigfaltigkeiten der genauen Dimension m—1 zerfällt. Für den Beweis der Permanenz 
des Längensatzes brauchte man übrigens von dem fraglichen Theorem nur den Spezialfall, 
daß auch p = p* in g minimal ist, der bei den algebraischen Funktionenringen dem Schnitt 
zweier genau n-dimensionalen irreduzibeln Untermannigfaltigkeiten von Mn+i entspricht. 
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Damit sind wir aber auf ein bisher unbewiesenes Theorem über Noethersche 
Stellenringe gestoßen, das, abgesehen von seiner im Spezialfall der algebraischen 
Funktionenringe möglichen geometrischen Deutung,11 schon durch die grund
sätzliche Betrachtung nahegelegt wird, daß der auf die multiplikative Ideal
theorie zugeschnittene Hauptidealbegriff in rein "additiven" Untersuchungen, 
wie denen über die halbeordnete Menge der Primideale, wenn irgend möglich, 
eliminiert werden sollte. Die Analyse der beim Permanenzproblem des Län
gensatzes auftretenden Schwierigkeiten hat also jedenfalls den einen Vorteil, 
daß sie neues Licht auf die fundamentale Bedeutung des Hauptidealsatzes wirft, 
und insbesondere klar zeigt, daß eine Verschärfung dieses Theorems und seiner 
Folgerungen nicht nur aus Gründen der Metbodenreinheit dringend zu wünschen 
ist. 

Fassen wir die Grundgedanken unserer Ausführungen kurz zusammen, so 
können folgende Hauptpunkte hervorgehoben werden. Die Definition des 
Jacobsonschen Radikals führt (bei kommutativen Ringen mit Einheitselement) 
zu dem speziellen bzw. verallgemeinerten Jacobsonschen Prinzip, d.h. zum sys
tematischen Studium geeigneter Mengen von maximalen bzw. beliebigen Primi
dealen. Daneben tritt in unseren Sätzen und ihren Beweisen ein weiterer Leit
gedanke hervor, nämlich der, eine Theorie der Polynomringe in endlich vielen 
Variabein über einem völlig allgemeinen oder wenigstens beliebig Noetherschen 
Ringe zu entwickeln unter Ausnützung der Tatsache, daß wegen der möglichen 
Induktion in der Regel nur Polynomringe in einer Variabeln betrachtet werden 
müssen, wobei überdies der Koeffizientenring meistens als Integritätsbereich 
angenommen werden darf. Das spezielle Jacobsonsche Prinzip liefert den Begriff 
des Jacobsonschen Ringes und den Permanenzsatz, ein denkbar allgemeines 
und in gewisser Hinsicht abschließendes Theorem. Beim verallgemeinerten 
Jacobsonschen Prinzip treten die Noetherschen Ringe in den Vordergrund. 
Man gewinnt für sie den lokalen Durchschnittssatz, der sich zwar weitgehend 
auf bekannte Tatsachen stützt, sie aber unter einem neuen Gesichtswinkel 
zeigt. Der die allgemeinen Polynomringe betreffende Leitgedanke gibt zunächst 
Anlaß zur Entwicklung der Grundlagen einer Dimensionstheorie der Primideale 
über beliebigen, gleichzeitig Noetherschen und Jacobsonchen Ringen. Der 
Versuch, darüber hinaus zu tiefer liegenden Ergebnissen zu kommen ("Per
manenzproblem des Längensatzes"), führt auf ein bemerkenswertes, aber bisher 
unlösbares Problem hinsichtlich eines Integritätsbereiches %[x] in einer Variabein 
mit nullteilerfreiem Noetherschen Koeffizientenring. Dabei werden gleichzeitig 
die Punkte sichtbar, an denen die allgemeine Theorie der Noetherschen 
Stellenringe noch wesentliche Lücken aufweist. Unsere an das Jacobsonsche 
Radikal anknüpfenden Betrachtungen liefern also nicht nur abschließende 
Resultate, sie geben auch Anlaß zu neuen bisher unbeantworteten Fragen. Man 
kann wohl diese Tatsache verschieden beurteilen; dem Verfasser scheint sie 
entschieden zugunsten der behandelten Ansätze zu sprechen. 

Was die Frage angeht, wie weit unsere Überlegungen Anregungen für die 
Theorie der nichtkommutativen Ringe bieten können, so sei auf drei Punkte 
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hingewiesen. 1. Klar dürfte sein, daß auch im Nichtkommutativen überall dort, 
wo nichtmaximale (zweiseitige) Primideale auftreten, die Ringe mit ver
schwindendem Jacobsonschen Radikal an Bedeutung hinter den Jaòobsonschen 
Ringen in unserem Sinne wesentlich zurücktreten werden. 2. Es scheint hicht 
ausgeschlossen, den Permanenzsatz des Textes auf einen Polynomring 
9t[#i, • • • , xn] mit nichtkommutativem Koeffizientenbereich 9Î auszudehnen, 
wobei allerdings die Xi untereinander und mit den Elementen von 9t kommutieren 
müssen. 3. Nachdem über nichtkommutative Ringe mit Minimalbedingung in 
vieler Hinsicht abschließende Resultate vorliegen, ist es grundsätzlich an der 
Zeit, die Untersuchung beliebiger nichtkommutativer Ringe mit Maximalbeding
ung systematisch in Angriff zu nehmen. Die vorliegenden Betrachtungen 
scheinen nun darauf hinzuweisen, daß dabei von vornherein nicht nur die 
Übertragung von Zerlegungssätzen im Sinne der ursprünglichen Noetherschen 
Theorie ins Auge gefaßt werden sollte, sondern auch die Frage, wie weit sich 
Struktursätze, die im Kommutativen für die halbgeordnete Menge der Primi
deale eines Noetherschen Ringes gelten, auf den nichtkommutativen Fall aus
dehnen lassen. 
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ARITHMETICS OF ORTHOGONAL GROUPS1 

MARTIN EICHLER 

A general survey of algebraic arithmetics, especially of those branches which 
have had the most outstanding success during the last decades, shows that 
with few exceptions research work has centred around the classical groups. In 
the theory of class fields the multiplicative group of the numbers of an algebraic 
number field is distinguished in a conspicuous manner. The multiplicative 
groups of nonsingular elements of central simple algebras are subgroups of the 
linear group. There is some justification in considering the algebraic and arith
metic results of the theory of simple algebras as results on the linear group. 

In a similar sense there exists the closest connection between the theories of 
quadratic forms and of the orthogonal group and, analogously, between the 
theories of Hermitian and skew-symmetric forms and the unitary and the sym-
plectic groups. This analogy is of essential nature; a number of theorems on 
simple algebras and quadratic forms can be traced back to the same source. 
For example, there are the theorems that the number of classes of ideals in a 
central simple algebra and the number of classes of indefinite quadratic forms 
over the field of rational numbers are in general unity. The proof depends in 
the first case on the simplicity of the linear group and in the second case on the 
simplicity of the orthogonal group in a Galois field. 

In this address I shall give a brief sketch of some features of the theory of 
quadratic forms as seen from this angle. We shall notice at first a close paral
lelism with the elementary arithmetic of algebras. Later we shall be led to new 
ideas which are put forward by Hecke's work on modular forms and ^-functions. 

Once and for all an algebraic number field k is to be fixed from which all 
coefficients of quadratic forms and linear substitutions will be taken. 

The orthogonal group in k is given naturally not as an abstract group but as 
a so-called group-pair. In fact, two groups are given. The first is the additive 
group of vectors a, ß, • • • of an ?2,-dimensional vector space R. There exists a 
basis (h) of R with respect to k, so that the general vector is 

n 

Ç = = ' J Lv Xp 

with n variables xv. Between the vectors a scalar multiplication is defined: 

aß = ßa = number of ft, 

with the property 

(aiai + a2a2)ß = aictiß + a2a2ß. 

The square of £ is a quadratic form 
1 This address replaced the address by M. Deuring listed in the printed program under 

the title Singularities of commutative rings. 
65 
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n n 

Ç = / j Ifi Ly Xß Xp — / J Jftp Xp Xp . 
/ X i V = l fi,V=l 

Conversely each quadratic form gives rise to a space furnished with a scalar 
multiplication. Such spaces are called metrical spaces. I t is trivial to remark 
that we have to make the assumption | tMt„ | ?£ 0. 

The second group SR which we have to consider consists of all similarity 
transformations of R: 

a —» T/OL, 

2(aiai + a2a2) = aiZon + a22a2 , 2a-20 = n(2)aß. 

n(2) will be called the norm of 2. We have 

n(2T) = n(X)n(T). 

A pair of groups with the connecting equation 2 (a + ß) = 2a + 2/3 has been 
called a group-pair by A. Kurosh. 

The elements P of SR with n(P) = 1 form the orthogonal group. If, in this 
address, we shall exclusively deal with the group-pair {R, SR}, we hope not to 
be accused of having made false promises. 

Arithmetic enters in connection with the following notion: a modul 3f of 
vectors with respect to the order o of all integers of k is called a lattice if 3 con
tains n linearly independent vectors and if 3 can be generated by a finite num
ber of its elements. A basis with respect to o does not always exist; this is in 
general the case only if the class number of ideals in k is one. 

The norm of $ is defined as follows. Let i range over 3 , and fj = l.c.d. (t2/2). 
Then 

( ) _ g . c . d . ( b t y 2 ) _ q 
n W J l.c.d.(tV2) b ' ^ 

n(3) is an ideal in k. I t is the first task to investigate the local properties of 
lattices. Let p be a prime ideal in k and kp, op, 3P the p-adic extensions of fc, 
0, 3 respectively. 3 P possesses a basis [i„] with respect to Op. The ideals 

b,(3) = n®,) bfâ) = n b„(3D 
» 

are called discriminant ideals of 3 P and $ respectively. They are integral ideals. 
The discriminant ideals and the elementary divisors of the discriminant mat
rices (wOp) - 1 ^ ) a r e invariants of a lattice. Lattices for which these invariants 
coincide form an order of lattices. These brief remarks on the purely additive 
arithmetic of {R, SR] may suffice. 

In the next step the multiplicative arithmetic is developed. Let two lattices 
3 and $ of the same order be given. The set of all 2 £ SR with 

2$ e g 
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is called an ideal and denoted by 3 / $ . Ideals have the following properties: 
(1) 3 / 3 is a semigroup. 
(2) 3f/$'i?/8 = 3 / 8 ; in consequence the ideals form a groupoid with the 

units 3 / 3 . 
(3) If 2 is an arbitrary element of SR , then 

(23)/3 = 2(3/3); 3/23 = (3/3)2^; 

such ideals are called principal ideals. If k is replaced by its p-adic extension 
for any prime ideal p, all ideals become principal ideals. 

A norm of ideals can be defined on the basis of the norm of similarity trans
formations. I t is always 

n(3/Ä) = n($)/n($t). 

The theory of factorization of ideals may be passed by. 
The lattices of an order belong to a finite number of classes, represented by, 

say, 3 i , • • • > 3/1 ) where each lattice of this order is of the form 3 = P3* > P in 
SR . The classes of lattices lead to a definition of classes of ideals in an obvious 
manner. 

From this point we make the restricting assumption that k is the field of 
rational numbers and the quadratic form defining the metric of R is positive 
definite. This assumption is not always necessaiy, but it allows us to simplify 
definitions and results even where the restriction is avoidable. In consequence 
of this assumption there exists for every lattice 3 only a finite number of units 
which are defined as the elements 2 of SR with the property 2 3 = 3-

Let now a be an integer in k and nk(a) the number of ideals of the form 
B3*/3/t > P3* c 3* > with norm a; this number is finite. The A-rowed matrices 

P(a) = (T*(a)) 

are of great importance for the further theory. An elementary consequence of 
the factorization theory is 

P(a)P(b) = P(ab) (for (a, b) = 1). 

The matrices P(a) can be generalized under the restricting assumption just 
made. Let Z2(r) be the space of all tensors of rank r and M(r)(2) the representa
tion of SR in Rir\ Instead of the numbers ink(a) we now form the sums 

U$(a) - E ^ ( r ) ( P ) for P3f< C 3 a , n(P3f</3*) = a, 
p 

which are matrices of a certain number t{r) of rows. Now the h-t(r)-rowed 
matrices 

P%) = (tfS'(a)) 
are introduced. Again 

Pw(e»)Pw(6) = Pir)(ab) (for (a, b) =1) 
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holds. The P{r)(a) with an odd r are identically 0 and possibly some of them 
for an even r but not all as we shall see soon. 

The meaning of the P(a) = P{0)(a), P(r)(a) is that they lead to a connection 
between the additive and the multiplicative properties of the group-pair {R, 
SR } . Up to this point the arithmetics of vectors and of similarity transforma
tions have been dealt with separately. No use has yet been made of the multi
plication 2a between elements of SR and R. If a, ß are vectors in a lattice 3 
and 2 Ç 3 / 3 such that 

ß = 2a, 

we shall say: ß is divisible by 2. A theory of divisibility of vectors by similarity 
transformations and, more generally, by ideals is easily established. This is the 
point where we meet characteristic differences between the arithmetics of 
algebras and group-pairs. In a quadratic number field, for example, there exists 
not more than one ideal of given norm which divides a given "primitive" num
ber (i. e., a number which is not divisible by a rational integer); but there exists 
in general a large number of ideals in SB which divide a given "primitive" 
vector. 

Considerations on divisibility of vectors by ideals lead eventually to the 
following result: let òi(a) be the number of vectors a in 3 i with the property 

(1) . iÄ)" 2 = = a 

and introduce a vector b(a) (matrix with 1 column); let furthermore p(a) be 
the number of all ideals of the form 3 / $ , 3 c $> with a fixed $ and arbitrary 
3 and of "norm a (p(a) is finite and depends only on the order of 3 and $) ; then 

(2) p(a)~1P(a)b(b) = p&T'PfrMa) = b(ab) (for (a, b) = 1). 

Similar though less simple equations hold if (a, b) > 1. Analogously, vectors 
b(r)(a) of h-t(r) components can be defined such that 

(3) p(a)-1P(r)(a)bir)(b) = p(6)-1P(r)(&)b(r)(a) = b(r)(ab) (for (a, b) = 1). 

These equations have wide consequences. The vectors b(r)(a) (including 
b(a) = b(0)(a)) span certain vector spaces £(r), the dimensions m(r) of which 
need not coincide with the numbers A-£(r) of components of these vectors. To 
the matrices p(a)~lP{r)(a), therefore, correspond m{r)-rowed matrices Z(r)(a) 
which operate in 3 ( p )- The elements of the Z(r)(a) are linear functions of the 
components of the b(r)(a). Furthermore, instead of (2) and (3) the formula 

(4) Zir)(a)Zir)(b) = Z{r)(ab) (for (a, b) = 1) 

holds, and generalizations in the case (a, b) > 1. Conversely, the b(r)(a) are 
uniquely determined by the Z{r)(a), and all vectors with property (1) are 
uniquely determined by the b(r)(a) for all r. Equation (4) allows us to find all 
vectors a of composite a if all vectors with a = p = prime are known. The 
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procedure consists of five steps: (1) calculation of b(r)(p); (2) calculation of 
Z{r)(p); (3) application of (4); (4) calculation of b(r)(a); (5) calculation of all a 
with property (1). I t is interesting to compare this result with a similar fact for 
an algebraic number field K with class number one, for example. In order to 
find all integers a in K with composite norm a, one has to find all integers with 
prime norm and to multiply them. If {a(a)\ is the set of all integers in K with 
norm a, then 

(4') {«(a)} •{«(&)} = \a(ab)\ (for (a, b) = 1). 

A restricting remark is necessary: according to our procedure, (4) has a 
meaning only for such vectors a for which numbers a in (1) are norms of ideals; 
not all a have this property. 

The matrices Z(a) are closely connected with those of Hecke's theory. The 
f-functions of the classes 3i are 

U s ) = < § , - ( ä ) " ) - £ * < " » > » • • 

The Z(m) are linear functions of the 8i(m) : 
h 

Z(m) = Y*Zi-oi(m). 
i - i 

We now introduce the infinite series of m{Q)-rowed matrices: 

f (s) = E ZiU(s) = E Z(m)m~s. 
i=l m=l 

This function can be split up into an Euler product: 

Us) = IlfpW, 
p 

the factors of which are of a certain quality; Hecke has called this product a 
canonical Euler product. In the case of an order of lattices of discriminant 1 
each number in k is the norm of an ideal, and our Euler product is exactly the 
same as in Hecke's theory. If the discrimininant is greater than 1, Hecke takes 
into account general lattices of more than one order. His Euler factors f%(s) 
-split up into matrices of smaller degrees : 

'ri« I I 
(#<•)) = ?M 

corresponding to the different orders which enter into his theory and, possibly, 
to such modular forms which cannot be represented by ^-functions. However, 
this is true only in the case when p does not divide the discriminant and when 
ideals of norm p exist. For primes dividing the discriminant the theory becomes 
complicated: we have to distinguish between different kinds of representations 
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by a quadratic form of a number which is not prime to the discriminant. More
over, we have to remember that statements have been made only for those 
numbers which are norms of ideals. In this regard Hecke's theory is more 
complete. On the other hand, our theory has the advantage of yielding results 
on orders of quadratic forms immediately without the necessity of translating 
theorems on modular forms into the language of #-functions. 

Let us close with mentioning an open problem: When we wish fco apply 
Hecke's theory to quadratic forms, we are confronted with the task of repre
senting all ^-functions of a certain kind by a set of linearly independent mod
ular forms, which includes the task of finding all linear relations among the 
#-functions. The same problem arises when we try to eliminate analytical 
methods from the theory of representations of numbers by quadratic forms. I t 
seems desirable to have a purely arithmetical theory of formal ^-series. This 
would establish a bridge between two fields of specific algebraic interest: the 
arithmetic of quadratic forms and the arithmetical theory of algebraic functions 
which are given by the elliptic modular functions. Although the problem of 
finding all linear equations among ^-functions is far from its solution, I am 
glad to report that at least some of them have been found by a more detailed 
study of the matrices Z(a), and there remains the hope that the whole prob
lem may be solved within our time. 

UNIVERSITY OF MüNSTER, 

MüNSTER, GERMANY. 



GÉNÉRALISATIONS NON-ABÉLIENNES DE LA THÉORIE LOCALE 
DES CORPS DES CLASSES1 

MARC KRASNER 

On sait que la théorie des corps des classes fournit une description de l'en-
semble des extensions abéliennes K d'un corps k de nombres p-adiques (théorie 
locale) ou algébriques (théorie globale), en leur attachant, dans le cas local, le 
groupe des normes NK/UM de K à k des éléments non-nuls a de K, et, dans le 
cas global, un groupe multiplicatif assez analogue d'idéaux de k, le groupe de 
Takagi de K/k. La position de ces groupes dans le groupe multiplicatif k* de k 
(cas local) ou dans celui des idéaux de k (cas global) permet de déterminer à 
priori, pour l'extension correspondante K/k, ses propriétés algébriques (son 
groupe de Galois Gm/h) et arithmétiques (nombres de ramification vg et ordres 
vq des groupes de décomposition, d'inertie et des groupes de ramification suc
cessifs des diviseurs premiers 3̂ dans K de tout idéal premier p de k; et, en 
particulier, le degré/et l'ordre e de ces ^3). 

Cette caractérisation des extensions, telle quelle, ne peut guère être étendue 
au delà du cas abélien, car le groupe analogue pour une extension algébrique 
finie arbitraire K/k coincide avec celui de sa plus grande sous-extension abélienne 
K{a)/k. Mais, depuis le dernier Congrès, plusieurs tentatives (dont certaines par 
le conférencier) ont été faites pour généraliser certaines parties de la théorie 
des corps de classes, aussi bien locale que globale, aux extensions non-abéliennes 
(la théorie des fonctions L d'Artin, qui est une généralisation partielle de la 
théorie globale, est la seule tentative plus ancienne dans cette direction). Jusqu'à 
présent, elles ont réussi surtout dans le cas local. Le but de cette conférence est 
de donner l'idée des ces généralisations non-abéliennes de la théorie locale des 
corps de classes. 

A. THéORIE DE KRASNER 

La première ébauche de cette théorie, où je me borne aux extensions complète
ment ramifiées des corps p-adiques, se trouve dans mon travail Sur la primitivitê 
des corps ty-adiques, Mathematica (Cluj) (1937). En partant de l'idée que la 
norme NK/k(od d'un a £ K primitif n'est que le dernier coefficient du polynôme 
minimal fa/k(x) de a par rapport à k, j ' y considère l'ensemble EK/k des polynômes 
d'Eisenstein définissant une telle extension K/k, avec l'espoir de voir apparaître 
dans sa structure ce qui est effacé dans celle du groupe des normes de K/k, 
dès qu'on sort du cas abélien. Pour cela, j'introduis, dans l'ensemble Ek,n des 
polynômes d'Eisenstein de k de degré n, une notion convenable de congruence 
(mod pM) (où p est l'idéal premier de k, et où u est rationnel), ce qui revient à 
y définir une distance d(f, g) telle que d(f, h) S Max [d(f, g), d(g, h)] (si, dans 

1 Cette communication était mentionnée sur le programme imprimé sous le titre Essai 
d'une théorie nonabélienne des corps de classes. 
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un espace métrique, la distance satisfait à cette condition, il sera dit ultramétri-
que). Alors, on voit apparaître, dans la structure de EK/k , en tant que sous-
espace de Ekt% , un conducteur f K/k , analogue à celui du cas abélien et se calculant 
par les mêmes formules à partir des vq et vq . L'expression de | fK/k | fournissait 
la réponse à la question: de combien près doivent ê t re / , g G Ek,n pour définir 
sûrement une même extension? D'autres résultats ont été également obtenus 
sur la structure de EK/k , qui donnaient un critère de normalité de K/k et per
mettaient de calculer le nombre des surcorps K de k (contenus dans sa clôture 
algébrique $) de degré n = (K:k) donné. 

Ce n'est que plus tard que j 'ai vu la véritable raison de ces résultats. U sfc 
trouve que la question, "de combien près doivent être f(x) et g(x) pour définir 
une même extension?" se décompose en deux questions: de combien près doivent 
être les zéros le plus proches a, ß des / , g dans $ pour définir un même surcorps 
de fc? Comment la distance des /, g depend de celle des a, ß? La réponse à la 
première question est fournie par le principe suivant. 

PRINCIPE FONDAMENTAL, k étant un corps value2 complet, et S étant sa clôture 
algébrique valuée, si a Ç $ est separable par rapport à k, et si Ca est le plus grand 
cercle de centre a dansfâ ne contenant aucun conjugué a' ^ ade a par rapport à kf 

ß £ Ca entraîne k(ß) 3 k(a). En particulier, (k(ß):k) ^ (k(a):k) et (k(ß):k) = 
(k(a):k) entraîne k(ß) = k(a). 

DéMONSTRATION. Tout conjugué de a — ß par rapport à k(ß) est de la forme 
a' — ß, où a' est un conjugué de a par rapport à k. Mais, si a! ^ a, on a | ß — 
a | < | a — a' | , d'où, puisque | a — a' | ^ Max ( | a — ß \ , \ a! — ß \ ) , on a 
| a — ß | < | a' — ß | . Or, k étant complet, k(ß) l'est aussi, et les conjugués 
par rapport à k(ß) ont une même valuation (Ostrowski). Donc, a. — jö et, par 
suite, a n'ont pas d'autres conjugués par rapport à k(ß) qu'eux-mêmes, a étant 
separable, on a a £ k(ß). C.q.f.d. 

Sauf si le corps de restes r de & est, en un certain sens, "trop proche" de sa 
clôture algébrique 9? (et il ne l'est sûrement pas si k est localement compact, 
et, à fortiori, s'il est p-adique), le réciproque de ce principe, Ca est le plus grand 
cercle C de centre a tel que ß Ç C'entraîne k(ß) 3 k(a), est aussi exact. Sinon, il 
suffit de modifier légèrement le principe fondamental pour qu'il admette un 
réciproque. Je me borne au cas, où le réciproque précédent a lieu. 

Soit F(x) = 2^i^° aix% une série de Taylor (pouvant être un polynôme) à 
coefficients dans un surcorps K £ $ de k et soit TLF son polygone de Newton 
dans un plan OÇu . Si v est tel qu'il existe une droite Lv de pente — v, qui touche 
n*., l'ordonnée de l'intersection de Lv avec Ov sera notée <pF(v). On montre que 
les pentes et les longueurs de projections des cotés de H*, sur O? donnent, exac
tement comme dans le cas de polynômes, les valuations des zéros de F(x) dans 
$t et leur nombre; d'où, si O — a0 = ai = • • • = a,_i 9e ai, on a — ̂ ( — Log r) = 

2 Les mots "corps value" sont employés ici avec le sens "corps value ultramétrique," 
autrement dit, on suppose que | a + b | ^ Max (| a | , \b \) 
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•i Log r + 2* ' Log (r/\ Zi\ ) , où Zi parcourt les zéros de F(x) dans $ tels que 
| Zi | < r. Si a est un élément primitif de K/k, posons F(x) = /«/*(# + a) (donc 

•ai = (dfctik(% + <x)/dx)Xt=o = (dfa/k(x)/dx)x=sa, et l'idéal (ai) est la différente 
b«/*, de a//c). Désignons, dans ce cas, UF et (pF(v) aussi par na/fc et (pa/k(v)-
iSi na/Ä est la ligne brisée P0

ia)Pia) • • • PÌ°?(+°°), soient — Vga) la pente de 
Pq

a) Pg$ et vq
a) l'abcisse de P<a) (donc v[°* = n = (7f:/c) et ^ = 1). bm 

étant le p.g.c.d. des b«//0, où a parcourt les entiers de K (il est dit la différente 
arithmétique de K/k), quand | b«/*- | , où a est entier, tend vers | bK/k | , H-a/h 
•et (pa/k(v) tendent vers un polygone UK/k (dit polygone de ramification de 
K/k) et une fonction (PK/k(v). Si UK/k = PoPi • • • Pm(+°°), et si — vq et vQ 

•sont la pente de PqPQ+i et l'abcisse de P g , les vq sont les valeurs limites (et 
les seules) des vq

a\ pour les a précédents. Elles sont toutes atteintes si et seule
ment s'il existe des éléments discriminantiels de K/k, c'est-à-dire, des a Ç K en
tiers tels que ba/k = bK/k • 

Une théorie de fonctions analytiques dans les corps values complets que 
j'ai construite montre que si F(x) converge pour un ß £ $ qui n'est à la distance 
<\ß\ d'aucun zéro de F(x), on a - Log | F(ß) | = co(F(ß)) = (pF(o)(ß)) = 

-(PF(— Log I ß I ) (ce résultat est, visiblement, un raffinement de l'analogue du 
théorème de croissance de fonctions entières de Hadamard). En particuliers, 
si d est la valuation du plus petit zéro non nul de F(x) et si, en plus, \ ß \ S d, on a 
| F(ß) | = | F'(0) | | j8 | = | a i | | j 8 | . a étant un nombre positif, et R(f, g) désig
nant le résultant des f(x), g(x), organisons l'ensemble Sk des polynômes normes 
irréductibles en x à coefficients dans k en un espace métrique (qui se trouve 
être ultramétrique) Ska) à l'aide de la distance 

da(f, g) = | RU, o) Iaim' = I M I o : " = I g («) I "'•", 

•où n, u sont les degrés des /, g, et où a, ß sont des zéros quelconques des / , g. 
On note S*.,» le sous-espace de Skn\ formé de ses polynômes de degré n. S i / Ç Sk,n 
et si g G Sk, on a dn(f, g) = | f(ß) | (si, en plus, g G Sfc|„ , on a aussi dn(f, g) = 
| g (a) | ) . Par suite, l'application 

(T) 0->/»»(*) 

de $ sur /S* applique le cercle C: | ß — a\ ^ (ou < ) Exp ( — v), de centre a 
dansai mr le cercle C:dn(g(x),fa/k(x)) ^ (ou < ) E x p ( — <pa/M) de cen t r e /« / ^ ) 
dans £fcW). Mais l'image inverse de ce dernier cercle est constitué par la réunion 
des cercles | ß — a' | g (ou < ) Exp ( — v) de centres a', où af parcourt tous les 
conjugués de a par rapport à k. En particulier, si p = Exp ( — v) < Exp ( — vi?aLi), 
C = T1- C est un cercle de même espèce (c'est-à-dire, circonférencié ou non) que 
C et de rayon p = | b«/*, | p, et l'image inverse T~l-C de cercle C est constitué 
(puisque la distance de conjugués de a est ^ Exp (—vln

a
aLi)) par la réunion 

de n cercles disjoints de même espèce et de rayon p | ba/k \ _1. 
Soient ©je/*, l'ensemble des / G & qui définissent des surextensions de K/k, 

<&Ktk celui des / G ©*/* à coefficients entiers, SK/k = ©*/*• H Sfc,n , [où n = 
(/£"'./<;)] celui des /G & à coefficients entiers, qui définissent i£//c, A /̂fc celui des 
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/ G S K/k tels que I b/ j = I (df(x)/dx)x=a\ è | bm |(1 - e), où € > 0 et / (a) = 0. 
Chacun de ces ensembles, ainsi que, quand existent des a £ K discriminantiels, 
celui SK/\ de leurs/a/fc(z), caractérisent K/k, et on a K/k Ç= K!/k si et seulement 
SÌ <&K/k 3 ©K'M . 

Une subdivision P d'un espace ultramétrique 2? en cercles d'un même rayon 
(noté | P | ) et d'une même espèce est dit un diviseur de E de valuation | P \ 
et de l'espèce considérée. J'appelle conducteur de K/k le diviseur le plus fin 
fjsr/fc de Skn) tel que, pour tout / G SK/k , il existe un g G & tel que g = /(f*/*) 
et que g (jj ©£/& , et j'appelle conducteur de K/k en a le diviseur le plus fin f£?ì 
de Skn), satisfaisant à la même condition p o u r / = fa/k seulement. Comme, en 
vertu du principe fondamental et de son réciproque, le cercle circonférencié de 
rayon Exp (—vi^Li) est le plus petit cercle de centre a contenant des ß G $ 
tels que k(ß) $ k(a), son image par T, qui est le cercle dn(g(x),fa/k(x)) â Exp 
(—<pa/k(vl?J-i)) est une classe (mod fi7i); donc, fél est aussi circonférencié et 
| fi?* | = Exp (-<{>«/k(viaJ-i)). Comme \ m est le p.g.c.d. des fx^, pour les a en
tiers, on a | fir/fc | = Exp (—<pK/k(vm-i)) et f*/* est circonférencié si et seulement 
s'il existe des a £ K discriminantiels. Si n > 0, il existe un e > 0 tel que SK% 
soit une réunion de cercles de Sk,n de rayon | ^K/k |(1 — rç). 

D'autres valeurs critiques apparaissent également dans la structure de ®K/k 
autour d'un /«/fc G SK/k (ce sont les (pa/k(vq

a))) et autour de SK/k (ce sont les 
<PK/k(vq)). Si K/k est galoisienne, elles apparaissent déjà dans celle de SK/k • 

Si k est localement compact, fi&V* est une réunion finie de cercles de rayon 
| fjr/fc |(1 — t?) et un calcul fini permet de décider si une réunion finie de tels 
cercles est un SK% ou non. K/k étant, en plus, complètement ramifiée, et p 
étant | ^K/k | , l'ensemble EK/k des polynômes d'Eisenstein définissant K/k 
(qui est ^S^ik) est une réunion d'un nombre fini c = c(p; K/k) de cercles de 
rayon p dans Sk,n . T~l-EKik est, comme on a vu, la réunion de ne cercles dis
joints de rayon p | bKik \ ~l dans le sous-espace $Cw) de S, formé des a Ç S d e 
degré n par rapport à k. K' étant un corps conjugué de K/k et (<$') étant 
l'ensemble de ses éléments d'ordre 1 par rapport à l'idéal premier $ ' de K' 
(donc, ($ ' ) est le complémentaire de $'2 dans $')> 1G même ensemble est, 
d'autre part, la réunion de ces ($ ' ) pour tous les corps conjugués Kr C $ 
de K/k. Pour tous ces ($ ' ) , le nombre des cercles de rayon p | bK/k \ ~ \ qui 
les composent, est, évidemment, le même; il ne dépend que des k, p | bK/k \ _ 1 , 
et n, et peut s'écrire v(k, p \ bK/k \ ~~\ n); et on a ne = v(k, p | bK/k \ "~\ n) lK/k, 
où lK/k est le nombre des corps conjugués distincts de K/k dans S. Donc, K/k 
est galoisienne si et seulement si c = n - 1 v(k, p \ bK/k \ ~\ n) ; et, si E est une 
réunion des EK/k, formés de polynômes d'un même degré n et d'une même 
différente b, le nombre des surcorps K C S de k tels que EK/k — E est le quo
tient du nombre de cercles de rayon p composant E par n~l v(k, p \ b \ ~1, n). 
Les nombres p.(k, p, n, b) et p,(p, U) de tous les cercles de rayon p, composés de 
polynômes d'Eisenstein / de degré n et de différente b respectivement de poly
gone de ramification ïla/k = H (où /(a) = 0) donnés, est facilement calcu
lable, ce qui m'a permis de calculer explicitement les nombres Nk,n,^ et Nk.n des 



THÉORIE NON-ABÉLIENNE DES CORPS DES CLASSES 75 

surcorps complètement ramifiés K C $£ de k de degré n et de différente b res
pectivement de polygone de ramification n donnés. Dans le cas p-adique, par 
sommations convenables, j 'ai calculé le nombre %Crn de tels corps qui sont de 
degré n par rapport à k. Les extensions primitives et les extensions metaga-
loisiennes (c'est-à-dire, obtenus par une succession d'extensions galoisiennes) 
des corps values complets pouvant (comme je l'ai montré) se caractériser par 
leurs propriétés arithmétiques, j 'ai pu, également, calculer le nombre de tels 
surcorps K C $ de k de degré et de différente donnés (et, dans le cas p-adique, 
de degré donné). 

k et kf étant deux corps values, e t Q , D ' étant leurs idéaux d'une même valua
tion a = | O | = | O ' | et d'une même espèce, une application biunivoque de 
l'ensemble des classes de congruence multiplicative (modx O ' ) dans kf sur l'en
semble des celles de congruence (modx O) dans k est dite un isomorphisme rési
duel de norme a de k' sur k si elle conserve l'addition (non-univoque) et la multi
plication de ces classes, ainsi que la valuation de leurs éléments. Un corps value 
complet k sera dit la limite d'une suite de corps values k\, fe , • • • , km , • • • , 
si, pour tout m, sont donnés des isomorphismes résiduels XTO de km sur k de 
normes am > 0 tels que lim am = 0. On définit, d'une manière évidente, la 
convergence d'une suite d'éléments am G km ou de polynômes fm(x) à coefficients 
dans km vers un a G & ou vers un polynôme f(x) à coeffiicients dans k. Si les km 

sont également complets, soient K/k une extension separable, f(x) un polynôme 
qui la définit et fm(x) —» f(x) (fm(x) G km[x\). Alors, le principe fondamental 
permet de montrer qu'à partir d'un certain rang, fm(x) est irréductible, l'ex
tension Km/km qu'il définit ne dépend pas des choix des / , fm et est galoisienne 
en même temps que K/k et, dans ce dernier cas, on a GKmikm = GK/k , cet iso
morphisme s'établissant d'une manière canonique et avec conservation d'objets 
de la théorie de la ramification de Hilbert. On a, ainsi, une théorie d'approxi
mation des corps values complets par des suites de tels corps, et il est possible 
de prouver que tout corps value complet de caractéristique p 9e 0 peut s'ap-
proximer, au sens précédent, par des suites convenables de tels corps de carac
téristique 0 (et, en particulier, les corps des séries de puissances sur un champ 
de Galois par des suites convenables de corps p-adiques). 

B. THéORIE DE SHAFAREVITCH 

Cette théorie (Sur les p-extensions, Ree. Math. (Mat. Sbornik) N. S. (1947)) 
détermine, pour un corps p-adique k, ne contenant aucune racine p-ième pri
mitive de l'unité (toutefois, cette détermination devrait pouvoir se faire par 
des méthodes voisines sans cette restriction), un groupe-facteur essentiel du 
groupe de Galois de $/7c; à savoir, si $$p/k est le composé de toutes les exten
sions galoisiennes K/k de degré puissance de p, la théorie détermine le groupe 
de Galois (avec sa topologie de Krull) G^pik de Sp//c. 

G étant un groupe, soit G' son sous-groupe engendré par les puissances p-
ièmes et par les commutateurs de ses éléments, et soit G(l) = (G0"15)'- Si les 
indices (G0"1*: C?(,)) sont tous finis, la topologie uniforme de G, définie par les 
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G(t), est la même à gauche et à droite, et sera dite sa p4opologie. Soit Wo le degrë 
de k par rapport au corps p-adique rationnel. Alors, G®p/k est isorhorphe, en 
tant que groupe topologique, au complété, par rapport à sa p-topologie, du groupe 
libre I/7KJ+1 à n0 + 1 générateurs. 

Idée de démonstration: Soient ¥ le composé deh extensions de degré p de k 
dans Ä, et k(i) = (*(*"f ) ;. Si G = G*v*, on a G(i) = G*y*«) et fliG

(i) = 1. 
Gä(»)/A(*-I) = G^'^/G^ est, en vertu de la théorie locale des corps de classes 
et de la structure du groupe multiplicatif fc(t_1)* de k{lf~l) (Hensel), un groupe 
de type (p, p, • • • , p) de rang n^k^ik) + 1 = nQ(G: G{i~1}) + 1. Ainsi, G/G' 
est de rang n0 + 1 et il existe un système de n0 + 1 générateurs de G (mod G'). 
Comme (G/G{%))' = G'/G{l) et G/G(l) est un p-groupe, le groupe L que ce sys
tème engendre est dense dans G, et sa topologie induite est définie par les L fì 
G(î). Or, L peut s'identifier avec le quotient de L = Lno+i par un sous-groupe 
invariant convenable, et alors, avec les identifications habituelles, on a L fi 
G(i) 3 L{i) 3 L( i ). Puisque on a (S: L fl G(0)_= (G: G(i)_), si l'on prouve, pour 
tout i, l'égalité (G: G(0) = (L: L ( i )), on aura L = L et L(i) = Z, fl G(i), ce qui 
prouverait le théorème. Or, en vertu d'un théorème de Schreier, L(*-1) est un 
groupe libre de [(nQ + 1) - 1] (L: L( '_1)) + 1 = n0(L : Lii~1))+ 1 générateurs, 
et L(l_1)yi/(l,) est un groupe de type (p, • • • , p) de ce rang. Si l'on suppose 
(G: G(*-1}) = (L: L{i~l)), on a G{i~l)/G{i) c* L™/Lw, d'où ( G ^ : GCi)) = 
( L ( î - D : L « ) e t ( G : ö ( * ) ) = (L :L ( 0 ) . 

<7 étant un p-groupe, ce résultat permet de calculer le nombre des extensions 
galoisiennes K C $ de k de groupe donné g (qui est > 0 si et seulement si le 
rang de g est ^ n 0 + 1), ainsi que celui des extensions K C $ de k de degré 
n donné, dont le degré n = (if : &) et l'ordre du groupe de Galois sont des puis
sances de p. Or, ce nombre est celui des extensions métagaloisiennes K C $ 
de k d'un tel degré. Il se calcule aussi par ma théorie. 

NATIONAL CENTER OF SCIENTIFIC RESEARCH, 
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ALGEBRAIC GEOMETRY 

THE FUNDAMENTAL IDEAS OF ABSTRACT ALGEBRAIC 
GEOMETRY 

OSCAR ZARISKI 

1. Introductory remarks. The past 25 years have witnessed a remarkable 
change in the field of algebraic geometry, a change due to the impact of the 
ideas and methods of modern algebra. What has happened is that this old and 
venerable sector of pure geometry underwent (and is still undergoing) a process 
of arithmetization. This new trend has caused consternation in some quarters. 
It was criticized either as a desertion of geometry or as a subordination of dis
covery to rigor. I submit that this criticism is unjustified and arises from some 
misunderstanding of the object of modern algebraic geometry. This object is not 
to banish geometry or geometric intuition, but to equip the geometer with the 
sharpest possible tools and effective controls. It is true that the lack of rigor in 
algebraic geometry has created a state of affairs that could not be tolerated 
indefinitely. Effective controls over the free flight of geometric imagination were 
badly needed, and a complete overhauling and arithmetization of the founda
tions of algebraic geometry was the only possible solution. This preliminary 
foundational task of modern algebraic geometry can now be regarded as accom
plished in all its essentials. 

But there was, and still is, something else and more important to be accom
plished. It is a fact that the synthetic geometric methods of classical algebraic 
geometry, operating from a narrow and meager algebraic basis and faced by the 
extreme complexity of the problems of the theory of higher varieties, were 
gradually losing their power and in the end became victims to the law of diminish
ing returns, as witnessed by the relative standstill to which algebraic geometry 
came in the beginning of this century. I am speaking now not of the foundations 
but of the superstructure which rests on these foundations. It is here that there 
was a distinct need of sharper and more powerful tools. Modern algebra, with 
its precise formalism and abstract concepts, provided these tools. 

An arithmetic approach to the geometric theories which we were fortunate 
to inherit from the Italian school could not be undertaken without a simultane
ous process of generalization; for an arithmetic theory of algebraic varieties can
not but be a theory over arbitrary ground fields, and not merely over the field 
of complex numbers. For this reason, the modern developments in algebraic 
geometry are characterized by great generality. They mark the transition from 
classical algebraic geometry, rooted in the complex domain, to what we may now 
properly designate as abstract algebraic geometry, where the emphasis is on abstract 
ground fields. 

2. Revision of the concept of a variety. My object is to present some of the 
fundamental ideas of abstract algebraic geometry. I must begin with the very 
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concept of a variety, since the arithmetic point of view led to a subtle revision 
of this concept and revealed some of its aspects that were not visible in the 
classical case. What I want to discuss in this connection concerns the following 
two topics: (1) the set-theoretic modifications in our conception of a variety as 
a set of points, modifications which were made methodologically necessary by 
the introduction of the well-known notion of a general point of an irreducible 
variety, due to Emmy Noether and van der Waerden; (2) the distinction between 
absolute and relative properties of a variety, a distinction which was made possible 
only by the.admission of arbitrary ground fields. 
. If we wish to arrange matters so that the'general' point of an irreducible 
variety-be~ an actual point of the variety, we must allow point coordinates whicli 
are elements of some transcendental extension of the ground field. Furthermore, 
in the theory of algebraic correspondences it is essential to operate simultane
ously with any finite number of independent general points of one and the same 
variety. I t follows that we must have a reservoir of infinitely many trans
cendental for the point coordinates in our geometry. For these reasons, it was 
found convenient, following Busemann and André Weil, to fix once and for 
always a universal coordinate domain-, this is to be an algebraically closed field 
having infinite transcendence degree over the particular ground field k in which 
we happen to be interested. Once this universal domain has been fixed, only 
such ground fields will be allowable which are subfields of the universal domain 
and over which the universal domain has infinite transcendence degree. We 
deal then with projective spaces over the universal domain, and all our varieties 
will be immersed in these spaces. 

This being so, if k is any allowable ground field and if a variety V admits a 
system of defining equations with coefficients in k, then k is said to be a field of 
definition of V. Naturally, any variety V has infinitely many fields of definition. 
A property of V is relative or absolute according as it does or does not depend on 
the choice of the field of definition of V. For example, irreducibility of a variety 
is a relative property. But we also have the so-called absolutely irreducible 
varieties which are irreducible over each one of their fields of definition. The 
concept of the general point (x) of an irreducible variety V/k is a relative con
cept. On the other hand, the dimension of that irreducible variety V/k, i.e., the 
transcendence degree of the function field A;(re) of V/k, is an absolute concepts 

A necessary and sufficient condition that a variety V be absolutely irreducible 
is that it be irreducible over some algebraically closed field of definition. An 
equivalent condition is the following: an irreducible variety V/k is absolutely 
irreducible if the ground field k is quasi-maximally algebraic in the function 
field k(x) of V/k, i.e., if every element of k(x) which is separably algebraic over 
k belongs to k. In theory, it would be sufficient to restrict the study of varieties 
to absolutely irreducible varieties, since any variety has a unique representa
tion as a sum of absolutely irreducible varieties. However, in practice, and 
especially in the foundations, such a restriction introduces unnecessary com
plications. 
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It may be advisable to give a special name to those varieties which admit 
every (allowable) ground field as field of definition. Obviously, these are the 
varieties which are defined over the prime field of the given characteristic p. I 
propose to call them universal varieties. The projective space and the Grass-
mannian varieties are examples of universal varieties. Another important class 
of universal varieties is obtained by considering the set of all algebraic varieties, 
of a given order and dimension, in the w-dimensional universal projective space 
and introducing in that set an algebro-geometric structure based on the Chow 
coordinates of a cycle. The study of these varieties (of which the Grassmannian 
varieties are special cases) is closely connected with the outstanding problem of 
developing a theory of algebraic equivalence of cycles on a given variety, and 
will no doubt be a fundamental object of future research. 

The definition of a variety as a set of points having coordinates in the uni
versal domain has some startling, and perhaps unpleasant, set-theoretic im
plications. We have populated our varieties with points having coordinates 
which are transcendental over k. Thus, if x and y are independent variables 
the pair (x, y) is a legitimate point of the plane; and—what is worse—if a/and 
yf are other independent variables, then (xf, y') is another point of the plane, 
quite distinct from the point (x, y). This is shocking, especially if we recall that 
our universal domain has infinite transcendence degree and that consequently 
we have created infinitely many replica of that ghostlike point (x, y). However, 
we are dealing here with a methodological fiction which is extremely useful in 
proving very real theorems. For instance, the entire theory of specializations is 
based on this set-theoretic conception of a variety, and the entire elementary 
theory of algebraic correspondences can be developed on that basis in the most 
effortless and simple fashion. Furthermore, most results concerning irreducible 
subvarieties of a given variety can be best expressed and derived as results 
concerning the general points of these subvarieties. 

Nevertheless fiction remains fiction even if it is useful, and I feel that perhaps 
our varieties have altogether too many points to be good geometric objects. 
As the theory progresses beyond its foundational stage, some cuts and reduc
tions may become necessary. Thus, one may begin first of all by eliminating 
isomorphic replica of points, by identifying points which are isomorphic over 
the given ground field k. Or one may restrict the coordinate domain to the 
algebraic closure of k. Or one may do both of these things at the same time. I 
have no strong convictions on these issues, and I am quite content in leaving 
their settlement to the future development of the theory of algebraic varieties. 
But to round up this discussion, let me indicate briefly some topological aspects 
of these issues. 

Given a variety V and given any field k (not necessarily a field of definition 
of V), there is a natural topology on V, relative to k: it is the topology in which 
the closed sets arc intersections of V with varieties which are defined over A. 
In particular, if V itself is defined over k, then the closed sets on V are the 
subvarieties of V which are also defined over k, and in terms of this topology 
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general points and specialization of points are easily defined. Thus, a general 
point of an irreducible variety V/k is a point whose closure is the entire variety 
V; a point Q is the specialization of a point P, over k, if Q belongs to the closure 
of P . I t is clear that in this topology even the weakest separation axioms are 
not valid. The only points of V which constitute closed sets are the points 
having coordinates which are pure inseparable over k. Hence V is not a Ti-
space. I t is not even a TVspace, for if P and Q are ^-isomorphic points, then 
each belongs to the closure of the other. However, if we identify ft-isomorphic 
points of V, we restore the separation axiom T0. If, moreover, we restrict the 
coordinate domain to the algebraic closure of the ground field k, then V becomes 
a Ti-space. 

An even more radical revision of the concept of a variety has been offered by 
André Weil. His so-called abstract varieties are not defined as subsets of the 
projective space, but are built out of pieces of ordinary varieties, pieces that 
must hang together in some well-defined fashion. I t is still an open question 
whether the varieties of Weil can be embedded in the projective space. 

In all that precedes I have used deliberately the term "general point" rather 
than that of "generic point". When the Italian geometers speak of a property 
enjoyed by the generic point of an irreducible variety, they mean a property 
that is enjoyed by all points of V, except perhaps those .which belong to some 
proper subvariety of V. It is clear that this is not equivalent to saying that the 
general point of V has that given property. There is equivalence if and only if 
we are dealing with a property of points that can be expressed by equations 
and inequalities (with coefficients in k) connecting the point coordinates. But 
not every algebro-geometric property is of this category. For instance, it is 
possible to define algebraically the notion of analytical irreducibility of a variety 
F at a point. Now if W is, say, an algebraic curve on V, V may be analytically 
reducible at the generic algebraic point of the curve and analytically irreducible 
at all the general points of the curve. From our point of view, according to 
which W consists of both algebraic and transcendental points, either one of the 
following statements is false: (1) F is analytically irreducible at the generic 
point of W; (2) V is analytically reducible at the generic point of W. In the 
complex domain this corresponds to the following state of affairs: at the generic 
(complex) point of the curve W the variety V decomposes into several analytical 
branches, but these branches are permuted transitively along closed paths 
traced on the Riemann surface of the curve W. This is a good example of the 
difference between the meanings of general and generic. 

I shall pass now, without delay, to more concrete topics dealing with the 
major developments in abstract algebraic geometry. Roughly speaking, these 
major developments come under the following headings: (1) theory of speciali
zations; (2) normal varieties; (3) analytical methods; (4) theory of valuations; 
(5) Abelian varieties. Time will not allow me to discuss the very general and 
elegant theory of Abelian varieties which we now possess and for which André 



ABSTRACT ALGEBRAIC GEOMETRY 81 

Weil is entirely responsible. Let me, then, first make a few remarks about the 
theory of specializations. 

3. The theory of specializations. Specialization arguments in abstract alge
braic geometry are the arithmetic substitute, or analogue, of continuity argu
ments of classical algebraic geometry, and have been largely developed by van 
der Waerden. The theory of specializations centers around one basic fact, con
cerning extensions of specializations: if an algebraic function / is defined at the 
general point of an irreducible variety V/k, then it is possible to extend the 
domain of the function / to the entire variety V, including therefore also those 
points of V at which the explicit expression of / is indeterminate. In this state
ment, the function / need not be a numerical function; the values of / may be 
points of another variety V, and when that is so, we are dealing with an alge
braic correspondence between V and V. I t is well-known that the theorem on 
extensions of specializations is equivalent to the existence of resultant systems 
in elimination theory. Without advocating the elimination of elimination theory, 
it may be pointed out that also the Hilbert Nüllstellensatz, in its homogeneous 
form, can be used as a foundation for the theory of specializations (and hence 
also of algebraic correspondences). In fact, the Nullstellensatz provides a key 
to the whole of the elementary theory of algebraic varieties, including such 
topics as the dimension theory, the principal ideal theorem (in its geometric 
formulation), the decomposition of a variety under ground field extensions, etc. 
In my forthcoming Colloquium book, this part of the theory of varieties is 
built entirely around the Hilbert Nullstellensatz. 

One of the most important applications of the theory of specializations was 
the development of the general intersection theory. This application is due to 
van der Waerden and André Weil, with the work of Severi serving as a geo
metric background for the general plan of this undertaking. At present, then, 
we have a complete intersection theory which is valid for any nonsingular 
variety over an arbitrary algebraically closed ground field. A parallel develop
ment is the intersection theory for algebraic manifolds due to Chevalley. 
Chevalley's theory is an outstanding example of the arithmetization of some of 
the concepts and methods of the theory of analytic functions which are "used in 
algebraic geometry. As far as the local analytical treatment is concerned, mod
ern algebra has provided us with the necessary tools. I refer to the theory of 
local rings and their completions, due to Krull and Chevalley and further en
riched by important contributions by I. S. Cohen and P. Samuel. 

The present intersection theories all have an absolute character, since they 
refer to an algebraically closed ground field. I t is still an open question whether 
there exists a consistent relative intersection theory, i.e., an intersection theory 
relative to a given ground field. The fact that there exists such a thing as the 
relative order of a variety seems to indicate the possible existence of a relative 
intersection theory. Another unsolved question is whether there exists a rea-
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sonable intersection theory on varieties which have singularities, for instance— 
and above all—on normal varieties. The example of algebraic cones shows that 
in the case of singular varieties one may have to use fractional intersection 
numbers and—more generally—fractional cycles. 

4. Normal varieties. I shall now discuss briefly the concept of a normal 
variety, especially from the standpoint of the theory of specializations. This 
concept, which is purely arithmetic in character, turned out to be a useful 
contribution even to classical algebraic geometry. 

An irreducible variety V/k is said to be normal at a point Q if the local ring 
of V at that point is integrally closed. The variety V is normal if it is locally 
normal at every point. Normality is a relative property. The normalization of a 
variety V consists in passing from F to a birationally equivalent variety V 
such that: (1) V is normal; (2) the birational transformation between V and 
V has no fundamental points on V, i.e., to every point of V there corresponds 
on V at most a finite number of points. By these two conditions the normal 
variety V is uniquely determined by V, to within a regular birational trans
formation (a birational transformation is regular if it is (1,1) without exceptions 
and if corresponding points have the same local ring). Normal varieties were 
originally introduced in connection with the problem of the resolution of singu
larities, for a normal variety of dimension r has the property that its singular 
locus is of dimension at most r — 2. This property of normal varieties is con
nected with the well-known fact that as far as the minimal prime ideals are 
concerned, the ideal theory of integrally closed Noetherian domains does not 
differ essentially from the classical ideal theory of Dedekind domains. At any 
rate, the process of normalization does have the effect of resolving all the singu
lar loci of V, of dimension r — 1. 

But there are other properties of normal varieties which are of particular 
interest for the theory of specializations, and hence also for the general theory 
of algebraic correspondences. Suppose that F is a normal variety and that T 
is a birational transformation of V into some other variety V. Then the fol
lowing theorem holds: if to a given point Q of V there corresponds on V more 
than one point, then (1) the point Q is fundamental for the birational transformation 
T, i.e., to Q there corresponds on V an infinite set of points, and (2) the set of 
points of V which correspond to Q is a variety, all irreducible components of which 
are of positive dimension. The really significant and nontrivial part of this theo
rem is the second part. I t is this that I have given in a Transactions paper as 
the "main theorem" on birational transformations and for which I gave a 
short and simple proof, based on valuation theory and the theory of local rings, 
in a recent note in Proc. Nat. Acad. Sci. U. S. A. In terms of specializations, 
the above "main theorem" signifies, roughly speaking, that, in the case of normal 
varieties, the presence of an isolated specialization implies the uniqueness of 
that specialization. As was pointed out by André Weil, this property of normal 
varieties leads at once to the proof of the uniqueness of the intersection mul-
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tiplicity of two varieties at a common isolated intersection. The uniqueness of 
intersection multiplicity is, on the other hand, the crucial point of the whole 
of intersection theory, and the fact that this point can be disposed of in such a 
casual manner by the use of a general theorem on normal varieties illustrates 
the usefulness of the concept of normality. The treatment of the intersection 
theory would be further simplified, in fact the whole theory would become 
almost trivial, if one could prove the normality of any complete algebraic sys
tem of cycles in the projective space, i.e., the normality of the Chow-van der 
Waerden representative variety of such a system. It would even be sufficient 
to prove that this variety is analytically irreducible everywhere, for in that case 
the normalization process would lead to another representative variety, whose 
points are still in (1,1) correspondence with the cycles of the system (without 
exceptions) but which is normal. 

Another important aspect of normal varieties has to do with the theory of 
complete linear systems. Any normal variety V has the following characteristic 
property : the hypersurfaces of a sufficiently high order n cut out on V a complete 
linear system \ nC \ , where C is any hyperplane section of V. This result, in 
conjunction with Hilbert's postulation formula and the existence of derived 
normal models, leads at once to an expression of the dimension of the complete 
system | nC | (n large), whether V is normal or not. In a joint paper of Muhly 
and myself, now in course of publication in Trans. Amer. Math. Soc, we define 
the virtual arithmetic genus p(V) as db the constant term in Hilbert's postu
lation formula of V. In the case of algebraic surfaces, we prove that, in any 
birational class {V} of normal surfaces V, the numerical character p(V) is a 
monotone nonincreasing function of V, with respect to the following partial 
ordering of the class: V < Vf if the birational transformation from V1 to V is 
single-valued without exceptions. An essential ingredient of the proof is the 
remark that, since a normal surface V has only a finite number of singular 
points, the generic hyperplane section of V is normal (since it is a curve free from 
singularities). Now the normality of a generic hyperplane section of any 
normal variety has recently been established by Seidenberg. In virtue of this 
interesting result of Seidenberg, the monotone character of the virtual arith
metic genus p(V) can now be regarded as established for normal varieties of 
any dimension. In particular, p(V) is invariant under regular birational 
transformations. 

Added in proof: In view of the technical difficulties of the proof of Seidenberg's 
theorem, we point out that the results of our joint paper with Muhly do not 
actually require Seidenberg's theorem. All that is needed is the following state
ment: the general hyperplane section of a normal variety V/k (k algebraically 
closed) is absolutely normal. This statement is an immediate consequence of 
the theorem of Bertini, of the classical Jacobian criterion for simple points, and 
of Weil's characterization of absolutely normal varieties. 

In the joint paper of Muhly and myself it is proved that (a) the function 
p(V), defined in a given birational class of varieties of dimension g 3 , has a 



84 OSCAR ZARISKI 

minimum; (b) this minimum is reached for the nonsingular varieties of the 
class; (c) this minimum is equal to the effective arithmetic genus of the field 
of algebraic functions determined by the given birational class. Each of these 
statements represents an unsolved problem for varieties of dimension greater 
than three. 

5. Holomorphic functions and the principle of degeneration. The "main 
theorem" on birational transformations is a special case of a much more general 
"connectedness theorem" on algebraic correspondences, a theorem which in its 
turn contains as a special case a principle of degeneration for varieties over 
arbitrary ground fields. The proof of this theorem is based on a theory of ab
stract holomorphic functions which I have developed in a paper now in course 
of publication in the Memoirs of the American Mathematical Society, and 
which represents an extension of the analytical methods of abstract algebraic 
geometry from a local theory to a theory in the large. The use of normal varie
ties is essential in this theory. I shall now briefly outline the geometric back
ground and the underlying ideas of this work. 

In the classical case, the principle of degeneration (first formulated by 
Enriques) asserts that if an irreducible variety V varies continuously and de
generates in the limit, into a reducible variety Vo, then this limit variety is 
connected. This principle is almost self-evident, since Vo is a continuous image 
of the irreducible—and-therefore connected—variety V. I say "almost evident", 
because in order to assert that Vo is a continuous map of V it would be neces
sary to show that the continuous variation of V can be accompanied by a con
tinuous deformation of V into VQ . The existence of such a deformation has 
always been taken more or less for granted. 

Now, the principle of degeneration can easily be transformed into an equiv
alent statement in which no reference is made to continuity or limits and which 
therefore makes sense also in the abstract case. First of all, if V is a variety and 
k is any ground field (not necessarily a field of definition of V), then the expres
sion "V is connected over /c" has a meaning, since V has a natural topology over 
k. In particular, if k is an algebraically closed field of definition of V and if V 
is connected over k, then it is easy to see that V is connected over every one 
of its fields of definition. We say then that V is absolutely connected. This defini
tion can then be extended in an obvious fashion to effective algebraic cycles, 
i.e., to formal linear combinations, with positive integral coefficients, of ab
solutely irreducible varieties of the same dimension r. Now let M be an irre
ducible algebraic system of r-dimensional cycles, and suppose that M is defined 
and irreducible over a given ground field k. Then I prove the principle of de
generation under the following form: 

* 7/ the general cycle of M/k is absolutely irreducible, then every cycle in M is 
absolutely connected. 

I t is easy to transform this principle into a statement concerning the inci
dence correspondence associated with the system M, i.e., the correspondence 
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in which to every cycle of M correspond all the points which belong to that 
cycle. The transformed statement can be itself incorporated into the following 
more general connectedness theorem on algebraic correspondences: 

THEOREM. Let T/k be an irreducible algebraic correspondence between two' 
varieties V and Vf and let (P, Pr) be a general point pair of T/k. We make the 
following assumptions: 

(1) T~l is rational [i.e., k(P) C k(P')] and semi-regular. 
(2) The field k(P) is maximally algebraic in k(P'). Let W/k be any connected' 

subvariety of V. Then if V is analytically irreducible (in particular, locally nor
mal) at each point of W, the total transform of W under T is a k-connected sub-
variety of V. 

This last theorem covers a good deal more ground than does the principle of 
degeneration. The incidence correspondence of an algebraic system has the 
special property (not shared by arbitrary correspondences) that it has no fun
damental points: to every point of the representative variety V of the system 
M there corresponds, on the carrier variety V1, a variety of the same fixed di
mension r,r = the dimension of the cycles of the system M. If we deal, however, 
with an arbitrary correspondence T and if a point Q of V happens to be a fun
damental point of T, then the variety T{Q], whose connectedness is being 
claimed, may very well have dimension higher than that of the total trans
form of the general point of V/k. The connectedness of that variety T{Q} 
is, in that case, not at all trivial even in the classical case (and—to our knowledge 
—has never been proved in the classical case, even for birational transforma
tions T). 

I t is in the proof of this theorem that the holomorphic functions come directly 
into play. With the given subvariety If of 7 we associate "functions" on V 
which "are defined and holomorphic" along W. These functions are, by defini
tion, certain specified elements of the direct product of the completions of the 
local rings of V at the various points of W. They are those elements of this 
direct product which can be represented by a finite number of sequences of 
elements of the function field of V, in such a manner that (1) each sequence 
converges uniformly on some open subset I \ of W and (2) the sets Ti cover W. 
These functions form a ring which we denote by o^ . As a first tangible evidence 
of the nonartificiality of this new concept, we have the following: 

CONNECTEDNESS CRITERION. If V is analytically irreducible at each point of 
W, then W/k is connected if and only if the ring Ow of holomorphic functions along 
W is an integral domain. 

With this theorem, we are still very far from the proof of the connectedness 
theorem for algebraic correspondences. The high point, and also the most diffi
cult part, of the whole theory is still to come. I t is represented by a theorem of 
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invariance of rings of holomorphic functions under rational transformations. 
I t is noteworthy that while the proof of the principle of degeneration in the 
classical case is essentially a simple exercise in topology, our proof of this prin
ciple in the abstract case can be given only after a long and difficult journey. 
The end of this journey is as follows: 

Let T be an algebraic correspondence between two irreducible varieties V/k 
and V/k such that T~l is a rational transformation, semi-regular at each point 
of V. Let W be the total transform T{W} of W, where W is any subvariety 
of V. We have the ring owr of functions on Vf, defined and holomorphic along 
Wr. We first show that there always exists a natural isomorphism Hw, w of o% 
into oW' . The fundamental theorem of invariance,asserts^the following: 

THEOREM. Let (P, P') be a general point pair of T/k. If (a) k(P) is maximally 
algebraic in k(Pf) and (b) if V is locally normal at each point of W, then Hw, w» 
is an isomorphism of ow onto owt . [Note that condition (a) is automatically 
satisfied if T is a birational transformation.] 

This theorem, together with the above connectedness criterion, gives immedi
ately the connectedness theorem for algebraic correspondences. 

There is a number of very difficult problems suggested by the theory of holo
morphic functions and which are still open even in the classical case. One of 
them is to prove that: 

I. The ring ow is Noetherian. 
The elements of ow which belong to the field of rational functions on V form 

themselves a ring, denoted by o w . This ring is the intersection of all the local 
rings of the points of W. The second problem is to prove the following: 

II . The ring o w is Noetherian. 
The non units in o w form an ideal, say m. Whether or not o w is Noetherian, 

one may consider the completion of o w with respect to the powers of this ideal. 
The next problem is to prove the following: 

III. If W is connected, then ow is the completion of ow . 
A special case of I I I is the following conj ecture :ifow consists only of constants, 

then Ow = ow . The existence of nonconstant holomorphic functions on V, 
defined along W, is closely connected with the existence of a rational trans
formation T of V into some other variety V, such that W is the total transform 
of a point of Vf. I t is obvious that the latter implies the former, but I have no 
proof of the converse. At any rate, if W can be transformed into a point Q' of 
some variety V by a rational transformation, then it is easily seen that o w = 
oQt , and from the theorem of invariance of rings of holomorphic functions it 
follows that 0% = o% . Hence in this case the conjectures I, II, I I I are true. 

6. Transcendental theory of specializations. My report is very incomplete as 
it stands, but it would be glaringly incomplete if I had not said anything about 
the role of valuation theory in abstract algebraic geometry. The ordinary theory 
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of specializations applies to finite sets of quantities; it is a finite theory of speciali
zations. This theory does not do everything that continuity does in classical 
geometry, for it contains nothing that corresponds to the notion of a branch, 
whether algebraic or transcendental. It does not tell us anything about the 
different modes of approach to a point on a given variety. For this reason, the 
finer differential aspects of the local geometry of a variety, in particular the 
analysis of the neighborhood of a singular point, are outside the province of 
the finite theory of specializations. What was needed here was a theory which 
deals with the simultaneous specialization of all the rational functions on a 
given variety, therefore a transcendental theory of specializations. Valuation 
theory meets precisely this requirement. I t is to be observed that it was pre
cisely the general valuation theory, as developed by Krull, i.e., the theory of 
valuations having arbitrary value groups (nondiscrete as well as discrete, non-
Archimedian value groups as well as Archimedian), that turned out to be the 
necessary tool for the solution of such a concrete algebro-geometric problem as 
the local uniformization of algebraic varieties and for partial progress in the 
problem of the resolution of singularities. Nothing less than the general valua
tion theory would have served that purpose, and that is so for the following 
two reasons: 

(1) Without the general concept of a valuation it is not possible even to for
mulate the problem of local uniformization in pure algebraic terms. The nearest 
algebraic substitute for the neighborhood of a point Q of a variety V is the set 
of all modes of approach to the point Q, therefore essentially, the set of all 
valuations of the function field of V which have center at Q. Here, by the center 
of a valuation v we mean the point whose coordinates are the ^-residues of the 
coordinates of the general point of the variety V. And the only statement which 
can reproduce in algebraic terms, and without loss of power, that what has 
been a classical conjecture, namely that the complete neighborhood of the 
point Q can be represented by a finite number of power series expansions, is 
the statement that any valuation v of center Q can be uniformized with respect to 
V. By this I mean that there exists a birational transform V of V such that 
(a) the center of v on V is a simple point Q' of V and (b) the local ring of V 
at Q is contained in the local ring of V at Q' (this second condition implies that 
every clement of the function field of V which is holomorphic at Q is also holo
morphic at Qf). 

(2) The set of all valuations of the function field of V is a compact space in 
a suitable natural topology of that set. This space is called the Riemann surface 
of the function field of V. Now it is the compactness of the Riemann surface 
that makes it possible to apply the theorem of local uniformization of abstract 
algebraic geometry (i.e., the uniformization of a single valuation) to the classical 
problem of local uniformization of the complete neighborhood of a point of a 
variety. No reasonable proper subset of the set of all valuations has that com
pactness property. Thus, the set of all discrete valuations is not compact (ex 
cept in the case of curves, in which case all valuations are, of course, discrete), 
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and neither is the set of all algebraic valuations (represented by algebraic 
branches). 

The problem of local uniformization has been settled, so far, only in the case 
of characteristic zero. The extension of the present proof to the case of non
zero characteristic will call for considerable algebraic skill and ingenuity. It is 
not a problem for geometers; it is a problem for algebraists with a feeling and 
intuition for all the unpleasant things that can happen in the case of nonzero 
characteristic. The essential difficulties of this problem are already apparent 
in the case of algebraic surfaces over an algebraically closed ground field. In 
this case I can prove the theorem of local uniformization for every valuation 
except those which are nondiscrete and have rational rank 1 (i.e., those whose 
value group is a dense set of rational numbers). The case which is particularly 
difficult is the one in- which the value group of the valuation contains rational 
numbers having in the denominator arbitrarily high powers of the characteristic 
p. In this case, already such a simple surface as zp = f(x, y) becomes untractable. 

Also the problem of the resolution of singularities is still unsolved; or—to 
put it into more cautious terms—no solution of this problem has ever come to 
my direct attention. For characteristic zero, this problem has been solved, so 
far, only for varieties of dimension ^ 3 . 

7. Concluding remarks. The Italian geometers have erected, on somewhat 
shaky foundations, a stupendous edifice: the theory of algebraic surfaces. It is 
the main object of modern algebraic geometry to strengthen, preserve, and 
further embellish this edifice, while at the same time building up also the theory 
of algebraic varieties of higher dimension. The bitter complaint that Poincaré 
has directed, in his time, against the modern theory of functions of a real vari
able cannot be deservedly directed against modern algebraic geometry. We are 
not intent on proving that our fathers were wrong. On the contrary, our whole 
purpose is to prove that our fathers were right. 

The arithmetic trend in algebraic geometry is not in itself a radical departure 
from the past. This trend goes back to Dedekind and Weber who have devel
oped, in their classical memoir, an arithmetic theory of fields of algebraic func
tions of one variable. Abstract algebraic geometry is a direct continuation of 
the work of Dedekind and Weber, except that our chief object is the study of 
fields of algebraic functions of more than one variable. The work of Dedekind 
and Weber has been greatly facilitated by the previous development of classical 
ideal theory. Similarly, modern algebraic geometry has become a reality partly 
because of the previous development of the general theory of ideals. But here 
the similarity ends. Classical ideal theory strikes at the very core of the theory 
of algebraic functions of one variable, and there is in fact a striking parallelism 
between this theory and the theory of algebraic numbers. On the other hand, 
the general theory of ideals strikes at most of the foundations of algebraic 
geometry and falls short of the deeper problems which we face in the post-
foundational stage. Furthermore, there is nothing in modern commutative 
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algebra that can be regarded even remotely as a development parallel to the 
theory of algebraic function fields of more than one variable. This theory is 
after all itself a chapter of algebra, but it is a chapter about which modern 
algebraists knew very little. All our knowledge here comes from geometry. For 
all these reasons, it is undeniably true that the arithmetization of algebraic 
geometry represents a substantial advance of algebra itself. In helping geom
etry, modern algebra is helping itself above all. We maintain that abstract 
algebraic geometry is one of the best things that happened to commutative 
algebra in a long time, 

H A R V A R D U N I V E R S I T Y , 

CAMBRIDGE, MASS., U. S. A, 



NUMBER-THEORY AND ALGEBRAIC GEOMETRY 

ANDRE WEIL 

Mr. Chairman, Ladies and Gentlemen, 

The previous speaker concluded his address with a reference to Dedekind 
and Weber. It is therefore fitting that I should begin with a homage to Kro-
necker. There appears to have been a certain feeling of rivalry, both scientific 
and personal, between Dedekind and Kronecker during their life-time; this 
developed into a feud between their followers, which was carried on until the 
partisans of Dedekind, fighting under the banner of the "purity of algebra", 
seemed to have won the field, and to have exterminated or converted their foes. 
Thus many of Kronecker's far-reaching ideas and fruitful results now lie buried 
in the impressive but seldom opened volumes of his Complete Works. While 
each line of Dedekind's Xl th Supplement, in its three successive and increas
ingly "pure" versions, has been scanned and analyzed, axiomatized and general
ized, Kronecker's once famous Grundzüge are either forgotten, or are thought 
of merely as presenting an inferior (and less pure) method for achieving part 
of the same results, viz., the foundation of ideal-theory and of the theory of 
algebraic number-fields. In more recent years, it is true, the fashion has veered 
to a more multiplicative and less additive approach than Dedekind's, to an 
emphasis on valuations rather than ideals; but, while this trend has taken us 
back to Kronecker's most faithful disciple, Hensel, it has stopped short of the 
master himself. 

Now it is time for us to realize that, in his Grundzüge, Kronecker did not 
merely intend to give his own treatment of the basic problems of ideal-theory 
which form the main subject of Dedekind's life-work. His aim was a higher one. 
He was, in fact, attempting to describe and to initiate a new branch of mathe
matics, which would contain both number-theory and algebraic geometry as 
special cases. This grandiose conception has been allowed to fade out of our sight, 
partly because of the intrinsic difficulties of carrying it out, partly owing to 
historical accidents and to the temporary successes of the partisans of purity 
and of Dedekind. It will be the main purpose of this lecture to try to rescue it 
from oblivion, to revive it, and to describe the few modern results which may 
be considered as belonging to the Kroneckerian program. 

Let us start from the concept of a point on a variety, or, what amounts to 
much the same thing, of a specialization. Take for instance a plane curve G, 
defined by an irreducible equation F(X, Y) = 0, with coefficients in a field k. 
A point of C is a solution (x, y) of F(X, Y) = 0, consisting of elements x] y 
of some field k' containing k. In order to define the function-field on the curve, 
we identify two polynomials in X, Y if they differ only by a multiple of F, i.e., 
we build the ring k[X, Y]/(F), and we take the field of fractions $ of that ring: 
in particular, X and Y themselves determine the elements X = X mod F, 
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Y = Y mod F, of $, and (X, Y) is a point of C, called generic since it does not 
satisfy any relation over k except F(X, Y) = 0 and its consequences. Then any 
point (x, y) of C, with coordinates in an extension kf of k, determines a homo
morphism cr of the ring k[X, Y]/(F) into/c', d efined by putting <r(X) = x, <r(Y) = y, 
and cr(a) = a for every a £ k; this homomorphism is also called a specialization 
of that ring, and a generic one if it is an isomorphism of it into kf ; consequently, 
(x, y) will be called a specialization of (X, Y), and will be called generic if cr 
is generic. 

Our homomorphism a has been so defined as to preserve the elements of the 
"ground-field" k; but this restriction, usual as it is in algebraic geometry, may 
well prove too narrow for some purposes. If, for example, we consider a curve 
F(X, Y, t) = 0, depending upon a parameter t, where F is a polynomial in 
X, Y, i with coefficients in a field k, then the coefficients of the equation of the 
curve are in the field k(t). However, with our curve, we naturally associate the 
surface F(X, Y, T) = 0; the curve then appears as a plane section of that sur
face by the plane T = t. Because of this changed point of view, the parameter 
t, previously frozen by its inclusion in the field of "constants", is now liberated 
and available for specialization; and so we are free now to consider as a spe
cialization of our ring k[X, Y, t]/(F(X, Y, t)) any homomorphism of that ring 
into an extension k' of k, still preserving the elements of k, but mapping X = X 
mod F,Y = Y mod F, t = t mod F onto any three elements xr, yf, t' of k' satis
fying F(xf, y', tf) = 0. Thus no longer restricted to the exclusive consideration 
of the "generic" curve belonging to the family F(X, Y, t) = 0, we are enabled 
to consider any specialization F(X, Y, t') = 0 of that curve, and the whole 
surface F(X, Y, t) = 0 spanned by that family. 

This shifting of our point of view necessitates a re-examination of the concept 
of ground-field and of the field of definition of a variety. The previous speaker 
has mentioned, as one of the main achievements of modern algebraic geometry, 
the possibility of operating over quite arbitrary ground-fields. One should not 
be blind, however, to the somewhat illusory nature of this achievement. As our 
knowledge of algebraic curves is fairly extensive, there is, it is true, a great deal 
that we can say on the curve F(X, Y, t) = 0 depending upon the parameter t, 
in the example discussed above; and we should not possess that knowledge if 
our methods of proof were not valid over the ground-field k(t). But as we have 
pointed out, all we can say on the curve F(X, Y, t) = 0 is but part of the the
ory of the surface F(X, Y, T) = 0. This may be at the present moment, and it 
is in fact, one of the best ways of acquiring some knowledge of the geometry on 
that surface; but the fact remains that, in the final analysis, any statement on 
a variety with a larger ground-field boils down to a statement on a variety (of 
higher dimension, and therefore intrinsically more difficult to study) over a 
smaller ground-field. 

Now consider, with Kronecker, that, in most problems of algebraic geometry, 
only a finite number of points and varieties occur at a time ; these will necessarily 
have a common field of definition which is finitely generated over the prime 
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field, i.e., which is generated over the prime field (the field Q of rational num
bers if the characteristic is 0, and otherwise a finite field) by a finite number of 
quantities (h, • • • , tN) ; if these are considered as parameters, and are made 
available for specialization, then, in the final analysis, every statement we can 
make can be thought of as a theorem in algebraic geometry over an absolutely alge
braic ground-field, i.e., either over a finite field or over ßn algebraic number-field 
of finite degree. While this realization, of course, cannot in any way detract 
from the methodological importance of arbitrary ground-fields as one of the 
chief tools of modern algebraic geometers, it gives us some insight into the 
deep meaning of Kronecker's view, according to which the absolutely algebraic 
fields are the natural ground-fields of algebraic geometry, at any rate as long 
as purely algebraic methods (as distinct from analytical or topological methods) 
are being used. Now these are fields with strongly marked individual features, 
which will undoubtedly have to be taken more and more into account as alge
braic geometry develops along more Kroneckerian lines. For instance, the field 
with q elements can be characterized by the fact that its elements are invariant 
under the automorphism x —> xq of any field containing it; this must have a 
profound influence on the geometry over that field; and recent work connected 
with the Riemann hypothesis ([lie]) fully confirms that expectation. Another 
fact, so far an isolated one, in the same direction, is the existence of matrices, 
associated with curves over a finite field, which bear a curious resemblance 
with the period-matrices of abelian integrals in the classical theory (cf. [lid]). 

We are now in a position to discussspecializations again from our broadened 
point of view. If e.g. F(X, Y) = 0 is the equation of a curve, with coefficients 
in a subring R of a field k, then any homomorphism <r of the ring R[X, Y]/(F) 
into a field kf will be called a specialization of that ring; if in particular it pre
serves (or at least if it maps isomorphically) the elements of R, then it can be 
extended to a homomorphism of k[X, Y]/(F) which preserves the elements of k. 

As Kronecker realized, this affects our concept of dimension. Take for in
stance, instead of our curve, a hypersurface F(X\, • • • , Xn) = 0 in n-dimensional 
space, with coefficients in a subring R of a field k; let 9t denote the ring 
R [Xi, • • • , Xn]/(F). Then the dimension n — 1 of that variety can be defined 
as the degree of transcendency, over the ground-field k, of the function-field on 
the variety, i.e., of the field of fractions of 9$, or, equivalently, as the maximum 
number of successive specializations <r, af, a", • • • , of 9? onto a ring 9Î', of 9t' 
onto a ring 9î", etc., each one of which preserves the elements of R, and none 
of which is an isomorphism; the rings 9Î', 9î", • • • are understood to be "integral 
domains" (i.e., subrings of fields). If we remove the condition that the speciali
zations <r must preserve the elements of R, but merely require that they should 
preserve the elements of the "prime ring" (the ring Z of integers if the charac
teristic is 0, the ring of integers mod p if it is p > 1), this gives us the dimension 
over the prime field, or absolute dimension. So far, we have not crossed the 
boundaries of ordinary algebraic geometry, even though we may have pushed 
down the ground-field to an absolutely algebraic field. In particular, if the char-
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acteristic is p > 1, every homomorphism must preserve the elements of the 
prime field, and so there is no temptation, nor even any possibility, for us to 
cross those boundaries. However, if the characteristic is 0, there are homo
morphisms which do not preserve the characteristic; as soon as we allow these 
to enter the picture, we are within a wider area, where algebraic geometry and 
number-theory commingle and cannot be kept apart; and, as a consequence, 
the proper concept of dimension is the Kroneckerian concept. Since our se
quences of specializations <r, af, • • • can now be increased by one which changes 
the characteristic from 0 to some p > 1, it follows that the Kroneckerian dimen
sion is higher by 1 than that of algebraic geometry proper. For instance, a curve 
over an algebraic number-field has the Kroneckerian dimension 2, 

In this sense, the only two cases of dimension 1 are those of a curve over a 
finite field, and of an algebraic number-field. In fact, it has been well known, 
ever since Kronecker and Dedekind, that there are far-reaching analogies be
tween these two cases, and these have been among the chief sources of progress 
in both directions; indeed, we have reached a stage where we can deal simul
taneously with large segments of both theories, not merely the more elementary 
ones, but also class-field theory and part of the theory of the zeta-function. It 
is true that these analogies are still incomplete at some crucial points; new con
cepts are clearly needed before we can transport to number-fields, even con-
jecturally, the facts about the Jacobian variety of a curve which have recently 
led to the proof of the Riemann hypothesis ([lie], [llf]). Nevertheless, our knowl
edge of these topics is fairly extensive, whereas the same can hardly be said of 
the problems in higher dimensions. 

I t is true that the theory of local rings has been extensively developed, largely 
by its initiator Krull (cf. e.g. [6]), and more recently by Chevalley ([2]), I. 
Cohen ([4]), and others. Such rings arise as follows: <r being, as above, a spe
cialization, say, of the ring 9Î = R[X, Y]/(F) defined by a curve F(X, Y) = 0, 
it can be extended to a homomorphic mapping of the ring 9Î' of those elements 
u/v of the field of fractions $ of 9Î, for which u, v are in 9? and ov ^ 0, by put
ting c(u/v) = au/av', 3Î' is the specialization-ring, and the ideal of non-units in 
9Î', which is the kernel of <r, is the specialization-ideal; dlf is called a local ring, 
and its completion, with respect to the topology defined on it by the powers of 
the specialization-ideal, is a complete local ring; experience shows that it is 
desirable to confine oneself to integrally closed specialization-rings, and this 
leads to Zariski's fundamental concept of normality. Up to now geometers have 
used only characteristic-preserving specializations; therefore all their local rings 
contain a field, and have the same characteristic as their residue-class ring. 
Fortunately algebraists have not confined themselves to that case, so that their 
work is immediately available for the more general geometry that we are en
visaging here. 

We are thus led to modify the Kroneckerian view that the "true" or "natural" 
ground-fields in algebraic geometry are the absolutely algebraic fields; this is so 
as long as ground-fields are considered from the purely algebraic point of view, 
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without any additional structure. However, it is now clear that the study of a 
family of varieties at, or rather in the neighborhood of, a given specialization of 
the parameter leads at once to the consideration of algebraic varieties over 
complete local rings and their fields of fractions; some recent work by Chow 
([3]) may be considered as pertaining to this subject, of which the "geometry 
on a variety in the neighborhood of a subvariety" (as exemplified chiefly by 
Zariski's theory of holomorphic functions ([12]) forms a natural extension. That 
this does not contradict the Kroneckerian outlook, but has its root in it, is 
clearly shown by the fact that the theory of local rings was originated by Hensel; 
his p-adic rings, in fact, are the complete local rings attached to the specializa
tions of the rings of integers in algebraic number-fields. Hence the local study, 
say, of an algebraic curve F(X, Y) = 0 with coefficients in the ring Z of rational 
integers, "at" the specialization of Z determined by a prime p, amounts to en
larging the ground-field to the p-adic field. Thus the p-adic fields appear as 
another kind of "natural" ground-fieTd, and one may expect that the geometry 
over such fields will acquire more and more importance as it learns to develop 
its own methods. One may quote here E. Lutz's results on elliptic curves ([7]), 
showing that the group of points on such a curve has a subgroup of finite index, 
isomorphic to the additive group of integers in the ground-field; similar results 
undoubtedly hold for Abelian varieties of any dimension. In his beautiful thesis, 
Chabauty ([1]), following ideas of Skolem (LIO]), has shown how the method of 
p-adic completion, with respect to a more or less arbitrary prime p, can yield 
deep results about varieties over an algebraic number-field; there, as already in 
Skolem's work, the problem concerns the intersection of an algebraic variety and 
of a multiplicative group; by p-adic completion, the latter becomes an algebroid 
variety defined by linear differential equations. Of course geometry over finite 
fields may in a certain sense be obtained from the geometry over p-adic fields 
by reduction modulo p, so that the latter may be said to contain all that the 
former contains, and a good deal more; but little use has been made so far of 
the relations between these two kinds of geometries, .and little is known about 
them. 

But the geometry over p-adic fields, and more generally over complete local 
rings, can provide us only with local data; and the main tasks of algebraic 
geometry have always been understood to be of a global nature. It is well known 
that there can be no global theory of algebraic varieties unless one makes them 
"complete", by adding to them suitable "points at infinity," embedding them, 
for example, in projective spaces. In the theory of curves, for instance, one 
would not otherwise obtain such basic facts as that the numbers of poles and 
of zeros of a function are equal, or that the sum of residues of a differential is 
0. One way of doing this (which, however, is effective only in the case of dimen
sion 1) consists in considering the valuations of the field of functions on the 
curve; on a given affine model F(X, Y) = 0, each simple point defines a valua
tion, viz., that one which assigns, to each function on the curve, the order of 
the pole or zero it may have at that point; and all valuations, with a finite num-
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ber of exceptions, can be so obtained; the exceptions correspond to the "multiple 
points" and to the "points at infinity", and give an invariant definition for 
these. Correspondingly, if we apply this idea to an algebraic number-field (also 
a one-dimensional problem), we obtain satisfactory formulations for global the
orems, entirely analogous to the theorems on algebraic curves, provided we 
allow for "archimedean" valuations with somewhat weaker properties than 
those of algebraic geometry and than the p-adic valuations on number fields, 
viz., those for which the completed field is the field of real or that of complex 
numbers. Thus it appears that algebraic geometry over the complex number-
field is, after all, a legitimate object of study, no less necessary or useful than 
geometry over p-adic fields; and so the door is opened to topology, function-
theory, differential geometry, and partial differential equations. This, at any 
rate, is the logical way in which algebraic geometry over complex numbers 
ought to have been bom, had mathematics consisted solely of number-theory 
and algebra. That it came into being quite differently, and that it developed so 
far ahead of other branches of geometry, is a historical accident; it is indeed a 
fortunate one, having allowed free play to a tool which is invaluable as long as 
one is aware of its limitations; I need hardly tell you that I am referring to our 
spatial intuition. 

We are now ready to consider in more specific terms the few known results 
in the "geometry over integers", which, following Kronecker, I have been trying 
to define ; and for this we must turn first of all, naturally, to Kronecker himself. 
His great work on elliptic functions ([5b]), or rather its algebraic part (as dis
tinct from the equally profound analytical theory), gives us a first example of 
an investigation of that kind; this consists in the study of the equation Y2 = 1 — 
pX2 + Xi over the ring Z\p], where p is an indeterminate, and is chiefly concerned 
with the transformation of elliptic functions. Jacobi's results on this subject are 
interpreted as defining, for every odd prime p, a correspondence between two 
generic points (x, y, p), (x', yf, pf) of the surface Y2 = 1 — pX2 + X4, where 
%' = xnF(l/x)/F(x), y' = G(x)/F(x)2, p' is algebraic over Q(p), and F, G are 
polynomials with algebraic coefficients over Q(p). Let a- be a root of 
1 - pX2 + X4 = 0, and o-' a root of 1 - pfX2 + Xe = 0. Then Kronecker 
proves the following facts. The coefficients of F, G are in the field Q(cr, <rf); if 
divisibility relations are understood in the sense of integral algebraic elements 
over Z[p], then </ and all the roots of G(X) are units; and F(X) is of the form 

F(X) « IT X*"1 + ir Ë ytX*"'-1 + 1, 

where w and the yi are integral over Z[p] ; furthermore, ir is of degree p + 1 over 
Q(p), and has the norm p over that field. The main results on complex multipli
cation, and its application to the class-field theory of imaginary quadratic fields, 
can be derived from these facts by specialization of the parameter p. I t is very 
probable that a reconsideration of this splendid work from a modern point of 
view would not merely enrich our knowledge of elliptic function-fields, but 
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would also reveal principles of great importance for any further development 
of algebraic geometry over integers. 

Now, coming back to the Grundzüge,-take Kronecker's well-known and sup
posedly outmoded device for the introduction of ideals. This consists in asso
ciating with the elements OQ , a\, • • • , a^ of a ririg the linear expression 
Go + ]C?=i ufoi, or, when the homogeneous notation happens to be more suit
able, the linear form X/£=o ^ A > in the indeterminates Ui ; thus the Ui are new 
variables adjoined to the ring, a feature which, in the eyes of orthodox Dede-
kindians, is a fatal blemish of this procedure. If, for instance, the a,- are in the 
ring k[X, Y]/(F) determined by a plane curve F(X, Y) = 0 with coefficients in 
a field k, the ideal generated by them means substantially the same as the set 
of common zeros of the ai, counted with their multiplicities; and this is again 
nothing else than the "fixed part" of the linear series cut by the variable linear 
variety 2™=o UiXi = 0 through the point 0, in the affine space of dimension 
m + 1, on the model of the given curve which is the locus of the point 
(aQ, • • • , am). If we translate this into the projective language, we find ourselves 
at the heart of the theory of linear series; and a slight extension of Kronecker's 
idea could lead us very naturally to such thoroughly "modern" topics as, for 
example, the associated form of a variety in projective space (the "Chow coor
dinates"). There is thus every reason to believe that the same idea will reacquire 
its full meaning in number-theory as soon as the interpénétration of number-
theory and algebraic geometry, which Kronecker sought to realise, has been 
accomplished. Let us for instance try to define for number-fields a concept cor
responding to the degree of a projective curve. If / 0 , / i , • - • , fm are the coor
dinates of a generic point of a curve, and the Ui are indeterminates, the degree 
is the number of "variable" zeros of ^2iUifi(x); this must be equal to the num
ber of fixed poles minus the number of fixed zeros; in other words, if at every 
point P of the curve we put n(P) = mU<aP(fi), where œP(f) indicates the order of 
/ at P , then the degree of the curve is d = — ̂ Pn(P). If we replace the fi by 
numbers & belonging to an extension k of degree n of the rational number-field 
Q and if ? is the point £ = (&>,•••,£«) in the projective ra-space, we are thus 
led to consider the number H(£) = YLv sup^(&), where the product is taken 
over all absolute values (p-adic or archimedean) of k; H(£) does hot change if 
the & are replaced by p&, with- p £ k. This concept is essentially due to Siegel 
[9]1; as D. G. Northcott indicates [8a], it is more convenient, for arithmetical 
purposes, to introduce the number h(%) = H(£)Un, which depends only upon 
the point £ and not upon the field k* We khall call h(£) the height of the point 
£. Following Kronecker, we may associate with the point £, with coordinates in 
k, the form F(u) = r-Nk/Q(%2 ^ù, where the Ui are indeterminates, and the 
rational number r is so chosen that the coefficients of F(u) are rational integers 
without common divisor. Then we have F(u) <$C (A(Ö ,J}w*)n (which means 

1 Cf. also H. Hasse, Monatshefte für Mathematik vol. 48 (1939) p. 205. Actually there is 
a slight discrepancy between Northcott's definition of H(£) and that of Siegel and Hasse; 
we follow the latter. 
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that every coefficient of F is at most equal in absolute value to the corresponding 
one in the right-hand side) : hence, if n0 and hQ are given, there is at most a finite 
number of points £ for which n < nQ, h(£) < hQ. This is Northcott's lemma 
([8a]; cf. [llh]), which is at the bottom of the application of the "infinite de
scent" to elliptic curves, and, more generally, to Abelian varieties over algebraic 
number-fields ([lia]; cf. [8b] and [lie]). 

The height of a variable point on a curve or on a variety can best be studied 
by means of the theory of distributions; this is the only chapter of Kroneckerian 
geometry which has been developed beyond the rudiments. Let us first consider 
a curve C, defined over an algebraic number-field k; if it is rational, i.e., if its 
function-field is the field k(t) generated over k by a single variable t, every func
tion f(t) on it can be written as f(t) — T]X'(£ ~ a%)mi> where 7 is a constant, the 
ai are the poles and zeros of the function, and the integers mi are their multi
plicities (counted positively for a zero, negatively for a pole). If the curve is not 
rational, such a representation is not possible, except in a merely symbolical 
manner, or else by means of transcendental multi-valued functions which cannot 
be used for arithmetical purposes. Let us, however, consider for a moment a 
definite embedding of k in the field of Complex numbers, so that C is defined 
over that field; and consider merely absolute values. Then one can attach to 
each point A of C a continuous real-valued function dA(M) on G, with 
0 <! dA(M) < 1, which is 0 when M = A and only then, in such a way that if 
a function f(M) belonging to the function-field of G (over k or even over the 
field of complex numbers) has the zeros and poles A i with the multiplicities mi, 
then 

f(M) = y(M)JldAi(M)mi, 
i 

where y(M) is an inessential factor in the sense that there are constants 71, 
72, both > 0, such that 71 < y(M) < y2 for all M. This can easily be verified 
by elementary topological methods. It can also be proved by an algebraic argu
ment, which remains valid if the field of complex numbers is replaced by the 
algebraic closure of the p-adic field, and also if the curve C is replaced by a 
variety. Reduced to its essential features, this argument can be described as 
follows. If y is a variety in an affine space, defined over the complex number-
field or over a p-adic field, and if it does not contain the origin, then there is a 
polynomial P(Xi, • • • , Xn ) , vanishing on V and not at 0, with coefficients in 
the ground-field; this means that all points of V must satisfy an equation 

1 — Y \ y ' i . . . y'n 
1 — j^,aVl ... VnA.\ A. n , 

where all terms in the right-hand side are of degree > 1; therefore, if (xi, • • • , xn) 
is such a point, sup* | xi | cannot be arbitrarily small, and precisely it must be 
> 1 or > ( 2 I avi ••• vn | )_ 1 ; here | | denotes of course the ordinary orthep-adic 
absolute value, as the case may be. 

So far we have considered only one absolute value, ordinary or p-adic, at a 
time, and so we have obtained, in this sense, merely "local" results; global re-
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suits come from the consideration of all absolute values simultaneously; or else, 
what amounts to the same thing, one can treat the archimedean absolute values 
separately, in the manner indicated above, and then deal simultaneously with 
all the others. This is done by remarking that, if a variety V is defined, over an 
algebraic number-field k, and does not go through 0, its points must, as above, 
satisfy an equation 

oto = JLfttvi ••• vn Xi • • • Xn 

whose coefficients are algebraic integers in ft; and then if (xi, • • • , xn) is a point 
on V, with algebraic coordinated, the G.C.D. of the numerators of the frac
tional principal ideals (xi), • • • , (xn) must divide the principal ideal (a0) of ft. 
Out of this very simple fact one derives all the known results of the theory of 
distributions,- one of whose main results is the following "theorem of decompo
sition": 

Let G be a curve, defined over an algebraic number-field ft. One can attach 
to each algebraic point A on G a function aA(M), defined at all algebraic points 
M of G, whose value at M is an ideal of the algebraic number-field ft (A, M), so 
that the following properties hold: aA(M) is 0 when M — A and only then; 
and whenever / is a function on G, having the zeros and poles Ai with the mul
tiplicities mi, then the principal fractional ideal (f(M)) has the expression 

(/m) = ow ifouW1, 
where c(M) is an inessential fractional ideal in the sense that both c(M) and 
c(M)~~x divide a fixed natural integer. Furthermore, exactly the same result. 
holds for every nonsingular projective variety V of any dimension r, except 
that, of course, the ideal-valued functions a(M) are then attached, not to the 
points of V, but to the subvarieties of V of dimension r — 1. 

As we have said above, this becomes a truly global result if we combine it 
with the corresponding result over complex numbers. When this is done, one 
finds inequalities for the height of a variable point on a, projective variety, which 
is found to depend essentially only upon the class of the divisors in the linear 
series determined on the variety by its hyperplane sections. In particular, let 
G be a curve of degree d in a projective space; let G' be a curve, birationally 
equivalent to G, of degree d', in the same or in another projective space; let 
M, Mf be corresponding points on G, C, with algebraic coordinates; then, to 
every e, there are constants 71, 72, both > 0, such that 

yih(M)lld-e < h(M')lld' < y2h(M)lld+t 

for all pairs of corresponding points M, Mf on Ç; in this sense, the "order of 
magnitude" of h(M)1,d is independent of the projective model chosen for C. 
This is the decisive inequality for Siegel's proof of the fact that a nonrational 
curve can have at most a finite number of points with integral coordinates in a 
given algebraic number-field ([9]; cf. [Uh]). The same approach also leads very 
simply to Northcott's inequalities ([8]; cf. [Uh]); these contain as special cases 
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the inequalities by which it was first proved that the points on an Abelian vari
ety, with coordinates in a given algebraic number-field, form a finitely generated 
group ([lia]; cf. [lie]), so that a thoroughly "modernized" version of that proof 
could now be given. 

I should like to conclude with a brief discussion of a very interesting conjec
ture, due, I believe, to Hasse. As we have said, from the Kroneckerian point of 
view the fields of dimension 1 are the number-fields and the function-fields of 
curves over finite fields; to each one of these there belongs a zeta-function, the 
properties of which may be said to epitomize in analytic garb some of the more 
important properties of the field. It is therefore reasonable to guess that similar 
functions can be attached to fields of higher dimension, and in the first place 
to the fields of dimension 2, i.e., to the curves over an algebraic number-field, 
and to the surfaces over a finite field. Consider the latter problem first: let S 
be a surface over the finite field ft of q elements; and define NP, for each v, as 
the number of points on the surface with coordinates in the extension kv of 
degree v of the ground-field; the analogy with curves, as well as the consideration 
of some special cases, makes it very natural ([llg]) to introduce the function 
Z(q~°), where Z(U) is defined by Z(0) = 1, d log Z(U)/dU = J^iN^U^1, 
and to expect that this will have the essential properties of a zeta-function over 
a finite field; i.e., that it is a rational function of U, that it satisfies a functional 
equation, and that it satisfies a suitably modified Riemann hypothesis; even 
the first property seems exceedingly difficult to prove at present, except in 
special cases. Now, suppose that we have on S a family of curves C(t) depending 
upon a parameter t; for simplicity assume that C(t) depends rationally upon t, 
and that no two curves C(t) have a point in common. If we give to t a value 
which is algebraic over ft, C(i) will be defined over k(t), and a zeta-function will 
be attached to it, defined in a manner similar to that employed for S. As the 
number of points on S with coordinates in ft„ is obviously the sum of the same 
numbers for all the curves C(t), it follows at once that Z(U) is the product of 
the zeta-f unctions attached to the curves C(t), provided that we take only one 
representative for each set of curves conjugate to each other over ft. Now this 
definition may at once be transported to number-fields: if G is a curve over the 
algebraic number-field K, given by an equation F(X, Y) = 0, then, for almost 
all prime ideals p of K, the equation F = 0, reduced modulo p, will define 
a curve of the same genus as G over the finite field of q = N($) elements; this 
has a zeta-function; and we are thus led to consider the product of these zeta-
functions for all p, which is precisely the function previously defined by Hasse, 
of which he conjectured that it can be continued analytically over the whole 
plane, that it is meromorphic, and that it satisfies a functional equation. In a 
few simple cases, this function can actually be computed; e.g., for the curve 
Y2 = X* — 1 it can be expressed in terms of Hecke's L-functions for the field 
ft(\/l) ; this example also shows that such functions have infinitely many poles, 
which is a clear indication of the very considerable difficulties that one may 
expect in their study. 
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The Committee on the Conference in Analysis consisted of Marston Morse 
(Chairman), L. V. Ahlfors, Salomon Bochner, G. C. Evans, and Einar Hille, 
with Marshall Stone originally a member. The directive from the Program 
Committee requested emphasis on the relations of algebra and topology to 
analysis, and specifically recommended three subdivisions of the Conference 
eventually formulated as: I, Algebraic Tendencies in Analysis; II, Analysis and 
Geometry in the Large; and III, Extremal Methods and Geometric Theory of 
Functions of a Complex Variable. Marshall Stone, Marston Morse, and Lars 
Ahlfors were assigned the task of organizing the corresponding subconferences. 
Of the twelve hours made available for the Conference, six were assigned to Sub-
conference I, three each to II and III. The three hours assigned to II was sub
sequently enlarged to four hours. 

Marshall Stone originated the idea of conducting Subconference I in the form 
of panels. On his resignation, Einar Hille continued with this interesting but 
somewhat difficult task, aided by von Neumann and Hildebrandt. Subcon
ference II was broken down into two two-hour subconferences on Analysis in 
the Large, and Analysis and Geometry in the Large. Bochner was associated 
with Morse in selecting the speakers for these subconferences, with advice from 
H. Whitney as to the second. 

The first conceptions of the Conference on Analysis included the use of the 
eminent Russian analysists Gelfand, Kolmogoroff, Vinogradow, Lusternik, S. 
Bernstein and others, either in the Conference or as invited to give stated ad
dresses. Unfortunately these mathematicians could not come to the Congress. 
The stated addresses of Morse and Bochner separately invited by the Organiz
ing Committee were regarded as associated with the subconferences derived 
from II. 

Further comments on the nature of the subconferences will precede the pro
gram of the subconferences. 

Attention is called to the publication of the panel reports in the Mathematical 
Surveys of the American Mathematical Society, New York. 

MARSTON MORSE 
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ALGEBRAIC TENDENCIES IN ANALYSIS 
The task of organizing Subconference I on Analysis was delegated to Marshall 

H . Stone who proposed a symposium on the algebraic tendencies in recent 
research in analysis, t o consist of a series of reports , each to be prepared by a 
committee or panel of experts and to be presented by a spokesman for the 
panel. This proposal was accepted by the Organizing Committee and six panels 
were formed. Four of these were ready in October 1949, the others got under 
way by the end of the year. Stone resigned in November from the chairmanship 
of the subconference and from the panel on spectral theory. The direction of the 
subconference was then taken over by the present writer, ably assisted b y T . H . 
Hildebrandt and J . von Neumann. 

The composition of the panels was made as internat ional as conveniently 
possible, due account being taken of the na tu re of the subject mat te r and the 
need of effective collaboration. Invitat ions sent t o four Russian mathematicians 
through proper channels t o join the panels led t o no response, however. The 
membership of the panels a t the t ime of the Congress was as follows, spokesmen 
being indicated by asterisks. 

Panel on Group Representat ions: H . CARTAN, A. M . GLEASON, R. G O D E -

MENT*, G. W. M A C K E Y , F . I . M A U T N E R , L. SCHWARTZ. 

Panel on Topological Algebra: J . D I E U D O N N é , I . KAPLANSKY*, I . E . SEGAL. 

Panel on Measure Theory: J . DIETJDONNE, P . R . HALMOS*, J . C. OXTOBY, 

D . M A H A R A M STONE, S. M . ULAM. 

Panel on Spectral Theory: W. AMBROSE, J . D I X M I E R , N . D U N F O R D * , 

F . J . M U R R A Y , J . VON N E U M A N N , F . R E L L I C H , B . D E Sz. N A G Y , K. YOSIDA. 

Panel on Applied Functional Analysis: N . ARONSZAJN*, S. BERGMAN, J . W. 
C A L K I N , K. FRIEDRICHS, K. KODAIRA, A. W E I N S T E I N . 

Panel on Ergodic Theory: N . D U N F O R D , W. E B E R L E I N , G. A. H E D L U N D , 

E . H I L L ë , S. K A K U T A N I * , J. C. OXTOBY. 

T h e reports t o be prepared by the panels were intended to give a thorough 
survey of the s ta te of knowledge in the field under consideration with adequate 
bibliography, emphasis being placed on the interplay of algebra and analysis 
typical for the field. A preliminary survey showed the task to be a staggering 
one. F rom the beginning it was expected t ha t each spokesman might select from 
the report of the panel those items which he wished to emphasize in a neces- ' 
sarily brief oral presentation before the Congress. I t was indeed obvious t ha t 
nothing like a complete exposition of the fields covered by the panel could be 
expected then. By the end of 1949 it also became clear t h a t publishing detailed 
reports wi th extensive bibliographies would call for much more space than 
was available in the Proceedings of the Congress. T h u s i t became necessary t o 
find another outlet for the reports and, on the init iative of the Organizing Com
mit tee , the Board of Editors of the Mathemat ica l Surveys, published by the 
American Mathemat ical Society, agreed to issue in their series such reports as 
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would be finished within reasonable time. It is hoped that all reports will appear 
in the Surveys in the near future. 
iJJJThe spokesmen were invited to address the Congress on the subject matter of 
their reports so that their lectures naturally fund a place in these Proceedings. The 
following six papers are addresses or abstracts of such presented by the spokesmen 
to the Congress. They are not the final reports of the panels which are still to 
come. As a matter of fact, in several cases no reports were available and for this 
reason, or in order to avoid duplication, the spokesmen chose to speak as in
dividuals, discussing some special feature of the field, regardless of how it would 
ultimately fit into the final report. There were also cases where reports had taken 
definite form and the spokesman could really speak for his panel. It will be 
obvious from the context to which category the individual addresses belong. 

The Committee hopes that these addresses will stimulate interest in the forth
coming reports. Though the latter are not intended to cover functional analysis 
as a whole, they may well prove to be indispensible to workers in this field during 
the next decade. 

EINAR HILLE 



SOME UNSOLVED PROBLEMS IN THE THEORY OF 
GROUP REPRESENTATIONS 

ROGER GODEMENT 

There are still many unsolved problems in the theory of locally compact groups, 
and we intend to state some of them, without any claim for completeness, of 
course. Some of the problems are related to already solved questions, and have 
only a purely methodological interest; the explanation for this lies in the experi
mental fact that it is always useful to find more and more general methods. 

(I) It has been proved by K. Iwasawa [18], with the help of the theory of semi-
simple Lie groups, that the component of the identity in the group of automor
phisms of a compact group contains only inner automorphisms. Can a direct 
proof for this theorem be constructed? 

(II) Is it possible to determine all irreducible representations of the "classical" 
compact groups [32] by purely integral methods? In particular, is it possible to 
compute explicitly the characters of these groups by using only their functional 
equations, and to deduce the representations of these groups from the knowledge 
of corresponding characters? 

(III) Let s —» Us be a unitary representation of a locally compact group 
G = {s} in a Hilbert space § ; such a representation is called a factor repre
sentation if the weakly closed ring of operators generated by {Ua \ s Ç G} is a 
factor in the sense of F. J. Murray and J. von Neumann [25] (i.e., if the center 
of the ring is one-dimensional). (Factors have been classified by F. J. Murray 
and J. von Neumann [25] into the classes (In), n = 1, 2, • • • , (IJ), (III), (H«,)> 
and (III«,). Factor representations of all types exist if we consider discrete groups. 
Factor representations of connected groups and Lie groups were recently dis
cussed by F. J. Mautner [24] and I. E. Segal and J. von Neumann [30].) The 
question: Do there exist connected groups which admit factor representation of 
type (IIIJ? 

(IV) Let f(s) be a positive definite continuous function defined on a topological 
group G = {s}. Let us denote by {§, U8) the unitary representation of G de
fined by means of f(s) (cf. R. Godement [11]), and by R the weakly closed ring of 
operators in § generated by the operators {Ua \ s Ç G}. If one performs in a 
suitable way the decomposition of R with respect to its center, then one gets 
a corresponding decomposition of the representation {§, U*} into a continuous 
sum of factor representations {&(t), U8(t)}: 

{& ua} - / mt), 17.(0) «wo, 

where t runs through a certain locally compact space with a positive measure 
M (cf. F. I. Mautner [23], [24], J. von Neumann [26], R. Godement [15]). Is it 
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possible to find in almost every space fè(t) a (possibly bounded) Hermitian 
operator F(t) in such a way that the following is true: 

f(s) = j Trt(U8(t)F(t)) d»(t) 

where Tr* denotes some relative trace in the factor generated by the operators 
{ U8(t) | s G Cr} ? In case the answer to this question is yes, is this decomposition 
of f(s) essentially unique? (Of course, the problem (IV) depends on the problem 

an).) 
(V) Is it possible to find a simple characterization for the locally compact 

groups all the factor representations of which are of type (In), n = 1, 2, • • • , or 
(I«,)? Is there any relation between this problem and the decomposition of the 
Haar measure into ergodic parts with respect to the group of inner auto
morphisms? 

(VI) Can the classical theory of characters be extended to general groups? 
The first task is to find a definition of characters which applies to every case 
(the definition proposed by myself [12], [13], [14], is not general enough), and 
then to solve the following problems: Are the characters defined by some ex
tremal properties? Do the characters possess some simple functional properties? 
Are they in correspondence with irreducible two-sided representations (in the 
sense of R. Godement [12] and I. E. Segal [28])? Can every positive definite 
measure which is invariant under inner automorphisms be decomposed into some 
kind of continuous sum of characters? The last problem includes a generalization 
of the Plancherel theorem to noncommutative and noncompact groups (cf. 
R. Godement [9], [10] and I. E. Segal [29]). 

(VII) In many special cases it is observed that the Plancherel theorem can be 
proved as follows: One decomposes the left regular representation into a con
tinuous sum of irreducible z^epresentations; then one brings together the com
ponents which belong to a given class of irreducible representations. Can this 
process be extended to arbitrary groups? 

(VIII) Let E be a locally compact space and G a locally compact group which 
acts on E. Let jubea positive measure on E such that the family of all ju-null 
sets of E is carried onto itself by the transformations of G. Then one can define 
in an obvious way a unitary representation of G in the corresponding L2-space on 
E. The problem is to find a condition under which such a representation is 
irreducible and to find conditions under which two representations of that kind 
are similar. Some progress in this direction was recently made by G. W. Mackey 
[20], [21], [22]. Similar problems occur for representations which are defined by 
the method of positive definite kernels (as for instance in the case of supple
mentary series in the Lorenz group). (Cf. I. Gelfand and M. Neumark [5], [6].) 

(IX) To extend to general groups the duality theory already known for 
locally compact abelian groups (L. Pontrjagin [27]) and for compact groups 
(T. Tannaka [31]). 
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(X) A theory of "spherical harmonics in symmetric Riemann spaces" was 
recently published by I. Gelfand [3]; but Gelfand's results are related only to 
functions which are invariant under the group of rotations around a fixed point 
of the space. Can these results be extended to systems of spherical functions, 
associated with the irreducible representations of that group? I t is quite im
portant to solve these problems in a general way. But it is also equally important 
to investigate the situation in detail in every special case and to get precise 
results about Bessel functions, hypergeometric functions, and so on. One may 
believe that this part of the problem is not the easiest one. 

(XI) To study unitary representations of real semi-simple Lie groups. I. 
Gelfand and M. Neumark [4], [5], [6], [7], [8] obtained many results in the com
plex case. But the case of real unimodular groups was discussed by V. Bargmann 
[1] only in the case of two variables so that there is still much to be done. 

(XII) Let us denote by G a connected semi-simple Lie group, by ® its Lie 
algebra, by A the universal envelopping associative algebra of ©. From a well-
known result of L. Gärding [2], it follows that to every unitary representation of 
G in a Hilbert space $ , there corresponds *a linear representation of A in an 
everywhere dense subspace of $ . The problem is to find relations between ir
reducible representations (or more generally factor representations) of G and the 
corresponding linear representations of A. Important results were obtained 
recently in this direction by Harish-Chandra [16], [17]. But there are still un
solved problems. For instance : when two unitary representations of G give rise to 
two algebraically equivalent representations of A, are these two representations 
unitary equivalent? (This problem was solved by Harish-Chandra in the mean
time.) 

(XIII) We use the notations of problem (XII). One can consider in an obvious 
way the elements of the algebra A as being differential operators on the manifold 
G. The center Z of A then becomes a commutative algebra of operators which 
are both left and right invariant. Let us say that a function—or more precisely, 
a distribution in the sense of L. Schwartz—is a character of G if (i) it is invariant 
under inner automorphisms of G, (ii) it is an eigenfunction for each element of Z. 
What are the properties of characters thus defined? Are they associated with 
(not necessarily) irreducible representations of G? Could the characters be used 
in order to construct some kind of Laplace transforms? (Cf. G. W. Mackey 
[19].) 

(XIV) In many cases the determination of all irreducible representations of 
a semi-simple Lie group can be performed by two different methods: the in
finitesimal method and the integral method. So far, it seems that the integral 
method is more powerful since it leads to explicit formulas for decomposing 
reducible representations into irreducible ones. Could the same results be ob
tained by the infinitesimal method? 

(XV) Let G — {s} be a Fuchsian group in the unit circle of the complex 
2-plane. Can the theory of zeta-Fuchsian functions of Poincaré be extended to 
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infinite-dimensional representations of G ? In particular, let s —> Us be an ir
reducible representation of G in a Hilbert space &. Is it possible to realize § by 
means of some vector space of meromorphic functions in the unit circle in such 
a way that (i) the operators Ua are given by a formula like 

UJ(z) = d(s-lz)' 
dz 

/(s_1z) 

(ii) the scalar product of any two elements of & can be computed in a simple 
way (this is obviously the more important part of the problem) ? 

(XVI) Let G = {s} be a Fuchsian group in the upper half 2-plane. Let § 
be the Hilbert space of all analytic functions f(z) defined on the upper half 
2-plane such that 

/ / 
| f(z) | dx dy < oo, z = x + iy. 

One defines a unitary representation s —» Us of G in § by 

v.m _ [«£•>]&•& 
The problem is to find a decomposition of this representation into irreducible 
parts. I t is easy to suggest many other problems analogous to (XV) and (XVI). 

(XVII) Let G = {s} be a locally compact group, n a positive integer, Qn — 
the set of equivalence classes of irreducible 7i-dimensional unitary representations 
of G. Since there exists a one-to-one correspondence between members ê of Gn 

and their characters x#(s), one may introduce a topology in ôn by saying that a 
sequence of classes {#p | p — 1, 2, • • • } C ùn converges to a class #0 G ùn if 
the sequence of characters {x&p(s) \ p = 1, 2, • • • } converges to the character 
X,j0(s) uniformly on every compact subset of G. It turns out that ùn becomes a 
locally compact space with respect to this topology. Have these topological 
spaces interesting properties from the point of view of algebraic geometry? 
In this argument, it is of course necessary to assume that G possesses "suf
ficiently many" finite-dimensional unitary representations. (This is true, for 
example, if G is a finitely generated discrete group.) 

(XVIII) Let G == {s} be a compact Lie group. Let us denote by s —» U8 the 
adjoint representation of G. Then it is known that 

P(z) = [ det (Us + z-l)ds 

is the Poincaré polynomial of G. Is it possible to compute this integral explicitly 
by means of analytical methods? This problem is stated by H. Weyl in [32]. 

(XIX) To find new applications of the theory of group representations to 
other parts of mathematics. 
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f ; , t , TOPOLOGICAL ALGEBRA1 

, , - , • , , * • K A P L A N S K Y 

Topological algebra made its first appearance in thé paper of Kürschak [9], 
where the definition of an abstract field with a valuation is clearly set forth. 
The foundation was completed in the thesis1 of van Dantzig [3]; topological 
groups, rings, fields, and linear spaces are there defined, and their basic proper
ties are established. 

In 1933 an important advance occurred when Haar [7] demonstrated the ex
istence of an invariant measure in any locally compact group. Since then, our 
understanding of the structure of locally compact groups has rapidly grown. 
Most notably, Hilbert's fifth problem has been solved for compact groups and 
for solvable groups, and the general case appears to be within reach. 

With the appearance of Banach's book [1] in 1932, the work of the Polish 
school on functional spaces reached its climax. With the perspective of two more 
decades, it seems to be fair to say that the expectation that Banach spaces would 
be a definitive unifying concept has been partly disappointed. Banach spaces 
are at once too general and too special; they are too general in that our detailed 
knowledge of Hilbert space shows no prospect of being extended to Banach 
spaces. They are too special in that they do not cover important instances of 
topological linear spaces that are met in applications. 

Somewhat crudely, we may describe the present situation in the theory of 
topological linear spaces as follows. Banach's results fall into two types. In the 
first type the arguments are of a highly algebraic nature; here a great clari
fication was achieved by Mackey's program [10] of studing pairs of dual linear 
spaces in a purely algebraic way. In the second type of theorem, an important 
part of the proof rests on a topological device, or above all on a category argu
ment. Here considerable progress has been made recently by Dieudonné and 
Schwartz [2]; they investigate topological linear spaces admitting a complete 
metric and direct limits of such spaces. The results have applications in 
Schwartz's theory of distributions. 

In the present decade, much work has been devoted to Banach algebras 
(normed rings) since the publication of Gelfand's paper [5]. Gelfand attracted 
attention by his observation that a useful theorem due to Wiener could be 
regarded as a statement about inverses and maximal ideals in a suitable Banach 
algebra. Segal [12] and independently Godement [6] have pushed this line of 
investigation further. 

In the study of Banach algebras themselves, there are at present two direc
tions in which work is being done. One may attempt to probe more deeply 

1 This is a brief summary of the oral report delivered by the spokesman, who bears sole 
responsibility for it. A full account, prepared jointly by all three members of the panel, 
will appear elsewhere. 
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into the structure of a fairly general commutative Banach algebra; Silov, in a 
series of papers of which [14] is typical, has made some noteworthy contributions 
to this program. In the noncommutative case, study is at present largely con
fined to self-adjoint uniformly closed algebras of operators on Hilbert space 
(called C*-algebras by Segal in [13]). A commutative C*-algebra (say with unit) 
is completely known: it admits a faithful representation as the algebra of all 
continuous complex functions on a compact HaUsdorff space. In a mild general
ization of the commutative case, Kaplansky [8] finds that a suitably weakened 
version of this theorem is still valid. 

Concerning the structure of the most general C*-algebra, there is as yet 
little that can be said as long as we merely assume uniform closure. If however 
we strengthen this hypothesis to weak closure, then a fairly definitive structure 
theory becomes available; it was given by Murray and von Neumann in a series 
of five memoirs, beginning with [11]. The theory of weakly closed algebras has 
again been taken up recently by Dixmier [4] and others, and there is every 
indication that our knowledge of them will be considerably increased. 
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MEASURE THEORY 

PAUL R. HALMOS 

The purpose of this report (prepared in collaboration with J. Dieudonné, 
D. Maharam, and J. C Oxtoby) is to describe some of the recent developments 
in measure theory. The report falls into three sections concerned with problems 
of existence, differentiability, and decomposability, respectively. 

The existence problems treated are those discussed by Banach, Kuratowski, 
and Ulam (nonexistence of well-behaved measures defined on the class of all 
subsets of a set), Kolmogoroff, Doob, and Jessen (extension of measures to 
product spaces), Carathéodory, Oxtoby, and Ulam (characterizations of Lebesgue 
measure), Markoff, Alexandroff, and Nikodym (measures in topological spaces), 
Haar, Cartan, and Loomis (measures in groups and uniform structures), and 
Szpilrajn, Kakutani, and Kodaira (extensions of Lebesgue measure). 

The fundamental result on differentiability is the Radon-Nikod^m theorem. 
The important problems here concern the exact domain of applicability of the 
theorem. Conditions for its validity have been obtained by Oxtoby, Godement, 
and Segal, and generalizations to Banach space valued integrals were given by 
Dunford, Pettis, and Dieudonné. In order to state precisely the results of the 
latter named authors, the theories of abstract integration (initiated by Bochner 
and Gelfand) are also discussed in the report. 

The problem of decomposing a measure space was first treated (in a special 
case) by von Neumann; since then it has received extensive attention from 
Halmos, Maharam, and Dieudonné. Particularly relevant here is the work of 
Maharam characterizing measure algebras and their generalizations; the report 
gives a summary of her results. 

Only this somewhat telegraphic table of contents is offered here because, 
unlike some of the other lectures at the Conference on Algebraic Tendencies in 
Analysis, the oral presentation of the spokesman was essentially a subset (selected 
by the spokesman) of the collaboratively prepared written report, which is soon 
to be published elsewhere. 
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THE REDUCTION PROBLEM IN SPECTRAL THEORY 

NELSON DUNFORD 

As spokesman for the panel on spectral theory I have been given a choice of 
either presenting a survey of progress in this field or of speaking on some special 
aspect of the subject. Since the committee has, so far, been able only to sum
marize a small proportion of the research in spectral theory and since the report 
of the panel will be published in detail elsewhere, I have chosen to talk to you 
about a problem in spectral theory which has been of particular interest tome. 
The problem is that of the complete reduction of a linear operator. What is 
sought is something that will parallel closely the classical theories of the canonical 
reduction of a finite matrix. The interpretations to be given for this problem will 
be more readily understood if the known results for finite matrices are first 
stated in a form similar to that which is to be expected for certain more extensivq 
classes of linear operators. Consequently let us first consider a finite-dimensional 
linear vector space ï over the field of complex numbers. Let Xi, • • • , A* be the 
characteristic numbers of the linear transformation T in 36 and let Vi be the 
multiplicity of A< as a root of the minimal equation for T. If the symbol SDÎJ 
is used for the set of vectors x for which (T — AI)"a; = 0, then a geometrical 
form of the canonical reduction of T is given by the equation 

(i) ï = SDîXî e • • • © mil 

This equation means that every x 6 H has a unique decomposition of the form, 
x = Xi + • • • + xk with Xi Ç Wfl\\ , i = 1, • • - , k. If we define E^x = Xi, 
then E\{ is a projection of H onto SDÎ̂  and equation (1) becomes 

(2) J = SXl + • • • + EH. 

Let us define, for every set a of complex numbers, the operator Ea to be zero 
if o- contains none of the numbers Ai, • • • , A*,, otherwise Eff is the sum X) $u 
taken over those i for which A* 6 <r. It follows in an entirely elementary fashion 
that the operators Eff have the following properties 

(i) E0 fi ET = Erfw, E9\J ET = EaÜT,' E0 = 0, Epl = J, 

(ii) ETT = TET, • <r[T, Er%] C r, 

where here we have written A PI B for AB, A U B for A + B — AB, 0 for the 
void set, pi for the whole complex plane and o\T, SDÌ] for the spectrum of T when 
considered as an operator in the subspace 9)?. Property (3(i)) states that E9, 
ff £ B, is a homomorphic map of the Boolean algebra 93 of all the subsets of the 
plane into a Boolean algebra of projections. Since, as may be readily shown, 
conditions (3) determine Ea, <r G S3, uniquely and since conditions (3) do not 
explicitly exhibit the finite character of T as is exhibited in equations (1) and 
(2), we are led by conditions (3) close to the formulation of the problem. There 
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are two features however of the conditions (3) which should be modified if we 
are thinking, as we are, of interpreting the problem for a bounded* linear operator 
T in a complex Banach space 36. First .of all it is too much to expect that Ea 

be defined for every set a of complex numbers. Secondly, since the spectrum of a 
bounded operator is always a closed point set, it seems, desirable to write .the 
condition (3(ii)) as ErT = TEr , o\T, ETX] C ?. Thus we are led to the following 
rough formulation of the problem. 

PROBLEM (first part). Find a sufficiently large Boolean algebra S3 of sets in the 
complex plane and a homomorphic map ET , r Ç S3, of S3 into a Boolean algebra of 
projections such that for every r Ç S3 

! ETT = TET, <r[T, Eri] C f. 

The second part of the problem will make clear what is meant by "a sufficiently 
large Boolean algebra". We are going to demand that the algebra S3 be large 
enough so that an operational calculus may be based upon the resolution of the 
identity ET, r 6 S3.. 
. Before making this statement more precise let us again turn our attention to 
the case where 3Ê is finite-dimensional. In this case it follows immediately from 
the properties of the projections E\t that for any polynomial / we have 

(4) f(T) - I E ' *—P (T - \IYEI, . 

ï h i s formula, which is an analytical representation of a homomorphism between 
the algebra of polynomials in T and a direct sum of reduced polynomial algebras, 
enables one to calculate/(T) in terms of the projections E\{ and the values taken 
on by the scalar function / and its derivatives on the spectrum <r(T) of T. In 
terms of the resolution of the identity Eff, the formula (4) may be written as 

(5) . fm = z f Ä > (T - \iy dEx. 

If the indices Vi for T satisfy vi ^ m, then (5) takes the form 

(6) fili = E T ^ (r - X/ ) ' dEi. 

Im particular, Hermitian symmetric matrices have vi == 1, and for such T, 
pquation (5) reduces to 

Ì7) 0) = f f(\)dEx. 
Jff(T) 

\ The formula (4} or (5) may be used to define its' left-hand side when / is a 
fonction in the class F(<r(T)) of all complex-valued functions single-valued and 
analytic on the spectrum a(T) of T. I t then sets up a homomorphic mapping of 
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the algebra F(<r(T)) onto the algebra of polynomials in T. From this fact it may 
be deduced immediately that 

(8) f(T) - i - . fc (A/ - r r 7 0 0 d\ feF(<r(T)), 

where C is a contour surrounding <r(T) and chosen so that / is analytic1 

on and within C. 
Now in case T is a bounded linear operator on the complex Banach space 36, 

the class F(a(T)) may be defined as before and the formula (8) may be used2 

to define the operator/(T) which corresponds to a scalar function/ in the algebra 
F(<r(T)). Such a correspondence is an algebraic homomorphism. The formula 
(8) has proved to be of considerable value in some discussions8 but of little or no 
help in certain problems which might be readily handled with the aid of a formula 
of the type (5), (6), or (7). This is because formula (8) gives/(T) in terms of the 
values /(A) with X on a contour G surrounding the spectrum, whereas (5), (6), 
or (7) gives f(T) in terms of the scalar function / and its derivatives on the 
spectrum. Thus for an operator T satisfying an equation of the type (6) one 
would expect to be able to show that /n(T) —» 0 providing fn and its first m — 1 
derivatives converge (in some sufficiently strong sense4) to zero on the spectrum 
v(T). This is one of the types of problems encountered in ergodic theory. The 
second part of the problem is then that of representing the homomorphism given 
by (8) of the algebra F(a(T)) into an algebra of operators in terms of the values of • 
the scalar function and its derivatives on the spectrum. Or, more explicitly, 
we may state the following. 

PROBLEM (second part). Express the integral 

± Jc (XJ - TT VW d\, f G F(a(T)), 

in terms of the quantities 

ET , T\ fM(X); r £ So, X 6 ?(T), n = 0 , 1 , • • • . 

1 In the case where / is a power series and C is a circle, formula (8) has been given 
by H. Poincaré, Sur les groupes continus, Transactions of the Cambridge Philosophical 
Society vol. 18 (1900) pp. 220-255. 

2.See, for example, A. E. Taylor, Analysis in complex Banach spaces, Bull. Amer. Math. 
Soc. vol. 49 (1943) pp. 652-669, N. Dunford, Spectral theory, Bull. Amer. Math. Soc. vol/49 
(1943) pp. 637-651, and N. Dunford, Spectral theory I, Trans. Amer. Math. Soc. vol. 54 
(1943) pp. 185-217. 

3 To mention but one of many uses to which formula (8) has been put, we cite the exten
sion of the Fredholm-F. Riesz-T. H. Hildebrandt theory of integral equations to the case 
where the resolvent T(£) is a meromorphic function of l/£. 

4 If for example Eff is countably additive, one would expect the bounded pointwise con
vergence of fty (X), u = 0, • • • , m — 1, X Ç <r(T), to yield the desired conclusion, whereas if 
only | Ec | ^ M, one would expect to have to assume the uniform convergence of these 
functions. 
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>It: ds through the contemplation of the plausible methods of attack on this 
second part of the problem that one is led to several interpretations of the 
first part. For, in the light of the various solutions of the second part in the 
finite-dimensional case (the,solutions expressed by (5), (6), and (7)), it is clear 
that some form of integration will be needed in the construction of the solution 
of the second part of the problem. If, for example, the norms of the projections 
ET, T 6 S3, are unbounded, a different definition of integration would be needed 
than that which might suffice otherwise. In the bounded case, perhaps an in
tegral of the Hildebrandt-Fichtenholz-Kantorovich type would suffice to 
throw light on the problem. If the resolution of the identity ET , T £ S3, is count-
ably additive (in the weak operator topology), it is of course bounded and a 
Lebesgue or a Riemann integral may be used to integrate the required functions 
provided the Boolean algebra S3 contains enough sets. The family of Borei sets 
is sufficiently large for this purpose, but for some operators it is much larger than 
necessary. Of course it is conceivable that the problem may be given a fair degree 
of precision even without the assumption that Er, for a fixed r Ç S3, be a bounded 
linear operator. Thus there are several distinct problems determined by the 
metric or topological conditions imposed upon the homomorphism Er, r 6 S3. 
For operators T having a countably additive resolution of the identity Er 

defined for r in the algebra of Borei sets, the properties of the Lebesgue integral 
yield such elegant results concerning T (especially if the resolvent T(£) = 
(£/ — T)~l has a finite rate of growth for_£ near <r(T)) that it seems highly de
sirable to characterize this class of operators. Consequently I shall devote the 
remaining part of this lecture to summarizing a few of the known5 results con
cerning operators which possess a countably additive resolution of the identity 
ET defined for r in the family S3 of Borei sets in the plane. Such operators will, 
for the sake of brevity, be called spectral operators. For spectral operators the 
solution of the second part of the problem is immediate and is summarized in the 
following theorem. 

THEOREM. / / T is a spectral operator, the resolution of the identity ET, for r 
a Borei set, is unique and for every f £ F(cr(T)) we have 

f^(A) 
(5) f(T) = E f f - ^ (T - \IY dEi, 

where the integral exists as a Riemann integral in the uniform topology of operators 
and the series converges in the uniform topology of operators. 

The principal problem is that of characterizing spectral operators, and very 
little is known concerning this. There are, however, a few necessary conditions 

5 The formulation of the reduction problem as outlined here as well as the results to be 
mentioned were obtained in connection with the research done under contract N7onr-448 
with, and reported to, the Office of Naval Research during the period between Sept. 1, 
1947 and May 1, 1948. 
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and, for operators in a restricted class, conditions which are necessary and sufficient 
in order that an operator T be a spectral operator. These conditions may all be 
stated in terms of the analytic properties of the resolvent 5T(£) = (£/ — T)~l. 
We shall first describe three necessary conditions. For a vector x £ 36 the vector-
valued function T(Ç)x defined on the resolvent set p(T) of T is analytic and may 
have analytic extensions to a larger open set containing p(T). Let x(£) be the 
maximal analytic extension of T(%)x and let p(x) be the open set upon which 
%(£) is defined. Then if T is a spectral operator, x(£) is single-valued. If <r(x) 
is the complement of p(x) and if [cr] = [x \ a(x) C a], then a second necessary 
condition is that [a] be closed if a is closed. The third condition is stated in terms 
of a sort of residue. Let C be a rectifiable Jordan curve in the domain of ah-
alyticity of x*x(£) where x* is a point of the conjugate space 36*. Let a be the set 
of singularities of x*x(£) which are contained within C, and let 

(x\x)a^±-.jGX*x(i)di. 

Then an obvious necessary condition (even if T is to have only a bounded resolu
tion of the identity) is the existence of a constant K such that | (x*, x)„ | ^ 
K | x | • | x* | . To summarize we state the theorem: 

THEOREM. In order that T be a spectral operator the following conditions are 
necessary. 

N(l) ß(£) is single-valued, ( 

N(2) [a] = [x | a(x) C cr] is closed if & is closed, 

N(3) | (x*, x)a | g K | x | • | x* | (the boundedness condition).6 

Before stating conditions which are sufficient to insure that T be a spectral 
operator, we should like to discuss briefly the following question. If an operator 
T has its spectrum a(T) nowhere dense in the complex plane (in this case 
N(l) is automatically satisfied), how near do conditions N(2) and N(3) come to 
being sufficient for the existence of a countably additive resolution of the identity 
Er defined for r in the family S of Borei sets? Let us suppose then, for the 
moment, that T satisfies N(2) and N(3) and has its spectrum a(T) nowhere 
dense. We shall describe how a Borei field m(T) of sets "measurable T" may be 
defined which is, in a certain sense, a maximal domain of definition of a countably 
additive resolution of the identity for T. We shall then state a condition on the 
rate of growth of the resolvent (condition S(l) to follow) which will be sufficient 
to insure that m(T) contains all Borei sets. 

| 6 The geometrical interpretation of the boundedness condition is that it demands a 
minimum positive angle between the various manifolds upon which we are going to project. 
In case T is a self-adjoint operator in Hilbert space, the spectrum is real and, by choosing 
the contour G to be symmetrical with respect to the real axis, it may be shown that K in 
N(3) is at most one. 
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We begin by defining the class Si as the class of all sets a of complex numbers 
with the property that vectors of the form x + y with a(x) C a and a(y) C ar
are dense in TL. For such <r there is clearly one and only one bounded projection 
E„ in 3E with the properties that Eax = x if o-(x) C <r, Eax = 0 if <r(x) C cr. The 
operator Ea also has the properties TEa = EJF, <r[T, E0X\ C cr. 

Next we define the class s2 of all sets cr of complex numbers which have the 
following property. For every z G T£ and every e > 0 there are vectors x and 
y with 

| » + y - 2! | < e, <r(x) CZ O-(2;)O-, crQ/) C cr(z)ar. 

This family s2 is contained in s±, is a Boolean algebra, and Eff , <r £ s2, is a 
bounded resolution of the identity for T, i.e., Eff , o- 6 s2 , satisfies the conditions 
(i) E* , <T 6 s2, is a homomorphism of the Boolean algebra s2 into an algebra of 

projection operators. 
(ii) TE, = EJF, o\T, EffX] C <r. 
(iii) | Eff \ S K. 
The resolution of the identity E9 is countably additive on the subalgebra s3 C s2 

defined as follows. The symbol s3 will be used for those sets c C sx for which therç 
exist closed sets p,n , z>n in s2 with vn C cr, jun C or, n = 1, 2, • •.• , and 

ic = lim (EVn + Epn)x, x Ç X. 

The family s3 is a Boolean algebra and Ea , a Ç s3 , is a countably additive (in 
the strong topology) resolution of the identity for T. The smallest Borei algebra 
of sets containing the Boolean algebra s3 will be called the family of sets measur
able T and will be denoted by m(T). 

THEOREM. If <r(T) is nowhere dense and if 36 is weakly complete, a countably 
additive resolution of the identity Eff, <r Ç m(T), exists provided the conditions 
N(2) and N(3) are satisfied. 

We shall now restrict our attention to an operator T whose spectrum <r(T) 
is contained in a Jordan curve V of class C". Conditions which are sufficient to 
insure that T is a spectral operator will be described. The first of these is the 
following. 

S(l) (The growth condition). For each f G r there is an integer v(Ç) and a 
number K(Ç) such that 

I (f - ö , (0r(Ö I ̂  Kit) 
for £ near f and in the normal to Y at f. 

A more restrictive condition which will occur in some of the following remarks 
is the following. 

S(1)OT . If d(%) is the distance from £ to the spectrum <r(T), then 

d®"11 T(Ö | g K 
for £ near the spectrum. 
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Unfortunately, as elementary examples show, neither of these conditions is 
sufficient to insure that T be a spectral operator. However, in reflexive spaces, 
we have the following two theorems. 

THEOREM. Let 36 be reflexive and let T satisfy the growth condition S(l). Then 
T is a spectral operator if and only if the boundedness condition N(3) is satisfied. 

A spectral operator is said to be of type m in case 

f(T) = E f f - ^ (T - \I)n dEx, fe F(a(T)). 

In reflexive spaces such operators may be characterized according to the follow
ing theorem. 

THEOREM. The bounded linear operator T in the reflexive space $ is a spectral 
operator of type m if and only if the conditions S(l)w and N(3) are satisfied. 

In case the space X is assumed only to be weakly complete, there are results 
analogous to the two preceding theorems but they require another condition 
which will now be described. Let SDîf, Sftf be the zeros and range of the operator 
(T - f/)" respectively. Then it turns out that the manifolds 3«f(f) and W}lt) 

are independent of the function v(Ç) satisfying S(l). If these manifolds are 
designated by the symbols SDfy , 9îf respectively, then the additional condition 
referred to is the following. 

S(2) (The density condition). For every f in a set dense on V we have Mç + ATj-
dense in 26. 

The density condition will, of course, be satisfied providing no subarc (of 
positive length) of V contains entirely points in the point spectrum of 21*, thß 
adjoint of T. Thus we have the following theorem. 

THEOREM. In weakly complete spaces, an operator T is a spectral operator 
provided it satisfies the growth, density, and boundedness conditions, and it will be an 
operator gf type m if it satisfies, in addition, condition S(l)m . 

The role played by the boundedness condition N(3), as a sufficient condition, 
may be replaced by a type of mean rate of growth condition. In order to state 
this, suppose that £(A, 0),— 1 ^ \ g 1, gives V and that for 8 > 0 the points 
£ = £(A, 8) and f" = £(A, — 8) are on the normal to T at £(A, 0), £ being on ,the 
exterior normal and £~ on the interior normal and both at a distance 8 from the 
point f(A, 0). . . . . . . i 

S(3) (The mean rate of growth condition). For every x£ 36, and x* G 36* the 
resolvent T(£) or some operator function U(£) having the same residues satisfies the 
condition 

lim sup f+11 x* iu(i) £ - U(f) d4r\ X L < oo. 
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\ For certain curves V the mean rate of growth condition may replace the 
boundedness condition as a necessary as well as a sufficient condition. We shall 
summarize the known facts for the case where the spectrum <r(T) is contained 
in the interval ( — 1, 1). In this case the growth and mean growth conditions may 
be more readily comprehended, They become the following. 

*G(1) (The growth condition in case<r(T) C (—1, 1)). There is an integer v(\) 
siÂch that for 8 real 

lim sup | ÔKX)5P(A + iô) | < oo, - 1 < A < 1. 

G(2) (The mean rate of growth condition in case <r(T) C (—1, 1)). For some 
Z7(£) having the same residues as T(£) we have 

lim sup / | x*{U(\ + i8) - U(\ - i8)\x \ dk < oo. 

We may summarize as follows: 

'THEOREM. / / H is reflective, <r(T) C (—1, 1), and T satisfies the growth con
dition G(l), then T is a spectral operator if and only if the mean rate of growth 
condition G(2) is satisfied. 

' THEOREM. / / X is reflexive and <r(T) C (—1, 1), then T is a spectral operator of 
type m if and only if it satisfies the mean rate of growth condition G (2) and the 
growth condition 

Gm | 8mT(\ + id) | g K, - 1 < A, 8 < 1. 

Furthermore T will be of type 1 if and only if it satisfies Gi and G(2) with U(l*) » 

If 36 is not necessarily reflexive but weakly complete, the two preceding 
theorems remain valid provided T satisfies the density condition S (2). This 
denâity condition will be satisfied if, for example, the union of the continuous 
spectrum and the resolvent set is dense in (—1, 1). 

The results we have outlined for spectral operators in weakly complete or 
reflexive spaces have analogues in an arbitrary complex Banach space 36. The 
chief role played by the assumption of completeness was to assure that E9 was 
idiérlned for every Bòrei set a and not only for those cr in a "sufficiently large" 
Boolean algebra S3. 

YALE UNIVERSITY, 

•> \\ N E W HAVEN, CONN-., U. S. A. 



APPLIED FUNCTIONAL ANALYSIS 

N. ARONSZAJN 

At the preliminary meetings of the panel it was decided to limit the subject to : 
"Results in differential problems connected with problems in applied mathe
matics and obtained by essential use of the theory of abstract spaces". In view 
of the great amount of material under this title, the spokesman decided to further 
limit the address to: Application of Hilbert spaces to linear differential problems, 
especially boundary value and eigenvalue problems. 

In this address an attempt is made to give a unified presentation of the dif
ferent ways in which Hilbert spaces were applied, and to state the basic dif
ficulties and problems encountered in this application. 

The report of the panel which is to appear in a volume of Mathematical Surveys 
will treat the results obtained in this application as well as results pertaining to 
subjects under the more comprehensive title decided upon by the panel. 

In the presentation given here all references and bibliography have been 
omitted. These will be given in the report of the panel. 

1. Generalities about differential problems.1 In a domain D with boundary 
C in a i>-dimensional euclidean space we consider boundary value problems of 
the form 

(1.1) Au — 0 in D, A#JL = <l>i on G, 

and eigenvalue problems 

(1.2) Au = \m in D, A&JL = 0 on C, 

where A is a linear differential operator of order m with coefficients defined in 
D; Ai are linear differential boundary operators. The boundary C and the coef
ficients of the operators will be supposed sufficiently regular. The above equations 
have a meaning for functions u belonging to the class G(w) in D (i.e., continuous 
in T> with all their derivatives of order less than or equal to m). In boundary 
value problems the boundary values fa will be supposed as given by a function 
q € e (w) so that 

(1.3) fa = Aiq. 

We shall also treat the more general eigenvalue problem where the equation 
Au = pu is replaced by Au = p,Bu, with the operator B defined in D. 

An operator A defined in D together with a system {Ai} of boundary operators 
on C forms a linear differential system {A; A»}. To avoid complication we shall 
suppose {Ai} a normal system, i.e., the A»- are normal boundary operators of 

1 Some developments of this section are not proved completely as yet in all generality 
for dimensions greater than or equal to 3. For the sake of brevity and a unified presenta
tion, all developments are stated without qualification. 
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strictly increasing orders. A boundary operator A, say of order k, is called normal 
when represented in terms of normal and tangential derivatives it contains the 
pure normal derivative dk/dnk with coefficient 1—all its other terms containing 
pure normal derivatives of order less than k.' 

The notions of elliptic, parabolic, and hyperbolic operators on a set 8 will 
be defined in the usual way; also the formal adjoint A* of A. A is formally self-
adjoint if A = A*. 
, A linear differential system {A; A*} with a normal system {Â } composed of I 

operators of orders less than or equal to m — 1 always possesses an adjoint system 
{A*; Ay} with a system {A3-} (not necessarily normal) composed of at most 
m — I operators such that 

(1.4) / Au vdz = / uA*v dz + • / ( ]C Aiutato + ^ AffuA*v ) ds. 
JD JD JC \ % j / 

T?he Ai and A3- are some boundary operators such that the bilinear differential 
form in I0 is of total order less than or equal to m — 1. The system {A*} is well 
determined except for an equivalence.2 If an adjoint system {A.*; A*} can be 
formed with a normal system {A,-} (which is always the case when A is elliptic 
on C), then the adjoint system of {A*; A3-} is, except for an equivalence, the 
system {AjA*}.*, 

If A is. formally self-adjoint and {A3-} is equivalent to {A*}, the linear dif
ferential system {A; Ai} is called self-adjoint. If A is elliptic on C and of order 
2t, the simplest example of a self-adjoint system is obtained withA^ = dz/dn\ 
i = 0, 1, 2, • • • , t — 1. This is a generalized Dirichlet system and the corre
sponding boundary value problems are called generalized Dirichlet problems. 

The system {A; A*} is positive or positive definite when the quadratic form 
jD Au ü dz is positive or positive definite in the class of all functions u Ç <3(m) 

satisfying the boundary conditions A#JL = 0. In such a case A must be formally 
self-adjoirit and elliptic or parabolic; hence it must be of even order ra = 2t. 
Thé system is called formally positive with respect to operators Ak and Qy if the 
quadratic form is representable as a sum of formally positive terms: 

i 

(1.5) f Au ûdz = YJ I \ AkU \2 dz + X) [ \ Oyw |2 ds, 
JD k JD j JC 

for all u Ç e(m) satisfying A ^ = 0. We shall suppose always that the ß / s a r e 0I* 
orders less than or equal to t — 1. 

Formula (1.5) implies that all A^'s are of orders less than or equal to t and that 

(1.6) A = ^AÎAk. 
Ar 

When A satisfies such a formula, it is called formally positive. 

2 Two systems {Â J and {AJ-J are equivalent if the corresponding sets of boundary con
ditions Km — 0 and Ajw = Ö are equivalent. We define similarly weaker and stronger system^ 
of boundary operators. •' » 
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For an elliptic (in D) formally positive operator A of order 2t, we call normal 
boundary operators of orders less than or equal to t — 1 stable boundary operators, 
those of orders greater than or equal to t, unstable. 

In the considerations of formally positive linear differential systems {A; A*} 
we can always suppose that {A»- ) is what we call a minimal system. A minimal 
system is a normal system composed of t operators of orders less than or equal to 
21 — 1. Except for an equivalence, its unstable boundary operators are determined 
by the stable ones.3 The name "minimal" is justified by the fact that if we con
sider all normal systems {A*} such that {A;'At-} is formally positive, each of them 
is stronger than some minimal system and that two minimal systems are either 
equivalent or noncomparable. 

2. Generalities about the application of Hilbert spaces to differential problems. 
Formally, this application began with the introduction of abstract Hilbert 
spaces in the late twenties. However, many classical methods concerning varia
tional problems equivalent to differential problems can be interpreted as belong
ing to Hilbert space theory. The basic idea of the application consists in trans
lating the differential problem in terms of a well determined operator in a chosen 
Hilbert space. I t is especially fruitful if this operator is self-adjoint—the theory 
of such operators being the most completely analyzed.4 

Two methods can be distinguished for choosing a Hilbert space for the treat
ment of a differential problem. 

(1) First method. Usually the space £2 in the domain D is taken as the Hilbert 
space. A differential system {A; A;} determines directly the operator L in £2 

with domain composed of all functions u G G(m) satisfying the boundary con
ditions AiU = 0. For such functions Lu is defined as equal to Aw. The operators 
treated here are always nonbounded. 

If we consider two adjoint systems {A ; Ai} and {A*; A,- } and the corresponding 
operators L and U in <£2, it can be proved that the smallest closed extensions 
L and Lf exist and that L' is always a restriction of the adjoint operator L*. 
Two basic problems arise: 1°. To characterize the functions u belonging to the 
domain 33£ of L and to determine the value Lu; in particular, to determine when 
and in what sense Lu = Au. 2°. To determine the systems for which L* = L'. 
It is to be expected that this equality is usually true; this would mean that 
for a self-adjoint system {A; A»-} the operator L is self-ad joint. 

The main problem treated by this method for formally self-adjoint A is the 
following : we can denote by A the operator L in £ corresponding to the system 
{A; 0} (i.e., without any A/s). The operators L for any system {A; A*} are 
restrictions of Ä. The problem is then to determine all self-adjoint restrictions 
of 2. 

8 In variational problems corresponding to the system |A; Â } with a minimal system 
(Ai), the unstable boundary operators appear as the "natural" boundary conditions. 

4 The normal operators have also been thoroughly investigated but until now an applica
tion to differential problems does not seem to have been found for them. 
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The boundary value problem is then treated in the form 

(2.1) Av = Aq in D, Alv = 0 on C, 

where q is the function realizing the boundary values fa by (1.3) and v gives the 
solution u of (1.1) by u = q — v. This leads to the inversion of the corresponding 
operator L. The eigenvalue problem leads to the spectral decomposition of L. 
When L is self-adjoint, both problems are completely solvable. 

The advantage of the method is that it permits the treatment of the most 
general differential systems and in many cases allows the establishment of the 
most general self-adjoint systems. However, the more general eigenvalue problem 
concerning the equation Aw-= pBu is not easily translated by the first method 
into a standard spectral problem for operators in the space £2. 

(2) Second method. This method is closely connected with classical variational 
methods. I t is applicable only to positive systems {A; A*} and especially to 
formally positive systems with minimal {Ai}. The Hilbert space introduced here 
depends on the system. At first we consider the space Q(2t) (2t = order of A) 
with a quadratic norm, || u ||2, being given by (1.5). In general this norm will not 
be a proper norm (\\u\\ may be equal to 0 for u ?& 0) but usually it can be made 
into a proper norm by adjoining to the fi/s in (1.5) some of the A/s.B The space 
e(2<) is then an incomplete Hilbert space. The essential difficulty here is to find 
a suitable completion of this space. 

The advantage of this method vis-à-vis the previous one is that when it can 
be applied, it leads to much simpler problems in the Hilbert space. 

Consider the completion e(2° of 6C2° and the space 3C composed of all u £ C(2° 
satisfying all the boundary conditions A{a = 0. Form the closure X of 3C in 
e(2° and the orthogonal complement 3CA = G(2° © 3C. A basic problem here is to 
characterize the spaces 3C arid 3CA. In usual cases the functions w of 3Z are char
acterized essentially by the stable boundary conditions Ajw = 0 and those of 3CA 

by the equation Aw = 0 in D and the unstable boundary conditions A& = 0. 
If then {Ai} is a generalized Dirichlet system, the solution u of the boundary 
value problem (1.1) is the projection of q on 5CX, the solution v of (2.1) is the 
projection of q on 3C. For other systems {A*} another simple interpretation can 
be given for the solutions u and v. 

The general eigenvalue problem with the equation Au — p.Bu in D is treated 
by considering in 3C the quadratic form fD Buü dz. This form determines a 
linear operator K in X satisfying (Ku, v) = ID BUV dz where (/, g) is the scalar 
product in 3C. The eigenvalue problem is then solved by the spectral decompo
sition of K. 

The connection between the second method and the classical variational 
methods allows us to apply Hilbert space theory to variational approximation 
procedures. 

5 Sometimes, as in the Neumann's problem for the Laplacian A, we may have to restrict 
the class <3(2° in some suitable way. 
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3. Concluding remarks. We can enumerate briefly the following advantages 
obtained by applying Hilbert space theory to linear differential problems. 

(1) I t allows the problems to be stated and treated under very general as
sumptions concerning the order of the problem, the nature of the operators, 
regularity conditions, etc. 

(2) Even if it does not permit one to solve the boundary value and eigenvalue 
problems in such generality,6 it often clarifies the problems and determines 
essential properties of the differential operators which permit a complete anal
ysis of these problems. 

(3) Concerning concrete problems, it has proved to be most advantageous for 
approximation methods—previously established variational methods have been 
improved and new methods devised. I t does not seem likely that any of these 
results could have been attained without the background of the abstract theory 
of Hilbert spaces. 

OKLAHOMA AGRICULTURAL AND MECHANICAL COLLEGE, 

STILLWATER, OKLA., U. S. A. 

8 This is to be expected since these problems are not always well defined. This is generally 
so when A is hyperbolic, and also when the boundary C of the domain is not sufficiently 
regular. 



ERGODIC THEORY 

SHIZUO KAKUTANI 

I t is impossible to give a complete report on ergodic theory in a talk of one 
hour. It is therefore not my intention to cover all parts of ergodic theory in the 
present talk. I have to be satisfied with the discussion of two or three topics from 
ergodic theory. A more detailed and mòre systematic report on recent develop
ment of ergodic theory compiled jointly by N. Dunford, W. F. Eberlein, G. A. 
Hedlund, E. Hille, J. C. Oxtoby, and myself will be published elsewhere.1 

Let (S, S3, ra) be a measure space, i.e., a triple consisting of a space S = {s}, a 
<r-field S3 = {B} of subsets B of S, and a countably additive measure m(B) de
fined on S3. We do not assume that m(S) < oo, but it is assumed that S is the 
imion of a countable number of subsets from S3 with a finite ra-measure. The space 
LP(S) — LP(S, S3, ra) (p è 1) of all complex-valued measurable functions x(s) 
defined on S with 

(i) i; ll*IUr(jf l*WIV*»))' 

as its norm is defined as usual. 
A one-to-one mapping s' = <p(s) of S onto itself is called a measure preserving 

transformation if B e S3 implies <p(B) e S3, <P~\B) € S3 and m(<p(B)) = 
m(<p~1(B)) = m(B). The main problem of ergodic theory is to discuss the proper
ties of measure preserving transformations. In particular, we are interested in 
the asymptotic behavior of the iterations sf = pn(s) of s' = p(s) as n tends to oo. 

Let s' = <p(s) be a measure preserving transformation defined on a measure 
space (S, S3, ra). For any real- or complex-valued function x(s) defined on S, 
let us put 

(2) xn(s) = I 2 x(As)), 
n - l 

n ä^O 

n = 1, 2, • • • . The following two theorems are fundamental in ergodic theory: 

MEAN ERGODIC THEOREM. For any function x(s) Ç L2(S), there exists a function 
x(s) Ç L2(S) such that 

(3) lim||a?» - x ||s = 0. • 
«-•oo 

1 The bibliography at the end is by no means complete. It contains only those papers 
which were quoted in the main text. The address given at the Congress contained more 
topics than this note. Owing to the limitation in printing space, it was necessary to give 
up the discussions of many interesting problems. These will be contained in a forthcom
ing report mentioned above. 
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INDIVIDUAL ERGODIC THEOREM. For any function x(s) £ Ll(S)9 there exists 
a function x(s) £ LX(S) such that 

(4) lim xn(s) = x(s) 
«-•oo 

almost everywhere on S. 

The mean ergodic theorem is due to J. von Neumann [51] and the individual 
ergodic theorem is due to G. D. Birkhoff [8]. Birkhoff discussed the case when 
S is a manifold and when sf = <p(s) is a measure preserving homeomorphism of 
S onto itself. The general case when S is a space with measure but without 
topology was discussed by A. Khintchine [41] (the case m(8) < oo) and by 
W. Stepanoff [62] (the case m(S) S <*>)• 

These two theorems were published in the years 1931-1932, and became the 
starting point of all development of ergodic theory in the following 18 years 
1932-1950. Most of the results obtained in the earlier part of this period by G. 
D. Birkhoff, G. A. Hedlund, E. Hopf, A. Khintchine, B. 0 . Koopman, J. von 
Neumann, W. Seidel, W. Stepanoff, N. Wiener, A Wintner, and others are 
collected in a monograph Ergodentheorie by E. Hopf [33] which appeared in 
1937. This book contains not only the summary of previously published results, 
but also many new results and new proofs which had not been published else
where. 

J. von Neumann's proof [51] of the mean ergodic theorem is based on the ob
servation due to B. 0 . Koopman [44] that 

(5) x(s) -> Vx(s) = x(<p(s)) 

defines a unitary operator V of L2(8) onto itself. The mean ergodic theorem then 
states that the arithmetic mean Tn = (1/w) ]Cfc~oX Vk of the iterations Vk of V 
converges strongly to a certain bounded linear operator P of L2(S) into itself, 
i.e., that 

- E Vhx - Px II = 0 
I n fc=o ||2 

for any function x(s) 6 L2(S). (It is easy to see that P is a projection operator of 
L2(8) onto the linear subspace of L2(S) consisting of all functions which are 
invariant under <p, and satisfies PV = VP = P2 = P.) It turned out that the 
theory of spectral resolution of unitary operators in a Hilbert space developed 
by J. von Neumann [50] and M. H. Stone [63] in the years 1929-1932 was a power
ful tool which was not only useful for the proof of the mean ergodic theorem, but 
also was indispensable in carrying out the Fourier analysis of measure preserving 
transformations. 

The mean ergodic theorem was generalized in two directions : (i) to more gen
eral Banach spaces and (ii) to more general classes of linear operators. The first 
result concerning the convergence of the arithmetic means Tn = (1/n) E*~ol Tk 

of the iterates Tk of a general bounded linear operator T defined on a Hilbert space 

(6) lim 
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was obtained by C. Visser [66] who proved weak convergence for the case when 
{ || Tn || | n = 1, 2, • • - } is bounded, and strong convergence for the case when, 
in addition to this, T isHermitian, unitary, or completely continuous. I t was then 
observed by F. Riesz [56] that the mean ergodic theorem holds in LP(S) (p è 1), 
i.e., if y is a bounded linear operator defined on LP(S) by (5), then 
Tn = (l/n) ^kZo Vk converges strongly on LP(S). (We need to assume that 
m(S) < <» if p = 1, while this assumption is unnecessary if p >, 1.) At the 
same time, independently from F. Riesz, the following result was obtained by K. 
Yosida [69] (also S. Kakutani [36], K. Yosida and S. Kakutani [75]). 

MEAN ERGODIC THEOREM IN BANACH SPACES. Let T be a bounded linear 
operator of a Banach space X into itself such that (a) { || Tn \\ \ n = 1, 2, • • • } 
is bounded^ If x is an element of X such that (b) {xn = (l/n) Ê E ) 1 Tkx \ n = 1, 
2, • • • } contains a weakly convergent subsequence (i.e., a subsequence which con
verges loeakly to an element x of X), then the sequence {xn \ n = 1, 2, • • • } itself 
converges strongly to the same limit x. 

I t is remarkable that the existence of a weakly convergent subsequence im
plies the strong convergence of the sequence itself. I t is easy to see that under 
the condition (a) which is obviously satisfied by T = F in LP(S) (p ^ 1), the 
second condition (b) is satisfied by every element x of LP(S). In case p > 1 
this follows from the fact that the unit sphere of LP(S) is sequentially weakly 
compact (i.e., from any sequence {xn \ n = 1, 2, • • • } of elements of LP(S) 
with || a?» || =§ 1, n = 1, 2, • • • , we can find a weakly convergent subsequence), 
and in case p = 1 this is a consequence of the equi-unif orm integrability of the 
sequence {xn(s) \ n = 1, 2, • • • } defined by (2) (i.e., for any €> 0 there exists a 
8 > 0 such that m(B) < 8 implies JB | xn(s) \ m(ds) < e for n = 1, 2, • - • . (Here 
we need the assumption m(S) < oo. In fact, equi-uniform integrability implies 
sequential weak compactness only if m(S) < oo.) Thus the results of F . Riesz 
[56] mentioned above follows from the mean ergodic theorem in Banach spaces. 
G. Birkhoff [5] discussed the case of a bounded linear operator in an abstract 
(L)-space (AL) satisfying the condition (a) such that, for any x (E (AL), the 
sequence {xn = (l/n\ X)JEO Thx \ n = 1,2, • • • } is bounded above by an element 
x* of (AL). The mean ergodic theorem holds in this case since, when the abstract 
(L)-space (AL) is represented as a concrete (L)-space, the corresponding sequence 
{xn(s) | n = 1, 2, • • • } will be equi-uniformly integrable and hence contains a 
weakly convergent subsequence (S. Kakutani [37; 39], F. Riesz [58]). 

Since the unit sphere of a reflexive Banach space is sequentially weakly com
pact, we have the following result (E. R. Lorch [49]): Let T be a bounded linear 
operator of a reflexive Banach space X into itself such that { || Tn || | n = 
1, 2, • • • } is bounded. Then there exists a projection operator P such that PT = 
TP = P2 = P and Tn = (1/n) I^Io 1 Tk converges strongly to P. I t is easy to see 
that P is a projection to the linear subspace of X consisting of all elements of 
X which are invariant under T. Further, since uniformly convex space is re-
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flexi ve, the same theorem holds in any uniformly convex Banach space. In case 
T is a contraction (i.e., || T || S 1 and hence || Tn || S 1, n = 1, 2, • • •) a very 
simple proof of the mean ergodic theorem in a uniformly convex Banach space 
was given by G. Birkhoff [6] and F. Riesz [57]. This proof is geometrical and has 
the advantage of avoiding the use of the notion of weak convergence. Since the 
spaces LP(S) (p > 1) are uniformly convex, this may be considered as a gen
eralization of the mean ergodic theorem in LP(S) (p > 1). In case p = 2, F, 
Riesz [59] (cf. E. Hopf [33, p. 23]), F. Riesz and B. von Sz. Nagy [61] gave very 
simple proofs of the mean ergodic theorem for unitary operators or contractions 
which are completely free from the notion of spectral resolution, while essential 
use is made of some fundamental properties of the inner product. 

One of the most important facts about the mean ergodic theorem in Banach 
spaces is that the strong convergence of xm,n = (l/(n — ra)) X)fc^i Tkx as 
n — m —» oo (to the same limit x) follows from it immediately. In other words, 
the strong convergence of xPtP+n = (1/w) E S " " 1 Tkx as n —> oo (to the same 
limit x) is uniform in p. It is to be noticed that a similar fact does not hold for the 
case of the individual ergodic theorem. 

Another important fact about the mean ergodic theorem in Banach space is 
that the existence of the inverse T~l of T is not assumed. This fact makes it 
possible to apply the mean ergodic theorem to the problems in probability and 
statistical mechanics where irreversible processes are discussed. The mean 
ergodic theorem in Banach spaces was applied by K. Yosida and S. Kakutani 
[73; 75] to the problems of Markoff processes, and it was shown that many of 
the results in the theory of Markoff processes previously obtained by W. Doeblin 
[12], J. L. Doob [14], M. Fréchet [24; 25], and N. Kryloff and N." Bogoliouboff 
[45; 46] can be obtained operator-theoretically by using the mean ergodic theorem 
in Banach spaces and the following theorem: 

UNIFORM ERGODIC THEOREM. Let T be a bounded linear operator of a Banach 
space X into itself such that {\\ Tn \\ \ n = 1, 2, • • •} is bounded, and assume that 
there exist an integer ra ^ 1 and a completely continuous linear operator V of X 
into itself such that \\ Tm — V \\ < 1. Then T has only a finite number of proper 
values of absolute value 1 (each with a finite multiplicity) and if we denote these by 
X», i = 1, • • • , N, then T can be expressed in the form: 

(7) r = it\Pi+ S, 

where Pi is a projection operator which maps X onto a finite-dimensional proper 
subspace of X corresponding to the proper value X* of T such that P\ = Pi , P{P3- = 
0 (i 7e j), PiT = TPi = \iPi, i = 1, • • • , N, and 8 is a bounded linear operator 
of X into itself such that PiS = SPi = 0,i = ] , • • • ,Nand || 8n \\ < a(l + ß)~n, 
n = 1, 2, • • • (a and ß are positive constants). From (7) it follows that 

(8) r = TiXiPi + S\ 



132 SHIZUO KAKUTANI 

n = 1, 2, • • • , and hence there exists a constant M such that 

«-1 / rn\k 
(9) 

1 *g /TV _ pt 
n fc=o \ X i / 

M 
n 

i = 1, •••, N;n = 1, 2, 

If we consider n —-» Tn as a bounded representation of the additive semi-group 
of all non-negative integers n by bounded linear operators Tn of a Banach space 
X into itself, then the mean ergodic theorem may be considered as a result 
concerning the strong convergence of the means of this representation. This 
interpretation leads to the following general formulation (L. Alaoglu and G. 
Birkhoff [1; 2]): Let G = {g} be a group or a semi-group (commutative or not), 
and let g —> T° be a bounded representation of G by bounded linear operators 
Ta of a Banach space X into itself. Let {pn(E) \ n = 1, 2, • • •} be a sequence of 
measures defined on a certain or-field (S = {E} of subsets E oî G with M«(G) = 1, 
n = 1, 2, • • • , and let Tn = JoT

0ßn(dg) be the mean of T° with respect to p,n . 
Under what conditions on X, G, {T° \ g £ G}, and {/*„ | n = 1, 2, • • •} can we 
conclude the strong convergence of {Tn \ n = 1, 2, • • •} ? Mean ergodic theorems 
of N. Dunford [19; 20] and N. Wiener [68] concerning a finite commutative 
system {Tx, - • - , T#} of bounded linear operators correspond to the case when 
G = {g} is a free abelian semi-group generated by N elements [gi,— m > <M 
(i.e., G consists of all elements of the form g = g\l • • • gk/ where ki = 0, 1, 2, 
• • • ; i = 1, • • •, N; two elements g = gì1 • • • ^ and g = gl1 " ' glN are equal 
if and only if fc4- = Z*, i = 1, • • • , N) and when 

„„, "»-1w1 

where D„ is the set of all elements g = gì1 • — gk/ of G with fc2+ • • • + tò^ n2 

and | E 0 D» | , | Dn | denote the number of elements in E H D n , Dn respectively. 
In fact, if g< -> r * = ^ , < = 1, - • • , N, then 

(11) Tn - f TWidg) = J - , S TÎ1 - - - Tîf. 

N. Dunford [19; 20] proved the strong convergence of {Tn \ n = 1, 2, • • •} 
when X is a reflexive Banach space. N. Wiener [68] discussed the case when X = 
£*($) (p > 1) and when Tjx(s) = %(<Pi(s)), i = 1, • * • , iV, where {^ , • • • , <p#} 
is a commutative system of measure preserving transformations. Asymptotic 
invariance of the measures jun (i.e., the property that, for any fixed g, the total 
variation of nn(gE) — ßn(E) converges to 0 as n —» co), or the asymptotic in
variance of the means Tn (i.e., the property that for any fixed g, 

(12) lim (T°Tn - Tn) = 0 

with respect to the uniform topology of operators) plays an essential role in 
the argument. This fact makes it rather difficult to obtain a general mean 
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-ergodic theorem for the case when G is not commutative. In fact, in case 6? is a 
free group or a free semi-group generated by more than one element, there is 
no such sequence of measures defined on G with the property of asymptotic 
invariance. M. M. Day [10; 11] discussed mean ergodic theorems for general 
commutative or noncommutative groups or semi-groups. G. Birkhoff [7] dis
cussed the case when the sequential convergence lim»-,,» Tn is replaced by the 
Moore-Smith convergence lima Ta , where a runs through a certain directed set. 
Further, W. F. Eberlein [22; 23] discussed the case when in the definition of 
asymptotic invariance of means Ta the uniform convergence of lmxa(T° Ta — Ta) 
is replaced by the strong convergence, and when the condition of boundedness 
of {|| Ta || | g £ G} is somewhat relaxed. W. F. Eberlein also discussed the uni
form ergodic theorem for noncyclic, noncommutative semi-groups. 

Further investigations on semi-groups of linear operators and in particular, 
discussion of differentiability and analyticity of semi-groups with real or complex 
parameters, and discussions of relations between the ergodic theorem (Ci sum-
mability) and other summation methods (e.g., Abel, Cesàro, and Poisson sum-
inability) were carried out in detail by E. Hille [30; 31]. 

Generalization of the individual ergodic theorem was made in two directions : 
(i) to more precise results and (ii) to more general class of transformations. 
N. Wiener [68] proved the following: 

DOMINATED ERGODIC THEOREM. If x(s) is a real-valued function from LV(S) 
(p > 1), then 

(13) X*(s) = SUpn Xn(s) 

(where xn(s) is defined by (2)) belongs to the same Lp(8) ; ifx(s) is a real-valued func
tion from l/(/S) such that x(s) log (1 + | x(s) |) also belongs to L1(S), then x*(s) 
belongs to L1(S). (x*(s) does not necessarily belong to L1(S) if we only assume that 
x(s) e L\S).) 

It is easy to see that both the individual ergodic theorem and the dominated 
ergodic theorem follow from the following lemma called the maximal ergodic 
theorem : 

MAXIMAL ERGODIC THEOREM. / / x(s) is a real-valued function from Ll(S)9 

and if x*(s) is defined by (13), then 

(14) am(E*(a)) g f x(s)m(ds) 
JE*(U) 

where 

(15) E*(a) = {s\x*(s) > a}. 

This inequality was obtained by K. Yosida and S. Kakutani [74] by using 
the method of A. Kolmogoroff [43] by which he gave a very simple proof of the 
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individual ergodic theorem. The same inequality was also discussed by C. 
Carathéodory [9] and H. R. Pitt [53]. A similar inequality in which x*(s) = 
supn xn(s) is replaced by x(s) = lim sup xn(s) was obtained earlier by G. D. 
Birkhoff [8], and this inequality was the essential key to his original proof of the 
individual ergodic theorem. ' 

As was observed by F. Riesz [59], there is a close connection between the 
maximal ergodic theorem and the following lemma of G. H. Hardy and J. E. 
Littlewood [28] (also F. Riesz [55]) called the maximal theorem: 

MAXIMAL THEOREM. Let p > 1. If {ai, • • • ,an} is a finite sequence of positive 
numbers (n is arbitrary), then 

a« £{,„«(„,- + **,... .t+^hs)}* s (^s* 
where (p/(p — l))p is the best possible constant independent of n. 

M. Fukamiya [26] gave a direct proof of the dominated ergodic theorem by 
using this maximal theorem. Further, it is to be noticed that there is a close 
analogy between the proof of the maximal ergodic theorem and the proof of the 
differentiation theorem (to the effect that a real-valued nondecreasing function 
of a real variable is almost everywhere differentiable) due to F. Riesz [54]. There 
is no wonder that such an analogy exists. In fact, as was observed by N. Wiener 
[68], if we consider the case of a flow (i.e., a one-parameter group of {<pt | — oo < 
t < oo } of measure preserving transformations sr = <pt(s) such that cpt(<pu(s)) = 
<Pt+u(s) for all real numbers t, u and for all s £ S, satisfying the measurability 
condition that y(s, t) = x(<pt(s)) is measurable as a function of two variables 
(s, t) if x(s) is a measurable fimction of s), then the individual ergodic theorem is 
a statement concerning the existence almost everywhere of the limit 

T 

(17) i j [ x(<pt(s))dt 

as T —> co, while the differentiation theorem is concerned with the limit of the 
same expression (17) as T —> 0. P. Hartman [29] gave a proof of the maximal 
ergodic theorem for the case of the flow by using the method of F. Riesz [54]. 

Another important fact worth mentioning is a similarity between the maximal 
ergodic theorem and the inequality due to A. Kolmogoroff [42] which plays a 
fundamental role in the theory of sums of independent random variables. This 
analogy becomes more striking if we observe the following fundamental lemma 
in the theory of Martingale due to J. L. Doob [14], P. Levy [47], and J. Ville 
[65] which we may call the Martingale theorem: 

MARTINGALE THEOREM. If {xk(s) | k = 1, • • • , n} is a finite ordered system of 
real-valued random variables defined on a probability space (S, B, ra) (i.e., a measure 
space with the normalization condition m(8) = 1) satisfying the condition of 
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Martingale: for any & = 1, • • • , w — 1, and /or any system of real numbers at, 
• • • , ak, the conditional expectation of Xk+i(s) under the conditions Xi(s) = ai, 
i = 1, • • • , k, is equal to au , then 

(18) am(E*(a)) g [ xn(s)m(ds) 
Js*(a) 

where 

(19) E*(a) = {s\ mo,xXk(s) > a}. 

The existence of this analogy is very interesting in view of the fact that the 
strong law of large numbers (concerning the arithmetic means of independent 
random variables which are integrable and have the same distribution) follows 
immediately both from the individual ergodic theorem (J. L. Doob [13] and E. 
Hopf [32]) (and hence from the maximal ergodic theorem) and from the Martin
gale theorem. This fact was also recently observed by M. Loève [48]. In spite of 
the fact that the proofs of these theorems are also very similar to each other, 
we have thus far no satisfactory formulation of a general theorem which contains 
both the maximal ergodic theorem and the Martingale theorem as a special case. 
Finally, it is to be noticed that the proofs of fundamental limit theorems in the 
theory of measures in infinite product spaces due to S. Andersen and B. Jessen 
[3] have also a very similar form. The reason for this similarity lies in the fact 
that these limit theorems can, in most of the cases, be proved by using the method 
of Martingale. 

F. Riesz [59] gave a simple proof of the maximal ergodic theorem which 
is based on the following combinatorial lemma concerning a sequence of real 
numbers: if {a* | i = 0, 1, 2, • • •} is a sequence of real numbers such that 

(20) max £ <ku > 0 

for i = 0, 1, 2, • • • , where N is a fixed positive integer, then 

t+fc-i 

(21) max X) ay > 0 

fori = 0, 1, 2, • • • . Similar proofs were given to the maximal ergodic theorem 
by E. Hopf [34] and H. R. Pitt [53]. 

BirkhofFs individual ergodic theorem was generalized to the following form 
by E. Hopf [33, p. 49]: If x(s) is smy function from L1(S), and if y(s) is a positive 
measurable function defined on S such that 

(22) Ê y(As)) = « 
fc-0 
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almost everywhere on S, then 

(Wtì lim Sfe-o1 x(<P°(s)) 
»-*•• Z^=o y(<p (s)) 

exists almost everywhere on S. We do not assume that m(S) < oo. But it is 
worthwhile to observe that the condition (22) is satisfied by every positive 
measurable function y(s) if m(S) < oo. In case m(8) = oo, this condition is 
satisfied by every positive measurable function y(s) if S has no wandering set of 
positive measure, i.e., if for any measurable set B with m(B) > 0 there exists a 
positive integer n such that m((pn(B) fi B) > 0. If y(s) = 1, the condition is 
obviously satisfied, and this theorem is reduced to the individual ergodic theorem 
of Birkhoff. The proof of this ergodic theorem of Hopf can be carried out in 
exactly the same way as that of the individual ergodic theorem of Birkhoff. 

The first generalization of the individual ergodic theorem to the case when 
s' = <p(s) is not necessarily measure preserving was given by W. Hurewicz [35] 
who also discussed the case of absolutely continuous set functions instead of 
integrable measurable functions. P. R. Halmos [27] then gave a general formula
tion of the individual ergodic theorem which contains Hurewicz's ergodic theorem 
and Hopfs ergodic theorem at the same time: a one-to-one mapping s; = <p(s) 
of S onto itself is called measurability preserving if B £ S3 implies <p(B) £ S3, 
<P~l(B) £ S3; s' = <p(s) is called nonsingular if m(B) = 0 implies m(<p(B)) = 
m(<p~1(B)) = 0. For any nonsingular measurability preserving transformation 
s' = <p(s), there exist positive measurable functions wn(s) such that 

(24) rn(<pn(B)) = f cow(s)ra(ds) 
JB 

for any B £ S3 and n = 0, 1, 2, • • • . For any measurable function x(s) defined 
on S, let us put 

(25) x(n)(s) = £ x(As)hk(s), 
fc=*0 

n = 1, 2, • • • . Then the general ergodic theorem of Halmos reads as follows: 

GENERAL ERGODIC THEOREM. If x(s) is any function from L1(S) and if y(s) 
is a positive measurable function defined on S such that y{n)(s) —> co (as n —» oo ) 
almost everywhere on S, then 

(26) lim ? £ ^ 
n^yM(s) 

exists almost everywhere on 8. 

I t is clear that œn(s) = 1, n = 0 ,1 , « • • , if s' = <p(s) is measure preserving, and 
the general ergodic theorem is reduced to Hopfs ergodic theorem in this case. 
J. C. Oxtoby [52] obtained a further generalization of ergodic theorems of 
Hurewicz and Halmos in which the absolute continuity of the set functions in 
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question is not assumed and the nonexistence of wandering sets is not required. 
It is interesting to observe that the proof of this general ergodic theorem does 

not involve any further difficulty than that of the maximal ergodic theorem. In 
fact as was shown by Y. N. Dowker [18], the same method used by F. Riesz 
158] for the proof of the maximal ergodic theorem can be applied to obtain the 
following inequality: 

(27) a f y(s)m(ds) g f x(s)m(ds) 
Js*(a) JE*(a) 

where 

(28) *•(«)-{ . | aupj£<g>« 
The general ergodic theorem follows from this immediately. 

Individual ergodic theorems concerning a commutative system {(pi, • • • , <pN} 
of measure preserving transformations were discussed by N. Wiener [68]. N.* 
Wiener proved that for any function x(s) £ LP(S) (p > 1) there exists a func
tion x(s) £ LP(S) (same p) such that 

(29) lim n* E x(<pìl • • • «£"(«)) = x(s) 
ID Ä J 2 + . . . + Ä ! 2 < n 2 

1 JV 

almost everywhere on S, where | Dn | means the same thing as in (11). The 
commutativity of the system {pi, • • • , w} is essential in the proof. In case 
{(Pi, • • • , cpN} is not commutative, the problem of obtaining a natural generaliza
tion of the individual ergodic theorem seems to be difficult. In view of this fact, 
the following recent unpublished result of N. Dunford and A. Zygmund is remark
able: Let {<pi, • • • , cpN} be a finite system of measure preserving transformations, 
commutative or not. Then, for any function x(s) £ LP(S) (p > 1), there exists a 
function x(s) £ LP(S) (same p) such that 

•f ni—l ntf-l 
(30) lim i • E • • • E x(<Àl • ' • <PÌN(S)) = x(s) 

ni • • • nN fcj-o kN=*Q 

almost everywhere on 8, as ni —> oo, . . . , ^ —> oo independently of one another . 
I t is to be noticed tha t the measure preserving transformations sf — yi • • • ^(s), 
ki = 0, 1, 2, • • • ; i = 1, • • • , N, do not exhaust the group generated by <Pì , 
i = 1, • • • , N. 

I t is an interesting problem to discuss the relations between the mean ergodic 
theorem and the individual ergodic theorem. N . Wiener [67; 68] was the first 
to discuss this problem and was led to the notion of the dominated ergodic 
theorem. I t is easy to see t ha t the individual ergodic theorem and the dominated 
ergodic theorem together imply the mean ergodic theorem in LP(S) (p > 1). 
In fact, for any function x(s) £ LP(S) C\ L1(S), the sequence {xn(s) \ n = 1,2, • • •} 
converges to a function x(s) £ Lx(8) almost everywhere on 8, and because of 
the dominated ergodic theorem, there exists a function x*(s) £ LP(S) such t h a t 
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I xn(s) | û x*(a) for almost all s £ S and n = 1, 2, • • • . Thus x(s) £ LP(S) and 
limn»»«, || xn — x \\p = 0. The mean ergodic theorem in Lp(8) then follows im
mediately from the facts that LP(S) fi L1(S) is dense in LP(S) and that 
Tn = (l/n)J^kZoVk satisfies || Tn || ^ 1, n = I, 2, • • • .(The argument above is 
interesting only when m(S) = oo. If m(S) < oo, we can avoid the use of the 
dominated ergodic theorem if we consider the class M (S) of all bounded meas
urable functions defined on S instead of LP(S) Ci L1(S).) 

The problem whether conversely the individual ergodic theorem can be proved 
from the mean ergodic theorem was discussed by K. Yosida [71 ; 72] who suc
ceeded in giving an operator-theoretical proof of the individual ergodic theorem. 
Yosida's idea is to consider Vx(s) — x(<p(s)) as a linear operator in the (i^)-space 
of all real-valued measurable functions x(s) defined on S with the quasi-norm 

^The completeness of this space and the fact that x*(s) = sup» xn(s) < oo (or 
that x(s) = lim sup xn(s) < oo) almost everywhere on S for any real-valued 
function x(s) from L1(S) are essential in Yosida's proof. It is, however, to be 
noticed that the proof of this last fact, which is obviously an immediate con
sequence of the maximal ergodic theorem, is by no means easy and requires 
almost the same amount of arguments as the proof of the maximal ergodic 
theorem itself. 

In case s' = <p(s) is not necessarily measure preserving, but is only measur
ability preserving and nonsingular, our problem takes a different form: the 
problem is no more how to prove one theorem from the other, but is whether o£ 
not one theorem holds true when we know that the other is true. N. Dunford 
and D. S. Miller [21] proved that the strong convergence of Tn = (l./n)^2kZoVh 

in L^-(S) implies the almost everywhere convergence of Tnx(s) for any 
x(s) £ L1(S). Again the following fact is essential in the proof: if Tnx is strongly 
convergent in L1(S) for any x(s) £ L1(8), then for any real-valued function 
x(s) £ L1(S), x*(s) = supw xn(s) < oo almost everywhere on S. F. Riesz [60] 
later gave another proof for this result by using again the same lemma con
cerning a sequence of real numbers quoted above which he had used for the 
proof of the maximal ergodic theorem. As was shown by Y. N. Dowker [17] 
the converse of this result is not true, i.e., there exists a nonsingular measur
ability preserving transformation for which the individual ergodic theorem holds 
while the mean ergodic theorem does not hold. This phenomenon is quite natural 
since the individual ergodic theorem is preserved by any nonsingular measur
ability preserving transformation while the mean ergodic theorem can be affected 
by such a transformation. 

Finally, an interesting and important generalization of the individual ergodic 
theorem called the random ergodic theorem was recently obtained by S. M. 
Ulam and J. von Neumann [64]. The random ergodic theorem may be formulated 
as follows: Let (S, S3, ra) and (r, @, p) be two measure spaces of which the 
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second is a probability space (i.e., p(T) = 1). For any y £ V, let s' = (py(s) be a 
measure preserving transformation of S onto itself. We assume that s' = <py(s) 
depends measurably on 7, i.e., that y(s, 7) = x(<py(s)) is a measurable function 
of two variables (s, 7) if x(s) is a measurable function of s. Let ß = P " Mrn 

be a two-sided infinite direct product space of Yn , where Tn = I \ n = 0, dbl, 
d=2, • • • , and let (ß, ©*, /**) = P"—oo(rn , ©n , jun) be the direct product measure 
space of ( r n , Sn , pn) = (r , ®, M), n = 0, dzl, ± 2 , • • • , defined on ß. For any 
co = {7n I n = 0, ± 1 , d=2, • • • ) £ ß, 7« = 7«(w) is called the nth coordinate 
of o). Then we have the following theorem. 

RANDOM ERGODIC THEOREM. For any function x(s) £ L1(S) and for almost all 
o) (the exceptional null set of co may depend on x(s)), there exists a function 
Xu(s) £ L1(S) such that 

1 n 

(32) Hm - E B(PT»_I<«> • • ' ^7!(co)^70(w)(S)) = * » M 

almost everywhere on S. 

In a very special case when V consists of two elements + 1 and — 1 each with 
/i-measure 1/2, we may consider {yn(u>) \ n = 1, 2, • • •} as Rademacher's system, 
i.e., the sequence of functions defined on the unit interval fì={co|0^co<l} 
by 7»(co) = ( -1 ) " if k2~n û co < (k + l )2"n , k = 0, 1, • • • , 2 n - l ; n = 1, 2, 
• • • . In this case the random ergodic theorem may be stated as follows: Let 
<p+i, <p-i be any two measure preserving transformations, commutative or not. 
Let { n̂ I n = 1, 2, • • •} be an independent random sequence of measure pre
serving transformations such that the probability that \{/n = <py is 1/2 for 7 = ± 1 . 
Then, for any function x(s) from L1(S), the individual ergodic theorem: 

1 n 

(33) lim - E xtyk • • • ihftW) = *(*) 
n-»oo n ft«l 

(almost everywhere on S) holds with probability 1. 
I t is interesting to observe that the random ergodic theorem can be proved 

by considering the mapping (sf, co') = <p(s, co) of S X ß onto itself defined by 
<p(s, co) = (<py(i(a)(s), cr(co)), where co' = o-(co) is a shift transformation defined on 
ß by 7n(cr(co)) = 7„+i(co), n = 0, dzl, ± 2 , • • - . It is easy to see that (s', oif) = 
$(s, co) is a measure preserving transformation of S X ß onto itself (with respect 
to the direct product measure on S X fì). The individual ergodic theorem applied 
to the transformation (sf, co') = <p(s, co) and to the function x(s, 03) = x(s) will 
immediately give (by Fubini's theorem) the required random ergodic theorem. 

I t was recently observed (H. Anzai [4], S. Kakutani [40]) that the random 
ergodic theorem has close connections with the theory of Markoff processes 
with a stable distribution previously discussed by J. L. Doob [14; 16], S. Kakutani 
[38], and K. Yosida [70]. 

I t is easy to see that the convergence (32) is a strong convergence in LP(S) 
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if x(s) belongs to LP(S) (p > 1 if m(S) = oo and p ^ 1 if m(S) < oo). But the 
following generalization of the mean ergodic theorem in Banach spaces is still 
open: Let T+i, !F_i be two bounded linear transformation operators of a Banach 
space into itself such that \\ Ti\\ ^ 1, i ==• + 1 , . — 1- We do not assume that 
r+i and T-i commute. Let {7«(co) | n = 1, 2, • • •} be a Rademacher's system. 
Is it true then that, for almost all .co, there exists a projection operator Pa such 
that 

(34) lim - E Ty9M TyxM • • • T 7 i - l W = P. 

strongly? 
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ANALYSIS IN THE LARGE 

RECENT ADVANCES IN VARIATIONAL THEORY IN THE LARGE 

MARSTON MORSE 

1. The theory in 1936. At the time of the Congress in Oslo a general structure
had been laid for the theory. It was developed in papers from 1925 on to Morse 
[1] in 1934, and in those aspects which could be reached by a study of "category"
by Lusternik and Schnirelmann. In the Morse theory a space n of admissible
elements was associated with the different boundary value problems arising in
variational theory. Significant subtheories developed prior to 1936 included the
following:

(A) The critical points of a function f of the point on a compact differentiable
manifold M; 

(B) The extremals joining two fixed points of M, for a positive definite regular
simple integral J; 

(C) The existence of closed extremals of J in the case where M is a compact
differentiable manifold without boundaries. 

In (B) Morse used the Frechet space n(P, Q) of sensed arcs joining two fixed 
points P and Q of M. When M was an n-sphere Sn , the homology groups of

fl(P, Q) were specifically determined (Morse [1, p. 247]). In (C) the space n 
was a space of special closed curves and when M = Sn , the homology groups of

n were again determined (Morse [1, p. 349]). (Throughout this report we may 
suppose that in the definition of chains the group of coefficients is an arbitrary 
finite field.) The methods employed led to the first determination of the homology 
groups of the symmetric. quare of an n-sphere, when the locus of coincident pairs 
of points is taken as a modulu ·. See Morse [1, p. 181]. 

In the category theory a most significant topological theory was initiated by 
Lusternik and Schnirelmann and in particular the category of the n-dimensional 
projective plane and of the product of n-circles was obtained and applied to 
critical point theory. The existence of at least three closed geodesics on a dif
ferentiable topological image of a 2-sphere was affirmed, and a proof outlined. 
Also see Fox for category theory. 

The early lirnitations on critical values. The application of the topological theory 
to the theory of critical points (including extremals) was sharply limited by 
differentiability conditions and conditions such as the discreteness of the set of

critical values. Such limitations were inherent in the use of the orthogonal 
trajectories of the level manifolds of f in (A) to define deformations, and in 
similar procedures in (B) and (C) where J was approximated by its value on 
families of broken extremals with a limited number of vertices. In the absence of

restrictive conditions on the set of critical values, neither the orthogonal tra-
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jectories nor the deformations would have been adequately defined. This is 
shown by an example due to Whitney. 

Whitney's example. Whitney has shown the existence of a function F defined 
and continuous on a unit square in the (x, y)-plane, with Fx and Fy continuous, 
yet with F possessing a connected set X of critical points whose critical values 
fill an interval. One might say that the mission of the critical point theory was 
already fulfilled in the Whitney example since the existence of infinitely many 
critical points is granted. However, this view would be mistaken since the Morse-
theory also aims at the relations between the critical sets <r (each at one /-level 
and closed at that level) classified according to the nature of associated local 
relative homology groups. See Morse [2; 3]. We shall term a function / whose 
critical values fill some interval a function of Whitney type. 

Limitations imposed by the use of singular cycles. The Morse theory aims to 
associate a critical set o- with each nontrivial homology class H on M (or Ü). 
Thus for a cycle z £ H, let | z | C M be a compact carrier (always minimal) 
of z and set 

(1.1) c(H) « inf [sup f(x)] 
zÇM x£\z\ 

(1.2) #, = cr U x I (f(x) < /(a-)). 

We say that H "causes" a if c(H) = f(o), if Nff 3 z for some z Ç H, and if no 
proper closed subset of c has this property. If singular cycles (rather than 
Vietoris cycles) are used, an homology class H need cause no critical set when M 
and / are not analytic, even when N is a compact differentiable manifold of 
class Cin) and / of class C(n) on M, with n arbitrarily large. This is shown in 
Morse [5] and is not equivalent to the well-known fact that singular homology 
groups are not always isomorphic to the corresponding Vietoris homology groups. 

A theorem on dim <r. Suppose that IIn and Hr are different homology classes 
of cycles of dimension n and r respectively. If c(Hn) = c(Hr), simple examples 
will show that Hn and Hr may cause a common critical set cr consisting of just 
one point. If, however, n > r, there are simple conditions sufficient that the 
critical set c caused by Hn be such that 

(1.3) dim o- ^ n — r. 

In the special case in which the critical values of / are isolated and f is of class 
Qn, such conditions have been given by Lusternik and Schnirelmann. If, however, 
/ is a function of the Whitney type or if the orthogonal trajectories of the level 
manifolds of / fail to have the usual field properties, then the earlier proofs of 
(1.3) are not applicable. However, a general theorem with (1.3) as a conclusion 
can be stated in terms which are purely topological and proved without reference 
to the category theory. One may assume that the compact manifold M is merely 
locally euclidean (not in general differentiable) and that the function / is merely 
continuous. One uses a purely topological defmitiori of a critical point of / . 
Such a theorem is stated for the first time in §5. 
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Multiple integrals. Prior to 1936 the theory had not been applied to obtain any 
general theorems on the existence of unstable (non-minimizing) extremals of 
multiple integrals J. The reasons for this are clear. There is as yet no workable 
generalization for J of the orthogonal trajectories of the level manifolds of /. 
In addition, the theorem on the existence of minimizing extremals in the small 
for positive definite regular simple integrals has no apparent counterpart for 
multiple integrals. Finally, it turned out that the concept of lower semi-con
tinuity of a positive definite functional J, while adequate in the theory of the 
absolute minimum (if accompanied by conditions implying compactness of the 
set of admissible elements), requires the addition of the concept of upper re-
ducibility of J (defined in §2) if unstable extremals are sought. The general 
grounds preparing for an attack on multiple integral problems were laid in 
Morse [2]. 

Minimal surfaces. Using these general concepts Morse and Tompkins, and 
Shiffman, independently and at essentially the same time, proved the existence 
of unstable minimal surfaces of disc type spanning a simple closed curve g. 
The conditions initially imposed on g were somewhat heavier than rectifiability. 
These conditions have been progressively reduced until Shiffman has established 
the existence of a minimal surface of minimax type for a rectifiable g. Morse has 
verified Shiffman's result by an independent proof not yet published. Some of the 
results of Morse and Tompkins cover more general topological aspects and have 
not yet been reduced to the hypothesis of rectifiability. 

To escape the limitations of the earlier development the critical point theory 
has advanced at three levels in 

(a) the general causal theory Morse [2], 
(b) the span theory Morse [3], 
(c) the nondegenerate theory Morse [4]. 

These three levels are distinguished by their objectives and hypotheses. They are 
all concerned with a positive lower semi-continuous function F on an abstract 
metric space S. We further distinguish these theories as follows. 

2. The causal theory Morse [2]. This theory imposes minimum conditions 
on F and S and is concerned with critical sets as caused by homology or homotopy 
classes of various types. Extreme types of deformations are the isotopies (de
formations in which the images at any one time are topological) and the F-de-
formations which require no derivatives of F for their definition. See §5. The 
function F is assumed positive and lower semi-continuous over the metric 
space S. 

As distinguished from the span theory and nondegenerate theory, the causal 
theory does not aim at a complete set of relations between the classified critical 
sets. Its hypotheses are too general and the critical sets too numerous and 
complex in most problems to make a theory of relations feasible. On the other 
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hand Whitney functions can be treated under this theory. The causal homology 
theory imposes two additional conditions on the function F and metric space S: 

(i) the F-accessibility of S; 
(ii) the upper-reducibility of F. 

We shall define these conditions. 
The set of points x 6 S on which F(x) g c < oo will be denoted by Sc. 

The space S is termed F-accessible if any nonbounding Vietoris fc-cycle z, given 
as homologous to zero mod Sc + « for each e > 0, is homologous to a ft-cycle in Sc. 
If the subsets Sc are compact for each c, S can be shown to be F-accessible, 
making use of the lower semi-continuity of F. 

A continuous deformation of a subset A C S which replaces each point 
x £ A by a point x* £ S at the time t is called an F-deformation of A if for 
each t (0 g £ ^ 1) and x 6 A 

(2.1) F(») - F(z') è 0. 

This deformation is termed proper over A if the difference (2.1) is bounded from 
zero whenever the distance d(x, x') is bounded from zero. The integrals of 
variational theory are ordinarily lower semi-continuous but not upper semi-
continuous. Upper reducibility in some form is, however, satisfied in general and 
serves in place of upper semi-continuity. 

Let p be a point of S with F(p) < oo. We term F upper reducible at p if for any 
set Sb, with b > F(p), there exists an F-deformation D of a neighborhood Nb 
of p relative to Sb such that 

(2.2) lim sup F(xl) ^ F(p) (x G Nb, 0 ^ t£ 1) 
Us)-*(1,2P) 

and such that D is a proper F-deformation of any subset of Nb on which F(x) 
exceeds F(p) by a positive constant. Note that the deletion of t in (2.2) yields the 
definition of upper semi-continuity of F at p. It is easy to show that lower semi-
continuity and upper reducibility are independent conditions on F. 

To state the principal theorem one must define a homotopic critical point. 
A point p of S at which F is finite will be called homotopically ordinary if some 
neighborhood of p, relative to some Sb with ò > F(p), admits a proper F-de
formation (0 ^ t ^ 1) which ultimately (for some t) displaces p. The point p 
will be termed homotopically critical if not homotopically ordinary. 

THEOREM 2.1. Suppose that F is positive, lower semi-continuous and upper 
reducible on an F-accessible metric space S. Let H be a nontrivial homology class of 
Vietoris cycles on S. If there is a k-cycle z G H on some set Sa with finite a, there is 
a least value of a such that there is a k-cycle of H on Sa . If c is this minimum value 
of a, there is at least one homotopic critical point p with F(p) = c. 

In establishing the existence of unstable minimal surfaces it was fundamental 
to show that the Douglas-Dirichlet integral 

//[?(£)'+(£)>* a = i, 2,3) 
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taken over the circular disc D was upper reducible, admitting harmonic surfaces 
Xi(u, v), i = 1, 2, 3, spanning the given simple closed curve g. A modification of 
the above theorem was then used in which the homology class H was replaced 
by a suitable relative homology class. See Morse-Tompkins or Shiffman. 

3. The span theory Morse [3]. In seeking the totality of relations between the 
critical values clarified by means of the associated groups of "caps," one alter
native is to turn to nondegenerate functions (see §4) for which the critical 
points are isolated. Another alternative is to classify "caps" according to their 
(tspans}> e. I t turns out very remarkably that on employing only caps of given 
fixed span greater than e, a consistent topological theory of critical values results 
which behaves formally as if F were a real analytic function for which the number 
of critical values < c < 1 is finite. An infinitely complex problem is thus reduced 
to an essentially finite problem. 

It is convenient to suppose that 0 ^ F ^ 1. If this were not the case, the 
functions 

F 
1 + F 

could be used in place of F. Certain new terms needed here must be defined. 
Let F(p) = c < oo. The space S will be said to be locally F-connected of order 

r at p if corresponding to each positive constant e there exists a positive constant 
5 such that each singular r-sphere on the ô-neighborhood of p and on Sc+& bounds 
an (r + l)-cell of diameter at most e on Sc+e. We say that S is F-reducible at 
c = 1 if corresponding to any compact subset A of S there exists an F-deforma-
tionDA of A into some subset Sc of S for which c < 1. The principal hypotheses 
in the span theory are then as follows. 

(i) The function F is positive and lower semi-continuous on S. 
(ii) The sets S0 are compact for each c < 1, S is F-reducible ate = 1 and locally 

F-connected of all orders at each point x at which F(x) < 1. 
I t remains to define cap-spans. Given a with 0 S a < 1, we say that a set 

A (for example, the compact carrier of a Vietoris cycle) lies definitely in Sa 

(written d-on Sa) if A C Sa-e for some e > 0. The phrase d-mod Sa shall mean 
mod Sa-e for some e > 0. 

k-cap-spans. Let u be a relative Vietoris fc-cycle d-mod Sa, with a carrier 
| u | in Sa . If u oo 0 on Sa , d-mod Sa , u is called a k-cap with cap-height a(u). 
The boundary ßu of such a /c-cap is d-on Sa(U) . The cycle u is termed linkable 
or nonlinkable according as ßu ~ 0 or ßu no 0, d-on Sa(V) . If u is linkable, set 
cr(u) = sup b for all b such that 

(3.1) u nu 0 [on Sh, d-mod Sa{u)] 

and set 

(3.2) span u = a(u) — a(u) ^ 0. 

If u is nonlinkable, set r(u) = inf b for all b such that 

(3.3) ßu ~ 0 [d-on SaM , d-mod Sb] 
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and set 

(3.4) span u = a(u) — r(u) > 0. 

Corresponding to each nontrivial homology class H there is a fc-cycle z G H 
which is also a fc-cap and for which the cap-height a(z) is a minimum for all 
fc-cycle-caps G H. This fc-cycle z will be termed canonical. Morse [3]. 

Recall that the group of coefficients which we are using is a field G. We shall 
be concerned with classes A of fc-caps or fc-cycles such that the conditions 
u G A, 8 G G, and 5 5^0, imply 8u G A. A "maximal group" of elements in A 
is a group 5 every element of which, except the null element, is in A, while B 
is a proper subgroup of no other such group of elements in A. With this under
stood, let e > 0 be given and fixed. We introduce maximal groups 

Ml of fc-caps with span greater than e, 
Nk of nonlinkable fc-caps with span greater than e, 
Pk of canonical fc-cycles. 
If A stands for any of these three defining properties, it is a theorem in Morse 

[3] that any two maximal groups with property A are isomorphic, with corre
sponding elements u and uf such that u — u' does not have property A. It is also 
shown in Morse [3] that the group Nl is isomorphic with ßNl where u G Ni 
corresponds to ßu. It is remarkable that dim Nl is finite, and that Pk is also a 
maximal group of nonbounding fc-cycles. We have the following fundamental 
theorem. Morse [3, Corollary 12.2], 

THEOREM 3.1. The maximal groups Nl can be so chosen that the direct sum 

(3.3) m + mu + Pk (* = o, i , • • o 

is a maximal group of k-caps with span greater than e. 

It is easy to show that the cap-heights a(u) of fc-caps with span greater than e 
have at most the cluster point a = 1. Moreover a maximal group of fc-caps with 
cap-height a and span greater than e always has a finite dimension. A maximal 
group of fc-caps with span greater than e is seen to be the direct sum of maximal 
groups of such fc-caps with the respective cap-heights. On setting 

dim Ml = ml, dim Nl = nl, dim Pk = Pk 

we have the following corollary. 

C O R O L L A R Y , m l — p k = n l + n l + i ( f c = 0 , 1 , • • • ) . 

I The numbers pk are of course the connectivities of S, One has the relations 
ml ^ pu , and if one sets Ek = ml — ph whenever pk < oo, and defines Ek as the 
right member in the corollary when pk = °°, the members Ek satisfy the infinite 
set of inequalities 

(3.4) En - En+i + . . . + ( - ! )*% è 0, (n = 0, 1, • -•). 
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The preceding results hold for each e > 0. I t is clear that ml increases mono-
tonically as e decreases. If F is an analytic function of the point on an analytic 
compact manifold, the numbers ml are finite and independent of e > 0 for e 
sufficiently small. The span theory is a theory of critical values. I t easily yields a 
theory of critical points and sets on adding the hypothesis of upper reducibility 
of F. 

4. The nondegenerate theory Morse [4]. As distinguished from the causal 
theory, the objective here is to obtain the totality of relations between the critical 
points classified according to their indices. As distinguished from the span 
theory, the topological hypotheses that the critical points be nondegenerate 
makes it possible to treat all the critical points together rather than the generic 
subset of critical points associated with caps of span greater than e. The con
ditions on F are here necessarily more restricting, but there is a sense in which 
the nondegenerate F may be everywhere dense among all F admitted in the 
preceding sections. This has been established in important cases of considerable 
generality. 

The nondegenerate theory owes much of its importance to the fact that it is 
through this theory that analysis extends topology as contrasted with the aid 
topology usually gives to analysis. The homology characters of Q, in (B) and (C) 
of §1 and of the symmetric square of the n-sphere were first obtained in this 
theory by a principle which we shall describe. Striking relations of this theory 
with homotopy theory have long been apparent and are now beginning to be 
explored. (See Morse [1, pp. 231-243] and Morse [6].) 

The index. If there is just one nondegenerate critical point p at an F-level c, 
then as one passes from Sc-e to Sc+e for e > 0 sufficiently small only one homol
ogy group changes, and that by the addition of a fc-cycle or subtraction of a 
(fc — 1)-cycle as a generator. We say that p then has the index k, and, if a fc-cycle 
is added, that p is of increasing type. We state a fundamental theorem. Morse 
[1, p. 230] and Morse [4]. 

THEOREM 4. / / there exists on the abstract metric space S a nondegenerate function 
F all of whose critical points are of increasing type, then the k-homology group has a 
minimum base which includes just one k-cycle associated with each critical point of 
index fc, and no other k-cycles. 

If / is a function of class C" defined in an n-dimensional local coordinate 
system, an ordinary differential critical point p of / was termed nondegenerate 
if the Hessian H of / at p was nonvanishing; otherwise put, if no characteristic 
root of the determinant of H vanished. This generalizes for variational problems 
as follows. Given a critical extremal g in a variational boundary value problem, 
the Jacobi equations and the given boundary conditions give rise to a classical 
characteristic value problem associated with g. The critical extremal g is termed 
nondegenerate if and only if there is no vanishing characteristic value. The writer 
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has shown, Morse [1, p. 230], that the integral of length J(P, Q), along curves 
joining two fixed points P and Q on a compact differential n-manifold Mn of 
class Cfn without boundary, admits no degenerate extremals for any fixed P 
and almost all Q on Mn . It is in this sense that nondegenerate curve-functions 
J(P, Q) are dense among all admissible functions J(P, Q). 

A general problem. I t turns out that a closed extremal g of J on Mn is degenerate 
in the above sense if and only if the Jacobi equations based on g have no non-
null periodic solution. The question arises, is it possible to give meaning and 
validity to the statement: "Among admissible manifolds of class C" , near Mn 

in a suitably restricted sense, those manifolds on which every closed extremal is 
nondegenerate are everywhere dense"? The writer has established such a theorem 
when n = 2, but the case n > 2 is open. More generally it should be possible in 
the case of variational problems in the large of general type to show that in some 
sense the nondegenerate function is everywhere dense. 

The most useful principle of this sort is the following. On the above manifold 
Mn point functions / of class C" which are nondegenerate are everywhere dense 
among functions / of class C". This follows from work of the writer (cf. Morse 
[6]) and will be more explicitly elaborated and used in a later paper. The theory 
of nondegenerate functions parallels the theory of analytic functions in many 
remarkable ways. 

Nondegeneracy topologically defined. Morse [4]. We shall start with a homotopic 
critical point p of F when F is a positive lower semi-continuous function on the 
metric space S. Suppose that F(p) = c < oo. We shall be concerned with an 
F-bounded neighborhood U of p, that is, a neighborhood of p relative to some 
Sb for which b > F(p). If D* is a deformation of U on S with time parameter 
t, 0 ^ t g 1, the terminal mapping of U'mto S at the time 1 is JD1. We shall refer 
to a topological image Kr in S of a euclidean r-disc. We take KQ as a point. 

DEFINITION D. A homotopic critical point p of F will be termed nondegenerate 
if there exists a proper F-deformation Dt of some F-bounded neighborhood U of p 
such that 

(i). Dl leaves p invariant and deforms U into a topological r-disc Kr which con
tains p as an interior point when r > 0, and on which F(x) < F(p) when x j& p. 

(ii). The terminal mapping JD1, as applied to Kr H U, is F-deformable in Kr 

into the identity holding p fast. Morse [4, p. 50]. 
I t has been shown that an ordinary nondegenerate critical point of a point 

function / in a local n-dimensional coordinate system is nondegenerate in the 
above topological sense. See Morse [2, pp. 43-46]. The condition (ii) can be 
satisfied in the case of this / by choosing D* so that the mapping in (ii) is the 
identity. I t has also been shown that a critical extremal (an arc c) which is 
nondegenerate in the earlier sense of this section is also nondegenerate in our 
topological sense (Morse [4, p. 72]). 

In Morse [4] the function F is termed nondegenerate if its homotopic critical 
points are topologically nondegenerate and finite in number below any finite 
F-level, and if certain F-deformations exist. All these conditions are topological. 
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The subscript r of the r-disc Kr appearing in the preceding definition is shown 
to be the index of the critical point. The homology theory used is the singular 
theory of Eilenberg. Let pk be the fcth connectivity of S and mk the number of 
critical points of index fc. Then mk è Pk and there exist integers bk , with 0 ^ 
h g oo, and b0 = 0, such that 

(4.1) mk -pk = h + 6,+1 (fc = 0, 1, -. 0 . 

The numbers Ek = mk — pk, if finite, satisfy the relations (3.4). 
Lacunary index sequences. One can obviously derive many properties of the 

connectivities pk from the index sequence 1(F) 

(4.2) mQ, mi , ??i2, • • • . 

If each integer mk ?* 0 in (4.2) has vanishing adjacent integers, 7(F) will be 
termed lacunary. From (4.1) one obtains the new theorem: 

THEOREM 4.1. If (4.2) is a lacunary sequence, then mk = pk (fc = 0, 1, • • •) 
where pk is the kill connectivity of S. 

An important use of this theory is the determination of the homology groups 
of the space S = tiM(P, Q) of sensed arcs joining two fixed points on a differen
tiable manifold M of class C,h'. The homology groups are independent (up to 
isomorphisms) of the choice of P and Q so that one can take P and Q so that the 
length integral F = J(P, Q) is nondegenerate. The index mk is then the number 
of geodesies joining P to Q on which there are fc conjugate points of P preceding 
Q. Cf. Morse [1, p. 229]. In the case of an n-sphere the index sequence is known 
to consist of zeros except that mk = 1 when fc = 0 mod (n — 1). Morse [1, p. 
247J. Hence in the case of the ?i-sphere (n > 2) the connectivities pk of QM(P, Q) 
are zero except that pk = 1 when fc = 0 mod (n — 1). 

The question arises, what geometric manifolds admit a Riemann metric such 
that the nondegenerate length integral J(P, Q) possess a lacunary sequence? 
There are infinitely many geometric manifolds with this property. In par
ticular, the writer has shown in an unpublished paper that the cartesiani product1 

(4.3) SmX'-XSnr = M 

of any finite number of ra-spheres with ni > 2 admit such lacunary sequences. 
Thus a knowledge of the conjugate points of the geodesies joining P to Q on 
such M suffices to determine the homology groups of £lM(P, Q)- This is con
sistent with, but not equivalent to, the theorem that the homology groups of 
&M(P, Q) are obtained from the homology groups of ü8ni(P, Q), i = 1, •••,*", 
by the combinatorial processes usual for products. The latter theorem, proposed 
by the writer to Pitcher during the preparations of this report, was confirmed 
by Pitcher and later verified by the writer. 

It is of interest to note that if mn+i = 0, and if Ei = ra,- — pi is finite for 
i — 1, • • • , n, then 

(4.4) En - #n-i + • • • + (-l)nEo = 0. 
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Thus the absence of geodesies g joining P to Q with n + 1 points on g conjugate 
to P implies (4.4). 

5. A theorem on the dimension of a critical set. The results of this section 
will be published in detail in a later memoir. The principal theorem will be 
stated under much weaker conditions than the theorem on continuous functions 
on a manifold suggested at the end of §1. To this end, let F be defined over a 
metric space S, with 

(i) F positive, lower semi-continuous, and upper reducible, 
(ii) the sets Sc compact for each c < oo. 
Given a nonempty closed subset A C Sc, an infinite sequence 

(5.1) - (D) = D1}D2,Ds, . - . 

of F-deformations will be regarded as applicable to A if Z>i is an F-deformation of 
A yielding a terminal image Ai of A, if then D2 is an F-deformation of Ax yield
ing a terminal image A2 of Ai then, D3 an F-deformation of A2 , etc. Let 

(5.2) An = DnDn-X . . . A 

be the resultant deformation of A, obtained on applying D\ to A, J92 to A i , 
• • • , Dn to An_i. Let 7\> be the terminal transformation of A under An . 

I t is always possible to choose a sequence (5.1) of F-def ormations applicable 
to A, together with a sequence (en) of numbers with en > 0 andew —» 0 as 7& f oo, 
such that the following holds. If one sets 

(5.3) lim [ sup F(x)] = v(A) , 

the set <r of homotopic critical points at the level v(A) is not empty; if Bn is the 
subset of Tn(A) on which x > v(A) — en , then Bn is not empty and 

(5.4) 0 = lim [sup d(x, o-)] (d = distance). 
»fco x$Bn 

We-suppose the sequence (5.1) and the sequence (en) so chosen, and term v(A) 
an F-barrier of A. 

We shall define an intrinsic property of a compact set A. Let r and n be integers 
with 0 < r < n. We say that A is (r, n)-admissible if corresponding to an ar
bitrary closed subset X C A, 

(1) #&e bounding in A of each Vietoris (n — r)-cycle in X implies 
(2) even/ Vietoris r-cycle in A is homologous in A to an r-cycle in A — X. 

The theory of manifolds contains explicit conditions for the existence of (r, n)-
admissible sets A. It is clear, however, that A need not be restricted to mani
folds. The theory of characters is involved. In this connection it should be re
called that our group of coefficients is a finite field. The fundamental theorem 
follows: 

THEOREM 5.2. Let Abe a closed (r, n)-admissible subset of SG with an F-barrier 
v(A) and such that any (n — r)-cycle in A which bounds in Sc bounds in A. Let 
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H be a nontrivial r-homology class in A. If v(A) = c(H), then the set of homotopic 
critical points at the level v(A) carries an (n — r)-Vietoris cycle which is non-
bounding in So, so that 

dim o- è n — r. 

The proof of this theorem makes no use of category. In general, it seems to 
be possible to obtain many results on the minimum number of critical points 
which have been obtained by a use of the category theory without using that 
theory, and to add to these results a causal relation between various homology, 
homotopy, and isotopy classes and the respective critical points. 

It should be noted that the critical point theory suggests many other numerical 
topological invariants in addition to the category: for instance, the minimum 
number N of nondegenerate critical points of a continuous nondegenerate func
tion / defined over a geometric manifold, as / ranges over all such functions. 
If R is the minimum number of isolated homotopic critical points of a continuous 
function / defined over a geometric manifold, as / ranges over all such functions, 
it is clear that N ^ R. Both N and R are topological invariants over geometric 
manifolds for which N is defined. When is N > R? 

6. Other advances. I shall refer first of all to the unpublished work of E. 
Pitcher which makes use of the mechanism (Morse [1, pp. 244-247]) whereby the 
homology groups of the space fì(P, Q) of §4 were determined for the space of 
curves joining P to Q on an n-sphere by explicitly giving a base for the non-
bounding cycles. Pitcher's work makes it clear that these models will be useful 
in analyzing the homology groups irr(S

n , x) of the w-sphere. Here x is the point 
in Sn into which the fixed point of the antecedent r-sphere Sr is mapped. In 
results announced at the Congress, Pitcher has used these new geometric meth
ods to verify the result of Whitehead that 7TB(S8) yields the integers mod 2. 
The variational methods are capable of great extension in the direction of 
determining models for use in homotopy theories. For example, one can replace 
curves joining two fixed points on an w-sphere by disc-type surfaces spanning 
a circle. 

The papers by Morse and Ewing introduce a new approach to the restricted 
problem of three bodies. The Jacobi least action integral J which is studied is 
neither regular nor positive definite. Nevertheless Morse and Ewing have 
established the upper reducibility of J under suitable conditions and prepared 
for the advances to follow. Ewing has used the Weierstrass generalized integral 
to give an essential simplification of one of the proofs. In the general direction of 
fundamental definition of integral and length see Menger, What Paths Have 
Length? 

Special attention is called to the remarkable work of the Russian school. Thè 
recently published paper by L. Lusternik and Schnirelmann [4] gives more detail 
concerning early results and continues their program. The paper by Seifert cited 
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refers to the general problem of periodic motion and runs into the same problem 
of one motion covering another. 

Reference should be made to the forthcoming Colloquium Lectures, American 
Mathematical Society, New York, by Arnold Hedlund where his researches on 
flow, transitivity, symbolic dynamics, etc., have much to do with variational 
theory. A paper by Rauch to appear in the Annals of Mathematics uses varia
tional theory in the large, and in particular uses generalized comparison theorems 
to obtain sufficient conditions on the variation in ratio of the Riemann curvature 
on â  compact simply-connected manifold of positive curvature in order that the 
manifold be the topological image of an w-sphere. 

A fundamental paper by C. B. Morrey first solves the problem of Plateau for 
a general Riemannian manifold in the case where the manifold is not coverable 
by a single coordinate system. This result should accelerate variational theory 
in the large for multiple integrals. In this direction is the penetrating work of 
Shiffman who has attacked the crucial problems of the multiple integral theory 
with great ingenuity and success. Courant has aided the general advance by 
his papers on minimal surfaces and conformai mapping. His book contains other 
references. 

In a basic topological study Leray has initiated a theory of mappings which 
embraces part of the critical point theory and suggests unsuspected relations. 
One may expect striking developments along this line in the near future. 

The extensive work of McShane and L. C. Young is in another direction but 
has introduced new power and completeness into thç foundations of the theory 
of generalized curves and surfaces. 

The recent work of Morse and Transue gives an abstract representation of a 
generalization of the second variation. The generalized Euler equations include 
classical Euler equations as well as integral and integro-differential equations of 
general type. The relation to the variational theory in the large is in connection 
with the unpublished characteristic value theory and index theory. 

S. Bergman has made use of the theory of level manifolds and of critical 
points in his study of pseudo-conformal mapping. In particular the theory of 
equivalence of Reinhardt domains clearly calls for such analysis. 
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SINGULARITIES OF MINIMAL. SURFACES 

LIPMAN BERS 

1. Introduction. Minimal surfaces are of interest in various branches of 
mathematics. In the calculus of variations they appear as surfaces of least area, 
in differential geometry as surfaces of vanishing mean curvature. In gas dy
namics the equation of minimal surfaces, 

(1) ( 1 + <PI)<P*X - 2<P*<Pv<Pxv + ( 1 + <pl)<Pvv = 0 , 

is interpreted as the potential equation of a hypothetical gas, which yields flows 
closely approximating adiabatic flows of low Mach number. This interpretation, 
due to Chaplygin,1 has been used extensively in recent aerodynamical literature. 
In the general theory of partial differential equations, finally, equation (1) 
appears as the simplest nonlinear equation of elliptic type. From the point of 
view of this theory it is natural to restrict ourselves to minimal surfaces in 
three-space admitting a non-parametric representation. 

In this report we deal with solutions <p(x} y) of (1) possessing isolated sin
gularities. The kind of results one should look for is suggested by the beautiful 
theorem by S. Bernstein which asserts that every solution of (1) defined and 
regular2 for all finite values ofz(z = x + iy) is a linear function? For harmonic 
functions the same conclusion would hold only under the additional assumption 
that <pl + (pi is uniformly bounded. This situation is typical. Contrary to what 
one might expect a priori, the theory of singularities for equation (1) is simpler 
than that for the Laplace equation or for any linear elliptic equation. 

We shall consider both single-valued and multiple-valued solutions <p(x, y), 
but make once and for all the assumption that <px and <py are at most finitely 
many-valued. 

2. Classification of singularities.4 The following result bears the same relation 
to Riemann's theorem on removable singularities as Bernstein's theorem does 
to that of Liouville. 

1 S. A. Chaplygin, Uöenye Zap. Imp. Mosk. Univ., Sek. Mat. Fiz. vol. 21 (1902) pp. 1-121. 
An English translation of this celebrated paper appeared as the National Advisory Com
mittee for Aeronautics, Technical Memoir vol. 1063 (1944). 

2 By a regular solution we mean one which possesses continuous partial derivatives of 
second order. Such solutions are necessarily analytic. 

8 Bernstein obtained this result as a corollary of a general geometrical theorem (cf. Comm. 
Soc. Math. Kharkov vol. 15 (1915-1917) pp. 38-45, or Math. Zeit. vol. 26 (1927) pp. 
551-558). A topological gap in his proof has been corrected by E. Hopf (Proc. Amer. Math. 
Soc. vol. 1 (1950) pp. 80-85) and by E. J. Mickle (ibid. pp. 86-89). T, Rado (Math. Zeit. 
vol. 26 (1927) pp. 551-558) gave a function-theoretical proof of the theorem on minimal 
surfaces. Another such proof is given in the author's paper Isolated singularities of minimal 
surfaces which will appear in the Ann. of Math. 

4 All theorems of this section are proved in the author's paper referred to in footnote 3. 
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(a) A solution <p(x, y) of (1) which is regular and single-valued in a deleted 
neighborhood of z0 = Xo + iy0 5* 00 is also regular at zQ. 

For harmonic functions the same conclusion would hold only under the 
additional assumption that <p is bounded. 

From now on we consider also multiple-valued solutions. We say that s0 9
e 

00 (ZQ = 00) is a branch-point of order (ra — 1) if <p(x, y) is regular for 
0 < I z — ZQ I < R (for R < I z \ < + <*> ), and <px and <py suce ra-valued functions. 

(b) If ZQ is a branch-point of order (ra — 1) of a solution <p(x, y) of (1), then the 
limit 

Wo = lim (<px — i<py) 
a-*a0 

exists. This limit is necessarily finite if Zo = <x>. 
If <p(x, y) is not a linear function (a trivial case which shall be neglected), 

then <px — i(fy ï* Wo at all points sufficiently close to and distinct from zQ. Hence 
if T is a simple closed curve sufficiently close to zQ and containing zQ in its interior, 
and if z — x + iy goes m times around V in the direction positive with respect 
to ZQ , the argument of <px — i<py increases by 2mr, the integer n being independent 
of T. We call n the index of the branch-point. 

(c) Under the hypothesis of (b), n > 0 if wQ = 0, n = 0 if 0 < | w0 \ < + 00 7 

—m ^ n < 0 if Wo = 00. 
Branch-points with vanishing or positive index are called ordinary, those of 

negative index polar. 
(d) Let ZQ be an ordinary branch-point of a solution <p(x, y) of (1) of order (m — 1) 

and index n. If Zo 5e «>, then 

v(x, y) = Re{A + B(z - Z„)1+nlm} + 0( | » - * |W*w/-)> 

«. - i<Pv = ( l + | ) Bb - z0)
nlm + 0( I z - zo I ( n + 1 ) M ) , z -» 3o, 

wftere -A and B ?* 0 are complex constants. Ifzo= «>, then 

<p(x, y) = Re{A + Bzx'n,n + C log z\ + 0 ( | « I1-'»«"»), 

* - ift = ( l - | ) Bz~n'm + «V*> + 0( I z r(»+1)*"), « - » , 

where A, B, C are complex constants and B ^ 0, C = 0 for n > m, G ^ 0/or 
n = ra. 

Introduce the auxiliary variable Z = (z — 2o)1/wl if 20 ^ <&,Z = z~llm if 30 = °°. 
In the Z-plane p behaves like a regular harmonic function (in a neighborhood of 
Z = 0) ii Zo 9e <*>, like a harmonic function which may have a pole and a log
arithmic singularity if 20 = <x>. This justifies the name "ordinary branch-point." 
In the case of a polar branch-point, however, <p(x, y) is, in general, topologically 
distinct from a harmonic function. 

(e) Let Zo be a polar branch-point of order (ra — 1) and index n of a solution 
<p(x, y) of (1). Set Z = (z — Zo)llm and consider the functions <p, <pl + <pl in the 
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Z-plane. The level-curves of ipl + <pl are simple closed curves around Z = 0. The 
level-curves of <p form a pattern5 shown in Fig. 1, the number of "hyperbolic sectors9' 
being exactly 2(ra + n). 

If <px and ipy are single-valued 
in the neighborhood of a polar 
branch-point, then m = 1, so 
that n = — 1 and there are 
no "hyperbolic sectors." In this 
case <p(x, y) behaves like the 
function cp — arctan (y/x). In 
view of the gas-dynamical in
terpretation of equation (1) a 
polar branch-point of order 0 
may be called a vortex-point. 
We note that in general <p(x, y) 
may be either ra-valued or in
finitely many-valued in the 
neighborhood of a branch-point 
Zo of order (ra — 1) except that 
it must be ra-valued if Zo 9e <*> 
and n ^ 0, or if zo = °° and 
n > m, and it must be infi
nitely many-valued if ZQ 9* °o 
and n = —ra. 

Solutions of (1) with finitely many-valued derivatives can have no isolated 
singularities other than those described above.6 

FIGURE 1 

3. Abelian minimal surfaces.7 The local theory of isolated singularities given 
above may serve as a foundation for the theory in the large. I t is natural to 
begin with an inquiry into the nature of non-parametric minimal surfaces with 
only a finite number of singularities. More precisely, we want to find all solu
tions (p(x, y) of (1) such that (a) <p(x, y) may be continued analytically along 
every finite path in the 2-plane which avoids certain excluded points zQ, • • • , zK , 

6 A precise description of this pattern is given in the paper referred to above. The level-
curves which enter Z = 0 possess there tangents. Each "hyperbolic segment" has an 
"opening" ir/m. For a given m and n there exist, in general, several topologically distinct 
types of polar branch-points, since these parameters determine only the number but not 
the relative position of the "hyperbolic sectors". For m = 3, n — —1, for instance, there 
are 5 distinct types, one of which is shown in Fig. 1. 

6 If one asks for point-singularities of the analytic functions giving the Monge-Weier-
strass representation of a minimal surface, rather than for the point-singularities of the 
solutions of (1), one arrives at results of a quite different nature. Such an investigation 
was carried out by Y. W. Chen (Ann. of Math. vol. 65 (1949) pp. 790-806). 

7 A paper with the same title, containing proofs of the statements made in this section, 
will appear elsewhere. 
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and (ß) <px — i<py is a finitely many-valued, say M -valued, function. From (ß) 
it follows that (7) along all paths leading to the excluded points or to the point at 
infinity <px — i<py approaches finite or infinite limits. 

If a harmonic function <p(x, y) has properties (a), (ß), (7), it is the real part 
of an Abelian integral (integral of an algebraic function). We therefore call a 
minimal surface S: <p = <p(x, y), in the (x, y, <p)-space an Abelian surface if v(x, y) 
satisfies conditions (a), (ß). 

We state now a generalization of Bernstein's theorem. 
(f ) An Abelian minimal surface is a plane if <px, — i<py omits any finite value, or 

if there are no polar branch-points. 
From now on we assume that S is not a plane. Over the points z\, • • • , zK , °° 

the function <p(x, y) has branch-points of the kind described in the preceding 
section.8 We denote by B the sum of the orders of all branch-points, by N the 
sum of the indices of the ordinary branch-points, and by P the number of polar 
branch-points. Upon proper definition of terms Theorem (f ) can be strengthened 
as follows. 

(g) If S: <p = <p(x, y) is an Abelian minimal surface, then <px — vpy takes on 
every finite value N times, and the sum of the indices of all polar branch-points is 

The totality of Abelian minimal surfaces is described in the following state
ment. 

(h) To every Abelian minimal surface S: <p = <p(x, y), there corresponds auniquely 
determined real plane algebraic curve G of genus 

p = B-2M + P+l 

in the (s, t)-plane, with P real branches, and with no points with real s and imaginary 
t. The surface S admits the parametric representation 

2 it ds, y = Re / 2 it ds, <p = Re / t ds 

in terms of Abelian integrals attached to G. The regular points and ordinary branch-
points ofcp(x, y) are in a one-to-one correspondence with the points of G with Tms > 0; 
the polar branch-points are in a one-to-one correspondence with the real branches 
ofe. 

The converse of this theorem is also true. 
(i) Let Qbe a real plane algebraic curve in the (s, t)-plane such that (i) for every 

point (s,t t) on C the reality of s implies that of t, (ii) the functions x, y defined by 
(2) are single-valued on the part of the Riemann surface F of G where Ims è 0. 
Then the surface S defined by (2) is an Abelian minimal surface. 

A curve G satisfying the hypotheses of this theorem will be said to belong to 
the class SI. If two Abelian minimal surfaces equivalent under a translation are 
considered as identical, then the correspondence between Abelian minimal 

8 Several branch-points of different types may be located over the same point in the 
z -plane. 
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surfaces and algebraic curves of class SI is one-to-one. The Riemann surface F 
of a curve G of class 21 is necessarily orthosymmetric. It can be shown that to 
every orthosymmetric Riemann surface belong infinitely many curves of class 
SI and hence infinitely many Abelian minimal surfaces. 

4. Boundary value problems. The discussion of minimal surfaces with only 
isolated singularities reduces completely to a problem in algebraic function 
theory. The theory of solutions of (1) which possess at given points prescribed 
singularities and satisfy along given curves prescribed boundary conditions 
presents greater difficulties. Thus far, only one class of such boundary value 
problems has been treated successfully. 

Let r be a given simple closed curve in the 2-plane. We want to find a solu
tion (p(x, y) of (1) which is regular at all finite points exterior to V, possesses 
single-valued partial derivatives which are continuous on Y, and satisfies on Y 
either of the homogeneous boundary conditions 

A : ^ = 0, B : , = 0, 

as well as the condition 

(3) max (<pl + <pl) = p 

where p is a given number. At z = oo the function <p(x, y) will have a singularity, 
and according to (d) we shall have that 

<p(x, y) = ax + by + c log (x2 + y2)112 + d arfftan (y/x) + 0(1), 

<Pa — i<Pv —» a — ib, z —» oo , 

where a, b, c, d are real constants. In order to obtain a well-defined problem we 
must specify the character of the singularity. This can be done, for instance, by 
means of either of the following conditions.9 

1. a > 0, b = 0, <px — i(py = 0 at a given point z± of Y. 
2. a > 0, b = c = d = 0. 
3. a = 6 = 0. 
4. c = d = 0, <px — i<py = 0 at a given point z\ of Y. 
5. <px — i<py = 0 at two given points, Z\ and z2, of Y. 
Problems involving boundary condition A are best interpreted in the language 

of gas dynamics. Problem Al, for instance, requires the determination of a 
Chaplygin flow past the profile Y, possessing a given direction at infinity, at
taining a given maximum speed (condition (3)), and satisfying at the "trailing 
edge" 2i the Kutta-Joukowsky condition. Problem A3 involves a purely cir
culatory flow around Y. Problems with boundary condition B are best interpreted 
geometrically. Thus Problem B3 is that of finding a one-sheeted minimal surface 

0 These conditions are suggested by analogy with Laplace's equation. Note that con
dition A implies that c = 0, and condition B that d = 0. 
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bounded by a plane curve, extending to infinity and becoming there parallel to 
the plane of the curve, and possessing a given maximum slope (condition (3)). 

We make the following assumptions on the curve r . (i) Y possesses a piecewise 
continuous curvature, (ii) Y has at most finitely many intruding corners, and 
no protruding ones, except that the point Zi in Problem 1 and 4 and the points 
Z\, 22 in Problem 5 may be protruding corners, (iii) If a point goes once around 
T in the counter-clockwise direction, the tangent to Y is turned in the clockwise 
direction by less than T. Under these assumptions we can prove: 

(j) All ten problems, Al — B5, have solutions. 
^Condition (i) can be somewhat weakened. Condition (ii) is actually necessary 

for the existence of a solution. We do not know whether or not condition (iii) 
is essential. The proof of (j) is rather involved. The boundary value problem is 
first reduced to a*mapping problem and then to a nonlinear integro-differential 
equation which is treated by the topological method due to Leray and Schauder.10 

A uniqueness proof is still lacking. 
Problems 1, 2, 4, 5 can be modified by replacing condition (3) by 

(3*) ' a = /io, 

po being a given positive number, i.e., by prescribing the "speed at infinity" 
instead of the "maximum speed." Some such problems have been discussed by 
several authors. Thus Frankl and Keldysh11 showed that Problem Al* has a 
unique solution if ju0 is sufficiently small. They considered an equation more 
general than (1). Slioskin12 proved that Problem A2* has a unique solution for 
symmetrical profiles Y and for sufficiently small juo. Chen13 observed that a 
solution of A2* also solves a certain variational problem, and proved that this 
variational problem has a solution. 

There are, of course, many other boundary value problems for minimal 
surfaces with singularities. Thus it would be of interest to know whether there 
exists a solution of (1) which is regular in the domain interior to a smooth closed 
curve, except for a single vortex-point, and which satisfies along the curve con
dition A. Such a solution would be the minimal surface analogue of Green's 
function. 

5. Other partial differential equations. The fact that solutions of (1) are rela
tively poor in isolated singularities is due to the nonlinearity of this equation. 

Indeed, let «£(#>) = 0 be any linear homogeneous elliptic partial differential 
equation of second order for an unknown function of two independent variables. 

10 A sketch of the proof of the existence theorem for AI will be found in the author's 
note, Proceedings of Symposia in Applied Mathematics vol. 1 (1949) pp. 41-46. This note 
also contains the proof of the necessity of condition (ii). A detailed presentation will 
appear elsewhere, presumably in the Trans. Amer. Math. Soc. 

" F. Frankl and M. Keldysh, Bull. Acad. Sci. URSS vol. 12 (1934) pp. 561-601. 
12 N. Slioskin, Ucenye Zapiski Moskovskogo Gosudarstvennogo Universiteta vol. 7 

(1937) pp. 43-69. 
13 Y. W. Chen, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 331-347. 
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This equation possesses solutions which behave (in a sense which we shall not 
make precise here) like the harmonic functions Re(z — Zo)nlm, lm(z — Zo)n , 
m = 1, 2, • • • ; n = 0, ± 1 , d=2, • • • . From these, poles and essential singular
ities can be built up by superposition. The situation is not more complicated, 
however, than in the case of harmonic functions, since every solution which is 
regular and ra-valued in the neighborhood of zQ can be uniquely expanded in a 
"Laurent series" in terms of the particular solutions mentioned above. 

These theorems are consequences of a general theory of "pseudo-analytic" 
functions of which only a brief sketch dealing with self-adjoint equations has 
appeared thus far.14 We can establish these results without restrictive regularity 
assumptions on the equation £(cp) = 0. If it is of the form 

(4) <pxx + <pyy + a(x, y)<px + b(x, y)<py = 0, 

for instance, we require only that a and b be Holder-continuous functions. 
If £(<p) — 0 is an equation with analytic coefficients, then the existence of 

poles follows from the theory of the fundamental solution. For an analytic 
elliptic equation of any order in w-space the construction of the fundamental 
solution and an analysis of poles has been accomplished by John.15 For the case 
of equation (4) with analytic a, b a "Laurent expansion" seems to be contained 
in the work of Vekua.16 

On the other hand, the equation of minimal surfaces may well turn out to be 
typical for a wide class of nonlinear equations of the form 

(5) (pipx)x + (pipy)y = 0, p = p(q), q = <pl + <p% . 

Such an equation may be interpreted as the potential equation of a gas flow 
with density p. It will be elliptic ("subsonic") if qp(q) is an increasing function 
of q. We assume this to be true for all positive values of q and set L = limg_>+00(pg). 
(For equation (1), p = (1 + q2)~112, L — 1.) Equation (5) possesses a solution of 
the form <p(x, y) = $(r), r2 = x2 + y (potential of a source). If L < + oo, then 
$(r) becomes singular for a positive value of r. I would conjecture that if L < 
+ 00, then Bernstein's theorem and Theorem (a) are valid for equation (5). 
But it is easy to find functions p(q) with d[qp(q)]/dq > 0 and L = + oo, such 
that $(r) is continuous for r = 0. Hence there exist elliptic equations of the 
form (5) for. which even Riemann's theorem on removable singularities ceases 
to be true. Such equations possess solutions which may remain continuous at 
isolated singularities. 

Note added in proof (July 18, 1951): 1. I am now able to prove the existence 
theorem (j) without assuming that the boundary curve Y is nearly convex (that 
is, without condition (iii)). 

2. R. S. Finn proved17 the theorem on removable singularities (Theorem (a)) 

" L. Bers, Proc. Nat. Acad. Sci. U.S.A. vol. 36 (1950) pp. 130-136. 
16 F. John's paper will appear in Comm. Pure Appi. Math. 
10 See a revue of N. Vekua's work in Uspehi Matematiòesldh Nauk 5 (1950) pp. 167-169. 
" R . S. Finn, Bull. Amer. Math. Soc. Abstract 57-3-212. 
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for all elliptic equations of the form (5) with L < + oo, and even for the more 
general case when p depends also on x and y. 

3. The papers referred to in footnotes 2, 7, 10, 15 have appeared18 and so has 
a sketch of the general theory of pseudo-analytic functions.19 
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18 L. Bers, Ann. of Math. vol. 53 (1951) pp. 364-386; Journal d'Analyse Mathématiques 
(Jerusalem) vol. 1 (1951) pp. 43-58; Trans. Amer. Math. Soc. vol. 70 (1951) pp. 465-491. F. 
John, Comm. Pure Appi. Math. vol. 3 (1951) pp. 273-304. 

19 L. Bers, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 42-47. 



GEOMETRIC AND POTENTIAL-THEORETICAL METHODS IN THE 
THEORY OF FUNCTIONS OF SEVERAL COMPLEX VARIABLES1 

STEFAN BERGMAN • 

1. The kernel function as a tool for defining an invariant metric. A generaliza
tion of the principle of hyperbolic measure. Within the past two decades or so, 
attempts have been made to reformulate the methods of the theory of func
tions of one variable2 so that they may be applied to other fields such as the 
theorjr of functions of several variables, differential geometry, and partial 
differential equations, to obtain unified methods in all these fields. 

In this connection, it was particularly useful to develop certain new tools. 
which arose from the study of the class L2((B) of functions in the domain8 (B. 
Using some properties of functions of this class, we determine for every domain 
(B, the so-called kernel function which has various useful properties. Connecting 
this approach with certain variational problems, the "principle of the minimum 
integral" was obtained. Using these procedures, results have been derived which, 
in the classical approach, are usually obtained by employing the Riemann map
ping theorem and the principle of hyperbolic measure. In this new form, the 
methods can be generalized to the theory of several variables. [Bergman 1,3,4].4 

2. Complications arising in attempting to generalize potential-theoretical 
methods. A large chapter in the theory of functions of one variable is based on 
potential-theoretical methods. In the case of one variable, this direction has 
been connected with the theory of the kernel function. The establishment of 
this connection leads to a series of new results for one variable, as well as making 
it possible to generalize these procedures to the theory of partial differential 
equations of elliptic type [Bergman 4, Bergman and Schiffer {1, 2, 3, 6, 7}]. 

1 Paper done under Contract N5ori 76/16 NR 043 046 with the Office of Naval Research. 
2 Unless otherwise indicated, here and in the following, "variables" will be used to 

mean complex variables. As a rule, we shall use z to denote (z\, z2), zu —x^h-i + ix2k, when 
referring to a function of two variables. Z will denote (xi , x2 , £3 , £4). For the sake of sim
plicity, we shall formulate our results for two variables, but almost all considerations can 
easily be generalized to the case of n variables. 

3 As a rule, manifolds are designated by German or script characters. The superscript n, 
where n = 3, 2, 1, 0, indicates the dimension of the manifold. In the case of 4-dimensional 
manifolds, the superscript is omitted. By surface, we shall mean a two-dimensional variety; 
the term lrypersurface will be used for three-dimensional varieties. A sequence of intersec
tions of a domain with distinguished boundary surface is discussed in another article in 
these Proceedings, on p. 363ff. Note: Sometimes the same manifolds are denoted in the 
present paper and in the article on p. 363ff by different symbols. 

4 Within the brackets, the numbers following a name refer to the bibliography at the 
end of the paper unless they appear within ( ) or( (, in which case they refer to the bibliog
raphy in [Bergman 3 or 4], respectively. 
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Attempting to generalize the potential theoretical methods to the case of two 
variables, we meet difficulties which largely arise from-the following two factors: 

(1) In contrast to the situation in the case of one variable, geometrical mani
folds which are of interest in the theory of functions of several complex variables 
differ from those usually considered when investigating the Euclidean space of 
four real variables (see §3) ; 

(2) The differential equations which are satisfied by the real or imaginary 
parts of a function of two variables are no longer of elliptic type. 

3. Domains with distinguished boundary surface. While a function of one 
variable assumes a value at a point, a function of two variables assumes a 
constant value on an analytic surface, so that the analytic surfaces or segments 
of these surfaces (and not isolated points), represent those basic elements in the 
geometry with the help of which other manifolds have to be generated. As a 
consequence, a number of new geometrical notions arise irr the theory of several 
variables [Bergman 1, Chapter I]. » 

The following manifolds of the space of two variables play an essential role: 
Analytic hypersurfaces (tf), i.e., one-parameter family of analytic surfaces, and 
domains whose boundary consists of finitely many segments of analytic hyper
surfaces ì)l, k = 1, 2, - • • , n. 

In considering analytic functions in a domain (B, it is of interest to study the 
connection between the value distribution of a function inside the domain, and 
on its boundary. In particular, let us consider a simply-connected domain 

(1) <B ~ E £2(f), 

where £2(f) = [zv = <pv(Z, f), v = 1, 2], for every fixed5 f, represents a segment 
of an analytic surface, and a sequence of domains (Bn which exhaust6 (B. Let 
I K , I A = S - o «S (exp (ikk))] 3c!(exp (ikk)) = [*, - <p^(Zk, exp (ikh)), 
v = 1,2], 0 ^ Xfc S 27T, (see Fig. I)7 be a system of analytic hypersurfaces whose 
intersection with the boundary f)3 of (B is the surface S2 = Ö8fi 2>faö* (which 
possibly consists of a number of disconnected parts, eS2 , i , S«f2, • • •)• If the l)£ 
are chosen in such a way that every surface £2(f ), which passes through a point 
of (Bw , intersects in a closed curve tn(£), the system ̂ ktifyl, and (Bn 0 £2(f ) lies 

6 <py(Z, rìfri^Z* > e xP (*^*))l a r e analytic functions of the variable Z =» X + iY [Z* — 
Xu -h iYhit which are regular in a conveniently chosen domain of the Z [Zft]-plane. 

6 We obtain, for instance, a sequence of such domains (Bn by considering the subdomains 
K(z, z) = n, no ^ n < «>, where if is the kernel function of the domain (B and z = (zi , 22). 

7 In Fig. 1 the surface S„ appears as four lines §„,*,, A = 1, 2, 3, 4. The four-dimensional 
domains (B and (Bn appear as two three-dimensional bodies ((Bn lying inside (B) ; the bound
ary hypersurfaces &3 and hn appear as surfaces. The segments of analytic hypersurfaces 
fo,, k = 1, 2, appear as mantle surfaces of two truncated cones, segments of analytic sur
faces appear as straight lines on the mantle surfaces. The boundary curve ^(exp (i\k)) 
of each 3CA (exp^X^)) appear as two points. £2(f) appears as a segment of a surface, In(f) 
is the intersection of 52 with £2(f). It should be noted that some of the characters in 
Fig. 1 differ slightly from those used in the text. 
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inside I1* (f ), then the knowledge of values of f(z), 2 G S» , permits us to determine 
f(z) at every point of (Bn . Indeed, the boundary curve of each JC| (exp (iXk)) lies 
in S2^ , and since f(z) is an analytic function of the variable Zfc in 3C* (exp (iX*)), 
we can determine f(z) in every 3cJ (exp (iXh)) and thus in ] £ & $ . Further, 
since in every <ß2(f ), /(s) is an analytic function of one variable Z, we can deter
mine from the values of f(z) in fn(f ), the value of f(z) in the interior of ^„(f ) which 
includes (Bnn £2(f). 

f)2(exp(tX: 

l)2(exp(iX2)) 

FIG. 1 

If (Bn —» (B, then in general the $2
n will fill out the whole boundary b8. For 

certain special domains, the analytic hypersurfaces 1)1 can be chosen in such a 
way that Mn remains bounded for all n and the S„ converge to a surface S2, which 
is called the distinguished boundary surface. This occurs in particular in the 
case of a domain (B bounded by finitely many segments of analytic hypersurfaces. 
In this and some other respects, the distinguished boundary surface plays the 
role of the boundary curve, and in studying the relations between the value 
distribution inside the domain, and on its boundary, it is sometimes of interest 
to'Veplace the boundary curve by the whole boundary b3, and sometimes by the 
distinguished boundary surface S2. Two particular questions have been studied 
in this connection: 

(1) The determination of integral operators8 transforming f(z), z £ tf (or 
z G S2) intof(z), z 6 (B (or for values of z belonging to a certain subdomain of (B). 

(2) The question of the introduction of the "extended classes" JE((B) of func-
8 Most of the operators considered in the following are obtained by using theorems of 

Green's type or various generalizations of it, relating integrals over the boundary b3 or the 
distinguished boundary surfaces2 with integrals over the domain. 
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tions, which class includes ß-harmonic functions (real parts of analytic functions 
of two variables) and possesses some useful properties. In particular, E((&) 
have to possess the property that to every (real) function b(Z), Z 6 b3 (or S2), 
there exists a unique function F(Z), Z 6 (B, F 6 £((B), possessing on b3 (or S2) 
the prescribed boundary value b(Z). Here and in the following, Z will denote a 
point of (four-dimensional) xi, x2, Xz, ^-space. 

4. Operators transforming boundary data into functions of two variables. 
Operators solving the problem (1) in the case where f(z) is given on the boundary 
b3 have been discussed in [Bergman (23* p. 389); 2, Supplementary Note III . 
p. 9; Bochner-Martin {2}]. The derivation of these operators is based on the 
fact that / is a harmonic function of four real variables and can be represented, 
using Green's formula, in terms of the boundary value of itself and its derivatives 
on b3. Since the real and imaginary parts of / are connected by the generalized 
Cauchy-Biemann equations, we can replace the integrals over the derivatives of 
/ by the integrals over/itself. Another operator solving the same problem can be 
obtained by using complex orthonormal functions which are orthogonal with 
respect to the boundary b3. 

The formulas representing the values of the function inside the domain in 
terms of its value on the distinguished boundary surface S2 have been obtained 
independently by [Bergman (13), 5, 6] and [Weil (1), (2)]. In attempting to 
develop a unified treatment which will refer simultaneously to problems (1) 
and (2) of §3, the author of the present paper considers domains bounded by 
finitely many analytic hypersurfaces of the form 

(2) <l>k(zi, z2 ; Xfc) = 0, Xfc real. 

I t is assumed that the fa can be uniformized by writing 

(2a) zv = <plk)(2k , exp (iX*)), v = 1,2, k =* 1,2, • • -, n, XÄ real, 

where <p(k} are, for a fixed X&, analytic functions of the auxiliary variable Za. 

5. Operators transforming boundary data into (real) "functions of the ex
tended class." Considering question (2) for functions F given on the whole 
boundary b3, it is most natural to introduce harmonic functions of four real 
variables as the "extended" class. On the other hand, this class is not invariant 
with respect to pseudo-conformal transformations, and the geometry of the space 
of harmonic functions of four real variables is that of Euclidean space, and not 
the space of two complex variables. This is the reason why this "extended" 
class can be used efficiently for comparatively few purposes. 

As we stressed before in the case of the domain bounded by finitely many 
analytic hypersurfaces, the distinguished boundary surface S2 in some respects 
plays a role similar to that of the boundary curve in the theory of one variable. 
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We shall assume in the following that fk = Pk exp (i\k), and that the functions, 
<p[k) in (2a) are defined for 1 — e S \ h \ S 1, e > 0, for k = 1, 2, • • • , n, and 
one pair, say <pll\ is defined f or | f 11 g 1, so that we may use the surfaces 3C2(fi) 
as the surfaces £2(f) appearing in (1). In the case of the bicylinder \zv\ < 1, 
v = 1, 2, it is natural to introduce the class of doubly-harmonic functions (i.e., 
functions F of four real variables Xi,yi ,x2, y2 satisfying d2F/dzvdzv = 0, v — 1,2) 
as the extended class E. The surface S2 = [| Zi | = 1, | z2 | = 1] is the distin
guished boundary surface. 

We proceed now to define an analogous "extended class" Z£((B) for more general 
domains (B bounded by finitely many segments 1)1 of analytic hypersurfaces. Since 
each boundary component 1)1 is a sum of segments 3c| (exp (i\k)) of analytic 
surfaces, and the boundary curve 1)1 (exp (i\k)) of each segment 3c| (exp (i\k)) 
lies in the distinguished boundary surface, we can, in every segment 3C| (exp (ihk)) 
determine that harmonic function of the auxiliary variables Xk, Yk 

(Z* = Xk + iYk) which assumes the prescribed value on the boundary curve 
1)1 (exp (iXk)). By this rule, the function of the extended class is defined in the 
whole boundary b3 of the domain. With rather general assumptions, it is possible 
to show that the function defined in b3 in this manner depends only upon the 
values prescribed on S2 [Bergman (27)]. 

Further, we assumed that the domain (B can be represented as a sum, (B = 
X)iril<i^i(ri)j of analytic surfaces, see (1). The boundary curve ï)Î(fi) of each 
segment tfC2(fi), | fi | S 1, lies in the three-dimensional boundary b8, and therefore 
we can determine in each 3C?(fi) that harmonic function of Xi, Yi (Zi = Xi + iYx) 
which assumes on the boundary ï)i(fi) the values obtained previously. In this 
manner, we define for every real integrable function f(Z), defined on the dis
tinguished boundary surface S2, a function P(/), defined in the domain (B and 
assuming on S2 the boundary values9 / . The linear operator P(/) is a generaliza
tion of the Poisson formula. I t has, among other properties, the properties: 

(1) I f / ^ 0,P(/) è 0. 
(2) If / are the boundary values of a inharmonic function F(Z), regular in 

(B and satisfying certain conditions, then P(/) = F (see p. 168,1. 1). 
(3) The functions of the extended class are invariant with respect to trans

formations which are pseudo-conformai in (B. 

REMARK. For some purposes (for which the invariance with respect to pseudo-
conf ormai transformations is not essential), one can define the function of the 
extended class by replacing the second step by forming (after the function is 
defined on b3 in the above way) that harmonic function of four real variables 
which assumes on b3 the previously determined values. 

9 However, we wish to stress that it could easily happen that the above representations 
of the domain could occur in a different manner, so that we could obtain different "extended 
classes." The question of the relation between the extended classes has not yet been suf
ficiently clarified. 
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6. Applications of functions of the extended class. The introduction of func
tions of the extended class permits us to employ potential-theoretical methods 
in the theory of functions of two complex variables. In particular, we can intro
duce Green's function which behaves as — log | g(z±, z2)\ along the segment of 
the surface g(z±, z2) = 0, lying in (B, and vanishes on the distinguished boundary 
surface. (Here g is an analytic function of two complex variables.) Using these 
results, it is possible, for some special domains, to derive generalizations of the 
Fatou theorem [Bergman and Marcinkiewicz {1}, Bers {1}] and of the theories 
of Nevanlinna and Ahlfors for value distribution [Bergman {19}]. 

More exactly, it was possible to obtain relations between certain geometrical 
notions, from the geometry of space of two variables, such as certain "measures" 
(i.e., quantities characteristic of some properties) of the intersection i\ = 
[(f(zi, z2) = v) PI b3] of v-surfaces of a function f(z\, z2) with the (three-dimen
sional) boundary b3 = ^!Ul)l of a domain with a distinguished boundaiy surface 
S2, on one side, and the values of / on S2 on the other side [Bergman (7), (14), 
(20), 7; Bergman and Martin (1); Gelbart {1}]. In particular, one can consider 
a one-parameter family of domains (B(p), p0 â p < °°, with distinguished boun
dary surfaces S2(p), and obtain relations between the growth of the above 
"measures" referring to f(p) and the growth of / on SPUOS2(P)' These results 
represent a generalization of the first and second theorems of Nevanlinna 
and the theorem of Hadamard on zeros of entire functions [Bergman {19}]. 

Let SB = [«i G 3Cj(Zj), Z2 = z2 ; \ Z21 < 1] be a domain bounded by 1)1 -
[z2 = exp(i\2)] and 1)1 = [zi = h(z2, exp(iXi)], 0 ^ \k ^ 27r, zk = x2k-i + ix2k. 
Here Z\ = h(z2, exp(iXi)) represents for every fixed z2 a simple closed curve 
&Ì(22), whose interior is denoted by TfC\(z2). 

Let / and g be three times differentiable functions of Xi, x2, Xz, #4, such that 
/«iii = 0 (/*!*! ss (d2f/dzidzi)) for every fixed xs, z4, x\ + x\ g 1. 

Let dak = dx2k-i dx2k, X l == [ | z2 \ < 1], 1)\ = [ | z2 | = 1]. Then 

JJüC2 Hue2«**) f*i**9~*i~** dc*idü)2 ä - 1 J x J ! Jnmig - ugni dzi dz% 

H e r e ( ) = ( )zi=h{z2M)M^KHM) > { \ s { Ki=Xi(*i.âi,*2.*2> • 
REMARK. If d(fzlZ2)/dz2 = 0 for every Xi (which will take place, e.g., if / is an 

analytic function of Z\ T z2), then T = 0. (In this case, in the formula (3) we 
can replace H by {%(z2, exp(zXi)) — H(Q, exp(iXi))}.) 

Green's formulas of similar kind can be obtained for various integrands, and 
for general distinguished boundary surfaces. Using them and substituting for / 
conveniently chosen functions, we obtain various generalized "residue theorems" 
which can be among others used to generalize considerations of [Bergman {19}]. 
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A further application of functions of the extended class 2?((B) is the possibility of 
obtaining invariants with respect to pseudo-conformal transformations. In this 
connection, it is of considerable interest to study the topological structure of 
the domains with distinguished boundary surface described in §3, On the bound
ary b3 of a domain CB which is bounded by finitely many segments 1)1 of ana
lytic surfaces, we can distinguish the following types of points: (1) those which 
belong only to one t)|; (2) those through which go at least two segments 1)1 (they 
form the distinguished boundary surface S2); (3) those through which go at 
least three 1)1 (distinguished boundary line I1); (4) those through which go at 
least four 1)k (the distinguished boundary set (P°). 

Applying the Meyer-Vietoris theorem, and assuming that there are no inter
sections of more than four101)1, one obtains relations between the Betti numbers 
Bp of the segments 1)k of the boundary b3 = 2Z*~i *)? > segments S2j = I)3 H l)3 

of the distinguished boundary surface, segments liJfr = lfv fi ï)3 fi 1)k of the dis
tinguished boundary line, discrete point set (9%1ss belonging to at least four seg
ments 1)1 . We have 

B'tf) = £ B»(tf) - £ E B*(£,) + £ E E B*(trjk) - Bp((?liht) 
P=l V=*l j>V V=*\ j>v h>i 

(4) + E N* \£ «, &.,] - E E N" [ È tf n &.,, g+1 n \)h+i] 

+ E " E 1 E NP \£ tf n &., n ï$+., g+1 n &., n & . ] . 

Here Np(d, (B) = np(a, (B) + TIT"1^, (B), where np(a, (B) is the number of ho-
mologously independent p-cycles of G, 0 <B which bound in a and in (B but not 
in aO (B. 

As a consequence of the above formula, we obtain for the Euler-Poincaré 
number E, the relation 

(5) Etf) - £ ml) - £ E ü?tö + È E E #(4*) - #«*.). 
Vf=l v=l 3>P I'=>1 j>»» k>] 

Since by pseudo-conformal transformation, defined in the closed domain, the 
topological structure of the distinguished boundary manifolds is preserved, the 
above numbers are invariant with respect to pseudo-conformal transformations. 
In the case where the boundary consists of more than two segments 1)k , the 
distinguished boundary line I1 divides the distinguished boundary surface into 
parts S2fc . In this case, we can introduce generalized harmonic measures o)vk(Z), 
i.e., functions of the extended class which assume on one of the segments, say 

10 In the case where there are intersections of more than four l)k, the formulas (4), (5) 
have to be altered somewhat. 
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on Svk , the value one, and vanish on the remaining part of S2. Using Morse's 
theory of critical points, one can show that for various combinations 
[avko)k(Z) + ßvG(Z)], avk , ßy constants, critical surfaces and critical points must 
exist. Since functions of the extended class are invariant with respect to the 
pseudo-conformal transformation, the topological structure of the above critical 
manifolds must be preserved in pseudo-conformal transformations, so that in 
this manner we obtain further invariants with respect to pseudo-conformal 
transformations. 

Further, if one considers the projection of the above-mentioned functions 
(the generalized harmonic measures, Green's functions, kernel functions, etc.) 
in the space of 12-harmonic functions, and introduces corresponding analytic 
functions of two variables, then one obtains certain functions which can be 
considered as generalizations of functions of the first, second, and third kinds, 
ill the theory of functions of one variable.11 (Projections of this kind can be ob
tained by using the kernel function for inharmonic functions.) Using the rela
tion between harmonic functions of four variables and the class of 5-harmonic 
functions, we can make a number of conclusions for the kernel function of the 
Inharmonic function, which refer to the behavior of the kernel function near 
the boundary. With these results, it is possible to establish different properties 
of the above-mentioned analogues of functions of the first, second, and third 
kinds, and of some of their combinations. 

REMARK. The theory of functions of several complex variables can be used 
successfully in a number of fields. In particular, many results in this theory 
lead immediately to theorems in the theory of linear and certain nonlinear 
partial differential equations of n variables, w ^ 2 . 

In substituting z* = 0 into the harmonic function h(x±, x2) = [f(z) + f(z*)]/2, 
z =# #i + ix2, z* = Xi — ix2, i.e., considering h in the characteristic plane 
Xi = ix2, we obtain f(z)/2 + const, (a function of one complex variable). Con
versely, the operator "Re" transforms / back into h. Analogously, substituting 

xi = 2(ZZ*)112, x2 = -i(Z + Z*), xz = Z - Z* 

into a harmonic function h(x\, x2, x3), i.e., considering A in a subdomain of the 
characteristic space x\ + x\ + #3 = 0, we obtain the fimction x = Xi + (ZZ*)12%2 

where XK(Z, Z*), K = 1, 2, are analytic functions of two complex variables, Z, 
Z*, which are regular at the origin. The inverse operator transforming x back 
into the harmonic function h (i.e., the analogue of "Re") is 

wi «/|f|=i -/r=o f du 

where u = Xi + ((ix2 + #3)f/2) + ((ix2 — £3)f~72)-

11 Similar to the situation in one variable, these functions are solutions of certain vari
ational problems. 
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Thus (in analogy to the situation for harmonic functions of two variables) 
many results in the theory of functions of two complex variables can be inter
preted as results in the theory of harmonic functions and harmonic vectors12 

of three variables. (E. g. an analogue of Abel's theorem [8, §111, 4].) Analogously, 
using operators which transform x m^° solutions of differential equations, the 
results in the theory of functions of two variables can also be interpreted as 
theorems relating to functions of three variables which satisfy certain linear 
partial differential equations. For details, see [8]. Further, it is possible to 
derive various relations between properties of subsequences of the coefficients 
of the series development of a solution and its behavior in the large. 

1 21, e. vector q for which curl q = 0, div q = 0. 
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APPLICATIONS OF AREA THEORY IN ANALYSIS 

L. CESARI AND T. RADO 

1. General background. During the first half of the present century, the 
so-called direct method in calculus of variations has been developed to a high 
degree of completeness for single integral problems, both in the parametric and 
in the non-parametric case. The foundations of the theory include general 
concepts in functional analysis in the sense of Volterra and the general principle 
of semi-continuity, introduced and systematically exploited in this field by 
Tonelli. Furthermore, constant and essential use is made of a set of basic theorems 
which state relationships between the fundamental analytic concepts of deriva
tive, integral, bounded variation, and absolute continuity for functions of a 
single real variable, and the fundamental geometric concepts of curve and arc 
length. I t is to be expected that the general program of developing a correspond
ing comprehensive theory of double integral problems in calculus of variations 
will depend upon appropriate two-dimensional extensions of these one-dimen
sional concepts and theorems. The purpose of this lecture is to sketch the two-
dimensional theory developed for these purposes in the course of the past fifty 
years, with particular reference to recent applications in calculus of variations. 
The literature of this theory and of its applications in calculus of variations is 
very extensive, and we have to restrict ourselves to the following comments 
concerning bibliography. During the last three years, there appeared three com
prehensive expository presentations. 1. L. Cesari, Area and representation of 
surfaces, Bull. Amer. Math. Soc. vol. 56 (1950). 2. T, Rado, Length and area, 
Amer. Math. Soc. Colloquium Publications, vol. 30, New York, 1948. 3. J. W. T. 
Youngs, Topological methods in the theory of Lebesgue area, Bull. Amer. Math. 
Soc. vol. 56 (1950). These expository presentations include comprehensive 
bibliographical and historical references, and in particular they give a picture 
of the fundamental initial contributions of Lebesgue, Geöcze, Banach, and 
Vitali. Let us also call attention to about fifty research papers in our field which 
appeared in the course of the last bwo years. Due to limitations of space, no 
further references to individual authors can be made in this lecture. 

As stated above, our main objective is to review a two-dimensional extension 
of a one-dimensional theory. Manifestly, the ultimate aim is to develop a cor
responding n-dimensional theory. Actually, intensive and promising research 
is already going on in this direction. While the picture is very far from being 
complete as yet, it is clear that the constant interplay of analysis and topology 
is even more evident in the n-dimensional case. In fact, it appears that a number 
of new and difficult topological problems are bound to arise. We restrict our
selves in the sequel to the two-dimensional case, but in setting forth the basic 
concepts we shall give preference to those variants of the definitions which 
seem to be best suited for generalization to the n-dimensional case, in the light 
of recent research. 

174 
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2. The concept of surface area. Since the principle of semi-continuity is 
basic in the direct method in calculus of variations, it is natural that the concept 
of the Lebesgue area L(S) of a surface S, proposed by Lebesgue in 1900, has 
been generally accepted in the theory with which we are concerned. Indeed, the 
Lebesgue area is a lower semi-continuous functional. The Lebesgue area L(S) 
is defined as the limit inferior of the elementary areas of all sequences of poly-
hedra (not necessarily inscribed) approaching S, in the sense of the distance 
introduced by Fréchet. The concept of surface employed here is based on ideas 
of Fréchet. Let us merely note that a surface, in this sense, is not a point set, 
but rather a class of continuous mappings (from a 2-cell into Euclidean three-
space) which are equivalent in a certain sense defined by Fréchet. I t is well 
known that there exist many definitions of surface area. While each one of these 
various definitions is based upon some postulate derived from properties of 
surface area in the elementary range, these definitions are known to lead to 
different values for the area if applied to general surfaces in the sense of Fréchet 
(quite precisely, the term general surface S will mean Fréchet surface of the 
type of the 2-cell in this lecture). However, a number of results have been 
obtained in recent years to the effect that if the postulates underlying the 
various definitions of surface area are relaxed in a certain natural and appropriate 
manner, then the resulting modified areas agree with the Lebesgue area L(S) 
for all surfaces S. In particular, this is true for various definitions operating with 
the orthogonal projections of the surface upon planes. Such definitions include 
those proposed by Banach, Peano, and Cauchy. The main result in this direction 
is that the so-called lower area a(S) agrees with the Lebesgue area L(S). Simi
larly, it was found recently that an area-definition proposed by Favard, operating 
with the average number of intersections of a line with the surface S (in the 
sense of integral geometry) may be made to agree with the Lebesgue area by 
means of an appropriate modification. If one modifies the Lebesgue definition of 
area by permitting only the use of inscribed polyhedra, one obtains an area 
L*(S). The celebrated problem of Geöcze consists of showing that L*(S) agrees 
with the Lebesgue area L(S). I t is now known that this is generally true, even 
though the so-called strong form of the problem requires further study in the 
parametric case. While the beautiful and difficult researches concerned with the 
relationships between the Lebesgue area L(8) and other relevant definitions 
justify the hope that ultimately a unified picture of area theory will emerge, a 
great deal remains to be done yet. In particular, the relationships with area 
definitions based upon the concept of n-dimensional Hausdorff measure in 
N-dimensional space seem to require further fundamental study, even though 
several important results (both published and unpublished) are known. 

3. Plane mappings of bounded variation. Let D be a bounded domain (con
nected open set) in the uv plane and let T: x = x(u, v), y = y(u, v), (u, v) 6 D, 
be a bounded continuous mapping from D into the xy plane. A basic concept is 
that of the (essential) multiplicity function K(x, y, T, D). Of the various equiva-
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lent definitions the following one seems most suitable from the point of view of 
extension to higher dimension. Given, a point (xQ, y0) in the xy plane, and a 
finitely connected Jordan region R in D, let 71 , • • • , Tn be the boundary curves 
of R, oriented in the usual sense, and let C±, • • • , Cn be their images under T* 
Let -0(XQ , yQ, d) be the topological index of (xQ, y0) with respect to d , and 
let us set 

n 

ß(x0, ?/o, T, R) = X) 0(xo, 2/0, Ci), 

with the understanding that p, = 0 if (x0, yQ) lies o n C i + • • • + Cn . Then R 
is termed an indicator region for (x0 , y0), T, D if p(xo ,yQ,T,R) 9e 0. An indi
cator region is termed positive (negative) if p. > 0 0* < 0). Let o-bea generic 
notation for a finite system of pairwise disjoint indicator regions for (xQ , y0) 
under T in D. One defines then 

K(xo, yo ,T,D) = lub E I M(ZO , 2/0 , T, i2) I . 
a* ßecr 

If there are no nonempty systems cr, then of course one sets K = 0. If each R 
occurring in o- is required to be a positive (negative) indicator region, then one 
obtains multiplicity functions to be denoted by K +(aj0 ,yo,T,D), K~(XQ ,yo,T, D) 
respectively. The following comments are in order. There are a number of other 
definitions for an essential multiplicity function, but it can be shown that any 
two of these differ at most at a countable set of points (x, y). Hence, all of them 
are equivalent as regards the following theory, since only their definite integrals 
appear in the fundamental definitions and formulas. However, this is not true 
any more in the n-dimensional case (n > 2). In a similar manner, further funda
mental concepts admit of equivalent definitions in the case n = 2, while a ju
dicious selection must be made if n > 2. In the sequel, only the variant best 
suited for generalization to the case n > 2 will be given in connection with basic 
concepts. 

DEFINITION. The mapping T is BV (of boimded variation) in D if K (x, y, T, D) 
is summable. The integral of K (taken over the whole xy plane) is then the total 
variation V(T, D) of T in D. 

4. Absolutely continuous plane mappings. A continuum c C D is termed an 
essential maximal model continuum for (x0 ,yQ), T, D if (i) c is a component of 
the set T~1(XQ , y0), and (ii) every neighborhood of c contains an indicator region 
for (xo, yo), T, D which contains c. The essential set E(T, D) is the set sum of 
all the essential maximal model continua corresponding to all the points (x, y). 

DEFINITION. The mapping T is termed AC (absolutely continuous) in D if 
(i) it is BV, and (ii) subsets of measure zero of E(T, D) are mapped by T into 
sets of measure zero. 
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5. The generalized Jacobian. Assume that T is BV in D. Then the multiplicity 
functions K+(x, y, T, D), K~(x, y, T, D) are finite almost everywhere, and hence 
we can define (almost everywhere) a signed multiplicity function n(x, y, T, D) = 
K+(x, y, T, D) — K~(x, y, T, D). If r is a generic notation for a closed rectangle 
in D, with sides parallel to the axes, then n(x, y, T, r) denotes the signed multi
plicity function corresponding to the interior of r. The Lebesgue integral of 
n(x, y, T, r), taken over the xy plane, is a rectangle function which can be shown 
to possess a derivative almost everywhere in D. This derivative is the gener
alized Jacobian J(u, v, T). Similarly, we define W(u, v, T) as the derivative of 
the rectangle function obtained by using K instead of n in the preceding defi
nition. In the sequel, we shall not display T in the notations. 

6. Relationships between the basic concepts. In analogy with the classical 
one-dimensional case, we have the following set of theorems. 

(i) If T is BV in D, then the generalized Jacobian J(u, v) exists almost every
where in D, is summable in D, and satisfies the relations 

| J(u, v) | = W(u, v) a.e. in D, V(D) ^ Jf | J(u, v) \ du dv. 

(ii) In the preceding inequality, the sign of equality holds if and only if T is 
AC in D. 

(iii) If T is BV in D, and if the partial derivatives xu , xv , yu , yv exist a.e. 
in D, then J(u, v) = xuyv — xvyu a.e. in D. 

(iv) V(D) = V(D, T) is a lower semi-continuous functional of T. 

7. Applications to the transformation of double integrals. For simplicity, 
let the continuous mapping T be defined on the unit square Q: 0 ^ u g 1, 
0 ^ v 2g 1. The interior Q° of Q will then take the role of the domain D. Let 
f(x, y) be a finite, real, single-valued function in the xy plane, and let us set 
F(u, v) = f[x(u, v), y(u, v)] for (u, v) G Q. Assume that T is AC in Q°. Then the 
following transformation formulas hold: 

// F(u, v) | J(u, v)\dudv = // f(x, y)K(x, y) dx dy, 
JJQ JJT(Q) 

Il F(u, v)J(u, v) dudv = H f(x, y)n(x, y) dx dy% 
JJQ JJT(Q) 

provided that at least one of the products F J, fK is measurable and summable. 
These formulas contain, as very special instances, a large number of previous 
results. The wide scope of the above formulas is due to the fact that the class 
of AC mappings is closed under certain very general limit processes. 

8. Applications to the Lebesgue area. Given a surface S: x = x(u, v), y = 
y(u, v), z = z(u, v), (u, v) £ Q: 0 ^ u g 1, 0 g v g 1, let us denote by T\, 
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T2, Ti the plane continuous mappings obtained by the formulas Til y = y(u, v), 
z = z(u, v); T2: z = z(u, v), x = x(u, v); 5P3: x = x(u, v), y = y(u, v). In analogy" 
with classical theorems on arc length, we have the following theorems. 

(i) The Lebesgue area is finite if and only if T±, T2, T3 are BV. 
(ii) If L(S) < oo, then the generalized Jacobians Ji, J2 , «/3 , corresponding 

to the mappings Ti, T2, T8 , exist a.e. in Q and are summable ih Q, and satisfy 
the inequality 

L(S) è ff (Jl + A + Ji)1'2 du dv. 

(iii) In the preceding inequality, the sign of equality holds if and only if the 
mappings Ti, T2, Tz are AC. 

(iv) Assume that L(S) < oo. Introduce a new set of Cartesian coordinates 
x} y, z, and denote by J\, J2, J3 the generalized Jacobians corresponding to the 
new representation of S. Then the old and new generalized Jacobians are re
lated by the same linear transformation which leads from x, y, z to x, y, z, and 
indeed these relations hold uniformly almost everywhere in Q in the sense that 
the exceptional set of measure zero can be chosen independently of the choice 
of the system x, y, z. 

(v) If,L(S) < oo, then 8 admits of a representation where the mappings 
Ti, T2, Tz are AC, and indeed one has AC representations which are almost 
conformai in a certain appropriate sense. 

REMARK. These statements imply that a number of basic facts in differential 
geometry continue to hold, in a certain approximate sense, for surfaces of finite 
Lebesgue area. 

9. Applications in calculus of variations. In view of the striking analogies 
between the preceding two-dimensional theory and the corresponding classical 
one-dimensional theory, corresponding analogies may be expected in applica
tions to double integral problems in calculus of variations. The following ad
vances have been achieved up to now in this direction. First, a general concept 
of a Weierstrass-type integral I(S) has been introduced under the only assump
tion that the Lebesgue area of the surface S is finite. This integral is independent 
of the particular representation of S, but if the representation is such that the 
corresponding mappings T\, T2, Tz are AC, then I(S) coincides with the usual 
variational integral calculated in terms of generalized Jacobians. General the
orems concerning the lower semi-continuity of double integrals were obtained. 
The following existence theorem has been proved: Each positive definite semi-
regular integral 1(8) has an absolute minimum in the class of all surfaces 8 satis
fying the following conditions, (i) S has finite Lebesgue area, (ii) S is contained in 
a given closed and bounded convex subset A of xyz space, (iii) S is bounded by a 
given Jordan curve which bounds at least one surface of finite Lebesgue area. Let 
us note also that two classical double integral problems, the Plateau problem 
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and the isoperimetric problem for closed surfaces, have been solved in terms of 
the Lebesgue area L(S) and the principle of semi-continuity. 
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THE PROBLEM OF PLATEAU ON A RIEMANNIAN MANIFOLD 
AND RELATED TOPICS 

CHARLES B. MORREY, JR. 

1. Introduction. In a recent paper entitled The problem of Plateau on a Rieman-
nian manifold [9],1 the writer generalized the results of Courant [3] for the case 
of surfaces "of type fc" bounded by k Jordan curves to the case where the surfaces 
were embedded in a Riemannian manifold of considerable generality. The 
writer knows of only one paper in which the Plateau problem has been solved 
in any space other than Euclidean space, namely the recent paper by Lonseth 
[4] where the space considered is "hyperbolic space". However, Bochner [1] 
has proved some interesting results concerning "harmonic" functions in a 
general Riemannian metric of sufficient differentiability. 

In this address the writer will first explain in more detail the results obtained 
and indicate briefly some of the methods used and difficulties encountered in 
obtaining the results. The writer will also discuss briefly some of his previous 
work bearing on the differentiability of the resulting solutions. For the sake of 
brevity, a discussion of the history of this problem and extensive references to 
the work of other writers in this field will be omitted. The writer hopes that he 
will be pardoned for such omissions. The writer's paper referred to above and 
some of the references cited therein contain extensive bibliographies. 

2. Preliminaries. By a surface of type fc is meant a Fréchet variety which 
possesses a representation on a plane region of type fc, i.e., a closed region bounded 
by fc mutually exclusive Jordan curves. If x = x(u, v), (u, v) £ B, is a represen
tation of such a surface 8, the boundary of 8 is the system Y of fc closed curves 
which has as one of its representations x = x(u, v), (u, v) 6 B*, B* denoting 
the boundary of B. 

We assume the usual definition of a manifold SR (without boundary) of class 
Gin) in terms of a finite or denumerable system of preferred neighborhoods aft» 
and transformations Ti from the unit cube R: \ x3 \ < 1, j = 1, • • - , N. The 
manifold is Riemannian if it is also a connected complete metric space in which 
the metric can be defined in the usual way on each Wl% through the transforma
tions Ti and functions gp]q(x) of class C(w_1). Vector functions x(u, v) of class 
C(w), m ^ n, with values in a Riemannian manifold 99Î of class CCn), n ^ 1, 
are defined as usual and the definitions of absolute continuity of a function of 
one variable and absolute continuity in the sense of Tonelli (ACT) of x(u, v) 
can be carried over immediately. For functions x(u, v) which are ACT, we define 

E = gaß(x)xZdl, F = gaß(x)xZx%, G = gaß(x)xZx% 

\xu\= E112, \xv\ = G112 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
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wherever the partial derivatives of the components exist; it is clear that these 
functions are independent of which Ti is used to determine the components. 
If x( u, v) is ACT with E and G summable over B, we say that x is of class ty'2 

on B and define the Dirichlet and area integrals, respectively by 

D2(x, B) = fj (E + G) du dv, L(x, B) = fj (EG - F2)lß dudv. 

From work of McShane [5] and the writer [6], it follows that these integrals are 
lower semi-continuous with respect to uniform convergence over the class of 
vectors of class *$% on a given region B of type fc. 

Using the lower semi-continuity of L(x, B) we define the functional L(x, B) 
for any continuous mapping (x, B) as the largest lower semi-continuous func
tional which coincides with L(x, B) whenever x is of class $2 . It is easily shown 
that L(x±, Bi) = L(x2, B2) whenever (xx , Bi) and (x2, B2) are Fréchet equiva
lent. Accordingly, if S is any surface of type fc, we define its Lebesgue area L(S) = 
L(x, B) where (x, B) is any representation of S. 

3. The boundary value problem. Following the general idea of Courant, the 
writer replaces the problem of least area by a Dirichlet problem with variable 
domains and boundary values and then shows that the second problem has a 
solution which is also a solution of the first. 

To do this, we begin by defining 

Z(r) = greatest lower bound of lim inf L(8n) 

for all sequences {Sn} of surfaces whose boundaries Tn —» V; and 

d(T) = greatest lower bound of lim inf D2(xn , Bn) 

for all sequences {(xn , Bn)} of mappings of class $2 in which Tn —> V, each 
r„ being the boundary of the surface Sn defined by (xn , Bn) ; if no sequences 
exist satisfying the conditions, we define l(Y) or d(T) = + 00. Finally, we de
fine 

d*(r) - < 

+°° if fc = 1 

min E d(Y(i)), fc > 1, 

for all subdivisions of V into logically mutually exclusive systems of curves 
r « , • • • , r ( p ) for 2 ^ p g fc. 

From the definitions of L(S) and L(x, B), it follows that l(V) may be defined 
in exactly the same way as is d(T), using the integral L(x, B) instead of D2(x, B). 
The usual inequality between these integrals shows that d(T) ^ 2l(T). On the 
other hand, it is shown that if (x, B) is a representation of class ty% of the surface 
8, then 8 possesses another representation (y, D) of class $2 such that 
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D2(y, D) < 2L(S) + e. Hence it follows that d(T) = 2l(V). It is easily seen that 
both functional are lower semi-continuous in V. An argument very similar to 
that of Courant shows that d(Y) g d*(Y). 

From the definition of d(T), it follows if d(T) is finite, that there is a sequence 
(xn , Bn) of vectors of class $2 such that the boundaries Yn of the corresponding 
surfaces Sn tend to Y and D2(xn, Bn) —> d(T). Let V consist of the mutually 
exclusive Jordan curves d , • • • , Ck. Since Tn —> T, we may label the curves 
Ci,n, • • • , Ck,n of Yn so that C»,„ —> C^, i = 1, • • • , fc. By using various 
mappings and certain lemmas of Courant, which carry over to the present case, 
we may assume that each Bn is bounded by fixed mutually exclusive circles 
b\ , - • - , bi, I ^ fc, and possible variable circles bitn , i = I + 1, • • • , fc, in 
which (i) 61 is the outer boundary and is the unit circle, (ii) xn carries &»• into 
Ci,n , i S h and carries bi,n into d,n ,i>l7 (iii) the xn are equicontinuous along 
&i , and (iv) the circles bitn , i > I, tend to points 6* . 

The xn and Bn having been normalized as above, the following undesirable 
situations mighfc occur: 

(i) I < fc and one of the bi with i > lis interior to the region B bounded by 
&i , • * " , h , 

(ii) I < fc and one of the bi, i > I, is on a bj with j g I along which the xn 

are equicontinuous, and 
(iii) I 5* fc and the xn fail to be equicontinuous along some bi with i ^ Z. 
If any of these cases occurs, the methods of Courant generalize almost ver

batim to show that d(Y) = d*(Y). 
Hence, if we impose CouramVs condition that d(Y) < d*(Y), none of the cases 

of degeneracy can occur, I = fc, and each Bn is just the limiting region B. By 
choosing a subsequence, we may assume that the xn(u, v) tend uniformly along 
B* to a continuous function x*(u, v) which is a representation of Y. 

4, A solution of the problem of Plateau. In the case where the underlying 
manifold SSR is ordinary Euclidean iV-space, the solution follows immediately 
from the results of the preceding section. Since harmonic functions solve the 
Dirichlet problem, we may assume each xn to be harmonic on B. Then the xn 

converge uniformly on B to a harmonic function x(u, v) which coincides with 
x* on B*. From the lower semi-continuity of the Dirichlet integral, it follows 
that D2(x, B) = d(Y) = 2l(Y) = 2L(x, B) so that E = G, F = 0 on B and the 
corresponding surface S is a surface of least area bounded by T. 

In the case of the general manifold aft, the writer was unable to demonstrate 
the existence of any minimizing sequence {xn} which is equicontinuous on B. 
Accordingly, in order to solve the problem, the waiter introduced and studied 
vector functions "of class$2" (also of class $« , a ^ 1) with values in the Rie
mannian space 30Î. These functions are entirely analogous to the ordinary func
tions of class $« studied by Calkin and the writer in the joint paper [2] and [7]. 
In the case of a "homogeneously regular" (see below) manifold 9JÎ, the writer 
found it possible to solve the problem without using the more general functions. 
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However, the developments were just as long and the results obtained were less 
general than those obtained in the paper [9]. Moreover the writer felt that the 
study of the more general functions would prove useful in connection with other 
problems. 

We now present some definitions and facts concerning functions of class 
$2 , $ 2 , ty" , etc., with values in a general Riemannian space SDÌ. First of all, 
we say that x(u, v) is measurable on the set Ì7 provided that for any open set 
O C SJÎ, the subset of U where x(u, v) G 0 is measurable. In this case U is meas
urable and the distance | x(u, v) — xQ | is measurable on U for any XQ in SM. 
We say that x(u, v) is in L2 on U if and only if x(u, v) is* measurable on U and 
| x(u, v) — XQ |2 is summable on 17. The space L2 is a complete metric space if 
equivalent functions are identified and the obvious metric is introduced. With 
each function x in L2 on the set U, we associate the function x uniquely defined 
almost everywhere on U by the condition that X(UQ , Vo) «= x0 for each (UQ, VQ) 
of U for which there exists a point xQ in SDÌ such that the Lebesgue derivative at 
(UQ , Vo) of the set function 

/ | x(u, v) — XQ |2 du dv 

is zero; x(u, v) = x(u, v) almost everywhere on U. 
A function x(u, v) is said to be of class ty2 on the domain B if 
(i) x(u, v) is in L2 on B, 
(ii) x(uQ, v) is absolutely continuous (AC) in v along each segment in B for 

almost all wo and is similarly AC in u for almost all VQ , \ 
(iii) | xu |2 and | xv |2 are summable. ••«. 

Without defining functions of class $2 we state the result that x(u, v) is of class 
$2 on B if and only if the associated function x(u, v) is of class $2 on B and as 
such that x[u(s, t), v(s, t)] is also of class $2 in (s, t) whenever u = u(s, t), v — 
v(s, t) is a regular (i.e., it and its inverse have bounded derivatives) transforma
tion of class C"; it is further shown that if y(s, i) = x[u(s, t), v(s, l)]} then the 
quantities E, F, and G for x and y are connected almost everywhere by the usual 
rules of the Calculus. Any function of class $2 or ^ is of class $2 and any func
tion of class $2 which is continuous is of class $2 • 

Now suppose that x(u, v) is of class $2 on a domain B of class Df and suppose 
x is extended arbitrarily to 5 . Then x(u, v) is defined almost everywhere on any 
regular arc or simple closed curve of class D' in B and is of class L2 there (with 
respect to arc length). These values of x(u, v) on B* are the boundary values of 
x\ x(u, v) tends to these boundary values along almost all lines parallel to any 
given direction (but not necessarily in the two-dimensional sense). From the 
preceding paragraph one sees that the boundary values transform in the usual 
way under transformations of independent variables. Finally, a "substitution 
theorem" (like [7, Theorem 7.4]) is proved. 

We say that xn tends weakly in $2 to x on B (strong convergence is not defined 
in [9]) if and only if 
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(i) x(u, v) and each xn(u, v) are of class $2 on B, 
(ii) D2(xn , B) is uniformly bounded, and 
(iii) xn converges to x in L2 on each cell interior to B. If B is of class Df, then 

weak convergence in $2 on B of xn to x implies strong convergence in L2 on the 
whole of B and strong convergence of xn to x on any regular arc or simple closed 
curve of class Df in B. Of course weak convergence on B implies weak conver
gence on subregions and is preserved by changes of variable. Also the Dirichlet 
integral is lower semi-continuous with respect to weak convergence in ^2 . Of 
course the integrals are to be formed using x, etc. Finally, suppose {xn} is any 
sequence of class % on B with D2(xn , B) and 

L2(xn , XQ , B) = // I xn(u, v) — XQ |2 du dv 

uniformly bounded for some x0 in SDÌ; then a subsequence converges weakly in 
^2 to some function x on B. If we merely know that the D2(xn , B) are uniformly 
bounded, L2(xn , x0 , B) will be also provided merely that either L2(xn , XQ , R) 
for some cell Ä C ^ o r the single integral L%(xn , XQ , C) for some arc C of class 
D ' in 5 is uniformly bounded. 

Finally, it is shown that a certain "Dirichlet growth" condition implies a 
certain type of continuity On B; this material is entirely analogous to that found 
in [8, pp. 13-15], 

Now, let us define d(Y) and d*(Y) as d(Y) and d*(Y) were defined, but allowing 
the more general functions; however, we assume that the boundary values of 
the xn(u, v) are continuous and the Bn are of class Df. Then the results of the 
preceding section are unchanged. Since the boundary values are uniformly 
bounded, we may extract a further subsequence which converges weakly in ^2 
to some function x in Ĵ2 with boundary values x*. From lower semi-continuity 
we find that 3,(Y) = D2(x, B). Obviously x also solves the Dirichlet problem 
for the fixed boundary values x* and thus is "harmonic". 

In order to show that if a; is harmonic, then x is continuous, the writer found 
it expedient to require that SDÌ be homogeneously regular. By this is meant that 
there exist numbers ra and M, independent of XQ , with 0 < ra ^ M, such that 
if XQ is any point of SDÌ, there is a neighborhood $1 of xQ which can be mapped 
on the unit cube | x% \ < 1 by means of a transformation T of class C" in such 
a way that x0 corresponds to the origin and the corresponding gP,q(x) satisfy 
the condition that 

m E (ÊV ̂  gvMna ^ M £ fcV 
i=a i=i 

for all ? and all x in the unit cube. I t is easily seen that every compact manifold 
of class C(7l), n ^ l , has this property so that the restriction refers only to the 
behavior of SDÌ at infinity. The hyperbolic space used by Lonseth also has this 
property. 

Thus, if SDÌ is homogeneously regular, we conclude that d(Y) = d(Y), d*(Y) = 



PROBLEM OF PLATEAU ON A RIEMANNIAN MANIFOLD 185 

d*(Y), and D2(x, B) = 2L(x, B) so that E = G and F = 0 almost everywhere 
and (x, B) defines a surface S of least area bounded by Y. 

That some restriction on SDÌ is necessary to ensure the continuity of harmonic 
functions is seen by the following example: Let SDÌ be the 3-dimensional mani
fold 

Soi: w = f(x, y, z) = i log (x2 + y2), x2 + y2 > 0. 

Let 

x(r, 0) = R(r) cos 0, y(r, 6) = R(r) sin 0, z(r, 0) = 0, 

w(r, 0) = log Ä(r), 0 < r g 1, 

where Ä(r) is determined by the relations 

R-\R2 + 1)1/2Ä' = r~\ R(l) = 1. 

Then R(0+) = 0 and the vector is of class ^J2 and harmonic but there is no con
tinuous vector whatever with the given boundary values. 

5. The differentiability theory. In the writer's paper [9], the following results 
are proved concerning the differentiability of harmonic functions x (i.e., x): If 
SDÌ is of class C"r and homogeneously regular, then the harmonic functions are 
of class Cy on interior regions for each 7, 0 < 7 < 1; if SDÌ if of class Cy

n), w ^ 3 , 
0 < 7 < 1, then the harmonic functions are of class Cyn) on interior regions. 
SDÌ is of class Cyn) if SDÌ is of class <7(n), the functions in the connecting trans
formations for overlapping SDÌ» are of class C(

7
W), and, for each i, the gl,q(x) are 

of class Cyn~l); a function <p(x) is of class Cy
n) on the domain D if it is of class 

C(n) and its nth derivatives satisfy uniform Holder conditions with exponent 
7 on D. Since each minimizing vector (x, B) obtained above is harmonic, these 
results apply to them. 

To prove these results, we choose any circle C(p0 , a) interior to B with radius 
a so small that x(u, v) remains in some one of the neighborhoods SDÌ* for all 
(u, v) G C(po, a). Let SDÌ* be mapped on the unit cube R by Ti . Since C(p0 , a) 
is closed, the components x3(u, v) with respect to Ti remain within the slightly 
smaller unit cube Rs: \x3\ < 1 — 8 on which 

for all £ and some numbers m and M with 0 < m ^ M and the gaß(x) are of 
class C" with uniformly bounded second derivatives, SDÌ being of class C " . 
Since x is harmonic on B, it is harmonic on C(pQ, a) and hence minimizes the 
Dirichlet integral 

D2[x, C(p0 , a)] = U gaß(x)(xlxß
u + XvXß

v) du dv 
JJ C(po,a) 
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at least among all y '*= x + X£for all £ which satisfy uniform Lipschitz conditions 
on C(pQ, a) and vanish òri C*(pó ; a), if X is sufficiently small. This is sufficient 
to show that the first 'variation is zero for such f which in turn guarantees that 
x satisfies Haar's equations ' r « 

/ (/P» dv — fqi du) = // fxi du dv, 1 ^ i g N, 

f&, P, Q) = 9*ß(x)(papß + gV) 

on almost all cells R Œ{Ç(PQ , a). Since #.satisfies a Dirichlet growth condition 
(see [8, p. 13]) A2(2X, P) on B, this implies in turn the existence of functions y 
ând F with the saine property îsuch that 

(1) yiu — Yiv = — fqi, yiv + Y** *= fpi, / Yiu dv — F4„ dw = // fx< du dv. 
JA*. JJR 

A.t this point, we confine ourselves to a circle C(p0, 6) with 0 < 6 < a, and 
apply tHe device of Lichtensteih: For each h with 0 < \'h \ < a — 6, we sub
tract equations (1) for (u, v) from those for (u + h,'v) [and also (u, v + h) in 
tprn] and divide by h, obtaining a system of the form 

rjiu *- fi*, ^ T - ( 6 ^ ^ '+ C^êJ + e0&'+ h) 

(2) 17* + Hiu ^ üißtu + bißt + dißif + ^ 

/ (27tM dv - #*, du) = // (dßifu + e^£* + fißt + ^) dw dv 

where, for instance, 

aij(ut v) = / /p<p/[(l — 0#(w, fl) + to(t* + A, v)7 - ' : ] dt 

The coefficients a^ , bi3-, • • • , U are all measurable, the a*-/, 6»-y, and e*,- are 
boimded (continuous in our case) and satisfy 

(3) m £ [frV + (co?] g fl^f f" + 2fc* j V + <*«V I t f Z [(f ? + («Vi 

for almost all (uf v) and all f and co, and the other coefficients satisfy 

E [dîy + & + \fv \ + 9Ì + ß + \l< | ] dudv g M / x 

<4> / / , 
JJC(,qtr 

l,r)(iC(,pQtb) 

for all q and r (since x satisfies a condition A(2X, P)). These inequalities hold 
independently of h for 0 < | k \ < a — b\ In (2) we have set 

£* = [x(u + A, v) — ìC(W, v)]/A (or [x(u, v + A) — a;(w, v)]/A), etc. 

Moreover, we have 
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(5) ff Z [(Ó2 + M* + (Hi)2] dudv g M„ 
JJc(pQ,b) 

independently of A. Actually, for our special integral, we evidently have 

o>ij = cn , ba = 0. 

In my memoir [8], it was proved that any solution of (2) subject to hypotheses 
(3), (4), and (5), satisfies conditions A[2/x, M(c, d)] and B[jx, N(c, d)] on C(pQ, b) 
where the functions M(c, d) and iV(c, d) depend only on m, M, X, M2, M*, /*, 
and iV, and /z can be any positive number less than m/4ilf and X/2. Thus £, rç, 
and if are equicontinuous on regions interior to C(po, b) and so we may let 
A —> 0 and conclude that the derivatives x\ , etc., satisfy such conditions. An
other theorem in this memoir shows that the limiting £*, rn , and Hi satisfy the 
limiting equations (almost everywhere). Now if SDÌ is of class C7 , the ga(x) are 
of class C"y and hence all the coefficients a^ to k satisfy Holder conditions. 
Other theorems in the memoir show then that the first derivatives of the £*, 
i.e., the second derivatives of the xl, and those of ra and Hi satisfy Holder con
ditions. Knowing this much, we make use of the special form of our integral to 
show that the x% are of class C'y . The process may be repeated to obtain the 
higher differentiability properties. 

Unfortunately the proof of the results stated concerning systems of type (2) 
is long and roundabout. Shiffman has succeeded in a recent paper [10] in sim
plifying this proof for the case that the coefficients da , e^ , and /»-,- are all absent 
but has not succeeded in treating the general case. I have also tried without 
success to simplify the proof in the general case. I have however succeeded in 
simplifying and generalizing part of Shiffman's results by giving a very short 
proof of the following theorem for functions of any number of variables: Sup
pose the vector function (in Euclidean space) x(u) is of class L2 on C(pQ, a) 
and is of class ^32 on any sphere C(p0 , r) with r < a with 

D2[x, C(p0, r)] g KD2[Hr, C(p0, r)], 0 < r < a, 

Hr denoting the harmonic function*coinciding with x on C*(pQ , r); then 

D2[x, C(PQ , r)] g 4K\a - r)~2 f \ x \2 du, 0 < r < a. 
Jc(po,a) 

If we take K = M /m, this shows immediately, and without introducing the 
"conjugate functions" rji and Hi, that any solution of the equivalent Haar 
equations to (2), in the case the di3-, etc. all vanish, which satisfies (5) has uni
formly bounded Dirichlet integrals on interior circles from which the A and B 
conditions follow easily by simple methods in the case of two independent vari
ables. It is to be hoped that some similar device will be found which will handle 
the general case. 
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ANALYSIS AND GEOMETRY IN THE LARGE 

LAPLACE OPERATOR ON MANIFOLDS 

S. BOCHNER 

During the last fifteen years or so the so-called Laplace-Beltrami operator 
has been steadily gaining in importance and prominence in many areas of 
analysis, and I shall try to summarize here some of its applications with which 
I am familiar. 

We take a compact differentiable manifold M. A Laplacian on it has the form 

= g** d / _ iiVh 3f 
dXidXj %3 dXk 

where g%3 is a positive definite tensor field (without any "singularities") and g 
is the determinant of its inverse gu . The quantity g1/2 is a scalar density. If we 
replace it by any other scalar density, and, correspondingly, replace (1) by the 
more general expression 

<2> * - B £(*"£) 
y dXidXj b dXiy ' dXj 

then the latter operator is self-adjoint with regard to the volume element 

(3) dv = bdxi • • • dx„ , 

in the sense that for any two functions <p, \j/ both differentiable twice, we have 

/ . 
((pL\j/ — \fsL<p) dv = 0. 

Conversely, if we envisage the most general elliptic operator having in each 
coordinate system the form 

(4) g«*L+ltf 
dXidXj dXk 

and if we demand that it be self-adjoint, in the manner just stated, with respect 
to a prescribed volume element (3), then we must have 

r ~ (to*) 
O dXi 

and (4) has of necessity the form (2). 
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P A R T I . V E C T O R F I E L D S 

We shall first very briefly touch upon an application to differential geometry 
in which the only property of the Laplacian used explicitly will be the following 
lemma. 

LEMMA 1. If for a scalar function f(x) on our compact manifold we have 

(5) A/ ^ 0 

everywhere, then we must have equality everywhere, that is, 

(6) A/ m 0. 

Now, the expression (1) can be written as 

(7) A/ = 0«f.;>y 

where f,ij is the second covariant derivative as formed with the Christoffel 
symbols based on gij. If now we take an arbitrary vector field £a on M, form its 
square length 

(8) / = AA 
and apply the Laplacian to it, then we obtain 

(9) W = gijg%,ibj + gah(g%,iM. 

The first term on the right is always è 0, and if by chance the second is also 
^ 0, then both must.be 0 by the lemma. We now assume that %a is the solution 
of an equation 

(10) , g%tij = Ae
aac 

in which Aac is a given symmetric tensor, so that the second term in (9) has 
then the value 

(11) A%b, 

and we are led to the following conclusion. 

THEOREM 1. If our symmetric tensor Aao is strictly positive definite, then there 
is no solution of the differential equation (10) other than %a = 0. 

If a vector field is harmonic (div £ = 0 and curl £ = 0), then it satisfies (10) 
with Aac being — Rac, where Rac is the Ricci-tensor based on g a ; if it is a Killing 
tensor (£t-,j + £/,*• = 0), then it satisfies it with Aao = Rac. We thus obtain the 
following theorem. 

http://must.be
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THEOREM 2. / / —Rao is positive definite (sphere, etc.), then there is no harmonic 
vector field, that is, the first Betti number is 0, and if —Rae is negative definite 
(constant negative curvature, etc.), then there is no Killing vector, and there exists no 
continuous group of isometries.1 

In the two-dimensional case there is even no continuous group of conformai 
homeomorphisms. In particular, for a closed Riemann surface of the classical 
type, of genus p > 1, there is only a finite number of conformai homeomorphisms, 
since by uniformizing it into the unit circle the surface acquires a non-Euclidean 
metric for which — Rac < 0.1 

More generally, in the case of several complex variables, no matter how 
many, if a compact manifold can be uniformized by a bounded domain in E2k, 
then on such a compact manifold there exist only a finite number of complex 
isomorphisms. Algebraically put, if the complex domain is an algebraic variety 
and if we introduce the algebraic field of meromorphic functions on it, then the 
field has only a finite number of automorphisms.2 

There are more complicated conclusions of this type involving higher Betti 
numbers and tensors of arbitrary order for both real and complex manifolds, 
compact ones or covering spaces of compact ones, but the principal point of 
reasoning is always Lemma 1 or a "localized" substitute thereof.8 

PART II. ANALYTIC IMBEDDING 

If we introduce the Hilbert space of L2-functions relative to the volume 
element (3), then our formal operator (1) or, more generally, the formal operator 
(2) can be completed (that is, closed) to an operator which is self-adjoint, that is 
hypermaximal, in the technical sense,4 and for the present we use only the 
following operational property of it. 

I t has a pure point-spectrum {— pr}, and we thus obtain in our Hilbert space 
of Z/2-functions a basis {\[/r} whose elements are twice differentiable solutions 
of the partial differential equations 

(12) -Atfv = prfr, 

and we apply this in the following set-up. 
Assume that M is a real analytic space. Nothing is known in general about 

the existence of analytic functions, scalars, or tensors, in the large. Assume, 
however, that we are also given the existence of an analytic positive definite 
tensor field g13, or what is the same, of an analytic Riemannian line-element 

(13) ds2 = gijdxUxi, 
1 Vector fields and Ricci curvature, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 776-797. 
* On compact complex manifolds, J. Indian Math. Soc. vol. 51 (1947) pp. 1-21. 
8 Curvature and Betti numbers (I) and II, Ann. of Math. vol. 49 (1948) pp. 379-390; vol. 50 

(1949) pp. 77-93. 
4 Analytic mapping of compact Riemann spaces into Euclidean space, Duke Math. J. 

vol. 3 (1937) pp. 339-354. 
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without any singularities, that is. We then envisage the equations (12), and 
since all its coefficients are analytic, then by a theorem originally due to Hada-
mard, the functions ipr themselves are likewise analytic. Thus the one analytic 
tensor field g^ known to exist generates a multitude of analytic scalar functions 
{^r}, and it can be shown that the latter are dense in every differentiability 
class C8 on M in the following very precise sense. 

LEMMA 2. To any f in Cs there exists a sequence of finite linear combinations 
of the \//r which converge uniformly towards f, together with all partial derivatives of 
order ^ s. 

By a general theorem of H. Whitney, our Mk can be topologically imbedded 
(C1) in the Euclidean E2k+i, and by applying Lemma 2 for s = 1 we see that 
by a small deformation Whitney's imbedding can be made into an analytic one. 

Also, once this analytic imbedding has been achieved the previous statement 
for arbitrary s (including s = °o) follows trivially, and not only for scalars, 
but for arbitrary tensors and tensor densities 

SOJ» " O p 

as well. That is to say, the following conclusion holds. 

THEOREM 3. If on a compact analytic Mk there exists an analytic positive definite 
gij, then Mk can be mapped analytically topologically into the Euclidean EM+I , 
and in any type of scalars or tensors of differentiability class Cs, the analytic ones 
are C-dense.*1 

PART III . STOCHASTIC PROCESSES5 

We are returning to a differentiable M, and we are stating the operational 
properties of our operators much more fully than heretofore. The operator 
— Lf has distinct eigenvalues Xr such that 

(14) 0 = Xo < Xi < X2 < . . . -> oo. 

The smallest eigenvalue has multiplicity 1, and every other Xr has a finite multi
plicity Hr at most. There is a complete orthonormal set of eigenfunctions <prß 

pertaining to class C2 (with poi being a constant) such that the equations 

(15) — L<pr = \r<Prß , ß = 1, • ' • , Mr , 

r = 0, 1, • • • , are satisfied in the ordinary sense. If we put 
Mr 

(16) gr(x, ij) = X) <Prifa)<pr*(v) 
M = l 

and introduce the kernel function 

5 In connection with parts III and IV see the author's paper Quasi-analytic functions, 
Laplace operator, positive kernels, Ann. of Math. vol. 51 (1950) pp. 68-91. 
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(17) 0(t;x,y) = £ « - % , ( * , » ) 
r=0 

for 

(18) 0 < t < oo, 

then it has the important property 
(19) G(t; x, y)^0 

first established by Kolmogoroff in 1933,6 and also the properties 

(20) [ G(t; x, y) dv = 1 

(21) [ G(k ; x, y)Q(t2 ; y, z) dvy = G(h + *2 ; s, s), 

which three properties make it into a so-called stationary stochastic process 
on M. Also, if for fixed y we denote f(t; x, y) byf(t] x), then it satisfies the "heat 
equation" 

(22) Lxf(i;x) = ft, 

the left side of (22) being uniquely determined by it, and if we take an arbitrary 
solution of (22) having boundary values /(0; x) = /(re), then its values for 
t > 0 are given by the formula 

(23) /(*; x) = [ /(O; y)G(t; x, y) dvy .
7 

We next take in 0 ^ X < 00 a continuous function $(X), $(0) = 0, such that 
for every t > 0 we have a Stielt j es representation 

(24) e-'*(X) = E e-pXdyt(p) 

with dy*(p) è 0 [that is, yt(p) monotonely nondecreasing in 0 ^ p g + 0 0 ] , 
and this amounts to assuming that we have $(X) > 0, (—l)n_1*(n)(X) > 0, 
n = 1, 2, • • • , in 0 < X < 00. If we now set up the expression 

6 A. Kolmogoroff, Zur Theorie der stetigen zufälligen Prozesse, Math. Ann. vol. 108 (1933) 
pp. 149-160. 

7 In the work of Kolmogoroff the self-adjointness of the operator is not required. To 
this compare K. Yosida, Integration of Fokher-Planck's equation in a compact Riemannian 
space, Arkiv for Matematik vol. 1 (1949) no. 9. However, under self-adjointness, the kernel 
with the properties (14)-(21) has the additional property of converging towards "identity" 
as the time variable tends to infinity. It would be interesting to decide to what extent 
self-adjointness is also necessaiy for this to take place. See also the author's note, Diffusion 
equation and stochastic processes, Proc. Nat. Acad. Sci. U. S. A. vol. 35 (1949) pp. 368-370. 



194 • S. BOCHNER 

(25) G*{t; x, y) = f e~n(Mgn(x, y), 

then owing to the representation 

(26) G*(t; x, y) = f G(p; x, y)dyt(p) 
h 

it also satisfies the "stochastic" properties (19), (20), (21); and instead of (22) 
it satisfies the "heat equation" 

(27) ' - $ ( - L ) / = % 
ot 

where $( — L) is the self-adjoint operator resulting from applying the numerical 
function <ï>(X) to the operator — L. 

For <£(X) = X, G$ is the original kernel itself, and other very important cases 
arise on putting $(X) = Xff, 0 < <r < 1. For instance, if M is the ordinary circle 
—-n- g x < T, and (22) is 

(28) dAf df 
dx2 at ' 

then we have G(t; x, y) = G(l\ x — y) where 
/ \ l / 2 oo 

(29) Gif, *) = (r) T, e-v™-*2" 

and 
(30) GXii2(t;x) = 

1 - e-2t 

1 - 2e-> cos x + e~2t 

We now take on our M a fixed point P0 and we consider on M all possible paths 
emanating from it, x = P(t), 0 â t S 1, P(0) = Po, whether continuous or not. 
Now, the function G(t; x, y), or any other one of our functions G$(t; x, y), since 
it satisfies (19)-(21), can be used, by a fixed procedure, to introduce a probability 
(that is, a Lebesque measure of total measure 1) into the space of all such paths,8 

and we are going to state two properties of this probability, the first due to 
Paul Levy,9 and the second to Paul Levy9 and the author.10 

(i) In the original case $(X) = \ and only in this case, almost all paths are 
continuous in 0 ^ t ^ 1. 

(ii) However for <3>(X) = X, and more generally for $(X) = Xff, 1/2 g <r < 1, 
almost all paths are rao£-rectifiable, and thus in particular will have simple 
discontinuities only. More generally, if 

8 Partial ordering in theory of stochastic processes, Proc. Nat. Acad. Sci. U. S. A. vol. 36 
(1950) pp. 439-443. 

9 P. Levy, Théorie de l'addition des variables aléatoires, Paris, 1937, chapter VII, and in 
particular pp. 180, 199, 201. 

10 Stochastic processes, Ann. of Math. vol. 48 (1947) pp. 1014r-106O, in particular pp. 
1031-1037. 
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(31) I 
K $00 

X 8/2 dh. < «o, 

then almost all paths are rectifiable, and if 

they are not. 

PART IV. QUASI-ANALYTIC FUNCTIONS 

We again assume that the space M and the coefficients of Lf are analytic 
or at least infinitely often differentiable. Any (continuous) function f(x) s= / (0; x) 
has an expansion 

oo Mr 

(33) f(x) ^ E E Cf« <Prn , 
r«=0 ju -1 

and on putting 

(34) 

we write for this 

(35) 

/r(#) = /Z Crp <Prp 
l i - 1 

r«0 

where each /r(#) is some eigenfunction 

(36) ~Lfr(x) = Xrfr(x). 

The solution /(J; x) of (22) as given by (23) has the (convergent) expansion 

(37) f(t;x) = i ; < f ' x 7 r ( z ) , 
r-0 

and from (19) we conclude 

(38) maxttx | /(<; x) | S max« | /(0; x) |. 

If Ln is the nth iterate of our operator, then (22) implies 

(39) 

and this gives the relation 

(40) 

T n f — d Tn~l -F - à*f 
dt' 

dtn ^ max» 

M» 

£"/(*) 

which we shall employ in connection with 

(41) 
enfiti x) 

dtn = L'fb) 
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in the following manner. For fixed x = £ we shall view/(£; £) as a function of t in 
0 ^ t < oo, and to this function we shall apply Carleman's theorem on quasi-
analytic functions. Also, f(t', £) is a Dirichlet series in t, and if it vanishes in t, 
all its coefficients must be zero, and we therefore obtain the following lemma. 

LEMMA 3. If for an infinitely differentiable function (35) we have 
oo — 1 / n 

(42) E max« Lnf(x) = oo 
n-0 

and if for a point x = £we have 

(43) L"/(Ö = 0, n = 0, 1, 2, • • • , 

Êfeen ai tfw's pomi we have 

(44) /r(f) = 0, r = 0, 1, 2, . - - . 

We call a pointset C7 on M a set of uniqueness if any eigenfunction of 
—Lf vanishing on U must vanish identically, and in this way we obtain the 
following theorem. 

THEOREM 4. If in addition to (42), (43) holds for all points of a pointset of 
uniqueness, then f(x) vanishes identically. 

For the operator A/ = d2f/dx2 on the torus —IT Sx <ir, the eigenfunctions are 

a cos rx + b sin rx = c cos r (x — #o), 

and a pointset U is therefore a set of uniqueness if it contains infinitely 
many points or if it contains two points whose geodesic distance is an irrational 
part of 2TT. Hence the following conclusion. 

THEOREM 5. If for an infinitely differentiable periodic function j(x) we have 

(45) E max-,. 
n=0 

d2nf(x) 
dx2n 

-lit. 

and if we have 

(46) ^ = 0 ' « = 0 , 1 , - . . 

for infinitely many points, £, or for two points whose distance is irrational on the 
torus of length one, then 

(47) f(x) = 0. 

Further remark: If we take a function 3?(X) as in §4, then we may replace 
—L by #(—L), and we obtain the following conclusion. 
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THEOREM 6. / / in addition to 

(48) ]T) max-,. 

we have 

H-L)nf 
-lln 

(49) H-L)nm = 0 

for aü I; of a uniqueness set, then 

(50) f(x) s 0. 

P A R T V. A TH E O R E M OF D. V. W I D D E R A N D P. L E L O N G 

D. V. Widder11 has proved the following. If a function f(x) is infinitely differ
entiable in 0 S x S 1 and if 

(SD ( - l ) " ^ U o in Ogssgl, 

then f(x) is analytic in 0 S x g 1. 
More precisely, f(x) can be analytically continued to an entire function 

f(z), z = x + iy, and its order of magnitude is, roughly speaking, comparable 
to that of the function sin irz, which is the standard function for satisfying (51), 
as it were. 

Now P. Lelong1 has generalized this to a Laplacian on a noncompact M. 
If we have, for a function/(œ), the condition 

(52) ( ~ l ) n L 7 ^ 0 , n = 0, 1, • . . , 

then f(x) is a real analytic function. 
Also it can be continued into a complex analytic environment of M, z3- = x3- + 

iyj, and Lelong has some statements on the size of this environment, and of the 
magnitude of f(z±, • • • , zk) in it. 

PART VI. MEROMORPHIC FUNCTIONS ON ELLIPTIC SPACES 

In the theorem of Widder and Lelong use has to be made of a principal solution 
of the Laplacian with the properties 

AJI(x; J) = 0, H(x; f) = ff(£; x) 

among others, such a principal solution being the means for solving the boundary 
value problem of the ordinary kind. 

On a compact manifold Mn there is only a generalized solution with 

kMx)€) = - 1 , 
11 D. V. Widder, Completely convex functions and Lidstone series, Trans. Amer. Math. 

Soc. vol. 51 (1942) pp. 387-398. 
11 P. Lelong, Sur les fonctions indéfiniment dêrivables de plusieurs variables dont les La-

placiens successifs ont des signes alternés, Duke Math. J. vol. 14 (1947) pp. 143-149. 
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and the corresponding type of boundary value problem, as first envisaged by 
Riemann, is the construction of harmonic functions having prescribed saltuses 
on designated pieces of hypersurfaces. The principal solution available is indeed 
suitable for treating this type of problem and one significant application is as 
follows.1 

Suppose Mn is real analytic, say, and assume that it is covered by a finite 
number of functional elements {<pa}, a = 1, • • • , N, such that whenever two 
functional elements <pa , <Pb overlap, their difference 

(53) <Pabr= <pa — <Pb 

shall be a solution of the Laplacian, that is 

Açàb = 0. 

The individual elements <pa by themselves need not be so, and furthermore the 
individual <pa may have "singularities" on "exceptional" pieces of space, provided 
such singularities happen to cancel out from the differences <pab by ordinary 
analytic continuation. "Meromorphic" character expresses itself in this type of 
singularities, but there are singularities admissible for us which are much more 
general than meromorphic ones. 

Now, the generalized principal solution can be used for constructing a new 
family of functional elements /(a) having the following properties: (i) each/(a) 
is defined where <pa was defined, and has no singularities whatsoever; (ii) each 
/(o) is harmonic individually; and (iii) for all a, b we have 

/ (a) — /(&) ~ <Pa — <Pb. 

By (iii) the differences 

<Pa — / (a ) = <Pb — /(&) = <Po — / ( c ) == 

will then merge into one function F on Mn , and this function F will then have 
the same singularities as the given elements {<pa}, the latter being "principal 
singular parts" of F, as it were. 

We now make the special assumption that Mn is complex analytic, n = 2k; 
that the metric on it is Hermitian 

with the Kaehler property 

in which case 

ds = gaßdzadzß, 

dgaß = dgyß 
ÔZy ÔZa ' 

- X2 

A<p = g 
ÔZa dZß 

that the <pa are complex-meromorphic, that is, d<p/dza = 0, and a fortiori A<pa = 0; 
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and that their differences <pab are complex holomorphic. This in itself does not 
yet sharpen any of the properties of the /(a> previously stated. If however we 
are adding the assumption: — Ra$ > 0, (complex projective space, complex 
Grassmann varieties, etc.), then by the method of part I it can be proved that 
the vector field 

fs 
d/(a) / s df(j,)\ 
àia \ dz* J 

is identically zero, so that each / ( a ) is not only harmonic but also complex-
holomorphic and the following precise conclusion can be drawn:1 

* 
THEOREM 7. If —Raß is positive definite (complex projective space, complex 

Grassmann varieties, etc.), and if the space is covered by a finite number of mero
morphic functional elements { â}o=i, ...,#, o,nd if the differences <pa — <pu o,re holo
morphic wherever <pa, <pb overlap; then there exists one joint meromorphic function 
$ on M2k having precisely the singularities of the given functional elements; meaning 
that $ — (pa is holomorphic for each a on the piece of space on which <pa is defined. 

This generalizes the "trivial" theorem of the ordinary Gaussian sphere, 
k — 1, stating that there exists on it a rational function having at prescribed 
poles Za prescribed principal parts 

TT^ (yap 

,,=1 \Z — Za)v 

[<P = ^2vlicvz
v for za = oo ] 7 the desired function $ being then trivially the sum 

^a<Pa . For k > 1 the construction of 3> as indicated above is very much more 
complicated than that, and its very existence is far from obvious. 

PART VII. MEROMORPHIC FUNCTIONS ON MULTI-TORI 

In Theorem 7, the restriction on —Rap to be positive definite is a very essential 
one even for A = 1, since already for the ordinary elliptic torus [having a flat 
metric with Rn = 0] the known theorem of Liouville for the existence of elliptic 
functions with given principal parts demands that the sum of the residues of the 
principal parts shall have value 0. Now, for k = 1, Liouville's condition is not 
only necessary but also sufficient and for arbitrary k it can be generalized in the 
following manner.18 

We take a complex multi-torus M2k whose complex universal covering space 
is the complex Euclidean E2k, and on it a simplicial decomposition {Sa}, a = 
1, • • • , N, and for each 8a a complex-meromorphic element <pa is a neighborhood 
of its closure such that whenever two simplices Sa, Sb intersect in a (2k — 1)-
dimensional "oriented" face Bab, the difference (53) is complex-holomorphic 
in a neighborhood of its closure. In order that there exist a meromorphic function 

18 Analytic and meromorphic continuation by means of Green's formula, Ann. of Math. 
vol. 44 (1943) pp. 652-673, especially Theorem 15 on p. 672. 
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$ haying the given pa's as principal parts as in Theorem 7, it is necessary and 
sufficient that for each a = 1, • • • , k we have 

X} / (PabdÇac/*1 = 0, 
a,b J-Ba,& 

where co = dzidzi + • • • + dzkdzk is the basic external form associable with the 
flat Euclidean metric given naturally. 

PART VIII. ANALYTIC COMPLETION 

One of the most striking differences between functions in one and several 
complex variables is as. follows. For k = 1, to any domain D there exists a 
function f(z) which is analytic in D and in no larger domain; whereas for k ^ 2 
there are pairs of domains D, D, with D aß, such that any function of D is 
continuable into D. Also, perhaps the most significant statement bearing on the 
latter phenomenon is the following theorem which was first stated by F. Hartogs 
(virtually without a proof by himself). For k ^ 2, if a bounded domain D has a 
boundary B consisting of one piece, and if a function f(zi, • • • , zk) is given in a 
neighborhood S of B, then it can be continued into D + S. 

Now, analyticity means 

and thus our function in S satisfies in particular the Laplace equation 

dj d*f_ &f_ d*l 

dxl + dyl +'"+dxl + dyr° 
in n = 2k variables, and also the equation 

^ / dj 
dxt dyx 

in m = 2 variables, and in the paper cited before13 we have given a sweeping 
generalization of Hartog's theorem to the following effect. 

THEOREM 8. If a real analytic function f(x\, • • • , xn) is given in a neighborhood 
S of the connected boundary of a bounded domain D, then it can be continued into 
all of D + B provided it is in S the joint solution of the Laplace equation 

d2f d2f 
(54) -A + • • • + p = 0 

dxi dxn 

in all n-variables, and of some other (inhomogenous) linear partial differential 
equation with constant coefficients 

n-rm -

in the first m variables, with m < n. 

0^n+.--+rm^Ä vXi • • • OXm 
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In the paper cited we have assumed that the second operator (55) shall be of 
elliptic type in a certain sense, but.this assumption can be abandoned altogether, 
as we shall show in a future publication, and we shall then also show that the 
first operator may be one of elliptic type with constant coefficients with which a 
suitable Green's kernel can be associated, as is, for instance, the case with the 
powers of the Laplacian A/. 

We also generalized Hartog's theorem in other directions and one of the 
conclusions obtained was as follows. 

* 
THEOREM 9. If f(z\, • • • , Zk) is analytic in a domain which is of the type of a 

cell, and if the set of the zeros of the function in the domain contains a bounding 
cycle of dimension 2k — 2, then the function vanishes identically. 

PRINCETON UNIVERSITY, 

PRINCETON, N. J., U. S. A. 



LA THÉORIE DES POINTS FIXES ET SES APPLICATIONS EN 
ANALYSE 

JEAN LERAY 

Â la mémoire du profond mathématicien polonais JULES SCHAUDER, victime des mass
acres de 1940. 

I . I N T R O D U C T I O N 

1. Soit <t>(x) une application continue d'un espace X en lui-même; on nomme 
points fixes de <j>(x) les solutions de l'équation 

(1) x = 0(a). 

Nous ne parlerons pas de Vétude locale de l'équation (1). Cette étude fut faite 
d'abord par E. Picard [11], à l'aide de la méthode des approximations successives; 
puis par E. Schmidt [15], à l'aide de développements en séries, <j)(x) étant supposée 
holomorphe.,La notion d'espace de Banach permit à T. H. Hildebrandt et 
L. M. Graves [3] de systématiser la méthode de E. Picard; il est aisé [9] de 
systématiser de même celle de E. Schmidt. 

C'est de Vétude globale de l'équation (1) que nous nous occuperons. Cette étude 
fut faite d'abord par Fredholm [4], F. Riesz [12], quand <t>(x) est linéaire et 
transforme les parties bornées de X en parties compactes; puis, quand (f>(x) n'est 
pas linéaire, par L. E. J. Brouwer [2], Birkhoff et Kellogg [1], Lefschetz [5], 
Schauder [14], Leray [6], [7], Rothe [13], Tychonoff [16], Nielsen [10], et Wecken 
[17] ; deux types d'hypothèses1 furent utilisés et conduisirent à des théories bien 
différentes: certains auteurs supposèrent que X est un espace vectoriel et que 
4>(x) prend ses valeurs dans un compact; d'autres supposèrent que X est compact 
et vérifie des hypothèses appropriées. Ces hypothèses compliquent ce second 
point de vue, que nous n'aurons pas le temps d'analyser en détail; c'est d'ailleurs 
le premier point de vue qui se présente quand on applique la théorie des points 
fixes à celle des équations aux dérivées partielles. Exposons-le d'abord, en 
résumant [9], qui synthétise [2], [1], [14], [6], [16], [10], [17]. 

IL LES POINTS FIXES D'UNE APPLICATION COMPLèTEMENT CONTINUE D'UN ESPACE 

VECTORIEL À VOISINAGES CONVEXES 

2. Définitions. Soit X un espace vectoriel à voisinages convexes: c'est un espace 
vectoriel (sur le corps des nombres réels) possédant une topologie de Hausdorff, 
qui puisse être définie par un système fondamental de voisinages convexes. 
Soit V un voisinage symétrique de 0; les points x± et x2 de X sont dits voisins 
d'ordre V quand 

xi — x2 € V. 

1 D'autres hypothèses furent utilisées avec succès par E. Rothe; nous ne disposons 
malheureusement pas de la place qu'exigerait l'exposé de ses recherches. 

202 , 
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Soit (j)(x) une application de X en lui-même complètement continue, c'est-à-dire qui 
applique continûment X dans une partie compacte de X; nous posons 

®(x) = x — ()>(x). 

G désignera une partie ouverte de X, G sa frontière et G = G U G son adhérence. 

3. Les propriétés de $(x), du point de vue de la topologie générale. $(F) 
est fermé, quand F est fermé (autrement dit: l'application $>(x) est fermée). 
$^(0) est compact, quand C est compact. 

4. La définition du degré topologique de $ (x). Supposons X de dimension 
finie et ̂ >(x) linéaire par morceaux, c'est-à-dire linéaire au voisinage de tout point 
n'appartenant pas à la réunion d'un ensemble d'hyperplans P\ , n'ayant pas 
d'élément d'accumulation. Ces hyperplans décomposent X en domaines, que nous 
noterons D j , D°p, Z>7 suivant que le déterminant de <ï>(x) y est > 0 , =0 , <0 . 
Soit y un point de X étranger aux <£>(6r), $(Px), et $(D°V) ; soit p [et n] le nombre des 
$((? Pi D^) [et des$(G fi DJ)] contenant y; p — n est une fonction de y constante 
sur chacun des domaines d en lesquels $(G) décompose X; sa valeur est nommée 
degré topologique sur d de la restriction de <£> à G et est notée 

* (* , O, d); 

on définit 

d°(*f G, y) = d°(#, G,d) si y Ç D 

même si y appartient à $ (A) o u $(öj). 
Supposons X de dimension finie et <t>(x) complètement continue; soit y $ $(G) ; 

soit Fi un voisinage convexe et symétrique de 0 tel que le voisinage d'ordre Vi 
de y soit étranger à <£(#) ; soit $i(#) une application linéaire par morceaux telle que 
$(x) et $i(x) soient voisins d'ordre Vi ; d°($i, G, y) est indépendant des choix de 
Vi et $i ; c'est, par définition, d°($, G, y). 

Cas général. Soit y (£ $(G) ; soit Vi un voisinage convexe et symétrique de 0, 
tel que le voisinage d'ordre Vi de y soit étranger à $(G) ; soit $i(x) une application 
complètement continue, voisine d'ordre Vi de </>(#) et telle que<£i(X) appartienne à 
un sous-espace Xi de dimension finie, contenant y; d°($i, G fl X i , y) est indé
pendant des choix de Vi, $i(x) = x —• #I(œ)> Xi ; c'est par définition d°($, G, y). 

5. Les propriétés du degré topologique. 
PROPRIéTé 5.1. d0($, G, y) est un entier positif, nul ou négatif, défini quand 

$(#) — x est complètement continue et que y $ $(G); d°($, G, y) reste constant 
quand $>, G, y varient continûment, en sorte que y $ $(G). 

En particulier, d°($, G, y) ne dépend que de y et de la restriction de $ à G; on 
peut même, ce qu'utilise le §7, définir d°($, G, y) en supposant $ défini seulement 
sur G. 

PROPRIéTé 5.2. Si d°($, G, y) ^ 0, alors y G $(0) . 
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PROPRIéTé 5.3. Si les Ga sont des parties ouvertes de G, deux à deux sans point 
commun et telles que <£>(#) ^ y quand x Ç. G, x $ Ga , alors 

a 

PROPRIéTé 5.4. Soit ty(x) — x une seconde application complètement continue, 
définie sur 3>(G); soient da les domaines en lesquels <£((r) décompose X [autrement 
dit: les da sont les composantes connexes du complémentaire de $($)]; si y $ ^ ( G ) , 
alors 

#(¥*, G, y) = E #(*, G, da)-d°(% da , y). 
a 

PROPRIéTé 5.5. Supposons X somme directe de deux espaces Xi et X2 : 

X = Xi + X2 ; 

on a 

x = Xi + x2 ; $(a?) = $i(a?) + $2(x), où xa € X « , $« 6 X« ; 

on a $i(x) = ^i(x± , x2) ; supposons $2(x) = $2(x2) fonction seulement de x2. Soit Gx 
une partie ouverte de Xi et D2 un domaine de X2 ; si y\ $ 3?i(ffi, D2) et y2 $ 3>2(D2)y 

alors 

#(* , Gx + D2,2/1 + 2/2) = d°($i, (?i, 2/1) 'd°(^2, A , 2/2), 

d°($i(xi, x2), Gi, 2/1) devant être calculé en supposant que x2 est un point fixe, 
arbitraire de D2. 

6. L'indice des points fixes d'une application complètement continue <t>(x). 
Soit F un ensemble isolé de point fixes de <t>(x) : F a un voisinage G ne contenant 
d'autres points fixes que les points de F; F est compact; d°($, G, 0) est indé
pendant du choix de G, est nommé indice de F et est noté i(F). Les propriétés du 
degré ont pour conséquences immédiates les propriétés suivantes de l'indice: 

PROPRIéTé 6.1. Soit F l'ensemble des points fixes de <ß(x) contenus dans une 
partie ouverte G de X; F est compact et i(F) est défini, quand G ne contient aucun 
point fixe; i(F) est un entier positif, négatif, ou nul, qui reste constant quand <l>(x) 
et G varient continûment, sans que G ne contienne jamais de point fixe de <ß(x). 

COROLLAIRE 6.1. i(F) ne dépend que de la restriction de <l>(x) à G. 
COROLLAIRE 6.2. Si <ß(x) possède au point fixe a une différentielle2 complètement 

continue X(x — a), telle que a + X(x — a) ait pour seul point fixe a, alors a est 
un point fixe isolé de (j>(x) ayant les mêmes indices comme point fixe de <t>(x) et 
comme point fixe de a + X(x — a). 

PROPRIéTé 6.2. F n'est pas vide, si i(F) ^ 0. 
PROPRIéTé 6.3. Si F est la réunion d'un nombre fini de compacts Fa , deux à 

deux sans point commun, alors i(F) = y]ai(Fa). 

2\(y) est linéaire homogène; il existe un voisinage F de 0 tel que, si e est un nombre 
réel tendant vers 0, le transformé par €_1[0(rc) — a — \(x — a)] du voisinage de a d'ordre eV 
tende vers 0. 
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PROPRIéTé 6.4. Soient deux espaces Xi et X2, une partie ouverte Gi de X i , 
un domaine D2 de X2, une application complètement continue 0I(.TI , x2) de Xi + X2 
dans Xi et une application complètement continue <j>(x2) de X2 en lui-même. Sup
posons 

x\ T* <t>i(xi, x2) pour xi £ G 1, x2 G D2; x2 =é <l>(x2) pour x2 G t>2; 
soit i Vindice des points fixes Xi + x2 G 6?i + D2 de <j>\(xi, x2) + <j>2(x2) ; soit ii l'indice 
des points fixes xi G Gi defa (x%, x2), quand x2 G D2; soit i2 l'indice des points fixes 
$2 G D2 de (j>2(x2). On a 

i = iv Ì2. 

Ces propriétés de l'indice permettent de prouver des théorèmes d'existence 
(d'après la propriété 6,2, il existe au moins un point fixe quand l'indice de l'en
semble des points fixes diffère de zéro; les propriétés 6.1 et 6.3 permettent de 
déterminer l'indice de l'ensemble des points fixes) et des théorèmes d'unicité (si 
l'indice de l'ensemble des points fixes est e = ± 1 et si le corollaire 6.2 et la 
propriété 9.1 permettent de prouver que chaque point fixe est isolé et a l'indice 
e, alors il existe un point fixe unique). 

7. Le thêroème de Jordan-Brouwer. Soient F et Ff deux parties fermées de X, 
entre lesquelles existe un homêomorphisme x <-> xf ; F et F' décomposent X en le 
même nombre de domaines, s'il existe un compact contenant toutes les valeurs prises 
par x — xf. (On sait que cette hypothèse est essentielle: la sphère de Hilbert F: 
xl + x\ • • • = 1 décompose l'espace en deux domaines; on peut l'appliquer iso-
métriquement sur Ff: x± = 0, x\ + #3 + • • • = 1, dont le complémentaire con
stitue un seul domaine. 

PREUVE. Soient D\ et DM les domaines en lesquels F et F' décomposent X. 
Posons $(x) = x'^ty) = x; ona^$(«) = x et ^f(xf) = œ'; d'après la propriété 
5.4 les matrices d°(<ï>, D\ , D^) et d°($r, DM , Dx) sont inverses l'une de l'autre; 
elles sont donc carrées. 

On prouve de même : 

8. L'invariance du domaine. L'image $(D) d'un domaine D par un homêo
morphisme $>(x) est un domaine si $(x) — x est complètement continue (hypothèse 
essentielle). 

9. Les équations linéaires. Soit \(x) une application linéaire et homogène 
de X en lui-même, qui soit complètement continue sur un voisinage de l'origine 
convenablement choisi; soit p un nombre réel; soit 

Ap(x) = x — pk(x)t 

L'invariance du domaine a pour conséquence immédiate l'alternative de 
Fredholm: ou bien Ap(x) a d'autres zéros que x = 0; ou bien Ap(x) applique X 
sur lui-même. Il est aisé [8], en simplifiant des raisonnements de F. Riesz [12], 
d'en déduire les autres théorèmes de Fredholm. D'où: 
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PROPRIéTé 9.1. Soit np la dimension de l'espace vectoriel constitué par les zéros de 
Ap(x), Ap(Ap(aO), • • • ; soit n = X)O<P<I np ; si x = 0 est le seul point fixe de 
X(#)> son indice est (—1)". En particulier cet indice est le signe, pour p = 1, de 
la déterminante de Fredholm, si \(x) est une application du type de Fredholm: 
x(s) -> / K(s, t)x(t) dt. 

10. Les classes de points fixes. Le procédé de Nielsen [10] et Wecken [17] 
permet de classer les points fixes de <j>(x) contenus dans G: les points fixes x\ et x2 

sont placés dans une même classe quand on peut les joindre par un chemin l 
tel que l et $(1) appartiennent à G et soient homotopes dans G. Chaque classe 
constitue évidemment un ensemble isolé de points fixes; donc son indice est 
défini et reste constant quand <ß(x) et G varient continûment, en sorte qu'aucun 
point fixe n'appartienne jamais à G. 

III . LES POINTS FIXES D'UNE APPLICATION CONTINUE D'UN COMPACT 

11. Soit %(x) une application continue en lui-même d'un espace compact O; 
supposons que G soit un rétracte d'une partie ouverte G d'un espace vectoriel à 
voisinages convexes X: il existe une application continue ir(x) de G sur G dont la 
restriction à C, supposé intérieur à G, est l'identité. Il est clair que les points 
fixes de %(x) sont ceux de l'application complètement continue 0(#) = ir^(x): 
les point fixes de %(x) ont un indice possédant les propriétés énoncées au §6. 

Si X est l'espace de Hilbert, C est un espace LG*; rappelons les deux définitions 
équivalentes de ces espaces (Lefschetz): ce sont les compacts métrisables et 
localement connexes pour toutes les dimensions; ce sont les rétractes absolus de 
voisinages. 

[7] généralise et complète les résultats précédents: l'indice de l'ensemble des 
points fixes de £(#) est le nombre de Lefschetz de %(x) ; plus généralement i(f) est le 
nombre de Lefschetz de restrictions convenables de %(x) quand / est l'ensemble 
des points fixes de %(x) contenus dans une partie ouverte g de C telle que 

lim 0W(0) C g. 
n-*+oo 

On connaît le théorème de Lefschetz [5]: £ (x) a, au moins un point fixe quand 
son nombre de Lefschetz diffère de zéro. Ce théorème est une conséquence de la 
théorie précédente; mais il s'applique à certains espaces compacts auxquels 
cette théorie n'a pas été étendue. Le problème est ouvert de savoir si cette 
théorie est un cas particulier d'une théorie plus générale, applicable à tout 
espace compact. 

IV. LES APPLICATIONS DE LA THéORIE DES POINTS FIXES 

La théorie des points fixes a des applications variées: 
Équations intégrales non linéaires: [24, Chapitre I], 
Problème de Dirichlet pour les équations non linéaires, du type elliptique à 

deux variables indépendantes: [22]. 
Calcul des variations: [13], [22]. 
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Problème de Dirichlet posé par la théorie des fluides visqueux: [24, Chapitres 
i i , m ] . 

Équations linéaires, du type elliptique, à conditions aux limites non linéaires: 
[20]. 

Problèmes de représentation conforme du type d'Helmholtz posés par les 
écoulements de fluides parfaits avec jets ou sillages: [21], [23], [25], 

Problèmes posés par les écoulements des fluides parfaits et compressibles: 
[18], [19]. 
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INTÉGRALES HARMONIQUES ET THÉORIE DES INTERSECTIONS 

GEORGES DE RHAM 

Dans la première partie de cet exposé, je parlerai du concept de courant, que j 'ai 
introduit pour expliquer les relations entre la théorie des chaînes et celle des 
formes différentielles extérieures. La définition des courants adoptée ici m'a été 
suggérée par la lecture de Particle [8] où M. Laurent Schwartz a introduit sa 
notion de distribution.1 Dans la seconde partie, je montrerai comment la théorie 
des formes différentielles harmoniques conduit à une formule intégrale remar
quable pour représenter l'indice de Kronecker de deux chaînes différentiables 
dans un espace de Riemann. 

Soit M une variété à n dimensions, que pour simplifier je supposerai compacte 
et orientable, donnée avec une structure differentiable C°°. Par définition, un 
courant de dimension p sur M est une fonctionnelle linéaire T[<p], définie sur 
l'espace linéaire de toutes les formes différentielles extérieures <p de degré p 
et de classe C00 sur M, qui est continue dans le sens suivant: si <p tend vers zéro 
en restant nulle en dehors d'un compact fixe contenu dans le domaine d'un 
système de coordonnées locales de manière que chaque dérivée (de n'importe 
quel ordre ^ 0) de chaque coefficient de la forme <p (représentée au moyen 
des coordonnées locales) tende uniformément vers zéro, alors T[<p] tend vers zéro. 

Le plus petit ensemble fermé en dehors duquel une forme différentielle (p est 
nulle est appelé le support ("carrier" en anglais) de <p. Un courant T est dit nul 
dans l'ensemble ouvert D, si T[<p] = 0 pour toute forme <p dont le support est 
contenu dans D. On démontre que, parmi les ensembles ouverts dans lesquels 
T = 0, il y en a un, le plus grand, qui contient tous les autres. L'ensemble fermé 
complémentaire de ce plus grand ensemble ouvert est appelé le support de T. 

Voici trois exemples de courants. 
1. Soit a une forme différentielle de degré n — p sur M. En posant 

a[<p] = / a /\<p 

où a A <P est le produit extérieur de a et de <p (ce qui est une forme de degré n) 
et où l'intégrale est étendue à toute la variété M qu'on suppose orientée une 
fois pour toutes, on définit un courant qui sera dit égal à la forme différentielle a. 
C'est un courant de dimension p. 

D'une manière générale, un courant de dimension p dans une variété de 
dimension QI sera dit de degré n — p. 

2. Soit c une chaîne differentiable de dimension p dans M. En posant 

1 J'ai introduit les courants dans [3] et [6], sous une forme moins précise et moins générale. 
La nouvelle définition adoptée ici est déjà développée dans [7]. M. Schwartz m'a d'ailleurs 
communiqué qu'il a aussi envisagé cette même définition, qui est une extension naturelle 
de sa notion de distribution. 

209 
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C[(p] = / <p 
Je 

on définit un courant de dimension p qui sera dit égal à la chaîne c. 
3. Soit V un p-vecteur contravariant donné en un point donné y de M. Si 

yn-'-ip gon£ geg composantes relativement à un système de coordonnées locales 
et si (Pi^.-ip sont les valeurs au point y des coefficients de la forme <p représentée 
au moyen des mêmes coordonnées locales, en posant 

v[<p] = x ; v*1-** <piv 

on définit un courant de dimension p, qui sera dit égal au p-vecteur V. 
Les deux premiers exemples montrent que les chaînes de dimension p et les 

formes de degré n — p, sur une variété à n dimensions, sont des cas particuliers 
de courants de dimension p. 

Pour p = 0, l'argument <p de la fonctionelle est une fonction et les courants 
de degré n (ou de dimension zéro) ne sont pas autre chose que les distributions 
de M. Schwartz. Le terme "courant" a été suggéré par le cas particulier p = 1 
et n = 3, qui est adapté à la notion physique de courant électrique dans l'espace 
ordinaire. Un courant électrique dans un réseau de fils conducteurs est représenté 
par une chaîne à une dimension, tandis qu'un courant électrique dans un volume 
conducteur est représenté par une densité vectorielle, ce qui est équivalent à 
une forme différentielle de degré 2. 

La définition de la différentielle extérieure d'une forme peut facilement s'étendre 
aux courants. Si a est une forme de degré n — p et si ^ est une forme de degré 
p — 1, on obtient par intégration par parties la formule 

fdaA1>= (~iy-p+1 J a A # 

qui peut aussi s'écrire 

d*M = (-l)w~p + 1a[#]. 

Cela étant, pour chaque courant T on définit dT en posant 

dTty] = (-l)n~p+1TW]. 

En tenant compte de la formule générale de Stokes, on voit que si T est une 
chaîne, dT est au signe près le bord de T. Ainsi, la différentielle extérieure d'une 
forme et le bord d'une chaîne apparaissent comme deux cas particuliers d'un 
même concept général défini pour tous les courants. 

Il n'est pas aussi simple d'étendre aux courant la définition du produit extérieur 
de deux formes. Toutefois, on peut définir le produit extérieur T /\ a d'un 
courant quelconque T par une forme a de classe C00 en posant 

(T A a)M = T[a A *]• 

Grâce à cette définition, on peut représenter les courants par des formes diffé-
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rentielles généralisées. Si en effet x\ • • • , x? est un système de coordonnées 
locales dans le domaine D est si les Tiv..ip sont des courants de degré zéro, 

J2Th...ipdxh A ••• Adx** 

est un courant de degré p dans D, et l'on prouve que tout courant de degré p dans 
D peut être ainsi représenté par une forme différentielle dont les coefficients 
sont des courants de degré zéro. 

Pour obtenir une définition du produit extérieur de deux courants dans des 
cas plus généraux, on peut utiliser l'approximation des courants par des formes. 
Supposons que si, pour m —» oo, les formes différentielles am et ßm tendent 
respectivement vers les courants T et S, dans un sens qui devra être précisé, 
leur produit am A ßm tende vers un courant déterminé R] il sera naturel de 
convenir alors que le produit T A S est égal à R. 

On est ainsi amené à étudier l'approximation des courants par des formes. 
Supposons que l'on ait une métrique sur M et appelons voisinage (e) d'un 
ensemble E l'ensemble des points dont la distance à E est moindre que e. On 
peut alors établir le théorème suivant (pour la démonstration, voir [7, Chapitre 
IV]). 

THéORèME. Il existe des opérateurs linéaires Re et A€, définis pour tout e > 0, 
ayant les propriétés suivantes. 

(1) Si T est un courant de dimension p dans M, ReT et A£T sont des courants de 
dimensions p et p + 1 respectivement, dont les supports sont contenus dans le 
voisinage (e) du support de T et qui satisfont à la relation 

ReT - T = (-l)n~p(dAeT - A4T). 

(2) ReT est une forme différentielle de classe C°° et R€T[<p] —> T[<p] pour e—>0, 
quelle que soit la forme <p de classe C°°. 

(3) Si T est une forme de classe C°°, AtT est aussi une forme de classe C00, 

Il résulte de (1) que les opérateurs Re et d sont permutables: RedT = dRtT, 
Par suite, si T est fermé (dT = 0), R€T est aussi fermé et la formule (1) qui se 
réduit alors à ReT — T = zkdA€T montre que T est homologue à R£T. On voit 
ainsi que tout courant fermé est homologue à une forme différentielle. 

Pour e —> 0, la forme ReT, considérée comme courant et fonctionnelle linéaire, 
tend vers T, d'après (2), et d'après (1) les supports de R,T et dR6T tendent 
respectivement vers les supports de T et dT. 

Considérons un exemple simple. Soit fe(t) une fonction de classe C00 de la 
variable réelle t, telle que 

/

+00 

/.(O dt = 1. 
00 

Dans l'espace ordinaire Oxyz, considérons les formes 
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«e = fe(x) dx, fc = f€(y) dy, 

désignons par a et 6 les chaînes à deux dimensions constituées respectivement 
par les plans x = 0 et y = 0, convenablement orientés, et par c la chaîne à 
une dimension intersection au sens topologique de a et b, chaîne constituée 
par l'axe Oz. Pour e —> 0, on a 

ae[<p] - » a[<p] = cp, ßM - » b[<p] e t (ae A ße)[<p] - > cfe>] 
•/a 

quelle que' soit la forme <p à support compact. On voit que les formes a€ et ßt 

tendent respectivement vers les chaînes a et b, tandis que leur produit extérieur 
tend vers l'intersection de a avec b. La notion, d'intersection apparait ainsi 
comme un cas limite de la notion de produit extérieur. Cela semble montrer en 
même temps l'utilité d'étendre cette notion, et l'impossibilité d'une définition 
raisonnable et tout à fait générale, puisque l'intersection de deux chaînes peut 
être indéterminée. 

Particulièrement intéressant est le cas où l'on a, dans la variété M de dimension 
n, deux chaînes cp et cn~p de dimensions complémentaires p et n — p. Leur 
intersection, si elle est déterminée, est une chaîne de dimension zéro, c° = 
cp A cn~P, combinaison linéaire d'un nombre fini de points; la somme des 
coefficients de ces points est Vindice de Kronecker ou nombre algébrique d'inter
sections de cp avec cn~p, I(cp, cn~p), ce qui est aussi la valeur de la fonctionnelle 
c°[<p] pour la fonction <p = 1. Du théorème ci-dessus, on peut déduire que l'on a 

I(cp, cn~p) = [ Rec
p A R*>cn-p = ï R€.c

n-p = (-iy«+* f ReC
p 

pourvu que e + e' soit inférieur à la distance de chacune des chaînes cp et cn~p 

au bord de l'autre. 
La théorie des formes différentielles harmoniques permet d'obtenir, pour cet 

indice de Kronecker, une autre représentation où interviennent les intégrales 
étendues aux deux chaînes d'une certaine forme différentielle parfaitement 
déterminée dès qu'on a donné sur M une métrique riemannienne. Supposons 
donc donné sur M un ds2 défini positif, de classe C00. Comme on sait, à chaque 
forme a. de degré p est alors associée une forme adjointe *a de degré n — p, 
deux formes a et ß de même degré ont un produit scalaire 

(a, ß) = (ß, a) = f a A *ß = 0 M 

et à côté de la differentiation d s'introduit un autre opérateur différentiel, la 
codifférentiation 8 = =L*d*, qui satisfait à 

(ôcp , yp) = (<p, # ) . 

Si T est un courant et <p une forme de classe C00 du même degré p que T, on 
définit (T, (p) et *JT en posant 
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(2» = TM = (-i)im+%rw 
et la codifférentielle ôT = ±*d*T est déterminée par l'identité (ôT, \p) = (T, d\p). 
Avec ces notations, si cp est une chaîne à p dimensions et a une forme de degré p, 
on a 

(*cp, a) = cp[a] = j a 

et les relations (1) peuvent s'écrire de la manière suivante 

(2) I(CP, Cn~P) = (*ReC
P, Re> Cn~P) = (*CP, Ee' C""P) = (*R<CP, C^). 

Cela suggère que l'indice de Kronecker I(cp, cn~p) peut être interprété comme le 
produit scalaire (*cp, cn~p) des deux courants *cp*et cn~p. 

Or, on peut étendre d'une autre manière la définition du produit scalaire. 
Appelons ensemble singulier d'un courant T le plus petit ensemble fermé en 
dehors duquel T est égal à une forme de classe C°°. Supposons que les ensembles 
singuliers de S et de T n'ont aucun point commun. On peut alors décomposer ces 
courants en sommes S = Si + S2, T = 7\ + T2, de manière que S2 et JT2 

soient des formes de classe C°° et que les supports de Si et Ti n'aient aucun point 
commun. Les produits scalaires (Si, T2) et (S2 , T) sont alors déterminés et l'on 
peut définir (S, T) en posant (S, T) = (Si, T2) + (S2, T). Ainsi, Ze produit 
scalaire de deux courants est déterminé lorsqu'ils n'ont pas de point singulier 
commun. 

Pour aller plus loin, utilisons la théorie des formes différentielles harmoniques. 
D'après un théorème de cette théorie, toute forme a peut être décomposée, d'une 
manière unique, en la somme de trois formes, a = Hia + H2a + H$a, dont la 
première est homologue à zéro (Hia. = dß), la seconde est cohomologue à zéro 
(jff2a! = ôy) et la troisième est harmonique (dH^a = 0, ôH^a = 0). Les opérateurs 
Hi, H2, et H s définis par cette décomposition sont des projecteurs deux à deux 
orthogonaux. Il en résulte en particulier la formule ' 

(3) (a, ß) = (Hia, ß) + (a, H2ß + Htf). 

Le théorème de décomposition ci-dessus s'étend aux courants. En effet, en 
définissant H,T (j = 1, 2, 3) par (H3T, cp) = (T, Hj(p), on a T = HiT + H2T + 
H3T et l'on prouve que les ensembles singuliers de HiT et H2T sont respective
ment identiques à ceux de 8T et dT, tandis que celui de H^T est vide, H%T 
étant une forme harmonique. Pour la démonstration, voir [7, Chapitre III]. 
Si alors, dans la formule (3) on remplace a par *cp et ß par cn~p, on obtient 

(4) (*cp, cn~p) = (Hi*cp, cn~p) + (*cp, H2c
n~p + H,cn~p). 

L'ensemble singulier du courant Hi*cp — *H2c
p est contenu dans le support 

de dcp, c'est-à-dire dans le bord de cp, qui par hypothèse ne rencontre pas cn~p; 
ainsi, le premier terme au second membre de (4) est bien défini. Il en est de 
même du second terme, car l'ensemble singulier de H2c

n~p + H3c
n~p se réduit à 
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celui de H2c
n~~p et il est contenu dans le bord de cn~p qui par hypothèse ne ren

contre pas cp. Ainsi, la formule (4) donne une valeur bien déterminée pour 
(*cp, cn~p) et l'on peut vérifier directement qu'elle est bien égale à I(cp, cn~p). 

Considérons un point déterminé y de M et supposons que l'on attribue aux 
Cn produits dyH A * • • A dy%p des valeurs numériques déterminées. Il existe 
alors un courant bien déterminé de degré p, Y, tel que 

(Y, <p) = £ <ph...ip(y) dyh A • • • A dy{*. 

C'est le courant adjoint au courant égal au p-vecteur contravariant situé en y de 
composantes dyH A • • • A dy** (troisième exemple de courant considéré plus 
haut). Pour abréger, on dira que (Y, <p) est la valeur de la forme <p au point y et 
l'on écrira (Y, (p) = <p(y). Désignons de même par X le courant tel que (X, <p) = 
<p(x) = valeur de <p au point x. 

Le support de Y se réduisant au point y, les ensembles singuliers de H{Y et 
H2Y se réduisent aussi au point y. Par suite, en dehors de ce point, H{Y est 
égal à une forme de classe CT dont la valeur e(x, y) au point x ?* y est e (x, y) =* 
(X, HiY). Si l'on considère x et y comme variables, e(x, y) est une double forme 
de degré p par rapport à x et par rapport à y, symétrique parceque (X, HiY) = 
(HiX, Y), de classe C°° pour x ^ y. Elle est fermée parceque Hi Y est un courant 
homologue à zéro, donc fermé. Elle est aussi cofermée, car, en dehors de y, Y = 0 
et par suite HiY = —H2Y — H{Y et l'on sait que H2Y et H{Y sont cofermés. 
Ainsi, e(x, y) est une double forme symétrique, harmonique pour x ^ y, par
faitement déterminée par la métrique riemannienne donnée sur M. 

En dehors du bord de cp, le courant Hi*cp est égal à une forme de classe C* 
dont la valeur au point y est donnée par 

( 7 , / W O = (HiY, *cp) = f9e(z,y), 

l'intégration étant effectuée sur cp par rapport à x. De là résulte 

c y c x 

formule où e(x, y*) est l'adjointe relativement à y de e(x, y), ce qui est une forme 
de degré p en x et de degré n — p en y, l'intégration étant effectuée d'abord par 
rapport à x sur cp et ensuite par rapport à y sur cn~p. 

Pour x ^ y, on a (H2X + HZX, Y) = — (HXX, Y) = — e(x, y). Par suite, en un 
point x non situé sur le bord de cn~~p, le courant H2c

n~p + Hzc
n~p est égal à une 

forme dont la valeur est 

(H2c
n~p + H*cn~p, X) = (cn~p, H2X + HZX) = - f e(x, y*). 

JOy 

Il en résulte 

(*cp, H2c
n~v + tf3c

B-p) = - f /eB_p «OB, y*) 
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d'où finalement la formule cherchée pour l'indice de Kronecker 

I(c», c»-) = /„_„ / , e(x, y*) - Jp / „ _ , e(x, y*). 

On peut montrer que, pour a; = y, la forme e(x, y) devient infinie d'ordre n, ce 
qui explique qu'un changement dans l'ordre des intégrations puisse changer la 
valeur de l'intégrale, sauf naturellement dans le cas où les deux chaînes cp et cn~p 

ne se coupent pas, auquel cas évidemment I(cp, cn~p) = 0, 
Cette formule a été établie dans [5], pour le cas d'un espace de Riemann 

compact et orientable. Comme cela est indiqué dans [7], on peut l'étendre 
au cas d'un espace de Riemann non orientable, et même non compact. Dans 
le cas non compact, le théorème de décomposition pour les formes est encore 
valable, ainsi que l'a montré M. Kodaira, pourvu que l'on se restreigne aux 
formes a de carré sommable, c'est-à-dire telles que l'intégrale (a, a) converge. 
On l'étend ensuite aux courants T tels que la fonctionnelle (T, <p) de <p soit 
définie pour toutes les formes <p de classe C00 et de carré sommable. Le courant 
Y satisfait évidemment à cette condition, ce qui permet de définir la forme 
e(x, y) = (X, HXY). 
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COURBURE, NOMBRES DE BETTI, ET ESPACES SYMÉTRIQUES1 

A . LlCHNEROWICZ 

1. Introduction. Si Vn est une variété riemannienne compacte, de métrique 
définie positive, il est connu depuis longtemps que ses propriétés topologiques 
et géométriques sont étroitement reliées. Par exemple, si Vn est orientable et 
de courbure constante positive, on peut établir directement qu'elle admet pour 
espace universel de recouvrement la sphère Sn ; par suite ses nombres de Betti 
sont ceux de la sphère Sn . 

Récemment des résultats beaucoup plus étendus ont été obtenus parallèlement 
par Bochner et moi-même, sur certaines relations reliant la courbure rieman
nienne de Vn et ses nombres de Betti. Les résultats de Bochner et les miens, 
dans cet ordre d'idées, seront l'objet principal de cet exposé. Bochner avait 
surtout en vue, semble -t-il, des applications au domaine assez riche des variétés à 
structure analytique complexe, en particulier des variétés kähleriennes. Je me 
limiterai au contraire ici à l'étude, peut-être plus ingrate, des propriétés qui 
ressortent strictement du domaine réel. Dans toute la suite, Vn désignera une 
variété riemannienne à n dimensions compacte et de métrique définie positive. 

Notre méthode repose essentiellement sur l'étude d'opérations elliptiques 
portant sur un scalaire défini sur Vn . La même méthode fournit également des 
conditions nécessaires et suffisantes nouvelles pour qu'un espace riemannien 
compact soit symétrique au sens de Elie Cartan, avec tout ce que cela comporte 
de propriétés géométriques et topologiques liées. C'est grâce à la technique des 
formes harmoniques de Hodge-de Rham que les propriétés d'homologie de la 
variété Vn peuvent être atteintes. Les relations classiques d'harmonicité peuvent 
être exprimées en termes de dérivation covariante sur Vn de la manière suivante: 
un p-tenseur antisymétrique Tßlßi...ßp est harmonique s'il satisfait aux deux 
conditions 

(1.1) (a) eZ^ap+lVßTßlß2...ßp = 0; (b) V«T£...*-i = <> 

où V« est l'opérateur de dérivation covariante et e l'indicateur classique de 
permutation. Cela posé, on sait que, si Vn est orientable, le nombre de p-tenseurs 
harmoniques linéairement indépendants définis sur Vn est égal au peme nombre de 
Betti de Vn. 

2. Existence d'un tenseur symétrique à dérivée covariante nulle. De la forme 
(1.1) des conditions d'harmonicité, on peut déjà déduire des résultats simples de 
géométrie différentielle globale. Supposons qu'il existe sur Vn un tenseur symé
trique Taß d'ordre 2, non proportionnel à gaß et de dérivée covariante nulle 
(V7î

7
aJs = 0). La variété Vn est alors localement réductible en ce sens que la 

1 Cet te communication étajt mentionnée sur le programme imprimé sous le t i t re Curva
ture and Betti numbers. 
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métrique de Vn peut être décomposée, aux différents points de Vn , en une 
somme de plusieurs métriques locales telle que: 

ds2 = gaißl(^) dxaidxßl + ga2ß2(x**) dx"*dxß* 

(ai, ßi, \i = 1, • • • , r; a2, ß2, X2 = r + 1, • • • , n). 

Le polynôme caractéristique de la matrice (Taß) par rapport à la matrice 
(gaß) est à coefficients constants sur Vn . À toute valeur caractéristique d'ordre 
p, correspond un champ de p-plans parallèles qui définit un p-vecteur repré
sentatif Uctltt2...atp à dérivée covariante nulle et par suite une forme harmonique 
sur Vn . De plus, à des valeurs caractéristiques distinctes de même ordre de 
multiplicité, correspondent manifestement des formes harmoniques linéairement 
indépendantes. 

On peut remarquer en outre que, sur un espace compact, la nullité d'une dérivée 
covariante d'ordre quelconque d'un tenseur entraîne la nullité de la dérivée première 
de ce tenseur. En effet si, par exemple, 

VxVMQa/s = 0 

en multipliant par Qaß et contractant, il vient: 

où A désigne le laplacien attaché à la métrique riemannienne et où le second 
membre est essentiellement positif ou nul. Comme le scalaire (QaßQaß) atteint 
nécessairement son maximum en un point de la variété compacte Vn , A[QaßQaß] 
ne peut être qu'identiquement nul et VMQa/3 = 0. Le même raisonnement s'étend 
manifestement par récurrence à une dérivée covariante d'ordre quelconque 
d'un tenseur arbitraire. Nous pouvons donc énoncer: 

THéORèME. S'il existe sur une variété orientable Vn un tenseur symétrique Taß , 
non proportionnel à gaß , et dont l'une des dérivées covariantes est nulle, la variété Vn 

est localement réductible et ses nombres de Betti satisfont aux inégalités 

(2.1) bp(Vn) è *p (p = 1,2, . . . , n - 1) 

où kp désigne le nombre de valeurs caractéristiques de (Taß) qui admettent l'ordre de 
multiplicité p. 

En particulier, il ne peut exister de tel tenseur sur une variété Vn dont les 
nombres de Betti sont ceux de la sphère. 

3. Une formule fondamentale relative aux tenseurs harmoniques. La démon
stration précédente nous fournit un exemple simple du mode de raisonnement 
que nous allons utiliser. Nous établirons d'abord une formule fondamentale 
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relative au carré d'un tenseur harmonique. Partons de la formule de commutation 
des dérivations covariantes 

v\\ VpJ- cn-'-ctp) Vp\ V \ i ctV"Ctp)
 == Raip,\p-L a2-"<xp " ' ' Rapp,^fiJ- ayap^i 

où nous supposerons le tenseur T harmonique. En contractant les indices «i et X 
il vient, compte tenu de (1.1) (b), 

Si1 nous multiplions par Tt"*2"tap et contractons, nous obtenons en transformant 
lö premier membre au moyen de l'autre relation d'harmonicité, la formule 
f oridamentâlë : 

i - A[T2] = -g^Tai'''"*Viïai...ap - RpaT
p
a2...apF

a*'-'«»' 

(3.1) P V 

i V f T> nri^V- mp<r*3"-ap 
~I y " X M I P ^ 2 otf'CtpJ- f 

OÙ 

(3.2) T2 = Tai'"a*Tav..a, 

est le carré du tenseur harmonique T envisagé. 

4. Quelques applications simples, (a) Le cas où p = 1. Dans ce cas, la formule 
fondamentale (3.1) s'écrit: 

(4.1) \ A[T2J - j* vx r v, Ta - Bpa r r . 

Au second membre apparaît la courbure de Ricci de l'espace dans la direction du 
vecteur T9.2 Supposons que la courbure de Ricci de Vn soit strictement positive, 
c'est-à-dire que la forme quadratique RpffT

pr soit partout définie négative. 
A[T2] étant partout positif ou nul doit être nul. Il en est donc nécessairement de 
même du vecteur harmonique Tp. Nous obtenons le théorème de Bochner 
(voir [1, p. 780]). 

THéORèME. Si une variété riemannienne compacte, orientable admet une courbure 
de Ricci strictement positive, son premier nombre de Betti est nul. 

Ce résultat a été aussi obtenu par Myers (voir [9]) par une méthode toute 
différente. 

(b) Espace à courbure de Ricci nulle. Supposons Vn tel que Rp9 = 0. La formule 
-* -» 

2 La courbure de Ricci en M et dans la direction du vecteur T est C{MÌ T) «• 
-RpaT

pT9/Gp9T
pT\ 
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(4.1) s'écrit 

\ VIT2] = 0 ^ r v , r . 

et un raisonnement identique au précédent montre que si Ta est harmonique, 
il est à dérivée covariante nulle. Par un raisonnement tout à fait analogue, 
dû à Bochner (voir [1, pp. 781, 782]), on voit qu'il en est de même si l'on suppose 
que Ta , au lieu d'être harmonique, définit un groupe d'isométrie à 1 paramètre 
de Vn . Ainsi: 

THéORèME. Si Vn est de courbure de Ricci nulle, son premier nombre de Betti est 
égal au nombre de champs indépendants de vecteurs parallèles et au nombre de 
générateurs de groupes d'isométrie à un paramètre de cette variété. 

L'étude approfondie de ces variétés intéressantes est encore peu avancée. 
Dans cet ordre d'idées, je signalerai le résultat suivant.3 

THéORèME. Si un V* de courbure de Ricci nulle admet une caractéristique 
d'Euler-Poincaré inférieure à 2, il est localement euclidien. 

En effet si x(Vì) < 2, le premier nombre de Betti de F* est au moins égal à 1 et 
Vi admet un champ de vecteurs parallèles. Par suite la métrique de Vi peut 
localement se mettre sous la forme 

ds2 = (dx*)2 + gij(x
h) dx' dxj (i,j, h = 1, 2, 3). 

La nullité de la courbure de Ricci de VA entraîne, d'après les équations de Gauss-
Codazzi, la nullité de celle de la métrique à 3 dimensions g^ dxx dx3 et par suite 
le caractère localement euclidien de l'espace. Un résultat analogue peut être 
obtenu à partir de la formule de Chern donnant la caractéristique d'une Vn . 

(c) Espace à courbure constante positive. De la formule (3.1), on déduit immé
diatement le théorème classique: 

THéORèME. Si un Vn orientable admet une courbure constante positive, ses 
nombres de Betti sont ceux de la sphère. 

5. Un théorème général. Les exemples précédents montrent qu'il convient 
d'étudier le signe du second membre de la formule (3.1) et en particulier le signe 
de la quantité 

Q (rp\ r> m^P rnpvotf'Ctp ^ r> rpP mvctz,m'0ip 

p\l ) — £b\ptPa 1 a g . . . « v l r IhpoX a«...avl . 

P ~ 1 
Il est souhaitable que le tenseur T intervienne de la même façon dans les deux 
termes de QP(T). Â cet effet nous introduirons le tenseur 

8 J'ai établi antérieurement la même conclusion pour un Vi de métrique hyperbolique 
normale admettant un groupe d'isométrie à trajectoires orientées "dans le temps" [5], 
ce qui est un résultat fondamental pour la théorie relativiste de la gravitation. 
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•(R\Pgn<r + Rfi<rg\P — R^g^p — R^gxa) 

rp<rct2m,m<xp A r/ihi rpP*af'Op 
••ctp-L *i-'Kp,p<rJ- a 3 " - a p - * 

(5.1) 
et écrirons 

(5.2) 

Il en résulte 

^-^-X/i.pff — 

Zttptrl a 

rtp<ra3---ap 
typ\-L ) — tt\p,po r .j ^J-XM.PO" I •*• az'"Up J-

Nous sommes ainsi conduits à étudier dans quels cas la forme quadratique 

QP(t) = [fl*fP. + — ^ A*»p°~\ Pf(p = -fx) 

où (Xju) joue le rôle d'un indice composé, est définie positive. Supposons la 
courbure de Ricci strictement positive. Selon (5.2), la forme quadratique de 
coefficients ii*MfP0. est définie positive et les valeurs caractéristiques pxM de la 
matrice (R^,pff) par rapport à la matrice (A\ßlP<r) sont réelles. La forme Qp est 
définie positive si 

max | j5xM | < 
p - 1 

où pxM désigne celles des valeurs caractéristiques qui sont négatives. S'il en 
est ainsi, A[T2] est strictement positif sauf pour T2 = 0. De la formule (3.1), 
il résulte alors que tout p-tenseur harmonique est identiquement nul et que, par 
suite, bp(Vn) = 0. Nous dirons que Vn satisfait à l'hypothèse (Hp) pour l'entier 
p si 

HYPOTHèSE (HP) : (a) la courbure de Ricci est positive; (b) max | pxM | < l / (p — 1). 
Il est clair que si (Hp) est satisfaite, (Hq) est satisfaite pour 0 < q < p. Nous 

énoncerons : 

THéORèME. Si Vn satisfait à l'hypothèse (Hp) et est orientable, bq(Vn) = 0 
pour q = 1, 2, • • • , p. 

6. Deux corollaires. Du théorème du §5, on déduit aisément les deux corollaires 
suivants: 

(a) Supposons la variété riemannienne Vn localement réductible. Si, pour 
un entier déterminé p, chacune des métriques locales satisfait à l'hypothèse (Hp), il en 
est de même pour la métrique de Vn et bq(Vn) = 0 pour q — 1, 2, • • • , p. 

(b) Si une Vn orientable est de courbure de Ricci positive et de courbure projective 
ou conforme nulle, ses nombres de Betti sont ceux de la sphère. 

7. Les hypersurfaces d'un espace euclidien. Supposons que Yn puisse être 
localement plongée dans un espace euclidien Vn+i. Nous dirons que Vn est une 
hypersurface localement convexe si sa seconde forme quadratique fondamentale 
est définie. Dans ce cas, les courbures principales p\ ont toutes le même signe, 
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par exemple, le signe + , et la courbure de Ricci de Vn est positive. En rapportant 
les tenseurs au repère orthonormé tangent aux lignes de courbure, le coefficient 
de (taß)2, dans la forme QP(t), s'écrit à un facteur constant positif près 

(HPP)(P* + Pß) ~ (P** + Pß) - 2(P - l)PaPß . 

Ces coefficients sont tous positifs si 

(Z) Pv) - Poe- (p - l)ßß > 0 

pour tout couple d'indices a, ß distincts. Ainsi l'hypothèse (Hp) est satisfaite 
quand, pour a et ß distincts, 

1 _ Pß 

v - i E P / 

De ce résultat et du théorème du §5 on déduit le théorème suivant: 

THéORèME. Si une Vn orientable est une hypersurface localement convexe d'un 
espace euclidien Vn+i, ses deux premiers nombres de Betti sont nuls. Si la plus 
petite courbure principale est supérieure à la moitié de la plus grande, les nombres 
de Betti de Vn sont ceux de la sphère. 

On notera que ce résultat subsiste si l'on substitue à l'espace euclidien Vn+i 
un espace de courbure constante positive. 

8. Une formule relative au carré du tenseur de courbure. Grâce aux identités 
de Bianchi, on peut établir pour le tenseur de courbure une formule analogue 
à la formule (3.1) établie pour les tenseurs harmoniques. Partons de la formule 
de commutation des dérivations covariantes 

(8.1) V\(V^JRa/3l7s) — Vn(V\Raß,yo) = Haßys,ln 

où Haßy8,\p est un tenseur introduit par Elie Cartan dans la théorie des espaces 
symétriques (voir [4, p. 265]) 

(8.2) Haßyo,\ß = RP a,\nRpß,yS + RP
ß,'KßRapty8 + RP y,\nRaß,p8 + R 5,\iiR<xßtyp • 

En contractant a et X dans (8.1) et multipliant par Rpß'yo, on obtient, grâce aux 
identités de Bianchi qui jouent ici le rôle précédemment joué par les conditions 
d'harmonicité, la formule générale 

(8.3) -2A[P2] = 0^xB"ATaVMA*i7a + 4BaA7lV«(V7B^) + 2K 

où l'on a posé 

P = Ra ,T Raßty& ; K = iJxp>a,/i-BM 

De la formule (8.3) et des propriétés classiques des espaces symétriques, on 
déduit le théorème suivant. 
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THéORèME. Si uh espace Vn est tel que K è 0 et si de plus 
(1) le tenseur dérivé du tenseur de Ricci est nul, l'espace Vn est symétrique, 
(2) le tenseur de Ricci est nul, l'espace est localement euclidien. 

Il en résulte par exemple que les relations 

Haßy5M = 0 VyRaß = 0 

fournissent une condition nécessaire et suffisante pour qu'un espace riemannien 
compact soit symétrique. 

9. Application aux espaces récurrents compacts. Â propos de la théorie des 
espaces riemanniens harmoniques, Ruse' et A. G. Walker ont introduit récem
ment la notion d'espace récurrent. Un espace riemannien est dit récurrent s'il 
existe un vecteur k\ tel que 

(9.1) V\R<xß,y8 = k\Raß,y8 • 

Le vecteur de récurrence k\ est le gradient de log P et l'on a manifestement 
R = cP (c = const.). On notera que tout espace à 2 dimensions est récurrent. 
Pour un espace récurrent, le tenseur H est identiquement nul et la formule 
(8.3) peut être mise sous la forme simple 

(9.2) (1 - c2) [ J A(P2) + AiPl = 0. 

On en déduit le théorème suivant. 

THéORèME 1. Tout espace récurrent compact est ou bien symétrique, ou bien tel 
que R2 = P2. Si Raß = 0, l'espace est localement euclidien. 

Ce théorème peut être précisé en étudiant la réductibilité locale des espaces 
récurrents. On établit, par une étude directe, que tout espace récurrent localement 
réductible est soit symétrique (et à composantes symétriques), soit localement 
la somme d'une métrique récurrente irréductible et d'une métrique localement 
euclidienne. Or toute métrique récurrente irréductible est nécessairement métri
que d'Einstein: 

J> R 

n 

Il en résulte que pour une telle métrique trois cas sont possibles: ou bien n = 2, 
ou bien R = const, T* 0 (et la métrique est symétrique) oubienÄa/s = 0. Or, des 
identités de Bianchi, il résulte que dans ce cas Raßys(kxk\) = 0. 

Ainsi tout espace récurrent est soit symétrique, soit de métrique réductible à 
la somme d'une métrique arbitraire à deux dimensions et d'une métrique 
euclidienne [11]. 
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Un espace récurrent du second ordre est un espace tel que 

(9.3) V\(VpR<xß,yo) = 0>\nRaßfyh . 

Si R 9* 0, a^ = Vx/ß/x + /cx'fy, où /ex est le gradient de log | R | et en transformant 
légèrement la formule (8.3), il vient: 

THéORèME 2. Tout espace récurrent du second ordre compact, de courbure scalaire 
non nulle, est récurrent et par suite est soit symétrique, soit de métrique localement 
réductible à la somme d'une métrique arbitraire à deux dimensions et d'une métrique 
localement euclidienne. 
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EXTREMAL METHODS AND GEOMETRIC THEORY 
OF FUNCTIONS OF A COMPLEX VARIABLE 

COEFFICIENT REGIONS FOR SCHLICHT FUNCTIONS 

A . C . SCHAEFFER AND D . C . SPENCER 

Our purpose is to give a survey of various methods which have been developed 
in order to attack a certain type of extremal problem in conformai mapping. 
Although the methods are quite general, we shall confine ourselves for the most 
part to a concrete problem—the so-called coefficient, problem for functions 
which are regular and schlicht in the interior of the unit circle. 

A function f(z) is said to be schlicht in a domain of the 2-plane if it assumes 
distinct values for distinct values of z. We consider functions which are regular 
and schlicht in | z \ < 1 and which therefore map | z \ < 1 onto subdomains 
of the plane, and we assume that the developments in powers of z have the form 

(1) f(z) = z + a2z
2 + - • • + anz

n + - • • , | g | < 1. 

The class of these functions will be denoted by S. 
For each n, n ^ 2, let the precise region in complex space of n — 1 dimensions 

occupied by points (a2, a3, • • • , an) corresponding to functions of class S be 
denoted by Vn • The coefficient problem is the problem of finding for each n, 
n è 2, the region Vn or, in other words, of expressing the points of Va in terms of 
2n — 2 real parameters. The regions Vn are closed cells (see [14c]). 

This problem had its roots in the investigations of Koebe on the uniformization 
principle (see [8]). The first significant method applied to the coefficient problem 
is the so-called "area-principle" discovered by Gronwall [4] in 1914 and re
discovered two years later by Faber [3] who, together with Bieberbach, Pick, 
and others, applied it to prove that the region V2 is the circle | a2 | â 2. The 
next method, which penetrated much deeper, is the representation developed by 
Löwner [9]. Löwner gave a representation for the coefficients av of a class of 
schlicht functions which he everywhere dense in S, and this representation 
can be extended to include all functions of S (see [14a], [17]). In fact, the region Pn 

of points (ci, c2, • • • , cn-i) belonging to functions 

(2) p(z) = 1 + 2 S cvz
v 

of positive real part in | z | < 1 has been characterized by Carathéodory [2], and 
to each point (a2, a3, • • • , an) of Vn there is a curve (ci(r), • • • , cn-i(r)) in Pn 

such that 

• • • / exp - X) a*T„ I I c«P(rv) dn • " • dr/ij 
V u / - -to L i J i 

k = 2, • • •, n, 
224 
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where 

Taia2...afl = 2p(k — ai)(k — ax — a2) • • • (k — 0:1 — a2 • • • ~cty), 

the « i , a2 , • • • , «,* being positive integers with sum k — 1. However, since the 
formula (3) expresses each point of Vn in terms of a curve in Pn , the representa
tion is not one involving finitely many parameters. 

The coefficient problem was considered by Peschi [10]. If f(z) belongs to the 
point (a2,a$, • • • , a„) of Vn , the function 

(4) giß) -Jjà-l + 2±u,S 
ZJ \Z) v~l 

defines a point (ui, u2, • • • , un-ì) of a region Un , and the mapping from Vn 

onto Un is one-one and analytic. A star-like schlicht function (1) maps the 
interior of the unit circle onto a domain every point of which can be connected 
to the origin by a ray which lies interior to the region, and it is characterized 
by the property that the corresponding g(z) defined by (4) is regular with positive 
real part in | z \ < 1. Let S(z) be star-like, $ - 1 its inverse. For t ^ 0 the function 
S~1[e~tS(z)] ma^ps | z \ < 1 onto a domain contained in the unit circle, so that 

(5) F(z) = e'Wr'le-'Sm 

is of class S. Hence 

(6) G ( 2 ) %T^) = 1 + 2 5 M ' 0 y 

defines a point (ui(t), ^(t), • • • , un~i(t)) of Un , and as t varies from 0 to 00 
this point traces a curve which extends from the given point (ui, • • • , wn_0 = 
(^i(O), • • • , un-i(0)) belonging to g(z) to the point (ci , • • • , cn_i) = 
(tfci(oo), ••• , wn-i(oo)) of Pn belonging to the function S(z)/(zSf(z)). Let 
(ui, u2, • • • , un-i) be a boundary point of Un • As (cx, • • • , cn-i) varies over 
the boundary of Pn , the tangent vectors of these curves at the initial point 
(ui, u2, • • • , Un-ì) sweep out a cone Cn(ux, u2, • • • , un-i). More generally, 
given any closed region Un containing Pn , these direction cones can be formed 
at its boundary points. Peschi characterizes Un in terms of these tangent cones. 

Schlicht functions (1) with all coefficients real form a subclass of the typically-
real functions considered by Rogosinski [11], A function 

(7) h(z) = z + t2z
2+ . . - +tnz

n + . . • 

is said to be typically-real if it is regular in | z \ < 1 and if Im h(z) and Im (z) 
have the same sign there. If h(z) is typically-real, then 

(8) p(z) = 1-^h(z) 
z 

is a function (2) of positive real part with real coefficients, and conversely. 
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Hence the region Tn of points (t2, • - • , tn) is obtained from the region Pn by the 
simple mapping 

[2ci + 2c3 + • • • + 2c*_i, k even 
(9) 2ck = tk+i - fib-i, tk = j 

[l + 2c2 + 2c4 + • • • + 2cifc_i, k odd. 

If Rn is the region of points (a2, • • • , an) belonging to schlicht functions (1) with 
all coefficients real, it is readily shown thg-i Tn is simply the convex closure of Rn . 

Grunsky [5] gave an interesting set of inequalities which characterize the 
points (a2, • - • , an) of Vn but these inequalities, infinite in number, do not 
define Vn in terms of a finite number of parameters. Grunsky's inequalities 
have recently been given a new significance (see [1]), and in their most general 
form for Riemann surfaces they express conditions under which one surface 
may be imbedded in another (see [16b]). 

A representation of the points of Vn in terms of finitely many parameters is 
achieved by using variational methods (see [14b, c]).1 If F(a2, ä2, • • • ,an9än) 
is a real-valued, continuously differentiable function defined in some region 
containing Vn in its interior and if grad F ^ 0 in Vn , then F attains its maximum 
in Vn at some boundary point (a2,a$, • • • , a„). Let f(z) belong to this boundary 
point, and consider a neighboring function/*(g) of the class S with coefficients o* , 
k = 2, 3, • • • . Writing 8F = F(at, ä2 , • • • , a* , ä*) - F(a2, ä2, • • • , än , a«), 
we see that ôF â 0, and we then find that the extremalizing function w = f(z) 
satisfies a differential equation of the form 

(io) (idJ£j P(W) = Q(Z) 

where 

di) *M-S£. 

(12) Q(z) = £ ^ , Bo > 0 ,5_, = Bv. 

The function Q(z) is non-negative on | z \ == 1 with at least one zero there. 
Thus Q(z)(dz/z)2 is a negative quadratic differential of the region | z \ < 1, 
while P(w)(dw/w)2 is a quadratic differential of the w-sphere. 

The variational method gives necessary conditions in order that a function / 
of class S should extremalize an arbitrary function of its first n coefficients, 
and a theorem of Teichmüller [18] complements this result by proving that the 
necessary conditions are sufficient. To each point (a2ia$, • • • , an) on the bound
ary of Vn there belongs precisely one function w = f(z) of class S and this function 
satisfies an equation of the form (10). Conversely, any function w = f(z) of the 
form (1) which is regular in | z \ < 1 and satisfies an equation of type (10) 
necessarily belongs to a boundary point of Vn . 

1 The application of variational methods began with the paper [15]. 
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The study of the boundary of Vn therefore turns on a detailed investigation of 
the differential equations (10). We observe that, since Q(z) is non-negative on 
| z | = 1 with at least one zero there, the coefficient B0 is uniquely determined by 
J5i, B2 j « • • , Bn-i ; thus Q(z) is determined by the vector (Bi ,B2} • • • , Bn-i). 
The first question which arises concerns the relationship between the vectors 
(Ai, A2, " ' , An-i) and (B±, B2, • • • , Z?n_i) in order that the equation (10) 
should have a solution which is regular in | z \ < 1. This relationship is investi
gated in detail in [14c], 

The equation (10), written in the form 

(13) PM ( * ) ' - <M0 ( f )*, 

expresses the equality of two quadratic differentials. Since Q(z)(dz/z)2 ^ 0 on 
| z | = 1, it is important to investigate the hyperelliptic trajectories of the 
w-sphere along which P(w)(dw/w)2 ^ 0. From each zero and simple pole2 of the 
quadratic differential P(w)(dw/w)2 prolong all loci on which P(w)(dw/w)2 g 0. 
These finitely many loci plus their limit points define a set Tw . It is proved in 
[14c] that Yw consists of finitely many analytic arcs, each arc being analytic 
up to and including its end-points. An important property of Tw is that any 
subcontinuum of it which does not contain the origin w = 0 is necessarily 
simply-connected. The corresponding set Yz defined by Q(z)(dz/z)2 is also com
posed of finitely many closed analytic arcs; it is symmetric about | z | = 1 and, 
apart from \ z\ = 1, its only Jordan curves pass through z = 0 or z = oo. 

The trajectories defined by R(w) dv? ^ 0, where R(w) is an arbitrary rational 
function, are investigated in the paper [6]. In particular, it is proved that if 
R(w)dw2 has at most three poles, then the set Tw is composed of finitely many 
closed analytic arcs. This result is not generally true when there are more than 
three poles. 

A function w = f(z) of form (1) which is regular in | z \ < 1 and satisfies 
(13) maps | z | < 1 onto a domain Dw which is obtained from the w-sphere by 
removing a subcontinuum Cw of Tw , where Cw contains w = «> but not w = 0. 
The differential P(w)(dw/w)2 is a negative quadratic differential of Dw, and 
equation (13) expresses its invariance under a conformai mapping w = f(z). 

On the other hand, let zf and z" be a pair of points of | z \ = 1 which map by 
w = f(z) into points wr, w" which define the same point of the sphere but lie on 
opposite edges of a slit of Cw . If we identify all such pairs z', z" on | z \ = 1, we 
make | z | ^ 1 into a closed Riemann surface R of genus zero and w = f(z) maps 
R onto the w-sphere. Equation (13) expresses the invariance of the quadratic 
differential P(w)(dw/w)2, which is regarded as belonging to the sphere. 

We thus have dual interpretations of the equation (13) according as we 
regard the quadratic differential P(w)(dw/w)2 as belonging to D«, or to the 
sphere. The point of view adopted in [14c] is to regard P(w)(dw/w)2 as belonging 
to the sphere. 

8 If Ai 9e 0, w « » is a simple pole; this is seen by introducing t — 1/w as uniformizer. 
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Given (Bi, B2, • • • , JB„_I), Q(Z) is determined and with it the metric defined by 

(14) , ds2 = | Q(z) dz 
z 

Let a Riemann surface R be formed from the region | z | ^ 1 by identifying m 
pairs of arcs on | z | = 1 such that: (i) the circle | z \ ^ 1 with 2m arcs on | z \ = 1 
identified in pairs is equivalent to the sphere; (ii) in the identification of any 
pair of arcs the metric (14) is preserved; (iii) if two identified arcs abut, the 
common end-point is a zero of Q(z) with at most one exception. If this exceptional 
point exists, we call it 2 ; otherwise let 2 be any class of equivalent points on 
| z ] = 1. The function w = f(z), of the form (1) for | z \ < 1, which maps 
R onto the sphere with 2 going into w = <» defines a boundary point of Vn 

and it satisfies an equation (13) where Q(z) is determined by the given vector 
(Bi, B2, - " , Bn-i). The identification of arcs on | z \ = 1 can be expressed 
in terms of finitely many parameters, and these plus the parameters defining 
(Bi, B2, • • • , Bn-i) yield a parametrization of the boundary of Vn . This is 
the method used in [14c]. 

A function v(z) will be said to realize the identification of a pair of arcs on 
| z | = 1 if it takes the same value at identified points of the arcs. The identifica
tion of arcs on ] z | = 1 may be realized continuously by a function 

(15) v(z, t) = e-l{z + ß2(t)z
2 + • • • } , v(z, 0) = z, 

which maps | z \ < 1 onto | v \ < 1 minus slits whose edges correspond to 
pairs of arcs on | z | = 1 the identification of which is realized by v(z, t). The 
function v(z, t) satisfies an equation 

(16) Q M ( £ ) ' - QW (^J, 

where 

, Q(.z,t)= £ ^ , -Bo(i)>0, ß_,(Ö=ÄÖ), 
(17) »=-<»-i) z" 

Q(z, 0) = Q(z). 

For each t the function Q(z, t) is non-negative on | z \ = 1 with at least one 
zero there. In its dependence on t, v(z, t) satisfies an equation of Löwner type, 
namely 

m dt V 1 - K(t)v 

where | K(<) | = 1, Q{l/n(f), t) = 0. Furthermore, 

riaï dQfo 0 „ 9Q(z, t) 1 + K(t)z , Mt)z nr_ A 
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As t tends to + °o, 

(20) efv(z, t) -> /(*), Q(e~lw, t) -* P(w). 

Let z(v) = z(v, t) be the function inverse to v(z, t), and define 

(21) w(v, t) = f(z(v)) = e'{z; + a2(*>2 + • • • + an(t)v
n + • • • } . 

The function w(z, t) maps | 2: | < 1 onto a subcontinuum Cw(0 of the set r„, 
defined by P(w)(dw/w)2, and in its dependence on z and t it satisfies the equations 

(22) P(„) ( £ ) ' = Q(M) ( f )', 
dw dw 1 + K(0# 

(23) Ti~ "Tzi-K{ty 
The equation (23) is the Löwner equation which is the dual of (18). Thus the 
Löwner equations arise automatically from the continuous realization of the 
identification (see [14c]). 

Interior points of Vn can be characterized by the property that bounded 
functions belong to them, and the parametrization of the interior of Vn is ac
complished by considering the class of functions 

(24) v(z) = biz + b2z
2 + • • • + bnz

n + • • • , 0 < bi ^ 1, 

which are regular, schlicht, and bounded by 1 in | z \ < 1. As v(z) ranges over all 
such functions, the point (h , b2 , • • • , bn) sweeps out a region Bn in euclidean 
space of 2n — 1 real dimensions. The region Bn is not compact, but is made so by 
addition of the point 61 = 0, &2 = 0, ••-,&„ = 0. To each point (bi, b2, • • • , bn) 
of Bn other than bi — 0, b2 = 0, • • • , bn = 0 there corresponds an interior point 
(a2, a3, • • • , an) of Vn where ak = bk/bi, and the correspondence between the 
boundary of Bn and the interior of Vn is topological (see [12]). Thus the ulterior of 
Vn is described by parametrizing the boundary of Bn . The boundary functions 
v(z) of Bn satisfy equations of the form 

(25) B(v) (£) ' = S(z) (gf 

where R(z)(dz/z)2 and S(z)(dz/z)2 are negative quadratic differentials of | z \ < 1 
which are of the same form as Q(z)(dz/z)2. If v(z) belongs to the boundary point 
(bi, b2, • • • , bn) of Bn , the function f(z) — v(z)/bi, which belongs to the point 
(a2, a3, • • • , an), ak = bk/bi, is characterized by the property that, among all 
functions of class S whose coefficients a2,a%, • • • , an have the given values, it is 
the function whose maximum modulus in | z \ < 1 is a minimum. So far as the 
region Vn is concerned, it is therefore sufficient to consider only functions which 
satisfy equations of form (13) (boundary functions) or functions which satisfy 
an equation (25) (interior functions). Since equation (16) is of the same form as 
equation (25), the continuous realization of the identification on z = 1 yields 
curves which sweep out the boundary of Bn as well as the interior of Vn . 
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The curve (a2(t), a^(t), • • • , an(t)) defined by (21) lies on the boundary of F« 
and is the dual of the curve defined by (15) which lies on the boundary of Bn . 
These curves may be regarded as characteristic curves of the partial differential 
equations for the boundaries of Vn , Bn (see [13], [16a]). From this point of view 
the boundaries appear as integral conoids of their characteristic curves. 

By way of illustration, let us find the equations for the characteristic curves 
which lie on the boundary of Bn . The quadratic differentials appearing in (25) 
have the forms (see [16a]) 

(26) B(v) (gf = (gf È IFMV) + FkDMl 

(27) 50») (gf = (gf fj \FM) + FMz)], 

where 

(28) DM = fet + 2 E ^ , Dk(v) = 5* + 2 Z W f"-1, 
p=2 Vf 1 p=2 

(29) d„(z) = hbk + 2 Ë - È , 3*0») = kh + 2 Z à,J~. 

Here bl^ denotes the kth coefficient of {viz)}" and, at a regular point of the 
boundary of Bn , (Fi, F2, • • • , Fn) is the normal vector. 

Now R(v) has a double zero at a point v = 1/K, | K | = 1. That is, 

= 0, 

- 0. 

(30) g [ft Dk Q + ft 5* Q 

(31) g [fti>; 0) + ft$ Q 
The quantity 1/K may be regarded as eliminated from (30) by means of the 
equation (31), so that (30) is an equation of the form 

(32) E(bi, &2, S2, • - • , bn , bn ; Fi, F2, ft, • • • , Fn, ft) - 0. 

If the boundary of £ n were given by an equation F(bi, 62, 52 , • • • , bn , 5») = 0, 
F real, we would have 
(33) Fk = a;» **= k' 
and (32) would be a partial differential equation of the first order for the boundary 
of Bn . The differential equations for the characteristics are 

dbh^dE dh = dE[ dFk = _dE dft = _dE 
dt dFh' dt dPk' dt dbk* dt dbk' 
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where t is a real parameter. In applying these formulas, it is necessary to take 
into account that K depends on the ft and the bk. However, since the differ
entiation with respect to K gives a zero contribution by (31), we may treat K 
as a constant in deriving the characteristic equations. From the first equation 
(34) we obtain, after replacing t by —t, 

(35) 5= -6,-2Ê^r'. 
at p-*2 

Multiplying both sides of this equation by zh and summing on k from 1 to oo} 

we obtain equation (18). The function v(z, t) satisfies the equation 

(36) R(v, t) (gf = S(z) gf 

where 

,Q7. dR(v, t) dR(v, t) 1 + K(QV Mt)v «/ A dS 
{07) — = V = y-r- + f 77TTÌ Kty, I) ) — = U. 

dt dv 1 — K(I)V (1 — K{t)v)2 dt 

Since S(z) has a double zero at a point z = 1/rj, \ n | = 1, we obtain, in an 
analogous manner, as law of variation along the dual set of characteristics: 

( Qv dv _ dv 1 +y (t)z 
{6*} dt -Zd~zl-V(t)z' 

The function v(z, t) satisfies the equation 

(39) R(v) (gf = 8(z, t) gf 

where 

(AiW dR n d8(z>l) » d S ^ l ) l + * (t)z J- 4r> ( < ) g <U. A 
m Tt=°> -ÖT = z ~dz- l - , (t)z + (l - , (t)zy S{z>il 

In the variation defined by (18) the identification of points on | z \ = 1 is fixed 
and is being continuously realized; in the variation (38) the set r„ defined by 
R(v)(dv/v)2 is fixed and the function v maps \ z \ < 1 onto | v \ < 1 minus slits of 
varying lengths which belong to r„ . 

The coefficient problem may be generalized to mappings of a fixed Riemann 
surface M onto subdomains of another fixed surface R (see [16a, b]). In the special 
cases discussed above, M is the interior of the unit circle and R is either the 
punctured sphere (mappings (1)) or the interior of the unit circle (mappings 
(24)). In particular, we may take M and 22 to be multiply-connected domains 
of the plane. The theory of characteristic curves provides an apparatus for 
generalizing the Löwner equations (18) and (34), and for multiply-connected 
domains of the plane we obtain equations of the form 

(41) ft=fzh(z,t)-H(v,t) 
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where h(z, t) is a reciprocal differential in its dependence on z. The term involving 
h(z, t) provides a variation of the type (38) while the term H(v, t) provides a 
variation of the type (18). From another point of view, equation (41) is a 
generalization not only of Löwner's variation but also of Julia's (see [7]). 
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VARIATIONAL METHODS IN THE THEORY OF 
CONFORMAL MAPPING 

M E N A H E M S C H I F F E R 

1. Let D be a domain in the complex 3-plane which is bounded by n smooth 
curves Cv (v = 1, 2, • • • , n) which form the boundary C of D. A major problem 
in conformai mapping consists in determining univalent analytic functions 
f(z) in D which map it on a canonical domain of specified type. The most im
portant canonical maps can be easily expressed in terms of the Green's function 
of the domain. Green's function g(z, f) depends on its two argument points 
and on the domain D (or on its boundary curve system C). The latter depend
ence is of transcendental character and its investigation belongs to func
tional analysis as pointed out by Volterra and Hadamard. The theory of 
schlicht functions is also closely related to this field of research; for, every 
schlicht function, say, in the unit circle can be characterized by the domain 
upon which it maps and can easily be expressed in terms of the Green's 
function of the image domain. Thus, extremum problems with respect to 
schlicht functions can be reduced to extremum problems for Green's function 
and are incorporated into the theory of the latter. 

A fundamental tool in the study of functionals are variation formulas which 
express the rate of change of the functional under given deformation of its 
domain. The value of such formulas for extremum problems, comparison formu
las, etc. is evident. We shall discuss here various types of variation methods and 
compare their relative merits. Actual applications and illustrations by concrete 
problems will not be given here for lack of space. 

2. The first and already very general variational formula for Green's function 
was given by Hadamard [5]. Let the domain D be deformed into D* by subjecting 
every boundary point to a normal shift on (counted positive along the interior 
normal vector n)\ the variation of the Green's function is that expressed by 
Hadamard's formula 

Immediate applications of (1) are obvious; let g(z, f) = log (1 / | z — f | ) + 
h(z, f). We observe from (1) that the functionals h(z, z) + /i(f, f) — 2h(z, f) 
and ]C£fc=i h(z< > £*)«#** vary monotonically with the domain and useful in
equalities and comparison formulas follow directly. 

Let us next define for z and f on C the functional of the curve system C 

(2) ®M = - ^ ô / % ^ . 

233 
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It is easily seen that © is negative on C and that knowledge of it is sufficient to 
solve Dirichlet's problem with respect to D. It has the elegant variational 
formula 

(3) ô®(z, f) = f &(z, 0®ft f) 8nt dst. 
Jo 

The monotony of &(z, f) as a functional of D is obvious from (3) and the defi-
niteness of ©, and, hence, useful comparison formulas can be established for it. 
Formula (3) must, however, be used with caution since ®(z, f) has an infinity 
for z = f. A permissible deformation must leave arcs of C around z and f un
changed if (3) is to be used. Otherwise, corrective terms of rather complicated 
nature arise and the integral in (3), moreover, becomes improper. 

One can avoid these difficulties by introducing the two complex functions [13] 

(4) * f c f ) _ _ ? ^ , L f c r ) _ - ? ^ _ * -ifer>, 
7T dzdÇ T dzdÇ T(Z — f)z 

where d/dz = (d/dx — id/dy)/2 and d/dz = (d/dx + id/dy)/2. Both functions 
are analytic in all their arguments; K is regular throughout D while L has a 
double pole at z = f as exhibited in (4). These two new functionals of D satisfy 
the following variational equations which are derived from (1) by differentiation 
and using the boundary behavior of Green's function: 

(5) ôK(z, f) = f K(z, t)K(t, f) 8nt dst, ôL(z, f) = f K(z, t)L(t, f) bnt dst. 
J c J c 

3. The functions K and L to which we are led quite naturally by the formalism 
of the variational formulas play an important role in conformai mapping [3]. 
They satisfy the following equations on the boundary C of D : 

(6) z'K(z, f ) = zfL(z, f ), z € C, f S D, z' = tangent vector at z to C; 

(60 z'K(z, f)? = z'L(z,or = ®(s,f), « c e , r e e . 
The connection between the functional (2) and the two new functions K and L 
is thus established. K(z, f ) satisfies the identity 

(7) jj K(z,f )/(f) drr = f(z), drx = area element in f, 

for every analytic function f(z) in D with JfD \f\2dr< oo. From this reproduc
ing property follows easily a representation of K(z, f) in terms of any complete 
orthonormal set {<pv(z)} in D: 

(7') K(z,f) = E^W^C». 

The kernel function 2£(2, f) was defined by Bergman [1] just by this formula and 
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various applications to conformai mapping were given by him from this defi
nition. (7') lends itself also easily to a generalization for the case of analytic func
tions of several complex variables. The kernel L(z, f ) can be easily constructed 
in terms of K(z, f) by means of the identity 

(8) L(z, f) = 7 - ^ - — 2 - 1 ff K{z, l){t - f)"2 drt, 

which shows that from K(z, f) ultimately Green's function can be obtained, 
Let Do be a domain containing D and denote its corresponding kernels by KQ 

and Lo. We observe that L(z, f ) — L0(z, f ) is regular analytic in D and we obtain 
by use of (6), after easy calculation, the identity, valid for any two points z and 
f in i ) [15]: 

fJ(L(z, t) - Lo(z, 0)(Lftf) -Lof t f ) ) art 

(9) D 

= K(z, f) - Ko(z, f) - ff L0(z, t) Loft r) drt. 
JJDQ—D 

Suppose now that the boundary Co of D0 lies in a Fréchet neighborhood of 
order e to the corresponding curve system C. Then, we shall have K — KQ = 
0(e) and L — Lo = 0(e). Introducing these estimates into (9), we arrive at 

(10) ôKo(z, f) = ff Lo(z, t)Lo(t, r> dr, + 0(e2) 
JJDQ—D 

which, in view of (6), can be easily brought into the form of the first formula 
(5). Thus, (9) represents a finite comparison formula which goes for small defor
mations into the Hadamard form. One can use (9) as the basic formula in a process 
of successive approximation for K — Ko and express this difference as an infinite 
series of iterated integrals containing L0 and K0 only [15]. Formula (9) gives also 
rise to numerous inequalities; in particular, Grunsky's inequalities [4] for the 
coefficients of schlicht functions can be easily derived from it. 

4. An essential assumption for the application of Hadamard's formula is the 
smoothness of the boundary C, since the normal of C plays a distinguished role 
in the formula. Thus, the formula is inapplicable for very many domains possess
ing a Green's function; this fact precludes the use of Hadamard's formula in 
extremum problems of conformai mapping. One is never sure, a priori, if the 
extremum domain in question permits the use of Hadamard's formula and one 
cannot compare it in this way with neighbor domains. One may, however, trans
form Hadamard's formula into such a form that this difficulty is removed. 
We introduce an infinitesimal deformation of the whole 2-plane by the formula 

t> 2 

(11) ** = s 3 ? - ^ - ; p > 0 , Zo£D. 
Z — Zo 
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The curve system C is deformed into a system C* which is, for p sufficiently 
small, very near to C and of the same character. In fact, the map (11) is univalent 
and analytic outside of the circle 7 : | z — z0 \ < p. The domain D* determined 
by the curve system C* has the Green's function g*(z, f ). Let DZQtP be the domain 
obtained from D by removing the circle 7; we remark that g*(z*(z), f*(f)) is 
harmonic in DZQiP, except for z = f, and vanishes on C. Hence, we may apply 
Green's identity to the functions g(z, f ) and g*(z*, f *) with respect to Dao,p ; we 
easily obtain : 

(12) 

g*(z*, f *) - g(z, f) - 1 

j>^ \g*(z*, t*) JL g(t, f) - g(t, f) ^- ?*(*• **)} dst. 

Thus, by means of Green's identity we expressed the difference between the 
two Green's functions in terms of an integral extended over a little circle 7 
entirely in D and removed from the dangerous boundary C. Hadamard's general 
formula is also an immediate consequence of Green's identity, but our special 
type of variation (11) allows the further transformation from (1) to (12). It 
is also obvious that a description of a variation in terms of normal shift on C 
is impossible for general curve systems and that a variation should rather be 
described by a rule determining the shift of all points in the neighborhood of C. 
(11) is a very special case of such a rule [cf. 8], but the most general variation 
of the described form can be approximated arbitrarily by superposition of 
elementary deformations (11). 

Formula (12) can easily be evaluated by series developments in the neigh
borhood of the point Zo and one arrives at [11; 12]: 

(13) g*(z*, r*) = g(z, f) + Re { é e V ^ ^ ^ ^ } + o(P
2) 

t 

where o(p2) can be estimated uniformly in each closed subdomain A of DZQtP 

with respect to all domains in a sufficiently small Fréchet neighborhood of D. 
So far, we have still to make the assumption that G is a smooth curve system in 
order to apply Green's identity. However, using the continuity of Green's 
function and all its derivatives in dependence of the domain D, we may extend 
the validity of (13) to the most general type of domains D bounded by n continua 
and possessing a Green's function. Thus, (13) is generally valid and may be used 
in extremum problems concerning Green's function, even if nothing is known 
about the nature of the boundary of the sought extremal domain. (13) has been 
used in the coefficient problem for schlicht and p-valued functions [11] and var
ious related extremum problems for conformai functionals [2]. In most cases, one 
can show by using (13) that the extremum domain possesses piecewise analytic 
boundary curves C which satisfy certain differential equations [9]. A finer in
vestigation of this domain and a study of higher order variations is then more 
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conveniently carried out by Hadamard type variations which become permissible, 
once that the analytic character of the boundary has been proved. This remark 
explains why the type (11) of variation is general enough for most applications 
and why a greater generality in variational formulas of this type would often 
lead to unnecessary complications. 

Consider the domain DZQfP where the boundary | z — z01 = p has been removed 
by identifying points on it which have the same image points under the map 
(11). The domain thus obtained is topologically equivalent to D and D*. Its 
Green's function g*(z, f) is equal at each point to the right-hand side of (13). 
D* is the realization of this Riemann manifold in the 2-plane and (11) is the map 
which performs this realization. In this interpretation, we can easily extend the 
above type of interior variation to arbitrary domains on Riemann surfaces by 
changing their structure slightly through boundary correspondence along arti
ficial holes and by realizing the domain again over the complex plane. Two further 
types of variation are also suggested by this point of view: (a) Hole punching: 
remove from D the domain g(z, Zo) ^ log (1/p) which transforms D approxi
mately into DZOtP . The Green's function of the new domain can again be com
puted «by proper use of Green's identity. We obtain [15] : 

(14) g*(z, f) = g(z, f) + (log p)" 1 g(zQ, z) g(zQ, f) 

^Re{4p2^ (fQ'g)^' f )l + 0(p
2) 

^ dZo dZo J 

(b) Sewing on of handles : eliminate from D the two domains 0(z; Zo, zi) >log (1/p) 
and G(z; zQ, Zi) < log p with 0(z; z0, zi) = g(z, z0) — g(z, zi). Pa i rs w, co of points 
on the newly created boundaries c and 7 near ZQ and Z\ are identified if t h e y 
satisfy 

Cw d fw nd 
(15) (c) / — G(t; zo, zi) dst = (7) / r— G(t; z0,zi) dst. 

JWQ ont Jwo dnt 

We obtain thus a new domain D* with larger genus than D. Its corresponding 
Green's function is obtained again by means of Green's identity [15] : 

0*fo f) = 0(2, f) + 2 ( l os P)~1Q& *o, £i)G(f; «b, 21) 

\ L dZo dZi dZi dZo J) 

Relation (15) establishes a relation (w — Zo)(co — zi) = p2et<p + o(p2) between 
the identified points and the real constant <p in (16) is just defined by this relation. 
Variations (a) and (b) permit us to change connectivity and genus of the domain 
D and, together with the previous topology preserving variations, give a great 
freedom in changing the initial domain D. 
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5. Let f(z) be schlicht in the unit circle E, f(0) = 0, and let it map E upon the 
simply-connected domain A with boundary curve T. If each point o> 6 Y is 
shifted along a vector 8co which points into the direction of the normal at w and 
varies continuously along Y, we obtain a domain A* which is mapped by means 
of a schlicht function f*(z). Julia derived from Hadamard's formula (1) the 
following variational law [6]: 

(17) 8f(z) = /'(*) 
2nd J r r2 f -

zôcùdùi 
= /(r). 

This formula contains Loewner's differential equation [7] as a limit case, namely 
if we let 8co converge to zero everywhere on Y except near one single point where 
it is made to grow beyond any limit. The great advantage of Loewner's form of 
variation is that it permits the introduction of a simple and natural parameter 
and thus reduces many problems of functional analysis to problems concerning 
ordinary differential equations. 

Let us generalize Julia's formula to the following case: A domain D in the 
2-plane is given and the class of schlicht functions in D is to be studied. The 
variation df of a map function under a Julia variation òca of the image domain A 
is to be determined. We set up the formula 

(18) tffe) = / ' ( * ) • 2rif r n ( 3 ' f ) for « - /(f), 

where the integration is now to be extended over the whole boundary curve 
system Y of A. In order to study n(z, f) suppose that 8to = 0 along a subarc 
7 C V. Let c C C b e the corresponding arc on the boundary of D and let z —> c. 
Clearly, the image of z must He on 7 even after the variation and hence 8f(z) 
must have tangential direction. Thus 8f(z) -f(z)~l must be a vector of tangential 
direction at z £ c and denoting this vector by zf, we easily recognize that 

(19) ^ 4 ^ - real, * r e c, 
is the characteristic property of the Julia kernel n(z, f); i.e., n(z} f) must be a 
reciprocal differential in its first argument and a quadratic differential in the 
second. Besides, it must have a simple pole for z = f as is seen from (17). Let 
us assume for sake of simplicity that D has n è 3 boundary curves Gv. There 
will exist two linearly independent harmonic functions coi(z) and Lû2(Z) which are 
constant on each Cv. By means of these functions, let us define 

(20) Afe f) = 

dcoi(z) dto<i(z) 
dz dz 

Afe f) = 

âwi(s) dwì(z) 
dz dz 

3wi(f) ô«2(r) 
df df 

, T(z) = 

do?i dco2 

dz dz 

d toid 0)2 

dz% dz2 

and construct the kernels [14] 
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(21) n(z, f) = irHz, f) ^ , m(z, f) = rK(* f) ^ . 

One easily verifies that n(z, f ) has all the properties required above and that one 
has for f in D and 3 on C the relation : 

(22) ? iM) = 

The functions n and ra are not regular throughout D but have (besides the simple 
pole of n for z = f ) exactly 37i—6 poles at the zeros of T. Thus, not every variation 
(18) is permissible but only such which make 8f regular in D + C; this gives 
Sn— 6 conditions which are just the number of moduli determining the conformai 
type. 

We are now able to attack the following important problem of conformai 
mapping. Two domains D and R are given; consider the family % of all functions 
f(z) in D which map D into a domain A which is schlicht relative to R and develop 
a calculus of variations for g. This problem includes the problem of schlicht 
functions within D (R = complex plane), of bounded schlicht functions (R = 
circle) and of p-valued functions in D (R = Riemann surface with p sheets). 
We can define to every given f(z) 6 g a neighbor function of the same family 
by means of the kernels n and m of D and the corresponding kernels N and M 
of R. We have [14]: 

k 

/*(*) « /(*) + tf'W E (rvnfer,) + f.mfe f,)) 
(23) 

— e E (YvN(w, coi) + YvM(w, cov)) + o(e), e real, 

where w = f(z), cov = jf(f„), and P„ = rvf(Çv)
2. One sees easily that the addition of 

the second right-hand term represents a tangential shift of each boundary point 
of A and that the third right-hand term has on the boundary of R again tan
gential direction. The last term o(e) which is necessary in order to make f*(z) 
precisely univalent and its image domain A* exactly lie in R can be estimated 
uniformly in each closed subdomain of D for any compact subclass of g. Thus, 
the variation formula (23) can be used in order to characterize the functions of 3f 
solving significant extremum problems. It should be observed that we are not 
quite free in the choice of the values rv in (23). The formula has been constructed 
such that the right-hand side is regular at all points f „ ; however, it could become 
infinite at the fixed zeros of the kernels n, m and N, M which are independent of 
the fv. The rv have to be chosen such that these poles just cancel; since the 
number k of the arbitrary pole points f „ is not bounded, one has ample possi
bility to keep this and finitely many other side conditions which one likes to 
impose on the variation. Numerous applications of this method to the coefficient 
problem for function classes g are possible. 

The coefficient problem for schlicht functions in a multiply-connected domain 
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has previously been attacked by a different variational method [10]. The exterior 
of small pieces of the boundary in the image domain was mapped conformally, 
and, in view of the group property of schlicht conformai mappings, this led to a 
variation of the original map function. Differential equations for the boundary 
curves of the extremal domains considered were readily derived from this pro
cedure. Comparing it with the above general method, we may say that as long 
as this boundary variation is applicable it is much easier to handle and more 
elegant. I t breaks down, however, if many side conditions are to be observed 
and in this case one is obliged to use the heavier but more adaptable variation 
(23). 
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ÜBER TSCHEBYSCHEFFSCHE PROBLEME 

H. GRUNSKY 

Unter einem Tschebyscheffschen Problem verstehen wir einen bestimmten 
Typus von Extremalproblemen. Zu einem Extremalproblem gehört eine Klasse 
$ von Funktionen F(z), jedem F(z) ist eine reelle Zahl A(F) zugeordnet; gesucht 
wird eine Funktion Fo(z) £ $ mit A(Fo) — min$ . Wir denken hierbei an analy
tische Funktionen einer komplexen Veränderlichen, obwohl die Problemstellung 
natürlich auch in andern Fällen möglich ist. Von einem Tschebyscheffschen 
Problem reden wir, wenn A(F) das Maximum des Betrages von F (oder auch 
einer mit F in gegebener Weise zusammenhängenden Funktion) auf einer 
gegebenen abgeschlossenen1 Punktmenge W ist: A(F) = U(\ F |, äft). Der ein* 
fachste Fall ist der der zu einem SDZ gehörigen Tschebyscheffschen Polynome (im 
folgenden kurz T-Polynome genannt). $ ist hier die Klasse aller normierten 
Polynome n-ten Grades: Pn(z) = zn + ^"Zo a>vz

v. Es soll nun im folgenden eine 
Methode zur Behandlung solcher Probleme entwickelt werden, die eine natur-
gemässe Verallgemeinerung der geläufigen Methode für gewöhnliche Maximum-
und Minimumprobleme bei endlich vielen Veränderlichen darstellt. Wir stellen 
sie zunächst am Beispiel der ÜT-Polynome dar und wenden sie dann auf ein in 
neuerer Zeit behandeltes Extremalproblem an. 

I. Wir setzen Existenz und Einzigkeit des ÎT-Polynoms Pn\z) als bekannt 
voraus.2 Mit ä)?i bezeichnen wir die abgeschlossene Teilmenge von äft, auf der 
Pn\z) das Maximum des Betrages annimmt. 

HILFSSATZ 1. Das zu äfti gehörige T-Polynom ist identisch mit dem zu SDÌ gehöri-
3 

gen. 

BEWEIS. Bei Annahme des Gegenteils folgt aus der Einzigkeit des zu 9Ki 
gehörigen T-Polynoms P i % ) : | P(n\z) \ < \ P^(z) | für z G äfti und daraus 
schliesst man leicht, dass bei hinreichend kleinem r für 

PiT\z) = rP^{z) + (1 - r)P(:\z) (0 g r g 1) | P?(z) \ < P*\z) | 

überall auf Wl gelten würde. 
Jedes Polynom aus $ ist bestimmt durch seine Nullstellen, f i , • • • , f „, oder 

durch irgend welche Funktionen cov(Çi, • • • , fw), v = 1, • • • , n, durch die sich 
die fv wieder eindeutig ausdrücken lassen; wir setzen die cov als analytisch voraus. 
Ihre Real- und Imaginärteile bezeichnen wir mit r i , • • • , r2n ; ein oberer Index 
0 an einer dieser Grössen soll den speziell zu Pn\z) gehörigen Wert bezeichnen. 

1 Die Problemstellung ist natürlich mit den erforderlichen Abänderungen auch für 
nicht abgeschlossenes 9DÎ möglich, doch legen wir hier keinen Wert auf jede mögliche 
Verallgemeinerung. 

2 J. C. de la Vallée Poussin, Bulletin de l'Académie Royale de Belgique (1911) pp. 199-211. 
3 J. C. de la Vallée Poussin, a. a. O. 
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Wir schreiben gelegentlich ausführlicher: Pn(z\ co) statt Pn(z), wo w die Menge 
der co, repräsentiert. Ferner setzen wir 

ln(z\ «) = log | Pn(z; co) | . 

Aus Hilfssatz 1 folgt nun unmittelbar: 

HILFSSATZ 2. Bei willkürlicher Wahl von dn, • • • , drn gibt es stets mindestens 
ein z £ 3Ki, derart, dass 

*=»1 OTv 

Indem wir für den aus den partiellen Ableitungen von ln gebildeten Vektor die 
Bezeichnung einführen: 

CD >,(,) = ( a J ^ ) , - i , . . . , a » 

können wir das vorige Resultat auch so aussprechen: zu beliebigem % = (drv), 
v = 1, - • • , 2n, gibt es unter den Vektoren \)(z) mit ^ € SDîi mindestens einen mit 

(2) 1» ä 0. 

Daraus folgert man weiter: Ist §J die konvexe Hülle aller i)(z) mit z G 3Ki, so 
enthält g) einen linearen Raum 9 ^ positiver Dimensionszahl ra: 1 ^ m g 2n. 
Unter den ty(*0 C 9tw gibt es dann ein System tyK, K = 1, • • • , fc 5£ m + 1 g 2 n + 1 , 
derart, dass gilt 

A ft 

E M« = 0 mit X« è 0, E X« > 0. 

Wir gehen nun auf die Bedeutung der \)K = ty(2K) zurück, vgl. (1). Mit der 
Abkürzung 

k 

in = J2KL(ZK;CO) 
*=1 

v = 1, • • • , 2n. 

erhalten wir 

(3) *± 
OTv 

= 0 
«=•0)0 

Wählen wir zunächst w = f, so ist 
n k 

6n = Rn$8n mit S3» = S E ^ * log foc -

und (3) bedeutet 

- r » ) , 

B(f) = È , — = 0 fürf = ri0), ••• ,f(n0). 
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Das heisst also: Die Nullstellen des T-Polynornes Pn\z) sind zugleich Nulls
tellen einer rationalen Funktion, die an k g 2^+1 Stellen zK G SDîi Pole erster 
Ordnung mit positiven Residuen hat. Es gilt aber auch die entsprechende 
Aussage über die Vielfachheit der Nullstellen: Jede g-fache Nullstelle von 
Pn\z) ist mindestens g-fache Nullstelle von ß(f). Ohne Beschränkung der 
Allgemeinheit nehmen wir für den Beweis4 an, z = 0 sei eine g-fache Nullstelle 
von Pn0)(^), d.h., fi0) = • • • = f£0) = 0. Wir entwickeln den zu einem f, gehörigen 
Summanden von 2}n in eine Potenzreihe nach f,, : 

k 

s (ro = E x« log (zK ~ ro = «o + <*r, + • • • + «,« + • • •. 
Wählen wir nun 

Q 

<*v = E f o 

so ist 
®n = «0 + CftWl + ' " • + CXqtOq + " ' ' 

und (3) bedeutet 

—• = av = 0, ^ V " , ? , 
OÛ),, 

also das Verschwinden der q ersten Ableitungen von g (f) bei f = 0; dieser Punkt 
ist also g-fache Nullstelle von ft'(f) = ß(f). Wir haben also den folgenden Satz. 

SATZ. Die Nullstellen des T-Polynômes P»0)(s) zu einer gegebenen Menge SSI sind 
zugleich Nullstellen mindestens gleicher Vielfachheit einer rationalen Funktion Ä(f ), 
die an k ^ 2n + 1 Stellen zK, in denen Pn\z) das Maximum des Betrages auf 
SK annimmt, Pole erster Ordnung mit positivem Residuum hat. 

Da 72(f) genau k — 1 Nullstellen hat, so folgt: 

n + 1 ^ fc g 2?i + 1. 

Die erste dieser Ungleichungen besagt (was bekannt ist), dass Pn)(z) das« 
Maximum seines Betrages auf SD? in mindestens n + 1 verschiedenen Stellen 
annimmt, die zweite stimmt mit der von de la Vallée Poussin bewiesenen Tatsache 
überein, dass Pn\z) auch das T-Polynom einer Teilmenge von SOîi mit höchstens 
2n + 1 Punkten ist; doch folgt das noch nicht aus Obigem. Unser Satz ergibt 
weiter, aufgrund einer bekannten Verallgemeinerung des Gauss-Lucasschen 
Satzes die ebenfalls bekannte Tatsache, dass die Nullstellen von Pn\z) der 
konvexen Hülle von 3D? angehören. 

II. Wir wenden diese Methode an auf ein von J. L. Walsh gestelltes und von 
M. Heins bearbeitetes Problem,5 das wir zunächst allgemeiner formulieren: SD? 
sei eine abgeschlossene Punktmenge, z0 ein beliebiger Punkt aus \z\ < 1, 

4 Vgl. P. R. Garabedian, TranB. Amer. Math. Soc. vol. 67 (1949) pp. 27-28. 
6 M. Heins, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 349-372. 
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ZQ (£ $D?. Ohne Beschränkung der Allgemeinheit setzen wir voraus: zo = p > 0. 
Ferner sei p > 0 gegeben. Wir betrachten Funktionen mit folgenden Eigen
schaften: 

(la) F(z) sei regulär in | z \ < 1, und es sei daselbst | F(z) [ ^ 1. 
(lb) F(z) sei ausserdem rational mit | F(z) \ = 1 auf | z | = 1. 
(lc) F(z) sei ausserdem höchstens vom Grade n. 
(2) | F(zo) | è ß. 
Ä' sei die durch (la) und (2), ®„ die durch (lb) und (2), ®n die durch (lc) 

und (2) bestimmte Klasse. Es ist $„ CI $tx C $' . $ sei irgend eine der drei Klassen. 
Mit Sßfö bezeichnen wir das Problem: Gesucht sind Funktionen F(z) 6 $ mit 

M(\ F |, 3D?) = min. 

Wir betrachten zunächst *$$„,. Die Bezeichnungsweise ist der in I völlig 
analog. Zwei Fälle sind zu unterscheiden': (a) | Fo(zQ) \ > p; (b) | Fofe) | = M-
Im Falle (a) verlaufen die Überlegungen ganz wie in I,6 da jetzt die Bedingung 
(2) keinerlei Einschränkung für die zulässigen Variationen i der rv von r$0) 

aus bedeutet. Im Falle (b) dagegen kann nur die Zulässigkeit derjenigen Varia
tionen behauptet werden, für die 

== (dl(zp ; co)\ 
J - J > 0 mit % = ( ^ Jj v=l,'--,2n. 

Andererseits bedeutet die Minimalforderung: Für alle zulässigen % muss für 
mindestens ein tj(z), z £ 9D?i, (2) gelten. Für ein g, das alle Ungleichungen 

tji < 0 mit ty = tj(z), z e 5ö?i, 

erfüllt, muss also gelten 

Daraus folgt, dass £ der konvexen Hülle §) der 1)(z), z G SD?i, angehören muss. 
Es gilt also eine Gleichung der Form: 

k 

x, - E x* . = o, XJK = ijfe), ft« e a» 
( 4 ) 

X = 1, XK è 0, EX* > 0, fc g 2n + 1. 

Eine ebensolche Gleichung mit X = 0 gilt in dem Fall (a). Setzen wir nun 
k 

i = XZfe ; w) — E XJfe ; w) 

so besagt (4) : 

aft 
= 0, ï/ = 1 , - - - , 2 W . 

ob 
o«» 

6 Abgesehen von dem Beweis für Hilfssatz 1. 
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Bezeichnen wir ferner mit g(z; f) die Greensche Funktion für | z \ < 1 mit 
Singularität f, mit G(z', f) eine analytische Funktion mit R116? = g, so ist 

log | F(z) | = l(z; co) - - E 0<fi',tà = - R n E öfe f,). 
v*=l v ~ l 

Setzen wir endlich 

®(f) = - Xö(f ; %) + E X.ö(f ;.*.), 

so ergibt sich 

(5) ©'(^0)) = 0, v = 1, . . . , n . 

®'(f) ist rational mit den einfachen Polen Zo, Zi, • • • , ZK mit bzw. den Residuen 
X, -Xi , • • • , - Xfc . Ferner ist f@'(f) = d©(f) | d log f reell auf | f | = 1. 
Ebenso wie in I folgt die entsprechende Feststellung über die Vielfachheit der 
Nullstellen. Daraus schliesst man, da die Anzahl der Nullstellen von ©' in 
| f | < 1 höchstens k ist: 

(6) k ^ n. 

t Betrachten wir nun *$$„, so muss die Extremalfunktion FQ(z), wenn sie 
existiert (was im Gegensatz zu ^ n und zu ^ S ' nicht von vornherein feststeht) 
und vom Grade n ist, denselben Bedingungen genügen wie bisher, ausserdem 
jedoch noch einer weiteren, die sich aus der Tatsache ergibt, dass es in $)„ zu 
Fo(z) benachbarte Funktionen höheren Grades gibt. Es gilt nämlich F(z) —» FQ(z), 
wenn die Nullstellen von Fo(z) (mit Berücksichtigung ihrer Vielfachheiten) 
Häufungsstellen von Nullstellen von F(z) sind und wenn die übrigen Nullstellen 
von F(z) gegen | z | = 1 konvergieren. Nehmen wir also an, F(z) habe ausser 
den Nullstellen {"],•••,{"» noch eine weitere f 0 , die radial gegen f 0

(0) mit | f o0) | = 
1 konvergiere, während die f„ —•» fj0) (v = 1, • • • , n) streben. Dann kommt zu 
den bisherigen Parametern rx , • • • , r2n noch ein weiterer r0 hinzu, und wir 
können etwa r0 = 1 — | f01 wählen. Zu der hinreichenden Bedingung JJ > 0 
für Zulässigkeit eines g tritt also mit to = (1, 0, • • • , 0): tog ̂  0 und entweder 
£ oder to muss zu g) gehören, sicher also eine gewisse lineare Kombination Xy + 
ato mit X ^ 0,a â v, a + X > 0, in der, wie man leicht überlegt X = 1 gewählt 
werden kann. D.h. es gilt eine Gleichung der Form 

k 

Xj — E xAï)* = — °M-

Die Interpretation für ®'(f) ist: r@'(f) ^ 0, | f | = 1. 
Betreffend ty®' bemerken wir zunächst, dass die Einzigkeit der Extremalfunk

tion leicht nachzuweisen ist. Ist nun FQ(z) $ $«,, so gibt es eine Folge von 
Funktionen Fv(z) Ç $tv wachsenden Grades, die gegen Fo(z) konvergiert. Ersetzen 
wir jedes Fv(z) durch die Extremalfunktion Fi>0(z) in $tP so konvergiert die Folge 
Fvo(z) wieder gegen F0(z). Daher muss auch der Grad der Fvo monoton wachsen 
und müssen fast alle Nullstellen der FvQ ausserhalb eines beliebig vorgegebenen 
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abgeschlossenen Teilbereiches von | z \ < 1 liegen. Unter gewissen, ziemlich 
stark einschränkenden, Voraussetzungen lässt sich nun zeigen, dass das nicht 
möglich ist, dass vielmehr alle Nullstellen von ®'(f) bis auf höchstens eine 
innerhalb eines nur von 3D? abhängenden abgeschlossenen Teilbereiches von 
| f | < 1 liegen. In einem derartigen Fall muss also die Extremalfunktion von 
CA' zu fön gehören. 

Wir specialisieren nun das Problem auf das von Walsh und Heins: SD? sei 
der Kreis \z\ = r < p. In diesem Falle ist für $ $ ' , FQ(z) £ $«, • Allgemein gilt, 
dass die Anzahl der Maxima einer Funktion aus fö^ auf | z | = r höchstens gleich 
ihrem Grad ist,7 und insbesonder ist also fc ^ n, also wegen (6) k = n. 

Es- fragt sich, wie n von den Gegebenheiten des Problems abhängt. Falls 
p, = pv mit ganzem nicht negativem p so ist die Lösung von $ $ ' angebbar; 
FQ(Z) = zv. Setzen wir allgemein p = pq so kann sich für p < q < p + In nicht 
ändern, da dies für fc gilt. Für hinreichend kleines r lässt sich ferner die vorhin 
erwähnte Feststellung betreffend die Nullstellen von ®'(f) machen, wodurch 
gezeigt ist, dass, wenn q eine ganze Zahl überschreitet, sich n höchstens um 1 
ändern kann. Damit ist n = [q] + 1 für nicht ganzes q bewiesen. Die Allgemein
gültigkeit dieser Aussage, unabhängig von r, folgt nun, indem wir v bei festem q 
wachsen lassen; wiederum kann sich fc und damit n nicht ändern. 

Eine ähnliche Behandlung lässt der ebenfalls von Heins untersuchte Fall zu: 
3D? sei durch —r^z^r<p erklärt. Ist dann Zi < • • • < Zk, so ist zunächst 
leicht zu sehen: Zk= r und ferner ist nach (5) klar, dass zwischen je zwei z% 

ein f „ hegen muss, ausserdem eines links von Zi, das auch mit — 1 zusammen
fallen kann. Also ist entweder n = k oder n = fc — 1. Wenn p von 1 aus abnimmt, 
so/muss n wachsen. Eine Änderung von n ist nur bei entsprechender Änderung 
von fc möglich, und diese wiederum kann nur dadurch eintreten, dass in — r 
für gewisse Werte von p ein Maximum auftaucht (ein Randmaximum). Gerade 
in diesem Falle muss —1 Nullstelle von ®'(f) sein, bei weiterer Abnahme von 
p wird zi > — r, fi > — 1, sodass also nun n um 1 zugenommen hat. 

U N I V E R S I T Y O F T ü B I N G E N , 

T ü B I N G E N , G E R M A N Y . 

7 M. Heins, a. a. O. 



SURFACES DE RIEMANN OUVERTES 

ROLF NEVANLINNA 

1. La conception fondamentale de la théorie géométrique de la théorie des 
fonctions monogènes consiste dans la notion d'une surface de Riemann. Dans 
le développement de cette théorie on peut distinguer deux idées directrices. 
Il s'agit d'une part d'une étude des surfaces mêmes au point de vue de leurs 
propriétés topologiques et conformes invariantes. D'autre part, l'on cherche de 
déterminer et d'étudier les classes les plus caractéristiques des fonctions ana
lytiques ou harmoniques définies sur une surface donnée, classes simples au 
point de vue de leurs propriétés d'uniformité et de la nature des singularités 
des fonctions correspondantes. Dans la théorie des surfaces compactes les résul
tats classiques de Riemann concernant les classes topologiques et les classes con
formes des surfaces closes constituent le fondament pour les grands problèmes 
de la représentation conforme et de l'uniformisation, qui occupaient les mathé
maticiens jusqu'au commencement de notre siècle. La solution définitive de ces 
questions d'existence fut donnée par Poincaré, Koebe, et Carathéodory dans une 
suite de travaux classiques, précédés par les recherches fondamentales de Schwarz, 
Neumann, et Klein. 

Quant au problème concernant les fonctions qui existent» sur une surface 
donnée, la théorie classique des intégrales abéliennes en donne une solution 
complète pour le cas d'une surface close. Ces fonctions jouissent des properiétés 
particulièrement simples: elles sont intégrales des différentielles uniformes et 
ne présentent qu'un nombre fini de pôles commes points singuliers. 

2. Pour les surfaces ouvertes on a obtenu des résultats assez généraux dans le 
cas le plus simple où la surface donnée est de genre zéro et, par conséquent, en 
vertu du théorème de Riemann, conformément équivalente soit au plan com
plexe ponctué (cas parabolique), soit à l'intérieur d'un cercle fini (cas hyper
bolique). Les recherches classiques de Weierstrass, Poincaré, Hadamard, et 
Borei constituent la base à la théorie moderne des singularités d'une fonction 
analytique uniforme dans une region connexe du plan complexe, théorie dé
veloppée surtout par l'école française et scandinave (Wiman, Lindelöf, Fatou, 
Denjoy, Valiron, Julia, Milloux, Henri Cartan, Caiieman, Ahlfors, Beurling, 
et autres). 

3. Les propriétés conformes des surfaces ouvertes quelconques et surtout des 
surfaces de genre infini sont jusqu'ici très peu étudiées. Dans ce qui suit je 
donnerai un petit résumé de certains résultats généraux obtenus pendant les 
dernières dix années. Si je parle des surfaces ouvertes, les surfaces fermées ne 
seront pas exclues: en effet, en enlevant un point on transforme une surface 
close dans une surface ouverte. 

247 
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4. Un problème général se pose ici. Est-il possible de déterminer des classes 
de surface ouvertes et des fonctions correspondantes pour lesquelles se conser
vent les théorèmes, fondamentaux de la théorie classique des intégrale abéliennes, 
de sorte que la théorie généralisée contienne la théorie classique comme un cas 
spécial si la surface donnée est fermée? 

On se borne au premier lieu aux intégrales de première espèce. Soit R une sur
face de Riemann quelconque et soit d$ =<j)(z)dz une différentielle analytique, 
holomorphe et uniforme sur R et définie d'une manière invariante par rapport 
à un changement du paramètre local z = x + iy. Une telle différentielle soit dite 
abêlienne de première espèce. L'intégrale $ est holomorphe, mais multiforme 
en général. Elle présente un nombre de périodes, correspondant soit aux cycles 
non homologues à zéro, soit aux cycles homologues à zéro mais dans un sens non 
compact, les chemins correspondantes divisant la surface en deux portions non 
compactes. 

5. Les différentielles de première espèce forment une variété linéaire A. On 
doit à Behnke et Stein1 quelques résultats très généraux concernant la classe A. 
Ils ont montré qu'il existe sur une surface R ouverte quelconque des intégrales 
A admettant des périodes donnée d'avance d'une manière arbitraire. En 
particulier, il existe toujours une intégrale uniforme et holomorphe sur R. 

6. Or, si Ton cherche à développer une théorie des intégrales A pour lesquelles 
resteront valables les théorèmes d'unicité qui jouent un rôle si important dans 
la théorie classique, la classe A est évidemment trop étendue, et il faut la res
treindre, par des conditions supplémentaires qui limitent d'une manière con
venable la croissance des covariants <ß(z) au voisinage de la frontière idéale de 
la surface R. 

Pour quelques classes particulières de surfaces transcendantes (en premier 
lieu pour certaines classes de surfaces à un nombre fini de feuillets), Myrberg 
et ces élèves ont généralisé la théorie classique des intégrales des fonctions 
algébriques. Dans ce qui suit nous ne pouvons pas insister à ces résultats in
téressantes; nous considérons de problème défini ci-dessus dans une forme plus 
générale, en admettant que les surfaces données soient définies comme espaces 
topologiques et conformes abstraites. 

7. Une sous-classe (classe D) remarquable de la variété A définie ci-dessus est 
formée par les différentielles d$ = <t>dz pour lesquelles l'intégrale 

(Classe D) jj \<j?\dxdy' 

est finie. Pour une surface fermée cette classe se confonds avec l'ensemble de 
différentielles abéliennes de première espèce.2 

1 On trouvera une bibliographie dans une monographie sur la théorie de Puniformisation 
qui paraître bientôt. 

2 La classe D est un cas particulier (p = 1) de la classe Dp plus générale pour laquelle 
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Dans cette classe D Cl A, encore assez générale, on a considéré deux sous-
classes importantes. 

1°. Classe Z>i CI D, formée par les différentielles d$ = dU + idU pour 
lesquelles dU est exacte (c'est-a-dire: U est uniforme et les périodes de l'in
tégrale $ sont purement imaginaires). 

2°. Classe D2 CZ JDi C Z) pour laquelle d$ est exacte ($ uniforme). 

8. Indiquons encore deux autres variétés, sous-classes de la variété A, qui 
ont été l'objet de nombreuses recherches dans le dernier temps. 

3°. Classe BH, composée par les différentielles d® exactes de première espèce 
telles que le potentiel U est borné en valeur absolue 

(Classe BH) | 171 < M < oo. 

4°. Classe BA C BH, dont les différentielles d$ sont exactes de sorte que 

(Classe BA) | * | < M < » . 

9. Parmi les propriétés conformes invariantes d'une surface la suivante joue 
un rôle important. 

Soit 72 une surface quelconque et E une classe des différentielles d<& quel
conques définies par certaines propriétés conformément invariantes et contenant 
l'élément nul cfë> = 0. 

Nous disons qu'une surface donnée R appartient à la classe RQ(E) si la classe 
E ne contient que l'élément d$ s= 0. 

Autrement la surface R soit de la classe Ri(E); sur une surface R C Ri(E) 
il existe donc au moins une différentielle d$ ^ 0 de la classe E. 

10. Pour illustrer cette notion considérons d'abord le cas le plus simple où 
R est une surface fermée ponctuée dans un point P. Il est évident que ce point 
singulier est enlevable pour les classes Di et B. Chaque intégrale correspondante 
4? se réduit donc à une constante, en vertu du principe de maximum, et l'on 
conclut que R C RQ(Di), R C R0(B). Ceci reste vrai si l'on remplace Dx et B 
par les sous-classes D2 et Bi. 

Il en est de même pour la classe D si le genre p de la surface R est zéro. Mais 
pour p > 0 il n'en est plus ainsi: en effet, la classe D se confond la variété linéaire 
de dimension p des différentielles abéliennes de première espèce. 

11. Revenons avec surfaces ouvertes quelconques. Pour mesurer la frontière 
idéale d'une surface on a introduit, au delà des classifications dont je viens de 
parler, la notion de capacité ou de mesure harmonique, généralisant la notion 
connue et classique de Wiener. Étant donnée une surface R, faisons une ex
haustion de R à l'aide d'une suite 

l'intégrale //B | <f> \ 2pdx dy reste finie, p étant une scalaire positive, uniforme sur R. Nous 
reviendrons dans un autre article à cette variété. 
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RQ Cl Ri C « * • CZ Rn CZ • • • ; Rn —> R 

des domaines compactes, Rn étant limité par un ensemble compacte F n , cons
titué d'un nombre fini de courbes fermées Y2

n : 

In = = Zmj I n • 
i 

Soit con la fonction harmonique dans Rn — RQ, prenant la valeur 0 sur Fó et la 
valeur 1 sur Yn (la mesure harmonique de Yn par rapport à JB„ — 'RQ). Pour 
n —> » cette fonction tend vers une limite w. Si co = 0, on dit que la mesure 
•harmonique ou la capacité de la frontière idéale Y de R est nulle: 

(Classe CQ) mes harm Y = 0. 

Si la limite harmonique co > 0 à l'intérieur de R — R0, la mesure harmonique 
(et la capacité) de Y est dite positive (classe Ci de surfaces R). 

12. On doit à Myrberg le résultat qu'une condition nécessaire et suffisante pour 
que mes harm Y soit positive est que la surface R admet une fonction de Green. 
Voici une autre propriété qui rapproche le type d'une surface, mesuré par la 
capacité, aux classifications considérées plus haut. 

Une surface R du type mes harm Y = 0 (classe C0) appartient toujours à la 
classe RQ(DI) C 2?0(D2). De même, une surface de la classe Co est aussi de la 
classe R0(BH) CZ RQ(BA), de sorte qu'on a 

( 2Zb(Z>i) C RQ(D2) 
(1) Co C 

{RQ(BH) C Ro(BA). 

13. Est-ce que ces conclusions restent vraies dans le sens opposé? Il est facile 
de voir qu'il n'en est pas ainsi pour les deux dernières relations: les classes 
Ro(Di) et RQ(BH) sont des sous-classes effectives des classes Ro(D2) et RQ(BA). 
Une question plus difficile est celle concernant l'étendue des trois premières 
classes dans le tableaux (1). 

Pour des classes étendues des surfaces R, par exemple pour les surfaces de 
genre fini, mais d'un ordre de connexion quelconque (fini ou infini), les con
ditions Co, Di, et BH sont équivalentes. Or, Ahlfors a récemment indiqué un 
exemple d'une surface R de genre infini qui montre que la classe C0 èst une sous-
classe effective de la classe BH. 

•'. 14. Les définitions considérée ci-dessus sont d'un caractère assez implicite, 
car il reposent sur l'existence ou non existence de certaines fonctions sur la 
surface, définies à l'aide des propriétés dont la valabilité n'est pas simple à 
vérifier pour une surface de Riemann, donnée d'une manière particulière (comme 
par exemple une sous-region ou une surface de recouvrement d'une autre sur
face). C'est pourquoi on a essayé de mettre ces conditions en relation aux pro* 
priétés structurelles qui entrent d'une façon plus directe dans la définition 



SURFACES DE RIEMANN OUVERTES 251 

d'une surface. On connaît un grand nombre de telles critères particulières, sur
tout concernant le "problème de type" (les classes C0 et Ci). 

16. Je ne peux pas insister à ces recherches8 et je me borne à rappeler une 
méthode générale qui a conduit aux résultats remarquables. Supposons qu'on 
ait défini sur la surface R une métrique conforme 

do- = \(z) | dz | 

de sorte que le domaine Rp formé par les points ayant une distance au plus 
égale à p d'un point donné Zo est compact et limité par un ensemble Cp, composé 
d'un nombre fini de courbes fermées Cp : 

Cp = 2^/Cp, 
i 

les longueurs correspondantes étant 

Up) = E^'CP). 
i 

On suppose que Cp —> Y pour p —> » . Cela étant, un théorème de Ahlfors et 
Laasonen montre que la divergence de l'intégrale 

/•oo 

r dp_ 
J UP) 

est suffisante pour que la surface R soit de la classe C0. 
Remplaçons dans cette intégrale L(p) par le nombre l(p) S L(p), défini 

comme le maximum des longueurs Vp des courbes CJ qui constituent l'ensemble 
Cp. Si cette intégrale 

dp 
HP) 

diverge, on peut affirmer que la surface 72 est de la classe RQ(DA)\ dans ce cas 
donc il n'existe aucune fonction $ non constant analytique et uniforme sur 22 
et telle que l'intégrale (D) soit finie. Ce résultat, dû à Sario, s'obtient de l'iné
galité 

r 

[f | * |2 dx dx è const, e4* f - ^ . 
JJB. Jt Ko) 1W 

La valeur du facteur 47r est la meilleure possible. Sous cette forme précise l'iné
galité a été donnée par Pfluger. 

16. Les métriques conformes jouent aussi un rôle important pour diverses 
problèmes extrémales concernant les invariants conformes attachés à une sur
face. Quelques-uns de ces résultats, dûs à Ahlfors et Beurling, font l'objet de 

3 Dans un article de Le Van, paru dans les Comment. Math. Helv. (1948), on trouve une 
bibliographie assez complote concernant le problème de type. 
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certains autres conférences du congrès, et je n'insiste pas à ces questions. C'est 
pourquoi je laisse à coté aussi les extensions du problème classique de Painlevé, 
concernant la classe BA (résultats récents de Grunsky, Ahlfors, Beurling, 
Garabedian). 

17. Passons enfin à la classe de différentielles (D), définies par cette propriété 
que l'intégrale de Dirichlet correspondante reste finie. Si l'on introduit le produit 
scalair et le norme r 

0*' *) = JJR 4$ dx dy, |[ * |[2 = (cp, 0) , 

il est facile de voir, suivant les méthodes de Bergman et Bochner, que la variété 
D est un espace de Hilbert. On peut donc développer les différentielles <p dans 
une série de Fourier suivant un système (p1, • • • , (pn, • • • orthonormale. 

18. Dans cet espace D on peut introduire trois "axes" orthogonaux l'un à 
l'autre. 

. Le premier axe, le sous-espace S i , est composé par les différentielles exactes 
D (les différentielles D2). Les différentielles du second axe (sous-espace S2) 
ont cette propriété que les périodes des intégrales correspondantes s'évanouissent 
sur les cycles homologues à zéro (dans un, sens compact ou non compact). Le 
troisième axe S3 est le complément orthogonal de Si et S2 dans l'espace D. 

Si la surface R appartient à la classe RQ(D2), le sous-espace Si s'évanouit. Il 
en est de même pour l'axe S2, si R C RQ(Di) C RQ(D2). Dans ce cas l'espace D 
se réduit à l'axe Ss ; il en est ainsi pour toute surface de la classe C0 . 

19. On doit ces résultats à Virtanen. Independemment de lui, Ahlfors a 
établi une théorie qui conduit à une partie du théorème ci-dessus. La méthode 
de Ahlfors consiste dans une approximation d'une surface ouverte R par une 
suite de surfaces compactes symétriques, et il obtient les différentielles sur R 
comme limites des différentielles de Schottky. Ce procédé généralise une méthode 
qui a conduit aux résultats importants dans la théorie des surfaces multiplement 
connexes de genre zéro (Groetsch, Schiffer, Lehto, Lokki, Garabedian, et autres). 

Dans toutes ces recherches, la "kernelfunction" de Bergman joue un rôle 
remarquable. 

U N I V E R S I T Y O F Z ü R I C H , 

Z ü R I C H , S W I T Z E R L A N D . 



ON CERTAIN SET FUNCTIONS DEFINED BY EXTREMUM 
PROPERTIES IN THE THEORY OF FUNCTIONS AND IN . 

MATHEMATICAL PHYSICS 

G. SZEGÖ 

This brief survey deals with certain set functions which are of interest for the 
theory of functions and for mathematical physics. Most of them occur in classical 
problems as we are going to point out later. Some of them have been investigated 
during the past six years or so by a group of mathematicians at Stanford Uni
versity. My purpose is to name a few of the principal concepts, problems, and 
results of this investigation. 

For the sake of general formulation, we denote the set function under con
sideration by f(E) where the set E is arbitrarily chosen from a class K of sets. 
The nature of these sets may be very different. We can consider curves in the 
plane or surfaces in space, restricted by various conditions of smoothness, or by 
some kind of boundary conditions or by the condition that another given set 
function g(E) has a preassigned value. We may consider arbitrary closed sets in 
plane or space. The general problem is to find inequalities for the set function f(E) 
valid for all sets of the given class K. A more precise problem is to find the absolute 
maximum or the absolute minimum of the set function f(E) when E varies on K. 
Finally we may deal with the question of relative extrema; in this case the con
cept of a distance or deviation of two sets within K must be fixed. 

As perhaps the oldest example we mention the class K of all closed curves E 
in the plane with given area g(E), the set function f(E) being the length of E. 
Another important example is given by Hamilton's principle in analytical 
mechanics; in the most elementary case, K consists then of all curves E joining 
two given points and f(E) is defined by Hamilton's integral. Other examples 
are the electrostatic capacity of a conductor E with given volume, the funda
mental frequency of a membrane with fixed boundary and given area, and the 
fundamental frequency of a clamped plate of given area. 

In these examples (except in Hamilton's principle) we characterize the class 
K by the condition that a certain set function g(E) has a given value for all 
sets E. Such problems are called isoperimetric problems by extension of the usual 
meaning of the term which refers to the best known special case, namely to the 
classical isoperimetric problem concerning length and area of a plane curve. 

With a plane domain E bounded by a simple closed curve y we associate the 
following set functions: 

the area A ; 
the perimeter L; 
the inner (conformai) radius ra with respect to an interior point a; this is the 

radius of the circle onto the interior of which the given domain can be mapped 
conformally, so that a is transformed into the center of the circle without change 
of scale at the point a; 
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the outer (conformai) radius f of the given curve; this is the radius of the circle 
onto the exterior of which the exterior of the given curve y can be mapped 
conformally so that the point at infinity is transformed into itself without change 
of scale at this point; 

the principal frequency A of a membrane with fixed boundary having the given 
shape; 

the principal frequency A' of a clamped plate having the given shape, 
the torsional rigidity P or stiffness of an infinite beam with the given plane 

domain as cross section; this is the resistance to a twisting torque divided by the 
angle of the twist and by a constant depending on the elastic nature of the 
beam. 

With a space domain E bounded by a simple closed surface we associate the 
following set functions: 

the volume V; 
the surface area S\ 
the integral M of the mean curvature (Minkowski's constant) ; dealing with 

this constant we assume that the given domain is convex; 
the electrostatic capacity C (with respect to the infinitely large sphere). 
These are just a few examples of interesting set functions. Some of them are 

of geometrical naturß in the sense that they can be computed by direct inte
gration (for instance, the area, length, volume, etc.), some others depend on the 
solution of a boundary value problem. In the case of the electrostatic capacity 
this boundary value problem is a Dirichlet problem. A more complicated quantity 
is the virtual mass W of a solid immersed in a uniform flow. It is the energy of 
the disturbance of a uniform flow caused by the presence of the given solid and 
can be determined by solving a Neumann problem. The quantity W thus defined 
depends of course not only on the given solid but also on the given flow. 

Our main interest is in such isoperimetric problems in which, using the no
tation introduced before, the set function g(E) is a geometric quantity while 
f(E) is a quantity depending on the solution of a boundary value problem. 

Other interesting set functions depend on one or more points which play the 
role of parameters. The most familiar example is the Green function G(p} q) 
of the domain E corresponding to the Laplace equation V2 u— 0 with the bound
ary condition u = 0 in plane or space, and the more complicated Green function 
Y(p, q) of the clamped plate satisfying the differential equation V*u = 0 (which 
is of the fourth order) with the boundary conditions u = du/dn = 0. The princi
pal term of G at the source point q is log r where r is the distance of the points 
p and q; the principal term of Y is r2logr* 

Now I mention a few set functions arising in the theory of functions whose 
definition is based on certain maximum-minimum problems. With a closed set E 
in the plane and with an arbitrary integer n we associate: 

the polynomial f(z) of degree n with the leading term zn determined by the 
condition that the maximum modulus oîf(z) on E is a minimum. We denote this 
minimum by RZ ; the set function f(E) = f(E; n) under consideration is Rn ; 
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the polynomial f(z) of degree n whose roots Zi are all on E, determined by the 
condition that the discriminant H«*(3f ~~ ^) ha s a maximum modulus. We 
denote this maximum by D£n'2. A geometric definition of this quantity Dn is 
the following: It is the maximum of the geometric mean of the Cn>2 mutual 
distances of n arbitrary points Zi on E. 

I leave aside a geometric formulation of the definition of Rn . 
Finally let E be an arbitrary closed and rectifiable curve y, and a an arbitrary 

point in the interior of 7. We consider the polynomial f(z) of degree n that 
satisfies the normalizing condition 

J y 

and for which | f(a) |2 is maximum. This maximum is a set function f(E) = 
f(E) n, a) depending, besides on n, on the parameter a. The integral over the 
curve 7 in the normalizing condition (1) can be replaced by an area integral 
extended over the interior of 7. In both cases appropriate weight functions can be 
introduced in these integrals. 

These problems can be further generalized in various directions and they 
have analogues in space. 

Let us formulate now a few particularly simple results and some open problems. 
The ratio L2/A for all closed curves in the plane, and the ratio S*/V2 for all 

closed surfaces in space, is a minimum for the circle and the sphere, respectively. 
These are the classical isoperimetric theorems. (Another formulation is: A given, 
L is a minimum for the circle.) 

The ratios S/M2 and MV/S2 for arbitrary convex surfaces are maximal for the 
sphere. This result is due to Minkowski and represents an important addition to 
the isoperimetric theorems. 

The ratios rl/A and A/f2 are maximal for a circle. These are the area theorems 
in the theory of conformai mapping. 

The ratio V/Cz is maximal for the sphere. This statement was made by 
Poincaré [8]; the first indication of a satisfactory proof is due to Faber [4], 
the first complete proof to myself [16]. 

The ratio C/M is maximal for the sphere. This I have proved in 1931 [17]. 
Let C be the capacity of an arbitrary solid of revolution, f the outer radius of 

its meridian section. The ratio C/f is maximal for a circular disk. 
The ratio P/A2 is maximal for a circle. This was stated by de Saint-Venant 

[13]. The two latter theorems are proved in a joint investigation of Professor 
Pólya and myself which will be published in the Annals of Mathematics Studies 
[11]. I refer to this book concerning further literature on the subjects mentioned 
above. 

Some of these maximum-minimum theorems can be obtained by the geometric 
process of symmetrization, some others by resorting to methods of the theory of 
functions. A very important factor is the interpretation of the quantities in 
question as maxima or minima of certain problems in the calculus of variations. 
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In some cases the relative extremum property of the circle or sphere can be 
shown by computing the first and second variations of the quantities involved. 

Here are a few further results. 
The quantity A2A is minimal for a circle. This was conjectured by Lord 

Rayleigh in 1894 [12] and proved by Faber [4] and Krahn [7] in 1923. 
The corresponding quantity A'2A for the clamped plate is also minimal for a 

circle. This I proved recently under the hypothesis that the first eigenfunction 
of the clamped plate does not change its sign [19]. 

The last assertion would follow from another one which was formulated by 
Hadamard in 1908 [6]. Hadamard stated the conjecture that the Green function 
Y(p, q) of the differential equation V u = 0 with the boundary conditions u = 
du/dn = 0 does not change its sign in the given domain. This Green function is 
certainly positive f or p = q as Hadamard himself has shown by using variational 
methods. A discussion of the limiting case of an infinite strip given lately by 
Duffin [3] strongly indicated that the answer to the question of Hadamard is 
negative in general. Indeed Loewner and myself constructed recently several 
examples of finite closed analytic curves for which the Green function becomes 
negative, i.e., it changes its sign. Finally Garabedian has shown by direct dis
cussion that this is the case for a sufficiently flat ellipse; here Y becomes negative 
if p and q are sufficiently near to the opposite end points of the major axis. Need
less to say, the question of the first non-vanishing eigenfunction is not decided by 
these considerations. It would follow for instance from the positivity of any 
kernel arising from Y(p, q) by repeated iteration. 

Finally, let us discuss in a few words the set function of the theory of functions 
introduced above. 

The quantities Rn and Dn have been defined and studied by Professor Felcete 
for an arbitrary closed set [5]. Both sequences Rn and Dn tend fovn —» oo to the 
so-called transfinite diameter of E which coincides with the outer radius f in the 
case the set E is a simple curve. The polynomials/^) having the minimal property 
which serve« as the definition of Rn, generalize the classical Tchebychev poly
nomials (which arise in the case of a linear segment). For an analytic curve they 
were studied by Faber. A geometric approach to the quantities Rn and Dn, 
their generalizations, and also their analogue in space were studied by Professor 
Pólya and myself in 1931 [9]. 

The polynomial/^) of degree n maximizing \f(a)\2under the normalizing condi
tion (1) was introduced by myself in 1921 [15]. I t is closely related to the poly
nomials {qn(z)\ orthonormal on the curve y and can be represented in the form 

f(z) P [Kn(a,a)]-ll2Kn(a,z) 

where 

Kn(a, z) = X) <lv(a)qv(z). 

The maximum itself can be written in the form Kn(a, a). As n —> oo, and a and 



SET F U N C T I O N S D E F I N E D BY E X T R E M U M P R O P E R T I E S 257 

z are arbitrary points in the interior of the curve 7, Kn(a, z) tends to an important 
function K(a, z) which is called the kernel function. It is a set function associated 
with a given curve and a given metric on it. The analogous function arising 
when the integral in the normalizing condition (1) is replaced by an area integral, 
was introduced by Bergman [1] and Bochner [2] about 1922, These concepts 
and results were the starting points of important recent investigations on kernel 
functions associated with other manifolds and other metrics by Bergman, 
Garabedian, Schiffer and Spencer. 

BIBLIOGRAPHY 

1. S, BERGMAN, Über die Entwicklung der harmonischen Funktionen der Ebene und des 
Raumes, Math . Ann. vol. 86 (1922) pp. 238-279. 

2. S. BOCHNER, Über orthogonale Systeme analytischer Funktionen, M a t h . Zeit. vol. 14 
(1922) pp . 180-207. 

3. R. J . D U F P I N , On a question of Hadamard concerning super-biharmonic functions, 
Journal of Mathematics and Physics vol. 27 (1949) pp . 253-258. 

4. G. F A B E R , Beweis, dass unier allen homogenen Membranen von gleicher Fläche und 
gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsberichte der Bayris
chen Akademie der Wissenschaften, 1923, pp. 169-172. 

5. M. F E K E T E , Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit 
ganzzahligen Koeffizienten, Math . Zeit. vol. 17 (1923) pp . 228-249. 

6. J . HADAMARD, Memoire sur le problème d'analyse relatif à V'équilibre des plaques élasti
ques encastrées, Mémoires Présentés par Divers Savants à l 'Académie des Sciences (2) vol. 
33 (1908) 128 pp . 

7. E . K R A H N , Über eine von Rayleigh formulierte Minimaleigenschaf i des Kreises, Math . 
Ann. vol. 94 (1924) pp . 97-100. 

8. H . P O I N C A R é , Figures d'équilibre d'une masse fluid'e, Paris, 1903. 
9. G. P ó L Y A and G. S Z E G ö , Über den transfiniten Durchmesser {Kapazitätskonstante) 

von ebenen und räumlichen Punktmengen, J. Reine Angew. Ma th . vol. 165 (1931) pp . 4-49. 
10. , Inequalities for the capacity of a condenser, Amer. J. Ma th . vol. 67 (1945) 

pp. 1-32. 
11. , Isoperimetric inequalities in Mathematical Physics, Annals of Mathematics 

Studies, in pr int . 
12. LORD RAYLEIGH, The theory of sound, 2d ed., London, 1894-1896. 
13. B . DE SAINT-VENANT, Mémoire sur la torsion des prismes, Mémoires Présentés par 

Divers Savants à l 'Académie des Sciences vol. 14 (1856) pp . 233-560. 
14. M. SCHIFFER and G. S Z E G ö , Virtual mass and polarization, Trans . Amer. M a t h . Soc. 

vol. 67 (1949) pp . 130-205. 
15. G. S Z E G ö , Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen 

Ebene gehören, Ma th . Zeit. vol. 9 (1921) pp. 218-270. 
16. , Über einige Extremalaufgaben der Potentialtheorie, Math . Zeit. vol. 31 (1930) 

pp . 583-593. 
17. , Über einige neue Extremaleigenschaften der Kugel, Math . Zeit. vol. 33 (1931) 

pp. 419-425. 
18. , On the capacity of a condenser, Bull. Amer. Ma th . Soc. vol. 51 (1945) p p . 

325-350. 
19. , On membranes and plates, Proc. Na t . Acad. Sci. U. S. A. vol. 36 (1950) pp . 

210-216. 

STANFORD UNIVERSITY, 

STANFORD, CALIF., U. S. A. 





INTERNATIONAL CONGRESS 

OF 

MATHEMATICIANS 

Cambridge, Massachusetts, U.S.A. 

1950 

CONFERENCE IN APPLIED MATHEMATICS 

Committee 

John von Neumann (Chairman) 

Walter Bartky G. C. Evans 

R. V. Churchill William Prager 

Richard Courant Mina Rees 





The Conference in Applied Mathematics held three sessions, devoted respec
tively to the following general topics: 

A. Random Processes in Physics and Communications; 
B. Partial Differential Equations; 
C. Statistical Mechanics. 

The session on partial differential equations was devoted to problems in fluid 
dynamics, except for the lecture by W. Prager on the theory of plasticity. 
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RANDOM PROCESSES IN PHYSICS 
AND COMMUNICATIONS 

SOME TOPICS IN INFORMATION THEORY 

C. E. SHANNON 

Previous work in communication theory [2] has shown that amount of informa
tion for purposes of communication has a natural measure in terms of entropy 
type formulas H = — 2p log p. This has led to theorems giving the most ef
ficient encoding of the messages produced by a stochastic process into a standard 
form, say a random sequence of binary digits, and for the most efficient use of an 
available communication channel. However, no concept of information itself was 
defined. It is possible to formulate an approach to the theory in which the in
formation sources in a communication network appear as elements of a lattice. 

The leading idea is that any reversible translation of the messages produced by 
a stochastic process, say by a non-singular finite state transducer, should be re
garded as containing the same information as the original messages. From the 
communications point of view, knowledge of the Morse code translation of the 
text originating at a telegraph office is equivalent to knowledge of the text itself. 
Thus we consider the information of a source to be the equivalence class of all 
reversible translations of.the messages produced by the source. Each particular 
translation is a,, representative of the class, analogous to describing a tensor by 
giving its components in a particular coordinate system. 

Various theories may be obtained depending on the set of translation oper
ations allowed for equivalence. Two choices lead to interesting and applicable 
developments: (1) the group of all finite state transducers (allowing effectively 
positive or negative delays), (2) the group'of delay free finite state transducers, 
in which it is required that the present output symbol be a function of the 
present and past history of the input, and similarly for the reverse transducer. 

The first case is the simplest and relates most closely to previous work in which 
unlimited encoding delays at transmitter and receiver were allowed. A transitive 
inclusion relation between information elements, x è y, (inducing a partial 
ordering) means that y can be obtained by operating on x with some finite state 
transducer (not necessarily reversible). The entropy of a source (which is in
variant under the group of reversible transducers) appears as a norm monotone 
with the ordering. The least upper bound for two elements is the total information 
in both sources, a representation being the sequence of ordered pairs of letters 
from the two sources. A greatest lower bound can also be defined, thus resulting 
in an information lattice. There will always be a universal lower bound, and if the 
set of sources considered is finite, a universal upper bound. The lattices obtained 
in this way are, in general, non-modular. In fact, an information lattice can be 
constructed isomorphic to any finite partition lattice. 

A metric can be defined by p(x, y) = Hx(y) + Hy(x) satisfying the usual 
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requirements. This introduces a topology and the notion of Cauchy convergent 
sequences of information elements and of limit points. If convergent sequences 
are annexed to the lattice as new points, with corresponding modifications of the 
definition of equality, etc., there result continuous lattices, for example the set 
of all the abstractions of the total information in the system by finite state 
transducers, or limiting sequences of such transducers. 

The delay free theory leads also to a lattice but the problems, while perhaps 
more important in the applications, are less well understood. The entropy of a 
source is no longer sufficient to characterize the source for purposes of encoding, 
and in fact an infinite number of independent invariants have been found. Certain 
of them are related to the problem of best prediction of the next symbol to be 
produced, knowing the entire past history. The delay free theory has an appli
cation to the problem of communication over a channel where there is a second 
channel available for sending information in the reverse direction. The second 
channel can, in certain cases, be used to improve forward transmission. Upper 
bounds have been found for the forward capacity in such a case. The delay free 
theory also has an application to the problem of linear least square smoothing and 
prediction [1], A minimum phase filter has an inverse (without delay) and there
fore belongs to the delay free group of translations for continuous time series. 
The least square prediction problem can be solved by translating the time series 
in*question to a canonical form and finding the best prediction operator for this 
form. 
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RANDOM PROCESSES AND TRANSFORMATIONS 

S. ULAM 

I t is intended to present here a general point of view and specific problems 
connected with the relation between descriptions of physical phenomena by 
random processes and the theory of probabilities on the one hand, and the 
deterministic descriptions by methods of classical analysis in mathematical 
physics, on the other. We shall attempt to formulate procedures of random proc
esses which will permit heuristic and also quantitative evaluations of the 
solutions of differential or integral-differential equations. Broadly speaking, 
such methods will amount to construction of statistical models of given physical 
situations and statistical experiments designed to evaluate the behavior of the 
physical quantities involved. 

The role of probability theory in physics is really manifold. In classical theories 
the role of initial conditions is consciously idealized. In reality these initial con
ditions are known only within certain ranges of values. One could say that 
probability distributions are given for the actual values of initial parameters. 
The influence of the variation of initial conditions, subject to "small" fluctuations, 
on the properties of solutions has been studied in numerous cases and forms one 
subject of the theories of "stability." 

In a more general way, not only the initial constants, but even the operators 
describing the behavior of a given physical situation may not be known exactly. 
We might assume that, for example, the forces acting on a given mechanical 
system are known only within certain hmits. They might depend, for example, to 
some extent on certain "hidden" parameters and we might again study the in
fluence of random terms in these forces on the given system. 

In quantum theory, of course, the role of a stochastic point of view is even more 
fundamental. The variables describing a physical system are of higher mathe
matical type. They are sets of points or sets of numbers (real, complex, or still 
more general) rather than the numbers themselves. The probability distributions 
enter from the beginning as the primitive notions of theiheory. The observable or 
measurable quantities are values of certain functionals or eigenvalues of operators 
acting on these distributions. Again, in addition to this fundamental role of the 
probabilities formulation, there will enter the fact that the nature of forces or 
conditions may not be known correctly or exactly, but the operators corre
sponding to them will depend on "hidden" parameters in a fashion similar to that 
in classical physics. In fact, at the present time considerable latitude exists in 
the choice of operators corresponding to "forces" in nuclear physics. 

There is, in addition, another reason for the recourse to descriptions in the 
spirit of the theory of probabilities which permit from the beginning, a flexibility 
and, therefore, greater generality of formulations. It is obvious that a general 
mathematical formalism for dealing with "complications" in models of reality 
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is needed already on a heuristic level. This need is mainly due to the lack of sim
plicity in the presently employed models for the behavior of matter and radia
tion. The combinatorial complexity alone, present in such diverse problems as 
hydrodynamics, the theory of cosmic rays, the theory of nuclear reaction in heter
ogenous media, is very great. One has to remember that even in the present 
theories of so-called elementary particles themselves one employs rather compli
cated models for each of these particles and their interactions. Often the compli
cations relate already to the qualitative topological and algebraic structure even 
before one attempts to pursue analysis of these models. One reason for these 
complications is that such problems involve a considerable number of inde
pendent variables. The infinitesimal analysis, i.e., the methods of calculus, 
become, for the case of many variables, unwieldy and often only purely symbolic. 
The class of "elementary" functions within which the operators of the calculus 
act in an algebraically tolerable fashion is restricted in the main to functions of 
one variable (real or complex). Mathematical physics deals with this increasing 
complexity in two opposite limiting methods. The first is the study of systems of 
differential or integral-differential equations describing in detail the behavior of 
each element of the system under consideration. The second, an opposite extreme 
in treatment, is found in theories like statistical mechanics dealing with only a 
few total or integral properties of systems which consist of enormous numbers of 
objects. There we resign ourselves to the study of only a few functionals or 
operators on such ensembles. 

Systems involving, so to say, an intermediate situation have been becoming, 
in recent years, more and more important in both theory and practice. A mechan
ical problem of a system of N bodies with forces acting between them (we think 
here of N as having a value like, say, 10 or 20) would present an example of this 
kind. Similarly one can think of a continuum, say a fluid subject to given forces 
in which, however, we are interested in the values of N quantities describing the 
whole continuum of the fluid. Neither of the two extreme approaches which we 
mentioned is very practical in such cases. I t will be impractical to try to solve 
exactly the deterministic equations. The purely statistical study of the system, in 
the spirit of thermodynamics, will not be detailed enough. The approach should 
be rather a combination of the two extreme points of view, the classical one of 
following step by step in time and space the action of differential and integral 
operators and the stochastic method of averaging over whole classes of initial 
conditions, relations, and interactions. We propose a way to combine the de
terministic and probability method by some general mathematical algorithms. 

In mathematics itself combinatorial analysis lacks general methods, and 
methodologically resembles an experimental science. Its problems are suggested 
by arrangements and combinations of physically existing situations and each 
requires for solution specific ingenuity. In analysis the subject of functional 
equations is in a similar position. There is a variety of special cases, each treated 
by special methods. According to Poincaré it is even impossible to define, in 
general, functional equations. 
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We shall now give examples of heuristic approaches all based on the same 
principle: of an equivalent random process through which one can examine the 
various problems of mathematical physics alluded to above. 

One should remember that mathematical logic itself or the study of mathe
matics as a formal system can be considered a branch of combinatorial analysis. 
Metamathematics introduces a class of games—"solitaires"—to be played with 
symbols according to given rules. One sense of Gödel's theorem is that some 
properties of these games can be ascertained only by playing them. 

From the practical point of view, investigation of random processes by playing 
the corresponding games is facilitated by the electronic computing machines. 
(In this connection: a simple computational device for production of a sequence 
of numbers with certain properties of randomness is desirable. By iterating the 
function xf = 4#(1 — x) one obtains, for almost all x, the same ergodic distri
bution of iterates in (0,1) [10; 12].) 

II 

One should remember that the distinction between a probabilistic and de
terministic point of view lies often only in the interpretation and not in the 
mathematical treatment itself. A well-known example of this is the comparison 
of two problems, (1) BoreFs law of large numbers for the sequence of the throws 
of a coin, and (2) a simple version of the ergodic theorem of Birkhoff: if one 
applies this ergodic theorem to a very special situation, namely, the system of 
real numbers in a binary expansion, the transformation T of this set on itself 
being a shift of the binary development by 1, one will realize that the theorems 
of Borei and Birkhoff assert in this case the same thing (this was noticed first, 
independently, by Doob, E. Hopf, and Khintchine.) In this case a formulation of 
the theory of probability and a deterministic one of iterating a well-defined trans
formation are mathematically equivalent. 

In simple situations one might combine the two points of view: the one of 
probability theories, the other of iterating given transformations as follows. 
Given is a space E; given also are several measure preserving transformations 
Ti, T2, • • • , Tn . We start with a point p and apply to it in turn at random the 
given transformations. Assume for simplicity that at each time each of the N 
given transformations has an equal chance = 1/N of being applied. It was proved 
by von Neumann and the author that the ergodic theorem still holds in the follow
ing version: for almost every sequence of choices of these transformations and for 
almost every point p the ergodic limit will exist [10; 12]. The proof consists in the 
use of the ergodic theorem of Birkhoff in a suitably defined space embodying, as 
it were, the space of all choices of the given transformations over the space E. 
The question of metric transitivity of a transformation, i.e., the question whether 
the limit in time is equal to the space average, can be similarly generalized 
from the iteration of a given transformation to the situation dealt with above; 
that is, the behavior of a sequence of points obtained by using several trans-
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formations at random. One can again show, similarly to the case of one trans
formation [11], that metric transitivity obtains in very general cases. 

I l l 

A very simple practical illustration of a statistical approach to a mathe
matically well-defined problem is the evaluation of integrals by a sampling 
procedure: suppose R is a region in a fc-dimensional space defined by the in
equalities: 

/i(ffi, • • • , Xk) < 0 

f2(xi, • • • , xk) < 0 

fi(xi, • • • , xk) < 0. 

The region is contained, say, in the unit cube. The problem is to evaluate the 
volume of this region. The most direct approximation is from the definition of the 
integral: one divides each of the k axes into a number N of, say, equidistant 
points. We obtain in our cube, Nk lattice points and by counting the fraction of 
those which do belong to the given region we obtain an approximate value of its 
volume. An alternative procedure would be to produce, at random, with uniform 
probability a number M of points in the unit cube and count again the fraction of 
those belonging to the given region. From Bernoulli's law of large numbers it 
follows that as M tends to infinity this fraction will, with probability 1, tend to 
the value of the volume in question. It is clear from the practical point of view 
that for large values of fc, the second procedure will be, in general, more econom
ical. We know the probability of an error in M tries and given the error, the 
necessary value of M will be for large fc much smaller than Nh. Thus it can be 
seen in this simple problem that by playing a game of chance (producing the 
points at random) we may obtain quantitative estimates of numbers defined by 
strictly deterministic rule. Analogously, one can evaluate by such statistical 
procedures, integrals occurring in more general problems of "geometric proba
bilities." 

IV 

Statistical models, that is, the random processes equivalent to the deterministic 
transformations, are obvious in the case of physical processes described by 
differential diffusion equations or by integral differential equations of the Boltz-
mann type. These processes are, of course, the corresponding "random walks". 
One finds in extensive literature dealing with stochastic processes the foundations 
for construction and study of such models, at least for simple problems of the 
above type. It is known that limiting distributions resulting from such processes 
obey certain partial differential equations. Our aim is to invert the usual pro
cedure. Given a partial differential equation, we construct models of suitable 
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games and obtain distributions or solutions of the corresponding equations by 
playing these games, i.e., by experiment. As an illustration consider the problem 
of description of large cosmic ray showers. I t can be schematized as follows: 

An incoming particle produces with certain probabilities new particles; each 
of these new particles, which are of several kinds, is, moreover, characterized by 
additional indices giving its momenta and energies. These particles can further 
multiply into new ones until the energies in the last generation fall under certain 
given limits. The problem is first: to predict, from the given probabilities of 
reactions, the statistical properties of the shower; secondly, a more difficult 
one, the inverse problem, where the elementary probabilities of transformation 
are not known but statistics of the showers are available, to estimate these 
probabilities from the properties of the shower. Mathematically, the problem is 
described by a system of ordinary differential equations or by a matrix of transi
tions, which has to be iterated. 

A way to get the necessary statistics may be, of course, to "produce" a large 
number of these showers by playing a game of chance with assumed probabilities 
and examine the resulting distributions statistically. This may be more eco
nomical than the actual computation of the powers of the matrices describing the 
transition and transmutation probabilities: the multiplication of matrices cor
responds to evaluation of all contingencies at each stage, whereas by playing a 
game of chance we select at each stage only one of the alternatives. 

Another example: given is a medium consisting of several nuclearly different 
materials, one of which is uranium. One introduces one or several neutrons which 
will cause the generation of more neutrons through fissions in uranium. We in
troduce types, i.e., indices of particles corresponding to different kinds of nuclei 
present. In addition, the positions and velocities of particles of each type can be 
also characterized by additional indices of the particle so that these continuous 
variables are also, approximately, represented by a finite class of discrete in
dices. The given geometrical properties of the whole assembly and nuclear con
stants corresponding to the probabilities of reaction of particles (they are, in 
general, functions of velocities) would give us a matrix of transitions and trans
mutations. Assuming that time proceeds by discrete fixed intervals, we can then 
study the powers of the matrix. These will give us the stat'e of the system at the 
nth interval of time. It is important to remember that the Markoff process in
volved here has infinitely many states because the numbers of particles of each 
type are not a priori bounded. A very schematized mathematical treatment would 
be given by the partial differential equation 

— = aAw + b(x)w. 
dt 

This equation describes the behavior of a diffusing and multiplicative system of 
particles of one type, x denoting the "index" of position. For a mathematical 
description of this system it is preferable, instead of picturing it as an infinite-
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dimensional Markoff process, to treat it as an iteration of a transformation of a 
space given by the generating functions [2; 3; 5; 6; 9]. (Considerable work has 
been done on a theory of such processes also by Russian mathematicians [8].) 
The transformation T, given by the generating functions which is of the form 
^i = f%(x\, • • • , xn), i = 1, • • • , n, where the/* are power series with non-nega
tive coefficients, will define a linear transformation A whose terms a,-/ will be the 
expected values of the numbers of particles of type j produced by starting with a 
particle of type i. Ordinarily, to interpret a matrix by a probabilistic game, one 
should have all of the terms non-negative, and the sum of each row should be 
equal to 1. One can generalize the interpretation of matrices, however, by playing 
a probability game, considering the terms not as transition probabilities but 
rather as the first moments or expected values of the numbers of particles of type 
j produced by one particle of type i. (The probabilities, of course, can be fixed in 
many different ways so as to yield the same given values of the moments.) One 
can go still further. Multiplication of matrices with arbitrary real coefficients can 
be studied by playing a probability game if we interpret the real numbers in 
each term as matrices with non-negative coefficients over two symbols: 

1 

0 

0 

1 
-Itt 

0 

1 

1 

0 

The negative and positive numbers require then each its own "particles" with 
separate indices. This correspondence preserves, of course, both addition and 
multiplication on matrices. Obviously, more general matrices with complex 
numbers as general terms admit, therefore, also of analogous probabilistic in
terpretation, each complex number requiring 4 types of "particles" in this 
correspondence [4]. 

The following theorem provides one mathematical relation between the prop
erties of the iterates of the transformation given by generating functions and the 
iterates of the associated linear transformation (given by the expected values) : 
With probability 1 the ratios of the numbers of particles of any two types will 
approach the ratios defined by the direction of the invariant vector given by 
Frobenius' theorem for the linear matrix [2; 3; 5; 6; 9]. 

I t is possible to interpret the "particles" in a rather general and abstract 
fashion. Thus, for example, one may introduce an auxiliary particle whose role is 
that of a clock [2, part 2]. A distribution in the 4-dimensional time-space con
tinuum can be investigated by' an iteration of transition and transmutation 
matrices. The parameter of iteration will then be a purely mathematical variable 
T, having no direct physical meaning since physical time is now one of the de
pendent variables. 

V 

In some cases one could deal with a partial differential equation as follows. 
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First, purely formally, we transform it into an equation of the diffusion-multi
plication type. We then interpret this equation as describing the behavior of a 
system consisting of a large number of particles of various types which diffuse 
and transmute into each other. Finally we study the behavior of such a system 
empirically by playing a game with these particles according to prescribed 
chances of transitions. Suppose, for example, we have the time independent 
Schrödinger equation: 

aty + (E - V(x, y, z))$ = 0. 

By introducing a new variable r, and the function ^ 

u = 0«-* 

we shall obtain the equation 

—- = aàu — Vu. 
dt 

This latter is of the desired type. The potential V(x, y, z) plays the role of ex
pected value of the multiplication factor at the position given by the vector 
x [1]. Dirac's equation can also be treated in a similar fashion. (We have to 
introduce at least 4 types of particles since the description is not by means of real 
numbers but through Dirac's matrices. Again the parameter r, as in Schrödinger's 
equation, is a purely auxiliary variable not interprétable as time.) Such proba
bility models certainly have heuristic value in cases where no analytical methods 
are readily applicable to obtain solutions of the corresponding equations in 
closed form. This is, for example, the case when the potential function is not of 
simple enough type or in problems dealing with three or more particles. The 
result of a probability game will, of course, never give us the desired quantities 
accurately but could only allow the following possible interpretation: Given 
€ > 0, t\ > 0, with probability 1 — rj, the values of quantities which we try to 
compute lie within e of the constants obtained by our random process for suffi
ciently great number n of the sampling popiulation. 

One should remember that in reality the integral or partial differential equa
tions often describe only the behavior of averages or expected values of physical 
quantities. Thus, for example, if one assumes as fundamental a model of the 
fluid as does the kinetic theory, the equations of hydrodynamics will describe 
the behavior of average quantities; velocities, pressures, etc., are defined by 
averaging these over very large numbers of atoms near a given position. The 
results of a probability game will reflect, to some extent, the deviation of such 
quantities from their average values. That is to say, the fluctuations unavoidably 
present as a result of the random processes performed may not be purely mathe
matical but may reflect, to some extent, the physical reality. 
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VI 

One economy of a statistical formulation is this: often, in a physical problem, 
one is merely interested in finding the values of only a few functionals of an un
known distribution. Thus, for example, in a hydrodynamic problem we would 
like to know, say, the average velocity and the average pressure in a certain 
region of the fluid. In order to compute these one has to know, in an analytic 
formulation of the problem, the positions of all the particles of the fluid. One 
needs then the knowledge of the functions for all values of the independent vari
ables. In an abstract formulation the situation is this: given is an operator 
equation U(f) = 0 where / is a function of fc variables; what we want to know 
is the value of several given functionals Ci(f), G2(f), • • • , Gi(f). (Sometimes, of 
course, even the existence of a solution of the equation U(f) = 0 or, which is the 
same, of the equation V(f) = U(f) + / = /, that is, the fixed point of the operator 
V(f), is not a priori guaranteed.) The physical problem, however, consists merely 
in finding the values of (?,(/). Mathematically it amounts to looking for functions 
/ for which Gi(V(f)) = Gi(f). We might call such / quasi-fixed points of the 
transformation V (with respect to the given functionals Gì). Obviously, the 
existence of quasi-fixed points is, a priori, easier to establish than the existence 
of a solution in the strict sense. A simple mathematical illustration follows: 
let T be a continuous transformation of the plane onto itself given by x' = f(x, y) ; 
y' == Q(Xî y)* There need not, of course, exist a fixed point. There will always exist 
a point (x0, y0) such that | x'0 \ = \ x0 | ; | y'o \ = | y0 | , analogously in n dimensions. 
Similar theorems in function spaces would permit one to assert the existence of 
quasi-solutions of operator equations V(f) = /. A quasi-solution (for given 
functionals) is then a function which possesses the same first n moments or the 
same first n coefficients in its Fourier series as its transform under V. For each 

4n there should exist such quasi-solutions. 
In a random process "equivalent" to a given equation, the values of functionals 

of the desired solution or, more generally, quasi-solutions, are obtained quite 
automatically as the process proceeds. The convergence in probability of the 
data, obtained during the process, to their true value may, in some cases, be 
much more rapid than the convergence of the data describing the functions them
selves. This will be in general the case for functionals which have the form of 
integrals over the distributions. 

VII 

The role of "small" variations introduced in the operators which describe 
physical processes is discussed in elementary cases in the theories of stability. 
In the simplest cases one deals with the influence which variations of constants 
have on the behavior of solutions, say, of linear differential equations. In many 
purely mathematical theories one can conceive the problem of stability in a very 
general way. One can, for example, study instead of functional equations, func
tional inequalities and ask the question whether the solutions of these inequalities 
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are, of necessity, close to the solutions of the corresponding equations. Perhaps 
the simplest example would be given by the equation 

T(x + y) = T(x) + T(y) 

for all x, y which are elements of a vector space E, and the corresponding func
tional inequality: 

|| S(x + y)- S(x) - S(y) || < « 

for all x, y. 
A result of Hyers is that there exists a T satisfying the equation such that for 

all x, we have then 

|| T{x) - S(x) || < e. 

Or, more generally, one could ask the question: given an e-isomorphism F of a 
metric group, is there always an actual isomorphism G within, say, fc times e 
of the given F. Another example is the question of e-isometric transformations 
T, i.e., transformations T such that for all p, q: 

| pip, q) - p(T(p), T(q)) \ < «. 

Here again one can show that such T differ only by fc-e from strictly isometric 
transformations. To give still another example one can introduce a notion of 
almost convex functions and almost convex sets. Again it is possible to show that 
such objects differ little from strictly convex bodies which, one proves, will exist 
in their vicinity. 

All this is mentioned here because, in order to establish rigorously the compari
son between random ' process models of physical problems and their classical 
descriptions by analysis, mathematical theorems will be needed which will allow 
us to estimate more precisely the influence of variations not merely of constants 
but of the operators themselves. 

In many mathematical theories it is natural to subject the definitions them
selves to «-variations. Thus, for example, the notion of the homeomorphic trans
formation can be replaced by a notion of a continuous transformation which is up 
to e a one-to-one transformation. Again one finds that many theorems about one-
to-one transformations can be generalized to hold for the almost one-to-one case. 

Little is known at present about solutions of functional inequalities. One needs, 
of course, beyond theorems on stability, more precise information on the rapidity 
of the convergence in probability. 

VIII 

In theories which would deal with actually infinite assemblies of points—the 
probability point of view can become axiomatic and more fundamental rather 
than only of the approximative character evident in the previous discussion. 
Let us indicate as an example a purely schematic set-up of this sort. We want to 
treat a dynamic system of an infinite number of mass points interacting with each 
other. Imagine that on the infinite real axis we have put, with probability equal 
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to | , on each of the integer points a material point of mass 1. That is to say, for 
each integer we decided by a throw of a coin whether or not to put such a mass 
point on it. Having made infinitely many such decisions, we shall obtain a dis
tribution of points on the line. It can be denoted by a real number in binary de
velopment, e.g., the indices corresponding to ones give us, say, for odd places, 
the non-negative integers where mass points are located, for the even indices of 
ones, we obtain the location of the mass points on the negative part of the line, 
Imagine that this binary number represents our system at the time T = 0. 
Assume further that the mass points attract each other with forces proportional 
to the inverse squares of the distances. (It is obvious that forces on each point 
are well-defined at all times since the sum of the inverse squares of integers 
converges absolutely.) Motions will now ensue. We propose to study properties of 
the motion common to almost all initial conditions, or theorems valid for almost 
all binary sequences (normal numbers in the sense of Borei). As representing 
initial conditions one may make the assumption that as the two points collide 
they will from then on stay together and form a point with a greater mass whose 
motion will be determined by the preservation of the momentum. It is interesting 
to note here that, because the total mass of the system is infinite, the various 
formulations of mechanics which are equivalent to each other in the case of 
finite systems cease to be so in this case. One can use, however, Newton's equa
tions quite legitimately in our case. The interesting thing to notice is that the 
behavior of our infinite system will not be obtainable as a limiting case of the 
behavior of very large but finite systems approximating it. One shows, for 
example, that the average density of the system will remain constant equal to 
\ for all time. One can prove that collisions will lead to formations or conden
sations of arbitrarily high orders. For all time T there will be particles which 
have not yet collided with another particle. On the other hand, given a particle, 
the probability that it will collide at some time tends to 1. We might add that 
one could treat similarly systems of points distributed on integer-valued lattice 
points in the plane or in 3-dimensional space. The forces will not be determined 
any more by absolute convergence, but in 2 and 3 dimensions one can show that 
if we sum over squares or spheres the forces acting on a point from all the other 
ID oints in the spheres whose radii tend to infinity, the limits will exist for each 
point with probability 1. That is, for almost every initial condition of the whole 
system the force is defined everywhere. In a problem of this sort it is obvious that 
the role of probability formulation is fundamental. Actually infinite systems of 
this kind may be thought of, however, as a new kind of idealization of systems 
already considered in present theories. This is so if we allow in advance for an 
infinity of hidden parameters present in the physical system, and which are not 
so far treated explicitly in the model. An important case in which the idealization 
to an actual infinity of many degrees of freedom interacting with each other 
seems to be useful is the recent theory of turbulence of Kolmogoroff, Onsaeger, 
and Heisenberg. 

An interesting field of application for models consisting of an infinite number of 
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interacting elements may exist in the recent theories of automata.1 A general 
model, considered by von Neumann and the author, would be of the following 
sort: 

Given is an infinite lattice or graph of points, each with a finite number of 
connections to certain of its "neighbors." Each point is capable of a finite number 
of "states." The states of neighbors at time tn induce, in a specified manner, the 
state of the point at time tn+i. This rule of transition is fixed deterministically 
or, more generally, may involve partly "random" decisions. 

One can define now closed finite subsystems to be called automata or organisms. 
They will be characterized by a periodic or almost periodic sequence of their 
states as function of time and by the following "spatial" character: the state of 
the neighbors of the "organism" has only a "weak" influence on the state of the 
elements of the organism; the organism can, on the contrary, influence with full 
generality the states of the neighboring points which are not part of other 
organisms. 

One aim of the theory is to establish the existence of subsystems which are 
able to multiply, i.e., create in time other systems identical ("congruent") to 
themselves. 

As time proceeds, by discrete intervals, one will generate, starting from a 
finite "activated" region, organisms of different types. One problem is again to 
find the equilibrium ratios of the numbers of individual species, similarly to the 
situation described in §IV. The generalization of Frobenius' theorem men
tioned there gives one basis for the existence of limits of the ratios. 

The existence of finite universal organisms forms one of the first problems of 
such theory. These would be closed systems able to generate arbitrarily large, 
(or "complicated") closed systems. 

One should perhaps notice that any metamathematical theory has, to some 
extent, formally a character of the above sort: one generates, by given rules, 
from given classes of symbols, new such classes. 

Mathematically, the simplest versions of such schemes would consist simply 
of the study of iterates of infinite matrices, having nonzero elements in only a 
finite number of terms in each row. The problems consist of finding the properties 
of the finite submatrices appearing along the diagonal, as one iterates the matrix. 
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BOUNDARY VALUE PROBLEMS IN MODERN FLUID DYNAMICS 

(SUMMARY) 

RICHARD COURANT 

New aspects arising in boundary value problems of fluid dynamics, and largely 
connected with the nonlinearity of these problems were discussed in this paper. 

According to Hadamard a problem of mathematical physics, to represent 
reality in an adequate way, should satisfy three postulates: (1) The solution 
should exist, (2) it should be uniquely determined by the data, (3) it should be 
stable, i.e., small changes in the data should produce only small changes in the 
solution. Classical mathematical physics or mechanics does satisfy these pos
tulates if they are properly interpreted. Specifically, classical theories proceed 
by establishing general laws (differential equations) for classes of phenomena and 
by singling out individual phenomena by additional boundary or initial or 
similar conditions. The unique and stable determination of events in mechanics 
and physics by this scheme has long been a main tenet of natural philosophy. 

Of course, modern quantum theory has shown the limitation of this classical 
approach. But, even more strikingly, classical dynamics of compressible fluids 
illuminate the fact that differential equations supplemented by boundary con
ditions, etc. are not always a sufficiently complete framework for an adequate 
description of physical reality. 

Questions of this type were treated in a way similar to that used in a previous 
publication (Courant and Friedrichs, Supersonic flow and shock waves, Inter-
science Publishers, 1948, pp. 367 ff.). In particular the following points were 
discussed, though not beyond the initial stage of stating open questions : Under 
what conditions does an initial-boundary value problem of fluid dynamics lead 
asymptotically to a steady state? And most important for theoretical insight 
and practical applications: Assuming there is a steady state, what are the ap
propriate intrinsic boundary conditions that should and could be imposed in 
order to determine the flow? 

Even the simplest problems of gas dynamics illustrate difficulties in stating 
such a priori conditions. For example, we may consider the problem of finding 
the flow in an infinite duct which originally contains gases under different 
pressures at rest in different parts of the duct; these gases are separated by 
membranes which at the time t = 0 are suddenly removed. The effect of the 
resulting interaction process will spread through the whole duct and eventually 
reach every part of it. Therefore we cannot expect the asymptotic steady state 
to be determined by the same conditions that prevailed at the far ends originally. 

An illuminating example is steady flow in a duct infinitely extended in both 
directions. Very different types of boundary conditions, such as prescription of 
pressures at one or both ends, are appropriate according to the supersonic or 
subsonic character of the flow. However, particularly when the duct is not 
parallel, this character in turn has to be ascertained as a part of the solution. 
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The most trenchant complication in the field of nonlinear problems arises in 
connection with the fact that in general, even under continuous boundary and 
initial conditions, solutions do not exist which are continuous in the whole 
space-time region under consideration. As Riemann already discovered, problems 
of gas dynamics are mathematically solvable only if "shock discontinuities" are 
admitted; across the discontinuity surfaces the same conservation laws must 
be stipulated which in domains of continuity are expressed by differential equa
tions, but the position of the discontinuities cannot be prescribed a priori. In 
this way considerable difficulties appear in the construction of solutions, and an 
even more serious problem arises with respect to Hadamard's second and third 
postulates. Apart from some of the most elementary cases, the solutions of 
problems involving shocks are not uniquely determined by the data which we 
might perhaps consider "natural," and the question of stability has hardly been 
taken up satisfactorily even in quite simple cases. For example, the problem 
of supersonic flow through a duct, such as a rocket motor, can, it is true, be 
tackled by the actual construction of flow patterns satisfying given conditions; 
yet shocks, their reflections on a wall, their Mach intersections, etc. imply a high 
degree of mathematical ambiguity. Hardly any serious attempt has been made 
so far to find out what the data and stipulations are which correspond to physical 
reality and ensure uniqueness and stability of the solution. 

The importance of such investigations from the applied point of view is 
obvious; a theory which provides solutions not identified as the only possible 
solutions cannot be a firm basis for engineering construction. For the mathe
matician the challenge may seem enhanced by the suspicion that even deeper 
issues may be involved than the experience of a groping and imperfect mathe
matical description of reality. If one admits in the solution a fixed number of 
discontinuities, it may well turn out that we can always formulate a pertinent 
problem, for which at least one of the three principles of Hadamard is violated. 
Thus it may be that in gas dynamics or fields of related structure a paradoxical 
situation exists similar to that which has been observed to exist in mathematical 
logic. A clarification of this suspicion would indeed be a challenge to mathe
matical ingenuity. 

In the second part of the paper the problem of numerically computing solu
tions of nonlinear boundary and initial value problems was discussed, in partic
ular, a method using characteristics and based on finite differences, valid for 
two independent variables but for arbitrary order. A method was pointed out, 
including convergence and estimation of errors, which will be published shortly 
in collaboration with Dr. E. Isaacson and Dr. Mina Rees, and which should lend 
itself to use of the automatic computing machines which for such a long time 
have been promised to the world for the immediate future. 

In some final remarks a very different type of boundary value problems of a 
somewhat unorthodox type was briefly mentioned, problems arising from 
supersonic flow around thin airfoils assuming the flow to be almost constant in 
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speed. The linearized theories of supersonic airfoils have led Eward and others 
to remarkable new types of problems for the classical wave equation and have 
been recently further clarified by Ward, Gardner, and other authors. Here again, 
questions of uniqueness are still open, as is the generalization to more dimensions 
and to other types of differential equations. 

NEW YORK UNIVERSITY, 
NEW YORK, N. Y„ U. S. A. 



SELECTED PROBLEMS IN GAS DYNAMICS 

S. GOLDSTEIN 

Ì . Introduction. Originally I was asked to talk about the linearized equations 
of supersonic motion. I had doubts about the suitability of this topic for a talk 
to this Congress, and would have preferred to talk about the shortcomings of 
the linearized theory and also about viscosity; but on preparation I find that 
it is necessary to explain so much about the linearized theory that this talk will, 
in the main, be on that subject. 

Moreover I shall restrict what I have to say to steady, supersonic motion, 
so that I am dealing with hyperbolic equations in three variables, x, y, z. 

First, I would say that we should, in the main, be content if we could usefully 
discuss—I shall not say "solve" at this stage—the equations of gas dynamics 
for a viscous, heat-conducting gas, on the Navier-Stokes assumption that the 
stress tensor is a linear isotropic function of the rate-of-strain tensor. Certainly 
there are situations where further approximations—or a fuller use of the kinetic 
theory of gases—is necessary, but it would be an enormous step forward, and I 
think interesting and in some situations imperative to discuss the influence of vis
cosity and heat conduction. But that would have to be the subject of a separate 
talk. 

Thus we neglect viscosity and heat conduction. But we must pay a price for 
that. Neglecting viscosity and heat conduction means neglecting molecular 
transfer phenomena. Even though the inviscid gas equations are what we may 
call the zeroth approximation of the kinetic theory, if we make such drastic 
simplifications, we cannot really argue from the molecular nature of the gas. 
But the molecular nature of the gas is the only physical argument we have for 
assuming the velocity components continuous, otherwise we should be tearing 
molecules apart. For an inviscid gas we must forego this argument and allow 
surfaces of discontinuity; the solution is then not unique. We may proceed in 
two ways. The first thing we could do would,be to try to find solutions with 
continuous velocities and see if they are physically acceptable. In the second 
place we can use knowledge from experiment and from the theory of viscous 
gases to postulate the kind and position of the discontinuities that we might 
expect or accept. Thus we must be prepared to allow the appearance at any rate 
of vortex sheets and shock waves—and only previous experience will tell us 
much about vortex sheets, at any rate. 

2. Fundamental equations. In the steady motion of an inviscid gas the entropy 
S and the total energy J + q2/2 + fì, which is the sum of the enthalpy J, the kinetic 
energy q2/2 = (u2 + v + w2)/2, and the potential energy fì, per unit mass, are 
constant along each streamline. The usual theory takes them constant through
out the field. With the extra assumption that the velocities are continuous, the 
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motion is then irrotational by the theorems of Kelvin and Helmholtz, and there 
is a velocity potential <j> such that the velocity components are 

(1) fc«^-(£•!;• 5)* 
and <£ satisfies the equation 

ßv (C2 - UZ) (j>XX + (C2 - V2) <j>yy + (C2 - W2) $„ 

— 2uv(j>xy — 2vw$vz — 2wu*}>zx = 0, 

where c is the local sound velocity. S being constant, c2 = (dp/dp)B is a known 
function of I and is given by the constancy of the total energy. I t is also usual 
to specialize to a perfect gas with constant specific heats cp, cv with a ratio of 
y ='Cp/cv ( = 1 . 4 for air), and also to neglect 0, the neglect of 0 being permissible 
except on a meteorological scale or in other very special circumstances. Then 

2 

(3) —^— + l(u + v2 + w2) = constant. 
7 — 1 

But these last assumptions are not always needed, a,nd some progress can be 
made without them. 

In the linearized theory we consider only small perturbations of a uniform 
velocity U, which we take to start with along the axis of x, and if now U + u, 
v, w are the velocity components, terms of the second and higher degree in 
u, v, w and their derivatives are omitted. <£ is now used for the perturbation 
potential, so that u = d<t>/dx, etc., and the linearized equation for <£ is simply 

(4) âp + ëï-ë*'"*» 
where \i is the Mach angle, cot2 JJL = M2— 1, M is the Mach number, M2 = U2/cl, 
and Co is the undisturbed velocity of sound. 

Equation (4), of course, is simply the two-dimensional wave equation. I 
shall not pause here to discuss the possible analogies; my business is to discuss 
the application to supersonic aerodynamics. But it is both interesting and 
efficient that research on supersonic aerodynamics, accoustics, electromagnetic 
waves, water waves, etc., should be carried out in the same place and that 
everyone should learn something of everyone else's business. 

3. Thin body and slender body. We usually consider the perturbation pro
duced by a thin or slender body as an obstacle in the flow, and it is convenient 
to distinguish between a thin and a slender body. A thin body is one whose 
thickness is small in one direction only, and a slender body is one whose thick
ness is small in two directions; the limit of a thin body is a surface, the limit of a 
slender body is a line. A typical thin body is a supersonic airfoil; a typical slender 
body is a pointed body of revolution. 
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4. Boundary conditions. The first boundary condition is that of zero normal 
velocity on the body. For a thin body this may also be completely linearized and 
applied at the mean surface of the body; for a nearly plane airfoil at a small 
incidence lying near the plane z = 0, for example, it may be applied on the pro
jection of the airfoil surface on z = 0. The mean surface, or the projection on 
z = 0 for a nearly plane airfoil, will be denoted by S. 

For a slender body, however, this boundary condition may not be completely 
linearized in the same way, because of the1 nature of the singularity at the axis 
when the solution is continued into the body. 

Other boundary conditions follow from the physical picture that for flow 
past an obstacle there is no disturbance at all upstream of the obstacle, and for a 
finite obstacle no disturbance beyond a finite distance at any section of the 
obstacle by a plane X = constant; in fact the disturbance must have the char
acter of waves proceeding from the obstacle, except in so far as these are re
flected at shock waves, and this reflection is neglected in the linearized theory, 

F I G U R E 1 

For an airfoil, or any thin body, we have to distinguish between leading and 
trailing edges and between supersonic and subsonic edges (see Fig. 1). Super
sonic edges are inclined to the stream direction at an angle greater than the 
Mach angle, subsonic edges at a smaller angle. 

At a trailing edge of a lifting surface, it is now usual to take the Kutta-Jon-
kowski condition to be satisfied, that the velocities shall be finite; grad <f> is then 
continuous at a subsonic trailing edge, but not necessarily so at a supersonic 
trailing edge. There is a trailing vortex sheet whose mean or standard position 
(or projection on z = 0 for a nearly plane airfoil) is denoted by T. It is usual to 
make Prandtl's assumption that the vortex lines are exactly parallel to the un
disturbed velocity U, thereby, even on a linearized theory, neglecting the per
turbation velocity normal to the sheet; at the sheet the correct boundary con
ditions would be that the pressure must be continuous and the velocity tangential. 

In the linearized theory there may be, corresponding with shock waves in a 
more exact theory, characteristic surfaces at which the perturbation velocity is 
discontinuous; at such surfaces the tangential velocity and the normal mass-flux 
are continuous. Except on such surfaces, on vortex sheets extending downstream 
from trailing edges, and on any jet boundaries, for example, that may be present 
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as an assigned part of the problem, the perturbation velocities are assumed to be 
continuous at all points actually in the fluid. 

As another condition, to make the solution definite, it is found necessary in 
supersonic flow to impose the additional condition that the overall aerodynamic 
forces on a body are finite, which is a condition of integrability on the singu
larities. 

The velocity components have infinities, on linearized theory, at a subsonic 
leading edge, and the forces and moments must be found by a limiting process, 
If \j/ is the angle between the tangent to the edge and the direction of the un
disturbed stream, and r is distance, in a tangent plane, normal to the edge, the 
velocity at almost all points on the edge asymptotes Kf112 as r —» 0, 
where K is finite and independent of r. The contribution to the force is 
then wpoK2/(l — M2 sin2 ty)112 per unit length of the edge and normally outwards 
from the edge, where p0 is the undisturbed density; this acts on subsonic edges 
only, where M2 sin2 ^ < 1. 

According to the usual linearized theory, there are also infinities of the 
velocity at the edge of the vortex sheet, which invalidate the solution in that 
neighborhood, and also make rigorous calculations from momentum consider
ations of the forces and moments on an airfoil difficult; this problem has, in fact, 
not been completely solved; in particular, it is difficult to calculate the lateral 
force on a thin wing which is not nearly plane. In a more exact theory the vortex 
sheet would roll up at the edges behind the body, and the rolling-up proceeds 
the more slowly the smaller the strength of the vortex sheet, so the usual as
sumptions of linearization represent an approximation valid in a region which 
increases as the strength decreases, but not uniformly valid in the whole space. 

5. Some general theorems in the linearized theory. The equations may be 
expressed in a rather different form. If U is the vector undisturbed velocity, 
v the vector perturbation velocity, and w the perturbation of the mass flux 
(first introduced by Robinson) so that 

(5) po(w + U) = p(U + v) 

where p is the density and po the undisturbed density, then the field equations 
are simply 

(6) curl v = 0 div w = 0 

and, to a linear approximation, 
U-v 

(7) w = v - — U. 
Co 

The pressure perturbation is given by 

A? 
(8) P» 

_£ = — U-v to the first order 

= — U'V — i V'W to the second order. 
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If now Vi, lui ; i/2, 102 satisfy the linearized equations and are bounded and con
tinuous on and inside a closed surface except that Vi, v2 may be discontinuous at 
a characteristic surface of the linearized equation, then 

(9) / {(wrn)vi + (wvri)v2 — (vvw^n] dS = 0 
Ja 

where n is unit normal vector to S. This quadratic identity, given by Ursell 
and Ward, is used by them to prove uniqueness with the Kutta-Jonkowski 
condition imposed, and a general reversed flow theorem. Reversed flov theorems 
had, in fact, been previously given by many authors. What Ursell and Ward 
show is mathematically expressed as 

(.10) U- f (Api7i2 + Ap2ni) dS = 0. 

We consider two boundary surfaces for thin bodies having the same mean 
surface, 2, or, for nearly plane bodies, the same projection on z = 0. They are in 
opposite flows, U, — U*, Vi, i/2 are the perturbation velocities on linearized theory; 
Api, Ap2 are the linearized perturbation pressures (Ap< = PQU-Vì, i = 1,'2). 
Now the integrals are related to the forces and moments on the thin body, but 
since Api, Ap2 are first order linearized perturbation pressures, the forces and 
moments so calculated do not include contributions from the suction forces on 
sharp subsonic edges. Usually rii and n2 are unit normals to the surface of the thin 
body, but they may in fact be any vector functions of position so long as, on 
2, Vi, v2 satisfy the boundary conditions 

(11) n-Vi = -Urti 

(i = 1,2), and this allows all, or any part, of either surface to be given a rotation 
with a small angular velocity. Since also the surfaces need not be the same, 
having only the same mean surface or projection, parts of either surface may be 
warped to obtain the effects of control surfaces, etc. Thus the theorem is very 
general. Simple examples are: 

Drag forces (with leading edge suction neglected) are the same for the same 
body in the reversed flow, and so is the initial slope of the curve of lift against 
incidence. Again, the rolling moment due to a given rate of yaw is equal to the 
yawing moment in the reversed flow due to the same rate of roll. 

6. Conical flows. I should say a few words next on methods of solution. A 
mathematically simple and elegant method of solution may be found for the so-
called conical flows (originally discussed by Busemann) in which u, v9 w are 
homogeneous functions of x, y, z of degree zero, and so are constant along all 
radii vectors through the origin. The downstream half of the cone of semi-
vertical angle /* with vertex at the origin is the Mach cone of the origin. Outside 
the Mach cone, u, v, w satisfy the simple wave equation 
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(12) Ùt = *» 
da2 dd2 

and inside, the harmonic equation 

where 

(14) 
sec a cos 6 I sec a sin 0 

x t a n p, T a \ ' % ^ a n M i • a 
n secli s cos 0 J ^ sech s Bin 0 J 

Thus inside the Mach cone, M, v, w are the real parts of three functions gi, g2, 
03 of f = eß+l0 and it may be shown that 

(15) 0ÌQ-):^(f):^i(f) = 2r tan M: -(f2 + 1) ̂ '(f2 - 1) 

where primes represent derivatives. Similarly outside the Mach cone 

u, v, w, = /il2,3(o- + 0) + Flt2,,(o- - 6) 

and 

fi-fati = — tan /x:cos(o- + ö):sin(o- + 0) 
(16) / , , 

Fx'.Fz'.Fs = - tan/x:cos(cr - 0):-sin(or - 0). 
This method is used to solve problems of flow past thin cones, past plane 

triangular airfoils, and, by superposition, past plane polygonal airfoils, and to 
solve many other problems of physical and engineering interest. In some cases 
(e.g., cone with wing attached inside the Mach cone) the boundary conditions 
are mixed and the problem remains of some difficulty, but most problems are 
easy. 

The method has been generalized by Lagerstrom to include the method of the 
integration of conical field solutions with different vertices, and by Germain to 
the case when (j> is a homogeneous function of degree n. 

Now in linearized conical field solutions there are discontinuities at the Mach 
cone. The velocities are finite, but their derivatives are infinite like 1/(1 — r)1/2, 
where r = 1 is the Mach cone of the vertex. We therefore expect attempts to 
improve linearized theory by successive approximation to fail, since the ratio of 
succeeding approximations, or rather of succeeding terms added to form a series, 
will have a factor 1/(1 — r)1/2, and any such series will diverge near the Mach 
cone. 

7. The method of sources and sinks. For nearly plane thin bodies (airfoils), 
the problem is solved by the use of Hadamard's solution of the general second 
order hyperbolic equation. 

Fors > 0 
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(17) 

A> ( \ 1 ff \dÈWltl^)'] 

dx' dy' 

over the part of z = 0 for which x' ^ x — cot n\y — y' \ . 

.J° 0 ( o r i g i n ) 

»«•' V 

°A. 

FlGUEE 2 

The problem is divided into two parts, for one of which 0 is even and d^/dz 
odd in z, and for the other $ is odd and dcfr/dz even. The above formula solves the 
symmetrical problem immediately, since òfyjbz is known from the boundary con
dition on S and d<j>/dz = 0 elsewhere on z = 0. For the antisymmetrical problem 
d(j)/dz is given on 8, dcj>/dx = 0 on T and 0 = 0 on the rest R of the plane z = 0, 
4> is continuous in z è +0 and grad <£ is finite on the common boundary of S 
and T. The problem is solved if </> is found on S, since 0 is then known every
where on z = 0. The formula is transferred to characteristic coordinates a = 
x — y cot /*, ]S = # + t/ cot p so that 

(18) (*). 3 = 0 

_ /Y /(o/, ß') dec' dß' 
- ii ((« - «')(/3 -ß'))m 

where /(a', 0') is known on S, and the integral is over a! ^ a,ßf ^ ß. The solution 
is completed, step by step, by solving an integral equation of Abel's type. This 
type of solution is originally due to Eward, and has been further considered by 
Ward and by Germain. 

A very neat solution is possible if the subsonic trailing edges are independent 
(P and Q are not on the subsonic edges in Fig. 1). There is no time to go into the 
details of the solution at any length, but the first step may be briefly sketched. 
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(j) and all its derivatives are identically zero upstream of the envelope surface 
of all the downstream Mach cones with vertices on the supersonic leading edge 
LM (Fig. 2), so that /(«', ß') = 0 on the plane z = 0 forward of L'LMM'. For 
a point (a, ß) on S in LQM, f(a, ß) is therefore known in the whole region 
of integration, and the|formula (18), as it stands, may be. used to find 

Now consider a point (a, ß) in the region M'MTxTi (Fig. 2). In this region 
(0)gl=o = 0. Consider now only the case in which ß is a single-valued function, 
Ai(a), of a on PLM, and a single-valued function, A2(a;), of o: on MNP. Then in 
the integral for ((j>)z^ in (18) the limits for a' are 0 and a, and the limits for ßf 

are Ai(a') and ß; when ß' is between Ai(a') and A2(«
/)? /(a'> ßr) is known (since 

the relevant point is on 8), and is equal, say, to \(a', ßf)\ when ßf is between 
A2(a') and ß, /(os', ß') is unknown; let its value be p(af, ßr). Then we must have 

flQi f da' J [A*<a,)\(a',ß>)dß' fß n(*',ß')dß'\__a 
U y ; Jo (a - c/)1/2 I ^ l ( «o 0» - ß')1/2 ^ Ll*>) 08 - £')1/2 J ' 

This is an integral equation for the quantity in braces; its solution is that this 
quantity is zero. (This gives another integral equation, this time for /j.(a', ß'), 
which may be solved for n(a', ß').) 

The value of $ is now found at once for a point on S in TiTÏQ'M. We suppose 
that on LMN, a is a single-valued function, Bi(ß), of ß. Then for a point in 
TxTiQ'M 

W\ = f f" f(a'> ß')da' dß' 
W ° = 0 io ^1(B») (oc - a')1'2 (9 - ß')Ui 

(9M = f <*"' fß H<ß')dß' 
KM} i- iw (« - «0 lf l W ) 0?-/5')1/2 

f Bl(<"> da' f /""<"'> \(a',ß')dß' , fß nW, ß') dß' 
+ io (oc - a')1'21 î C«<> O? - ß')m /*.<«'> (0 - j8')1/2 

From the previous result, the quantity in braces is zero, so that only the first 
line of this last expression for <f> survives, involving only the known function 
x(«', ß'). 

To find <t> for a point on NTiT", the result for iV'TiAT must be used. But 
here we are on the trailing vortex sheet, so that $ is not zero; it is a function of 
y only, and therefore of a — ß. This function vanishes on TiSi. We may proceed 
as before if we assume this function to be known, and later this function is, in 
fact, determined by the condition that there shall be no infinity in the velocity 
on the boundary T\N. 

8. Heaviside operational method. The most interesting problem considered 
by this method is the flow outside and inside a nearly circular duct, calculated 
by G. N. Ward. 
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Wall 

Axis of Pipe 
FIGURE 3 

The most interesting result relates to the singularities for the flow inside the 
duct. The same singularities occur for flow along a circular pipe, initially of 
constant cross-section, when the cross-section changes in such a way that the 
boundary of a meridian section has a discontinuous tangent. Along the leading 
characteristic we have a discontinuity, either a compression or an expansion. 
This is reflected, according to linear theory, at the axis as a logarithmic singu
larity, reflected again at the wall as a logarithmic singularity, then reflected at 
the axis as a discontinuity of opposite sign, and so on (Fig. 3). This is quite 
different from the result on linearized theory for two-dimensional flow, where all 
discontinuities are of the same sign. Although we know that the flow inside 
breaks down, with the appearance of shock waves, the relation of the linearized 
solution to the exact inviscid solution is still an interesting unsolved problem. 
Is the linearized solution here completely wrong after the leading characteristic? 

9. Improvement of the linearized approximation. To improve the linear ap
proximation we might first try a method of iteration equivalent to expanding 
0, as nearly as possible, in a power series of the thickness t. This can be attempted 
both for flow past a thin body and for flow past a slender body. For a pointed 
body of revolution, Broderick found it necessary to use a series of the form 

(21) 
0 = U2 + t% + t*{fa + 04 log t} 

+ fl*i + rfa + 06 log t + 06(log t)2) + 

For a body of revolution $3 and $B are identically zero, <t>2, fa , and fa were foimd 
explicitly. The assumption of a potential neglects the entropy change at the bow 
shock wave, but it appears that this entropy change is in fact 0(t12). An approach 
like this fails not only when the Mach number M is too near unity, or is too large, 
but also near the bow shock wave for any Mach number. The solution obtained 
differs from uniform flow only inside the Mach cone of the vertex, and gives no 
better approximation to the position of the shock wave; the series diverges on 
the Mach cone. In fact it is valid only near the body. Nevertheless to obtain it 
the condition must be used that the solution represents waves outward from the 
body with no inward-moving waves, and this is a boundary condition at a large 
distance. If this is not done, the only other available method is to use boundary 
conditions at the bow shock wave. But for this, the solution at and near the 
shock wave must be improved, and this cannot be done by successive approxi-
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mation. It has been done, by an entirely different technique, for conical flows. 
For flow past a cone, for example, for which an exact numerical solution is also 
known, full analytical and numerical comparisons may be carried out, and the 
scries solution (21) appears to be correct under the conditions assumed. 

F I G U R E 4 

Extensions to bodies of revolution at yaw, and to bodies of revolution the 
slope of whose meridian section is discontinuous, have been made by Lighthill ; 
and Ward tells me that it can be extended to the general slender body. 

For a thin body the expansion in powers of the thickness is different: it begins 

(22) 0 = jfc + t f f c + . . . . 

A second approximation has been found, by Moore at Cornell University under 
Professor Sears, for an arrow-head wing of finite thickness (Fig. 4), i.e., a tetra
hedron of which one side of a section is the thickness parameter that is considered 
small. This flow is a conical flow, and Moore uses boundary condition at the 
shock on the improved theory to complete his solution. 

10. Improvement near a singular characteristic. To improve the linearized 
conical flow solutions, for example, and in other cases, the mathematical problem 
therefore arises of improving the solution of a hyperbolic partial differential 
equation near a singular characteristic. A method that has been developed and 
used by Lighthill is an extension of that used for an ordinary differential equa
tion near a singular point, and, in particular, of a method used in discussing 
nonlinear oscillations and the appearance of a limit cycle, a method that dates 
back to Poincaré—in the Mécanique céleste—except that the question there is, 
for an ordinary differential equation, rather harder than is needed, since the 
singularity is, in fact, an irregular singularity in such cases. A simple example 
would be 

(23) (x + au)p+ q(x)-u = r(x) 
ax 

with a small and x = 0 as a singular point of the linearized equation. The method 
is to introduce a new variable z for which 

(24) x = z + otXi(z) + ax2(z) + • • • 

(25) u = Uo(z) + <xui(z) + • • • . 



290 S. GOLDSTEIN 

Equation (24) defines z, and we may choose Xi, etc. in lefining z so that the 
series for u converges as well near the singular point as elsewhere. This can be 
extended to singular characteristics of hyperbolic partial differential equations. 
An example might be the equations 

du ( , dv\ du 
— = a I u + — J — 

(26) dV V dy)dX 

dv 
— = U 
dx 

with a small. For the linearized equation, du/dy = 0, of which the solution is 
u = Uo(x), and this may have a singularity at x = 0, say Uo ~ A/xq, where 
q > 0. 

We write 

x = z + axi(z, y) + a2z2(s, ?/) + ••• 

(27) u = iio(s, 2/) + aiti(z, y) + • • • 

y = vo(2, y) + oî («, y) + • • • 

and X\(z, y), etc. may be found so that the expansions for u and v are valid in a 
region including x = 0. 

11. Application to conical flows. Lighthill has applied this method to conical 
flows. If r = 1 is the Mach cone of the origin on linearized theory (r being equal 
to sec o- or sech s in equation (14)), the velocity potential 0 is expressed as 

(28) 0 = Ux[l + f(r, fl)]. 

The variable is then changed from r to R, and / expanded in a series 

r = R + n(d) + r2(R, 0) + n(R, fl) + • • • 
(29) 

/ « MR, 0) + f2(R, fl) + MR, fl) + •. -

where / = /i is the linearized solution, /2 is quadratic in /i and its derivatives, and 
so on, and rk is of the same order as fk. Then n,r2, etc. are to be found so that 
the expansion for / is valid in a region near R = 1. The solutions are found 
separately for R > 1 and for R < 1, and, for given r and fl, R has different 
meanings in the two cases; the regions of validity of the two solutions overlap, 
and in the region of overlap, boundary conditions may be applied, appropriate 
to the appearance of a shock wave, to determine the approximate position of the 
shock at which these conditions hold. 

12. Improvement of solution at infinity. For hyperbolic partial differential 
equations, approximation solutions may also be nonuniform at infinity owing 
to the deviation of the characteristics. As we go to infinity along one set of 
characteristics, the slope may be everywhere nearly the same as on linear theory, 
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but the characteristic curve itself may be changed in position by an infinite 
amount. If we go to infinity along a linearized characteristic y = constant, it is 
sufficient, in order to improve the approximation, to replace y by a more nearly 
exact characteristic coordinate z, which is itself found by an expansion in y. 
The simplest example, considered by Whitham, is 

2— A- 2b— 4- - 4- 7 — = 0 
dr dx r dx 

(30) 
i.e., f (ur1/2) + b f (ur1/2) + | kur1/21* = 0. 

dr dx dx 

For the linearized equation the solution is 

(3D u = ±f(x - 6r). 

(Here we suppose, not that k is small, but that u is small because r is large.) 
In this particular case the full equation may be solved exactly and the solution is 

(32) « » - S?S 

with 

(33) x = br - zr1/2 - h(z), 

where h(z) is an arbitrary function of z. Hence, along z = constant 

and z = constant is an exact characteristic. 
The above type of analysis has been applied to study the flow at a large distance 

from a body of revolution, where linearized theory fails. Mach lines intersect the 
bow shock wave, which is thereby weakened and curved inwards. The equation 
of the bow shock wave is found to be of the form 

(35) x = r cot /io —. brlß — c — - ^ + 

and that of the rear shock wave of the form 

(36) x = root MO + &r1/4+ •••. 

At a constant value of r, the pressure falls approximately linearly between the 
shocks. 

THE TECIINION, 
HAIFA, ISRAEL. 



ON THE STABILITY OF LAMINAR FLOW1 

W. HEISENBERG 

The stability of laminar flow has for a long time been a subject of considerable 
dispute, and it is only recently that clarity has been achieved in the essential 
points. Recently two surveys of the problem, by Lin [3] and by Tollmien [13] 
have been published. Since these surveys and the calculations contained in them 
have contributed essentially to the clarity in this problem, I need not here repeat 
the survey in detail. I would like however to go shortly through the history of the 
problem and to add a few remarks at those points where I think that a further 
clarification is necessary. At the same time I would like to discuss the physical 
interpretation of the mathematical results and to compare it with the physical 
interpretation of the statistical isotropic turbulence. 

1. We confine ourselves in the usual way to the two-dimensional • flow be
tween parallel walls, and we know from the work of Squire that the extension 
to three-dimensional perturbations would not alter the problem essentially. 
Let us call the original velocity distribution w(y), the perturbation in velocity 
u and v, with 

d\fs d$ 
u = —-, v — — -H 

dy ' dx' 

and put 
to) = <p(yWa{0Mt), 

then 

(1) (w — c)(<pff — a2<p) — v)"<p = ~—7z (<pnr — 2ct <p" + câ<p) 

according to Orr [6] and Sommerfeld [9]. 
This differential equation represents an eigenvalue problem of a similar type 

to those one meets in wave mechanics. It is therefore natural to use similar 
methods for solution in both cases, and I would like to mention that the asymp
totic method [1] which was used long ago in treating equation (1) was essentially 
the same method which later in wave mechanics has been worked out by Wentzel, 
Kramers, and Brillouin. 

If one wants to know the stability at very large Reynolds numbers, it is 
natural to put the right side in the Orr-Sommerfeld-equation equal to zero and 
to omit two boundary conditions. The liquid then is allowed to slip along the 
walls and one gets the equation used by Rayleigh: 

(2) (w - c)(<p» - «V) - w»<p = 0. 

1 This address was listed on the printed program under the title Die Stabilitätsfragen der 
Flüssigkeitsdynamik im Zusammenhang mit der statischen Turbulenztheorie. 

292 



ON THE STABILITY OP LAMINAR FLOW 293 

This equation is sufficient to decide the instability in all cases where damped or 
amplified solutions of (2) exist, because then (2) contains no singular point in 
which viscosity could come into play. It should also be emphasized—and this is 
a point in which I cannot agree entirely with the mathematical formulation in 
Lin's analysis—that whenever there is a damped solution of (2), there must also 

a 

STABILITY 

F I G U R E 1 

be an amplified one with the same wave length, because one may simply change 
the sign of a in (2). Physically you may say that one may always simply reverse 
the sign of time in any mechanical problem in which viscosity plays no role. I t 
does play no role here for damped or amplified solutions since the inertia forces 
(left side of (1)) are at every point much stronger than the viscosity (right side 
of (1)). Therefore for every damped solution one can find an amplified one, and 
every profile of such type is unstable at very high Reynolds numbers. 

The real problem, however, arises from the fact that equation (2) allows such 
solutions only for very special profiles, namely profiles with a point of inflection 
(w'f = 0 for y = yQ). As early as 1880 Lord Rayleigh has shown that one can 
have amplified solutions for such profiles, and starting from the complete equation 
(1) the limits of instability for finite Reynolds numbers are given by a curve of 
the type of Fig. 1. (Compare [14], [3], and [13].) 

2. But some of the most important profiles have no point of inflection, and it 
is for those that one must from the beginning go back to the complete equation 
(1), This is already necessary in any case where one considers neutral distur
bances; because for real values of c, equation (2) contains the singular point 
w = c where viscosity becomes important. The simplest profile of this type is the 
Couette motion w(y) = y, where (2) has no solution, and v. Mises [4] and Hopf 
[2] accordingly had shown very early that (1) leads only to damped vibrations. 
The linear profile has been therefore known to be stable long ago. It should be 
emphasized in this connection, that a damped solution of equation (1) does 
generally not go over into a solution of equation (2) in the limit R —> *>, since 
equation (2) has generally no solution. In fact, as Lin has pointed out, there is a 
radical difference between the damped and the amplified solutions of equation 
(1), contrary to the behaviour of equation (2). Generally one should expect that 
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in the limit R —» co g, solution of (1) will not go over into a solution of (2) which 
fulfills the boundary conditions ; but for every solution of (2) there will be a solu
tion of (1) which approaches it in the limit R —» oo. 

The next simplest profile is the Poiseuille motion between parallel walls 

w = 1 — y2 (walls at y = ± 1). 

For this distribution equation (2) has one solution corresponding to a somewhat 

STABILITY 

1/3 
R 

FIGURE 2 

degenerate neutral disturbance: <p(y) = w, a — c = 0. It looked natural to try 
whether this solution would change into an amplified solution when viscosity 
was taken into account. When this problem was attacked in 1924 by the method 
of asymptotic expansion [1], it turned out that one actually did get instability, 
and recently the much more accurate calculations of Lin [3] have confirmed this 
view. One gets an instability range of the type shown in Fig. 2. Naturally both 
branches of the neutral curve go to a —» 0 for very large R, because they must 
tend towards the solution <p(y) = w, a = c = 0. (In the paper of 1924 only one 
branch was calculated, the other one was very roughly estimated; the curve 
above has been given by Lin [3].) 

Thus the calculations seemed to give the very natural result that whenever 
equation (2) has any solution at all (amplified, damped, or neutral), then the 
profile becomes unstable at sufficiently large Reynolds numbers. It should be 
mentioned, however, that not all recent calculations on the Poiseuille motion 
have led to this result; e.g., Pekeris [7] seems to get stability, at least for very 
small values of a; so that it would certainly be worthwhile to extend the cal
culations, possibly also on the higher harmonics. 

The result described would probably have been generally accepted as plausible 
if shortly after 1924 a paper of Noether [5] had not appeared, in which he claimed 
to show that a curve of neutral disturbance can never exist for any continuous 
velocity distribution. The mathematical methods of Noether were better than 
those in the earlier papers, and the whole situation became rather obscure. 
Then in 1929 Tollmien [14] took up the question of stability for profiles of the 
boundary layer type. He got instability for such profiles and was able to calculate 
the limiting neutral curve. Quite recently, in 1944, Tollmien [13] has improved 
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the mathematical methods considerably and got similar results, and in 1947 
Schubauer and Skramstad [8] could prove by careful experiments that Toll-
mien's calculation of the stability limits was correct. 

Therefore the paper of Noether, which in his time had made the whole theory 
of instability suspicious, seems to contain some mistake, but this mistake has 
not yet been found. 

Concerning the experimental side of the problem one should add that in any 
given experiment the limit of stability may be quite different from the theoretical 
one as soon as the experiments introduce new sources of instability which are not 
accounted for by the simple theory. 

For instance the primary turbulence of the wind tunnel in which the experi
ment is done can according to Taylor [11] produce instability, and the same may 
be true for any perturbations of the stream at the entrance into the region of 
measurement. But this does not change the validity of the simple theory. 

3. Taking now for granted that instability arises generally even in those cases 
in which the inviscid equation allows only a neutral solution, the question arises 
how viscosity can cause instability. From simple arguments one would expect 
damping rather than amplifying. But here one should remember that an inviscid 
fluid is a system of an infinite number of degrees of freedom, which normally in
teract so that the energy is dissipated among all modes of vibration. I t is only for 
very special geometrical conditions that this transfer of energy does not take 
place. Therefore, if a neutral disturbance is possible in the inviscid fluid, the 
viscosity may easily change the phases of the vibration in such a manner that the 
transfer of energy begins, which then means amplification of the vibration. 

There it is very probable, though not certain, that the amplification of the 
perturbation leads at once to complete turbulence, that is, to the statistical dis
tribution of energy among all degrees of freedom. This is not quite certain since 
we know from the work of Taylor [10] on the cylindrical Couette case that special 
modes of vibration may be developed which have been described as cellular 
motions and which do not mean real turbulence. But this seems to be a special 
consequence of the centrifugal forces. In most cases the instability can safely be 
assumed to lead directly to turbulence. Such turbulence need not be isotropic 
since the walls introduce deviations from isotropy, but it will be a statistical 
distribution of energy among many degrees of freedom. 

Finally the question remains: what happens to those profiles where the in
viscid equation (2) has no solution at very high Reynolds numbers? These 
profiles certainly will be stable at extremely high Reynolds numbers if one can 
keep away all outer perturbations, e.g. at the entrance of the flow. But for a 
finite perturbation one should expect that there will be a Reynolds number from 
which on these perturbations will start the exchange of energy between the dif
ferent degrees of freedom going, and thereby will cause turbulence. This has, 
however, never been followed mathematically. 
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ON THE BOUNDARY VALUE PROBLEMS OF THE MATHEMATICAL 
THEORY OF PLASTICITY 

WILLIAM PRAGER 

1. Introduction. The mathematical theory of elasticity is based on Hooke's 
law which establishes a linear relation between the tensors of stress and strain, 
To a given state of strain this law lets correspond a uniquely determined state 
of stress without regard to the process of deformation which led to the con
sidered state of strain. The mathematical theory of plasticity takes account of 
the fact that real solids, in particular, structural metals, exhibit the mechanical 
behavior stipulated by Hooke's law only as long as the stress intensity remains 
sufficiently small. For an isotropic material the stress intensity must be a scalar 
invariant of the stress tensor, e.g., the maximum shearing stress (Tresca [10]) 
or the octahedral shearing stress (Nadai [7]). 

When the stress intensity first reaches a certain critical value, the material 
leaves the elastic range and enters the plastic range. In the plastic range, the total 
strain is the sum of the elastic strain, which disappears upon return to the stress-
free state, and the permanent plastic strain. For the ideal plastic material con
sidered in the following, the stress is related to the elastic strain by Hooke's 
law and to the rate of change of the plastic strain by Mises' law [6]. The latter is 
homogeneous of the order zero in the components of the plastic strain rate. 
Accordingly, the state of stress reached by a certain deformation process is 
independent of the speed with which this process is performed. In other terms, 
the plastic material considered here is inviscid. The stress intensity can never 
exceed the critical value mentioned above, and changes in plastic strain can occur 
only while the stress intensity maintains this value ; as soon as the stress intensity 
sinks below this value, any change of strain is of a purely elastic nature. 

2. Contained plastic deformation and impending plastic flow. Since an ex
haustive discussion of the boundary value problems of the mathematical theory 
of plasticity is not possible in the time allotted to this talk, the following remarks 
will be concerned with a typical boundary value problem in plane strain. 

Fig. 1 shows a tensile specimen with semicircular grooves which is supposed to 
be tested under conditions of plane strain. As the surface traction T applied to 
the end sections AA' and BB' is gradually increased starting from zero, the 
specimen is first stressed in a purely elastic manner. Eventually, the stress 
intensity reaches the critical value fc at the bottoms C, Cf of the grooves, and 
plastic regions begin to form there. The value Te of the surface traction for which 

* this is the case marks the end of the elastic range of loading. 
According to the numerical work of Allen and Southwell [1] Te = .66fc, where 

fc is the critical value of the stress intensity (maximum shearing stress). For T = 

297 
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l.Oöfc the plastic regions, as determined by these authors, are indicated by 
shading in Fig. 1. While finite amounts of material are stressed plastically in this 

*-x 

FIGURE 1 

case, large plastic deformations are ruled out by the fact that there is a central 
elastic strip separating the peripheral plastic regions. The overall elongation of 
the test specimen under this surface traction1 is determined primarily by the 
elastic properties of this strip. In particular, to increase the elongation we must 
increase the surface traction T. This type of elastic-plastic behavior character
izes the range of contained plastic deformation. Throughout this range, the 
specimen assumes a definite overall elongation for each value of the applied 
surface traction just as in the elastic range. Whereas, in the elastic range, the 
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elongation is proportional to the surface traction T, this is no longer the case in 
the range of contained plastic deformation. 

As we keep increasing the surface traction T, the plastic regions increase in 
size, and eventually a bridge of plastic material is formed which extends all the 
way across the specimen. At this instant of impending plastic flow, the specimen 
is first able to extend under constant surface traction. The surface traction T/ 
for impending plastic flow characterizes the load carrying capacity of the speci
men, and is therefore of major importance to the structural engineer. 

Before entering upon a discussion of the boundary value problem in the range 
of contained plastic deformation and the determination of bounds for the load 
carrying capacity, let us remark that the development of the plastic regions 
from the elastic limit to the instant of impending plastic flow may take place in 
a rather unexpected manner. According to the computations of Allen and South
well [1], new plastic regions begin to form at the points marked D, Df in Fig. 1, 
when the surface traction T reaches the value 1.20fc. At this instant the plastic 
regions which developed from the points C, C are not much larger than the 
shaded regions in Fig. 1 which correspond to T = 1.06fc. The new plastic regions 
originating at the points D, D' spread extremely fast; for T = 1.22fc, they attain 
already the size indicated by the dotted lines in Fig. 1 and are about to merge 
with the plastic regions which originated at the points C, Cf. 

3. The boundary value problem in the range of contained plastic deformation. 
For a given surface traction T satisfying Te ^ T ^ Tf , the boundary value 
problem for the stresses is most readily formulated in terms of Airy's stress 
function <p(x, y). This must be of class C2 throughout the region which the speci
men occupies in the x, y plane (Fig. 1). Moreover, the function <p and its normal 
derivative d<p/dn (n = interior normal) must satisfy the following boundary 
conditions : 

along A A1 and BB'\ 

<p = Tx2/2, dcp/dn = 0, 

along AE, A'E', BF, and B'F'\ 

(1) <p = 2Ta2, dip/dn = -Ta, 

along ECF and E'C'F'i 

tp = Ta2(2 - sin 0), d<p/dn = -Ta sin 0. 

Finally, 

(2) (fc - <pyy)
2 + 4<4 = 4fc2 

in each plastic region, fc being the critical value of the stress intensity, while 

(3) VV = 0 and (tpm - <pyy)
2 + 4.<p2

xy < 4.k2 
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in the elastic region. Note that the curves separating elastic and plastic regions 
are not known beforehand but must be found from the condition that <p and its 
first and second derivatives must be continuous across these curves. 

Obviously, boundary value problems of this kind are extremely difficult to 
solve. It is not surprising, therefore, that exact solutions have been obtained only 
in a few particular cases [3,8]. The special methods which were successful in these 
cases are not applicable to the general problem outlined above. Some approximate 
numerical solutions have been obtained by Southwell and his collaborators 
[1, 5]. 

4. Bounds for the surface traction for impending plastic flow. In view of the 
fact that general methods of stress analysis in the range of contained plastic 
deformation are not available at present, it seems worth noting that bounds for 
the surface traction Tf for impending plastic flow can be obtained without 
difficulty as was shown recently by Greenberg, Drucker, and Prager [4]. 

F I G U R E 2 

To obtain a lower bound for Tf , consider the following relaxed problem for the 
stress function <p(x, y). Instead of requiring <p to be of class C2 throughout the 
region which the specimen occupies in the x, y plane, we now require only that 
it be of class C2 in each of a finite number of subregions, the function and its 
first derivatives being continuous across the lines separating adjacent sub-
regions. In addition to satisfying the boundary conditions (1), the function <p of 
the relaxed problem needs to satisfy only the relation 

(4) (<Pxx — <Pyyf + 4<plv g 4fc2 
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in each of the subregions under consideration. It can then be shown that for any 
value of T for which the relaxed problem has a solution, the full problem de
scribed in the preceding section also admits a solution. 

From physical considerations, it seems likely that the solution of the full 
problem is unique (in this connection, see a recent paper by Galin [2]); the re
laxed problem, however, admits an infinity of solutions, and some of these are 
readily obtained. Any value of T for which a solution of the relaxed problem can 
be constructed is then a lower bound for the surface traction Tf for impending 
plastic flow. 

Fig. 2 indicates a simple solution of the relaxed problem. In each of the shaded 
subregions the function <p is a second order polynomial in x and y which satisfies 
(4) in the form of an equality; in the remainder of the specimen <p is linear in 
x and y and hence satisfies (4) as an inequality. Such fields of constant stress 
separated by straight lines of discontinuity were first discussed by Prager [9]; 
the particular pattern shown in Fig. 2 is due to Winzer and Carrier [11]. The 
corresponding value of T is found to be 1.26fc. Note that this lower bound for Tf 
slightly exceeds the value 1.22fc given by Allen and Southwell. This may be due 
to the error introduced by replacing differential equations by difference equations. 
Alternatively, it may be possible that the bridge of plastic material which ex
tends across the specimen must attain some finite width before the specimen 
begins to extend under constant surface traction. 

An upper bound for Tf can be obtained from kinematic considerations. It can 
be shown that not only the applied surface traction Tf , but even all local stresses 
and, hence, the elastic energy stored in the specimen remain constant during 
the incipient plastic flow. Accordingly, all work done by the applied surface 
traction during the incipient plastic flow is dissipated in producing permanent 
strains. 

To express this condition mathematically, consider a velocity field with 
components vx , vy defined throughout the region which the specimen occupies in 
the x, y plane and of class C1 in each of a finite number of subregions. In each of 
these, the velocity components must satisfy the condition of incompressibility 

(0) ô i H dy U' 

across the line I separating two adjacent subregions, the velocity component 
vn normal to I must be continuous, while the component vt tangential to I may 
be discontinuous. 

For the plastic material considered here, the rate of dissipation of energy 
associated with such a velocity field is 

(6) fc //{(2S)*+(ë+|-)*H+/H 
where the first integral includes all subregions and the second all lines I separating 
adjacent subregions, the absolute value of the jump in v% across I being denoted 
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by [v*]. If the considered velocity field is the actual velocity field during the 
incipient plastic flow, the rate at which energy is dissipated in plastic flow must 
equal the rate 

(7) T/ I {vy(x, 4a) — vy(x, —4a)} dx 
J—a 

at which the surface traction Tf does work. Greenberg, Drucker, and Prager 
[4] have shown that the value of Tf obtained by equating (6) and (7) for an 
arbitrary velocity field is an upper bound for the actual value of the surface 
traction for impending plastic flow. 

FIGURE 3 

Fig. 3 shows a very simple discontinuous velocity field: the shaded portion 
moves as a rigid body in the direction indicated by the arrow, while the un
shaded portion remains at rest. It is found that the upper bound for Tf obtained 
from this field assumes the minimum value 1.5fc when the Une of discontinuity 
G'G is inclined under 45° against the x axis. Thus, even the very crude stress 
and velocity fields discussed in connection with Figs. 2 and 3 give the following 
bounds for the surface traction Tfi 

(8) 1.26* STf ^ 1.50fc. 

By considering a more plausible velocity field, the author has been able to 
decrease the upper bound for Tf to 1.39fc. This value, together with the lower 
bound from (8), determine Tf to within about ± 5 per cent. 
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MATHEMATICAL THEORY OF WATER WAVES 

J. J. STOKER 

The mathematical theory of gravity waves in water begins with Laplace 
(1776), but the first complete derivation of the basic hydrodynamical theories 
was given by Lagrange during the period from 1781 to 1786. Lagrange de
veloped not only the basic exact nonlinear theory, but also the two best known 
approximation theories: the linear theory which arises when the free surface 
amplitudes are considered to be sufficiently small and which leads to problems 
in potential theory with mixed boundary conditions; and the nonlinear shallow 
water theory in which the simplification arises through the assumption that 
the depth of the water is small compared with some significant horizontal 
dimension such as the wave length of the surface waves. 

The general theory developed by Lagrange seems not to have been applied 
to concrete cases for some years. Indeed, even the problems posed by the linear 
theory seem to have been considered so difficult that the Paris Academy in 1815 
proposed as its prize problem the problem of determining the motion of the 
water in a pond that results when a stone is tossed into it. This problem was 
solved by both Cauchy and Poisson by rather different methods on the basis of 
the approximate linear theory mentioned above. 

After about 1840 interest in the field shifted from France to England, where a 
considerable number of the great English mathematical physicists of that day 
interested themselves in various problems concerning water waves. These in
clude Stokes, Airy, Kelvin, and Rayleigh. Kelvin, for example, was the first to 
find a solution of the ship wave problem in its most primitive form in which the 
ship is considered to be a moving pressure point. Oversimplified though this 
model is, the difficulties in interpreting and discussing the integral representation 
of the solution are nevertheless quite formidable, and Kelvin was led to develop 
for this purpose the now widely used method of stationary phase—the prototype 
of the very important methods, such as the saddle point method, which are 
used to yield asymptotic developments for the solutions of many problems in 
wave propagation. Only recently [24]1 (1949) has the complete asymptotic 
development for the solution of Kelvin's ship wave problem (in which Kelvin's 
solution by stationary phase turns out to be the term of lowest order) been 
given. 

Beginning about 1870 and continuing to about 1905 interest in water wave 
problems in France revived once more. The best known names associated with 
this development are those of de St. Venant, Boussinesq, and Poincaré. B. de St. 
Venant and Boussinesq represent a tendency which has been, and still continues 
to be, very strong in France; and that is the pursuit of what might be called 

1 Numbers in brackets refer to the bibliography at the end of the paper. It should be 
pointed out that this bibliography makes no claim to completeness, above all with regard 
to the older literature, since this latter task is well performed in the generally available 
book of Lamb. 
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mathematical hydraulics, or the study of flows and wave motions in rivers and 
other shallow open channels. The mathematical basis for this work is the second 
of the two approximate theories mentioned above, i.e., the nonlinear shallow 
water theory of Lagrange and extensions of it due to de St. Venant [4] and 
Boussinesq [1]. This theory has been used to study flood waves in rivers [2, 6], 
flood tides in estuaries, the development and propagation of bores, and regula
tion by dams in rivers to prevent floods. Poincaré in his Mécanique céleste, vol. 
3 (1905) appears to have been the first to study the development of breakers 
from a smooth motion by using the theory of characteristics for a second order 
hyperbolic differential equation in the way that has become very familiar in 
gas dynamics in treating the development of a shock wave from a smooth flow. 
The work of Boussinesq [1] is very extensive and should be taken up once more 
and studied in detail, since it offers a wealth of problems that are equally inter
esting from the mathematical and the physical point of view. 

After 1905 interest in the subject of water waves seems to have died out some
what until the coming of World War II, with some notable exceptions. One 
such exception is the work of Levi-Cività [19] in 1925. Levi-Cività gave the 
first solution of the problem of the existence of irrotational waves of finite am
plitude; he proved the existence of periodic progressing waves by proving that 
a series development of the solution with respect to the amplitude converges 
for sufficiently small amplitudes. The work of T. H. Havelock is another excep
tion to the statement made above. Havelock's work has been largely concerned 
with the difficult and practically important problem of wave resistance to the 
motion of ships and its dependence on parameters which fix the shape of the 
hull of the ship. Such questions, and others in addition, have been treated by 
Havelock in a long series of papers published during the past forty years or 
more. 

The onset of World War II brought with it a revival of interest in the subject 
of gravity waves, as it did with every other branch and sub-branch of science. 
One, but only one, reason for such an interest in water waves was caused by 
the unprecedented and large scale landing operations carried out on beaches 
in many parts of the world. The result of this interest has been a notable increase 
in our knowledge of water wave phenomena, in particular, from the side of the 
mathematical theory. For example, a number of problems involving waves of 
small amplitude in water of variable depth have been solved, in particular, the 
problem of progressing waves over a uniformly sloping beach has been com
pletely solved [7, 11, 20, 22, 25, 27]. A number of problems involving the effect 
of barriers and obstacles on progressing waves have been solved [3, 8-10, 12, 
17, 18, 21, 32, 33, 36]. The problem of breaking of waves, and the related prob
lems of flood waves in channels and of roll waves moving down steep channels, 
have been studied extensively [2, 5, 6, 15, 16, 23, 26, 28-31]. These problems 
have been attacked on the basis of nonlinear shallow water theories. Some prog
ress has been made in studying the motion of floating bodies, i.e., of cases in 
which the motion of a rigid body in water is determined by the pressure forces 
set up between it and the water [13] ; in particular, the well-known criterion for 
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stability of, a ship, which is based on the assumption that the motion of the 
water can be ignored, has been shown to be at least-a sufficient condition for 
stability. >- .« , > ' . 

A considerable amount of attention, has been given recently, to the purely 
mathematical questions of existence and uniqueness of the solutions of- water 
wave problems, which had previously been largely neglected even in the case 
of the linear problems. In treating the uniqueness questions for the, linear prob
lems, which are essentially, problems requiring the determination ,of .harmonic 
functions with a'mixed boundary, condition, a theorem of A* Weinstein [34] 
in 1927, furnished an important clue to the correct formulation of the conditions 
at oo, i.e., that, boundedness conditions)alone suffice to fix the-wave character 
of the motion at po. Weinsteine uniqueness theorem refers ttf the simplest 
case, Le.,,,thatjof twordhnensional progressing .waves in, water of uniform depth. 
Uniqueness theorems for progressing waves over sloping beaches' [27, .35] and 
for waves in the presence of bounded fixed or floating obstacles have been 
given recently [3, 12-14, 18, 33]. • > ,, . . • • } • 

All of the problems on water waves discussed here refer to a variety of partial 
differential equations: the Laplace equation with linear and nonlinear,boundary 
conditions, the linear wave equation, nonlinear hyperbolic equations, equations 
of parabolic type; and, in the work of de St, Venant and Boussinesq, to non
linear partial differential equations of third and higher order which are degen
erate in type. It should therefore be clear that the subject of gravity waves in 
water has been, and continues to be, a happy hunting ground for problems in 
partial differential equations which are of equal interest from the mathematical 
and from the physical point of view. 
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STATISTICAL MECHANICS 
COMPREHENSIVE VIEW OF PREDICTION THEORY1 

N O R B E R T W I E N E R 

Some years ago a paper appeared2 by Kolmogoroff in C. R. Acad. Sci. Paris 
on extrapolation and interpolation. From the point of view in which we are in
terested, the main contribution of this paper was a discussion of the greatest 
lower bound of the error of mean square prediction when applied to time series, 
and when the rnethod of prediction was to be linear in the past. This paper led 
to a couple of papers in Russia with which KolmogorofFs own name and that of 
M. Krein are jointly associated. 

About ?a year after the first Kolmogoroff paper, the present author independ
ently started a series of investigations in the same direction. His motivation was 
the problem of predicting the future position of an airplane on the basis of a 
general statistical knowledge of its mode of flight and of a more concrete knowl
edge of its immediate past. Thus there were from the beginning two points in 
which his emphasis was different from that of Kolmogoroff. Also at least one of 
these was actually covered in KolmogorofFs work. The first difference is that 
while KolmogorofFs explicit work is primarily concerned with the irreducible 
minimum error of prediction, the author's own work is concerned with the actuaL 
method of securing 3, prediction with this irreducible error, or at least prediction 
with error as near to this as we wish. 

Next, KolmogorofFs work is primarily concerned with a time consisting of 
discrete instants, whereas my work is concerned with the continuous^ time in 
which the flight of an airplane takes place. Associated with this is the fact that 
my work, unlike the explicitly published work of Kolmogoroff, concerns the-
instrumentation which is necessary to realize the theory of prediction in auto
matic apparatus for shooting ahead of an airplane. This engineering bias leads 
me to emphasize more than does Kolmogoroff the problem of prediction in terms 
of linear operators in the scale of frequency, rather than in similar operators on 
the scale of time. s 

This same engineering standpoint led me from the prediction problem to the 
related problem of filtering. In this problem a message, a noise, and their re
lations to one another are known statistically as well as the sum of the message 
and the noise, from minus infinity to a given point in time. The problem is to 
disentangle from this combination the message alone, or more generally, the 
message under lead or lag in time. 

Since the harmonic analysis of a signal is not complete within any finite time,, 
this separation must always involve the prediction of the future of the message 

1 This address was listed on the printed program under the title The statistical mechanics 
in communication. 

2 A. Kolmogoroff, Interpolation und Extrapolation von stationären zufälligen Folgen, 
Bull. Acad. Sci. URSS Sér. Math. vol. 5 (1941) pp. 3-14. 
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and noise, and so cannot be isolated from prediction theory in general. It turns 
out that the technique for the design of filters with a minimum mean square 
error is precisely parallel to that for the design of predictors. 

In one point both Kolmogoroff and his school and I myself have developed the 
theory of prediction along similar lines. This point is that of multiple prediction, 
in which not merely one quantity varies with time, but a number of quantitites—• 
even an infinite number of quantities. This is an extremely important problem 
for the meterorologists and in general for the statisticians. Until recently its 
theory has not been implemented by a corresponding communicable tool. 

Both the Russian school and my own have published what is a fairly extensive 
literature concerning prediction. What is missing is a definitive paper to take up 
all the threads of the argument and to close them off in a single comprehensive 
discussion in which as many theorems as possible are given necessary and suf
ficient conditions. It is the purpose of the present paper to fill exactly this gap. 

Let me first take up the simplest prediction problem, which is that concerning 
prediction in a simple discrete time series. All that follows this will consist in 
an extension or development of methods here given. 

In the first place, we shall consider a time series to be, not a single sequence of 
of numbers, but a sequence of numbers with a parameter of distribution. Thus 
a appears merely for purposes of integration, and a may therefore be mapped 
on the segment of a line between 0 and 1, since the main properties of integration 
are independent of dimensionality. Let us then consider a function f(a) defined 
on (0, 1) and belonging to the Lebesgue parameter class L2. Since the particular 
time series with which we are concerned are not attached to any particular point 
in time, let us introduce the transformation Ta, which preserves measure or 
probability, and which moves each instant of time into the next one ahead. 
Then f(Tva) represents our time series. Here v runs between — «5 and oo, if v 

is positive, Tv represents the transformation T iterated v times. T~VOL represents 
the inverse transformation T~l iterated v times; and again v is positive. We then 
shall see that/(T"û;), where v runs over all negative and positive integral values 
including 0, is a time series in statistical equilibrium. 

The functions f(T~va), where v > 0, are a denumerable set of functions of 
class L2 , and as such have a linear extension, containing all functions of L2 

which can be approximated in the L2 sense by polynomials in the given functions. 
This set of functions will be known as the past. The present consists only of 
linear multiples of f(a) itself; while the future is the linear extension of all func
tions of the form f(Tva), where v is positive. 

The problem of prediction is that of the projection of a function belonging to 
the present or future on the past. Every function belonging to L2 consists of the 
sum of a function belonging to the past and a function orthogonal to every 
function belonging to the past. The first is called the projection on the past of a 
given function; whereas the mean square of the second with respect to a is the 
mean square error of prediction. In order to carry out this process, it is useful 
to orthogonalize the set of functions f(T~va). 
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Let us first take/(2^~1a). There are two cases possible. Either this is equivalent 
to 0 or it is. not1. If it is equivalent to zero, f(a) may be expressed in terms of 
f(T~ a), and hence of the past; Similarly, f(Ta) may be expressed in terms of 
f(a) and thus in terms of /(T"1«)»' or again in terms of the past. Thus the whole 
present and future may be expressed in terms of the past and the prediction 
problem may be solved with- 0 mean square error. < « l . 

On'the other .handelet us suppose that /(T-1^) is not equivalent to 0. If it is 
,not equivalent .to zero, it can be normalized by the multiplication of an ap
propriate factor», so thatthe integral of the square of its modulus is one.. Let us 
call this normalized function gi(o>). Now let us consider./(T~2a). Either thtà is 
equivalent-to* a-multiple of/(T-1«); in which case a perfect prediction is possible; 
or it is not so equivalent. In the second case, we shall have the formula 

f(T'2a) - gi(a) jf f(T-2ß)gS) dß + (/(T~2a) - gt(a) j£ f(T~2ß)g^ß)dßS} 

where the term 

ftr*«) - fc(«) ff(T-2ß)gi(ß) dß 
Jo 

is not equivalent to 0. This term again may be normalized; and we shall call the 
result of this normalization 02(a). We repeat the process and ,express /(T~3a) 
in terms of gi(a) and (72(a), with the remainder 

f(T~*a) - 9l(a) f f(T-*ß)g^0)dß -,fc(«) [ fiT* ß)jfä dß. 
Jo Jo 

Either this remainder is equivalent to 0 or it .is not. If it is equivalent to zero, we 
again can express f(T~*a) in terms of its past; and if we cannot, we may introduce 
a third function g^(a) by normalizing the remainder. This process can be con
tinued until we have either orthogonalized the entire past of f(a) or until there 
are no more terms left to orthogonalize. If the process terminates at,any stage, 
a perfect prediction is possible. In all other cases, we have a normal or orthogonal 
set 0i(a), 02(a), • • • , in terms of which we can express the past of f(a). 

Now let us form the function h(a), in accordance with the formula 

« A 
h(a) = /(«) - E gn(a) \ j(ß)gn(ß) dß. 

1 Jo 

If this function h(a) should prove equivalent to 0, this means that f(a) can be 
expressed linearly in terms of its past, without any error whatever of prediction. 
If not, then the function h(a) can itself be normalized, and we obtain a function 
H (a), in accordance with the formula 

rtf x M*) 
H(a) = 7—j w72. Q*\h(ß)\2dßj 
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The function H (a) is linearly dependent on the present and past of / and 
orthogonal to that past. It is accordingly orthogonal to every function H(T~va) ; 
and since the transformation T is measure preserving, then the set H(Tva)} 

where v varies from — oo to oo f is a normal orthogonal set. There are now two cases 
possible. 

Either f(a) can be represented in terms of this set according to the formula 

/(«) = Z W « ) ff(ß)H(T-'ß)dß, 
0 Jo 

or there is a remainder 

f2(a) = f(a) - ZH(T~va) f f(ß)H(T~'ß) dß 
o Jo 

not equivalent to 0. In the second case we may write 

/(a)=/x(a)H-/2(«) 

where fi(a) may be shown to generate the same function H(a) as does /(a). 
On the other hand, Ma) will be completely determined by its own past from 
any period of time back. In other words, /2(a) Will be linearly dependent on the 
set f(T~va), f(T~v~la), • • • no matter how large v may be. The complete present, 
past, and future of fi(a) is orthogonal to the complete present, past, and future 
of Ma)< fi and /2 have already been given in terms of / alone. We have thus 
reduced every case of the prediction problem to the perfectly predictable case 
on the one hand, and the case where the function H(a) exists and / can be ex
pressed in terms of H and its past, on the other. 

It is the second case with which we are chiefly concerned. Let us notice that 

f f(Tva)f(dda= E ff(ß)H(Tv~lß)dß\lmH(T-»ß)dß. 
JO n>o JQ JQ 

H—v^0 

Let us also notice that 
2 

< <*>. £ I ff(ß)H(T~nß)dß 
0 I Jo 

Thus the sum of the squares of the moduli of the coefficients of 

£eina fj(ß)H(T-nß)dß = ¥(«) 
0 Jo 

converges and the function belongs to L2. *(w), the square of the modulus of 
this, will belong to L, and will have the Fourier coefficients 

/ 
Jo 

H(Tna)H(a) da. 
f0 
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This suggests that with suitable hypotheses, we may proceed directly from the 
auto-correlation coefficients 

f H(Tna)H(c?) da 
JQ 

and their related harmonic analysis function #(w) to the coefficients 

1 [ f(ß)H(T-»ß) dß, 
Jo 

by means of which we express f(a) in a series in terms of the functions H(T~va). 
The conditions under which this is possible may be proved to be 

(1) j |log$(co) \da> <oo. 

To see this, we express (1/2) log <3?(w) by the corresponding series 

We then form the corresponding series 

E An sgn n e%na
) 

which may be shown to determine a pure imaginary function by Cesàro sum
mation. Let this function be F (a). Then if we put 

(# (« ) ) 1 / V M = ¥(«), 

we shall find that the Fourier series of M>(w) will contain no negative frequencies. 
Another function closely related to ^(œ) is 

* i W = TT / ^^ 15 • 
i 27T Jo ew — z 

It can be shown that as r tends to 0 from 1, 

lim f | ¥(«) - Mreia) |2 dco = 0; 
r-»l Jo 

that ^(co) is analytic within the unit circle; and what is more, it can be proved 
to have no zeros within the unit circle. 

Let us now suppose that $(«) is any real function of class L whose logarithm 
fulfills our critical condition (1). I t is then possible, by the use of ideas from 
Brownian motion theory, to give time series f(a) and a measure preserving func
tion T such that 

*(«)~êe*" f f(Tva)f(a) da. 

I t is also possible to prove that f(a) cannot be expressed completely in terms of 
its own past, and that it is orthogonal to its remote past, in the sense that the 
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projection of f(a) on the set MT"~la), f(T~v~2a), • • • tends to 0 as v becomes 
infinite. We thus have a complete set of conditions for the factoring of $(u), 
and we have the basis for a theory of simple discrete prediction. 

All the essential ideas in this theory of prediction may be extended to multiple 
prediction. Let us first take up the case of finite multiple prediction. Here we 
start with a set of functions fn(T

va), where n ranges from 1 to N. The past consists 
of the linear extension of the functions fn(T

va), where n ranges from 1 to N 
and v is negative. T is, of course, as before, a measure preserving transformation. 
We now can proceed as before to determine the parts of fi(a) to/„(a) which are 
orthogonal to the complete past of all the f's. We carry this out by a procedure 
of orthogonalization exactly like that which we have already used. If this pro
cedure of orthogonalization terminates before it gives N functions Hn(a) which 
are normal and orthogonal to one another and to the past, but linearly de
pendent on the past and present, then some one at least of the functions fn(ot) 
is completely determined by its own past and the past of the other functions. 
If that is not the case, we obtain a set of normal and orthogonal functions 
Hn(T

va). 
Either all the functions fk(a) may be completely developed in terms of these, 

or there are remainders in the development which are not equivalent to 0. 
In the second case, just as in the corresponding simple case, we can separate a 
multiple time series into the sum of two multiple time series, such that the past, 
present, and future of one will be completely orthogonal to the past, present, 
and future of the other. One of these time series will be perfectly predictible, and 
the other will be expressible in terms of its own H functions. We now go through 
procedures exactly analogous to those through which we have gone in the 
simple case. Let us notice that 

(2) Ma) ~ £ E Hn(T~va) [ f%(ß)Hn(T~vß) dß. 
v=0 Tl=l JO 

Let us also notice that 

ffi(r«)fi(p)da= E E ffi(ß)Hn(T>-*ß)dß [fMH^T-'-ßidß. 
JO p>Q n JO J0 

li—V^O 

Then we obtain a matrix of functions 

*<y(«) = £*** [ f<(ß)H,{T->ß) dß, 
j»=o Jo 

belonging to L2. We shall have 

* ( w ) = W(ù))-W(œ), 

where the matrix <I>(co) has the Fourier coefficients 

Jo 
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As.before, -it,,is interesting to know what condition on the matrix 

&(<*)) (— 7T â 6) ^ T) 

will'make the' existence of the set of functions Hn(Ta) and their closure with 
respect to the corresponding / functions possible.. Without going into proofs, it 
may bè said th'at the condition is that $iy(a>) all belong to L2 , and that 

| Determinant <&(co) \\ d<a < oo. j f i ^ i 
If this Condition is fulfilled" for an Hermitian matrix of positive' definite Her-
mitian type, 'then this matrix may always be obtained as indicated'from a;'set 
of functionkMra):" '' ' ' • l * ' 

In the simple prediction casé, we have already given an algorithm which will 
enable'üs tò carry out the computational work of the resolution of $(co) in the 
form ' ' 

$(<o) =* | *(w) | 2 . 

The similar resolution of the matrix 4>(a>) in the form 

®(œ) = W(CO)'W(ù>) 

is complicated by the fact that matrix multiplication is not commutative, and 
therefore there is no easy use of the logarithm. However, there is a computational 
process which is not too difficult. This is a generalized form of the alternating 
process known in potential theory. 

Let us suppose that we have two linear subspaces of Hilbert space, say Si 
and S2, and that we have a vector in that space. This vector is to be projected 
on the smallest linear space containing these two subspaces Si and S2. We then 
project the vector on Si. The remainder we project on S2. The remainder after 
this second projection we project on the space Si, etc. We then add all the 
projections that we have obtained on the two spaces. It may be shown that this 
process is a convergent one, at least in the mean sense, which is the only relevant 
sense here, and that it ultimately yields the projection of the vector on the 
smallest linear extension of the two spaces. 

For the moment let us consider only a prediction process of multiplicity 2. The 
problem which we are facing is to take some vector not necessarily exclusively 
belonging to the past and to project it on a past which represents the smallest 
linear extension of the space combining the past of one component with the 
past of the other. It is then possible to do this by a procedure of successive 
projections, which will turn out to have a computable algorithm. 

While this method of carrying out thç alternating process for purposes of 
prediction is available in the perfectly general multiple case, we shall illustrate 
it here in the case of multiplicity 2. Actually the best computational procedure 
for a case of higher multiplicity consists in a step by step use of a very similar 
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process, to embrace each time one new variable, after the process has already 
been completed for a number of variables. 

To go to the case n = 2, let us start with two functions, fi(a) and /2(a). Using 
each of these functions alone we form the orthogonal set of functions Hi(Tva) 
and H2(T

va) as before. We shall assume that /1 can be completely expressed in 
terms of the orthogonal set belonging to Hi and that f2 can|be completely ex
pressed in terms of the orthogonal set belonging to H2. This,' as we have seen, is 
no great restriction for practical computation. Now we take Hi(a), and develop 
it in terms of the past of the orthogonal set belonging to the H2$ in the following 
form. 

Hi(a) = E H%{T-a) j Hi(ß)H*(T~*ß) dß + n(a)\ 
0 Jo 

We now develop n(a) in the form, 

n(«) = E HX(T-Va) ï n(ß)Hi(T->ß) dß + r2(a) 
0 Jo 

- *(«) - E tfiCr-"«) E f Hs(T-"ß)m(T^ß) dß 
y«0 JO 

X [ Ht<ß)Ht{T-*ß) dß. 
Jo 

This process can be continued indefinitely, and rn(a) will converge in the mean 
to a function orthogonal both to the past of Hi(a) and to that of H2(a). What will 
be left apart from this remainder will be 

Hi(«) = ÌH2(T~va) [ HtäHAT-'ß) dß 
0 Jo 

- E E Hi(T-va) [ H2(T-"ß)Hi(T-"ß) dß 
v—O f«—0 Jo 

X f HMH2(T-"fi) dß + E E E H^T'OL) [ miT-'ß^T-'ß) dß 
Ji) »=0 n-0 x-o Jo 

X [ £r»(3Txj8)jy1(r-»j8) dß \ HMWF^ß) dß- • •. 
Jo Jo 

I t has been shown tha t this sum converges in thefmean, and it is perfectly 
possible t o show tha t it is expressible in terms of H\(a) and the pas ts of fi(a) 
ma Ma). 

Similarly, 

*•(«) = ì,Hi(T~va) [ HifäHiiT-'ß) dß 
0 Jo 

- E E Ht{T-a) [ HxVr*ß)H7x=fß) dß f HMHÄT=iß) dß+ ••• 
i.«0 /u==0 Jo Jo 
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converges in the mean, and may be expressed in terms of H2(a) and the past of 
the / ' s . If 771 (a) and v\2(a) are not linearly independent, then either H\(a) may be 
expressed in terms of H2(a) and its past, or H2(a) may be expressed in terms of 
Hi(a) and its past. In other words, only one of the two variables Hi(a) and H2(a) 
really occurs in the fundamental prediction problem. Otherwise, we may orthog-
onalize rji(a) and i}2(a) by the formulae: 

IT ( \ qi(<*) 
JLi\a) = / 1 \i/2, 

x2(«) = 

(jf Ui03)i2^y 

Vii«) - Ma) [ vz(ß)XM dß 
JQ 

Ü
1 I A | 2 \ 1/2 -

\V2(ß)\2dß-^]Q m(ß)X1(ß)dß^J We shall then have as a normal and orthogonal set: 

XiCTa); X2(T
va). 

These will take the place of the Hi(Tva) and H2(T
va) of formula (2). 

In the problem of continuous prediction, we are now up against the fact that the 
set of orthogonal functions H(Tva) which occurs in the problem of discrete pre
diction, and the similar set which occurs in the set of discrete multiple pre
diction, are replaced by functions which are no longer of the Lebesgue class L2. 
This is not a finally forbidding difficulty, as it is possible to introduce the Hilbert 
theory of spectra to take the place of a theory of orthogonal functions. Still, the 
theory of spectra is much more detailed and inconvenient than that of orthogonal 
functions, and we must consider ourselves fortunate that there is a method to 
avoid introducing it directly. This depends on the fact that in the prediction 
theory which we have already developed, which makes use of measure-pre
serving point transformations, we may completely replace these measure-pre
serving point transformations by a unitary functional transformation. That is, 
wherever f(Tva) appears, we may introduce an expression Tvf(a), where Tvf(a) 
is a linear transformation of Hilbert space into itself, and preserves all lengths 
and distances in Hilbert space. 

Now, although there is a continuous group of measure-preserving functional 
transformations which plays the same role in continuous prediction theory that 
the discrete group of powers of a single measure-preserving transformation does 
in discrete prediction theory, and it is impossible to map out a continuous group 
on any such discrete group, there is a discrete group of functional transformations 
whose future is the same as the future of the continuous group. In order to in
troduce these functional transformations, let me introduce the Laguerre poly
nomials. 

If I consider the expression e%(av which occurs in prediction theory, there is 
closely related to it the expression 

(1 + *>/2y 
Vl - ÏÛ/2J • 
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Similarly, if I replace eim(do))112 by 

(1 + w w\ 
(i - ;#/2)n + 1 

I shall have found a way to transform the interval from — % to ir into the inter
val from — oo to oo, if only I put •& = 2 tan (w/2). If now I examine the functions 

1 (1 + ÎÛ/2Y 
(27!-)1'2 (1 - i&/2)*+1' 

they will clearly prove to be a normal and orthogonal set if n runs through all 
integral values from — oo to oo. We shall have 

i r(1 + f) e-m 
2TT I . / _ ^ \ n + 1 

d& 

V 

- E Btke~u 

0 

I = o (* < 0), 

where p(i) is an appropriate polynomial of the nth degree. Similarly if n is 0 
or negative, we shall have 

1 \ ±L »-««, 
2TT 1» / ^ Y + 1 e-*"dd-

ob n - 1 

/
oo n—i E 
oo 0 

Aft o - ^ y + 1 e~m de \ 
= E C/e2' 

= ?(f)e
2( (t < 0) 

= 0 (t > 0). 

In other words the Fourier transforms of 

0 + ff 
o-ir 

differ from 0 only on the positive half line, and those of 

( n > 0) 

(n ^ 0) 
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differ from 0 only on the negative half line. The functions -

Vn(t)e~2t (t> 0); 0(t < 0 ) 

gn(t)e
2t (*<0) ; 0 (t > 0) 

are known, with proper normalization with1 respect to dependent and inde
pendent variables, as the Laguerre functions. The transformation of each 
Laguerre function into the next later function is »a unitary transformation whose 
powers, positive and negative, constitute a discrete group of all translations 
along the line. I repeat that up to the present we have used in our prediction 
theory no properties of our transformations which involve their being used as 
point transformations rather than general unitary valuations. Thus on the fre
quency scale, the change from e™* to 

( i l l 

is one which involves no difficulty. 
In view of this transformation we are now in a position to factor functions -*-

frequency running from — oo to oo, whether they are scalar or matrix functions, 
into a product in which one term is the transform of functions vanishing only 
for past time and the other is the transform of functions vanishing only for future 
time. The previous conditions of factorizability 

$(w) 6 L ( —TT _? w . j ir) 

and 

[ | logico) | d< 
J—* 

lot < oo 

are clearly replaced by the equivalent conditions 

$*(<p) £ L, — 00 < Ç5 < 00 

and 

f^r^rj2\log$*(&)\d&< oo, 
+ 

if only 

$(co) = $(#); 

a = 2 tan - . 

Similar results and equivalences hold in the case of matrix factorization. If 

**(#) « *(«), 
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we have 

* * ( * ) = | tf*(co) |2, 

and the Fourier transforms of the L2 functions *&*($) will contain no negative 
frequencies. 

We now come to the actual mechanism of prediction. We have not time to 
take this up in more than the simplest case; namely, that of a one-dimensional 
discrete prediction, but the methods are valid with the most obvious changes 
both for the continuous and the multiple case. Let then 

ZAnf(T~na) 

be any polynomial in the past which we desire to study as an approximation 
to f(T"a). The mean square error of prediction will then be 

f\i:Anf(T-na) -f(Ta)\2da. 
Jo 

As we now wish to write this in terms of frequency rather than time, it will 
become 

£• f |E^u*(«>yBW - *(w)6-"uI 'd» = E E&.-»- , - fmI2. 

It will then be seen that we have to reduce at the same time 

E A» $m 

as near to 0 as we can for m < v and as near to \f/m as we can for n __ v. If we 
have at our disposal not merely polynomials, but arbitrary combintations of the 
past, this will give us 

îe^CAf»-^)= E ê''"" 
w*0 v 

or, where ^m represents the Fourier coefficients of ^(w), 
00 

ypne 
\ " ^ A -*"nw ~*vw 

e = e 

0 

However, it is not difficult to prove that even if we have only polynomials at 
our disposal, we may reduce 

f lE^/cr"«) -/cr«) |2 da = É [ An |2 

Jo 0 

as near its absolute minimum as we wish. 
We thus have solved the problem of prediction as nearly as we wish to optimum 

prediction in the case where the prediction is not perfect. Where the least mean 



320 NORBERT WIENER 

square error of prediction is 0, while there is in general no single optimum 
prediction, it is possible to approximate as nearly as we wish to perfect pre
diction by the following means: 

In the first place, we blur the spectrum of the function which we wish to 
predict by taking its convolution with a narrow Gaussian distribution of unit 
area. Then we obtain the optimum prediction on the strength of this blurred 
spectrum. It may be shown that as the Gaussian distribution gets narrower and 
narrower the optimum prediction becomes more and more perfect. 

To return to the case where there is not a perfect prediction, and in wrrich the 
function 

E «*" f f(T»a)f(a) da, 
o Jo 

can be factored. Let us note that formally, from the point of view of frequency 
rather than time, the optimum prediction operator for a lead /. amounts to 
multiplication by 

I £ 6-<" f *(u)e-
ivu eifiU du, 

ZT V=Q J—TT 2T] 

and that the mean square error of prediction is 

è l i /%(«)«-*"** i 
y=0 -57T J—ir 
y=0 

From the original Kolmororoff point of view, this frequency treatment is not 
important, but from our point of view the frequency representation of operators is 
important just because it is the standard representation of alternating current 
engineering. It is in this form that we strive to realize operators through a net
work of coils, resistances, and condensers, and in fact the prediction operators 
which we have just obtained are very generally suitable for realization. This 
leads us to the problem of filtering. 

I shall describe this in terms of the continuous case rather than the discrete, 
because filtering is commonly an electrical engineering operation, although 
indeed its precise analogue is useful in the statistical laboratory. 

We start then with a message/i(a) and a noise f2(a) and we put formally 

011 (t) = f fi(Tla) Mäj da; f(a) = fx(a) + f2(a); 
Jo 

q(t) = jf MT'a) f(a) da; 0(0 - jf f(Tla) f(äj da; 

/

OO ^ «00 

4nxit)eita dt; $(w) ~ / .̂(Öe™' dt; 
GO • '—00 

He) ~ f KitW"' dt; #(«) = | *<«) I2 

Jo 
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•as before. The problem which we have is to minimize 

jf | fi (T~"a) - j f f(T^a)K(r) dr |2 da. 

Formally, this leads to the process of minimizing 
«OO »00 „00 

• 0 i i ( O ) - 2 R e / q ( r - \ ) K ( r ) d r + / K ( r ) d r / KÇT)<I>(<T - r ) d o -

J o J ö J o 

• ' — o i 

$(w)e- îXw . . , . I2 , 
VT-T- - fc(o))^(co) T + const. 
w(œ) 

Thus again, formally, the optimum prediction is given by the frequency operator 

fc(<°) = o T / \ / e d t / e T 7 T e~*udu. 
2ir^(œ) Jo J-oo y(u) 

Let us notice that the technique of prediction may be carried over to multiple 
time series. From an engineering point of view this means that we have a number 
of messages linearly jumbled, but we can put them through an apparatus so that 
•each message will come out of it in as pure a form as possible. 

As I have said before this allows us to use interference to eliminate a message 
as well as simple attenuation available in the ordinary filter. 

There are a number of other topics for which I have no more time available 
than enough simply to mention them. In the first place, the methods of multiple 
prediction make it possible to analyze the direction of causality in complicated 
situations. In the second place, the whole theory of prediction as given up to 
this point involves a perfect knowledge of statistical parameters of the past. 
This knowledge is in fact never available. I t must be supplemented by some 
theory of extenuation from which we can obtain not merely the most probably 
values of our spectra, but also our distribution. We have made some headway 
in the problem of extenuation of parameters in the case where time series rep
resents the impact on a resonator of a large number of randomly distributed 
phenomena. However, not even in this case have we brought the estimated theory 
to a point where it is yet suitable for practical computation, and secondly this 
is by no means the only significant case of linear time series. 

MASSACHUSETTS INSTITUTE OP TECHNOLOGY, 

CAMBRIDGE, MASS., U. S. A. 



SOME RECENT TRENDS IN THE MATHEMATICAL THEORY 
OF DIFFUSION 

WILLIAM FELLER , , 

1. Introduction. This lecture may seem to sail under a false flag since it 
appears under the general heading of Applied Mathematics. Only a small part 
of the mathematical diffusion theory is connected with immediate applications, 
and much of the recent literature on the subject has an abstract character. 
The situation is here as in the theory of harmonic functions which likewise stems 
from practical problems and has many applications, but which has spread into 
and influenced many fields: complex variable theory, boundary value problems 
for general differential equations, subharmonic functions, generalized potentials, 
etc. 

Similarly, the diffusion theory has outgrown its origin as a special topic in 
partial differential equations. Nevertheless, not even this particular chapter is 
closed: recent applications to the theory of genetic evolution lead us to singular 
diffusion equations and confront us with a new type of boundary problems. 
We find in this connection unsolved problems, but of even greater interest is 
the fact that in diffusion theory we find for the first time an intimate interplay 
between differential equations and measure theory in function spaces. The latter 
throws new light even on the classical parts of diffusion theory; it leads to new 
types of solutions, and opens a new avenue of attack on problems connected 
with boundary conditions which were left open for a long time. It turns out that 
the adjoint of a differential equation is not necessarily itself a differential equa
tion, and this new information is of value for the general theory of semigroups 
of operators. This is underlined by the fact that the probability approach leads 
us to consider diffusion equations which are not of local character and which 
can be treated by the methods developed, under different forms, by Bochner, 
M. Riesz, and L. Schwartz. In this way the theory of differential equations is 
tied in with other theories and we shall find unexpected connections between 
harmonic functions and diffusion processes. 

It is the purpose of the present address to outline some of the new results and 
open problems. It is believed that the new methods promise to be fruitful also 
in other fields, in particular for other types of differential equations. [Added in 
proof: Since this was written, new results were obtained and some of the problems 
are no longer open; cf. [8].] 

2. Classical diffusion and the Wiener space. For a first orientation consider 
the classical diffusion (or heat-conduction) equation 

(2.1) ut = uxx 

over the interval — oo < x < oo. Its fundamental solution (or Green function) 
is given by the normal density function 

322 
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(2.2) ^ u(y; t, x) = ^ p exp {- (x - yf/tt]. 

Under very general conditions on f(x) the function 

/

-foo 

f(y)u(y; t, x) dy 
-oo 

represents the unique solution of (2.1) which, for fixed t > 0, is integrable with 
respect to x and which tends to f(x) as t —> 0. 

Now equation (2.1) is supposed to be connected with Brownian movement, 
the description of which involves a function space. In fact, the position of a 
Brownian particle is a function X(t), and "qbserving a particle" means observing 
X(t). Thus each X(t) represents a sample point in our experiment, and the 
problem is to describe the properties of the possible paths X(t) in probabilistic 
terms. This was first done by N. Wiener [25]. He .starts from the assumption 
that (2.2) defines the transition probability density of our process, that is, the 
conditional probability density of the relation X(U + t) = x if it is known that 
X(tQ) = y; it is furthermore assumed that the increments AX(t) = X(t + h) — 
X(t) over nonoverlapping time intervals are statistically independent (or that 
the corresponding probabilities multiply). Wiener (and by other methods P. 
Levy [20]) shows that with probability one the path function is continuous but 
of unbounded variation in every ^-interval; the set of ^-values for which X(t) = 0 
has the structure of a Cantor set; with probability one X(t) satisfies a Lipschitz 
condition of order 1/2 but no Lipschitz condition of order 1/2 + e (more pre
cise results are given by the local law of the iterated logarithm). 

Obviously statements of this type describe the hypothetic diffusion process 
more directly than does the differential equation (2.1). It is less obvious that 
even the formal theory of (2.1) can profit from the function space approach. 
Consider, for example, the boundary value problem for (2.1) for a region bounded 
by the part x > a of the œ-axis and a curve x = <p(t) with <p(0) = a. We are 
here confronted with a situation similar to that in the Dirichlet problem for 
Au = 0. In general, an essentially unique solution exists, but it does not assumo 
the prescribed boundary values at all points of the curve. As Fortet [10] noticed, 
the question whether a particular point xQ of the boundary curve is an excep
tional point can be solved by a comparision of the local properties of the bound
ary with those of the path curves X(t). A final criterion is obtained from the 
local law of the iterated logarithm. Thus the measure-theoretical approach 
leads on one hand to an existence theorem which is more general than those 
obtained by purely analytical methods, and on the other hand we obtain a regu
larity criterion which admits of a direct interpretation in terms of path func
tions. 

We want to show that even the simpler problem of diffusion in a finite fixed 
interval is intimately related to the theory of path functions and apparently 
cannot be treated in a satisfactory manner without the function space approach. 
It is well known that in the case of diffusion in a finite interval the solution is 
not determined by the initial values alone, but that different boundary conditions 
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can be imposed. Perhaps the most familiar boundary condition is that of an 
absorbing barrier, which is usually defined formally by the condition u(t, XQ) = 0. 
I t must be emphasized that this condition is obtained only heuristically by a 
passage to the limit from a discrete random walk and is justified by the results. 
This could be considered satisfactory were it not that the heuristic method 
completely breaks down in other cases. In fact, a perusal of the literature shows 
that even in comparatively simple physical problems the appropriate boundary 
conditions remain unknown^ We shall see later on that in a certain case the ab
sorbing barrier is completely described by the condition u(t, x0) < oo f but again 
this was found only from the properties of the solutions to which this condition 
leads. In other cases we shall see that no boundary conditions can be imposed. 
In short, the appropriate analytical formulation of various boundary conditions 
is an unsolved problem. Apparently it is unavoidable to revert to the original 
definition of the various conditions, and this definition usually refers directly 
to the path functions. Thus, diffusion with absorbing barriers can be described 
by saying that the laws of free diffusion prevail in the interior but that the proc
ess stops when the particle for the first time reaches a boundary, that is, when 
X(t) equals x0 of xi . 

3. The adjoint diffusion equations. Consider now a more general diffusion 
process in the infinite line with transition probability u(y; t, x). By this we mean 
that if at any time fa the position of the particle is X(tQ) = y, then 

(3.1) Pr {a < X(t + to) < b} =* f u(y; t, x) 
Ja 

dx. 

If the initial position X(0) of the particle is a random variable with probability 
density f(x), then the probability density of X(t) is given by the integral (2.3).' 

A general stochastic process cannot be described solely in tèrmo öf the initial 
distribution and the transition probabilities. A diffusion process, however, is öf 
the Markov type which means, very roughly, that the future depends statisti
cally on the present state, but hot on the past history which led tö it.1 This 
implies in particular the fundamental identity 

Z +OO 

u(y) s, £>(£; t, x) d£, 
oo 

known as the Chapman-Koltnogörov equation. By virtue of the Markov property 
the transition'probability u(y; t, x) determines all probability relation in thé 
space of path functions X(t). In particular, the joint probability density of 
(X(ti), X(h), • • • , X(Q) for 0 < h < h < • • • < tn is given by "" 

(3.3) u(h , xi)u(xi ; h — h , x2) • • • u(xn-i ; tn — tn-x , xn)3 

where u(t, x) is defined by (2.3). Thus the properties of the path functions X(t) 
are implicitly given by u(y; t, x), and could be derived exactly as Wiener ob-

1 Cf. the discussion in §8. 
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tained the properties of the paths in Brownian motion from (2.2). Actually, 
Wiener's results have been only partially generalized; for example, general con
ditions which guarantee continuity of almost all path functions seem to be 
unknown. 

Among all stochastic processes for which the Chapman-Kolmogorov equation 
(3.2) holds, the diffusion processes are characterized by the requirement that 
the probability of a change exceeding e during a short time interval At is small 
as compared to At; more precisely, we assume2 that 

(3.4) ~[ u(y;At,x)dx-*0 
lit J|a;-|/|>e 

for every fixed y. 
If at some time t the position is X(t) = y, then the mean and the variance of 

the displacement AX(t) during the following time interval of duration At are 

/

+00 -+00 

(x — y)u(y; At, x) dx and / (x — y)2u(y; At, x) dx. 
00 J—OO 

Actually these integrals may diverge,3 and we introduce therefore the truncated 
moments 
(3.6) / (x - y)u(y; At, x) dx = a(At; y), 

J | sa—y | < e 

(3.7) [ (x - yfu{y; At, x) dx = 2b(Ai; y). 
J I»—2/|<« 

In view of (3.4) the asymptotic behavior of a(At; y) and b(At; y) as t —> 0 is 
independent of e, and the physical significance of these quantities is essentially 
the same as that of the moments (3.5), except that less weight is attributed to 
large displacements. It is therefore natural to suppose that the limits 

(3.8) a(,) = lima-^p>, b(y) = lim ^ 

exist. 
2 This definition was given in [5] where diffusion processes are called Markov processes 

of the "purely continuous" type. It seems to be an open problem whether (3.4) implies that 
the path functions X(t) are continuous with probability one. 

3 An (unpublished) example is given hy the densitjr u(y; i, x) = I2wlf2lll2}~1<f>'(x) 
exp{- [<l>(x) - 4> G/)]2/4*) where <j>(x) = log1/4 (100 + x/(l -f e"*)). This is a solution of the 
equations (3.12)-(3.13) with b(x) = \<i>'{x)}-\ a{x) = (1/2) b'{x). 

4 It will be seen from the following derivation (which follows [5]) that our assumptions 
actually imply the existence of the partial derivative ut{y; t, x). Conversely, if it is assumed 
that u is differentiable and that (3.4) holds, then it suffices to assume that one of the ratios 
occurring in (3.8) has a finite point of accumulation as At —» 0. Letting then At approach 
zero through an appropriate sequence of values it follows from (3.11) that for this particular 
sequence also the other limit in (3.8) exists, and this leads to (3.12). The first derivation 
of (3.12) is due to Kolmogorov [17] who, however, uses strong uniformity conditions and 
assumes the existence of the moments (3.5). 
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It is then easy to< derive a differential equation for u(y; tj x) as a function of 
t and y. From (3.2) and (3.4) we have < '' 

/

+0O 

u(y; At, Qu{£\ *, a) c?£ 
v>.y; • < <> 

= /" • i*(y; A«, Ött(ft t, x) dì + o(A*), 
• J.|È-»I<« , . » 

provided w(£; £, a;) is uniformly bounded for every fixed t > 0. If we now assume 
that for fixed t, x the function u(£; t, x) has two continuous derivatives with 
respect to £, then the Taylor formula leads to 

u(y; t + At, x) = u(y; t, x) / u(y; At, £) d£ 
J|?-2/l<e 

(3.10) + .^(2/; *, s) f (£ - V)ufo; A«, £) d£ 

+ J «w(w t, x) [ (£ - j/) V t t A«, 0 d£ + oGM). 
2 J|f-2/I<6 

Now the integral of u(y; At, £) should be identically unity.5 Using, then, (3.4) 
we can write (3.10) as 

(3.11) u(y; t + At, x) - u(y; t, x) 
= b(At; y)uyy(y; t, x) + a(At; y)uy(y; t, x) + o(At). 

Hence, as a function of t and y, the transition probability u(y; t, x) satisfies the 
first (or backward) diffusion equation 

(3.12) zt(t, y) » b(y)zyy(tKy) + a(y)zv(t, y). 

The obvious initial conditions on transition probabilities show that u(y; t, x) 
is, in fact, a fundamental solution of (3.12). One should therefore expect that 
for fixed y the function u(y; t, x) should satisfy the adjoint equation 

(3.13) wt(t, x) = {b(x)w(t, x)}xx - {a(x)w(t7 x)}x , 

known as second (or forward) diffusion equation, and also as Fokker-Planck 
equation.6 

We shall see (in §5) that this surmise is true in general, but that there exist 
cases where u(y; t, x) satisfies only the first diffusion equation; instead of (3.13) 
we get in these cases an inequality, and a positive operator is added to the right 
side. This phenomenon is connected with the existence of a new type of solu
tions which has not been encountered before. It changes our concept of adjoint 
operators and throws new light on the theory of semigroups in general. , 

6 I t is possible to relax this condition so as to take account of more general situations. 
8 It is possible to introduce additional terms in (3.12) and (3.13) which will account for 

the possibility of particles disappearing or being created. 
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4. Singular equations. The theory of the preceding section applies also if. thp 
infinite œ-axis is replaced by a finite or semi-infinite interval, except that no;w 
boundary conditions have to be specified. As has been mentioned before, ilçie 
derivation of the familiar boundary conditions (such as absorbing, reflecting, 
and elastic barriers) is essentially of a heuristic naturse, and it would be desirable 
to derive them frpm the basic assumptipns in the same way a§ the, diffusion 
equation itself has been obtained. We want now to, disouss some, nqw aspects 
of the boundary problems for a type of equations which is of both theoretical and 
practica^ ( jnterest. 

In,physical applications the coefficient b(y) is essentially positive. Now mod
em diffusion theory has found a new and interesting field of applications in 
biology, in, particular in the mathematical theory of evolution (cf. [6]). Here 
the particle uncier, diffusion is to be interpreted symbolically and stands for a 
population size, gene frequency, etc. For example, the frequency of a particular 
gene in a population is a random variable X(t) which by definition is restricted 
to the interval 0 < x < 1, and Sewall Wright's theory of evolution assumes 
essentially that X(t) is subject to a diffusion process with 

(4.1) b(x) = ßx(l - x), a(x) = -yx + 8(1 - x) 

where ß, y, ò are positive constants. Similarly, in the simplest growth process 
X(t) stands for a population size and can assume all positive values; the under
lying stochastic process is described by our diffusion equations with 

(4.2) b(x) = ßx, a(x) = ax + y. 

The fact that b(x) vanishes on the boundaries represents a singularity and 
has important and curious consequences. 

Consider, for example, the diffusion equations with the coefficient^ (4.2), 
which are discussed in [7]. If 7 __ 0, then there exists a unique solution so thjat 
no boundary conditions can be imposed. For this solution the probability , 

(4.3) / u(y; t,x) dx = ir(t,y) 
Jo 

decreases steadily in time. The difference 1 — ir(t, y) represents the probability 
that a population of initial size y dies out before time t. (This, is the absorption 
or extinction probability.) 

The situation changes radically when 0 < 7 < ß, and resembles the more 
familiar circumstances of ordinary diffusion. There exist infinitely many solu
tions, among which there is one for which ir(t, y) = 1; this corresponds to re
flecting barriers. For all other solutions ir(t, y) decreases, and the solution for 
which the rate of decrease is greatest obviously corresponds to absorbing barriers. 
It is the only solution for which u(y; t, 0) < 00, so that in this particular case 
an absorbing barrier is described by the boundary condition u < 00. 

For 7 > ß the situation changes once more. In passing to the limit 7 —» ß —, 
the absorbing and the reflecting barrier solutions become identical, and for 
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7 > io we are once more in the situation that no boundary conditions can be 
imposed and that our problem is completely determined by the differential 
equation itself.7 

Accordingly, we can say that for y _§ 0 and y > ß the origin acts as natural 
boundary where no artificial conditions can be imposed, while for 0 < y < ß 
we are confronted with conditions similar to those in physical diffusion theory. 

It is possible (cf. [8]) to give criteria to determine whether for a particular 
singular equation the boundary acts as a natural one or whether there exist 
infinitely many solutions, but we are still unable to formulate the appropriate 
boundary conditions in all cases. Moreover, the biological applications lead us 
to a new type of boundary problems. 

The classical concept of an elastic barrier at x = 0 may be interpreted by 
saying that whenever the particle reaches x = 0 it has a probability p to be 
absorbed and probability q = 1 — p to be reflected. The limiting cases p = 0 
and p = 1 represent reflecting and absorbing barriers, respectively. Now bio
logical problems compel us to consider the more general case where the particle 
is only temporarily absorbed; that is, if the particle is absorbed, it remains 
fixed at the boundary for a finite time, and reverts then to the diffusion process. 
The sojourn time at the boundary is a random variable with an exponential 
distribution. In the familiar terminology of a probability mass spread over the 
x-axis this means that in addition to the solution u(t, x) we have to consider a 
finite mass m(t) concentrated at the origin. This mass flows at a rate propor
tional to m(t) back into the interval x > 0, but it is partly replaced by new mass 
being absorbed at the origin. If the diffusion starts with all the initial mass 
distributed over x > 0, then m(0) = 0, and one would expect that m(t) will 
increase to a certain saturation value. 

Unfortunately the appropriate boundary conditions have not been formulated 
and the precise conditions on a(y) and b(y) under which such a process can take 
place are not known. For an interesting special case which is of some importance 
in mathematical genetics cf. [6]. 

5, Existence problems. Pathological solutions. We now return to the case of 
an infinite interval and the two diffusion equations (3.12) and (3.13). As was 
mentioned at the end of §3, the whole setup as well as the analogy with the 
classical diffusion equation uy — uxx leads one to assume that the transition 
probability u(y; t, x) will satisfy thô two equations (3.12) and (3.13) and, con
versely, that each of these equations should have a fundamental solution which 
is essentially uniquely determined and can serve as u(y; t, x). However, already 
the first attempt to prove this conjecture showed that it cannot be true under 

7 However, for y > ß there exist solutions for which ir(t, y) increases. These solutions 
have no probability significance and correspond to the solutions of the theory of heat with 
heat flowing into the medium. The existence of analogous solutions for the whole axis was 
discovered by Hille [13]; his "explosive" solutions are of this kind with ic(t, y) —> «> as 
t - > * o > 0 . 
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all circumstances. In fact, it was shown in [5] that whenever one of the two 
integrals 

dx (5.1) f a~ll2(x)dx, f_ a~ll2(x) 

converges, an appropriate b(x) can be found such that (3.12) admits of a solu
tion which is non-negative, integrable, and such that w(0, x) = 0. Thus in this 
case the equation (3.12) does not suffice to describe our process. However, as
suming that both integrals (5.1) diverge, the construction of [5] shows that our 
conjecture is valid under very mild regularity restrictions on a(x) and b(x). 
In other words, in case of divergence of (5.1) the whole classical theory carries 
over to our diffusion equations.8 The problem was taken up by Yosida [26] and 
Hille [11, 12] who obtained similar results under slightly different conditions. 
In particular, Hille showed that (3.13) has a unique, non-negative solution 
u(i, x) satisfying the conditions 

Z+oo --H» 

u(t} x) dx = / f(x) dx 
oo J—oo 

provided that 
(5.3) \a'(x) - b(x) \ _S K{ \ x | + 1} 
and that the integral 
(5.4) f - T N ^ 

J a(x) 
diverges both at + oo and — oo ; conversely, if (5.3) holds, the divergence of 
(5.4) is a necessary condition for the theorem.9 

These unexpected results were at first rather disturbing since they seemed to 
indicate that the diffusion equations are, after all, an inadequate description of 
the actual process. Fortunately a satisfactory explanation can be found which 
makes the theory more harmonious than it would be if our diffusion equations 
always behaved as the classical equation ut = uxx . At the same time we shall 
be led to a new type of solution of the backward equation and to an interesting 
phenomenon concerning the forward equation. 

The singular diffusion equations discussed in the preceding section point in 
8 In [5] the more general case is treated where the coefficients a and b depend on t. The 

later investigations depend on the theoiy of semigroups and apply therefore only to the 
temporally homogeneous case treated in the text. 

9 The apparent discrepancy between Hille's conditions and Feller's condition (5.1) is 
readily explained. If one of the integrals in (5.1) converges, then it is impossible that 
| a'{x) | < K ( | x | -f 1), and hence (5.3) can hold only if the growth of b(x) is adjusted in 
a special way to that of a(x). On the other hand, if | a'{x) \ < K (| x | + 1), then a(x) — 
0(x2) and the divergence of (5.1) implies that of (5.4). [Added in proof. Unfortunately 
the text takes account only of Hille's paper [12] in which (3.13) is treated. The author 
is indebted to Hille for the manuscript and for many inspiring discussions. Subsequently 
Hille treated also (3.12) and obtained conclusive results concerning the uniqueness prob
lems for the two equations; they are announced in [11].] 
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the proper direction. T?he first point to be noted,is that there is.no essential 
difïerence between diffusion in a finite or infinite interval. In fact, let 7(5) be an 
arbitrary positive function and consider the transformation of variables 

y(s) ds, n = / y(s) ds. 
, . . , . , . , ' ; ; , > , Jo . . • ' r 1 . , \ • 

ïî'MiJ'X$satisfies the diffusion equations 5(i 12) and (3.13), then u*(i;t, Ç)/y(i) 
(as a'functiònòf H, rj and ôï t\ £, respectively) satisfies similar*1 equations with 
à(y) and 8"(#)" replàcedby a(y)-yy2(y) and1 Xid(!y)'y'(y) + b(y)-y(y). Moreover1, if 
u(y\ V,'x) is,'äs a'funotiôïi òf xx a probability density; then the same'is tnieof 
ti* as a function of'£. Thus wé hd,vô a whole group of trarisformatïoné which 
change'thé pair of diffusion equatiohs'into^equivalent equation^. We can make 
use of this fact either to simplify the equations or to change the interval. In 
particular, it is always possible to transform a finite interval into the1 entire réâl 
axis and vice versa. However, even if the coefficients are regular in" the interior, 
the transformed equations ŵ ill in general be of a singular type, jvith the coeffi
cients unbounded at ,the endpòints, or. d(x) vanishing at an endpoint. 

In particular, we may take the ordinary diffusion equation ut = .uxx fpr the 
finite interval — 1 < x <C 1, and transform the latter into — 00 < £ < 00. We 
obtain in this way a pair òf diffusion equations for the infinite interval which 
exhibits all the anomalies which at first appeared so perplexing. There'is no 
uniqueness, since we have the transforms of the classical absorbing and reflecting 
barrier solutions, etc. Furthermore, there exist positive solutions (well known 
from .the theory of heat conduction) with zero initial values and so on. 

In probabilistic language we can describe the situation as follows. The coeffi
cients a and 6 can be such that with probability one the particle never reaches 
a boundary, In this case no boundary conditions need (or can) *be imposed, and 
we have,the phenomenon of natural boundaries. The typical example is the 
homogeneous diffusion on the entire axis, since Wiener'gj result that almost all 
path functions are continuous implies that the particle cannot reach infinity. 
. . If the coefficients a and b are suc}i that the particle has positive probability 
to reach a boundary, several contingencies may arise, For example, the drift 
toward, the barrier can be so strong that the boundary automatically, acts as an 
absorbing barrier, and again no boundary conditions can be imposed. A typical 
example is the origin in the case of the singular equation with coefficients given 
by (4.2) when 7 __ 0 (cf. §4). Alternatively, the situation may fye as'with homo
geneous, diffusion in a finite interval, where various boundary conditions can be 
imposed. \ ' ' ' "v -v : 
" In" partièulâr, it is possible that there' 'exists a unique transition "probability 
U/(y; t,'x)['which Satisfies/th,e. two equations^(3112) and (3.13), but for which the 
tptaì probability mass ir(t, y) (defined in (4$)) is steadily decreasing^ tlere the 
•boundaries are natural in the sense that no boundary conditions in the classical 
sense can be imposed. Nevertheless, we are led to a new type of solutions .at 
least for the backward equation (3.12) and a curious phenomenon regarding 
the forward equation. 
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Following a remark of Doob10 we can modify our diffusion process by stipu
lating that whenever the particle reaches a boundary, it is instantaneously 
transferred back to the interior. More precisely, let <j>i(x) (i = 1, 2) be two den
sity functions and let us assume that if the particle reaches the right or left 
boundary, it jumps to a position Yi or Y2 , where the Yi are random variables 
with probability densities <t>i(x). It is easy to calculate the transition probability 
u*(y; t, x) of the so modified process, but for our purposes the explicit form is of 
no particular interest. It is rather obvious that u*(y; t, x) behaves asymptoti
cally for t —» 0 as the transition probability u(y; t, x) of the original process, so 
that according to the theory of §3 also u*(y; t, x) must satisfy the backward 
equation (3.12). It follows that w* — u is a non-negative solution of (3.12) with 
identically vanishing initial values, so that in this case the initial valus problem 
for (3.12) cannot be determined. The interesting fact is that our phenomenon can 
occur even when the initial value problem for (3.13) is uniquely determined. 
In this case u*(y; t, x) cannot satisfy (3.13) and we have thus a diffusion process 
where the transition probability satisfies the backward equation but not the forward 
equation. Instead, the inequality sign _̂  holds in (3.13) and the right side is to 
be modified by adding a positive operator.11 We are thus led to the conclusion 
that the adjoint of the backward equation (3.12) is not always given by (3.13), 
and is in general not even a differential equation. This is a new phenomenon 
which seems of interest for the general theory of semigroups and of differential 
operators. 

6. Ito's approach. Before passing to more general processes a word should 
be said on a new way of describing our diffusion processes which is due to Ito 
[14,15]. He does not make direct use of the differential equations or the transition 
probabilities, but expresses (at least in certain cases) the path functions of a 
general process by means of those of the Wiener process. 

Let X(t) represent the path functions of the latter. We have seen that with 
probability one X(t) is not of bounded variation so that the classical definition 
of the integral 

(6.1) ff(r)dX(r) 
Jo 

10 Doob discussed in detail a similar phenomenon for discrete Markov chains, cf. [2J. 
11 For details cf. [8], In the case of discrete Markov chains one is led to two infinite 

systems of ordinary differential equations playing the role of our diffusion equations. As 
Doob has shown, the analogue of (3.12) holds always, but the analogue of (3,13) holds only 
with the equality replaced by the sign _t. We now see why a direct derivation of (3.13) is 
impossible. In attempting a derivation along the lines which led to (3.12) one would intro
duce the function F{t, y) = J_M u(y; t, x)f(x) dx where f(x) vanishes for | x | > A and 
has, say, three continuous derivatives. Then (*) F(t-\- At, y) = / i £ u{y; At, z)F(t, z) dz g£ 
/_«> w(j/; t, z) dz'f\a-z\<i f(x)u(z; At, x) dx. If one had here the equality sign, it would 
be eaBy to derive (3.13) under fairly mild conditions (essentially supposing that the limits 
in (3.4) and (3.5) are attained boundedly in every finite interval). However, in order to re
place the inequality sign in (*) by the equality sign one has to introduce strong uniformity 
conditions which are actually not justified even in relatively simple cases. 



332 WILLIAM FELLER 

breaks down, even if f(t) is continuous: in fact, for almost every X(t) we can 
find a sequence of subdivisions tin) such that the corresponding Riemann sums 
will diverge. Nevertheless, it is possible to give a meaning to the integral (6.1). 
In fact, consider a fixed sequence of subdivisions, say tin) = k/2n. The corre
sponding Riemann sum 

(6.2) HMn))AX(4n)) 
k 

is a random variable, and it has been shown by various authors that it con
verges in probability to a random variable which has all the desired properties 
of an integral. 

Using this notion Ito shows that under certain restrictions on a and b the sto
chastic integral equation 

(6.3) Y(t) = c + [ b(Y(r)) dr+ [ a(Y(r)) dX(r) 
Jo Jo 

admits of an essentially unique solution Y(t). The latter is defined as a random 
variable on the Wiener space {X(t)}. I t is fairly obvious from (6.3) that the 
infinitesimal transition probabilities of Y(t) have the desired properties (3.4) 
and (3.8), and thus we have arrived at a representation of a stochastic process of 
the required type. 

This approach has the advantage that it permits a direct study of the prop
erties of the path functions Y(t), such as their continuity, etc. In principle, we 
have here a possibility of proving existence theorems for the partial differential 
equations (3.12)-(3.13) directly from the properties of the path functions. How
ever, the method is for the time being restricted to the infinite interval and the 
conditions on a and b are such as to guarantee the uniqueness of the solution. 
So far, therefore, we cannot obtain any new information concerning the "patho
logical" cases. 

7. Diffusion in phase space. The method of §3 works also in two and more 
dimensions. In two dimensions the transition probability is of the form 
u(Vi J 2/2 ; ty #1 j #2), and the equations corresponding to (3.12) and (3.13) are 

(7.1) Ut = ]C UiiUyiVj - Il ï>iUui , i,j = 1, 2 

and 

(7.2) Ut = 2 (aurìxixj + _C Q>iu)x., i,j = 1, 2 

where the coefficients may depend on the two space variables and the matrix 
(flu) is symmetric and positive definite. The meaning of the coefficients an and 
bi is the same as before, and the mixed coefficient ai,2 gives the infinitesimal 
covariance: 

«12(2/1,2/2) 

(7 3) 1 ff 
= lim —- / / (xi — 2/1) (x2 — y2)u(yi, y2 ; At, xi, x2) dxi dx2. 

A*-»Q /It JJ\Xi—ui]<€ 
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These equations were first derived by Kolmogorov [17]. Feller's constructions 
of the transition probability was generalized to two dimensions by Dressel [4], 
In the time homogeneous case the equations were integrated by Yosida [26] 
using the theory of semigroups. However, nothing is known for the case of 
singular equations or the case where no uniqueness exists, and practically noth
ing is known about the appropriate boundary conditions in various problems 
involving bounded domains. 

We shall not pursue this line of investigation but shall be content to indicate 
how our equations lead to a refined model of diffusion in which the path functions 
have derivatives. 

The fact that the original model of diffusion leads to the conclusion that the 
particles have no velocities has been pointed out by many authors. Actually 
this fact is neither perturbing nor surprising: the whole theory is based on the 
assumption that the process is Markovian, that is, that the particle has no 
memory. Now if the particle had a finite velocity, shocks in the direction of 
motion would be less probable, so that any change of velocity would affect the 
chances of further changes. In other words, finite velocities would imply that 
the position of the particle is a random variable of a stochastic process with 
aftereffects. 

In a Section meeting at this Congress two proposals Avere made to modify 
the basic assumptions so as to endow the particles with finite velocities. In 
both cases the diffusion equations would be replaced by equations of the hyper
bolic type. Now the general solution of the initial value problem for such equa
tions does not preserve positivity or the integral mean. Moreover, it depends 
not only on the initial value but also on their derivatives, which have no apparent 
probabilistic meaning. In short, the hyperbolic equations in question cannot 
serve as appropriate descriptions of a stochastic process, and if a particular 
transition probability is a solution, this is a lucky coincidence. 

However, a refined model of diffusion in which the particles have finite veloc
ities (but no accelerations) is due to Ornstein and Uhlenbeck.12 This theory 
assumes that the particle has a velocity X2(t) which is the subject of an ordinary 
diffusion process regulated by (2.1). The position Xi(i) of the particle is then 
obtained from 

(7.4) Xi(0 = f X2(r) dr, 
Jo 

the integral having a meaning since X2(t) is continuous with probability one. 
As shown by Doob, Xi(t) is the variable of a Gaussian (non-Markovian) process 
whose probability relations approach for large t those of the ordinary Brownian 
motion process. 

An alternative way of reaching the same conclusion consists in studying the 
vector (Xi(t), X2(t)) as the variable of a two-dimensional diffusion process (so 

12 Cf. [23]. A thorough discussion of this process which is more appropriate for our pur
poses is contained in Doob [3]. 



334 WILLIAM FELLER 

that the plane is really the phase space of a particle in one-dimensional motion). 
Under the above assumptions this two-dimensional process is Markovian, and 
the corresponding transition probability u(yi ,y2;t,xi, x2) should satisfy a pair 
of equations of the form (7.1), (7.2), Now according to Ornstein and Uhlenbeck 
the variable X2(t) is subject to a symmetric homogeneous diffusion'process, so 
that b2 = 0 and 022 is a constant which we can assume as unity. From (7.4) it 
follows that if at any time Xi(t) = yi, X2(t) = y2, then 

E(Xi{tx + At) - Xi(0) = y*At + o(At) 

E((Xi(t + At) - Xi(t))2) = o(At), 

#,nd hence an = 0, òi = y2 . From the second equation (7.5) and Schwarz' ine; 
quality it follows that also au = 0. Hence (7.1) reduces to 

(7.6) ' ut = uV2V2 - y2uyi . 

This equation has first been given by Kolmogorov [19]. Ijf the condition of 
homogeneity is dropped, the same consideration leads to the more general equa
tion 

(7.7) ut = b(y1, y2)uy2y2 + a(yx, y2)uy2 - y2uvi . 

This equation is of a degenerate type and practically nothing is known about 
the appropriate boundary conditions for finite domains. A fundamental solution 
for the infinite plane was constructed by M. Weber [24]. 

To prove the equivalence of the two approaches one should prove that the 
solution of (7.7) satisfies the condition (7.4). This is intuitively rather obvious, 
but a satisfactory proof has not been given. Otherwise the same method could be 
applied to the calculation of various Wiener functionals, which were the object 
of investigation by Cameron and Martin, and by Kac (cf. [16]). Let again 
X2(t) be the random variable of the simplest diffusion process, and, put 

(7.8) Xi(t) = f V(X2(r)) dr, 
Jo 

where V(x) is a given function, say x2. Then the pair (Xi, X2) is the variable of 
a two-dimensional diffusion process, and should satisfy an equation of the form 
(7.6) with the coefficient y2 replaced by V(y2). The difficulty of this approach 
(as well as in Ito's approach) seems to he in a direct verification that the transi
tion probability of the pair (Xi, X2) has all the properties assumed in the deriva
tion of (7.6). Formally, however, one can start with our diffusion equation and 
derive Kac's results from it. 

In the Ornstein-Uhlenbeck model of diffusion the position Xi(t) is not the 
variable of a Markovian process, but the process becomes Markovian when the 
state of the particle is defined so as to include position and velocity. Thus the 
same physical process can be described as a Markovian or non-Markovian 
process depending on the parameters used for its description. For example, in 
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cosmic ray showers the most interesting variable is the total number of particles, 
but it is not the variable of a Markov process. However, we may use the con
ceptual simplicity of and the tools available for Markov processes at the expense 
of describing the state of the system by the positions, masses, and velocities of 
each particle. In this way we are led to a Markov process in a rather complicated 
phase space. If the process is continuous (which excludes instantaneous changes 
like splitting of particles), we shall again be led to partial differential equations 
of the diffusion type. 

The most radical step in this direction was taken bj7" Feynman [9] in his new 
approach to quantum physics. The starting point of Feynman's theory is the 
remark that the phase-time space can always be split into two parts involving 
the "past" and "future" in such a way that the physical process becomes what 
we would call a stochastic process of the Markov type. As a physicist Feynman 
does not mind generalizations and abstractions which would make mere mathe
maticians shudder, and thus his "past" is permitted even to include future 
events (thus introducing advance effects instead of aftereffects). Feynman then 
introduces an assumption equivalent to continuity and shows heuristically that 
the diffusion equation to which one is led is essentially the Schrödinger equation. 
It has complex coefficients since Feynman deals with complex probability 
amplitudes rather than with classical transition probabilities. It is not clear at 
present whether this is only an excellent analytical tool or whether we have here 
an essential generalization of the classical concept of a stochastic process. 

8. Generalizations by means of M. Riesz' potentials. Usually partial differ
ential equations appear to play a special role among functional equations, but 
from a probabilistic point of view the diffusion processes are only a particular 
type of a Markov process. Starting from the Chapman-Kolmogorov equation 
(3.2) we have derived a diffusion equation by imposing certain conditions on the 
asymptotic behavior of the transition probability u(y; t, x) as t —» 0. Probability 
considerations suggest to us also more general conditions which then lead to a 
generalization of the diffusion equation in which certain integrals involving u 
are added to the right-hand member (cf. [5] and Yosida [27]). However, even the 
integro-differential equations thus obtained describe only a special class of 
Markov processes and represent from a certain point of view an unnatural type 
of functional equations. Our real problem is to find a linear functional equation 
equivalent to the Chapman-Kolmogorov equation (3.2). In the language of the 
theory of semigroups this amounts to saying that we desire to find the infinitesi
mal generators to the most general semigroup corresponding to (3.2). 

Before proceeding it should be emphasized that the Chapman-Kolmogorov 
equation (3.2) is by no means restricted to probability problems, but that an 
analogous relation holds for all linear differential equations. In fact, suppose that 
the solution u(t, x) of an equation (whose coefficients do not depend on t) is 
determined by its initial values. Then u(t, x) will be given by an integral of the 
form (2.3), and the Chapman-Kolmogorov equation merely expresses the fact 
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that the solution u(s + t, x) can be calculated either directly in terms of its 
initial values at time 0 or, alternatively, in terms of its values at time t which, 
in turn, are expressible in terms of the initial values. Equating the two expressions 
we obtain (3.2). It is clear that a similar reasoning holds, for example, for a 
hyperbolic differential equation- except that a vector notation must be used 
since now the problem is determined by1 the initial values of the solution and its 
time derivative. 

In short, a kernel u(y; t, x) induces two associated linear transformations 

Ttf(x) = J f(y)u(y;t,x)dy, 
(8.1) 

Stg(y) = J g(x)u(y; t, x) dx 

and the Chapman-Kolmogorov equation (3.2) merely expresses the fact that as 
t varies each of these transformations forms a semigroup. In operator theoretical 
language the equation uy = uxx can be interpreted as stating that thç infinitesimal 
generator (time derivative) of Tt is given by the operator d2/dx2, or symbolically 

«> ÌT>-TÌ-
A formal integration leads to the symbolic equation 

(8.3) Tt = etdVdx\ 

If /(») is an entire function, then (8.3) gives 

(8.4) Ttf(x) = eldVdx*f(x) F= j _ tk/klfm(x), 

which agrees with the classical solution (2.2) and (2.3). The more general dif
fusion equations merely replace the operator d2/dx2 on the right by other dif
ferential operators. In the case of the integro-differential equations mentioned 
above we have on the right a combination of a differential and integral operator. 
However, for a general solution we shall have to consider much more general 
operators. 

The stable distributions are the best known class of solutions of the Chapman-
Kolmogorov equation which are not connected with either differential or integro-
differential equations. Bochner [1] was the first to notice that the symmetric 
stable distributions can be interpreted as solutions of an operator equation 

ut = Au, 

where the operator A is a certain fractional power of d2/dx2. A better under
standing of this important observation may be derived from an application of a 
technique developed by M. Riesz [22] which also points to various generaliza
tions. 
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A fractional potential of order a is defined, according to Riesz, by 

(8.5) F f(x) = * r^y) \y-x I""1 dy. 
2T(a) cos ira/2 J-«, 

This integral diverges in general, but Riesz showed that a meaning can be 
attached to it for a large class of functions f(x). In particular, I°f(x) = f(x)i 
and I~2nf(x) = (— l)nf(2n)(x), whenever n is a positive integer. This relation is 
interesting for two reasons. First, it is clear that in general Ia is a global operator, 
that is, I"f(x) depends on all values of f(x). For the particular values a = 0, 
—2, — 4, • • • , however, the operator takes on a purely local character. Secondly, 
since I~2 is the same as —d2/dx2, we can interpret J -1 as a square root of —d2/dx2, 
and similarly for other powers. This enables us to pursue in more detail Bochner's 
remark. We are thus led to consider the general functional equation 

(8.6) ut = - J T V 

If a = 2, this reduces to the classical diffusion equation ut = uxx , but for other 
values of a the functional equation (8.6) has quite different a character, since 
the operator on the right is of a global character. 

From Bochner's remark one should expect that for 0 < a g 1 the equation 
(8.6) should lead to symmetric stable distributions. This is so, and we proceed to 
verify it in a purely formal fashion for a = 1. 

The symmetric stable distribution of order a = 1 is characterized by the 
density 

(8.7) u(y; t9 x) * 
(x-y)*+P' 

which is known as Cauchy distribution. It plays for the Cauchy process the role 
of the normal density (2.2), and the solution (2.3) reduces in the present case to 
the function u(t, x) which is harmonic in the half plane t > 0, vanishes at infinity, 
and reduces for t «= 0 to f(x). 

If we integrate (8.6) for a = 1 formally by analogy with (8.4), we are led to 
an expansion 

(8.8) u(t,x) =±t^r"f(x). 

Substituting from the definition (8.5) it is easily verified that the right side 
reduces to the anticipated solution 

(8.9) u«>*)=llj{y)(y-l)>+l?dy-
The formal steps leading to this formula require justification. However, by 

similar calculations all symmetric stable distributions can be obtained, and by 
a slight generalization of Riesz' definitions of potentials we can derive also the 
unsymmetric stable distribution. It appears, in fact, that all probabilistic solu-
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tions of the Chapman-Kolmogorov equation can be obtained in thiä way, except 
that the parameters of the potentials on the right side will depend on x. 

It is of particular interest that we have obtained the solution of a Dirichlet 
problem for the Laplace equation Au = 0 as the solution of a generalized diffusion 
problem. The explanation fies in the semigroup property of the Green function 
(8.7), and a similar statement applies also to the Dirichlet problem for closed 
curves. The curve itself corresponds to the a?-axis, and certain closed curves in thè 
interior to the lines t = const. These contract to a single point which corresponds 
to t — oo. From the values of u along the boundary curve the values along the 
curves in the interior can be calculated by the methods just described. The 
fundamental fact that as t —» oo all the values tend to the same limit follows 
then from the ergodic principle for Markov processes on closed manifolds. We 
have thus a direct connection of the Dirichlet problem for elliptic equations with 
certain generalized diffusion equations, which in turn are closely connected with 
measure in function spaces where almost no function is continuous. 
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HOMOLOGY AND HOMOTOPY THEORY 

HOMOTOPY AND HOMOLOGY 

W. HUREWICZ 

The concept of homotopy is a mathematical formulation of the intuitive idea 
of a continuous transition between two geometrical configurations. The concept 
of homology gives a mathematical precision to the intuitive idea of a curve 
bounding an "area" or a surface bounding a "volume." 

1. TJ'he first step toward connecting these two basic concepts of topology was 
taken by L. E. J. Brouwer in 1912 by demonstrating that two continuous map
pings of a two-dimensional sphere into itself can be continuously deformed into 
each other if and only if they have the same degree (that is, if they are equiva
lent from the point of view of homology theory). 

After having generalized Brouwer's result to an arbitrary number of dimen
sions, H. Hopf undertook a systematic study of the problem of classifying the 
continuous mappings of a polytope P into a polytope Q. Each mapping/induces 
homomorphisms of homology groups of P into the corresponding groups of Q. 
Two mappings / and g are said to belong to the same homology class- if they in
duce identical homomorphisms of homology groups (for all dimensions and all 
coefficient domains). The mappings / and g are said to belong to the same homo-
topy class if they can be embedded into a common one-parameter continuous 
family of mappings. The homotopy class of a mapping determines its homology 
class, but not conversely, as shown by the example of the mappings of the sphere 
Ss into $2 which all belong to the same homology class although there is an 
infinite number of homotopy classes. The question arises: under what special 
conditions the homotopy classification of the mappings of P into Q coincides 
with their homology classification. The classical result of Hopf states that this 
is the case if P is a polytope of dimension n and Q the n-dimensional sphere Sn . 
Using cohomology groups instead of homology groups, H. Whitney gave the 
following elegant formulation to Hopf's theorem. Homotopy classes of mappings 
of an ^-dimensional polytope P into the sphere Sn are in one to one correspond
ence with the elements of the n-dimensional cohomology group of P with integers 
as coefficients. 

2. In 1934-1935 the author developed the concept and theory of higher 
dimensional homotopy groups. Given an arcwise connected topological space F, 
the n-dimensional homotopy group irn(Y) is defined as follows: Let an arbitrary 
point yQ Ç F be singled out once and for all as the "reference point," and let 
also a fixed point xQ be selected on the fixed n-sphere Sn. An element of irn(Y) 
is determined by a continuous mapping of Sn into F, satisfying the condition 
(XQ) = y0 . Two mappings / and g determine the same element of irn(Y) if and 
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Only if they can be continuously deformed into each other, in such a fashion 
ihat the image of x0 remains at yQ during the entire process of deformation (this 
condition can be dispensed with if F is simply connected). In this case every con
tinuous mapping of Sn into F determines uniquely an element of 7r„(F). The 
group composition law is defined in a fairly obvious way by identifying two 
ft-spheres tangent at x0 with the two hemispheres of a single sphere whose 
equator has been shrunk into xQ . 

An alternative way to introduce homotopy groups is to consider the topo
logical space F of all continuous mappings of Sn-i into F satisfying the condi
tion f(x0) = 2/0 , where XQ is a fixed point of £„_i . Although this functional space 
is, generally speaking, disconnected, it can be shown that its arcwise connected 
components have the same homotopy type (see below) and consequently have 
isomorphic fundamental groups. We can thus speak about the fundamental 
group of the functional space F, and this group turns out to be isomorphic to 
the ^-dimensional homotopy group 7r„(F) in the sense of the previous definition. 
The group TTI(Y) is, of course, the fundamental group of F. A simple geometric 
argument shows that for n > 1 the groups irn(Y) are abelian. In contrast with 
homology groups the homotopy groups of an ?i-dimensional space may be non-
trival even in dimensions higher than n. For instance, ws(S2) is an infinite cyclic 
group (Hopf's theorem) and for n > 2 the group 7rn+i(S„) is of order 2 (Freuden-
thal-Pontrjagin theorem). 

To determine the homotopy groups of a given space is, generally speaking, 
an extremely difficult problem (even for finite polytopes) which so far has been 
solved only in a few special cases. In this respect there is a significant difference 
between homotopy and homology. When a polytope P is broken up in two sub
polytopes Q and R, there is a relatively simple relation (Meyer Vietoris theorem 
restated recently in terms of the so-called exact sequences) between the homology 
invariants of the polytopes P, Q, R and the intersection Q f) R. No analogous 
relation exists for homotopy groups. This is tied up to the fact that a continuous 
image of the n-sphere in P cannot be decomposed into "small" spherical images, 
the way a simplicial chain can be decomposed into "small parts." Therefore the 
basic process of homology theory consisting in decomposing a space into smaller 
pieces with simpler homology structure has no counterpart in homotopy theory. 
The difficulty is illustrated by the fact that even in the case of a space P repre
sented as the union of two subspaces Q and R with only one point in common, 
there is no simple relation between higher dimensional homotopy groups of P, 
Q, and R. 

3. In certain "elementary" cases, homotopy groups can be reduced to homol
ogy groups. Let F be an arcwise connected space and let Hn(Y) be the n-dimen-
sional homology group of F based on singular chains, with integers as coeffi
cients. A continuous image of Sn in F can be regarded as a singular n-cycle. 
Since two homotopic spherical images determine homologous singular cycles, 
one obtains a "natural" homomorphism of irn(Y) into Hn(Y). The fundamental 
equivalence theorem states: 
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Ifn*t2 and the homotopy groups Wi(Y) are trivial for i < n, the nth homotopy 
group irn(Y) is isomorphic to the nth homology group Hn(Y) under the natural 
homomorphism. 

For example Ti(Sn) is trivial for i < n and hence rn(Sn) is infinite cyclic. 
Arcwise connected spaces whose homotopy groups in dimensions less than or 
equal to n vanish are /Called n-connected. This property is equivalent to the con
dition that every continuous image of an arbitrary n-dimensional polytope in 
F be homotopic to a single point. An obvious corollary to the equivalence 
theorem states that F is n-connected if and only if the groups iri(Y)j H^Y), • • • , 
Hn(Y) are trivial. I t follows that a polytope can be shrunk to a point in itself 
if and only if it is simply connected ( = 1-connected) and has vanishing ho
mology groups in all dimensions. 

4. The equivalence theorem just stated can be formulated in the following 
way: If the arcwise connected space F i s (n — l)-connected (n ^ 2), the homotopy 
classes of mappings of Sn into F coincide with their homology classes. Compar
ing this result to Hopf's theorem mentioned above we find that the assertions in 
both theorems are of the same type. Hopf's theorem and the equivalence theorem 
are both contained in the following more general theorem : 

If Y is an (n — l)-connected space (n _̂  2) and P an n-dimensional polytope, 
the homotopy classification of P into Y agrees with their homology classification. 
More refined results in this direction can be obtained by using the concept of 
a homotopy obstruction developed by S. Eilenberg (implicitly this idea was used 
for the first time by H. Whitney in his revealing proof of Hopfs theorem). 
Let F be a 1-connected space and P an arbitrary polytope.; Let us denote by 
Pm the m-dimensional skeleton of P , that is, the union of all Simplexes of P of 
dimensions less than or equal to ra. Consider now two continuous mappings / 
and g of P into F. An attempt to deform / continuously into g can be carried 
out stepwise, each step involving considerations in one dimension only. Suppose 
we have succeeded in deforming / into a mapping / ' which agrees with g on the 
(m — 1)-dimensional skeleton Pm"~\ For each oriented simplex <rm of P the images 
f(<rm) and g(am) (which coincide on the boundary of O yield, in an obvious 
fashion, a continuous image of an ra-sphere. Let us denote by (p(o~m) the element 
of the homotopy group irm = xm(F) determined by this spherical image. The 
function çp can be regarded as an m-dimensional cochain of P with coefficients in 
the group 7rm. This cochain turns out to be a cocycle. Its cohomology class is 
called the homotopy obstruction for the couple (/', g). The notation is justified 
by the following theorem: If the obstruction is zero (that is, if the cocycle <p is 
cobounding), the deformation process can be pushed one step further so as to deform 
f into a mapping / " which agrees with g on the m-dimensional skeleton Pm. More
over the deformation can be carried out in such a way that the image of Pm~2 (but 
not necessarily of Pm~1) remains unchanged. 

If the cohomology group H(P, irm) of P with coefficients in wm is trivial (this 
will be the case, for instance, if irm = irm(Y) vanishes), all obstructions in 
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dimension m are zero, and hence any two mappings which coincide on Pm~l are 
homotopic on Pm. 

The author derived further results by connecting homotopy obstructions with 
so called homology obstructions. Let IIm = IIm (Y) be the rath homology group of 
F with integers as coefficients, in the sense of the singular homology theory, and 
let Hm(P, Hm) be the mih. cohomology group of P with coefficients in Hm. 
The natural homomorphism of 7rm into Hm yields a homomorphism of H(P, Tm) 
into H(P, Hm). Under this homomorphism the homotopy obstruction of the 
couple (/', g) is sent into an element of H(P, Hm) which is called the homology 
obstruction of the couple (/', g). The homology obstruction is zero if the mappings 
/ ' and g, or—what amounts to the same thing—the mappings / and g belong to 
the same homology class. 

Under certain conditions, homotopy obstructions coincide with homology 
obstructions. This is, for instance, the case if irm(Y) is isomorphic to Hm(Y) 
under the natural homomorphism. Under such circumstances the homotopy 
problem in dimension ra is completely reducible to the corresponding homology 
problem. 

6. The groups 7r„(F) are a special case of more general invariants called 
relative homotopy groups, which are in many respects analogous to relative 
homology groups. 

Let F be a topological space and Z a subset of F. Both F and Z are assumed 
to be arcwise connected. For every integer n è 2 we shall define the relative 
homotopy group wn(Y, Z). Let En be a fixed n-cell with the boundary Sn-i. 
Let us select a point xQ of Sn-i and a point g0 of Z. An element of irn(Y, Z) is 
determined by a continuous mapping of En into F satisfying the boundary 
conditions 

f(Sn-i) C Z, f(xQ) = So. 

Two mappings determine the same element of irn(Y, Z) if they can be con
tinuously deformed into each other in such a way that the boundary conditions 
are satisfied during the entire process of deformation. The composition law is 
defined by partitioning an n-cell into two cells with an (n — l)-cell in common 
and shrinking this (n — l)-cell into a single point xQ. I t is evident that no 
reasonable composition can be defined when n = 1. An alternative definition 
describes relative homotopy groups as fundamental groups of suitably defined 
functional spaces. 

For n > 2, irn(Y, Z) is abelian. The group 7r2(F, Z) is in general nonabelian, 
and this accounts for some of the peculiar difficulties encountered in the homo
topy theory of two-dimensional spaces. 

In exactly the same way as in the case of absolute homotopy groups, one 
defines a natural homomorphism of the relative homotopy group irn(Y, Z) into 
the relative homology group Hn(Y, Z) (with integer coefficients). We shall call 
the couple (F, Z) n-connected (n ^ 2) if (a) the group TTI(Z) is isomorphic to 
7Ti(F) under the natural homomorphism and (b) 7r,„(F, Z) vanishes for 
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2 __ ra _S n. Without using homotopy groups, the definition can be formulated 
as follows: the couple (F, Z) is n-connected if given any n-dimensional polytope 
P with a subpolytope Q and any continuous mapping / of P into F satisfying 
f(Q) C Z, f can be deformed, without changing the image f(Q), into a mapping 
g satisfying g(P) C Z. In analogy with the equivalence theorem for absolute 
homotopy groups we have: 

If the couple (F, Z) is (n — l)-connected, the homotopy group irn(Y, Z) is 
isomorphic to the homology group Hn(Y, Z) under the natural homomorphism. 

Relative homotopy groups play a basic role in the study of fibre spaces and 
fibre bundles. 

An important generalization of relative homotopy groups has been developed 
recently by A/L . Blakers and W. S. Massey. They define homotopy groups of 
a so-called "triad," that is, of a space F supplied with two closed sets U and V 
whose union is F. Roughly speaking, the elements of the n-dimensional homotopy 
group of a triad are defined by mappings of an n-dimensional cell into F such 
that çne of the two hemispheres of the boundary of the cell is mapped into U 
and the other one into V. The theory of homotopy triads helps greatly to under
stand Freudenthal's so-called "suspension homomorphism" which is the basic 
tool in the discussion of homotopy groups of spheres. 

6. The problem of classifying mappings of one space into another space is 
closely related to the problem of classifying spaces themselves according to their 
homotopy properties. Two spaces X and F are said to have the same homotopy 
type if there exists a continuous mapping/ of X into F and a continuous mapping 
g of F into X such that the combined mappings / ° g and g ° / are homotopic to 
identities. Two spaces which have the same homotopy types have isomorphic 
cohomology rings and isomorphic homotopy groups in all dimensions. As has 
been shown recently by J. H. C. Whitehead, a necessary and sufficient condition 
for X and F to have the same homotopy type is the existence of a continuous 
mapping / of X into F which induces isomorphic mappings of the fundamental 
group and the homology groups of X into the corresponding groups of F. 

J. H. C. Whitehead has succeeded in completely describing the homotopy types 
of simply connected four-dimensional polytopes in terms of their homology in
variants. This description involves in addition to cohomology rings the so-
called "Pontrjagin squares." 

7. So far we have been concerned mainly with the problem of reducing homo
topy properties of mappings and spaces to their homology properties. In certain 
cases, however, one is led to the converse problem of obtaining information 
about homology properties of a space from its known homotopy properties. 
A typical example is an aspherical space. By this is meant a space whose homotopy 
groups vanish in all dimensions n ^ 2. I t is known that the homotopy type and 
hence all homology invariants of an aspherical space are determined by its 
fundamental group. An analogous result holds for spaces which have only one 
nonvanishing homotopy group. The algebraical process by which in cases of 
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this type the homology invariants of the space are determined by its homotopy 
groups has been studied extensively by Eilenberg-MacLane. Their research 
resulted in a fruitful theorjr of homology invariants associated with abstract 
groups. This theory has interesting applications in algebra and in the theory of 
Lie groups. 

8. At present the main effort in homotopy theory seems to concentrate on the 
problem of determining homotopy groups of spheres. The tools used in this 
research are predominantly of algebraical nature, like generalized Hopf in
variants studied by G. Whitehead, or "cup products" introduced by N. Steenrod. 
Important advances have been made, most significant of which is the result 
established recently by G. Whitehead and Pontrjagin, to the effect that irn+2(Sn) 
is a group of order 2 for n ^ 3. Nevertheless our knowledge of homotopy groups 
of spheres remains meager. 

Perhaps the present trend of research does not put enough emphasis on tools 
that could be provided by the geometrical structure from the point of view of dif
ferential geometry, like properties of geodesic lines, study of critical points, etc. 
Recent work of E. Pitcher seems to indicate that some progress can be expected 
from this direction. 
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HOMOTOPY GROUPS AND ALGEBRAIC HOMOLOGY THEORIES 

SAMUEL EILENBERG1 

This note will present certain topological results obtained by Saunders Mac
Lane and the author. Some of the algebraic aspects of these questions are pre
sented by MacLane in another note in these Proceedings. 

Let X be an arcwise connected topological space with base point xQ and with 
vanishing homotopy groups Tì(X) for 1 _* i < n. The singular homology and 
cohomology groups of X may then be derived from the singular complex Sn(X) 
consisting of the singular simplexes whose faces of dimension less than n all 
degenerate to the point xQ. A g-simplex T of Sn(X) determines a system of 
"labels" consisting of elements of Tn = irn(X) attached to each n-dimensional 
face of T. The alternating sum of the labels on the faces of an (n + l)-face of 
T are zero. Such a system of labels may be regarded as an abstract simplex of a 
complex K(wn , n) ; this is a purely algebraic construction on the group n = irn 

and the integer n. The function which to each simplex of Sn(X) assigns its system 
of labels yields a simplicial mapping K: Sn(X) —» K(irn , n). Each n-dimensional 
simplex of K(irn, n) consists of a single label; i.e., of an element of irn. This 
yields the basic cohomology class bn G Hn(Tn, n; irn) of the complex K(irn, n) 
with coefficients in irn, and the basic cohomology class sn = n*bn <E Hn(X; irn) 
of X with coefficients in 7rTC . 

We shall further assume that the homotopy groups Tì(X) vanish also for 
n <i < q. Then every simplex of K (irn , n) of dimension less than or equal to q 
can be realized geometrically in Sn(X) and this yields an inverse simplicial map
ping K\ K(irn , n) —» Sn(X) defined in dimensions less than or equal to q. Using 
this map we have shown2 that the homology and cohomology groups of X in di
mensions less than q (and also partially in dimension q) are those of K(rn , n). In 
attempting to extend R to the dimension q + 1 one encounters an obstruction 
which is a cohomology class fc»+1 £ Hq+1(irn ,nm,irq) of the complex K(irn , n) with 
coefficients in irq = irq(X). 

Let if be a (possibly infinite) simplicial complex with ordered vertices and 
f:Kn-^XB, continuous mapping of the n-skeleton of K. Without loss of gen
erality we may assume that /(iCn_1) = xQ. If the map / is extendable to a map 
Kn+1 —» X, then the cohomology class/*sn G Hn(Kn; 7rw) determines uniquely a 
cohomology class fAsn G Hn(K; 7rn). If further g: Kn —» X is another such map 
which agrees with / on a subcomplex L of K, then a relative cohomology class 
(/ "" sOAsn € Hn(K, L; rn) is uniquely determined. 

Let / : Kn U L —> X be a map extendable to a map Kn+1 U L - > I . For each 

1 John Simon Guggenheim Memorial Fellow. 
2 S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces 

I and II , Ann. of Math. vol. 46 (1945) pp. 480-509 and vol. 51 (1950) pp. 514-533. 
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simplex A of K and each n-f ace of A, / determines a label which is an element of 
7T„. These labels form a simplex of K(wn, n), thus yielding a simplicial map 
/ : K —> K(irn, n). It can also be shown that / is extendable to a map 
/ ' : Kq U L -» X. The obstruction cq+1(f) G Hq+1(K, L; irq) is independent of the 
choice of/' and is called the secondary obstruction zq+1(f) of/. 

THEOREM 1. Let K be a simplicial complex, L a subcomplex, f, g\ Kn U L —• 
X maps such thatf(Kn~l) = g(Kn~l) = xQ and f\L = g\L. If both f and g are ex
tendable to maps Kn+1 U i - ^ I , then their secondary obstructions satisfy 

zq+1(f) - z9+1(g) = (J- gnt1. 
Here (J — #)* is the difference homomorphism Hq+1(irn , n; irq) —> Hq+1(K, h} irQ) 

induced by the maps / and g which agree on L. 
The above theorem yields interesting results only if one has more informa

tion about the element fc^+1 and about the group iîfl+1(7Tn, n; irq) in which it 
lies. The latter is closely related with the homology theory of abelian groups 
based on the complexes A (n) and A1 (U) of the aforementioned note of MacLane. 

We limit our attention here to the case q = n + 1. In this case we have natural 
isomorphisms 

H^niOttH^WiG) 
Hn+\IL, n; 0) ^ H\A(IL); G), n > 2. 

Each element % of iînH2(n, n; g) yields a trace t which is a function defined on 
n with values in G and which satisfies the conditions 

(1) t(x) - t(-x) = 0 
(2) t(x + y + z) - t(y + z) - t(x + z) - t(x + y) + t(x) + t(y) + t(z) = 0 

for n = 2. For n > 2, (2) is replaced by the stronger condition 
(20 t(x + y) - t(y) - l(x) = 0. 
In particular, we consider the element fc£+2 G HnJt2(irn , n; 7rw+i), and prove 

that the trace of /c«4"2 is J. H. C. Whitehead's function n\ irn —> 7rn+i obtained by 
combining each map Sn —> X with a map £n + I —> Sn that yields a generator of 
TTn+l(Sn). 

The correspondence x —> I yields an isomorphic mapping of the group 
jyn+2(n, n; (?) onto the group of all functions satisfying conditions (1) and (2) 
(or (1) and (2;) if n > 2). If the abelian group n is finitely generated, then the 
inverse mapping may be described as follows. 

Let K be a complex with sufficient simplicial structure, L a subcomplex, and 
let t: H —» G be a function satisfying (1) and (2). Then if n is finitely generated, 
one may define a "Pontrjagin square" 

Pt: H
q(K, L; n) -> H2q(K, L; <?), q even, 

8 Cf. G. W. Whitehead, On spaces with vanishing low-dimensional homotopy groups, 
Proc. Nat. Acad. Sci. U. S. A. vol. 34 (1948) pp. 207-211; Theorem 5. 
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which itself satisfies (1) and (2). If t satisfies (1) and (2r), then one has a "Steen-
rod square" 

Sq]: Hq(K, L; IL) -> Hq+2(K, L; G) 

which itself satisfies (1) and (2'). If bn G Hn(U, n; H) is the basic cohomology 
class of K(JI, n), then the elements Pt(b

2) and Sq2
t(b

n) for n > 2 of jffn+2(n, n; G) 
have precisely the trace t. 

These results combined with some formal properties of Pt and Sq2
t and with 

Theorem 1 yield the following theorem. 

THEOREM 2. Let X be an arcwise connected topological space with TTì(X) = Ö 
for i <J n (n > 1) and with irn(X) finitely generated. Let Kbe a simplicial complex, 
L a subcomplex, andf, g\ Kn U L - ^ X two maps extendable to maps Kn+1 U L —» X 
which agree on L. Then their secondary obstructions satisfy 

zn+\f) -- *n«(s) = < 

>,(x2) + ?V)Ux2, 
/V)UX2-P,(A2) , 

MW), 

n = 2, 

n - 2, 

» > 2, 

w/iere sn G Hn(X; irn) is the basic cohomology class of X, \n = (/ — g)Asn, and 
U denotes the ordinary cup product relative to the pairing [x, y] = 7)(x + y) — 
i)(x) - T}(y). 

In order to deduce from this theorem a classification theorem for maps 
Kn+1 - > I w e need the "Postnikov square" which is a homomorphism 

Pt: Hd(K, L; Ii) -> H2q+1(K, L; G), q odd, 

defined for each t satisfying conditions (1) and (2). 

THEOREM 3. Let X be as in Theorem 2 and letf, g: Kn+1 —» X be two maps which 
agree on Kn U L. Let dn+1(f, g) G Hn+1(K, L; irn+i) be the cohomology class measur
ing the difference between fand g. Then fand g are homotopic relative to L if and only 
if there is a cohomology class ew_1 G Hn~l(K, L; icn) such that 

Wie"-1), n>2. dn+1(f, g) 

Theorems 2 and 3 constitute a generalization of Steenrod's results4 for the case 
X = Sn. I t should be noted that the method also is in a sense a generalization 

4 N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. vol. 
48 (1947) pp. 290-320. 
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of that of Steenrod: the complexes Mn are replaced here by the algebraic com
plexes K(irn , n). Our results are almost identical with results recently obtained 
by J, H. C. Whitehead by a different method and include earlier results of 
Whitney5 and Postnikov.6 

C O L U M B I A U N I V E R S I T Y , 

NEW YORK, N. Y., U. S. A. 

1 H. Whitney, Classification of the mappings of a S-complex into a simply connected space, 
Ann. of Math. vol. 50 (1949) pp. 270-284. 

6 M. M. Postnikov, Classification of the continuous mappings of an arbitrary n-dimensional 
polyhedron into a connected topological space which is aspherical in dimensions greater than 
unity and less than n, C. R. (Doklady) Acad. Sci. URSS N.S. vol. 67 (1949) pp. 427-430 



ALGEBRAIC HOMOTOPY THEORY 

J.\H. C. WHITEHEAD 

In homotopy theory, spaces are classified in terms of homotopy classes- of 
maps, rather than individual maps of one space in another. Thus, using the word 
category in the sense of S. Eilenberg and Saunders MacLane [l],1 a homotopy 
category of spaces is one in which the objects are topological spaces and the 
"mappings" are not individual maps but homotopy classes of ordinary maps. 
The equivalences are the classes with two-sided inverses, arid two spaces are of 
the same homotopy type if and only if they are related by such an equivalence. 
The ultimate object of algebraic homotopy is to construct a purely algebraic 
theory, which is equivalent to homotopy theory in the same sort of way that 
"analytic" is equivalent to "pure" projective geometry. In discussing this 
project I shall confine myself to spaces which are covered by CW-complexes as 
denned in [4]. 

The following theorem is proved in [4]. Let irn , ir'n be the nth homotopy groups 
of K, K', Let (j) : K —> K* be a map of a complex K into a complex K', which induces 
an isomorphism </>w: 7rn tt ir'n for every n = 1, 2, • • -. Then 4>\K = K', which 
means that the homotopy class containing $ is an equivalence. Thus the homo
topy groups constitute a system of algebraic invariants which, in a certain sense, 
are sufficiently powerful to characterize the homotopy type of a complex. 

This does not mean that K = Kr just because irn tt irn for every n = 1,2, • • • . 
The crux of the matter is not merely that icn tt irn, but that a certain family of 
isomorphisms, </>n: irn tt wn, has a geometrical realization, K —» Kr. That is to say, 
the latter induces the former. Therefore the emphasis is shifted to the realization 
problem, which is to find necessary and sufficient conditions in order that a given 
set of isomorphisms or, more generally, homomorphisms, $n: 7rn —> irn, have a 
geometrical realization K —> Kf. 

At this stage let me remark, in parentheses, that other sets of "sufficiently 
powerful" invariants may be defined in terms of the universal covering complex, 
J?, of K. For the two preceding paragraphs may be restated in terms of the system 
of groups Tri, Hn(K), where Hn(R) is the nth integral homology group, defined 
in terms of finite chains of K. Thus, within the category of simply connected 
complexes, irn could be replaced by Hn(K). However. I shall continue the dis
cussion in terms of the groups irn . 

When studying a complex K it is natural to consider in succession the sections 
K1, K2, • • • , where Kn consists of all the cells in K of at most n dimensions. 
Now the homotopy type of Kn is not an invariant of K. Therefore consider the 
n-type, this being a homotopy invariant of K, which depends only on Kn. Two 
complexes K, Kr are of the same n-type if and only if there are maps 0 "• Kn —» iC/n, 

1 Numbers in brackets refer to the list of references at the end of this paper. 
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<l>':K'n -> Kn such that 

4>'4> | K»-1 ~ 1, # ' | K'**1 cL 1, 

where ~ indicates homotopy in Kn, Ktn and each 1 stands for the appropriate 
identical map ÜC71""1 —> Kn or Ktn~l —> K,n. Subject to tliis condition we write 
(j>: Kn = n-iK,n* I t is the fact that the above homotopies are in Kn, Kfn, not 
in Kn~~l, Kfn~~x, which makes the n-type a homotopy invariant. I t is proved in 
[4], assuming K, Kf to be connected, that 0 : Kn = n-iK'n if and only if <j>r : wr tt wr 

for r = 1, • • • , n — 1, where 0 r is induced by <j>. Hence it follows that K, E! 
are of the same n-type if they are of the same m-type for any m > n, where 
m g oo and the oo -type means the homotopy type. Therefore the n-type is a 
homotopy invariant and a fortiori a topological invariant of the space covered by 
K. Within the category of at most (n — 1)-dimensional complexes the n-type is 
the same as the homotopy type. 

All connected complexes are of the same 1-type, so that the interest begins 
with n = 2. Any homomorphism TI —> 7Q has a geometrical realization K2 —» K'2. 
Therefore it follows from the theorem quoted in the preceding paragraph (or 
from an easy ad hoc argument) that two complexes K, Kr are of the same 2-type 
if and only if wittin . Moreover, given a group G, there is a complex K such that 
7Ti tt G. Thus TI is an "algebraic equivalent" of the 2-type. I t is natural to con
sider the problem of finding an algebraic equivalent, Tn, of the 7i-type. I shall 
explain what has been done in case n = 3 or, for simply connected complexes, 
in case n = 4. This will indicate what I mean by an algebraic equivalent of the 
n-type. 

Let Q be an arbitrary (multiplicative) group and G an arbitrary (additive) 
group. Let rç: Q —» A(G) be a homomorphism of Q into the group, A(G), of auto
morphisms of G, by means of which Q is expressed as a group of operators on G. 
Using these operators we define the nth cohomology group, Hn(Q, G), of Q, with 
coefficients in G. Then an algebraic 3-type is defined as a quadruple, 5T8 = 
(Q, G, rj, k), where k is an arbitrary element of HZ(Q, G). Let Tf3 - (Qf, G', 77', k') 
be any algebraic 3-type. Then a homomorphism F:T* —> TfZ consists of a pair of 
homomorphisms f:Q —> Q', h:G —> Gf such that 

hn(!Ù = rf(jq)h\Q-*<3> 

fis! = Ä*k G H\Q, G1), 

where /*: H*(Q', G') -> HZ(Q, G') and lu : H\Q, (?) -* H\Q, G1) are induced by 
/ , A. If /, h are isomorphisms (onto) we write F: Ts tt T,z. I t is proved in [3] 
that: 

(1) Any complex, K, determines an algebraic 3-type, T*(K), in which Q = TT. , 
G = Tz, rj is the homomorphism determined by the way in which TI operates, as 
usual, on in and k is the Eilenberg-MacLane invariant (see [2] or [3]). 

(2) The Iwmomorphisms / : in —> TTI , A: 7r2 —> 7r2 , wAicA are induced by a map 
K —» K', satisfy the above conditions for a homomorphism T*(K) —» T*(K'). 
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(3) Any homomorphism TZ(K) —» T*(K') has a geometrical tealizaij^m K^ IÇ. 
(4) If T* is given, there is a complex, K, suchthat T3 » TZ(K). 

In consequence of these conditions an algebraic 3-type may be described as an 
algebraic equivalent of the 3-type of a complex. 

Now consider the category of simply connected complexes. Given any (ad
ditive) Abelian group, A, we define a group T(A) as follows. It has a set òf 
generators y (a), which is indexed to A, and these are subject to the (complete) 
set of relations: ! 

7 ( - a) = T(a) 

7(a + b + c) - 7(6 + c) - y(c + a) - y(a + b) 

+y(a)+y(b)+y(c) = 0. 

A homomorphism /:_!—> A', where Af is Abelian, induces a homomorphism 
Ï1/: T(A) —> T(A'), which is given by Tfy(a) = y(fa). Then a (simply connected) 
algebraic 4-type is a triple TQ = (A, B, i),-where A, B are-arbitrary Abelian 
groups and i: Y (A) —> B is an arbitrary homomorphism. A homomorphism 
F:Tt —> TQ* , where To4 = (A', B', V) consists of a pair of homomor
phisms / : A -» A', g: B —> B\ such that the diagram 

r(A) —-> B 

r/ 

r(A') —1* B' 
is commutative. 

Let K be a simply connected complex and let T$(K) be the image of ir^(K2) 
in the injection 7r3(K

2) —» 7r3(.K
3). Though apparently combinatorial in character; 

the group T3(K) is a topological invariant of K. In fact it is an invariant of the 
3-type of K: Moreover it is the image of r(7r2) in a natural i somorphic 
0: T(T2) tt VZ(K). Let t ' : TT3(2C3) -> TT3 be the injection, let i': r3(ÜL) -* TT3 be the 
homomorphism determined by V and let , - - - J 

i = t ' 0 : r(7T2) - > 7T3. 

I t is proved in [5] that, within the category of simply connected complexes, 
Tt = (TT2 , 7T3, t) is an algebraic equivalent of the 4-type of K. 
', I t should be stated that, in these cases, the relation between algebra and 
geometry is incomplete. For it cannot be stated, as it can in case n = 2, ,that 
nuaps «fr , 4>i : Kn —» Kfn (n = 3, 4), which induce the same homomorphism 
Tn(K) -> Tn(Kl), are (n - l)-homomorphic, meaning that fo | i T " 1 ~, 
0i j Kn~l in K,n. 
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HOMOTOPY GROUPS OF SPHERES 

GEORGE W. WHITEHEAD 

The homotopy groups of a topological space, discovered by Hurewicz1 in 
1935, have become an important tool in studying the classification and extension 
problems. The homotopy groups of a space have many properties in common 
with the homology groups; an important difference is that the homotopy groups 
do not have the excision property. 

A special case of the excision problem is the following. Let Sn be an n-sphere, 
and let S71"1 be an equator dividing Sn into two "hemispheres", E+ and El. 
Then the excision homomorphism maps Tì(E+ , /S""1) into T^S*, El). Now the 
boundary operator maps TTì(E+ , >SW_1) isomorphically onto r^S71"1), while 
iTi(Sn) is mapped isomorphically onto in(Sn, El) by the inclusion map. Hence 
the excision homomorphism induces a homomorphism E: TT^^S71"1) —* in(Sn). 
This homomorphism is the Freudenthal suspension2 This suspension operator 
has proved to be an important tool in studying in(Sn). 

The groups iri(Sn) have long been known for i g n; for i < n, Tn(Sn) = 0, 
while Tn(Sn) is infinite cyclic. I t is also known that ir^S1) = 0 for i > 1. 

The first attack on iri(Sn) for i > n was made by Hopf,3 who defined a homo
morphism HQ of TT2n-i(Sn) into the additive group of integers and proved that 
ir2n-i(Sn) is not zero, and in fact contains an element of infinite order, provided 
that n is even. I t was further shown by Hurewicz1 that 7r3(/S

2) is infinite cyclic, 
and in fact the homomorphism H0 is an isomorphism of ir3(S

2) onto the group of 
integers. Hopf proved that if n is odd, then the Hopf invariant Ho(a) is zero for 
every a G 7r2n-i($

w) ; while if n is even, there exists a G 7r2n-i($w) with HQ(OL) = 2. 
If n = 2, 4, or 8, there is an element of ir2n-i(Sn) with Hopf invariant 1. Hopf 
raised the question of whether 7r2n-i(£

n) contains an element of Hopf invariant 
1 for other values of n. This question was partially settled by the author,4 

who showed that no such element exists if n = 2 (mod 4) and n > 2. 
J. H. C. Whitehead5 has defined an operation of multiplication between the 

homotopy groups of a topological space X. This operation associates with each 
a G iTp(X), ß G nq(X), an element [a, ß] G TrP+q-i(X). This operation is bilinear 
if p > 1 and q > 1 ; while if p or q = 1 it can be expressed in terms of the oper
ations of the fundamental group on the higher homotopy groups.6 The bracket 
product has the following additional properties: 

1 W. Hurewicz, Proceedings of the K. Akademie van Wetenschappen Amsterdam vol. 
38 (1935) pp. 112-119, 521-528; vol. 39 (1936) pp. 117-126, 215-224. 

2 H. Freudenthal, Compositio Math. vol. 5 (1937) pp. 299-314. 
3 H. Hopf, Math. Ann. vol. 104 (1931) pp. 637-665; Fund. Math. vol. 25 (1935) pp. 427-

440. 
4 G. W. Whitehead, Ann. of Math. vol. 51 (1950) pp. 192-237. 
fi J. H. C. Whitehead, Ann. of Math. vol. 42 (1941) pp. 409-428. 
6 S. Eilenberg, Fund. Math. vol. 32 (1939) pp. 167-175. 
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1) [/?,«] = (-l)*V,ffl ; 
2) if ir is the element of irr(S

r) represented by the identity map, then 

(2 (r even) 
ffo(k,ir]) = \ t J J N 

[0 (r odd). 

The groups 7Ti(/Sn) with n < i < 2n — 1 were studied by Freudenthal.2 The 
Freudenthal theorems, with some improvements due to the authqr,4 can be 
stated as follows: 

(1) E: 7n(Sn) -> Ti+i(Sn+1) is onto if t «_ 2n - 1 ; 
(2) E: 7Ti(Sn) -> ir<+i(£B+1) is an isomorphism if i < 2n - 1; 
(3) the image of E: wzn^S71"1) -» 7r2n-i(/S

n) is the kernel of H0 ; 
(4) the kernel K of E: 7r2n-i($

n) —> 7r2n(£
w+1) is the subgroup generated by 

[in , tn]; (a) if n is even, iC is infinite cyclic; (b) if n is odd, K is zero or cyclic of 
order two, according as 7r2n+i(£n+1) contains an element of Hopf invariant 1 or 
not. 

Any generalization of (3) would seem to require a generalization of the Hopf 
homomorphism Ho. A partial generalization of Ho was introduced by the author,4 

who defined a homomorphism H: wn(S
r) —> wn(S

2r'~1) for each n < 3r — 3 as 
follows. 

Denote by Sr V Sr the subset of Sr X y0 U yQ X Sr of Sr X Sr; Sr V Sr is the 
union of two r-spheres with a point in common. Let </> : Sr —> Sr V /Sr be a map 
which pinches S1""1 to the point yo X 2/0 and maps each open hemisphere topo
logically. Then 0 induces a homomorphism 0*: 7rn(£

r) —> irn(S
r V £ r). 

In the homotopy sequence of the pair (Sr X Sr, Sr V Sr), the boundary homo
morphism d: 7Tn+i(/S

r X # r, Sr V £r) ->7Tn(/S
r V Sr) is an isomorphism into and 

the inclusion homomorphism i*: 7r„(Sr V $r) —> 7rn(£
r X Sr) is onto; moreover, 

irn(S
r V /Sr) is in a natural way the direct sum of Image d with a subgroup 

mapped isomorphically by û . Let Q: x^S1" V £r) —» Image d be the projection 
associated with this direct sum decomposition. 

Let / , j " be the inclusion maps of Sr X 2/0 and yQ X Sr into £ r V /Sr. Then 
j i and /* are isomorphisms into, and /*7rr(/S

r X Vo) and j%irr(yo X /Sr) are- in
finite cyclic groups generated by tr, ir • 

It turns out that if / : S2r~1 —» Sr V Sr is a map representing [ t r , t"], then 
/* maps TTn(S

2r~1) isomorphically onto Image d for n g 3r — 3. We then define 
HllCnW^Tntf2'-1) by 

H = /# d Q##. 

If n = 2r — 1, then JÏ maps 7r2f_i(/Sr) into the infinite cyclic group Wr-ifö2*"1) 
and i ì (a) = Ho(a) i2r_i. Thus H is a generalization of Ho * The definition of H 
has been improved and extended by Blakers and Massey7 and by Hilton.8 

* A. L. Blakers and W. S. Massey, Proc. Nat. Acad. Sci. U. S. A. vol. 35 (1949) pp. 322-
328. A full account will appear in Ann. of Math. 

8 Unpublished. 



360 GEORGE W. WHITEHEAD 

The attempt to generalize FreudenthaPs theorems, based on the definition 
of H, has met with only partial success. I t turns out that H-E = 0, so that 
Kernel H~^D Image E, but it is not known whether the opposite inclusion is true. 
Only a partial generalization of (4) has been obtained: if a G Tn(S

r) and Ea = 0, 
then H (a) = 0 if r is odd and H (a) G 27rn(S

2r_1) if r is even. These facts are, used 
by the author in the partial solution to Hopfs problem mentioned earlier, as 
well as in the proof9 of the fact that 7rn+2(Sn) is of order two for n _̂  2. (The 
latter theorem was proved independently by Pontrj'agin10 by entirely different 
methods.) 

Another operation involving homotopy groups of spheres is that of composi
tion. If X is a topological space, and if / : Sn —» /ST, g: Sr —> X are maps, then 
gof: Sn —» X, and the operation (/, g) —> gof induces an operation on homotopy 
classes, associating with each a G Tn(S

r), ß G ?rr(X) an element ßoa G irn(X). 
For this operation the left distributive law 

ßo(ai + a2) = 100 0:! + ft>«2 

! 
is valid, but right distributivity does not in general hold. The deviation from 
right distributivity is expressed by the formula4 

(ft + A)off = ßioa + ftoa + [ft, ß2]oH(a) 

provided that n < Sr — 2. From this we can deduce the following identities: 

(ft + ft)oa - ftoa - ftoa = 0 if n < 2r - 1; 

(ft + ft + ft)oa - (ft + ft)o« - (ft + ft)oa 

- (ft + ft)oa + ftoa + ftoa + ftoa = 0 if n < 3r - 2. 

I t is not known whether the identities suggested by these formulas hold if 
n __ 3r - 2. 

The homotopy groups of a space X were originally defined by Hurewicz1 

as the fundamental groups of certain function spaces over X. Let yo G Sn and 
let Fn(X, xo) be the space of all maps of (Sn, yQ) into (X, xQ), topologized by the 
compact-open topology. Let a G ̂ ( X ) and let F«(X, #0) be the path-component 
of Fn(X, XQ) consisting of all maps which represent the element a G irn(X). 
Hurewicz proved that all the spaces F«(X, Xo) have the same homotopy type, 
and that irk(F

n(X, x0)) tt rn+k(X). One may therefore attempt to study the 
homotopy groups of X by examining the function spaces FZ(X, x0). 

The case n = l , a = 0, X = Sp has recently been studied by Pitcher.11 The 
space Fl(Sp, XO) is the space of closed paths in Sp starting and ending at Xo ; 
this space has the same homotopy type as the space of paths joining two fixed 

9 G. W. Whitehead, Ann. of Math. vol. 52 (1950) pp. 245-247. 
» L. Pontrjagin, C. R. Acad. Sci. URSS vol. 70 (1950) pp. 957-959. 
11 E. Pitcher, Bull. Amer. Math. Soc. Abstract 56-1-38. 
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points of Sp. Pitcher attacks the problem by means of the powerful tools of 
critical point theory in the calculus of variations. 

Suppose that n = p, a = ip . Then the rotation group Rp^ of S**"1 is naturally 
imbedded in Ffp(S

p, œ0). Thus there is a natural homomorphism J: 7rq(Rp-i) —> 
TTp+q(Sp). This homomorphism was used by Hopf8 in his study of TT2P-I(SP). 

The homomorphism J turns out to be an isomorphism onto if q = 1, but for 
q = 2, J is no longer onto since i^CRp-i) = 0 and 7i>+2(/S

p) T& 0. However, the 
nonzero element of irP+i(Sp) can be obtained from the rotation group in another 
way. 

Since Rp-\ is a topological group, the set of homotopy classes of maps of Sq X Sr 

into Rp-i forms in a natural way a group 7rq,r(RP-i). There is a map Jf of irqir(Rp-\) 
into irp+q+r(Sp), analogous to J, defined as follows. Let $p+ff+r be referred to 
coordinates (u, v, w) where u G Ep~\ v G Eq+1, w G Er+1 and | u ]2 + | v \2 + 
| w |2 = 1. The subset C of Sp*q+r defined by the equation 

| v |2 + | w |2 = g | v\* | w |2 

is a homeomorphic copy of Sp~l X Sq X /Sr, separating # p + 5 + r into two subsets 
A, B. If / : Sq X £ r -> ß*- i , then / defines a map / ' : S""1 X Sq X Sr-* S*"1 by 

f(xy,z) = f(y,z)(x). 

Then/ ' may be considered as a map of (7 into $ r - 1 , and can be extended to a map 
/ " : Sp + 5 + r -> S r such t h a t / ' ^ i ) C Er

+ , f(B) C B i . If / is homotopic to fi, 
then /'7 is homotopic to / i , and therefore the correspondence / —> f" induces a 
m a p J'\ TTq,r(RP-i) ~> 7rp+f f+r(Äp). 

The group 7rg,r(22j,_i) has the following structure. The set of homotopy classes 
of maps of the form f(x, y) = g(x), where g : Sq —» Äp_i, forms a group isomorphic 
with xg(Ej,_i). Similarly, Trq,r(RP-i) contains an isomorphic copy of 7rr(Rp-.i). 
The set of homotopy classes of maps of the form/: (S9 X Sr, Sq A Sr) —> (Rp-i, r0) 
forms a third subgroup isomorphic with Trq+r(RP-i). Then each element of 
irq+r(RP-i) is uniquely expressible in the form oßY, where a G irq(Rp-i), 
ß G TTr(RP-i)j and 7 G irq+r(RP-i)', the subgroup 7rff+r(jR^_i) is contained in the 
center of wq,r(RP-i) and the factor group is isomorphic with irq(Rp-i) X irr(RP~.i). 
In general, however, irqtr(RP-i) is not abelian. 

The group Ri is naturally homeomorphic with S1; the group multiplication in 
Ri defines a map / : S1 X S1 —» Ri representing an element a G 7ri,i(Äi). I t turns 
out that Jf(a) is the nonzero element of in(S2). 

We may consider Rp-i as a subgroup of Rp\ the inclusion map defines a homo
morphism ß: 7rg,r(Rp-i) —» irq,r(RP). Then the commutativity relation J'°ß' = 
E°J', suggested by the diagram 

7Tgfr(Äj,_l) > 7rq,r(Rp) 

J' J' 

7rP-f-<H-r(SP) > 7Tj,+g+r+i(S ) 
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holds. Hence the nonzero element of Xp+2(/S
p) can be obtained from 7ri,i(2?p-i) 

by means of the operation J'. 
; The operation «/' has the following properties: 

(1) Jf | irMRp-i) = J; • . • 
' (2) / ' ( T T Ä - I ) ) = J'(rr(Rp-i)) = 0 ; , : . 

(3) if a G TTgtftp-i), ß G irr(Rp-i), then the element J'{a ° ß) depends bilinearly 
on a and ß. , ; 

.ïn particular, «/'.is not in general a homomorphism. 
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FIBRE BUNDLES AND OBSTRUCTIONS 

THE THEORY OF OBSTRUCTIONS 

PAUL OLUM 

1, Introduction. In the study of the mappings of one topological space into 
another, there are a number of rather different problems which seem to be most 
effectively studied by a certain common technique. Examples are the extension 
problem, the homotopy problem, the deformation problem (that is, to deform 
a single given mapping so that after the deformation it behaves in some pre
scribed fashion), and the cross-section or "lifting" problem in fibre bundles. 
The common technique in question is the method of "obstructions." An ob
struction is simply the algebraic expression, in terms of cohomology theory, of 
the difficulty one runs into in trying to perform the required extension or homo
topy or deformation or lifting. The first explicit formulation of the notion of 
an obstruction is due to Eilenberg [1], although the method had been used 
implicitly earlier by Whitney [6] in his restatement and proof of the Hopf map
ping theorem in cohomology terms. 

In view of the limitations of time, we shall confine ourselves here to a rather 
specific problem: Given two arcwise connected spaces X, Y with chosen base 
points Xo, 2/o, we consider mappings X —• Y which carry xo into y0 and study 
their homotopy relative to Xo. What I shall have to say about obstructions for 
this problem will be fairly representative also of the situation for free-homotopy 
or homotopy relative to an arbitrary connected subspace, and for the other 
problems mentioned earlier, although there are, of course, certain important 
differences. 

We consider then two mappings / 0 , fa: X —> Y with fo(xò) = /i(&o) = 2/0 . I 
propose first of all to define the nth obstruction to a homotopy of /0 to /1 rela
tive to Xo, which we shall denote On(f0, /1) rei. x0, then to indicate a few of the 
most important properties of these obstructions; finally, in the remaining time, 
I shall describe some new results in an essentially classical vein—having to do 
with mappings of manifolds and the notion of degree—which are proved using 
the obstruction technique. 

2. Cohomology over a local group. We begin by supposing there is given a local 
system of groups 9 = {Gy} in the space Y, as used by Steenrod in his paper on 
homology with local coefficients [4]. A mapping / : X —» Y induces a local system 
9(/) in X, by assigning to each x G X the group Gf(X) and to each path in X the 
isomorphism attached to the image path in Y. With this, we may then consider 
the cohomology groups Hn(Y, g) and Hn(X, g(/)). 

We introduce one further definition here. By a heal group G at the point yo 
in Y we shall mean a group G together with an operation of the fundamental 
group 7Ti(F, yo) on it. Clearly, in the local system g = {Gv}, the group at the 
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base point GV(i may be regarded as a local group at y0 . Now it is easily seen that 
the cohomology group Hn(Y, g) does not really depend on the full spread of the 
local system g but is completely detennined to within a unique isomorphism 
by the local" group GVQ carried by g. This leads (we are omitting the obvious 
formal details) to the definition of cohomology Hn(Y, Gyo) over the local group 
GyQ , and this cohomology group is isomorphic in a unique way to Hn(Y, g). 

Now it is to be observed that the local group at xQ in X carried by g(/) does 
not depend on all of g and on / itself, but only on the local group GVQ and on 
the homomorphism 0: TTI(X, XQ) —» TI(Y, y0) determined by / . Let us then denote 
this local group at xQ in X, induced by 0, by d*GVQ . Thus we are led to consider 
the group Hn(X, d*GVQ) which is related to Hn(X, g(/)) by a unique isomor
phism. 

As is well-known, the homotopy groups wn(Y, y) form a local system of groups 
in Y and this is the particular case of the local system g which concerns us. 
Given any 0:7n(X, XQ) —» TI(Y, yQ), we have induced in X the local group 
Q*TTn(Y, yo)) which we shall shorten simply to 0*7rn , and we may then consider 
the cohomology group Hn(X, 0*xw). It is this cohomology group which appears 
to be the appropriate algebraic vehicle for carrying the obstruction technique. 

3. Definition of the obstruction. We now proceed to define the obstruction 
On(/o , fi) rei. xo which, as we shall see, will turn out to be a subset (possibly a 
void subset) of the group Hn(X, 0o7rn), where 0O is the homomorphism induced 
by /o . (Details concerning the material of this and the following section will 
be found in [3].) 

This obstruction can be defined completely invariantly and under the most 
general circumstances, with essentially no limitations on the spaces X apd Y 
under consideration other than arcwise connectedness; see [3]. Here again, how
ever, in the interests of simplicity and time, I shall suppose that X is triangulable 
and has been decomposed to form a simplicial complex K; it will be assumed also 
that the vertices of K are partially ordered so that the vertices of any simplex 
are simply ordered. 

We consider then the cartesian product space I XX = X, where / is the unit 
interval, and suppose it also triangulated so that the triangulation (including the 
partial ordering of vertices) agrees with that already given on 0 X X and 1 X X. 
We identify X with 0 X X, denote by K the complex of X = / X X and by Ki 
the complex of 1 X X. We define a mapping foi'.X U ( I X xQ) U (1 X X) -» Y 
as follows: We map X b y / 0 , 1 X X b y / i , and we map I X %Q all into y0. 

Now suppose / is an extension of this partial mapping /oi over Xn , the space 
of the n-skeleton of X, where n ^ 2. (Of course, there may be no such / ) . Let us 
consider any (n + l)-simplex ön+1 of X with leading vertex x. The mapping / 
confined to the boundary of ö-n+i then defines an element of wn(Y, f(x)), and, in 
particular, for ân+i G K or Ki, the element so defined is clearly the zero element 
of the group. Consequently, if xn(/) denotes the local system of groups in X 
induced b y / from the local system irn(Y, y), then this means that / defines an 
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element, a cochain, of Cn+1(K, K U Ki, n-n(/)). (Actually, the local system irn(f) 
is not defined over all of X, only on the subspace Xn, but this is sufficient since 
for cohomology in K the local system need be given only on the 2-skeleton.) 

We come now to the essential observation that this cochain is indeed a cocycle. 
This is, of course, analogous to the corresponding result in Eilenberg's original 
work; see [1], It is basically a consequence of the definition of addition in the 
homotopy groups and of the isomorphisms of homotopy groups associated with 
paths in Y. In this way then / defines a cocycle and consequently an element 
hn+1(?) of Hn+l(K, K U Kt, *,(/)). 

Next, with the object of "pulling" this cohomology element down into the 
base space X, we look at the homomorphism : 

A: Hn(K, T,(/O)) -> Hn+1(K, K U Kt, ir„(J)) 

which is defined by the coboundary operator; we have used here also the fact 
that wn(j) confined to X is just the local system 7r»(/o) induced by the mapping 
/o . This A is easily proved to be an isomorphism onto by imbedding it in 
an appropriate exact sequence in which the third term is clearly zero. This be
ing so, we may apply A-1 to the element hn +1 (/) and get an element 
A~1(7in+1(f)) G Hn(K, 7rn(/o)). As we observed at the outset, Hn(K, rn(f0)) tt 
Hn(K, 0*7Tn) where/o: X —» Y induces 0O. Thus A""1^*"^/)) determines a unique 
element in Hn(K, 0*7rn) which we denote by hn(f). 

Now consider the totality {hn(f)\ of distinct elements so defined for all pos
sible extensions / over Xn . These elements form a subset (possibly void) of 
Hn(K, 0*7rn) which we denote 0n(/o , /i) rei. x0 and call the nth obstruction to a 
homotopy of fo tofi relative to XQ . Note that n ^ 2 here; the role of the obstruction 
for the lowest significant dimension, n — 1, is played by the homomorphisms 
of fundamental groups induced by the mappings, as is made clear by Theorem 
I below. 

4. Properties of obstructions. The principal geometric significance of these 
obstructions is contained in the following theorem which makes clear their 
precise relation to the homotopy problem and which justifies calling them "ob
structions": 

THEOREM I. For fixed n the following statements are equivalent. Each statement 
applies only for the indicated range of n: 

(a) (n = 1) 0o = 0i ; (n __ 2) 0n(/o , /i) rei. Xo is nonvoid and contains the zero 
element. 

(b) (n ^ 1) /o ^ / i rei. xQ (dim. n).1 

(c) (n ^ 1) 0n+1(/o, fi) rei. xo is nonvoid. 

The principal algebraic property of obstructions is given by the following 
theorem which I shall call the "addition theorem" for obstructions: 

1 This means "/o | Xn is homotopic to /i | Xn relative to ic0" where Xn is the space of 
the n-skeleton of K. 
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THEOREM II . Given /o , / i , / 2 , suppose 0W(/O, /i) rei. Xo and On(fi, /2) rei. XQ 

are nonvoid (so that 0o = 0i = 02) and contain, respectively, h" and hi . Then 

öw(/o, h) rei. Xo = K+ ön(fi, /2) rei. xQ 

= en(fo,fi)rel.Xo + K 
= Ön(/o, fi) rei. xo + Qn(fi, /,) rei Xo . 

With one exception, to which we shall return shortly, essentially everything 
of a general character about theöe obstructions and their relevance for the homo
topy problem is immediately contained in Theorems I and II . Note here, in 
Theorem II, the importance of our using cohomology' over the local group 
0*7T„ rather than over the local system wn(f) induced by / ; this is necessary in 
order for the addition in Theorem II to be defined. 

We mention a few particular consequences contained in Theorems I and I I : 
(1) 0n(/o, /o) rei. Xo is a subgroup of Hn(K, 0*7rn). 
(2) 0n( /o , fi) rei. Xo is (if nonvoid) a coset of this subgroup. (Thus 0n(/o, /i) 

rei. XQ and 0rt(/o, /2) rei. xQ are either disjoint or identical.) 
(3) Suppose /o , / i , /2 homotopic in dimension n — 1 rei. XQ . Then / i == /2 

rei. Xo (dim. n) if and only if 

0n(/o, fi) rei. xo = 0n(/o, /2) rei. xQ . 

This last statement has the importance that, out of a set of mappings homotopic 
in dimension n — 1, homotopy in dimension n can be studied by comparing 
each of the mappings with a fixed one, / 0 . 

Returning now to the exception referred to just above, the other piece of 
information we need about obstructions is an existence theorem: 

THEOREM III . Given /0 : X —> Y inducing 0O and ho G Hn(K, 0*7rre), there exists 
fil X n + 1 —> Y such that 0n(/o , /i) rei. Xo contains ho . 

The proof of this theorem is given by taking a cocycle zô G Zn(K ,xn(/o)) 
representing h% and then modifying / 0 , keeping it fixed on X""1, but "altering" 
it inside of each n-cell an , in a certain well-defined fashion, by the homotopy 
element Zo(<rn). The resulting mapping /i is extendable over X n + 1 and is easily 
proved to have the property stated in the theorem. 

The corresponding existence theorem in the lowest dimension says that for 
any 0 there is a mapping of the 2-skeleton inducing it. 

Property (3) above and this existence theorem combine to yield what may 
be called the general "one-stage" homotopy enumeration theorem, namely: 
If one considers a class of mappings of X n + 1 into 7 , all homotopic in dimension 
n — 1 rei. XQ , and singles one of them, / 0 , out for reference, then the homotopy 
classes in dimension n are in 1-1 correspondence with the elements of the fac
tor group Hn(K, 0*7rn)/0n(/o, /o) rei. Xo. This indicates the central role played 
by the "self-obstruction" 6n(f0, /0) rei. xQ in the study of homotopy classifications. 
As an example, Steenrod's classification of the maps of an (n + l)-complex into 
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the n-sphere [5] amounts in essence to the determination, for any such mapping, 
of this self-obstruction, which he showed can be expressed as a certain cup-
sub-i product. 

There is one particular case in which, by the theorems above (and a simple 
extension theorem corresponding to I), we have the complete homotopy enu
meration result already at hand. This is the case where X = X" is an n-poly-
hedron and 7rr(F, yo) = 0 for 1 < r < n. Then 

THEOREM IV. The homotopy classes rei. xo of mappings X —* Y are in 1-1 
correspondence with the pairs (0, h) where 0 is any homomorphism of the funda
mental groups and h G Hn(X, 0*7r„). 

The corresponding result for free-homotopy is a little more complicated. It 
can be written down equally explicitly, but involves an additional invariant, 
the Eilenberg-MacLane invariant /cn+1 for the space Y. 

5. Remarks. Theorem IV, as it stands, is simply an enumeration theorem; 
it tells "how many" homotopy classes there are. However, with an appropriate 
re-interpretation it can be much more than that. The key to this is provided 
by the existence Theorem III described earlier. In the proof of this theorem, 
which was indicated very briefly above, one has not only the existence of a 
mapping /i so that a prescribed coset is realized as an obstruction, but also a 
rather specific description of /i as an "alteration" of /0 by certain homotopy 
elements. This, combined with Theorem IV, then gives what we might call a 
"homotopy representation theorem"; i.e., an enumeration of homotopy classes 
together with the presentation of a particular representative mapping from each 
homotopy class. 

One can then hope to gain a deeper insight into the properties which charac
terize the mappings of a given homotopy class by a direct examination of these 
representative mappings. In this sense I think a theorem like Theorem IV may 
be regarded not only as a result but also, and even primarily, as a starting point 
for studying homotopy properties of mappings. 

6. Mappings of manifolds and the twisted degree. I would like to leave the 
general discussion of obstructions now and try to illustrate these last remarks 
by describing in the remainder of this paper some results connected with map
pings of manifolds and the notion of degree. I shall not refer to obstructions 
again except to say now that the results to be described are in large part con
sequences of this homotopy representation theorem. Proofs and further details 
are contained in a paper which will appear later. 

We consider two connected n-manifolds M* and Qn (assumed triangulable) 
and we study the mappings Mn —» Qn for the case where 7rr(Q

n, yQ) = 0 for 
1 < r < n. All mappings carry Xo G Mn into y0 G Qn. 

Before stating the relevant theorems, I want to extend somewhat Brouwer's 
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original definition of degree to what I shall call the twisted degree. This will be 
done here in invariant fashion; there is a corresponding extremely simple geo
metric interpretation which we shall not take time for. 

For this definition, we take Mn and Qn to be compact and make no restriction 
on the homotopy groups of Qn. Let- 7o denote the local group of twisted integers 
at yo in Qn; this means the integers 70 together with the following operation of 
the fundamental group iri(Qn, yo) on them: an orientation-preserving element 
operates trivially, an orientation-reversing element operates nontrivially. 

Let / : Mn —> Qn induce 0. Then we may consider the cohomology groups 
Hn(Qn, IQ) and Hn(Mn, 0*io), and / induces, in obvious fashion, also a homo
morphism: 

(6.1) «i,: Hn(Qn, U) -» Hn(Mn, 0*IO'). 

Now Hn(Qn, Io) is easily seen to be infinite cyclic. Let us suppose for the mo
ment that the homomorphism 0 is orientation-true, that is, it carries orientation-
preserving elements into orientation-preserving elements, orientation-reversing 
into orientation-reversing. Then 0*Jo is clearly just the local group of twisted 
integers at x0 in Mn and the group on the right is also infinite cyclic. Assuming 
that one of the two possible generators has been selected once and for al i tor 
these nth cohomology groups over the twisted integers, then the homomorphism 
m/ is completely described by an integer which we call the twisted degree of / 
and denote deg / . 

This twisted degree has the usual properties, transitivity, etc. One remark, 
however: If/0 = / i , then deg/0 = deg/i or — deg/i according as the image of 
Xo, during the homotopy, traces out an orientation-preserving or orientation-
reversing path in Qn. 

If the homomorphism 0 is not orientation-true, then the group on the right 
in (6.1) becomes cyclic order 2 and the twisted degree is an integer mod 2. In 
this case it is identical with the ordinary mod 2 degree. 

7. Homotopy properties of mappings of manifolds. We now return to our 
original problem of the mappings Mn —» Qn with irr(Q

n, yo) = 0 for 1 < r < n. 
If either Mn or Qn (the universal covering space of Qn) is noncompact, then 

the classification of these mappings is particularly simple: Two mappings are 
homotopic rei. XQ [or, free-homotopic] if and only if they induce the same homo
morphism [respectively, homomorphism-class]2 of the fundamental group. 

We may as well suppose then Mn and Qn compact. This means, in particular ? 

that the fundamental group iri(Qn, yo) has finite order; let us call it I. Now let 
/o , fi'. Mn —> Qn induce 0O ,- 0i. There are two cases here: 

Case 1. Orientation-true 0's. For this case-we have the following theorem: 

THEOREM V. /&. = /i rei. xQ if and only if 0O = *0i and'deg /0 = deg /_. Further-
2 Two homomorphisms belong to the same homomorphism-class if they differ by an inner 

automorphism of the image group. 
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more, for each 0, the associated twisted degrees are all of the integers of a single con
gruence class mod I. 

The corresponding result for free-homotopy is an immediate consequence of 
Theorem V and the remark made earlier on the behavior of the twisted degree 
under a homotopy. It is given, in detailed fashion, by 

THEOREM Va. /0 _= /i with the image ofxo moving through a path 0/ w G 7n(Qn, yo) 
if and only if 6o(y) = œd^oT1 for all y G iri(Mn, xQ) and 

(a) (for o) orientation-preserving) : deg /0 = deg /1 . 
(b) (for co orientation-reversing) : deg /0 = — deg /1 . 

Case 2. Non-orientation-true 0's. If the homomorphisms are not orientation-
true, then we no longer have so satisfactory a characterization for the homotopy 
class of a mapping. However, this is largely compensated for by a very great 
reduction in the number of distinct homotopy classes: 

THEOREM VI. For each 0, there are exactly two distinct homotopy classes rei. xo 
inducing 6. 

In general, for this non-orientation-true case, the twisted degree (or, what is 
the same thing, the degree mod 2) will not distinguish between the two classes. 
However, if I is odd (which means Qn is orientable), then it will do so for this 
case also. 

In the corresponding case of free-homotopy there are either one or two homo
topy classes for each homomorphism-class2 0 of the fundamental groups. The 
result here is, however, not an immediate consequence of Theorem VI, unless 
I is odd, and a particular computation is required to settle the matter in any 
given circumstance. This computation is quite explicit and straightforward, 
but we shall not consider it here. 

8. Homotopy-type. An important application of Theorem V is to the problem 
of homotopy-type for manifolds Mn, Qn satisfying wr(M

n, x0) = irr(Q
n, yo) = 0 

for 1 < r < n. I t is easily seen that a homotopy equivalence between two mani
folds must induce an orientation-true isomorphism of the fundamental groups 
so that Theorem V is the relevant one. 

A particular case worth noting in this connection is that of the higher di
mensional lens spaces. Given two (2n + 1)-dimensional lens spaces L = 
L(m; qi, • • • , qn) and V = L(??i'; q[ , • • • , qn), then, for any homomorphism 
0 of their fundamental groups, it is quite easy to write down one particular 
mapping of L into Lf inducing 0 and to determine its degree. An immediate 
consequence then is the homotopy-type classification of the higher dimensional 
lens spaces: 
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THEOREM VII. L and U have the same homotopy-type if and only if m — mf 

and 

qiq* • • • qn = ±fc2gi • • • q'n (mod m) 

for some k relatively prime to m. 

9. The group-ring degree. I want to make one final remark here concerning 
the notion of the degree of a mapping. I t is possible to generalize the degree still 
further, and I think quite fruitfully, by using in the definition given above in 
§6, instead of the local group Zo , the group-ring of the fundamental group of 
Qn over the integers. 

If one does so, he finds that the homomorphism (6.1) can again be charac
terized by an integer (or an integer mod 2 for the special case that 0 carries 
some orientation-reversing element into the unit element) even though the 
group on the right in (6.1) will no longer be infinite cyclic. This integer might 
then be called the "group-ring' degree" of the mapping. I t agrees with the 
twisted degree if 0 is orientation-true and also includes, in the general case, the 
Hopf notion of the "Absolutgrad" of a mapping [2]; in fact, the "Absolutgrad" 
is just the absolute value of the group-ring degree. 

This group-ring degree will help to distinguish between the two homotopy 
classes (Theorem VI) in some, but by no means all, of the cases where the 
twisted degree fails to do so. 
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HOMOTOPY GROUPS OF TRIADS 

W. S. MASSEY 

1. Introduction. One of the most important problems of topology today is to 
devise methods for computing the homotopy groups of topological spaces. The 
present paper is an attack on one phase of this general problem. 

One method of attacking the problem of determining the homotopy groups 
of a connected cell complex K is first to try to determine the relative homotopy 
groups TP(K9, Kq~l), where Kn denotes the n-skeleton of K. A slightly more 
general problem is to try to determine the relative homotopy groups tfP(X*, -X"), 
where X is a pathwise connected topological space, and X* is obtained by the 
adjunction of g-cells, 8f, 8?, • • • , to X; i.e., X* = X U gf U Sf U • . . . This 
general problem will be the main concern of this paper. 

The analogous problem from homology theory, namely, to compute the 
relative homology groups, HP(K9, Kq~x), or HP(X*, X), can be solved com
pletely, and when applied to the problem of determining the homology groups 
of the complex K, leads to the usual algorithm for computing homology groups 
by means of chains, cycles, bounding cycles, etc. This comparison naturally 
leads one to ask why the homology groups HP(X*, X) can be determined, while 
the problem of determining the homotopy groups irp(X*, X) remains unsolved. 
The answer to this question is that the so-called "excision property" (see Eilen-
berg and Steenrod [2]) holds for homology groups, but does not hold for 
homotopy groups. 

The excision property may be formulated as follows. Let X = A U B; then 
under rather general conditions the homomorphism i* : HP(A, A fi B) —> IIP(X, B), 
induced by the inclusion map i\ (A, A fi B) —> (X, B), is an isomorphism onto 
in all dimensions. Simple examples may be given to show that this property 
does not hold when homology groups are replaced by homotopy groups, even 
if X is a finite, connected simplicial complex, and A, B} and A fi B are connected 
subcomplexes. Although the excision property does not hold in general for 
homotopy groups, under certain special conditions the homomorphisms 
i*: irp(A, A fl B) —» wp(X, B) are isomorphisms onto for special values of p, 
and even when thçse homomorphisms fail to be isomorphisms onto, it is ad
vantageous to determine as much information as possible about them. The 
theory developed in this paper enables one to fit the homomorphisms 

H : TTp(A, A fl B) -> 7TP(Z, B), 

for p = 2 , 3 , 4. • • • , in to an exact sequence of h o m o m o r p h i s m s in w h i c h t h e 

remaining groups are t h e n e w h o m o t o p y groups of t h e "triad", (X; A, B), 

denoted b y TTP(X\ A, B). T h e exact sequence in quest ion i s as fo l lows: 

• • • - > 7TP+1(X; A, B) - * TP(A, A fi B) % TP(X, B) - > T T P ( X ; A, B) - » • • . . 
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This enables one to translate theorems about the homomorphisms 

n: TTP(A, Af\B)-+ TP(X, B) 

into theorems about the triad homotopy groups and vice-versa. 
One important case where a homomorphism induced by an excision has been 

studied is the following. Let Sn be an n-sphere, E+ and El the upper and lower 
"hemispheres," and S71'1 the "equatorial" (n - l)-sphere, S71'1 = El fl El. 
Then the homomorphism i*: irp(E+ , S71"1) —> irp(S

n, El) is equivalent (in a way 
to be explained later) to the "Einhängung", or suspension, E: xp_i(Än~1) —> 
Tp(8n)i firs* studied by Freudenthal [3]. I t was the study of this special case 
which first suggested to the author the idea for the homotopy groups of a triad. 

The author wishes to acknowledge that all the results in this paper were 
obtained in collaboration with A. L. Blakers; this is actually a report on joint 
work. 

2. Definition of the homotopy groups of a triad. We shall use the following 
notation for certain subsets of Cartesian n-space, Gn. The coordinates of a 
point x G Cn are denoted by (xi, • • • , xn), and | x \ — (x\ + • • • + x2

n)
112. 

En = {xe Cn\\x\ £ 1}, S""1 = {xeEn\\x\ = 1}, 

Er1 = [x G S71'11 xn è 0}, El'1 = {x G S71'1 \ xn __ 0}, 

sn~2 = {xe s71-11 xn - o}, s i 1 = {x e E*\X2^ o}, 

E? = {x G En \x2 f_ 0}, po = (1, 0, • - - , 0). 

Let (X; A, B) be a tfnaeü; that is, A and S are subspaces of the topological space 
X, and the intersection, A fl B, is nonvoid. Choose a base point #0 G A f) B. 
A map 

/ ; (En; El~l, El~\ p0) -> (X; A, B, xQ) 

is a continuous function f:En->X such that /(#+) CI A, f(El) C J5, and/(p0) = 
Xo. Two such maps / 0 , / i are homotopic if they are connected by a continuous 
1-parameter family of maps, 

/ , : (_»; JSr1, # - " \ Po) -» (X; A, 5 , *,), 

where 0 __ £ f_ 1. With these definitions, it is not difficult to prove the following: 

LEMMA l.Ifn __ 3, andf: (En\ JE7+"1, El-1, pQ) —> (X; A, B, xQ) is a given map, 
then there exist homotopic mapsff, f", such that fr(Ei) = f"(E%) = Xo. 

Denote the set of all homotopy classes of maps (En-, U+"1, El"1, po) —> 
(X; A, JB, XO) by xn(X; A, B, x0). For n è 3, we define an addition between any 
two elements a, ß G Tn(X] A, B, Xo) as follows: choose maps / , g belonging to 
the homotopy classes a, ß, respectively, with. f(E£) = g(E\) = %o. The existence 
of representatives / and g satisfying these conditions is guaranteed by Lemma 1. 
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Define A: (En; El~\ El~\ p0) -> (X; A, B, x0) by h\E? = /1 Sf and /i I J572
n = 

g | B2\ Then a + ß is defined to be the homotopy class of h. With this definition of 
addition, 7r„(X; A, B, xQ) becomes a group, called the nth homotopy group of the 
triad (X; A, B) at the base point xQ. 

The following are some of the simpler properties of the groups thus defined: 
(a) irn(X; A, B, xQ) is abelian for n > 3; simple examples show that it need 

not be so for n = 3. 
(b) The system of groups 7rn(X; A, B, x) for x G A fl B forms a local system 

of groups in the space A fi B in the sense of Steenrod, and %i(A fl B, xQ) is a 
group of operators on 7rn(X; A, B, xQ). 

(c) If A 3 B, then 7Tr»(X; A, B) is isomorphic to xn(X, A). 
(d) A continuous map / : (X; A, B, xQ) —» (X'; A', B', x0) induces homomor

phisms of the corresponding triad homotopy groups. We denote these by 
/*: irp(X, A, B, xo) -> irp(X'; A1, B', x0). 

3. The exact sequences of a triad. Associated with a triad (X; A, B) are two 

boundary homomorphisms, 

d+: 7Tn(X; A, B, x0) -> 7rn_i(A, A fi B, a*,), 

d_: 7TW(X; A, B, x0) -> 7rn_i(B, A fi B, a0), 

defined as follows. If/: (Bn; J57+"1, JET1, pQ) -> (X; A, B, rc0) represents 

a G 7Tn(X; A, B, aio) (n ^ 3), 
then the maps 

U:(Er\Sn-2,po)^(A,Af)B,xo), 

/_: (AT1, Sn"2, po) -> (B, A fi B, a*), 

defined by / are representatives of the elements ô+(a) G irn-i(A, A fi B, xQ) and 
d_(a) G 7r„_i(B, A fi B, .To) respectively (assuming, of course, that a suitable 
convention is adopted to determine the orientations of the cells E^T1 and ElT1). 

Now consider the following sequence of groups and homomorphisms: 

• - • - ± * irn(A, A H B) -A> ^ ( X , B) J * + 

7rn(X; A, B) - ^ 7Tn_i(A, A fi B) > - • • . 

The homomorphisms *̂ and /* are induced by the inclusion maps 

i: (A, A H B) -> (X, B), j : (X; xQ, B) -> (X; A, B). 

This sequence is one of the two homotopy sequences of the triad (X; A, B); 
the other sequence is obtained by interchanging the roles of A and B throughout. 

THEOREM 1. The homotopy sequences of a triad are both exact. 



374 W. S. MASSEY 

The proof of this theorem requires only a straightforward verification of 
exactness, using the definitions already given. 

In case X = A U B, the inclusion map i: (A, A fi B) —> (X, B) is an excision, 
and the triad homotopy groups may be considered to be a measure of the amount 
by which the relative homotopy groups fail to satisfy the excision axiom, as 
yras indicated in the introduction. 

4. The homotopy groups of the triad (X*; S71, X). For the remainder of this 
paper, we shall assume that X* is a Hausdorff space and X is a closed, pathwise 
connected subset of X* such that there exists a decomposition 

X* - X = Ui U US U • - - U Uk 

of X* — X into k disjoint open sets Ut having the following property. Denote 
the closure of U" by 8? , and let 8? = X fl 8? , then it is assumed that there 
exist continuous mappings 

1 fr: (En, S71"1) -> (8? , 8?), i = 1, . . . ,fc, 

which map En — S71"1 homeomorphically onto Ui . It follows that S71"1 is 
mapped onto ê" by fr, but not necessarily homeomorphically. Under these 
conditions we shall say that X* is obtained from X by the adjunction of the 
cells 8? , - - - , Sfc . This is exactly the process by means of which a general cell 
complex is built. The following notation will be used consistently: 

8n = sr u 8? u . -. u sfc
n, r = 8r u ... u gfc

n = x n sn. 
We shall always make the additional assumption that 8W is arcwise connected. 
This last condition is not nearly as restrictive as it appears on first sight, since 
J. H. C. Whitehead has shown that the homotopy type of the space X* depends 
only on the homotopy class of the maps ^ : /Sn_1 —» X defined by the maps 
fr: (E71, S71"1) -* (S? , èl), i = 1, 2, .. - , Ar(see [7] and [8]). 

A.s stated in the introduction, our main problem is to determine the relative 
homotopy groups ^(X'*, X). This problem leads naturally to consideration of 
the excision homomorphism irp(ß

n, è71) —> irP(X*, X), and hence to consideration 
of the homotopy sequence of the triad (X*; 8n, X). It is the purpose of this 
section to state two theorems of a comparatively elementary nature which often 
give considerable information about this sequence, and hence about the groups 
7r„(X*,X): 

First, we need some definitions. A topological space Y is said to be n-connected 
(n > 0) if it is pathwise connected and wp(Y) = 0 for 1 __ p __ n. A pair (Y, A) 
is said to be n-connected (n __ 1) if both Y and A are pathwise connected, the 
injection TTI(A) —> TI(Y) is a homomorphism onto, and TP(Y, A) = 0 for 1 < 
p __ n. Similarly, we shall say a triad (Y; A, B) is n-connected (n è 2) if both 
of the pairs (A, A fi B) and (B, A fi B) are 1-conneoted, the injections 
ir2(A, A fl B) —> T2(Y, B) and 7r2(B, A fi B) —» 7r2(F, A) are homomorphisms 
onto, and irP(Y\ A, B) = 0 for 2 < p g n. 
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THEOREM 2. 2/ the pair (X, &n) is m-connected, w i _ 1 and n > 2, then the 
triad (X*; 8n, X) is (m + n — l)-connected. (In case m = 1, it is also necessary 
to assume that 7r2(X, fin) is abelian.) 

THEOREM 3, / / the space Ên is m-connected, m à i , £/&en tffte boundary homomor
phism 

d:TP+i(X*]8>n,X)-»wP(&n,èn) 

is the zero homomorphism for 2 g p g m + w ~ l . 

The proof of these theorems is too long to be given here; for full details, see 
[1], Theorem 2 is closely related to what J. H. C. Whitehead calls the "crude 
suspension theorem" (see [9]) and can be proved by his methods. These methods 
are highly geometrical, and go back to Freudenthal [3]. The author's proofs 
make more use of the techniques of algebraic topology, and are not so geo
metrical in character. In particular, use is made of the basic results of the theory 
of "obstructions" to extensions and deformations of continuous maps. 

As an example of the application of these results, consider the triad 
(Sn; El, El). By applying Theorem 2, we see that this triad is (2n — 2)-con
nected. It follows from the exactness of the homotopy sequence of this triad 
that the excision homomorphism i* : wp(El, /Sn_1) —> irp(S

n, El) is an isomor
phism onto if p < 2n — 2, and is a homomorphism onto if p = 2n — 2. In this 
case, the excision homomorphism is equivalent to the suspension or "Einhän
gung" homomorphism introduced by Freudenthal [3]; in fact, in the following 
diagram 

TT^OS*-1) JU Tp(S
n) 

ir^El^71-1) —U 7fP(Sn,El) 

the boundary homomorphism d, and the homomorphism fc* induced by an 
inclusion map, are isomorphisms onto, and the commutativity relation i* = 
k*Ed holds, where E is the suspension homomorphism. The statements above 
are precisely the easier part of the first two theorems of Freudenthal [3]. 

5. The next problem. Assume that the pair (X, 8W) is m-connected, m à i , 
as in Theorem 2. Then we know that ^ ( X * ; 8n, X) = 0 for p < m + n. The 
next problem that arises is to determine the group 7rm+n(X*; 8W, X). The dimen
sion m + n will be called the first nontrivial dimension for the triad (X*; Sn, X). 

A few results have already been obtained in this direction. The Freudenthal 
suspension theorems, together with some improvements due to G. W. White
head [5], show that the group 7r2n_i(Sn; B+ , El) is infinite cyclic if n is odd, and 
strongly suggest that the same thing is true if n is even. J. H. C. Whitehead [6] 
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has obtained some theorems which amount to describing the groups and homo
morphisms in the following portion of the exact sequence of the pair (X*, X) : 

_L» r% (X) -Ì% 7TW(X*) J-U 7Tn(X*,X) - Ì - > TTn-1 (X) -> • • • . 

Although he was not able to determine the group 7rn+i(X*, X) in general, his 
results are closely related to our results on the following part of the exact se
quence of the triad (X*'; &n, X) in case m = 1 : 

> Tn+l(8.n, È71) -+ Tn+l(Z*, X ) -+ 7Tn+1(X*î 8*, X ) - » • • • . 

The rest of this paper will be devoted to the description of a general theorem 
about the homotopy group in the first nontrivial dimension of the triad 
(X*; 8n, X). The proof of the results obtained is much more complicated than 
the proofs of either Theorems 2 or 3, and cannot be given here. In order to be 
able to state the main result, it is necessary first to develop several auxiliary 
concepts. 

6. The homotopy groups of a covering. We use the word1 "covering" in a 
very special sense: A covering of a space X is an ordered pair (A, B) of subspaces 
of X such that A U B = X and A fi B is nonvoid. We denote such a covering 
by (A/B), 

Let (A/B) be a covering of X in this restricted sense. Choose a base point 
xo e A fi B. By a map, f: (El/El, pQ) —» (A/B, xQ), is meant a continuous 
function / : Sn-*X such that /(_?+) C A, f(El) C B, and/(p0) = xo. Homotopy 
of two such maps is defined in an obvious fashion. Let irn(A/B, XQ) denote the 
set of all homotopy classes of maps (El/El, po) —» (A/B, xo). If n > 1, it is 
possible to define an addition between the elements of irn(A/B, xQ) in such a 
way that irn(A/B, xQ) becomes a group, the nth homotopy group of the covering 
(A/B) at the base point x0. This group is abelian if n > 2, but need not be so if 
n = 2. I t has many properties which are the analogs of properties of the homo
topy groups of pairs and triads. 

Associated with a covering (A/B) of X are two exact sequences : 

• " - * 7Tn(A/B) -> 7Tn(A, A fi B) -> Tn-l(B) -> 7Tn_l(A/B) - > • • - , 

> 7Tn(A/B) -> 7Tn(B, A fi B) - * Tn-l(A) -> 7Tn_i(A/B) - * . - - . 

The homomorphisms in this sequence are defined by means of "boundary opera
tors" and inclusion maps, similar to those in the exact sequence of a pair or a 
triad. 

If (X; A, B) is an arbitrary triad, then the subspaces A and B determine a 
covering (A/B) of A U B. The homotopy groups of this covering fit into an 
exact sequence with the homotopy groups of a triad, as follows: 

> 7T„+I(X; A, B, xo) > irn(A/B,xQ) —^ wn(X,xQ) —^ irn(X;A, B) -> • • •. 
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7. Generalized Whitehead products. In [6], J. H. C. Whitehead has defined 
.•a "product" which associates with elements a G TP(X) and ß G TTQ(X) an element 
\a, ß] G 7Tr(X), where r = p + q — 1, and proved several properties of this 
product, the most important of which is that it is bilinear if p > 1 and q > 1. 
In an analogous fashion, we can define three new products which are closely 
related to each other and to the original Whitehead product. One of these 
products is used in the statement of our main theorem below, and the others 
are useful in making applications of this theorem. 

These three new products are as follows: 
(a) Let (X, A) be an arbitrary pair. Then given elements a G TP(A, X0) and 

ß G Tq(X, A, xo), the products [a, ß] and [ß, a] are elements of wr(X, A, xo), 
where r = p + q — 1, and Xo G A is the base point. 

(b) Let (A/B) be a covering of X = A U B. Then if a G irP(A fi B) and 
ß G irq(A/B), the products [a, ß] and [ß, a] are defined, and belong to irr(A/B), 
r = p + q — 1. 

(c) Let (X; A, B) be an arbitrary triad, a G TP(X, A f) B), and ß G 7rg(A/B). 
Then [a, ß] and [ß, a] are elements of irr(X; A,B),r = p -\- q — 1. 

All three of these products are bilinear, provided the integers p and q are large 
enough so that all the groups involved are abelian. All three of them satisfy 
the following commutation rule: 

[«,/?] = ( - l H f t « ] . 

The product mentioned in (a) above is defined as follows. Let 

/ : (Ep, flTl) -+ (A, .TO), 

g: (Eq, Sq~\ El'1) -> (X, A, xQ) 

represent a G irP(A, x0) and ß G ^q(X, A, x0) respectively (assuming, of course, 
that appropriate orientations have been chosen for the cells Ep and Eq). Let 
Ar denote the following subset of the product space, Ep X Eq: 

Ar = (S*'1 X Eq) U (Ep X E^1). 

Then Ar is a closed r-cell, and its bounding (r — l)-sphere, Àr, is given by 

A* = (S*"1 X Bi"1) U (Ep X Sq~2). 

Define a map 

by 

\f(x) if (*, y)£EpX El~\ 

\g(y) if (x, y) g S1-1 X E\ 

The map <£ thus defined is continuous, and its homotopy class depends only on 
the homotopy classes of / and g. The product [a, ß] is now defined to be the 
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homotopy class oî <j>; to complete the definition, it is necessary to make some 
convention as to choice of a base point in Ar and of orientation for the cell A r . 

• The products mentioned in (b) and (c) above are defined in a similar manner. 
As examples of some of the properties of these products, we list the following 

without proof. 

(a) Let dn: 7rn(X, A, Xo) -> 7rn-i(A, x0), n = 2, 3, - • • , 

denote the homotopy boundary operator of the pair (X, A), a G irp(A, xQ)} 

ß G 7Tg(X, A, xo). Then 

óvk ß] = ( - i n « , dqß], dr[ß, a] = ' . - [3,fc <*]. 

If a G 7Tp(X, A, xo) and ß G ?rff(X, A, #0), then 

[dpa,ß] = (-I)*"1!«,*./«. 

(b) Let / : (X, A, x0) —» (F, B, ?/o) be a continuous map, and let 

fn: 7Tn(X, A, #0) -* ir„(F, B, 2/0), n = 2, 3, • • • , 

gm- 7TTO(A, a*) -> 7rm(B, î/o), m = 2, 3, • • • , 

be the homomorphisms induced by / . Then 

fr[a>ß](=* [gPa,fqß] 

for a G irP(A, #0), ß G rq(X, A, x0). 

(c) Let (X, A) be a pair, and 

im: irm(A, Xo) —> irm(X, Xo), m = 1, 2, • • • , 

j n : 7T„(X, xo) -> TT«(X, A, o;0), n = 1, 2, • • • , 

the injections. Then 
3r[ip<x, ß] = [a,jqß] 

for a G *p(A, XQ), ß e vq(X, x0). 

(d) Let (X; A, B) be an arbitrary triad, and let 

i: wp(X, A fi B, xo) —> irp(X, A, xo), 

j : irq(A, xo) -> icq(A/B, xo), 

f: 7Tr(X, A, xo) -» ?rr(X; A, B, x0)7 

he homomorphisms induced by inclusion maps. Then 
f[ia,ß] = [a,jß] 

for a e 7Tp(x, A n B , xo), ß e vq(A, XQ). 

8. The main theorem. Let X* = l U Sw as in §4. In addition, we make the 
following assumptions: 
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(a) X and è" are compact absolute neighborhood retracts. 
(b) X is simply connected. 
(c) The m a p s ^ : (En, S71'1) -* (fi? , É?) map Sn~x homeomorphically onto Ê? . 
Define a homomorphism 

* : 7rw + 1(8n /X) ® 7Tn(8n, É") -> *-wl+n(X*; 8 n , X ) 

(where the symbol ® signifies "tensor product") as follows: If a G irOT+i(X/Sn) 
and ß G 7rw(8n, Èw), then 

$(« ® ß) = [a, t/3] 

where i\ 7rn(8
w, fin) —> 7rn(X*, Èn) is the injection and the brackets denote a 

generalized Whitehead product. The fact that * is a homomorphism follows 
from the bilinearity of this Whitehead product. We can now state our main 
theorem, as follows: 

THEOREM 4. If the pair (X, É") is m-connected, m __ 1, then $ is an isomorphism 
onto. 

Note that under the assumptions we have made, 7rn(8
w, tn) and irm+i(&n/X) 

are isomorphic to the integral homology groups Hn(8>n, Èn) and i îm + i (X, 8") 
respectively, both of which are effectively calculable in case the pair (X, èn) 
is triangulable. Hence the group 7rTO+n(X*; 8n, X) is also effectively calculable in 
this case. 

The proof of this theorem is much more difficult than the proof of Theorems 
2 and 3. The only proof that the author knows requires the use of the Steenrod 
functional cup product (see [4]), although the functional cup product is not used 
in the statement of the theorem itself. The functional cup product gives an 
effective method of determining whether or not two maps 

(Em+n; El+n-\ E1+"-1) -> (X*; Sw, X) 

represent the same element of 7rm+„(X*; Sn, X). 

9. Applications of the main theorem. If Theorem 4 is applied to the triad 
(Sn\ El, El), we find that 7r2„_i(Sn; B+, El) is infinite cyclic; a generator of 
this group is obtained by forming the generalized Whitehead product [a, ß], 
where a is a generator of the infinite cyclic group irn(El/El), and ß is one of the 
generators of the group 7r„(Sn, Än_1), corresponding either to a generator of 
TTn(El, S*"1), or to a generator of Tn(El, Sn_1). This fact, together with the 
relations between the various generalized Whitehead products, and elementary 
properties of the Whitehead products for the homotopy groups of spheres, gives 
the Freudenthal theorems in the critical dimensions, together with the improve
ments due to G. W. Whitehead [5] referred to previously. 

As a second application, assume that X* = X U 8" as in «j§4, and that con
ditions (a) and (b) of §8 are satisfied; we do not assume that (c) of §8 is satis-
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fied. We assume that X is m-conrìected, m à i , but xm+i(X) 5̂  0, and wish to 
determine as many of the groups ^ (X* , X) as possible. In case m à n — 1, 
then all the maps fa Sn~x -» X (defined by the maps fr: (En, S71'1) -> (8 • , ê?)) 
are inessential, and we may as well assume that è71 consists of a single point. 
This case is best handled by other methods; hence we assume that m < n — 1. 
Furthermore, we shall assume that $i(po) = XQ G X, a fixed base point, for 
i = 1, • • • , fc. 

Let (Ei , Sf - 1) , « • • , (B*1 , St"1) be fc distinct homeomorphic copies of the 
pair (En, S71'1), and let 

& (E7 , SI'1) -> (Bn, S71"1), i = 1, - - - , fc, 

he homeomorphisms. Let pi = £îl(po), i = 1, • • • , fc. Identify the points pi, 
p 2 , • • • , Pk to a single point p0, and denote the identification space thus ob
tained by B; then E = E? U : . • U El . Let S = Si*"1 U - • - U SJT1. Define 
a map 

f : (tf, 5) - • (X*, X) 

by ^ | E" = ^,-£«. The map \[/ induces homomorphisms 

fr:irP(E, S ) - > T , ( I * , I ) . 

We are now in a position to state our results on the groups irp(J£*, X) . The prob
lem breaks up into three cases. 

(a) Case where m = n — 2. In this case the homomorphism fr : rp(E, S) —> 
^ ( X * , X) is an isomorphism onto for p < m + n, and is an isomorphism intp 
for p < 2n — 2. Define a homomorphism 

f : 7TOT+i(X) ® 7Tn(X*, X) -> T.+.CZ*; X) 

by £(a ® 0) = [a, /3] (Whitehead product). Then f is an isomorphism into, and 
wm+n(X*} X) is the direct sum of the subgroups frirm+n(E, S) and f[7rm+i(X) ® 
».(** , X)]. 

(b) Case where m = n — 2 (jftrsi possibility). The map ^»-; (S"""1, po) —» (X, #0) 
represents an element ai G 7rTC_i(X, a:0), i = 1, • • • ', fc. Assume first that the 
elements a i , • • • , ak generate the entire group 7r„_i(X, 'XQ). Then the homo
morphism \(/*: irp(E, S) —» ^(X*, X) is an isomorphism onto for p < 2n — 2 
and a homomorphism onto for p = 2n — 2. The kernel of the homomorphism 
^#: 7r2ri_2(B, S) —> 7T2n_2(X*, X) is the subgroup of x2n-2(B, S) generated by the 
elements [a, ß], where a is an arbitrary element of irn-i(S), and ß is an element of 
irn(E, S) which satisfies the condition d^*(/3) = 0, where d: TU(X*, X) —> 7iv-i(X) 
is the boundary operator of the pair (X*, X). 

(c) Case where m = n — 2 (second possibility). Finally, we assume that the 
elements ai, • • • , ak generate a proper subgroup of 7rn-i(X, xQ). Then the homo
morphism T£* : irp(E, S) —» TP(X*, X) is an isomorphism onto for p < 2n — 2, 



HOMOTOPY GROUPS OF TRIADS 381 

but need not be an isomorphism, nor onto for p = 2n — 2. One can assert, how
ever, that the group 7r2n-2(X*, X) is generated by the elements \}/*(a) for 
a G 7r2n-2(B, S), and the Whitehead products [ß, y], for ß G 7rn-i(X), 7 G 
7T„(X* X V . 

These results are all a direct application of Theorem 4, together with the 
basic properties of the Whitehead products. 

Another application of these results is to the study of the homotopy groups 
of a complex which is a union of spheres with a single point in common. Let S& 
be a cell complex which has a single vertex, e°, and fc ?i-dimensional cells, e" , 
• • • , e% (n > 1). The closure of the cell e? is an n-sphere, denoted by S7 . The 
space S£ is the union of the spheres Si , • • • , Sk , and S" fl S" = e° if i 9^ j . 
Let <j>i: Si —> Sfc be an inclusion map; (/>* represents an element ai G ^«(SjT)? 
the elements «1, • • • , ak are a set of free generators of the group irn(§>l). Let 
4>a: S271-1 —» s£ be a map representing the Whitehead product [ai, <XJ]. Then it 
can be shown that <j>i*: TTP(S7) —» rp(&k) is an isomorphism into in all dimensions; 
and <£#*: ^(/S2""1) —> irp(&k) is an isomorphism into if p < 4n — 4 and i ^ / . 
If p < 3n — 2, then the group irP(Sh) is the direct sum of the sub
groups (j>i*irp(S

7i), i = 1, • • • , fc, and^t-j-*7r3)(S
2n~1), 1 __ £ < j __ fc. These results 

are most easily proved by applying a theorem of G. W. Whitehead ([5], Theorem 
4.8) on the homotopy groups of the union of two spaces with a single point in 
common. This theorem enables one to prove these results on 7rp(&k) by means of 
an induction on fc, the number of spheres. I t is also necessary to use Theorems 
2 and 3 in the process. 

By using this same method, and applying Theorem 4, it is possible to deter
mine the structure of 7r3n-2(Sfc)> as follows: 

THEOREM 5. The group 7T3n-2(Sfc) is the direct sum of the following subgroups: 
(1) 0^7T3n-2(Ä?), l S i ^ h 
(2) • ^ r 1 ) , 1 ^ i < j è k, 
(3) a free abelian group on |(fc + l)fc(fc — 1) generators, generated by the 

triple Whitehead products 

k , [«/, «1]], 1 ûj <l^k, 1 è i è I. 

Rather than apply Theorem 4 directly to prove Theorem 5, it is more con
venient to use the result stated in (a) of this section. 

10. Unsolved problems. The major unsolved problem in this subject at present 
is the determination of the homotopy groups of the triad (X*; 8n, X) in higher 
dimensions. The method used to determine the triad homotopy groups in the 
first nontrivial dimension breaks down completely when applied to higher 
dimensions. Apparently this problem is a major obstacle to the further progress 
of homotopy theory in general. Even the groups 7r2n(S

n; El, El) are unknown, 
except in the cases n = 2, 4, and 8, in which case 7r2n(S

n; El, El) tt 7r27l(S
2n_1). 
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HOMOLOGY INVARIANTS AND FIBRE BUNDLES 

G U Y C, H I R S C H 

1. Homology invariants1 can be associated with fibre bundles (written f.b.)2 

in two main ways. Namely, (a) one can consider the relations between homology 
properties of the base space M, the bundle 'NL, and the fibre ]?; or (b) one can 
also investigate a classification of f.b. based on homology properties only and, 
for instance, determine some of the classical invariants (characteristic class, 
obstructions, . . .) by the consideration of homology properties, or vice-versa. 
We shall be concerned here mainly with the links between problems (a) and (b). 

2. Problem (a) can be stated as follows:3 What relations can be established 
between the cohomology rings (or even their additive structure) § , § , © re
spectively of the bundle JS/L, the base space M, and the fibre f\ or even between 
their rings of cochains S, S, É ? 

Several contributions to the solution of this very general problem were given 
by Leray [18], particularly relations between the Poincaré polynomials of the 
three spaces and even part of the ring structure. But for our purposes it will be 
convenient to consider separately various aspects of this problem (a) : 

al (direct problem) : Given M and $, what can be said about the homology 
ofM? 

a2 (inverse problem) : Given M and ?, what can be said about the homology 
of M? 

and even a3 (compatibility problem) : Given M, what is the homology type 
of fibres Ì? compatible with the existence of a fibre structure in M? 

We shall be concerned mainly with problem al and its implications (in 
§§6 ff.). 

3. Problem al was solved in 1941 for the additive structure of § and for 
particular spaces, firstly [8] when ]? is an S° (2-sheeted covering) or a circle S , 
and [6] when (all spaces considered being manifolds) 1? is a (homology) n-dimen
sional sphere Sn. In 1942, Samelson [19] determined |) when the base space M 
is a sphere Sn and a homogeneous space (M and 1? being group manifolds), and 
found two different types of spaces. Although as a rule I shall not consider in 
this paper properties which depend on more than homology properties, I men
tion Samelson's results because it can be shown4 that they depend only on the 
nature of the cohomology rings of M and 1? (which are isomorphic to the rings 

1 Here I shall generally consider singular homology in locally compact spaces. 
2 No structure groups will be considered except in §15. 
8 The similar problems for U * and the reduced powers of Steenrod are not considered 

here. 
* This is a (yet unpublished) consequence of the general formulae mentioned in §8 and 

§10. 
383 
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of topological products of spheres), M being only a homology sphere. When. 
the ring of M has not this property, there.is,a third type of spaces.5 

The first general formulae were given in 1946 by Leray [18].6 

4. Problem a2 was solved by Gysin [6] when M and F are (homology) spheres. 
A particular case of a2'is given by homogeneous spaces Q&L and J1 being group 

manifolds). Important 'results were obtained by Leray [18], Koszul [17], H . 
Cartan [4], These results do not hold if IVI and ? have only the (additive) homol
ogy groups of group manifolds. 

H. Cartan [3] solved a problem similar to a2, M being a space in which'à. 
group operates. 

5. Problem a3 is far from being solved in the general case. Some recent results 
are known when ïvï is a euclidean space [1] : the fibre (if different from a point) 
is never compact ; or when 1V{ is a sphere : F cannot be a topological product of 
m circles :(m > 1) [5]. Although the proof of the latter theorem uses homotopy 
methods, I believe that the theorem actually belongs to the theory of homology; 
it is, for instance, easy to prove (as a consequence of the general results of §8 
and §10) that a homology sphere cannot be a f.b. where the fibre has the same 
cohomology ring as the product of two spheres (of arbitrary dimension). I t 
might even be possible to prove that a (homology) sphere cannot be a f.b. 
where F is neither a homology sphère nor a homology simplex. Added in proof: A. 
Borei proved recently (C. R. Acad. Sci. Paris vol. 231 (1950) pp. 943-945) that 
â homology sphere cannot be a f.b. where the fibre has the same cohomology ring 
as a product of ra spheres (ra > 1). 

6. Although problem al finds an important application to coverings (given 
the base space M and the Poincaré group 7Ti of the covering space Ivî as a sub
group of the Poincaré group in of M), we shall restrict ourselves to the case where 
the domain of coefficients is a field and where in operates trivially on the coho
mology of F (in the given field of coefficients). 
J Before entering into details about problem al and its relation to problem 
(b), I would like to mention two more problems which are closely related to 
problem (a), and might be called its "dynamic" aspect: 

Problem (c): Let f be a mapping of a f.b. M in a f.b. M', compatible with. 
the fibre structure (this means that T maps all the points belonging to the same 
fibre F of M into points belonging to the same fibre $' of M'). The homology 
type of such a mapping is determined to a certain extent (as can be proved by 
applying the general theory of §8 and §10 to the induced mappings T of the 

5 In 1949, Wang [22] gave some results for f.b. where the base space is a homology sphere, 
under certain assumptions. The latter lead him back to the two types considered by Samel-
son. 

JÎ Leray considered even the more general problem of mappings instead of fibre bundles. 
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base space M into the base space M', and f of f into ]?'—the latter being not 
unique, but having a constant homology type). Examples of this kind (with 
M = ftï') are Borsuk's theorem [2] (1933) on "antipodentreue Abbildungen" 
(i.e., Ì? being a pair of antipodic points, M the sphere and M the projective 
space, the degree of f is odd when Ì? is mapped onto a fibre), or Hopf-Rueff's 
theorem [15] (1938), where M is an S2fc+1, F a circle, and M a fc-dimensional com
plex projective space: the degree of T is an exact (fc + l)th power [the (fc + l)th 
power of the degree of the mapping T induced in ]?]. Generalisations of these 
theorems were given [9] when 1? is discrete, or [8] when f is a circle, IVI being an 
arbitrary polyhedron (see also [7]). 

Problem (d) is the following: Determine the homology type of a mapping 
T of a space M into a space M', such that it induces a mapping T of a f.b. M 
over M as base space into a f.b. M' over M7 as base space (for instance, M being 
a covering of M). Example: M being a projective space and T a mapping of M 
into itself, the knowledge of the homomorphism (induced by T) in the Poincaré 
group xi determines the parity of the degree of T (or its absolute degree) [7]. 

7. In problem al , it is of course not sufficient to know properties of M and 
Î1 to determine the cohomology ring | ) of M, as the f.b. M itself is in general not 
uniquely determined when M and Ì? are given. Some invariants will be needed 
to describe the type of f.b. considered. I t will be convenient to express these in
variants in terms of a relation between 1? and M, which will allow the deter
mination of | ) . As the classification of f.b. also rests usually on relations between 
II? and M (e.g., characteristic classes or obstructions), relations between both 
can be investigated. I showed in 1941 [8], that when ]? is S° or S1 (the result even 
applying to a fibre Sn, although this was not then considered in my paper), the 
invariant describing the homology structure of JS/L is equivalent to the charac
teristic class defined by Whitney [23]. This result is a special case of a theorem 
mentioned below (§9), connecting the "reduced characteristic isomorphism" 
and Steenrod's characteristic cocycle. 

8. In Leray's solution [20] of problem al , a sequence of differential operators 
as constructed, starting in the tensor product $ ® § , and yielding, after a 
finite number of steps, a filtration of the cohomology ring | ) (each ring being the 
"cohomology ring" of the preceding one; the sequence is a Leray-Koszul se
quence [16]). Leray's operators use only homology properties, and are a topo
logical invariant of the f.b. In my approach to the problem [10], a unique differ
ential operator in the tensor product Ë ® ^ (S being the ring of cochains) 
yields the additive structure and part of the multiplicative structure of § . But 
this differential operator is, in general, not uniquely determined, as its defini
tion rests on the "characteristic isomorphism" of § in § or § ® ÌQ, which de
pends on the choice of representatives, in the ring of cochains of IVI, of elements 
of cohomology classes of S\ 
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It is possible to construct for § a composition series without repeated terms, 

O C & C . . . C & C • - • C § g C $ a + 1 = $ ; 

p̂o is in fQ the subgroup of images of | ) . 
Let E and E be respectively the rings of cochains of M and 1VÌ; let P be the 

homomorphism of S in Ë. Calling 2* an element of ÌQì/ÌQì-I and ext(20 a co-
chain in Ivt whose restriction to any fibre belongs to the class ii, and defining 
a homomorphism P< of E ® §ì/ÌQ±-I in S by P*(C ® 80 = P(O) U éxt(20, &+i 
is then defined by the property 

a[éìt(*<+i)] € P*(E ® &/$«) . 

The choice of a representative ext(z*+i) associates with each class 2*+i, by this 
definition, an element of S ® |?*/|)*-i, and even an element of § ® $Oi/$Qi-i. 
I call this correspondence the characteristic isomorphism W of § i + i in § ® 
&ì/ÌQì-I -7 Its definition depends essentially on the choice of ext.8 

However, defining $* CI ÌQ and 2* Ç ^ * by 5[ext(z*)] £ P(E), then this re
lation defines an invariant isomorphism W* (called reduced characteristic iso
morphism) of |)*/l?o o n a factor group of a subgroup of §.9 

9. For the smallest nontrivial dimension h in § , the reduced .characteristic 
isomorphism maps on a subgroup of § and is equivalent10 to Steenrod's charac
teristic cocycle [20], as can be shown by the values taken on an element of § 
by the latter applied to a cycle of M. 

10. The characteristic isomorphism is sufficient for determining the (additive) 
group | ) (and even part of the multiplicative structure). Pi induces an isomor
phism of §*/ $*(both subgroups of $ ® ÌQì/ÌQì-I) on §i/f>i-i , where |)» is an 
element of a composition series 

$ = & => ^a_x D . . O | t O . . O | 0 D 0.11 

Define a product ^ between E and E ® !&i/$t-i by the rule C * ( C ® 20 = 
(C U C ) ® ii ; define a homomorphism D* mapping E ® §^/§i_i into E ® 
ÌQi-.i/®i-2 by the rule Z)*(C ® ii) = (-l)aG * W(h) where a = dim C- dim 2*. 
Define Q * C E ® & / $ « by ô O * C D,+iO*+i, and 9JÎ* C E ® $</$<-- by 
DM* c « W t i . 

Then $* is the group of classes of S ® &i/&i-i contained in 9K* (where S is 

7 This is essentially the process defined in [10], where, however, I considered simul
taneously homology and cohomology, which made the definitions more cumbersome. 

8 Even the length s of the series is not invariant. 
9 A similar notion has been introduced by Koszul [17] for homogeneous spaces, under 

the name of transgression. 
10 See the condition about xi in §6. 
11 For the intuitive aspect of this homomorphism, see [11]. 
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the group of cocycles in M), and $* is the group of classes of S ® l>i/l?i-i con
taining Dt+iO*+i ,12 

11. Lack of space prevents me from enumerating properties of W ; ÌQ/fQo is 
similar in many respects to an exterior algebra, elements of |>/̂ po being maximal 
in the ring and of odd dimension. But although the factor ring §/§o is generated 
by the elements appearing in the reduced characteristic isomorphism when M 
is a homogeneous space [17], [4], a similar result does not apply to general if.b. 
Also the elements W*(ÌQ*/ÌQO) which are generators of $ for homogeneous spaces 
are not maximal, but only relatively maximal, in the general case. 

12. The system of all characteristic isomorphisms (for all possible choices of 
representatives) is of course an invariant of the f.b. The relations between it 
and Leray's invariants might be investigated; it is probable that both are 
equivalent. 

13. Neither the characteristic isomorphism nor Leray's sequence are suffi
cient to determine fully the multiplicative structure of | ) . It follows from §10 
that the latter depends on the products of the extensions ext(20. These products 
define new invariants which attach to pairs of elements of Q elements of § ® § 
when i is a 20 belonging to §o, or homomorphisms in these tensor products for 
other ii [12]. 

14. When the fibre is an S2 or, more generally, a fc-dimensional complex pro
jective space, these invariants are the same as those introduced by Hopf and 
relative to the second obstruction [14] [13]. This can be proved by the con
struction of a new f.b. M over M, replacing Ì? by an S3 (or an S2fc+1) which is itself 
a f.b. over ]?, and using the definition of the characteristic class mentioned in 
§9 (as Hopfs second obstruction of the first f.b. becomes the characteristic 
class of the new f.b.). It is still an open problem to relate the invariants of the 
multiplicative structure to known invariants of a f.b. when ? is not a projective 
space. 

15. The latter considerations will lead to a new point of view. In this section, 
I shall consider a f.b. with a structure group & which has an invariant subgroup 
©o and operates transitively on f\ F is itself a f.b. with a fibre f\) (defined by 
equivalence relative to ©0), and F as base space. In the given f.b. M, considera
tion of the equivalence classes relative to ®0 leads to a new f.b. M, which is 

12 An important special case ("reducible case") allows O* to be replaced by S ® $i/iQ{-i 
and 9ftJ by (5 ® $</$<-i » thus considering D as a derivation in the direct sum of $ <g> èî/é«-i 
(graduated by the index i) for which the factor groups %*/^\ appear as homology groups 
(with D as boundary operator). It was, for instance, proved by Koszul that the reducible 
case applies to symmetric homogeneous spaces. 
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the base space for the f.b. SÏ (with the fibre ff0), and also a f.b. over M with 
F as fibre. (Example, similar to the last part of §14: ff being an S2fc+1,,® the uni
modular group, and ®0 the subgroup leaving one point invariant; F is a complex 
projective space, ff0 a circle. In the problem of §14, it was M that was the given 
f.b., and IVI the auxiliary one. A similar theory holds mod 2 with ® the orthogonal 
group, F being a real projective space.) 

The invariants of the multiplicative structure of the auxiliary f.b. M (defined 
as in §13) are invariants of the f.b. M. For instance, when ff is a sphere and ® 
the orthogonal or the unimodular group, these invariants coincide with the 
characteristic -classes of Stiefel-Whitney or Chern [13], which are thus defined 
without explicitly considering associated f.b. 

16. In this respeGt, I might also mention here recent results of Thorn [21], 
who determined these characteristic classes when ff is a sphere, by means of 
the reduced powers of Steenrod (thus proving their topological invariance and 
independence of the differential structure). However, these interesting results 
do not' come quite in the scope of the present paper, as they would not apply if 
ff were only a homology sphere. 

17. When the Lb. is the topological product of M and ff, it is known that a 
section is equivalent to a mapping of M in ff, thus defining a homomorphism 
(Hopfs homomorphism) of the cohomology group ^ of g in the cohomology 
group & of M. I t can be shown [13]13 that (when one section is given), a section 
in a general f.b. (which does not define a mapping) also determines a homomor
phism of ©o (defined in §8) in ^p; for, elements of !£>i (i ?£ 0), there corresponds a 
cochain in M, or a homomorphism of %* (definition, §10) in § . 
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HOMOLOGY THEORY OF FIBER BUNDLES ' 

E. H. SPANIER 

1. The first comprehensive result on the homology properties of fiber bundles 
was obtained by Gysin [3] who studied sphere bundlos over manifolds. Little 
more was done with this subject until fairly recently when several people began 
to get interested in it. Among these should be mentioned Leray [7, 8], Hirsch 
[4, 5, 6], Steenrod [12], Thorn [13, 14], Wu [17], Borei and Serre'[1], and Shapiro 
[9]. The chief tool in the approach of Leray and many of the others seems to be 
the "ring of the projection" of the bundle.-This is an, algebraic structure as
sociated with the bundle which is obtained by considering cohomology of the 
base space with local coefficients in the cohomology ring öf the fiber. In the 
general situation this algebraic structure is fairly complicated, and it is difficult 
to compute with it* 

A method similar to that of Leray has been utilized by Chern and the author 
[2] to study the homology structure of fiber bundles where the base space is 
assumed to be a complex. The technique consists of a study of the homology 
properties of the inverse images of the skeletons of the base space under the 
projection. The resulting algebraic structure is essentially the same as the ring 
of the projection; however, because of the assumption that the base space is a 
complex, the situation is simpler than the general case and computations can be 
carried out more easily. » 

In this paper this algebraic machinery is discussed and some applications are 
given. In particular, it is shown how the characteristic class of the bundle can 
be obtained rather simply in this approach. By considering the graph of the 
projection as a bundle over the base space, some of the multiplicative properties 
of the cohomology ring of the bundle can be obtained. In this way a fairly simple 
theorem on sphere bundles is obtained which includes the main results of Gysin. 
The last application discussed is to the relative position of the fiber in the bundle. 
If the fiber is totally nonhomologous to zero, it is shown that the cohomology 
groups of the bundle are isomorphic to the corresponding groups of the product 
space of the base space by the fiber. 

The algebraic structure which arises in this study seems to be of interest in 
other connections. Any simplicial map of one complex into another gives rise 
to a similar situation, and an investigation of this would perhaps lead to new 
invariants of mappings which could be applied to the homotopy classification 
problem. Another situation in which this algebraic structure is of interest is 
obtained by considering the homotopy groups of the skeletons of a complex. 
In this case the new sequence of J. H. C. Whitehead [16], can be obtained by 
this approach, and perhaps interesting generalizations of this can be found by 
deeper inspection. 

390 
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2. Let / : B —» X be a fibering with connected fiber F and structure group Y 
[11]. We shall assume X is a finite connected cell complex of dimension n in 
which each cell is simply connected. We also assume that if a is any cell of X, 
there is a homeomorphism 

*.:M XF->r\\«\) 
such that 

/Arfo 2/) = * 

for a £ | or | and y € F, Moreover, if o- is a face of r, the transformation 

7<rT(x):F ->F 

defined for x £ | o-1 by 

<^te, 2/) =$rte,7*rte)(2/)) 

is an element of r depending continuously on x in | a \ . 
Let Xr denote the r-dimensional skeleton of X and set Br = /"1(Zr). Aa 

coefficient system for cohomology in B we use a local system {(?&} [10] which is 
simple over every fiber. Such a system is the inverse image under / of some 
local system [Gx] on X. Since | a | is simply connected, {Gx} can be replaced by a 
local system {Ga} over the cells of X. 

From the fact that/ - 1( | a |) is homeomorphic to | cr | X F, an isomorphism 

X: Hp(Bg, BQ„! ; Gb) tt C
q(X; Hp~Q(Fa ; (?„)) 

can be constructed in a natural fashion. In the above the first group is the p-
dimensional relative cohomology group of Bq modulo Bgli with coefficients in 
{Gb}, while the second group is the group of g-dimensional cochains of X with 
coefficients in the (p — q) -dimensional cohomology group of Fa with coefficients 
in G9. Furthermore, if 

j : Bq C (Bq , Bq_i) 

denotes the inclusion map and 5* denotes the coboundary operator for the pair 
(J5a+i, Bg), commutativity holds in the diagram 

Hp(Bg,Bg^ ; Gb) JL> Hp(Bq ; ft) —%Hp+1(Bg+hBg', ft) 

CQ(X; Hp~9(Fa; Ga)) —-> Cg+1(X; Hp-Q(Fa] Q,)) 

where ò denotes the coboundary map for cochains of X. 
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The following diagram will be called the main diagram of the bundle. 

Hp(Bn, Bn_i ; ft) - A Hp(Bn = B; ft) 

r 
^ ^"(£„-1, -B„_2; ft) - £ » Fp(B„_ir ft) -Ü» fl^CB., 5„_i; ft) _ £ » - - • 

** 

1 
+ HP(BP, B^ ; ft) - £ * fl»(B, ; ft) J ! * H^B^, Bv ; ft) - £ * • • • 

i* 

i* 
5* .•* a* 

l* 
-> Hp(Bo, J5_i ; ft) » HP(BQ ; ft) » 23p (ßi, JB0 ; ft) > 

0. 

Note that any sequence composed of j * , i*, 3* in that cyclic order is exact. 
Let u G Hp(Bq, Bq-i ; Gb)- We say that u can be lifted k-stages ta 

ü G Hp+1(Bq+k+i, Bq+k ; ft) if there is v G Hp(Bq+k ; ft) such that (i*fv = 
j^u and 8*v = û. Naturalisait can happen that a given u G Hv(Bq, Bq-i ; ft) 
can perhaps be lifted ^-stages to different elements of Hp+1(Bq+Ic+i, Bq+k ; ft). 
From the exactness properties of the main diagram it is clear that a given 
u G Hp(Bq, J5g_i ; ft) can be lifted 1-stage if and only if \u is a cocycle of 

3. Let G be an abstract group isomorphic with ft . Let HP(F; G) be the sub
group of HP(F', G) of elements invariant under all the operations of TTI(X). 
It is well known that 

Z°(X; HP(F„ ; ft)) tt HP(F; G). 

Of particular interest are those elements of HP(F; G) which correspond to ele
ments of Z°(X; Hp(Fff ; ft)) which can be lifted p-stages. 

Let d be the smallest positive integer for which Hd(F; G) is nontrivial. This 
means that for 0 < q < d, Hd(Bq , £g_i Î <h) = 0 and Hd+1(Bq+i, Bq ; ft) = (L 
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It follows that in the main diagram the sequence 

Hd(Bd, Bd„! ; ft) Ji* lf(Ba ; ft) 

j(;*)d 

Hd(B0 ; ft) -£-+ Hd+1(Bi, Bo ; ft) 

is exact. Hence, any u G Ht (F; G) corresponds to an element of Hd(Bo ; ft) 
that can be lifted d-stages. Moreover, if u can be lifted d!-stages to Hi and ü2 

it is clear that üi — û2 G ò*j*Hd(Bd , Bd-i ; ft). Hence, Xüt and \ü2 are cohomol-
ogous cocycles of Cd+1(X; H°(Fa ; ft)), which is isomorphic to Cd+1(X; ft). 
In this way we have a well defined homomorphism 

T: HÎ(F;G) - • Hd+1(X;G9). 

As an application of this homomorphism let irp(F) = 0 for p < d (where d > 1) 
and assume ird(F) ?£ 0. Then wd(F) tt Hd(F). (Where no coefficients are indi
cated, integers are to be understood.) Let ft = Hd(Fb). In Hd(F; Hd(F)) con
sider the class w whose value on any cycle z is the homology class of z. This 
class w is the first obstruction to contracting F to a point and is invariant under 
any homeomorphism of F. Therefore, co G Hd(F; Hd(F)) and so corresponds to 
an w G Hd(Bo ; Hd(F0)) which can be lifted d-stages. For this element T(œ) = 
ti G Hd+1(X', Hd(F„)) can be shown to be minus the characteristic class of the bun
dle, a result originally proved by G. Whitehead [15]. 

4. We now show how some of the multiplicative relations between the groups 
of the main diagram for various coefficient systems can be found. If / : B —» X is 
a bundle with fiber F and group Y, then / induces in an obvious way a bundle 
f':X X B-+X X X also with fiber F and group V. 

Let {ft} be a local system on B simple over every fiber and let {G'x) be a 
local system on X. Then {Gx ® ft} is a local system o n l X ß which is simple 
over every fiber. Let u be an element of Hd(Bq, Bq-i ; ft) which can be lifted 
/c-stages to û G Hd^(Bq+k+i, Bq+k ; ft). If v G HV(XP, JTl\ Gx) is a cocycle, 
then v X u G HH'd((X X B)p+q, (X X B)p+q^ ; Gx ® ft) can be lifted /c-stages 
t o ^ X w Hp+d^((X X B)p+q+k+i, (X X B)p+g+k ; Gx ® ft). 

The main diagram associated with a bundle is natural in the sense that it maps 
properly under a cellular bundle map as is shown below. Let fi'.Bi —> Xi and 
fi : B2 —> X2 be fiberings with the same fiber F and group T. Let <j> : JBI —> B2 be a 
cellular bundle map; that is, 0 induces a cellular map <j>o : Xi —> X2 such that 
commutativity holds in the diagram 
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If {ft2} is a local system on B2 simple over every fiber, ^""1{,fta} = {ftx} is 
a local system on Bi simple over every fiber. Since 4>0 is cellular, <j> induces a 
homomorphism c/>* of the main diagram for B2 with {ft2} as coefficients into the 
main diagram'of Bi with { f t j as coefficients. This induced homomorphism 
0* clearly has the property that if u is an element of a group of the main diagram 
of B2 that can be lifted fc-stages to û then <j>*u can be lifted fc-stages in Bi to <ß*ü. 

5. Now we turn our attention to sphere bundles. Let / : È —> X be a fibering 
with fiber 13d and arbitrary group Y of homeomorphisms of Sd. 

Let {ft} be a local system on B simple over every fiber. Since H.P(F\G) = 0 
if 0 < p < d and lf(F; G) tt Bd(F; G) tt G, we see that the main diagram 
reduces to the following: 

. 0 -il> HP(B-, ft) 

t* 

;'• • —-* Hp (Bp, Bp_! ; ft) - Ü + HP(BP; ft) —*-* iT+1tB*+i, Bp;Gb) - £ * • • • 

7* Ô* +1 
Hp(Bp-d, Bp-.d-.i ; ft) > Hp(Bp-d ; ft) » 17p (jBp_d+i ; Bp-d ; ft) 

0 
where again any sequence composed of j * 9 i*, 5* in that cyclic order is exact. 

Let Gb = Hd(Fb) ® ft . Then {(?&} is a local system on B simple over every 
fiber, and Hd(Fb) ® Gb tt Gb. It is clear that S°(F6 ; ft) tt ft and that 
fl^OF* ; ft) » G&. 

From the above diagram we see that any element of EF^Bp-d, ßp-d-i î ft) 
in the kernel of ô*j* can be lifted d-stages to an element of Hp+1(Bp+i, Bp ; ft). 
This lifting induces a homomorphism 

* : Hp-d(X; Gl) -> iF + 1 (X; ft). 

Another homomorphism can be defined as follows. Let u G HP(B; ft). Then 
Xj*_1(^*)2(w) is a class of cohomologous cocycles in Cp~d(X] ft). This class in X 
depends only on u so that we ha,ve a homomorphism 

tf : JT(B; ft) - * Hp _ d(X; Gj). 

The main theorem on sphere bundles is that the sequence 

^ Ä p ( X ; f t ) ^ H p ( J B ; f t ) i f l ^ ( X ; ( ? : ) - ^ U i P + 1 ( X ; f t ) . •• 

is exact. This shows that the cohomology groups of B are determined up to a 
group extension by the cohomology groups of X and the homomorphism $. 
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To calculate the mapping <£ let D be a cellular bundle map of B into X X B 
such that D0 is a cellular approximation to the diagonal map of X into X X X. 
If v G IIp(Bp^d , 5p_d_i ; ft) such that ô*j*v = 0, then \v is a cocycle of Cp~d(X\ 
Gl) and D*(X v X û]) = y where û G Hd(B0 ; JEk(F,)) corresponds to co G Hd(F; 
Hd(F)), which was defined in §3. Since cö can be lifted d-stages to û where X# 
is in the class ti = T(o>), it follows that v can be lifted d-stages to D*(\v X u). 
Now \D*(\v X u) = Xv U Xw. Therefore, we have 

#(t>) = « U f ì for v G i T ^ X ; GÌ). 

If d is even, the same map D can be used to show that 2 ß = 0. These results 
contain those of Gysin [3] and are similar to some of the theorems of Thorn [13] 
and Shapiro [9], 

6. In this section we assume the coefficient system is simple and shall denote 
it by G. Let l: F —> B be the injection of F into a fiber of B. We assume there is 
a homomorphism /*: HP(F; G) —> HP(B; G) such that Z*ju is the identity auto
morphism of HP(F\ G) for all p â 0. If HP(F; G) is without torsion, this condition 
is equivalent to assuming Ï* maps HP(B; G) onto HP(F; G), but, in general, it is 
stronger than the latter. 

Let Hp(Bg ; G) be the kernel of 5* in Hp(Bq ; G). We shall prove by induction on 
q the existence of homomorphisms 

»g:HoP(Bg;G)-*Hp(BniG) 

such that: 

(a) (i*)n~"*Vff is the identity automorphism! of Hp(Bq ; G). 
(b) M î + 1(;*)n~8~Va = ^ . 

Since X is connected, Ho (Bo ; G) tt HP(F; G), and the existence of /x0 with the 
required properties follows from the existence of JU. Assume y,q has been con
structed for q < fc. To construct fik note that (b) defines pk on the direct summand 
(i^M-iH^B^i; G) of H<f(Äb; G). The other summand of Hg(Bh; G) is 
isomorphic to H«(X ; Hp~g(F; G)). By using a cellular bundle map D:B->X XB 
as in §5, the homomorphism pk can be defined on this latter summand in such 
a way that conditions (a) and (b) hold. 

Having constructed the homomorphisms fig for all 0 S q è ri, it follows by 
induction on m that Hp(Bm ; G) tt & o HQ(X\ HP~9(F; G)). Therefore, since 
HP(B; G) tt HS(Bn ; G), we see that 

Hp(B]g)ttH
p(XXF;G). 

This result was announced by Hirsch [5] for the case where G is a field. 
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DIFFERENTIABLE MANIFOLDS 

DIFFERENTIAL GEOMETRY OF FIBER BUNDLES 

SHIING-SHEN CHERN 

The aim of this lecture is to give a discussion of the main results and ideas 
concerning a certain aspect of the so-called differential geometry in the large 
which has made some progress in recent years. Differential geometry in the large 
in its vaguest sense is concerned with relations between global and local prop
erties of a differential-geometric object. In order that the methods of differential 
calculus may be applicable, the spaces under consideration are not only topo
logical spaces but are differentiable manifolds. The existence of such a differ
entiable structure allows the introduction of notions as tangent vector, tangent 
space, differential forms, etc. In problems of differential geometry there is usu
ally an additional structure such as: (1) a Riemann metric, that is, a positive 
definite symmetric covariant tensor field of the second order; (2) a system of 
paths with the property that through every point and tangent to every direction 
through the point there passes exactly one path of the system; (3) a system of 
cones of directions, one through each point, which correspond to the light cones 
in general relativity theory, etc. Among such so-called geometric objects the 
Riemann metric is perhaps the most important, both in view of its'rôle in prob
lems of analysis, mechanics, and geometry, and its richness in results. In 1917 
Levi-Civita discovered his celebrated parallelism which is an infinitesimal trans
portation of tangent vectors preserving the scalar product and is the first ex
ample of a connection. The salient fact about the Levi-Civita parallelism is 
the result that it is the parallelism, and not the Riemann metric, which accounts 
for most of the properties concerning curvature. 

The Levi-Civita parallelism can be regarded as an infinitesimal motion be
tween two infinitely near tangent spaces of the Riemann manifold. I t was Elie 
Cartan who recognized that this notion admits an important generalization, 
that the spaces for which the infinitesimal motion is defined need not be the 
tangent spaces of a Riemann manifold, and that the group which operates in 
the space plays a dominant rôle. In his theory of generalized spaces (Espaces 
généralisés) Cartan carried out in all essential aspects the local theory of what 
we shall call connections [1; 2]. With the development of the theory of fiber 
bundles in topology, begun by Whitney for the case of sphere bundles and de
veloped by Ehresmann, Steenrod, Pontrjagin, and others, [8; 19], it is now pos
sible to give a modern version of Cartan's theory of connections, as was first 
carried out by Ehresmann and Weil [7; 22]. 

Let F be a space acted on by a topological group G of homeomorphisms. A 
fiber bundle with the director space F and structural group G consists of topo
logical spaces B, X and a mapping x// of B onto X, together with the following: 

(1) X is covered by a family of neighborhoods {Ua}, called the coordinate 
397 
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neighborhoods, and to each Ua there is a homeomorphism (a coordinate func
tion) <pa: UaX F-* Tp~l(Ua), with yp<p«(x, y) = x,x e Ua ,y € F. 

(2) As a consequence of (1), a point of ^_1(t/a) has the coordinates (x, y), and 
a point of yf^CUd fl Uß) n a s two sets of coordinates (x, y) and (x, yf), satisfying 
<pa(x, y) = <Pß(x, y'). It is required that gaß(x): yf —» y be a continuous mapping 
of Ua fl Uß into G. 

The spaces X and B are called the base space and the bundle respectively. 
Each subset ^(x) C B is called a fiber. 

This definition of a fiber bundle is too narrow in the sense that the coordinate 
neighborhoods and coordinate functions form a part of the definition. An equiva
lence relation has thus to be introduced. Two bundles (B, X), (Bf, X) with the 
same base space X and the same F, G are called equivalent if, {Ua , <pa], {Vß , dß} 
being respectively their coordinate neighborhoods and coordinate functions, 
there is a fiber-preserving homeomorphism T: B —> B' such that the mapping 
haß(x): y —> yf defined by 8ß(x, y) = T<pa(x, y') is a continuous mapping of 
Ua fi Vß into G. 

An important operation on fiber bundles is the construction from a given 
bundle of other bundles with the same structural group, in particular, the prin
cipal fiber bundle which has G as director space acted upon by G itself as the 
group of left translations. The notion of the principal fiber bundle has been at 
the core of Cartan's method of moving frames, although its modern version 
was first introduced by Ehresmann. It can be defined as follows: For x Ç X, 
let Gx be the totality of all maps <pa,g(x) : F —> ^(x) defined by y —» <pa(x, g(y)), 
y € F, g £ G, relative to a coordinate neighborhood- Ua containing x. Gx depends 
only on x. Let B* = IL* Gx and define the mapping ^*: B* —> X by $*(Ga) = x 
and the coordinate functions <pa(x, g) = <pa,g(x). Topologize £* such that the 
4j>*'s define homeoinprphisms of Ua X G into B*. The bundle, (B*, X) so obtained 
is called a principal fiber bundle. This construction is an operation on the equiva
lence classes of bundles in the sense that two fiber bundles are equivalent if and 
only if their principal fiber bundles are equivalent. Similarly, an inverse opera
tion can be defined, which- will permit us to construct bundles with a given prin
cipal bundle and having as director space a given space acted upon by the 
structural group G. An important property of the principal fiber bundle is that 
B* is acted upon by G as right translations. 

For the purpose of differential geometry we shall assume that all spaces under 
consideration are differentiable manifolds and that our mappings are differen
tiable with Jacobian matrices of the highest rank everywhere. In particular, 
the structural group G will be assumed to be a connected Lie group. For sim
plicity we suppose our base space X to be compact, although a large part of 
our discussions holds without this assumption. 

The implications, of these assumptions are very far-reaching indeed. First of 
all we can draw into consideration the Lie algebra L(G) of G. L(G) is invariant 
under the left translations of G, while the right translations and the inner auto
morphisms of G induce on L(G) a group of linear endomorphisms ad(G), called 
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the adjoint group of G. Relative to a base of L(G) there are the left-invariant 
linear differential forms a/ and the right-invariant linear differential forms 7r*, 
each set consisting of linearly independent forms whose number is equal to the 
dimension of G. A fundamental theorem on Lie groups asserts that their exterior 
derivatives are given by 

dw -= — - _C cJ*V A «*, 

dw = + - _ C c}kw3 A *•*, i,j, lc = 1, • • -, dim G, 

where c}k are the so-called constants of structure which are antisymmetric in 
the lower indices and which satisfy the well-known Jacobi relations. 

Returning to our fiber bundle, the dual mapping of the mapping gaß: Ua 0 
Uß —> G carries w* and wl into linear differential forms in Ua fl Uß , which we 
shall denote by calß and irlß respectively. Since gay = gaßgßy in Ua fi Uß fi Uy , 
we have 

(2) W«7 = S ^(gßyYjWaß + ü)ßy . 
3 

We can also interpret wL/3 as a vector-valued linear differential form in UaC\ Uß, 
with values in L(G), and shall denote it simply by o)aß when so interpreted. 

The generalization of the notion of a tensor field in classical differential geom
etry leads to the following situation: Let E be a vector space acted on by a repre
sentation M (G) of G. A tensorial differential form of degree r and type M(G) 
is an exterior differential form ua of degree r in each coordinate neighborhood 
Ua, with values in E, such that, in Ua fl Uß , ua = M(gaß)uß . The exterior 
derivative dua of wa is in general not a tensorial differential form. I t is in order 
to preserve the tensorial character of the derivative that an additional structure, 
a connection, is introduced into the fiber bundle. 

A connection in the fiber bundle is a set of linear differential forms 0« in Ua, 
with values in L(G), such that 

(3) ü)aß = -a,d(gaß)da + 0ß, mUaCiUß. 

I t follows from (2) that such relations are consistent in Ua H Uß Ci Uy . As can 
be verified without difficulty, a connection defines in the principal fiber bundle 
a field of tangent subspaces transversal to the fibers, that is, tangent subspaces 
which, together with the tangent space of the fiber, span at every point the tan
gent space of the principal bundle. It follows from elementary extension theorems 
that in every fiber bundle there can be defined a connection. As there is great 
freedom in the choice of the connection, the question of deciding the relationship 
between the properties of the bundle and those of the connection will be our 
main concern in this paper. _ 

Let us first define the process of so-called absolute differentiation. Let M(X), 
X 6 L(G), be the representation of the Lie algebra L(G) induced by the repre-
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sentation M(G) of G. Then we have 

(4) dM(gaß) = M(gaß)M(dß) - M(Oa)M(gaß). 

I t follows that if we put for our tensorial differential form ua of degree r and type 
M(G) 

(5) Dua = dwa + M(0a) A Ua , 

the form Dua will be a tensorial differential form of degree r + 1 and the same 
type M(G). 

To study the local properties of the connection we again make use of a base 
of the Lie algebra, relative to which the form 0a has the components 6a . We put 

(6) ©I = ddi + lj2 c}h0a A t in Ua . 

The form ®a , whose components relative to the base are ® a , is then an exterior 
quadratic differential form of degree 2, with values in L(G). It is easy to verify 
that ®a = &d(gaß)@ß in Ua^Uß . The ©a's therefore define a tensorial differ
ential form of degree 2 and type ad(G), called the curvature tensor of the con
nection. In a manner which we shall not attempt to describe here, the curvature 
tensor and tensors obtained from it by successive absolute differentiations give 
all the local properties of the connection. In particular, the condition ®a = 0 
is a necessary and sufficient condition for the connection to be flat, that is, to 
be such that Qa = 0 by a proper choice of the coordinate functions. 

The following formulas for absolute differentiation can easily be verified: 

M(®a) = dM(6a) + M(ea)\ 

(7) D®a - 0, 

D\a = M(®a)Ua . 

Such relations are known in classical cases, the second as the Bianchi identity. 
We now consider real-valued symmetric multilinear functions P(Y1, • • • , Yk), 

Yi Ç L(G), i = 1, • • • , k, which are invariant, that is, which are such that 
P(ad(a)F x , • • • , ad(a)Ffc) = P(Y1, • • • , Yk) for all a € G. For simplicity we 
shall call such a function an invariant polynomial, k being its degree. By the 
definition of addition, 

(8) (P + Q)(Y1, • • • , Yk) = P(Y1, - •. , Yk) + Q(Y,, • • • , Yk), 

all invariant polynomials of degree k form an abelian group. Let 1(G) be the 
direct sum of these abelian groups for all fc i_ 0. If P and Q are invariant poly
nomials öf degrees k and I respectively, we define their product PQ to be an 
invariant polynomial of degree k + I given by 

(9) (PQ)(F1, • • -, Y^) = 1 Z P(Ytl, ••-, YikMYik+l, • • •, Yik+l), 
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where the summation is extended over all permutations of the vectors Y,-, and 
N is the number of such permutations. This definition of multiplication, to
gether with the distributive law, makes 7(G) into a commutative ring, the ring 
of invariant polynomials of G. 

Let P € 1(G), with degree fc. For Yi we substitute the curvature tensor ®. 
Then P(@) = P(®, • • • , © ) is an exterior differential form of degree 2fc, 
which, because of the invariance property of P, is defined everywhere in the base 
space X. From the Bianchi identity (72) it follows that P(@) is closed. There
fore, by the de Rham theory, P(®) determines an element of the cohomology 
ring H(X) of X having as coefficient ring the field of real numbers. This mapping 
is a ring homomorphism 

(10) h: 1(G) -* H(X) 

of the ring of invariant polynomials of G into the cohomology ring of X. I t is 
defined with the help of a connection in the bundle. 

Our first main result is the following theorem of Weil: h is independent of the 
choice of the connection [22]. In other words, two different connections in the 
fiber bundle give rise to the same homomorphism h. To prove this we notice 
that if 6a and 6a are the linear differential f orms defining these connections, their 
difference ua = Ba — 6a is a linear differential form of type ad(G), with values 
in L(G). With the help of ua Weil constructs a differential form whose exterior 
derivative is equal to the difference P(®') — P(®), for a given invariant poly
nomial P. Another proof has been given recently by H. Cartan, by means of 
an invariant definition of the homomorphism h. 

Our next step consists in setting up a relationship between this homomorphism 
h and a homomorphism which is defined in a purely topological manner. This 
requires the concepts of an induced fiber bundle and a universal fiber bundle. 

Let a mapping/: F—»Xbe given. The neighborhoods {/"^(C/«)} then form a 
covering of Y and coordinate functions (pa: /

_1(C/a) X F —» f~l(Ua) X ^(Ua) 
can be defined by <pa(ri, y) = y X (pM(v)> 2/)- This defines a fiber bundle Y X 
^_1(/(7)) over Y, with the same director space F and the same group G. The 
new bundle is said to be induced by the mapping /. If the original bundle has 
a connection given by the differential form 6a in Ua , the dual mapping /* of / 
carries 0« into/*0« mf~l(Ua) for which the relation corresponding to (3) is valid. 
The forms f*6a therefore define an induced connection in the induced bundle. 

This method of generating new fiber bundles from a given bundle is very useful. 
Its value is based on the fact that it provides a way for the enumeration of fiber 
bundles. In fact, let the director space and the structural group G be given and 
fixed for our present considerations. A bundle with the base space X0 is called 
universal relative to a space X if every bundle over X is equivalent to a bundle 
induced by a mapping X —> X0 and if two such induced bundles are equivalent 
when and only when the mappings are homotopic. If, for a space X, there exists 
a universal bundle with the base space Xo, then the classes of bundles over X 
are in one-one correspondence with the homotopy classes of mappings X —> X0 , 
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so that the enumeration of the bundles over X reduces to a homotopy classifi
cation problem. 

It is therefore of interest to know the circumstances under which a universal 
bundle exists. A sufficient condition for the bundle over X0 to be universal for 
all compact spaces X of dimension less than or equal to n is that the bundle* BQ 
of its principal fiber bundle have vanishing homotopy groups up to dimension 
n inclusive: 7r*(J3o) = 0, 0 __ i __ n, where the condition TT0 = 0 means connected
ness. 

Under our assumptions that X is compact and that G is a connected Lie group, 
bundles can be found such that these conditions are fulfilled. First of all, accord
ing to a theorem due to E. Cartan, Malcev, Iwasawa, and Mostow, [12; 14; 15]? 

G contains a maximal compact subgroup G± , and the homogeneous space G/Gi 
is homeomorphic to a Euclidean space. This makes it possible to reduce prob
lems of equivalence, classification, etc. of bundles with the group G to the corre
sponding problems for Gx. Since G\ is a compact Lie group, it has a faithful 
orthogonal representation and can be considered as a subgroup of the rotation 

1 group R(m) operating in an m-dimensional Euclidean space Em. Imbed Em in 
an (ra + n + 1)-dimensional Euclidean space FJm^n+1 and consider the homo
geneous space B = R(m + n + l)/(Im X R(n + 1)) as a bundle over X0 = 
R(m + n + l)/(Gi X R(n + 1)), where Im is the identical automorphism of 
Em, and R(n + 1) is the rotation group of the space En+1 perpendicular to Em 

in Em+n+1. This is a principal bundle with Gi as its structural group. By the 
covering homotopy theorem we can prove that Wi(B) = 0, 0 __ i __ n. In this 
way the existence of a universal bundle is proved by an explicit construction. 

Suppose that a universal bundle exists, with the base space X 0 . Let H(X, R) 
be the cohomology ring of X, relative to the coefficient ring R. Since the classes 
of bundles over X are in one-one correspondence with the homotopy classes 
of mappings X —> X 0 , the homomorphism hr : H(XQ, R) —»iï(X, R) is completely 
determined by the bundle, h! will be called the characteristic homomorphism, 
its image h'(H(XQ, R)) C H(X, R) the characteristic ring, and an element of 
the characteristic ring a characteristic cohomology class. It will be understood 
that the coefficient ring R will be the field of real numbers whenever it is dropped 
in the notation. 

The universal bundle is of course not unique. However, given any two bundles 
which are universal for compact base-spaces of dimension less than or equal to 
n, it is possible to establish between their base spaces Xo and Xo a chain trans
formation of the singular chains of dimension less than or equal to n which gives 
rise to a chain equivalence. From this it follows that up to the dimension n 
inclusive, the cohomology rings of X0 and X0 are in a natural isomorphism. The 
characteristic homomorphism is therefore independent of the choice of the 
universal bundle. Although this conclusion serves our purpose, it may be re
marked that, in terms of homotopy theory, a stronger result holds between Xo 
and Xo, namely, they have the same homotopy-n-type. From this the above 
assertion follows as a consequence. 
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A knowledge of H(Xo, R) would be necessary for the description of the char
acteristic homomorphism. Since elements of dimension greater than n ( = dim X) 
of Jff(Xo , R) are mapped into zero by dimensional considerations, H (Xo , R) 
can be replaced by any ring which is isomorphic to it up to dimension n inclusive. 
On the other hand, it follows from the discussions of the last section that the 
choice of the universal bundle is immaterial, so that we can take the one whose 
base space is X0 = R(m + n + l)/(Gi X R(n + 1)). Using a connection in this 
universal bundle, we can, according to a process given above, define a homo
morphism ho = I (Gi) —» H(Xo) of the ring of invariant polynomials of Gi into 
H(Xo). XQ being a homogeneous space, its cohomology ring II(XQ) with real 
coefficients can be studied algebraically by methods initiated by E. Cartan and 
recently developed with success by H. Cartan, Chevalley, Kozsul, Leray, and 
Weil [13]. Thus it has been shown that, up to dimension n, IIQ is a one-one iso
morphism. We may therefore replace H(Xo) by I(Gi) in the homomorphism 
hf and write the characteristic homomorphism as 

(11) hf\ I(Gi)-> H(X). 

This homomorphism hf is defined by the topological properties of the fiber 
bundle. 

On the other hand, the homomorphism h: 1(G) —> H(X) defined above can 
be split into a product of two homomorphisms. Since an invariant polynomial 
under G is an invariant polynomial under Gi , there is a natural homomorphism 

(12) o-: / (G)-^I (Gi) . 

Since Gi can be taken to be the structural group, the homomorphism 

(13) lh: J(Gi) -> H(X) 

is defined. Now, a connection with the group Gi can be considered as a connec
tion with the group G. Using such a connection, we can easily prove 

(14) h = ha. 

Our main result which seems to include practically all our present knowledge 
on the subject consists in the statement: 

(15) h' = h . 

Notice that W is defined by the topological properties of the bundle and hi by 
the help of a connection, so that our theorem gives a relationship between a 
bundle and a connection defined in it, which is restrictive in one way or the 
other. In particular, when the structural group G is compact, we have Gi = G 
and a is the identity, and the characteristic homomorphism is in a sense de
termined by the connection. For instance, it follows that the characteristic 
ring of the bundle has to be zero when a connection can be defined such that 
h(I(G)) = 0. 
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A proof for this theorem is obtained by first establishing it for the universal 
bundle. Under the mapping/: X —>X0it is then true for the induced bundle and 
the induced connection. Using the theorem of Weil that h is independent of the 
choice of the connection, we see that the relation is true for any connection in 
the bundle. 

A great deal can be said about the rings of invariant polynomials 1(G), I(Gi} 
and the homomorphism <r. When the structural group is compact, such state
ments can usually be proved more simply by topological considerations. In 
the other case we have to make use of the cohomology theory of Lie algebras. 
As we do not wish to discuss this, we shall restrict ourselves to the explanation 
of the corresponding topological notions. For this purpose we shall first discuss 
compact groups, that is, we begin by confining our attention to Gi . 

We first recall some results on compact group manifolds. All the maximal 
abelian subgroups are conjugate and are isomorphic to a torus whose dimension 
is called the rank of the group. By an idea due essentially to Pontrjagin [16] we 
can define an operation of the homology classes of Gi on the cohomology classes 
of Gi . In fact, ra: Gi X Gi —> Gi being defined by the group multiplication, the 
image m*yk of a cohomology class of dimension fc of G imder the dual homo
morphism ra* can be written m*yk = 2 ^î X vTr. The operation of a homology 
class c of dimension s _S fc on yk is then defined as i(c)yk = ^2iKI(c, Ui)vki~\ 
We call this operation an interior product. A cohomology class yk of Gi is called 
primitive if its interior product by any homology class of dimension s, 1 ^ s ^ 
fc — 1, is zero. The homology structure of compact group manifolds (with real 
coefficients) has a description given by the following theorem of Hopf and 
Samelson [11; 18]: (1) all primitive cohomology classes are of odd dimension; 
(2) the vector space of the primitive classes has as dimension the rank of G; (3) 
the cohomology ring of Gi is isomorphic to the Grassmann algebra of the space 
of primitive classes! v 

The primitive classes play a rôle in the study of the universal principal fiber 
bundle ^ : BQ—»X0 . Identify a fiber ^(x) (x (E X0) with Gi , and let i be the 
inclusion mapping of Gi into BQ. If yk is a cocycle of X0 , \//*yk is a cocycle of B0 . 
Since BQ is homologically trivial, there exists a cochain /3fc_1 having \p*yk as co-
boundary. Then i*ßk~x is a cocycle in Gi whose cohomology class depends only 
on that of yk. The resulting mapping of the cohomology classes is called a trans
gression. I t is an additive homomorphism of the ring of invariant polynomials of 
Gi into the cohomology ring of Gi and it carries an invariant polynomial of degree 
fc into a cohomology class of dimension 2fc — 1. Chevalley and Weil proved that 
the image is precisely the space of the primitive classes. 

When the group G is noncompact, the consideration of its Lie algebra allows 
us to generalize the above notions, at least under the assumption that G is semi-
simple. H. Cartan, Chevalley, and Koszul have developed a very comprehensive 
theory dealing with the situation, which can be considered in a sense as the alge
braic counterpart of the above treatment. Among their consequences we men
tion the following which is interesting for our present purpose: The ring of in-
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variant polynomials under G has a set of generators equal to the rank of G; 
these can be so chosen that their images under transgression span the space of 
primitive classes of G. 

Using the fact that the cohomology theory of Lie algebras and transgression 
can be defined algebraically, and therefore for G, we have the following diagram 

H (G) - £ * H(GÙ 

1(G) JU 7(Gi). 

I t is not difficult to prove that commutativity holds in this diagram. Hence the 
image under a depends on the image under i* of H(G), that is, on the "homo-
logical position" of Gi in G. In general, <r[I(G)] ^ I(Gi). 

There are relations between the characteristic cohomology classes in our 
definition and the classes carrying the same name in the topological method of 
obstructions but we cannot discuss them in detail. The latter come into being 
when one attempts to define a cross-section in the fiber bundle (that is, a map
ping / of X into B, such that \[/f is the identity) by extension over the successive 
skeletons; they are cohomology classes over groups of coefficients which are the 
homotopy groups of the director space. As we shall see from examples, it is 
sometimes possible to identify them by identifying the coefficient groups. In 
general, however, our characteristic classes are based on homological considera
tions, while those of obstruction theory are based on homotopy considerations. 
Their rôles are complementary. 

We shall devote the rest of this lecture to the consideration of examples. Al
though the main results will follow from the general theorems, special problems 
arise in individual cases which can be of considerable interest. To begin with, 
take for G the rotation group in m variables, and suppose that a connection is 
given in the bundle. This includes in particular the case of orientable Riemann 
manifolds with a positive definite metric, the bundle being the tangent bundle 
of the manifold and the connection being given by the parallelism of Levi-
Civita; it also includes, among other things, the theory of orientable submani -
folds imbedded in an orientable Riemann manifold. 

By a proper choice of a base of the Lie algebra of G = R(m), the space of the 
Lie algebra can be identified with the space of skew-symmetric matrices of 
order m. The connection can therefore be defined, in every coordinate neighbor
hood, by a skew-symmetric matrix of linear differential forms 0 = (6a), and its 
curvature tensor by a skew-symmetric matrix of quadratic differential forms 
© = (®ii)- The effect of the adjoint group is given by ad(a)@ = A® lA, where 
A is a proper orthogonal matrix and lA is its transpose. 

The first question is of course to determine a set of generators for the ring of 
invariant polynomials; using the fundamental theorem on invariants, it is easy 
to do this explicitly [23]. Instead of the invariant polynomials we write the 
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corresponding differential forms: 

As = ®ili2 • • • ®iah , s = 2, 4, • • • , ra + 1, ra odd 

(16) As = ©ii <s • • • ©*, *i , s = 2, 4, • • « , ra — 2, m even 

Ao = ^ . . . ^ ©ilt-2 • - - e ^ i . , ra even, 

where repeated indices imply summation and where e^...^ is the Kronecker 
tensor, equal to + 1 or —1 according as ii, • • • , im form an even or odd per
mutation of 1, • • • , ra and otherwise to 0. Since the rank of R(m) is (m + l ) /2 
or ra/2 according as ra is odd or even, we verify here that the number of the 
above generators is equal to the rank. They form a complete set of generators, 
because they are obviously independent. 

I t follows that the cohomology classes determined by these differential forms 
or by polynomials in these differential forms depend only on the bundle and not 
on the connection. As a consequence, if all these differential forms are zero, the 
characteristic ring is trivial. The differential forms in (16) were first given by 
Pontrjagin [17]. 

For geometric applications it is useful to have a more explicit description of 
the base space of a universal bundle. This is all the more significant, since it 
would then allow us to study the characteristic homomorphisms with coefficient 
rings other than the field of real numbers. Our general theory gives as such a 
base space the Grassmann manifold 

Xo = R(m + n + l)/(R(m) X R(n + 1)), 

which can be identified with the space of all oriented ra-dimensional linear spaces 
through a point 0 of an (ra + n + 1)-dimensional Euclidean space ]<jm+n+l

m 

The homology structure of Grassmann manifolds has been studied by Ehres-
mann [9, 10]. A cellular decomposition can be constructed by the following proc
ess: Take a sequence of linear spaces 

O C ^ C / C - C Em+n C Em+n+1. 

Corresponding to a set of integers 

0 â ai _; o2 _i • • • __ am _| n + 1, 

denote by (a_ • • • am) the set of all ra-dimensional linear spaces £ £ Xo such that 

dim ft fl ti****) ^i, i = 1, • • • , ra. 

The interior points of (ai • • • am) form two open cells of dimension a\ + 
+ dm. These open cells constitute a cellular decomposition of X 0 , whose in
cidence relations can be determined. From this we can determine the homology 
and cohomology groups of X 0 . In particular, it follows that the symbol 
(öi • • • üm)^ can be used to denote a cochain, namely, the- one which has the 
value + 1 for the corresponding open cells and has otherwise the value zero. 
The characteristic homomorphism can then be described as a homomorphism of 
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combinations of such symbols into the cohomology ring H(X, R) of X. When 
R is the field of real numbers, the result is particularly simple. In fact, a base for 
the cohomology groups of dimensions less than or equal to n consists of cocycles 
having as symbols those for which all a* are even, together with the cocycle 
(1 • • • 1) when ra is even. 

This new description of the characteristic homomorphism allows us to give a 
geometric meaning to individual characteristic classes. In this respect the class 
A'((l • • • 1)), which exists only when ra is even, deserves special attention. 
In fact, the bundle with the director space $w - 1 = R(m)/R(m — 1) constructed 
from the principal bundle is a bundle of (ra — 1)-spheres in the sense of Whitney. 
For such a sphere bundle, Whitney introduced a characteristic cohomology class 
Wm with integer coefficients. It can be proved that Wm, when reduced to real 
coefficients, is precisely the class hf((l ••• 1)), On the other hand, the latter 
can be identified on the universal bundle with a numerical multiple of the class 
defined by the differential form A0. Taking the values of these classes for the 
fundamental cycle of the base manifold, we can write the result in an integral 
formula 

(17) Wm- X = c f Ao o , 
X 

where c is a numerical factor and X denotes a fundamental cycle of the base 
manifold. For a Riemann manifold, Wm • X is equal to the Euler-Poincaré 
characteristic of X and our formula reduces to the Gauss-Bonnet formula [3]. 

We introduce the notations 

p 4 k = ä ' ( O . . . 0 2 • • • 2 ) 

2fc times 
(18) 

p4& = ä'(O . . . 0 2fc 2fc) 
Xm = h'(l • • • 1), ra even, 

where the symbols denote also the cohomology classes to which the respective 
cocycles belong. By studying the multiplicative structure of the cohomology 
ring of Xo, we can prove that the characteristic homomorphism is determined 
by the classes P4 \ *m, 4fc ^ dim X or the classes P\ x", 4fc __ dim X. 

We shall mention an application of the classes Pik. Restricting ourselves for 
simplicity to the tangent bundle of a compact differentiable manifold, the 
conditions Pik = 0, 2fc ^ n + 2, are necessary for the manifold to be imbeddable 
into a Euclidean space of dimension m + n + 1. We get thus criteria on the 
impossibility of imbedding which can be expressed in terms of the curvature 
tensor of a Riemann metric on the manifold. 

The second example we shall take up is the case that G is the unitary group. 
Such bundles occur as tangent bundles of complex analytic manifolds, and the 
introduction of an Hermitian metric in the manifold would give rise to a con
nection in the bundle. 
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The space of the Lie algebra of the unitary group U(m) in ra variables can be 
identified with the space of ra X ra Hermitian matrices A (*Ä = A). A con
nection is therefore defined in each coordinate neighborhood by an Hermitian 
matrix of linear differential forms 0 = (Bi3) and its curvature tensor by an 
Hermitian matrix of quadratic differential forms ® = (®u). Under the adjoint 
group the curvature tensor is transformed according bo ad(a)@ = A®lA, A 
being a unitary matrix. Using this representation of the adjoint group, a set of 
invariant polynomials can be easily exhibited. We give their corresponding 
differential forms as 

(19) A* = ®ili2 • • • ®ikil, fc = 1, • • • , ra. 

Since they are clearly independent and their number is equal to the rank ra of 
U(m), they form a complete set of generators in the ring of invariant poly
nomials. 

As in the case of the rotation group the complex Grassmann manifold X0 = 
U(m + n)/(U(m) X U(n)) is the base space of a universal bundle, whose study 
would be useful for some geometric problems. The results are simpler than the 
real case, but we shall not describe them here. A distinctive feature of the 
complex case is that a set of generators can be chosen in the ring of invariant 
polynomials whose corresponding differential forms are 

(20) *r = (2TT (-l)m)m-r+1 (m - r+ l ) l ^ 5 ( i l * ' ' im^H ; j l ' " ^ - ^ 

• (H) (H) r = 1 • • • W7 

where d(ix • • • im-r+i ; ji • • • jm-r+i) is zero except when j \ , • • • , jm-r+i form 
a permutation of i\, • • • , im-r+i, in which case it is + 1 or — 1 according as the 
permutation is even or odd, and where the summation is extended over all 
indices ii, • • • , im_r+i from 1 to ra, This set of generators has the advantage that 
the cohomology classes determined by the differential forms have a simple 
geometrical meaning. In fact, they are the classes, analogous to the Stiefel-
Whitney classes, for the bundle with the director space U(m)/U(m — r). As such 
they are primary obstructions to the definition of a cross-section and are there
fore more easily dealt with [4]. Substantially the same classes have been in
troduced by M. Eger and J. A. Todd in algebraic geometry, even before they 
first made their appearance in differential geometry [6; 20]. 

The situation is different for bundles with the rotation group, since the Stiefel-
Whitney classes, except the highest-dimensional one, are essentially classes 
mod 2 and therefore do not enter into our picture. However, there is a close 
relationship between bundles with the group R(m) and bundles with the group 
U(m). In fact, given a bundle with the group R(m), we can take its Whitney 
product with itself, which is a bundle with the same base space and the group 
R(ra) X R(m). The latter can be imbedded into U(m), so that we get a bundle 
with the group U(m). Such a process is frequently useful in reducing problems 
on bundles with the rotation group to those on bundles with the unitary group. 
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We shall take as last example the case that the group is the component of the 
identity of the general linear group GL(m) in m variables. A connection in the 
bundle is called an affine connection. An essential difference from the two pre
vious examples is that the group is here noncompact. 

The Lie algebra of the group GL(m) can be identified with the space of all 
ra-rowed square matrices, so that the curvature tensor in each coordinate 
neighborhood is given by such a matrix of exterior quadratic differential forms : 
© = (©*)• The effect of the adjoint group being defined by ad(a)@ = A ® A"1, 
a G GL (m), it is easily seen that a set of generators of the ring of invariant poly
nomials can be so chosen that the corresponding differential forms are 

(21) Ms = 6ÎÎ • • • ©î1 , s = 1, • - - , ra - 1. 

According to the general theory it remains to determine the homomorphism of 
the ring of invariant polynomials under GL(m) into the ring of invariant poly
nomials under its maximal compact subgroup, which is in this case the rotation 
group R(m). It is seen that Ms, for even s, is mapped into As, and, for odd s, 
is mapped into zero. The class defined by A0 does not belong to the image of the 
homomorphism. This fact leads to the interesting explanation that a formula 
analogous to the Gauss-Bonnet formula does not exist for an affine connection. 

Perhaps the most important of the bundles is the tangent bundle of a dif
ferentiable manifold. We mentioned above the identification of a certain char
acteristic class with the Euler-Poincaré characteristic of the manifold, at least 
for the case that the manifold is orientable and of even dimension. Beyond this 
very little is known on the relations between topological invariants of the mani
fold and the characteristic homomorphism of its tangent bundle. Recently, 
contributions have been made by Thorn and Wu which bear on this question 
[21; 25]. Although it is not known whether a topological manifold always has a 
differentiable structure, nor whether it can have two essentially different dif
ferentiable structures, Thorn and Wu proved that the characteristic homo
morphisms of the tangent bundle, with coefficients mod 2 and with coefficients 
mod 3, are independent of the choice of the differentiable structure, provided 
one exists. Briefly speaking, this means that such characteristic homomorphisms 
are topological invariants of differentiable manifolds. The proof for coefficients 
mod 3 is considerably more difficult than the case mod 2. 

For bundles with other groups such questions have scarcely been asked. 
The next case of interest is perhaps the theory of projective connections derived 
from the geometry of paths. In this case the bundle with the projective group 
depends both on the tangent bundle and the family of paths. It would be of 
interest to know whether or what part òf the characteristic homomorphism is a 
topological invariant of the manifold. 

Before concluding we shall mention a concept which has no close relation with 
the above discussion, but which should be of importance in the theory of con
nections, namely, the notion of the group of holonomy. It can be defined as 
follows: if o) is the left-invariant differential form in G, with values in L(G), 
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and if Ba defines a connection, the equation 

(22) 0« + w = 0 

is independent of the coordinate neighborhood. When a parametrized curve is 
given in the base manifold, this differential equation defines a family of integral 
curves in G invariant under left translations of the group. Let x £ X and con
sider all closed parametrized curves in X having x as the initial point. To every 
such curve G let a(G) be the endpoint of the integral curve which begins at the 
unit element e of G. All such points a(C) form a subgroup H of G, the group of 
holonomy of the connection. 

Added in proof: The details of some of the discussions in this article can be 
found in mimeographed notes of the author, Topics in differential geometry, In
stitute for Advanced Study, Princeton, 1951. 
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SUR LES VARIÉTÉS PRESQUE COMPLEXES 

C H A U L E S E H R E S M A N N 

1. Introduction. Etant donnée une variété topologique 72n, de dimension 
2n, existe-t-il sur Vin une structure analytique complexe? Plus abordable paraît la 
question suivante: Etant donnée une variété differentiable 72n, existe-t-il sur 
Y in une structure analytique complexe subordonnée à sa structure differentiable? 
Soit T(V2n) l'espace des vecteurs tangents à Vin et Tx l'espace vectoriel tangent 
en x Ç Vin . T(Vzn) est un espace fibre de base Yin et de fibres Tx isomorphes 
à l'espace vectoriel R2n. Une structure presque complexe sur Yin sera définie par 
la donnée dans Tx d'une structure vectorielle complexe subordonnée à sa structure 
vectorielle réelle et dépendant d'une façon continue de x. Toute structure 
analytique complexe subordonnée à la structure differentiable de V^n détermine 
sur V2n une structure presque complexe, mais en général une structure1 presque 
complexe ne dérive pas d'une structure analytique complexe et on ignore si une 
variété presque complexe (c'est-à-dire, une variété munie d'une structure presque 
complexe) admet aussi une structure analytique complexe. La recherche des 
structures presque complexes sur V^n est un problème de la théorie des espaces 
fibres. Je rappellerai, en les complétant, les résultats que j 'ai exposés au Colloque 
de Topologie Algébrique de Paris (1947) et j'indiquerai quelques résultats de 
Wen-tsün Wu; mais je ne pourrai pas exposer les méthodes de H. Hopf, qui a 
abordé la même question d'un point de vue un peu différent. Les nombres entre 
crochets renvoient à la bibliographie. 

2. Structures fibrées subordonnées à une structure fibrée vectorielle [2]. 
Soit E(B, F, G, H) un espace fibre de base B, de fibres isomorphes à F,^de groupe 
structural topologique G. Nous supposons F muni d'une structure admettant G 
comme groupe d'automorphismes. Par les homéomorphismes distingués, dont 
l'ensemble est H, cette structure est transportée sur une structure bien déter
minée dans chaque fibre Fx . H est alors l'ensemble des isomorphismes de F sur 
les fibres. Il est muni d'une structure fibrée H(B, G, G7 , H) et s'appelle espace 
fibre principal associé. Etant donné un sous-groupe G' de G, muni de la topologie 
induite, une structure fibrée E(B, F, Gf, H') est dite subordonnée à E(B, F, G, H) 
lorsque H' d H. Toute structure E(B, F, G', Hr) détermine canoniquement une 
structure E(B, F, G, H) à laquelle elle est subordonnée. Supposons que les 
classes sG' déterminent une structure fibrée sur G. Les'structures E(B, F, G', H') 
subordonnées à une structure donnée E(B, F, G, H) correspondent alors d'une 
façon biunivoque aux sections de l'espace fibre associé à E(B, F, G, H) par l'homo-
morphisme <p de G sur le groupe de transformations de l'espace homogène 
G/G', défini par <p(s)(tG') = s(tGf). C'est l'espace H/G' des classes AG', où 
h Ç G; sa base est B et ses fibres sont isomorphes à G/G'. Les structures sub
ordonnées E(B, F, G', H') se répartissent en classes d'homotopie correspondant 
aux classes d'homotopie des sections; les structures d'une même classe sont iso-

412 
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morphea. Si & désigne une structure sur F admettant G! comme groupe d'auto-
morphismes, l'espace H/Gf peut s'appeler l'espace des structures isomorphes 
à ©' et subordonnées aux structures données sur les fibres Fx . 

Soit Rn (resp. Cn, Qn) l'espace numérique réel (resp. complexe, quaternionien), 
Ln (resp. Ln , Lf

n) le groupe linéaire homogène de R11 (resp. Cn, Qn), On (resp, 
On , On) le groupe orthogonal dans Rn (resp. unitaire dans Gn, unitaire quater
nionien dans Qn), Lt (resp. Ot) la composante connexe de l'unité de Ln (resp. 
0„). Une structure E(B, F, G, H) sera appelée structure fibrée vectorielle réelle 
(resp. réelle orientée, complexe, quaternionienne, euclidienne, euclidienne orientée, 
hermitienne, hermitienne quaternionienne) si G est Ln (resp. Lt, Ln , L'n , On, 
Ot, On , On), F étant suivant les cas Rn, Cn ou Qn. Comme Ln/On (resp. Lt/Ot, 
Ln/On , Ln/Ol) est homéomorphe à un espace numérique, toute structure fibrée 
vectorielle réelle (resp. réelle orientée, complexe, quaternionienne) admet des 
structures euclidiennes (resp. euclidiennes orientées, hermitiennes, hermitiennes 
quaternioniennes) subordonnées et celles-ci appartiennent toutes à une même 
classe. En identifiant R2n à Cn et Cn à Qm, si n = 2m, on a L„ CI Ltn , L ^ C L„ , 
OnCZ Otn ) OmCZ On , et le problème d'existence de structures subordonnées se 
pose pour des structures du type suivant: 

E(B,R2»,L2n,H), E(B,R2»,02n, •) 

E(B,R2n,Lt«, •), E(B,R*»,OÎn, •) 

E(5,0,L'n,.), E(B,C»,0'n, •) 

E(B,Q»>9L'i,.), Ä ( B , f l - , Ä , . ) . 

D'après la remarque précédente, on peut toujours se ramener au cas de structures 
figurant dans la deuxième colonne ci-dessus. L'espace T(V2n) associé à une 
variété differentiable V2n est muni d'une structure fibrée vectorielle réelle, dont 
les structures subordonnées s'appellent respectivement: structure vectorielle tan
gente orientée, presque complexe, presque quaternionienne, riemannienne, presque 
hermitienne, presque hermitienne quaternionienne. 

3. Les structures vectorielles complexes sur R2n . Soit (ei, • • • , en) la base 
canonique de Cn et identifions Cn à R2n en identifiant (ei, it\, • • • , en , ien) à 
la base canonique de R2n. Alors Ln est le sous-groupe de L2n qui laisse invariante 
la transformation IQ définie par I^z = iz, où z G Cn. Une structure vectorielle 
complexe sur R2n, subordonnée à la structure vectorielle réelle, est définie par 
une transformation linéaire I de R2n telle que I2 = — 1, c'est-à-dire, I(Ix) = —x 
pour x 6 R2il; le produit du nombre complexe a + bi par x sera (a + bl)x. 
Les vecteurs x et Ix sont linéairement indépendants et déterminent un plan 
invariant par I. R2n admet des bases de la forme (e±, lei, • • • , en , Ien) ; l'orienta
tion correspondante de R2n ne dépend que de I ; c'est Vorientation associée à L 
L'espace des structures vectorielles complexes sur R2n est L2n/Ln , dont la 
composante connexe LÌn/Ln est l'espace des structures complexes dont l'orienta
tion associée est aussi associée à 7 0 . 
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Considérons R2n comme l'espace des vecteurs réels de C2n. La transformation 
I se prolonge à C2n et admet les valeurs propres dti. L'ensemble des vecteurs 
propres correspondant à — i forme un sous-espace Xn de dimension n. L'ensemble 
des vecteurs propres correspondant à +i est Xn , imaginaire conjugué de Xn , et 
l'on a l n D Xn = 0. Inversement tout sous-espace Xn de C2n tel que Xn fl Xn = 0 
détermine une transformation 7. On peut définir Xn par n formes linéaires sur 
C2n dont les restrictions à R2n sont des formes linéaires à valeurs complexes ne 
s'annulant simultanément que pour le vecteur 0. 

Posons F(x, x) = x\ + y\ + • • • + x\ + y\ , où (xi, y±, • • • , xn , yn) sont 
les coordonnées canoniques de a; E Ä2n. 02n/On est l'espace des transformations 
I laissant invariante la forme quadratique F(x, x), condition équivalente à 
F(x, Ix) = 0 ou I Ç Otn • L'espace Xn associé à I est alors une génératrice du 
cône défini dans C2n par F(x, x) = 0. Donc Otn/On , que nous désignons par 
r„ , s'identifie à l'une des composantes connexes de l'espace des génératrices Xn 

de ce cône. 
Comme X Ç L2n se prolonge à C2n, l'espace fibre T(V2n) admet un espace 

fibre asspcié Tc(V2n) dont les fibres Tx sont isomorphes à C2n et qui ^dmet T(V2n) 
comme sous-espace. Un élément de Tx s'appelle vecteur complexe tangent à V2n 

en x, un sous-espace Xv de Tx s'appelle ^-élément complexe tangent en x. 
Une structure presque complexe sur V2n est donc déterminée par un champ de 

transformations linéaires I, définies dans Tx et telles que I2 = —1, ou par un 
champ de n-éléments complexes J V t e l s qu'en chaque point x Ç V2n on ait 
Xn H Xn — x. Au voisinage de x elle est définie encore par n formes de Pfafï 
sur V2n , à valeurs complexes et ne s'annulant simultanément pour aucun vecteur 
réel non nul. Il lui correspond une orientation bien déterminée de V2n. Une 
structure presque hermitienne subordonnée à une structure riemannienne est 
définie par un champ de transformations orthogonales I ou par Un champ de 
n-éléments isotropes. 

4. Formes différentielles extérieures quadratiques sur V2n. A une trans
formation I dans R2n telle que F(x, Ix) = 0 est associée la forme bilinéaire al
ternée ^(x, x') = F(7#,o;0 de rang 2n, et la foime <£>(£,#') = F(x,xf) — i^(x, xf), 
qui est une forme d'Hermite définie positive par rapport à la structure 
complexe définie par 7. A toute structure presque hermitienne sur V2n est donc 
associée une forme différentielle extérieure quadratique fì de rang 2n; l'orienta
tion associée est définie par Qn, forme de degré 2n non nulle en chaque point. 
Réciproquement toute forme différentielle extérieure quadratique Ü partout de 
rang 2n sur V2n est associée de cette façon à des structures presque hermitiennes, 
qui sont toutes de même classe et qui correspondent à l'orientation définie par 
fln. Ceci résulte du fait que L2n/Ln est homéomorphe à un espace numérique, 
L2n désignant le sous-groupe de L2n qui laisse invariante la forme SFofo x') = 
xiy[ — x[yx + • • • + xny'n - xnyn. 

Donc l'existence d'une structure presque complexe sur la variété orientée 
V2n est équivalente à l'existence d'une forme différentielle extérieure quadratique 
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Q telle que Qn soit non nulle partout et définisse l'orientation donnée. Appelons 
variété presque kählerienne une variété presque hermitienne dont la forme extérieure 
associée ß est fermée, c'est-à-dire, dfì = 0. Appelons variété symplectique une 
variété V2n munie d'une forme fermée O telle que fìn ^ 0 en chaque point. Une 
variété symplectique admet toujours une structure presque kählerienne su
bordonnée et possède des propriétés topologiques plus particulières qu'une variété 
presque complexe quelconque. En particulier, si elle est compacte, ses nombres 
de Betti de dimension paire sont différents de 0, car tf o^O pour 0 < fc g n 
(remarque que je dois à G. de Rham). 

5. Topologie de l'espace T„ = 02n/On . I \ est un point. T2 est homéomorphe 
à 82. T3 est homéomorphe à l'espace projectif complexe P*(C). T4 est homéo
morphe à la quadrique complexe Q%(C) à 6 dimensions complexes. Quel que soit 
n > 1, r„ admet une structure fibrée de base S2n-z et de fibre r n _ i . On en déduit 
les premiers groupes d'homotopie de Tn . 7T2(rn) ^ 7T2(r2), cyclique infini, pour 
î i è 2 , Pour i > 2, on a TTì(TZ) == in(Si). Comme Qe(C) admet une structure 
fibrée [3] de base £6 et de fibre Pa(G), pour laquelle il existe une section1, on a 
rifa) £É *•,(&) X *t(Pi(C)). 

Pour n è 4, on a 7r»(rn) = 0, si 2 < i < 6, et 7r6(rn) est cyclique infini. Ces 
propriétés de Tn servent à démontrer les résultats du §6. 

6. Conditions d'existence de structures presque complexes.2 Etant donné 
E(B, R2n, 02n , H), le premier obstacle à l'existence d'une structure fibrée 
hermitienne subordonnée c'est-à-dire d'une section de l'espace fibre associé de 
fibres isomorphes à Tn , est une classe de cohomologie W* de B à coefficients 
entiers. Pour qu'il existe une section sur le squelette de dimension 3 de B, qui est 
supposé être un complexe, il faut et il süßt que W% = 0. La classe W1 est identique 
à la classe caractéristique de Stiefel-Whitney, premier obstacle à l'existence d'un 
champ associant à tout x G B une suite de 2n — 2 vecteurs indépendants de la 
fibre Rln. La variété de Stiefel V2n, 2*1-2 est en effet un espace fibre de base r n 

et de fibre Wn,n-i, variété des suites orthonormées de n — 1 vecteurs unitaires 
de l'espace hermitien Cn. Il en résulte un isomorphisme canonique de 7r2(rn) 
sur T2(V2n,2n-2) et l'identification des deux premiers obstacles considérés. 

SiW* = 0, il y a un deuxième obstacle de dimension 4 pourn = 2, de dimension 
8 pour n = 3, de dimension 7 pour n> 3. S i n ^ 3 , "FP = 0 entraîne donc W5 = 0, 
où Wh est la classe de Stiefel-Whitney de dimension 5. En tenant compte d'un 
isomorphisme canonique de 7re(r„) sur ^(I^n^n-e), où n > 3, on voit que 
le deuxième obstacle est identique à la classe W7 de Stiefel-Whitney, premier obs
tacle à l'existence d'un champ de 2n — 6 vecteurs. Une condition nécessaire 
pour l'existence d'une structure fibrée hermitienne subordonnée est évidem
ment que toutes les classes W2k+1 de Stiefel-Whitney soient nulles. 

1 Q&(C) n'est pas homéomorphe à Si X iMC), contrairement à ce que j 'ai affirmé dans [2]. 
2 On tronvera des résultats concernant les structures presque quaternioniennes dans 

[2] et [9]. 
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En particulier soit E = T(V2n), muni de la structure fibrée tangente orientée 
de la variété orientée V2n . La classe Wz de V2n est le premier obstacle à l'existence 
d'une structure presque complexe sur V2n . La condition Ws = 0 est nécessaire et 
suffisante pour Vexistence d'une structure presque complexe sur une variété orientée 
V&. Si de plus le groupe de cohomologie de dimension 2 de V% est nul, toutes les-
structures presque complexes sur VQ et correspondant à une orientation donnée-
forment une seule classe. A chaque orientation de la sphère S G correspondent ainsi-
dès structures presque complexes, appartenant toutes à une même classe d'homotopie ~ 
Mais il faudrait sans doute des méthodes nouvelles pour décider si SQ admet-
aussi des structures analytiques complexes. 

Chacun des parallélismes classiques dans l'espace projectif réel Pn correspond. 
[3] sur QQ(C) à une structure fibrée dont les fibres sont des génératrices isomorphes-
à Ps(C). En supposant que $6 soit la partie réelle de QQ(C), cette structure fibrée 
définit justement Une structure presque hermitienne sur SQ . Celle-ci pourra 
aussi être définie à l'aide des octaves de Cayley. Elle ne dérive pas d'une struc
ture analytique complexe. 

Par une méthode s'appliquant aux sphères $2n, j 'ai montré que Si n'admet 
aucune structure presque complexe, résultat obtenu d'une manière différente par 
H. Hopf. Si S2n est presque complexe, S2n+i est parallélisable (Kirchhoff, [5]), ce 
qui entraîne le fait que Sin n'admet aucune structure presque complexe. 

D'après Whitney [7], la classe W* d'une variété orientée V± est nulle. Mais 
Wen-tsün Wu a montré que pour tout n > 2, il existe des variétés orientées-
V2n dont la classe W* n'est pas nulle. 

7. Quelques résultats de Wen-tsün Wu. Par l'étude approfondie des variétés-. 
de Grassmann réelles et complexes, Wen-tsün Wu a obtenu les relations sui
vantes entre les classes caractéristiques d'une structure fibrée vectorielle réelle 
orientée £F et celles d'une structure fibrée vectorielle complexe subordonnée tf': 
Relations de Wu: W2($, t) = C2($', t); W2($, t) = C2(&, t);P(5, t) = C($', t) U 
C(&, it);P($, t) = C(&, t) U C(S', it); X2n(5) = (-l)«C2»(ff'). _ 

Dans ces formules on'a posé: W2($, t) = T,Wk
2(ïï)t

k, W2($, t) = Y,Wk
2(S)tk

T 

où W\ (50 (resp. Wì(&)) sont les classes (resp. classes duales) de Stiefel-Whitney 
réduites modulo 2. P($,t) = ^(-1)^(5)^, P($, t) = J^P^)t"k, où P*k(S) 
(resp. P^fö)) sont les classes (resp. classes duales) de Pontrjagin. C($', t) = 
J2C2k($')t2k, C(ff', t) = Y<C2k(&)t2k, où C2*(ff') (resp. C2k($')) sont les classes 
(resp. classes duales) de Chern de JF'; ces deux polynômes réduits modulo 2 
sont désignés par C2($r', 0 et C2($', t). X2n(ïï) est la classe caractéristique d'Euler-
Poincaré. On trouvera la définition précise de ces classes dans la thèse de Wu. 

THéORèME DE W U . Les classes d'isomorphie des structures presque complexes 
sur une variété orientée VA correspondent d'une façon biunivoque aux classes de 
cohomologie C2 sur V± telles que : 

Wl(V±) = C2
2 ; P*(V*) + 2X*(Vt) = C2 U C2, 
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où Cl désigne la classe déduite de C2 par réduction modulo 2, Pì(VA) la classe de 
Pontrjagin, et XA(VÀ) la classe d'Euler-Poincarê. C2 sera la classe de Chern de 
la structure presque complexe correspondante. 

Les relations de Wu entraînent que £4& n'admet pas de structure presque 
•complexe. Ce résultat est valable pour toute variété Vu dont l'anneau de cohomologie 
•est isomorphe à celui de Sik et dont la classe de Pontrjagin P4k est nulle. 

8. Les sous-variétés d'une variété presque complexe V2n . Un ^-élément 
Xp de V2n sera dit complexe lorsqu'il est invariant par la transformation 7 définie 
•dans l'espace tangent Tx qui contient Xp ; il sera dit réel lorsqu'il rencontre son 
Tansformé par 7 au point x seulement. Une sous-variété Vp de V2n sera 
dite presque complexe (resp. réelle) lorsque les p-éléments tangents à Vp 

-sont complexes (resp. réels). Une sous-variété presque complexe est munie d'une 
structure presque complexe induite; celle-ci dérive d'une structure analytique 
•complexe si V2n est analytique complexe. 

Soit Vn une sous-variété réelle de V2n . L'espace fibre T(Vn) admet un iso
morphisme sur l'espace fibre N(Vn) des vecteurs normaux à Vn , les points de 
Vn restant fixés. Réciproquement si cette condition est vérifiée pour une sous-
variété Vn d'une variété quelconque V2n , il existe dans un voisinage de Vn 

une structure presque complexe telle que Vn soit une sous-variété réelle. En 
particulier, le voisinage de la diagonale AdeVnX Vn admet une structure presque 
•complexe telle que A soit une sous-variété réelle. Il admet même une structure 
analytique complex telle que A soit une sous-variété analytique réelle. 

La position d'une sous-variété réelle Vn dépend de la structure de T(Vn)-
L'espace fibre Tc(Vn) admet un isomorphisme canonique dans T(V2n) muni de 
la structure fibrée complexe. Si Vn est déformdble en un point de V2n , Tc(Vn) 
est isomorphe à Vn X Cn. Pour toute variété Vn , Wu a démontré la relation 
suivante: C(Vn , t) = P(Vn > t), où C(Vn , t) désigne le "polynôme de Chern" de 
T(Vn) et P(Vn , 0 le "polynôme de Pontrjagin" de T(Vn) définis au §7. Si 
Yn est une sous-variété réelle de V2n , C(Vn , t) est la trace sur Vn de C(V2n , t), 
polynôme de Chern de T(V2n) muni de la structure fibrée complexe. 

Pour n = 2, la relation de Wu donne C(V2, t) — 1, ce qui montre que pour 
toute variété V2 l'espace JTC(F2) est isomorphe à V2 X C2. 

Soit Vn une sous-variété réelle de l'espace projectif complexe Pn(C). D'après 
la relation de Wu, la trace sur Vn de CAk+2(Pn(C)) est nulle; il en résulte que les 
cycles de dimension 4.k -{-2deVn sont ~ 0 dans Pn(C). Par contre pour tout k ^ n 
les cycles de dimension 2k d'une sous-variété complexe ne sont pas tous ~ 0 dans 
Pn(C)', ce résultat est valable aussi pour toute sous-variété presque complexe d'une 
variété presque kählerienne. 

Les notions et les résultats précédents s'étendent aux variétés plongées (Vp , f) 
dans V2n, où / est une application differentiable régulière de Vp dans V2n . Si 
V2n est muni d'une forme différentielle extérieure fi telle que tin ^ 0 en chaque 
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point, les variétés intégrales de ß sont des variétés plongées réelles pour une certaine 
structure presque complexe de V2n . 

9. Problème d'équivalence de deux structures presque complexes. Etant 
données deux variétés presque complexes V2n et V2n , une équivalence de l'une à 
l'autre est un homéomorphisme differentiable de V2n sur 72« dont le prolonge
ment à T(V2n) est un isomorphisme de T(V2n) sur T(V2n) par rapport aux struc
tures fibrées vectorielles complexes. Si / est une application differentiable régu
lière d'une variété W2n dans V2n , à la structure presque complexe sur V2n 

correspond une structure presque complexe sur W2n , appelée image réciproque 
par / de la première. Si celle-ci est définie localement par n formes de Pfaff com
plexes wi, • • • , wn , son image réciproque est définie- par les formes /*(&>*). Le 
problème d'équivalence locale de deux structures presque complexes peut être 
traité par les méthodes de E. Cartan et il vient d'être étudié pour n = 2 par 
Paulette Libermann [6]. 

Pour qu'une structure presque complexe sur V2n dérive d'une structure ana
lytique complexe, il faut et il suffit qu'elle soit partout localement équivalente 
à la structure complexe naturelle sur Cn, qui est définie par les formes 
dz\, dz2, • • • , dzn. Soit g une équivalence d'un ensemble ouvert de V2n à un 
ensemble ouvert de Cn. Les formes dgn = g*(dzh) sont alors des combinaisons 
linéaires indépendantes des formes œh, d'où l'on déduit les relations: d(ah = 
^03h A o>hi, où uni sont des formes de Pfaff complexes sur V2n. Ces équations, 
indiquées par G. de Rham, sont des conditions nécessaires pour que la structure 
presque complexe dérive d'une structure complexe. Dans le cas où les compo
santes réelles et imaginaires des formes w* sont des formes de Pfaff analytiques 
sur V2n , ces conditions sont aussi suffisantes.4 En général, on aura: 

dwh = Yiuh A O)M + ^anim ài A ww. 

On peut dire que les formes X ä & » <*>I A com définissent la torsion de la structure 
presque complexe; les aw.m sont les composantes de son tenseur hermitien de 
torsion. 

Remarquons que les formules intégrales de Chern [1] donnant les classes de 
Chern s'étendent au cas des structures presque complexes. 
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COMPLEX-ANALYTIC MANIFOLDS1 

B E N O E C K M A N N 

1. Generalities. 1.1. The concept of a complex-analytic manifold (in short 
complex manifold) is the natural generalization of the concept of a Riemann 
surface in the abstract sense. A 2m-dimensional complex manifold M is a mani
fold of dimension 2m in the usual sense which is covered by a family of systems 
of local complex coordinates Z\, • • • ,zm (instead of the usual 2m real coordinates) 
in such a way that the relation between two such complex coordinate systems in 
the intersection of their existence domains is given by complex-analytic func
tions. Since the coordinate transformation is one-to-one, the Jacobian of these 
functions is not equal to 0, and the square of its absolute value is easily seen to be 
equal to the Jacobian of the corresponding real coordinate transformation. A 
complex manifold M is therefore orientable and has a natural orientation. 
We shall restrict ourselves throughout to closed manifolds. The set of all local 
complex coordinate systems which are admissible, i.e., which may be added to the 
given family in accordance with the analyticity condition, is called the complex 
structure of M. Concepts like analytic function, analytic map, etc. have an in
variant meaning with respect to the given complex structure (i.e., are independent 
of special coordinate systems used to describe them). 

1.2. Algebraic varieties in a complex projective space Pn (of n complex, i.e., 
2n real, dimensions) have a natural complex structure, as well as Pn itself, and 
are therefore complex manifolds—provided that there are no "singularities". 
There exist, on the other hand, examples of complex manifolds which cannot be 
imbedded in a Pn (cf. 3.4). The concept of a complex manifold is therefore more 
general than that of an algebraic variety. It is probably also more general than 
that of a higher-dimensional Riemann surface in a concrete sense, defined as the 
space of all function elements of an algebroid function on some standard space Sm, 
but such a statement depends of course on the space S and on uniformization 
possibilities. 

1.3. It is well-known that all orientable surfaces admit complex structures. For 
higher-dimensional manifolds (orientable, of even dimension) this is not the case. 
On the 4-dimensional sphere $4, for example, it is not possible to define a complex 
structure (cf. Hopf [l]2, Ehresmann [2]). The general existence problem of a com
plex structure on a given manifold M, or the problem of what special properties 
of M are implied by such a structure, has several quite different aspects. Actually 
there is not much known about the complex structure itself; all consequences are 
deduced from assumptions which are weaker—the almost complex structure, or 
stronger—the existence of a Kaehler metric (or Hermitean metric without torsion). 
The reason for these two approaches is simple: Almost complex structure is an 

1 This address was listed on the printed program under the title Topologie der komplexen 
Mannigfaltigkeiten. 

2 Numbers in brackets refer to the bibliography at the end of the address. 
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assumption concerning the tangent bundle of M, and therefore suitable for fiber 
space methods; and Kaehler metric is an assumption on the Riemannian or 
Hermitean geometry of M, which can be investigated by the methods of har
monic differential forms and of differential geometry. In both cases powerful 
existing theories can be applied. 

Concerning the first approach I shall make only a few remarks, which overlap 
to some extent with Ehresmann's address; after that I shall discuss in more 
detail the second approach. 

2. Almost complex manifolds. 2.1. A manifold M is called almost complex if 
for each point x of M a linear map Ix of the tangent space Tx at x into itself is 
defined such that il — — 1 (1 = identity map) for all x, and such that Ix depends 
continuously upon x. This is possible only if M is of even dimension 2m. A com
plex manifold is almost complex; for if we use in the tangent space Tx complex 
vector components corresponding to local complex coordinates, multiplication of 
the vector components by i = (—1)1/2 is a linear map of the required type, inde
pendent of the special coordinate system. I do not know of an example of an 
almost complex manifold which does not admit a complex structure, but prob
ably there are such. 

2.2. Let M be almost complex and v(x) a continuous nonzero vector field on 
M with one possible singularity; then Ixv(x) — w(x) is a second field with one pos
sible singularity at the same point and such that w(x) and v(x) are independent 
everywhere else since il = — 1. Therefore there exists on M a 2-field with one 
isolated singularity, which is obviously of a quite special nature. This fact was 
used by Hopf [1] to prove that certain manifolds (the spheres $4 and S* and 
many other examples) do not admit an almost complex structure, i.e., a field 
of transformations Ix ; a fortiori these are not complex manifolds. Another way 
(cf. Ehresmann [2]) to prove existence or nonexistence of an almost complex 
structure on a manifold M is to apply the obstruction theory of fiber bundles; 
the base space of the fibering to be used is M, and the fiber at a point x is the 
space of all tensors at x describing transformations Ix (or related to them). 
For the simplest manifolds, the spheres, both methods give only quite special 
results, and in this case the existence problem seems to be related in a pecul
iar way to other topological questions, as I would like to indicate by some 
remarks. 

2.3. If on a sphere Sn (n = 2m) a field of transformations Ix is given, we may 
assume that for all tangent vectors v at all points x, Ixv is orthogonal to v. We 
have then for all pairs of orthogonal unit vectors x, y in (n + 1)-dimensional 
Euclidean space En+1 a unit vector function z = F(x, y), z orthogonal to both 
x and y, continuous in x and linear in y\ this function is obtained by considering 
x as a point of Sn and y as a tangent vector at x, and defining z = Ixy. I t can be 
extended in an obvious way to a function F(x, y) = z of two arbitrary vectors 
in En+1 such that z is orthogonal to x and y and of length (x2y2 — (x-y)2)112 (x-y is 
the scalar product of x and y, x2 = x-x)\ F maybe called a llvector product in 
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UT*4"1" (continuous in the first factor, linear in the second). Applying this to the 
usual complex structure on S2, we obtain a vector product in Ez which is the 
usual one, bilinear in x, y. By fiber space methods using special homotopy groups, 
it can be proved that for n = 4fc there exists no such vector product in En+l of 
the required type, not even in the more general sense of continuity in both factors. 
The proof is a simple extension of the method I used previously [3] for the same 
purpose, but only f or n = 4 and 8; to extend it to all n = 4k, one has to compute 
more of the homotopy groups involved, which can be done by straightforward 
deformations. From the argument above it follows that there is no almost complex 
structure on the spheres S*k (not even if one would admit fields of transformations 
Ix which are only continuous, not linear, in the tangent spaces Tx , but such that 
v(x) and Ixv(x) are always independent—this is, by the way, the concept of a 
"manifold of type I" considered by Hopf [1]). 

2.4. I t is well-known [3] that a vector product in En+1 leads in a natural way 
to a multiplication in En+2, i.e., a rule associating with any two, vectors X, 
Y g En+2 a product U = X°Y, with a unit and with the "norm product rule" 
U2 — X2 • Y2. Namely, let X £ En+2 be given by a pair (xQ, x) of a real number 
XQ and a vector x 6 En~*'1; then X°Y — U = (uo, u) is defined by tin = xQyo — x*y, 
u = xQy + yox + F(x, y). The rule U2 = X2-Y2 is easily checked, and E = (1, 0) 
is the unit. For the usual vector product in Ez (i.e., the complex structure on 
AS2), this gives exactly the quaternion multiplication in Ü/4. The Cayley numbers 
in E8 are related in the same way to a (bilinear) vector product in É1, hence to 
an almost complex structure on $6. I t is not known whether it corresponds to a 
complex structure on S6, nor indeed whether there is at all à complex to complex 
structure on S6. [Added in proof: It has been proved (cf. Eckmann and Frölicher, 
•C. R. Acad. Sci. Paris vol. 232 (1951) p. 2284) that the almost complex structure 
on AS6, derived from the Cayley numbers does not belong to a complex structure 
on AS6 by studying the "integrability conditions" relating almost complex 
structures.] 

Furthermore, if U = XóY is a multiplication in En+2 as described before, 
continuous in X and linear in Y, we have for each X with X2 = 1 an orthogonal 
transformation U(Y) = X ° F of En+2 such that for Y = (1, 0), U(Y) = X) 
i.e., we have a map <£> of Sn+1 into the orthogonal group fìn+2 of n + 2 variables, 
such that under the natural projection of Qn+2 onto Sn+l the map <£ becomes the 
identity of Sn+1. I t is easy to see that this map $ is nothing else than a global 
parallelism on Sn+1 (a system of n + 1 pairwise orthogonal tangent unit vector 
fields). Combining this with 2.3, we obtain a theorem discovered and proved 
first by Kirchhoff [4] in a different way: An almost complex structure on Sn in
duces a global parallelism on Sn+l. From this it follows again that on Sik there 
is no almost complex structure (same result as above, here only in the sense of 
linear Ix). 

2.5. In all preceding remarks the existence problem of an almost complex or 
complex structure is considered in terms of a definite differentiable structure on 
the manifold, and it is not clear from the method whether for another differenti
able structure the answer would be the same, 
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It might be worthwhile to note here that the complex structure on a (differenti
able) manifold, if it exists, is in general not unique. There are manifolds which 
admit several different complex structures—different in the sense of analytic 
equivalence. The 2-dimensional torus, for example, has infinitely many different 
conformai structures (and the analogue holds for higher-dimensional tori); 
for all of them, however, the corresponding complex structure of the universal 
covering is the same. Hirzebruch [5] discovered the interesting result that there 
exist also simply connected manifolds with infinitely many different complex 
structures; the simplest example is the Cartesian product of S2 by itself. 

3. Complex structure and homology. 3.1. To obtain relations between homol
ogy properties and complex structure, it seems natural to study the influence of 
the transformations Ix belonging to that structure on exterior differential forms. 
A differential form a of degree r in the manifold M (in short, an r-form) may be 
considered, at each point x of M, as a skew-symmetric multilinear function of r 
vectors in the tangent space Tx ; if these vectors are transformed by Ix, a be
comes a new form denoted by Ca (if not only real, but also complex forms, i.e., 
complex functions in Tx, are admitted, it is convenient to include in the defi
nition of C the passage to the conjugate-complex form; an explicit expression 
of C is given in 3.2). Obviously the operator C verifies CCa = (— l)ra for all r-
forms a, hence C is an isomorphi m of the linear group <3?r of all r-forms in M 
onto itself. In general dCa ^ C da, and 3 = (7_1 dC is a differentia] operator from 
$ r to $ r + 1 which is not equal to d, but has some of the same properties (e.g., 
33 = 0). 3 leads to de Rham cohomology groups FT isomorphic to the usual 
ones FT based on d. By Hodge's theorem ([6], [7]) these groups may be replaced 
by those of harmonic r-forms (with respect to a Riemann metric given on M), 
which are easier to handle than cohomology classes; i.e., by forms a with Aa = 
0 or Äa = 0, where A is the generalized Laplace-Beltrami operator used by de 
Rham [6], and A = C_1AC. It seems interesting to study the relation between A 
and A ; here we shall do this only in the case when we assume a complex structure 
in the strict sense, or even more than that. Before discussing this, we have to 
make some preliminary remarks. 

3.2. On a 2??i-dimensional complex manifold M we can use, in the calculus of 
differential forms, instead of the 2m real differentials dxv (or vector components 
in T*) the complex differentials dzj, j = 1, • • • , m, corresponding to admissible 
coordinate systems Z\, • • • , zm and their conjugates d2j. The coordinate trans
formations, say from Z\, • • • , 2W to f i , • • • , fm being analytic, the dzj are carried 
over to the df y and the dzj to the df y only, this splitting of the 2m differentials 
into two groups has an invariant meaning. A differential form which is homo
geneous with respect to the dzj will be called pure; and the corresponding degree 
in the dzj only, its type. Any r-form a has a unique decomposition as a sum of 
pure forms a = a(0) + • ' * + «(r) of type h = 0, 1, • • • , r. For a form a(h) of 
type h, Ca^h) is given by (—l)Yä(A) , which is of type r — h\ for pure forms, 3 
differs therefore from d only by a constant factor. 

3.3. The Riemann metric, used in the definition of A, is called Hermitean if in 
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the given complex structure the line element ds2 may be written as 23i,**#" 
(dzjdzk), hjk = hkj, where (• • •) indicates the ordinary product of differentials. 
Such a metric is however not sufficient for our purposes. For it appears that, 
roughly speaking, one must, in the relations between harmonic forms and com
plex structure, consider permutations of the second covariant derivatives in
volved in A and therefore use the Riemann curvature tensor of the metric; and 
moreover, one should compute this tensor by the complex formalism, i.e., in the 
so-called Hermitean geometry. This is in general not possible: it is easy to see 
that the connexions (the Christoffel symbols) computed from the same Her
mitean metric in Riemannian and in Hermitean geometry are different. There is 
a special case where they coincide, and this case seems of great importance: 
namely when the metric is a "Kaehler metric" [8]; i.e., has the special property 
that the exterior differential form w = X)y,fc A# dzj dzk is closed (dea = 0). Actually 
many of the homology properties we are going to describe can be deduced from 
assumptions which are stated in terms of real differential geometry, without 
using a complex structure; these are however less natural and intuitive, and for 
the purpose of this address we shall stay within the frame of the Kaehler metric. 

It is well-known that on the complex projective space Pn there exists a Kaehler 
metric, and therefore on all algebraic varieties imbedded without singularities 
in Pn . More generally, if a complex manifold M is imbedded analytically in a 
Kaehler manifold, the induced metric on M fulfills also the Kaehler condition 
(cf. 3.6). 

3.4. In the case of a Kaehler metric, the explicit expression of A yields the 
following results (cf.[10]) on pure forms and on C. (a) If a form a is harmonic, 
then all the "pure components" a^ of a (cf. 3.2) are also harmonic. In other 
words: FT is the direct sum H\Q) + H\Q + - • • + H\r), where H[h) is the group 
of pure harmonic forms of type h. If p\h) denotes the rank of H\h) , we have for 
the Betti number pr = J^Lo p\h). Of course p[h) is also defined for a general 
Hermitean metric; but all one can prove without the Kaehler condition is the 
inequality p r è X) Pw • (b) A = A. Let H\h) be the analogue of H\K) , computed 
from A instead of A, p\h) its rank; it follows that H\h) = H\h) and p\h) = Pw . 
But since by definition CÄ = AC, C maps H\K) isomorphically onto H\r~h) ; 
hence p\h) = p\r-h) = Pm • Therefore, if ris odd, pr = 2 ^ ä T 0

1 ) / 2 p\h), i.e., pr = 0 
(mod 2); if r is even, pr = p[r/2) (mod 2). For algebraic varieties the fact that p 
is even in odd dimensions r is a well-known result already proved by Lefschetz 
and, using differential forms, by Hodge. 

There exist complex manifolds which do not admit a Kaehler metric since 
their Betti numbers do not agree with the above conditions, namely the mani
folds of topological structure S1 X S21c+1 discovered by Hopf [1] (a complex 
structure on S1 X /S3, e.g., is obtained from the covering of S1 X £3 by J574 with
out the origin). From this it follows that these complex manifolds cannot be 
imbedded analytically in a complex projective space (nor in any Kaehler mani
fold).3 

3 Added in proof: E. Calabi and the author showed that the product of any two odd-
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3.5. All this is only one, somewhat special, aspect of the Kaehler metric, and 
there are other surprisingly strong consequences. 

There is one immediate fact, which does not even use harmonic forms, but 
just some simple properties of the closed 2-form œ (cf. 3.3), depending only 
weakly upon the relation of co to the metric. Let n = 2m be the dimension of the 
Kaehler manifold M. The ?nth power tom is equal, up to a constant factor not 
equal toO, to | hjk | dzidzi • • • dzmdzm ; since the determinant | ä # | is everywhere 
positive, fM o)m s* 0 (œm is actually, except for a constant nonzero factor, the 
volume element of the metric considered as a Riemann metric). Hence com is not 
cohomologous to 0, and the same is true for all powers coh, k = 0, 1, • • • , m; 
the corresponding Betti numbers p2k are therefore greater than or equal to 1, 

These nonvanishing cohomology classes in even dimensions may be carried 
over by the duality operator D of M to homology classes. Using the same symbol 
a for a closed form and for the corresponding cohomology class, the dual 
homology class Da is given by a fi M (here M is the fundamental 2m-cycle of 
the oriented manifold, and H the Cech-Whitney cap-product). Let us call the 
classes Dcok = œk fi M = Z2(m-k) of dimension 2(m — k) the principal homology 
classes of M. Clearly, writing Z for Z2(m-i) = Du, Z2(m-2) is the intersection 
Z ® Z, Z2(m-3) = Z ® Z ® Z, etc. If M is the complex projective space Pm, 
the principal classes Z2q, q = 0, 1, • • • , m, are all represented, up to certain 
numerical factors, by the projective planes PQ in Pm . 

3.6. Let V be a complex manifold of dimension 21 < 2m, and / an analytic 
and locally topological imbedding of L1 in the Kaehler manifold M, f(Lf) = 
L CZ M. Considering the induced dual homomorphism /*, the image / co is the 
form to' in I! corresponding to the induced metric in Ll, which obviously is also 
a Kaehler metric. Thus, by the same argumentas above, 0 7^ J L ' d — JL/ /*W = 
!L<*>1 ; by Stokes theorem it follows that L o^O (not homologuons to 0) in M. 

Furthermore consider the principal homology classes Z2(i-k) of V (k = 0, • • • , 
I), and their images f(Z2(i-k)) in M ; they are equal to/(o/fc H L') = /(/*cofc D V) = 
tok fi f(V) = o)k fl L = Z2(m-h) ® L, i.e., they are the intersections of L with the 
principal classes of M (for example, the principal classes of a manifold L im
bedded in a complex projective space are given by the plane sections of L). 
TJifse classes are all no 0 in M. For /w*nL o)l~k = J L w ^ 0 , hence by Stokes theorem 
cok O L no 0. 

Analogous remarks apply to "analytic cycles" in M, i.e., to the set of zeros of a 
distribution of local analytic functions. The problem of finding not only necessary, 
but also sufficient conditions for a homology class to contain analytic cycles seems 
to be difficult. 

3.7. Very precise results on the role of w and of principal classes in the homology 
structure of a Kaehler manifold M, including all of the known general homology 
structure of algebraic varieties, are obtained if, following the method of Hodge, 
harmonic forms in M are investigated in connection with special properties of 

dimensional spheres S2p+1 X S2**1 can be given a complex structure; for p > 0, q > 0 this 
is an example of a simply connected complex manifold which does not admit a Kaehler metric. 
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co and of the differential geometry of the Kaehler metric. All these results are due 
to some simple formulas relating co to the usual operations on differential forms: 
d, * (*a is the adjoint of the r-form a, with respect to the metric, of degree 
n — r = 2m — r; cf. [6]), ò = zb * d *, A = dò + od, and the operator (7, with 
3, 8, etc. These formulas, most of which appear in Hodge's book [7] and in a note 
by A. Weil [9], have been completely established and discussed by Guggenheimer 
and myself [10]. They are of purely local character. 

The main formula is a relation between * and co, replacing the operator * for 
r-forms with r g m by C and by multiplication with com~T (and with a certain 
numerical factor u; I omit here all details about such factors): *a = ucom~rCa. 
This is however not true for all forms a. I t holds (1) if co * a = 0—such forms are 
called effective; and more generally (2) if a = tokß, where ß is effective—we shall 
call such a form simple, of class k. The nonzero factor u depends upon m, r, and 
fc. Under condition (2) we have for r ^ m — 2, co * (eoa) = , u'co • 0)

m~~r~2 Ccoa =* 
u" * a, with nonzero factors u', u". From this it follows that (a) coo: = 0 only if 
a = 0. By an easy induction argument it can be proved that (b) every r-form 
a (r ^ m) has a unique decomposition into a sum of simple forms of class fc = 0, 
1> • " " 7 Q = DV2], a = ft + coßi + • • • + co9ßq. (a) holds therefore for all forms 
of degree r g ra — 2: (c) Multiplication by co is an isomorphism of&, the group 
of all r-forms, into $ r+2. 

Further relations give A(coka) = cok(Aa) for all forms a, and commutation of 
A with all operators involved. Hence all results apply in particular to harmonic 
forms, i.e., to cohomology groups Ft. From (b) above it follows that FT is for 
r ^ m the direct sum Hi + <oHT2 + • • • + coqHr

Q~2q, where RV™ C Er~2k is 
the group of effective harmonic (r — 2fc)-forms; from (c), that multiplication 
by co is, for r ^ m — 2, an isomorphism of FT into Hr+2 (cf. [7], Chap. IV). For 
the Betti numbers of a Kaehler manifold M we obtain therefore pr ^ pr+2 

for r S m — 2 (and, of course, the dual statements for higher dimensions). These 
are strong topological conditions for the existence of a Kaehler metric; they are 
not fulfilled by all complex manifolds (e.g., by the examples mentioned in 3.4). 

3.8. To translate the results from «cohomology to homology, we take the 
operator D, which maps Hr isomorphically onto the rth homology group Hr 

oiM (with complex coefficients). Since *cok = ucom~k, D*cok is, except for a cons ta t 
nonzero factor, the principal homology class Z2k of M, (e.g., a plane section if M 
lies analytically in a complex projective space). Each homology class zr of M of 
dimension r ^ m may be written as zr = D*a = D*(/30 + coß± + • • • + o>qßq), 
q = [r/2], according to (b) in 3.7, with uniquely determined effective harmonic 
forms ßo, - — , ßq. The term D*cokßk is, except for the nonzero factor u, equal to 
D(Ccokßkcom-r) = Ccokßkcom~r fi M; that is, to Cco% fi (com"r fi M) = 
Cco% n Dcom~r = Cco% n z2r = DCCO% ® z2r, or to cßk n (com-(r~k) n i ) = 
DCßk ® Z2(jJk). Therefore, (a) all homology classes of dimension r ^ m lie on" 
the principal class Z2r, in the sense that they are intersections of something with 
Z%r, and (b) they have a unique decomposition into a sum zr = zl°] + zl + 
+ zlq\ where zlk]= D*cokßk lies on Z2(r-k) (but not on Z2Ï, I < r — fc). Using 
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only the assumption of a Kaehler metric we obtain thus a geometric situation of 
the same nature as the homology structure of algebraic varieties discovered by 
Lefschetz. 

3.9. I would like to conclude with a remark on the differential forms them
selves. If we have a simple form a = cokß (cf. 3.7.), and if a is closed, it follows 
easily from the general relations that 8a = 0 ; if in addition a is pure, this means 
8a = 0, hence a is harmonic, A closed form a which is pure and simple is there
fore always harmonic. If in particular a = dy, it must be equal to 0 (here we use 
a global result, based on the fact that M is closed), and we have the theorem: 
If on a Kaehler manifold a form a is such that a and da are both pure and simple, 
then da = 0, and a is harmonic. 

Let us take for example an analytic form a, i.e., a form in the dz3- only, with 
analytic coefficients, a is of type 0, and also da, since for all coefficients a of a 
we have da/dz3- = 0; it is easily seen that a form of typeO is always effective. 
Therefore, by the above theorem, for an analytic differential form a in a Kaehler 
manifold, da is always equal to 0, and a harmonic. Relations between the set of 
all analytic differential forms a in the manifold and its Betti numbers (cf. [7], 
[9] j [10]) a r e therefore obtained without assuming in advance da = 0. 

BIBLIOGRAPHY 

1. H. H O P F , Studies and essays presented to R. Courant, New York, 1948, pp . 167-185. 
2. C H . EHRESMANN, Topologie algébrique, Paris , 1949, pp . 3-15. 
3. B. ECKMANN, Comment. Math . Helv. vol. 15 (1942-1943) pp . 318-339. 
4. A. KIRCHHOFF, C. R. Acad. Sci. Paris vol. 225 (1947) pp. 1258-1260. 
5. F . HIRZEBRUCH, Doctoral thesis, University of Münster, 1950. 
6. G. DE R H A M and P. BIDAL, Comment. Math . Helv. vol. 19 (1946) pp . 1-49; G. DH 

RHAM, Annales de Grenoble vol. 22 (1946) pp . 135-152. 
7. W. V. D . H O D G E , Harmonic integrals, Cambridge, 1941. 
8. E. K A E H L E R , Abh. Math . Sem. Hamburgishen Univ. vol. 9 (1933) pp . 173-186. 
9. A. W E I L , Comment. Math . Helv. vol. 20 (1947) pp. 110-116. 
10. B . ECKMANN and H. GUGGENHEIMER, C. R. Acad. Sci. Paris vol. 229 (1949) p p . 

464-466, 489-491, 503-505; B . EOKMANN, C. R. Acad. Sci. Paris vol. 229 (1949) pp . 577-579. 

EIDGENöSSISCHE TECHNISCHE HOCHSCHULE, 

Z ü R I C H , S W I T Z E R L A N D . 



COHOMOLOGY ON REAL DIFFERENTIABLE MANIFOLDS 

CARL B. ALLEN'DOERFER 

1. Introduction. The theory of de Rham has established a relationship be
tween the cohomology theory (real coefficients) of a real, closed differentiable 
manifold Mn and the theory of exterior differential forms on this manifold. 
The connection is expressed by the theorems: 

FIRST THEOREM OF DE RHAM. Let Cr be a fixed r-dimensional cohomology class 
(real coefficients) on Mn and let Zr be an arbitrary homology class (real coefficients) 
on Mn . Then there exists a regular closed r-form Qr (dQr = 0) such that: 

CZr = [ Qr 

Jz 

where z is any r-cycle representing Zr. 

SECOND THEOREM OF DE RHAM. If for a closed r-form 0 r 

ie'-° 
for all r-cycles (real coefficients) z, then there exists a regular r — 1 form ^r 1 on 
Mn such that". 

dtf-1 = 9 r 

i.e., 0 r is derived. 

This theory, however, is inadequate for a treatment of the relationship be
tween differential forms and cohomology with coefficients which are integers 
or integers mod p (p & prime). It has been suggested by A. Weil [4] that such 
a theory can be constructed using singular r-forms. A specific example of such a 
theory was given by the author [1] in connection with the characteristic classes 
of a Riemannian manifold, and has served as motivation for the present paper 
which presents a general theory of this nature. In addition, the results are applied 
to harmonic forms and give a full cohomology theory for these forms which is 
an extension of the work of Hodge [2] and Kodaira [3]. The theory is also applied 
to derive an extension of de Rham's second theorem for cases in which the periods 
are not all zero (Theorem 6). 

2. Elementary forms. Let Mn be a real, closed, differentiable manifold of 
class greater than or equal to 3. Consider a differentiable triangulation of Mn 

whose cells of dimension r are El (i = 1, 2, 3, • • •), and whose r-skeleton is Kr. 
Also consider a dual, differentiable subdivision of Mn whose n—r skeleton 
is *Kn~r. Let Cr be a cochain on Kr whose values on El are a*, where a,- are real 

428 
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numbers. Associated with Cr is a dual chain *Cn_T of *Kn~r such that the inter
section number El

r • *(7n-r = ai. We prove the following theorem. 

THEOREM 1. There exist differential forms 
(1) 0r defined on Kr and regular of class greater than or equal to 1 on Kr ; 
(2) ip~x defined on Kr and regular of class greater than or equal to 2 on Kr-i with 

at most isolated point singularities on Kr — Kr-i, such that 

(3) dqT1 = 0r; 

(4) />- f tf1-*. 

PROOF. Choose a cell El
r. We seek to define forms 6\ and <pj-1 having properties 

(1), (2), and (3) of the theorem and such that 

(5) I jOri — j cpl = 8jj. 
JEr JdE% 

There are numerous ways of finding forms *0j and V ï - 1 having properties (1), 
(2), and (3) and such that *<pï-1 is regular on [Kr fl Star E\ — El

r] and 

(6) L%- [,. Vï_1 = 1, 

but which do not necessarily satisfy (5) for E3
r (j 9^ i). Examples of such forms 

appear in the author's paper [1], but much simpler ones can be constructed. 
Let Un and Vn be neighborhoods of Mn such that Star El ID Vn ^ Un ^ El. 

Let / be a "local function", regular of class greater than or equal to 2 in Mn such 
that 

_ fl in Un 

JO in Mn - Vn -

Define cpT1 = /• V i - 1 on Kr ; 

f*flîanJB{ 
6r- = \ 

[Apr1 on Kr - K . 
These forms have properties (1), (2), (3), and (5). Now define 

0r = S aßl; <pr~x = ÌLawT1-
i i 

These forms have the required properties (1), (2), (3), and (4). Note that <p~x 

is regular on those cells for which a{ = 0. 

COROLLARY. If Br is any r-chain (real coefficients) of Kr, the forms of Theorem 
1 are such that 
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/" e r - f ^ = G r . B r 

3. Extensions of elementary forms. In extending the forms 9r and <pr~l of 
Theorem 1 over the whole of Mn we shall proceed by induction from Kr to Kr+i 
to • • • to Kn-i to Kn = Mn . In extending over any cell Et+i of Kt+i (t = r, • • • , 
n — 1) we shall use one of three, methods listed below according to the cir
cumstances involved.' We call the extended forms: 9 r and <E>r_1 respectively. 

The methods described below make use of a special "polar" coordinate system 
in Et+i. Let x1, • • • , xl be local coordinates on dEt+i. Let Z/ - r be a subcomplex 
of dEt+i fl *2£n~r which will be chosen to meet particular needs in the sequel. 
In Et+i there is a vertex P of *Kn~r and a subcomplex of *Kn~r, l/~r+1, which 
contains P and is such that z/~r+1 fl dEt+i = Ll~r. Join P to dEt+i with a simple 
differentiable family of curves such that the curves from P to Lf_r He on L4-r+1. 
Parametrize these curves with the parameter xt+1 so that sc m = 0 is at P and 
xt+1 = 1 is on dEt+i. The set (x1, • • • , xt+1) are our local "polar" coordinates 
for Et+i. 

METHOD 1. On dEt+i assume 9 r regular and closed, «Ê**-1 regular, and d^f"1 = 
9 f . Further if t = r, assume JdEr+1 9

r = 0. 
Then by the second theorem of de Rham there exists a regular form tf"1 on 

dEt+i such that dtf~~l = 9 r. Extend tf~~l differentiably of class greater than or 
equal to 2 over Et+i so that in a neighborhood of dEt+i 

^••/r- iG*1 , • ' • , *', ^ + 1 ) = ^ - i r - i C * 1 , • • • , * ' , ! ) forix •• - >_! ** * + 1; 

This extension is trivial for there are no other restrictions on tf-1. Now define 
9 r | Et+i = dtf-1. Then 9 r is regular and closed on Et+i and reduces to the given 
form on dEt+i. 

To extend # r - 1 , define 

(2) co'"1 = tf"1 - ST1 on dEt+1. 

Then c/"""1 is closed and regular on dEt+i and can be extended regularly over 
•E*+i by the method just used for 9 r . Finally define 

(3) ST1 = tf'1 - «T1 on Ew. 

I t follows that * r _ 1 is regular on Et+1 and that cfà?*""1 = 9 r . 
METHOD 2. On dEt+i assume 9 r as in Method 1, $r""1 singular on Lf_r, and 

dtf-1 = 9 r on dEt+i - L t r . 
Extend 9 r as in Method 1. Define cor_1 on dEt+1 - L'~r by (2) above. In 

our "polar" coordinate system define co"-1 on Et+i — Lt~r+l by equations (1) 
above with « substituted for ^. It is clear that we still have dœ = 0. Finally 
define $r-"1 by (3) above. $r~"1 is now regular on Et+i — l/~"r+1 and where it is 
regular: d^T1 = 9 r . 
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METHOD 3. On dEt+i assume 9r regular on dEt+i — r'~r_1, 3>r_1 regular on 
dEt+i - Ll~r, r'~f-1 a subcomplex of Z/~r, and where defined d&~1 = 9r. 

We use the "polar" coordinate system and call rf_r the subcomplex of L*~~r+1 

consisting of curves joining P to points of r'-'""1. Then we extend 9r and &~l 

by the equations: 

B'tl...,tf ,••••,*',*'+1) = eT
tl...irtf, ••-,*', i) 

On El+1 - r '- r \ tmji-'-jr^t+l; 

er
h...h_it+1(x\ ••• ,xt+1) = o. 

for ji •••,/_! ^ t + 1; 

[*ff..,r_tt+1tf,--- ,xt+1) = 0. 

Then 9r and $ r - 1 are regular where defined and dtf"1 = 6r. 

4. Cochains. We now use these methods of extension to derive the following 
consequences of Theorem 1. 

THEOREM 2. Given an r-cochain C (real coefficients) of Kr and its associated 
dual chain *Cn~~r of *Kn~r. There exist differential forms 9r and $r_1 on Mn such 
that 

(1) 9r is regular of class greater than or equal to 1 and closed on Mn — ô*On~~r; 
(2) S»**""1 is regular of class greater than or equal to 2 on Mn — *Cn~"r; 
(3) dtf-1 = BronMn - *Cn~r; 
(4) IBrQ

r - idBr&-1 = Cr-Br 

where Br is any chain (real coefficients) of Kr. 

PROOF. On Kr construct the forms 0r and tp'1 of Theorem 1. 0r is regular 
on Kr and p*""1 has point singularities on those cells El

r for which ai 9e 0. We 
can place these singularities on *Cn~r, for the intersection of *Cn~r and such a 
cell is exactly one point (with a coefficient aì). 

In extending from K% to Ki+i we have three situations for a cell Et+i : 
(1) dEt+i fl *Cn~r = 0, Thus 9r and fc'"1 are regular on dEt+i and when t «= r, 

fdBr+ßr — 0. Apply Method 1 above and obtain regular extensions of both 
forms over Et+i. 

(2) dEt+i fl *Cfn~r ^ 0, but Et+1 fl d*CT* = 0. Then Qr is regular on dEt+i 
and when t = r, IôEr+l 9

r = 0; but * r_I has singularities on dEt+i fl *Cfrt"~r 

which we now call l/""r. Apply Method 2 above and obtain 9r regular over 
Et+i and *r""1 regular over Et+i — L1"**1. Note that the singular locus of <p~l, 
namely Z/̂ "1"*, remains on *Cn~r. 

(3) dEt+t fl *Cn" ^ 0 and Ew D d*Cr* ^ 0. Then 9r is regular on dEw 

except on dEt+i fl d*Cn~r which we now call r4"*"1"""1. When t = r, this intersection 
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is necessarily empty, but now /as r+19 r 5̂  0. Also $ r - 1 is regular on dEt+i except 
on Z/"7" as in Case 2. Apply Method 3 above and obtain 9 r regular over Et+i — 
T*"* and $r~1 regular over Et+1 - L i _ r+1 . When t = r, we define r*"* to be the 
point P described above. Note that r'-7* lies on d*Cn~r and Lt~r+1 on *Cn~r. 

By carrying out this process successively for t running from r to n — 1, we 
establish the theorem. 

COROLLARY. Theorem 2 also applies to any chains Br of Mn (not necessarily 
those of Kr) provided that Br fl d*Cw-r = 0 and dBr fl *Cn~r = 0. 

5. Cocycles. When C is a cocycle (real coefficients), d*<7w-r = 0 and 9 r is 
regular on Mn . This amounts to the following theorem. 

THEOREM 3. Given a cocycle C on Mn, there exist differential farms 9 r and 
<3>r-1 on Mn such that 

(1) 9 r is closed and regular of class greater than or equal to 1 on Mn, and con
ditions (2), (3), and (4) of Theorem 2 and its corollary are satisfied. 

When Br is an r-cycle (real coefficients), this theorem amounts to the first 
theorem of de Rham. Since an r-dimensional cohomology class (real coefficients) 
is determined by its periods over the r-cycles (real coefficients), there is nothing 
more to say. However, a cohomology class (integer coefficients) requires for its 
determination not only its periods on the integral cycles of Mn but also its 
values on those integral chains which are cycles mod p. Theorem 3 then gives 
as a supplement to the de Rham theorem for this case the following theorem. 

THEOREM 4. Let C(0) be a fixed r-dimensional cohomology class (integer coefficients) 
on Mn and Z^ and Zr

v) arbitrary homology classes with integer and integer mod p 
coefficients respectively on Mn. Then there exists a regular closed form 9 r and a 
form <&r~~l with singularities on *C<o)r (the dual cycle associated with a particular 
cocycle <7(0) representing C[0)) and with d^"1 = 9 r on Mn — *C^r such that 

cioyz™ = fer, 

cloyz™ = I er - fir1 modp, 
*>Z JQz 

where z is a cycle which represents the corresponding homology class and on which 
the integrals are defined. 

We can apply Theorem 2 to cochains C[P) with integers mod p as coefficients 
by selecting a particular residue mod p for the value of the cochain on each cell. 
Then we treat the cochain as an integral cochain. The conclusions of Theorem 
2 remain valid except that (4) must be rewritten 
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(40 fwer- f w&-l = C\pyBl* modp, 

where Br
p) is any r-chain (coefficients integers mod p) on Mn on which the 

integrals are defined. 
When C[p) is a cocycle mod p, we cannot show that 9f is regular over Mn 

(as was true for ordinary cocycles) for IdEr+1 9 r = 0 mod p but is not necessarily 
equal to zero. However, it is true that 

f (0) 9 r s 0 mod p 
Jzr 

where Zr
Q) is a bounding integral cycle, for the values introduced by the sin

gularities of 9 r are all multiples of p. 
Since a cohomology class with integers mod p for coefficients is determined 

by its values on those integral chains which are cycles mod p, we state the 
following analog of Theorem 4. 

THEOREM 5. Let C[P) be a fixed r-dimensional cohomology class (coefficients 
integers mod p) on Mn o,nd Zr

0) and Zr
v) arbitrary homology classes with integer 

and integer mod p coefficients respectively. Then there exists a closed r-form 9 r 

with singularities on d*C<V)r and an r — 1 form <ï>r-1 with singularities on *C(7)r 

and with d$ r_1 = 9 r on Mn — *C(^"r such that 

C\pyZf s [ermodp, C[pyZr
p) s fer - / V ^ m o d p , 

Jz Jz *>dz 

where z is a cycle which represents the corresponding homology class and on which 
the integrals are defined. 

6. Extension of de Rham's second theorem. It is known that any closed 
form is locally derived and (from the second theorem of de Rham) that a closed 
form whose periods are all zero is derived in the large. Further, any closed form 
determines a cohomology class (real coefficients). Let Cr represent this class and 
let *Cn~r be the associated dual cycle. Then the following theorem is an exten
sion of de Rham's theorem to the case where the periods are not all zero. 

THEOREM 6. Given any regular closed form œ on Mn , then there exists a form 
nr_1 regular except on *Cn~r such that on Mn — *Cn~r 

Let the forms corresponding to Cr be the 9 r and <ï>r 1 of Theorem 3. Define 
Xr = <J — 9 r. Then d\r = 0 and all the periods of Xr are zero. Hence Xr = dji'1 

on Mn . Put ST1 = * r _ 1 + / /_ 1 on Mn - *Cn~r. Then 

dfìr_1 = d^"1 + Xr = 9 r + Xr = o)r. 
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7. Harmonic forms. The theorem of Hodge [2] states that among the nu
merous closed forms 9 r which have the property described by de Rham's first 
theorem there is a unique harmonic form <a having this property. This suggests 
the following theorem. 

THEOREM 7. Theorems 2, 3, 4, and 5 remain valid if in their statements we 
replace " 9 r " by "a harmonic form cor" and "$ r _ 1 " by "fif-1". In Theorems 2, 3, 
and 4, w is unique, but in Theorem 5 it depends upon the choice of residues mod p. 

PROOF. The method of orthogonal projection [3] states that in Mn (if 9 r is 
regular everywhere) or in Mn — d^Cn~r (if 9 r is singular on d*C™~r) there exists 
a unique, regular, harmonic form <a and a regular form / / - 1 such that 

9 r = «r + df/'1. 

If we put fìr_1 = $ r _ 1 — f/"1, we have that 

f </- f ir-1 = f e-- f v-' + lf r1- [ dr1). 
JET JdEr JET JdEr \^JdEr JEr ) 

Since the expression in braces on the right vanishes, the forms of, fì1""1 have the 
required properties. When </ are singular, they are called "harmonic forms of 
the third kind" as defined by Kodaira [3, Theorem 17]. 

We can now construct the correspondence between cohomology with real 
coefficients or with integer coefficients and harmonic forms as follows below. 
In doing so we need the notion of an integral harmonic form. Let œ be harmonic, 
and let fìr_1 be given as in Theorem 6 such that on Mn — *Cn_r, dû1""1 = œ. 
Then cf is called integral if 

JE* JRE 
fìr 

is an integer for every cell Er of Kr. With this understanding, we form the table 
of correspondences below: 

Unique harmonic forms <ar and forms QT~l 

Cohomology , such that dü1^1 = cor 

(1) Cochains (real coefficients) (1) wr singular on d * 0 - r 

ß^ 1 singular on *Cn~r 

(2) Cochains (integer coefficients) (2) As in (1) plus: wr is integral 
(3) Cocycles (real or integer coefficients) (3) As in (1) or (2) plus: cor regular on ikf« 
(4) Cobounding cocycles (real coefficients) (4) As in (3) plus: cor = 0; ßf_1 unique har

monic 
(5) " Cobounding cocycles (integer coeffi- (5) As in (4) plus : ß**"1 integral 

cients) 
(6) Cobounding cocycles of order q—or tor- (6) As in (4) plus : qW"1 integral 

sion cocycles (integer coefficients) 
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A similar table can be readily constructed for cohomology with coefficients 
integers mod p. 
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TOPOLOGICAL GROUPS 

SOME TOPOLOGICAL NOTIONS CONNECTED WITH A SET 
OF GENERATORS 

P. A. SMITH 

By a local group1 we mean any system X which is like a group except that 
composition is not necessarily defined for all pairs of elements. The associative 
law takes the following form: if xy and yz are defined, then if one of the products 
x(yz), (xy)z is defined, so is the other and the two products are equal. It is as
sumed that each element of X has an inverse (in X) and that the products which 
are defined include Ix = xl = x, xx~x = 1 for all x 6 X. I t is also assumed that 
2/~V~* is defined whenever xy is. Evidently every group is a local group. 

What is meant by a local subgroup of a local group Y is clear : X is a symmetric 
subset of Y which contains the identity and in which composition is simply the 
composition of Y cut down to X. 

Which local groups can be imbedded in groups? It is easy to give examples of 
local groups which cannot be so imbedded. For example2 let X consist of the 
distinct elements 1, x, y, z, u, v together with a = ((x(yz))u)v, b = x(y(zu)v)), 
the partial products of a and b, and the formal inverses of all these elements. 
Assume that no further compositions are defined except the trivial ones (#1 = 
lx = x, xx~x = 1, • • • ) and those required by the associative law (e.g., z(z~1y~1) = 
2/_1). X cannot be a local subgroup of a group since a ^ b. 

Let us call a mapping / of one local group into another a homomorphism if 
f(x)f(y) is defined and equal to f(xy) whenever xy is defined. We shall call a 
homomorphism strong if f(x)f(y) is defined only when xy is defined. An isomor
phism (one-one homomorphism) between local groups is not a symmetric relation 
but a strong isomorphism is, and two local groups which are strongly isomorphic 
to each other are identical in structure. 

The question of imbedding can now be stated as follows: which local groups 
are strongly isomorphic to local subgroups of groups. One can of course bring 
additional elements of structure into the picture by considering topological local 
groups and local Lie groups (their definitions need not be repeated here). The 
following remark however shows tnat so far as imbedding is concerned, it is 
sufficient to consider the purely algebraic case. Let X be a local subgroup of a 
group Q generated by X. If X is topological and possesses a symmetric nucleus 
Y such that YY is defined (in X), then Q can be converted into a topological group 
in such a way that F is a nucleus of Q. If X is a local Lie group, Q will be a Lie 
group. 

The well-known theorem of Cartan concerning the existence of Lie groups 
with given structure constants implies that every local Lie group Y admits a 

1 Called by Malcev [C. R. (Doklady) Acad. Sci. URSS. vol. 32] a symmetric groupoid» 
2 See Malcev, loc. cit. 
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local subgroup X, nucleus of Y, which is imbeddable in a group, i.e., is strongly 
isomorphic to a local subgroup of a group. The existing proofs of the Cartan 
theorem make use of the infinitesimal elements of Lie groups and seem to de
pend, more or less indirectly, on the vanishing of certain 2-dimensional homology 
groups. We shall presently state a result (Theorem 5) about purely algebraic 
local groups which concerns the imbedding of homomorphisms of local groups 
rather than the local groups themselves. Again the vanishing of certain 2-di
mensional connectivities is involved, this time quite explicitly. 

We begin by defining certain groups pi, p2 associated with a local group X. 
We denote by G(X) the group of equivalence classes of words formed with the 
elements of X — {1J, two words being equivalent if one is obtainable from the 
other by insertions and deletions of syllables of the form xx"1. (G(X) is not 
necessarily a free group since x may equal x"1.) Let w be a word formed with 
the elements of X — {1}. Call allowable any insertion of parentheses into w 
which would reduce w to an element of X if all the indicated products were 
defined. Call w a local word if the products indicated by any allowable insertion 
of parentheses are all defined. If w is local, any insertion of parentheses will reduce 
w to an element ß(w) of X. Using the associative law it can be shown that ß(w) 
is independent of the choice of parentheses. Now let V(X) be the totality of 
equivalence classes of local words w such that p(w) = 1. V(X) is in general not 
a group. Let D(X) be the smallest normal subgroup of G(X) containing V(X). 
Let 

(1) h(X) = G(X)/D(X). 

Assume now that X is a local subgroup of a group Q generated by X. The 
mapping which associates to each word formed with the elements of X — {1} 
its group product in Q induces a homomorphism a of G(X) onto Q. Let R(Q, X) 
he the kernel of a. Evidently V(X) CZ R(Q} X), hence D(X) C R(Q, X). Let 

fo(Q, X) = R(Q, X)/D(X). 

We shall say that Q is simply connected relative to X if £i(Q, X) = {1}. 

THEOREM 1. Let X be a local subgroup of a group Q generated by X and let Qf 

•be a group. If Q is simply connected relative to X, any Jwmomorphism of X into 
•Q' can be extended in a unique manner to a homomorphism of Qr into Q.3 

Let Q, Q be groups generated by local subgroups X, X and let r be a homo
morphism of Q onto Q. We shall call (Q, X, r) an even covering of (Q, X) if r | X 
is a strong isomorphism of X onto X. 

THEOREM 2. If X generates Q, there exists an even covering (Q, X, r) of (Q, X) 
such that Q is simply connected relative to X. This covering is essentially unique and 
Q QÉ fc(X). (See (1).) 

8 Proofs of the principal theorems here stated will appear elsewhere. 
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Theorems 1 and 2 are easily proved counterparts of well-known theorems 
about topological groups. 

Let x = {X} be a class of local subgroups of a group Q and assume that each X 
generates Q. Call Q simply connected relative to x if it is s.c. with respect to 
each X. Suppose that the class % is determined by Q. Then simple connectedness 
relative to x is a group theoretic invariant of Q. For example, x might consist 
(1) of all X's generating Q or (2) of all X's generating Q and such that fa(X) = {1} 
(see below). In the first case it seems likely that the only groups which are s.c. 
relative to x are the cyclic groups of orders 1, 2, 3. 

A relation between algebraic and topological simple connectedness is given 
by the following theorem. 

THEOREM 3. Let Q be a locally connected topological group and let x consist of 
all symmetric nuclei of Q. Then Q is simply connected in the topological sense* if 
and only if Q is"simply connected relative to x-

We turn to the definition of p2 . Let X be a local group and let A(X) be the 
totality of formal expressions. 

a = (flfi * vi) • • • (gn * vn) 

where gi G G(X), Vi £ V(X). We introduce an associative multiplication into A 
by juxtaposition, and a neutral element a0. We define 

ß"1 = (0i * vT1) • • • (Qn * «r1). 

Wè allow G(X) to operate on A(X) according to the rule 

g * a = (ggx *vx) • • • (ggn * vn). 

Let ß be the mapping A —> D(X) defined by 

ßa = ÇiVigr1 • • • gnVngrT1. 

We introduce an equivalence ^ into A(X) by the relations 

(2) g * 1 ~ Oo 

(3) (g * vO(g * v2) ~ g * v&2 

(4) gh*v~g* hvhT1 

(5) aio^f"1 ^ ßai * 02. 

These formulas of course define relations only when they are meaningful. Thus 
(2) is a relation only when Vi, v2, v±v2 are in 7(X) ; (3) is a relation only when 
v and AvA""1 are in V(X). In (4) on the other hand a\, «2 are arbitrary elements 
of A(X). 

The equivalence classes of A(X) form a multiplicative system SÏ(X). I t 

4 As defined by Chevalley [The theory of Lie groups]. 
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follows from (2) and (5) that aaT1 ~ aQ. Hence 9Ï(X) is a group. It is easy to 
see that ß induces a homomorphism 

T : «(X)-*JD(X). 

Let p2(X) be the kernel of 7. The group p2 lies in the center of 31 and is therefore 
abelian. For suppose a is a representative in A of an element of p2(X). Then 
ßa = 1 so that aaioT1 ^ 1 * ai = ai for each ai E A(X). 

Now assume that X is a local subgroup of a group Q generated by X. Let 
K(Q, X) be the simplicial complex whose n-simplexes are subsets (qo, • • • , qn) 
of Q of cardinal number n + 1 such that qï~lqo £ X (i, j = 0, • • • , n). I t is easy 
to see that K is connected. It can be shown that 

fo(e, X) = ^(K), fe(X) = 7T2(70 

where 7C = K(Q, X) and 7r denotes homotopy groups.6 

If Q is a topological group satisfying certain conditions, pi and p2 determine 
the first and second homotopy groups of Q. As concerns in , the situation is 
partially described by Theorem 3. We pass to the case of 7r2. Let X be a local 
subgroup of a local group Y. The relation X CZ Y gives rise in a natural manner 
to a homomorphism i\ p2(X) —> p2(F). We denote the image &p2(X) by p2(X, Y). 
Now let Q be a topological group and consider the following conditions: 

I. For every nucleus V there exists a nucleus U C V such that singular 
1-spheres in U are nullhomotopic in V. 

II. There exists a nucleus W such that singular 2-spheres in W are null
homotopic (in Q). 

THEOREM 4. Let Q be an arcwise connected topological group satisfying conditions 
I and II . Then there exists a nucleus F0 such that every symmetric nucleus X con
tained in Yo admits a symmetric subnucleus X such that p2(X, Y) = 7r2(Q). 

It is known that if Q is a Lie group, then 7r2(Q) is trivial. This is not true how
ever for topological groups in general.6 We shall see that the problem of deter
mining whether or not the second homotopy group of a topological group Q 
is trivial can be reduced to a purely algebraic study of the "extensions" of the 
local subgroups of Q. How the algebraic structure of Q determines the group 
7T2(Q) when it is not trivial is not yet known. 

Let Y be a local group. An extension of F is a pair (E, <£) where E is a local 
group and <j> a strong homomorphism of E onto Y. Note that if F is a group, so 
is E. Let (E, (f>) be an extension of F and let X be a local subgroup of F . I t is 

6 Since K is not a space, «ri and ir* must be understood as being defined combinatorially. 
Thus 7T2 is the second homology group, based on finite chains and integer coefficients, of 
the universal covering of K. 

6 An example of an arcwise topological group Q for which W2{Q) is infinite cyclic was 
communicated to me independently by Dr. H. C. Wang and Dr. Robert Taylor. 
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easy to see that by taking E' = ^ _ 1 X and <j>f = <f> \ E', we obtain an extension 
(Ef, $') of X. We write (Ef, </>') = (E, 0) | X. 

Let F, Z be local groups such that F C Z. An extension (JB, $) of F will be 
called extendible over Z if there exists an extension (#1 , <£i) of Z such that (E, 
<f)) = (E± , «fr.) I F. We shall say that (E, <j>) is extendible over Z from X, where 
X is a local subgroup of F, if (E, $) | X is extendible over Z. We can now state 
the following theorem. 

THEOREM 5. Let X and Y be local subgroups of a group Q with X a local sub
group of Y. Assume that X generates Q, that Q is simply connected with respect to 
X, and that Y contains no elements of order 2. Then a necessary and sufficient 
condition that every extension of Y be extendible over Qfrom X is that p2(X, F) = {1}. 

Suppose Q is a simply connected topological group satisfying conditions I 
and II and that Q does not possess "arbitrarily small" elements of order 2. 
From Theorems 4 and 5 we see that there exists symmetric nuclei X and F in Q 
with X C F such that the question whether or not 7r2(Q) is trivial is equivalent 
to the question whether or not all extensions of F are extendible over Q from X. 

By using Theorems 1 and 2 it is easy to see that an extension (E, $) of a 
subgroup X of a group Q generated by X is extendible over Q if and only if E 
is imbeddable in a group. This suggests another form for Theorem 5; we stato 
it only for the case X = F. 

THEOREM 5'. Let X be a local subgroup of a group Q generated by X and assume 
that Q is simply connected relative to X and that X contains no elements of order 2. 
A necessary and sufficient condition that every local group E which can be mapped 
onto Qby a strong homomorphism be imbeddable in a group is that p2X = {1}. 

Wë now state in rough form an application of Theorem 5' to the problem of 
imbedding local groups in groups. Let Z be a local group and N a "normal" 
local subgroup of Z. Assume that the local groups N and F = Z/N are imbed
dable in groupé, that F contains no elements of order 2, and that p2(F) = {1}. 
Then Z is imbeddable in a group. 

In fact, it can be shown in a fairly straightforward manner that the "cosets" 
of N are contained in larger sets whose union E is a local group which contains 
Z and is mappable onto F = Z/N by a strong homomorphism (determined by 
the natural mapping Z —» Z/N). From Theorem 5', E is imbeddable in a group, 
and therefore so is Z. 

An accurate statement of this theorem is complicated by the fact that the 
concepts "normal local subgroup" and "local quotient group" are somewhat 
nebulous. When accurately stated, the theorem asserts that a certain local 
subgroup Z' of Z, rather than Z itself, is imbeddable. When Z is topological, 
Z' can be taken to be a nucleus. The theorem can be given a formulation which 
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involves p2(X, F) rather than p2(X). If the group Q in which Z/N is assumed 
to be imbeddable is topological and satisfies conditions I and II, the condition 
p2(X, F) = {1} can be replaced by 7r2(Q) = {1} (see Theorem 4). It is not 
hard to see that in this form, the theorem furnishes a new proof of the fact that 
every local Lie group Z has a nucleus which is imbeddable in a group, provided 
one makes use of the proposition that the second homotopy group of every 
tsemi-simple group is trivial. One has only to take N to be a maximal solvable 
local subgroup of Z, so that N/Z is semi-simple,7 

COLUMBIA UNIVERSITY, 
NEW YORK, N. Y., U. S. A. 

7 That solvable and semi-simple local Lie groups are imbeddable in groups (or at least 
Admit imbeddable symmetric nuclei) is little more than a triviality. 



PROPERTIES OF FINITE-DIMENSIONAL GROUPS 

DEANE MONTGOMERY 

Topological groups and topological transformation groups are subjects with
out a very clear dividing line. To mention one connection, a subgroup fl" of a 
group G can be regarded as a transformation group acting on'ö by either left or 
right translations or by inner automorphisms. This paper recalls a few of the 
results and problems in bqth topics. 

Let G be a topological group and M a topological space. A function f(g; x) = 
g(x) defined and continuous on G X M with values in M is called a transforma
tion group if 

(a) for each fixed g, g(x) is a homeomorphism of M onto itself, 

(b) giMx)] = (gig2)(x). 

The transformation group is called effective if only the identity leaves all of M 
fixed. The set G(x) for any a; in I f is called the orbit of x. The spaces G and M 
will always be locally compact and separable metric so that dimension theory 
may be used. When G and M coincide and G acts on itself by translation, the 
subject becomes the study of the topological group G. 

A group which has a simple structure may offer difficult questions when 
operating as a transformation group. For example, the ways in which a cyclic 
group of order 2 can operate on a manifold, even on E*, are far from completely 
known. 

If h is any homeomorphism of M onto itself, then the above transformation 
group determines another in which g(x) is replaced by (hgh~1)(x). Two trans
formation groups related in this way are called equivalent and it is natural to 
try to determine conditions which imply the equivalence of two transformation 
groups. When equivalence is likely but unproved, it can be asked if some of 
the homology or other properties of the two transformation groups are the 
same. 

I t is often conjectured that many transformation groups are equivalent to 
known or comparatively simple ones. One question of this kind is the problem 
of Hilbert which asks, when G and M are both manifolds, whether coordinates 
may be so introduced in G and M that/(<7; x) becomes analytic in both variables. 
This is probably true in 1 below and at least in part in 2. 

1. G is a manifold which acts on itself by group translation. 
2. G is a compact manifold, and M is any manifold. In this case it follows 

from the work of von Neumann [13] that G is a Lie group, so that analytic 
parameters can be introduced into G; thus the problem 2 is that of also choosing 
x so that f(g; x) is simultaneously analytic. 
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Case 2 suggests the following: 
2'. If G is compact (not necessarily a manifold) and acts effectively on a 

manifold M, does this imply that G is a manifold, and hence a Lie group? 
In connection with 2 and 2', Zippin and the author have shown [10; 8; 16] 

that any compact connected group acting effectively on a three-dimensional 
manifold M must be a Lie group. If M = Ez, we showed further that G must be 
equivalent either to the group of all rigid motions about an axis or to the group 
of all rigid motions about a point. The case where G is a compact, zero-dimen
sional, effective group on three and higher dimensional manifolds remains open. 
Presumably such a G must be finite as suggested in 2r, but this has not been 
proved, and even if this is assumed and M = E*, it is not known whether G 
is equivalent to a group of orthogonal transformations. This latter question 
has not been answered even in the differentiable case. I t has been shown that a 
compact effective zero-dimensional group acting on a two-dimensional manifold 
is finite. 

When M is an n-dimensional manifold and G is compact, effective, and has 
locally connected orbits, Zippin and the author have shown that G must be 
a Lie group [12]. This result is related to the fact that a pointwise periodic 
homeomorphism of a manifold must be periodic, that is, if every point has a 
period, then these periods are bounded [7]. If M is differentiable, G is compact 
and effective, and each element of G is of class C1, then G is a Lie group and 
f(g; x) is of class C in both variables. Bochner and the author have shown [1] 
that if G is a Lie group and if f(g\ x) has certain properties of differentiability or 
analyticity with respect to x, then f(g\ x) has the same properties with respect 
to g. If M is a manifold and G is finite, many beautiful results have been ob
tained by Newman and Smith. 

Even when G is a Lie group and M is a differentiable or analytic manifold 
and if f(g\ x) is assumed simultaneously differentiable or analytic, then many 
problems remain. At first glance this might seem unlikely after the great work 
of Lie and his followers. But much of their work is concerned with local questions 
and is not concerned with the topology of orbits or the interconnection of the 
topology of orbits, group, and space. Much progress has been made recently, 
especially by the French mathematicians, on the important case where a com
pact Lie group acts transitively on a compact manifold. 

When a compact group acts intransitively, the orbits decompose the space 
in a manner reminiscent of a fibering, but there may be various kinds of sin
gularities, and this suggests that it might be useful to consider fiberings with 
singularities to a greater extent than has been done so far. 

For the remainder of the paper the topological group G will be considered 
for its own sake. As has been remarked this is a special case of the study of 
transformation groups. It is helpful to assume that G is n-dimensional and 
this will be done from this point on. Dimension is used in the sense of set theory 
and does not necessarily mean that G has local coordinates. 
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If H is a closed subgroup, it can be shown, using a theorem of Hurewicz, that 
dim G S dim H + dim G/H. 

I t is probable that 

dimG = dimff + dim G/H, 

but this has been proved only in a few special cases. It has not been proved 
in general that dim G/H is finite, although the author has proved this when 
H is abelian. If H is n-dimensional, and G is connected, then H = G. 

In low dimensions the structure of G can be analyzed completely, although 
not without considerable effort. If dim G = 1, G connected, then G is either com
pact or isomorphic to the group of real numbers. If dim G = 2, G connected, 
then G is either abelian and has a known structure or else it is the nonabelian 
group of transformations of the form ax + b, a positive. If G is locally connected 
and dim G = 1, 2, or 3, then G must be locally euclidean. In these cases, that is, 
G locally connected and dim G = 1, 2, 3, it is known that G is a Lie group [4]. 

For a general n, the local topological structure of G is known when G is com
pact or abelian by the work of von Neumann and Pontrjagin [1]. In this case 
there is an open set U including e with U a direct topological and group theoretical 
product 

U = ZXC 

where Z is a compact zero-dimensional group and C is an n cell and a local Lie 
group. In the general case not nearly this much is known, but, using Gleason's 
result on the existence of an arc in a locally compact connected group [2], it 
has been shown that there is a neighborhood XJ of e with U a topological product 

u = zxc 
where Z is a compact zero-dimensional set and C is a connected, locally con
nected, invariant, n-dimensional local group [5]. By retopologizing the sub
group generated by C it is possible to prove the following theorem. 

THEOREM 1. Let G be a locally compact connected n-dimensional group. Then 
there exists a connected locally connected locally compact n-dimensional group L 
and a continuous one to one homomorphism of L into G such that h(L) is everywhere 
dense in G. 

A familiar illustration occurs when G is a solenoid and L is the group of real 
numbers. This result reduces many questions about groups to the locally con
nected case. 

Locally connected n-dimensional groups have been shown to have a few 
properties which make them resemble n-dimensional manifolds [6]. If such a 
group contains a closed n-dimensional subset E, then E contains an inner point. 
A similar fact is true for an n-dimensional homogeneous space of a locally con
nected group. In either case a sufficiently small compact set which carries an 
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essential n — 1 cycle must separate, and a closed (n — 1)-dimensional set must 
separate locally. Local homology connectedness can be proved in some dimen
sions. More generally, if a space M has a certain property called local homo
geneity which, speaking roughly, requires that the space can be deformed, 
locally, rather freely, then M has the above-mentioned properties of a manifold. 
The property of local homogeneity is possessed by all manifolds but in how far 
it may characterize manifolds is not known and is probably worth study. 

In another direction and by using some of the above results, Zippin and the 
author [9] have shown the following: 

THEOREM 2. Let G be a locally compact connected n-dimensional group, n > 0, 
which is not compact. Then G contains a closed subgroup isomorphic to the real 
numbers. 

I t was shown previously by Gleason [3] that every n-dimensional group, 
n > 0, contained a one-parameter subgroup and by Zippin [15] that every two-
ended group, whether finite-dimensional or not, contained a subgroup iso
morphic to the real numbers. 

One of the tools used in proving Theorem 1 is the device of considering G as 
acting on itself by inner automorphisms. A brief outline of the proof is now 
given. Assuming the theorem false implies the existence of a compact con
nected abelian subgroup of positive dimension. Using inner automorphisms 
shows then that every element of G is in such a compact abelian subgroup and 
this turns out to be a contradiction to the noncompactness of G. 

Theorem 1 has as a corollary that G is a topological product 

G = F XR 

where R is homeomorphic to a line. This follows from the fact that there is 
a cross section in the large of the cosets of a subgroup isomorphic to the reals. 
I t is probable that a two-ended group is the direct product of a compact group 
and the group of real numbers, but this has not been shown. 

Again by considering the group as acting on itself by inner automorphisms, 
Zippin and the author [11] have proved the following theorem. 

THEOREM 3. Let G be a locally compact, connected, n-dimensional group, n > 1, 
which is not compact. Then G contains a closed connected two-dimensional subgroup 
which is not compact. 

The corresponding fact is not true for compact groups since the proper orthog
onal group in three variables and its covering group do not contain two-dimen
sional subgroups, but these two groups are the only exceptions to the statement 
that every locally compact n-dimensional group, n > 1, contains a closed two-
dimensional subgroup. 
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SOME PROPERTIES OF (L)-GROUPS1 

KENKICHI IWASAWA 

One of the main problems in the theory of topological groups at the present 
time is the study of the structure of locally compact groups in both algebraical 
and topological aspects. In some particular cases, for example, in the case of 
Lie groups, we already know much about them. There are indeed still many 
difficult problems left unsolved concerning Lie groups, but we are in possession 
of powerful methods from algebra and analysis by which we can research deeply 
in these groups. The situation is similar for compact groups or locally compact 
abelian groups, for they are projective limits of Lie groups and we can study 
their structure by approximating them as precisely as we want by Lie groups, 
Thus the fifth problem of Hilbert is solved for these groups. 

However if we leave these particular cases and consider locally compact 
groups in general, our knowledge about them is, it may be said, as yet insuffi
cient. Indeed we have no general method by which we can analyze the structure 
of these groups as we do in the case of compact or abelian groups. Therefore it 
seems advisable to me to consider first the class of those locally compact groups 
which can be studied by known methods just as in the special cases mentioned 
above, and then ask the relation between these groups and general locally com
pact groups. Such are the class of (L)-groups, namely the class of those locally 
compact groups which are projective limits of Lie groups.2 

As one expects from this definition, (L)-groups, in particular connected 
(L)-groups, have properties similar to those of Lie groups in various aspects. 
First, it is easy to see that subgroups and factor groups of (L)-groups are also 
(L)-groups. Moreover we can prove the following theorem. 

THEOREM l.4 Let G be a connected locally compact group and N a closed normal 
subgroup of G. If N and G/N are both (L)-groups, then G itself is an (L)-group. 

The proof is essentially based upon the following lemma. 
1 This address was listed on the printed program under the title Locally compact groups, 
2 In my paper, On some types of topological groups, Ann. of Math. vol. 50 (1949), I defined 

the (L) -group as a locally compact group G containing a system of normal subgroups 
Na such that G/Na are Lie groups and such that the intersection of all Na is e. If G is a 
projective limit of Lie groups, G surely contains such a system of normal subgroups, and 
the converse can also be proved to be true when we assume that G is connected. But we do 
not know whether these two definitions are completely equivalent. 

8 If we take the former definition of (L)-groups, we cannot yet decide whether a factor 
group of an (L)-group is always an (L)-group or not. 

* For the proof of following theorems see the paper of K. Iwasawa, On some types of topo
logical groups, Ann. of Math. vol. 50 (1949). Cf, also A. M. Gleason, On the structure of 
locally compact groups, Proc. Nat. Acad. Sci. U. S. A. vol. 35 (1949). 
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LEMMA. Let G and N be as above. If N and G/N are both Lie groups, G itself is 
also a Lie group. 

Theorem 1 and the foregoing remark show us that the class of connected 
(L)-groups is closed under the group-theoretical operations, such as taking 
subgroups, forming factor groups or group extensions. Now Lie groups are of 
course (L)-groups, and compact groups and locally compact abelian groups 
are also known to be (L)-groups. Therefore those connected locally compact 
groups, which can be obtained from these "known groups" by successive group-
theoretical operations as stated above, are always (L)-groups. In particular, 
connected locally compact solvable groups are (L)-groups. 

A connected (L)-group has a characteristic local structure. We have namely 
the following theorem. 

THEOREM 2. A connected locally compact group G is an (L)-group if and only if 
G is locally the direct product of a local Lie group L and a compact normal sub
group K.B 

This theorem implies in particular that a locally Euclidean (L)-group is a 
Lie group. Therefore, as every connected locally compact solvable group is an 
(L)-group, every locally Euclidean solvable group is a solvable Lie group.6 

As to the global structure of (L)-groups we have the following theorem. 

THEOREM 3. Let G be a connected (L)-group. Any compact subgroup of G is 
then contained in some maximal compact subgroup of G, whereas such maximal 
compact subgroups of G are all connected and conjugate to each other. Let K be one 
of them. G contains then subgroups H±, • • • , Hr, which are all isomorphic to the 
additive group of real numbers and are such that any element g in G can be de
composed uniquely and continuously in the form 

g = h • • • hrk, hi 6 Hi}k Ç K. 

In particular, the space of G is the cartesian product of the compact space of K and 
that of Hx • • • Hr, which is homeomorphic to the r-dimensional Euclidean space. 

This theorem is obviously a generalization of Cartan-Malcev's theorem on 
the topological structure of Lie groups. 

By Theorem 3 we see that the topological structure of a connected (L)-group 
G is completely determined by that of its maximal compact subgroup K. For 
example, the study of the topological structure of a connected locally compact 
solvable group G is reduced to that of a compact abelian group, for we can 
prove in this case that the maximal compact subgroup K is an abelian group. 

6 For a simple proof cf. A. Borei, Limites projectives de groupes de Lie, C. R. Acad. Sci. 
Paris vol. 230 (1950). 

6 Chevalley's theorem. 
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Now, by making use of Theorem 3, we can also prove the following theorem. 

THEOREM 4. A connected locally compact group G contains a uniquely determined 
maximal connected solvable normal subgroup R, in which any other connected 
solvable normal subgroups of G are contained. 

We call such an R, just as in the case of Lie groups, the radical of G. We also 
say that G is semi-simple if the radical R of G is equal to e. In general a connected 
locally compact group G is an extension of the solvable radical R by the semi-
simple group G = G/R. 

For (L)-groups we have moreover the following generalization of E. E. Levi's 
theorem. 

THEOREM 5. Let G be a connected (L) -group and R tlie radical of G. Then G 
contains a subgroup S, such that 
(i) S is the homomorphic image of a connected semi-simple ÇL)-group S' in G, 
(ii) RS = G and R f) 8 is a totally disconnected normal subgroup of G.7 

Now it can be proved that a connected locally compact group G contains 
not only the radical R, but also a uniquely determined maximal connected 
compact normal subgroup N. By making use of these facts we have the following 
theorem. 

THEOREM 6. A connected locally compact group G contains a uniquely determined 
maximal normal subgroup Q of type (L), and G/Q contains no normal subgroup of 
type (L) other than e. 

On the other hand, it follows immediately from the definition of (L)-groups 
that a connected locally compact group G contains a uniquely determined 
minimal normal subgroup Q' of type (L). These facts show us some relations 
between the class of all connected (L)-groups and general connected locally 
compact groups. But we have as yet no essential result concerning the situation 
of connected (L)-groups in the set of all connected locally compact groups. 
However we have the following conjecture:8 

(Ci) Any connected locally compact group is an (L)-group. 
By theorem 6 this conjecture is easily seen to be equivalent to the following :A 

(C2) A connected locally compact group which contains no arbitrary smal 
normal subgroup is a Lie group. 

7 Cf. A. Borei, Limites projectives de groupes de Lie, C. R. Acad. Sci. Paris vol. 230 
(1950) and Y. Matsushima, On the decomposition of an (L)-group, Journal of the Mathemati
cal Society of Japan vol. 1 (1950). 

8 Cf. K. Iwasawa, On some types of topological groups, Ann. of Math. vol. 50 (1949) and 
A. M. Gleason, On the structure of locally compact groups, Proc. Nat. Acad. Sci. U. S. A. 
vol. 35 (1949). 
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We can also prove that (Ci), (C2) are equivalent to the following: 
(C3) A connected locally compact simple group is a simple Lie group. 
If these conjectures could be proved to be true, we would have not only a 

complete solution of the fifth problem of Hilbert, but also decisive progress in 
the theory of locally compact groups. 

INSTITUTE FOR ADVANCED STUDY, 

PRINCETON, N. J., U. S. A. 



ONE-PARAMETER SUBGROUPS AND HILBERT'S FIFTH PROBLEM 

A. M, GLEASON , , 

The affirmative solution of Hilbert's fifth problem requires that we bridge* thé 
gap between topologico-algebraic structure and analytic structure. In building 
this bridge we quite naturally seek an intermediate island on which to rest the 
piers. Such an island is provided by the one-parameter subgroups. One-parameter 
subgroups are themselves a topologico-algebraic concept and their existence 'can 
be demonstrated, in some cases at least, by the methods of topological algebra, 
On the other hand the one-parameter subgroups are perhaps the most striking 
feature of a Lie group and it is known that the analytic structure can be re
covered from them. 

A one-parameter subgroup of a group G is a subgroup which is a (continuous) 
homomorphic image of the additive group of real numbers R. We do not require 
that the subgroup be closed. The structure of such a subgroup can be quite 
complicated, even if the group G is locally compact, a condition which we shall 
assume throughout. If we consider only a part of the subgroup corresponding 
to a small segment of the reals including 0, the complications vanish and all 
such local one-parameter subgroups look the same. In a Lie group there is a 
neighborhood U of the identity e such that every element x oî U is on a one-
parameter subgroup. Furthermore this one-parameter subgroup is unique if we 
require that it go directly from e to re without leaving U. We shall say that a 
group has a canonical family of one-parameter subgroups if there exists a neigh
borhood U with these properties. 

Our intermediate goal is to prove that every locally Euclidean group has a 
canonical family of one-parameter subgroups. Quite recently great strides have 
been made toward this objective. 

An important class of groups is the class of those which contain no small sub
groups; that is, those which have a neighborhood of the identity containing no 
entire subgroup except (e). It has long been known that a group with no small 
subgroups contains a one-parameter subgroup. An extension of this result was 
made by Chevalley and the author independently: A locally connected group 
of finite dimension which contains no small subgroups has a canonical family of 
one-parameter subgroups. Unfortunately little is known about the existence or 
nonexistence of small subgroups in locally connected groups of finite dimension, 
However, under the stronger hypothesis that the group be locally Euclidean, 
Newman has shown that there is a neighborhood of the identity containing no 
finite subgroup. Smith has extended his investigation and shown that if there 
are arbitrarily small subgroups H in a locally Euclidean group, then some of 
them must satisfy the implausible relation dim G/H > dim G. 

Without the hypothesis concerning small subgroups we can say less, but 
still a great deal. The author proved that every n-dimensional group G (n > 0) 
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contains a one-parameter subgroup. Montgomery and Zippin have shown that, 
provided G is not compact, this subgoup can be chosen isomorphic to R. The 
method of proof, in both cases, is to prove the existence of subgroups of lower 
dimension, eventually winding up with a subgroup of dimension one. This 
method does not seem applicable to proving that there is a canonical family of 
one-parameter subgroups. 

On the other side of our island the situation is not so bright. This is to be 
expected; it is here that we must make the transition from topological algebra 
to analysis. On the analytical side of the channel, the stringency of the con
ditions leading to analytic structure have gradually been relaxed from requiring 
three times differentiable coordinates to certain rather strong Lipschitz condi
tions; but all conditions have been truly analytic in character, and it seems safe 
to say that the first purely analytic result derived by the methods of topological 
algebra will prove decisive. 

Consider the class $ of homomorphisms of R into G. (There will of course be 
many distinct homomorphisms onto each one-parameter subgroup.) If G is a 
Lie group, every homomorphism of R into G has the form t —> exp tX where X 
is an element of the Lie algebra fl of G ; hence, we may identify $ with ß. Evidently 
we should attempt to introduce the structure of a Lie algebra into $. 

To introduce the additive structure into $, we again turn to the theory of Lie 
groups for our cue. We have the basic formula 

(1) exp (X + Y) = lim (exp X/n exp Y/n)\ 
»-»00 

To carry this over to $ we must prove that, for any two homomorphisms <pi 
and <P2 of R into a locally Euclidean group, lim„-»Qo(ç?i(l/ri)^(l/w))n exists. If 
this is true, we can define addition in $ quite simply by 

(2) (fit + <p2)(t) = lim (<pi(t/n)<p2(t/n))n. 
n-*oo 

The commutativity of this operation is easily proved, but the associativity is 
in doubt. Scalar multiplication is defined, of course, by (a<p)(t) = <p(at), and it 
satisfies the distributive law with respect to addition. 

If these ideas can be carried out, making $ a linear vector space, it will follow 
that G is a Lie group. For if G is the center of G, then G/C will be represented 
faithfully by the linear transformations induced on <ï> by the inner automorphisms 
of G. Hence G is a generalized Lie group, and, being locally Euclidean, it is a 
Lie group. 

It may be noted that the program here outlined does not actually require 
that we have a canonical family of one-parameter subgroups. I t is sufficient 
that the set of one-parameter subgroups generate G, and this can be shown 
to be no essential restriction. 

HARVARD UNIVERSITY, 
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RECENT DEVELOPMENT OF KNOT THEORY AT PRINCETON 

R. H. FOX 

I shall report1 here on some of the principal results in knot theory obtained 
during the past five years by myself and my colleagues, and try to indicate the 

• trend of these developments.2 

Let us examine the question: What is knot theory and what is its proper 
domain? The subject matter of knot theory is usually considered to be the 
situation in euclidean 3-space of simple closed polygons or of systems of ju. 
disjoint simple closed polygons, 1 é /* < °° • This description of what I may call 
classical knot theory tends, by its narrowness, to isolate the subject from the 
rest of topology. I t is to be hoped that the various special theorems which make 
up classical knot theory will eventually turn out to be particular cases of general 
topological theorems. In working toward this end the following principles seem 
almost obvious: 

(A) The class of polygons should be replaced by a suitable topologically defined 
class of curves. The minimal topologically invariant class is the class of tame 
curves, —those which can be transformed into polygons by autohomeomorphisms 
of the underlying manifold. However an effective topological definition of this 
class is lacking. The maximal class, the class of all simple closed curves, has the 
disadvantage that it introduces into the subject the new complication of local 
pathology.4 I t would seem to be preferable to consider the intermediate class of 
smooth curves,—a curve is smooth if it can be transformed into a polygon by a 
homeomorphism of one of its neighborhoods onto a regular neighborhood of the 
polygon. I t is natural to conjecture that every smooth curve is tame, but this 
has not been proved. 

(B) Euclidean espace should be replaced by other compact ^-manifolds. Since 
the complement of a neighborhood of a smooth curve is a manifold with bound
ary, it would seem advantageous to admit these as well as the closed manifolds. 

In accordance with these principles we see that the natural domain of knot 
theory is the study of the types of ordered systems K = (Ki , K2 , • • • , Kp) of dis
joint oriented smooth simple closed curves in the interior of a compact 3-manifoId 

1 In the interest of brevity several of the definitions are intentionally vague or even 
inaccurate. 

2 Since I am speaking about the work of the group with whom I have been associated 
at Princeton, I shall not be discussing the various recent results obtained in this field by 
Reidemeister and Seifert and those associated with them at Marburg and Heidelberg, 
although there has been a certain amount of overlapping. References to their results may 
be found in [24] and [20]. Numbers in brackets refer to the references at the end of the 
paper. 

3 Terminology introduced in [3]. 
4 Instructive examples of such pathology have been studied by E. Artin and R. }?ox 

[3], R. Fox [10], W. A. Blankinship [6], and W. A. Blankinship and R. H. Fox [7]. 
5 In classical knot theory euclidean 3-space may be replaced with advantage by spherical 

3-space S, which is a compact manifold. 
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M. (Such a system may be called a knot of M è 1 components.) Two knots be
long to the same type if there is an isotopy of M on itself which transforms the 
one knot into the other. 

Knot theory really began in 1910 with the introduction [9] of the group of the 
knot. This is the fundamental group of the complement, G = ir (M — K) = 
ir(M — V), where V is the union of sufficiently small open tubular neighbor
hood's Vi of the component knots Ki, i = 1, ••• , /** It is known that this 
invariant is insufficient; examples to this effect have been given by Dehn,6 

Seifert,6 and J. H. C. Whitehead.6 However it is easy to replace the group by a 
more comprehensive invariant, the group system of the knot. This consists of the 
groups T(Vì) and T(Vì) together with a preferred generator for the infinite 
cyclic group T(Vì), i = 1, • • • , p, the groups w(M — V) and ir(M), and the 
indigenous homomorphisms. These latter may be represented by y, diagrams 

TT(7J > T(VÙ 

i I i = 1, • • • , M, 
TT(M - V) > T(M) 

and there is the usual commutativity around the diagrams. Every known ex
ample of insufficiency of the group is resolved, by the group system. For Dehn's 
example this was shown by Dehn;8 for Whitehead's example it is quite trivial; 
for Seiferts example I have been able to accomplish this7 by considering the 
representations of G in the symmetric group of order 5. Probably the known 
invariants of knot theory can all be expressed as invariants of the group system. 
The question of how strong an invariant the system really is may possibly de
pend on a resolution of the present unsatisfactory state of Dehn's lemma. 

In 1928 Alexander [1] associated with each polygonal knot in 3-space an equiv
alence class of matrices {M) ; invariants of this class and hence of the given 
knot are the elementary divisors and in particular their product A. Alexander 
also showed how to derive an M from the group system; his algorithm requires 
one first to find a presentation of the group of a special kind called canonical. 
I have succeeded in finding an algorithm which is applicable to any presentation 
in which the number of generators is finite. This algorithm makes use of the 
free differential calculus,8 and in fact it was the search for such an algorithm 
which led me to invent this calculus. With this "invariant" algorithm the ma
trices {M}, their elementary divisors, and the Alexander polynomial A are de
fined for an arbitrary finitely generated group G and hence, in particular, for 
any knot in the interior of any compact 3-manifold. A is an element of the 

, integral ring RB of the betti group B of G; it depends on a choice of basis for 
the free abelian group B and is determined up to a factor e which is a unit of 

8 M. Dehn [8], H. Seifert [23], J. H. C. Whitehead [27]. In the examples of Dehn and 
Seifert, p = 1. In the example of Whitehead, n = 2, but his example has the additional 
feature that the complements not only have the same fundamental group but are even 
homeomorphic. 

7 Unpublished, 
8 [11] and [12]. A full account has not yet been published. 
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the ring RB. Because of the indeterminacy, A is essentially a polynomial in 
v variables, where v is the rank of the free abelian group B. For the case of a 
knot in 3-space 8, v = n and a basis t\ , • • • , t? for B is uniquely determined by 
the group system. 

Alexander conjectured and Seifert proved [22] that the polynomial of a tame 
connected knot in S is always symmetric: A(l/t) = t*A(t). G. Torres [25] has 
recently proved that the polynomial of a tame knot of any multiplicity p > 1 
is symmetric: A(l/fc , • • • , 1/Q = ( - 1 ) ^ 1 • • • t"^(k >••",*/.). Whether sym
metry is a property of A for knots in other 3-manifolds than S is not at present 
known; it is definitely not a property of A for an arbitrary finitely generated 
group. 

The trivial property A(l) = 1 of the Alexander polynomial of a tame con
nected knot in 8 has been generalized in several directions. For tame knots in 
S with ß = 2, Torres9 has shown that A(h , 1) = ((tl - l)/(h - 1)) A(h), where 
A(/i) is the polynomial of the first component knot and I is the linking number. 
Corollary: A(l, 1) = I 

The property A(l) = 1 has also been generalized10 to the case of a tame con
nected knot in the interior of a compact 3-manifold M. Let N denote the kernel 
of the injection homomorphism G —> ir (M). I have shown that the group G/[N] 
is an invariant of the injection ir(V) —> ir(M). (This is a refinement of that part 
of the Alexander duality theorem which states that H = G/[G] is an invariant 
of this injection.) From a slight but important strengthening of this theorem 
it follows that the residue class1 Â of A modulo the kernel ideal of the injection 
homomorphism RH(M — K) —» RH(M) is also an invariant of this injection 
(at least for polygonal K). Thus, given M, there is invariantly associated to each 
element of TT(M) a residue class A. This invariant of M is sufficiently strong to 
duplicate Reidemeister's [18] combinatorial classification of the lens spaces, 
and there is some hope that, by this new method, the classification can be made 
topological. 

The covering spaces of spherical 3-space S branched over a tame knot K 
are invariants of the knot, as was pointed out by Alexander [26, p. 158] in 1920. 
Alexander [2], Reidemeister [19], and Seifert [21], [22] gave useful algorithms 
for calculating the homology groups and linking invariants for the cyclic cover
ings Sg , g = 1, 2, • • • , branched over a connected tame knot. It was not clear 
to me whether the results were topologically invariant since branched covering 
spaces had been defined only combinatorially. I have resolved11 this difficulty 
as follows:1 A pair (X, f) consisting of a space X and a continuous mapping / 
of X into a space Y is called a covering of f(X) if the collection consisting of the 
components of the inverse images of the open sets of F is a basis for the open 
sets of X. It may be shown that every covering (X, f) of f(X) can be uniquely 

9 [25]. A similar result is proved for p > 2, and several other theorems of Seifert are 
generalized to the cases ß > 1. 

10 Unpublished. This solves a problem that I proposed at the Princeton Bicentennial 
Conference. See Ann. of Math. vol. 50 (1949) p. 247. 

11 Unpublished. 
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extended to an "optimal" covering (X*, /*) ôf f(X). If we apply this to an 
"unbranehed cpvering" of M — K with Y = M, there results a unique "branched 
(over K) covering" of M which can be recognized intrinsically as a branched 
covering.12 It is of interest to note that application to the case of a locally com
pact space X and the identity mapping / of X into the compact space Y which 
contains only one point not in X leads to the Freudenthal compactification 
[15]. Another application leads to Carathéodory's construction of prime ends. 

The order of the homology group Hg of 8g for a tame connected knot K in S 
is equal [14] to the resultant'of f — 1 and the Alexander polynomial A(t). To 
obtain the finer structure of Hg , one has recourse to the algorithm of Seifert 
[22], which involves finding the gth powers of certain 2h X 2h matrices* where 
h is the genus of K. Using Fibonacci numbers this can be carried out explicitly13 

for A = 1. For the cloverleaf knot (or for any other knot of genus 1 with the 
same polynomial 1 — t + t2), the homology group Hg depends only on the resi
due class of g mod 6; Sg is a Poincaré space for g = =bl (mod 6). Using p-adic 
numbers, Artin proved that among the cyclic coverings Sg (g > 1) of knots of 
genus 1 these are the only Poincaré spaces. 

The linking invariants of a closed oriented 3-manifold M were defined by 
Seifert [23]'. His definition depends on a particular choice of basis for the torsion 
group of M. R. C. Blanchfield [4] developed an invariant definition for linking 
invariants (differing slightly from those of Seifert). Given a matrix F of bound
ary relations and a corresponding matrix S of intersection numbers these in
variants are easily calculated [5] from certain "hybrid" determinants (F\S) 
made up of some columns of F and the remaining columns from S. These linking 
invariants have also been calculated explicitly for the knots of genus one. 

In euclidean 3-space the total curvature of a closed curve C of class- G,f is the 
integral K(C) = fG\ x"(s) \ ds (s = arc length). This definition can be extended 
to arbitrary closed curves by defining, for any closed polygon P, K(P) to be 
the sum of the exterior angles of P, and, for any closed curve C, n(C) to be the 
least upper bound of K(P), P ranging over the polygons inscribed in C. J. W. 
Milnor [17] defines the curvature K(£) of a type E of knot to be the greatest 
lower bound of K(C), C ranging over E. He proved [17] that (I) K(E) < °o if 
and only if E is tame; (II) for tame E, K(E)/27T is a positive integer; (III) for 
tame E and C Ç Ë, K(C) > K(E) ; (IV) E is unknotted if and only if /<(E)/2TT = 
l.14 Using the number of elementary divisors of the Alexander matrix M, I 
have shown [13] that there exist types E for which K(S)/27T is any prescribed 
positive integer. Using Morse's critical point theory, Milnor has generalized 
[16] some of these results to higher dimensions. 
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