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PRÉPARATION DU CONGRES 

Un Comité consultatif international de neuf membres, désigné par l'Union mathé­
matique internationale, et présidé par M. Adrian ALBERT, a constitué 33 Commissions 
spécialisées ; les compositions de ce Comité, de ces Commissions et les recommanda­
tions faites par eux au Comité d'organisation, sont confidentielles. 

Le Comité national français de mathématiciens a constitué le Comité d'organisation 
dont les membres sont : MM. F. BRUHAT, H. CABANNES, J. CERF, G. CHOQUET, J. DIEU-
DONNé, J.-P. KAHANE, P. LELONG, J. LERAY, président, A. LICHNEROWICZ, J.-L. LIONS, 

J. NEVEU, L. SCHWARTZ, J.-P. SERRE. 

Ce Comité d'organisation a constitué un Comité local dont les membres sont : 
MM. J. DIEUDONNé, président, P. KRéE, E. MéNAGER et un Comité financier, dont les 
membres sont: MM. P. BELGODèRE, R. CHéRADAME, J. DIEUDONNé, R. FORTET, 

P. LELONG, président, Y. MARTIN, E. MéNAGER, L. MOTCHANE, M. d'OLiER. 

Le Congrès a bénéficié de l'aide d'un Comité de soutien pour la diffusion des travaux 
du Congrès, composé comme suit : Président : M. Georges DESBRIèRE, Vice-Président 
de Péchiney, Président de l'Association pour le Développement de l'Enseignement et 
des Recherches auprès des Facultés des Sciences de l'Université de Paris (A.D.E.R.P.). 

Membres : MM. BAUMGARTNER, Président de Rhône-Poulenc, CHASSAGNY, Prési­
dent de l'Union syndicale des industries aéronautiques et spatiales, DELOUVRIER, 
Président de l'Électricité de France, DONTOT, Président de la Fédération nationale des 
industries électroniques, FERRY, Président de la Chambre syndicale de la sidérurgie, 
GALICHON, Président d'Air France, GLASSER, Président du Syndicat général de la 
Construction électrique, GRANDPIERRE, Président de l'Institut des hautes études 
scientifiques, HAAS-PICARD, Président de l'Union des Chambres syndicales de l'indus­
trie du pétrole, HOTTINGUER, Président de l'Association professionnelle des Banques, 
HUVELIN, Président du Conseil National du Patronat Français, LESOURNE, Président 
de la S. E. M. A. (METRA International), d'ORNHJELM, Président de la Chambre 
syndicale des Constructeurs d'Automobiles, Ambroise Roux, Président de la Com­
pagnie générale d'Électricité. 

M. Etienne WOLFF, Administrateur du Collège de France, a eu l'obligeance d'y 
accueillir le Secrétariat du Comité d'organisation. 

Ce Secrétariat a été assuré par Mme M. GOYVAERTS. 

* * * 

La publication des Actes du Congrès a été assumée par MM. M. BERGER, J. DIEU-
DONNé, J. LERAY, J.-L. LIONS, P. MALLIAVIN, J.-P. SERRE. 
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M o n s i e u r G e o r g e s P O M P I D O U , 
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Le Congrès a bénéficié des dons suivants : 

Subvention du Gouvernement de la République Fran­
çaise 328.000 F 

Don du Comité de soutien pour la diffusion des tra­
vaux du Congrès 162.000 F 

Subvention du Conseil général des Alpes-Maritimes. 50. 000 F 
Prêt gracieux du Palais des Expositions par la Ville 

de Nice. 
Prêt gracieux et subvention de l'Université . . . 15.000 F 

Le total des cotisations des Congressistes fut de . 576.000 F 
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diffusion des travaux du Congrès sont : 
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SEANCE INAUGURALE 

Monsieur Olivier GUICHARD, Ministre de l'Éducation nationale, déclare ouvert 
le Congrès international des mathématiciens de Nice, le mardi 1er septembre 1970, 
à 9 h 30. 

Il donne la parole à Monsieur Henri CARTAN, Président de l'Union mathématique 
internationale, qui propose aux Congressistes d'élire Président du Congrès Monsieur 
Jean LERAY, Président du Comité d'organisation ; cette élection a lieu ainsi que celle 
d'un Président d'honneur, Monsieur Paul MONTEL. 

Monsieur Paul MONTEL et Monsieur Jean LERAY accueillent les Congressistes et 
remercient les personnalités qui ont collaboré à l'organisation du Congrès. 

Monsieur Jacques MéDECIN, Député-Maire, souhaite la bienvenue aux Congres­
sistes dans le Palais des expositions de la Ville de Nice. 

Monsieur Henri CARTAN fait le rapport suivant : 

C'est au Professeur J.-C. FIELDS que revient l'initiative d'une fondation qui per­
mettrait, à l'occasion de chaque Congrès International des Mathématiciens, d'honorer 
par deux médailles d'or des travaux mathématiques d'un intérêt exceptionnel. Sa pro­
position fut acceptée, après sa mort, par le Congrès International de Zürich en 1932. 
Les fonds nécessaires provenaient d'un excédent de recettes du Congrès International 
de 1924, tenu à Toronto (Canada), sous la présidence du Professeur FIELDS. Les deux 
premières médailles Fields furent attribuées en 1936 au Congrès d'Oslo; puis, après 
une longue interruption due à la guerre, deux médailles furent décernées lors de chacun 
des Congrès Internationaux des Mathématiciens : à Harvard en 1950, à Amsterdam 
en 1954, à Edinburgh en 1958, à Stockholm en 1962. Au Congrès de Moscou, en 1966, 
quatre médailles Fields furent attribuées. Chaque médaille est accompagnée d'un chèque 
de 1.500 dollars canadiens ; le nom de Fields ne figure pas sur la médaille. 

Se conformant à une procédure maintenant bien établie, le Comité Exécutif de l'Union 
Mathématique Internationale a nommé, il y a quelque temps, un Comité International 
de huit membres, chargé de choisir les lauréats pour le présent Congrès. Ce Comité 
Fields 1970 se composait des Professeurs J. L. DOOB, F. HIRZEBRUCH, L. HöRMANDER, 
S. IYANAGA, J.-W. MILNOR, I. R. SHAFAREVITCH, P. TURAN, et moi-même comme pré­
sident. J'ai hautement apprécié la collaboration de chacun de mes collègues, et je suis 
heureux de leur exprimer mes chaleureux remerciements. Je suis aussi reconnaissant 
aux mathématiciens qui, consultés en privé, ont préparé des rapports qui ont grandement 
aidé notre Comité dans sa tâche. 

Le Comité a décidé, non sans quelque hésitation, de se conformer à la tradition qui 
veut que seuls soient pris en considération les titres de mathématiciens âgés de moins 
de quarante ans. Les candidats proposés par les différents membres du Comité compo­
saient initialement une liste d'une vingtaine de noms. Après une discussion au cours de 
laquelle, conformément au vœu du Professeur FIELDS, nous n'avons pris en considération 
que le point de vue scientifique en laissant de côté toute question de nationalité, nous 
sommes progressivement arrivés à établir une liste de quatre noms. Ce fut un choix 
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difficile ; nous sommes parfaitement conscients que d'autres mathématiciens très brillants 
auraient aussi pu être choisis pour une médaille Fields ; nous savons également que 
d'autres, plus jeunes encore, et dont les titres n'ont même pas été discutés cette fois-ci, 
pourront avoir des chances sérieuses dans quatre ans. Quoi qu'il en soit, nous sommes 
convaincus que ceux que nous avons finalement choisis sont des mathématiciens d'un 
mérite exceptionnel, et que chacun d'eux a contribué à donner un nouveau visage à une 
branche importante des mathématiques. Ce sont, dans Vordre alphabétique : 

Alan BAKER, 
Heisuke HIRONAKA, 
Sergei NOVIKOV, 
John G. THOMPSON. 

Malheureusement, Sergei NOVIKOV a été dans l'impossibilité de venir à ce Congrès. 
Je prie Messieurs BAKER, HIRONAKA et THOMPSON de venir recevoir leur médaille des 

mains de Monsieur le Ministre de l'Éducation nationale, M. Olivier GUICHARD. 

Monsieur Olivier GUICHARD, Ministre de l'Éducation nationale, remet les médailles 
Fields aux quatre lauréats, qu'il félicite. 

Il prononce un discours, qui décrit l'essor mathématique actuel et la gravité des 
problèmes d'enseignement et d'éducation en résultant. Ce discours est publié et analysé 
le jour-même par la presse. 

Monsieur Jean LERAY rappelle le fonctionnement du Congrès : 

— chaque matin, deux conférences générales consécutives, d'une heure, s'adressent 
à tous les Congressistes ; 

— chaque après-midi, un choix d'exposés spécialisés, de cinquante minutes, chacun 
des Congressistes ayant la possibilité d'en écouter trois ; 

— chaque Congressiste a reçu, imprimées, les 265 Communications individuelles ; 
elles ne peuvent pas être exposées oralement ; 

— des groupes de Congressistes peuvent obtenir des salles pour des réunions 
mathématiques non prévues au programme officiel. 

Les travaux des quatre nouveaux titulaires de médailles Fields sont alors exposés 
par les rapports ci-après (p. 1-16). 



SEANCE DE CLOTURE 

Monsieur Jean DIEUDONNé, au nom du Comité d'organisation, déclare notam­
ment : 

The Acts of the Congress will be printed as soon as possible, and distributed to every 
mathematician regularly registered at the Congress. The cost of the printing will be 
borne partly by the fees of the participants, partly by a subsidy from the French govern­
ment, and partly by a subsidy granted by the « Comité de soutien pour la diffusion des 
travaux du Congrès » sponsored by associations of french companies and chaired by 
Mr. G. DESBRIèRE, Vice-Chairman of Péchiney. 

Puis il pose la question suivante, en français et en anglais : 

As you know, this Congress is the first one in which there are no 10 minutes talks, 
although printed communications have been accepted. The decision to allow only 
50 minutes lectures given by invitation was taken unanimously by the international 
advisory Committee and the organizing Committee. Of course the corresponding 
Committees for the 1974 Congress are not bound by this decision and may adopt a different 
policy. But the Organizing Committee thinks that it might be useful to the organizers 
of the 1974 Congress to have the opinion of this Congress regarding the new organization 
of the lectures. I will therefore ask those who are in favor of the continuation of the 
policy adopted in the 1970 Congress, namely to have only 1 hour and 50 minutes invited 
talks, plus written communications, but no 10 minutes talks, to raise their hands. 

Against this continuation, and for a return to the previous tradition ? 
Abstentions ? 

Le résultat de ce sondage d'opinion est le suivant : deux fois plus de voix pour la 
suppression des Communications individuelles orales que pour leur rétablissement; 
pas d'abstention. 

Monsieur M. F. ATIYAH, au nom du Comité exécutif de l'Union Mathématique 
Internationale, remercie tous ceux qui ont subventionné et organisé le Congrès. 

Monsieur Henri CARTAN fait la communication suivante: 

Comme Président sortant de l'Union Mathématique Internationale, j'ai l'agréable 
devoir d'annoncer que la Sixième Assemblée Générale de l'Union, tenue à Menton les 
28 et 29 août 1970, a élu pour une période de quatre ans, commençant le 1" janvier 1971, 
le nouveau Comité Exécutif que voici : 

Président Professeur K, CHANDRASEKHARAN, 

Vice-Présidents { D e a n A d r i a n A" ^™™> 
l Académicien M. PONTRYAGIN, 
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Secrétaire Professeur Otto FROSTMAN, 

" Professeur M. F. ATIYAH, 
Professeur Y. KAWADA, 

Membres < Professeur N. H. KUIPER, 

Académicien M. NICOLESCU, 
. Professeur G. VESENTINI. 

Vous voudrez certainement, comme moi-même, souhaiter au nouveau Comité Exécutif 
un plein succès dans les tâches qui l'attendent. L'Union Mathématique Internationale 
s'efforcera, comme par le passé, j'en suis sûr, de prendre toutes les initiatives pouvant 
favoriser la coopération active et amicale entre les mathématiciens du monde entier, 
ou contribuer au développement des mathématiques dans les pays moins favorisés. 

Je me réjouis que ce Congrès ait permis de réunir à Nice de nombreuses délégations 
de presque tous les pays où l'on cultive les mathématiques. La participation de certains 
d'entre eux aurait été souhaitée plus complète encore ; j'exprime le vœu qu'elle le soit 
lors du prochain Congrès de 1974. 

Au nom du Comité qui a été désigné pour étudier le lieu du Congrès de 1974, je prie le 
Président LERAY de bien vouloir donner la parole au Professeur H. A. HEILBRONN, 
qui va parler au nom de la Société Mathématique du Canada. 

Monsieur H. A. HEILBRONN, au nom de la Société Mathématique du Canada et au 
nom de l'Université de la Colombie Britannique, offre au Congrès International des 
Mathématiciens de se réunir en 1974 à Vancouver (Canada). 

Cette offre est chaleureusement acceptée par le Congrès, dont le Président remercie 
Monsieur H. A. HEILBRONN et l'Université de la Colombie Britannique. 

Aucun Congressiste ne demandant la parole, le Président remercie tous ceux qui ont 
apporté leur patronage et qui ont généreusement contribué à la diffusion des travaux 
du Congrès, notamment Monsieur le Président de la République, Monsieur le Premier 
Ministre, Monsieur le Ministre de l'Éducation nationale et le Comité de soutien pour 
la diffusion des travaux du Congrès. Il adresse ses remerciements à tous les Congres­
sistes et spécialement aux Conférenciers. Il déclare le Congrès International des 
Mathématiciens de 1970 clos, le jeudi 10 septembre, à 15 h 30. 



LISTE DES CONGRESSISTES 

Les noms des Membres de Délégations sont en italique. 
(G) désigne les Auteurs d'une conférence générale (T. I. de ces Actes), 
(A), ..., (F2) désigne les Auteurs d'un exposé publié dans la Section (A), ..„ (F2) de ces 

Actes, 
* désigne les auteurs de l'une des 

« 265 Communications Individuelles, Congrès International des Mathématiciens, Nice, 
1970, Gauthier-Villars, éditeur ». 

\ARNES Johan F. (Norvège) 
iBELLANAS Pedro (Espagne) 
\BHYANKAR S. (U. S. A.) 
\BRAHAM Samuel (Israël) 
VBUBAKAR Iya (Nigeria) 
\CKERMANS Stan T. (Pays-Bas) 
*kCKLER Lynn (U. S. A.) 
^CZÉL Janos (Canada) 
WAMS Frank (Grande-Bretagne) * 
^DAMSON Iain Th. (Grande-Breta­

gne) 
U3JAN S. I. (U. R. S. S.) (Bl) 
*kDOMIAN G. (U. S. A.) 
^GINS B. R. (U. S. A.) 
IGMON Shmuel (Israël) (DIO) 
iGOSTINELLI Cataldo (Italie) 
iGOSTON Max (U. S. A.) 
^HLUWALIA Daljit (U. S. A.) 
UIMAD Salah (Syrie) 
UGNER Alexander (Autriche) 
URAULT Hélène (France) 
VKBAR-ZADEH Hassan (France) 
»kKIZUKI Yasuo (Japon) 
tKKAR Marie-Thérèse (France) 
tKKAR Mohamed (France) 
UCUTOWICZ Edwin J. (France) 
1LAS Ofelia (Brésil) 
ILBASINY Ernest L. (Grande-Bre­

tagne) 
iL-BASSAM Mohammed (Irak) 
kLBERT Adrian (U. S. A.) 
iLBRECHT Ernst (All. de l'Ouest) 
ALBRIGHT Hugh (U. S. A.) 
ILDER Henry (U. S. A.) 
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ALMGREN Frederick (U. S. A.) 

(Dii) 
ALPERIN Jonathan (U. S. A.) 
ALTERMAN Zipora S. (Israël) * 
ALTMAN Allen (U. S. A.) 
AMANN Herbert (Ail. de l'Ouest) 
AMARA Mohamed (Tunisie) 
AMATO Francesco 
AMATO Vittoria 
AMAYO Ralph (Grande-Bretagne) 
AMBROSE Thomas (Irlande) 
AMICE Yvette (France) 
AMIR Dan (Israël) 
AMIR-MOÉZ Ali (U. S. A.) * 
AMITSUR Shimshon (U. S. A.) (Bl) 
AMMANN André (Suisse) 
ANANDAM Victor (France) 
ANCOCHEA German (Espagne) 
ANCONA Vincenzo 
ANDERSEN Erik (Danemark) 
ANDERSON Donald W. (U. S. A.) 

(Cl) 
ANDERSON Karl (Suède) 
ANDERSON Richard D. (U. S. A.) 

(Cl) 
ANDERSON Robert V. (U. S. A.) 
ANDRÉ Bernard (France) 
ANDRÉ Michel (Suisse) (B2) 
ANDREIAN CAZACU Cabiria 

(Roumanie) * 

ANDREOTTI Aldo (Italie) (D8) 
ANDREW Merle (U. S. A.) 
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BEHNCKE Horst (AU. de l'Ouest) 
BEHR Helmut (AU. de l'Ouest) 
BEITER Marion (France) 
BELAGE Abel (France) 
BELLAICHE André (France) 
BENABOU J. (France) 
BENEDICTY Mario (U. S. A.) 
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(U. S. A.) 
BERROIR André (France) 
BERTHELOT Pierre R. (France) 
BERTHIAUME Gilles (Grande-Bre­

tagne) 
BERTIN Emile M. (Pays-Bas) 
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BJORCK Coran (Suède) 



LISTE DES CONGRESSISTES XVII 

BKOUCHE Rudolphe (France) 
BLACKSTOCK May C. (U. S. A.) 
BLAIR David (U. S. A.) 
BLANC Brice (France) 
BLANCHARD André (France) 
BLANCHARD Philippe (Suisse) 
BLANCHETON Éliane (France) 
BLANTON John D. (U. S. A.) 
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BONIC Robert (U. S. A.) 
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BRUMFIEL Gregory (U. S. A.) 
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(U. S. A.) (D6) 
BURKILL John (Grande-Bretagne) 
BURLEY David (Grande-Bretagne) 
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CHABERT Jean-Luc (France) 
CHACON Rafael V. (U.S.A.) (D6) 
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CHENON René (France) 
CHERKAS Barry (U. S. A.) 
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CLAESSON Tomas (Suède) 
CLARK Allan (U. S. A.) 
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COHEN Maurice (France) 

COHEN Simone (France) 
COHN Harvey (U. S. A.) * 
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DANICA Nikolic (Yougoslavie) 
DANICIC Ivan (Grande-Bretagne) 
DANIEL James W. (U. S. A.) 
DANILYUK I. I. (U, R. S. S.)* 

(DIO) 
DANKERT Gabriele (Canada) 
DARK Rex S. (Grande-Bretagne) 
DAVIES Hilda M. (Grande-Breta­

gne) 
DAVIDSON Luis (France) 
DAVIS 
DAVIS Chandler (Canada) 
DAX Jean-P. (France) 
DAYANITHY Kandiah (Grande-

Bretagne) 
DAYKIN David E (Grande-Bre­

tagne) 
DAZORD Jean (France) 
DAZORD Pierre (France) 
DEBRUNNER Hans (Suisse) 
DECUYPER Marcel (France) 
DEGRANDE-DEKIMPE Nicole 

(Belgique) 
DEHEN Daniele (France) 
DEHEN Michèle (France) 
DEKKER Jacob (U. S. A.) 
DELANGHE Richard (Belgique) * 
DELAROCHE Claire (France) 
DEL FRANCO Georgia (U. S. A.) 
DELIGNE Pierre (France) (B5) 
DEL MER Francine (France) 
DELMEZ Claude M. (Belgique) 
DELPORTE Jean (France) 
OEMBOWSKI Peter (Ail. de l'Ouest) 
DEMENGEL G. (France) 
DEMETRIUS L. 
DENES Jozsef (Hongrie) * 
DENJOY Arnaud (France) 
DENK Franz (Ail. de l'Ouest) 

DENNEBERG Dieter (All. de 
l'Ouest) 

DENNETT John Roy (Grande-Bre­
tagne) 

DENTONI Paolo (Italie) 
DEPAIX Michel (France) 
DESCHASEAUX J.-Pierre (Maroc) 
DESCLOUX Jean (Suisse) 
DESFORGE Julien L. (France) 
DESHOUILLERS Jean-Marc 

(France) 
DESPLAND J.-Claude (France) 
DESQ Roger (France) 
DESTOUCHES Jean-Louis (France) 
DEUTSCH Nimet (France) 
DÉVIDÉ Vladimir (Yougoslavie) 
DHAHIR M. W. (Irak) 
DHALIWAL Ranjit S. (Canada) * 
DHOMBRES Jean (France) 
DIAS AGUDO Fernando (Portugal) 
DIAZ Joaquin (U. S. A.) 
DICKINS John (Grande-Bretagne) 
DIENER Karl (Ail. de l'Ouest) 
DIEUDONNÉ Jean (France) 
DIMITROV Georgiev (Bulgarie) 
DIMOVSKI Ivan (Bulgarie) 
DIONNE Philippe (Nouvelle-

Zélande) 
DITZIAN Zeev (Canada) 
DIXMIER Jacques (France) 
DIXMIER Suzanne (France) 
DIXON John (Canada) 
DIXON Peter Gr. (Gde-Bretagne) 
DJAJA (Yougoslavie) 
DJOKOVIC Dragomir (Canada) 
DJORDJEVIC Radoslav (Yougos­

lavie) 
DJRBASHIANM.M.QJ. R. S. S.) * 
DJURIC Milan (Yougoslavie) 
DLAB Vlastimil (Canada) * 
DO Claude (France) 
DOBBER Eelkje (Pays-Bas) 
DOBRAKOV Ivan (Tchécoslova­

quie) 
DODSON Michael (Grande-Breta­

gne) 
DOITCHINOV Doitchin (Bulgarie)* 
DOLAPTSCHIEW Blagowest (Bul­

garie) 
DOLBEAULT Pierre (France) 
DOLBEAULT-LEMOINE Simone 

(France) 
DOLINSKY Rostislaw (Ail. de 

l'Ouest) 
DOMINYAK Imre (Hongrie) 
DONEDDU Alfred (France) 
DONNELLY John (Gde-Bielagne) 
DONOGHUE William (U. S. A.) 
DÖRING Boro (AH. de l'Ouest) * 
DOSS Raoul (U. S. A.) 

DOSTAL Milos (France) 
DOTCHEV Guetchev (Bulgarie) 
DOU Alberto (Espagne) 
DOUGLAS Jim. Jr. (U. S. A.) (E3) 
DOUGLAS Ronald (U. S. A.) 
DOUIN Françoise (France) 
DOWLING Thomas A. (U. S. A.) 
DOWSON Henry (Grande-Bretagne) 
DOXIADIS Apostolus (U. S. A.) 
DOYEN Jean (Belgique) 
DRASCIC Rajko (Yougoslavie) 
DRESHER Melvin (U. S. A.) 
DRESS François (France) * 
DUBIN Daniel A. (Grande-Bretagne) 
DUBINS Lester E. (U. S. A.) 
DUBINSKY Ed. (Canada) 
DUBOIS Donald (U. S. A.) 
DUBREIL Paul (France) 
DUDA Edwin (U. S. A.) 
DUDLEY Richard M. (U. S. A.) 
DUGDALE Jack (Grande-Bretagne) 
DUHOUX.Michel (Belgique) 
DUISTERMAAT Johannes (Pays-

Bas) 
DULMAGE Andrew (Canada) 
DUNN Kenneth (Canada) 
DUNWOODY Martin J. (Grande-

Bretagne) 
DU PLESSIS Johanners (Afrique du 

Sud) 
DU PLESSIS Nicolaas (Grande-Bre­

tagne) 
DUPUY Maryvonne (France) 
DÜREN Peter (U. S. A.) 
DUSSAUD R. (France) 
DUVAL Victor (France) 
DUVAUT Georges (France) (E3) 
DWIVEDI T. O. (Canada) 
DVORETZKY A. (Israël) (D6) 
DYER-BENNET John (U. S. A.) 
DYNKIN E. B. (U. R. S. S.) (D5) 
D Z Y A D Y K V. Kir i l l ov i t ch 

(U. R. S. S.) (D7) 

EARLE Clifford (U. S. A.) 
EASTRATIOS Galunis 
EBERHARD Walter (All. de l'Ouest) 
EBERSOLDT Franz (Ail. de l'Ouest) 
EBIN D. G. (U. S. A.) (C4) 
ECHIVARD Michel (France) 
ECKERT John 
ECKMANN Beno (Suisse) 
EDER Otmar (Ail. de l'Ouest) 
EDMONDS Sheila M. (Grande-Bre­

tagne) 
EDWARDS D. A. (Grande-Breta­

gne) (Dl) 
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EELLS James (Grande-Bretagne) 
(C4) 

EFFROS Edward (U. S. A.) 
EFIMOV A. V. (U. R. S. S.) 
EGOROV lu. V. (U. R. S. S.) (DIO) 
EGUCHI K. 
EHLERS Jürgen (U. S. A.) (E2) 
EHRENPREIS Leon (U. S. A.) 
EILENBERG Samuel (U.S.A.)(E7) 
EINARSSON B. O. (Suède) 
EINSELE Cari (Suisse) 
EISELE Carolyn (U. S. A.) * 
EISENBUD David (U. S. A.) 
EISNER BILLO Silvia (Suisse) 
EKE B. G. (Irlande) 
EKELAND Ivar (France) 
ELIAS Josef (Tchécoslovaquie) 
ELIASSON Halldor (Islande) 
ELJOSEPH Nathan (Israël) 
ELKINGTON Gordon (Grande-Bre­

tagne) 
ELLIS Alan (Grande-Bretagne) 
ELLMER Horst (AU. de l'Est) 
ELMABSOUT Badaoui (France) 
EL WORTHY Kenneth (Grande-Bre­

tagne) 
ENFLO Perhenrik 
ENGUEHARD Michel (France) 
EPSTEIN Mordechai (Israël) 
ERDELYI Ivan (U. S. A.) * 
ERDOS John Al. (Grande-Bretagne) 
ERDÖS Paul (Hongrie) (E5) 
ERIKSSON S. Folke (Suède) 
ERLANDER Sven (Suède) 
ERSOV lu. L. (U. R. S. S.) (A) 
ERVYNCK (Belgique) 
ESCASSUT Alain (France) 
ETHERINGTON Ivor (Grande-Bre-

EVANS Edward (U. S. A.) 
EVANS W. Buell (U. S. A.) 
EVIATAR Asriel (Israël)* 
EWEN Alex Jam (Grande-Bretagne) 
EWING John (U. S. A.) 
EXBRAYAT Jean-Marie (France) 
EXNER Robert (Australie) 
EYMARD Pierre (France) 
EYMERY Bernard (France) 
EZAWA Hiroshi (Japon) 
EZRA Jacques (France) 

FADDEEV L. D. (U. R. S. S.) (E2) 
FADELL Albert (U. S. A.) 
FAGUE M. K. (U. R. S. S.) 
FAISANT Alain (France) 
FALK Sigurd (All. de l'Ouest) 
FALL Souleyman (Sénégal) 
FARAUT Jacques (Tunisie) 

FARKAS Hershel (U. S. A.) 
FARKAS Miklos (Hongrie) * 
FARKOVA' Jana (Tchécoslovaquie) 
FARRELLF Thomas (U. S. A.) (C2) 
FAST Henryk (U. S. A.) 
F AU RE Robert (Sénégal) 
FAVE 
FEDIDA Edmond (Congo) 
FEENEY Walter (U. S. A.) 
FEFERMAN S. (U. S. A.) (A) 
FEFFERMAN Charles (U. S. A.) 
FEIT Walter (U. S. A.) (G) 
FELD Joseph (U. S. A.) 
FELDMAN Jacob (U. S. A.) 
FÉLIX Lucienne (France) 
FELL James (U. S. A.) (D2) 
FENSTAD Jens. E. (Norvège) 
FERN ANDES DE CAR VALHO José 

Alb. (Portugal) 
FÉRON Robert (France) 
FERRARI Mario 
FERRIER Jean-P. (France) 
FERRO Ruggero 
FICHERA Gaetano (Italie) (E3) 
FIDELIS Eugeniusz,(Pologne) 
FIELDS Jerry (Canada) 
FINKELSTEIN Mark (U. S. A.) 
FINLEY 
FINN Robert (U. S. A.) (E3) 
FINZI Bruno (Italie) 
FISCHER Pal. (France) 
FISCHER* Walther (All. de l'Ouest) 
FISCHER Wolfgang (AU. de l'Ouest) 
FLEMING Wendell (U. S. A.) (E4) 
FLETCHER Colin R. (Grande-Bre­

tagne) 
FLETCHER Trevor (Grande-Breta­

gne) 
FLETT Thomas (Grande-Bretagne) 
FLORES ESPINOZA Ruben (Mexi­

que) 
FLORIDES Petross (Irlande) 
FLOYD R. W. (U. S. A.) (E7) 
FOATA Dominique (France) 
FODOR Gesa. (Hongrie) 
FOIAS Ciprian (Roumanie) (D3) 
FONG Paul (U. S. A.) 
FORD James W. (Grande-Bretagne) 
FORELLI Frank (U. S. A.) (D4) 
FORSTER Otto (Ali. de l'Ouest) (D8) 
FORT Jacques (France) 
FOUNTAIN John (Grande-Breta­

gne) 
FOUNTAIN Leonard (U. S. A.) 
FOU RES Léonce (France) 
FOURNIER J.-Claude (France) 
FOWLER David (Grande-Bretagne) 
FOX Charles (Canada) 
FOX Leslie (Grande-Bretagne) 
FRAENKEL Aviezri (U. S. A.) 

FRAGOZO ROBLES Arturo (Mexi­
que) 
FRANK (U. S. A.) 
FRANK Evelyn (U. S. A.) 
FRASNAY Claude (France) 
FREDRIKSON Einar (Pays-Bas) 
FREEDMAN Haya (Grande-Breta­

gne) 
FREEDMAN Herbert (Canada) 
FREESE Ralph (U. S. A.) 
FREI Günther (Canada) 
FREMLIN David H. (Grande-Bre­

tagne) 
FRÉMOND Michel (France) 
FRESNEL Jean (France) * 
FREUD Geza (Hongrie) * 
FREUDENTHAL Hans (Pays-Bas) 
FRIED Jean (France) 
FRIEDMAN Nathaniel (U. S. A.) 
FRIESEN Donald (U. S. A.) 
FRISCH Jacques (France) (D8) 
FRITSCH Rudolf (Ail. de l'Ouest) 
FRÖBERG Carl Erik (Suède) 
FROSTMAN Otto (Suède) 
FUAD Milla (Koweit) 
FUCHS Laszlo (U. S. A.) 
FUCHS Wolfgang (U. S. A.) 
FUCHSSTEINER Benno (All. de 

l'Ouest) 
FUGLEDE Bent (Danemark) (D5) 
FUKAWA Masami (Japon) 
FÜRSTEN BERG Harry (Isiaël) (C5) 
FUSTIVIA (Italie) 

GAAL Steven A. (U. S. A.) 
GAEDE Karl (Ail. de l'Ouest) 
GAFFNEY Matthew (U. S. A.) 
GAGLIARDO (U. S. A.) 
GAIR Frank (Nouvelle-Zélande) 
GALAMBOS Janos (Grande-Breta­

gne) * 
GALBRAITH Alan St. (U. S. A.) 
GALOFRE Modesto (U. S. A.) 
GAMKRELIDZE R. V. (U. R. S. S.) 
• (E4) 
GAMST (Ail. de l'Ouest) 
GANDHI Jeetmal (U. S. A.) 
GANELIUS Tord H. (Suède) 
GANI Naoum (France) 
GARABEDIAN Paul (U. S. A.) (E3) 
GARCIA ALVAREZ Miguel 
GARCIA PEREZ Pedro (Espagne) 
GARDINER Anthony (Grande-Bre­

tagne) 
GÂRDING Lars (Suède) (DIO) 
GAREL Emmanuelle (France) 
G ARG Krishna (Canada) 



LISTE DES CONGRESSISTES XXI 

GARLING David (Grande-Bretagne) 
GARNER Robert (U. S. A.) 
GARNIER Henri G. (Belgique) 
GARREAU Gabriel (Suisse) 
GARRETT James R. (U. S. A.) 
GARRISON Betty (U.S.A.)* 
GASIMOV M. G. (U. R. S. S.) * 
GAUDEFROY Alain L. (France) 
GAVRILOV Mihail (Bulgarie) 
GEBA K. (Pologne) 
GEFFEN Nima (Israël) 
GELBART Abe (U. S. A.) 
GELBART Stephen (U. S. A.) 
GELFAND I. M. (U. R. S. S.) (G) 
GENTCHEV Todor G. (Bulgarie) 
GEORGE Gwyneth (Canada) 
GÉRARD Raymond (France) 
GERGELY Tanas (Hongrie) 
GERHARDTS Max D. (Ail. de 

l'Ouest) 
GERLACH Eberhard (Canada) 
GERMAIN Paul (France) 
3ERMAY Noël (Belgique) 
GEROCH Robert (U. S. A.) (E2) 
JERVOIS Mlle (France) 
3ETOOR Ronald (U. S. A.) (D5) 
3EYMONAT Giuseppe (Italie) 
3HAFFARI Abolghassem (U.S.A.)* 
3HIRCOIASIU Nicolas (Roumanie) 
3IELEN Wimpie (Pays-Bas) 
3IFFEN Charles (U. S. A.) 
3IGNETTI Alberto (Italie) 
3IKHMAN I. I. (U. R. S. S.) * 
3ILBARG David (U. S. A.) 
3ILBERT William (Canada) 
3ILLAM B. E. (U. S. A.) 
3ILLIGAN Bruce (Canada) 
3ILLIS Joseph (U. S. A.) 
3ILLIS Paul P. (Belgique) 
3ILLMAN Leonard (U.S.A.) 
3ILMORE Lynnette (Grande-Bre­

tagne) 
3ILORMINI Claude (France) 
3INZBURG Abraham (Israël) 
rlRARDEAU J.-Pierre (France) 
rlRAUD Georges (France) 
3IRAUD Jean (France) (B2) 
3IUSTI Enrico 
JIVENS Monique (France) 
3IVENS Wallace (U. S. A.) 
JLAESER Georges (France) 
3LASNER Moses (U. S. A.) 
3LAUBERMAN George I. (U.S.A.) 

(B3) 
GLAUS Christian (Suisse) 
GLEASON Andrew (U. S. A.) (E5) 
3LICKSBERG Irving Leonard 

(U. S. A.) 
JLIMM James (U. S. A.) (El) 

GLODEN Raoul (Luxembourg) 
GOBLOT Rémy 
GODEAUX Lucien (Belgique) 
GODET-THOBIE Christiane 

(France) 
GODUNOV S. K. (U. R. S. S.) (E3) 
GOLAY Eric (Suisse) 
GOLDIE Alfred (Grande-Bretagne) 
GOLDIE Charles (Grande-Bretagne) 
GOLDSCHMIDT Hubert (France) 
GOLDSTEIN Jérôme A. (U. S. A.) 
GOLOMB Michael (U. S. A.) 
GONTSHAR A. A. (U. R. S. S.) 
GONZALEZ Hilda (U. S. A.) 
GONZALES VALLES Carlos (Espa­

gne) 
GOODINSON Patricia (Grande-Bre­

tagne) 
GOODMAN Gerald (Italie) 
GOPALA KRISHNA Jonnalag 

(Indes) 
GORDON Cameron (Grande-Breta­

gne) 
GORDON Gerald (U. S. A.) 
GORDON Samuel (U. S. A.) 
GO REN STEIN Daniel {\}. S. A.)(B3) 
GÖRLICH Ernst (All. de l'Ouest) * 
GOSSEZ Jean-Pierre (Belgique)* 
GOULAOUIC Charles (France) 
GOULD Gerald G. (Grande-Breta­

gne) 
GOULD Sydney (Ail. de l'Ouest) 
GOULLET DE RUGY Alain 

(France) 
GOURSAUD Jean-Marie (France) 
GOUT Gérard (France) 
GOUYON Luce (France) 
GRAD Harold (U. S. A.) (E3) 
GRAFFI Dario (Italie) 
GRAHAM Victor W. (Irlande) 
GRAMSCH Bernhard (All. de 

l'Ouest) 
GRANAS Andrzej (Canada) 
GRANDALL Michael (U. S. A.) 
GRANDET Marthe (France) 
GRASSIN Jacques (France) 
GRAVELEAU Jean (France) 
GRAY Alfred (U. S. A.) 
GRAY Jeremy (Grande-Bretagne) 
GRAY Joan W. (Suisse) 
GRAY Mary (U. S. A.) 
DE GRAY Ronald W. (U. S. A.) 
GRECO Antonio (Italie) 
GREECHIE Richard (U. S. A.) 
GREEN Mark L. (U. S. A.) 
GREGUS Michel (Tchécoslovaquie) 
GREVILLE Thomas (U. S. A.) 
GRIFFITH J. Gareth (Canada) 
GRIFFITH Philipp (U. S. A.) 

GRIFFITHS H. Brian (Grande-Bre­
tagne) (F2) 

GRIFFITHS Phillip (U. S. A.) (G) 
GRIGUELIONIS B. I. (U. R. S. S.) 
GRISVARD Pierre (France) (DIO) 
GROH Hans J. (Canada) 
GROMOLL Detlef (U. S. A.) (C3) 
GROMOV M. L. (U. R. S. S.) (C4) 
DE GROOTE Hans (AU. de l'Ouest) 
GROSSWALD Emil (U. S. A.) 
GROTHENDIECK Alexandre 

(France) (B5) 
GROWE Maledar (Grande-Bretagne) 
GRUBB Gerd (Danemark) 
GRUENBERG Karl (Grande-Breta­

gne) 
GRUSHIN V. V. (U. R. S. S.) (DIO) 
GUARALDO 
GUCKENHEIMER John (Grande-

Bretagne) 
GUEHO M.-France (France) 
GUENHAN Asaf V. (Turquie) 
GUENZLER Hans F. (AH. de 

l'Ouest) 
GUÉRARD DES LAURIERS 

Michel (France) 
GUERASIMOV L S. (U. R. S. S.) 
GUERINDON Jean (France) 
GUEVARA VASQUEZ Francisco 

(France) 
GUGGENBUHL Laura (U. S. A.) 
GUICHARDET Alain (France) 
GUILLAUME Marcel (France) 
GUILLEMIN Victor (U. S. A.) (C4) 
GUILLERAULT-ASTIER Michel 

(France) 
GUILLERNVO Fleitas (Espagne) 
GUILLOT Christophe 
GUILLOT J.-CIaude (France) 
GUINAND Andrew P. (Canada) 
GUIRAUD Jean-Pierre (France) (E3) 
GULDEN Samuel L. (U. S. A.) 
GULONOV Alexander (Bulgarie) 
GUNNING Robert (U. S. A.) (D8) 
GUPTA Narain (Canada) 
GUPTA Shiv-K. (U. S. A.) 
GUREL Okan (U. S. A.) * 
GUSEINOV A. I. (U. R. S. S.) 
GUSTAFSON Sven-Ake (Suède) 
GUY Roland (Canada) 
GUZMAN Miguel (Espagne) 
GYÒRY Kaiman (Hongrie) 

H 

HADDAD Labib (France) 
HAEFLIGER André (Suisse) 
HAIGHT Frank (France) 
HAIMO Deborah (U. S. A.) * 
HAIMOVICI Mendel (Roumanie) 
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HAINZL Josef (All. de l'Ouest) 
HAJNAL Andras (Hongrie) 
HALBERSTADT Emmanuel 

(France) 
HALE Jack K. (U. S. A.) 
HALE Victor (Grande-Bretagne) 
HALES Richard (Grande-Bretagne) 
HALL Marshall (U. S. A.) (E5) 
HALL Thomas (Grande-Bretagne) 
HALPERIN Israël (Canada) 
HA MITI Ejup (Yougoslavie) 
HAMMER Peter (Canada) 
H A M M O N D SMITH Dav id 

(Grande-Bretagne) 
HAMOUI Adnan (Syrie) 
HANANI Haim (Israël) 
HANATANI Yoshito (Japon) 
HANIOTIS Zeppos (Suisse) 
HANN Alexander (Suisse) 
HANN Robert 
HANNER Olof (U. S. A.) 
HARARI Roger (France) 
HARBORTH Heiko (All . de 

l'Ouest) * 
HARDER Günter (All. de l'Ouest) 

(C5) 
HARDY F. Lane (U. S. A.) 
HARMEGNIES René Victor 
HARPER John R. (U. S. A.) 
HARROLD Orville (U. S. A.) * 
HART Neal (Kenya) 
HARTIG Klaus (Ail. de l'Est) 
HARTLEY Elizabeth (Ghana) 
HARVEY Reese (U. S. A.) 
HARZALLAH Khelifa (Tunisie) 
HARZHEIM Egbert (AU. de l'Ouest) 
HATCHER William (Canada) 
HATORI Tsukasa (Japon) 
HATTON Michael (Grande-Breta­

gne) 
HATZIANASTASSION Despina 

(France) 
HAUDIDIER 
HAUGAZEAU 
HAUSSMANN Werner (All. de 

l'Ouest) 
HAYEK CALIL Nacere (Espagne) 
HAYMAN Walter (Grande-Bretagne) 

(D7) 
HAZEWINKEL Michiel (Pays-Bas) 
HECQUET Gérard (France) 
HEDBERG Lars (Suède) 
HEDBERG Torbjorn (Suède) 
HEDRLIN Z. (Tchécoslovaquie)(B2) 
HEIDEMA Johannes (Afrique du 

Sud) 
HEILBRONN H. A. (Canada) 
HEINIG Hans Paul (Canada) 
HEINRICH Jürgen (All. de l'Ouest) 

HEINS Maurice (U. S. A.) 
HEINS 
HEINTZE Ernst (All. de l'Ouest) 
HEJNt Milan (Tchécoslovaquie) 
HELFRICH Hans Peter (All. de 

l'Ouest) 
HELGASON Sigurdur (U.S.A.) (C5) 
HELSON Henry (U. S. A.) (D4) 
HELTON J. William (U. S. A.) 
HELVERSEN Anna (France) 
HENDERSON David W. (U. S. A.) 
HENNEQUIN 
HENRARD Paul (Belgique) 
HERRLICH Horst (All. de l'Ouest) 
HERSZBERG Jerry (Grande-Breta­

gne) 
HERZ Jean-Claude (France) 
HERZOG F. (U. S. A.) 
HERZOG Marcel (Israël) 
HEUZE Guy (France) 
HIGGINS Philip J. (Grande-Breta­

gne) 
HIGGINSON John Alb (Canada) 
HIGMAN D. G. (U. S. A.) (B3) 
HIJAB Wasfi (Liban) 
HILL C. Denson (Italie) 
HILL Raymond (Grande-Bretagne) 
HILL Walter (U. S. A.) 
HILLE Einar (U. S. A.) 
HILTON Peter (U. S. A.) (B2) 
HINDLEY Roger (Grande-Bretagne) 
HIRONAKA Heisuke (U. S. A.) 

(D8) 
HIROSHI Umemura (Japon) 
HIRSCH Gérard (France) 
HIRSCH Kurt A. (Grande-Breta­

gne) 
HIRSCHFELD James W. (Grande-

Bretagne) 
HITCHCOCK Anthony (Grande-

Bretagne) 
HITCHIN Nigel (Grande-Bretagne) 
HOCQUENGHEM Alexis (France) 
HOCQUENGHEM Serge (France) 
HODGES Wilfrid (Grande-Bretagne) 
HODGSON Jonathan (U. S. A.) 
HOEDE Cornells (Pays-Bas) 
HOEHLE Ulrich (AU. de l'Ouest) 
HOFBAUER Johann (Autriche) 
HOFFMAN Peter (Canada) 
HOGBE-NLEND Henri (France) 
HOLLADAY John (U. S. A.) 
HOLLAND Samuel (U. S. A.) 
HOLM Per (Norvège) 
HOLMANN Harald (Suisse) 
HOLME Audun (Norvège) 
HOLVOET Roger (Belgique) 
HOO C. (Canada) 

HÖRMANDER Lars (Suède) (G) 
HORNIX Elisabeth (Pays-Bas) 
HORVATH John (U. S. A.) 
HORVATIC Kreso (Yougoslavie) 
HOSLI Hansueli (Suisse) 
HOSSRU Miklos (Hongrie) 
HOUDEBINE Jean (France) 
HOUGHTON Charles (Ail. de 

l'Ouest) 
HOUILLOT-ROYER Josette 

(France) 
HOUSEHOLDER Alston (U. S. A.) 
HOWES Norman R. (U. S. A.) * 
HOWIE John M. (Grande-Bretagne) 
HSIANG Fu-Cheng (République de 

Chine) * 
HSIANG Wu-Chung (U. S. A.) (C2) 
HSIUNG Chuan C. (U. S. A.) 
HUARD Pierre (France) 
HUBBUCK John R. (Grande-Bre­

tagne) 
HUBERT Jacqueline (France) 
HUBERT Michel (France) 
HUDSON John F. P. (Grande-Bre­

tagne) (C2) 
HUDSON Robin (Grande-Bretagne) 
HUET Denise (France) 
HUET Patrick (France) 
HUGHES Kenneth (Grande-Breta­

gne) 
HULANICKI Andrzej (Pologne) 
HÜLSE John (Grande-Bretagne) 
HUMBLOT Lionel (France) 
Von der HUMBOLDT (AU. de l'Est) 
HUMPHREYS James E. (U. S. A.) 
HUMPHREYS John (Grande-Bre­

tagne) 
HUNT John H. V. (Canada) 
HUNT Richard (U. S. A.) (D9) 
HUPPERTZ Hermann (All. de 

l'Ouest) 
HUSAIN Taqdir (Canada) 
HUTSON Vivian (Grande-Bretagne) 

I 

IBISCH Horst (France) 
IBRAGUIMOV I. I. (U. R. S. S.) * 
IHARA Yasutaka (Japon) (B4) 
ILIEFF Ljubomir (Bulgarie) 
ILJIN V. A. (U. R. S. S.) (DIO) 
ILLUSIE Luc (France) 
IMAI Masataha (Japon) 
IMANISHI Hideki (Japon) 
IMHOF Jean-P. (Suisse) 
IMRICH Wilfried (Autriche) 
INFANTOZZI Carlos (Uruguay)* 
INGELSTAM Lars Erik (Suède) 
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INSELBERG Alfred (U. S. A.) 
INVERARITY William M. (Grande-

Bretagne) 
ION Patrick (Grande-Bretagne) 
IONESCU Dumitru (Roumanie)* 
IONESCU TULCEA Alexandra 

(U. S. A.) 
De IONGH Johan J. (Pays-Bas) 
IRWIN Michael (Grande-Bretagne) 
ISBELL John (U. S. A.) 
ISHAQ M. (Canada) * 
ISHIHARA Shigeru (Japon) 
ISHIHARA Tadashige (Japon) 
ISLA Emilio (Pérou) 
IVAN Jan (Tchécoslovaquie) 
IVANOFF Vladimir (U. S. A.) 
IWASA WA Kenkichi (U. S. A.) (B4) 
IYAHEN Sunday (Nigeria) 
IYANAGA Shokichi (Japon) 
IZANS Chantai (France) 
IZBICKI Herbert (Autriche) 
IZUMI Maseko (Australie) 
IZUMI Shin Ichi (Australie) 

J 

JACKSON Howard L. (Canada) 
JACOBINSKI Heinz (Suède) 
JACOBS Konrad (All. de l'Ouest) 
JACOBSON David (Canada) 
JACOBSON Florence (U. S. A.) 
JACOBSON Nathan (U. S. A.) 
JAEGER Arno (All. de l'Ouest) 
JAFFARD Paul L. (France) 
JAGERS Albertus (Pays-Bas) 
JAGERS Peter (Suède) 
JAKUBIK Jan (Tchécoslovaquie) 
JAMBOIS W. 
JAMES Donald (U. S. A.) 
JAMES loan (Grande-Bretagne) 
JAMES Ralph D. (Canada) 
JAMES Robert (U. S. A.) 
JANEKOSKI Viktor (Yougoslavie) 
JANET Maurice (France) 
JANICH Klaus (Ail. de l'Ouest) 
JANIN Monique (France) 
JANIN Pierre (France) 
JANKO Zvonimir (U. S. A.) (B3) 
JANKOVIC Zlatko (Yougoslavie) 
JANSEN Karl (Ail. de l'Ouest) 
JANSSEN Gerhard (Ail. de l'Ouest) 
JANSSEN Jacques (Belgique) 
JANSSENS Paul (Belgique) 
JAYNE John E. (U. S. A.) 
JEAN Michel (Canada) 
JEANCLAUDE André (France) 
JEANQUARTIER Pierre (Suisse) 
JEFFERY R. L. (Canada) 
JEFFRIES Clark D. (Canada) 
JENSEN Christian (Danemark) 

JENSEN Ronald, Björn (U. S. A.) 
(A) 

JERISON Meyer (U. S. A.) 
JIMENEZ POZO Miguel (France) 
JOHN John (Grande-Bretagne) 
JOHNSEN V. Ben (Norvège) 
JOHNSON Guy (U. S. A.) 
JONAC M.-Louise (France) 
JONES Burton W. (U. S. A.) 
JONES F. Burton (U. S. A.) * 
JONES Harold T. (U. S. A.) 
JONKER Peter (Pays-Bas) 
JORDAN Dominic (Grande-Breta­

gne) 
JORIS Henri (Suisse) 
JOUBERT Gérard (France) 
JOURLIN Michel (France) 
JOUSSEN Jakob (All. de l'Ouest) 
JUHASZ Istvan (Hongrie) 
JULIA Gaston (France) 
JUN Tomiyama (Japon) 
JUN-ICHI Igusa (U. S. A.) 
JUPP Peter (Grande-Bretagne) 

KADISON Richard (U. S. A.) (D2) 
KAHANE Jean-Pierre (France) 
KAHRAMANER Suzan F. (Turquie) 
KAIJSER Thomas (Suède) 
KAJDAN D. (U. R. S. S.) (C5) 
KAKA Léo 
KAKUTANI Shizuo (U. S. A.) 
KALISCH Gerhard K. (U. S. A.) * 
KALLINA Cari (U. S. A.) 
KALMAN John A. (Nouvelle-

Zélande) 
KALMAR Laszló (Hongrie) 
KALVANI Raghuraja (Indes) 
KAMBER Franz (U. S. A.) 
KAMENAROVIC Ivan (Yougosla­

vie) 
KAMPE DE FERIET Joseph 

(France) 
KANEYUKI Soji (U. S. A.) 
KAPADIA Ranesk (Grande-Breta­

gne) 
KAPLAN Samuel (U. S. A.) 
KAPLAN Wilfred (Suisse) 
KAPPOS Demetrios (Grèce) 
KARANIKOLOV Christo (Bulgarie) 
KARATOPRAKLIEV Gueorgui 

(Bulgarie) * 
KAREMAN Herman (U. S. A.) 
KARGAPOLOV M. I. (U. R. S. S.) 
KAROUBI Max (France) (Cl) 
KARTSAKLIS A. (France) 
KASSAB Jani (Grande-Bretagne) 
KATO Mitsuyo (France) 
KATO Tosio (U. S. A.) (G) 

KATONA Gyula (Hongrie) 
KATSURADA Yoshie (Suisse) * 
KATTSOFF Louis (U. S. A.) 
KATZ Leo (U. S. A.) 
KATZ Moshe (Israël) 
KATZ Nicholas (U. S. A.) (B5) 
KATZNELSON Yitzhak (Israël) (D9) 
KATZOUPAKHS Iayan 
KAUFMANN-BUHLER Walter 

(AH de l'Ouest) 
KAUP Burchard (Suisse) 
KAWAGUCHI Akitsugu (Japon) 
KAWAKAMI Hiroshi (France) 
KAZCKES 
KAZDAN Jerry L. (U. S. A.) 
KEARTON Cherry (Grande-Breta­

gne) 
KEATES Michael (Grande-Bretagne) 
KEEDWELL Anthony (Grande-Bre­

tagne) 
KEGEL Otto (Grande-Bretagne) 
KEIMEL Klaus (France) 
KEISLER Jérôme (U. S. A.) (G) 
KELENSON Philip (Israël) 
KELLER Hans (Suisse) 
KELLEY Al (U. S. A.) 
KELLY Gregory (Australie) 
KENNEDY Hubert (U. S. A.) 
KENNEY Margaret (U. S. A.) 
KEOWN E. Ray (U. S. A.) 
KERKYA C H ARI AN Gérard (France) 
KERR-LAWSON Angus (Canada) 
KERVAIRE Michel (U. S. A.) 
KESTEN Harry (U. S. A.) (D5) 
KEUNE Frans (Pays-Bas) 
KHALIL Idriss (France) 
KHARATISHVILI G. L. (U. R. S. S.) 

(E4) 
KIBBEY Donald (U. S. A.) 
KIEFER Jack (U. S. A.) (E6) 
KIEFFER Lucien (Luxembourg) 
KIEHL Reinhardt (AH. de l'Ouest) 

(D8) 
KIELY John (Grande-Bretagne) 
KIRBY David (Grande-Bretagne) 
KIRBY Robion (U. S. A.) (C2) 
KISELMAN C. O. (Suède) 
KITBALIAN A. A. (U. R. S. S.) 
KJELDSEN Kjell (Norvège) 
KLAMKIN Murray S. (U. S. A.) 
KLASSEN John (Canada) 
KLEIMAN Steven (U. S. A.) (B5) 
KLEIN (France) 
KLEIN Abraham (Israël) 
KLEIN Samuel (U. S. A.) 
KLEIN Thérèse (Israël) 
KLEISLI Heinrich (Suisse) 
KLEPPNER Adam (U. S. A.) 
KLINGENBERG Wilhelm (All. de 

l'Ouest) 
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KLUVANEK Igor (Australie) 
KNAUER Ulrich (Ali. de l'Ouest) 
KNAUFF Werner (AH. de l'Ouest) 
KNEEBONE Geoffrey (Grande-Bre­

tagne) 
KNESER Martin (AU. de l'Ouest) 
KNIGHT Dorothy (U. S. A.) 
KNIGHT Lyman C. (U. S. A.) 
KNILL Ronald (France) * 
KNOPFMACHER John (Afrique du 

Sud)* 
KNUS Max (Suisse) 
KNUTH Donald (U. S. A.) (E7) 
KNUTSON Donald I. (U. S. A.) 
KOBAYASHI Shoshichi (U.S.A.) 

(C3) 
KOCH Alois (Australie) 
KOCH Wilfried (AU. de l'Ouest) 
KOCHER Franck (U. S. A.) 
KOECHER Max (AU. de l'Ouest) 

(Bl) 
KOEMHOFF Magclone 
KOETHE Gottfried (AU. de l'Ouest) 
KOHNEN Walter (All. de l'Ouest) 
KOITER Warner (Pays-Bas) (E3) 
KOLAR Wonnfried (AU. de l'Ouest) * 
KOLIBIAR Milan (Tchécoslovaquie) 
KOLIBIAROVA Blanka (Tchécoslo­

vaquie) 
KOLMOGOROV A. N. (U. R. S. S.) 

(E7) 
KORANYI Adam (U. S. A.) 
KORGANOFF André (France) 
KORN D. G. (U. S. A.) (E3) 
KOSCHMIEDER Lothar (AU. de 

l'Ouest) 
KOSHELEV A. I. (U. R. S. S.) 
KOSINSKI Antoni (U. S. A.) 
KOSKAS Maurice (France) 
KOSMANN Yvette (France) 
KOSNIOWSKI Czeslaw (Grande-

Bretagne) 
KOSTANT Bertram (U. S. A.) (D2) 
KOSTRIKIN A. I. (U. R. S. S.) (Bl) 
KOSZUL J. L. (France) 
KOVARI Thomas (Grande-Bretagne) 
KOZOBROD V. P. (U. R. S. S.) 
KRABBE Gregers (U. S. A.) 
KRAINES David (U. S. A.) 
KRAJA Osman (Albanie) 
KRAJNAKOVA Dorota (Tchécoslo­

vaquie) 
KRAMER LASSAR Edna (U. S. A.) 
KRASNER Marc (France) * 
KRASOVSKY N. N. (U. R. S. S.) 

(E4) 
KREE Paul (France) 
KREISS Heinz O. (U. S. A.) (E8) 
KRESS Rainer (AU. de l'Ouest) 
KRETTEK 

KRIEF Henry (France) 
KRIEGER Wolfgang (U. S. A.) 
KRIPKE Saul A. (U. S. A.) (A) 
KRISHNAN Viakalath (U. S. A.) 
KRISTENSEN Leif (Danemark) 
KRONHEIMER Erwin (Grande-

Bretagne) 
KRUSE Arthur (U. S. A.) 
KRUSKAL Martin (U. S. A.) 
KRYGOWSKA Zofia (Pologne) (F2) 
KUBILIUS J. P. (U. R. S. S.) * 
KUBOTA Tornio (Japon) (B4) 
KUHNERT (AU. de l'Est) 
KUICH Werner (Autriche) 
KUIPER Nicolaas (Pays-Bas) (C2) 
KUIPERS L. (U. S. A.) * 
KULIKOVSKII A. G. (U. R. S. S.) 

(E3) 
KULKARNI Bavindra (Ail. de 

l'Ouest) 
KUNZ Ernst (AH. de l'Ouest) 
KURAN Ulku (Grande-Bretagne) 
KURANISHI Masatake (U.S.A.) 

(C4) 
KURATOWSKI Kazimierz (Pologne) 
KUREPA Svetozar (Yougoslavie) 
KURODA S. T. (Japon) (D3) 
KURODA Sigekatu (U. S. A.) 
KURSMAN Robert P. (U. S. A.) 
KURSS Hebert (U. S. A.) 
KURZWEIL Jaroslav (Tchécoslova­

quie) 
KUTTNER Brian (Grande-Bretagne) 
KUYK Willem (Belgique) 
KUZNETZOV Yu. A. (U. R. S. S.) * 
KVESELAVA D. A. (U. R. S. S.) 
KWAPIEN S. (Pologne) 

LABARRE Jr. Anthony (U. S. A.) 
LACHAUD Gilles (France) 
LACROIX Norbert (Canada) 
LADYJENSKAIA O. A. (U.R.S.S.) 
LAFON Jean-P. (France) 
LAFON Monique (France) 
LAHA R. G. (U. S. A.) * 
DE LA HARPE Pierre (Grande-

Bretagne) 
LAITOCH Miroslav (Tchécoslova­

quie) 
LALAGUÉ Pierre (France) 
LAL DUGGAL Krishan (Canada) 
LAMAN Gerald (Pays-Bas) 
LAMBERT John (Grande-Bretagne) 
LAMBERT John D. (Grande-Bre­

tagne) 
LAMBERT Pol V. (Pays-Bas) 
LA MENZA Francisco (Argentine) 

LA MOUCHE 
LAMOUREUX Claude (France) 
LANCASTER Peter (Canada) * 
LANCE Christophe (Grande-Breta­

gne) 
LANCHON Hélène A. (France) 
LANDESMAN Peter (U. S. A.) 
LANDMAN Alain (U. S. A.) 
LANGE Horst (AU. de l'Ouest) * 
LANGLANDS Robert (U. S. A.) 

(C5) 
LANKOVA (France) 
LARDNER Robin (Canada) 
LASCAUX Patrick (France) 
LASCOUX Jean (France) 
LASHOF Richard K. (U. S. A.) (C2) 
LATOUR François (France) 
LAUDAL Olav (Norvège) 
LAUFER Henry (U. S. A.) 
LAVELLE Arthur (Grande-Breta­

gne) 
LAVENDHOMME R. (Belgique) 
LAVIGNE J.-Pierre (France) 
LA VOIE Jean L. (Canada) 
LAVRENTIEV M. A. (U. R. S. S.) 
LAVRENTIEV M. M. (U.R.S.S.) 

(DIO) 
LAVROV S. S. (U. R. S. S.) (E7) 
LAW Alan (Canada) 
LAWRUK B. (Canada) 
LAWVERE F. William (Canada) 

(B2) 
LAX Peter (V. S. A.) (DU) 
LAXTON Ronald (Grande-Breta­

gne) 
LAZZERI Fulvio 
LEAVITT Jay A. (U. S. A.) 
LEBAUD Georges (France) 
LEBLANC Noel (France) 
LEBON Georgy (Belgique) * 
LE DOURNEUF Jean (France) 
LE DUNG Trang (France) 
LEE Chung Nim (U. S. A.) 
LEE S hing-Meng (République de 

Chine) 
LEEDHAM-GREEN C. R. (Grande-

Bretagne) 
LEFRANC Marcel (France) 
LEGRAN D. J. 
LEGRAND Denise (France) 
LEGRAND Gilles (France) 
LE GRAND Pieter (Pays-Bas) 
LEGRAND Solange (France) 
LEHMANN Daniel (France) 
LEHMANN Mme Josiane (France) 
LEHMANN N. Joachim (AU. de 

l'Est) 
LEHNER Guydo R. (U. S. A.) 
LEHRER Gustav (Grande-Breta­

gne) 
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EHRER ILAMED Yehiel (Israël) 
EHTO Olli (Finlande) 
EIBOVIC Nicholas (U. S. A.) 
EIGHTON Walter (U. S. A.) 
El M ANIS Eugène (Canada) 
EINDLER Lazio (Hongrie) * 
EIPNIK Roy (U. S. A.) 
EKKERKERKER C. G. (Pays-
Bas) 
EKO Marko (Yougoslavie)* 
ELAND Kenneth O. (U. S. A.) 
E LIONNAIS François (France) 
ELONG Pierre (France) 
ELONG-FERRAND Jacqueline 
(France) 
EM AIRE Claude (Belgique) * 
EMMENS Petrus W. (Grande-Bre­
tagne) 
ENAGAN Thomas (Grande-Breta­
gne) 
ENGAGNE Guy (France) 
ENZING Helmut (AU. de l'Ouest) 
EONARD Pierre (France) 
EONOR Concepcion (U. S. A.) 
ÉPINGLE Dominique (France) 
E POTIER (France) 
ERAY Jean (France) 
SSIEUR Léonce (France) 
ETAC Gérard (France) 
3 THANK-PHONG (France) 
EVEQUE William (U. S. A.) 
EVIN Frank (U. S. A.) 
EVIN Martin (U. S. A.) 
EVINE Jérôme (U. S. A.) (C2) 
EVITAN B. M. (U. R. S. S.) (D3) 
EVITT Normann 
BVY Paul (France) 
ÉVY-BRUHL Jacques (France) 
EWIS Donald J. (U. S. A.) 
EWIS Jeff E. (U. S. A.) 
HEUREUX James (U. S. A.) 
[BERMANN Paulette (France) 
[CHNEROWICZ André (France) 
(E2) 
[CKORISH W. B. Raym. (Grande-
Bretagne) 
[EBECK Hans (Grande-Bretagne) 
[EBLEIN Julius (U. S. A.) 
[GAUD Jean-Pierre (Maroc) 
IGOZAT Gérard (France) 
ÏNDENSTRAUSS Joram (Israël) 
(Dl) 
[NGUA Pierre (Italie) 
INNIK Y. V. (U. R. S. S.) (E6) 
[ONS Jacques-Louis (France) (Dl 1) 
[PINSKI J. (Pologne) 
[U Shih-Chao (République de 
Chine) 
[ULEVICIUS Arunas (U. S. A.) 
[VERANI Francesco (Italie) 

LJUNGGREN Wilhem (Norvège) 
LLUIS Emilio (Mexique) 
LOESCH Friedrich (Ail. de l'Ouest) 
LOETTGEN Ulrich (AU. de l'Ouest) 
LOHOUE Noël 
LOJASIEWICZ S. (Pologne) (C4) 
LOMBARDI Yves 
LONDON Hymie (Canada) 
LONSTED Knud (Danemark) 
LOPEZ DE MEDRANO Santiago 

(Mexique) (C2) 
LORCH Edgar (U. S. A.) 
LORCH Lee (Canada) 
LORENZ Falko (All. de l'Ouest) 
LORIS-TEGHEM Jacqueline (Belgi­

que) 
LOSEY Gerald (Canada) 
LOSEY Nora (Canada) 
LOSONCZI Lâszlo (Hongrie) 
LOUD Warren S. (U.S.A.) 
LOVASZ Laszlo (Hongrie) 
LOVORKA Tomasic (Yougoslavie) 
LUBIN Clarence (U. S. A.) 
LUCAS Keith (Grande-Bretagne) 
LUCAS Thierry (Belgique) 
LUDWIG Garry (Canada) 
LUE Abraham (Grande-Bretagne) 
LUKACS Eugène (Autriche) * 
LUNA Domingo 
LUNDSGAARD HANSEN Vagn 

(Grande-Bretagne) 
LUPANOV O. B. (U. R. S. S.) (E7) 
LUPO Filomena (U. S. A.) 
LYNN Erbe (Canada) 

M 

MAC CLUER Charles (U. S. A.) 
MACDONALD J. G. (Grande-Breta-

gne)(C5) 
MAC DONNELL John (U. S. A.) 
MACHADO Armando (Portugal) 
MACHENRY Trueman (Canada) 
MACHI A. 
MACHIZ Joan (Grande-Bretagne) 
MACINTYRE Angus (Grande-Bre­

tagne) 
MACK Cornelius (Grande-Bretagne) 
MACKEY George W. (U. S. A.) (D2) 
MAC LANE Saunders (U. S. A.) 
MAC LEOD Robert (Canada) 
MACLEOD Roderick (Grande-Bre­

tagne) 
MAC MAHON James (Irlande) 
MACPHAIL Moray (Canada) 
MADLENER Klaus E. (Ail. de 

l'Ouest) 
MADORE John (France) 
MADSEN Gutmann (Danemark) 

MADSEN Kaj (Danemark) 
MAEZAWA Seiichiro (Japon) * 
MAFFIOLI Franco 
MAGARIAN Elisabeth (U. S. A.) 
MAGENES Enrico (Italie) 
MAHAMMED Norredine (France) 
MAHJOUB Bechir (Tunisie) 
MAHOWALD Mark E. (U. S. A.) 
MAILHOS Line (France) 
MAIRE Henri M. (Suisse) 
MAJUMDAR Samir R. (Canada) 
MALET Henri (France) 
MALGRANGE Bernard (France) 
MALLIAVIN M.-Paule (France) 
MALLIAVIN Paul (France) 
MALON Stanislas (Tchécoslovaquie) 
MAMATOV M. (U. R. S. S.) 
MAMMITZSCH Volker (AH. de 

l'Ouest) 
MAMMOUTH Claude (France) 
MAMOURIS Athanasios (Grèce) 
MANACORDA Tristano (Italie) 
MANDELBAUM Richard (U. S. A.) 
MANDJAVIDZEG. F. (U. R. S. S.)* 
MANDELKER Mark (U. S. A.) * 
MANDRELLA Renate (AH. de 

l'Ouest) 
MANFREDI Bianca (Italie) 
MANIA G. M. (U. R. S. S.) * 
MANIN Y. I. (U. R. S. S.) (B4) 
MANN Horst (AU. de l'Ouest) 
MANOLOV Spas (Bulgarie) 
MANTEL Nathan (U. S. A.) 
MANUCEAU Jérôme (France) 
MARATHE Kishore (U. S. A.) 
MARCHUK G. I. (U. R. S. S.) (G) 
MARCONI Paulo (Italie) 
MARDEN Morris (U. S. A.) 
MARDESIC Sibe (Yougoslavie) 
MARÉCHAL Odile (France) 
MARIC Vojislav (Yougoslavie) 
MA RUA Vencelj (Yougoslavie) 
MARINI Alberto (Italie) 
MARINKA Feratic (Yougoslavie) 
MARKSJÖ Bertil (Suède) 
MARLEY Gerald (U. S. A.) 
MARQUETTY Antoine 
MARRY Pierre D. (France) 
MARTENS Henrik H. (Norvège) 
MARTIN Benjamin (U. S. A.) 
MARTIN George (U. S. A.) 
MARTIN Nigel (Grande-Bretagne) 
MARTINDALE Wallace (U. S. A.)* 
MARTINEAU André (France) (D8) 
MARTINET Jacques (France) * 
MARTINEZ NAVEIRA Antonio 

(Espagne) 
MARTIN GUZMAN Maria P. 

(Espagne) 
MARTINOV Nikola (Bulgarie) 
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MARTINS Philipp 
MARTSHENKO V. A. (U. R. S. S.) 
MASANI Pesi (U. S. A.) 
MASCORT Olga (France) 
MASLOV V. P. (U. R. S. S.) (DIO) 
MASSAZA Caria (Italie) 
MATHER John (U. S. A.) (C4) 
MATHIAK Karl (AU. de l'Ouest) 
MATHIAS Adrian R. (Grande-Bre­

tagne) 
MATHIEU Gérard (France) 
MATHIS Robert (U. S. A.) 
MATSUMOTO Hideya (France) 
MATSUSHIMA Yozo (U. S. A.) 
MATTHEWS Geoffrey (Grande-Bre­

tagne) 
MATIJASEVIC Y. V. (U. R. S. S.) 

(A) 
MAUDE Ronald (Grande-Bretagne) 
MAURER Christian (Grande-Breta­

gne) 
MAURO Santi A. (Côte-d'Ivoire) 
MAUTNER Friederic (France) 
MAVINGA Honoré (Belgique) 
MAVRON Vassili (Grande-Breta­

gne 
MA WHIN Jean (Belgique) 
MAXWELL Edwin (Grande-Breta­

gne) 
MAY Kenneth (Canada) 
MAYER Karl (Ail. de l'Ouest) 
MAYER Stephen (Grande-Bretagne) 
MAYOH Grete (Danemark) 
MAZARAKIS George (Grèce) 
MAZAT Françoise (France) 
MAZET Pierre (France) 
MAZZOLA Venzo (Suisse) 
MC ARTHUR Charles (U. S. A.) 
MC CARTNEY James R. (Grande-

Bretagne) 
MC CONNEL James R. (Irlande) 
MC CRORY Clinton (U. S. A.) 
MC DONOUGH Thomas (Grande-

Bretagne) 
MC DUFF Dusa (Grande-Bretagne) 
MC KILLIGAN Sheila (Grande-Bre­

tagne) 
MC LAUGHLIN Harry (U. S. A.) 
MC NAME John (Canada) 
MC QUEEN Paul C. (Canada) 
MEDEK Vaclav (Tchécoslovaquie) 
MEHRA K. L. (Canada) 
MEIJERINK Koos (Pays-Bas) 
MEISE Reinhold (All. de l'Ouest) 
MEJER H. G. (Pays-Bas) 
MELCHIOR Ulrich (AU. de l'Ouest) 
MELDRUM John D. (Grande-Bre­

tagne) 
MÉNARD Jean (Canada) 
MENDEL 

MENDÊS FRANCE Michel 
(France) * 
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(D9) 
MEROVCI Ymer (Yougoslavie) 
METELLI Claudia (Italie) 
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(D12) 
MILLOUX Henri (France) 
MIMURA Yukio (Japon) 
MINTZ George 
MIRANDA Mario (Italie) (DU) 
MIRBAGHERI Ahmad (Iran) 
MISCHENKO A. S. (U.R.S.S.) 
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MORICZ Ferenc A. (Hongrie) 
MORREY Charles (U.S.A.) (DIL 
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MOSS Cyril (Grande-Bretagne) 
MOSS Robert M. (Grande-Bretagne 
MOSSINO Jacques (France) 
MOSTOW George D. (U. S. A.) (CJ 
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NOEL Guy (Belgique) 
NOHEL John A. (U. S. A.) 
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OLSON Loren (Norvège) 
OLSSON Jörn (Danemark) 
OLUBUMMO Adegoke (Nigeria) 
OMAHONY Rosalie (U. S. A.) 
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PEETRE Jaak (Suède) (Dl) 
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PERRY Roy (Grande-Bretagne) 
PERSSOJNT Jan (Italie) 
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PETRIE Ted (U. S. A.) 
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PLEUEL Àke (Suède) 
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POPOVICIU Tiberiu (Roumanie) 
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PORTEOUS Hugh L. (Grande-Bre­

tagne) 
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PORTER Don (U. S. A.) 
PORTER Gerald J. (U. S. A.) 
POTAPOV M. K. (U. R. S. S.) 
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tagne) 
POUZET Maurice (France) 
POZNIAK E. G. (U. R. S. S.) * 
POZZI-ARRIGO Gianni 
PRELLER Anne (France) 
PRETZEL Olivier (Grande-Bretagne) 
PREUSS Gerhard (All. de l'Ouest) * 
DE PRIMA Charles (U. S. A.) 
PRIMROSE Erici J. (Grande-Bre­

tagne) 
PROCESI Aveasis 
PROCESI Claudio (U. S. A.) 
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PROSSER Reese (U. S. A.) 
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RAUDELIUNAS A. K. (U. R. S. S.) 
RAUTMANN Reimund (Ail. de 
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RAYMOND Bernard (France) 
RAYNAUD Hervé (France) 
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OBINSON William (Grande-Bre­
tagne) 
OBSON James (Grande-Bretagne) 
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ROTA Gian C. (U. S. A.) (E5) 
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SANCHEZ FERNAND Carlos 

(France) 
SANCHEZ GIRALDA Tomas 

(Espagne) 
SANCHEZ-PALENCIA Enrique 

(France) 
SANCHO SAN ROMAN Juan 

(Espagne) 
SANDS Arthur (Grande-Bretagne) 
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SATO Hajime (Japon) 
SATO Mikio (Japon) (DIO) 
SAUNDERS Frank (U. S. A.) 
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SKORDEV Dimiter (Bulgarie) 
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THOMSEN Donald (U. S. A.) 
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TOBERGTE Jürgen (All. de l'Ouest) 
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VYTHOULKAS Denis (Grèce) 

W 

WADA Junzo (Japon) 
WAELBROECK Lucien (Belgique) 
WAESCHE Hans (AU. de l'Ouest) 
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WALTHER Heinrich (All. de 
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WATSON George (Grande-Breta­

gne) 
WATTERS J. Francis (Grande-Bre­

tagne) 
WEBBER David B. (Grande-Bre­

tagne) 
WEBER Claude (Suisse) 
WEFELSCHEID Heinrich (AU. de 

l'Ouest) 
WEIDENFELD Michèle (France) 
WEILL Georges (France) 
WEINGRAM Stephen (U. S. A.) 
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WEINSTEIN Alexander (U.S.A.) 
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WILKENS David L. (Grande-Breta­

gne) 
WILKINSON James (Grande-Bre­

tagne) 
WILLE Friedrich (AH. de l'Ouest) * 
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RAPPORTS 

SUR LES MÉDAILLES FIELDS 

ON THE WORK OF ALAN BAKER 

by P A U L T U R Â N 

The theory of transcendental numbers, initiated by Liouville in 1844, has been 
enriched greatly in recent years. Among the relevant profound contributions are 
those of A. Baker, W. M. Schmidt and V. A. Sprindzuk. Their work moves in impor­
tant directions which contrast with the traditional concentration on the deep problem 
of rinding significant classes of functions assuming transcendental values for all non­
zero algebraic values of the independent variable. Among these, Baker's have had 
the heaviest impact on other problems of mathematics. Perhaps the most significant 
of these impacts has been the application to diophantine equations. This theory, 
carrying a history of more than thousand years, was, until the early years of this cen­
tury, little more than a collection of isolated problems subjected to ingenious ad hoc 
methods. It was A. Thue who made the breakthrough to general results by proving 
in 1909 that all diophantine equations of the form f(x, y) = m, where m is an integer 
and / is an irreducible homogeneous binary form of degree at least three, with integer 
coefficients, have at most finitely many solutions in integers. This theorem was 
extended by C. L. Siegel and K. F. Roth (himself a Fields medallist) to much more 
general classes of algebraic diophantine equations in two variables of degree at least 
three. They even succeeded in establishing general upper bounds on the number 
of such solutions. A complete resolution of such problems however, requiring a 
knowledge of all solutions, is basically beyond the reach of these methods, which are 
what are called " ineffective ". Here Baker made a brilliant advance. Considering 
the equation f(x, y) — m, where m is a positive integer, f(x, y) an irreducible binary 
form of degree n ^ 3, with integer coefficients, he succeeded in determining an effec­
tive bound B, depending only on n and on the coefficients of /, so that 

max (| x0 |, | j'o I) S B 

for any solution (x0, y0). Thus, although B is rather large in most cases, Baker has 
provided, in principle at least, and for the first time, the possibility of determining 
all the solutions explicitly (or the nonexistence of solutions) for a large class of equa­
tions. This is an essential step towards the positive aspects of Hubert's tenth problem 
the interest of which is largely increased by the recent negative solution of the general 
problem by Ju. V. Matyaszevics. The significance of his theorem is also enhanced 
by the fact that the so-called elliptic and hyperelliptic equations fall, after appropriate 
transformation, under its scope and again he gave explicit upper bounds on the tota­
lity of their solutions. 

Joint work of Baker with J. Coates made effective for curves of genus 1 Siegel's 
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classical theorem. Elaborating these methods and results Coates found among others 
the first explicit lower bound tending to infinity with n for the maximal primefactor 
of | f(n) \ where f(x) stands for an arbitrary polynomial with integer coefficients apart 
from a trivial exception. The more fact that the maximal primefactor of | f(n) \ 
tends to infinity with n (conjectured for polynomials of second degree by Gauss) 
was established by K. Mahler several decades ago as well as an explicit lower bound 
for n = 2 by1 him and S. Chowla. 

In collaboration with H. Davenport, Baker has shown by some examples how the 
upper bounds thus obtained permit actually the determination of all solutions. 

As another consequence of his results he gave an effective lower bound for the approxi-
mability of algebraic numbers by rationals, the first one which is better than Liouville's 

As mentioned before, these results are all consequences of his main results on trans­
cendental numbers. As is well known, the seventh problem of Hilbert asking whether 
or not aß is transcendental whenever a and ß are algebraic, certain obvious cases 
aside, was solved independently by A. O. Gelfond and T. Schneider in 1934. Shortly 
afterwards Gelfond found a stronger result by obtaining an explicit lower bound for 
| /?! log OL1 + jß2 log a2 | in terms of o^s's and of the degrees and heights of the /^s's 
when the log a'vs are linearly independent. After Gelfond realised in 1948, in colla­
boration with Ju. V. Linnik, the significance of an effective lower bound for the three-
term sum, he and N. I. Feldman soon discovered an ineffective lower bound for it. The 
transition from this important first step to effective bound for the three-term sum, 
and more generally for the /c-term sum, resisted all efforts until Baker's success in 
1966. This success enabled Baker to obtain a vast generalization of Gelfond-Schnei-
der's theorem by showing that if a l5 a2,. . ., aÄ ( ^ 0, 1) are algebraic, ßl9 ß2,..., ßk 

linearly independent, algebraic and irrational, then a^a^2 . . . a£k is transcendental. 
Some further appreciation of the depth of this result can be gained by recalling Hubert's 
prediction that the Riemann conjecture would be settled long before the transcen-
dentality of ocß. The analytic prowess displayed by Baker could hardly receive a 
higher testimonial. On the other hand, his brilliant achievement shows, after Gelfond-
Schneider once more, that mathematics offers no scope for a doctrine of papal infalli­
bility concerning its future. Among his other results generalizing transcendentality 
theorems of Siegel and Schneider I shall mention only one special case, in itself suffi­
ciently remarkable, according to which the sum of the circumferences of two ellipses, 
whose axes have algebraic lengths, is transcendental. 

His pathbreaking role is not diminished but perhaps even emphasized by the fact 
that in 1968 Feldman found another important lower estimate for the fc-term sum 
which is stronger in its dependence upon the maximal height of the ßv coefficients; 
it is weaker in its dependence upon the maximal height of the a's which is relevant in 
most applications at present. It is reasonable to expect also new applications depend­
ing more on the former. 

The 1948 discovery of Gelfond and Linnik, mentioned above, revealed an unexpected 
connection between such lower bounds for the three-term sum and a classical class-
number problem. This has as its goal the determination of all algebraic extensions R{6) 
of the rational field with class number 1. In its full generality this seems hopelessly 
out of reach at present. Restricting themselves to the imaginary quadratic case 
R(yJ^d), d > 0, H. Heilbronn and E. Linfoot showed in 1934 that at most ten such 
" good '' fields can exist. Nine of these were found explicitly. Concerning the tenth 
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it was known that its d would have to exceed exp (107). Hence, if it can be shown 
that there exists an upper bound d0 < exp (107) for all " good " d's then the tenth pos­
sible field cannot exist. Now the Gelfond-Linnik discovery was that the afore men­
tioned effective lower bound for the three-term sum could furnish such an effective d0. 
Baker found that one of his general results implies an upper bound d0 = 10500 enough 
by far for this purpose. This outcome provides a striking new example, illustrating 
once more how effectivity can play a decisive role in essential problems. Again, 
the value of this approach is of course not diminished by H. M. Stark's outstanding 
achievement in showing the non-existence of the tenth field, simultaneously and inde­
pendently, by quite different methods. 

To illustrate further the many-sided applicability of Baker's work I mention that 
it could be employed to make effective some ineffective results of Linnik on the coeffi­
cients of a complete reduced set of binary quadratic forms belonging to a fixed nega­
tive discriminant (Linnik had used ideas from ergodic theory). 

As one can guess, obtaining such long-sought solutions was a very complicated 
task. It is very difficult to attempt even a sketch of the underlying ideas in the short 
time at my disposal beyond the remark that they are of hard-analysis type. Fortu­
nately, you will have the opportunity of hearing about them in some detail from 
Baker himself in his address to this Congress. To conclude, I remark that his work 
exemplifies two things very convincingly. Firstly, that beside the worthy tendency 
to start a theory in order to solve a problem it pays also to attack specific difficult 
problems directly. Particularly is this the case with such problems where rather sin­
gular circumstances do not make it probable that a solution would fall out as an easy 
consequence of a general theory. Secondly, it shows that a direct solution of a deep 
problem develops itself quite naturally into a healthy theory and gets into early and 
fruitful contact with other significant problems of mathematics. So, let the two 
different ways of doing mathematics live in peaceful coexistence for the benefit of 
our science. 

P. TURäN Alan BAKER 
Mathematical Institute Trinity College 

of the Hungarian Cambridge 
Academy of Sciences, (Grande-Bretagne) 

Budapest, Hungary 
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TRAVAUX DE HEISOUKE HIRONAKA 

SUR LÀ RÉSOLUTION DES SINGULARITÉS 

par A. GROTHENDIECK 

Le résultat principal de Hironaka est le suivant : 

THéORèME DE HIRONAKA. — Soit X une variété algébrique sur un corps k de carac­
téristique nulle, U un ouvert (de Zariski) de X tel que U soit non singulier et partout 
dense. Il existe alors une variété algébrique non singulière X' et un morphisme pro­
pre f : X' -> X, tels que le morphisme / _ 1 ( t / ) -> U soit un isomorphisme, et que 
D = X, — f~1(U) soit un diviseur « à croisements normaux » dans X' (i. e. localement 
donné par une équation de la forme / i / 2 . . . fk — 0, où les f font partie d'un système 
de « coordonnées locales »). 

En fait le théorème complet de Hironaka est plus précis : il donne une information 
très précise sur la façon d'obtenir une telle « résolution » du couple (X, U) à l'aide 
d'une suite « d'éclatements » de nature très particulière. Cette précision supplémentaire 
est inutile dans toutes les applications connues du rapporteur, sauf pour nous dire 
que si X est projective, on peut choisir X' également projective. Le théorème complet 
de Hironaka est aussi plus général : il s'applique à tous les « schémas excellents » 
de caractéristique nulle, et en particulier aux schémas de type fini sur les anneaux de 
séries formelles ou de séries convergentes (au-dessus d'un corps de caractéristique 
nulle). Cela implique par exemple facilement que le théorème énoncé reste vrai au 
voisinage d'un point de X, lorsqu'on suppose maintenant que X est un espace analy­
tique complexe (ou sur un corps value complet algébriquement clos, plus généralement), 
et U est le complémentaire d'une partie fermée analytique de X. Il semble que Hiro­
naka ait démontré également la version globale de ce résultat local. 

Contrairement à ce qui était l'impression générale chez les géomètres algébristes 
avant qu'on ne dispose du théorème de Hironaka, celui-ci n'est pas un résultat tout 
platonique, qui donnerait seulement une sorte de justification après coup d"un point 
de vue en géométrie algébrique (celui où les variétés sont plongées à tout prix dans 
l'espace projectif) qui est désormais dépassé. C'est au contraire aujourdhui un outil 
d'une très grande puissance, sans doute le plus puissant dont nous disposions, pour 
l'étude des variétés algébriques ou analytiques (en caractéristique zéro pour le moment). 
Cela est vrai pour l'étude des singularités d'une variété, mais également pour l'étude 
« globale » des variétés algébriques (ou analytiques) non singulières, notamment pour 
le cas des variétés non compactes. L'application du théorème de Hironaka pour ces 
dernières se présente généralement ainsi : X étant supposée quasi projective i. e. immer-
geable comme sous-variété (en général non fermée) dans l'espace projectif P, l'adhé­
rence Z d e l dans P contient X comme ouvert partout dense non singulier, de sorte 
qu'on peut appliquer le théorème de Hironaka au couple (X, X). On en conclut que 
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X est le complémentaire, dans une variété non singulière compacte X\ d'un diviseur D 
à croisements normaux. Un tel théorème de structure pour X, et diverses variantes 
qu'on prouve de façon analogue, sont extrêmement utiles dans l'étude de X. 

Les théorèmes démontrés à l'aide du théorème de Hironaka ne se comptent plus. 
Pour la plupart, on a l'impression que la résolution des singularités est vraiment au 
fond du problème, et ne pourra être évitée par recours à des méthodes différentes. 
Citons quelques-uns de ces résultats (sur un corps de car. nulle). 

a) Si / : X' -> X est un morphisme birationnel et propre de variétés algébriques 
non singulières, alors les faisceaux R%(Ox>) sont nuls pour i > 1 (Hironaka). 

b) Si X est une variété algébrique affine sur le corps des complexes, sa cohomologie 
complexe peut être calculée à l'aide du « complexe de De Rham algébrique », i. e. 
le complexe formé des formes différentielles algébriques sur X (Grothendieck ; divers 
raffinements, inspirés par une question soulevée par Atiyah et Hörmander, ont été 
développés par P. Deligne). 

c) Si X est une variété algébrique sur le corps des complexes, alors ses « groupes 
de cohomologie étales » à coefficients dans des faisceaux de torsion sont isomorphes 
aux groupes de cohomologie de l'espace localement compact sous-jacent à X (M. Artin 
et A. Grothendieck). 

d) La construction par P. Deligne d'une théorie de Hodge pour les variétés algé­
briques complexes quelconques (supposées ni compactes ni non singulières) utilise 
de façon essentielle la résolution des singularités. 

e) Même remarque pour divers théorèmes de P. A. Griffiths et de ses élèves sur la 
« variation des structures de Hodge », ou pour divers théorèmes de E. Brieskorn sur 
l'étude locale de certains types de singularités (singularités de Klein des surfaces, 
points critiques isolés d'un germe de fonction holomorphe...). 

Certains des résultats mentionnés dans d) et e) figureront sans doute dans des rap­
ports des auteurs cités dans ce même Congrès. 

Du point de vue technique, la démonstration du théorème de Hironaka constitue 
une prouesse peu commune. Le rapporteur avoue n'en avoir pas fait entièrement 
le tour. Aboutissement d'années d'efforts concentrés, elle est sans doute l'une des 
démonstrations les plus « dures » et les plus monumentales qu'on connaisse en mathé­
matique. Elle introduit d'ailleurs, comme on peut s'en douter, diverses idées géomé­
triques nouvelles, dont il est trop tôt d'évaluer le rôle dans le développement futur 
de la géométrie algébrique (*). Notons d'autre part que Hironaka souligne que plusieurs 
de ces idées étaient déjà en germe chez son maître, O. Zariski, qui avait beaucoup fait 
depuis longtemps pour populariser le problème de la résolution des singularités parmi 
un public réticent, et qui avait dans un travail classique traité le cas de la dimension 3. 

Pour terminer, il faut souligner que le problème de la résolution des singularités 
est loin d'être résolu. En effet, seul le cas de la caractéristique nulle est actuellement 
réglé. La solution de nombreux problèmes de géométrie algébrique, en caractéris­
tique p > 0 comme en inégales caractéristiques, dépend de la démonstration d'un 

(*) Cela est d'autant plus vrai que le développement de la géométrie algébrique s'arrêtera 
court, comme tout le reste, si notre espèce devait disparaître dans les prochaines décades, 
— éventualité qui apparaît aujourd'hui de plus en plus probable. 
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théorème analogue pour n'importe quel « schéma excellent », par exemple pour 
n'importe quelle variété algébrique sur un corps k de caractéristique arbitraire. Le 
cas de la dimension 2 a été traité par Abhyankar, et a déjà été un outil indispensable 
dans diverses questions, par exemple dans la théorie de Néron de la dégénérescence 
des variétés abéliennes ou des courbes algébriques (« théorème de réduction semi-
stable »), et ses applications par Deligne-Mumford aux variétés de modules des courbes 
algébriques, en caractéristique quelconque. Depuis plusieurs années déjà, Hironaka 
travaille sur le cas de la dimension quelconque. Nul doute que le problème mérite 
qu'un mathématicien du format de H. Hironaka lui consacre dix ans d'efforts incessants. 
Nul doute aussi que tous les géomètres lui souhaitent, de tout cœur : Bon succès ! 

A. GROTHENDIECK H. HIRONAKA 

Collège de France Harvard University 
11, Place Marcelin-Berthelot, Department of Mathematics, 

Paris 5e 2 Divinity Avenue 
(France) Cambridge, Massachusetts 02138 

(U. S. A.) 
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ON THE WORK OF SERGE NOVIKOV 

by M. F. ATIYAH 

It gives me great pleasure to report on the work of Serge Novikov. For many 
years he has been generally acknowledged as one of the most outstanding workers 
in the fields of Geometric and Algebraic Topology. In this rapidly developing area, 
which has attracted many brilliant young mathematicians, Novikov is perhaps unique 
in demonstrating great originality and very powerful technique both in its geometric 
and algebraic aspects. 

Novikov made his first impact, as a very young man, by his calculation of the uni­
tary cobordism ring of Thorn (independently of similar work by Milnor). Essentially 
Thorn had reduced a geometrical problem of classification of manifolds to a difficult 
problem of homotopy theory. Despite the great interest aroused by the work of 
Thorn this problem had to wait several years before its successful solution by Milnor 
and Novikov. Many years later Novikov returned to this area and, combining 
cobordism with homotopy theory, he developed some very powerful algebraic machi­
nery which gives one of the most refined tools at present available in Algebraic Topo­
logy. In his early work it was a question of applying homotopy to solve the geometric 
problem of cobordism; in this later work it was the reverse, cobordism was used to 
attack general homotopy theory. 

On the purely geometric side I would like to single out a very beautiful and striking 
theorem of Novikov about foliations on the 3-dimensional sphere. Perhaps I should 
remind you that a foliation of a manifold is (roughly speaking) a decomposition into 
manifolds (of some smaller dimension) called the leaves of the foliation: one leaf 
passing through each point of the big manifold. If the leaves have dimension one 
then we are dealing with the trajectories (or integral curves) of a vector field, and closed 
trajectories are of course particularly interesting. In the general case a basic question 
therefore concerns the existence of closed leaves. Very little was known about this 
problem. Thus even in the simplest case of a foliation of the 3-sphere into 2-dimen-
sional leaves the answer was not known until Novikov, in 1964, proved that every 
foliation in this case does indeed have a closed leaf (which is then necessarily a torus). 
Novikov's proof is very direct and involves many delicate geometric arguments. 
Nothing better has been proved since in this direction. 

Undoubtedly the most important single result of Novikov, and one which combines 
in a remarkable degree both algebraic and geometric methods, is his famous proof 
of the topological invariance of the Pontrjagin classes of a differentiable manifold. 
In order to explain this result and its significance I must try in a few minutes to sum­
marize the history of manifold theory over the past 20 years. Fortunately, during 
this Congress you will be able to hear many more detailed and comprehensive 
surveys. 
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There are 3 different kinds or categories of manifold: differentiable, piece-wise 
linear (or combinatorial) and topological. For each category the main problem 
is to understand the structure or to give some kind of classification. There was no 
clear idea about the distinction between these 3 categories until Milnor produced 
his famous example of 2 different differentiable structures on the 7-sphere. After 
that the subject developed rapidly with important contributions from many people, 
including Novikov, so that in a few years the distinction between differentiable and 
piece-wise linear manifolds, and their classification, was very understood. However, 
there were still no real indications about the status of topological manifolds. Were 
they essentially similar to piece-wise linear manifolds or were they quite different? 
Nobody knew. In fact, there were no known invariants of topological manifolds 
except homotopy invariants. On the other hand, there were many invariants known 
for differentiable or piece-wise linear manifolds which were finer than homotopy 
invariants. Notable among these were the Pontrjagin classes. For a differentiable 
manifold these are cohomology classes which measure, in some sense, the amount 
of global twisting in the tangent spaces. For a manifold with a global parallelism 
like a torus they are zero. In the context of Riemannian geometry there is a gene­
ralized Gauss-Bonnet theorem which expresses them in terms of the curvature. In 
any case their definition relies heavily on differentiability. Around 1957 it was shown 
by Thorn, Rohlin and Svarc, using important earlier work of Hirzebruch, that the 
Pontrjagin classes are actually piece-wise linear invariants (provided we use rational 
or real coefficients). When Novikov, in 1965, proved their topological invariance 
this was the first real indication that topological manifolds might be essentially simi­
lar to piece-wise linear ones. It was a big break-through and was quickly followed 
by very rapid progress which, in the past few years, through the work of many mathe­
maticians — notably Kirby and Siebenmann — has resulted in fairly complete infor­
mation about the topological piece-wise linear situation. Thus we now know that 
nearly all topological manifolds can be triangulated and essentially in a unique way. 
You will undoubtedly hear about this in the Congress lectures. 

Perhaps you will understand Novikov's result more easily if I mention a purely 
geometrical theorem (not involving Pontrjagin classes) which lies at the heart of 
Novikov's proof. This is as follows: 

THEOREM (*). — If a differentiable manifold X is homeomorphic to a product MxRn 

(where M is compact, simply-connected and has dimension > 5) then X is diffeo-
morphic to a product M' x Rn. 

Here both M, M' are differentiable manifolds. The theorem thus asserts that a 
topological factorization implies a differentiable factorization: it is clearly a deep 
result. Combined with the earlier Thom-Hirzebruch work it leads easily to the 
invariance of the Pontrjagin classes. 

I hope I have now indicated the importance of this result of Novikov's and its place 
in the general development of manifold theory. I would like also to stress the remar­
kable nature of the proof which combines very ingenious geometric ideas with consi­
derable algebraic virtuosity. One aspect of the geometry is particularly worth men­
tioning. As is well-known many topological problems are very much easier if one 

(*) This formulation is due to L. SIEBENMANN. 
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is dealing with simply-connected spaces. Topologists are very happy when they 
can get rid of the fundamental group and its algebraic complications. No so Novikov ! 
Although the theorem above involves only simply-connected spaces, a key step in 
his proof consists in perversely introducing a fundamental group, rather in the way 
that (on a much more elementary level) puncturing the plane makes it non-simply-
connected. This bold move has the effect of simplifying the geometry at the expense 
of complicating the algebra, but the complication is just manageable and the trick 
works beautifully. It is a real master stroke and completely unprecedented. Since 
then a somewhat analogous device has proved crucial in the important work of Kirby 
mentioned earlier. 

I hope this brief report has given some idea of the real individuality of Novikov's 
work, its variety and its importance, all of which fully justifies the award of the Fields 
Medal. It is all the more remarkable when we remember that he worked in relative 
isolation from the main body of mathematicians in his particular field. We offer 
him our heartiest congratulations in the full confidence that he will continue, for 
many years to come, to produce mathematics of the highest order. 

Michael ATIYAH Serge NOVIKOV 
Institute for Advanced Study Steklov Mathematical Institute 
Department of Mathematics, ul Vavilova 42, 
Princeton, New Jersey 08540 Moscow V 333 

(U. S. A.) (U. R. S. S.) 
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ON THE WORK OF JOHN THOMPSON 

by R. BRAUER 

It is an honor to be called upon to describe to you the brilliant work for which 
John Thompson has just been awarded the Fields medal. The pleasure is tempered 
by the feeling that he himself could do this job much better. But perhaps I can say 
some things he would never say since he is a modest person. 

The central outstanding problem in the theory of finite groups today is that of 
determining the simple finite groups. One may say that this problem goes back to 
Galois. In any case, Camille Jordan must have been aware of it. Important classes 
of simple groups have been constructed as well as some individual types of such groups.-
French mathematicians, Galois, Jordan, Mathieu, Chevalley, have been the pioneers 
in this work. In recent years, mathematicians of many different countries have 
joined. However, the general problem is unsolved. We do not know at all how 
close we are to knowing all simple finite groups. I shall not discuss the present situa­
tion of the problem since this will be the topic of Feit's address at this congress. I may 
only say that up to the early 1960's, really nothing of real interest was known about 
general simple groups of finite order. 

I shall now describe Thompson's contribution. The first paper I have to mention 
is a joint paper by Walter Feit and John Thompson and, of course, Feit's part in it 
should not be overlooked. Here, the authors proved a famous conjecture, to the 
effect that all non-cyclic finite simple groups have even order. I am not sure who 
was the first to observe this. Fifty years ago this was already referred to as a very 
old conjecture. While it was usually mentioned in courses on algebra, it is only fair 
to say that nobody ever did anything about it, simply because nobody had any idea 
how to get even started. It was not even clear that the whole problem made much 
sense. Was the role of the prime 2 simply a little accident; did 2 play an entirely 
exceptional role, or were there properties of other prime divisors of the group order 
which bore at least some resemblance to those of 2? It was only after the Feit-Thomp-
son paper that one could be sure that the whole question has been a reasonable one. 

Thompson's work which has now been honored by the Fields medal is a sequel to 
this first paper. In it, he determines the minimal simple finite groups, this is to say, 
the simple finite groups, whose proper subgroups are solvable. Actually, a more 
general problem is solved. It suffices to assume that only certain subgroups, the 
so-called local subgroups, are solvable. These are the normalizers of subgroups 
of prime power order larger than I. 

These results are the first substantial results achieved concerning simple groups. 
A number of important corollaries show that one is now able to answer questions 
on finite groups which had been completely out of reach before. I mention one: a finite 
groups is solvable, if and only if every subgroup generated by two elements is sol-
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vable. You only have to try to prove this yourself if you want to see how deep the 
result lies. 

Both investigations are very long and complicated and their logical structure is 
extremely intricate. Unfortunately, I cannot even give you a vague idea of the methods. 
Reading the papers, one reaches stages repeatedly that one feels caught in a hopeless 
situation, in an abyss from which there is no escape. Then, miraculously, a way 
out appears, an amazing turn, which saves us. A famous 19-th century mathematician 
once remarked that group theory could be done by people who did not know much 
else of mathematics. There may be some truth in this, but I think, this was not meant 
in a very nice way. However I believe it was overlooked that if you work in a field 
where you have few tools, you have to create your own tools. In order to reach posi­
tive achievements, mathematical imagination must replace knowledge from other 
fields. 

There is other important work of Thompson in group theory which I cannot dis­
cuss here. His methods have already been used successfully by other mathematicians 
who have developed some of them further. In this way, Thompson has had a tremen-
dons influence. Since he first appeared at the International Congress in Stockholm 
eight years ago, finite group theory simply is not the same any more. 

Let me finish with a personal remark. One reaches a point in life where one wonders 
what one still expects of life, what one would still like to see happen. This applies 
to events in Mathematics too. I have passed the point I mentioned. I like to say 
that I would like to see the solution of the problem of the finite simple groups and the 
part I expect Thompson's work to play in it. Quite generally, I would like to see 
to what further heights Thompson's future work will take him. I feel I should also 
say the same about the three other Fields medallists. 

Richard BRAUER John, G. THOMPSON 
Harvard University University of Cambridge 

Department of Mathematics, Department of Mathematics, 
2 Divinity Avenue, 16 Mill Lane 

Cambridge, Mass. 02138 Cambridge 
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EFFECTIVE METHODS 

IN THE THEORY OF NUMBERS 

by A. BAKER 

1. Problems concerning the determination of the totality of integers possessing 
certain prescribed properties such as, for instance, solutions of systems of Diophantine 
equations or inequalities, have captured man's imagination since antiquity, and a 
wide variety of different techniques have been employed through the centuries to 
resolve a diverse multitude of problems in this field. Most of the early work tended 
to be of an ad hoc character, the arguments involved being specifically related to the 
particular numerical example under consideration, but gradually the emphasis has 
altered and the trend in recent times has been increasingly towards the development 
of general coherent theories. Two particular advances stand out in this connexion. 
First, investigations of Thue [39] in 1909 and Siegel [33] in 1929 led to the discovery 
of a simple necessary and sufficient condition for any Diophantine equation F(x, y) = 0, 
where F denotes a polynomial with integer coefficients, to possess only a finite number 
of solutions in integers ; this occurs, namely, if and (reading " ganzartige " for " integer ") 
only if the curve has genus at least 1 or genus 0 and at least three infinite valuations. 
The proof depends upon, amongst other things, Weil's well-known generalization [40] 
of Mordell's finite basis theorem and the earlier pioneering work of Thue and Siegel [32] 
concerning rational approximations to algebraic numbers. Secondly, in answer 
to a question raised by Gauss in his famous Disquisitiones Arithmeticae, Hecke, 
Mordell, Deuring and Heilbronn [29] showed in 1934 that there could exist only finitely 
many imaginary quadratic fields with any given class number, a result later to be 
incorporated in the celebrated Siegel-Brauer formula. These theorems and all their 
many ramifications, though of major importance in the evolution of much of modern 
number theory, nevertheless suffer from one basic limitation that of their non-effecti­
veness. The arguments depend on an assumption, made at the outset, that the relevant 
aggregates possess one or more elements that are, in a certain sense, large, and they 
provide no way of deciding whether or not these hypothetical elements exist. Thus 
the work leads merely to an estimate for the number of elements in question and 
throws no light on the fundamental problem of determining their totality. 

Some special effective results in the context of the Thue-Siegel theory were obtained 
in 1964 by means of certain properties peculiar to Gauss' hypergeomelric function, 
in particular, the classic fact, certainly known to Padé, that quotients of such functions 
serve to represent the convergents to rational powers of 1 — x (see [1, 2, 3]), but the 
first effective results applicable in a general context came in 1966 from a completely 
different source. One of Hubert's famous list of problems raised at the International 
Congress held in Paris in 1900 asked whether an irrational quotient of logarithms of 
algebraic numbers is transcendental. An affirmative answer was obtained indepen-
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dently by Gelfond [26] and Schneider [30] in 1934, and shortly afterwards Gelfond 
established an important refinement giving a positive lower bound for a linear form 
in two logarithms (cf. [27]). It was natural to conjecture that an analogous result 
would hold for linear forms in arbitrarily many logarithms of algebraic numbers and 
a theorem of this nature was proved in 1966 [4]. The techniques devised for the 
demonstration form the basis of the principal effective methods in number theory 
known to date. I shall first describe briefly the main arguments and shall then proceed 
to discuss some of their applications (*). 

2. The key result, which serves to illustrate most of the principal ideas, states that 
if a±,.. .,a„ are non-zero algebraic numbers such that log at,..., log a„ are linearly 
independent over the rationals then 1, log a l9...t log a„ are linearly independent 
over the field of all algebraic numbers. This implies, in particular, that ePoot.{1 ... a£n 

is transcendental for all non-zero algebraic numbers at , . . . , a„, ß0,..., ßn. It 
will suffice to sketch here the proof of a somewhat weaker result namely, if a x , . . . , a„, 
ßi>- • -, ßn-i are non-zero algebraic numbers such that al9.. .,an are multiplicatively 
independent, then the equation a{1 .. . ajji^1 = a„ is untenable; it is under these condi­
tions that our arguments assume their simplest form. We suppose the opposite and 
derive a contradiction. The proof depends on the construction of an auxiliary func­
tion of several complex variables which generalizes the function of a single variable 
employed originally by Gelfond. Functions of many variables were utilized by 
Schneider [31] in his studies concerning Abelian integrals but, for reasons that will 
shortly be explained, there seemed to be severe limitations to their serviceability in 
wider settings. The function that proved to be decisive in the present context is 
given by 

0(z1,...,z„_1)= £ ... Ì A ^ + ^ . . . f e + ^ " ^ , 
Ai = 0 A„=0 

where L is a large parameter and the p{Xx,...,!„) denote rational integers not all 0. 
By virtue of the initial assumption we see at once that 

<K* *) = È ••• Z P W I W-..«*-
Xi = 0 A„ = 0 

and so, for any positive integer /, the value of O at z1 = . . . = zn_1 = I is an algebraic 
number in a fixed field. Moreover, apart from a multiplicative factor given by pro­
ducts of powers of the logarithms of the a's, the same holds for any derivative 

<">»!.....-,.-. = w^ i ) m i • • • {d/dz^r*-**. 

It follows from a well-known lemma on linear equations that, for any integers h, k, 
with Wc"_1 a little less than L", one can choose the p(X±,.'.., AJ such that 

Omi mn_S!,...,/) = 0 (1 < Z ^ Ä . m ! + . . . +»!„_! < fc) 

and, furthermore, an explicit bound for | p(X±,..., Xn) | can be given in terms of h, k 
and L. 

(*) For a fuller survey of the applications see [13]. 
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The real essence of the argument is an extrapolation procedure which shows that 
the above equation remains valid over a much longer range of values for /, provided 
that one admits a small diminution in the range of values for m1 + ... + mn~1. 
Although interpolation arguments have long been a familiar feature of transcendental 
number theory, work in this connexion has hitherto always involved an extension in 
the order of the derivatives while leaving the points of interpolation fixed ; when deal­
ing with functions of many variables, however, this type of argument requires that 
the points in question admit a representation as a Cartesian product and, as far as I 
can see, the condition can be satisfied only with respect to special multiply-periodic 
functions. Our algorithm proceeds by induction and it will suffice to illustrate the 

first step. We suppose that mt + . . . + mn_j ^ -fc and we prove that then 

/(*) = *», „„_,(*,...,*) 

vanishes at z = /, where 1 < / < h2. Now the condition /?/c"_1 < E allows one to 
take L < kl~E for some e > 0 and h about k*E. This " saving " by an amount ß is 
crucial for it leads to a sharp bound for | f(z) | on a circle centre the origin and radius 
slightly larger than h2, thus including all the points / as above. Further, apart from a 
trivial multiplicative factor, /(/) represents an algebraic integer in a fixed field and a 
similar bound obtains for each of the conjugates. But, by construction, we have 

/ J r ) = 0 U ) < m ^ / c , l K r < h\ 

and the maximum-modulus principle applied to the function f(z)/F(z), where 

F(z) = { ( z - l ) . . . ( z - / 7 ) } ^ , 

now shows that | /(/) | is sufficiently small to ensure that the norm of the algebraic 
integer is less than 1. Hence /(/) = 0 as required. The argument is repeated inducti­
vely and after a finite number of steps we conclude that 

O(/ , . . . , / ) = 0 (1 < / V ( L + 1)"). 

But these represent linear equations in the p(Xx A„). The determinant of coeffi­
cients is of Vandermonde type and since, by hypothesis, a1,. . . , a„ are multiplicatively 
independent, it does not vanish. The contradiction establishes our result. 

3. The argument just described is capable of considerable refinement and generali­
zation. In particular several other auxiliary functions can be taken in place of O, 
the points of extrapolation can be varied and greater use can be made in the latter part 
of the exposition of our information regarding the partial derivatives. Thus, for 
instance, results in the context of elliptic functions have been derived and, in particular, 
the transcendence has been established of any non-vanishing linear combination with 
algebraic coefficients of periods and quasi-periods associated with a Weierstrass 
p-function with algebraic invariants [10, 11, 12]. More relevant to the main theme of 
this talk, however, are refinements giving quantitative lower bounds for linear forms in 
logarithms. The main change in the preceding discussion required to obtain results 
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of this nature is the replacement of the maximum-modulus principle by the Hermite 
interpolation formula. With this device one can show that 

| ß0 + ß, log a i + . . . + ßn log a„ | > Ce-^H)\ 

where a1,...}an denote non-zero algebraic numbers such that log a l 5 . . . , l o g a „ 
are linearly independent over the rationals, ß0,..., ß„ denote algebraic numbers, 
not all 0, with degrees and heights at most d and H respectively, K > n + 1 and C > 0 
depends only on n, log a1,.. ., log a„, K and d; by the height of an algebraic number 
we mean the maximum of the absolute values of the relatively prime integer coeffi­
cients in its minimal defining polynomial [5]. With more complicated adaptations 
the number on the right can be strengthened to CH~K, where K > 0 is specified like C 
above; this was shown by Feldman [22, 23]. In applications it frequently suffices to 
have simply a lower bound of the form e~m, valid for any ö > 0 and all H > C, where C 
now- depends on <5, and interest then attaches to the exact expression for C. Some 
explicit forms have been calculated (cf. [5, 6, 23, 24]) but there is certainly scope for 
improvement here and, indeed, the general efficacy of our methods seems to be closely 
linked to our progress in this connexion. 

4. We now discuss some applications of our results in the theory of Diophantine 
equations. To begin with, they can be utilized to obtain a complete resolution of 
the equation originally considered by Thue, namely f(x, y) = m, where / denotes 
an irreducible binary form with integer coefficients and degree at least 3 [6]. Indeed 
our arguments enable us to find more generally all algebraic integers x, y in a given 
field K satisfying any equation ßx . . . ßn = m where ßj = x — ô -y, n ^ 3 and a1 , . . . , a„, 
m denote algebraic integers in K subject only to the condition that the a's are all dis­
tinct (cf. [15]). For denoting by 0 ( 1 ) , . . .,6{d) the field conjugates of any element 9 
of K and by rj1,..., nr a fundamental system of units in K, it is readily seen that an 
associate 

yt = ß{r\Y • • • tir 

of ßi can be determined such that 

l l o g l y P l K C i (Kj<d), 

where C±, C 2 , . . . can be effectively computed in terms of / and m. Writing 

Hi = max | by \ and Ht = max iî£ 

we have | ß\h) | < C2e~Hl,C3 for some h ; and without loss of generality we can suppose 
that ßP = ßt. From the initial equation we see that \ ßk\ ^ C41 for some k ^ I 
and if now j is any suffix other than k or /, the identity 

K - <*i)ßj - (<*j - <*dßk = («ft - <*j)ßi 
gives 

rçî1 ...rib/-ocr+1 = co, 
where 

bs = bks-bjs, 0<\co\<C5e-H<tc* 

and a r + 1 is an element of K with degree and height ^ C 7 . Now | fca | < 2Ht and hence 
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the work of § 3 can be applied to obtain a bound for Hl, whence also for all the conju­
gates of the ß's and, finally, for the conjugates of x and y. 

The last result enables one to solve many other Diophantine equations in two 
unknowns. In particular, one can now effectively determine all rational integers x , y 
satisfying ym = f(x), where m is any integer ^ 2 and / is a polynomial with integer 
coefficients possessing at least three simple zeros [8]. This includes the celebrated 
Mordell equation y2 = x3 + k, the hyperelliptic equation and the Catalan equation 
x" — ym = 1 with prescribed m, n. The demonstration involves ideal factorizations 
in algebraic number fields similar to those appearing in the first part of the proof 
of the Mordell-Weil theorem; in special cases one has readier arguments and, in parti­
cular, the elliptic equation has been efficiently treated by means of Hermite's classical 
theory of the reduction of binary quartic forms [7]. There is, moreover, little difficulty 
in carrying out the work more generally when the coefficients and variables represent 
algebraic integers in a fixed field, and, indeed, Coates and I have used this extension 
to give a new and effective proof of Siegel's theorem on F(x, y) = 0 (see § 1) in the case 
of curves of genus 1 [15, 21]. Here the equation of the curve is reduced to canonical 
form by means of a birational transformation similar to that described by Chevalley, 
the rational functions defining the transformation being constructed to possess poles 
only at infinity and thus be integral over a polynomial ring. Explicit upper bounds 
have been established in each instance for the size of all the solutions [6, 7, 8, 15]. The 
bounds tend to be large, with repeated exponentials, and current research in this field 
is centred on techniques for reducing their magnitude. In particular, Siegel [34] 
has recently given some improved estimates for units in algebraic number fields which 
should prove useful for this purpose, and, furthermore, devices have been obtained 
which, for a wide range of numerical examples, would seem to render the problem 
of determining the complete list of solutions in question accessible to practical compu­
tation (cf. [16]). 

5. Finally we mention some further results that have been obtained as a consequence 
of these researches. One of the first applications was to establish an effective algo­
rithm for resolving the old conjecture that there are only nine imaginary quadratic 
fields with class number 1 [4, 18]. The connexion between this problem and inequa­
lities involving the logarithms of algebraic numbers was demonstrated by Gelfond 
and Linnik [28] in 1949 by way of an expression for a product of L-functions analogous 
to the well-known Kronecker limit formula. By a remarkable coincidence, Stark [38] 
established the conjecture at about the same time by an entirely different method with 
its origins in a paper of Heegner. Attention has subsequently focussed on the problem 
of determining all imaginary quadratic fields with class-number 2, and I am happy 
to report that an algorithm for this purpose was obtained very recently by means of 
a new result relating to linear forms in three logarithms [9, 14] (*). It seems likely 
that this latest development will lead to advances in other spheres. 

Among the original motivations of our studies was the search for an effective impro­
vement on Liouville's inequality of 1844 relating to the approximation of algebraic 
numbers by rational» ; from the work described in § 4 we have now 

| a - p/q\ >cq-"e{]neq)i/K 

(*) See also Stark's address to this Congress. 
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for all algebraic numbers a with degree n ^ 3 and all rationals p/q {q > 0) where K > n 
and c = c(a, K) > 0 is effectively computable [6, 25]. For some particular a, such 
as the cube roots of 2 and 17, sharper results in this direction have been obtained from 
the work on the hypergeometric function mentioned in § 1. Further, in the special 
case when p, q are comprised solely of powers of fixed sets of primes, a much stronger 
result can be obtained directly from the inequalities referred to in § 3 ; indeed we have 
then 

\a- p/q\ >c(\ogq)-K 

where c > 0, K > 0 are effectively computable in terms of the primes and a, and this 
in fact furnishes an improvement on Ridout's generalization of Roth's theorem. 

Analogues of the arguments of § 3 and § 4 in the p-adic realm have been given by 
Coates [19,20]; his work leads, in particular, to an effective determination of all rational 
solutions of the equations discussed earlier with denominators comprised solely of 
powers of fixed sets of primes and so, more especially, provides a means for finding 
all elliptic curves with a given conductor (see also [35, 36, 37]). Furthermore, Brumer 
obtained in 1967 a natural p-adic analogue of the main theorem on logarithms which, 
in conjunction with work of Ax, resolved a well-known problem of Leopoldt on the 
non-vanishing of the p-adic regulator of an Abelian number field [17]. 

6. And now I must conclude my survey. It will be appreciated that I have been able 
to touch upon only a few of the diverse results that have been established with the aid of 
the new techniques, and, certainly, many avenues of investigation await to be explored. 
The work has demonstrated, in particular, a surprising connexion between the appa­
rently unrelated seventh and tenth problems of Hilbert, as well as throwing an effective 
light on both of the fundamental topics referred to at the beginning concerning Dio­
phantine equations and class numbers. Though the strength of this illumination has 
been steadily growing, and indeed the respective regions of shadow in these contexts 
have been receding at a remarkably similar rate, it would appear nevertheless that 
several further ideas will be required before our theories can be regarded as, in any 
sense, complete. The main feature to emerge is, I think, that the principal passage to 
effective methods in number theory lies, at present, deep in the domain of transcendence, 
and it is to be hoped that the territory so far gained in this connexion will be much 
extended in the coming years. 
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ON TOPOLOGICAL OBSTRUCTIONS 

TO INTEGRABILITY 

by RAOUL BOTT (') 

§ 1. Introduction. 

In this lecture I would like to describe the state of the art in the problem of " foliat­
ing " a manifold or, as I prefer to view it, the problem of constructing integrable fields 
on a manifold. This subject has seen some interesting developments in the past two 
years and is also contemporary in the sense that, as you will see, it leads to " huge 
spaces ". By a huge space I mean here simply one whose homotopy groups are not 
finitely generated in every dimension. In the past we—and I think quite rightly— 
have shied away from such objects, but recently they have cropped up in various 
contexts : notably in the index theory associated to Von Neumann algebras of type II, 
and also in the localization of spaces at a given prime, and I am confident that in the 
future these " huge " spaces will enter into many of the analysis inspired problems in 
topology. 

§ 2. Integrability. 

Let me start by recalling the basic facts concerning the local theory of integrability. 
Consider a C°°-manifold M and let TM denote its field of tangent planes. By a section 
of TM one means a smooth function p -> Xp which attaches to each p e M a tangent 
vector at p. These are therefore the " vector-fields " or " infinitesimal motions " 
of M. If x, y are any two such sections their Lie bracket [x, y] is again a well deter­
mined vector-field on M and the bracket operation satisfies the Jacobi-identity: 

(2.1) [x,[y,z]] = [[x,ylz] + [yi[x,z]]. 

By a field of tangent /c-planes on M one means a smooth family E = {Ep; peM} 
of fc-subspaces of TpM. In short a /c-dimensional " sub-bundle " of TM, and such 
a field is called integrable if its space of sections is closed under the bracket: 

(2.2) x j e r ( £ ) => [x,y]ET(E). (2) 

The term integrable is here justified by the well-known theorem of Frobenius [7], 
Clebsch-Deahna to the effect that if E is integrable, then locally E is generated by 

C) This work was partially supported by National Science Foundation grant GP 9566. 
(2) T(E) denotes the set of smooth sections of E. 
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paralleli translation—relative to some coordinate system—from a fixed fc-plane EQ. 
Quite equivalently this may also be put in the following way: 

There exists a covering {Ua} of M by coordinate patches Ua, with coordinates 
{ x\,..., x* } such that on Ua, E consists of the planes tangent to the slices 

Xfc+i = Ci . . . xa
n = cq, q = n-k. 

These slices are therefore local integral manifolds of maximal dimension, which 
fiber Ua into submanifolds of codimension q. 

It follows that if one defines 

by the formula 

fa(P) = {^k+lÌPl--;K(P)} 

then /„ defines a " submersion " of Ua in Uq, in the sense that the differential of fa, 

dfa:TpUx -* Tnp)U-

is onto at each point of Ua, and our previous slices now are simply the fibers, fa~
1(p\ 

o f / « . 

The {fa} may therefore be thought of as a system of maximal local integrals of E, 
which completely describe E. 

Now using the implicit function theorem, it is easy to see that because fa and fß 

are both submersions, one can, for each xeUan Uß, find diffeomorphisms : 

gx
aß:Wß

x -> Wa\ 

of a neighborhood of fß(x) e Uq into a neighborhood of fa(x) e Uq, such that near x 

(2-3) &ß°fß=A. 

Finally, it follows from (2.3) and again the submersion property of fa that for points 
near xeUanUß nUj'. 

(2-4) « i ° Ä = Ä -

I have written these equations mainly for future reference. At this point, I want 
you essentially only to understand that integrable subbundles E of TM can either be 
described by the integrability condition (2.2), or by a system of local integrals { fa } 
of E which are local submersions of M in Uq. Then, in particular any global submer­
sion f'.M -> N of one manifold on the other defines an integrable field or " folia­
tion " on M. Thus, for instance, if / is a fibration, then the field of tangents along the 
fiber is always integrable. Integrable fields generated in this way may be thought 
of as the most trivial examples. 

To show you what may happen in more interesting cases let me remind you of two 
classical examples. 
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The first is the foliation on the torus U2/Z induced by the " foliation " of IR2 by lines 
of a given slope m: 

FIG. 1. 

Thus, here I am drawing the " leaves ", i. e., the maximal integral submanifolds of the 
line field. If m is rational these leaves are all circles. If m is irrational they are all 
dense in T. 

Next let me show you the beautiful Reeb foliation of the three sphere: First foliate 
the strip | j ; | <; 1 in IR2 as indicated in Figure 2 : 

DDDD 
FIG. 2. 

Next rotate this figure about the x-axis to obtain a foliation of a cylinder. There 
after identity points which differ by a integer x coordinate. 

The result is a foliation of the anchor-ring, 

FIG. 3. 

whose leaves are either planes coiling up to the bounding torus, or the bounding torus 
itself. Now if we take, for S3 the set in complex 2-space C2 , given by 

I *i I2 + I z2 |2 = 1, 

it is easy to see that S3 is the union of two anchor rings 

S3 = A1uA2i 
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given by the equations | zY \ < | z2 | and | z2 \ < \ zx | which intersect in the torus 
T = { Zi | = | zt | = 1/2 }. The foliations just described on A1 and A2 therefore 
fit together to form a foliation of S3, which has one compact leaf, namely the torus T. 
All the other leaves are non-compact and curl up around this torus in opposite direc­
tions as we approach T from outside and inside. One may use this fact to show that 
this foliation though C°°, is not analytic. 

Concerning the higher spheres we know very little, in fact, we do not know whether 
any odd sphere Sn, of dim > 3 admits an integrable (n — 1) field (*). One only 
has A. Haefliger's beautiful result that: analytic integrable (n — l)-fields exist on a 
compact n-manifold only if its fundamental group is infinite. 

Another question which arises immediately in connection with this example is the 
existence of a compact leaf, and in this regard we have another beautiful result, 
due to Novikov, which asserts that every integrable 2-field on S3 has a compact leaf. 
For 1-fields on S3 it is not known whether a compact leaf has to exist. In fact, this is 
the famous Seifert problem. But these interesting and deep questions are really not 
pertinent to the problem (2.5) and I will have to leave them without further comment. 

§ 3. On the nature of the global problem. 

It is clear from the preceding that locally one can always construct integrable 
g-fields on a manifold M. The question therefore arises as to what difficulties one 
encounters in trying to construct a global field. 

Now first of all, observe that difficulties will arise, because in general M does not 
admit a g-field, integrable or not. For instance, as is very well known, the 2-sphere S2 

admits no smooth line-field. On the other hand, the nature of this first question 
" does M admit a grfield ? " has been understood and much studied for many years. 
In particular, it has been converted into a purely homotopy-theoretic question. 

' Let me describe this translation to you, as it also points the way for our more refined 
question. 

Please keep in mind during this development, that the homotopy theorist is a most 
singleminded person who treats only questions which can be phrased in terms of homo­
topy classes of continuous maps. Hence to please him we must convert all our geo­
metric information into spaces and maps. In the present context this is not hard 
to do. 

First of all one forms the Grassmanian variety 

(3.1) Gm(UN) = {A^UN} 

consisting of the set of m-subspaces of UN, topologized by the requirement that two 
such subspaces A and B are close, if and only if the unit spheres of A and B are close 
in UN. Next one includes UN c UN+1 in a standard manner and takes the limit of 
the compact spaces Gm(UN) under the induced inclusions, to obtain the space 

(3.2) Gm = lim G J O n 
JV->oo 

(*) Added November 10, 1970. Quite recently B. LAWSON has constructed such foliations 
on all spheres of dimension 2* + 3. 
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This " infinite Grassmanian " is of fundamental importance in topology, because 
it classifies the vector-bundle functor; that is, there is a natural m-vector bundle Em 

over G„,, with the property that for any reasonable space X the set of isomorphism 
classes of m-vector bundles over X, say VectHI(X), is naturally in one to one corres­
pondance with the homotopy classes [X, Gm] of maps of X into Gm . 

(3.3) Vect n i pO^[X, G J . 

This correspondence assigns to a map / : X -* Gm the pullback f~1Em of Em to X. 

In case some of you are lost at this point, let me describe for you a particular conse­
quence of (3.3) in quite elementary terms. 

First of all note that an imbedding of M in a Euclidean space, M c UN induces 
a map 

(3.4) y.M - Gm. 

Indeed, simply let y(p) equal the subspace of UN parallel to the tangent plane to M 
at p. 

Now it turns out that these maps all belong to the same homotopy class yM e [M, GJ, 
and that this homotopy class which we refer to as the Gauss map of M, corresponds 
to the tangent bundle under the isomorphism (3.3). 

The class yM is the first and fundamental homotopy theoretic invariant of the 
differentiable structure on M. Incidentally yM, also serves to define the Pontrjagin 
ring of M. This is the image of the cohomology H*(Gm ; Q) under y% in H*(M ; Q). 
In fact, quite generally, if E is any vector bundle over X, one defines its rational Pontr­
jagin ring by the formula 

(3.5) Pont(jE)=/Jf/f*(GM;Q) 

where fE : X -> Gm is the map corresponding to E under the isomorphism (3.3). 

But to return to our problem of finding a /c-plane field on M. The class yM is very 
pertinent to this question because, as is actually not hard to see, constructing a k-field 
on M amounts to giving a " lifting " y of the Gauss map in the following diagram: 

>Gk x G„,_fc 

y/ 

M -*Gm YM m 

Here n is induced by the direct sum maps 

Gk(U
N) x Gm_k(M

N) - Gm(UN+N') 

sending (A, B) to A + B. 

Problems of the type 

(3.7) 

X- -•y 
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where the solid arrows are given homotopy classes of maps and a map from X to Z 
is sought which makes the diagram homotopy commutative, are called lifting problems 
and one has by now quite standard methods of treating them. Because, as we have 
just noted, the problem of constructing a /c-field on M can be translated into such a 
lifting problem for the Gauss map, it is natural to ask whether our more refined question 
concerning the existence of integrable fields has a similar translation into a further 
lifting of yM. Now in the last two years Haefiiger [5] and Milnor [7], using different 
approaches, but both based on deep results of Phillips [8, 9 and 10] and more generally 
Gromov [3], have essentially clarified the status of this question. Let me very briefly 
summarize Haefliger's point of view here. 

Recall that an integrable E gave rise to local submersions 

fa:Ua -+ Uq, 

and transition functions gaß satisfying the equations (2.3) and (2.4). Haefiiger now 
drops the condition that fa be submersions, and considers more general systems (fa, gaß) 
satisfying only (2.3), and (2.4). Under a suitable equivalence relation, these systems 
give rise to a set-valued functor J^q{M), which one should think of as homotopy classes 
of foliations with singularities. The virtue of this construction is first of all that 34? q 

makes sense on all-spaces (not just on manifolds !) is homotopy invariant and satisfies 
the " Meyer-Vietoris " condition of E. Brown [2]. Hence by Brown's general existence 
theorem there exists a space BTq which " classifies " J f q. That is, there is a natural 
correspondence: 

(3.8) 34?q(X) = [X,BTq]. 

The space BTq thus plays the same role relative to J^q as the space Gq plays relative 
to the isomorphism classes of vector-bundles YQdq(X). Furthermore, passing 
from Haefliger's " cocycle " { fa, gaß } to the differential dgaß gives rise to a map 

(3.9) v:BTq ^ G„ 

which expresses the fact that each element of 3ti?q(M) has an associated " quotient-
bundle ". 

The construction of 3^q and hence BTq now naturally leads to the questions: 

A. How does the functor 3t?q{M) differ from the classes of integrable fields on M 
under a suitable equivalence relation? 

B. To what extent does the homotopy of BTq differ from that of Gql 

For both these problems the Phillips-Gromov generalization of the Smale-
Hirsch immersion theory it of fundamental importance. Essentially is enables 
one to push all the singularities of a " Haefiiger structure " on open manifolds off to 
infinity. As a consequence on open manifolds any Haefiiger structure compatible 
with the Gauss map is homotopic to an honest foliation ! The precise result is as follows: 

THEOREM I (Haefiiger, Milnor). — Let Sq(M) denote the classes of integrable plane 
fields on M of codimension q; under the following equivalence relation: two such fields E 
and E' are equivalent if and only if there exists afield S of codimension q on M x I, 
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which is transversal to all the slices M x const, and induces E (resp. E') on the slice 
M x 0 (resp. M x 1). 

Then on open manifolds 

(3.10) &q(M) = homotopy classes of liftings of yM 

in the diagram 

(3.11) / Gm_qxGq 

r 
M s >Gm 

Concerning the second problem these same methods lead to the result. 

THEOREM II (Haefiiger, Milnor). — The map v : BTq -* Gq induces isomorphisms 
in homotopy in dimension < q and is onto in dimension < q + 1. 

Thus, in particular, combining these two theorems we see that if M is open and 
of the homotopy type of a complex of dimension < q + 1 then every plane field of 
codimension q on M is homotopic to an integrable one. 

To summarize the situation, these developments show that first of all on open 
manifolds our problem reduces to a lifting problem, and secondly that in low dimen­
sions integrability induces no new difficulty. In short, these theorems are both of the 
existence type. 

I would finally like to report on the meager crop of nonexistence theorems which 
are at present known. 

§ 4. Some global obstructions to integrability. 

Classical obstruction-theory teaches one that a complete understanding of the 
obstructions to lifting a map from X to Y, 

M >X 

involves, first of all, the homotopy groups of the " homotopy-theoretic fiber " of %. 
This is the space F which occurs as the inverse image of a point p in X under n, when n is 
replaced by a fibering in its homotopy class. 

For instance if FTq denotes this fiber for the map v : BTq -> Gq, so that we have 
the exact *' sequence ": 

(4.1) Frt -> sr , - G,( 

then Theorem II is quite equivalently expressed by the statement 

(4.2) 7cr(Frj = 0, for r < q. 
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The homotopy groups of the fiber are important because there is no impediment 
to lifting over successive skeletons as long as these homotopy groups are zero, while, 
in general the obstruction to lifting from t to the (t + l)st skeleton is in Ht+1(M, nt(F)). 
Of particular interest therefore is the first nonvanishing homotopy group of F. 

Now in many of the classical lifting problems one could get at this information 
because the universal spaces X and Y were given explicitly by some relatively easy 
constructions. For instance, in the classical problem Gk x Gm_fc •*> Gm all the spaces 
can be treated directly. 

In the present instance, and this is really typical of all the more subtle modern uni­
versal spaces such as BTop, BPL, etc., the space BTq is not really known to us in any 
manageable manner, and one can therefore get at this type of information only by 
very roundabout methods. 

At present only the following results are known about the higher homotopy of FTq. 
First of all, J. Mather [6] has very recently constructed a surjection (*): 

(4.3) DiffoOR1) -> ^(FTj) -> 0. 

On the other hand, one can use the integrability condition which I noticed two 
years ago to prove that: 

(4.4) For q > 2, some nk(FTq) is nonzero, and in fact not finitely generated. 

Let me remark briefly how this first nonexistence—or obstruction—result comes 
about. 

First I recall the integrability criterion alluded to earlier [1]. 

INTEGRABILITY CRITERION: A sub-bundle E of the tangent bundle TM is integrable only 
if the ring Pont (T/E) generated by the rational Pontrjagin classes of T/E vanishes in 
dimension greater than 2 x dim (T/E) 

(4.5) Pont* (T/E) = 0 if k> 2 dim T/E. 

The proof of this proposition is very direct, provided only that one uses the geometric 
definition due to Pontrjagin, Chern, Weil of the Pontrjagin classes as real cohomology 
classes represented by differential forms. Indeed, to give a clue to the initiated in this 
geometric framework, the infinitesimal integrability condition can be exploited to 
define a connection on T/E which is flat along the leaves, and then the result follows 
immediately. Essentially the same construction can be used to strengthen this crite­
rion as follows: 

THEOREM III. — The homomorphism 

(4.6) v* : H* { Gq ; Q } -+ H*(BTq ; Q) 

is zero in dimensions greater than 2q. 

Now the rational cohomology of Gq is well known to be a polynomial algebra 
Q[P l 3 . . .,P[q/2]] in the universal Pontrjagin classes P feJÏ4f(Gg , Q), and is therefore, 

(*) Diff0 (U
1) denotes the group of diffeomorphisms of IR1 with compact support. 
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in particular, non-trivial in positive dimensions provided q > 2. By a standard 
spectral sequence argument if follows therefore that nk(FTq) must be nontrivial for 
some k. To obtain the nonfinite generation, one still has to show that if one uses Zp 

coefficients then: 

(4.7) v*:H*(Gq,Zp) -+ H*(BTq;Zp) 

is injective. 

To prove this one merely has to construct many examples of integrable fields E 
whose quotient bundles T/E have large mod p Pontrjagin rings, and such examples 
are easy to construct by taking E to be the horizontal space of flat vector bundles. 

A question which seems to me of great interest is whether some of the groups nk(FTq) 
are uncountable or not. In particular, one can relativize the integrability criterion to 
obtain homomorphisms of certain homotopy groups of FTq into the Reals and I 
would dearly like to know whether they are onto. The first case of interest occurs 
when q — 3 and in this situation the relative invariant gives rise to a homomorphism 

(4.8) 0; 7c7(Fr3) -• R. 

Let me now conclude with a very brief remark about the complex analytic case, 
where some of these questions can be settled. 

As is pointed out in Haefliger's paper [5], the space BTq should be thought of as the 
classifying space associated to the groupoid of germs of diffeomorphisms of U9. (Recall 
that the g%p were local diffeomorphisms of Uq ). A corresponding construction for 
germs of complex-analytic automorphism of Cq is possible, and leads to a space BTqC. 
One also has a corresponding fibering 

(4.9) FTqC - BTq£ ^> GCq 

where now GCq denotes the Grassmanian of complex subspaces of C00. 

In this situation one can compute the relative invariants alluded to earlier and is 
then led to the 

THEOREM IV. — The homomorphism 

(4.10) vt : H* { GCq ; U } -> H*(BFqC ; U) 

is zero in dim > 2q + 1. 

Furthermore there exists a relative invariant 0q which maps n2q + 1(FFqC) onto 
C x . . . x C 

d(q) 

(4.11) _ 
d(q) 

where d(q) = dimK H2iq+1)(G£qì U). 

In this case at least, I have therefore fulfilled my promise to introduce you to some 
genuinely huge spaces. 
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MANIFOLDS AND HOMOTOPY THEORY (*) 

by WILLIAM BROWDER (**) 

If one considers the problem of classifying manifolds, as the dimension increases 
one soon finds even the homotopy type classification to be impossibly complex. For 
example, any finitely presented group is the fundamental group of some closed mani­
fold for any dimension ;> 4. Thus one is led to consider the problem of " relative 
classification ", such as (a) classifying up to diffeomorphism all the smooth manifolds 
of one fixed piecewise linear (PL) type, or (b) classifying up to homeomorphism all 
manifolds of one fixed homotopy type, etc. The prototype of such a theory is the theory 
of (a), which began with the work of Milnor on differential structures on spheres, and 
culminated in the smoothing theory developed by Hirsch, Mazur, Lashof and Rothen-
berg. Their theory may be described briefly as follows: 

Given a PL manifold Mm, it has a PL stable tangent bundle TM , which is induced 
from the universal PL bundle over the classifying space BPL by a map / : M -• BPL. 
The classifying space for stable linear bundles B0 maps into BPL, p: B0 -> BPL, 
and if M has a smooth structure y compatible with its PL structure, then the linear 
tangent bundle of the smooth My defines a lift of / to / ' : M -• B0 such that pf = / 

THEOREM. — M has a compatible smooth structure if and only if iM has a linear 
structure, i. e., / lifts to / ' : M -» B0, such that pfr — f. Furthermore, concordance 
classes of such structures correspond one to one to homotopy classes of lifts / ' of / 
(homotopies lying over / ) . 

COROLLARY. — If M is a smooth manifold, concordance classes of smooth structures 
on M compatible with a C°°-triangulation are in 1-1 correspondence with elements 
in the homotopy set [M, PL/0], where PL/0 is the fibre of the map p: B0 -• BPL. 

(Two smooth structures on M are called concordant if there is a smooth structure 
on M x [0, 1] which restricts to the two structures at the two ends M x 0 and M x 1). 

It remains a difficult problem to calculate the homotopy set [M9 PL/0], and in fact 
the calculation of nm(PL/0) depends on the homotopy groups of spheres. However, 
the neat and closed form of the result is attractive and useful for many applications. 
One would like to describe a similar theory for the problem of classifying manifolds 

(*) A more detailed exposition on the subject of this talk is found in my article of the same 
title in the Proceedings of the Amsterdam Conference on Manifolds, 1970, Springer lecture 
notes. 

(**) The author was partially supported by the National Science Foundation. 
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in a fixed homotopy type, and I will describe the analogous theory, and where the 
analogies break down. 

A Poincaré pair is a pair (X, dX) which satisfies Poincaré duality, i. e., there is an 
element [X]eHn(X, dX) such that [X] n : Hq(X) -> Hn_q(X, dX) is an isomorphism 
for all q. The dimension of X is defined to be n. If dX = 0 , X is called a Poincaré 
space, and for a Poincaré pair (X, dX) of dimension n, it follows that dX is a Poincaré 
space of dimension n — 1. 

Instead of a tangent bundle for a Poincaré pair (X, dX), we define the Spivak normal 
fibre space of (X, dX) which is the analog of the normal bundle of a smooth manifold 
(Mm, dM) c (Dm+k, Sm+k~1). lf(X, dX) is a connected Poincaré pair of dimension m, 
for k > m + 1 there is a (k — 1) spherical fibre space Çk over X, and a pair of maps 

(/,/o):(^o(a fiottio) -> (Y,Y0) 

(where E0 denotes the total space of the (k — l)-spherical fibrations) such that 

1) the pair (X \J E0(Q \JY, dX\J E0(Ç \ dX) \J Y0) = (A, B) is homotopy equi­

valent to (Dm+k, S"1*1*-1), and 

2) the map f^: Hm+k_2(E0(Ç \ dX)) -> Hm+k_2(Y0) is zero. 

This fibre space is called the Spivak normal fibre space of (X, dX) and it is unique up 
to fibre homotopy equivalence. 

There is a classifying space BG for stable spherical fibrations arid maps 

B0 -> BPL -> ß T o p -> BG 

(where BTop is the classifying space for stable euclidean space bundles). If there is a 
smooth (PL, Top) manifold of the homotopy type of X then the classifying map of the 
Spivak normal fibre space Ç lifts to B0(BPL, 5Top), but the converse is not true in general, 
which leads to a rich theory. 

Note first that if one lift of Ç to BH exists (H = 0, PL or Top) then the homotopy 
classes of lifts (homotopies covering a constant map into BG) correspond 1-1 to ele­
ments of the set of homotopy classes of maps [X, G/H], where G/H is the fibre of the 
map BH -> BG. 

Let us define the set of concordance classes of homotopy H -structures (H = 0, 
PL or Top) on X = yH(X) as follows. Consider pairs (M, h) where M is a manifold 
(in the category of H) and h : (M, dM) -> (X, dX) is a homotopy equivalence of 
pairs. Two pairs (Mi5 ht), i = 0, 1, are concordant if there is a cobordism W, 
ÔW = MQ KJ M1KJ V, dV = ôMQ U dM1 and a homotopy equivalence of pairs 

k: (W, V) -• (X x [0, 1], ÔX x [0, 1]) 
with 

h(x) = (hi(x), i) for xeMf. 

Then £fH(X) is the set of concordance classes of such pairs. 

The development of theory of surgery by Milnor, Kervaire, S. P. Novikov, the 
author, and Sullivan has culminated in the following theorem: 
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THEOREM. — Let X be a 1-connected Poincaré space of dimension n > 5 and suppose 
that its Spivak normal fibre space admits an if-structure (H = 0, PL or Top). Then 
there is an exact sequence of sets 

P, + 1 % <?H(X) *> [X,G/H] A Pn 

where 

0 n odd 
Z n = 4/c 
Z2 n = 4/c + 2 

Here co is defined if £fH(X) ^ 0 , and in that case there is an action of P„ + j on ^H(X) 
such that r\(x) = q(x') if and only if x, x' are in the same orbit of the action. 

In the case of pairs we have the result of Wall: 

THEOREM. — If (X, dX) is a Poincaré pair of dimension m > 6, with X} dX 1-con­
nected, dX i= 0 , and suppose the Spivak normal fibre space admits an //-structure 
(H = 0, PL or Top). Then ^H(X) = [X, G/H]. 

(The techniques used were proved first in the smooth case (H = 0), and extended 
to the PL case using the smoothing theory of PL manifolds above, and recently exten­
ded to the topological case using the work of Kirby and Siebenmann). 

Thus we see an exact analogy with the smoothing theory of PL manifolds where 
dX 7e 0 , but in case dX = 0 there is an obstruction to getting the analogous result, 
an obstruction lying in the group P„. The underlying reasons for the difference in 
the theories arise from transversality. One has a Thorn transversality theorem for 
either linear or PL bundles (or even Top bundles for higher dimensions) and this 
makes possible the exact correspondence between smoothings and lifts. But trans­
versality fails for spherical fibre spaces and this failure is what creates the obstiuction 
groups P„. This relation has been precisely described in recent work of Levitt, which 
gives an obstruction theory to transversality for a map of a manifold M into a spherical 
fibre space, with values in cohomology H J + 1 (M: Pj). 

The whole theory has been generalized by Wall to the non-simply connected case, 
where one assumes Poincaré duality with local coefficients, and other properties. 
Then one gels a similar exact sequence as above, and the obstruction groups depend 
only on the fundamental group system of X, dX and are again periodic of period 4. 
These obstruction groups are algebraically defined, for example, for dX = 0 , as 
certain Grothendieck groups of quadratic forms over Zn or automorphisms of forms. 
This is analogous to the simply connected case where P„ is the Grothendieck group 
of even, unimodular Z-forms for n = 4/c, or non-singular Z2-quadratic forms for 
m = 4/c + 2. The calculation of these groups (over Zn) has proven very difficult, 
and there is much work going on in this direction by both geometers and algebraic 
i^-theorisls. 

For the term in the exact sequence [X, G/H], the calculation is very difficult for 
H = 0, because again the homotopy groups of spheres are closely related. For 
H = PL however, the homotopy properties of G/PL have been very well analyzed 
by Sullivan, and the work of Kirby-Siebenmann has enabled one to extend Sullivan's 
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results to G/Top. The results make possible the explicit description of [X, G/Top], 
in terms of the cohomology and real K-theory of X, and have been used in the topo­
logical and PL classification of homotopy projective spaces, lens spaces, and many 
other manifolds. 

Princeton University 
Department of Mathematics, 

Fine Hall, Box 37 
Princeton, N. J. 08540 

(U. S. A.) 
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DIFFERENTIAL GEOMETRY; 

ITS PAST AND ITS FUTURE 

by SHIING-SHEN CHERN (*) 

A. Introduction. 

It was almost a century ago, in 1872, that Felix Klein formulated his Erlanger Pro­
gram. The idea of unifying the geometries under the group concept is simple and 
attractive and its applications in the derivation of different geometrical theorems 
from the same group-theoretic argument are usually of great elegance. This leads 
to the development of differential geometries of submanifolds in homogeneous (or 
Klein) spaces: conformai, affine, and projective differential geometries. The latter 
had in particular an energetic development in the twenties. 

It was also about a century ago that the greatest modern differential geometer 
Elie Cartan was born (on April 9, 1869). Among his contributions of a basic nature 
are his systematic use of the exterior calculus and his clarification of the global theory 
of Lie groups. Fiber spaces also find their origin in Cartan's work. 

Differential geometry is the study of geometry by the methods of infinitesimal calculus 
or analysis. Among mathematical disciplines it is probably the least understood (1). 
Many mathematicians feel there is no geometry beyond two and three dimensions. 
The advent into higher and even infinitely many dimensions does make the intuition 
unreliable and the dependence on algebra and analysis mandatory. The basis of 
algebra is the algebraic operations and the basis of analysis is the topological structure. 
I would like to surmise that the core of differential geometry is the Riemannian structure 
(in its broad sense). 

The main object of study in differential geometry is, at least for the moment, the 
differentiable manifolds, structures on the manifolds (Riemannian, complex, or other), 
and their admissible mappings. On a manifold the coordinates are valid only locally 
and do not have a geometrical meaning themselves. Historically the difficulty in 
achieving a proper understanding of this situation must have been tremendous (I 
wonder whether this was part of the reason which caused Hadamard to admit his 

(*) This paper was written when the author held a Research Professorship of the Miller 
Institute and was under partial support of NSF grant GP 20096. 

(*) G. D. BIRKHOFF, « The second is a disturbing secret fear that geometry may ultimately 
turn out to be no more than the glittering intuitional trappings of analysis ». Fifty years of 
American mathematics, Semicentennial Addresses of Amer. Math. Soc. (1938), p. 307. 

G. W. MACKEY, « Geometrical intuition, while very helpful, is not reliable and cannot be 
depended upon for rigorous arguments », Lectures on the Theory of Functions of a Complex 
Variable, p. 21, Van Nostrand, notes. 
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psychological difficulty in the mastery of Lie groups) (2). For technical purposes 
the Ricci calculus was a powerful tool, but it is inadequate for global problems. Global 
differential geometry, with the exception of a few isolated results, had to wait till 
algebraic topology and Lie groups have paved the way. 

Global differential geometry must be considered a young field. The notion of a 
differentiable manifold should have been in the minds of many mathematicians, but 
it was H. Whitney who found in 1936 a theorem to be proved: the imbedding theorem. 
In the case of the richer complex structure a definition of a Riemann surface by over­
lapping neighborhoods was given and the theory rigorously treated by H. Weyl in 
his famous book " Idee der Riemannschen Fläche, Göttingen, 1913 " (3), following 
which Caratheodory gave the first definition of a high-dimensional complex manifold. 
More general pseudo-group structures were treated by Veblen and J. H. C. Whitehead 
in 1932 [34]. Only special cases of the general theory, such as Riemannian, conformai, 
complex, foliated structures, etc. have been found significant. 

B. The development of some fundamental notions and tools. 

Perhaps the most far-reaching achievement in differential geometry in the last 
thirty years lies in its foundation. Not only are the notions clearly defined, but nota­
tions are devised to treat manifolds which could be infinite-dimensional. The notations 
are up to now on the diversive side and are thus at an experimental stage. We believe 
in the survival of the fittest. Important as these foundational works are, no mathe­
matical discipline can prosper without deeper study and simple challenging problems. 
We will comment briefly on a few fundamental developments in differential geometry 
and its related subjects, without endeavoring to make the list complete. 

(1) Lie Groups. — It is one of the happiest incidents in the history of mathematics 
that the structure of Lie groups can be so thoroughly analyzed. The existence of the 
five exceptional simple Lie groups makes a deep study necessary and leads to a better 
understanding. Even so the subject has unity and is so much simpler than (say) 
finite groups. The quotient spaces of Lie groups give a multitude of examples of 
manifolds which are easy to describe. They include the classically important spaces 
and form a reservoir on which new conjectures can be tested. 

(2) Fiber Spaces. — When a manifold has a differentiable structure, it can be locally 
linearized, giving rise to the tangent bundle and the associated tensor bundles. The 
first idea of a connection in a fiber bundle with a Lie group can be found in Cartan's 
" espaces généralisés ". _It was algebraic topology which focused on the simplest pro­
blems, e. g., the problem of introducing invariants which serve to distinguish a general 

(2) J. HADAMARD, Psychology of Invention in the Mathematical Field, Princeton (1949), 
p. 115. 

E. CARTAN, in his classical « Leçons sur la géométrie des espaces de Riemann » says, « La 
notion générale de variété est assez difficile à définir avec précision », p. 58. 

(3) Weyl's book was dedicated to Felix KLEIN, to whom he acknowledged for the funda­
mental ideas. Weyl's definition of a Riemann surface and Hausdorffs introduction of his 
axioms in 1914 must have made it superfluous to give formally a definition of a differentiable 
manifold. Chevalley's book on Lie groups (1946) exerted a great influence in the clarification 
of many concepts attached to it. 
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fiber bundle from a product bundle. Among them are the characteristic classes. 
Characteristic classes with real coefficients can be represented by the curvature of a 
connection, the simplest example being the Gauss-Bonnet formula, The bundle 
structure is now an integral part of differential geometry. 

(3) Variational Methods. — The importance of the notion of measure (length, area, 
volume, curvature, etc.) makes the variational method a powerful and indispensable 
tool. The study of geodesies on a Riemannian manifold is a brilliant chapter of 
mathematics. It led to Morse's creation of the critical point theory whose scope 
extends far beyond differential geometry. Another example is the Dirichlet problem 
and its application to elliptic operators. Multiple integral variational problems open 
a vista whose terrain is still rocky. It promises, however, a fertile field of work. When 
a geomatrical problem involves a function, either over the given manifold or in some 
related functional space, it always pays to look at its critical values and the second 
variation at them. Much of differential geometry utilizes this idea, in its various 
ramifications. The importance of variational method in differential geometry can 
hardly be over-emphasized. 

(4) Elliptic Differential Systems. — The geometrical properties of differential geo­
metry are generally expressed by differential equations or inequalities. Contrary 
to analysis special systems with their special properties received more attention. 
While analysis is the main tool, geometry furnishes the variety. Differential systems 
on manifolds with or without boundary are the prime objects of study. 

Elliptic systems occupy a central position because of their rich properties, which 
follow from the severe restrictions on the set of solutions. Hodge's harmonic diffe­
rential forms, with their applications to Kahlerian manifolds, will remain a crucial 
landmark. A simple idea of Bochner relates them to curvature and leads to vanishing 
theorems when the curvature satisfies proper " positivity " conditions. This has 
remained a standard method in the establishment of such theorems, which in turn 
give rise to existence theorems. The indices of linear elliptic operators on a compact 
manifold include some of the deepest invariants of manifolds (Atiyah, Bott, Singer). 

In the study of mappings an important problem consists in the analysis of the sin­
gularities. Important progress has been made recently on the singularities of diffe­
rentiable mappings (Whitney, Thorn, Malgrange, Mather). If the mappings are 
defined by elliptic differential equations, cases are known where the singularities take 
relatively simple form. Singularities in differential geometry remain a relatively 
untouched subject. 

C. Formulation of some problems with discussion of related results. 

We will attempt to discuss some areas where it is believed that fruitful researches 
can be carried out. The limited time at my disposal and, above all, my own limitation 
make it impossible for the treatment to be even remotely exhaustive. Any subject 
left out carries no implication that it is considered less significant. 

My object is to amuse you by stating some very simple problems which have so 
far defied the efforts of geometers. The danger in formulating such problems is that 
the line distinguishing them from mathematical puzzles is thin. Personally I think 
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there is no such line except that the " serious " problems concern with a new domain 
where the phenomena are not well understood and the basic concepts not well deve-
lopped. Geometry and analysis on manifolds are still at this stage and will remain so for 
years to come. When such problems are solved, similar ones will tend toward puzzles. 

Many of the problems to be given below are known. It is hoped that its collection 
may attract mathematicians not engaged in this field and lead to further progress. 

1. RIEMANNIAN MANIFOLDS WHOSE SECTIONAL CURVATURES KEEP A CONSTANT SIGN 

It was known to Riemann that the local properties of a Riemannian structure are 
completely determined by its sectional curvature. The latter is a function R(a) of a 
two-dimensional subspace a of the tangent space at a point x, which is equal to the 
gaussian curvature of the surface generated by the geodesies tangent to a at x. Mani­
folds for which R(a) keeps a constant sign for all a have a simple geometrical meaning. 
For their global study it is important to require that they are not proper open subsets 
of larger manifolds and, following Hopf and Rinow, it is customary to impose the 
stronger completeness condition: every geodesic can be indefinitely extended. In 
fact, without the completeness requirement the sign of the sectional curvature imposes 
hardly any condition on the manifold, as Gromov [21] proved that there exists on any 
non-compact manifold a Riemannian metric for which the range of the values of R(&) 
is any open interval on the real line. 

For complete Riemannian manifolds M for which R(<r) keeps the same sign the two 
classical theorems are: 

(1) THEOREM OF HADAMARD-CARTAN. — If R(a) ^ 0, the universal covering 
manifold of M is diffeomorphic to Rn, n = dim M. 

(2) THEOREM OF BONNET-MYERS. — If R(a) ^ c (= const) > 0, M has a diameter 
< 7u/c1/2 and is therefore compact. 

The case of positive curvature turns out to be more elusive. Cheeger and Grù­
moli [9] achieved what is essentially a structure theory of non-compact complete 
Riemannian manifolds M with R(a) ^ 0 (all a) by proving the following theorem. 
There is in M a compact totally geodesic and totally convex submanifold SM (to be 
called the soul of M) without boundary such that M is diffeomorphic to the normal 
bundle of SM. If the sectional curvature is strictly positive, then Gromoll and 
Meyer [20] proved that the soul is a point and M is diffeomorphic to Rn. In particular, 
M must be simply connected. 

Compact Riemannian manifolds of positive curvature obviously satisfy the stronger 
condition R(<r) ^ c > 0 (all o). By the Bonnet-Myers Theorem they are identical 
with the complete Riemannian manifolds with the same property. They are not 
necessarily simply connected, as the example of the non-euclidean elliptic space shows. 
So far the simply connected compact differentiable manifolds known to admit a 
Riemannian metric of positive curvature are the following [3]: (1) the n-sphere; (2) the 
complex projective space; (3) the quaternion projective space; (4) the Cayley plane; 
(5) two manifolds discovered by Berger, of dimensions 7 and 13 respectively. 

It is very unlikely that there are no others, but nothing more is known. The follow­
ing question was asked by H. Hopf: 
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PROBLEM I. — Does the product of two 2-dimensional spheres admit a Riemannian 
metric of strictly positive curvature ? 

More generally, it is not known whether the exotic 7-spheres, some of which are 
bundles of 3-spheres over 4-spheres, admit Riemannian metrics of positive curvature. 
The answer to the question in Problem I is probably negative. A supporting evidence 
is furnished by the following theorem of Berger [5] : Let M and JV be compact Rieman­
nian manifolds. Let g(t) be a family of Riemannian structures on M x N9 such 
that g(0) is the product structure and such that the following condition is satisfied: 

dR(a) I 

dt 
>0 

for all G spanned at x E M x N by a tangent vector to M and a tangent vector to N. 
Then 

dR(a) = 0 
r = o dt 

for all such a. 

To get deeper topological properties of a manifold of positive curvature Rauch 
introduced the notion of pinching. M is said to be ^-pinched if 0 < ß < R(a) < 1 
for all a. After the pioneering work of Rauch the following are the main theorems 
on the topology of compact pinched Riemannian manifolds of positive curvature: 

(1) (Berger-Klingenberg) [4, 25]. If a simply connected Riemannian manifold of 

positive curvature is ß-pinched, ß > - , it is homeomorphic to the «-sphere; if ß = -

and it is not homeomorphic to the «-sphere, it is isometric to a symmetric space of 
rank 1. 

(2) (Gromoll-Calabi) [19]. Let M be an «-dimensional compact simply connected 
Riemannian manifold of positive curvature. There exists a universal constant 
ß(n) < 1, depending only on «, such that if M is /?(«)-pinched, it is diffeomorphic to the 
standard «-sphere. 

Similar problems can be studied on the global implications of curvature properties 
of complex Kählerian manifolds. A new feature is the notion of holomorphic sectional 
curvature, i. e., sectional curvature R(<r)9 where a is the two-dimensional real space 
underlying a complex line in the complex tangent space. A most attractive question 
is the following one formulated by Frankel: 

PROBLEM II. — Let M be a compact Kählerian manifold of positive sectional curva­
ture. Is M biholomorphically equivalent to the complex projective space? 

Andreotti and Frankel [17] proved that the answer is affirmative if M is of dimen­
sion 2. The proof makes use of the classification of algebraic surfaces. Partial results 
were recently obtained by Kobayashi and Ochiai [26] for 3 dimensions. 

2. E U L E R - P O I N C A R é CHARACTERISTIC 

Among the important topological invariants of a manifold is the Euler-Poincaré 
characteristic. Its role is well-known on problems such as the Lefschetz fixed-point 
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theorem, singularities of vector fields, and indices of some elliptic operators. Geo­
metrically it is closely related to the total curvature (curvatura integra) as expressed 
by the Gauss-Bonnet formula 

( - l)m 

(LSh.:Ì2mSjl.,j2m^hÌ2JlJ2 ' ' ' RÌ2m-lÌ2mJ2m -lhJ^V W 

Here M is a compact orientable Riemannian manifold of even dimension n = 2m, 
X(M) is its Euler-Poincaré characteristic, dv is the volume element, and Rijkl are the 
components of the curvature tensor relative to ortho-normal frames. The Bilmmmi2m 

is the Kronecker symbol and is zero if ix,..., i2m do not form a permutation of 1, . . . , 2m 
and is equal to H- 1 or — 1 according as the permutation is even or odd. 

In spite of the explicit expression for x(M) the following has not been established: 

PROBLEM III AND CONJECTURE. — If M has sectional curvatures ^ 0, then %(M) ^ 0. 
If M has sectional curvatures < 0, then %(M) ^ 0 or < 0, according as n = 0 or 2 mod 4. 

The above statement has been proved for n = 4 [10] and for the case that M has 
constant sectional curvature. A first approach would be to study the sign of the inte­
grand in the Gauss-Bonnet formula, a purely algebraic problem. Even this algebraic 
problem seems to be of great interest [33]. 

As with the classical Gauss-Bonnet formula the relationship is more useful for 
compact manifolds with boundary (in which case a boundary integral should be added 
to make the formula (1) valid) and the problem is more interesting for non-compact 
manifolds, because a deeper study of the geometry will then be necessary. We will 
denote by C(M) the right-hand side of (1) and we shall formulate the problem: 

PROBLEM IV. — Let M be a complete Riemannian manifold of even dimension. 
Suppose x(M) and C(M) both exist, the latter meaning that the corresponding integral 
converges. Find a geometrical interpretation of the difference 

5(M) = x(M) - C(M). 

Of course S(M) = 0 if M is compact. In two dimensions Cohn-Vossen's classical 
inequality says that ô(M) ^ 0. For a class of two-dimensional manifolds Finn and 
A. Huber [16, 23] obtained a geometrical interpretation of <5(M), which implies that it 
is non-negative. Partial results on Problem IV have been obtained by E. Portnoy [30]. 
Perhaps the case of Kählerian manifolds has a simpler answer and should be studied 
first. 

In a different direction Satake [31] obtained a Gauss-Bonnet formula for his V-mani-
folds and applied it to automorphic functions and number theory. F-manifolds are 
essentially manifolds with singularities of a relatively simple type. 

Another problem on the Euler-Poincaré characteristic concerns compact affinely 
connected manifolds which are locally flat. These can be described as manifolds with 
a linear structure, i. e., having a covering by coordinate neighborhoods such that the 
coordinate transformation in overlapping neighborhoods is linear. 

PROBLEM V. — Let M be a compact manifold with an affine connection which is 
locally flat. Is its Euler-Poincaré characteristic equal to zero? 
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Bensecri proved that the answer is affirmative if M is of two dimensions (For proof 
and generalization cf. Milnor [27]). The high-dimensional case has been investigated 
by L. Auslander who proved the theorem [1]: suppose the affine connection be complete 
and suppose that the homomorphism h : n^(M) -> GL(n, R) defined by the holonomy 
group is not an isomorphism of the fundamental group n^(M) onto a discrete subgroup 
of GL(n, R). Then X(M) = 0. 

It is not known whether h can imbed n^(M) as a discrete subgroup of GL(n9 R). 

In spite of great developments in algebraic topology there are simple problems 
on the Euler-Poincaré characteristic which remain unanswered. 

3. MINIMAL SUBMANIFOLDS 

A minimal submanifold is an immersion x : Mn -> XN of an «-dimensional diffe­
rentiable manifold M" (or simply M) into a Riemannian manifold XN of dimension N, 
which locally solves the Plateau problem : Every point XEM has a neighborhood U 
such that U is of smallest «-dimensional area compared with other «-dimensional 
submanifolds having the same boundary dU. Analytically the condition can be 
expressed as follows: Let D2x be the second differential on M in the sense of Levi-
Civita. Then (D2x, f), where £ is a normal vector to M at x, is a quadratic differential 
form, the second fundamental form relative to ^. The differential equation to be 
satisfied by M is 

Tr (D2x9 0 = 0, all t (2) 

It is a system of non-linear elliptic partial differential equations of the second order, 
whose number is equal to the codimension N — «. A minimal submanifold of dimen­
sion one is a geodesic. 

We wish to study the properties of complete minimal submanifolds in a given 
Riemannian manifold XN (cf. [12]). Except for geodesies the interest has so far been 
restricted to the case when the ambient space XN is either the Euclidean space EN 

or the unit sphere SN(1) imbedded in EN + 1. 

For a minimal submanifold x : M" -* EN in the Euclidean space a condition equi­
valent to (2) is that the coordinate functions are harmonic (relative to the induced 
metric). It follows that for « > 0 a complete minimal submanifold in EN is non-
compact. 

For various reasons the case of codimension one (i. e., the minimal hypersurfaces) 
is the most important. Let xl9. . .9x„9 z be the coordinates in En + 1. Consider 
minimal hypersurfaces defined by the equation 

z = F(xl9...9xn) (3) 

for all x i , . . . , x„. The following fundamental theorem generalizes the classical 
theorem of Bernstein and was the combined effort of de Giorgi (« = 3), Almgren 
(« = 4), Simons (« < 7), Bombieri, de Giorgi, Giusti (« ^ 8) [6, 32]. The minimal 
hypersurface defined by (3) must be a hyperplane for « ^ 7 and is not always a hyper-
plane for « ^ 8. 

The main reason for this difference is the existence of absolute minimum cones in 
high-dimensional Euclidean space, which in turn depends on properties of compact 
minimal hypersurfaces in S"(l). From a general viewpoint the study of compact 
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minimal submanifolds in SN(1) is attractive for its own sake. The first uniqueness 
theorem is the theorem of Almgren-Calabi [11]. If a two-sphere is immersed as a 
minimal surface in 53(1), it must be the equator. 

By a counter-example of Hsiang [22] this theorem is not true for the next dimension. 
However, the following question, which can be designated as the " spherical Bernstein 
problem ", is unanswered: 

PROBLEM VI. — Let the «-sphere be imbedded as a minimal hypersurface in Sn+1(l). 
Is it an equator? 

Two-dimensional minimal surfaces in EN and in SN(1) have been more thoroughly 
studied, because of the application of complex function theory. If the surface is itself 
a two-sphere (hence in SN(1)), severe restriction is imposed for global reason and we 
have the following theorem (Boruvka, do Carmo, Wallach, Chern, but mainly 
Calabi [8, 14]). Let the two-sphere be immersed in SN(1) as a minimal surface, such 
that it does not belong to an equator. Then we have: (1) N is even; (2) The total area 
of the surface is an integral multiple of 2n; (3) If the induced metric is of constant Gaus­
sian curvature, it is completely determined up to motions in SN(1) and the Gaussian 
curvature has the value 

K= . * , iV = 2m. (4) 
m(m + 1) 

(4) There are minimal two-spheres in SN(1) of non-constant Gaussian curvature; all 
these with a given area form a finite-dimensional space. 

The immersion of the «-sphere as a minimal submanifold of SN(1) is a fascinating 
problem. If the induced metric has constant curvature, the immersion is given by 
the spherical harmonics (Takahashi). For « > 2 two isometric minimal immersions 
Sn(a) -> SN(1) are not necessarily equivalent under the motions of the ambient space 
(do Carmo, Wallach [15]). In view of the precise results on the two-sphere we wish 
to propose the following problem: 

PROBLEM VII. — Consider minimal immersions Sn -> SN(1) with total area ^ A 
( = const) and identify those which differ by a motion of the ambient space. Is the 
resulting set a finite-dimensional space with some natural topology? 

4. ISOMETRIC MAPPINGS 

A differentiable mapping / : M -• F of Riemannian manifolds is called isometric 
if it preserves the lengths of tangent vectors. It is therefore necessarily an immersion, 
and dim M ^ dim V. Classical differential geometry deals almost exclusively with 
the case that V is the Euclidean space EN of dimension N. We believe this is the most 
interesting case and we will adopt this restriction in our discussion. 

The first problem is that of existence. Since the fundamental tensor on a Rieman­
nian manifold of dimension n involves «(« + l)/2 components, Schiarii conjectured 
in 1871 that every Riemannian manifold of dimension « can be locally imbedded 

in EN, with N = -«(« + 1). This was proved by Elie Cartan in 1927 for the real 

analytic case. For smooth non-analytic manifolds this local isometric imbedding 
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problem is unsolved, even for « = 2, unless some restriction on the metric is imposed 
such as the Gaussian curvature keeping a constant sign. In other words, it is not 
known whether any smooth two-dimensional Riemannian manifold can be locally 
isometrically imbedded in E3 . The answer is probably negative. 

The two important global imbedding theorems are: 

(1) (Weyl's Problem). A compact two-dimensional Riemannian manifold of positive 
Gaussian curvature can be isometrically imbedded in E3 (as a convex surface). 

(2) (Nash's Theorem [18, 28]). A compact (resp. non-compact) C00 Riemannian 
manifold of dimension « can be isometrically imbedded in EN

9 

N = -«(3« + 11) (resp. N = 2(2« + 1)(3« + 7)) (4) 

The second problem is the uniqueness of the isometric imbedding, also called rigidity, 
which is the problem whether an isometric immersion is determined up to a rigid 
motion of the ambient space EN. Most interesting is the classical case of surfaces 
in E3. Cohn-Vossen proved the rigidity of compact surfaces with Gaussian curva­
ture K > 0 and the theorem was extended by Voss [35] to the case K ^ 0. Even 
before Cohn-Vossen, Liebmann proved that a smooth family of isometric compact 
convex surfaces (i. e., K > 0) is trivial, i. e., it consists of the surfaces obtained by the 
rigid motion of one member of the family. It is not known whether the same is true 
when the curvature condition is dropped and we believe the following problem is 
fundamental : 

PROBLEM VIII. — Let M be a compact surface and I be the interval — 1 < t < 1. 
Let f: M x I -*• E3 be a differentiable mapping such that ft : M -*• E3 defined 
by fi(x) = f(x, t), XEM, tE I, is an immersion for each t. Suppose that the metric ds2 

induced by f on M is independent of t. Does there exist a rigid motion g(t) such 
that 

/,(*) = *«/o(*)> xeM, (5) 

where the right-hand side denotes the action on f0 by g(t)7 

The following remarks may be relevant to the problem. Cohn-Vossen [13] proved 
the existence of an unstable family of compact surfaces of revolution, i. e., that the above 
conclusion is not true if the hypothesis that ds2 is independent of t is replaced by 

- A 2 U o = ^ ^ 2 | r = 0 = 0 (6) 

There are well-known examples showing that Cohn-Vossen's rigidity theorem is 
not true without the convexity condition K ^ 0. A generalization of the latter condi­
tion to surfaces of higher genus is the notion of tightness. Let f\ M -* E3 be an 
immersed surface. The tangent plane at a point x is a local (resp. global) support 
plane if a neighborhood of the surface at x (resp. the whole surface f(M)) lies at one 
side of it. The surface is called tightly immersed if every local support plane is a global 

(4) The value for N in the case of non-compact manifolds is an improvement of NASH'S 
value by GREENE [18]. 
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support plane. A. D. Alexandrow proved that a real analytic tightly imbedded surface 
of genus one is rigid and Nirenberg [29] replaced the analyticity condition by some 
other conditions. 

On the other hand, the notion of tightness has a meaning for polyhedral surfaces. 
In this case the rigidity problem asks whether the congruence of corresponding faces 
of two tightly imbedded polyhedral surfaces implies that they differ by a rigid motion. 
Cauchy's classical theorem says that this is true if the surfaces are of genus zero. But 
Banchoff [2] has constructed examples showing that this is untrue for surfaces of genus 
one. From these remarks it is anybody's guess whether the answer to the question 
in Problem VIII is affirmative or negative. 

When M is of dimension greater than two, isometry is a strong condition and there 
are local rigidity theorems. 

5. HOLOMORPHIC MAPPINGS 

A holomorphic mapping f'.M -> V of complex manifolds is a continuous mapping 
which is locally denned by expressing the coordinates of the image point as holomorphic 
functions of those of the original point. The most significant example is the case 
when M is the complex line C and V is the complex projective line P t(C) (or the Riemann 
sphere), in which case the mapping is known as a meromorphic function. Much 
recent progress has been made in extending classical geometrical function theory to 
the study of holomorphic mappings. 

A holomorphic mapping is called non-denegerate if the Jacobian matrix is of maxi­
mum rank at some point. For given M, V there may not exist a non-degenerate 
holomorphic mapping. Let B be a closed subset of V. Classically the following 
problem has been much studied. 

Intersection or non-existence problem. Find B such that there is no non-dege­
nerate holomorphic mapping M -» V — B9 i. e., every non-degenerate holomorphic 
mapping / : M -> V has the property f(M) n B ^ 0 . 

The Picard theorem concerns the case M = C, V = Pi(C), and B is the set of three 
distinct points. Clearly if the property holds for B9 it holds for a subset containing B9 

so that a stronger theorem results from a smaller subset B. In view of the extreme 
importance and elegance of the Picard theorem, we wish to state the following conjec-
rure of Wu: 

PROBLEM AND CONJECTURE IX. — Let C„ be the «-dimensional complex number 
space and Pn(C) the «-dimensional complex projective space. Let B be the set of 
« + 2 hyperplanes of Pn(C) in general position (i. e., any « + 1 of them are the faces of 
a non-degenerate «-simplex). Then there is no non-degenerate holomorphic mapping 
Cn - Pn(Q - B. 

The Picard theorem says that this is true for « = 1. Wu has established this for 
« ^ 4. Moreover, if we set 

p(n) = 

n ^2 

+ 1 ) + 1, « even 

n + 1\ (n + 3 
4- 1, « odd, 
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and let B' be the set of p(n) hyperplanes in general position in Pn(C), then Wu [36] 
proved that every holomorphic mapping / : Cn -> Pn(C) — B' must reduce to a 
constant. 

A far-reaching generalization of the Picard theory is the equi-distribution theory 
of Nevanlinna, which studies the frequency that a non-constant meromorphic function 
takes given values. In terms of vector bundles the problem can be generalized as 
follows [7]. Let M be a complex manifold and p: E ->• M a holomorphic vector 
bundle over M. A holomorphic mapping s: M -• E is called a section if p -s = iden­
tity. Let Wbe a finite-dimensional vector space of holomorphic sections. Suppose 
the manifold and the bundle fulfill some convexity conditions (which are automatically 
satisfied in the classical case). Then we can define, to each s( ^ 0) e W, a defect ò(s) 
satisfying the conditions: (1) 0 ^ ö(s) < 1; (2) ö(ls) = ô(s), XE C - { 0 } ; (3) ö(s) = 1 
if s has no zero. The equi-distribution problem is to find an upper bound of an average 
of ô(s) (a sum in the case of a finite number of sections and an integral in the case of an 
infinite set). The problem has been studied recently by several authors.-

Dual to the intersection problem is the extension problem: Given complex mani­
folds M, V and a closed subset A c M. When is a holomorphic mapping M — A -+ V 
the restriction of a holomorphic mapping M -» VI 

Many extension theorems are known. In several complex variables the most 
famous are the Hartogs and Riemann extension theorems, which concern with the case 
that V is either the complex line or a bounded set of it. We wish to formulate the 
following problem of Hartogs type where the curvature of the image manifold enters 
into play: 

PROBLEM X. — Let À be an «-ball in Cn, « ^ 2, and let F be a complete hermitian 
manifold of holomorphic sectional curvature ^ 0. Is it true that every holomorphic 
mapping of a neighborhood of the boundary ÔA of A into V extends into a holomorphic 
mapping of A into VI 

It is known that without the curvature condition on V the assertion is not true [24]. 
The problem belongs to an area which might be described as " hyperbolic complex 
analysis ". The philosophy is that negative curvature of the receiving space limits 
the holomorphic mappings and allows strong theorems. In fact, a bounded holo­
morphic function is a mapping into a ball which has the non-euclidean hyperbolic 
metric. 
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THE CURRENT SITUATION 

IN THE THEORY OF FINITE SIMPLE GROUPS 

by WALTER FEIT (*) 

Dedicated to Richard Brauer 
on the occasion of his 70th Birthday 

§ 1. Introduction. 

As the title indicates the aim of this paper is to survey some of the known results 
concerning the structure of finite simple groups. All groups are assumed to be finite 
from now on. 

This paper is concerned with exactly one problem. 

MAIN PROBLEM. — Give a reasonable description of all noncyclic simple groups. 

The key word here is " reasonable ". Thus this is not a well defined problem. What 
is wanted is a list of all known simple groups which makes it possible to prove or 
disprove various group theoretic statements by checking all groups on the list. Known 
simple groups are not really completely known. One cannot for instance give a 
complete description of all subgroups of all the alternating groups. 

It should also be observed that it is not clear that there necessarily is an answer 
to the main problem. Conceivably an infinite number of simple groups may. exist, 
each one of which owes its existence to a large number of arithmetical and group 
theoretical accidents. 

Having stated some of the difficulties concerning the main problem I now wish 
to spend the rest of this paper in describing some of the results that have been obtained 
in answer to various special cases of the main problem. The results described below 
are mostly of the type that give a complete classification of all simple groups G which 
satisfy certain conditions. Possibly there are no such simple groups in which case 
the classification is vacuous. The conditions are of various sorts. 

(I) Assumptions concerning the structure and imbedding of various subgroups 
of G. 

(II) Assumptions about the order of G. 
(III) Assumptions that G has a linear representation over a suitable field satisfying 

certain conditions. 
(IV) Assumptions that G has a permutation representation of a special type. 
(V) Assumptions concerning the multiplication table of G. 

(VI) Various technical assumptions, such as that G has a given character table. 

(*) This paper was written while the author was partially supported by the NSF. 
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I will attempt to give a (necessarily superficial) description of how one goes about 
proving results of this sort. 

There are a large number of results which assert that if a group G contains certain 
special configurations of subgroups then G cannot be simple. Some of these date 
back to the nineteenth century, the most recent are the content of current research. 
There are more sophisticated theorems which assert that under suitable hypotheses a 
simple group must contain certain special configurations of subgroups. 

Suppose that G is a simple group which satisfies certain hypotheses, call them (H). 
The results referred to in the previous paragraph can be brought to bear on G and, 
depending on (H), one may get a great deal of information concerning a large number 
of subgroups of G. This stage of the argument can loosely be called the purely group 
theoretic part of the argument since it consists in studying in great detail the structure 
of various subgroups of G. 

After this has been done it is often possible by using the given information to construct 
a portion of the character table of G. The theory of modular characters developed 
by Brauer is frequently a useful tool here. The information from the character table 
can then be used to refine the information concerning subgroups of G. At this stage 
a contradiction may have been reached and so there are no simple groups satisfy­
ing (H). 

If however no contradiction has been reached one may have to face the following 
situation. G is a simple group satisfying (H) many of whose subgroups are explicitly 
given and a large portion, possibly all, of its character table is known. One of the 
following questions has to be answered. 

(1) (Existence Problem) If no known simple group satisfies (H) does G exist? 

(2) (Recognition Problem) If some known simple groups satisfy (H) is G iso­
morphic to one of them? 

One may be fortunate at this point and be able to find a linear representation of G 
over some field which makes it possible to recognize G, or more likely one may be 
able to construct a combinatorial configuration on which G acts as a group of auto­
morphisms thus making it possible to recognize G. If these methods fail there is 
only one recourse left. Either construct the multiplication table of G or derive a 
contradiction from this multiplication table. In other words study generators and 
relations. Unfortunately there appear to be no general methods in this connection 
and each case needs to be handled individually. 

This approach has in recent years (with the essential help of computers) led to the 
discovery of several new finite simple groups. At present there is a potential group 
investigated by Lyons [1] whose existence has not yet been established. A complete 
character table is known and an enormous amount of information about the structure 
of various subgroups is also known. A group satisfying all the appropriate conditions 
will be denoted by Ly. Conceivably there is more than one such group. 

Similarly the recognition problem can be quite intractable. There is an infinite 
class of groups, known as groups of Ree type, which have many properties in common 
with the Ree groups 2G2(32m+1). In spite of the efforts of various authors, e. g., 
Ree [3], Thompson [7], Ward [1] the question of whether these groups are isomorphic 
to the Ree groups has not yet been settled. 
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The pattern of proof outlined above is a bare skeleton which in itself is quite mean­
ingless. To make it work it is necessary to have methods available that make it 
possible to use this pattern for the purpose of proving meaningful results for groups 
which satisfy appropriate hypotheses. It is precisely the development of such methods 
that constitutes the achievement of the post war work in the theory of finite simple groups. 

The first critical step was taken by Brauer. It is quite trivial to prove and has 
been known for probably over a century that a group generated by two involutions 
is a dihedral group. Brauer [3] first observed that this fact, when combined with 
surprisingly simple counting arguments, has profound consequences concerning 
groups of even order. Amongst other things he showed that if t is an involution in 
the simple group G then | G | < {| CG(t) | 2 } ! and so in particular there exist only 
finitely many simple groups which contain an involution with a given centralizer. 
Further results of this type, all quite elementary and yet of fundamental importance, 
can be found in Brauer-Fowler [1]. Related results were later proved by various 
authors. Some of these are described in Gorenstein [3]. 

This result of Brauer established the program of characterizing simple groups of 
even order in terms of centralizers of involutions and related conditions. 

Independently of this the second critical step was taken by Thompson [3] a few years 
later in his thesis. Using the work of P. Hall and a theorem of P. Hall and G. Higman 
he introduced some completely novel purely group theoretic methods. Extensions 
of these methods when combined with some developments in the theory of characters 
made it possible to use the above described pattern of proof to show that noncyclic 
simple groups of odd order don't exist, Feit-Thompson [3]. It was to be expected 
that the group theoretic and character theoretic arguments would be enormously 
more complicated than they were in some previously proved special cases, Feit-Hall-
Thompson [1], Suzuki [2]. However it is perhaps surprising that it was (and still is) 
necessary to actually look at the multiplication table of the group before reaching a 
contradiction from the assumption that G is noncyclic simple and has odd order. 

The purely group theoretic methods which are continually being extended and 
generalized by many authors form a vital part of much of the current work on Brauer's 
program and other characterizations of simple groups. In many cases these methods 
now constitute the bulk of the proof. Surveys of some of these results and methods 
can be found in Glauberman [3] and Gorenstein [1], [3]. 

Since noncyclic simple groups have even order, the approach initiated by Brauer 
leads to a systematic attempt to provide an answer to the main problem. Whether 
it will ultimately be successful in providing such an answer remains to be seen. 
However the discovery of several new simple groups in this way has already vindicated 
this approach and indicates that it gets much closer to the heart of the problem than 
any previous attempts. 

A subject as old as the theory of finite groups abounds with conjectures and unsolved 
problems. Many of these would easily be settled if one could answer the main problem. 
In fact this is one of the major reasons for attempting to solve the main problem since 
it lies at the heart of the theory of finite groups. 

There is no point in attempting to list unsolved questions in group theory since 
the methods and results discussed in this paper are very singlemindedly aimed at 
solving the main problem and generally avoid looking at questions which are not 
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related to it. The progress that has been made on some questions not directly con­
cerned with the main problem is in the form of a bonus. See for instance Theorem 3.3 
and Theorem 10.2 below. This singlemindedness is both the strength and weakness 
of this approach. Should this approach ultirnately lead to the solution of the main 
problem many of these other questions will be settled. On the other hand if the main 
problem remains intractable more emphasis will be put in the future on attempting 
to answer some of the well known unsolved questions in the subject. 

There are also many questions concerning simple groups which are independent 
of the main problem. For instance much work has been done in attempting to describe 
the characters of known simple groups, especially groups of Lie type. These questions 
fall outside the scope of this paper. They are only mentioned here to emphasize the 
fact that while the main problem is of great importance in the theory of finite simple 
groups it does not encompass the whole subject. 

In the rest of this paper I will attempt to catalogue some of the known theorems 
concerning finite simple groups which give partial solutions to the main problem. 
These theorems are only the tip of the iceberg. Limitations of space unfortunately 
make it impossible to describe a great many results (for instance P. Hall's fundamental 
work on solvable groups) which are a necessary prerequisite for many of the listed 
theorems. 

In the course of gathering material for this paper many people made valuable sugges­
tions. In particular I wish to express my thanks to J. Alperin, B. Fischer, D. Goren­
stein, R. Griess, A. Rudvalis, R. Steinberg and J. G. Thompson. 

Standard notation and terminology from group theory is used freely throughout 
this paper. If G is a group then ô denotes some covering group of G. Numbers 
in square brackets refer to the bibliography. Results attributed to a person without 
bibliographical reference refer either to a personal communication or to an old well 
known result. 

Added in proof. — Since this paper was written C. C. Sims has proved the existence 
of Ly on a computer. This will now be denoted by LyS. He has also proved the 
uniqueness of LyS by using the fact, proved by R. Lyons and L. Scott, that LyS contains 
G2(5). 

§ 2. The known simple groups. 

The existence of most of the known simple groups and the discovery of their pro­
perties is established by methods completely divorced from those discussed in the 
previous section. The use of Lie theory to show the existence of finite simple groups 
is due to G Chevalley. The existence of finite groups of Lie type and the investigation 
of many of their properties is due to many authors, in particular Chevalley, Ree, Stein­
berg, Suzuki and Tits. Actually Suzuki discovered an infinite series of groups in 
trying to characterize some known groups and rather anticlimactically it later turned 
out that they really were groups of Lie type. Of course it should be mentioned that 
the classical groups over finite fields and finite analogues of G2 and E6 were found 
long ago by Galois, Jordan, Dickson and others. A detailed description of the groups 
of Lie type can be found in Carter [1], Tits [1]. 
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In addition to the alternating groups and groups of Lie type there are 18 known 
sporadic groups and Lyons potential group whose existence has not yet been esta­
blished. A description of these can be found in Tits [4] and his notation will be fol­
lowed here. A sporadic group is a simple group that no one has yet been able to fit into 
an infinite class of simple groups in a natural way. 

Five of the sporadic groups are the Mathieu groups which have been known for 
over a hundred years (though their existence was not incontrovertibly established until 
this century). The remaining 13 groups were discovered during the past decade. 

Four of these groups were discovered by the methods described in the previous section 
with the help of a computer. Namely: 

Ja, Janko [6], see also Livingston [1], Whitelaw [1]. 
HaJ, Hall [3], Janko [10], see also Tits [3], Wales [3], [4]. 
HJM, Higman-McKay [1], Janko [10]. 
HHM, Held [6], Higman-McKay. 

The construction by M. Hall of HaJ as a rank 3 permutation group led to the disco­
very of 3 more groups by analogous methods. 

HiS, Higman-Sims [1], see also G. Higman [3], Sims [2]. 
McL, McLaughlin [1]. 
Suz, Suzuki [20], see also Lindsey [3]. 

Three of the remaining groups, Co l 5 Co2 , Co3 were found by Conway by geometric 
methods. See Conway [1], where he also establishes some connections with other 
sporadic groups. 

The remaining 3 known sporadic groups were found by Fischer [6] (see Theorem 4.5.2 
below) by purely group theoretic methods related to those described in the previous 
section. 

The properties of Ly whose existence has not yet been established can be found in 
Lyons [1]. 

The first table contains a list of all known sporadic groups, their orders, and 
whatever is known about the order of their groups of outer automorphisms and the 
structure of their Schur multipliers. A direct product of cyclic groups of order 
nl9 n29. . . is denoted by (nl9 n29.. .). In the table n is an unknown integer. The 
first five groups in the table are the Mathieu groups. Their automorphism groups 
have been known for a long time. Their Schur multipliers were computed by Bur-
goyne-Fong [1]. 

Let Aut (G) denote the automorphism group of G. It has been known for a long 
time that Aut (SI„) = Sfn for n / 6 and | Aut (9J6) : 6?6\ =2. In case G is a simple 
group of Lie type Aut (G) is also known except possibly for 2F4(2)', Ree [1], [2], Stein­
berg [1], Suzuki [11, I]. In all of these cases Aut (G) is uniformly described in terms 
of Lie goup theory. 

The situation concerning Schur multipliers is more complicated. Let 6 be the 
group of rational points over a finite field of a simply connected covering group of a 
simple algebraic group over an algebraically closed field. If G is not solvable then 
Steinberg has shown that G has no proper covering group except for the 11 cases in 
the second table. In each of these cases he found the upper bound for the order of the 
Schur multiplier. If G1 is a nonsolvable Steinberg variation of G then Steinberg also 
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Group Order Order of group 
of outer automorphisms 

Mxx 

M12 
M 2 2 

M23 

M 2 4 

Ja 
HaJ 
HJM 
HHM 
HiS 
McL 
Suz 
CO! 
Co2 

C03 
Fi22 

Fi23 

Fi24 
Ly? 

2 4 .3 2 .5 .11 
2 6 .3 3 .5 .11 
2 7 .3 2 .5 .7 .11 
2 7 .3 2 .5 .7 .11.23 
2 1 0 .3 3 .5 .7 .11 .23 
2 3 .3 .5 .7 .11.19 
2 7 .3 3 .5 2 .7 
2 7 .3 5 .5 .17.19 
2 1 0 .3 3 .5 2 .7 3 .17 
2 9 .3 2 .5 3 .7 .11 
2 7 .3 6 .5 3 .7 .11 
2 1 3 .3 7 .5 2 .7 .11 .13 
2 2 1 .3 9 .5 4 .7 2 .11 .13 
2 1 8 .3 6 .5 3 .7 .11 .23 
2 1 0 .3 7 .5 3 .7 .11 .23 
2 1 7 .3 9 .5 2 .7 .11 .13 
2 1 8 .3 1 3 .5 2 .7 .11 .13 
221 .316 .52 .73 .11.13. 

.23 

.17.23 
17.23.29 

2 8 .3 7 .5 6 .7 .11.31.37.67 

1 
2 
2 
1 
1 
1 Janko [6] 
2 Hall [3] 
In 

2« 
2 
2 Lindsey [3] 
1 

1 Fendei [1] 
2 
1 
2n, n odd 
1 Thompson 

Schur multiplier 

(1) 
(2) 
(6) 
(1) 
(1) 
(1) 
(2) McKay-Wales [1] 
(3) McKay-Wales [1] 
(1) Griess 
(2) Griess, McKay-Wales 
(3) Thompson 
(6) Griess 
order 2n 

(1) Griess 
(6) Griess 
(1) Griess 
order 3", Griess 
(1) Thompson 

showed that if Gt is a universal covering group of Gi then \ö1: G±\ is a power of p, 
where p is the characteristic of the underlying field, except possibly if G± is an odd 
dimensional unitary group. Griess has shown that \G1: öl\ is prime to p except 
for the cases listed in the table below. The table below contains all the nonsporadic 

*5 « SL2(4) « 
« PSL2(9) 

Group 

PSL2(5) 

« SL4(2) 
9I„, n > 9 
SL3(2) « PSL2(7) 
PSL3(4) 
Sp6(2) 
0'7(3) 
D4(2) 
G2(4) 
G2(3) 
^ (2 ) 
2D4(2) 
PSU2m+l(p

m) 
PSU4(2) « PSp4(3) 
PS174(3) 
PSU6(2) 
Sz(8) 
Sz(22m+1), m > 2 

lm+l\ 
m + 1), m > 2 

2G2(32m+1), m> 1 
2F4(22 

^ 4 ( 8 ) 
2Ft(2)' 

Schur multiplier 

(2) 
(6) 
(6) 
(2) 
(2) 
(2) 
(4, 12) Burgoyne, Thompson 
(2) Steinberg 
(6) Fischer, Rudvalis 
(2, 2) Steinberg 
(2) Griess, Steinberg 
(3) Griess 
(2) Griess 
(1) Griess 
a p'-group Griess 
(2) * 
(3, 12) Lindsey, Griess 
(2, 6) Fischer, Griess 
(2, 2) Alperin-Gorenstein [1] 
(1) Alperin-Gorenstein [1] 
(1) Alperin-Gorenstein [1] 
(1) Ward [2] 

(1) Griess 
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groups and whatever is known about their Schur multipliers except the Chevalley 
groups G for which it is known that G has no proper covering group and the Steinberg 
variations Gx for which it is known that Gx has no proper covering group. The Schur 
multipliers of the alternating groups were found by Schur [1]. 

§ 3. JV-groups. 

One of the deepest results of the past few years is the following theorem. 

THEOREM 3.1 (Thompson [8]). — Let G be a simple group in which the normalizer 
of any solvable subgroup of G of order greater than 1 is solvable. Then G is one of 
the following groups. 

(i) PSL2(q\ q > 3. 
(ii) Sz(22n,+1), n > 1. 

(iii) P5L3(3). 
(iv) M n . 
(v) « 7 . 

(vi) PSU3(3). 
(vii) 2F4(2)' (the Tits group). 

The author had originally overlooked case (vii). It was pointed out by T. Hearne 
that Tits' group satisfies the assumptions of the theorem. As an immediate corollary 
to this result one gets. 

THEOREM 3.2 (Thompson [8]). — Let G be a simple group in which all proper subgroups 
are solvable. Then G is one of the following groups. 

(i) PSL2(2
P)9 PSL2(3

P) where p is any prime. 
(ii) PSL2(p) where p is any prime with p > 3 and p = 2 or 3 (mod 5). 

(iii) Sz(2p), p any odd prime. 
(iv) PSL3(3). 

These results can be used to give some characterizations of solvable groups. 

THEOREM 3.3 (Thompson [8]). — The following conditions are equivalent for a 
group G. 

(i) G is solvable. 
(ii) Every pair of elements of G generates a solvable group. 

(iii) / / x, v, z are three nonidentity elements of G of pairwise coprirne order then 
xyz T* 1. 

(iv) / / xl9x2,... are nonidentity elements of G of pairwise coprirne order then 
x±x2 . . . =F 1. 

(v) For any nonprincipal irreducible character X of G there exists a prime p and a 
Sp-group P of G such that the restriction of %to P does not contain the principal character 
of P as a constituent. 

P. Hall first pointed out that every solvable group satisfies condition (iv). Galla­
gher [1] first proved the equivalence of conditions (iv) and (v). 
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§ 4. Characterizations in terms of involutions and Sylow 2-groups. 

The results stated in this section are of various related types. They all consist of 
the classification, or steps toward the classification, of simple groups which satisfy a 
variety of conditions concerning involutions or S2-groups. 

§ 4 . 1 . STRONGLY EMBEDDED SUBGROUPS 

A subgroup H of G is strongly embedded if | H | is even and | H n Hx | is odd for all x 
in G - H. 

THEOREM 4.1.1. — Suppose that G contains a strongly embedded subgroup H with 
H 4= G. Then one of the following must occur. 

(i) A S2-group of G is either cyclic or (generalized) quaternion. 
(ii) G/02'(G) has a normal subgroup of odd index which is isomorphic to one of the 

following groups. 

(a) 5L2(2"), n > 2. 
(b) PSU3(2

n)9 n>2. 
(c) Sz(22n+1)9 n>\. 

This theorem, due to Bender [3], generalizes a result of Suzuki who reached the 
same conclusion under the assumption that a normalizer of a Sylow 2-group is distinct 
from G and is strongly embedded in G. The proof relies heavily on earlier work 
which can be found in Feit [1], [2], G. Higman [1], Suzuki [4, III], [6], [11], [13], [14], 
Zassenhaus [2]. Theorem 4.1.1 is of great importance for various characterization 
theorems since it disposes of the recognition problem for the classes of groups 
mentioned in the conclusion. Virtually every result which involves these classes of 
groups makes use of Theorem 4.1.1. 

§ 4.2. SYLOW 2-GROUPS 

For any positive integer n let Z„, D„ denote a cyclic group or a dihedral group of 
order n. Let Q2n+i, 52„ + i respectively denote the quaternion and quasi-dihedral 
group of order 2"+1. Observe that D4 « Z 2 x Z 2 . Here 

<S2n+i = <x, y \x2 = v2" = 1, x~1yx = y~1 + 2"_1 >. 

For any group G let S2(G) be the S2-group of G. 

THEOREM 4.2.1 (Gorenstein-Walter [1], [2], [3]). — Let G be a simple group with 
S2(G) « D2n+i for some n > 1. Then either G « 2I7 or G « PSL2(q) for some odd 
q>3. 

The proof uses some results of Brauer [7, II] from the theory of modular characters 
in an essential way. 

THEOREM 4.2.2 (Alperin-Brauer-Gorenstein [1], [2]). — Let G be a simple group. 

(i) / / S2(G) « S2„ + l with n > 4 then one of the following occurs. 

(a) G « PSL3(q) with q = 3 (mod 4). 
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(b) G « PSU3(q) with q = 1 (mod 4). 
(c) GKM^. 

(ii) If S2(G) « Z2n I Z2 with n > 2 then one of the following occurs. 

(a) G « PSL3(q) with q = 1 (mod 4). 
(b) G » PSU3(q) with q = 3 (mod 4). 

THEOREM 4.2.3 (Walter [2], [3]). — Let G be a simple group with S2(G) abelian. Then 
one of the following occurs. 

(i) G « PSL2(q)9 q = ± 3 (mod 8), q > 3. 
(ii) G « SL2(2") for some n ^ 2. 

(iii) G /s a group of Ree Zype. 
(iv) G « Ja. 

7?7 particular S2(G) is elementary abelian. 

In case S2(G) is generated by two elements in Theorem 4.2.3 Brauer [7, II] showed 
that it has order 4 and so in this case the result follows from Theorem 4.2.1. In 
case S2(G) has three generators earlier results of Gagen [2], Janko [6], [7], Janko-Thomp-
son [1], Ree [1], Thompson [5] and Ward [1] are of relevance and are subsumed by 
Theorem 4.2.3. This result also includes as special cases earlier results in Brauer [6], 
Feit [2], Gagen [1], Gorenstein [2] and Suzuki [4, I], [4, II]. A simplification for part 
of this proof can be found in Bender [4]. 

The next result is a composite of several theorems. 

THEOREM 4.2.4. — Let G be a simple group. 

(i) (Collins [1]). If S2(G) « S2(Sz(22n+1)) for n > 1 then G « Sz(22"+1). 
(ii) (Lyons [1]). If S2(G) « S2(PSU3(4)) then G » PSU3(4). 

(iii) (Gorenstein-Harada [1], Janko [10]). / / S2(G) « S2(HaJ) then G » HaJ 
or G « HJM. 

(iv) (Gorenstein-Harada [4], Lyons [1]). If S2(G) « S2(Ly) then G « Ly. 

In (i) the case n = 1 had previously been settled by Brauer and Goldschmidt. 

THEOREM 4.2.5 (Glauberman [1]). — Let T = Q2n + i x T0 where every involution 
in T0 is in the nih term of the upper central series of T. Then T cannot be a S2-group 
of a simple group. 

The case that T0 is a product of quaternion groups was proved independently, but 
later, by Mazurov [2]. The special case that T0 = < 1 > which is the starting point 
for this result has to be handled separately. This case is due to Brauer-Suzuki [1]. 
Alternative proofs for this case can be found in Brauer [7, II], Suzuki [10]. Actually 
Theorem 4.2.5 is a consequence of Theorem 4.5.1 below which is of great importance 
for many of the results in this paper. A related result is the following. 

THEOREM 4.2.6 (Goldschmidt [1]). — Let T be a nonabelian S2-groupe of a simple 
group. Suppose that T has nilpotence class n. Then Z(T) has exponent at most 2" - 1 . 
Furthermore T has exponent at most 2"(H_1). 
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THEOREM 4.2.7 (Alperin-Brauer-Gorenstein [2]). — Let G be a simple group. Assume 
that S2(G) contains no elementary abelian subgroup of order 8. Then G is isomorphic 
to one of the following groups: 9I7, PSL2(q)9 PSL3(q)9 PSU3(q) with q odd or PSU3(4). 

This powerful result which is essentially an amalgam of some of the previously 
mentioned results in this section supersedes or has as simple corollaries a large number 
of previously proved theorems. For instance: Brauer [3], [8], Brauer-Suzuki-Wall [1], 
Camina-Gagen [1], Feit [2], Mazurov [1], Suzuki [1], [3], [4,1], Thompson [4], 
W. J. Wong [3], [4], [6]. 

The question of finding all simple groups G such that S2(G) contains no normal 
elementary abelian subgroup of order greater than 4 has not yet been settled. However 
a great deal of progress has been made. Mac Williams [1] has shown that S2(G) is 
one of a restricted class of 2-groups and under some additional assumptions on G 
this class of groups has been classified. See Theorem 4.3.3. 

THEOREM 4.2.8 (Harada [2]). — Let T= A x B where A is cyclic and B has a cyclic 
subgroup of index 2. If A ^ < 1 > and T = S2(G) for a simple group G then T is abelian 
(and hence G is determined by Theorem 4.2.3). 

THEOREM 4.2.9 (Gorenstein-Harada [2]). — Let T = D2„+i x T0 where T0 is either 
dihedral or a noncyclic abelian group generated by 2 elements. Then T is not a S2-group 
of a simple group. 

The case that T0 = D2m+i with m # n had previously been settled by Fong. 

Two groups G and H have the same involution fusion pattern if S2(G) « S2(H) and 
there exists an isomorphism / from S2(G) onto S2(H) such that for any involutions x, y 
in S2(G)9 x is conjugate to y in G if and only if f(x) is conjugate to f(y) in H. 

THEOREM 4.2.10 (Gorenstein-Harada [3]). — Let G be a simple group with 
S2(G) « S2(tyL8). Then either G « 3Ig or 3l9 or G has the involution fusion pattern 
of PSp4(q) with q = ± 3 (mod 8). 

This result generalizes earlier results by Held [1], W. J. Wong [1] which are needed 
for the proof. 

THEOREM 4.2.11 (Gorenstein-Harada [3]). — Let G be a simple group with 
S2(G) « S2(Sili0). Then either G « 9I10 or 91^ or G has the involution fusion pattern 
of PSL^q) with q = 3 (mod 8). 

THEOREM 4.2.12 (Gorenstein-Harada [4], S. K. Wong [2]). — Let G be a simple 
group with S2(G) « S2(M22). Then one of the following holds: 

(i) G « M 2 2 , M23 or McL. 
(ii) G has only one class of involutions. If H is the centralizer of an involution in G 

then H/Q2,(H) is isomorphic to the centralizer of an involution in either PSL^q), q = 5 
(mod 8) or PSU^q), q = 3 (mod 8). 

Theorems of a different nature due to Brauer asserts that certain types of 2-groups 
can only be the S2-group of a finite number of simple groups. Results of this type are 
discussed in Brauer [6], [9]. 
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§ 4.3. GENERAL CONDITIONS ON CENTRALIZERS OF INVOLUTIONS 

THEOREM 4.3.1 (Suzuki [16]). — Let G be a simple group in which the centralizer 
of every involution has a normal S2-subgroup. Then G is isomorphic to one of the 
following groups: 

(i) PSL2(p)9 p a Fermât or Mersenne prime, p > 3. 
(ii) SL2(2% n > 2. 

(iii) « 6 « PSL2(9). 
(iv) PSL3(q)9 PSU3(q) or Sz(q) where q is a power of 2. 

This powerful result is the end product of a large number of theorems which it 
generalizes. See Feit [2], Suzuki [4], [7], [8], [11], [14]. 

THEOREM 4.3.2 (Gorenstein [4]). — Let G be a simple group in which the centralizer 
of every involution has a normal 2-complement. Then G is isomorphic to one of the 
following groups: 

(i) PSL2(q)9 q > 3. 
(ii) Sz(2"), n > 3. 

(iii) 2I7 or PSL3(4). 

The proof of Theorem 4.3.2 make use of Theorem 4.3.1 as well as the next result. 

THEOREM 4.3.3 (Janko-Thompson [2], Lyons [1]). — Let G be a simple group and 
let T= S2(G). Assume that T contains no normal elementary abelian subgroup of 
order 8. Assume further than if t is an involution in T such that \ T : CT(t) \ < 2 then 
CG(t) is solvable. Then G must be isomorphic to one of the following groups: 

(i) PSL2(q), q > 3. 
(ii) 3I7, M l l 5 PSL3(3\ PSU3(3) or PSU3(4). 

Theorem 4.3.1 in particular includes the classification of all simple groups in which 
the centralizer of every involution is nilpotent. The problem of finding all simple 
groups in which the centralizer of every involution is solvable is still open. The 
answer to this would in particular have to include Theorem 3.1 as a special case. 
At this conference Janko has announced the following result in this connection. 

THEOREM 4.3.4. — Suppose that G is a simple group in which the normalizer of every 
nonidentity 2-group is solvable with cyclic Sylow p-groupsfor all odd primes p. Then G 
is isomorphic to one of the following groups. 

(i) PSL2(q)9Sz(22m + 1)9PSU3(2'n). 
(ii) Mll9PSU3(3)9 PSL3(3)9

 2F4(2)'. 

§ 4.4. PRECISE CONDITIONS ON CENTRALIZERS OF INVOLUTIONS 

An involution in Z(S2(G)) is called a central involution of G. The following table 
lists a simple group G0, a central involution t0 in G0 and all simple groups G which 
contain a central involution t such that CG(t) œ CGo(t0) and such that CG(z) = CG(t) 
for every involution z in Z(CG(t)). These conditions are sometimes redundant. For 
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instance if Z(S2(G0)) is cyclic it suffices to assume that G contains an involution t with 

CM « CGo(t0). 

Since t is assumed to be a central involution it follows that in particular S2(G) is 
given. Results which follow directly from subsection 4.2 are not included in the 
list. 

G0 t0 G 

SL3(2), Kondo [2], Suzuki [4, II] A transvection SL3(2), 2I6 

SL4(2), Held [1], [4], Suzuki [4, IV], 
W. J. Wong [1] A transvection SL4(2) « 9I8, 2I9 

5L5(2), Held [6] A transvection 5L5(2),M2 4 ,HHM 
PSLn(2

m) for (n, m) * (3, 1), (4, 1), (5, 1), 
Suzuki [4, II], [4, IV], [19] A transvection PSLn(2

m) 
PSp2n(q), q odd n > 2, W. J. Wong [7], [8] t0 is represented in Sp2n(q) by an 

element with exactly two cha­
racteristic values equal to — 1 PSp2n(q) 

2I1 2 , Yamaki [2] An involution of type 26 9I12, 2I13 , Sp6(2) 
3 I 4 n + r , n > 1, r = 2 or 3, An + r ^ 6 An involution of type 22n 3I4 n + r 

Kondo [1], [2], [3], Yamaki [1] 

In the remaining cases t0 is any central involution. 

PSU5(2
m), Thomas [2] 

G2(2
m), Thomas [1] 

3D4(2
m), Thomas [3] 

PSLM, Q = 3 (mod 4), Phan [1], [3] 
G2(q\ q > 3, q odd, Fong [3] 
G2(3), Janko [11] 
PSL74(3), Phan [2] 
Co3 , Fendei [1] 
2F4(2)' = Tits group, Parrot (announced at this congress) 
2F4(2), (not simple), Hearne [1] 

PSU5(2
m 

G2(2
m) 

3D4(2
m) 

PSL4(q) 
G2(q) 
G2(3) 
P5C/4(3) 
Co3 
2FJL2y 
2F4(2) 

At this congress Suzuki has announced similar characterizations of the groups PSU„(2m) 
and PSp2n(2

m). 

The remaining results in this section are characterizations which are quite similar 
to those in the table above. 

THEOREM 4 . 4 . 1 (Suzuki [4, III]). — Let G be a simple group with one conjugate class 
of involutions. If t is an involution in G let CG(t) be isomorphic to the centralizer of 
an involution in PSU3(2

m\ m > 2. Then G « PSU3(2
m). 

THEOREM 4 . 4 . 2 (Guterman [1]). — Let xl9 x29 x3 be central involutions in F4(2m), 
no two of which are conjugate, such that x1x2 = x3 and C ^ ) n C(x2) = C(x3). Sup­
pose that G is a simple group which contains central involutions yl9 y29 y3 with y±y2 = y3 

and CG(yf) « C(xt) for i = 1, 2, 3. Then G « F4(2m). 

THEOREM 4 . 4 . 3 (Asche [1]). — A simple group cannot contain a central involution t 
with CG(t) « D2m x PSL2(q) for odd q. 
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THEOREM 4.4.4 (Harada [2], Janko-Thompson [1]). — Suppose that t is an involution 
in the simple group G with CG(t) = < t > x PSL2(q). Then S2(G) is abelian. 

THEOREM 4.4.5 (Lyons-Thompson, Janko [12] for n — 9). — Let G be a simple group 
which contains a central involution t with CG(t) « S„. Then n = 11 or rc = 8 (The 
cases n = 8, 11 occur for McL, Ly respectively). 

THEOREM 4.4.6 (Fong [1]). — Let G be a simple group and let T = S2(G). Suppose 
that | T | = 32 and T contains a self centralizing cyclic subgroup of order 8. Assume 
further that the centralizer of every involution in G is solvable. Then G « PSU3(3). 

THEOREM 4.4.7 (Brauer-Fong [1]). — Let G be a simple group and let T = S2(G). 
Assume that \ T \ — 64 and T contains a self centralizing cyclic subgroup < x > of order 8 
all of whose generators are conjugate in G. Suppose that G has more than one class of 
involutions. Then G « M1 2 . 

THEOREM 4.4.8 (Held [3], [4], [5], Janko [9,1]). — Let G be a simple group with Z(S2(G)) 
cyclic. Assume that if t is a central involution in G then CG(t) is an extension of an 
elementary abelian group of order at most 16 by Sf\. Then G is isomorphic to one of 
the following groups. 

(i) 9T8, 9l9, 9I10. 
(ii) Mll9 M 1 2 , M22. 
(iii) PSL3(3). 

THEOREM 4.4.9 (Janko [9, II]). — Let G be a simple group with Z(S2(G)) cyclic. 
Assume that if t is a central involution in G then CG(t) is an extension of an elementary 
abelian group of order 16 by PSL2(1). Then G « M23. 

THEOREM 4.4.10 (Janko-Wong [1]). — Let G be a simple group. Let H be the centra­
lizer of a central involution. Assume that H has a normal nonabelian subgroup S of 
order 64 with H/S « «9%. Assume further that if z is an element of order 3 in H then 
Cs(z) g Z(S). Then G « HiS. 

THEOREM 4.4.11 (Harada [5]). — Let G be a simple group. Assume that 
Z(S2(G)) = < t> has order 2 and S2(G)/< t> « S2(2t8). Assume further that CG(t) 
does not normalize any nonidentity subgroup of odd order. Then CG(t) is isomorphic 
to the centralizer of a central involution in one of the following groups 3I10, M229 M2 3 , 
PSL4(5), PSUA(3), HaJ, McL. 

THEOREM 4.4.12 (Fong-Wong [1]). — Let G be a simple group with subgroups Lx, L2 

such that L{ « SL2(qt) for i = 1,2, where ql9 q2 are odd, [Lt, L2] = 1 and L1nL2 = (^t>) 
has order 2. Suppose that \ CG(t) : L ^ | = 2. Then G is isomorphic to one of the 
groups PSp4(q)9 G2(q) or 3D4(q) where q = min {ql9 q2 }. 

§ 4.5. PRODUCTS OF INVOLUTIONS 

THEOREM 4.5.1 (Glauberman [1]). — Let G be a finite group and let n be a set of 
odd primes. Suppose that G is generated by a conjugate class D of 2-elements such 
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that the product of any two elements in D is a n-element. Then G' is a n-group and so in 
particular- G is solvable. 

This strengthens earlier results of Fischer [4], [5] who first looked at problems of 
this type. The following remarkable result led to the discovery of the simple groups 

THEOREM 4.5.2 (Fischer [6]). — Let D be the union of conjugate classes of G consist­
ing of involutions such that G = < D >. Assume that if x, y £ D then | < xy > | < 3. 
Suppose further that G has no normal solvable nonidentity subgroup. Then G is iso­
morphic to one of the following groups. 

(i) A semi-direct product of D4(2) or D4(3) by 9>
3. 

( i i ) ^ , Sp2n(2) or 0±(2). 
(iii) A normal subgroup of 0*(3). 
(iv) PSUn(2). 
(v) Fi22, Fi23, Fi2 4 ( | Fi24 : Fi'24 | = 2). 

Fischer and F. G. Timmesfeld are also studying groups G which are generated by 
a union of conjugate classes D of involutions and for which the following holds: If x, y 
are in D then xy has order at most 4 and in case xy has order 4 then (xy)2 is in D. The 
work on these groups is not yet complete. 

§ 4.6. RELATED TYPES OF CHARACTERIZATIONS 

This subsection contains a sample of results which use properties of involutions 
but don't fit naturally into any of the earlier subsections. Some of these results can 
be considerably simplified by making use of some of the more recently proved theorems 
mentioned in the previous subsections. 

THEOREM 4.6.1 (Suzuki [9]). — A partition of a group G is a collection {U t} of 
subgroups such that Ut n Uj = < 1 > for all i =# j . The partition is proper if G ^ Ut 

for all i. Let G be a group with a proper partition which contains no solvable normal 
subgroup. Then G œ Sz(22n+1) for some n > 0 or G « PSL2(q) or PGL2(q) for 
some q > 3. 

THEOREM 4.6.2 (Suzuki [18]). — Suppose that G contains a subgroup H such that 
H — A consists of involutions for some proper subgroup A of H. Assume that 411 H \ 
and H = CG(t) for any involution t in Z(H). Then either G is solvable or G has a normal 
subgroup N whose order is not divisible by 4 such that G/N « PSL2(q) or PGL2(q) 
for some q > 3. 

THEOREM 4.6.3 (Harada [1], Stewart [1]). — A subgroup A of G is special if 
| NG(A) : A | = 2 and CG(x) Ç A for all nonidentity elements x in A. Suppose that G 
is simple. 

(i) If G contains two nonconjugate special subgroups then G« SL2(2
m), m > 1. 

(ii) If G contains a special subgroup A with \ G | < 4 ( | A | + l)3 then G » PSL2(q)9 

q > 3: 
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THEOREM 4.6.4 (Fischer [1]). — Let p be a prime. Assume 

(i) Any two Sp-groups of G generate a solvable group. 
(ii) Either p — 2 or if N < H are subgroups of G with H/N nonabelian 

then p\ | H : N \. Then G is solvable. 

THEOREM 4.6.5 (Glauberman [4]). — Let p be a prime and let P be a Sp-group of G. 
Assume 

(i) If two elements of P are conjugate in G they are conjugate in NG(P). 
(ii) / / x is in P, x # 1 then CG(x) has a normal p-complement. 

(iii) Any two elements of order p in G generate a p-solvable group. 
(iv) P is not an elementary abelian group all of whose nonidentity elements are conju­

gate in G. 

If Op,(G) = (l}andP is not normal in G then p = 2 and G = Sz(2m) for some m > 3. 

THEOREM 4.6.6 (Glauberman [4]). — Let p be a prime and let G be a group with a 
cyclic Sp-subgroup. Then G is p-solvable if and only if any two p-elements generate 
a p-solvable group. 

THEOREM 4.6.7 (Martineau [1]). — Let G be a simple group. Suppose that G contains 
a subgroup H « D2m x D2n with m, n odd and m9n > 1. Assume that H contains 
the normalize!' of every nonidentity subgroup of H of odd order. Then G « Ja. 

A different type of result concerning involutions can be found in Walter [1]. 

§ 5. Odd characterizations. 

If x9 y are elements in a group G such that x9 y and xy all have order 3 then < x, y > 
has a normal abelian subgroup. This can be exploited in a manner somewhat analo­
gous to the way involutions are used. See Feit-Thompson [2]. G. Higman has used 
this and related relations in groups to systematically study certain questions about 
groups. He calls these results odd characterizations. A survey of many of these 
results can be found in G. Higman [2]. Here only three results will be mentioned to 
give an idea of the type of theorem to be expected. 

THEOREM 5.1 (Stewart [1]). — Suppose that the simple group G contains a subgroup A 
such that 3 | | A |, | MG(A) : A \ = 2 and A = CG(x) for every nonidentity element x 
in A. Then G « PSL2(q) for some q > 3. 

The case | A | = 3 had previously been handled in Feit-Thompson [2]. See also 
Theorem 4.6.3. 

THEOREM 5.2 (Fergusson [1], Herzog [1]). — Suppose that the simple group G contains 
a subgroup M such that 3 | \M\9 MG(M) =# M, \ NG(M) : M \ is odd and £G(x) Ç M 
for every nonidentity element x in M. Then G « PSL2(32n+1) for some n > 0. 

Some variations on this result can also be found in Herzog [2], [3]. 

THEOREM 5.3 (G. Higman [2]). — Let G be a group which contains a maximal sub­
group isomorphic to Dl0. Then G « 2I5. 
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§ 6. Properties of subgroups. 

This section lists some results which do not refer to properties of involutions. 
However some of these results make use of the methods of section 4. 

§ 6 . 1 . NILPOTENT SUBGROUPS 

THEOREM 6.1.1 (Thompson [1], [2], [3], [6]). — Let G be a group which contains a 
maximal subgroup that is nilpotent of odd order. Then G is solvable. 

Janko [1], [5] and Deskins observed that this result can be generalized as follows. 

THEOREM 6.1.2. — Let G be a simple group which contains a maximal subgroup M 
that is nilpotent. Then M = S2(G) and M has class at least 3. 

In all known cases of Theorem 6.1.2 M is a dihedral group. Harada [2] has verified 
that if | M [ < 64 in Theorem 6.1.2 then M is a dihedral group. 

THEOREM 6.1.3 (Glauberman [5]). — Let p be a prime and let Pbe a Sp-group of G. 
Suppose that MG(P) = P. If p > 5 then G is not simple. 

It remains an open question whether a simple group G can have a S3-group P with 
NG(P) = P. If p is a Fermât prime or a Mersenne prime with p > 5 then a 52-group 
is maximal and hence self normalizing in PSL2(p). 

§ 6.2. CHAINS OF SUBGROUPS 

There are a variety of results which classify all groups satisfying some assumptions 
on chains of subgroups. Some examples will be given. A chain of subgroups is a 
set of subgroups which is linearly ordered by inclusion. The length of a chain is the 
number of distinct terms in it minus 1. A subgroup of G is kth maximal if it is the kth 

term in some chain of proper subgroups each of which is maximal in its predecessor 
and k is the smallest such integer. 

THEOREM 6.2.1 (Gagen [2], Harada [3]). — Let G be a simple group in which every 
chain of subgroups has length at most 1. Then G is isomorphic to one of the following 
groups. PSL2(q) for some values of q, PSU3(3)9 PSU3(5)9 9I7, M n , Ja. 

This generalizes earlier results of Janko [3], [4]. 

THEOREM 6.2.2 (Gagen-Janko [1], Janko [2]). — Let G be a simple group in which 
every 3rd maximal subgroup is nilpotent. Then either G « 5z(8) or G œ PSL2(q) for 
some values of q. 

THEOREM 6.2.3 (Berkovic [3]). — Let G be a simple group in which every 2nd maximal 
subgroup is 2-nilpotent. Then G « PSL2(2

P) where p is a Fermât prime orGœ PSL2(3
P) 

for some prime p > 3, or G « PSL2(p) for a prime p > 3 with p2 = 9 (mod 80). 

Various other results which characterize groups in similar terms can be found in 
Berkovic [1], [2], [3], [4], [5], [6], [7], [8], [9], Kohno-Vedernikov [1], Lelcuk [1], Mann [1], 
[2] and Winkler [1]. 
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§ 6.3. FACTORIZABLE GROUPS 

Let A, B be subgroups of G such that G = AB. There are many results that assert 
that under various conditions on A and B, G must be solvable. A survey of some 
of these results can be found in W. R. Scott [1]. The following for instance generalizes 
Burnside's theorem which however is needed in the proof. 

THEOREM 6.3.1 (Kegel [1], Wielandt [1]). — Suppose that G = AB where A and B 
are nilpotent. Then G is solvable. 

Another result about factorizable groups can be found in Camina-Gagen [2]. 

§ 7. Orders of simple groups. 

There are various theorems which assert that the order of a noncyclic simple group 
must have certain properties. One of the best known is Burnside's theorem which 
states that at least 3 distinct primes must divide | G | if G is simple. The results of § 4.2 
immediately yield a classification of all simple groups whose order is not divisible 
by 16 (modulo the question of groups of Ree type). In this section results of this type 
will be discussed. 

THEOREM 7.1 (Brauer-Fowler [1], Feit-Thompson [4]). — Let G be a group of compo­
site order. Then G contains a proper subgroup of order greater than | G|1/3. 

It is an open question whether a noncyclic simple group G always contains a proper 
subgroup of order greater than | G|1 /2 . Also it is not known whether a noncyclic 
simple group G always contains a real element x with | CG(x) |3 > | G |. 

THEOREM 7.2 (Brauer-Tuan [1]). — Let G be a simple group with \G\ = pqag0 where p, q 
are primes and g0 < p - 1. Then G « PSL2(p) with p = 2m ± 1 or G « PSL2(p - 1) 
with p - 1 = 2m, p > 3. 

THEOREM 7.3 (Brauer [12]). — Let G be a simple group of order paqbg0i where p, q 
are distinct primes and a > 0. If \G\ =t p then g0 — 1 > log p/log 6. 

THEOREM 7.4 (Brauer [2], Nagai [1], [2], [3]). — See also MR, 14 p. 843). Let G be a 

simple group with \ G | = p (1 + np) where p is a prime. Assume that a Sp-group 

of G is self centralizing and t\(p — 1). 

(i) / / n <, p + 2 then G « M n , PSL3(3), PSL2(p) or PSL2(2
m) where 2m±\=p. 

(ii) If 2p - 3 <n<2p + 3 and t is odd, t > 1 then 2p + 1 = qa > 23 for some 
prime q where q = 3 for a > 1. Furthermore G « PSL2(2p + 1). 

(iii) If n = 2p + 3 and t = —-— then 2p +1 is a prime power and G«PSL2(2p +1). 

THEOREM 7.5 (Brauer-Reynolds [1]). — Let G be a simple group whose order is divi­
sible by the prime p. Suppose that p3 > | G |. Then G « PSL2(p), p > 3 or G « SL2(2

m) 
with p = 2m + 1 > 3. 
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A variation on this result can be found in Herzog [6]. 

The only known simple groups whose order is not divisible by 4 distinct primes are 
the eight groups PSL2(5), PSL2(1)9 PSL2(8), PSL2(9)9 PSL2(\1)9 PSL3(3)9 PSU3(3) 
and 0'5(3). It is an open question whether any others exist. As a corollary of 
Theorem 3.2 one gets. 

THEOREM 7.6 (Thompson [8]). — Let G be a simple group whose order is not divisible 
by 4 distinct primes. Then \G\ = 2a3hpc where p = 5, 7, 13 or 17. 

THEOREM 7.7 (Brauer [13], Wales [5]). — Let G be a simple group of order 2a3bp 
where p is a prime. Then G is isomorphic to one of the eight groups listed above. 

Related results can be found in Herzog [4], [5]. A discussion of questions related 
to the theorems above can be found in Brauer [5]. 

There exist infinitely many pairs of nonisomorphic simple groups which have the 
same order. However various simple groups have been characterized by their orders. 
See for instance Theorem 7.5. In particular all the known simple groups of order at 
most 106 except 3I8 and PSL3(4) which both have order 20,160 have been characterized 
by their orders. Here are a few other results in this direction. 

THEOREM 7.8. — Each of the following groups is the unique simple group of its order. 

(i) (Stanton [1]), M 1 2 , M 2 4 . 
(ii) (Parrot [1]), M l l s M 2 2 . 

(iii) (Bryce [1]), M23. 
(iv) (Hall-Wales [1]), HaJ. 
(v) (S. K. Wong [1]), HJM. 

Hall [3] has undertaken a systematic survey to find all simple groups of order at 
most 106. This work is not yet complete. However since this work was begun one 
new simple group, namely HaJ, with order in this range has been discovered. 

While there may be two nonisomorphic groups of the same order it seems possible 
that a simple group is characterized by its character table. The following result is 
known. 

THEOREM 7.9 (Nagao [1], Oyama [1]). — The groups $I„ and £fn are characterized 
by their character table. 

To conclude this section let me mention one curious fact pointed out by M. Benard 
and A. Rudvalis in answer to a question I raised. The groups PSp6(2) and D4(2), 
which are isomorphic to the simple factors of the Weyl groups of £ 7 and E8 respecti­
vely, are the only known simple groups for which every character is rational valued. 

§ 8. Linear groups. 

One of the oldest results in group theory is the following. 

THEOREM 8.1 (Jordan). — There exists an integer valued function J defined on the 
positive integers such that if a group G has a faithful complex representation of degree n 
then | G : A \ < J(n) for some normal abelian subgroup A of G. 
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Theorem 8.1 obviously implies the same conclusion with the same function J if 
the complex field is replaced by any field whose characteristic does not divide | G |. 
This has recently been generalized as follows. 

THEOREM 8.2 (Brauer-Feit [1]). — Let p be a prime. There exists an integer valued 
function fp defined on ordered pairs of integers such that if G has a faithful representa­
tion of degree n over a field of characteristic p and pm is the order of a Sylow p-group 
of G then \ G : A \ < fp(m9 n) for some normal abelian subgroup A of G. 

The following result generalizes Theorem 8.1 in a different direction. 

THEOREM 8.3 (Isaacs-Passman [1]). — There exists an integer valued function f 
defined on the positive integers such that if the degree of every complex irreducible 
representation of G is at most n then \ G : A \ < f(n) for some normal abelian subgroup A 
of G. 

Under special assumptions more precise conclusions can be obtained in Theorem 8.3. 
See Isaacs [1], Isaacs-Passman [2], [3] and Passman [1]. 

Theorems 8.1 and 8.2 assert that the degree of a faithful representation of G over 
some field and the order of a Sylow p-group in case the field has characteristic p > 0 
restrict the nature of G. The remaining subsections of this section contain more 
precise results along these lines. 

If p is a prime then G is of type L2(p) if every composition factor of G is either p-sol­
vable or is isomorphic to PSL2(p). 

§ 8 . 1 . LINEAR GROUPS IN CHARACTERISTIC p > 0 

Let p be a prime, let G be a group and let d be the degree of a faithful representation 
of G over a field of characteristic p. Let P be a Sy-group of G. 

THEOREM 8.1.1 (P. Hall-G. Higman [1]). — Suppose that G is p-solvable9 Op(G) = < 1 > 
and P is cyclic. Then 

(i) There exists an integer a with 1 < pa <\P\ depending on G such that 

d>\P\ - p f l > ^ — ? H P | . 
P 

(ii) If either p ^ 2 or p — 1 ^ 2b for any integer b then d > \P\. 

THEOREM 8.1.2 (Blau [1], Feit [4]). — Suppose that p > 11, P is cyclic, G is not of 
type L2(p) and à < p. Then \P\ — p, CG(P) = P x Z(G) and one of the following 
holds. 

(i) p = 11 and d>l. 

(ii) p > 11 and d > max { ^(p - 1), p - e } where e = | NG(P) : CG(P) |. 
• { | ( P - I X P -

In case p = 11 Theorem 8.1.2 gives the best possible estimate since Ja has a 7 dimen­
sional faithful representation over GF(ll). However in case p > 11 the result is far 
from satisfactory. A nonsolvable doubly transitive group on p letters satisfies the 
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hypotheses of Theorem 8.1.2 with d — p — 2 but there is no known example of a 
group which satisfies these hypotheses with d < p — 2. Under various restrictions 
on e and | Z(G) | the inequality on d can be sharpened. A variety of results in this 
direction together with a detailed discussion of the cases 13 < p < 31 can be found 
in Blau [1]. 

The fact that P is assumed to be cyclic is essential in Theorems 8.1.1 and 8.1.2. 
However Theorem 8.1.1 can be reformulated as follows. 

THEOREM 8.1.3 (P. Hall-G. Higman [1]). — Suppose that G is p-solvable and 
ûp(G) = < 1 >• Let M be a faithful GF(p)[G] module. Let x be a p-element in G, 
x 7e 1 and let d be the degree of the minimum polynomial of x acting onM. If P = < x > 
then the conclusion of Theorem 8.1.1 holds. 

In this form the result has played a vital role in group theory during the past decade. 
If | P | = 2 or 3 in Theorems 8.1.1 or 8.1.3 the results are of course trivially true. 

§ 8.2. QUADRATIC PAIRS 

A quadratic pair (G. M) consists of a group G and a faithful GF(p)[G] module M 
such that G is generated by p-elements with a quadratic minimum polynomial on M. 

Suppose that (G, M) is a quadratic pair with p > 5. If G is p-solvable and 
Ûp(G) = < 1 > then Theorems 8.1.3 implies that G = < 1 >. The situation is however 
very different in case G is not p-solvable. In this connection the following profound 
result has recently been proved. 

THEOREM 8.2.1 (Thompson [9]). — Let (G, M) be a quadratic pair with p > 5. Assume 
that G = G' 7e < 1 > and G/Z(G) is simple. Then G/Z(G) is a simple group of Lie type 
other than E8 defined over afield of characteristic p. 

For any simple group of Lie type other than Es a complete list of quadratic pairs 
(G, M) is given in Thompson [9] with M irreducible and G any covering group of the 
simple group. All types other than E8 occur in some quadratic pair. 

§ 8.3. LINEAR GROUPS IN CHARACTERISTIC 0 

Let G be a group and let d be the degree of a faithful complex representation of G. 
Let n be the set of all primes p with p — 1 > d. A survey of some results related to the 
ones in this subsection can be found in Leonard [3]. 

THEOREM 8.3.1 (Blichfeldt, Burnside). — G has an abelian Hall %-group. 

p - 1 
THEOREM 8.3.2 (Feit-Thompson [1]). — If p is a prime with d < —-— then the 

Sp-group of G is normal in G. 

THEOREM 8.3.3 (Feit [3]). — Let H be a Hall %-group of G. Then one of the follow­
ing holds. 

(i) H is normal in G. 
(ii) There exists a subgroup H0 of prime index in H such that H0 is normal in G. 
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THEOREM 8.3.4. — Suppose that p e % and a Sylow p-group P of G has order p. 
Assume that G is not of type L2(p). Then 

(i) d > ^(p - 1). If p> 11 then d i> hp - 1). 

(ii) (Feit [5]). / / | Z(G) | is odd then d > p - 2. 
(iii) (Feit [5]). If d = p-2 then p = 2b + 1 for some b and G & SL2(2

b) x Z(G). 
(iv) (Blau [2], Brauer [7], Hayden [1]). Let t \ NG(P) : CG(P) \ = p - 1. If 3<>t 

then 6 < t and p < t2 - 3t + 1. 

Theorem 8.3.2 was conjectured by G. de B. Robinson and first proved by Brauer [1] 
in case p2J(\G\. Brauer conjectured Theorem 8.3.3. Theorem 8.3.4 (i) is an 
immediate consequence of Theorem 8.1.2 and is an improvement of earlier results 
of Brauer [1] and Tuan [1]. Theorem 8.3.4 (iii) is proved in Feit [5] under the assump­
tion that | Z(G) | = 1. This assumption can however easily be removed. 

The estimate in Theorem 8.3.4 (ii) is clearly the best possible since any doubly 
transitive permutation group on p letters has a faithful irreducible complex represen­
tation of degree p — 1. However it is an open question whether the assumption 
about | Z(G) | can be removed or not. If not then this would lead to (presumably) 
new simple groups. Under certain conditions the estimate on d can be improved as 
follows. 

THEOREM 8.3.5. — Let p be a prime and let P be a Sp-group of G. Assume that 
p n p* = < 1 > far x in G - NG(P). If d4 <\P\ then P < G. 

It seems possible that the same conclusion should hold for d2 <\P\. Under 
additional assumptions this has been proved, Brauer-Leonard [1], Leonard [1], [2]. 
In a different direction the following has been proved. 

THEOREM 8.3.6 (Lindsey [2]). — Suppose that p is a prime and d = p — 1. Assume 
that p2\ | G : Op(G) |. Then G/Z(G') contains a normal subgroup of index at most 2 
which is isomorphic to PSL2(p) x PSL2(p). 

Groups which have an irreducible complex representation of prime degree have 
been studied by Brauer [11] and Wales [1]. The following is a simple consequence of 
their results. 

THEOREM 8.3.7. — Suppose that G has an imprimitive irreducible faithful unimodular 
representation of prime degree p. Then p3 J( \G : Op(G) |. 

If p = 2 or 3 this result is the best possible since S 5 and S 6 have representations 
of degree 2 and 3 respectively. It is not known whether it is possible to replace p3 

by p2 in Theorem 8.3.7 for p > 11. Since all 5 and 7 dimensional finite linear groups 
have been classified it can be seen by inspection that p3 can be replaced by p2 in case 
p = 5 or 7. 

The last two results in this subsection are more special in nature but the second of 
them is used in characterizing Co3 . The proofs depend on the arithmetic of cyclo-
tomic fields. 

THEOREM 8.3.8. — Suppose that G has an irreducible faithful rational valued character 
of degree 11. Then G has a subgroup of index 11 or 12. 
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THEOREM 8.3.9. — Suppose that G has an irreducible faithful rational valued character 
of degree 23. Then one of the following possibilities must occur. 

(i) G has a subgroup of index 23 or 24. 
(ii) G' is isomorphic to a subgroup of Co2 or Co3. 

§ 8 . 4 . THE 2 AND 3 DIMENSIONAL LINEAR GROUPS IN CHARACTERISTIC p > 0 

Let p be a prime. A subgroup G of GLn(p
a) can be lifted if there exists a finite linear 

group of degree n whose coefficients are local integers with respect to some prime 
divisor of p in some algebraic number field and which maps onto G when read modulo 
this prime divisor. To list all subgroups of SLn(p

a) for n = 2, 3 it suffices to list those 
which cannot be lifted since all 2 and 3 dimensional finite complex linear groups are 
known (see the next subsection). 

THEOREM 8.4.1 (Dickson). — Let G be an irreducible subgroup of SL2(p
a) which 

cannot be lifted. Then G is isomorphic to SL2(p
b) for some b | a. 

THEOREM 8.4.2 (Bloom [1], Hartley [1], Mitchell [1]). — Let G be an irreducible 
subgroup of SL3(p

a) which cannot be lifted. Then G is isomorphic to one of the follow­
ing. 

(i) SL3(p
b) for some b \ a. 

(ii) In case 3b \ a and 3 \ (pb — 1) an extension of SL3(p
b) by a group of order 3. 

(iii) U3(p
b) for some b with 2b \ a. 

(iv) In case 6b \ a and 3 \ (ph + 1) an extension of U3(p
b) by a group of order 3. 

(v) If p^2,b\a and pb > 3, either PSL2(p
b) or PGL2(p

b). 
(vi) If p = 5 and a is even, a covering group of 2t7. 

Mitchell [2] has also found all the subgroups of PSp4(q) for q odd. 

§ 8.5. Low DIMENSIONAL LINEAR GROUPS IN CHARACTERISTIC 0 

The finite linear groups in dimension n < 1 have been completely classified. The 
tables below contains a complete list of primitive unimodular irreducible groups in 
dimension n with Z(G) ç G'. Let z = \ Z(G) \. 

For any prime p > 2 let Hp be the split extension of a nonabelian group P of order p3 

and exponent p by SL2(p). Let (Ip) denote the class of all primitive unimodular sub­
group of Hp containing P. 

The results for n = 2, 3 are classical and can be found in Blichfeldt [1]. 

n =2 G \G\ z 

(I) ^ 4 , SL2(3) 24z, 12z 2 
(II) SL2(5) 60z 2 

n = 3 

da) 
(II) M5 60 1 
(III) $ 6 360z 3 
(IV) PSL2(7) 168z 1 
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n = 4 

(I) 

(II) 

(III) 

(IV) 

(V) 
(VI) « s 

(VII) « T 

(VIII) 
(IX) 

(X) 
(XI) 

n = 5 

ds) 
(II) 
(III) 
(IV) 

n = 6 

(I) 
(II) 
(III) 
(IV) 

(V) 

(VI) 

(Blichfeldt [1]) 

A x B/Z where A, B occur for n = 2 and Z is the central 
subgroup of order 2 which is contained in neither A 
nor B. 

A subgroup of index 2 in GL2(3) x GL2(3)/Z which does 
not occur in (I). 

Let G0 be the group in (II), there are two possible exten­
sions of G0 which interchange the factors 

An extension SX.2(3) x SL2(3)/Z which interchanges the 
factors where Z is as in (I). 

y« 

SL2(5) 
SL2(7) 

ÖJ(3) 
G is a primitive subgroup containing T of the extension of 

an extra special group T of order 25 by its automorphism 
group. 

(Brauer [11]) 

2I5, 9I6, </%, ^ 6 

PSX^ll) 
0'5(3) 

(Lindsey [1]) 

A x B where A occurs for n = 2 and B for n = 3 
SL2(5) 

$ 6 « PSL2(9), an extension by an automorphism of 
order 2 which is the product of the field automorphism 
by the automorphism from GL2(9) 

9I7> ^ 7 

(VII) % 

(vili) ä7 

(IX) PSL2(7), PGL2(7) 
(X) SL2(1), an extension by an automorphism of order 2 in 

GL2(7) 
(XI) SL2(11) 
(XII) SL2(13) 
(XIII) 05(3), an extension by an automorphism of order 2 
(XIV) SUj(3), an extension by the field automorphism 
(XV) SU4(3) = 0(T(3) an extension by an automorphism of 

order 2 

(XVI) Haì 

288z 

576z, 576z 

288z 
60, 120 
360z, 720z 

G-"> 
60z 
168z 

26.34.5z 

2 

2 

2 
1 
2 

2 

2 
2 
2 

60, 360, 120, 720 
660 
26.34.5 

1 
1 
1 

60z 
120z 

360z, 720z 
360z 
1 
-7!, 7! 
2 

G-"> 
C-"> 
168, 336 

168z, 336z 
660z 
1092z 
26.34.5, 27.34.5 
6048, 12096 

27.36.5.7z,28.36.5.7z 

604, 800z 

2 
2 

3 
6 

1 

3 

6 

1 

2 
2 
2 
1 
1 

6 
2 
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(XVII) SC3(4), an extension by an automorphism of order 2 which 
is the product of a graph automorphism and a field auto­
morphism 

(I7) 
(II) 
(III) 

(Wales [2]). 

PSL2(13) 
PSL2(8), an extension by the field automorphism 

(IV) «8> ^ 8 

(V) PSL2(7), PGL2(7) 
(VI) PSU3(3), an extension by the field automorphism 
(VII) Sp6(2) 

20,160z, 40, 320z 

1092 
504, 1512 
1 
- 8 ! , 8! 
2 
168, 336 
6048, 12096 
29.34.5.7 

§ 9. Permutation groups. 

The theory of permutation groups is as old as group theory. See for instance 
Passman [2] and Wielandt [5] for systematic expositions. This section contains a 
list of some recently proved results. No attempt at completeness has been made, 
rather the emphasis is on results which are related to questions concerning the structure 
of simple groups. 

Let G be a permutation group on a set Q and let a be in Q. Then Ga denotes the 
subgroup of G consisting of all permutations leaving a fixed. 

§ 9.1. DOUBLY TRANSITIVE GROUPS 

THEOREM 9.1.1. — Let G be a 2-transitive permutation group on Q. For a in Q 
assume that Ga has a normal subroup which is regular on Q — { a }. Then G has a normal 
subgroup M with M ç G Ç Aut (M) such that either M is a sharply doubly transitive 
group or M is isomorphic to one of the following groups and Q is the set of Sp-groups 
of G. 

(i) PSL2(p
m), PSU3(p

m). 
(ii) Sz(22m+1), p = 2. 

(iii) A group of Ree type, p = 3. 

(Sharply doubly transitive groups are completely known, Zassenhaus [3]). 

This theorem appears in Hering-Kantor-Seitz [1], the proof incorporates the work 
of many authors who proved various special cases of Theorem 9.1.1. The earliest 
results in this connection are due to Burnside, Dickson and Frobenius. Essential 
contributions can be found in Feit [1], Ito [3], Shult [1], Suzuki [4], [6], [11], [14], [15], 
Zassenhaus [2], [3]. The groups Sz(22m + 1) were discovered in proving a special case 
of this result. Some simplifications of part of the arguments can be found in Glau­
berman [6], Huppert [1]. Special cases of this theorem can also be found in Harada [6], 
Ito [11], Nagao [3, I]. 

THEOREM 9.1.2 (Kantor-O'Nan-Seitz [1]). — Let G be a 2-transitive permutation 
group on n. Suppose that Gaß is cyclic for OL, ß in Q. Then G is either sharply doubly 
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transitive or G is isomorphic to one of the following groups and Q is the set of Sp-groups 
of G. 

(i) PGL2(f% PSL2(p»% PGU3(p
m)9 PSU3(p

m). 
(ii) Sz(22'" + 1), p = 2. 
(iii) A group of Ree type, p = 3. 

Special cases and related results can be found in Iwasaki-Kimura [1], Kimura [1], 
Passman [3], 

THEOREM 9.1.3 (Ree [3]). — Let G be a 2-transitive permutation group on Q. Assume 
that for a, ß in Q Gaß contains exactly one nonidentity element which leaves at least 3 
letters fixed and every involution leaves at least 3 letters fixed. If \ Q | is even then G 
is a group of Ree type and Q consists of the S3-groups of G. 

THEOREM 9.1.4 (Harada [7]). — Let G be a 2-transitive permutation group on Q. 
Assume that for a, ß in Q, | Gaß | is even and \ Gaß n G%p \ is odd for x in G — MG(Gaß). 

(i) J/ I fì I is odd then either G has a regular normal subgroup or S2(G) is dihedral, 
quasi-dihedral, Z2„ \ Z2 or Z2„ x Z2„, n > 2. 

(ii) / / | Q | is even then one of the following holds. 

(a) PSL2(p
m) g G ç PTL2(p

m)9 p ^ 2, fì is the set of Sp-groups of G and | Q | = pm +1 . 
(b) G is isomorphic to an automorphism group of the 1 or 2 dimensional affine group 

over afield of characteristic 2. 
(c) G « Sl6, | Q | = 6 or G « PTL2(8) and | fì | = 28. 

See also Hering [2] and King [1]. 

THEOREM 9.1.5 (Harada [4]). — Let G be a 2-transitive permutation group on Q 
which contains no regular normal subgroup. Suppose that G contains an involution t 
such that every element in CG(t) — { 1 } has the same number of fixed points. Then 
G » PSL2(p

m) and Q. is the set of Sp-groups of G or G « Sz(22m+i) and Q. is the set of 
S2-groups of G. 

THEOREM 9.1.6. — Let G be a 2-transitive permutation group on Q. Let m(G) be 
the maximum number of fixed points of an involution in G. 

(i) (Bender [2]). / / m(G) = 0 then either G is solvable or PSL2(p
m) < G for some p 

and Q is the set of Sp-groups of PSL2(p
m). 

(ii) (Hering [2], see also Theorem 9.1.4). J/ m(G) = 2 and \ Gaßy \ is odd for all a, ß9 y 
in Q then either G « S&6 and \ Q \ = 6 or PSL2(p

m) Ç G ç PrL2(p'") for some p and Q 
is the set of Sp-groups of G. 

THEOREM 9.1.7 (Tsuzuku [3]). — Let G be a 2-transitive permutation group on Q. 
Suppose that | Q | = 1 + p + p2 for a prime p and p3 \ \G\. Then either G ç PGL3(p) 
or 2Ii+/,+/J2 ç G. 

THEOREM 9.1.8 (Appel-Parker [1]). — Let G be a 2-transitive permutation group 
on Q. Suppose that \ Q \ = 1 + np for a prime p and n < p. If p2 \ \G\ then 
SH1+np <= G. Furthermore SHl+np £ G for \ Q | = 29, 53, 149, 173, 269, 293 or 317. 
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Groups which have two inequivalent doubly transitive permutation representations 
with the same character lead to questions concerning block designs. See Feit [6], 
Ito [2], [13], [15]. It is not known whether a group can have three pairwise inequivalent 
doubly transitive permutation representations which afford the same character. 

Other questions which relate doubly transitive permutation groups and combina­
torial configurations are for instance discussed in Hall [2], Ito [16]. 

§ 9.2. TRANSITIVE EXTENSIONS 

THEOREM 9.2.1 (Tits [2], Zassenhaus [1]). — The only transitive extensions of PGLn(q) 
acting on projective space are the ones which give rise to the Mathieu groups unless q = 2. 

THEOREM 9.2.2 (Suzuki [17]). — Let G be one of the groups PSU3(p
m)9 Sz(22m+1) 

or a group of Ree type acting on the Sp-groups of G, where p = 2or3 respectively in the 
last two cases. Then G does not have a transitive extension unless G = PSU3(2) or Sz(2). 

Related results can be found in Bender [1], Lüneburg [1], [2]. By combining 
Theorems 9.1.1, 9.1.2 and 9.2.2 one easily gets. 

THEOREM 9.2.3 (Hering-Kantor-Seitz [1]). — Let G be a 3-transitive group on Q 
in which the stabilizer of 3 points is cyclic. Then PGL2(p

m) ç G ç PTL2(p") where Q 
is the set of Sp-groups of PGL2(p

m). 

§ 9.3. PERMUTATION GROUPS OF PRIME DEGREE 

Throughout this subsection p is a prime and G is a permutation group on Q with 
| Q | = p such that a 5p-group of G is not normal in G. A theorem of Burnside implies 
that G is doubly transitive on fì. By Ito [9], G has an irreducible character of degree p. 
The results of Brauer [2] are important for the study of these groups. 

THEOREM 9.3.1 (Ito [1], [5], [10]). — Let P be a Sp-group of G. Let N = NG(P). 

(i) (See also Feit [5] and Theorem 8.3.4 (iii)). / / \N:P\ = 2 then p = 2b + 1 
and G « SL2(2

b). 
(ii) If | N : P | = q with 2 < q < p — 1 and G is 2(q — 1) — transitive on Q, then 

G « 3 l p . 

THEOREM 9.3.2 (Ito [14]). — If p is a Fermât prime and G contains an odd permutation 
then G « &>p. 

A related result can be found in Fryer [1]. 

THEOREM 9.3.3 (Ito [7], [8]). — Suppose that p = 2q + 1 with q a prime. 

(i) Either G is ^-transitive on Clor G & PSL2(p) with p = 5, 7 or 11. 

(ii) If p > 23, - (p — 3) = —-— and p — 4 are primes then 9Ip Ç G. 

§ 9.4. PERMUTATION GROUPS OF DEGREE 2p 

Let p be a prime. The only known examples of primitive permutation groups 
on 2p letters which are not doubly transitive occur for p = 5. The following results 
are known in this connection. 
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THEOREM 9.4.1. — Let G be a primitive permutation group on 2p letters which is not 
doubly transitive. 

(i) (Wielandt [2], [5]). 2p = m2 + 1 for some integer m. p2 Jf\G\. Ga has 3 

orbits of size 1, m — , m — respectively. Tìxe irreducible constituents of 

the permutation character have degrees 1, p — 1, p respectively. 
(ii) (L. Scott [1]). If p > S then p ^ 313 and m in (i) is not a prime. 

(m - 1) 
(iii) (Ito [12]). / / Ga is not faithful on the orbit of size m then p = 5. 

(iv) (See also Theorems 8.3.4 (iii)). Let P be a Sp-group of G. If \ NG(P) | = 2p 
then p = 5. 

For results of this type for groups of degree 3p see for instance Ito [6]. 

THEOREM 9.4,2 (Nakamura [1]). — Let p9 q = 2p — 1 be odd primes. A primitive 
permutation group on 2p = q + 1 letters is either 3-transitive or is isomorphic to PSL2(q). 

§ 9.5. PRIMITIVE PERMUTATION GROUPS 

THEOREM 9.5.1 (Sims [1, I], W. J. Wong [5]). — Let G be a primitive permutation 
group on fì. If Ga has an orbit of length 3 then G is solvable. 

Related results concerning the structure of G under various hypotheses on Ga can 
be found in Cline-Keller [1], Keller [1], Sims [1, II], W. J. Wong [6]. 

§ 9.6. RANK 3-GROUPS 

Rank 3 permutation groups have recently played an important role in the discovery 
of several of the sporadic simple groups. The systematic study of these was begun 
by D. G. Higman [1], [2], [3]. See also Tsuzuku [2]. Since this topic was covered by 
D. G. Higman in his talk at this congress these results will not be mentioned here. 

§ 9.7. MULTIPLY TRANSITIVE GROUPS 

Let G be a permutation group on fì. The only known examples of groups G which 
are 5-transitive are the groups 2I„, Sfn with | Q | = n9 M12 with | fì | = 12 or M 2 4 

with | a | =24. 

THEOREM 9.7.1 (Nagao [2], [3], Wielandt [4]). — Suppose that G is 1-transitive on fì. 
/ / for any simple group G the group of outer automorphisms is solvable then 3I„ £ G 
where | fì | = n. 

i 

THEOREM 9.7.2 (Hall [1], Nagao [3], Nagao-Oyama [1]). — Suppose that G is 4-transi-
tive on fì. Let H be the subgroup of G leaving 4 letters fixed. If H leaves an additional 
letter fixed then G & Sf59 5l6 or M n . 

THEOREM 9.7.3. — Let G be 4-transitive on fì. Let H be the subgroup of G leaving 
4 letters fixed. 
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(i) (Nagao [3]). If every involution fixes at most 5 points then G is isomorphic to 
one of the following. Sfn, 4 ^ n < 7. 2l„, 6 < n ^ 9. Mlt, M12. 

(ii) (Noda-Oyama [1]). If H has a cyclic S2-group then G K, £f6 or Sfn. 
(iii) (Oyama [2]). If a S2-group of H fixes exactly 6 points then G « 2l6. 
(iv) (Oyama [2]). / / a S2-group of H fixes exactly 11 points then G « M n . 
(v) (Oyama [2]). If a S2-group H is semi-regular on the remaining points and distinct 

from < 1 > then G is isomorphic to one of the following £f$, Sfn, 2I8, $t9, M1 2 or M23. 

Other conditions on 4-transitive groups can be found in Parker [1]. A result of 
this nature for 6-transitive groups is proved in Noda [1]. 

§ 10. Automorphisms of groups. 

The central problem concerning automorphism groups of simple groups is to 
prove or disprove the Schreier conjecture which asserts that if G is simple then Out (G) 
is solvable. (Out (G) = Aut (G)/In (G) is the group of outer automorphisms of G). 
This conjecture has been verified for the known simple groups (except for a few of the 
most recently discovered sporadic groups), see section 2. However very little is 
known in general. The next two results and some variations on them contain almost 
everything known in this connection for general simple groups. 

THEOREM 10.1 (Wielandt [6]). — If G is a simple group which contains a subgroup 
of prime index then Out (G) is solvable. 

THEOREM 10.2 (Glauberman [2]). — Let G be a simple group. If Aut (S2(G)) is 
solvable then Out (G) is solvable. 

Related results can also be found in Glauberman [2], these are all consequences of 
Theorem 4.5.1 above. Special cases of Theorem 10.2 were first proved by Brauer [10]. 

In a different direction the following result of Brauer, which has been generalized 
by Wielandt [3], has played an important role in some of the previously mentioned 
work. 

THEOREM 10.3. — Suppose that G admits a noncyclic group A of order 4 as a group 
of automorphisms. Let ft for i = 1,2,3 be the number of fixed points of the three 
nonidentity elements of A and let f be the number of fixed points of A. Then 
hhh=P\G\. 

An automorphism of a group which fixes only the identity element is said to be fixed 
point free. It is not known whether a nonsolvable group can admit a fixed point 
free automorphism though some results have been proved in this connection. 

THEOREM 10.4 (Thompson [1], [2], [3], [6]). — A group which admits a fixed point 
free automorphism of prime order is nilpotent. 

Related results can be found in Hughes-Thompson [1], Kegel [2]. For other results 
concerning groups which admit fixed point free automorphisms of special types see 
Fischer [2], [3], Ralston [1]. 
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§ 11. Generators and relations. 

An old conjecture states that a finite simple group is generated by two elements. 
This has been verified for most of the known simple groups. See for example Stein­
berg [2]. In general nothing is known although Theorem 3.3 above has a result in 
this connection. 

Tits has defined a (B, N) pair to be a group containing subgroups B and N that 
satisfy various conditions. These conditions are modelled on the Bruhat decomposi­
tion of a semi-simple Lie group and have a very geometric flavor. He has succeeded 
in characterizing all groups of Lie type of rank at least 3 in these terms, see Tits [5]. 
Theorem 9 . 1 . 1 above may be interpreted as a characterization of groups of Lie type 
of rank 1 in related terms though the methods of proof are very different. 
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THE COHOMOLOGY 

OF INFINITE DIMENSIONAL LIE ALGEBRAS; 

SOME QUESTIONS OF INTEGRAL GEOMETRY 

by I. M. G E L ' F A N D 

This report is concerned with certain results and problems arising in the theory 
of the representation of groups. In the last twenty years much has been achieved 
in this field and—most important—its almost boundless possibilities have become 
apparent. 

Indeed, its problems, touching on the interests of algebraic geometry, on many 
questions of the algebraic number theory, analysis, quantum field theory and geometry, 
as well as its inner symmetry and beauty have resulted in the growing popularity of 
the theory of representations. 

It is impossible to list even briefly its main achievements, and this is not the aim 
of this communication. Nevertheless, one cannot omit mentioning the outstanding 
papers by Harish-Chandra, Seiberg, Langlands, Kostant, A. Weil, which considerably 
advanced the development of the theory of representations and opned up new rela­
tionships; and, since we do not go into these questions, we will not be able to touch 
upon many of the deep notions and results of the theory of representations. 

We feel that the methods which have arisen in the theory of representation of groups 
may be used in a considerably more general non-homogeneous situation. We will 
give some examples: 

1. The proof of the fact that the spectrum of a flow on symmetric spaces of constant 
negative curvature is a Lebesgue spectrum [1] was based on methods of the theory 
of representations, namely the decomposition of representations into irreducible 
ones. One of the most useful methods of decomposing representations into irreducible 
representations is the orisphere method [5]. In the works of Sinai, Anosov, Mar­
gulis [2], [3], [4], only the orispheres are considered and groups symmetries are left 
out. This rendered possible the study of the spectrum of dynamic systems in a consi­
derably more general situation. 

2. The theorem of Plancherel and the method of orispheres gives rise to the conside­
ration of more general problems of integral geometry, taking place in a non-homo­
geneous situation [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. 

3. If we have a manifold and its mapping, the study of distributions " constant 
on the inverse image of each point " of this mapping is an extremely interesting problem, 
special examples of which were studied in the homogeneous situation (functions in 
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four-dimensional space, invariant relative to the Lorenz group, functions constant on 
classes of conjugate elements of a semi-simple Lie group [18], etc.). There are various 
aspects of this problem which are considerably more interesting and important than 
may seem at first glance. Of course, the main interest of the problem is the study of 
these distributions at singularies of the mapping. To be more precise, suppose X 
is a manifold (C00-analytical, algebraic) and ^ is some (perhaps infinitely dimensional) 
Lie algebra of smooth vector fields. One wishes to describe the space of un variant 
distributions. 

A more natural statement of the problem is obtained by replacing the distributions 
by generalised sections of a vector bundle which vary according to a given finite dimen­
sional representation. Unfortunately consideration of length prevent me from giving 
a series of existing examples. Those examples are particularly interesting when X 
has only a finite number of orbits relative to ^ . For interesting example in the non-
homogeneous situation see [34]. 

4. The theory of representation of groups makes the consideration of interesting 
examples possible and shows the importance of studying the ring of all the regular 
differential operators on those algebraic manifolds which are homogeneous spaces. 
It is quite natural to wish to describe the structure of the ring R of regular differential 
operators on any algebraic manifold. Perhaps, as in [19], [20], it would be helpful 
to consider the quotient skew-field of the ring JR. Another interesting problem is the 
description of the involutions of this ring R. 

In this report I would like to tell about certain problems which were studied by my 
friends and myself while thinking about questions1 connected with representation 
theory. 

I. Representations of semisimple Lie algebras. 

0. Suppose ^-is a semisimple Lie algebra. The study of representations is essen­
tially the study of a category of ^-modules. The choice of the particular category 
of ^-modules considered in the algebraic problems of the theory of representations 
is essential. Suppose / is a fixed subalgebra of ^ . ^-the module will be called (^, / ) 
finite iff 1° it is a finitely generated ^(^)-module and 2° as an ^(^)-module it is the 
algebraic direct sum of finite dimensional irreducible representations o f / a n d in this 
decomposition each of the irreducible representation appears only a finite number 
of times. 

The following two cases are very interesting: 

1° ^ is a real semisimple algebra,/ is the subalgebra corresponding to the maximum 
compact subgroup. The corresponding (^, /)-modules were considered by V. A. Pona-
maryov and the author and were called by them " Harish-Chandra modules ". 

2° 0 is a real Lie algebra, / is a Cartan subalgebra or, more generally, the semisimple 
part of the parabolic subalgebra. 

1. Let us consider in more detail the category of Harish-Chandra modules in the 
case when ^ is the algebra of a complex semisimple Lie group. 
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Further, each module is the direct sum of modules on each of which the Laplace 
operators have only one eigen-value. 

Consider an example. Suppose G is a simply connected Lie group over the alge­
bra (S, B — its Borei subgroup, Jf is a unipotent radical of B, H — EL Cartan sub­
group. Consider the indecomposable finite dimensional representation p of the 
group H. Note that since H = C* x C* x . . . x C* the question of the finite 
dimensional representations of H is reduced to the determination of a finite number 
of pairwise commutative matrices. Let us extend this representation p of the group H 
to a representation of the group B and consider, further, the representation of the 
group G induced by this representation B. The representation thus obtained will 
be called a Jordan representation. In the case when p is of dimension one, we obtain 
the well-known representation of the principal series. Thus we have constructed, 
using the representation of the group H, a representation of the group G. Note that 
the description of the canonical form of the representation of H is in some sense an 
unsolvable problem if the rang of H is greater than 1 [21]. 

If we consider the representation of the algebra ^ thus constructed only on the 
space of vectors which vary over the finite dimensional representation of the maximum 
compact subgroup, we will obtain Harish-Chandra modules. Apparently the follow­
ing hypothesis holds: at the points of general position all the indecomposable Harish-
Chandra modules are all Jordan representations (*). 

For SL(2, C) this statement follows from work of Zhelobenko. The most interest­
ing is the study of Harish-Chandra modules at singular points. Of course, the problem 
of listing all the Jordan modules is already a badly stated (unsolvable) problem, 
since it is based on the classification of systems of pairwise commutative matrices. 
However, it is not clear whether it is possible to solve this problem at a singular point, 
considering the Jordan modules as given. If such a solution were possible, it would 
have exceptional interest. 

The problem of describing Harish-Chandra modules was completely solved by 
V. A. Ponomaryov and the author for the Lie algebra of the group SL(2, C) [22], [23], [24]. 
Then these representations were constructed as a group representation (and not only 
as an algebra representation) by M. I. Graev and the authors cited above [25]. 

The classification of indecomposable Harish-Chandra modules is carried out in 
two stages. 

1. The problem is reduced to a problem in linear algebra. 
2. The linear algebra problem obtained for SL(29 C) generalises the problem of 

describing the canonical form of pairs of matrices A, B such that AB = BA = 0. To 
solve this problem we apply the Maclane relation theory, which allows us to use the 
relations A* and B*, inverse to the degenerate operators A and B, as well as the mono­
mials A#klB#k*A#k3 .... 

The Harish-Chandra modules at a singular point may be divided into two classes. 

(*) To be more precise, each HARISH-CHANDRA module is decomposed into direct sum of 
submodules on which the Laplace operators have precisely one eigen-value. The set of eigen­
values thus obtained is called singular if the representation of the fundamental series with 
the same eigen-values of the Laplace operator are reducible. The points of general position 
will be exactly the non-singular points. 
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The modules of first class are uniquely defined by any set of natural numbers, the 
modules of the second class are determined by any set of natural numbers together 
with one complex number L It is thus interesting to note that at singular points the 
module space is not discrete. The most convenient canonical form of Harish-Chandra 
modules are given in [25]. 

In the case of SL(2, U) the problem of classifying Harish-Chandra modules is easily 
reduced to a problem in linear algebra; explicitely the category of Harish-Chandra 
modules at a given singular point is isomorphic to the following category of diagrams 
in the category of finite dimensional linear spaces : 

« + ß+ 

Pi 

with the condition a+a_ = ß+ß- = y, where y is nilpotent. The question of the 
classification of the objects of this category is aparantly solvable but leads to consi­
derable difficulties. 

CONJECTURE. — The category of Harish-Chandra modules for any semisimple group 
with given eigen-values of Laplace operators is equivalent to a certain category of 
diagrams in the category of finite dimensional linear spaces. 

2. This and the following section of the report summarise some results of I. N. Bern­
stein, S. I. GePfand and the author. 

Suppose ^ is a semisimple Lie algebra over C, b is its Borei subalgebra, u is a radical 
and / is a Cartan subalgebra. Consider the following category (9. Its objects are 
(0, / ) — finite modules M, satisfying the following condition: for every vector £ e M 
the space %{u)^ is finite dimensional. This category is most useful for the application 
of the theory of highest weights. In this category, let us chose a class of objects which 
will be called elementary. All the others will be constructed from them and their 
factor modules by step by step extensions. 

Suppose % is a linear functional over / Denote by M x<%(&)-modu\e, generated 
by fx, with the relations nfx = 0 and hfx = (% — p, h) .fx for all h e f and n e u . Here p 
denotes the half-sum of the positive roots. By studying the modules Mx we get exten­
sive information on the representation of the algebras <3, including finite dimensional 
ones. We now state a few theorems on Mx modules and their morphisms. 

THEOREM 1 (Verma). — Let the modules MXl and MX2 be given. Two cases are 
possible: 

1° Uom(MXl,MX2) = 0; 

and 

2° Horn (MXI, MX2) « C, 

then any non-trivial homomorphism MXl into MX2 is an embedding. 
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To state the next theorem we must introduce a partial ordering in the Weyl group W. 
Suppose sl9 s2eW. We shall say that st > s2 iff there exist reflexions al9. . .,ar 

in W such that s1 = <r1 ... ors2 and l(oi+1 . .. ars2) = l(at- ! . . . ors2) H- 1, i = 1 , . . . , r, 
where l(s) is the length of the element seW. 

THEOREM 2. — Let MXl and MX2 be given. MXl imbeds into MX2 if and only if, 

1. There exists such an x that Re % lies in the positive Weyl chamber and such 
a pair of elements sl9 s2eW9 Sx > s2 that Xi = SiX» Xi — siX-

2. Zi ~ X2 = En/ty, where nt are integers, a( are simple roots. 

The module MXQ is richest in submodules for integer values of Xo from the positive 
Weyl chamber. It follows from theorem 2 that MXo contains a submodule MSXo 

for all s e W. In this case the embedding of MSXo into MXo is determined in the follow­
ing way. Suppose sai is the reflection with respect to the simple roots ai9s = sa{ . . . saic 

is the decomposition of minimum length. Let 

Xi = S<XiSai+i • • • SakXom 

Then 

Jsxo = aJxo ' 

where 
( X 2 ~ X l i « l ) (X3-X2,flC2) (XO~Xk.«k) 

n — V ( a i . a i ) V («2 ,a 2 ) F (ak.ajt) 
u - ' - ' - a i • • L ' - a 2 • • • - " - a i e 

Since the minimum representation s in the form of the product of sai is not unique, 
whereas the injection MSXo into MXo is uniquely determined, the theorem gives rela­
tions between " chains " of the type described. In the general case the embedding 
is more complicated. 

The relations between MSXo may easily be shown by the following commutative 
diagram. The vertices of the diagram are numbered by the elements s of the Weyl 
group and correspond to the modules Msxo. If st < s29 then an arrow going from s2 

to Si is drawn. The mapping is defined by the embedding of MS2Xo into MS1XQ. We 
obtain a commutative diagram. It is not difficult, using this diagram, to get in parti­
cular, a resolution of the finite dimensional representation by free ^(w)-modules. 

The finite dimensional representation with highest weight %0 — p is of the form 

M = MJYJMSX0. 

The theorems stated above and this diagram contain, in this case, the formulas of 
Kostant, Weyl's formulas for characters, the Borel-Weil theorem and the Harish-
Chandra theorem concerning the left ideals of enveloping algebras. 

3. The ring of differential operators on the principal affine space and the generalisa­
tion of the Segal-Bargman representation to any compact group. 

Suppose G is a complex semisimple Lie group, Jf is the maximum unipotent sub­
group, H — a Cartan subgroup. The manifold A = Jf\G is called the principal 
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affine space of the group G. It is an algebraic quasi affine manifold. It is interesting 
to consider the ring @ of regular differential operators on A. Suppose f(g) ranges 
over all the regular algebraic functions (polynomials) on the group G. We will give 
a method allowing to construct for any such function a differential operator on A. 
Since H normalises Jf, the transformation g -> hg may be carried over to A (left 
translations [5]). Using these left translations we can assign to every element of the 
Lie algebra / of the group H a. differential operator on A. The commutative ring of 
differential operators on A generated by these operators will be denoted, following [20], 
by Wu. Suppose n is the natural map of G into A. Denote by n* extension of the 
functions over A to functions over G induced by n. The operation n^, mapping 
the functions on G into functions on A is less obvious and supplements, in our case, 
the operation of averaging the function over the subgroup. The construction of n^ 
is carried out in the following way. 

Suppose f(g) is a regular algebraic function on G. Consider it as the linear combi­
nation of matrix elements of finite dimensional irreducable representations in the 
basis of weight vectors H. Threw out all the elements of this sum except the summands 
corresponding to those matrix elements whose first index is the highest weight of the 
corresponding representations. Denote by n^f the function thus obtrained. 

Suppose / is a fixed function on G. Define the operator / in the functions by the 
formula 

7(<P) = rc*(/rc*(<P)) 

THEOREM 1. — There exists an element weWu such that w0f is a regular differential 
operator on A. Conversely, every regular differential operator on A may be repre­
sented in the form Zwf. fi9 w( e Wu where ft are functions on G. 

Suppose Jf is the quotient field of the Wu ring, !F(G) is the ring of regular algebraic 
functions on G. The map constructed in theorem 1 may be expanded to the map 

i : 0 ( g ) X -• ^(G)(g)jr 
wu c 

THEOREM 2. — i is a linear space isomorphism over Jf, compatible with the right 
translations by elements of G. 

Note that the fact of the existence of an isomorphism of the spaces above was obtained 
earlier in a joint paper of A. A. Kirillov and the author [20]. 

Fo r the group SU(2) there exists an extremely useful realisation of the whole series 
of representations of this group due to Segal and Bargmann. This realisation is in 
the Hilbert space of analytic functions of two complex variables, square, integrable 
with weight e"lzil2~~lZ2l2. W e will point out a generalisation of this construction 
for any compact Lie group. 

Suppose K is a simply connected compact Lie g roup of rang r, G — its complexifi-
cation, A — the principal affine space of the group G. Introduce the weight function 
e~m°\ a e A. Suppose pf is the i'-th fundamental representation of G, let Çt denote 
the vector of highest weight in p £ . Pu t 

Hi(g) = (pis)ii,Pi(g)a 
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where ( , ) is the scalar product in the space of the representation p{ invariant relative 
to K. It is clear that Ht(g) is a function on A and we can then put 

H(a)= tHt(a). 
i=l 

Now consider the analytic functions on A which are square integrable with weight 
e-H(a) c a u t h e Hilbert space of all these functions a " generalised Segal-Bargmann 
space ". The group K thus obtained acts on it in a natural way and the unitary repre­
sentation thus obtained contains every irreducible one exactly once. Let us call any 
operator with polynomial regular algebraic coefficients a " differential operator on A ". 

CONJECTURE. — The operator conjugate (in the generalised Segal-Bargmann space) 
with a regular differential operator is again a regular differential operator. 

The involutions which arise in the ring of regular differential operators are far from 
trivial. Thus, for the case of SU(n) the operator, say, conjugate with multiplication 
by a simple first order function, is a differential operator of the (n — l)-st order. The 
techniques developed in the previous section apparently will turn out to be very useful 
in the study of the ring of differential operators on A, in particular, for the proof of 
the conjecture stated aboce. The fact of the matter is that the construction of the invo­
lution itself is most conveniently carried out in the terms developed there. Using 
this method the conjecture was checked for S 17(3). 

We state another problem. Let the real form of the group G be given. Its unitary 
representation naturally gives rise to an involution in the enveloping algebra °U(<3). 
We must find all the possible extensions of this involution from °Ui<3) to the ring of 
all the regular differential operators on A. In the simpliest examples these extended 
involutions correspond to series of unitary representations (of real groups) contained 
in the regular one. It would be interesting to list the involutions in the ring of regular 
differential operators on any quasiaffine algebraic manifold. 

It would also be interesting to consider the factor space of the group G, not only 
over the maximal unipotent group, but also over any orispherical subgroup. 

II. Integral geometry. 

In this paragraph I will only consider one elementary example [17]. The derivation 
of the Plancherel formula for G = GL(n, C) is based on the following problem in 
integral geometry. Denote by Jf e G the set of all the upper triangular matrices 
with units on the diagonal. Suppose the function f(x), x e G is given. Let 

-I q>(xl9 x2) = \ f(Xi lzx2)dz9 

u 
where x± and x2 are any matrices. The problem is: given (p(xl9 x2) find f(x). It 
suffices to solve the problem when x = e is the unit matrix. We can assume that the 
fonction / is given on C"2 and the equation y = x± 1zx2 for fixed Xi and x2 defines 
. ^ 2 , n , . . n(}1 — 1) m C" a plane of dimension . 
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Now replace our problem with the following, at first glance meaningless, problem. 

Consider the space Hn2J k = j of all the fc-dimensional planes in Cn\ 

For all heH„2tk consider the function 

i 9(h) = I f(x)dx. 

We must now recover f(x). In the paper [10] this problem is solved in the following 
manner. Using the function cp and its derivatives construct a differential (k9 h) form 
2tfq> on the Grassman manifold Gn2ffc of /̂ -dimensional planes containing the point x. 

This form Jf cp is closed and the value of f(x) is equal to fflq>9 where y0 i
s a n v 

cycle homologic to the set of all /c-dimensional planes containing the point x and 
lying in a fixed k + 1-dimensional plane passing through the point (Euler's cycle (*)). 
As to the integral over the other fe-dimensional cycles in the basis of Schubert cells 
in G„2ffc, it is equal to zero. 

In our case the function cp(xl9 x2) is known not on the whole manifold H„2tk but 
only on a certain submanifold. The submanifold of HH2k will from now on be called 
the " complex of fc-dimensional planes ". The complex is called permissible if the 
form ffl<p on this complex is determined by the values of the function cp on this complex 
only. In the case when cp is given on a permissible complex we can recover f(x) 
by using the formula 

< 
f(x) = Cy\ tfq>, 

where y is a cycle lying in the complex; thus to find Cy it suffices to decompose the 
cycle y over the Schubert cell basis. In our case the complex will consist of planes 
of the form hXuX2 = [y/y = xj~1zx2 } and has dimension n2. It turns out to be per­
missible. The set of these planes of this complex which contain the point e has the 
necessary dimension k and forms a cycle. The coefficient of the Euler cycle is equal 
to n\ Considering the form Jf cp only on the complex, we will obtain the classical 
inversion formula 

f(e) = [(2i)Vkn\y a (£ - 0M, - i) * *•»-«)"-A«. A*»-
Apparently one can obtain the Paley-Wiener theorem for GL(n, C), in a similar manner; 
in other words, obtain conditions on q>, which imply the decrease of / at infinity. 
To do this we embed GL(n, C) not into C"2 but into CP"2 and consider the problem 
as a projective problem of integral geometry (see [15]). Since in this case we can recover 
f(x) in the points at infinity as well, the Paley-Wiener conditions will consist in the 

(*) Note that other problems of integral geometry give rise to integration over other cycles 
in Gn2fc; see, for example [16]. 
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following: the function / ' and its derivatives (recovered by using cp) must be equal 
to zero at all the points of infinity. 

III. Cohomology of infinite algebras. 

0. This part of the report contains results obtained jointly by D. B. Fuks and the 
author. 

We know how difficult it is to describe any reasonable category of representations. 
On the other hand, the problem of determining cohomology groups is a sumpler one. 
Here we list results about the cohomology of Lie algebras of vector spaces, which 
show that these cohomologies are reasonable, are not equal to zero and are not infinite 
dimensional. 

Recall that the cohomology H*(& ; M) = £ HQ(& ; M) of the topological alge-
Q 

bra ^ with coefficients in the ^-module is defined as the cohomology of the complex 
C(& ;M) = { cq(& ; M), da(<& ; M)} where ca(& ; M) is the space of continuous skew-
symetric ^-linear functionals on ^ ranging over M, and the differential da = dr(<& ; M) 
is defined by the formula 

wad {f+i) = z (- ir*-1*«., a d t i {t+1) 
- £ (-irtM£i,...,Z. <w-

If M is a ring, and the operators on ^ are its differentials, then the complex C(@ ; M) 
has a natural multiplicative structure. 

1. Problems and examples. 

The main example of an infinitely dimensional Lie algebra will be the algebra of 
smooth vector fields on a smooth manifold. 

Suppose M is a closed orientable connected smooth (*) manifold. Denote by 5l(M) 
the Lie algebra of smooth tangent vector fields on M with Poisson brackets for commut­
ing. The first of the problems considered is a follows. Define the cohomology 
ring §*(M) = H*(W(M) ; U) of the algebra SU(M) with coefficients in the unit repre­
sentation, i. e., in the field U of real numbers with a trivial 9ï(M)-module structure. 
This ring obviously is a differential invariant of the manifold M. Looking ahead 
we shall say that the space J79($I(M); IR) will turn out to be finite dimensional for 
any q (see [28]). The problem of computing the ring $)*(M) is not as of yet completely 
solved. 

We would like to point out the difference between the method of constructing 
invarients of manifolds by using objects of differential geometry ' (the Lie algebra of 
vector fields) and the usual method of constructing differential invariants. Whereas 
usually the differential form representing a Pontryagin of Chern class on the mani­
fold X is built up from the individual object (by using the metric) on the manifold, 

(*) By smooth we always mean of class C°°. 
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in our case the invariants are constructed using the infinite dimensional set of all 
smooth vector fields on the manifold. 

As an example consider the case when M is the circle S1. We can show that the 
ring H*(S*) is generated by a two-dimensional generator a and a three-dimensional 
generator, the two being related only by the skewsymetry condition. 

Further the generators a e ^(S1), <£ e ^(S1) are represented by cocycles 
AeC^S1); U), B e C 3 ^ 1 ) ; U) given by the formulas 

A(f,g) =1 / '(*) f"(x) 
g'to g"(x) 

dx 

B(f,g,h) 
/(x) f'(x) fix) 
g(x) g'(x) g"(*) 
h(x) h'(x) h"(x) 

dx 

When the dimension of the manifold M increases the ring §*(M) becomes consi­
derably richer; thus the ring §*(S2) has 10 generators, and the ring $*(Sl x S2)9 

20 generators (see [29]). 

The cohomology of the Lie algebra of smooth vector fields is intimately connected 
with the cohomology of Lie algebras of formal vector fields. By a formal vector 
field at the point 0 of the space Rn we mean a linear combination of the form 
2,Pi(xl9..., x„)ef where el9..., e„ are the standard basis vectors of the space Rn and 
Pi(xx,..., x„), the formal power series with real coefficients in the coordinates x±,..., x„ 
of the space. The set of formal vector fields is, in an obvious sense, a linear topological 
space, and a natural commutation operation transforms it into a topological Lie 
algebra. This algebra is denoted by Wn. 

2. The algebra of formal vector fields. The cohomology of the algebra Wn with 
coefficients in,R. 

In order to state the final result it is necessary to describe a certain auxilliary topo­
logical space Xn (n = 1,2,...). Suppose Jf ^ 2n and let ptE(N, n) -> G(N, n) 
be the canonical U(n) bundle over the (complex) Grasman manifold G(Jf, n). The 
usual (W-complex of the manifold G(Jf, n) has the following property: the 2n-th 
skeleton [G(JV, n)]2n does not depend on Jv^ when Jf ^ 2n. The inverse image of 
the jset [G(Jf, n)] under the map p will be denoted by Xn. 

The space X1 is a three-dimensional sphere, the other spaces do not have such a 
simply visualised description. We have the following. 

THEOREM 2 . 1 . — For all q, n there is an isomorphism 

H\Wn ; R) = H*(Xn ; R). 

Multiplication in the ring H*(Wn ; R) (as well as in the ring H*(Xn ; R)) is trivial, i. e., 
the product of any two elements of positive dimension is equal to zero. 

The cohomology of the space Xn may be computed by using standard topological 
methods. For example, it is trivial for 0 < q < 2n and for q > n(n + 2). 

Theorem 2.1 is the central result of the article [30]. Its proof uses a somewhat 
modified version of the Serre-Hoschild spectral sequence [31] corresponding to the 
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subalgebra of the algebra Wn, generated by the elements x{e^ (*); this subalgebra is 
isomorphic to <&l(n9 R). Beginning with the second member, this spectral sequence 
turns out to be isomorphic to the Leray-Serre spectral sequence of the bundle 
Xn -> [G(Jf, n)]2„ with fibre U(n). 

It turns out also that each element a e H9(W„ ; U) is represented by such a cocycle 
AeCq(W„; U), that A(£l9.. .,£q) depends only on the 2-jets of formal vector fields 
{!, . . . ,{, (see [30]). 

To study the cohomology of Wn with coefficients in other modules (and to describe 
those modules) it is important to know the structure of the subalgebras 

... œ Lkcz ... a L0czW„ 

where Lk consists of vector spaces whose components are series without terms of 
power less than or equal to K. 

The relation between the cohomology of the algebras W„ and L0. The following 
general fact is easily generalised to the case of the cohomology of infinite dimensional 
Lie algebras. 

Suppose B is an subalgebra of Lie algebra A; M — some 22-module; M — an induced 
yl-module (i. e. M = Hom[B] (M, [A]) where [A], [B] are enveloping algebras for A, B). 
Then 

H*(A ; M) = H*(B ; M). 

We will apply this statement in the case when M is a tensor representation of the 
algebra L0 (i. e. a finite dimensional representation obtained from the representation 
of the algebra &l(n ; R) by means of the projection L0 -> L0/L1 = &l(n ; R)). At 
the same time the induced representation M of the algebras W„ is none other than 
the space of the corresponding formal tensor fields. For example, if M = R is the 
unit representation of the algebra L0 , then M is the space F(Rn) of formal power series 
in n variables with the natural action of the algebra W„ ; if M is the space Ar(R")' of 
skewsymetric r-linear forms in R"9 then M is the space Qr of formal exterior differential 
forms of r order in R". 

The cohomology of the algebra Wn with coefficients in the spaces of formal exterior 
differential forms. The space 

H*(wn,n*)= £tfW,;ßr) 

is obviously a bigraduated algebra (over R)9 isomorphic, as we just found out, to 
H*(L0;A*(K»)'). 

THEOREM 2.2. — The bigraduated ring H*(Wn ; Q*) = H*(L0; A*(Rn)') is multipli-
catively generated by 2n generators 

p lGtf a ' - 1 (L 0 ;A 0 (Ä7) ( / = 1 , . . . , H ) 
T,eH' (L0; A'(*„)') (i = 1, ...,n) 

These generators are connected only by the following relations p{pk = — pkpf ; 
Pk^i = Wh J T.Tfc = Vi ; T 'M2 . . . ij;1 = 0 if Ì! + 2/2 + . . . + nin > n. 

(*) ij= 1 ,...,«• 
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In particular, the ring H*(L0 ; R) = H*(L0 ; A°(Rn)') = H*(Wn ; F(Rn)) is an exterior 
algebra in generators of dimension 1, 3, 5, . . .,2n — 1. i. e. 

H*(W„; F(R-)) = H*(?l(n, R); R). 
Moreover, 

H\L0; A'(R»)') - { H,{Lo. A W ) ^ Ha-r{An} R). 
where q < r 

R) where q ^ r 

while the dimension of the space Hr(L0, Ar(Rn)') is equal to the number of ways in 
which the number r may be represented as the sum of natural numbers. 

The computation of the cohomology of L0 with coefficients in the tensor represen­
tation reduces to the computation of the cohomology of the algebra L± with coeffi­
cients in IR. In a similar way for jets, to the cohomology of Lk with coefficients in IR. 

Apparently the following statement holds. 

CONJECTURE. — For any n the spaces Hq(Lk ; R) are finite dimensional. 

For w = l the dimension of the space Hq(Lk; R) equals C* -1 + Ck
q+\, q,k=0,1, . . . ) . 

Using previously mentioned results to compute the cohomology of the algebra L0 

with tensor coefficients we can deduce that the classes of cohomology of the algebra Wn 

(even Wt) with coefficients in tensor fields is not always representable by cocycles 
depending only on 2-jets of their arguments (in contrast with the cases of constant and 
skewsymetric coefficients). 

We have been unsuccessful, so far, in computing the cohomology H*(A, U) for 
other Cartan algebras. Note that all these cohomologies are connected with very 
important standard complexes. For this complex consists of the polynomials 
P(at,..., aq) ; (ß1,..., ßq), af e IR", ßt e (IR")' ; the polynomial P is skewsymetric under 
the simultaneous interchange of af, ßt with a,-, ß}. The differential is given by the 
formula 

dP(ocl9...,ocq+1;ßl9...,ßq+1) 
= 2 ( - lY+t(aS9 ßt) - (oit, ßs))P(ocf + a,, a , , . . . , a / , . . „ a , , . . . ; 

ßf+ßt,ß1,...,ßf,...,ßt,...,ßq+1). 

Usually, the infinite dimensional Lie algebras which arise in the formal theory are 
factor subcomplexes of this complex. 

3. The algebra of smooth vector fields. Cohomology with coefficients in R. 

Suppose M is a compact connected orientable smooth n-dimensional manifold 
without boundary, 3I(M) — the Lie algebra of smooth tengent yest fields on M. In 
the standard complex C(M) = { Ca(M) = C(3I(M); R)da} we introduceva filtration 
0 = C0(M) c d (M) c . . . c C(M) where Ck(M) = { C&M)} is a subcomplex of 
the complex C(M), defined in the following way. A cochain LeCa(M) belongs to 
CjJ(M) if it equals zero on any Ca the vector fields (l9..., Çq such that for any k points 
of the manifold M one of the fields Çl9 Ç2,..., Çq equals zero in the neighbourhood 
of each of these points. For example, CQ(M) = 0; C\(M) consists of such cochains L 
that L(£ l s . . . , ÇJ = 0 when the supports of the fields £l9.. .,£q are pairwise non-
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intersecting; Ca
q^x(M) consists of such cochains L that L(^1,.. .9^q) = 0 when the 

supports of the fields Çi9...9Çq have no common intersection to all of them; 
Ck(M) = Ca(M) when k ^ q. It is clear that Ck(M) for all k is a subcomplex of the 
complex C(M) and that Q(M)Cf(M) c Cq

k%\(M). 

To compute the cohomology of the factor complex Ck(M)/Ck_1(M) we have defined 
a spectral sequence, the first term of which may be expressed by using the cohomology 
of the manifold M and the algebra Wn. A special role is played by the complex C^M). 
This complex we shall call a diagonal complex. 

CONJECTURE. — The image of the cohomology of the diagonal complex C^M) 
in §*(M) under the embedding Ct(M) -> C(M) multiplicatively generates all of the 
ring &*(M). In particular the ring $*(M) is always finitely generated. 

Remark. — This is true for the second term of the spectral sequence, 

Let us describe a spectral sequence which converges to the cohomology of the dia­
gonal complex. It arises in connection with two different filtrations of the diagonal 
complex of the manifold. In order to describe the first filtration, note that the 
^-cochains of the diagonal complex Ct(M) are determined by distributions (more 
precisely, by the generalized sections of a certain fibre bundle) on Mq which are sup­
ported by the diagonal. The m-th term C\tin of the first filtration consists of those dis­
tributions which have an order (relative to A) less than or equal to m. 

To define the second filtration fix a triangulation of the manifold 

M = M„ => M„_1 = ) . . .=> M 0 

where Mt is the z-dimensional skeleton, and the m-th term C l m of the filtration consider 
those g-cochains which are realised by distributions whose support is Mm c A. 

Knowing the cohomology of W„ can construct a spectral sequence which allows us 
to compute the cohomology of the diagonal complex. 

THEOREM 3.1 . — There exists a spectral sequence S = { Ef'q9 d*,q } which converges 
to the cohomology of the diagonal complex §*(M) such that 

EP,q = HP+"(M) ® Hq(Wn ; R) ; 

E™, in particular, can be different from zero only when — n < p < 0. 

Let us clarify the operation of " globalizing " the formal cohomology: construct 
a mapping of the space E~r>q+r = Hn~r(M) ®Hq+r(Wn9 R) into C\(M). This mapp­
ing is not uniqual determined : it depends on the choice of the system of local coordi­
nates on M. Suppose T = { U1,..., Ujr} is a coordinate covering of M with coordi­
nates ykl,..., ykn on Ut and {p{} is a decomposition of unity consistent with this 
covering. In order to construct the element J(a ® *¥)(a e Hn+r(Wn, R)9 WeH^^M)) 
find a cochain a e C"+v(Wn ; R) representing the closed form co from the class *P. Set 

Sifln ® ^ K i - • -. Q = I û)A[ £ pkcp(oL, Uk ; { l f . . . , y ] 
JM k=l 
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where <p(<x, L7f ; £ l 9 . . . , Çq) is a form on Uk, which equals 

£ <x(£i(u, Uk), ..., £q(u, Ut), ekth„ektir) x dy{ A . . . A dyio 
K i < . . . < i r ^ n 

at the point M e L/f , where the Ct are considered as a formal field in the neighbourhood 
of the point u under the coordinates yki. The theorem is proved in [29] (statement 1.4). 

The cohomology with coef dents in the spaces of smooth sections of smooth vector 
bundles. Suppose A is a finite dimensional GL(n, R) module and suppose M is a 
smooth connected manifold (we do not assume M either orientable, or compact, or 
without boundary). Denote by a the vector bundle over M with fiber isomorphic 
to A, induced by the tangent bundle and by means of the representation of the group 
CL(n, R) in A. By sé denote the space of smooth sections of the fiber bundle a. The 
space sé has an obvious 5I(M) module structure. Our goal is the study of the cohomo­
logy of the algebra 5I(M) with coefficients in the 9I(M) module sé. 

In the complex C(M ; A) = { C°(2I(M) ; sé) ; da } we will introduce a filtration 
similar to the one considered above for C(M). We shall say that the cocycle 
L e C*(5I(M) ; sé) has filtration no greater than k if the section L ( { l 9 . . . , Çq) of the 
bundle a is equal to zero for any point xeM with the following property: for any 
points xt,.. .9xkeM one of the vector fields Çt,..., Çq equals zero in the neighbour­
hood of each of the points xl9.. .,xk, x. 

The space of ^-dimensional cocycles which have filtration no greater than k is denoted 
by CpI (M) ; sé). It is clear that Ck(M ; sé) = { Q(2I(M) ; sé)} is a subcomplex of 
the complex C(M ; sé). 

The subcomplex C0(M ; sé) is called " diagonal ". We denote it by CA(M ; sé). 

THEOREM 3.5. — We have the following spectral sequence {EP,q, dP'q } which 
converges to $%(M;sé) and is such that EP'q = HP(M ; R) ® Hq(L0 ; A). In the 
multiplicative case the spectral sequence is a multiplicative one and the isomorphism 
considered above is an isomorphism of rings. 

CONJECTURE. — H%(M, sé) = H(TM, R) ® HomCL(B)(i, H*(L, R)) where T is the 
principal U(n) bundle over M induced by the complexification of the tangent bundle. 

This conjecture has been proved in the case when A = Aq is the exterior power of 
the standard representation. The case q = 0 was independently studied by Locik [33]. 

In the end of this part of the report I would like to introduce a general concept of 
formal differential geometry. It arises when one formalises and generalises the 
methods of construction of Pontryagin and Chern classes (by means of metrics and 
connections); also in the expression of the index of a differential operator in terms of 
the symbol and the metric of the manifold. 

Suppose we have an algebra Wn of formal vector fields. Consider the jet space and, 
in it, a invariant algebraic submanifold X. Examples of such manifolds are the space 
of all symmetric tensors of rang 2, the set of all affine connections. 

Let us define the complex Q(X). Any rational map of X into the complex of formal 
differential forms will be called a chain of Q(X), the differential will be obtained by 
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differentiation in the image. Set Q(X) = Horn (X, fì), where fì is the complex of 
formal differential forms, and call the maps of the rational cohomology of Q(X)-
generalised Chern classes. It can be shown, in the case when X is the manifold of 
symmetric tensors of rang 2, that they coincide with Pontryagin classes (q < n). 
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A TRANSCENDENTAL METHOD 

IN ALGEBRAIC GEOMETRY 

by PHILLIP A. GRIFFITHS 

1. Introduction and an example from curves. 

It is well known that the basic objects of algebraic geometry, the smooth projective 
varieties, depend continuously on parameters as well as having the usual discrete 
invariants such as homotopy and homology groups. What I shall attempt here is 
to outline a procedure for measuring this continuous variation of structure. This 
method uses the periods of suitably defined rational differential forms to construct 
an intrinsic " continuous " invariant of arbitrary smooth projective varieties. The 
original aim in defining this " period matrix " of an algebraic variety was to give, at 
least in some cases, a complete invariant (i. e. " moduli ") of the algebraic structure, 
as turns out to happen for curves. It is too soon to evaluate the success of this pro­
gram, but a few interesting things have turned up, and there remain very many attrac­
tive unsolved problems. In presenting this talk, I shall not give references as these, 
together with a more detailed discussion of the material discussed, may be found in 
my survey paper which appeared in the March (1970) Bulletin of the American Mathe­
matical Society. 

Let me begin by discussing the example of hyperelliptic curves. Consider the 
family of affine curves with the equation 

y2 = (x - sj . . . (x - s2g+2). 

Denoting by Vs the complete curve corresponding to s = (sl9..., s2g + 2) and letting 

S={s: Y\(sj-sk)*0}, 

we see that { Vs }seS forms an algebraic family of non-singular curves of genus g. Fur­
thermore, for a suitable smooth completion S of S (e. g. S = p2g+2)> w e m a v enlarge our 
family to { Vs }ses by adding suitable degenerate curves V^ corresponding to the points 
seS — S. The notations { Vs }seS and { Vs }ses will be used throughout this talk to 
represent respectively an algebraic family of smooth, projective varieties Vs with smooth 
parameter space S, and a completion of this family where S is smooth and 
S — S = D1 u . . . u D, is a divisor with normal crossings. The varieties Vg (se Dj) 
may be thought of as singular specializations of the general Vs. 

On the curve Vs we consider a basis <pl9..., cpg for the holomorphic differentials 
and a canonical basis yl9..., y2g for the first homology H^V^ Z). Thus we might 
choose 

x " ~ d x / 1 ^ 

(pa = ( a = l , . . . , g ) 
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and, upon representing Vs as a 2-sheeted covering of the x-line, we have the picture 

t S 2 g + 1 \ S2g + 2 

? g + l 

The choice of the { <pa } is determined up to a substitution <pa -> ^ A^cpß9 det (A%) ̂  0, 
0 = 1 

2g 

and the { yp } are determined up to a transformation yp -> £ 7^yff where T = (T°) 

is a 2g x 2g integral matrix which preserves the intersection matrix Q = ( , * 

of the { yp }. Thus 4 e GL(g9 C) and T G Sp(g9 Z). 

We now form the period matrix 

Q(s) = 

which is determined up to the equivalence relation 

Q ~ AQT 

arising from the indeterminacy of the { <pa } and { yp }. Because of the obvious relations 

1 <P« A F« > °> 

the period matrix Q(s) satisfies the Riemann bilinear relations 

I 
JVs 

<paA(pß = 0 

' ÇlQÇl = 0 

Thus, if we let D be the set of all g x 2g matrices Q which satisfy the Riemann bilinear 
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relations and with the equivalence fì ~ AQ, (A e GL(g, C)), we see that the periods 
of the holomorphic differentials on Vs lead to the period mapping 

fì: S - D/Sp(g9Z)9 

where Sp(g, Z) acts on D by sending fì into fì'T-1. We recall that D is a complex 
manifold which is biholomorphic to the Siegel-upper-half-plane of all g x g matrices 
Z = X + y/— 17 with Z = 'Z, Y > 0. Furthermore, D is a homogeneous complex 
manifold with automorphism group Sp(g9 U) which acts in the same way as Sp(g9 Z) 
above. For g = 1, D is of course the usual upper half plane. 

Here are a few properties of the period mapping: 
(a) The point fì(s) depends only on the intrinsic structure of Vs. Furthermore, 

Q(s) = fì(s') if, and only if, the curves Vs and Vs. are isomorphic (Torelli's theorem). 
Thus the period matrix gives a complete invariant for non-singular curves. 

To discuss the next two properties, we need to digress a little about the monodromy 
group of a family of smooth algebraic varieties. In the case of our family of hyper-
elliptic curves, the canonical basis { yp } of # i ( K , Z) will change when we displace Vs 

around a closed path in the parameter space S. More precisely, fixing a base point 
s0eS and letting V = VSQ, the fundamental group n^S) acts on the homology H1(K, Z). 
As is always the case, this action preserves the intersection pairing on homology, 
and we have then the monodromy representation 

n^S) "^ Aut (H<Sy9 Z)) ^**Aut (D) 
I I I 

Sp(g, Z) 

The image T = p(n1(S)) will be called the monodromy group. 

(b) For g = 1, the monodromy group is of finite index in 51,(2, Z) ^ Sp(ì9 Z) 
(For an arbitrary family of elliptic curves, T is either a finite group or is of finite index 
in SL(29 Z)). This result should be interpreted as being a first suggestion that the 
monodromy group in an algebraic family of algebraic varieties has extremely remarkable 
properties. 

(c) A further indication of this is the " rigidity property ", due to Grothendieck in 
this case. This states that if we have two families of curves { Vs } s e S , { Vs' }seS with the 
same parameter space S9 with VSo = VJ0, and with the same monodromy representa­
tions p and p', then the period mappings fì and fì' are the same. In other words, 
the period mapping is determined by the monodromy representation plus its value 
at one point. 

(d) The next property may perhaps be thought of as relating algebraic geometry 
to group representations. We recall that the study of the discrete series representa­
tions of the automorphism group Sp(g9 U) is intimately related to the construction 
of certain T-invariant meromorphic functions on D. If i// is one such automorphic 
function, then the composite 

\l/oQ 

turns oui to be a rational function on S. Roughly speaking, we may say that the study 
of L2(Sp(g, U)) leads to functions which uniformize the period mapping (" automor­
phic function property "). 
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The proofs of properties (b), (c), (d) above may be based on studying asymptotically 
the period matrix Q(s) as s tends to a point se S — S. More precisely, a neighborhood 
in S of a point se S — S will be a punctured poly cylinder 

P* ^ À* x . . . x A* x A x . . . x A 
k m-k 

where A is a unit disc in C, A* = A — { 0 } is the punctured disc, and dim S = m. 
By localizing the period mapping at infinity, we will have a holomorphic mapping 

fì: P* -• D/T 

where we are interested in the behavior of fì(s) as \\s\\ -> 0 (s = (sl9..., sm)eP*). 
This asymptotic analysis of the period mapping is a purely function-theoretic problem 
which, in the end, should provide the best general method for proving the various 
global properties of fì including the analogues of (b)-(d) above. 

2. Construction and elementary properties of the period mapping. 

We first observe that giving a g x 2g matrix fì with the condition rank (fì) = g 
and the equivalence relation fì ~ AQ (A e GL(g, C)) is the same as giving a point 
fì e G(g, 2g)9 the Grassmann variety of g-planes in C2g. In fact, the point fì is the point 
in C2g spanned by the row vectors of the matrix fì. Thus, giving the period matrix fì(s) 
above is the same as giving a g-dimensional subspace of H\V, C), this subspace being 
determined up to the monodromy group T. It is now easy to see that this g-dimen-
sional subspace is simply the g-plane 

spanned by the holomorphic 1-forms, followed by the identification 

H^V^O^H^C) 

which is determined up to T. Thus, giving the period matrix fì(s) is equivalent to 
giving the g-dimensional subspace Hlt0(Va, C) of H\V, C), and both of these are deter­
mined up to the monodromy group. 

In general, let { Vs }seS be a family of smooth, projective algebraic varieties, and 
introduce the notations, E = Hn(VSo, €), EK = Hn(VSo, U), Ez = Hn(VSo, Z). Using 
standard Kahler manifold theory we find that the cup product on H*(V, C) together 
with the Kahler class of the projective embedding give rise to a non-degenerate bilinear 
form 

Q: E®E -+ C 

which is rational on Ez, is invariant under the monodromy group T, and satisfies 
Q(e, e') = ( — l)"ß(e', e). We will denote by G, GR , Gz respectively the automorphism 
groups of E, Eu , E z which preserve the bilinear form Q. Gc is a complex semi-simple 
algebraic group, Gm is a real form of G c , and Gz is an arithmetic subgroup of GK 

such that the monodromy group T c= G z . 
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From Hodge theory we recall the Hodge decomposition 

Hn(Vs9 C) = 0 Hp>q(Vs) (H™(VS) = tf^W), 
p+q=n 

and using this we define the Hodge filtration F°(VS) <= . . . c Fn(Vs) = Hn(VS9 C) by 
the formula 

Fp(Vs) = Hn'°(Vs) + . . . + H"-p>p(Vs). 

Using the Kodaira-Spencer continuity theorem, it follows that FP(VS) is a continuously 
varying subspace of Hn(Vs, C). Consequently, if we identify all Hn(Vs, C) with 
E = Hn(VS0, C) and let F(E) be the flag manifold of all nitrations F° a ... œ Fn = E, 
dim F p = dim FP(VS)9 then we have a continuous mapping 

fì: S -» F(E)/T 

which is the first form of the general period mapping. It will be convenient to write 
fì(s) = (fì°(s),. . ., fì"(s)) where the fìp(s) are subspaces of F(E) taken modulo T. Using 
the structure equations of the Kodaira-Spencer-Kuranishi theory of deformation 
of complex structure, it follows that Q(s) varies holomorphically with s e S. 

The period mapping fì will satisfy three bilinear relations, two of which are classical 
and generalize the Riemann-bilinear relations, and one which is non-classical but 
which is crucial for understanding the general period mapping. Recalling the bilinear 
form Q mentioned above, these bilinear relations are 

(I) Q(Qp
9Q-p-1) = 0\ 

(II) ( 7 ^ ) W , W) > 01 Hod^-R^ann bilinear relations 

(III) Q(dOP, QT~P~2) = 0 infinitesimal bilinear relation. 

The first relation is self-explanatory; the second means that, for any choice of basis { ea} 
for fìp, the Hermitian matrix 

is non-singular and has a fixed signature; and the third bilinear relation means that 

<k Q[ — {W(s)}9 n»-p-2(s)j=o 

where (s1,..., s„) are local coordinates on S. 

Suppose now that we let D be the algebraic variety of all points (F° , . . . , F") e F(E) 
which satisfy (I), and let D be the open set in D of all points which satisfy (II). Then 
D is acted on transitively by the group G c , and D turns out to be the GR orbit of a sui­
table point in D. Thus we have a diagram 

D œ D 
|| || (H = GmnB) 
GW# <= Gc/B 

where B is a parabolic subgroup of Gc and if is a compact subgroup of GK . In the 
case of elliptic curves, D c D is the upper-half-plane z = x + iy9 y > 0 embedded 
in Pj = C u { oo }. The group Gc is the group of linear fractional transformations 
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z -> az + b/(cz + d), Gu is the subgroup of real transformations, and D is the GK 

orbit of yf — 1. Since r c Gz , the monodroriiy group is a discrete subgroup of Gu 

and acts properly discontinuously on D. Consequently, D/T is an analytic space 
and the period mapping is a holomorphic mapping 

fì: S -• D/T. 

In the case of curves, D is biholomorphic to a bounded domain in Cg(g+1)/2. How­
ever, for n > 1, D is no longer a bounded domain and consequently the holomorphic 
mappings into D will not have the strong function-theoretic properties (e. g. normal 
families) which are present when D is a bounded domain. However, if we consider 
only the mappings into D which satisfy the infinitésimal bilinear relation (III), then 
it is increasingly becoming clearer that these have the qualitative properties of mappings 
into a bounded domain. Thus, e. g., a holomorphic mapping 

O: A* -• D 

of the punctured disc 0 < 11 \ < 1 in D which satisfies (III) will extend continuously 
across t = 0. A much deeper recent result is due to Wilfried Schmid, who has proved 
that an arbitrary holomorphic mapping 

O: A* -• D/Gz 

which satisfies (III) is, when \t\ -> 0, strongly asymptotic to an orbit 

exp 
<&*">• 

where N is a very special nilpotent transformation of £ z and fì0 is a point in D. From 
this it follows that the asymptotic analysis of these periods of algebraic integrals is 
reduced to a problem in Lie groups. 

3. Deeper properties and open questions concerning the period mapping. 

We want to discuss the analogues of the properties (a)-(d) for the periods of the 
elliptic curve in the general case of a period mapping 

fì: S -+ D/T 

arising from an algebraic family { Vs }seS of algebraic varieties. 

(a) Of course the point fì(s) e D/T depends only on the intrinsic structure of Vs. 
However, except for curves there is essentially nothing general known about the global 
equivalence relation determined by fì. There is some heuristic evidence that, in 
general, the equivalence relation might be closely related to birational equivalence; 
i. e. the " Torelli property '' should hold in general. Along these lines, it is perhaps 
an easier problem to determine the equivalence relation infinitesimally; i. e. to find 
the kernel of the differential dfì. The best example known here seems to be when the 
Vs are smooth hypersurfaces in projective space. Then, except for the obvious example 
of cubic surfaces, the differential dQ is injective on the biregular moduli space of the Vs 

(" local Torelli property "). 

The dual problem to finding the equivalence relation of fì is to determine which 
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points of D come from algebraic varieties. When D is the Siegel upper-half-plane, 
even though not every point fì e D is the period matrix of a curve, it is obviously the 
case that every fì is the period matrix of an abelian variety and therefore may be said 
to come from algebraic geometry. However, this is essentially the only case when 
all points are a period matrix of some algebraic variety, and to my knowledge there is 
not yet even a plausible candidate for the set of points in D which arise from algebraic 
geometry. 

(b) Concerning the " size " of the monodromy group T, we have Deligne's theorem 
that T is semi-simple and the result that the image fì(S') has finite volume in D/T. 
From this it follows that if T' is any larger discrete subgroup of GR which leaves invariant 
the inverse image n~1(0(S)) for n : D ~+ D/T the projection, then T is of finite index 
in T'. These facts, plus a few examples, indicate that it might be the case that there 
is a semi-simple subgroup GQ of GQ such that the monodromy group is commensu­
rable with Gz = Gzn GQ (recall that this means that T n Gz is of finite index in both T 
and G2). The available evidence certainly indicates that T should be large. 

(c) Matters are somewhat better regarding the " rigidity property ", which states 
that the period mapping fì : S -* D/T is determined by its value at one point together 
with the induced map fì* : 7i1(S) -• T. This property was proved by myself for an 
arbitrary holomorphic mapping fì satisfying the infinitesimal bilinear relation (III) 
but making the strong assumption that S is complete. Then Deligne proved the 
result in case fì arises from a family { Vs } s e S of algebraic varieties. The result for a 
general holomorphic mapping fì satisfying (III) follows from Schmid's nilpotent 
orbit theorem mentioned above. 

(d) Given a period mapping fì: S -> D/T, it is expected that the equivalence rela­
tion given by fì is at least an algebraic equivalence relation; i. e. there should exist a 
sub-field ^ n of the field 0t of rational functions on S such that fì(s) = fì(s') if, and 
only if, \//(s) = ij/(sf) for all \j/ e^n. Furthermore, by analogy with the classical case 
n = 1, it is to be hoped that $£n arises by composing the mapping fì with something 
on D/T. More precisely, we should like it to be the case that the discrete series repre­
sentations in I?(GM) lead to the construction of some " analytic objects " on D/T which, 
upon composition with fì, yield SHa. This is a problem of fundamental importance, 
which may well be related to the question mentioned above of saying which points 
of D come from algebraic geometry, and about which nothing really is known. What 
is known is that the discrete series part of L2(GR) seems to lead to " automorphic coho­
mology " on D/T, but it is a mystery as to what this might have to do with algebraic 
geometry. 

These problems mentioned here are discussed in more details in the survey paper 
referred to at the beginning of this talk. This survey paper also contains some conjec­
tures not discussed above as well as the references for all of the material presented. 

Institute for Advanced Study 
Department of Mathematics, 

Princeton, N. J. 08540 
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LINEAR DIFFERENTIAL OPERATORS 

by LARS HÖRMANDER 

At the Edinburgh congress 12 years ago Gârding [1] gave a general survey of the 
theory of linear partial differential operators. I shall take his lecture as my starting 
point and try to give some idea of the later development. Naturally it is necessary 
to concentrate on a few topics and ignore others which are as interesting. I shall 
not try to list the omissions but wish to specify the limitation to questions concerning 
the existence and structure of solutions of differential equations with constant, C00 

or analytic coefficients. 

1. Operators with constant coefficients. 

1.1. Interaction with complex analysis. 

Let P(D) where P is a polynomial and D = — id/dx be a partial differential operator 
in an open convex set X e IR", and let u e Cco(X), P(D)u = 0. Already Malgrange [1] 
proved that u can then be approximated by exponential solutions of the same equa­
tion. A significant improvement of this result was made by Ehrenpreis [1] who found 
that u is actually a superposition of exponential solutions. If we assume for simpli­
city that P is irreducible, this means that 

u(x) = \é<x^dii(Q 

where dp, is a measure carried by { £ G C", P(Q = 0 } and 

je-<x^>(l + \C\)N\dp(C)\<œ 

for all N and xeX. A slightly weaker result is proved as follows. For a fixed convex 
compact set K <= X we consider the form 

L: S'(K)BV -> <u, v}. 

For any v we have if H is the supporting function of K 

| L(v) | = C sup | 0(0 | e-"( Im0(i + | ç |)-v. 

That P(D)u = 0 means that L(P(- D)v) = 0 if ve &'(K), or since P is irreducible that 
L(v) = 0 if v e i'(K) and 0 = 0 on N = { Ç e C", P(- Ç) = 0 }. Thus L(v) depends 
only on the restriction of v to N. Now the global theory of analytic functions (theo­
rem B of Cartan) gives that if / is an analytic function on N (that is, locally the res­
triction of a function analytic in a neighborhood) then / is the restriction of an entire 
analytic function F. Ehrenpreis proved that one can give bounds for a suitable exten-
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sion F : for every v > 0 one can find C and V > 0 so that for a suitable choice of F 

sup | F(Q | e~H^\l + | C irv ' = C sup | /(£) | e~H^\l + | £ | ) - \ 

Taking / to be the restriction off; to N, where v e $'(K), we obtain F = w where w e <T(K) 
also, and since L(v) = L(w) we obtain 

| Up) | = C sup | 8(0 I e"^Im0(l + | f |)--. 

Hence there is a measure p. supported by JV such that 
J ^ ( I m O ( 1 + K | ) v M / i ( 0 | < a ) 5 

L(i;)=Ji5(0^(0, veê'(K). 

This implies that on K 
u(x) = le-l<x^dp(Q. 

We have given this argument in some detail to show that the decisive point is the 
application of a variant, involving bounds, of theorem B of Cartan. We shall refer 
to this as theorem B with bounds. Ehrenpreis [1, 2], Malgrange [2] and Palamodov [1] 
have pushed this technique very far and given existence theorems for general over-
determined systems with constant coefficients 

(1-1.1) tPju>y»k=fj> J=1.--;J 
1 

where uk, fce <2)'(X) and X is a convex open set in IR". They have also proved that 
solutions of the homogeneous system can be represented by integrals over exponential 
polynomial solutions. Obviously solutions of (1.1.1) cannot exist unless we have 
the compatibility conditions 

(1.1.2) ÌQj(D)Pjk(D) = 0, k = 1,..., K => ÌQj(D)fj = 0; 
i i 

the existence theorems state that these conditions are sufficient. (It is clear that they 
are finitely generated.) The results obtained in this way sum up a very substantial 
part of our knowledge of differential operators with constant coefficients. 

The proof of theorem B with bounds follows the lines of the Oka-Cartan theory 
starting from existence theorems for the differential equation 

(1.1.3) du=f 

where w is a (0, p) form in C" and / a (0, p + 1) form. The compatibility conditions 
are here df = 0. The proof of the sufficiency of this condition with methods from the 
theory of partial differential equations was first achieved by Morrey [1] and Kohn [1] 
(see also Kohn-Nirenberg [1]) in relatively compact strongly pseudo-convex domains 
in C" (or Stein manifolds). Actually one solves a certain boundary problem for the 
Laplacean on forms, called the d Neuman problem. A variant of this approach was 
used by Hörmander [2, 3] to prove that if 9 is plurisubharmonic in C" and fe L2

0C, 
then a solution of (1.1.3) exists when df = 0, with the bound 

(1.1.4) 2j| u \2e~*(\ + I z \2Y2dX = J| / \2e-*dX, 



LINEAR DIFFERENTIAL OPERATORS 123 

where dX is the Lebesgue measure. Starting from this result and local results on ana­
lytic functions one can give a proof of theorem B with bounds (see Hörmander [2, sec­
tion 7.6]). 

1.2. Convexity with respect to an operator. 

The restriction to convex open sets X in section 1.1 cannot be relaxed if one wants 
to have an existence theory for arbitrary operators. However, for a fixed operator P(D) 
one can consider more general sets X, and since the study of the appropriate conditions 
on X is a source of interesting problems we shall discuss them briefly assuming that 
P is scalar. 

Malgrange [1] proved that a solution of the equation P(D)u = f exists for all / e Cœ(X) 
(or L2

0C(X), . . . ) if and only if for every compact set K a X there is another compact 
set K'cz X such that 

(1.2.1) ue£'(X), supp P(- D)ua K => supp u c K'. 

To have solutions for arbitrary / G ®'(X) one must have in addition (see Hörmander [1]) 

(1.2.2) ueê'(X), sing supp P(- D)u a K =• sing supp u <= K'. 

Here supp u (sing supp u) is the smallest closed subset of X such that u vanishes (is 
C00) in the complement with respect to X. These results are essentially functional 
analytic but the question of finding the geometric meaning of (1.2.1), (1.2.2) which 
we shall now discuss is not. 

Conditions (1.2.1) resp. (1.2.2) mean that if u is a distribution in a fixed neigh­
borhood of the boundary in X satisfying the equation P(D)u = 0 resp. P(D)u e C°° 
and if u = 0 resp. u e C°° in an unspecified neighborhood of dX, then this last property 
is valid in a fixed neighborhood of the boundary. Such results are called theorems 
on unique continuation (of singularities). For operators with constant (or more 
generally analytic) coefficients the basic uniqueness theorem is the classical one of 
Holmgren giving uniqueness across a non-characteristic surface, that is, a surface 
with p(N) ^ 0 if N is the normal and p the principal part of P, the homogeneous part 
of highest degree. That this breaks down for certain characteristic surfaces can be 
shown by solving a Goursat problem. Combining these facts with essentially geo­
metric arguments one concludes (Malgrange [3], Hörmander [1]) if dX e C2 and P is 
of real principal type that (1.2.1) is valid if at characteristic points xedX the normal 
curvature in the direction of the corresponding bicharacteristic is positive while (1.2.1) 
is false if it may become negative. That P is of real principal type means that p is 
real and that p'(0 = dp/dt, ^ 0 for £ G Un\0. Lines with the direction p'(Ç) are then 
called ^characteristics. More precise results along the same lines have also been 
given by Treves [2, section 6.7] and Zachmanoglou [1, 2]. (After the congress the author 
has proved using the results on propagation of singularities mentioned below that 
(1.2.1) is valid if dX e C1, P is of real principal type, and no bicharacteristic emanating 
from a characteristic point xedX contains an interval I BX with dl <= X and J in the clo­
sure of X.) 

Results of Zerner [1], Hörmander [1] and Grusin [1] show that for the same class 
of operators the condition (1.2.2) is essentially equivalent to convexity of X in the 
direction p'(Ç) for all £ G IR"\0 with p(Q = 0. We shall now describe a partial gene-
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ralization of these theorems to general operators (see Hörmander [10]). To do so 
we first introduce the set L(P) of all limits 

(1.2.3) fi© = lim CfP« + fi) 

where ct e C and fi -> oo in IR". One should think of g as a localization of P at infi­
nity. We denote by BQ the smallest subspace of Un along which Q acts and call an 
affine subspace parallel to some BQ with dim BQ> 0 a. bicharacteristic subspace. 
For operators of real principal type this agrees with the earlier definition, and the 
bicharacteristic subspaces carry the singularities as one would like them to do. More 
precisely, for any Q e L(P) one can find u e @'(Un) with P(D)u = 0 and sing supp u = BQ, 
provided that dim BQ > 0. Furthermore, for any closed cone F containing a half 
space of every bicharacteristic subspace and the origin we can construct a fundamental 
solution (that is, solution of P(D)E = S, the Dirac measure at 0) which is as smooth 
as we like outside F. Gabrielov [1] has proved that the closed union of all BQ is semi-
algebraic of codimension ^ 1 so this statement is never empty. As a corollary one 
concludes that (1.2.2) is always valid if X n B is convex for all bicharacteristic sub-
spaces, a condition which is also necessary when n = 2. However, when n > 2 the 
results known are far from complete. 

When P is of real principal type Andersson [1] has recently obtained analogous 
results with singular support replaced by analytic support, defined as the complement 
of the largest domain of real analyticity. In particular, these imply that (1.2.1) is 
then a consequence of (1.2.2). (See also the lecture by M. Sato in these proceedings 
as well as section 2.4 below.) Also for general operators one should expect results 
similar to those described above for analytic supports or " Gevrey supports ". It is 
clear that the localizations (1.2.3) must then be modified by allowing fi to tend to oo 
in an appropriate complex neighborhood of IR". 

1.3. Supports of fundamental solutions. 

To continue the work described in section 1.2 one seems to need additional infor­
mation on the supports and singular supports of fundamental solutions. More 
precisely, given a closed set F c Un we would like to know which operators P(D) 
have a fundamental solution with support or singular support in F. The question 
concerning singular supports should be closely related to the question on supports 
for all localizations so we shall only discuss the latter. 

When F is a closed convex cone which is proper, that is, contains no straight line, 
the existence of a fundamental solution with support in F means that P is hyperbolic 
with respect to the proper supporting planes of F, and algebraic conditions for this 
are known (see e. g. Hörmander [1]). If F is a subset of such a cone we have the problem 
of lacunas for hyperbolic differential operators where in addition to the classical work 
of Petrowsky we now have extensive recent work of Atiyah, Bott and Gärding [1]. 
Another case which has been completely solved is that where F = { x ; < x , i V > ^ 0 } 
is a half space. A classical sufficient condition for the existence of a fundamental 
solution with support in F is the Petrowsky condition that there is a constant C such 
that the zeros of P(Ç + TJV) = 0 for Ç e IR" lie in the half plane Im T > - C. The 
necessary and sufficient condition turns out to be that by analytic continuation from Ç 
to a point as distance ^ C from £ one can bring T into this half plane (see Hörmander [9]). 
For general convex cones F we also have some sufficient conditions (see Gindikin [1]). 
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Further results can be obtained using the methods of Hörmander [9] but the general 
situation is far from clear yet. 

2. Operators with C°° coefficients. 

2.1. Pseudo-differential operators. 

The theory of (singular) integral operators has always been closely connected with 
the theory of differential operators. A complete merger with the theory of diffe­
rential operators has been achieved by the notion of pseudo-differential operator 
(Kohn-Nirenberg [2]). This development has been greatly stimulated by the solution 
of the index problem for elliptic operators by Atiyah and Singer [1] where the restric­
tion to differential operators is awkward from the topological point of view. Actually 
this work was originally based on the earlier techniques of singular integral operators 
(see e. g. Calderón and Zygmund [1], Calderón [1]). 

If X is an open set in IR", an operator A: Cg^X) -> C°°(X) is called pseudo-diffe­
rential of degree m if A can be written in the form 

(2.1.1) Au(x) = (2n)-"iei<x^a(x, Ç)Û(Ç)dL u e C$(X), 

where aeCco(X x IR") and the functions (x, £) -> t~ma(x, tÇ) belong to a bounded 
subset of C°°(X x ((R"\0)) when t -> oo (Actually it is preferable to use less restrictive 
hypotheses on a as in Hörmander [6]). One calls a the symbol of A. Often it is possible 
to write a = a0 + a1 where a°(x, 0 is homogeneous with respect to E, of degree m 
and a1 is of degree m — 1. Then one calls a0 a principal symbol. If A is a polynomial 
in £ it is clear that A is the differential operator a(x9 D) obtained by replacing Ç by 
D — — id/ox, put to the right of the coefficients. We shall therefore use the nota­
tion a(x9 D) in general to suggest the analogy with differential operators. In fact, 
most rules of calculus valid for differential operators remain true for pseudo-diffe­
rential operators with very small modifications. It is this ease of manipulation which 
makes pseudo-differential operators so useful and not their generality ; the algebra 
of pseudo-differential operators is essentially generated by differential operators and 
say the Newtonian potential operator. In particular, the calculus leads to the defi­
nition of pseudo-differential operators on manifolds X and shows that the principal 
symbol is invariantly defined on the cotangent bundle. Let us also note that pseudo-
differential operators can be extended to continuous operators ê'(X) -> 3>'(X) and 
in fact <3'(X) -»• @'(X) if one is somewhat careful with questions concerning supports. 
Finally,' 

sing supp Au c sing supp w, ue @'(X)9 

which is called the pseudo-local property. 

A (pseudo-) differential operator is called elliptic if the principal symbol never 
vanishes in T*(X)\0. To every elliptic operator A of order m one can construct 
a parametrix B of order — m, that is, an operator such that AB and BA differ from 
the identity only by an operator with a C00 kernel. Starting from this fact it is easy 
to reduce the study of boundary problems for elliptic differential operators to the 
study of (systems) of pseudo-differential operators inside the boundary (Calderón [2], 
Hörmander [5], Seeley [1]). Consider for example the Laplace equation Aw = 0 
in X e IR" with a differential boundary condition Bu = f on the smooth boundary 
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dX. If UQ is the restriction of u to dX9 then u is the Poisson integral of u0 and the 
boundary condition Bu = / becomes a pseudo-differential equation 

Bu0=f 

whose principal symbol is easy to calculate. In this way the study of elliptic boundary 
problems (Agmon-Douglis-Nirenberg [1], see also Hörmander [1, chap. X]) is reduced 
to the study of an elliptic system of pseudo-differential operators on the compact 
manifold dX. The same reduction of more general boundary problems for elliptic 
differential equations leads to the study of non-elliptic systems of pseudo-differential 
operators (see also section 2.3). Another important conclusion is that mixed boundary 
problems for elliptic differential equations, such as the boundary problem AM = 0, 
in X, u = / and du/dn = g on complementary parts of dX9 are essentially equivalent 
to boundary problems for pseudo-differential systems on dX, the new boundary being 
the manifold where the shift of boundary condition occurs. A thorough study of 
such questions has been given by Visik and Eskin [1-5] and Boutet de Monvel [1, 2]. 

2.2. Hypoelliptic operators. 

If a pseudo-differential operator A has a (left) parametrix (see section 2.1), if follows 
that A is hypoelliptic, that is, Au e C00 implies that ueC™. In fact, u = BAu — (BA — I)u 
where both terms are in C00. Using sufficiently large classes of pseudo-differential 
operators one can prove the hypoellipticity of wide classes of differential operators 
in this way. However, more subtle arguments are required for such operators as 
the Kolmogorov operator 

(2.2.1) Au = ô2u/ôx2 + xdu/dy - du/dt 

at least in the present state of the theory of pseudo-differential operators. For (2.2.1) 
it is easy to construct a fundamental solution explicitly but this is no longer the case 
if one modifies A slightly. Starting from the hypoellipticity of (2.2.1), due to Kolmo­
gorov himself, a rather complete study of hypoellipticity for second order differential 
equations with real coefficients was made by Hörmander [7]. A remarkable simpli­
fication and extension of this work has been given recently by Radkevic [1, 2]. He 
proved in [1] that A is hypoelliptic if 

A = £pjPj + iP0 + Q 
i 

where P0,..., Pr are pseudo-differential operators of order 2m — 1, m,..., m with 
real principal symbols p0,.. ., pr ; Q is of order 2m — 2 and the functions 

Pj> {Pi>Pj}> (Pi> {Pj.Pfc}}»--- ; Uh k>--- = 0 , l , . . . , r ; 

have no common zero in X x (IR"\0). Here 

{ p, q } = lidp/dtjdq/dxj - ôp/dXjdq/dÇj) 

is the Poisson bracket of functions in X x (IR"\0) (or rather T*(X)\0), and repeated 
Poisson brackets of all orders should be considered. We recall that { p, q } is the 
derivative of q along the Hamiltonian vector field defined by p, whose integral curves 
are the bicharacteristic strips given by the Hamilton-Jacobi equations 

dx/dt = dp/dÇ9 dÇ/dt = - dp/dx. 
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{p, q } is the principal symbol of i[P, Q] = i(PQ — QP) if p, q are principal symbols 
of P, Q. When P0 can be omitted in the condition above the same result was also 
obtained by J. J. Kohn in 1968 (unpublished). Even somewhat more general results 
have been announced by Radkevic (See also the lectures by Bony and Olejnik in these 
proceedings as well as a forthcoming book by Olejnik and Radkevic). 

Closely related theorems on hypoellipticity have been obtained by Egorov [2, 3] 
and by Treves [1]. Since they are discussed in their lectures in these proceedings 
we just remark that their conditions involve the repeated Poisson brackets of the 
principal symbol a and its complex conjugate u at the zeros of a. Clearly more work 
should be done to unify all these new results. 

In this connection we should also refer to the extensive work on boundary problems 
for certain degenerating elliptic equations related to (2.2.1) (Kohn-Nirenberg [3], 
Olejnik [1], Visik and Grusin [1, 2]). 

2.3. Local solvability of pseudo-differential equations. 

The close analogy between pseudo-differential and differential operators allows 
one to extend the existence and non-existence theorems originally given for differential 
operators by Hans Lewy and the author (see Hörmander [1, chap. VI, VIII]). The 
result is (Hörmander [5]): 

a) If for some (x, Ç)eX x (IR"\0) the principal symbol a of A vanishes but Im {a, a~) <0, 
then the equation Au — f has no solution in any neighborhood of x if / e C00 avoids 
a certain set of the first category. 

b) If Im { a, a} ^ Re ba for some smooth homogeneous b, it follows that A is sol­
vable, that is, there exist at least local solutions of the equation Au = f. 

There is of course a wide gap between the conditions a) and b) above. This has 
now been filled to a large extent by work of Nirenberg-Trèves [1, 2] and of Egorov [2, 3]. 
Since reports on these results are given by F. Treves and Yu. V. Egorov in these pro­
ceedings, we shall not give any details here. Instead we shall give an application of 
the results above to boundary problems. As an example we take the boundary pro­
blem 

AM = 0 in X, du/dv = f on dX 

where v is a non-vanishing vector field on dX such that the equation < v, N > = 0 
defines a non-singular submanifold Y of dX, if N is the interior normal of dX. If 
on Y the derivative of < v, N > in the direction v (which is tangential to dX on Y) is 
negative, we obtain (local) solvability but no regularity theorem whereas there is a 
strong non-existence theorem but regularity of solutions (when they exist) in the oppo­
site case (cf, Borelli [1], Hörmander [5]). This strange result was explained by Egorov 
and Kondrat'ev [1] who found that in the two cases one should respectively introduce 
an additional boundary condition on Y or allow a discontinuity on Y. The problem 
then becomes well posed and solutions are smooth apart from a smooth jump. Using 
the reduction described in section 2.1 one can view this as a result on a certain pseudo-
differential operator which is elliptic outside a submanifold Y of codimension one. 
A general theorem of this type has been proved by Eskin (to appear in Mat. Sbornik). 
More generally still J. Sjöstrand has shown (to appear in C. R. Acad. Sci. Paris) that if 
{ a, ä } 7e 0 and da/dÇ is proportional to a real vector when a — 0, then it is possible 
to modify the requirements on M in a similar way on an immersed submanifold so that 
an essentially correctly posed problem is obtained. 
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2.4. Propagation of singularities. 

For differential operators with variable coefficients or more generally pseudo-
differential operators we shall now discuss an analogue of the result of Grusin [1] 
mentioned in section 1.2. The first point is to refine the notion of singular support. 

If ue@'(X) we have by definition 

sing supp M = n {x; <p(x) = 0 } 

the intersection being taken over all <peC°(X) with (pueC°°(X). Replacing the 
function (p by a compactly supported pseudo-differential operator A, with principal 
symbol denoted by a, we introduce 

(2.4.1) WF(u)= f i { (* ,OeT*(X)\0 ,a(x ,0 = 0} . 
AueC™ 

It is clear that this is a closed cone in T*(X)\0 with projection in X contained in 
sing supp M, and the regularity of solutions of elliptic equations gives easily that the 
projection is precisely equal to sing supp u. It may be useful to think of WF(u) as 
the set of all wave fronts contributing to the singularities of u. A similar concept has 
been given by M. Sato in the case of hyperfunctions (see his lecture in these proceedings). 
Indeed, he identifies a hyperfunction modulo analytic functions with a section of a 
certain sheaf on the sphere bundle of T*(X)9 and the support of this section has proper­
ties analogous to WF(u). 

If M G @'(X) and PM G C00, where P is a pseudo-differential operator of order m with 
principal symbol p9 it follows from the definition that 

WF(u)cz{(x9O;p(x9Ç) = 0}. 

When p is real and dp/dÇ ̂  0 when p = 0 we claim that WF(u) is in fact the union of 
bicharacteristic strips for p which of course contains the result of Grusin [1] discussed 
in section 1.2. In sketching the proof we may assume that X aW for it suffices 
to make a proof locally. (This would not have been the case if we had not passed to 
WF(u).) 

Assume that (x°9 £°) e WF(u). This means that for some pseudo-differential ope­
rator A with Au e C00 the principal symbol a does not vanish at (x°9 £°). We shall 
exhibit another operator with the same property relative to all points on the bicha­
racteristic strip through (x°9 £

0). To do so we shall construct a pseudo-differential 
operator B such that [B9 P] = BP — PB is of order — oo and Bu e C00 near the plane 
xn = x j , assuming that dp/d£n ^ 0 at (x°, £°). The first condition requires first 
of all that if b is the principal symbol of B then {b, p} =0, that is, b is constant on the 
bicharacteristic strips of p. Clearly we can choose b in this way so that & is 1 at (x°, £°) 
but vanishes outside a small conical neighborhood of the bicharacteristic strip through 
(x°, £°). The support of b will then lie in the set where a # 0 if x„ is close to x j . The 
lower order terms of B can then be chosen successively with the same support so that 
[B, P] is of order — oo. Thus 

PBu = BPu + [P.BiueC™. 

Now it is easy to find an elliptic operator R such that the symbol of RP differs from 
that of a hyperbolic pseudo-differential operator Q = Dn — T1(X, D') + z0(x9 D') 
only by a term of order — oo in the support of all terms in the symbol of B. Here 
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Ti is a homogeneous real valued function of degree 1 and T0 is of degree 0, 
D'= (Dl9..., ö„_i). Hence QBue C00. The standard construction of a parametrix 
finally shows that there is a pseudo-differential operator C such that B — CA is of 
order — oo near the plane xn = x°. Thus Bu — CAu + (B — CA)ueC°° for x„ 
near x°, so the simplest results on hyperbolic operators suffice to show that Bu e C°°. 
Since the principal symbol of B is 1 on the bicharacteristic strip through (x°, £°) it 
cannot meet WF(u)9 which proves the assertion. 

We remark that the preceding result improves the existence theorems given in 
Hörmander [1, section 8.7] for operators of real principal type. 

2.5. Fourier integral operators. 

The calculus of pseudo-differential operators has to be extended if one wants to 
construct a (left) parametrix for an operator which is not hypoelliptic. The form 
which such an extension should take is suggested by the approximate solutions given 
by the asymptotic expansions of geometrical optics. These were adapted by Lax [1] 
to determine the location of the singularities of the solutions of the Cauchy problem 
for a hyperbolic operator of arbitrary order. His local result was globalized by 
Ludwig [1], and his constructions were developed and applied by Hörmander [8] 
to give improved and in a sense optimal error estimates in the asymptotic formulas 
for the spectral function of an elliptic operator. The best earlier results due to Agmon 
and Kannai [1], Hörmander [12] were based, roughly speaking, on the approximations 
to fundamental solutions given by the techniques of pseudo-differential operators. 
Closely related ideas have been developed by some Russian mathematicians (Mas-
lov [1, 2], Eskin [1], Egorov [1]) and they play an essential role in the work of Egorov 
and Nirenberg-Trèves mentioned in section 2.3. The work of Maslov seems to be 
quite farreaching but is very inacessible and perhaps not quite rigorous so we must 
content ourselves with a reference to the explanations given by him at this congress. 
A systematic development of an enlarged operator calculus has also been undertaken 
recently by Hörmander [11], and in joint work with J. J. Duistermaat, still unpublished, 
it has been applied to give a global construction of a parametrix for arbitrary operators 
of real principal type, and of solutions with a given bicharacteristic strip as wave 
front set. This work also shows that the condition dp/dÇ jt= 0 can be dropped in sec­
tion 2.4. 

2.6. Over-determined systems. 

In section 1.1 we mentioned how existence theorems for the system du = f of 
Cauchy-Riemann equations in the theory of functions of several complex variables' 
are obtained from the solution of the d Neuman problem. The same technique 
can be applied to various related equations (see Sweeney [1], McKichan [1]) but the 
hopes of obtaining a general theory of overdetermined systems with variable coeffi­
cients from this approach have not been fulfilled so far. For a generic overdetermined 
system Spencer [1] introduced a sequence of first order operators, now called the 
Spencer sequence, which is formally exact. The desired local existence theorems for the 
original equation are equivalent to exactness of the Spencer sequence on the sheaf of 
germs of C°° functions. The algebraic machinery for the study of the Spencer sequence 
has been highly polished (see the survey article by Spencer [2] and the references there) 
but analytic results on exactness of the desired generality have not yet been obtained 
(For very recent progress we refer to the lectures by Guillemin and Kuranishi in these 

I - 5 
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proceedings). However, an interesting new line of investigation is suggested by the 
recent progress by Henkin [1, 2], Kerzman [1], Grauert and Lieb [1], Lieb [1], 0vrelid [1], 
Ramierez de Arellano [1] concerning the construction of kernels which reproduce 
solutions of du = 0 or solve the equation du = f. If these constructions could be 
adapted to more general systems with constant coefficients it seems reasonable to 
expect that the techniques of Fourier integral operators mentioned in section 2.5 
would allow the study of suitable classes of systems with variable coefficients. 

3. Equations with analytic coefficients. 

3.1. Hyperfunctions. 

In the study of differential operators with C00 coefficients it is natural to work with 
Schwartz distributions which form the largest class on which all such operators are 
defined. However, when the coefficients are real analytic it is possible to work within 
the larger frame of Sato hyperfunctions (Sato [1], Martineau [1]). During the past 
few years much work has been done along such lines which has given many results 
parallel to those for Schwartz distributions. We must content ourselves here with 
referring to the survey by Schapira [1] and the lecture by M. Sato in these proceedings. 

3.2. Uniformization. 

A study of the Cauchy problem with data on a hypersurface which is partly charac­
teristic was initiated by Leray [1]. He found that the solution ramifies around the 
variety generated by the bicharacteristics passing through the characteristic points 
of the initial surface. A detailed analysis was given by Gärding, Kotake and Leray [1] 
in the case of linear systems. Later Choquet-Burhat [1] has simplified the proofs 
and extended the general result to non-linear equations. 
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SCATTERING THEORY 

AND PERTURBATION OF CONTINUOUS SPECTRA 

by Tosio K A T O 

At this Congress in 1950 the late Professor F. Rellich [49] gave a lecture entitled 
" Störungstheorie der Spektralzerlegung ". It was a survey of results known at that 
time regarding the perturbation of the spectral properties of linear operators. The 
emphasis was laid on the behavior of isolated eigenvalues and the associated eigen­
vectors. There was no detailed account of continuous spectra, although the 
results [18, 19] of Friedrichs were described; in fact there were rather few results known. 
During the past twenty years, however, there has been great progress in this direction. 
It is my pleasure to be able to give a survey of the major developments. 

To begin with, I have some remarks concerning the nature of the problem. We are 
not considering a sharply defined mathematical problem; rather the problem itself 
evolves with the development of the methods to solve it. Also, it is closely connected 
with physical problems, in particular, scattering theory (classical as well as quantum-
mechanical). It is my aim to survey those results concerning the perturbation of 
continuous spectra that are more or less related to scattering theory, with some appli­
cations to differential equations. But I shall restrict myself to abstract scattering 
theory, which works in the framework of operator theory, thereby omitting results 
obtained by more concrete analytical methods. For very recent results I refer you 
to the lecture by Professor Kuroda. Also there will be a lecture by Professor Phillips 
on scattering theory. 

1. Let me start by reviewing what was known in 1950. It had long been known that 
the essential spectrum was stable under perturbation by a compact operator but the 
continuous spectrum was rather unstable. (Here and in what follows all operators are 
assumed to be linear.) But these results are not in the direction of our interest here. 

Another result, far more important for our purpose, was given by Friedrichs [18] 
in 1938 and was mentioned in Rellich's lecture. I repeat it in a specialized form. 
In the Hilbert space H = L2(a9 b) consider the operator # ! of multiplication: 
Htu(X) = Xu(X), and perturb it by the addition of a symmetric integral operator: 

H2 = Hx + EV, Vu(X) = 
't 

k(X, p)u(p)dfi, k(X, p) = k(p, X). 

Friedrichs shows that H1 and H2 are unitarily equivalent (so that H2 has a pure conti­
nuous spectrum ranging over [a, b]) if the kernel k is Holder-continuous, vanishes on 
the boundary of the square [a, b] x [a, b], and if | e | is sufficiently small. This is 
done by constructing two unitary operators U± that implement the unitary equiva­
lence: H2 = UtH^i1. 
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This result is not so special as might appear at first sight. All subsequent develop­
ments I am going to discuss are more or less related to it. 

The significance of Friedrichs' result became clear later, when gérerai scattering 
theory was developed by physicists. In 1943 Heisenberg [23] introduced the notion 
of the S-matrix, or scattering operator as mathematicians now prefer to call it. The 
formal theory of scattering was further developed by Mtfller [45], who introduced the 
wave operators. As was shown by Friedrichs [19], his model of 1938 contained essen­
tially all the proofs necessary to define these notions rigorously. The operators U± 

which he constructed were exactly the wave operators, by which the scattering ope­
rator is expressed as S = L7+1[/_ . These results were greatly generalized by Frie­
drichs in [19] and [21]. 

Here we have another example of a recurrent phenomenon. The mathematical 
tools were ready when physicists needed them, although this was not recognized 
immediately. Friedrichs remarked in [20] that it was strange that such a natural 
notion as the scattering operator had not appeared earlier. It seems to me no less 
remarkable that the paper of Friedrichs, written before the advent of this notion, 
contained all the tools necessary for its rigorous construction. 

2. Let me sketch a formulation of scattering theory in the simple case of single-
channel scattering, following Jauch [29] but with a slight modification. Consider 
two unitary groups e~itHJ, j = 1, 2, — oo < t < oo, in a Hilbert space H, with self-

adjoint generators Hj = XdEj(X). Let Pj be the orthogonal projection onto the 
J— oo 

subspace of absolute continuity for Hj (the set of all u e H such that (Ej(. )u, u) is abso­
lutely continuous with respect to Lebesgue measure). Pj commutes with Hj. 

Suppose that the strong limits 

(W) W± = W±(H2,H1)= lim e ^ g - f ^ p 
t-*±co 

exist; we call them the (generalized) wave operators for the pair Hl9 H2. W± are 
partial isometries with the initial set P^ and intertwine H1 and H2: H2W± => W±H±. 
It follows that the final sets (ranges) of W± are subsets of P2H. If they coincide with 
P2H, we say that the wave operators W± are complete. In this case the absolutely 
continuous parts of Hl and H2 are unitarily equivalent; this is why the wave opera­
tors are interesting mathematically. 

The scattering operator is defined by S = W%W-\ it commutes with Hl9 and is 
unitary in PJLH if W± are complete. S contains all information about scattering, 
and is physically most important. In accordance with the canonical direct integral 
decomposition PJl = J© H(X)dX of P ^ by which the absolutely continuous part 
of H1 is diagonalized: H1P1 = J© XI(X)dX, where I(X) is the identity operator in H(X)9 

S is expressed as the direct integral S = J© S(X)dX, where S(X) is unitary in H(A). S(X) 
is called the S-matrix òr the scattering suboperator. 

In most applications H^ is absolutely continuous so that P^ = I, but it has been 
found convenient to define W± as above in the general case. There is no a priori 
reason why PjH should be the subspaces of absolute rather than mere continuity. 
As it turns out, however, more existence theorems can be proved by the above defini­
tion than otherwise, which indicates that it is an adequate definition. In fact, one 
of the important results of scattering theory is the discovery that the absolutely conti-
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nuous spectrum is rather stable under perturbation, whereas the continuous spectrum 
is quite unstable (cf. Aronszajn [1]). 

Thus the first mathematical questions are the existence and completeness of the 
wave operators. They have been answered affirmatively in the Friedrichs model, 
but it does not cover all interesting applications. Many attempts have been made 
to give useful sufficient conditions. I would like to discuss some of the methods and 
results, together with some typical applications. 

3. There have been proposed two different methods: time-dependent and stationary, 
although these are often used in conjunction. The time-dependent method works 
with the groups e~itHJ directly. In this way it is rather easy to deduce general proper­
ties of the wave operators and give useful sufficient conditions for their existence, as 
was shown by Cook [13], Kuroda [39], and others. The completeness is more difficult 
to establish. But a very simple condition for the existence and completeness was 
obtained by Rosenblum [50] and Kato [31, 34] in the form H2 = Hx + V, VeB^H), 
where ßx(H) is the trace class of compact operators in H. It is interesting to note 
that 2?i(H) is practically the only class with this property (Kuroda [38]). This condi­
tion was later generalized by many authors. Here we mention the useful criterion, 
due to Birman and Krein [10] and de Branges [11], that R2(z) — Rt(z)e B^H) for 
some ze p(H1) n p(H2)9 where Rj(z) = (Hj — z /)"1 and p denotes the resolvent set. 
It was also shown [10] that in this case S(X) — I(X) e B ̂ (X)) for almost all real X. 

In this connection I note the invariance principle for the wave operators. It asserts 
that W±((j>(H2), 0(#i)) = W±(H2, Hi) holds for any real-valued, piecewise monotone 
increasing function <j> with a certain continuity property. The invariance principle 
has not been proved in general, but it has been shown to hold in most of the cases in 
which the existence and completeness of W±(H29H1) has been proved (Birman [5], 
Kato [32, 34], Kuroda [40], Kato and Kuroda [37]). It easily leads to many new 
and old criteria, for example H2

a — H^aeB1{H) for some a > 0 when Hl9 H2 have 
positive lower bounds (Birman [3]). 

These criteria have been applied successfully to differential operators, including 
single-particle Schrödinger operators. For example, consider the operators in 
H = L2(Rn) 

Hi = - A, 

iAn) H2= - Y —ak(x)— + -f 
j,k=idXj dxk i j=i 

b^öx-j + dx-jb^\ + <?(*), 

where ajk(x)9 bj(x)9 q(x) are real-valued and the symmetric matrix (ajk(x)) is positive-
definite. We refer to the special case ajk(x) = Sjk, bpc) = 0 as (A®). It was shown 
in [39] that qeL1 n L2 is sufficient for the existence and completeness of W± for (A%). 
Ikebe and Tayoshi [28] show that, roughly, a similar decay rate for the ajk — öjk, bj, 
and q is sufficient for (A3)9 certain smoothness conditions being assumed for the ajk 

and bj. The existence of W± has been proved under weaker conditions. Another 
interesting result, due to Birman [4], is the invariance of the absolutely continuous 
spectrum of a differential operator on an exterior domain when the boundary and 
the boundary conditions are changed. 

4. The stationary method, on the other hand, has many variants. In general they 
work with the resolvents RJ(z) rather than the groups e~UHj

9 of which the resolvents 
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are the Laplace transforms. Roughly speaking, one tries to define two operators U± 

by 

(Ü) 

poo ^oo 

U± = E'2(X)(I + VRt(X ± iGfìP^X = (/ - VR2(X ± iO))E't(X)P\dX, 
J —oo J — oo 

where V = H2 — H^ formally, and show that they have all (or some of) the properties 
of the wave operators. (17) may be deduced by a formal Fourier transformation 
from (W), but it has no precise meaning as it stands. The various stationary methods 
arise from different attempts to interpret (U) rigorously. Since the derivatives E](X) 
and the boundary values VRj(X ± iO) do not exist in the ordinary topologies, one has 
to introduce new topologies in certain spaces of operators. There are many ways 
to do this but it is impossible to describe them in detail here. Unfortunately there 
are few theorems in the stationary methods that can be stated concisely. 

It has turned out, however, that the stationary methods are on the whole more 
powerful than the time-dependent one. The main advantages are the following. 
1) One may prove the unitary equivalence of H1Pi and H2P2 without proving U± = W± 

completely. 2) Possibility of localization', one may define U± only on a subspace 
E1(r)H to E2(T)ii, where T a R1. 3) Often one can obtain some information on 
the singular parts Hj(I — Pj), for example their non-existence. 

The stationary methods have been studied vigorously in the recent years. The 
original method of Friedrichs may be regarded as one of them, although it cannot 
be written directly in the form (U). The perturbations V permitted in this method are 
called gentle perturbations. They were further studied by Faddeev [17] and Rejto [47], 
who later arrived at the very general notion of partly gentle perturbations [48]. An 
analogous notion was introduced by Howland [25] independently. Roughly speaking, 
V is partly gentle if there is a Banach space X, partly contained in H, such that 
i) d(Ej(X)u, v)/dX exist as continuous sesquilinear forms in u, v e X for each X e T and 
ii) the VRj(z) map X into itself continuously and have boundary values when z approa­
ches the two edges of the part T of the real axis. 

Birman and Entina [9], on the other hand, give a more direct interpretation of (U), 
assuming the trace condition Ve BX(H) or its generalizations. Birman [6] gives " local " 
criteria, which are most useful in applications to differential operators as shown in [7]. 
For example, sufficient conditions analogous to those of [28] are deduced for (An); 
one can even admit as H2 differential operators of higher order than Hx if one does 
not insist on the completeness of W±. 

Another interpretation of (U) is given by Kuroda [40] using the factorization method. 
A recent paper [37] by Kuroda and myself gives a rather general theorem that covers 
gentle (or " smooth ") as well as trace-type perturbations. It has been found useful 
in many applications. For example, in (A%) it suffices to assume 

\q(x)\<c(l + \x\)-P9 ß>l9 

to ensure the existence and completeness of W± [36]. (This is optimal in a certain sense 
in view of the result of Dollard [14] for the Coulomb potential.) Kuroda [41] gene­
ralizes it to cases when q need not be locally bounded. He further applies the theorem 
to (An)9 assuming the decay rate 0(\x\~ß)9 ß > 1, of the ajk — Ôjk, bj, and q; this is 
a substantial improvement over the results of [7] and [28] stated above. For details 
I refer to Kuroda [41 a]. 
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I should note that some of these results pertaining to differential operators were 
obtained also by more concrete methods. 

5. Finally I want to list other related problems and open questions. 

(a) Two space theory. The formulation presented above is adapted to single-
channel scattering for quantum-mechanical systems. For applications to classical 
wave equations and to more general hyperbolic systems of partial differential equa­
tions, one needs a more general formulation in which the two groups e~itHj act in 
different Hilbert spaces Hj. See Belopol'skii and Birman [2], Birman [8], Kato [35], 
Kuroda [41 a]9 Schulenberger and Wilcox [51], Wilcox [52]. Some of these results 
have points of contact with the theory of Lax and Phillips [42]. 

(b) Multi-channel scattering. An abstract formulation was given by Jauch [30]. 
It has been verified in certain typical cases of many-particle Schrödinger operators 
by Hack [22], Faddeev [16], Hepp [24], Combes [12], and others. To give a more 
abstract treatment of this problem would seem to be one of the major open questions 
in scattering theory. 

(c) Eigenfunction expansions for the absolutely continuous spectrum. In concrete 
problems like (A„), one can construct eigenfunctions of Hy and H2 explicitly and then 
define the wave operators, cf. Povzner [46], Ikebe [27]. In the abstract theory one 
reverses this order and constructs eigenfunctions for H2 by a refinement of the statio­
nary method, assuming the existence of eigenfunctions for Hx. Cf. Howland [26], 
Kato and Kuroda [37], 

(d) Scattering theory has been developed, though rather incompletely, for certain 
non-selfadjoint problems in Hilbert and Banach spaces. Cf. Kato [33], Lin [43], 
Mochizuki [44]. 

(e) The inverse problem. Consider the map H2 — Hx = V -• S for a fixed Hlt 

One expects that the map is one-one and onto between certain classes of V and S 
(which should be sufficiently large) and wants to give the inverse map S -> V 
explicitly. Unfortunately, the situation is not so simple in general; it depends greatly 
on Hi and the classes employed. (For example, if Hx is fixed arbitrarily and V is allowed 
to vary on 2?i(H), then the map V -+ S is not one-one.) Thus it does not seem easy 
to develop an abstract theory of the inverse problem. But many interesting results 
have been obtained for Schrödinger operators, especially for n = 1 (cf. Faddeev [15]). 
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MODEL THEORY 

by H. JEROME K E I S L E R 

1. Introduction 

Twenty years ago, A. Robinson and A. Tarski lectured on the subject of model 
theory to the International Congress at Cambridge, Massachusetts. At that time the 
subject was just beginning, and only two real theorems were known. Since then 
progress has been so spectacular that today it takes years of graduate study to reach 
the frontier. In this lecture I will try to give an idea of what the subject is like and 
where it is going. 

Model theory is a combination of universal algebra and logic. We start with a 
set L of symbols for operations, constants, and relations, called a language; for exam­
ple, L = { + , ., 0, 1, < }. The language L is assumed to be finite or countable 
except when we specify otherwise. A model $1 for the language L is an object of the 
form 

vl = < A, +Q1, -5J, 1% %, <$r>. 
A is a non-empty set, called the set of elements of 9Ï, +gj and .& are binary operations 
on A x A into A, 0% and lgj are elements of A, and <<% is a binary relation on A. 

EXAMPLES. — The field of rationals, < Q, + , ., 0, 1 >, is a model for the language 
{ + , ., 0, 1 }. So is every other ring, lattice with endpoints, etc. The ordered field 
< ß , +> •> 0, 1, < > is a model for the language { + , ., 0, 1, < }. Each group, 
partially ordered set, graph, etc., is a model for the appropriate language. 

Most results in model theory apply to an arbitrary language. We frequently 
shift from one language to another, for instance a new theorem about a given language 
is often proved by applying an old theorem to a different language. 

Many facts about models can be expressed in first order logic. In addition to the 
operation, relation, and constant symbols of L, first order logic has an infinite list of 
variables 

x, y, z, v09 vl9 v29.. ., 

the equality symbol = , the connectives 

A (and), V (or), -i (not), 
and the quantifiers 

V (for all), 3 (there exists). 

Certain finite sequences of symbols are counted as terms, formulas, and sentences. 
The class of terms is defined as follows: 

Every variable or constant is a term; 

If t, u are terms, so are t + u, t- u. 
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The formulas are defined by the rules: 

If t, u are terms, then t = u, t < u are formulas. 

If <p, i// are formulas and v is a variable, then - | cp, -<p A ij/, <p V \j/, Vvcp, 3vq> are 
formulas. 

A sentence is a formula all of whose variables are bound by quantifiers. For exam­
ple, the sentence 

(1) Vx (x = 0 V3y (x-y= 1)) 

states that every non-zero element has a right inverse. 

Hereafter 31 = < A,... >, 93 = < B,... >, . . . denote models for L, and p, \j/, 6,... 
denote sentences. 

The central notion in model theory is that of a sentence cp being true in a model 31, 
in symbols 31t= <p. This relation between models and sentences is defined mathe­
matically by an induction on the subformulas of <p. It coincides exactly with the 
intuitive concept. For example, the sentence (1) is true in the field of rationals but 
not in the ring of integers. A set of sentences is called a theory. 3ïis a model of a 
theory T, in symbols 31N T, if every sentence cp e T is true in 31. 

EXAMPLES. — The theory of rings is the familiar finite list of ring axioms found in 
any modern algebra text, and each ring is a model of this theory. The theory of real 
closed ordered fields is an infinite set of sentences, consisting of the axioms for ordered 
fields, the axiom stating that every positive element has a square root, and for each 
odd n an axiom stating that every polynomial of degree n has a root. 

For each model 3t, the theory of 31, Th (31), is the set of all sentences true in 31. 

Model theory is a rich subject which studies the interplay between various kinds 
of sentences and various kinds of models. 

2. Two classical theorems. 

Model theory traces its beginnings to two basic theorems which come out of the 
1930's. The mathematicians who proved them are the founders of the subject. 

COMPACTNESS THEOREM. — If every finite subset of a set T of sentences has a model, 
then T has a model. 

This theorem was first proved by Godei, 1930 for countable languages. Malcev, 
1936 extended the theorem to the case where T is a set of sentences in an uncountable 
language. The compactness theorem has many applications to algebra (see Robin­
son, 1963). 

Example. — Suppose the sentence cp is true in every field of characteristic zero. 
Then there is an n such that <p is true in all fields of characteristic p > n. 

Proof. — Consider the set T of sentences consisting of the field axioms, the sentence 
~i cp, and the infinite set 

- , (1 + 1 = 0), i (1 + 1 + 1 = 0), i (1 + 1 + 1 + 1 = 0) , . . . 
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By the hypothesis, T has no models, so some finite subset of T has no models, and the 
conclusion follows. 

By the cardinal of a model 31 we mean the cardinal of the set A of elements of 31. 

LöWENHEIM-SKOLEM-TARSKI THEOREM. — If T has at least one infinite model, 
then T has a model of every infinite cardinality. 

Example. — Let T be the theory of real closed fields. Then T has a model of car­
dinal 2K°, namely the field of real numbers. There are countable real closed fields 
and also real closed fields of every other infinite cardinality. The LST theorem 
shows that this happens in general. 

Both of the theorems above assert that a certain kind of model exists, and their 
proofs depend on techniques for constructing models. Indeed, almost all the deeper 
results in model theory depend on the construction of a model. We shall indicate 
some of the most useful methods of constructing models and state some of the theorems 
which they yield. 

3. The method of diagrams. 

This method, due to Henkin, 1949 and Robinson, 1951, is the basis of Henkin's 
proof of the Godei compleneness theorem. It also has many other uses. 

The diagram language for 31 is obtained by adding to L a new constant symbol a 
for each element a of A. The elementary diagram of 31, denoted by Diag (31), is the 
set of all sentences in the diagram language of 31 which are true in 3Ï. The difference 
between Th (31) and Diag (31) is that Diag (31) has new constant symbols for the ele­
ments of 31 while Th (31) does not. 

In many situations it is possible to construct a model of a set T of sentences by 
extending T to a set of sentences T' which happens to be an elementary diagram of 
some model 31. In this construction one is always working with sentences, and cons­
tant symbols are used for the elements of 31. The compactness and LST theorems 
can be proved by this method. The construction has many other applications; we 
shall state three of them without proofs. 

The notation cp N \j/ means that every model of cp is a model of i//. 

THEOREM 1 (Craig interpolation theorem, Craig, 1957, A. Robinson, 1956). — Sup­
pose cp 1= \j/. Then there is a sentence 6 such that cp \= 6, 6 }= \j/, and every operation, 
constant, or relation symbol which occurs in 6 occurs in both cp and i/r. 

The next theorem concerns homomorphisms. A mapping h of A onto B is called 
a homomorphism, and 23 is called the homomorphic image of 31 by h, if for all a, b, e A, 

h(a + w b) = h(a) +93 h(b), h(Un) = 1», 
a <<%b implies h(a) <© h(b), 

etc. If h is one-one and h~1 is also a homomorphism, then h is called an isomorphism. 
It is obvious that every sentence cp is preserved under isomorphic images, that is, 
every isomorphic image of a model of cp is a model of cp. But which sentences are 
preserved under homomorphic images? 
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A sentence cp is said to be positive if it contains no negation symbol —i, i. e. it is built 
using only A, V, V, 3. 

THEOREM 2 (Lyndon homomorphism theorem, 1959). — A sentence cp is preserved 
under homomorphic images if and only if there is a positive sentence ij/ which has 
exactly the same models as cp. 

The hard direption is " only if ". 

Examples. — The theories of groups, abelian groups, rings, and fields (if we allow 
the one element field) are preserved under homomorphic images because their axioms 
are positive. But the theory of integral domains is not preserved under homomorphic 
images. It has the axiom 

Vx Vy (x = 0 V y = 0 V -i x-y = 0), 

and this axiom cannot be replaced by a positive sentence. 

A theory is complete if it is equal to Th (31) for some 3Ï. Let us consider the number 
of (non-isomorphic) countable models of a complete theory T. 

Examples. — We have examples of complete theories with exactly one countable 
model (atomless Boolean algebras); N0 countable models (algebraically closed fields); 
2X° countable models (real closed fields); and n countable models for each n > 3 
(due to Ehrenfeucht). 

But the following surprising theorem is due to Vaught, 1959. 

THEOREM 3. — There is no complete theory which has exactly two countable models. 

4. Elementary chains. 

This construction was introduced by Tarski and Vaught, 1957. 

31 and 93 are said to be elementarily equivalent if Th (31) = Th (93), that is, they are 
models of exactly the same sentences. 

3Ï is said to be a submodel of 93, 3t c 93, if A c B and the operations, constants, and 
relations of 31 are those of 93 restricted to A. 31 is an elementary submodel of 93, 3f-<23, 
if 31 c 93 and every sentence of Diag (31) is true in 93. A simple exercice: if 31 •< 93 
then 31 and 93 are elementarily equivalent. 

Example. — Tarski, 1948 has shown that if 93 is any real closed field and 31 is a real 
closed subfield of 93, then 31 -< 93. Similarly for algebraically closed fields. Such theo­
ries are called model complete (Robinson, 1963). 

An elementary chain is a sequence of models 

3 I 0 , 3 l 1 , . . . , 3 I a , . . . , a < y , 

where y is an ordinal, such that 

if a < ß < y then 3Ia -< 31^. 

The union of an elementary chain is the model 31 = Ua<y 3Ia such that A = Ua<7Aa 

and each 3L is a submodel of 31. 
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THEOREM 4 (Tarski-Vaught, 1957). — Let 3ïa, a < y, be an elementary chain. Then 
each 31^ is an elementary submodel of Ua<y

<Ua. 

A typical application of this construction is the following Löwenheim-Skolem-
Tarski type result for pairs of cardinals. For this theorem we assume that the language 
contains a one-placed relation symbol U. By a model of type (Xa, ttp) we mean a 
model 3Ï such that A has cardinal Xa and 1% has cardinal tfß. 

THEOREM 5 (Vaught, 1962). — Suppose a theory T has a model of type (Ka, Kp) 
where Na > ttp. Then T has a model of type (Hl9 X0). 

The model 31 of type ( ^ , X0) is constructed as the union of an elementary chain 3Ia, 
a < (ol9 of Hx countable models such that all the sets l/gra are the same. 

Many results in model theory depend on the Generalized Continuum Hypothesis 
(GCH), which states that for all infinite cardinals Na, 2K* = Xa+i- One such result 
is the following. 

THEOREM 6 (Chang, 1965) (GCH). — Suppose a theory T has a model of type 

(Ki> N0). Then for every Ha9 T has a model of type (Na+2s Xa+i). 

The proof uses an elementary chain of length Ha+2 of models of cardinality X a + 1 . 

Example (GCH). — Let 31 be the model 

3I = <Ä, + , . , 0 , 1 , < , Z > . 

where R is the set of real numbers and Z is the set of integers. 31 is a model of type 
(Ni, K0). By Chang's theorem, Th (31) also has a model of type (N2, XJ. But Th (31) 
cannot have a model of type (X2, X0). 

5. Ultraproducts. 

This construction was introduced by Skolem, 1934 to get a non-standard model 
of arithmetic and in its present general form it is due to Los, 1955. 

Let / be a non-empty set and let 3I{, iel, be models for L. An ultrafilter over I is 
a set D of subsets of J such that D is closed under finite intersections, any superset 
of a member of D is in D, and for all X a I, exactly one of the sets X91 — X belongs 
to D. A statement P(i) is said to hold almost everywhere (D) if the set of i e I for which 
P(i) holds is in D. 

Now consider the Cartesian product HieIAi. For f, ge HieIAt we write 

f=Dg iff / (0 = £(0a .e . (D) 

Then =D is an equivalence relation on n t e I i4, . Let fD be the equivalence class of /, 
and YlDAj the set of all equivalence classes. 

The ultraproducl HD% is a model with the set of elements nfl>4f. The relation < 
on this model is defined by 

fD<gD iff f(0<%g<J) a.e. (D). 
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The operation + is defined so that 

A + go = hD iff f(i) +^g(() = h(i) a. e. (D). 

The fundamental result about ultraproducts is the following. 

THEOREM 7 (Los, 1955). — For each sentence cp9 co holds in the ultraproduct nD3I£ 

if and only if cp holds in % almost everywhere (D). 

Ultraproducts can be used to give us another proof of the Compactness Theorem. 
Many applications of the Compactness Theorem can be done more neatly using ultra-
products directly. 

Example. — Suppose all the models 31̂  are fields, and form the complete direct pro­
duct ring nf6j3I£. It turns out that the set of ultraproducts nl)3I£ is exactly the same 
as the set of quotient fields Uiej$LJJ of the ring n ieI3If modulo a maximal ideal J (The 
fields UieI%/J were studied by Hewitt, 1948; see Gillman-Jerison, 1960). 

Suppose all the models 3lf are the same model 31. Then the ultraproduct nD3t is 
called an ultrapower of 31. By the theorem of Los, 31 is elementarily equivalent to 
each ultrapower nD3l. 

Example (non-standard analysis, A. Robinson, 1966). — Let 31 be the model 

3I = <R, + , ., 0, 1, < , . . . > 

where R is the set of real numbers, and the three dots stand for a list of all the 22 ° 
operations, constants, and relations on R. Let D be an ultrafilter over the set 
co = { 0, 1, 2 , . . . } which contains no finite set. Then the ultrapower nD3l is a non-
Archimedean real closed field; for instance, < 1, 1/2, 1/3, 1/4, 1/5,... } D is a posi­
tive infinitesimal and < 1, 2, 3 , . . . >D is positive infinite. Using the ultrapower nD3t, 
the whole subject of analysis can be based on infinitesimals in the style of Leibniz. 
For example, consider any real function / and real numbers c and L. Then lim f(x) = L 

if and only if for every b in HjyA which is infinitely close but not equal to c, f(b) is infi­
nitely close to L. 

Ultrapowers can also be used to give purely algebraic characterizations of model-
theoretic notions such as elementary equivalence. 

THEOREM 8 (Isomorphism theorem). — Two models 31, 93 are elementarily equiva­
lent if and only if there is an ultrafilter D such that nD3l and nD93 are isomorphic. 

This theorem was proved by Keisler, 1963, using the GCH, and was proved without 
the GCH by Shelah, 1971. 

Among the important tools in model theory are the saturated models; they are 
used in theorems 6 and 8 above. The ultraproduct is one way of constructing such 
models. Let Xa be an uncountable cardinal. 31 is ^-saturated iff for every set <D 
of fewer than Xa formulas cp(x) in the diagram language of 31, if for each cpl9..., cpn e <b 
the sentence 

3x (cpt(x) A . . . A cpn(x)) 

is true in 31, then the infinitely long sentence 

3x A<pe0cp(x) 
is true in 31. 
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THEOREM 9. — Let J be a set of power Xa. There is an ultrafilter D over J such 
that every ultraproduct nD3ïf is Xa+1-saturated. 

The above result was proved under the GCH by Keisler, 1963, and without the 
GCH by Kunen, 1970. Xa+1-saturated models were first constructed in another 
way by Morley-Vaught, 1962. 

Example. — It turns out that a real closed field is Xa-saturated if and only if its order­
ing is an na-set9 that is, for any two subsets X, Y of power < Ka (perhaps empty), if 
X < Y then there is an element z such that X < z < Y. 

There are a number of applications of saturated models to algebra. For example, 
they are the main tool in the proof by Ax and Kochen, 1965 of Artin's conjecture: 
for each positive integer d9 the following holds for all but finitely many primes p. Every 
polynomial in the field Qp of p-adic numbers, with degree d9 more than d2 variables, 
and zero constant term, has a non-trivial zero in Qp. 

6. Indiscernibles. 

Suppose we expand the language L by adding n new constant symbols cx,.. ., c„, 
forming L„. For each model 31 for L and each rc-tuple at,..., a„ of elements of 31, 
we obtain a model (31, a1,..., an) for Ln. Consider a subset X of A and a linear 
ordering < of X9 which is not necessarily one of the relations of 31. We say that 
< X9 < > is a set of indiscernibles in 31 if for any n and any two increasing n-tuples 

ax< . . . <an9 b1 < . . . <b„ 

from < X9 < >, the models (31, ax,..., a„) and (31, bl9.. .9bn) are elementarily equiva­
lent. The basic result below shows that there always are models with indiscernibles. 

THEOREM 10 (Ehrenfeucht-Mostowski, 1956). — Let T have infinite models and 
let < X9 < > be any linearly ordered set. Then there is a model 31 of T such that 
< X9 < > is a set of indiscernibles in 31. 

The construction of the model 3Ï uses the partition theorem of Ramsey. 

Examples. — Let 31 be a field and 93 be the ring of polynomials over 31 with the set X 
of variables. Then for any linear ordering < of X, < X, < > is a set of indiscernibles 
in 93. 

Let 31 be a non-Archimedean real closed ordered field and let X be a set of positive 
infinite elements such that if x < y in X then x" < y, n = 1, 2 , . . . Then X with 
the natural order is a set of indiscernibles in 31. 

Indiscernibles are used to prove results such as the following (Two elements a9be A 
have the same automorphism type if there is an automorphism of A mapping a to b). 

THEOREM 11 (Ehrenfeucht-Mostowski, 1956). — If T has an infinite model, then 
for every infinite cardinal Xa, T has a model of power X„ with only countably many 
automorphism types. 

The following very deep results use both the method of indiscernibles and saturated 
models. 

A theory T is said to be ^-categorical if all models of T of cardinal tta are isomorphic. 
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THEOREM 12 (Morley, 1965). — If T is Xa-categorical for some uncountable XŒ, 
then T is X^-categorical for every uncountable X^. 

Shelah, 1970, extended Theorem 12 to uncountable languages. 

THEOREM 13 (Baldwin-Lachlan, 1970). — If T is Xx-categorical, then either T is 
X0-categorical or T has exactly X0 models of cardinal X0. 

We mention one theorem at the opposite extreme from the above. 

THEOREM 14 (Shelah, 1970). — Suppose T has a model A such that for some formula 
cp(x9 y) and some infinite set X c A9 the relation 

{ ( f l , f c > £ l 2 : 31 h= cp(a, b)} 

is a linear order. Then for every uncountable Xa, T has 2Xa non-isomorphic models 
of cardinal X a . 

Example. — The theory of algebraically closed fields is Xa-categorical for every 
uncountable Xa and has X0 countable models. The theory of abelian groups with 
all elements of order two is Xa-categorical for every Xa . The theory of real closed 
fields has 2X" models of each infinite cardinal X a . The theory of atomless Boolean 
algebras is X0-categorical but has 2Xa models of each uncountable cardinal Xa. 

7. Recent trends. 

The model theory of first order logic contains a number of substantial results, but 
until recently only the compactness theorem has had many applications. This situa­
tion is changing and will change more as the subject becomes more widely known. 
One of the bottle-necks has been that most properties arising in mathematics cannot 
be expressed in first order logic. For this reason there is a strong move toward model 
theory for more powerful logics. In the last few years there have been exciting deve­
lopments in the model theory of the infinitary logic Lmim. This logic is like first order 
logic except that it allows the connectives A and V to be applied to countable sets 
of formulas, that is, if cp0, <pl9 cp2,... are formulas of Laia9 then so are 

cp0 A cpx A cp2 A . . . , cpQM cpyV cp2V . . . 

The formulas may thus be countable in length. 

Examples. — The sentence 

Vx (x = 0 V x + x = 0 V x + x + x = 0 V . . . ) 

is true is an abelian group G if and only if G is a torsion group. The sentence 

Vx ( x < l V x < l + l V x < l + l + l V . . . ) 

is true in an ordered field if and only if it is Archimedean. 

Both the Compactness Theorem and the LST Theorem in their original form are 
false for LaitD. For the latter, note that every Archimedean ordered field has power 
< 2**°. Nevertheless, it turns out that all of the methods from first order model 
theory can be used in Lmito. Many of the main results have been generalized to 
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La a, often in a more subtle form. For example, the LST Theorem takes the follow­
ing form. The cardinal !3a is defined by the rule 

J 0 — "0» - i a+l ~~ z > 

3 a = lip<a'2p for limit ordinals a. 

THEOREM 15 (Morley, 1965). — Let cp be a sentence of Lai(0. If cp has a model of 
cardinal at least 3 f f l l , then cp has models of every infinite cardinal. 

The proof is much deeper than the LST Theorem. It uses the partition calculus 
of Erdós and Rado, 1956, and also yields an analog of Theorem 10 on indiscernibles 
for Laia. 

Theorems 1 and 2 above were extended to Lmita by Lopez-Escobar, 1965, Theorem 5 
by Keisler, 1966, various forms of Theorem 12 by Choodnovsky, Keisler, and Shelah, 
1969, and Theorem 14 by Shelah, 1970. 

Another basic result is 

THEOREM 16 (Scott, 1965). — For every countable model 31 there is a sentence cp of 
Laito such that 31 is a model of cp and every countable model of cp is isomorphic to 31. 

This result is analogous to Ulm's theorem for countable abelian torsion groups. 
In fact, Lmxa has been applied by Barwise and Eklof, 1970 to extend Ulm's theorem 
to arbitrary abelian torsion groups. 

The model theory for Laia is greatly enriched by the use of recursion theory as a 
way to get a hold on infinitely long sentences (a suggestion of Kreisel). This has led 
to the Barwise Compactness Theorem (Barwise, 1969) which is the analog for Laim 

of the Compactness Theorem. 

Another type of logic where model theory has had recent successes is logic with 
extra quantifiers, such as " there exist infinitely many " and " there exist uncountably 
many ". For more information see the paper [12]. 

A major recent trend is the impact of set theory on model theory and vice versa. 
A number of problems have been shown to be consistent or independent using Cohen's 
forcing, notably by Silver. Moreover, forcing itself is being used as a technique for 
constructing models (see A. Robinson's lecture in this Congress). Other results 
have been proved on the basis of strong hypotheses such as the existence of a measu­
rable cardinal (Rowbottom and Gaifman, 1964, Silver, 1966, Kunen, 1970,) or the 
axiom of constructibility. For example, Jensen, 1970 has shown that if the axiom 
of constructibility holds then Chang's Theorem 6 above can be improved to : 

If T has a model of type (Xj, X0) then T has a model of type (Xa+1 , Xa). 
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METHODS AND PROBLEMS 

OF COMPUTATIONAL MATHEMATICS 

by G. I. MARCHUK 

Computational mathematics being part of mathematics has currently at its disposal 
powerful techniques for solving problems of science and engineering. The range 
of computational methods is so wide that it is practically impossible to cover them 
to a full extent in one report. A series of interesting investigations by Bellman, Greyfus 
et al. devoted to dynamic programming and some related problems was discussed 
at the previous Congress of Mathematicians. Therefore we shall confine ourselves 
to some selected questions connected with the theory of approximate operations 
in finite, and infinite-dimensional functional spaces which the author has been con­
cerned with. Even so, however, it is impossible to cover many interesting studies 
in the field because of the time limit given to the report. For the same reason the 
author, regretfully, had to reduce to minimum references to the original studies. 

Large-scale electronic computers gave rise to algorithmic constructions and mathe­
matical experimentation over a wide area of science and engineering. This attracted 
new research personnel to the problems of computational mathematics. The valuable 
experience we had had in solving applied problems was later used to devise effective 
methods and algorithms of computational mathematics. 

The methods of computational mathematics are closely related to the state of com­
puter art. New concepts and methods are formed in computational mathematics 
and its numerous applications influenced essentially by every new stage of computer 
technology. 

The standard of research in computational mathematics is largely dependent on 
the actual connection with fundamental areas of mathematics. First of all I should 
like to mention functional analysis, differential equations, algebra and logic, the 
theory of probability, calculus of variations, etc. A mutual exchange of the ideas 
between different branches of mathematics has been intensified in the recent decade. 
This is true in the first place for computational mathematics which has used the results 
of fundamental mathematical areas to develop new and more sofisticated methods 
and to improve the old ones. 

At the same time it should be emphasized that applications have an important 
influence on computational mathematics. Thus, for instance, mathematical simula­
tion often stimulated a discovery of new approaches which are now a most valuable 
possession of computational mathematics. Such applied areas as hydrodynamics, 
atomic physics, mathematical economics and the control theory are most important 
examples. 
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1. The theory of approximation, stability and convergence of difference schemes. 

The wide use of finite-differences method in differential equations of mathematical 
physics required a detailed study of those features of difference equations that affect 
in the first place the quality of difference schemes. Among them are above all the 
stability and convergence conditions. 

This unfavourable feature of difference equations and the corresponding studies 
of John von Neumann initiated theoretical investigations in order to determine the 
relation between convergence and stability and to find effective stability criteria of 
difference schemes. 

Later on several authors formulated the following fundamental theorem called the 
equivalence theorem. If a difference scheme approximates a linear homogeneous 
differential equation for a properly posed problem, then the stability of the difference 
scheme is a necessary and sufficient condition for its convergence. The final formula­
tion and the proof of this theorem for an abstract evolution equation in a Banach 
space were given by Lax. Generalization of the equivalence theorem for non-homo­
geneous linear differential equation was given by Richtmyer. One can make the 
stability conditions of the scheme less strict provided that the initial data are suficiently 
smooth. This idea is implemented in the Strang equivalence theorem using the 
concept of weak stability. 

Speaking of the effective stability conditions it is necessary to mention John von Neu-
mann-Richtmyer's paper of 1950. They formulated a so-called local stability criterion. 
They introduced such new notions as a symbol of a difference scheme, a spectrum of a 
family of difference operators and a kernel of the spectrum of the family which made 
it possible to estimate norms of the powers of the step operators. These estimates 
were in many cases effectively used in the stability analysis. 

An interesting approach to difference schemes with variable coefficients is associated 
with the idea of dissipativity. This idea was implemented in the studies of Kreiss. 
His theorems relate the order of dissipativity of the difference equations approximat­
ing systems of hyperbolic equations to the order of their accuracy. Important results 
have been derived by a so-called energy method which is based on the concept of 
strong stability. The idea of the method is to choose some norm for the vector solu­
tion. The norm of the vector solution grows from step to step not faster than J + 0(At). 

The energy method was first introduced by Courant, Freidrichs and Lewy and 
developed by other authors, in particular by Ladyzhenskaya and Lees. 

Here it is necessary to mention the theory of the convergence of difference schemes 
developed by Samarsky who has used energy inequalities and a priori estimates. The 
theory gives necessary and sufficient stability conditions for two- and three-layer 
schemes formulated in a form of inequalities. The inequalities contain operator 
coefficients of difference schemes. 

Of late the interest of mathematicians has been attracted to stable boundary-value 
hyperbolic problems. A certain contribution to that has been made by Kreiss. He 
has formulated necessary and sufficient stability conditions for some classes of prob­
lems. Ryabenky has deeply studied the theory of boundary-value problems for 
difference equations with constant coefficients. As before the theory of difference 
equations for boundary-value problems of mathematical physics is of supreme concern 
to mathematicians. 
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2. A numerical solution of the problems of mathematical physics. 

The studies of approximation, stability and convergence have provided the necessary 
basis for a wide research of effective difference schemes applied to the problems of 
mathematical physics. The algorithms of finite difference methods combine, as a rule, 
the aspect of a construction of a difference equation-analogue as well as the aspect 
of its solution. Therefore the advance of the constructive theory of the finite difference 
methods depends on a mutually coordinated development of the two aspects mentioned 
above. 

If we try to summarize the vast experience of recent years in the development of 
finite difference methods we can conventionally distinguish some main trends. 

2.1 One of such trends is concerned with finding efficient algorithms for multi-
dimentional stationary problems on mathematical physics. 

As a result of the success achieved in a solution of simultaneous linear algebraic 
equations with Jacobi and block-tridiagonal matrices there have emerged a few excellent 
algorithms in which factorization of the difference operator is used. At the Institute 
of Applied Mathematics (AS, USSR) were proposed different variants of the direct 
factorization method which have been effectively applied to a solution of different 
classes of problems and which should be specially mentioned. 

One can see that besides the precise factorization methods there is a rapid develop­
ment of the approximate factorization methods where factorization of the operator 
is performed by means of iterations. 

Early sixties were marked by a major contribution in computational mathematics 
associated with the names of Douglas, Peaceman and Rachford who suggested an 
alternating direction method. The success of the method was ensured by the use of a 
simple reduction of a multi-dimensional problem to a sequence of one-dimensional 
problems with Jacobi matrices which are convenient to handle. The theory of the 
alternating direction method has been developed by Douglas and Gunn, Birknoff, 
Wachspress, Varga and also by Kellogg, Bakhvalov, Vorobjov, Widlund et al. 

Later Soviet mathematicians Yanenko, Diakonov, Samarsky and others developed 
a so-called splitting-up method. The point is that the approximation of the initial 
operator by each auxiliary operator is not necessary but on the whole such an approxi­
mation exists in special norms. 

A series of investigations has been devoted to a choice of optimization parameters 
of splitting-up schemes by means of spectral and variational techniques. 

2.2 The experience we have in the solution of one-dimensional problems repre­
sents a solid base when we come to the development of algorithms for the problems of 
mathematical physics. An important role in the development of new approaches to a 
solution of non-stationary two-dimensional problems belongs to the alternating 
direction method. 

Further advancement of the methods for multi-dimensional non-stationary problems 
is connected with splitting-up techniques based as a rule on non-homogeneous diffe­
rence approximations of the initial differential operators. The mathematical technique 
is related with splitting of a compound operator to simple ones. If this approach 
is used the given equation can be solved by means of integration of simpler equations. 
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In this case the intermediate schemes have to satisfy the approximation and stability 
conditions only as a whole which permits flexible schemes to be constructed for practi­
cally all problems of mathematical physics. 

Splitting-up schemes for implicit approximations have been suggested by Yanenko, 
Diakonov, Samarsky et al. and applied in various problems. Such schemes have 
stimulated a more general computational approach to the problems of mathematical 
physics which has been called a weak approximation method. 

French scientists Lions, Temam, Bensoussan, Glowinsky et al. have made an impor­
tant contribution to the splitting-up methods and theoretically substantiated a number 
of new approaches. These investigations are especially important for fluid dynamics, 
the theory of plasticity and the control theory. The method of decomposition and 
decentralization formulated by these scientists should be specially mentioned. It 
is closely connected with the method of weak approximation. 

Recently there has been found a class of splitting-up schemes equivalent in their 
accuracy to the Crank-Nicolson difference scheme and applied to non-stationary 
operators. These schemes are absolutely stable for the systems of equations with 
positive semi-definite operators depending explicitly on space and time coordinates. 
This method is easily extended to quasi-linear equations. 

Lax and Wendroff have suggested a kind of a predictor-corrector scheme. This 
approach is used in hydrodynamics, meteorological and oceanological problems. 

2.3 In the recent years there has been a rapid development of a so-called particle-
in-the-cell method suggested by Harlow and applied to multi-dimensional problems 
of mathematical physics. It is widely used to calculate multi-dimensional hydro­
dynamics flows with strong deformation of the fluid, big relative displacements and 
colliding surfaces. We can expect that in the years to come the applicability of the 
method will be extended to multi-dimensional problems. 

2.4 The Monte-Carlo method suggested by John von Neumann and Ulam has 
been developed now for more than two decades. From the very beginning it turned 
out that the Monte-Carlo method was effective only on very fast computers because a 
great number of samples is required to reduce the mean squared error of a solution. 

However, in spite of the difficulties of putting this method on middle-scale computers 
and, maybe, due to them the theory of the method has been considerably improved 
which has increased its efficiency. The basic ideas intended to a considerable improve­
ment of the method comprise the use of conditional probabilities and statistical weight 
coefficients which can be found when information on the solutions of conjugate equa­
tions is used, the latter being related to the essential functionals inherent in the problems. 

The simplicity and universality of this method will undoubtedly make it an important 
tool of computational mathematics. 

2.5 Lately there has been much interest in variational methods applied to problems 
of mathematical physics. The variational methods of Rits, Galerkin, Frefz and others 
have long become classical in computational mathematics. 

Not long ago there emerged a new trend in variational methods, a so-called method 
of finite elements or functions. The main idea of it was expressed by Courant as far 
back as nineteen forties. The essence of this method is that one seeks an approximate 
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solution in a form of linear combination of functions with compact support of order 
of the mesh width h. In other words one takes as trial functions special functions 
in a polynomial form identically equal to zero outside of a fixed domain having a 
characteristic dimension of several h's. The main problem here is the theory of 
approximation of the functions by a given system of finite elements. 

An important contribution to the finite element method has been made by Birkhoff, 
Shultz, Varga et al A systematic study of the theory and applications of the method 
has been fulfilled by Aubin, Babuska, Fix and by Strang, Bramble, Douglas and others. 

Usually the main obstacle one comes across using variational methods is a choice 
of simple functions satisfying boundary conditions. It can be overcome by means 
of special variational functionals. For this purpose one employs a so-called penalty 
method or a weight method which reduce the initial problem to one with natural 
boundary conditions. The finite element method is close in its idea to the method of 
spline functions. 

The finite element method is closely associated with the application of a variational 
approach to constructing finite difference equations corresponding to differential 
equations of mathematical physics. Lions, Cea, Aubin, Raviart and other authors 
have contributed to this area of research. 

There is no doubt that the scope of variational methods will grow as the problems 
become more and more complicated. The variational approach in combination with 
other methods will be a powerful tool in computational mathematics. 

3. Conditionally properly posed problems. 

Correctness of a problem plays an important role in a numerical solution of mathe­
matical physics equations. The concept of correctness was introduced by Hadamard 
at the beginning of our century. We know a variety of classical problems properly 
posed in the sense of Hadamard. However, with a more profound study of various 
problems in natural sciences and engineering it became necessary to solve so-called 
conditionally properly posed problems. Tykhonov has formulated the requirements 
which proved to be natural in a formulation of improperly posed problems in the sense 
of Hadamard. Tykhonov introduced a concept of regularization. 

The results of the investigations of conditionally properly posed problems are 
presented in M. M. Lavrentiev's well-known monograph " Some improperly posed 
problems of mathematical physics ". 

An interesting approach to the formulation of the improperly posed problems in 
the sense of Hadamard is based on probabilistic methods. Most complete investiga­
tions have been made by M. M. Lavrentiev and Vasiliev. Different aspects of the 
theory of these problems in mathematical physics are discussed by Jones, Douglas, 
S. Krein, Miller, Cannon and others. 

Lions and Lattes have formulated a numerical method for the inverse evolution 
equation using a so-called quasi-inversion. 

As evidenced by the tendencies of solving conditionally properly posed problems, 
the techniques used here is closely associated with the optimization theory of compu­
tation to be briefly reviewed in this paper. 
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4. Numerical methods in linear algebra. 

A solution of simultaneous algebraic equations and computing of eigenvalues and 
eigenvectors of matrices are important problems of computational mathematics. 
Speaking about the numerical methods and problems in linear algebra of recent years 
it is necessary first of all to emphasize the growing interest in the solution of large 
systems of the corresponding equations, in the solution of ill-conditioned systems and 
in spectral problems for arbitrary matrices. Much attention has been paid to the use 
of a priori information in the process of the solution. Under the influence of computer 
development the old numerical methods in linear algebra have been reconsidered. 
The increasing use of computers has stimulated a creation of new algorithms well 
suited for automatic calculation. 

4.1 Direct methods play an important role when simultaneous linear algebraic 
equations are solved or inverse matrices and determinants are found. 

Direct methods have been considerably developed first by Faddeeva, Bauer, House­
holder, Wilkinson and then by Henrici, Forsythe, Golub, Kublanovskaya, Voevodin 
and others. Using some elementary transformations one can represent the initial 
matrix as a product of two matrices, each being easily inverted. 

We used to compare computational methods according to a number of arithmetic 
operations and the memory requirements. Now we ought to pay attention also to 
their accuracy. It means that round-off error analysis has become an essential feature 
of the method itself. 

The corresponding inverstigations were started by John von Neuman, Goldstein, 
Turing, Givens et al. A systematic study of errors was first made by Wilkinson. 
His results were later systematized in his excellent monograph " An algebraic eigenvalue 
problem " where the method of equivalent perturbations was taken as a basic mathe­
matical technique. As a result estimates of the norms of perturbations were obtained 
for all fundamental transformations of linear algebra. 

In parallel with the method of equivalent perturbations there was an intensive 
development of the statistical error theory. The results obtained by Bakhvalov, 
Voevodin, Kim et al. initiated an investigation of the real distribution of round-errors. 
The statistical methods are certain to play an important role in the round-off error 
analysis. 

4.2 Iterative methods remain very important in linear algebra. An active progress 
of these methods has resulted in a number of powerful algorithms which are effectively 
used on computers. 

At present there are some trends in a construction of the iterative processes and 
methods aimed at the minimization of the number of arithmetic operations for obtain­
ing a solution, with the emphasis put on the use of spectral characteristics of the opera­
tors involved. A choice of iteration process parameters is part of optimization of the 
computational algorithm. The major difficulty here is as a rule to determine the 
boundaries of the spectra of the matrices. 

Spectral optimization of iterative methods stimulates a formulation of a number 
of problems. Once again we shall discuss the two of them. 
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More attention has been recently attracted to the Lanszos transform of arbitrary 
matrices which leads to an equivalent system of equations with a symmetric matrix 
whose spectrum occupies two segments symmetric with respect to zero. 

The second problem is a search of effective methods intended to determine the 
matrix eigenvalue with minimum modulus. 

Let us discuss the application of variational principles to iterative methods. Such 
methods allow a successive minimization of some functional which attains a minimum 
on a desired solution. There has been much interest in such problems. Kantorovich, 
Lanszos, Hestens and Stiefel as well as Krasnoselsky and Krein et al. have stated 
a variational approach to iterative methods. I should like to mention the recent 
papers of Petryshyn, Forsythe, Daniel, Yu. Kuznetsov, Godunov and others. 

When the variational approach to iterative methods is used one can select relaxation 
parameters on the basis of a posteriori information obtained at each step. This is 
also the case for the steepest descent method and the iterative method with minimal 
discrepancies. The above said is the merit of the variational approach. The rate 
of convergence seems to be not lower than the rate we get using Chebyshev's polyno­
mials. 

There is also probabilistic technique intended to choose optimization parameters 
of iterative processes. A series of interesting results has been obtained by Vorobjov. 

The Young-Frankel overrelaxation method has not yet lost its importance. It 
has become classical and is generalized in the monographs of Wasow and Forsythe, 
Varga, Isaacson et al. 

4.3 Let us consider how to solve a total eigenvalue problem for arbitrary matrices 
by iterations. 

We shall discuss only power methods which have been advanced by Wilkinson, 
Bauer, Rutishauser, Collatz, Voevodin and by Frencis, Kublanovskaya, Eberlein 
and many others. Until recently there have been effective eigenvalue algorithms 
only for symmetric matrices, for instance, the Jacobi method and the method of divid­
ing segments in two. It is hoped that the discovery of the ßR-algorithm and the gene­
ralized method of rotation will allow us to deal with arbitrary matrices. As present 
different modifications of the QR-algorithms are developed most intensively. These 
are widely used in science and engineering. 

5. Optimization of numerical algorithms. 

An important goal of computational mathematics is to find most profitable methods 
for a solution of the problems, i. e. to optimize algorithms. One must study the problem 
of optimization under given constraints by general mathematical theorems and to 
estimate what is a minimal possible cost to solve a particular problem or a sequence 
of problems. Local optimization of one isolated part of a solution does not practically 
resolve the problem we are interested in. However, if one can find the best way of 
handling every local problem using the existing computing facilities, one is thus led 
to its solution. This concept of the optimization theory has been formulated by 
Sobolev and Babuska and it represents sufficiently well the essence of the formulated 
problem. 
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Yet in many cases it is either impossible to build an optimal algorithm or the latter 
turns out to be very costly. Nevertheless it appears possible to build an algorithm 
close an optimal one. This is the case, for example, when asymptotically optimal 
algorithms are constructed. It will be noted that at present the theory of asymptotic 
estimates is an effective tool of algorithm optimization. 

The concept of s-entropy introduced by Kolmogorov has been very useful too. 
A hypothesis has been proposed that the efforts spent to find a solution are essentially 
associated in many instances with e-entropy of a set of elements on which the solution 
depends. Using the concept of e-entropy one can estimate both upper and lower 
bounds of the number of operations needed for the solution of many computational 
problems. 

Sobolev, Bakhvalov, Lebedev and others have studied a number of algorithms for the 
problems of mathematical physics using finite-difference methods. 

A considerable contribution to the theory of computation and its optimization has 
been made by'Babuska, Dahlquist, Henrici et al. Babuslca, Vitasek and Prager have 
introduced a notion of aK-sequence of computational processes. This implies that if 
the length of a sequence of operations in the problems of mathematical analysis is 
increased, the accuracy of computation exponentially increases. 

An idea has been expressed to introduce operations with intervals. This trend 
named interval arithmetic can be applied to the study of the approximation errors in 
mathematical analysis and to the analysis of round-off errors. 

6. Trends in computational mathematics. 

6.1 The progress in computational technology has had an important influence 
on many branches of computer science which show a tendency of integration. The 
relations between: software, the methods of computational and applied mathematics, 
the theory of programming and languages-become so close that the choice of a strategy 
for a solution of particular problems is now of paramount importance. Though 
optimization of individual components of computational process is as before a funda­
mental factor of the theory, the attention becomes more and more concentrated on 
optimization of the whole process. Optimization of computation is obviously one 
of the central goals of computational mathematics which stimulates exploration of 
new algorithms and new ways of their computer implementation. 

6.2 The second trend is connected with a solution of classes of problems and with 
algorithm standardization. A large amount of computer-processed information must 
be systematized and put in order. The valuable experience which we have in the 
solution of the problems of science and engineering allows us in many cases to set as 
an ultimate goal a creation of universal methods suitable to handle more or less wide 
classes of mathematical problems of the same type. At present a care must be taken to 
save the efforts of the society on a creation of numerous individual algorithms for 
individual and rare problems. It seems that a rational strategy for a solution of various 
rare problems is to construct universal algorithms self-adjusting to optimal operating 
conditions because they use a posteriori information. A rational strategy for a solu­
tion of frequently repeated problems is a careful implementation of specific algorithms. 
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These two approaches combined will help to save social resources spent on a creation 
of effective software. First steps have been made in the theory of the universal algo­
rithms which are self-adjusting to a kind of optimal operating conditions and a course 
of further research has been outlined. 

6.3 Software is becoming a materialization of the society's intellect. The process 
of the mathematization of sciences has given rise to an active development of the 
methods to simulate the phenomena occurring in nature and society. High-speed, 
large-memory computers of new generations can store immediately available valuable 
information and multi-access computers allow new forms of man-machine interaction 
using a conversational mode of operation. Therefore standardization of solftware 
in general and of computational algorithms in particular is an urgent problem of 
scientific and technological process. 

6.4 The problem of solftware has stimulated a formulation of new problems in 
computational mathematics, such as a construction of grids for complicated domains. 
For two-dimensional domains the above problem is close to its effective solution while 
for three- and multi-dimensional domains it is just being stated. This problem is 
closely connected with a construction of algorithms for large problems with high 
accuracy by difference, variational and other techniques or may be by a combination 
of different methods. The solution of the problems with non-linear monotonous 
operators is especially important. The corresponding theory is at present intensively 
developed. 

6.5 The success achieved in analytic transformations on a computer leads practi­
cally to the solution of mathematical physics problems by the well-known technique 
of the continuous function analysis. As the supply of visual aids for analytic compu­
tations grows, these methods will penetrate more and more into software. The 
success achieved in analytic transformations on computers will give computer science 
new possibilities which nowadays should be taken into account. 

Finally I should like to note that the further development of computational mathe­
matics depends on the standard of research in fundamental branches of mathematics, 
the importance of the latter essentially growing at the age of great technological pro­
gress. Only a harmonic combination of research in all branches of mathematics 
will provide the necessary and favourable conditions for self-development of mathe­
matics and its applications. 
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LES JEUX DIFFERENTIELS LINEAIRES 

par L. PONTRYAGIN 

On considère ici des jeux différentiels linéaires dont l'exemple-type est la poursuite 
d'un objet contrôlable par un autre objet contrôlable. 

Les jeux différentiels linéaires constituent évidemment un cas très particulier, 
cependant, même dans ce cas, les résultats ne sont pas triviaux, et ils sont en plus beau­
coup plus efficaces que les généralisations correspondantes au cas non-linéaire. 

Le problème sera posé ici pour le cas non-linéaire, tandis que les résultats seront 
formulés seulement pour le cas linéaire. 

Position du problème. 

La théorie des jeux différentiels est née comme modèle d'idéalisation mathématique 
de problèmes techniques. Il y a différentes possibilités d'idéalisation. Dans le choix 
d'un modèle il faut tendre à ce que ce dernier, d'une part, reflète les traits principaux 
du problème technique, et d'autre part, puisse être traité mathématiquement. Ainsi, 
l'exposé de la théorie ne doit pas être complètement détaché des problèmes techniques. 

Pour en avoir un exemple concret, imaginons qu'un avion en poursuit un autre ; 
le but du premier avion est d'atteindre l'autre avion ; le but du deuxième est d'échapper 
à la poursuite. 

Chaque pilote dirige son avion, en ayant son propre but et en utilisant l'information 
sur la situation. L'information est composée de deux parties : premièrement, c'est 
la connaissance complète des possibilités techniques des deux avions ; deuxièmement, 
ce sont les renseignements sur le comportement de son propre avion et de l'avion de 
l'adversaire. Les données sur le comportement des avions peuvent inclure différents 
éléments se rapportant à la période précédant le moment présent, mais rien ne peut 
être considéré comme connu en ce qui concerne le futur comportement des avions, 
puisqu'ils sont contrôlables, et que, à chaque instant, chacun des deux pilotes peut modi­
fier la position des commandes, modifiant ainsi le comportement de l'avion. Dans la 
réalité, chaque pilote reçoit les informations sur le comportement de l'adversaire avec 
un certain retard, cependant il n'est pas nécessaire de tenir compte de cela dans une 
idéalisation ; au contraire on peut même supposer que le comportement de l'adversaire 
est connu avec une certaine avance et on peut construire une idéalisation mathéma­
tique sur cette base, pour démontrer ensuite que la théorie, ainsi obtenue, peut être 
utilisée pour la solution approximative du problème réel. 

Passons à la description mathématique du processus de la poursuite. Deux objets 
contrôlables participent à ce processus : l'un qui poursuit et l'autre qui fuit. L'état de 
chaque objet à tout instant est défini par son vecteur d'état. Nous désignons par x (resp. y) 
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le vecteur d'état de l'objet poursuivant (resp. fuyant). Les équations d'état s'écrivent 
sous forme habituelle : 

x=f(x, u) ; y = g(y9v) (1) 

où le point désigne la dérivée par rapport au temps et u et u sont des contrôles, x et y 
étant les vecteurs d'état, chacun d'eux se décomposant en deux parties: 

x = (xisx2) ; y = (yuy2) 

où xl9 et yt déterminent les positions géométriques des objets, et x2 et y2 leurs vitesses. 
On considère que la poursuite se termine au moment où se réalise l'égalité suivante : 

* i = ) > i , (2) 

c'est-à-dire au moment où les objets coïncident. 

La première partie de l'information, mentionnée ci-dessus, est composée des équa­
tions (1), qui décrivent non les mouvements réels des objets, mais seulement leurs 
possibilités, puisque pour différents contrôles u = u(t) et v = v(t) on obtient des 
mouvements différents. Ainsi, dans le cas des avions, les équations (1) décrivent les 
possibilités techniques des avions. 

Le processus de la poursuite peut être considéré de deux points de vue différents : 

1. On peut s'identifier avec l'objet poursuivant. Dans ce cas, notre but consiste à 
faire aboutir la poursuite, et nous avons à notre disposition le contrôle u pour 
atteindre ce but. Ainsi, pour chaque instant t, nous devons construire la valeur u(t) 
du contrôle u, en partant des équations (1) connues (la première partie de l'infor­
mation) et en utilisant la deuxième partie de l'information, c'est-à-dire la connaissance 
des fonctions x(s), y(s), v(s) sur l'intervalle t — 6 < S < t, où 0 est un nombre réel choisi 
convenablement. 

2. Nous pouvons nous identifier avec l'objet fuyant: dans ce cas, notre but est 
d'empêcher l'aboutissement du processus de la poursuite, et nous disposons, pour 
réaliser ce but du contrôle v. Donc, à chaque instant t, nous devons construire la 
valeur v(t) du contrôle v, en partant de la connaissance des équations (première 
partie de l'information) et en utilisant sa deuxième partie connue sous la forme des 
fonctions x(s), y(s), u(s) sur l'intervalle t — 6 < s < t. 

C'est ce modèle du processus de la poursuite que nous considérerons ici, modèle qui 
inévitablement divise le problème en deux problèmes différents: le problème de la 
poursuite et le problème de la fuite. Ceci tient à ce que nous disposons d'informations 
différentes suivant que nous adoptons l'un ou l'autre point de vue. 

Il existe aussi un autre modèle, dû à Isaacs, dans lequel on utilise, pour le problème 
de la poursuite, la même information que pour le cas de la fuite, à savoir la connaissance 
des valeurs x(t) et y(t). Dans ce modèle on suppose l'existence d'un contrôle opti­
mal u = u(x, y) de la poursuite qui est une fonction de x et de y (états des objets), 
ainsi que l'existence d'un contrôle optimal de la fuite v = v(x9 y) défini comme fonc­
tion de x et de y. 

Un tel modèle rend le problème très défini du point de vue mathématique : dans ce 
cas le problème consiste à trouver les fonctions u(x9 y) et v(x, y), appelées les stratégies 
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optimales, mais cette précision justement rend la solution extrêmement difficile. De 
plus, en supposant l'existence de stratégies optimales, nous réduisons beaucoup la 
classe des problèmes considérés. 

Le jeu différentiel. 

Le jeu différentiel résulte, en partant du processus de la poursuite, du désir naturel 
de simplifier les notations, c'est-à-dire d'avoir un seul vecteur z = (x, y), au lieu des 
deux vecteurs d'état x et y. Pour cela, on construit l'espace des variables d'état R du 
jeu comme somme directe des espaces des variables d'état des deux objets. Les équa­
tions (1) s'écrivent alors sous forme d'une seule équation: 

z = F(z, u, v) (3) 

La relation (2) définit, dans l'espace vectoriel R, une certaine variété M. Nous pouvons 
maintenant définir le jeu différentiel indépendamment du processus initial de la pour­
suite. 

Un jeu différentiel est défini par la donnée de son espace des variables d'état R, 
l'équation (3), où z G R et F est une fonction de trois variables (u étant le contrôle de 
la poursuite et v le contrôle de la fuite) et dans l'espace R, un ensemble M, sur lequel 
s'achève le jeu. 

Comme dans le cas du processus de la poursuite, nous associons au jeu différentiel 
deux problèmes distincts : 

1. Notre but est l'achèvement du jeu, c'est-à-dire d'amener le point z dans l'en­
semble M, et nous disposons, pour atteindre ce but, du contrôle de la poursuite u, 
et donc, à chaque instant t9 nous choisissons la valeur u(t) de ce contrôle, en utili­
sant les fonctions z(s) et v(s) sur l'intervalle t — 9 < s < t. Telles sont les règles du jeu 
de la poursuite. 

2. Notre but est d'empêcher que le jeu ne s'achève, c'est-à-dire d'empêcher que le 
point z n'arrive dans l'ensemble M, et pour cela nous avons à notre disposition le 
contrôle v de la fuite, et donc, à chaque instant t9 nous choisissons la valeur v(t) de ce 
contrôle en utilisant les fonctions z(s) et u(s) sur l'intervalle t — 9 < s < t. Telles 
sont les règles du jeu de la fuite. 

Jeu différentiel linéaire. 

Nous considérerons que l'espace des variables d'état R du jeu linéaire est un espace 
vectoriel euclidien à n dimensions. L'équation du jeu a la forme suivante: 

z = Cz - u + v (4) 

où z e R, où C est une application linéaire de R dans A et où u et v sont des vecteurs 
de l'espace R9 qui, toutefois, ne sont pas arbitraires, mais doivent vérifier les condi­
tions suivantes : 

ueP ; veQ (5) 
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où P et Q sont des sous-ensembles convexes compacts de l'espace R (les dimensions des 
ensembles P et Q sont arbitraires). Comme fonctions du temps, les contrôles u = u(t) 
et v = v(t) sont des fonctions mesurables de t. Nous supposerons que l'ensemble M, 
dans lequel s'achève le jeu, est un sous-espace vectoriel de l'espace R. Il existe aussi 
des résultats pour le cas plus général, où M est un sous-ensemble convexe fermé quel­
conque de l'espace R. 

Quand il sera question de ce cas plus général, nous le préciserons explicitement. 

A) On désignera par ££ le supplémentaire orthogonal de M dans l'espace R et 
par v (dim ££ = v) la dimension de ce supplémentaire. La projection orthogonale de 
l'espace R sur J£? sera désignée par %. C étant une application linéaire de R dans R, 
exC, où T est un nombre réel, est une application linéaire de R dans R, et %exC est une 
application linéaire de R dans l'espace S£. Ces deux applications dépendent analyti-
quement du paramètre réel T. Posons : 

Pt = 7ie*cP ; Qt = ne*cQ (6) 

Alors Px et Qx sont des sous-ensembles convexes compacts de l'espace if et dépendent 
continûment du paramètre réel x. 

B) Opérations sur les convexes compacts de $£. — Soient A et B deux sous-ensembles 
convexes compacts de S£, et a et ß des nombres réels. Nous désignerons par : 

OLA + ßB (7) 

l'ensemble de tous les vecteurs de la forme OLX + ßy, où x e A et y e B. Il est évident 
que l'ensemble (7) est compact et convexe. Si l'un des deux ensembles A et B est vide, 
l'ensemble (7) est également vide. Il est facile de vérifier que pour a et ß non-négatifs, 
on a la distributivité 

(a + ß)A = OLA + ßB (8) 

L'ensemble de tous les sous-ensembles compacts convexes non vides de S£ forme, 
d'une façon naturelle, un espace métrique complet Q. Donc, si Xx = X(x) est un sous-
ensemble compact convexe de Q, dépendant du paramètre réel T, autrement dit, si X(T) 
est une fonction du paramètre réel T à valeurs dans Q, on peut définir la mesurabilité 
de cette fonction et son intégrale de Lebesgue 

T X(z)dT (h < t2) (9) 

qui sera aussi un élément de l'espace Q. Nous supposerons que, pour tx = t2, l'en­
semble (9) est composé de l'élément nul de ££. 

C) Soient A et B deux sous-ensembles compacts convexes de S£. S'il existe un vec­
teur x e Sß tel que : 

x + B c A (10) 

nous écrirons : 
B £ A (11) 
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L'ensemble de tous les vecteurs x qui vérifient la condition (10) sera désigné par 

A ± B (12) 

que nous appellerons la différence géométrique des ensembles A et B. 

Il est évident que l'ensemble (12) est compact et convexe. Cet ensemble est non vide 
si et seulement si la condition (11) est vérifiée. 

Le jeu de la poursuite. 

Constituons pour le jeu (4) la différence géométrique (voir A) et C)) : 

J\ *- e* (i3) 
Il s'avère que cette différence est une fonction mesurable de %, et que, par conséquent, 
on peut définir son intégrale de Lebesgue 

i (P, ± QT)dx 0 < t (14) 
Jo 

Pour t = 0, cette intégrale est composée du vecteur nul. Nous désignerons par J l'en­
semble de toutes les valeurs de t pour lesquelles (14) n'est pas vide. L'ensemble . / est 
réduit à 0, ou bien est un intervalle 0 ^ t < r 0 , ou bien coïncide avec la demi-droite 0 < t. 

Désignons par Wt l'ensemble de tous les points zeR, pour lesquels on a l'apparte­
nance : 

\Pr*-Qùd% (15) 

et par T(z), la valeur minimale du nombre t, pour laquelle on a l'appartenance (15). 
Il est évident que 

W0 = M (16) 

et que Wt est non-vide pour tout teJ. 

On a alors le théorème suivant sur la poursuite [1]. 

THéORèME 1. — Si, pour la valeur initiale z du jeu (4), le nombre T(z ) est défini, alors 
le jeu de poursuite ayant pour valeur initiale zQ peut être terminé en un temps qui ne 
dépasse pas T(z0). 

Ce théorème n'est pas tout à fait exact. Plus précisément, en un temps t, inférieur 
ou égal à T(z0), le point z0 peut être amené dans une position z(t) dont la distance à M 
est inférieure à ce, où c > 0 et dépend de z0, et où E > 0 est un nombre arbitraire­
ment petit dont le choix détermine la façon dont nous menons le jeu de poursuite. 

Pour donner une idée de la démonstration du théorème et de la mesure de son 
inexactitude, nous formulerons la propriété principale de la fonction Wt de t. 

D) Soient z0 e Wx et 0 < e < T. Pour chaque contrôle de la fuite v(t), donnée sur 
le segment 0 < t < e, on peut trouver un contrôle de la poursuite u(t)9 donnée sur 
le segment 0 < t < e, telle que le jeu (4) dans lequel interviennent ces contrôles u(t) 
et v(t), amène dans le temps E le point z0 au point z1 = Z(E) qui appartient à 
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l'ensemble Wx-e. Cette propriété des fonctions Wt s'appelle la propriété & (poursuite). 

La propriété 0* de la fonction Wt permet de terminer le jeu en un temps ne dépassant 
pas T(z0)9 en disposant comme information, de la connaissance de v = v(s) a priori 
c'est-à-dire sur le segment £ < s < t + 8 où s > 0 est arbitrairement petit. Si on ne 
dispose que d'une information a posteriori, par exemple de la connaissance de v(s) 
sur le segment t — 2e < s < t — E, on ne peut conclure à l'arrivée sur M. 

Le résultat D) peut être sensiblement amélioré [2]. 

E) Considérons le jeu (4) avec comme ensemble terminal M un ensemble convexe 
fermé quelconque dans R. Alors il existe, et on peut définir effectivement, un ensemble 
convexe fermé Mt, dépendant de t(t ^ 0), vérifiant la condition M0 = M et possédant 
la propriété & (voir D)). La fonction Mt est maximale parmi les fonctions qui possèdent 
cette propriété. 

Le résultat E) permet de démontrer un théorème analogue au théorème 1 mais 
plus fort que celui-ci. Si, pour un z donné (z e R), il existe un z (T > 0) tel que zeMz, 
alors nous désignerons par T(z) le T minimal pour lequel on a cette appartenance. 
Alors, si pour la valeur initiale z0 le nombre T(z0) est défini, le jeu de poursuite, ayant 
pour valeur initiale z0î peut être terminé dans un temps non-supérieur à T(z0). 

Il convient de noter que ce résultat ne donne pas la solution complète du problème 
de la poursuite. En effet, si pour le z0 donné, le T(z0) correspondant n'est pas défini, 
il peut tout de même arriver que le jeu de la poursuite avec la valeur initiale z0 soit 
terminé dans un temps inférieur à un certain nombre. En outre, même si T(z0) est 
défini, ce n'est pas nécessairement la meilleure estimation du temps de terminaison. 

La fonction maximale Mt a été construite par nous pour des jeux linéaires, mais 
le fait qu'elle soit maximale a été remarqué par N. Krassovski et A. Soubbotine. Ces 
mêmes auteurs ont construit une fonction maximale Mt, possédant la propriété & 
pour le jeu non-linéaire de la forme (3). 

Le jeu de la fuite. 

Soit <ê un sous-espace vectoriel à deux dimensions de l'espace S£ (voir A)), pris 
pour le jeu (4). Par analogie avec A), nous désignerons par % l'opération de projection 
orthogonale de l'espace R sur Ê et nous supposerons que 

Px = 7te*cP ; Qx = ne*cQ (17) 

on a alors le théorème suivant: 

THéORèME 2. — Supposons que pour le jeu (4), il existe un sous-espace vectoriel Ê 
a deux dimensions de Vespace ££ (voir A)) tel que les conditions suivantes soient réalisées : 

a) on peut trouver un nombre réel p > 1 tel que pour tous les x positifs suffisamment 
petits, on ait Vinclusion suivante (voir (17)): 

^ c f i , ; (is) 
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* 
b) il n'existe pas, dans le plan ££, de droite fixée 3? telle que, pour tous les T positifs 

suffisamment petits, on ait l'inclusion suivante : 

Qx £ & (19) 

Alors on peut, pour chaque valeur initiale z0 du jeu, n'appartenant pas à M, mener le 
jeu de la fuite de telle façon que le point z(t) n'atteigne jamais l'espace M (0 < t < oo), 
et que, de plus, pour la distance de z(t) à M9 on ait l'inégalité (21). 

F) Pour écrire l'évaluation (21), nous ferons correspondre à chaque point zeR 
deux nombres positifs ou nuls 

* - K, n) (20) 

où t; est la distance du point z à M et n est la distance de z à <£. Pour la valeur initiale z0, 
on écrira z0 -• (Ç0, n0) et si z(t) est le point variable on écrira 

z(t) -> w), my 

Il existe alors des nombres positifs C et E, et un entier naturel K, dépendant du jeu 
mais non de son déroulement, tels que 

w> <rrlir pour *0<e (21) 

Le théorème 2 découle entièrement de la proposition suivante : 

G) Au jeu (4), on peut associer deux nombres positifs : 6, définissant un intervalle 
de temps, et E, définissant une distance. Ensuite, à toute valeur initiale z0, telle que 
£0 < e, et à tout contrôle u(t), définie sur 0 ^ t < 9, on fait correspondre un contrôle v(t) 
(v(t) étant défini par le point z0 et par la fonction u(s), connue sur le segment O^s^t). 
Cette correspondance est telle que, pour la solution z(t) de l'équation (4) avec les 
contrôles indiqués u - u(t) et v — v(t) et avec la valeur initiale z0, on ait les deux iné­
galités suivantes: 

m > E (22) 

« 0 > ä T ^ 0 < t < f l (23) 

On appelle contrôle spécial de fuite le contrôle v(t). 

Le processus du jeu de la fuite peut être décrit de la façon suivante : 

Désignons par S l'ensemble de tous les points zeR, pour lesquels ^ < E, et par S' 
l'ensemble des points z pour lesquels i = E. Si l'état initial z0 du jeu appartient au 
cyclindre S, nous faisons immédiatement intervenir le contrôle spécial de la fuite 
(voir G)) pour un temps 0 < t < 9, à la fin duquel z(9) se trouve en dehors du cylindre S 
(voir (22)) tandis que, dans le segment 0 < t < 0, on a l'inégalité (23). 

Si, au moment initial t = 0, ou à un autre moment intermédiaire t9 le point z(t) se 
trouve en dehors du cylindre S, nous choisissons arbitrairement le contrôle de la 
fuite v(t) et nous attendons le moment t0 où le point z(t0) se trouve sur la surface S1. 
En prenant le point z(t0) pour point initial dans le- segment t0 < t < t0 + 9, nous 
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enclenchons durant ce temps le contrôle spécial de la fuite (voir (6)). Alors, en vertu 
de (23), dans cet intervalle de temps on a l'inégalité suivante : 

CsK 

m > (1 + rj(t))K ; to * ** to + ° ( 2 4 ) 

et, à la fin de cet intervalle du temps, le point se trouve en dehors du cylindre S et l'étude 
du jeu recommence. Donc, pendant toute la durée du jeu on a toujours, pour le point 
z(t), l'une des inégalités (23), (24) ou Ç(t) ^ e. En supposant que e > CEK, on déduit de 
ces inégalités l'évaluation (21). 

Si, pour la construction du contrôle spécial de fuite v(t), on utilise une informa­
tion a posteriori sur v(t), c'est-à-dire si, pour calculer la valeur v(t), on utilise la connais­
sance de v(s) dans le segment —ö^s^t — Ö, avec 

(1 + *lo) 

où C± > 0 et / est un entier naturel, alors les évaluations (22) et (23) restent valables. 
Ainsi, on peut utiliser, dans le jeu de la fuite, l'information a posteriori. Initialement, le 
théorème 2 sur la fuite a été démontrée dans notre article [3], écrit en commun avec 
E. Mitchenko, où nous avons supposé les conditions c) et d) suivantes, plus fortes 
que a) et b): 

c) Il existe un nombre p > 1 tel que pour chaque x suffisamment petit on ait l'inclu­
sion (voir A)) suivante: 

pPx c Qx (comparer à (18)) (26) 

d) L'application %exC étant linéaire et dépendant analytiquement de x, peut être 
représentée par une série : 

™tC = g0 + % + • • • + tg% + • - •• (27) 

La condition d) affirme qu'il existe un entier m ^ 0 tel que chacune des applications 
go> 8i>- • ->gm-i transforme l'ensemble Q en un point et que 

dim gmQ = v, v ^ 2 (voir A)). 

Nous avons renforcé ultérieurement le. résultat, en remplaçant la condition d) par la 
condition plus faible. 

e) Pour chaque x positif suffisamment petit, on a 

dim Qx = v, v > 2. 

Après avoir pris connaissance de notre article, R. Gamkrelidze a exprimé la certitude 
que, dans les conditions c) et e), l'espace S£ peut être remplacé par n'importe quel 
sous-espace à deux dimensions ä. Ainsi, selon lui, le théorème 2 devait être juste si la 
condition a) et la condition suivante / ) sont satisfaites : dim Qt = 2 pour tout x positif 
suffisamment petit. 

En vérifiant notre démonstration, nous avons trouvé qu'elle reste en effet valable 
si les conditions a) et / ) sont satisfaites et, en plus, nous avons découvert que la condi­
tion / ) ' peut être, d'une façon naturelle, remplacée par b). Le résultat a donc pris la 
forme donnée ici. 
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Exemple. 

Considérons, dans un espace euclidien E, de dimension v > 2 le mouvement des 
deux points x et y où x; est « le poursuivant » et y l'objet qui fuit. 

Le processus de la poursuite se termine quand x = y. Les mouvements des points x 
et y sont définis par les équations 

x(ft) + a, x(fc_1) + . . . + flfc.jx + akx = u (28) 

yd) + b> y(l-D + . . . + bl_1 y + b{y = V (29) 

où xw et y(,) sont les dérivées d'ordre i des vecteurs x et y par rapport à t, et où 

ai9 i=l,...,k; bj, j=l9 . . . , / (30) 

sont des applications linéaires de E dans E. Les vecteurs u et v, qui sont les vecteurs de 
commande, appartiennent à £ et satisfont aux conditions suivantes : 

ueP, veQ (31) 

où P et Q sont des sous-ensembles convexes compacts de E de dimension v. 

Nous dirons que le point y a l'avantage de manœuvrabilité par rapport au point x, 
si l'une des deux conditions suivantes est vérifiée : 

1) l<k 
2) pour / = k il existe un nombre p > 1 tel que 

pPczQ (32) 

On découvre que, si l'objet fuyant y a d'avantage de manœuvrabilité par rapport 
au poursuivant x, ce processus de la poursuite vérifie les conditions c) et d) et donc, 
si, au moment initial, les points x0 et y0

 n e coïncident pas, le processus de la fuite continue 
indéfiniment. 

Dans le cas où c'est le poursuivant x qui possède l'avantage de manœuvrabilité, 
nous pouvons, en appliquant le théorème, trouver dans l'espace des phases de ce jeu, 
un ensemble ouvert des états initiaux, en partant desquels le jeu se termine toujours. 

Cet exemple a été calculé par A. Mesintzev. 
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Our purpose is to survey some recent contributions and also to suggest several 
avenues of further development in the area of analysis indicated by the title of this 
talk. 

1. Introduction: euclidean background. 

We begin by saying a few words about the classical case corresponding to U1. In 
order to facilitate the presentation that follows we single out three main concerns of 
that theory as points of reference. These are 

A. The Fourier transform 
1 f °° fix - vi 

B. The Hilbert transform, - — -dy 
n J-co y 

C. Harmonic and holomorphic functions in the upper half-plane, 
3)2 = U2

+ = {(x, y), y > 0, x e U1 } . 
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By B we mean of course the whole apparatus that goes with the Hilbert transform, 
including maximal functions, operators of fractional integration (Riesz potentials), etc., 
and by C such things as Fatou's theorem, Poisson integrals, Hardy spaces, etc. 

Now the upper half-plane is the arena of action of the group SL(2, U) of fractional 
linear transformations; it is the symmetric space of that group. In this setup the 
harmonic analysis is taking place, in effect, on the space U1 which is the boundary 
of the symmetric space (1). 

There are two points of view we may take about extending these theories, and in 
particular A, B and C, in the context of symmetric spaces and semi-simple groups. 
The first point of view, and the one I have already suggested, is to start with a semi-
simple group and its corresponding symmetric space (of non-compact type), and 
consider a " boundary ". One then performs the harmonic analysis on the boundary, 
relating it of course to the objects on the group or symmetric space, such as harmonic 
or holomorphic functions on the symmetric space, or the theory of unitary represen­
tations of the group, etc. The first point of view will be taken up in Parts I and II 
below. 

The second point of view is that of considering the (semi-simple) group itself as the 
primary object of the analysis what we have in mind will be described later, but the 
best known example that one may cite is that of the " Plancherel formula " for the 
group (2). We shall be dealing with other problems, however. 

A few more words about the Euclidean background may be in order. Much of 
what is indicated by our points of reference A, B, and C can be extended to the context 
of Euclidean IR". We shall here comment only on the singular integral operators 
generalizing B (3). Our concern is then with operators of the form 

• - j 
Jo«1 

/ - T / = K{y)f(x - y)dy, 
Jos» 

where K is a suitable singular kernel. Under appropriate conditions of existence 
these operators can also be realized as multiplier operators, namely (Tff(x) = m(x)f(x), 
where " denotes the Fourier transform, and m is in effect the Fourier transform of the 
kernel K. In the well-known and important case studied by Mihlin and Calderón 
and Zygmund K(x) is, besides some regularity, homogeneous of degree — n, and has 
mean value zero on the unit sphere. The multiplier m is then homogeneous of degree 0. 
The Mihlin-Calderón-Zygmund theory and its variants take care of one important 
class of singularities of the kernel, but there are many other types of singularities 
and the study of their corresponding operators represents serious difficulties which 
are still unsurmounted. I cite an example which is both fundamental for the Euclidean 
theory and has some bearing on our later discussion. 

PROBLEM 1 (4). — Consider the case of T when the multiplier m is the characteristic 

(1) For the theory in the closely related and analogous setting where the unit disc replaces 
the upper half-plane, see ZYGMUND [36]. 

(2) See GELFAND and NEUMARK [7], and HARISH-CHANDRA [10], [11]. 
(3) See e. g. STEIN [29], and the references given there. 
(4) For some recent progress in the direction of the solution of this problem, see FEFFER-

MAN [4]. (Added in proof). A counterxample for p =f= 2 has been found by FEFFERMAN. 
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function of the unit ball in Un. It is known that T is not bounded on Lp(Un)9 when 
1 < p < 2n/(n +1) , or 2n/(n — 1) < p < oo. 7s it bounded when 

2n/(n + l)<p<2n/(n- 1)? 

PART I. — ANALYSIS ON THE BOUNDARY 

2. Examples of boundaries. 

We shall come more quickly to the main points if instead of giving a systematic 
discussion of the class of spaces X which arise as " boundaries " of non-compact semi-
simple groups or symmetric spaces, we list some typical examples (5) (6). 

One type of boundary (that could properly be called the maximal distinguished 
boundary) arises from an Iwasawa decomposition of G as KAN. Then the boundary 
in question of the symmetric space has two essentially equivalent realizations; either 
in its non-compact form, when it is isomorphic to the nilpotent group N, or in its 
compact form as K/M; M is the centralizer of A in K. One example of this is 

(2.1) G = SU(n-l)9 

G/K is the complex «-ball, K/M is its boundary 2n — 1 sphere. Here X is isomorphic 
with N9 and is defined below; it is the genuine boundary of the realization of G/K 
as a Siegal domain of type II, equivalent to the complex ball via a Cayley transform (7). 

X is { (z, co), ze C""1, CD e M1}, with the multiplication law 

(zl9 co1)o(z2, œ2) = (z1 + z2, co1 + co2-2lmzl.z2). 

Another example of a maximal distinguished boundary is 

(2.2) G = SL(n, U), 

and X is isomorphic with N = n x n strictly upper triangular matrices of G. 

Notice that when n = 3 in (2.2) we get a boundary which is isomorphic with the 
one that arises in (2.1) for n = 2. The problems that will arise however will be quite 
different since in the context of (2.1) we are dealing with a rank one situation, and 
in (2.2) we are in the higher rank case. 

Other examples, which do not arise from the Iwasawa decomposition, are: 

(2.3) G = Sp(n9U)9 

G/K is the Siegel upper half-space = { x + iy, x, y real symmetric n x n matrices, 

(5) See however the general theory of SATAKE [24], FURSTENBERG [5] and C. C. MOORE [21]. 
(6) We shall consider primarily the realizations of the boundaries in their non-compact 

form, as nilpotent groups. 
(7) For the realization of bounded Cartan domains as Siegel domains of type II, see PJA-

TECKII-SAPIRO [22]. 
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and y is pos. def.}. Here X = set of real sym. n x n matrices, with the additive 
structure. 

(2.4) G = SL(2n9 U), 

but if portioned into n x n blocks, then the appropriate boundary is isomorphic with 
I x } n > as x ranges over Mn(U) = n x n real matrices. Thus X can be taken to 

be Mn(U)9 with its additive structure 

Notice that X, in both (2.3) and (2.4), is a Euclidean space (of dimensions n2 and 

respectively); but the problems of interest in these examples will not be the 

Euclidean ones alluded to in section 1. 

3. Singular integrals on nilpotent groups. 

In generalizing the Euclidean theory to the nilpotent groups which arise as bound­
aries two fundamental notions need to be introduced: that of dilations (8), and that 
of a norm function (9). The first concept generalizes the standard dilations in IR given 
by scalar multiplication, i. e. x -+ dx9 3 > 0, x e Un, and is prompted by the obser­
vation that broadly speaking, much of the usual harmonic analysis on IR" is not only 
translation invariant, but also dilation invariant. The precise definition of dilations 
is as folio ws. We assume that with our group X (which is nilpotent and simply connect­
ed) we are given a one-parameter group of automorphisms of X, namely {ocô}0<0<009 

so that aôl o OLôï = aôlÔ2, a t = identity, which is continuous in Ò and also contractive. 
The idea we want is that lim OLô(K) reduces to the group identity, for any compact 

Ò-*Q 

set K. A more useful, and somewhat stronger assumption, and the one we shall 
adopt here, is that when we consider its effect on the Lie algebra of X, namely a j , 
then o$ = ÖÄ, where A is diagonable with all positive eigenvalues. 

Given such a one-parameter group of dilations we introduce a norm function 
x -> \x\ on X as follows. We have | x | = | x _ 1 | , also: 

(3.1) | x | > 0 

(3.2) [ x | is C00 on the set where | x \ > 0 

the measure 

(3.3) • 
dx 

M 
is invariant under dilations; here dx is Haar measure on X. 

For the purposes of Part I we add the important assumption: 

(3.4) | x | = 0 , 

if and only if x is the group identity. 

(8) See STEIN [27]. 
(9) See KNAPP and STEIN [16]. 
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This is equivalent with the statement that the sets {| x | <, C} are bounded. We 
shall see that whether we impose (3.4) or not makes a crucial difference in the theory. 

We cite two quick examples. First in IR" as(x) = ö.x, and \x\ = \\x\\", where 
|| . || is the usual Euclidean norm. Secondly for the boundary X corresponding to 
the unit ball cited in (2.1), we may take uô(x) = (öz9 ö

2a)) if x = (z, co), and 

| x | = ( | z | 4 + co2)"/2. 

Armed with the above notions, we come now to some of the results that can be 
proved. First, there is an elegant analogue of the Hardy-Littlewood maximal theorem. 
Let K be any bounded subset with non-empty interior on which the dilations aô are 
contractive in the sense that OL6(K) a K9 if S <> 1 ; e. g. K — { x, \ x | <, 1 }. Write 
Kô = aô(K)t and let 

(3.5) (Mf)(x) = sup — — | /(xy) | dy 
ö>O m(Kô) JKß 

where dy — dm denotes Haar measure. Then M satisfies all the usual properties of 
the maximal function. As a consequence whenever / is integrable 

1 I f(xy) -f(x) \dy = 0, 
JKa 

(3.6) lim 
5->o m(Kò) a 

for a. e. x e X. We shall come to the applications of the maximal function and (3.6) 
momentarily. 

We discuss next a basic class of singular integrals, written in the form 

where the function Q is homogeneous under OLô of degree 0, that is Q(aô(x)) = Q(x), 
and Q is suitably smooth away from the group identity. While the integrals have an 
interest for all complex values of s, and can indeed be studied as meromorphic functions 
of s, the range when Re (s) = 0 is the most critical, and we shall thus impose that 
restriction for the rest of this section. 

Assuming then that Re (s) = 0, and / is bounded and sufficiently smooth, then the 
integral (3.7) can be defined in several ways. First if the mean-value of Q, vanishes, i. e. 

I Q(x)dx = 0, 

then as a principal-value integral 

(3.7') lim f f(x.y)-WLd 
*-><> J I , I * . \ y \ 

or more generally, if the mean-value of Q vanishes or if s ^ 1, then the integral exists as 

(3.7") lim 
s'-*s 

Re(s')>0 

/ ( X - J O ^ U (-). 

(10) If s = 1 and the mean-value of fì is nonzero, then the integral cannot be defined without 
a non-trivial normalizing factor; such a factor has the effect of making it a constant multiple 
of/W. 
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The above limits exist for every x and also in the L2(X) norm. If we denote the 
limiting operator by / -> T(f), then the first result is its extensibility to a bounded 
operator on L2(X), 

(3.8) l | T ( / ) | | 2 ^ | | / | | 2 . 

Unfortunately this fundamental result cannot be proved by following the standard 
arguments of the Euclidean case of IR", because what would amount to a calculation 
in terms of the Fourier transform (in the sense of the unitary representations of the 
group X) seems to lead to unmanageable computations. The one attack which has 
succeeded in proving (3.8) was suggested by a method originally applicable only 
in IR". It turns out that even in the general case T can be written, in effect, as an 
infinite sum of uniformly bounded operators 

(3.9) T = £ Tj, \\Tj\\<A, 
; = - o o 

where the 7} are almost orthogonal in the sense 

(3.10) \\TfTk\\^a(\j-k\), | | 3 J 3 ? | | < ; a ( U - * | ) 

with a sequence { a(k)} which decreases sufficiently rapidly. The two conditions 
(3.9) and (3.10) suffice to prove the boundedness of T ( n ) . 

Once the L2 result (3.8) has been obtained then by using the facts about the maximal 
function (3.5), and following the broad lines laid down by Calderón and Zygmund 
for the case of Un, one can also obtain the U theory, and the L1 results, namely that 
the operators in question are of weak type (1,1) (12). 

Some rather immediate generalizations of the above are possible. First, the specific 

form of the kernel -—-p^ allows a variety of modifications in form. Secondly, 
I *• I 

and more interesting, is the fact that the same theory can be carried out in a setting 
which replaces the existence of dilations by appropriate substitute conditions on the 
open sets Kô = {x:\x\ < Ô}. This generalization is used if one wants to find the 
analogues of the above maximal function and singular integrals on the compact version 
of X, which is of course related to X via a Cayley transform. 

4. Some applications. 

We shall now discuss several applications of the theory sketched above. 

1. One can construct the intertwining operators for the principal series of repre­
sentations by means of the operator (3.7). Let G = KAN as before, then the repre­
sentations induced by irreducible representations of the subgroup MAN are the 
principal series. Thus there is natural action of G on the boundary X (where X is 
isomorphic with N), which action generalizes the usual action of 5L(2, IR) in IR1 given 

(11) See KNAPP and STEIN [16]. Earlier ideas of this kind are due to M. COTLAR. 
(12) This is due to RIVIèRE [23], KORANYI and VAGI [18], COIFMAN and DE GUZMAN [3]. 
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by fractional linear transformations (13), and in terms of which the principal series 
can be defined. Now the action of the elements of M on X are particularly simple, 
and these transformations have Jacobian determinant equal to one. This allows 
us to define the Jacobian determinant corresponding to each element of the Weyl 
group of G. The square roots of the reciprocals of these Jacobian determinants each 
provide us with an example of a norm function. It is to be emphasized that each 
satisfies the properties (3.1), (3.2) and (3.3) for appropriate " dilations " coming from 
the subgroup A, but in general not the crucial compactness property (3.4). However, 
in the case of rank one (when dim A = 1), the non-trivial element of the Weyl group 
gives u s a norm function (satisfying also (3.4)), and the dilations are provided by the 
conjugations of X given by A. All the intertwining operators are then of the form (3.7), 
after suitable normalization. This construction provides the basic information as to 
irreducibility and analytic continuation (that is existence and unitarity of the comple­
mentary series). The general case, when G has higher rank, can also be treated to some 
extent, since the intertwining operators can then be written as products of rank-one 
intertwining operators (14). 

2. A special case of the intertwining operators, which arise for a particular repre­
sentation of the group SU(n, 1) (discussed with its boundary in (2.1)) is the Cauchy 
integral for the complex ball. In the unbounded realization of the ball, if one takes 
the Cauchy-Szego kernel which represents H2, then as boundary integrals one is lead 

the singular integrals (3.7) with -—- = constant x (\z\2 + ico)~n, and 

| x | 

i x i = ( i z r + co2)«/2, 

where (z, œ)eCn~1 x U1, and OLô(Z9 CO) = (öz9 ô
2co) (1S). 

3. In this application the space X = Un, but the dilations are not the usual ones. 
These are now given by a6(x) = (öaixl9 <5fl2x2,..., Sanx„), with x = (x± x„), where 
at > 0. We can put 

| x | = i n f { A > 0 , txfß2at^ l}Ifl<. 

Then the theory described above reduces essentially to the Euclidean theory of singular 
integrals with separate homogeneity due to Jones, Fabes and Rivière, Lizorkin and 
Kree (16). Notice that this has many points in common with example 2 just cited, 
in that the degree of singularity of the kernels depends on the different directions of 
approach to the group identity. The present application differs from the preceding, 
however, in that the convolution is commutative. 

(13) This comes about by identifying (modulo sets of measure zero) G/MAN with 6N, 
where 6 is the Cartan involution, and then identifying X with 6N. 

(14) For details concerning the above application to intertwining operators, see KNAPP 
and STEIN [16]. Some earlier works in this subject may be found in KUNZE and STEIN [20], 
and SCHIFFMAN [25]. See also the recent paper of HELGASON in Advances in Mathematics, 
vol. 5, 1970, 1-154. 

(15) See GINDIKIN [9] and KORANYI and VAGI [18]. 
(16) See e. g., KREE [19]. 



180 E. M. STEIN G 

Examples 2 and 3 suggest the following problem which, as should be understood, 
we state only rather vaguely. 

PROBLEM 2. — Construct appropriate algebras of singular integrals (or more generally 
pseudo-differential operators), together with their symbolic calculus, which algebras 
are to incorporate such examples as 2 and 3 as their building blocks. 

It is strongly indicated that such algebras should have applications to various 
non-elliptic problems, in particular in complex analysis, such as behavior near a 
pseudo-convex boundary and properties of solutions of d problems. 

4. As a final application, in this case of the maximal function (3.5) we mention 
some results dealing with harmonic functions on the symmetric space G/K and center­
ing about Fatoü's theorem and Poisson integrals. In the case of bounded functions, 
the generalization of the boundary behavior guaranteed by the classical Fatou theorem 
turns out to be a direct consequence of two facts: a) Furstenberg's representation of 
bounded harmonic functions as Poisson integrals, and b) the maximal function, and 
in particular (3.6) (17). 

However, in the case of Poisson integrals in general (e. g. of U functions), much 
remains to be done. The problems involving Poisson integrals will be discussed 
more fully when we treat the higher rank case below. 

PART II. — ANALYSIS ON THE BOUNDARY; 
HIGHER RANK CASE 

We shall discuss now the situation when the assumption (3.4) concerning the norm 
function is not satisfied, that is when the sets { x : | x \ < c } are no longer bounded. 
Very often in this case the group of automorphisms of X which preserve the measure 

-—: is larger than a one-parameter group, and so in considering the appropriate dila-
1*1 
tions it is not entirely natural to limit oneself to a fixed one-parameter group of dila­
tions as we did in Part I. It is for this reason that we refer to the situation when (3.4) 
is not satisfied as the higher rank case. 

The rank-one case treated above provides us—at least on the formal level—with 
an idea of the kind of problems that may be of interest in the general case. However, 
those results have only a limited applicability in the present context; one instance 
of this is the decomposition of intertwining operators for the principal series as products 
of rank-one intertwining operators, already mentioned. In general, however, new and 
different methods surely need to be developed here. 

We shall organize our presentation by discussing several different but related 
problems which reflect the fragmentary state of our knowledge at this stage. 

(1 7) HELGASON and KORANYI [12]. This has been superseded by a later results of K O R A -
NYI and K N A P P and WILLIAMSON. See [17]. 
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5. The Siegel upper half-space. 

We are dealing with the example cited in (2.3). X is the space of n x n real sym­
metric matrices under addition, which is the Bergman-Shilov boundary of the Siegel 
domain = { x + iy; x, y real n x n symmetric, y pos. def.}. The action of Sp(n, U) 
imposes the following structure on X. The dilations are provided by the mappings: 

i i + i 
x -> axla9 where a e GL(n9 R), and for norm function we take | x | = | det (x) | 2 . 

Let us first look at the analogues of the integrals (3.7) with the kernels r^- , 
1*1 

where Q is homogeneous in the sense that Q(axla) = Q(x), a e GL[n, IR). These inte­
grals have a long history, going back to Siegel, Bochner, and others. We indicate an 
interesting example arising from the Cauchy kernel. Consider the H2 space of holo­
morphic functions f(x + iy) on the Siegel upper half-space, those which satisfy 

sup 
y>0 

I / ( * + iy) \2dx < oo. 
x 

Such functions have boundary values, namely lim f(x + iy) =f(x) exists in the 

L2(X) norm. Their integral representation in terms of their boundary values is 
then (18) 

(5.1) f(x + iy) = c 
- n - l 

X 
(det (t -f iy)) 2 f(x - t)dt 

where c is an appropriate constant. 

The boundary value functions form a closed subspace of L2(X), and the orthogonal 
projection on this subspace is formally given by an operator of the form (3.7), where 

Q(x) - " - i 
now -—r = c (det (x)) 2 . Rigorously the operator is given as the limit as y -• 0 

1*1 
in (5.1), and more particularly as 

J - H - l 

(det (t + iel)) 2 f(x - t)dt. 
... x 

This operator then is clearly a natural generalization of the Hilbert transform to the 
present context. A host of questions arise for it, but only a few have an answer at 
present. We indicate one such unsolved problem: 

PROBLEM 3. — The operator (5.2) is a projection on L2(X). Is it bounded on any 
other LP(X) spacel 

The close relation of this problem with problem 1 (in section 1) can be aeen as follows. 
The operator (5.2) is a multiplier operator corresponding to the characteristic function 
of the cone of positive definite real n x n matrices. When n — 2 this cone is equivalent 
with a circular cone in IR3, and the intersection of that cone with an appropriate plane 
is a disc in IR2. Thus by a theorem of de Leeuw, a positive resolution of problem 3 
for any p, when n — 2, implies the same for problem 1 when n = 2. 

(18) See BOCHNER [1]. 
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Part of the difficulty in dealing with integrals such as (5.2) lies in the fact that the 
singularities of the kernel, that is where | x | = 0, are a whole variety and not merely 
a point. However, one is not always stimied by this obstacle. An example of this 
is the Poisson integral, closely related to (5.2); it is given by 

(5.3) 

where 

Py(t)f(x - t)dt 

^ d e t J 2 ^ 
y ' | det (x + iy), 

and feLp(X). 

It can be shown that as y -> 0 " regularly ", then the integral (5.3) converges to / 
almost everywhere, even for feL\X) (19). This result is rather delicate because 
as y -• 0, the singularities of the kernel Py(x) again appear on the variety | x | = 0 . 
It shows us that the hope of carrying out a theory for integrals of the type (5.2) may 
not be entirely forlorn. 

Our discussion for the Siegel upper half-space may be generalized as follows. We 
consider any bounded symmetric domain of Cartan and realize it as a tube domain 
when this is possible, or in general as a Siegel domain of type II (20). The Cauchy 
kernel has also been determined (21), and we can of course pose the analogue of prob­
lem 3 (For the complex ball the answer is in the affirmative for 1 < p < oo, by the 
discussion of section 4). Finally there is an analogue of the Poisson kernel, and the 
result sketched above is known to hold in that generality (19). 

6. Poisson integrals. 

We have already alluded to Poisson integrals at several occasions, and we shall 
now discuss them in their generality. Briefly the setting is as follows. For any 
symmetric space G/K, the class of harmonic functions are those annihilated by all 
G-invariant differential operators which annihilate constants. Equivalently, these 
functions can be characterized by the mean-value property. Now every harmonic 
function which is appropriately bounded at oo can be represented as a Poisson integral, 
which is in effect a convolution on the group X isomorphic to N. By the mean-value 
property the Poisson kernel P can be described as follows. We have already pointed 
out the existence of a natural correspondence between X and the compact homogeneous 
space K/M, if one leaves out an appropriate set of measure zero (22). If we transplant 
Haar measure of K/M to X we get a measure of the form P(x)dx, where dx is Haar 
measure on X. 

Now the subgroup A acts on X by automorphisms x -* axa'1, a e A. Let OLô be 
a one-parameter subgroup of these automorphisms which are dilations in sense defined 

(19) STEIN and N. J. WEISS [33]. 
(20) See footnote (7). 
(21) See GINDIKIN [9]. 
(22) See footnote (13). 
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in section 3. It is then easy to see that for any fe LP(X), 1 < p < .oo, the Poisson 
integral 

I (6.1) } x P(y)f(x-^y}dy 

converges to / in the LP(X) norm, as Ö -* 0. 

The main real-variable problem can then be stated as follows. 

PROBLEM 4. — Does the integral (6.1) converge almost everywhere, as Ö -+ 0, for 
any feLp(X)9 1 < p ? 

One gets an idea of the resistive nature of the problem by observing the increase 
in difficulty met in passing from the classical case of the upper half-plane, to the case 
of the product of half-planes contained in the theorem of Marcinkiewicz and Zyg­
mund (23). 

The farthest advance of the problem at present is the solution of a closely related 
variant for the symmetric spaces which are bounded domains, already alluded to in 
section 5. That variant differs from the present one in that it refers to a different 
boundary of the symmetric space in question, one that can be viewed as a quotient 
space of the maximal distinguished boundary occurring in problem 4 (24). 

There is a reason why problem 4 in its general setting seems more complicated 
than the analogue already obtained for the case of bounded domains. To over­
simplify matters a little, it is as follows: the locus of singularities in the latter problem 
(e. g. {det (x) = 0 } ) is generated by straight lines issuing from the origin. Along 
these lines the theory for IR1 is applicable and then the result follows by a rather delicate 
calculation which is akin to " integrating " over appropriate lines. In the general 
case, however, straight lines would have to be replaced by other curves; these curves 
are the orbits of points under one-parameter groups of dilations. The above raises 
a simply-stated (and possibly fundamental) problem which we shall discuss only in 
the context of IR". Let y(t) be the curve y(t) = sign (t)(A1\t\

ai, A2\t\
a2,. . .,A„\t \"n) 

where AY A„ are real, and a{ > 0. Consider the analogue of the Hilbert transform 

(6.2) ( T / ) ( x ) = | f(x + y®)j -f 
(Notice that if ax = a2 ... = an, then this reduces essentially to the classical Hilbert 
transform along the direction defined by (Al9 A2,.. .9A„)). Consider also the asso­
ciated maximal operator 

(6.3) (M/)(x) = s u p ^ fh\f(x + y(t))\dt 

PROBLEM 5. — Is there an Lp(Un) theory for T and Ml 

An analogous result for nilpotent groups (in particular for M) could be applied 
to the solution of problem 4. 

(23j See ZYGMUND [36], Chapter 17. 
(24) This incidentally raises the question of giving an intrinsic characterization of the 

functions which arise as Poisson integrals for the other boundaries. 
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There is one hopeful indication that may be mentioned concerning problem 5. 
A calculation carried out by Wainger and myself (see [31]) shows that the operators (6.2) 
when suitably defined is bounded on L2(IRn), (and the bound does not depend on 
A±9 A2,.. ,,AJ. 

7. The matrix space Mn(U). 

We shall now consider the example (2.4), with X = M„(U) the n x n real matrices, 
and G = SL(2n, U). Here we take as dilations the mappings x -> axb~x, with 
a, be GL(n, IR), and as norm function | det (x) \n. 

This example has obviously some resemblance to that of the Siegel upper half-
space in section 5, but it differs from it in that the space Mn(U) has not only the obvious 
additive structure (its group structure), but upon removal of a set of measure zero 
what remains also has a multiplicative structure (GL(n, IR)). The situation has an 
analogy with that of a field (e. g. IR1) where one of the concerns is with the interplay 
of an additive and a multiplicative harmonic analysis. The additive harmonic analysis 
here is that given by 

(7.1) nn e2nitHxÈy)f(y)dy, 
M„(R) 

while the multiplicative analysis (the analogue of the Mellin transform) is given by 
the unitary (infinite-dimensional) representations of GL(n, U). This interplay is at 
the bottom of the results detailed below (See also section 8). 

The most direct analogue of the integral (3.7) arises if fì s 1. We consider there­
fore 

(7-2) /,(/)=[ /(x-y)-^-
jM„(m i y i 

The L2 theory of this integral is contained in the following statement (25). Suppose / 
is C00 and has bounded support. (7.2) initially defined as an absolutely convergent 

integral when Re (s) > 1 has a meromorphic continuation into the whole com-
n 

plex plane, and when Re (s) = 0 the operator / -> Is(f) is unitary modulo a multi­
plicative constant. More precisely, with 

y»W = ft <ns - j + 1), a(s) = n^-T^/T^-^, 

we have that when Re (s) = 0, Is is a multiplier operator with multiplier y^(s) | x \~s. 

The above also has the following consequences: 

(a) The facts just stated can be reinterpreted by saying that the Fourier transform 
of the distribution | x [ " 1 + s is y*(s)l*l~s> where both distributions are defined by 
analytic continuation. This functional equation is closely related to the functional 
equations of generalizations of the zeta function, and is therefore of interest in several 
number-theoretic questions (see also the generalizations in (8.3) below). 

(25) See the references cited in footnote (29). 
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(b) The operators (7.2) also serve as intertwining operators, but not for the principal 
series. They arise typically in the " degenerate series ", in this case for the group 
SL(2n9 U). 

(c) If we write A(s) = y^1(s)Is, and B(s) as the multiplication operator by | x | ~ s , 
then as we have seen A(s)B(s) is unitary when Re (s) = 0. In addition A(s)B(s) has 
an analytic continuation as bounded operators (on L2(M„(IR)), in the strip 
0 <; Re (s) < 1/2«. This fact is important in constructing certain uniformly bounded 
and unitary (complementary series) representations of the group SL(2n, IR). 

There are many variants and generalizations of the above that can be suggested; 
we shall discuss briefly one typical of those we have in mind. The underlying space X 
will be IR" and we will pick a fixed non-degenerate quadratic form Q on it, which for 
simplicity we normalize as Q(x) = x2 + x\ ... + x\ — x 2

+ 1 ... — x2. We intro­
duce the norm function | x | = | Q(x) |"/2. The analogue of the integral (7.2) is the 
integral 

(7.3) 7s(/) = f(x-y)\Q(y)\-^-^dy 

It has well-known analytic continuations, going back to M. Riesz and Gelfand and 
Graev (26). We let B(s) denote the operator of multiplication by | x |~s = | Q(x) \~nsf2. 

PROBLEM 6. — Are the IsB(s) bounded operators on L2(X) in some strip of the form 
0 < Re (s) < c? (27). 

An interesting approach to this problem might be to study the decomposition of 
the action of 0(n, Q) on L2(IR"), since after all, the operators IsB(s) commute with this 
action (28). 

PART III. — ANALYSIS ON THE GROUP 

8. Euclidean Fourier transform. 

The interplay of the additive and multiplicative harmonic analysis on M„(IR), men­
tioned in the previous section, will now be outlined. We take the additive Fourier 
transform given by (7.1). A simple change of variables leads to a slight modification 
of itself, which we shall call ^ * where now 

(8.1) ^ * ( / ) = e*/, 

with the convolution taken on the group GL(n, IR), and 

e(x) = e2nitr^x-1)\x\-nl2. 

(26) See GELFAND et al. [8]. 

(27) When Q is definite, the answer is yes, with c = 1/2. The cases n = 1 and 2 are in 
KUNZE and STEIN [20] ; their method essentially applies to all n, but in the definite case only. 
When n — 4, k = 2, we are back to M2(M), s o c = 1/4. 

(2B) Part of the decomposition of the action of 0(«, Q) on L2(IRn) is in the book of VILEN-
KIN [34]. 
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The properties of ^ * are then twofold: #"* is unitary on L2(GL(n, IR)), and secondly J5"* 
commutes with both left and right group multiplication, i. e. with the action 
/(*) -> /(a -1*)> /(*) -> f(xb), a, beGL(n, U). (The original #" had this com­
mutation property only when both a and b were orthogonal). &* is therefore a 
central operator on L2(GL(n, IR)). From this it follows by a general form of Schur's 
lemma that whenever x -> p(x) is an irreducible unitary representation of GL(n, U) 
we may expect that 

(8.2) P(&*(f)) = y(p)p(f) 

whenever / and &*(f) are in L\GL(n, R)) n L2(GL(n, IR)). Here y(p) is a constant 
factor which depends only on the representation p. 

This identity is formally equivalent with the statement 

/ Pix) \ 
VI*! 1" 5 / (8.3) ^{jxT^J = ys{PÌP(tx~1){xr 

where the factor ys(p) can be immediately read off from the factor y(p). 

When p is the trivial representation, then ys(p) reduces to the factor y#(s) of the 
previous section. The other cases where the factor ys(p), (and thus y(p)) has been 
computed explicitly are those for the representations p which arise in the decomposition 
of L2(GL(n, U)), (i. e. those which occur in the " Plancherel formula " for the group). 
In this case, because of the unitary character of « "̂*, all the factors y(p) have absolute 
value one. 

It is particularly simple to describe these factors in the analogous case correspond­
ing to M„(C). In that case if the representation is induced from the character of the 
triangular subgroup which has value 

for a triangular matrix with eigenvalues (<5l5.. .,<5„), then 

M = ft { W J r ( ' ^ ' Y + '"tj)/r(|m^V"^ } 
The formulae in the case M„((R) have a similar appearance but are more complicat­

ed because there are now [n/2] + 1 different series of representations which occur in 
the L2 reduction of GL(n, U) (29). 

The mapping / -* p(f) may be viewed as the natural generalization of the Mellin 
transform (to which it reduces when n = 1). The explicit determination of the factors 
y(p) which occur in (8.2) gives the desired multiplicative analysis of the additive Fourier 
transform in M„(IR). This " Mellin transform " analysis of !F is the main tool in the 
proof of several results of the previous section, in particular those stated in paragraph (c). 

(29) The results sketched above, and those in section 7, were first obtained in the complex 
case (corresponding to Af„(C)); see STEIN [26]. In the real case they were obtained by GEI-
BART [6], but in the meanwhile several of these problems had been dealt with from a different 
point of view by GODEMENT (unpublished), and JACQUET and LANGLANDS [14]. These authors 
have also obtained extensions to the /7-adic analogue, when n = 2. 
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A related question arises by analogy with the ordinary Fourier transform on IR". 
The fact that the Fourier transform commutes with rotations leads to a well-known 
decomposition of L2(IR"), compatible with the Fourier transform. The various inva­
riant subspaces are defined in terms of spherical harmonics, and the restriction of the 
Fourier transform to each can be described in terms of appropriate Bessel functions (30). 
The theory of higher Bessel functions, in the setting of matrix spaces, has been started 
by Bochner (31), but much still remains to be done. This discussion is the background 
for the following problem. 

PROBLEM 7. — Describe the action of the Fourier transform &* on L2(M„(IR)) when 
restricted to the subspaces invariant under the action f(x) -*• f(a~ixb)9 a9beQ(n)9 

in terms of appropriate generalizations of spherical harmonics and Bessel functions. 

9. Other problems on the group manifold. 

The last general question we shall deal with is the following. Is it possible to develop 
a systematic generalization of some of the objects dealt with in Parts I and II, such 
as Hilbert transforms, boundedness of various convolution operators, multipliers, etc. 
but on the semi-simple group itself, and not on one of its boundaries. 

For compact groups, the answer is surely yes (32). However, for non-compact 
groups, the situation seems to be far from clear. Part of the difficulty of the problem 
there, and also its interest I believe, is that unlike the classical case the group Fourier 
transform of an U function, 1 < p < 2, is actually analytic in some of its parameters. 
It is thus more like the classical Laplace transform than the classical Fourier trans­
form. The analyticity of the Fourier transform is intimately connected with the possi­
bility of analytic continuation of the representations of the non-compact semi-simple 
groups, but even this subject is far from understood (33). 

To get a better inkling of the nature of these questions, we pose the simplest convolu­
tion problems. Suppose we know the LP classes of two functions / and g9 what is 
the class of f*gl There is a very general answer, valid for any locally compact 
unimodular group, and it is given by Young's inequality and its variants. Young's 
inequality is 

l l / * g | | , < l l / I U I g | | , , where Ì = 1 + Ì - 1. 

The variants of Young's inequality (which include the theorem of fractional integra­
tion for IR" of Hardy, Littlewood and Sobolev) arise when we replace these norms by 
" weak-type " norms. For IR" these inequalities are in the nature of best possible; 
for semi-simple groups this is far from the case. In fact the evidence already at hand, 
and described below, suggests the following L2 convolution problem for semi-simple 
groups. 

(30) See e. g. STEIN and WEISS [32], Chapter IV. 
(31) See BOCHNER [2] and HERZ [13]. 
(32) See STEIN [28], where part of this has been carried out; see also COIFMAN and DE GUZ­

MAN [3] and N. J. WEISS [35]. 
(33) See KUNZE and STEIN [20], and the survey article, STEIN [30]. 
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PROBLEM 8. — Suppose G is semi-simple and has finite center. Prove that 

I l / * s l l 2 < ^ i m i j l s l l 2 5 if I < ; P < 2 . 

This problem involves only the relative sizes of | / 1 and \g\, and thus, one would 
think, should be resolvable without any detailed study of the group Fourier transform 
of / or of analytic continuation of representations. Paradoxically however, that 
approach is the only one that has had any substantial success so far. The answer to 
problem 7 is known to be affirmative in the following cases (33). 

(i) G = SL(2, U) 
(ii) G is any complex classical group, i. e. SL(n, C), SO(n, C), or Sp(n, C) 

(iii) G is any semi-simple group, but the function / is assumed to be bi-invariant, 
i. e. f(kxxk2) = / ( x ) , when kl9k2eK9 and K is a maximal compact subgroup 
of G. 
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ALGEBRAIC K-THEORY 

by RICHARD G. SWAN 

I will give here a brief account of the history of algebraic ^-theory and some of 
its main ideas and problems. Some of the work being done in this field at the present 
time will then be discussed in more detail. 

1. Origin and basic results. 

Although some early work of J. H. C. Whitehead [41] [42] and G. Higman [19] was 
later recognized as properly belonging to algebraic K-theory, the subject really began 
with Grothendieck's work on the Riemann-Roch theorem [9]. In this work, Gro­
thendieck introduced the functor K, now known as K0. For the case of rings, this 
functor may be described as follows. If R is a ring with unit, K0(R) is the abelian group 
with one generator [P] for each finitely generated projective K-module P, and a relation 
[P] = [P'] + [P"] for each short exact sequence O -* P ' -• P -• P" -• 0. The 
definition obviously extends to other categories, eg. sheaves, vector bundles, etc. 
Aside from its use in the Riemann-Roch theorem, this functor has found a number 
of applications to topology and algebra. For example, Wall [39] showed that if, 
X is a connected space dominated by a finite CW complex, there is a well defined 
obstruction w e K0(Zn1(X)) such that X has the homotopy type of a finite complex 
if and only if w = 0. This result was then used by Sieben mann [31] to give a similar 
obstruction to the possibility of adding a boundry to an open manifold. This result, 
together with a calculation of K0(Zn) for a free abelian group n, was then used to prove 
the important Splitting theorem for manifolds [32]. A more algebraic application 
may be found in [36]. If G is the cyclic permutation group acting on 47 indetermi-
nates xi9 then the fixed field of Q(xl9.. .,x41) under G is not a pure transcendental 
extension of Q. 

Probably the best known application of Grothendieck's functor K is the topological 
K-theory of Atiyah and Hirzebruch [3]. These authors consider a topological space X 
and define K°(X) by using vector bundles on X in place of the projective modules 
considered above. By applying this functor to suspensions of X9 they define Kn(X) 
for n < 0. Bott periodicity shows that Kn(X) « Kn+8(X) and this is used to define 
Kn(X) for all neZ. The resulting functors K" constitute a cohomology theory, 
i. e. they satisfy the exactness, excision, and homotopy axioms of [10]. The resulting 
topological K-theory has found many important applications, for example in Adams' 
solution of the vector field problem for spheres [1]. A good exposition of this theory 
may be found in [2]. 

The next big step in algebraic X-theory was taken by Bass [4]. He tried to find 
algebraic analogues of the topological functors Kn. By imitating the construction 
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of bundles over a suspension using clutching functions, he found a good definition 
for the functor K±(R). This is generated by;,symbols [P, a] where P is a finitely gene­
rated projective R-module and a is an automorphism of P. The relations are 
[P, aß] = [P, a] + [P, ß] and [P, a] = [Pf, a'] + [P", a"] if O - P ' •*> P -A P" -• 0 
is exact and od = za', ja = a")". Thie group turns out to be the same as one introduced 
by J. H. C. Whitehead [41] [42], K±(R) = GL(R)/E(R) where E(R) = [GL(R), GL(R)] 
is the subgroup of GL(R) generated by elementary matrices e^r) = 1 + retj. White­
head's theory of simple homotopy types shows that the group K^Zn) has important 
topological applications. An example of this is the well known s-cobordism theo­
rem [22]. 

Bass also succeeded in proving a partial analogue of the exactness and excision 
properties. 

THEOREM 1 (Bass). — If I is a 2-sided ideal of R, there is an exact sequence 

K±(R, I) -» Kt(R) -+ K,(R/I) -» K0(R, I) -> X0(Ä) -+ K0(R/I). 

The group K0(R, I) depends only on I considered as a ring without unit. 

The second statement expresses the excision property. For the definition of the 
relative groups Kt(R, I) and the proof, see [6]. 

There are two other, essentially equivalent, formulations of this result which avoid 
the use of the relative groups. 

THEOREM 2 (Milnor [26]). — Let 

A -> At 

A2 -* A' 
2 / 2 

be a cartesian diagram of ring homomorphisms such that f± or f2 is onto. Then there 
is an exact Mayer-Vietoris sequence 

KM) - KMÙ © KMi) -> W ) -> KM) -> KoWi) 0 K0(A2) -» KM')-

The other formulation, due to Gersten, requires a preliminary definition. If R 
is a ring without unit, we can adjoin a unit formally to R getting a ring R+ with unit 
and a split exact sequence 0 - > # - > R + ± > Z - » O . If F is a functor from rings 
with unit to abelian groups, we extend the definition of F by setting 

F(R) = ker [F(R+) -> F(Z)]. 

This is consistent provided that F preserves finite products [35], in particular for K0 

and Klm Theorem 2 continues to hold with this extended definition. 

THEOREM 3 (Gersten [13]). — If 0 -+ A -> B -* C -* 0 is an exact sequence of 
rings, there is an exact sequence KtA -» K^B -> K^C -> K0A -> K0B -> K0C. 

The hypothesis means that A is a 2-sided ideal of B and C = S/A. Therefore A 
has no unit if C # 0 (in general). 

In addition to the above exact sequences, there is also an exact sequence associated 
with a localization [6]. This is rather technical and we will not consider it here, but 
will only mention one of its most important consequences. The following theorem 
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is due to Bass, Farrell and Hsiang [6] [12] and gives a more precise version of an earlier 
result of Bass, Heller and Swan [7]. 

THEOREM 4. — There is a split exact sequence 

0 -• KtR -• K j t f ß e i ^ P t r 1 ] -+ KiR[t, r 1 ] -> K0R -• 0 

Also we have K^t] = K±R © Nil R where Nil R = 0 if R is regular. 

It follows that K^lt, r1] = KtR © K0R © Nil R © Nil R. 

The group Nil R is defined in a manner similar to K0R using pairs (P, v) where v 
is a nilpotent endomorphism of P. Details may be found in [6]. This group also has 
an interesting topological application [11], 

2. Problems. 

One of the most important problems in algebraic X-theory is simply to compute 
the groups KtR for various rings R. Group rings Zn are particularly important in 
view of the topological applications. Considerable work has been done on various 
special cases. Most of the results can be found in [6] [8] [25]. Recently Kervaire and 
Murthy [23] computed X0(Z7c) for % cyclic of prime power order. The computation 
makes use of classfield theory. 

Another important problem is that of finding analogues of algebraic X-theory 
corresponding to the various classical groups. For KXR = GL(R)/E(R), the group 
GL(R) is replaced by orthogonal, symplectic, and unitary groups. For K0 we consider 
projective modules with quadratic, symplectic, and Hermitian forms. There is consi­
derable topological interest in this since Wall's surgery obstruction groups are X-func-
tors of this type [40]. Work on this problem has been done by Wall and his students, 
Bass [5], Milnor [27], Shaneson [30] and M. Stein [34]. 

A third major problem is that of defining functors K„(R) for all n e Z. This problem 
is immediately suggested by the analogy with topological X-theory. A great deal 
of work is being done on this problem at the present time. I will discuss here some 
of the results which have been obtained. 

It is natural to ask that the functors K„ satisfy the analogues of Theorems 2 and 3, 
i. e. that the exact sequences extend indefinitely in both directions. We would also 
like the analogue of Theorem 4 to hold with Kl9 K0 replaced by Kn9 Kn^1. For 
n < 0 this determines K„ uniquely. If we have Kn, Kn_1R must be the cokernel of 
the map KnR[t] © K„R[t~ *] -+ K„R[t9 r 1 ] . This definition of Kn for n < 0 is due 
to Bass [6] who shows that it satisfies all the above requirements. Also KnR = 0 
for n < 0 if R is regular. Details may be found in [6]. 

For n ^ 2, we are not so fortunate. A number of definitions for K„R have been 
proposed but no analogue of Theorem 2 has been found. This is explained by the 
following result. 

THEOREM 5. — There is no functor K2 from rings to abelian groups such that for 
each cartesian diagram 

A - A, 
I if 
A2 - A' 
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with f a split epimorphism, there is an exact sequence 

K2AX © K2A2 -> K2A
f -> K±A -* K^ © KXA2 

We will now consider some of the definitions which have been proposed for KnR, 
n^2. 

3. Milnor's K2. 

A very reasonable candidate for K2R was defined by Milnor [26]. The elementary 
matrices e^r) satisfy certain relations which were found by Steinberg. Milnor consi­
ders the group St(R) with generators xtj(r) satisfying the Steinberg relations 

Xij{r + s) = xfj(r)xfj(s), [Xij(r), xkl(s)] = 1 

if i # 1, j ^ k, and [x£j(r), xjk(s)] = xik(rs) if i ^ h. Define cp : St(R) -> GL(R) by 
cp(xtj(r)) = etj(r). Milnor defines K2R = ker cp = center (St(R)). 

THEOREM 6 (Milnor [26]). — If 

A -> Ax 
i in _ 
A2 Ti A' 

is a cartesian diagram of ring homomorphisms and both ft and f2 are onto, there is an 
exact sequence 

K2A -> K2Ai © K2A2 -> K2A' -> KtA -> KXAX © K±A2 -» KXA' -+ ... -* K0A'. 

This is quite a reasonable approximation to Theorem 2 and about the best one can 
expect in view of Theorem 5. There is no obvious analogue of Theorem 3 but the 
sequence of Theorem 1 extends to 

K2(R, I) ^ K2R - K2(R/I) ^ K,(R, I) ^ K,R ^ K,(R/I) -^ . . . -> K0(R/I). 

Excision fails for K^R, I) by Theorem 5. 

It is not known whether the analogue of Theorem 4 holds for K2 but J. Wagoner [38] 
has recently shown that K2(R[t, t"1]) = K2R © K±R © ? C). The last summand is 
still unknown. It is also not known whether K2R[t] = K2R for R regular. 

The group K2R is extremely difficult to compute in general. Recently, H. Matsu-
moto succeeded in computing K2F for any field F using a very ingenious construction. 
This leads to some interesting results on algebraic number fields [31]. 

One further difficulty with K2 is that there is no obvious definition in terms of cate­
gories similar to that of K0 and Kt. In § 7 we will discuss one possible solution to 
this problem. 

4. Theory of Gersten and Swan. 

For convenience, we will work here with rings without unit. If R is a free ring, 
Gersten [14] and Stallings [33] have shown that K0R = K±R = 0. This suggests 

(1) This result was also obtained independently by KAROUBI [43]. 
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the requirement KnR = 0 for free R. This resembles the effacability axiom of homo-
logical algebra [18] and suggests defining Kn by taking the derived functors of GL( — ). 
Since this is nonabelian, we have to use simplicial methods. A resolution of GL 
is a functor G^ from rings to simplicial groups together with an augmentation 
e: G0 -• GL such that ed0 = EôX . We want to choose some such resolution and 
define KnR = nn_2(GJ(R)), for n > 3. We define Kx and K2 by the exact sequence 
0 -• K2R -> TIQG^R) -> GL(R) -• KXR -• 0. In [35], I used the theory of 
acyclic models to find such a resolution. The requirement that KnR = 0 for a free 
ring R is equivalent to the requirement that G^ be aspherical on models, the models 
being the free rings. Among all such resolutions, there is a universal one G^ such 
that if H% is any resolution which is aspherical on models, there is a map G^ -> H^ 
unique up to homotopy. Using this G t we get a series of functors which I will denote 
by Kl. A different approach was investigated by Gersten [15]. He considers the 
forgetful functor U : Rings -• Sets and its coadjoint F(S) = free ring on S. The 
composition T = FU is a cotriple on the category of rings which can be used to 
construct a simplicial ring T^(R). Gersten uses the resolution GL(T^(R)) -• GL(R) 
to define his K functors which I will denote by K%. Gersten's resolution is aspherical 
on models so there is a map K% -»• K%. I have recently shown that this is an isomor­
phism and will therefore use the notation K%s for these functors. It is known that 
K™ = Kt and that there is an epimorphism K2 -* K2

S. This will be an isomorphism 
if and only if K2R = 0 for free rings R but this has not yet been proved. 

The sequence of Theorem 1 is easily extended by converting G%(R) -+ G%(R/I) 
into a fibration but it is not known whether there is an exact Mayer-Vietoris sequence 
for the K™ under any reasonable hypothesis, eg. that of Theorem 6. It is also not 
known whether any of the statements of Theorem 4 hold for the K%s. The problem 
of computing K%s, even for a field, seems to be extremely difficult. It is also not 
known how to extend the definition to categories. 

5. Theory of Karoubi-Villamayor. 

In [28], Nobile and Villamayor gave another definition of Kn, essentially by defining 
the " suspension (2) " of a ring. Independently, Karoubi [20] gave a definition of Kn 

for categories. The two points of view were combined in [21]. The construction 
of these functors was rather complicated. Recently, Gersten gave a simpler definition 
using simplicial methods [16]. I will follow Gersten in denoting these functors by 
K„(R). The theory has the disadvantage that K^R) # K^R). In fact, 

Kt(R) « GL(R)/U(R) 

where U(R) is the subgroup generated by all unipotent elements. However, except 
for this, the theory has many very nice properties. The functors K„ can be characterized 
by axioms similar to those of homology theory [16] [21]. To state these, we need some 
preliminary definitions. We again use the category of rings without unit. A ring 
homomorphism / : R -• R' will be said to have the covering homotopy property 
if every X(t) e GLR'[t] with X(0) = 1 can be lifted to GLR[i\. We say that / is a fibra­
tion is R[xu.. .,xm, yu.. .,y„, yï1,.. ..y'1] -> R'[xl9.. .9yl9.. .9yï\...] has the 

(2) Karoubi points out that the term " loop space " would be more appropriate. 
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covering homotopy property for all m, n. (This is somewhat stronger than the property 
used in [16] [21]). We also say that two ring homomorphisms f, g'. R - • R' are 
homotopic ( / ä g) if there is a ring homomorphism h : R -> R'[£] such that d0h = / , 
fljLÄ = g9 where 0, : R'[r] -» R' is given by df(p(r)) = p(i), i = 0, 1. 

The functors K„ are characterized by the following axioms [16] [21]. 

(1) For each exact sequence O-+A-+B->C->0of ring homomorphisms 
with / a fibration, there is a natural exact sequence 

. . . - • KnA -> KnB -> KnC -> K „ _ I ; 4 -> . . . - • K^B -> jqC -> K0i4 -> X 0 5 -> KQC 

(2) If / « g : R -> R', then *„(/) = *.(*): K„R - K„R'. 

Axiom 2 is equivalent to the statement that KnR[t] = KnR. The functors KJ„ can be 
computed as follows [16]. Let ER = tR[t] = ker d0 : R[t] -+ R. Then d1 : ER -* R 
is a fibration. Let QR = t(t — l)R[t] be its kernel. Then Axiom 2 shows that 7c„ER = 0 
so Axiom 1 gives Kn+1R = K„QR for n ^ 1 and fCjR = ker [X0£XR -+ X 0 £ R ] . 

To compare Kn with X ^ s we make one more definition. If F is a functor from rings 
to abelian groups, we define F(R) to be the co-equalizer of F(d0), F(d1) : F(R[t]) =£ FR. 
This F satisfies Axiom 2 and F -> F is universal for maps of F into a functor satisfying 
Axiom 2. Gersten's simplicial definition and the universal property of Kl give us a 
map K%s -> K„ and therefore X^ s -> Kn. It is not known whether this is an iso­
morphism for all n, but this is so for n = 1. Using a result of Gersten [15], it is easy 
to see that K2(R) = K^S(R) = K2(R) if Nil R = 0, eg. if R is regular. 

It is not known whether the analogue of Theorem 4 holds for the functors Kn, but 
Gersten [17] has shown that this is so when Nil R = 0, i. e. KnR[t, t - 1 ] = KnR © Kn-±R 
in this case (3). In general, if we define KQ = K0, then K„R[t, t~1] = KnR © K0Q,"R, SO 
Theorem 4 will hold if and only if K0QR = fqR. This is equivalent to the statement 
that, in the exact sequence of Axiom 1, we can replace K0 by K0 . If so, this can be 
extended to all n < 0 using the functors Kn = Kn, n ^ 0, all of which satisfy Axiom 2. 

So far, little progress has been made in computing KnR for n > 2. Even for the 
case where R is a field, it is not known whether K2R = K2R. It is quite possible, 
however, that KnR will turn out to be easier to compute than Kn. Perhaps a simpler 
proof of Matsumoto's theorem could be found in this way. Karoubi's definition 
can be used to define K„ for categories but this is quite complicated compared to the 
definitions of K0 and K±. 

6. Theory of Quillen. 

A very interesting topological definition of KnR was recently proposed by Quillen [29]. 
I would like to thank Quillen for sending me a detailed account of his work. All 
rings here will be assumed to have a unit. The definition was suggested by the relation 
between the homology of the group GL(R) and the functors X1(R), K2(R). In fact, 
KXR = H1(GL(R)) and K2R = H2(E(R)). Quillen takes the classifying space BGL(R) 
and attaches 2-cells to kill the subgroup E(R) of n1BGL(R) = GL(R). This introduces 
new cycles in dimension 2 but these can all be killed by attaching 3-cells. The result 
is a space BR with some very remarkable properties. 

(3) This result was also obtained independently by KAROUBI [43]. 
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THEOREM 7 (Quillen). — BRis a homotopy associative, homotopy commutative H-space. 
The map BGL(R) -• BR gives an isomorphism of homology. 

Clearly BR can be regarded as the best H-space approximation to BGL(R). Quillen 
also considers a functor R (X) which is defined as X0 of the category of finitely gene­
rated projective R-modules with ^(XJ-action. He shows that the functor [X, BR] 
is, in a reasonable sense, the best approximation to RR by a representable functor. 
This justifies his definition of KnR as nn(BR). We denote these functors here by K%. 
Quillen also notes that X? = X t and X§ = X2 (Milnor's K2). This gives further 
justification for his definition. 

Using his calculation of the cohomology of finite linear groups, Quillen can actually 
compute all of the K%(R) for the case where R is a finite field. 

THEOREM 8 (Quillen), — For i > 0, K^(Fq) = 0 and X f t . ^ F j = ® 7v - i» where Vm 
is the group of m — th roots of unity in the algebraic closure of Fq. 

To compute K%(R) for other rings R, the first step would be to calculate H^(GL(R)). 
For example, it is reasonable to conjecture that X„(Z) is a torsion group for all n. 
This is equivalent to the conjecture that HJfiL(Z), Q) is trivial. In fact, Mumford 
and Milnor have conjectured that H^(GLn(Z)9 Q) is trivial for each n. If Pn is the 
space of positive definite quadratic forms in n variables and X„ = PJGL„(Z)9 the 
above conjecture is equivalent to the conjecture that Xn is acyclic over Q. Now X2 

is actually contractible and the same seems to be true for X3 although the proof involves 
a long calculation which I have not checked. Perhaps Xn is contractible for all n. 
A result of Magnus [24] shows that GL„(Z) is a direct limit of subgroups related to 
GL2 and GL3. It should be possible to use this to reduce the general case to that 
where n = 2 and 3. It would also be interesting to extend the results of Magnus to 
other rings. Possibly this could be used to prove a stability theorem for Xj? analogous 
to that of Bass for Kx [6]. 

It is natural to ask whether X? « Xjfs. This would imply that for a free ring R 
(with unit) we would have X?(R) « X?(Z) or, equivalently, that Hn(GL(R)) « Hn(GL(Z)). 
A proof of this would probably be one of the main steps in showing that X£ « K%s. 

One can produce an exact sequence for Xj? similar to that of Theorem 1 by convert­
ing BR -• BRjI into a fibration. I do not know whether the analogue of Theorem 4 
holds for X ? . 

7. Extension to categories. 

The groups Xj?(R) depend only on the group GL(R). This property is regarded 
as a disadvantage by Karoubi and Villamayor [21] who would like K„(R) to reflect 
properties of the ring R and not just those of GL(R). However, this property suggests 
a simple way to extend the definition of X£ to categories. If F is a functor from groups 
to groups, we would like to define KF(jtf) for a category sé by taking some sort of direct 
limit of the groups F (Aut (J^)) for Aes#. The functor K1 was treated in this way by 
Bass in [6]. I will give here one easy way of doing this which is suggested by the defini­
tion of X i . 

If £ is a short exact sequence 0 -• A! -^ A i A" -> 0, we define Aut (E) to 
be the subgroup of Aut (A') x Aut (A) x Aut (A") consisting of those (a', a, a") with 
ai = ia' 9 ja — a"j. 
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Let P be a functor from groups to groups. We define KF(sé) to be the abelian group 
with generators [A, u] for Aesé,ue F(Aut (A)) and with the relations. 

(1) [A, uv] = [A, u] + [A, v]. 
(2) If E, as above, is a short exact sequence and we F (Aut (£)) has images 

u'eF (Aut (A')), ueF (Aut (A))9 u" e F (Aut (A"))9 then [A, u] = [A'9 u'\ + \A", «"]. 

For example, if F(G) = G or G/[G, G], then KF(sé) = K±(sé). If F is a constant 
functor with value F(G) = % for all G, then KF(sé) = X 0 ( J ^ ) © 7c/[7c, %]. 

To get X „ ( J ^ ) , we define Fn by taking J3G, killing [G, G] c T ^ B G by Quillen's method, 
getting a space BG+

9 and setting F„(G) = nnBG+. We then let Kn(sé) = KFn(sé) 
(The group Aut (4) should be replaced by lim Aut (An) here). 

Now, if sé = 0>R is the category of finitely generated projective R-modules, it is 
not hard to show that KF(0*R) — F (GL(R)) provided that F has certain properties. 
These properties are exactly those which Quillen proves in his work on Xj?. Therefore 
we see that KJ^R) = K%(R). This gives some justification for our definition. In 
particular, since X§ = X 2 , this method gives a reasonable extension of Milnor's X 2 

to categories. 

If we use only split exact sequences, it should not be too hard to express KF(sé) 
as a filtered direct limit as in [6]. In this way we could presumably obtain a space BA 

with Kn(sé) = nn(BA). 
A more general form of the above construction is obtained by replacing F (Aut (A)) 

by X (End A) where X is a functor from rings to groups. In this way, any X-theory 
could be extended to categories. 
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SYMBOLS IN ARITHMETIC 

by JOHN TATE 

§ 1. Symbols and K2. 

Let F be a commutative field, F' its multiplicative group, and let C be a commutative 
group. A symbol on F with values in C is a function 

(,):Fm x F- -> C 

satisfying the two identities 

(1) (aa'9 b) = (a9 b\a', b) and (a9 bb') = (a, b)(a, b') 

(2) (a, 1 - a) = 1. 

Replacing a by a - 1 in (2) and then using (1) and (2) gives 

(3) (a, — a) = 1, and hence (a, a) = (a, — 1). 

Replacing a by ab in (3) and expanding using (1) and (3) gives then 

(4) (a,b) = (b,a)-K 

EXAMPLE 1. — Suppose v is a discrete valuation of F, with residue field kv. Then 

v(b) 

(5) (a, b)v = residue class of ( - l)v(fl)y(6) —^ 

is a symbol on F with values in k'v, called the tame symbol at v ; Cf. e. g. [12, Ch. Ill, no. 4]. 
Let Fs denote a separable algebraic closure of F, and let GF = Gal (Fs/F). If X 

is a topological GF-module we shall write Hr(F9 X) for the r-th cohomology group 
of the complex C*(GF, X) of continuous standard cochains on GF with values in X. 
When X is discrete, these groups are the usual Galois cohomology groups; cf. e. g. [13]. 

EXAMPLE 2. — Let m be a natural number not divisible by the characteristic of F, 
and let pm be the group of m-th roots of unity in Fs. The exact sequence 

(6) 0 -+ ixm -+ F' ?> F' -> 0 

gives rise to a homomorphism 

(7) 3m:F -+ H\F,pm), 

Putting 

(8) (a, b)m = òma.òmb, 
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we obtain a symbol on F with values in H2(F, pm (g) pm) which was discussed briefly 
in [16]. Its main property is this 

(9) { a, b } e (K2F)m o(a,b)m = l obe NEajFE'a, 

where Ea is the F-algebra F[X]/(Xm — a), and the notations { , } and K2 are as explained 
below. 

When pm a F we have 

H2(F, pm ® pm) = H2(F, pm) ®pm = (Br F)m ® pm, 

where (Br F)m is the group of elements of order dividing m in the Brauer group of F. 
In this case the symbol (a, b)m is well known; cf. e. g. [11, Ch. XIV]. 

EXAMPLE 3. — The formula 
da db 

(a, b)diS = — A — 
a b' 

defines a symbol on F with values in the group Qj / Z . 

Steinberg [15] showed that for n > 3, the group H2(SLn(F), Z) was generated by 
the values { a, b }n of a certain canonical symbol on F with values in that group, except 
if F has 2, 3 or 4 elements, in which case the same result holds for n > 5. Matsu-
moto [7], showed that Steinberg's symbols {, }„ are universal. It follows that the group 
K2F = H2(SLO0(F), Z) discussed by Swan at this Congress is the target group of a 
universal symbol { , } ; for each abelian group C, the map / h> / ( { , } ) is a bijection 
between Horn (K2F, C) and the group of symbols on F with values in C. In other 
words, K2F is presented as an abelian group by the generators { a, b }, for a and b 
in F, and the relations { 1 } and { 2 } obtained by replacing parentheses by curly brackets 
in (1) and (2) above. This is the " computation " of K2F referred to yesterday by 
Swan. 

The notions of dimension of a vector space and determinant of a linear transformation 
give rise to isomorphisms 

K0F « Z and KtF « F'. 

Milnor [8], [9] interprets { a, b } as the product of a and b under a " multiplication " 

K±F x KtF -+ K2F. 

In general one might ask whether the X-theories discussed by Swan are furnished with 
products 
F KtR x KjR -• XI+J(R(x)R') 

which for a commutative ring R lead to a graded ring structure on K^R = ?,nKnR 
via the homomorphism R ® R -• R. 

Suppose E/F is a field extension of finite degree. Then there is [8] a transfer homo­
morphism 

(10) TvE/F:K2E - K2F, 

whose importance was first emphasized by Bass, such that 

TTE/F { a, b }E = { a, NE/Fb }F for aeF', beE'. 
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In general, if R <= R' are commutative rings such that R' is a projective R module of 
finite rank, one would expect a 2£^R-linear map Tr : K^R' -> K^R. 

Suppose F is the fraction field of a Dedekind ring R. The maximal ideals of R 
correspond to certain discrete valuations v of F ; for each such v9 let ^üitame: K2F -> fc„ 
be the homomorphism corresponding to the tame symbol (5) at v9 and let 

(11) XR:K2F -> ]\K 
V 

be the homomorphism whose components are the AV)tame. (We can write direct sum ]J 
V 

instead of product, because for each fixed pair of elements a9 b in F' we have (a9 b)v = 1 
for almost all v). Bass [1] has shown that the cokernel of XR is canonically isomorphic 
to SK^R, and that if the set of maximal ideals of R is countable then the kernel of XR 

is the image of K2R9 and even of H2(SL„R9 Z) for n > 3. 

§ 2. Results of C. Moore. 

Suppose now that F is a global arithmetic field, i. e. a number field of finite degree, 
or a function field in one variable over a finite constant field k. For each place v of F, 
let Fv denote the completion of F at v, and let pv denote the group of roots of unity 
in Fv. For v non-complex, the group pv is of finite order mv = | pv | and the Hil­
bert mv-norm residue symbol I —— I = (a, b)m is a symbol on F with values in 

\iv = (Br Fv)„, ® Pv (CL Example 2 above). Calvin Moore [10] has shown that this 
symbol is a universal for continuous symbols on Fv with values in locally compact 
abelian groups (see also his talk at this Congress). Thus p.v should be viewed as a 
topological K2 of the locally compact field Fv. 

Lichtenbaum has raised the question whether pv is the ordinary non-topological 
K2F'V where F'v is the field of algebraic numbers in Fv. This is true at least for Fv = U. 

For each place v let 

(12) XV:K2FV -+ pv 

be the homomorphism corresponding to the symbol I —— J. For non-archime-
dean v we have \ v / 

(13) XmmG = residue of kf9 

where gv is the power of the residue characteristic pv dividing mv. Note that gv = 1 
for all v in the function field case, and for almost all v in the number field case (e. g. 
those v such that pv — 1 > [Fv : QPJ). The kernel of Àv is divisible. It is uniquely 
divisible if F = M or Q2 ; I wonder whether it is always so. 

The maps Xv give a homomorphism 

(14) K2F -4 [J pv. 
unon-complex 
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Calvin Moore (loc. cit.) has shown that the cokernel of X is the group pF of roots of 
unity in F. The reciprocity law 

n(Vr-n(Vl 1 

for a, be F and m = | pF | gives a map of coker X onto pF. The new thing is that this 
map is injective, and it is really new; in classical class field theory, one never considered 
simultaneously norm residue symbols whose orders mv vary with v ! 

§ 3. Finiteness of Ker X. 

The main subject of this talk is the study of Ker X which has taken place over the 
past two years. If Ker X = 0, then there are no " exotic " symbols on F, every global 

symbol is expressible in terms of the local ones ( —— I. On the other hand, if Ker X 

is large, then there are many exotic symbols. In this section we discuss work which 
has limited the size of Ker X. 

Two years ago, Bass and I showed that Ker X is finitely generated and is finite and 
prime to the characteristic in the function field case, by the following method. For 
each finite set of places S9 let Us c F' be the group of S-units and let K2F be the sub­
group of K2F generated by the elements { a, b } for a, b e Us. If a£ are generators 
for Us, then { at, a}} generate K2F. Hence the groups K2F are finitely generated. 
Bass and I proved that if S is a sufficiently large initial segment of the places, relative 
to an ordering by increasing norms, then the sequence 

(15) 0 -> K\F c> K2F —1 \\k'v -+ 0 
vfS 

is exact, where Rs is the ring of 5-integers in F. The exactness of (15) follows by induc­
tion over the set of places from the exactness of the sequences 

(16) 0 - KS
2F -» KS

2F ^S k'v - 0 

where S' and S" = S u { v } are successive initial segments containing S. It is proving 
the exactness of (16) that is difficult, or at least tedious. 

For the rational field F = Q the exactness of (16) follows easily from the Euclidean 
algorithm. The argument is essentially that used by Gauss in his first proof of the 
quadratic reciprocity law in the Disquisitiones, by an induction over the primes. 
Gauss was in fact classifying symbols on Q with values in a group of order 2. His 
methods give the isomorphism 

(17) K 2 Q « ( + l ) x I ] F p , 
p 

the direct sum taken over all odd primes p, and Fp denoting the prime field with p 
elements; cf. [8, § 11] for details. 

Since Ker X is contained in Ker XRs, it follows from (15) that Ker X is finitely gene­
rated. In the function field case one can show that Ker X is divisible by the characte­
ristic p of F and is therefore finite and prime to p. By (14) it is enough to prove this 
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divisibility by p for K2F itself, and this holds for any field E of characteristic p > 0 
such that [E : Ep] = p. Indeed, let a9beE'. Let a, ß e E' = £1 / p such that ap = a 
and jSp = fc. Then 

{ a, b} = { a, NE,IEß } = TrE7£ { a, ß} = Tr£, /£ { a, /? }'. 

Hence K2E = (X2F)P. 

In the number field case, the result of Bass mentioned at the end of § 1, for R the 
ring of integers in F, gave another proof of the finite generation of Ker X and showed 
that Ker X is finite if H2(SL„R9 U) — 0 for some n. This vanishing of H2 for n suffi­
ciently large and therewith the finiteness of Ker X has recently been proved by H. Gar­
land [4], using results from differential geometry and analysis on symmetric spaces. 

§ 4. The structure of Ker X. 

By the method of Bass-Tate discussed above, one can effectively construct generators 
for Ker X9 but the set of defining relations is infinite. Roughly speaking, there is one 
relation, induced by {a, 1 — a} = 1, for each element a e F, and the method does 
not give a procedure for deciding which finite subsets of these relations suffice to 
define Ker X. Thus, by taking the generators and some set A of relations one obtains 
a group XA of which Ker A is a quotient, and if A is large, there is a good chance that 
XA = Ker X, although the precedure gives no way to prove this, unless XA = 0. 

Indeed for some F one can show Ker X = 0 by this method. This is true, for example, 
for imaginary quadratic fields F of small discriminant d; certainly for \d\ < 11, and 
almost certainly for | d \ < 23 (there is a theoretical bound on the norm of primes to 
be considered which increases like \d\312 and consequently the amount of computa­
tion required to achieve absolute certainty increases rapidly with \d\). 

After the imaginary quadratic fields, our next experiment was with the five function 
fields F of genus 1 over the field with 2 elements (for genus 0 one has Ker X = 0; cf. [9]). 
For these fields we have h = 1, 2, 3, 4 and 5, where h is the number of divisor classes 
of degree 0. After many mistakes and considerable effort we found groups XA of 
orders W = 5,7, 9,11 and 13, respectively, for these fields. If a and a' are the characte­
ristic roots of the Frobenius endomorphism %, then 

h = (1 — a)(l — ä) and a ä = 2, 
hence 

(18) W = 3 + 2h = (1 - 2a)(l - 2ä). 

A theoretical explanation for this experimental result is as follows. 

Suppose F is a function field whose constant field k has q elements. Let k be an 
algebraic closure of k9 let F œ = Fk, let G = Gal (FJF), and let p = (k)' be the group 
of roots of unity in F œ . Let D and C be the groups of divisors and divisor classes 
of F œ . Tensoring the exact sequence 

(19) 0 - » / X - > F ; J O - > / ) - > C - > 0 

with p gives an exact sequence 

(20) 0 -> Tor (p., C) -• p ® F œ -• p (g) D -+ p -• 0 



206 J. TATE G 

Taking invariants under G we obtain 

(21) 0 -+ Tor (pi, Cf -> (p ® Fœ)G Ü (p ® Df, 

still exact. Now consider the homomorphism 

(22) p ® Fœ -+ KJn 

for which (,®f\-+ {£>/}> and the homomorphism 

(23) K2F - (K2FJG 

induced by the inclusion F c F^. Suppose (22) and (23) are isomorphisms. Then 

(24) K2F*(p® F'JG 

On the other hand, it is easy to see that 

(25) ]lpvn(p®D)G 

V 

and that the map X' in (21) becomes identified with X via the isomorphisms (24) and (25). 
Hence we would have 

(26) Ker X « (Tor (p, C))G 

This last group is the kernel of 1 — a acting on Tor (p., C), where a e G is the Frobenius 
automorphism, and this kernel is non-canonically isomorphic to the kernel of 1 — go-
acting on C, or, what is the same, the kernel of 1 — qn acting on the Jacobian variety 
of Fœ, where it is the Frobenius endomorphism. The order of this kernel is 

(27) deg (1 - qn) = f l ( l - q*ò = (« ~ 1)(<?2 " 1)W~ 1), 

where the af are the characteristic roots of it and where fF is the zeta function of F. 
Since | Coker X \ = q — 1 (by Moore) this would give the formula 

™ ö-*•-'>«-'» 
THEOREM 1. — For a function field F the maps (22) and (23) are bijective, and conse­

quently we have isomorphisms (24) and (26), and formula (28) holds. 

At the time of the Congress in Nice, only the 2-primary part of this theorem was 
proved, via methods of Birch [2]. Shortly afterwards, the theorem was proved in 
general, using the cohomological methods described in § 5 below, which were inspired 
by a suggestion of Lichtenbaum. 

When Theorem 1 was first conjectured two years earlier, it was natural to seek an 
analog for number fields. A formula like (28) could not make much sense in general, 
because the zeta function of a number field F has a zero of order r2 at s = — 1, where r2 

is the number of complex places of F. But Birch suggested that some such formula 
might very well hold in the totally real case (r2 = 0), and he and Atkin quickly produced 
numerical evidence to the effect that, for real quadratic F of discriminant d < 50, 
a prime like 5 or 7 occuring in the numerator of Çj?( — 1) always divides the order of XA. 
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Using the Atlas computer, Atkin was able to take very large sets A of relations, so 
this evidence was quite convincing. Further experimentation suggested that the 
conjecture should be 

(29) | K e r ^ | = ± wfKF(~ 1), 

where R is the ring of integers of the totally real field F and where w^ is a certain integer, 
the simplest description of which was recently suggested by Lichtenbaum, namely, 
for r > 0, wP denotes the largest integer m such that Gal (F/F) acts trivially on the 
r-fold tensor product pm® . . . ® pm, where pm is the group of m-th roots of unity 
in an algebraic closure F of F. In the function field case we have w(r) = qr — 1. Since 
XR is surjective, formulas (28) and (29) are two special cases of one formula. 

Formula (29) predicts various non-trivial divisibility properties of £F( — 1) which 
have been proven by various people. An especially good example is due to Serre [14 
(3.7)] (our w(2) is Serre's w). 

For a given number field F, one can show that, for prime numbers / outside a certain 
finite set Z F , the order of Ker X/(l Ker X) divides the order of (Cx ® pt)

Gï, where Ct is 
the ideal class group of F(pt) and G, = Gal (F(pt)/F). Using methods of Leopoldt-
Kubota [6] and Iwasawa, Brumer showed that if F is totally real and abelian over Q 
and / outside another finite set L F , then (Ct ® p^1 = 0 if / does not divide ÇF( — 1). 
This gave added evidence for (29), and it also proved the finiteness of Ker X for totally 
real abelian fields before Garland proved the finiteness for all number fields. 

More recently, John Coates has produced evidence for a number field analog of (26) 
in certain cases. Here one must treat the /-primary part of Ker X separately for each 
prime /, and one replaces Fœ by F(p) where p is the group of /"-th roots of unity, all n. 
Coates' work shows there are some close relations between conjectures about Ker X 
and conjectures in Iwasawa's theory of the Zrextension F^/Ffa) (cf. Iwasawa's talk 
at this Congress). 

§ 5. Symbols in Galois cohomology. 

Let m be a natural number not divisible by the characteristic of F, and let 

(30) hm:K2F -> H2(F,pm®pm) 

be the homomorphism corresponding to the symbol (a, b)m discussed in example 2 
of § 1 above. 

THEOREM 2. — The map hm is surjective, and its kernel is (K2F)m
9 i. e., hm induces an 

isomorphism 

(31) K2F/(K2FY * H2(F, pm ® pm) 

A series of reduction steps reduces the proof of this theorem to the case in which m 
is a prime and pm a F. In that case the surjectivity is well known. For injectivity 
one starts from the fact (9) that an element of the form { a, b } is in (K2F)m if and only 
if it is in Ker hm . To treat an arbitrary element n,- { at ,bt), one uses the following 
two lemmas, which are true at least for arithmetic fields containing pm, m EL prime. 
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LEMMA 1. — Given elements a±,bx, a2,b2, a3, b3e F', there exist elements cl9 c2, c3 

and d in F' such that (at, b^m = (cf, d)m for i — 1,2, 3. 

This just means that any three elements of order m in the Brauer group of F have a 
common cyclic splitting field F(dl/m) of degree m. 

LEMMA 2. — Given a, b, c, d in F' such that (a, b)m = (c, d)m, there exist x, y in F' 
such that 

(32) (a, b)m = (x, b)m = (x, y)m = (c, y)m = (c, d)m 

To prove Lemma 2 one selects y such that for each place v an x0 exists such that (32) 
holds locally; then a standard lemma on norm residue symbols guarantees the existence 
of an x globally. 

I do not know whether these lemmas, and consequently Theorem 2, hold for all 
fields, or for a wide class of fields, or only for very special fields. The situation for 
m— 2 seems a bit special. For m = 2, Lemma 2 holds for all fields, even with y = d, 
and Milnor [9] has interpreted K2F/(K2F)2 in terms of the Witt ring for all fields F. 

It can be shown that the map 

(33) H2(F, pm ® pm) -* \\H2(FV ,pm®pm) 
V 

is injective if m is not divisible by 8, and in any case has kernel of order 1 or 2. Thus 
the common kernel of the hm, which by Theorem 2 is the group Ç\(K2F)m of elements 

m 

divisible by m in K2F for all m, is of index 1 or 2 in Ker X. For this reason I thought 
until recently that Galois cohomology could not help in the attempt to show Ker X 
very-non-trivial and to determine its structure. I could not have been more wrong; 
one has only to make a symbol with values in 

H2(F, lim (pm ® pj) instead of in lim H2(F, pm ® pm) 
m m 

in order to get a cohomological symbol which promises to be universal! 

It is better for this to fix a prime / different from the characteristic of F and to restrict m 
to be a power of /. Let 

(34) T=lim(^n) 
n 

be the free Zrmodule of rank one on which Galois acts according to its action on 
the /"-th roots of unity. For each integer r > 0, let 

(35) 0 -» T(r) -• V{r) -+ W{r) -> 0 

denote the exact sequence obtained by tensoring the exact sequence 

0 -• Zl -• Qt -• Qj/Z, -> 0 

r times over Zt with T. 

Recently S. Lichtenbaum suggested that the /-primary part of K2F should be iso­
morphic to H^F, W{2)) if r2 = 0, and to a quotient of H\F, Wi2)) if r2 > 0. Consider­
ing Lichtenbaum's idea together with the connecting homomorphisms 

(36) Hq(F, Wir)) -+ Hq+1(F, T(r)) 
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associated with the sequence (35) suggests that there is a symbol with values in 

(37) H2(F, T<2>) = H2(F, lim (pln ® pln)) 
n 

analogous to the m-symbol (8). Such a symbol is easy to make; one simply replaces 
the öm in definition (8) by the analogous homomorphism F' -+ H1(F, T). To show 
that the resulting pairing is a symbol one proves that a and 1 — a are paired to an 
element in the divisible part of H2(F, T{2)), and uses 

PROPOSITION. — The divisible part of Hq(F9 T
(r)) is 0 for all q and r. 

Since Hq(F, V(r)) is uniquely divisible and Hq(F, W(r)) is a torsion group we get 

COROLLARY. — The homomorphism (36) induces an isomorphism 

(38) Hq(F, W(r))/Hq(F, P0'>)div ^ Hq+i(F, r<%rs 

Here X^v (resp. Xtors) denotes the largest divisible (resp. torsion) subgroup of the 
abelian group X. 

L e t h:K2F -> # 2 (F , T<2>) 

denote the homomorphism corresponding to the symbol just discussed. If px c F, 
there is an exact commutative diagram 

(39) o • Ker a > pl ® F' «- > (K2F\ 

i J J-
0 -> H\F, T^/IH^F, P2)) -• H\F, px ® px) -+ (H2(F, T™))x -• 0 

in which the bottom row comes from the exact sequence 

(40) 0 -• T(2) -4 T{2) -+ px ® px -» 0. 
The symbol Xx denotes the kernel of the map X -4 X. The homomorphism a is 
characterized by a(£ ® a) = { C, a} for (,epx and aeF'. The middle vertical iso­
morphism is that obtained by tensoring (7) with px (with m = I). 

Suppose now that we do not known that Ker X is finite, but only that it is finitely 
generated, say of rank p (so p = 0 o Ker X finite). 

LEMMA 3. — Ifpxa F, then | Ker a | /1 Coker a | = / 1 + ' * + P . 

This is proved by considering the composed map XOL, and using the following 

COROLLARY OF THEOREM 2. — The map X induces an injection 

K2F/(K2F)< ^ UiiM. 
V 

Combining Lemma 3 with diagram (39) gives 

THEOREM 3. — Suppose px^F. Then (H\F9 T(2)): IH\F9 T(2))) ^ l1+r\ and 
equality holds if and only if Ker X is finite, a is surjective, and h is injective on the l-primary 
part of K2F. 
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By the Corollary of the Proposition, we have 

(41) H\F, T<2>)tors « H°(F, W™\ 

a cyclic group of order J" for some n > 1. Hence Theorem 3 suggests the 

MAIN CONJECTURE (*) — The rank of the Zrmodule H\F, T{2)) is r2, or, equivalently, 
the divisible part ofH\F, W{2)) is isomorphic to (Qt/Ztf2. 

Let F a = \JF(pXn) and let G = Gal (FJF). Let M be the maximal abelian pro-/ 
n 

extension of F^ which is unramified outside places dividing /, and let X = Gal (M/Fm). 
Then the Main conjecture translates into HomG (X, T(2)) « ZJ2, i. e. into a statement 
about the G-module X. This module has been intensively studied by Iwasawa [5] 
in the number field case. In the function field case, the module is described by the 
action of the Frobenius endomorphism on the Jacobian, and results of A. Weil show 
HomG (X, T(2)) = 0, hence 

THEOREM 4. — The Main conjecture is true for function fields. 

A proof of the Main conjecture for number fields would give (via Theorem 3) a 
new proof of the finiteness of Ker X, completely different from Garland's. In fact, 
a proof of the Main conjecture would justify the ideas of Lichtenbaum which inspired 
it and would reduce all questions about K2F to questions about Galois cohomology, 
in view of 

THEOREM 5. — If the Main conjecture is true for the field F(px), then h induces an 
isomorphism 

(42) K2F(l) >̂ H2(F, T<2>)tors « Hl(F, W™)/H\F, P02>)div 

where K2F(l) denotes the l-primary part of K2F. 

In the function field case these cohomology groups are readily computed and one 
easily derives Theorem 1 from Theorems 4 and 5. 

In the number field case such definitive results await a proof of the Main conjecture; 
nevertheless Theorem 5 seems to be an excellent guide as to what to expect, and it 
should at least suggest partial and special results which can be proven. 

For / = 2 there is one general result which is slightly weaker than the Main conjec­
ture but still can be used to prove the existence of plenty of exotic symbols, i. e. to 
show that Ker >L/(Ker X)2 can be very large. This is the fact that the map a in dia­
gram (39) is surjective for / = 2. Indeed, methods suggested by Birch [2] lead to a 
proof of the following algebraic theorem which applies in particular to arithmetic 
fields. 

O (Note added during the correction of proofs). It seems that this « Main Conjecture » 
has now been proved for number fields as well as function fields (cf. H. BASS, K2 des Corps 
globaux (d'après TATE, GARLAND,...), Séminaire Bourbaki, No. 394, June, 1971). The proof 
uses Garland's finiteness theorem [4] (hence the remark in the text following Theorem 4 is 
a bit ridiculous), as well as Matsumoto's theorem [7], Moore's result on Coker X [10], and a 
fundamental result of Iwasawa. 
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THEOREM 6. — Suppose F is any field of characteristic ^ 2 for which Lemma 1 holds 
for m = 2. Then every element of order 2 in K2F is of the form { — 1, a}. 

I do not know whether the hypothesis about Lemma 1 is essential, nor do I have 
any idea how to prove a corresponding statement for / ^ 2. 

Let me finish by emphasizing one question to which we have not even a conjectural 
answer at present, namely, what should be the analog of (29) in case r2 ^ 0, e. g. for 
an imaginary quadratic field F ? Lichtenbaum suggests that the right hand side should 
involve some r2 x r2 determinant multiplied by the value at s = — 1 of (s + l)~r2CF(s), 
but which determinant? Is there a bilinear form on H2(F, T{2))? 
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GEOMETRIC TOPOLOGY: 

MANIFOLDS AND STRUCTURES 

by C. T. C. WALL 

The term " geometric topology " has gradually been gaining currency in the last 
few years: you may wonder what the subject is all about. The object of this talk is 
to explain just that: to introduce the concepts involved and the main problems, and 
to discuss some of the most important results that have been obtained up to now. 

The most basic concept in geometry is that of euclidean space, and the main branches 
of geometry involve the study of the various structures which it carries: linear, algebraic, 
differentiable, topological, etc. Many types of structure are defined by pseudogroups. 

A pseudogroup O on E is a category whose objects are the open subsets of E, and 
whose morphisms must be continuous, invertible in O, and locally defined. Thus 
if GO is the set of all germs (at all points) of morphisms of O, and cj> : U -* F is a homeo-
morphism whose germ at each point of U belongs to GO, then cj> e O. 

O is transitive if for all x9 y e E there is a germ in GO with source x and target y. 

The most important examples of pseudogroups are: 

Cr : cf) and cj>~* must be of class C. As special cases we have C° (the largest pseudo-
group), C00 and Cœ

9 where Cœ denotes real analytic. In the complex case we have 
the pseudogroup Cn of complex analytic maps. 

Lip, maps satisfying a local Lipschitz condition. 

Maps preserving Lebesgue measure, or just orientation. 

Nash, cj) (and 0 _ 1 ) is an algebraic map, which is also C°\ 

Affine maps, or piecewise affine (usually called piecewise linear, or PL) maps: here 
the pieces come from a locally finite partition of U into polyhedra. 

Trivial, identity maps only (the smallest pseudogroup) or translations (the smallest 
transitive one). 

For any (closed) subgroup G of GL(E)9 consider C (for some r > 1) maps whose 
derivative at each point is in G; interesting cases are the symplectic and orthogonal 
groups, orthogonal similitudes (giving conformai structure), maps preserving a sub-
space (giving foliations) or—in the case E is Hilbert space—invertible maps of the form J 
plus a compact operator, giving Fredholm structures. 

Foliations lead to a wide variety of pseudogroups. Suppose F, F are Euclidean 
spaces, O a pseudogroup on E x F and *F a pseudogroup on F. Then #"(0, *F) is 
the pseudogroup on E x F of maps whose germs 0 belong to a commutative diagram 

J E X F Z D U ^ E x F 

F 3 p(U) *> F 
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with <f> e O, i/r e *F. One can further specify a pseudogroup X on E9 and require the 
restriction of cj) to each leaflet U n (E x x) to belong to X. 

We now come to manifolds. Let M be a topological space, E a euclidean space. 
A chart on M with model F is a pair (U9 cj>) where U is open in M, <£ : U -> F an 
embedding with 0( 17) open. An atlas is a collection {(Ua, $ J } of charts with u l/a = M : 
if M has such an atlas, it is called a manifold modelled on E. Usually one requires 
also that M is Hausdorff and paracompact. If two charts (Ua, 0 J and (Uß, cj)ß) 
overlap, we have a coordinate transformation 

gaß : W ü . n U,) E t Ü. n U, h ^ ( ï / a n U,). 

If O is a pseudogroup on E, an atlas {(Ua, 0 J } on M is a O-at/as if each coordinate 
transformation ga/5 is in O. Two O-atlases A, A' are compatible if A \J A' is a O-atlas. 
The union of all O-atlases compatible with a given one, A, is still a O-atlas: clearly a 
maximal one. A maximal O-atlas on M is called a ^-structure: thus each O-atlas 
defines a unique O-structure. 

For examples, we have smooth (C00) structure, real or complex analytic structure, 
orientation, flat structure (take O = affine maps), PL-structure, immersion in E (take 
O = identity maps), and foliations of various kinds. 

Having defined structures on manifolds, we must say what we mean by structures 
on morphisms (i. e. maps) of manifolds. The corresponding notion (less standard) is 
as follows. Given pseudogroups O on E, *F on F a morphism Q : O -> *F is a locally 
defined family of continuous maps from open sets in E to open sets in F, which is 
closed under composition on the right with maps in O and on the left with maps in *¥ : 
thus ^ o Q o $ c f ì . This notion seems more fundamental than that of pseudogroup; 
note also that in nearly all examples above of pseudogroups we first chose an Q with 
fìofìcfì and then considered the invertible morphisms of Q. 

Examples are easy to supply, for example C (non-invertible) maps define a mor­
phism Cs -> C whenever r < s, t < co. So do Cr-immersions (note that embeddings 
are not locally defined), or more generally maps whose jacobians everywhere have 
rank ^ k. Another good example is provided by piecewise smooth maps : PL -> C°° ; 
here again we can restrict to immersions with jacobian of maximal rank everywhere 
it is defined. 

If M has a O-structure, N a. ̂ -structure, f: M -> N is a continuous map and 
Q : O -> *F, then we call / an Q-morphism if for all charts (U, cj>) of M, (V, \j/) of N 
with f(U) c V, the composite i ^ o / o ^ - 1 : 0(U) -> \j/(V) belongs to Q. Again, it 
suffices to check this for each chart of a (non-maximal) O-atlas of M. 

Not all structures are defined by atlases. For example, we may be given a T-mani-
fold F, and a morphism Q: O -> *F; then an Q-map M -> F can be regarded as 
constituting a certain type of structure on the O-manifold M. Write Sf(M) for the 
set of such maps: in many cases this will be endowed with a natural topology, e. g. 
Cr (uniform convergence on compact sets: not the fine topology here). 

More generally we may have a (^-bundle B with fibre F: by definition this assigns 
functorially to each cj) : U -> U' in O a map B(cj)) : U x F -> l/' x F over cj). Using 
these to glue over charts defines a bundle B(M) over any O-manifold M. Now a 
structure will be defined as a section of B(M), satisfying local conditions which can be 
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specified by assigning a Q)-sheaf £f of sections of B. Here for each open U in E, Sf(U) is 
a collection of maps U -• F; «^ is locally defined, i. e. is a sheaf; and for 0 e O, £(0) 
transforms the sections U -> U x F which are graphs of members of £f(U) into 
graphs of members of £f(U'). 

Note. — It is simpler axiomatically to define Sf and omit B, but this takes us too 
far away from the geometry. One should consider a O-bundle or O-sheaf as a bundle 
or sheaf over E, endowed with the Grothendieck topology induced by O. 

The most obvious example of O-bundle is the tangent bundle. This also has ana­
logues in the topological and PL cases which originated with Milnor's work on micro-
bundles. We also have the associated bundles of tensors (with, perhaps, symmetry 
conditions) in the traditional sense of differential geometry, the tangent bundles of 
higher order, and the bundle of connections: note particularly the classical cases of 
the Riemann bundle, and the bundle of (tangent) p-forms. Another example is the 
bundle normal to the foliation, if O defines a foliation. Also for each of the vector 
bundles above we have the associated projective bundle and frame bundle, and more 
generally, Grassmann and Stiefel bundles. 

The possible sheaves Sf have a wide variety. In each case we may consider all 
continuous, or (perhaps) all differentiable (of some class Cr) sections—holomorphic 
in the complex case: examples are Riemann metrics, tangent 1-forms and connections. 
More generally, we could restrict the local maps U -* F to lie in some suitable pre-
assigned class Q. E. g. for vector bundles in the differentiable case, we can consider 
smooth sections transverse to the zero section. Indeed, some of the most fruitful 
illustrations come by imposing such conditions on derivatives: assuming sufficient 
differentiability, given a O-bundle B there is an extended bundle ErB of r-jets of sections 
of B. Now for any sub-O-bundle Er

0B of ErB, we can consider those sections of B 
whose r-jets are sections of Er

0B (equivalently, those sections of Er
0B which come from B: 

the integrable ones in the usual terminology). As one concrete geometrical illustration, 
we can take B the Riemann bundle, r = 1 and consider metrics with everywhere positive 
(or everywhere negative) sectional curvatures. 

I now consider the problem of existence and classification of structures of a given 
type on a given manifold: this is of course a global problem since Euclidean space 
possesses structures of all types. More generally, I am interested in when the existence 
of one type of structure implies the existence of another. For classification one needs 
a notion of equivalence: a general definition which seems to cover all cases of interest 
in geometric topology (though not in differential geometry) is this: 

Two structures a, ß of a given type on M are concordant if there is a structure y of 
this type on M x / inducing a on M x 0 and ß on M x 1. 

Of course, this needs to be made explicit in each case, but it is usually obvious how 
to interpret the definition. A stronger relation is isotopy: here one demands a level-
preserving homeomorphism F of M x I — i. e. F(m, t) = (ft(m), t) — with f0 = identity 
and /i*a = ß. Frequantly, F and F _ 1 are also supposed differentiable. In many 
cases (e. g. smooth or PL structures on topological manifolds of dimension ^ 6) 
concordance and isotopy are equivalent: but this is always a tricky technical question. 
The most interesting problem of this type, where a structure is a diffeomorphism 
of the smooth manifold M onto a fixed manifold M 0 , has been studied by Cerf and 
Wagoner. 
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Now suppose we are comparing structures of two different types, say O and O'. 
We will suppose that a O-structure implies a O'-structure—this holds trivially, for 
example, if we have two pseudogroups O c: O', or we are considering appropriately 
restricted sections of two bundles B, B' with a morphism B -> B'. The simplest 
sort of result is that for any M (perhaps satisfying some side conditions), each O'-struc­
ture is induced by a O-structure, unique up to concordance. Some results of this 
kind, where O c= O' are pseudogroups, are 

Whitney, 1936: for 1 < r < s < co, comparing Cs and Cr, 

Nash, 1952: the same, with Cs replaced by Nash, 

Moise, 1952; Bing, 1959: comparing PL and C° in dimension 3; 

the result is also known, due to work of many authors, comparing topological, diffe­
rentiable and trivial structures in the infinite dimensional case (here, a trivial structure 
is an open immersion in Hilbert space). For references see, for example, the talks of 
Anderson and Kuiper at this congress. 

When the above simple result does not apply, one looks for a theorem of the follow­
ing kind, which I will describe as an obstruction theory, it reduces the problem to one 
in homotopy theory, concerning only continuous maps. Such a theorem specifies 
first a space X and a functor providing for each O-structure on M a continuous map 
M -> X, determined up to homotopy (typically, a structure of class C1 on Mm gives, 
via the tangent bundle—which has structure group GLm ~ Om—a classifying map 
M -+ BOm). Similarly for O' we have an X'. There should also be a map X -» X', 
which we may suppose a fibration, such that for any O-structure on M and the induced 
O'-structure, the diagram 

M i 
N Z ' 

commutes up to a (preferred) homotopy. The theorem will then say that (subject 
perhaps to some side conditions on M), given M with O'-structure, the equivalence 
classes of O-structures on M which induce it (or something equivalent—but usually 
we can hit the structure on the nose) correspond bijectively to homotopy classes of 
lifts M -> X of the given map M -» X'. 

Such a theorem has some applications by its very nature—for example, take M 
contractible. But for effective work, information on the spaces X and X' is essential, 
and to obtain such information is often a central problem in geometric topology. 
Some such theorems are as follows: 

Smoothing theory (due to the work of many people) gives an obstruction theory 
to imposing Cr structures (r ^ 1) on PL-manifolds. This is technically difficult 
since Cr <£ PL\ instead one needs the result of Whitehead, 1940. The correspond­
ing spaces here are usually denoted by BO -*> J3PL; the former has been familiar for 
many years, some striking results on the latter were obtained by Sullivan, 1970. Next 
we have the results of Kirby and Siebenmann, 1969 on imposing PL structures on 
topological manifolds of dimension ^ 5. Here the only obstruction to existence of a 
PL-structure on M is a cohomology class in H4(M; Z2). See also Eells' talk at this 
congress for an account of Fredholm structures. 
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Recent results of Haefiiger, 1970 (see also below) have provided obstruction theories 
for existence of foliations and of complex analytic structures: indeed I think that a 
result is obtained for any pseudogroup O. A side condition is needed: that M is 
open (i. e. has no compact unbounded component). Nothing is known about the 
obstruction groups except the results of Bott which he discussed yesterday. 

For structures of the second type, most known results are subsumed in the following 
theorem of M. L. Gromov, 1969. Take O = C00, let B be a differentiable O-bundle, 
ErB the bundle of r-jets of sections of B (as above) and Er

0B an open subbundle of ErB. 
Let 6r°(M) be the space of sections of B(M) whose r-jets map into Er

0B(M); T(M) the 
space of sections of Er

0B(M)—thus taking r-jets defines a map / : £f(M) -> T(M). 
Give T(M) the compact-open topology, and topologise £f(M) as a subspace of it. 

THEOREM — If M is open, f: ^(M) -> T(M) is a weak homotopy equivalence. 

The proof is an improvement of that of the Smale-Hirsch, 1959 classification of 
immersions, and is not unduly difficult. 

Many examples of applications were mentioned in the talk of Gromov at the congress. 
The immersion case is when B(M) is a trivial bundle M x F; a point of E1B(M) can be 
identified with a linear map of a tangent space of M to one of F, so a section of E1B(M) 
can be identified as a map of tangent bundles TM -* TF9 and we let EQB(M) be the 
injective linear maps. Results corresponding to this case can now also be formulated 
in the PL and topological cases, and proved in the same manner—the difficult step 
was an isotopy extension theorem. See Haefiiger and Poenaru, 1966 and Lees, 1969. 

Other suitable EQB(M)9 for the same B9 are maps of rank ^ k (some fixed k)—pre­
viously treated by Sidnie Feit, 1968—and maps whose projection on the normal 
bundle of a prescribed foliation of F is surjective—this case was discovered indepen­
dently by Phillips. 

It is clearly of great interest to determine in particular cases whether or not the 
result is valid also for closed manifolds. For immersions M -* F this is well-known 
to be the case provided dim M < dim F. Mrs Feit's result allows M closed if 
k < dim F. A recent result of Feldman allows M to be a circle, considering curves 
immersed in the Riemannian manifold F with everywhere nonzero geodesic curvature, 
provided dim F ^ 3. The underlying condition seems to be that F has at least one 
dimension " to spare ". Note that no advantage is gained by removing a point from M, 
applying the result, and attempting to reinsert the point : consider submersions M -• R. 

The classification of immersions can be made the basis of a proof of many of the 
theorems cited above. Put rather too crudely, the idea is this: if dim M = dim V9 

we have an immersion M -• V9 and V carries a O-structure, then one is induced on M 
by using the immersion to pull charts on V back to M. There are two ways to make 
this the basis of a proof. One is to take V = E and work by induction on coordinate 
charts of M. This method, which needs a special argument if M is closed, was explained 
in Lashofs talk at the congress. The other is to use the theorem in the case 
dim M < dim V9 which leads (rather easily) to obtaining a O-structure on M x Uq 

for some q9 and then use a stability theorem of the type: a O-structure on M x M is 
concordant to the product of a O-structure on M and the natural one on IR. The 
product theorem for comparison of Cr and PL structures is due to Cairns, 1961 and 
Hirsch, 1961; in the topological case it is due to Kirby and Siebenmann, 1969. 
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A subtler use of Gromov's result to obtain structure theorems was made by Haefii­
ger, 1970. His idea is to contemplate bundles over any space X with fibre E with 
(roughly) a O-structure on each fibre and a " foliation " transverse to the fibres. By a 
general argument (Ed. Brown's representability theorem), he obtains a classifying space 
for such structures on X. If now X is a manifold modelled on E, and the bundle is 
equivalent to the tangent bundle of X9 the theorem implies the existence of a section 
transverse to the foliation. The local projections of the section on the fibres now 
induce a O-structure on M. 

I will conclude with an example which does not quite fit into the above framework. 
Instead of beginning with a topological space which is locally euclidean, start with a 
space which is only prescribed up to homotopy type. To substitute for the local 
condition, I insist that a strong form of the Poincaré duality theorem holds. The most 
interesting question here is whether the prescribed homotopy type contains a manifold. 
The simplest result concerns the relative case when we have a pair (Y, X) satisfying 
Lefschetz duality. Suppose also that X, Y are connected and that the inclusion map 
X -> Y induces an isomorphism of fundamental groups. Then, in dimensions ^ 6, 
there is an obstruction theory for existence of a corresponding manifold. 

As with Gromov's theorem one can define (semi-simplicially) spaces £f(Y) and 
T(Y) and generalise this theory to obtain a homotopy equivalence £f(Y) -> T(Y). 
If the corresponding map is considered now in the case when Y satisfies Poincaré 
(not Lefschetz) duality, it turns out that the homotopy type of the mapping fibre ££(Y) 
depends only on nt(Y) and on dim Y (mod 4)—provided this dimension ^ 5. 
Although explicit calculation is difficult, the spaces ££{Y) are gradually being deter­
mined, and I have learnt several new results at this congress. For details of what is 
known, see my forthcoming book, Wall, 1970. 
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LA THEORIE DES ENUMERATIONS 

par Yu. L. ERSOV 

Avant de passer aux définitions précises, je donnerai la liste de quelques travaux 
qui étaient à la base de la création de la théorie générale des enumerations et des pro­
blèmes considérés dans cet exposé : 

1. Études des suites calculables des ensembles récursivement énumérables (Rice, 
Lachlan, Ouspenski et d'autres). 

2. Étude de la notion de créativité et de m-universalité pour des ensembles et suites 
(Myhill et d'autres). 

3. Étude des fonctions partielles récursives de Godei (Rogers). 
4. Étude des modèles et des algèbres énumérés (Fröhlich et Shepherdson, Malcev, 

Rabin et d'autres). 
5. Étude des fonctionnelles calculables de types supérieurs (Kleene, Kreisel et 

d'autres). 

Les premiers travaux de systématisation des notions principales de la théorie des 
enumerations ont été faits par A. I. Malcev [2], [3]. En particulier, c'est lui qui a introduit 
la notion importante d'un ensemble complet. Cette notion a permis, d'une façon 
naturelle, d'établir le lien entre les remarquables théorèmes de Myhill et Rogers. 

Ma communication n'est pas un exposé de tous les résultats obtenus dans la théorie 
des enumerations. Mon but est de formuler une série de notions principales de cette 
théorie et d'exposer quelques nouveaux théorèmes, qu'on peut diviser en les trois grou­
pes suivants : 

La première partie contient les théorèmes structuraux sur des ensembles complète­
ment énumérés, la deuxième représente la formulation, en termes d'énumération, de 
la théorie de créativité-m-universalité, théorie qui a un caractère achevé et qui embrasse 
une large classe de cas inconnus jusqu'à présent, même dans le cas traditionnel, des 
suites calculables des ensembles récursivement énumérables. La troisième partie est 
consacrée à la théorie de la construction énumérative de la classe des fonctionnelles 
calculables de tous les types finis. La construction proposée se distingue parmi d'autres 
par le plus grand naturel de ses définitions et par l'absence totale de conditions limi­
tatives (monotonie, continuité, etc.). 

J'espère que la liste de théorèmes donnée ci-dessous montrera la fécondité des 
points de vue de la théorie générale des enumerations. 

Passons aux définitions précises. 

Soient N l'ensemble de tous les nombres naturels, S un ensemble non-vide, fini ou 
dénombrable. On appelle enumeration de l'ensemble toute application v de l'ensem­
ble N sur S(v: N -> S). On appelle ensemble énuméré y le couple (S, v) ; où v est une 
enumeration de l'ensemble S. On appelle morphisme d'un ensemble énuméré y0=(S0, v0) 
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dans l'ensemble y± = (Sif v±) une application p: SQ -> S1 telle, qu'il existe une fonc­
tion générale recursive (f. g. r.) g pour laquelle pv0 = v±g(p : y0 -> 7i)-

Nous désignons par Mor(y0, y±) l'ensemble de tous les morphismes de y0 dans ylm 

La classe de tous les ensembles énumérés avec des morphismes définis plus haut forme 
la catégorie % catégorie des ensembles énumérés. La catégorie SR possède des sommes 
et des produits finis (+ , x). Par N sera désigné l'ensemble énuméré (N, id) où N est 
l'objet initial de la catégorie. 

1. Ensembles complètement énumérés. 

DéFINITION. — Soit y un ensemble énuméré. On appelle sous-objet de y tout couple 
(y0, p) où p: y0 -> y est un morphisme univoque. 

On appelle e-sous-objet un sous-objet (yQ, p) pour lequel les conditions suivantes se 
vérifient : 

a) l'ensemble v~ip(S0) est récursivement enumerable; 
b) il existe une fonction partielle recursive (f. p. r.) g telle que x e v " V entraîne 

que g(x) est définie et pgx = vx. 

Remarque. — La notion de e-sous-objet représente une généralisation naturelle de 
la notion d'ensemble récursivement enumerable. 

L'ensemble y est appelle complet, si pour chaque e-sous-objet (y0, p) de chaque 
ensemble énuméré y1 et pour chaque morphisme p0 : y0 -> y il existe un morphisme 
Mi • 7i -* 7 tel <lue Ie diagramme 

yo •* 7i 

y 

est commutatif; c'est-à-dire p0 = ptp. 

Cette propriété de l'ensemble énuméré y a une ressemblance avec l'injectivité. Notons 
que la catégorie 91 ne possède pas d'objets injectifs non-triviaux. 

EXEMPLES. — 1. Si U2 est une fonction de GödeL(de Kleene) universelle partielle 
recursive, on peut la considérer comme une certaine enumeration K de la classe Yp 

de fonctions partielles récursives à un argument. L'ensemble énuméré K= (Yp, K) 
correspondant est complètement énuméré. 

2. Soit Pn la classe de tous les sous-ensembles récursivement énumérables de N. 
L'application d : Yp -> P„ est définie de la façon suivante : dcp est le domaine de défi­
nition de cp, d est une application surjective. L'application n = drc: N -> P„ est une 
enumeration (de Post) de la classe Pn. L'ensemble énuméré n = (Pn, n) est complè­
tement énuméré. 

Soient y = (S, v) un ensemble énuméré, p : S -> 5 0 une application surjective 
quelconque. On appelle ensemble-quotient de y l'ensemble énuméré y0 = (SQ, pv) 
(yo = y/j")- Par exemple : n est un ensemble-quotient de K. 

Il est évident qu'un ensemble-quotient d'un ensemble complètement énuméré est 
aussi complètement énuméré. 
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On découvre que tout ensemble complètement énuméré est équivalent à un ensem­
ble-quotient de K. 

Notons que II ne possède pas cette propriété. 

THéORèME DE COMPLETION. — Tout ensemble énuméré y peut être plongé en tant que 
e-sous-objet dans un certain ensemble complètement énuméré. 

On peut même démontrer qu'il existe une completion « minimale ». En effet, la 
completion se fait fonctoriellement : si $ln est une sous-catégorie complète de 91 ayant 
pour objets des ensembles complètement énumérés, on peut formuler alors le théorème 
suivant : 

THéORèME DE PLONGEMENT. — 77 existe un fondeur Fn\9l -*• 91 n et une application 
naturelle n\ Id -• Fn tels que pour chaque ensemble énuméré y, (y, r\) est un e-sous-
objet de Vensemble complètement énuméré FJy). 

II. Créativité et m-universalité. 

Soit A un ensemble quelconque non-vide. On appelle A-suite (des sous-ensembles 
de l'ensemble de nombres naturels) l'application A : A -> P(N) de l'ensemble A 
dans l'ensemble de tous les sous-ensembles de N. Désignons-la par ,A = {Ak }XeA 

où Ax = A(À). A chaque A-suite A s'associe une enumeration vA d'un sous-ensemble 
S c P(A), vA(n) = { k | n e Ax }. Nous désignons par Â l'ensemble énuméré corres­
pondant. Inversement, pour chaque ensemble énuméré y = (S, v) où S ç P(A), on 
peut construire une A-suite {A x }XeA; ainsi Ax = { n | X e v(n)}. Nous désignons cette 
A-suite par y. 

On a Â = A, y = y. 
Soient A et B deux A-suites. On dit que A se réduit-m à B(A < mB) s'il existe une 

fonction générale recursive / telle que 

VxeJV VXeA(xeAx o f(x)eBx) 

Soient A une A-suite, g une fonction partiellement recursive, alors g~\A) est une 
A-suite {g-\Ax)}XeA. 

Nous appellerons la classe Q des A-suites fermée si (AeQ& (g est une fonction 
partielle recursive)) => g~1(A)eQ. 

La classe Q s'appelle Y-classe si Q est fermée et contient une suite m-universelle, 
c'est-à-dire 3A e Q4B e Q(B < mA). 

Soient Q une Y-classe, A une, suite m-universelle dans Q. On appelle enumeration 
canonique de Q rénumération v: N -• g qui se définit par vn = K~1(A). 

La A-suite A s'appelle coproductive pour une 7-classe Q, s'il existe une fonction 
générale recursive h telle que pour chaque x e N 

h(x) e (J [ f i (Ax n v(x)x)\ (J (Ax u v(xx))] = f K ^ V v ^ ) ) 
A O E A AeAo ÀeA\Ao AeA 

0 Ù A VB = [A n B] u [(N\A) n (N\B)] 

et v est une enumeration canonique de Q. 
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THéORèME. — Soient Q une Y-classe, v : N -> Q une enumeration canonique. Pour 
chaque A-suite A les propriétés suivantes sont équivalentes: 

1. A est m-universelle pour Q, c'est-à-dire VBeQ(B ^ mA). 
2. A est coproductive pour Q. 

3. Il existe une fonction générale recursive h telle, que pour chaque xeN 

VA(WX)) = v>fo(fc(x)) 

Une suite coproductive pour Q dans Q s'appelle une suite créative. 

COROLLAIRE. — Une A-suite AeQ est m-universelle pour Q si et seulement si A est 
créative. 

Il existe un lien étroit entre les Yclasses et les ensembles complètement énumérables. 
Ce lien permet d'établir le fait suivant : deux A-suites créatives quelconques d'une Y-classe 
sont récursivement isomorphes. 

Considérons séparément le cas de A = N et des classes comportant exclusivement 
des suites calculables, c'est-à-dire les suites {An }neN pour lesquelles l'ensemble 
{ ( x , j ; ) | j / e 4 } est récursivement enumerable. La classe Q0 de toutes ces suites 
possède une enumeration de Godei (calculable) K. Soit Q œ Q0. On dit que la suite A 
est coproductive pour Q par rapport à K s'il existe une fonction partiellement recur­
sive h telle que si K(X) e Q, alors h(x) est définie et 

h(x) e n (AnVK(x)n). 

Toutes les Y-classes Q ç Q0 ne possèdent pas nécessairement une suite créative 
par rapport à K. Cependant on peut donner la description complète de toutes ces 
Y-classes. Pour cela, rappelons la définition d'une classe standard K ç P B d'ensembles 
récursivement énumérables (Lachlan [4]) : une classe K ç P „ s'appelle standard, s'il 
eyiste une fonction générale recursive h, telle que VxeN.nh(X)eK, et si nxeK, alors 
nh{x) = nx. Si K est une classe d'ensembles récursivement énumérables, alors on dési­
gnera par K' la classe de toutes les suites calculables des ensembles appartenant à K, 
c'est-à-dire 

{An}neNeKf o {An}neNeQ0 et VneN(AneK) 

THéORèME. — Une classe Q de suites calculables est une Y-classe et elle contient une 
suite créative (par rapport à K) si et seulement s'il existe une classe standard K, contenant 
un ensemble vide tel que 

Q = K' = {Â\AeK'} 

III. Familles calculables de morphismes. 

Soient yo et yx des ensembles énumérés quelconques, S ^ Mor (y0, y±) un ensemble 
de morphismes de y0 dans yt. L'énumération v : N -* S s'appelle calculable si l'applica­
tion < x, s0 y -> v(x)(s0) de l'ensemble N x S0 dans St est un morphisme de N x y0 

dans y1. Le problème P pour le couple (y0, y±) consiste à trouver une enumeration v0 

calculable de l'ensemble Mor (y0, y±) telle que pour chaque autre enumeration calcu­
lable v : N -> S ç Mor (y0, yt), le plongement de S dans Mor (y0, y j , soit un mor­
phisme de (S, v) dans (Mor (yQ, yt), v0). 

Si le problème P est décidable pour le couple (y0, yj, l'ensemble énuméré 
(Mor (y0, yt), v0), où v0 est la numération recherchée, est désigné par Mor (y0, yt). 
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THéORèME. — Pour le couple (yQ, y^, le problème P est décidable si et seulement si 
le fondeur y <~»Mor (y0 xy,yj de 91 dans S et est représentable ; en cas de décida-
bilité, l'ensemble énuméré Mor (y0, yA) est justement la solution du problème de repré­
sentation de ce fondeur. Les équivalences suivantes ont lieu (en cas de décidabilité 
du problème P pour des couples convenables) : 

Mor (y0 x y l f y2) «
 M°r (yo* Mor (yl9 y2)) 

Mor (y0 + yu y2) « Mor (y0, y2) x Mor (yu y2) 

EXEMPLES. — 1, Pour le couple (N, N), le problème P est indécidable. 
2. Si 1 est un ensemble énuméré à un seul élément, alors pour chaque y ont lieu les 

équivalences suivantes : Mor (y, 1) « 1, Mor (1, y) « y. 

L'auteur a trouvé des conditions suffisantes assez larges de décidabilité du pro­
blème P dans la classe d'énumérations calculables des ensembles récursivement 
énumérables, mais la formulation de ces conditions est trop complexe pour qu'on 
puisse la donner ici. Cependant, comme corollaire, nous pouvons indiquer ici l'exis­
tence d'une suite d'ensembles énumérés, qui peut être assez naturellement inter­
prétée comme une famille de fonctionnelles partielles calculables de tous les types 
finis. Ces ensembles énumérés sont indexés par des types correspondants (0 est un 
type, si a et T sont des types, alors (a -+ T) est un type). 

F0 = N,.. . , i V n ) = Mor (Fa, Fn(Fz)) 

A noter que F{0^0) œ K est la classe de toutes les fonctions partiellement récursives 
(avec l'énumération de Godei). Les fonctionnelles définies de cette manière possèdent 
des propriétés intéressantes (continuité, monotonie, théorèmes de recursion, ferme­
ture par rapport au point minimal fixe, bar-récursions, etc.). 
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ORDINALS AND FUNCTIONALS 

IN PROOF THEORY 

by SOLOMON FEFERMAN 

I shall present some recent results on various familiar classes Jf of total fundionals 
of finite type over the natural numbers N. The methods of proof extend the two prin­
cipal techniques of proof theory, viz. Gentzen's normalization (cut-elimination) and 
Gödel's functional interpretation. Thus, though the paper is not a survey, it gives 
a good idea of current work (*). The principal novelty is the systematic use of non-
constructive operations, at least as an auxiliary, in particular of functionals connected 
with numerical and function quantification. 

Part I. — For F of type 2, the class of functions of type 1 generated by Jf, F is 
described as a hierarchy in F (indexed by ordinals). 

Part II. — From / we get explicit information about existential theorems of sub­
systems of formalized analysis and, generally, reductions of these systems to more 
familiar ones. 

1.1. Functionals: notions and notation. 

As usual, the type symbols (t. s.) are 0 and (a -> p) if o, p are t. s. ; n + 1 =def (n -> 0). 
A finite type (f. t.) structure 9JI over N is of the form 

9CT = « M t > T , < A p p t > t * 0 , 0 , ' ) 

where M0 = N', is successor, and for % = (a -> p), AppT : MT x Ma -» Mp. 
f, g,h,...,F,G,H,... range over arbitrary MT; x, y, z,... range over N. fg is 
written for AppT(/, g) and fg1 ... g„ for (.. .(fgj ...)g„. In the maximal 9)1, M(ff_p) 

consists of all function(al)s f'.Ma -* Mp and fg is the application f(g). For simpli­
city, throughout Part I all notions and results are formulated for the maximal 9JI; 
they generalize directly to any structure satisfying suitable closure conditions. 

For each class Jf of functionals, Gen (X) is the class of objects generated by explicit 
definition from Jf. That is, let Tm (jf) be the class of formal terms of f. t. built up 
from variables of each type and constants F of type % for each F in (X u { 0 }) n MT , 
by the formation rules: 

(a) if t is of type 0 then t' is also of type 0, 
(b) if t, s are of type (o -> p), a resp. then ts is of type p, 
(c) if cp is a variable of type G and t is of type p then Xcp • t is of type (cr -> p). 

(*) Cf. [5] for a rather comprehensive up-to-date survey of proof theory, including an 
extensive bibliography. 



230 S. FEFERMAN A 

Each term t of type x defines t w [ J ] in Mx under an assignment / t o its free variables, 
where X is interpreted as the abstraction operator; thus for closed t = Xcp-t1, t

{3!r)f = ^P\f\. 
Gent (Jf ) consists of all tm for closed t of type x in Tm (Jf ); Gen (Jf) = uT Gen t (Jf ). 

1.2. Classes of functionals studied. 

(i) The primitive recursion functionals R = Rx, given by 

ÄJ&0=/ . R/gx'=gx(R/gx), 

in each type x making this coherent. 
(zi) 0t = {R t }x and 99L = Gen (01). 
(iii) The predicative primitive recursion functionals Rv = Rx , given by 

RvfgOh = fh, Vfgx'h = gx(Rvfgxh)h 

in each type x where fh is of type 0. 
(iv) m v = { Rt

v } t and 0>0lv = Gen (^ v ) . 
(ü) The numerical quantification functional E of type 2: 

Ef=0 if 3x(/x = 0), and = 1 otherwise. 

(vi) The unbounded minimum operator p of type 2: 

ju/ = (the least x with fx = 0 if Ef = 0), and = 0 otherwise. 

p, rather than E, is needed for Part II. This work is extended to functionals for func­
tion quantification and corresponding selection operators. 

1.3. Infinite terms. 

These are used for stating the first main results, though the applications require 
only special cases which can be stated for familiar hierarchies. It is technically useful 
to distinguish formally sequences of type T from functionals of type (0 -> T); the t. s. 
are now extended to include T° whenever T is a t. s. Let !F be any collection of type 2 
functionals; for each Fe!F, F is taken as a constant of type (0° -> 0) in Tm00 (&). 
The formation rules for Tm00 (#") are just like those of l.l(a)-(c) and, in addition: 

(bf) if t, s are terms of type T°, 0 resp. then ts is of type T, 
(d) if tn is a sequence of terms of type x then < tn >„ is a term of type x°. 

For t = < tnyn closed, t{gF) = Àn-tn
{^\ Each feTm00 (&) can be regarded as a 

coded well-founded tree in N, with a natural ordinal length 11 \, where 

K O . I = sup(KI + l). 
n 

Also, it makes sense to say that t is recursive, etc. 

The reducibility relation =| is the least relation satisfying: 
A. (Xcp-t)s_=\Subst(s/cp)t, 
B. < 0 „ M tk, 
C. <tn>nrs=\(tns}r, 
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and which is transitive and preserves the operations of term formation. Let Irr" (BF) 
be the set of irreducible t in Tm00 (BF) of type x; these are also said to be normal form 
(n. f). The new conditions on types ensure that every t in I rr" (SF) is built entirely 
from members of ITTQ (SF), since then t is either of the form (i) Ö, (ii) EL variable, (iii) t'0, 
(iv) < t„ }„s where s is not a numeral, or (v)F(( t„ >„) for some FeßF. 

1.4. Hierarchies. 

These are associated to T m 0 0 ^ ) . For any ordinal a, let 

J f f = the collection of all (Xx-t)ißr) where Xx-t is closed, telrrg' ($F\ \ t\ < a and 
t is recursive (2). 

Besides directly employing type 2 functionals, this scheme is notation-free, in contrast 
with the usual recursion-theoretic analogues of classical (Borei, etc.) hierarchies where 
an operation of type (1 -> 1) is iterated along special systems of ordinal notations, 
taking " effective joins " at limits; cf. [6]. In particular, the familiar hyperarithmetic 
hierarchy is got by iterating a " jump operator " (related to E). For recursive limit 
ordinals a (writing «?fa

F = jf£F>): 

ffî* = 2tf\ = the class of functions recursive in the hyperarithmetic hierarchy by 
stage a. 

For a = co these are just the arithmetical functions. 

1.5. Theorem. 

For any class !F of type 2 functionals containing p we have : 

(0 Gen! ( £ v u #") = Ml, and 
(ii) G e n 1 ( ^ u ^ ) = ^ . 

The proof of 2 in (i) is straightforward. In (ii), 3 uses the fact that (R*) e &ffl 
for each initial segment -< of the natural well-ordering in N of type e0, where the R< 

are the functionals for transfinite recursion on -<. 

The proof of ç in (ii) follows Tait's description in [7] of Gen! (01) in terms of a sub-
recursive hierarchy up to e0. He extended Gentzen's cut-elimination method to 
infinite terms; this simply relativizes to any BF, as follows (still with effective steps). 
For each r in Tm (0t u &) there is an r+ in Tm00 (SF) with \r+ \ < co-2, defining the 
same functional ; (R)+ = Xcp • X\j/ • < t„ >„ where t0 = cp,tn+1 = \jßntn. Now for r e Tm00 (SF) 
let | r | < a, with 2a = a (i. e. a = œ or a is an EP). Then there is r* in n. f. such that 
r H r* and | r* | < a. To prove £ in (i) note that the Rv can be explicitly defined in 
terms of +, . and p; we can then restrict attention to r in Tm 0 0 (^) with \r\ < co. 

II . 1. Non-constructive functional interpretations. 

Let T =: TmtVL be a formally intuitionistic theory with variables in all f. t., but with 
quantifiers in type 0 only; in addition to the standard axioms for 0, ' and induction, 

(2) Recursiveness is only appropriate for the hierarchies in this paper; in general this require­
ment is to be widened. 
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one has for each member of Gen (0t, p) an axiom expressing its definition. These 
imply 

3x(cpx = 0) <-> cp(pcp) = 0, Vx((px ^ 0) <-> cp(pcp) ^ 0, 

hence also lx(cpx = 0) V ~ 3x(<px = 0). Every arithmetical formula A is equivalent 
in T to a quantifier-free (q. f.) P. Let T + be the extension of T with quantifiers in 
all types and the following schemata for all q. f. P: 

(M) ~ V* ~ P«0 -+ 3 W ) , 
(AC) yep 3\//P(cp, i/0 -» 3i// VcpP(cp, ij/cp). 

Using recursion, this axiom of choice implies the axiom of dependent choices (DC) 
for such P. The classical 2nd-order system S = (Sì — DC) is a fragment of T+ 

when the primitives of S are ~ , A, V and 3 is replaced by ~ V ~ . 

Following Godei [3], with each formula >4 of T + is associated a formula 3<p V\l/PA(cp, \j/) 
with PA q. f. such that: if T+ \- A then T \- PA(t, \j/) for some term t of T. By (ii) 
of the above theorem and the model for T in Gen (01, p) we get: 

COROLLARY (Friedman [2]). — 7/ (L{ - DC) \- 3cpA(cp) with 3cpA(cp) closed, A arithme­
tical, then A(f) holds for some f e Jtf^. 

Applying the theorem to $F = {p, F} with F SL functional for function quantifi­
cation (explicitly yielding an associated selection operator) we also get the similar 
result for (I,2 — DC) in [2]. It is likely that this can be extended to the further results 
stated there for ( ^ - DC), n>3. 

II.2. Reductions of subsystems of analysis. 

By formalizing the argument just sketched we get new proofs of refinements obtained 
by Friedman in [2]; for example, (E} — DC) is proof-theoretically reducible to the sys­
tem S* = (UQ — CA)<E0 expressing the existence of the hyperarithmetic hierarchy 
up to a for each a < e0. One new point is involved. In the model for T above we 
had in mind the maximal type structure, which cannot be dealt with in S*. Instead, 
one uses a " term model " $R in which the MT consist of the closed t in lnt(p). For 
M0 to be N, each such t of type 0 must be a numeral. This does not hold for the =1 
relation given by l.3(A-C), but is ensured when we add: 

D. p((kn\)=ip(Xn-kn). 

This introduces no new " cuts ", so again every r with \r\ < e0 reduces to r* in n.f. 
(in the new sense) with \r*\ < e0. The association is no longer recursive, but it does 
not lead outside of fflJf0. Similarly one gets the reduction of [2] for (li2 — DC) to a 
system (n{ - CA)<Eo. 

Remark on alternative proofs. — Those in [2] involve an ingenious use of non-standard 
models whose existence follows from a proof-theoretical result concerning e0 (due 
to Kreisel). (By [4] non-standard, and not co-models, have to be used, even for the 
corollaty, since the minimum co-jnoclel of (1,\ — DC) consists of all the hyperarithmetic 
functions). The proofs sketched here extend current general methods in a straight­
forward way. 
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II.3. Relations to predicativity and mathematical practice. 

The results also eliminateJhe use of prima-facie impredicative definitions, such as 
for 01, in favor of predicative ones. When extended to 0t< for predicative well-order-
ings -<, they lead to more elegant reformulations of the systems studied in [1], sup­
pressing all quantifiers in types > 0. 

As pointed out in [4], substantial portions of analysis have been developed predi-
catively; but they happen to require only closure under arithmetical definability. 
This is explained by (i) of the theorem (1.5), in the sense that this part of mathematics 
can easily be seen to require only the closure conditions of Gen (0ty, p). More gene­
rally, it is fair to say that in terms of the notions studied here we can make clear what 
more we know when we have proved a theorem of analysis by restricted means than 
when we merely know that it is true. 
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DIOPHANTINE REPRESENTATION 

OF RECURSIVELY ENUMERABLE PREDICATES 

by Yu. V. MATIJASEVlC 

The tenth problem on David Hubert's famous list (cf. [1]) is formulated as follows: 

10. Entscheidung der Lösbarkeit einer diophantischen Gleichung. 

Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen 
rationalen Zahlkoeffizienten sei vorgelegt ; man soll ein Verfahren angeben, nach welchem 
sich mittels einer endlichen Anzahl von Operationen entscheiden lässt, ob die Gleichung 
in ganzen rationalen Zahlen lösbar ist. 

A diophantine equation is an equation of the form 

P(xu...,Xn) = 0 

where P is a polynomial (all polynomials considered here are polynomials with integer 
coefficients). 

It is well-known (cf. [2] or [3]) that an algorithm for determining the solvability in 
integers would yield an algorithm for determining the solvability in positive integers 
and conversely. Hence we will limit our discussion to questions of solvability in 
positive integers. Lower-case Latin letters will always be variables whose range is 
the positive integers. 

A relation M(xlt.. .,x„) among natural numbers is called diophantine if there is a 
polynomial P such that 

^(x i , . . . , x n ) <=> 3y! . . . yk[P(xu.. .,xn, yu.. .,yk) = 0). 

MAIN THEOREM. — Every recursively enumerable predicate is diophantine. 

COROLLARY. — Hilberfs tenth problem is unsolvable. 

The first major contribution to the proof of the Main Theorem was made by Mar­
tin Davis. He has shown in [4] that every recursively enumerable predicate ^(xx,.. .,x„) 
can be represented in the form 

0t(xu.. .,x„)<=>3wVz<w3yi . . . yk[P(xu- • •,**, yi>- • •>)>&, w, z) = 0] 

where P is a polynomial. 

Taking advantage of this representation Martin Davis, Hilary Putnam and Julia 
Robinson proved in [5] that every recursively enumerable predicate t%(xl9.. .,x„) can 
be represented in the form 

£ ( x 1 , . . . , x l l ) o a y 1 ... yk[P(x1,...,x„,y1,...,yk) = Q(xu.. .,x„, yl9.. .,yk)] (1) 



236 YU. V. MATDASEVlC A 

where P and Q are functions built from variables and particular positive integers by 
addition, multiplication and exponentiation. 

To prove the Main Theorem it is sufficient to show that the relation given by 

z = xy (2) 

is diophantine. For then we can eliminate exponentiation from (1) in the usual way 
and thus obtain a diophantine representation of 0t. 

The question of whether the relation (2) is diophantine was studied by Julia Robin­
son in [6]. Among other theorems she proved the following one: 

7/ there exists a diophantine relation Sf(u, v) such that 

Vuv[@(u, v) => v < ifl (3) 
and 

Vk3uv[@(u, v)&uk < v] (4) 

then the relation (2) is diophantine. 

A relation Sl(u, v) is said to be a relation of exponential growth if it meets conditions (3) 
and (4). 

The first example of a diophantine relation of exponential growth appears in [7]. 
This work completes the proof of the Main Theorem. Here we exibit this relation and 
outline the proof. 

Let cpn be defined by 

cpo = 0, cp1 = l, (pk+i=<pk + <pk-i 

(cpn is the famous Fibonacci series). The relation given by 

V = (p2u (5) 

is an example of a diophantine relation of exponential growth. 

It can be easily proved that for every u 

This implies that relation (5) is a relation of exponential growth. 

It is proved in [7] that v = cp2u if and only if there are positive integers I, z, g,h, m, 
x, y such that 

u 4i v, I \ m — 2, 

l>v, 2h + g | m - 3, 

I2 — Iz — z2 = 1, x2 — mxy — y2 = 1, 

g2-gh-h2 = \, l\x-u, 
l2\g, 2h + g\x-v. U 

It is easy to see that the relations a < b, a > b, a \ b are diophantine and hence can 
be eliminated from (6). A system of diophantine equations can easily be transformed 
into a single equation (cf. [2] or [3]). Hence the relation (5) is diophantine. 



RECURSIVELY ENUMERABLE PREDICATES 237 

To prove that conditions (6) are necessary and sufficient we consider the sequen­
ces \jfmtn defined for every m > 2 by 

^m,0 = 0, ifrmA = !> tfW + l = m$m,k ~ ^m.fc-l-

It can be easily proved by induction that 

tm,n = n (mod m - 2), 
^m,n = <p2n (mod ffl - 3). 

Hence if d \ m — 3, then 

Rem (il/mtn, d) = Rem (cp2n, d) 

(Rem (a, b) denotes the remainder obtained upon dividing a by b). 

We study the sequence 

Rem (cp0, d), Rem (cp2, d),..., Rem (cp2n,d),... (1) 

where d = cp2k + <p2(fc+i) f° r some fc. It can be proved that sequence (7) is periodic, 
the length of the period is equal to 2k + 1, and the period consists of the following 
numbers: 

<Po> <P2.---><P2fc = à - cp2(k+1), cp2(k+l) = d - cp2k,...,d - cp4,d - cp2. 

We also use the following properties of numbers cpn and ij/mt„ : 

x2 — xy — y2 = 1 o 3i[x = cp2i+1 &y = cp2i], 
m ^ 2 => [[x2 - mxy + y2 = 1 &x ^ y] o 3i[x = \j/mti+i &y = ^m>J], 

(Ps I 9t => 9. U. 

It is not very difficult to prove these properties by induction and course-of-values 
induction. 

Having proved the above mentioned properties of numbers cp„ and \j/mt„ we can 
easily complete the proof of the necessity and sufficiency of the conditions (6). 

Combining our Main Theorem with an earlier result of Hilary Putnam [8], we can 
obtain the following theorem: 

Every recursively enumerable set S of positive integers can be represented in the form 

aeS o 3yt ... y„[a = P(y1,.. .,y„)] (8) 

where P is a polynomial. 

For example, the set of all prime numbers coincides with the set of all positive values 
of some polynomial with integer coefficients ! 

If S in (8) is any recursively enumerable, but not recursive set of positive integers, 
then there is no algorithm for determining for given a whether the equation 

P(yi yn) = a 

has a solution. This result is stronger than the unsolvability of Hubert's tenth problem. 
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Using Godei numbering of recursively enumerable sets we can construct a polyno­
mial M(y±,..., yk, g) such that every recursively enumerable set S of positive integers 
can be represented in the form 

aeS olylmm. yk[a = M(y1}.. .,yk, gs)] 

where gs is any Godei number of S. 

The constructions known today yield such universal polynomials with some 
200 variables. For the set of all primes we can construct a polynomial with about 
25 variables. Of course, these constructions are not the best ones and we can hope 
they will be essentialy improved in the future. 
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DECIDABILITY AND DEFINABILITY 

IN SECOND-ORDER THEORIES 

by MICHAEL O. RABIN 

The purpose of this note is to collect and present from a unified point of view certain 
results concerning second-order logic which were obtained in recent years [5, 6, 7]. 
In addition, several open problems and directions for further research are indicated. 

It is well known that a second-order language with variables for binary relations, 
where the relation variables have the standard interpretation, is strong enough to 
express all statements of arithmetic as well as many set-theoretical facts. Thus there 
is no hope for positive decidability results for the theory of any (infinite) structure in 
such a language. 

Here we deal with S^S-the monadic second-order theory of the structure of two 
successor functions (the full binary tree). We are able to not only solve the decision 
problem for this theory, but also to completely characterize the relations definable 
in it. Because the theory in question is taken with the standard interpretation for 
the set variables, the result turns out to be very powerful and many other decision 
problems are directly reducible to it. The solution of the decision problem of S2S 
involves development of a theory of automata on infinite trees. The basic concepts 
and results of this theory are also outlined here. 

1. Terminology and main result. 

We employ the usual set theoretic notations concerning mappings, sequences, etc. 
In particular, every ordinal a = { ß \ ß < a } is the set of all smaller ordinals. Integers 
will be denoted by k, I, m, n. The set {0, 1 , . . . , } of all integers is denoted by co. For 
a set A and an ordinal a, A" = { x | x : a -• A } is the set of a-ter med sequences on A. 
An «-termed sequence x e A" is written as (x(0), . . . , x(n — 1)). The length of x is 
l(x) = n. A sequence (a) of length 1 will also be written as a. The (unique) sequence 
of length 0 is denoted by A. For a set A denote by A* = \J An, the set of all finite 

n<co 

sequences (words) on A. For words x, ye A* let xy e A* stand for the result of conca­
tenating x with y. Thus x = x(0)x(l) . . . x(n — 1). For a e A we define the successor 
function ra: A* -• A* by ra(x) = xa, xe A*. On A* define a partial-ordering x ^= y 
(x is an initial of y) by 3z[xz = y]. 

For n é= co the n-ary tree Tn is defined by T„ = n*. Each xeT„ is called a node 
of T„ ; rf(x), i < n, is the i-th successor of x ; A e Tn is the root of the tree. A subset 
cj) / n ^ T„ is called a path if : 1) y < x e TE implies y e n ; 2) for x e n there exists exactly 
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one i < n such rt(x) e n. On Tn, n 4= co we define the lexicographic (total) ordering 
x ^ j / b y x ^ y V 3z3k^m[zk 4= x A zm 4= y A k < m]. 

Corresponding to a given structure A = < H, fx,..., Rt,..., >, or a class Jf of 
structures similar to A, we introduce the following (monadic) second-order lan­
guage L2 . It has the usual logical connectives and quantifiers, equality, the member 
ship symbol e, symbols fl9.. .9Rlt..., to denote the corresponding functions and 
relations of A. The variables of L2 are x, y, z,..., which range over elements of the 
domain H, <z, ß, y,..., which range over all finite subsets of H, and variables A, B, C,..., 
which range over all subsets of H. Quantification is permitted over all three types 
of variables. 

The notion of satisfaction of a formula F of L2 in A is defined in the usual way and 
is denoted by A î= F. The theory of A in L2 is defined by Th2 (A) = {G\G sentence 
of L2, A 1= a }. Th2 (A) is called the (monadic) second-order theory of A. If j f 
is a class of similar structures then we define Th2 (Jf ) = f] Th2 (A). 

With the above notations, define, for n < co, the structure of n successor functions, 
Jfn = < Tn, ri3 4=, ^ >i<„, and the second-order theory of n successor functions 
SnS = Th2 (J/'r). The main result is the following 

THEOREM 1. — The (monadic) second-order theory of two successor functions (S2S) 
is,decidable. 

An immediate corollary is that SnS, n 4= co, is decidable. 

2. Automata on T2. 

We shall write T2 = T. In the following E denotes a finite set called the alphabet. 

DEFINITION 1. — A S-(valued) tree is a pair t = (v, T) where v : T -+ S. The set 
of all Z-trees will be denoted by V^. 

DEFINITION 2. — A finite automaton (f. a.) over S-trees (E-automaton) is a system 
31 = < S, M, sQ, Q > where S is a finite set of states, M is a function M : S x S - > P(S x S), 
the (non-deterministic) table of moves (P(A) denotes the set of all subsets of A), s0eS 
is the initial state, and Q = ((Lt, Ui))i<k is a finite sequence of pairs of subsets of S. 

A run of 91 on t = (v, T) is a mapping r:T^>S such that (r(x0), r(xl))eM(r(x), v(x)), 
for all x e T. The set of all runs will be denoted by Rn (% t). 

For a mapping cp : A -• S define In (cp) = { s \ co 4= c(cp~1(s)) } where c(H) denotes 
the cardinality of the set H. With Q, as above, we say that cp is of type Q(cpe [Q]), 
if for some i < k, In (cp) n L{ = 0 and In (<p) n [/( ^ 0. 

DEFINITION 2. — The automaton 31 accepts the S-tree t if for some run r e Rn (51, t) : 
(i) r(A) = s0, (ii) for every path % c 7̂  r 17C e [Q]. 

The set of all 2-trees accepted by 51 is denoted by T(5l) and called the set defined 
by $1. A set H ç FL is called (automaton) definable if for some S-automaton 51, 
if = T(5I). 
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Let S j be an alphabet and p : X -> 2 j . For a S-tree t = (u, T) define the projec­
tion p(t) = (pv, T)eVu. 

THEOREM 2. — If >4, B ç FE are automaton definable then so are (i) the union Au B; 
(ii) the complement V^ — A; (iii) the projection p(A). 

Of the above statements, (i) is trivial, (ft) is a deep result requiring a difficult proof, 
and (IH) follows at once from the fact that our automata are non-deterministic. 

THEOREM 3. — There exists an algorithm for deciding for every given automaton 51 
whether T(5I) = 0 . If 51 has n states and c(li) = m, then the algorithm requires 
about mAmn steps. 

DEFINITION 3. — The automaton 51 is called special if k = 1 and L0 = 0 . A set 
H £ KE is weakly definable if it is definable by a special automaton. 

Weakly definable sets satisfy (i) and (in) but not necessarily (ii) of Theorem 2. 

3. Second-order definability. 

A relation R c P(T)n is definable in S2S if for some formula F ( ^ l f . . .,A„) of 
L2 : R = { ( A t , . . . , An) | Jf2 \= F(A±,..., A„) }. The relation R is weakly definable 
if the above holds with a formula F which contains no arbitrary set quantifiers (but 
may contain finite-set quantifiers). 

Let now E(n) = {0, 1 }", n < co. With A = (Al,.. .,A„)eP(T)n, we associate 
the £(rc)-tree z(A) = (v, T) where v(x) = (XAt(

x\ • • •> XA„(X))> XET (XH *S t n e characte­
ristic function of H). 

THEOREM 4. A relation R s P(T)n is definable in S2S if and only if T(R) S FE(n) 

is automaton definable. R is weakly definable if and only if z(R) and VZ(n) — T(R) 
are definable by special automata. 

The proof of Theorem 4 is effective in the sense that from a formula F(A1 An) 
an automaton 5IF defining T(R) can be effectively (even primitive-recursively) cons­
tructed. Combined with Theorem 3, this immediately implies Theorem 1. 

4. Applications. 

We shall illustrate some of the many possible applications of the above results. 

Let ff% denote the class of all countable totally ordered sets, let Jf} denote the 
class of all unary algebras < A, f > where / : A -> A, and let JfJ? be the class of all 
countable unary algebras. 

THEOREM 5. — Th 2 ( j f2) is decidable. 

Proof. — For every countable < A, ^ > there exists a subset A Ç T such that 
< Z | < > ~ < ^ ^ = > . Rewrite every sentence a of the monadic second-order Ian-
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guage of ordering by replacing =̂ by < and relativizing all individual and set variables 
to a set variable A. For the resulting formula a(A) we have Jf2 \= MAa(A) iff 
creTh2(K%). 

THEOREM 6. — Th2 ($Tf) is decidable. 

This proved by first showing that Th 2 (Jf / ) is decidable by direct interpretation 
in S2S, and then using an unpublished result of J. J. Le Tourneau to the effect that 
Th2(jff) = Th2 (jryy 

The set of all paths of T can be naturally identified with Cantor's discontinuum 
CD = { 0, 1 }w. The closed subsets of CD are then obtained as the sets { % \ % a A }, 
A^T. This yields 

THEOREM 7. — The first-order theory of the lattice of all closed subsets of CD is 
decidable. Similarly for the real line. 

The last results answered in the affirmative a long standing question of Grze-
gorczyk [2]. 

CD is the Stone-space of the free denumerable Boolean algebras 33^. The ideals 
I Ç 93a, stand in a natural one-to-one correspondence with the open subsets of CD. 
This implies 

THEOREM 8. — Let Jfg be the class of countable Boolean algebras, and let L7 be the 
appropriate monadic second-order language with the set variables restricted to range 
over ideals. The theory of Jfg in L7 is decidable. 

COROLLARY. — Let JfB/ be the class of all Boolean algebras 

93 = < 5 , u , n , ', h,I2,...,y 

where the In,n < co, are distinguished ideals. The first-order theory of JfBI is deci­
dable. 

It is well known that various non-classical logical calculi such as fragments and 
extensions of the intuitionistic calculus, modal and tense logics, etc., have Kripke 
style interpretations by valued trees. Combining this with Theorem 1, D. Gabbay 
was able to derive a large number of decidability results for these calculi [1]. 

5. Regular trees. 

A S-tree (v, T) is called regular if u~ V ) £ { 0, 1 }* is a regular set for every a e X. 
Here " regular " means definable by an ordinary sequential automaton (see [4]). 

THEOREM 9. — If T(5I) #= 0 then there exists a regular tree t e T(5Ï). 

COROLLARY. — If F(A) is a formula of 525 such that Jf2 \= 3AF(A), then there exists 
a regular set A ç { 0, 1 }* such that Jf2 N F(A). 
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COROLLARY. — The regular sets form a basis for quantification in S2S. 

Combined with the proof of Theorem 5, Theorem 9 also yields. 

THEOREM 10. — If a is not valid in Jff then there exists a regular set A ç { 0, 1 }* 
such that < A, < > \= ~ a. 

Another application of Theorem 9 is to give (see [7]) a very simple solution to Church's 
solvability problem which was originally solved by L. Landweber in his thesis [3]. 

6. Open problems. 

1. Find a simpler proof for Theorem 2 (ii), possibly avoiding the transfinite induction 
used in [2]. 

2. Find additional applications of Theorem 1. For example, can it be used to 
derive the well known result concerning the decidability of the theory of commutative 
groups. 

3. Is it solvable to determine for a given tree automaton 51 whether there exists 
a special automaton 23 such that T(5l) = T(53). Relatedly, is it decidable to deter­
mine for a given formula F(A) of S2S whether the corresponding relation is weakly 
definable. A positive answer to this new type of decidability-definability question, 
will shed light on the corresponding problem for the many theories interpratable 
in S2S. 

4. Uniformization. Is it true that for every formula F(A, B) such that 

Jf2 \=VA1BF(A,B) 

there exists a .formula G(A, B) satisfying Jf 2 N V.43 ! BG(A, B) and 

Jf2 | VAVB[G(A, B) -+ F(A, B)]. 

An affirmative answer may be of help in Problem L 

5. In general, study the question of tree-automaton transformations and possible 
generalizations of Church's solvability problem for tree automata. 
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FORCING IN MODEL THEORY (') 

by ABRAHAM ROBINSON 

1. Introduction. 

The forcing concept of Paul J. Cohen has had an immense effect on the develop­
ment of Axiomatic Set Theory but it also possesses an obvious general significance. 
It therefore was to be expected that it would have an impact also on general Model 
Theory. In the present talk, I shall show that this expectation is indeed justified and 
that the forcing notion provides us with a new tool in Model Theory, which leads to 
a better understanding of concepts that have by now become classical in this area 
and to their further development. 

The work on which this talk is based [1, 3, 4] was begun in the summer of 1969. 
While I am confident that it will have further consequences, enough results have become 
available to make a presentation on the subject appropriate. 

Experimentation shows that there are several ways in which the forcing concept 
can be formalized within Model Theory. Here we shall explicate this notion as an 
analogue of the satisfaction relation (in fact, strictly, as a generalization of it), i. e., 
in the first place as a binary metamathematical relation which may hold between a 
structure and a sentence in the Lower Predicate Calculus [4]. Only the connec­
tives ~|, V, A and only the existential quantifier will be regarded as basic (2). 

2. Foundations. 

We start with a specified class £ of (first order) structures. The following rules 
provide a definition of the binary relation M H= X (M forces X) for structures M e E 
and for sentences X which are defined in M, i. e. whose extralogical constants have 
interpretations in M. 

2 . 1 . For atomic X, M N= iff M N= X (M satisfies X); for X = Y A Z, M H= X 
iffMN= Y a n d M H = Z ; f o r X = 7 V Z,M H= Xiff M N= Y or M N= Z;for X = (3y)Q(y), 
M \¥ X iff M H= Q(a) for some a; and for X = "l Y, M H= X iff W does not force Y 
for any M ' ë E , M ' = > M. 

The following lemma is basic. It shows that the forcing relation persists under 
extension of its first argument. 

(*) The research on which this paper is based was supported in part by the National Science 
Foundation Grant No. GP-18728. 

(2) The approach described here differs in some points from that adopted in ref. [4]. 
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2.2 . If M, M'e E, M'ID M, and M H= X then M'H= X. 

A structure M G E is called E-generic (briefly, generic) if for any X defined in M, 
M H= X iff M H= X. The class of generic structures is denoted by GE. Then 

2 .3 . If M, M'e Gs and M <=. M' then M -< M', i. e., M' is an elementary exten­
sion of M. 

2.4. If { Mv } is a monotonie set of elements of G2 and M = UVMV belongs to E 
then MeGz. 

From now on we assume 

2.5. E is inductive, i. e. it is closed under unions of monotonie sets of its elements. 
By 2.4, G£ is then also inductive. Then 

2.6 . Every element of E is contained in some element of G2. 

2 .7 . I f M e G j j M ' e l j M c M ' and X is an existential or, more generally, an 
V3 sentence, which is denned in M then M ' h l entails M \= X. 

3. Universal classes. 

Let U be a set of universal sentences which is closed under deduction (A sentence 
is universal if it belongs to the smallest class containing all atomic sentences or their 
negations and closed under conjunction, disjunction, and universal, i. e. ~|(3)~l, 
quantification. U is closed under deduction if every universal X defined in U and 
deducible from it belongs to U). We take E to be the class of all models of U. Such 
a E is called a universal class. For example, if K is a (nonempty and consistent : n. e. a. c.) 
set of sentences then U may be the set of universal sentences defined in K and deducible 
from it, and we then write U = Ky. 

3 .1 . Let K and K! be two n. e. a. c. sets of sentences. Then K! is model-consis­
tent relative to K (every model of K can be embedded in a model of K') iff Kv c: Kv . 
And K and K' are mutually model-consistent iff Ky = J£v. 

U is called irreducible iff for any two universal sentences Xx and X2,X1 V X2eU 
entails X1 e U or X2 e U. A set of sentences K has the joint embedding property 
if any two models M1 and M2 of K can be injected into a model M of K consistently 
with the interpretation of the constants of K in M1 and M2 . 

3.2. K has the joint embedding property iff Kv is irreducible. 

4. Forcing in universal classes. 

A universal class E is inductive. Accordingly, the results of section 2 above apply 
to it. 

The following reduction lemma is fundamental in provinding a link between forcing 
and the classical concepts of model theory. The existential degree of a well-formed 
formula (w. f. f.) Q(x1,..., xn) is defined as'the number of its existential quantifiers 
which are not in the scope of a negation. 
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4 . 1 . For given U and corresponding E, let Q(xx,..., x„) be a w. f. f. of existential 
degree in which is defined in (the vocabulary of) U. Then there exists a set SQ of sets 
of w. f. f., {ßv(*i,. . . , xn, y x , . . . , y J } which are defined in U such that for any alt. . .,an 

denoting elements of an M e E, M H= ßfai »•••>«„) iff there exist elements of M, denoted 
by &!,.. . , bm, such that for at least one { Qv(xl9..., xn, y l 5 . . . , ym)} e SQ, the sen­
tences Qv(alt..., an, blt..., bJ all hold in M. 

Let 117 | be the cardinal of U. Since the cardinality of the set of predicates definable 
in U is max (| U \, co), 4.1 leads to the following result, which may be regarded as a 
kind of compactness theorem or Löwenheim-Skolem theorem. 

4 .2 . If M H= X then there exists an M'a M, M e E , such that M' N= X, where 
\M'\< max (| U \, co). 

Similarly 

4 . 3 . If M e E there exists an MeGL,M'^ M such that \M'\< max (| U \, \ M \, co). 

The reduction lemma also enables us to axiomatize the class GE in an infinitary 
language Lßtto where ß = (2maxflxi'0)))+. Other applications of 4.1 will be given later. 

5. The forcing operator. 

Given K, nonempty and consistent (n. e. a. a), let U = Ky, and consider the class 
of generic structures GE in the corresponding E. Let KF be the set of sentences in 
the vocabulary of K which hold in all generic structures of E. KF is called the forcing 
companion of K. We call K -> KF the forcing operator. Its basic properties are 
given by 5.1 and 5.2. 

5 .1 . KF = (KV)F; (K% = Kv; KFF = KF. 

5.2. For any n. e. a. c. sets Kt and K2, KF = K2 if and only if 1C1V = K2y. 

Also 

5.3. KF is complete if and only if K has the joint embedding property (compare 3.2). 

The forcing operator will now be related to the classical theory of model-comple­
teness. To lead up to this, we first state the following result which is a consequence 
of 4.1. 

5.4. Let M, M'e E, M'eGz, and M < M'. Then M' G GE . 

We now know (2.6, 2.3, and 5.4) that G = GE, as a subclass of E, possesses the 
following properties 

5.5. (i) Any M G E is contained in some M ' e G; (ii) if M, M'e G, M a M', then 
M< M'; (iii) if Mei:, M'e G and M<M' then MeG. 

The properties 5.5 determine the class G uniquely. That is 

5.6. For a given universal class E, let G = G± and G = G2 be subclasses of E 
which satisfy 5.5. Then Gx = G2. 
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For the proof, let MeG1. Using 5.5 (i) we construct a chain 

M = M0 c M1 c M2 c M 3 c . . . 

such that M2jeG1, M2j+1 e G2, j = 0, 1, 2 , . . . Then M 0 ^ M2 -< M4 . . . and 
Mi-< M 3 -<M 5 -< . . . by 5.5 (ii), and so, for M ' = u M2j- = u M2j-+1, M -< M' 
and M ^ M . , Hence M -<Ml and so M G G 2 , by 5.5 (iii). Thus G ì C G2 and, 
similarly, G2 c G1? Gx = G2. 

This shows, without the use of forcing, that there is at most one G as described by 
5.5. We know from the results stated previously that there is at least one such G. 

Recall that a n. e. a. c. set of sentences K is called model-complete if for any two 
models M, M' of K, M a M' entails M -< M'. A set K* is called a model companion 
of a n. e. a. c. set K, if K* has the same vocabulary as K, is mutually model-consistent 
with K, and is model-complete. This is a generalization, due to Eli Bers, of the notion 
of model completion (K* is a model completion of K if, in addition to the conditions 
just stated, K* ID K and K* is also model-complete relative to K, i. e. K* v D is com­
plete for the diagram D of any model M of K). It is known that for a given X there 
is, up to logical equivalence, at most one model companion (and, hence, at most one 
model completion) K*, and this is also an immediate consequence of the results given 
below. 

Suppose that K. possesses a model companion K*. Let £ be the universal class 
of models of U = K v . Then the class of models of K*, G, is a subclass of E since 
K% = Ky (see 3.1). Also, G satisfies 5.5 (In particular G satisfies 5.5 (ii) since K* 
is model-complete). Hence G = G% and 

5.7. Suppose K has a model companion, K*. Then KF is the deductive closure 
of K* (and, hence, is the largest model companion of K). 

Thus, the notion of forcing companion is a generalization of the notion of model 
companion. 

6. Subclasses of E. 

For given U and E, we introduce three more subclasses of E, which are related to Gs. 
Let M el, and let X be a sentence such that the relations and functions of X occur 
in M (and U), but not necessarily its constants. M forces X weakly, M H= * X if no 
M' E E , M ' D M, forces X. Then M W * X iff X holds in all generic structures M' => M 
in which it is denned. 

M G E is called pregeneric if for any sentence X which is defined in M, either M [4= * X 
or M 14=* ~|X. The class of pregeneric structures will be denoted by P r . 

6 . 1 . Suppose that MePz, M1, M2eGYi, M c Ml9 M c M 2 , and let X be a 
sentence which is defined in M. Then X either holds in both M± and M2 or in neither 
one of these structures. 

6.2. Let E be the class of models of U = Ky where K is n. e. a. c. Suppose that 
the class of models of K (which, in any case, is a subclass of E) is a subclass of Px and 



FORCING IN MODEL THEORY 249 

includes GE. Suppose that GE is the class of models of a set K*, Then K* is a model 
completion of K. 

Let E be a universal class which is given by a set U, as before. M G E is existen-
tially complete (within E) if for every existential sentence X which is defined in M 
and for every extension M' of M in E, M' H= X entails M H= X. The class of existen-
tially complete elements of E will be denoted by EE, 

A structure M G E is existentially universal (in E) if it satisfies the following condi­
tion. Let { Qv(Xi x„, yl9..., ym)} be a set of existential predicates formulated 
in the vocabulary of U, n > 0, m > 0. Suppose that for some bl9..., bm (denoting 
elements) of M there exists an M' el, M' ̂  M such that for certain a\,..., a'n of M' 
all Qv(a[,. . .,a'n,bx fcm) hold in M'. Then there exist al9..., a„ in M such that 
all Qv(a\ » • • • * flu > &i » • • • * &m) h°ld m M. The class of existentially universal struc­
tures in E will be denoted by >4E. 

For a given M, the number of distinct sets {Qv(x1,..., x„, bl9..., bm)} is at most 
2max(|u|,|Ml,co) r p ^ e n a b i e s u s t 0 snow, by a procedure of successive extension (com­
pare the proof of 2.6 above which is given in ref. 4) that every M el can be embedded 
in an M'e A^. Moreover, if U = Ky , M' may be chosen as the union of a mono-
tonic set of models of K. 

The four subclasses of E that we have introduced are related by 

6.3. PE => EE ID GE ID AE 

Of the inclusion relations contained in 6.3, the first and last are consequences of the 
reduction lemma 4.1, while £E ID G E is contained in 2.7. Suitable examples (section 8, 
below) show that any two of the four classes may be distinct. We have, as a conse­
quence of 5.3 and 6.3, 

6.4. If U = Ky where K possesses the joint embedding property then any two 
existentially universal structures in E are elementarily equivalent in the vocabulary 
of K. 

7. Finite forcing; forcing of infinite sentences. 

In Paul Cohen's original method, the forcing objects or conditions are finite sets 
of basic sentences (atomic sentences or their negations) of Set Theory. An analogous 
approach may be adopted for general Model Theory [1, 3]. This leads to a concept 
of finite forcing (or fforcing) and to corresponding finitely generic structures. The 
resulting theory is in some ways quite similar and in others radically different from the 
theory of (infinite) forcing described in the preceding sections. A major difference 
is that it is no longer true that every structure (in the class under consideration) can 
be embedded in a finitely generic structure. Nevertheless, we can still define a fforcing 
operator K -*• Kf such that if K possesses a model companion K* then Kf is its 
deductive closure and, hence, is itself a model companion of K. The situation can 
also be looked at from the point of view of Boolean valued Logic. 

In another direction, a forcing theory in which the forced sentences are elements 
of an infinitary language, has been developed by Carol W. Coven (unpublished). 
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8. Examples and applications. 

(i) Suppose K is a. set of axioms for commutative field theory. Then KF is the 
theory of algebraically closed fields (" the " model completion of K) and so is Kf. 
The class GE coincides with £E and is the class of all algebraically closed fields. All 
fields are contained in PE and so are all integral domains. Az consists of all fields 
that are of infinite degree of transcendence over their prime fields (universal domains). 

(ii) Let K be a set of axioms for the theory of groups. In this case EE is the class 
of so called algebraically closed (or, existentially closed, see ref. 2) groups and AE is 
a subclass of EE all of whose elements are elementarily equivalent (in the language 
of group theory). Using forcing, A. Macintyre showed recently that the elements 
of EE are not all elementarily equivalent. It is known [2] that K does not possess 
a model companion. This implies that neither EE nor GE are arithmetical classes 
(varieties). 

(iii) Let K be the set of all sentences formulated in terms of equality, addition, and 
multiplication, and true for the system of natural numbers. Then K is complete and, 
hence, possesses the joint embedding property. It follows that KF also is complete, 
although it can be proved that KF 4= K (This contrasts with Kf = K for the fforcing 
operator in this case). Hence N £ GE, although NeE^. It can be shown that K 
does not possess a model companion, so KF cannot be model-complete. It can also 
be shown that KF is not recursively enumerable. However, it contains many theorems 
of elementary Arithmetic. Thus, KF and the associated classes GE and AE are appealing, 
if somewhat enigmatic, mathematical objects. 
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RECURSION IN OBJECTS OF FINITE TYPE 

by GERALD E. SACKS 

My hope here in Nice is to draw attention to the work of S. C. Kleene [7] on recur­
sion in objects of finite type. In pursuit of that hope I will touch lightly on some 
related developments in generalized recursion theory. My Nicene creed is: Kleene's 
notion of recursive object of finite type and Gödel's notion of constructible set are 
of similar, but not of the same, substance. An Athanasian might see them as the same 
after reading Shoenfield [20] on hierarchies, but the Arian view is more balanced in 
the light of Moschovakis [11, 12] on hyper projective sets. 

I owe much to R. Gandy, T. Grilliot, and P. Hinman, who patiently explained to me 
the concept of recursion in objects of finite type, and to G. Kreisel [8], who taught me 
that such things as " concepts " exist in the context of recursion theory. 

An object of type 0 is a natural number. An object of type n > 0 is a total function 
whose arguments and values are of type < n. U, V9... denote objects of finite type. 
Kleene [7] introduced a transitive relation U <: V (to be read U is recursive in V). 
If U and V are objects of type 1, then < coincides with Turing reducibility. For 
each finite type, 0 ambiguously denotes the function of that type which is everywhere 
equal to 0. If U < 0, then U is said to be recursive. If U < V and V < U9 then 
U = F (to be read U and V have the same degree). X9 Y9... denote members of 2œ 

called reals, and F9 G, H9... denote total functions from the reals into the reals. 

For each n > 0, ^E is the characteristic function of equality for objects of type < n. 
Thus 2E(X, Y) = 0 if X = Y, and = 1 otherwise. 2E has the same degree as the 
Turing jump operator. A result of great internal beauty obtained by Kleene [7] is : 
the objects of type <; 2 recursive in 2E are just the hyperarithmetic ones. SkU, the 
k-section of U, is the set of all objects of type k recursive in U. Kleene [7] asked: 
do there exist F's such that (1) SXF consists of the arithmetic reals?, (2) S±F consists 
of the A2 reals? Recently Grilliot [5] answered (1) negatively by showing: if StF 
is closed under the Turing jump, then 2E < F. (2) is answered affirmatively below. 

Platek [13] calls a transitive set A admissible if A is closed under finitary set opera­
tions and all instances of the Ex reflection and A0 comprehension axiom schémas are 
true in A. A function / from A into A is called ^-recursive if the graph of / is 2L11 

subset of A. For every F it is possible to construe SXF as a countable transitive set 
AS±F by exploiting the standard encoding of hereditarily countable sets by reals. 
An immediate consequence of Shoenfield [20], Hinman [6], and Grilliot [5] is: AStF 
is admissible if and only if 2E <; F. It follows from Gandy's work [3] on selection 
operators that if 2E < F, then AStF satisfies the Ex dependent choice axiom schema. 

THEOREM 1 [17]. — (i) and (ii) are equivalent. 
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(i) A is a countable admissible set that satisfies the lx dependent choice axiom 
schema, and every member, of A is countable in A. 

(ii) There exists an F of type 2 such that 2E < F and A = ASXF. 

For each ordinal a let La be the set of all constructible sets of constructible order <a. 
Kripke [10] and Platek [13] call a an admissible ordinal if La satisfies the lx replace­
ment axiom schema. A function is a-recursive if its graph is a 1± subset of La. A set 
is a-recursively enumerable if it is the range of an a-recursive function. If a is admis­
sible, then by Godei there is an a-recursive well-ordering of all the computations needed 
to CQmpute all the a-recursive functions. It follows that a great deal of classical 
recursion theory can be generalized from co to a. For example, it can be shown 
that,the Friëdberg-Muchnik solution of Post's problem holds for every admis­
sible a. « The recursive functions of ordinals were first defined by Takeuti [22]. One 
of his early results restated in current terms says that every cardinal is an admissible 
ordinal. His proof is an application of Gode?s Skolem-Lowenheim principle for L: 
Ei subsystems of L are isomorphic to initial segments of L. GödePs principle (with L 
replaced by LJ is central to current work on admissible ordinals; it plays an unexpected 
part in the solution of Post's problem [19]. I say " unexpected " because the 
use of model-theoretic ideas in recursion theory was at one time a surprise to me. 
On the other hand Kreisel's approach [8, 9] to generalized recursion theory was based 
from the beginning on the model-theoretic notion of implicit invariant definability. 
Later Barwise showed by means of a compactness argument: if A is a countable admis­
sible set, then the implicitly invariantly definable functions from A into A are equiva­
lent to the ^.-recursive functions (The equivalence fails for most uncountable A's). 
I would like to recommend the joint paper [1] of Barwise, Gandy, and Moschovakis 
as a starting point for any one curious about the great variety of ideas now current 
in generalized recursion theory. 

COROLLARY 2. — If a is a countable admissible ordinal, then there exists an F of 
type 2 such that La n 2m = S^F, and such that for every G of type 2 and of lower degree 
than F, La n 2W # S^G. 

COROLLARY 3. — If n > 0, then there exists an F of type 2 such that the reals recur­
sive in F are just the Aj reals. 

THEOREM 4. — If U is of type n and nE < U, then Sfl = S^F for some F of type 2. 

The above four results are proved with the aid of Gödel's Skolem-Lowenheim 
principle for L, Cohen's forcing method, and Grilliot's hierarchies based on objects 
of finite type [4]. The next theorem combines forcing with the Friedberg-Muchnik 
priority method. Platek [13] calls X F-recursive in Y if X # F, Y. Two reals have 
the same F-degree if each is F-recursive in the other. Hinman calls a real F-recursi-
vely enumerable if it is the range of a partial function of type 1 recursive in F. A well-
known result of Spector [21] can be extended to show: if 2E < F, then all non-F-recur-
sive, F-recursively enumerable reals have the same F-degree. I say X is Ex in Y 
over AS^F if X is a lt subset of AS±F(Y), where AS^Y) is the result of adjoining Y 
to AS±F and closing under A0 comprehension. 

THEOREM 5. — If 2E < F, then there exist two F-recursively enumerable reals such 
that neither is Ai in the other over AStF. 
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Kleene [7] showed that the 2F-recursively enumerable reals were just the n } reals. 
Theorem 5 for F = 2E was proved in [15]. 

The super jump is a fundamental object of type 3 introduced by Gandy [3] ; it lifts 
F to F1 . Let { e }F(X) denote the value (possibly undefined) of the e-th partial func­
tion of type 2 recursive in F for real argument X. The value of F1(e, X) is 0 if { e }F(X) 
is defined and 1 otherwise. 2E1 is the hyperjump and has the same degree as El9 

an object of type 2 associated with the Souslin operation and introduced by Tugué [23]. 
Gandy [3] showed: if F ^ G, then F 1 ^ G1. Hinman has asked: is there a condition 
on G that implies the existence of an F such that F1 = G? Hinman's question was 
inspired by Friedberg's classic result [2]: if JO ^ X, then there exists a Y such that 
JY= X, where 0 is the empty set and J is the Turing jump. 

THEOREM 6 [18]. — Assume the continuum hypothesis. Then there exists an H 
such that (G)(EF)[H < G -> F1 = G]. 

The F's of Theorems 1 through 5 are constructed in countably many steps, but the 
F of Theorem 6 is constructed in uncountably many steps. If the continuum hypo­
thesis is dropped, then Theorem 6 can be approximated in the sense of Theorem 7. 
The continuum hypothesis is needed to make the approximations cohere with one 
another. 

THEOREM 7. — If SjG is closed under hyperjump, then there exists an F such that 
^ F 1 = S^G. 

The next theorem is intended to suggest that the Tugué hierarchy for S1E1 is similar 
to the Shoenfield hierarchy for S^F1 whenever 2E < F ; it was proved in [16] for the 
case of F = 2E. 

THEOREM 8. — If 2E < F, then the F-degrees of SiF1 have a minimal, but no least, 
upper bound. 

Most of the results of this paper have the following form: a structure B associated 
with some generalization of recursion theory is given; then an object U of type n 
is constructed such that the members of B coincide with the objects of type < n that 
are recursive in U. Since Kleene's definition of relative recursiveness is inductive, 
it follows that B can be defined by an induction based on U. If enough results of 
the above form can be found, it may be possible (as Kreisel has suggested) to prove 
theorems about structures occurring in generalizations of recursion theory by thinking 
of them as having been built up by inductive definitions based on objects of finite (or 
higher) type. Among the means to that end would be various sharpenings of Theo­
rem 4. The superjump 3S is an object of type 3 of lower degree than 3F, but an appli­
cation of Corollary 2 above to Platek [14] provides an F of type 2 such that S1

3S' = S1F. 
So it seems likely that the hypothesis " nE < U " of Theorem 4 can be replaced by some­
thing of wider scope. Theorem 4 can be extended from 1-sections to fc-sections as 
follows. For each n there is a F of type n such that for all U of type n: if V< U and 
k < n9 then SkU = SkW for some W of type k + 1. It is possible that nE may suffice 
for V, but at the moment I need a V whose degree appears to be higher than nE save 
when k = 1 (Added in proof : if Gödel's axiom of constructibility holds, then V = "£.) 
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THE THEORY OF SEMISETS 

by PETR VOPËNKA 

The theory of semisets has arisen by exploring the consistency results of K. Godei 
and P. Cohen. In the theory of semisets, the usually studied universum of the set 
theory is enlarged by adding new objects called semisets. 

The theory of sets is a particular case of the theory of semisets. Adding suitable 
suplementary axioms to the axioms of the theory of semisets we can obtain other 
particular cases differing considerably from the theory of sets. Many of them, how­
ever, have the property that the formulas concerning only sets which are provable in 
them are provable also in the theory of sets and vice versa. 

The theory of semisets and the theory of sets are mutually relatively consistent. 

The theory of semisets can be used for proving consistency of many statements 
with the axioms of the set theory. All relative consistency proofs are done exclusively 
by interpreting theories in other theories and the existence of a countable model is 
not assumed. 

The theory of semisets will be described in detail in the monography [V + H]. 

In the present lecture, we will often prefer brief formulations to full generality. 

1.1. By the theory of sets TS we understand the axiomatic Gödel-Bernays theory [G] 
with the axiom groups A, B, C and the weak axiom of regularity 

(D') Jt(°Ur) & (Vx =1= 0)(3y e x)[y n x <= <Ur\ 

where 
Wr = {x; x = {x}} 

(Note that according to Godei we use the lower case Roman letters as variables for 
sets). 

1.2. A class M is said to be a model class, Jtcl(M), if we have simultaneously 

(1) Comp(M) (i. e. (Vx e M)[x <= M]) 

(2) (Vx, y e MWt(x, y) e M] i = 1, . . . , 8 

where &x,..., ^B are the Godei operations 

(3) ( V x ç M ) ( 3 y e M ) [ x ç y ] 

1.3. We have Jtcl(V), Jtcl(L), where V is the universal class and L is the class 
of all constructible sets in the sense of Godei. 
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1.4. Let M be a class variable. In an arbitrary formula of TS, interpret the 
fundamental notions of TS as follows: 

MM(X) = XeM 
ClsM(X) = X ç M & (VyeM)[X nyeM] 
XeM Y = MM(X) & ClsM(Y) & Xe Y 

Then, in TS, the interpretations of all the axioms of TS are provable from the assump­
tion Mcl(M). 

This interpretation is called the model determined by M. 

1.5. Cstr(x) designates the least model class containing x. It is easy to prove 
that such a class exists. 

Let us remark that L = Cstr(0). 

1.6. We denote by AC the axiom of choice for sets, i. e. for instance the statement 
" every set can be well-ordered ". 

1.7. Balcar-Vopënka. Let Jtcl(M), Mcl(M^), Jicl(M2) and suppose M ç Ml9 

M ç M2,Mn<%r = Ml n<Wr = M2 n<%r,0>(M) n M± = 0>(M)nM2. If AC holds 
in the model determined by Mi then Mi = M2. 

The statement 1.7 indicates that it may be useful to investigate axiomatically the 
situation in the first power of an arbitrary model class. The required axiomatics 
is given by the theory of semisets. 

2 . 1 . The theory of semisets is obtained from TS by leaving off the axioms C2, 
C3 and C4 and adding the axioms 

C2' (VR)[[(Vx, y)[x, y e 9(R) & x 4= y -» R" { x } =t= R" { y }] & (Vx)(3z)[R" { x } ç z] 
-+ [(3a)[®(R) e a] SE (3b)[iT(R) s b]]] 

Bi' (Vx, y) Ji^i^y)), i = 2 , . . . , 8 

where #" 2 , . . . , ^"8 are the Godei operations. 

Remark. — The Godei axioms C2, C3 are provable in TSS. Further, it is possible 
to show that, for every restricted set formula, the comprehension axiom is provable 
in TSS. 

2.2. In TSS, a subclass of a set need not be a set. Thus, we define semisets by 

Sm(X) = (3a)[X <= a] 

2.3 . TS is equivalent to the theory TSS + (Vx)[Sm(X) -> Jt(X)]. 

2.4. We define real classes by 

Real(Z) = (Vy) Jt(y n X) 

It is easy to see that every set is a real class. 
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2,5. In an arbitrary formula of TS interpret the fundamental notions as follows : 

M\X) = M(X) 

Cls*(X) = Real(Z) 

Xe* Y = Jt*(X) & Cls*(Y) & XeY 

Then, in TSS, the interpretations of all the axioms of TS are provable. This inter­
pretation is called the real model. 

COROLLARY. — Con (TS) <=> Con (TSS). 

3 .1 . A semiset X is said to be dependent on Z if it is a set image of Z : 

Dep (X, Z) = (3r)[X = r"Z\ 

3.2. A class Z is said to be a support (Supp (Z)) if 

Z 4= 0 & (MX, Y)[Dcp(X, Z) & Dep(Y, Z) -• Dep(Z - Y, Z)] 

A class Z is called a total support (T Supp (Z)) if 

(VX)[Sm(X) -> Dep(ZZ)] 

3.3. Let Z be a class variable. In an arbitrary formula of TSS interpret the 
fundamental notions of TSS as follows 

MZ(X) = M(X) 

C/Sz(Z) = (Vy)[Dep(Zny,Z)] 

Xez Y = MAX) & Clsz(Y) & XeY 

Then, in TSS, the interpretations of all the axioms of TSS are provable from the assump­
tion Supp(Z). 

This interpretation is called the support model determined by Z. Obviously, in 
this model, Z is a total support. 

3.4. Let B be a real set-complete Boolean algebra (possibly a proper class). An 
ultrafilter Z on B is said to be set-complete, if (Vx ^ Z)[Ax e Z] 

Denote the formula " B is a real set-complete Boolean algebra, Z is a set-complete 
ultrafilter on B " by r(B, Z). 

3.5. Let ^(b, Z). If b is atomless then Z is a semiset which is not a set. 

3.6. r(B,Z) -• Supp(Z) 

3.7. Balcar. Let Supp (ZA), Sm(Z1). Then there exist b and Z such that ^(b, Z) 
and that 

( V X ^ D e p ^ Z O ^ D e p ^ Z ) ] 

3.8. In the following, cp(x) is a set formula with one free variable, such that in TS 
the statement 

(Vx)[<p(x) -• x is a complete Boolean algebra) 

is provable. 
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3.9. Metatheorem on consistency. 

Con (TS + AC + (3b)cp(b)) o Con (TSS + AC + (3b, Z)[<p(fc) & *JT(&, Z)]) 

4 .1 . Let M, P be class variables. In an arbitrary formula of TSS interpret the 
fundamental notions of TSS as follows: 

MMF(X) = MM(X) 
ClsMP(X) = X^M & Clsp(X) 
XeMP Y = JiMF(X) & ClsMP(Y) & XeY 

Then, in TS, the interpretations of all the axioms of TSS are provable from the assump­
tions Mcl(M), Mcl(P), M ç P, M nWr = Pn<Wr. This interpretation is called the 
model determined by M, P. 

4.2. If, moreover, the class form of the axiom of choice holds in the model deter­
mined by P then the axiom 

(3B)(3Z)[T(B, Z) & T Supp(Z)] 

holds in the model determined by M, P. 

This statement indicates that the theory of semisets TSS satisfies the demands which 
have given the impulses to introduce it. 

4 .3 . Metatheorem on extending the theory of semisets to the theory of sets. 

Let T be the theory 

TSS + (3b, Z)[T(b, Z) Sc cp(b) & T Supp (Z)] 

Then Con(T) o Con (TS + (3M)[Jtcl(M) & TMV]). 

This metatheorem enables us to consider, under mentioned assumptions, the semi-
sets as sets in a larger universe. By means of this metatheorem, we can establish the 
consistency proofs obtained by the Cohen's method for the theory of sets with the 
axiom of choice as well as for the theory with the negation of the axiom of choice. 
The point is always in transfering the problem into a problem concerning set Boolean 
algebras. 

My student J. Mlcek has found conditions under which in the previous theorem 
the set Boolean algebras may be replaced by algebras which are proper classes. 

The theory of semisets TSS, if necessary with additional axioms, has also other 
applications than proving consistency of various statements with the theory of sets. 

5. Metatheorem on equiprovability. 

Let ^ be a closed formula concerning sets only. Then ij/ is provable in 

TS + AC + (3b)cp(b) 

if and only if it is provable in 

TSS + AC + (3b, Z){T(b, Z) & cp(b) & T Supp(Z)] 

By this metatheorem it follows that it is possible to prove statements on sets using 
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the assumption of the existence of a set-complete ultrafilter on various complete 
Boolean algebras. This is analogous to proving statements on real numbers by means 
of complex numbers. 

Let us introduce some results obtained using this metatheorem. 

6.1. We say that a relation ~ is a similarity relation, if 

(1) <xt,...,xny ~ < * ! , . . . , x„> 

(2) < x l l . . . , x I I > - <yx ym> -> n = m 

(3) < * ! , . . . , *„> ~ < y i , . . - , y„> -> [(Xiexj^yteyj) & (xf = x, = yt = yfi 

We say that sets a and fc are locally similar a ~ ò if the following holds: 

If xl9...,xnea9 ylt...,yneb, (xl9...,x„y ~ < J>i,-•., O then 

(1) (VxB+1 ea)(3yM+1 G&)[< xl9..., x„+1 > - < yl9..., yn+1 >] 
(2) (VyM+1 ë b)(3xn+1 Ga)[< x l f . . . , xn + 1 > - < y l s . . . , yn+1 >] 

6.3. Let ^ be an arbitrary closed formula of TS. Then in the theory TS + AC 
the following is provable: 

If Comp (a), Comp(fc), a te b then ^ ( « ) = ^s,rw 

6.4. (In TS H- XC). Let Comp (a), a ^ a and suppose 

(VXi x^aXVyi y„ea)[(xl9.. .,x„y ~ <y i , . . . , y„> 
-> (3xn+1ea)(3y„+1ea)[xn+1^yn+1 & <x l 9 . . . ,x n + 1 > ~ < y l s . . .,yn+1>]] 

Then AC does not hold in the model determined by Cstr(a). 

This theorem gives a new method of constructing models (interpretations) of the 
set theory without AC. If, e. g., a is an atomless Boolean algebra without non-identical 
automorphism, represented by subsets of °Ur9 then ,4C does not hold in Cstr(a). On 
the other hand, every model of the Fraenkel-Mostowski type containing a contains 
all sets. 

7.1. (In TS + AC). Let s be an uncountable set of a regular cardinality. Denote 
by b(s) the Boolean algebra of all subsets of s modulo subsets of smaller cardinality. 
Let a(s) be the Stone space of b(s). Obviously, a(s) is a compact totally disconnected 
Hausdorff space. 

7.2. (In TS + V= L). The Boolean algebra of regular open subsets of a(s) 
(which is the completion of b(s)) is isomorphic to the algebra of regular open subsets 
of a metric space. 

7.3. (In TS -f V = L). The space a(s) is a union of a monotone system of Kx 
nowhere-dense subsets {Fa, a ë co^ } (In fact, any regular Xp with X0 < Kp < | s |+) . 

These theorems may be reformulated as follows: 

7.2' (In TS + V = L). There exists a system { Pn, n e co0 } such that (1) for every n9 

Pn Ç &(s)\ (2) for every x e Pn9 \ x \ = \ s |; (3) for distinct x, y e P„ is | x n y \ < \ s |; 
(4) whenever y ç s and \y\ = \s\, there is an neco0 and xePn with | x — y \ < s\. 
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7.3'. A filter F on s is uniform if all its members have the cardinality of s. A fil­
ter F on s is nowhere-dense if 

(Vx)[xç=s & | x | = | S | - (3yeF)(\x-y\ = \s\)] 

In TS + V= L the following theorem holds: 

For every regular Xp, X0 < Np < | s |+ there exists a monotone system { Fa9 a e cop } 
of uniform nowhere-dense filters such that every uniform ultrafilter is an extension 
of some of them. 
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B,-ALGÈBRE GÉNÉRALE 

IDENTITES DANS LES GROUPES 

par S. I. ADJAN 

§ 1. Problème de Burnside. 

En 1902, Burnside [1] a formulé le problème suivant : 

« Tout, groupe avec un nombre fini de générateurs et dans lequel est vérifiée la 
relation identique : 

x" = 1 (1) 
serait-il fini? » 

Depuis cette date, ce problème a attiré l'attention de nombreux algébristes du 
monde entier. Ces groupes ont été nommés groupes burnsidiens d'exposant n. La 
réponse affirmative au problème de Burnside a été donnée pour n = 3 par Burnside 
lui-même [1], pour n = 4 par I. N. Sanov en 1940 [2] et pour n = 6 par Marshall Hall 
en 1957 [3]. Des modifications intéressantes du problème de Burnside ont été proposées 
pour les groupes, ainsi que pour d'autres systèmes algébriques. Des résultats intéres­
sants obtenus sur ces voies ont été exposés au cours des congrès mathématiques précé­
dents par A. I. Kostrikin à Stockholm [4] et E. S. Golod à Moscou [5]. Dans le présent 
exposé seront donnés des résultats se rapportant au problème de Burnside lui-même, 
ainsi que d'autres résultats concernant les groupes avec des relations identiques du 
type (1). Tous ces résultats ont comme trait commun l'unité de leur méthode de démons­
tration. 

En 1959, P. S. Novikov [6] a annoncé que pour tout n ^ 72, le groupe libre burnsi-
dien d'exposant n et ayant m (> 1) générateurs est infini. Il a indiqué, en même temps, 
l'idée de la démonstration de ce résultat. Toutefois, les tentatives de donner corps à 
cette idée se sont heurtées à une série de difficultés. Ces difficultés ont été progressive­
ment surmontées dans le travail effectué en commun par P. S. Novikov et l'auteur 
durant la période de 1960 à 1967. Le résultat de ce travail a été la solution du problème 
de Burnside pour des exposants impairs suffisamment grands, solution qui a été publiée 
en 1968 [7]. Il a fallu renoncer au cas des exposants pairs et élever considérablement 
la borne pour l'exposant n, mais, en revanche, il n'a plus été nécessaire d'utiliser la 
méthode de V. A. Tartakovsky [8]. 

Dans l'article [7] on construit, pour chaque m > 1 et tout nombre impair n ^ 4381, 
un groupe périodique T(m9 n) avec m générateurs et la relation identique (1). Pour cons­
truire ce groupe, on introduit une certaine classification de mots périodiques consti­
tués par des signes pris dans l'alphabet du groupe: 

flu «2>- ••>«»,, aï\ a^1,..., a'1, (2) 

et on construit une théorie des transformations de mots, correspondant à l'identité (1) 
pour n impair. 
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Récemment, on a réussi à simplifier considérablement cette théorie et à abaisser 
la borne pour n jusqu'à 697. En outre, tous les autres résultats obtenus, en partant de 
cette théorie, pour les groupes burnsidiens libres, dans les travaux [9] et [10] — qui 
seront traités au § 2 — sont valables pour les exposants impairs n ^ 697. 

La théorie des transformations de mots, élaborée dans [7], contient un grand nombre 
de notions interdépendantes qui se définissent par induction simultanée suivant le 
paramètre naturel a, ainsi que de nombreuses propriétés de ces notions, qui se démon­
trent aussi par induction simultanée suivant a. N'ayant pas la possibilité de donner, 
dans ce court exposé, une définition exacte même des notions principales de [7], nous 
nous bornons à indiquer quelques particularités de cette théorie qui ont une formu­
lation suffisamment simple. 

Supposons choisi un entier impair n ^ 697. Considérons les mots réduits en l'alpha­
bet (2). Nous désignons par d(x) la longueur d'un mot X et par X ^ Y l'égalité graphi­
que des mots X et Y. Par induction simultanée suivant le paramètre naturel a, on 
définit les principales notions suivantes de la théorie considérée dans [7] : 

1) Classe des mots Ila . Dans le cas de a = 0, c'est l'ensemble de tous les mots réduits. 
2) Noyau de rang a d'un mot X (X e IIJ. Si a = 0, c'est une occurrence quelconque 

d'une lettre dans le mot X. Si a > 0, tout noyau de rang a de X e Ha est une occurrence 
d'un mot élémentaire de rang a (voir 6) dans le mot X. 

3) La relation X & Y, qui est symétrique, reflexive et transitive, est définie pour les 
mots X, Ye IIa et elle s'appelle l'équivalence de rang a. Pour a = 0, cette relation 
coïncide avec l'égalité graphique. 

4) Si X, Ye n a et si, pour certains X1 et Yi (Xl9 Y± e Ua), sont vérifiées les rela­
tions X & xu Y& Ylf Xi = X2T, yt = T~1Y2 et X2Y2eUa, alors nous écrivons 
X2Y2 = [X, Y]a. L'opération Z = [X, Y]a est définie pour tous X, YeUa. Elle est 
univoque à l'équivalence de rang a près, et associative. 

5) La fonction W = fa(V, Y), pour tout couple de mots X, Y où X A Y, donne une 
application bijective de l'ensemble de tous les noyaux V de rang a du mot X sur l'en­
semble de tous les noyaux W de rang a du mot V. Si W = f(V9 Y), alors V = f(W, X). 
Cette fonction conserve la disposition mutuelle des noyaux de rang a. 

6) A la base de la classification des mots considérée se trouve la notion de mot 
élémentaire de rang a + 1, qui représente une généralisation de la notion de mot 
périodique. En particulier, un mot périodique A'Al9 avec la période minimale A, 
est appelé mot élémentaire de rang 1, si le mot A3 ne contient aucune occurrence d'un 
mot BrBl9 où d(BrB1) > 85(B). Le mot X ?z A*At s'appelle mot périodique de rang 
a + 1 si Ai est un commencement du mot A, d(X)^ 183(4), XeHa et si l'on peut 
indiquer un noyau V= P* E*Q de rang a du mot A*Al9 tel que d(P) ^ Sd(A) et 
d(Q) ^ &d(A). Ces noyaux V de rang a du mot X s'appellent des noyaux de base de X. 
On dit que deux noyaux de base Vx et V2 sont en correspondance de phase, si V2 peut 
être obtenu par le déplacement de Vx d'un nombre entier'de périodes A. Si YeHa 

et Y & X, où X est un mot périodique de rang a + 1, alors Y s'appelle un mot entier 
de rang a + 1. Généralement, les mots entiers du rang a + 1 ne sont pas périodiques. 
Toutefois, si l'on utilise la fonction fa(V, Y), on peut étendre à Y la correspondance de 
phase des noyaux de base de rang a qui a été définie pour X. De cette façon, on obtient 
pour les mots de rang a + 1, ainsi que pour des mots « suffisamment longs » entrant 
dans les mots entiers (mots semi-entiers), certaines propriétés des mots périodiques 
de rang a + 1. Ainsi apparaît la notion de nombre de parties d'un mot semi-entier de 
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rang a + 1, qui représente un analogue du nombre des périodes d'un mot périodique. 
Les mots périodiques (entiers ou semi-entiers) de rang a + 1 s'appellent mots élé­
mentaires de rang a + 1 s'ils ne contiennent pas de mots semi-entiers « suffisamment 
longs » (contenant un nombre suffisamment grand de parties) « d'autre nature ». 

7) On appelle rotation simple de rang a + 1 une transformation du type 

PB'B.Q -> P(B-1)n-t-1B2
1Q, (3) 

où BfB± est un mot élémentaire de rang a + 1 avec la période B, B ^ B1B2 ,PB'B1QeII a , 
P(B~1)n-t~1B2

1QeUa et où chacun des mots BtB1 et ( j r 1 ) " - ' - 1 ^ 1 contient un 
nombre suffisamment grand de parties B(B_1). On appelle rotation de rang a + 1 
toute transformation X -> Y, où X, YeYla et pour une certaine rotation simple (3) 
X & PB^iQ, Y& P(B~1)n~t~1B2

1Q. Parmi les rotations de rang a + 1, on distingue 
les rotations dites « réelles » de rang a + 1, 

Deux mots X, Ye Ha s'appellent équivalents de rang a + 1 (X ? i i y) si ou bien 
X & Y, ou bien on peut indiquer une suite de rotations réelles du rang a + 1 qui trans­
forme X en Y. 

On définit ensuite la notion de noyau de rang a + 1, qui est toujours une occurrence 
d'un mot élémentaire contenant au minimum 9 parties. On désigne par I l a + 1 l'ensem­
ble des mots Xelia dont chaque noyau contient au plus n — 50 parties. 

Ainsi, d'après la définition des classes I ï a , nous avons 

n 0 D n i D n 2 D . . . n,. => n , + 1 . . . 

Soit sé = H Hi. Nous appelons deux mots X, Ye sé équivalents (X ~ Y) si X & Y, 
i = 0 

où a = max (d(x), d(y)). Soit if l'ensemble de toutes les classes d'équivalence de sé 
défini par la relation X ~ Y. Sur l'ensemble S£, on définit l'opération 

w ° v = { [x, y]a } (4) 

où X eu, Yev,oi = max (ô(x), d(y)) et {Z } est la classe des mots équivalents au mot Z. 
On peut démontrer que l'ensemble $g avec l'opération u ° v est un groupe. Ce groupe 
est précisément ce T(m, n) que nous avons cherché. Il est engendré par les généra­
teurs {f l i} , {a2}, ..., {am}. 

§ 2. Les groupes burnsidiens libres d'exposant impair. 

Soit B(m, n) un groupe défini par des générateurs (2) et par l'identité générique (1), 
où n est un nombre impair ^ 697, et m > 1. Il est facile de démontrer que la corres­
pondance 

a{ -> { at} (5) 

donne une application isomorphe du groupe B(m, n) sur le groupe T(m, n). En utili­
sant une telle représentation d'un groupe burnsidien libre B(m, n), on peut étudier 
différentes propriétés de celui-ci. 

Étant donné que toutes les classes de mots et les relations entre les mots définies 
dans [7] sont récursives, nous obtenons la solution du problème d'identité dans le 
groupe B(m, n) [9]. Dans [9] il est également démontré que l'identité (1) est équivalente 
au système infini des relations de définition An = 1, où An parcourt l'ensemble de tous 
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les mots élémentaires de rang a avec la période A, pour tous les a > 0, mais cette 
identité ne peut être remplacée par aucun nombre fini de relations de définition. 

A l'aide de la représentation (5) du groupe B(m, n), il est démontré dans [10] que, si 
AB = BC GtA^l dans B(m, n), on peut trouver un mot E tel que E = B dans B(m, n) 
et d(E) < 7c1(n, d(AC)), où nt(n, j) est une fonction recursive, ce qui nous donne un 
algorithme pour la solution du problème de conjugaison dans les groupes B(m, n). 
De là, résulte aussi que le normalisateur de tout élément (non neutre) du groupe B(m, n) 
est fini. 

Récemment, l'auteur a démontré une proposition plus forte. Si AB = BA dans 
B(m, n), on peut indiquer un C tel que pour certains t et r, A = C et B = O dans 
B(m, n). De là découle que le normalisateur de tout élément (non neutre) du groupe 
B(m, n) est un groupe cyclique d'ordre n. Le groupe B(m, n) fournit donc un exemple 
d'un groupe infini non-abélien, où tout sous-groupe abélien est fini et cyclique. 

Si l'on se limite à la considération des mots élémentaires dont la première et la der­
nière lettre sont a, on peut, en modifiant en conséquence la théorie des transformations 
de mots exposée dans [7], démontrer que les mots bab"1, b2ab~2 et b*ab~* engendrent, 
dans B(2, n), un sous-groupe isomorphe au groupe B(3, n). Ceci est une solution néga­
tive du problème 17 de l'article [12]. On en déduit facilement que le groupe B(m9 n) 
ne vérifie pas la condition minimale pour les sous-groupes. 

On peut aussi démontrer que pour m ^ n — 1, les conditions minimale et maximale 
relatives aux sous-groupes normaux ne sont pas vérifiées dans le groupe B(m9 n). 
Pour cela, il faut étendre la théorie exposée en [7] à une classe de transformations plus 
large que les transformations (3). Pour n impair composé, n = kl, où k ^ 697 et / > 1, 
cette proposition est facile à démontrer pour m > 1. Toutefois, pour n et m < n — 1 
premiers, la question reste ouverte. Il paraît vraisemblable que tout sous-groupe 
de B(m, p) pour les nombres premiers p > 697, engendré par k générateurs (k < 2), 
est isomorphe à B(l, p) ou à B(2, p), et pour k ^ p — 1 il peut n'être isomorphe à aucun 
groupe B(l, p). 

§ 3. Systèmes irréductibles infinis d'identités dans les groupes. 

Un système d'identités dans les groupes s'appelle irréductible si aucune de ces 
relations ne peut être déduite des autres relations. 

Dans [14], il est démontré que pour n = 4381, l'ensemble de toutes les relations 

(xrn/nx~rny~rnY = i (6) 

où r parcourt tous les nombres premiers, est irréductible. Ceci se démontre en cons­
truisant, dans [14], pour chaque ensemble P de nombres premiers, un groupe T(2, P) 
avec 2 générateurs, dans lequel l'identité (6) se vérifie si et seulement si r G P. Pour cela, 
on définit la notion de mot « marqué » élémentaire de rang a, qui dépend de l'ensem­
ble P, et on admet les rotations (3) uniquement pour les mots élémentaires « mar­
qués » ffB±. Ensuite, en partant de la théorie des transformations de mots obtenue, 
on construit le groupe cherché T(2, P), par une construction analogue à celle du 
groupe T(2, n) dans [7]. 

Si une certaine identité se déduit du système d'identités (6), on ne peut utiliser, dans 
sa déduction, qu'un nombre fini d'identités de ce système. C'est pourquoi chaque sous-
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ensemble infini du système d'identités (6) n'est équivalent à aucun système fini. Ceci 
constitue une solution effective du problème connu de la base finie pour une variété 
de groupes ([12], p. 39). Une solution non effective de ce problème a été trouvée récem­
ment, mais avant l'auteur, par A. Yu. Olchansky [15]. Il a démontré que l'ensemble 
des variétés de groupes résolubles de classe 5, qui ont l'exposant %pq, où p et q sont des 
nombres impairs arbitraires premiers entre eux, a la puissance du continu. Étant donné 
que l'ensemble de tous les systèmes finis d'identités de groupes est dénombrable, il 
s'ensuit qu'il existe des variétés de groupes de cette classe, qui ne sont pas définies 
par un système fini d'identités. D'autre part, de l'irréductibilité du système (6) découle 
l'existence d'un ensemble continu de différentes variétés de groupes correspondant 
aux sous-ensembles du système d'identités (6). 

Soit S un ensemble enumerable et indécidable de nombres premiers. Par T(S), nous 
désignons le groupe défini par 2 générateurs et par toutes les identités (6) pour reS 
et 7i = 4381. Il est évident que toute relation du groupe T(S) est une identité. Du fait que 
le système (6) est irréductible découle qu'une des relations (6) est vérifiée si et seulement 
si re S. Étant donné Pindécidabilité de l'ensemble S, on en déduit que dans T(S) le 
problème d'identité est indécidable. Il est à noter que cela donne le premier exemple 
d'un groupe pour lequel le problème d'identité est indécidable et qui soit défini par des 
identités. Il serait sans doute intéressant de savoir s'il existe de tels exemples de groupes, 
définis par des ensembles d'identités finis ou, tout au moins, décidables. 
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SOME RESULTS ON RINGS 

WITH POLYNOMIAL IDENTITIES 

by S. A. AMITSUR 

A complete survey of recent results in this area should at least cover the following 
topics: 1) Group rings with polynomial identities. 2) Identities in rings with involu­
tions. 3) Prime rings with generalized p.i. 4) Rings of polynomial and rational 
functions. 5) Tensor products. 6) Embedding in matrix rings. 7) Prime ideals and 
localizations, etc. 

No attempt will be made to cover all topics, but some references will be given. 

Let R be an algebra over a commutative ring ii with a unit; R is said to satisfy SL p.i 
p[x] = Eoty)*^ . . . xh = 0 if p[rt , . . . ] = 0 for all substitution xt = rt e R, and for 
simplicity we assume that some coefficient of a monomial of highest degree a(f) = 1. 

1. Tensor products. 

An old problem was: Does the matrix ring Mn(R) satisfy a p.i if R satisfies, and 

more generally if R and S satisfy p.i, does Rfè)S satisfy a polynomial identity. 
n 

The first part was solved rather simply in the affirmative by C. Procesi, L. Small [13] 
and consequently it follows that the endomorphism ring HomÄ(K V) satisfies an 
identity if F is a finitely generated R-module and R satisfies a, p.i. The second problem 
remains open in the general form though one can reduce the problem to nil rings. 
Liron-Vafne [5] have shown that by defining equivalence of two ring: A = B if they 
satisfy the same identities, then if also C = D then A (g) C = B ® D. This in parti­
cular shows the invariance of the identities under scalar extension in the known cases. 

2. Embedding in matrix rings (over commutative ring). 

For simplicity assume henceforth that Q = F is an infinite field. One of the earlier 
results was that semi-prime rings with a p.i of degree d can be embedded in Mn(K) 

for some commutative ring K, n < -. An extension of this result that, a p. i is neces­
sary and sufficient for a ring K to be embedable in a matrix ring over a commuta­
tive ring, was shown not to be valid by (Drazin and P. M. Cohn) and the problem 
remained whether the condition is that the ring shall satisfy exactly the identities 
of M„(F). This also is now known to be wrong. The first example was given in [2] 
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by Amitsur, and a second example given by Small [11] will appear soon. Small's 
examples shows that one can have a finitely generated algebra with a nilpotent Jacob-
son's radical with the same identities as Mn(F) and which cannot be embedded in 
matrices of finite order over any commutative ring. 

These examples raise the problem: what characterizes subrings of matrix rings. If 
we try to attack the problem of finding all commutative rings K for which we have 
an embedding R c-> Mn(K)9 one gets readily to the following simple observation: 
for fixed n > 1, for every ring R there exists a commutative ring S = S(R ; n) and a 
homomorphism p : R -> M„(S) such that for every homomorphism cr : R -> Mn(K) 
for any commutative ring K, there exists a unique (!) homomorphism rj: S -> K 
such that the following diagram is commutative: 

R A Mn(S) 
X^ /MAD 

Mn(K) 

The ring S is uniquely determined up to isomorphism and so is p. With the aid of 
the ring S one can show that if R is a finitely generated and P1^P2^: . . . ç Pr ç . . . 
is a sequence of ideals such that each R/Pt can be embedded in some Mn(Kt), then the 
sequence must be finite, which is a form of a Hilbert basis theorem in the commu­
tative case. 

A non trivial property of p : R -> Mn(S) is that p(R)S = Mn(S) if and only if all 
irreducible representations of R are of dimension > n. In view of the properties of S, 
and the fact that p is mono for azumaya-algebras R —, it follows that, S is a generic 
splitting ring of R. Note, that even for the simple case R = M „(F), S # F( !). 

This is the place to mention an interesting result of M. Artin [4], that an algebra R 
with a unit is an azumaya algebra if and only if R satisfies all identities of Mn(F) and 
its irreducible representations are all of the same dimension n. 

3. Prime ideals. 

Rings with p. i are a natural generalization of commutative rings, and one would 
expect to be able to extend our knowledge of the latter to rings with p.i. This in fact 
was the leading thought in developing the theory of rings with p. i. First steps in 
this direction have been done, like existence of rings of quotients, and the non commuta­
tive Hilbert Nullstellersats. A great push toward this goal has been given recently by a 
series of works of C. Procesi. The extensions to the non-commutative case are far 
from being trivial and usually hold in a restricted form. 

Let K be commutative, R = K[at,..., am] be a finitely generated prime ring with 
a p.i of degree d = 2n, then R satisfies the ascending (descending) chain condition on 
prime ideals if K does." R is a Jacobson ring (a Hilbert algebra) if K is such. If K has 
finite rank then R has also finite rank. If K = F is a field and C is the center of the 
ring of quotients of R, then rank R < tr. deg C/F < (m — l)n2 + 1, and the maximum 
of tr. deg C/F is obtained for the ring of m generic matrices. 

All these results, and more which were not mentioned are well known theorems for 
commutative domains (the case d = 2n = 2), which indicate that commutative theory 
can be pushed into rings with p. i. But beware of the pitfalls, like the structure of the 
nil radicals of p.i rings, and localization at primes. A prime ring R has a classical 
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ring of quotient Q(R), and if P is a prime ideal, then Qp = { a~1b | a regular mod P } 
is a well defined subring of R only if R/P and R have the same identities (Small [12]). 
This reveals that only these prime ideals are " good " for the non-commutative case 
and those for which R/P has lower identities introduce distortion in the theory. 

More examples to support our arguments that rings with p. i are the next step after 
commutative rings can be found in the papers of C. Procesi. Special interest lies in 
the ring of generic matrices. 

4. The ring of generic matrices is the algebra F[X] = F[Xl9.. ., Xm] generated 
by m generic matrices X( = (Ç1^), A, p = 1, 2, . . . , m ; with { ̂  }, mn2 commutative 
indeterminates. This ring should be the replacement of the ring of commutative 
polynomials in m variables and in fact F[X] is isomorphic with the ring of polynomial 
functions in m variables with values in M„(F), or in any central simple algebra of dimen­
sion n2 over a center containing F for that matter. Some interesting properties of 
this ring proved by Procesi [8] are: F[X] is a domain (Amitsur) with an Ore ring of 
quotient F(X) which is central simple division algebra of dimension n2 and which 
is isomorphic to the ring of all rational functions in m-variables over M„(F). The 
tr. deg. of its center C over F is (m - l)n2 + 1 (obtained independently by Kyrilov). 
The field of all rational functions F(£) is the { ÇXfl } is a splitting field, and 

F[X]F(Ç) = M„(F(Ç)); 

furthermore the center C has an algebraic extension C(u) which is a pure transcendental 
extension of F, and C(u) is a normal extension of C and its Galois group in the full 
symmetric group on /a-elements. Procesi gives also the cross product form of the 
class of F(X). Again some properties of F[XX,. . . , Xm] are extensions of the properties 
of the ring F [ ^ , . . . , tm] in m-commutative polynomials—but some do not ! Hilbert 
Hullstellersatz does hold, but F[X] is not Noetherian, and even it does not satisfy chain 
conditions on two sided ideals, but it does satisfy chain conditions for ideals P such 
that F[X]/P can be embedded in M„(K) for some commutative ring K. 
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FREE IDEAL RINGS 

AND FREE PRODUCTS OF RINGS 

by P. M. COHN 

My aim in this talk is to describe a class of rings and give some reasons for consider­
ing this class. All rings will be associative, with a unit-element. 

1. In any ring R, consider the relation 

(1) x.y = x1y1 + . . . + x„y„ = 0. 

We say that (1) is trivial if for each i = 1, . . . , n, x{ = 0 or yt = 0. Every ring ^ { 0 } 
has non-trivial relations, so we define: (1) is trivializable if there exists AeGL„(R) 
such that xA. A " 1y is trivial. It is easy to give examples of rings with non-trivializable 
relations (e. g. 2. x — x. 2 = 0 in Z[x]), but not every ring has them, so the following 
definition makes sense. 

DEFINITION. — An n-fir is a ring in which every relation with at most n terms is 
trivializable. 

Thus 1-firs are just integral domains (not necessarily commutative), 2-firs (formerly 
called " weak Bezout rings ") are integral domains R such that aR + bR is principal 
whenever aR nbR ^ 0, and for higher n we get smaller classes, until we get to rings 
that are rc-firs for all n, the semifirs. In the commutative case, 2-firs are already semifirs 
(the familiar Bezout rings) but in general all these classes are distinct [9]. A characte­
rization of n-firs is given in 

THEOREM 1. — A ring R is an n-fir if and only if every right ideal on at most n generators 
is free as right R-module, of unique rank. 

In particular, a semifir is a ring in which every finitely generated right ideal is free, 
of unique rank. The same holds with " left " for " right ". 

All this suggests that we look at a still smaller class: we define a right fir (= free 
ideal ring) as a ring in which every right ideal is free, of unique rank. This notion is 
no longer left-right symmetric [18, 8], so we must define left firs separately. By a 
fir we understand a left and right fir. 

A commutative fir is just a principal ideal domain, and firs may be looked upon 
as a natural generalization. Of course every principal ideal domain, commutative 
or not, is a fir, but the class of firs is much wider than that: it includes all free algebras 
(on any free generating set) and group algebras of free groups, over any field [6, 7]. 
Other examples of firs will be given later. 
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2. Commutative principal ideal domains are unique factorization domains, and 
this notion has been extended to the non-commutative case, first for the ring of linear 
differential operators [15, 16] and later for any principal ideal domains [1]. The 
general definition is as follows. By an atom we mean a non-unit which is not a 
product of non-units; a ring is atomic if every element not zero or a unit is a product 
of atoms. Two elements a, beR are similar if R/aR = R/bR. For non-zero-divisors 
a, b this notion is left-right symmetric [11, 5]; in a commutative integral domain 
similar elements are associated. 

Now a unique factorization domain (UFD for short) is defined to be an atomic integral 
domain such that if 

c = fll . . . ar = bt .. . bs 

are two atomic factorizations of a given element, then r = s and there is a permuta­
tion i h-> V such that at is similar to bv. This reduces to the customary notion of 
UFD in the commutative case. The results quoted may now be generalized as fol­
lows [5]: 

THEOREM 2. — Every atomic 2-fir is a UFD. 

To apply this result to firs one first shows that every right fir satisfies the ascending 
chain condition on principal right ideals, briefly, right ACCt [7]. Since every integral 
domain with left and right ACCt is atomic, we see that every fir is a UFD. 

The unique factorization property can be generalized to matrix rings over firs; 
this is best stated in terms of categories. 

Given a finitely presented module M over a fir R, 

0 -• Rr -• Rs -• M -+ 0, 

we define the characteristic of M as %(M) = s — r. Over a principal ideal domain 
every module has non-negative characteristic (this is no longer true for firs) and the 
torsion modules are characterized by %(M) = 0. Guided by this analogy we define 
a torsion module over a fir as a module M such that (i) %(M) = 0 and (ii) x(M') > 0 
for all submodules M' of M. 

THEOREM 3. — For any fir R the category &~R of all right torsion modules over R and 
all homomorphisms between them is an abelian category in which all objects have finite 
length. 

Now the unique factorization property for firs is just the Jordan Holder theorem 
for cyclic torsion modules. Similarly the general Jordan Holder theorem in ^R 

leads to a unique factorization property for matrix rings over firs [8]. 

3. In the late 1940's, in a paper which has become a classic, Higman, Neumann 
and Neumann [12] made some very interesting applications of the free product construc­
tion for groups. Any ring theorist would naturally wonder whether the same could 
be done for rings. 

For any two rings R1,R2 with a common subring K we can form the free composi­
tion P in the class of rings [4] (i. e. the coproduct, also definable as a pushout). This 
is the free product in case the canonical maps Rt -> P are injective and their images 
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intersect precisely in K. In contrast to the group case, the free product of rings need 
not exist, even in the case of two factors (e. g. suppose that some element of K is inver­
tible in Rt and a zero-divisor in R2). The examples suggest that flatness conditions 
might ensure the existence of free products, and indeed one has [4] 

THEOREM 4. — A family (Rx) of rings with a common subring K has a free product 
over K provided that each Rx is faithfully flat, as right K-module. s 

Thus the free product over a field (not necessarily commutative) always exists, in 
fact the analogy with the group case is closest for fields. Of course the free product 
of fields is never itself a field but one is naturally led to the following 

EMBEDDING PROBLEM. — Embed the free product of fields in afield. 

It is this problem that I want to discuss. First let me persuade you that this problem 
is interesting, by listing three applications that would follow from its solution. Let 
us assume that we have a construction that embeds the free product *KX in a field ° Kx, 
in a reasonably tidy fashion. Then we can imitate the Higman-Neumann-Neumann 
technique to prove 

A. Given afield K with a central subfield C, we can embed K in afield L with centre C 
such that two elements of L are conjugate (by an inner automorphism) if and only if 
they have the same minimal equation over C. 

The following answers a rather natural question which apparently has not been 
raised before (in the skew case): 

B. For any two fields of the same characteristic, there is a field containing both. 

Finally we can solve a problem of Galois theory. Recall that a field extension L/K 
is said to be Galois if for each x e L, x $ K9 there is an automorphism of L fixing K 
but moving x. 

C. Every field extension K/k is contained in a Galois extension. 
Here is a 3-line proof: Take a family of copies Kt of K indexed by Z and form their 

field product over k. The automorphism which consists in increasing all suffixes 
by 1 has k as a fixed field. 

4. To justify what has been said I now want to present a solution of the embedding 
problem which I completed this summer (1970). It provides a raison d'être for firs 
(for those who need one) as well as some results on the embedding of rings in fields, 
of quite general validity. 

Let P = *KX be the free product. It is not hard to show that this is an integral 
domain [4]. The standard method for embedding an integral domain in a field, due 
to Ore, requires the common multiple condition, and this does not hold here except 
in one very special case [4]. Now P has an important property (which in fact was 
responsible for the introduction of firs [6, 7]): 

THEOREM 5. — Any free product of fields (over a common subfield) is a fir. 

So the embedding problem will be solved if we show how to embed a fir in a field. 
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5. Let us go back to Ore's method. It consists in adjoining solutions of equations 

(2) ax + b = 0, where a ^ 0. 

We generalize this by replacing a by a matrix and x, b by columns. This step is 
suggested by the Schiitzenberger-Nivat criteria for rationality of power series [17]. 
Thus we adjoin solutions of the matrix equation 

(3) Ax + b = 0. 

The main difficulty is to know what conditions to impose on A. To get an embedding, 
A must be a non-zero-divisor in R, but in general that is not enough. For a moment 
let us drop the requirement that we have an embedding, then in (2) we can take a in 
any multiplicatively closed set, and it is not hard to formulate conditions for the solu­
tions of (3) to form a ring. Essentially the class of matrices to be inverted must be 
closed under extensions [10]. 

Given any set E of matrices over R, let us write RE for the ring obtained by formally 
adjoining matrix inverses of all the matrices in S. We have a homomorphism 

X: R -+ R£ 

which may be described as the universal X-inverting homomorphism. Our object is 
to find a class Z such that (i) X is injective and (ii) R£ is a field. If X is to be injective, 
S must not contain any zero-divisors, but this condition is not enough. Let us define 
a matrix A over R to be full if it is square, say n x n, and has no factorization A = PQ, 
where P is n x r, Q is r x n and r < n. Clearly any matrix over R whose image under 
a homomorphism into a field is invertible must be full. So the most we can hope 
to invert are the full matrices, and to obtain the best results we shall assume that R 
can be embedded in a ring in which every full matrix over R can be inverted. With 
another mild condition, to exclude pathologies, we can now state the main result [10]: 

THEOREM 6. — Let Rbe a non-zero ring in which the class O of full matrices is closed 
under extensions. If the universal O-inverting mapping R -> R0 is an embedding, 
then R0 is a field. 

6. It only remains to find a class of rings satisfying the conditions of Th. 6. As 
it happens, the results proved about firs are just sufficient: a full matrix over a fir corres­
ponds to a torsion module and this class is certainly closed under extensions. We 
also know that every full matrix over a fir is either a unit or a product of atoms. So to 
apply Th. 6 to firs we need only show that finite sets of full atoms in R„ can be inverted. 

This requires a study of conditions under which we can formally adjoin an inverse 
to a ring without causing collapse. The problem is so general that one needs a hint 
on what sort of condition to look for. Fortunately the theory of torsion modules 
provides such a hint : if p is an atom in a fir R, then End (R/pR) is a field. This is essen­
tially Schur 's lemma for torsion modules, and it still holds if p is a full atom in a 
total matrix ring over a fir. What we need is 

THEOREM 7. — Let R be a ring and S any subset of R such that 
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(i) each element of S is a non-zero-divisor in R, 
(ii) End (R/pR) is a field for each peS, 

(iii) Horn (R/pR, R/qR) = 0 for p, qe S if p / q; 

then the universal S-inverting homomorphism R -> Rs is injective. 

This is proved by analysing the relations in a tensor product [10], and it leads to a 
proof that every fir can be embedded in a field. This completes the solution of the 
embedding problem. 

7. There are some interesting corollaries. Thus Th. 7 yields fairly easily 

THEOREM 8. — If R is an atomic 2-fir, then the semigroup of non-zero elements of R 
is embeddable in a group. 

This result is of some interest because it is very easy to construct atomic 2-firs that 
are not embeddable in a field [9], so one has another solution of Malcev's problem 
in addition to the three found in 1966 [2, 3, 13]. This example makes the difference 
between embeddability in a group and in a field rather clear: embeddability in a group 
requires 2-term conditions, whereas embeddability in a field requires 7i-term condi­
tions, for every n. 

Th. 8 should be compared with Klein's result [14]. In a semifir the non-zero elements 
can be embedded in a group. This suggests a common generalization, obtained by 
dropping the word " atomic " in Th. 8. Similarly one would expect that every semifir 
is embeddable in a field. 
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JORDAN ALGEBRAS 

AND DIFFERENTIAL GEOMETRY 

by MAX KOECHER 

1. Basic notions. 

Let 91 be a finite dimensional Jordan algebra over the field K of characteristic ^ 2. 
Using the left multiplication L given by L(a)b = ab we define the so-called quadratic 
representation P by P(a) = 2L2(a) — L(a2). Then for a, b e 9C the fundamental formula 
P(P(a)b) = P(a)P(b)P(a) holds. Suppose that the Jordan algebra 9Ï contains a 
unit element e. An element a e 9( is called invertible if the linear transformation P(a) 
is bijective. In this case the inverse of a is given by a - 1 = [P(a)]~1a and 
[P(a)]_1 = P(a~1) holds. The set of invertible elements of 9Ï is denoted by Inv 91. 

For a given / e 91 we define a new product on the vector space of 91 by 

a 1 b = a(bf) + b(af) - (ab)f 

The vector space of 91 together with this product is called the mutant 91̂ - of 91 with 
respect to / Each mutant SUf is a Jordan algebra and its quadratic representation 
is given by Pf(a) = P(a)P(f). The algebra S&f has a unit element iff fe Inv 91, in 
this case the unit element of 9t / is given by / _ 1 . Clearly, fe Inv 91 implies 
Inv S&f = Inv 9Ï. 

2. The structure group. 

The group Aut 9T of automorphisms of 91 is a linear algebraic group. Furthermore, 
let r(9I) be the set of bijective linear transformations W of 91 for which there exists 
a bijective linear transformation W* of 91 such that P(Wu) = WP(u)W* for all u e 91. 
Then T(9I) is a linear algebraic group, the so-called structure group of 91. The funda­
mental formula shows P(a) e T(9t) whenever a e Inv 91. 

The set Inv 91 carries the structure of a reflection space in the sense of O. Loos [6] : 
Defining x.y = P(x)y~i for x9 y G Inv 9C the fundamental formula yields (i) x.x = x9 

(ii) x.(x.y) = y, (iii) x.(y.z) = (x.y).(x.z). This product does not change if one 
passes from 91 to a mutant SHf where fe Inv 91. From the definition it follows that 
the structure group T(9t) becomes a subgroup of the automorphisms of the reflection 
space. 

3. Components of Inv 91. 

Let 9( be a Jordan algebra with unit element e over the field M of real numbers. 
Hence the vector space 91 carries the natural topology and Inv 9Ï is open. Suppose 
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that the trace form T given by x(u, V) = trace L(uv) is non degenerate. Then the (not 
necessarily positive definite) line element ds2 = t(x9 P(x~1)x)dt2 where x = x(t) is 
a curve in Inv 91 is invariant under the maps x -> Wx9 WeT($l), and x -> x~l. 
In order to discuss the induced pseudo-riemannian structure let C be a component of 
Inv 9t. Then there exists feC such that f2 = e. Writing Comp 91 for the compo­
nent of Inv 9( containing e we obtain C = Comp 9ly whenever fe C, / 2 = e. Since 9Iy 
is again a Jordan algebra (with unit element / ) it suffices to consider Comp 91. 
From [1], XI, Satz 2.4, we obtain. 

THEOREM 1. — Let Vibe a Jordan algebra over U such that its trace form is non dege­
nerate. Then Comp 91 is a homogeneous symmetric space. 

4. Formally real Jordan algebras. 

A Jordan algebra 91 over M is called formally real if a2 + b2 = 0 for a, b e 91 implies 
a = b = 0. 9lis formally real iff its trace form T is positive definite. Hence Comp 91 
is riemannian whenever 91 is formally real. Using the (algebraic) exponential one 
has 

THEOREM 2. — Let SH be a formally real Jordan algebra. Then 

Comp 91 = exp 91 = { x2 ; x e Inv 91 } 

and the map x -> exp x is bijective. 

Let D 7̂  0 be an open convex cone in a real vector space 93. We call D homo­
geneous if the group Aut D of all bijective linear transformations W of 93 satisfying 
WD = D acts transitively on D. For a positive definite bilinear form a of 93 we define 
the dual cone Da = { x ; x e 93, o(x, y) > 0 for 0 ^ y e D } . D is called self dual if 
there exists a positive definite a such that Da = D. 

THEOREM 3. — (i) Let D be a homogeneous convex self dual cone in a real vector 
space 93. Then there exists a formally real Jordan algebra 91 in 93 such that 
D = Comp 91. 

(ii) Let 91 be a formally real Jordan algebra. Then Comp 91 is a homogeneous 
convex cone that is self dual with respect to the trace form of 91. 

5. The primitive idempotents in a formally real Jordan algebra. 

Let 91 be a simple formally real Jordan algebra and let Idem 91 be the set of idem­
potents # 0 of 91. An idempotent c is called primitive if there is no representation 
c = cx + c2 where c1, c2e Idem 91. Using the trace form % of 9t we obtain a metric p 
on the set Idem! 9t of primitive idempotents of 91 by defining p(c, d) = 1 — %(cd). 

THEOREM 4 (U. Hirzebruch [3]). — (i) The pair I = (Idem! 91, p) is a connected 
compact metric space. 

(ii) The group Aut 91 acts doubly transitively as a group of isometries on I. 
(iii) Each isometry of I extends to an automorphism of the Jordan algebra Sil. 
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(iv) Idem! 91 as a submanifold of the %-sphere is a two point homogeneous symmetric 
space and hence of rank 1. 

Using the classification of H. C. Wang [8], Hirzebruch obtains 

THEOREM 5. — Let X be a connected double homogeneous compact metric space. 
Then there exists a simple formally real Jordan algebra 91 such that X is homeomorphic 
to Idem! 91. 

It would be of interest to prove this theorem without Wang's classification. 

6. Helwig's construction. 

Let J be an automorphism of the formally real Jordan algebra 91 such that J2 = id. 
We assume that the trace from T is non degenerate. Let Inv (9Ï, J) be the set of all 
invertible elements q of 91 such that q'1 = Jq. One can easily show that 

Inv (9Ï9, Jq) = Inv (9T, J) 

holds for all q e Inv (91, J) where 9I9 is the mutant of 9Ï with respect to # - 1 , and 
Jq = P(q) J an automorphism of 9tg. Thus, as in 3, it suffices to study the component M 
of Inv (91, J) containing the unit element e of 91. M is a regular analytic submanifold 
of Comp 9t. With the " metric " inherited from Comp 91, M is pseudo-riemannian 
and symmetric. The following results are due to K. H. Helwig [2]. 

THEOREM 6. — M is a totally geodesic submanifold of Comp 91. In case the pair (9t, J) 
is simple (i. e. 91 contains no proper J-invariant ideal), M is an Einstein space iff 91 is 
central simple. 

The geodesic symmetry around a point q of M is given by Jq. The group T(M) 
generated by P(q), q e M, is a transitive group of isometries of M. Neglecting a few 
exceptions, T(M) is effective on M if (91, J) is simple, and T(M) is a semi simple Lie 
group if 9Ï is central simple. Using the classification of riemannian symmetric spaces 
one can prove the following. 

THEOREM 7. — Let N be an irreducible riemannian symmetric space of non compact 
type. Suppose that N is classical or of type E IV or the non compact dual of the projec­
tive Cayley plane. Then there is a formally real Jordan algebra 91 and an automor­
phism J of 91 such that M is homothetic to N or to U+ x N. 

Now we assume 91 to be simple and p : (a, b) -• i(a, Jb) to be positive definite. 
Then M is compact. Replacing the pseudo-riemannian structure of M given above 
by its negative, M is a riemannian submanifold of the (n — l)-sphere S consisting of 
all a e 91 such that p(a, a) = n = dim 91. 

THEOREM 8. — (i) If the 1-eigenspace 91 + of J is a simple algebra then the inclusion 
M a S is an equivariant (w.r.t.T(M)) and minimum (w.r.t.mean curvature) imbedding. 
If 91 + is not simple then there is a minimum and equivariant imbedding of M into a 
(n — 2)-sphere. 

(ii) The cut locus of a point p of M consists of all q in M for which p + q is not 
invertible. 

(iii) Every maximal torus of M through p contains exactly one antipodal point of p. 
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COROLLARY 1. — The isotropy group of p is transitive on the antipodal set of p. 

COROLLARY 2 (Principle of duality). — Distinct points of M have distinct antipodal 
sets. 

1. Jordan triple systems. 

We consider a finite dimensional vector space 93 over the field K of characteristic 
7* 2, 3 to gether with a trilinear map (a, b, c) -> { a, b, c } of 93 x 93 x 93 into 93. 
As an abbreviation define the linear transformation a • b of 93 by (a • b)c = {a,b,c} 
and the trace form or of 93 by a(a, b) = trace (a • b + b • a). Suppose that a is 
non degenerate. Then by T* we denote the adjoint of the linear transformation T 
of 93 w.r.t.a. Furthermore let % be the space spanned by a • b for all a, be SO. 
We call 93 a Jordan triple system (and the map (a, b) -> a\3ba pairing) if in addition 
(a • b)c = (c D &)a, [T, A D &] = Ta D è - a D T*b9 (a D ft)* = b • a holds for 
a, fe, e e 93 and T e £. In particular X becomes a Lie algebra of linear transformations 
of 93. Denote by T the set of bijective linear transformations W of 93 such 
that W(a • b^W'1 = Wa • W*"1* holds for all a9 b e 93. Then T is a linear alge­
braic group. The connection between Jordan triple systems and Jordan algebras 
is given by 

MEYBERG'S THEOREM [7]. — Let SB be a Jordan triple system and let deSB. Then SB 
together with the product (u, v) -> { u, d9 v } becomes a Jordan algebra denoted by 93d. 

Conversely, a Jordan algebra 91 induces a Jordan triple system in the same vector 
space by setting { a, b, c } = P(a, c)b. 

The following results are taken from [5]. Let • : 93 x 93 -> End 93 be a pairing. 
In the vector space ft = £ © 93 © 93 an anti-commutative algebra is given by the 
commutator product for the elements of %, by zero for two elements in the second or 
the third component, and by (T9 a) -> Ta9 (T, b) -> — T*b, (a, b) -> a Ob, where 
TeX, a in the second and b in the third component. 

THEOREM 9. — ft is a Lie algebra having a non degenerate Killing form. 

Using various examples of pairings one verifies that Lie algebras of type A, B, C, 
D, E6 and En can be obtained by this construction. According to K. Meyberg [7] 
no Lie algebra of type G2, F4 and E8 occurs. 

Let x be a generic element of SB and define birational mappings ta and sb by 
ta(x) = x + a, sb(x) = (I + \x • b)~1x for a, be SB. We denote by H the group of 
birational mappings generated by WeT, ta(a e 93) and sb(b e 93). 

THEOREM 10. — (i) Each element of H -can be written as Wo ta<>sb<> tc where WeT 
and a, b, ce SB. 

(ii) H is (in an explicit manner) isomorphic to a Zariski open subgroup of Aut ft. 

For pairings that are induced by formally real Jordan algebras the group H is in 
fact isomorphic to Aut ft. 
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8. Bounded symmetric domains. 

Let 930 be a real vector space and let • : 930 x 930 -> End 930 be a pairing. 
Suppose that the pairing is formally real, i. e. its trace form o0 is positive definite. The 
pairing extends to a pairing of the complexification 93 of 930 with trace form a. For 
w e © we denote by ü the complex conjugate. Then (u, v) -• a(u, V) becomes a hermi-
tian positive definite form on SB. For a linear transformation T of SB that is self-
adjoint with respect to this hermitian form we write T > 0 whenever a(Tu, u) > 0 
for 0 ^ u e SB. Using the identification of a generic element x of 93 and a " variable " 
z e 93 the group S becomes a group of bimeromorphic mappings. 

THEOREM 11. — (i) The set Z = {z : z e 93, 21 - z[Jz > 0 } is a bounded symmetric 
domain and it is convex. 

(ii) The group Bih Z of all biholomorphic automorphisms of Z coincides with the 
subgroup of fea such that f~1(z) = — f(— z). 

(iii) The elements f of Bih Z are exactly the mappings U <> ta o Ba ° s5 where aeZ9 

U in the isotropy group of o and where Ba is some (explicitly known) linear transforma­
tion uniquely determined by a. 

Without classification one obtains 

THEOREM 12. — Let Dbea bounded symmetric domain in some complex vector space 93. 
Then there exists a real form 930 of 93 and a formally real pairing • of 930 such that D 
is biholomorphically equivalent to {z: ze 93, 21 — z D z > 0 }. 
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VARIATIONS MODULAIRES 

SUR UN THÈME DE CARTAN 

par A. L KOSTRIKIN 

Il s'agira ici d'algèbres de Lie simples de dimension finie sur un corps k algébrique­
ment clos de caractéristique p > 0. Tout à fait remarquables à de nombreux points 
de vue, elles portent la marque des propriétés de deux classes d'algèbres de Lie com­
plexes (sur C), à savoir : simples de dimension finie et simples transitives infinies cor­
respondant aux pseudo-groupes de Lie primitifs. L'étude de ces classes et la déter­
mination exhaustive des algèbres qu'elles contiennent est indissolublement liée au 
nom de E. Cartan [2]. 

La théorie des algèbres de Lie modulaires est toujours en plein développement 
et propose tout un éventail de problèmes parfois inattendus. Ce n'est que tout à fait 
récemment, par exemple, que Block [1] a complètement décrit les algèbres de Lie 
semi-simples en termes simples, résultat dont la démonstration était attendue depuis 
longtemps. On trouvera les autres aspects de la théorie dans l'analyse complète de 
Seligman [8]. 

1. Types d'algèbres simples. 

Choisissons dans chaque algèbre de Lie simple de dimension finie sur C une base 
de Chevalley [4] et effectuons la réduction modulo p (et également le passage à l'algèbre 
quotient par le centre de dimension 1 dans le cas A^^^ nous obtenons les algèbres 
simples sur k 

An,n>l; Bn,n>2; Cn,n^3; Dn,n>4; £ , . , 1 = 6 , 7 , 8 ; F4; G29 

qu'il est traditionnel d'appeler classiques (y compris E{, F 4 et G2). 

Il est bien connu que sur le corps C, il n'existe, à un isomorphisme près, que quatre 
séries d'algèbres de Lie simples infinies transitives : 

Wn9n>l; S„,n>2; Hn,n>l; Kn,n>2, 

appelées algèbres de type Cartan. A partir de leurs réalisations dans l'algèbre des 
differentiations continues de l'anneau des séries entières formelles, I. R. Shafarevitch 
et l'auteur [13] et [14] ont construit les algèbres de type Cartan en caractéristique p>0 . 
Soit E un espace vectoriel de dimension finie sur k avec une base {X l9..., X„} et 
soit 0(E) = < X{lu,..., X^n) > l'algèbre des puissances divisées sur E. L'algèbre 0(E) 
apparaît de manière naturelle dans les problèmes d'algèbre liés d'une façon ou d'une 
autre aux nombres premiers p (cf. [3], [5]). Toutes les dérivations spéciales 

0 : Xw -+ X{h-l)3>X, XeE, 
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de l'algèbre 0(E) forment une algèbre de Lie simple de dimension finie Wn(E). De 
plus, par analogie avec la caractéristique nulle, on introduit les trois autres séries 
d'algèbres: Sn(E) c Wn+1(E), H„(E) c W2n(E), Kn(E) c W2n-t(E) déterminées par les 
formes différentielles extérieures co = dXx A . . . A dXn+i : 

œ = E dXt A dXi+n et œ = dX0 + £ {X<dXt+H - Xi+ndXt) 

respectivement. Posons 5fZJft) = àisXf~1)
9 et deg X{ = - deg dt = 1 , i > 0, 

deg X0 = 2 = — deg d0 ; on obtient ainsi des graduations standard dans toutes les 
algèbres L(E). Comme d'habitude, il faut entendre par drapeau généralisé de hauteur / 
un système 

J F : £ = £ 0 2 £ 1 2 . . . 3 £ 1 3 El+1, 

de sous-espaces de E inclus l'un dans l'autre. Au drapeau !F correspond de manière 
unique une sous-algèbre graduée de dimension finie 0(!F), invariante pour toutes les 
dérivations d^: X{h) -> X(h~l)t;(X), ÇeE*, et aussi une algèbre graduée simple de 
dimension finie W(^) c W(E) constituée par les dérivations ) de 0(!F) dans elle-
même. Une définition équivalente est 

W(&) = < 0 e W(E) | (ad djf'Q = 0, { e Ann Et cz E* } 

En général L(^) = L(E) n W($F), où L = S9 H ou K, n'est pas une algèbre simple 
mais son algèbre dérivée seconde L($F) = L(!F)" est déjà simple. Toute algèbre de 
Lie graduée M telle que L(#")çMeL(«^") s'appelle une algèbre de type Cartan relative 
au drapeau J5". Les algèbres W(&) (générales), 5(#") (spéciales), K(SF) (hamiltoniennes) 
et K(^) (de contact) ne sont pas seulement des représentants caractéristiques des 
algèbres de Lie simples non classiques. Enrichissant quelque peu la construction 
dans les cas S(#") et U(3F), Wilson [9] a établi le théorème suivant 

THéORèME 1. —Toutes les algèbres simples non classiques du livre [8] sont contenues 
dans les algèbres « croisées » de type Cartan. 

La notion de « croisement », dont je ne donnerai pas ici de définition précise, est, 
visiblement, une forme commode pour la réalisation de toutes sortes de déformations 
des algèbres graduées dont il sera question plus bas. // est important de souligner que 
Vaccumulation, pendant trente ans, d'exemples ingénieux (ou, comme le disent certains, 
pathologiques) au niveau des conjectures n'a pas conduit au chaos. Au contraire le point 
de vue modulaire dans cette approche nouvelle est assez naturel et attirant pour les 
chercheurs. Des considérations heuristiques, appuyées par une série de résultats, ont 
conduit I. R. Chafarevitch et l'auteur à la conviction que la conjecture fondamentale 
suivante est vraie. 

(Ci) Toute algèbre de Lie üf simple de dimension finie sur un corps k algébrique­
ment clos de caractéristique p > 5 est isomorphe à une algèbre de Lie classique ou 
à une déformation d'une algèbre graduée de type Cartan. 

2. Résultats relatifs à la classification. 

Dans ce qui suit, on suppose p > 5. La limitation p # 2,3 résulte de l'essence même 
de notre entreprise tandis que la valeur p = 5 s'exclut plutôt pour simplifier les énoncés. 
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Soit 2£ une algèbre de Lie simple de dimension finie sur k9 Jf0 sa sous-algèbre maxi­
male. Parmi les sous-espaces propres 2£ _x tels que [&-l9 3?0] £ # _ i , choisissons-en 
un minimal. Posant 

*-!=*!_!=[... [ir_l5 i r . j , . . . , ^ ] , ^ { x e ^ n * , iîr.jsar,.!}, *>o, 
étant donné la maximalité de $?0, nous obtenons l'égalité 2£ _q = 2£ et étant donné 
la simplicité de ^ , l'égalité &r+1 = 0 pour certains q, r e Z, q > 0, r ^ 0. Il est facile 
de voir que 

On obtient la filtration 

j r = 3 r _ f 3 . . . ID j r _ ! ZD j r 0 ZD ^Tj ZD . . . :z> # , z> O 

de profondeur q et de longueur r, qui dépend bien entendu du choix de Jf 0 . L'algèbre 
de Lie graduée associée à cette filtration est 

g r^ r = L = L _ g © . . . 0 L _ j 0 L o ® L ! © . . . ® L r ; 

comme d'habitude nous désignerons par (x, y) -> [x, y] sa multiplication qui possède 
pour r ^ 1 les propriétés suivantes 

1) [L^LjiçzLt+j; 
2) L_! est un L0-module simple; 
3) xeL±i, [x, LT1] = 0, i ^ 0 => x = 0 

(transitivité de l'algèbre graduée). 

Une algèbre de Lie M dans laquelle il existe une filtration { Jt{} avec gr M s L 
(isomorphisme d'algèbres graduées) s'appelle une déformation de l'algèbre graduée L ; 
(ce n'est pas la notion usuelle de déformation, au sens de Kuranishi, Spencer, Kersten-
haber, etc.). La déformation L est triviale si Ji s L. Sans imposer la simplicité du 
L0-module L_ l 9 on peut se limiter aux filtrations de profondeur 1 comme cela s'est 
presque toujours fait en caractéristique nulle (cf. [7]). La technique correspondante 
est exposée par exemple dans l'article [6] où l'on rappelle les iésultats obtenus par 
Tanaka. Elle a aussi été donnée indépendamment dans la note [10] de Veisfeiler. 

Bien que la composante L0 donne une représentation irréductible exacte sur L_ l s 

on ne peut rien dire de précis sur sa structure (c'est une des bizarreries de la caracté­
ristique p). Dans un cas particulier, on a le résultat suivant 

THéORèME 2. — Une algèbre de Lie L semi-simple sur K, qui admet une représen­
tation exacte de dimension n < p — 1, se décompose en somme directe d'algèbres 
de Lie simples classiques (cf. [15] et les remarques à la fin de [14]). 

D'autre part V. G. Katz [11], [12] a établi le théorème suivant 

THéORèME 3. — Soit L une algèbre de Lie de dimension finie transitive graduée, 
admettant une déformation simple, dont la composante L0 — somme directe d'algèbres 
classiques Mt et du centre, et de L_ t — est un p-module compatible avec la p-structure 
dans les M,- ; alors L est isomorphe à une algèbre de Lie classique ou de type Cartan 
(avec les restrictions q = 1 et n = dim L_x < p — 1 ce théorème est démontré aussi 
dans [14]). 

Enfin, je formulerai un résultat qui met la conjecture (Cx) sur un terrain solide. 
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THéORèME 4. — La conjecture (CJ est vraie s'il existe dans 2£ une sous-algèbre de 
codimension n < p — 1. 

Pour la démonstration, il faut construire une filtration à partir d'une sous-algèbre 
maximale de codimension < p — 1, passer à l'algèbre graduée, et appliquer les théo­
rèmes 2 et 3, si cette filtration est de longueur r ^ 1 (transitivité !). Dans le cas r = 0, 
il faut utiliser des résultats exposés dans [15] et [16]. Remarquons, en particulier, qu'une 
algèbre de Lie simple avec une sous-algèbre de codimension 1 est isomorphe soit à 
l'algèbre Al9 soit à une algèbre générale W\(^) de dimension pm, m = 1, 2 , . . . 

3. Sous-algèbres invariantes. 

Une sous-algèbre maximale S£0 c $£ choisie au hasard conduit à une filtration de & 
de longueur nulle qui est sans intérêt. Cependant, il y a des raisons de croire qu'on 
peut effectuer une construction absolument invariante, comme le suggère la conjecture 
suivante. 

(C2) Dans toute algèbre de Lie 3£ sur un corps k, simple et non classique, il existe 
une sous-algèbre de Lie (propre) maximale ^-mv, invariante par le groupe Aut 2£ 
de tous les automorphismes de l'algèbre, et contenant toute autre sous-algèbre inva­
riante. 

Cette intéressante situation, liée à la structure du groupe Aut & et de l'algèbre 2£ 
elle-même, s'explique par la présence de nilpotents dans les schémas des automor­
phismes des algèbres non classiques. V. A. Kreknine a démontré le théorème suivant 

THéORèME 5. — La filtration standard (cf. § 1) d'une algèbre simple L(3F) de type 
Cartan est invariante pour Aut L(3F). Toutes les sous-algèbres invariantes sont conte­
nues dans 3f0 = L0 © L± © . . . 

Pour les différentes déformations des algèbres M ^ L(<F), la conjecture (C2) n'est 
pas démontrée. La conjecture plus forte suivante suggère une méthode effective de 
démonstration. 

(C3) La sous-algèbre maximale invariante 2£-mv est le normalisateur dans & de 
la sous-algèbre invariante 

V = < c e i T | ( a d c ) 2 = 0 > # 0. 

Comme on le montre dans l'article [16], la filtration relative à 3?^ = N^(^) est 
sûrement de longueur r > 1. On y établit aussi le théorème suivant 

THéORèME 6. — La sous-algèbre non nulle # (elle est toujours nilpotente) existe 
dans toute algèbre simple non classique avec une décomposition de Cartan 

& = H + s^ra 

et un élément 0 # ae\J&a tel que (ad a ) p _ 1 = 0. 
a 

Bien entendu, la question suivante se pose : existe-t-il une algèbre' de Lie simple ^f 
sur k(p^2,3) dans laquelle (ad x ) p _ 1 # 0 pour tout élément non nul x e J ? 

A l'aide du théorème 5 on établit instantanément la non-isomorphie des algèbres Uß*) 
des différentes séries et en résout le problème des isomorphismes à l'intérieur de ces 
séries. Ainsi, la filtration standard relative à 3tmv montre qu'à toutes les décompositions 
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ordonnées différentes m = mt + . . . + mn, 1 < mx < . . . ^ m„, correspondent des 
algèbres W„(^) non isomorphes de dimension dim W„(^) = npm, m > n. On obtient 
des résultats analogues pour les autres séries. 

4. Familles paramétriques. 

Soit p = car k = 3, e e k, e ^ 0 et soit {a, ß } un système fondamental de racines 
pour le type B2. On se propose d'examiner la p-algèbre de Lie simple graduée de 
dimension dix 

L(e) = L_2 © L_! ŒLoeL!® L2, L(- 1) = B2 

où 

L ± 1 = < £±(a + /j) , £±„ >, 

L0 = < £-0 ,Hß,Eßy -f < Z >, 

[Z, XJ = iXf, X{ e L, ; [Hß, Eia+jß] = ( - i + 2/-)Efa+i, . 

Par rapport à la base donnée, les constantes de structure de L(e) sont les mêmes 
que celles de l'algèbre simple complexe B2 à l'exception des cas suivants 

E-2a-ß 

E-a-ß 

- EE_a_ß EE_a - E2Z 

2E_ß - Hß + EZ eEa 

Hß + eZ 2Eß - eEa+ß 

Dans l'article [17] on montre le théorème suivant: 

THéORèME 7. — Les p-algèbres de Lie simples L(e) et L(e') pour des éléments e et e' 
de k distincts, EE' ^ 1, ne sont pas isomorphes. 

Par suite, la normalisation du type de Chevalley [4] n'est pas réalisable dans une 
algèbre quelconque. Probablement, pour p = 2,3, il existe d'autres familles paramé­
triques (de même puissance que le corps k), mais je me risquerai malgré tout à énoncer 
la conjecture suivante. 

(C4) Il n'existe pas de famille paramétrique d'algèbres de Lie simples quand la 
caractéristique p du corps de base k (supposé, bien entendu, algébriquement clos) 
est suffisamment grande. 

En ce qui concerne les algèbres graduées, c'est très vraisemblable car, sinon, la 
conjecture (Cx) perdrait toute signification. D'autre part, il n'y a pas de correspondance 
biunivoque entre les cohomologies de Spencer et les classes d'isomorphisme de défor­
mations et de très nombreux exemples montrent qu'il n'existe pas non plus de para­
mètres continus dans les déformations. Voici une situation typique. Soit #" le drapeau 
de hauteur 1 d'un espace vectoriel E = < Xl9 X2 > de dimension 2 sur k. Introduisons 
dans 0(8F)lk la structure d'algèbre de Lie simple ^f (e), 0 / e e k, en posant 

Uo V= (diU-d2V- d2U-d1V){i + EX^-^X^'^), U, VeO(SF)jk. 
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Par construction, $f(s) est une déformation de l'algèbre graduée 

L = H^) © < gf-VX^-" > cz H^), 

dans laquelle la p-algèbre de Lie hamiltonienne HX(!F) est un idéal de codimension 1. 
Cette déformation correspond au cocycle feH2p~3'2(L): 

f(Xu X2) = I , . X 2 = * r » J t f - y e L 2 , _ 4 . 

Comme il est facile de le vérifier, pour tout e # 0, il existe un isomorphisme i§f(e) = i2f(l) 
et il n'existe donc aucun paramètre. 

Il est traditionnel de qualifier de rigide une algèbre de Lie qui n'admet pas de défor­
mations non triviales. L'algèbre générale Wn(ïF) est rigide. 

5. Remarques isolées. 

I. Comme me l'a communiqué V. G. Katz, il est possible de réduire le problème 
fondamental de la classification des algèbres de Lie simples de dimension finie à celui 
de la maximalité du sous-schéma le plus réduit du schéma des automorphismes de ces 
algèbres. On ne sait pas si on réussira à obtenir (ou pas) la démonstration des conjec­
tures (C2) et (C3) en utilisant la technique des groupes algébriques. 

IL De nombreuses questions restent ouvertes dans la théorie des représentations 
des algèbres de Lie de caractéristique p > 0, même dans le cas des algèbres classiques. 

Tout récemment, A. N. Roudakov [19] a montré que pm{L), m(L) = - (dim L — rang L), 

est la dimension maximum possible des représentations irréductibles d'une algèbre 
de Lie L classique sur k, avec car k = p > 3, et que cette dimension est atteinte dans 
la classe des p-représentations irréductibles. Cette dernière affirmation n'est pas vraie 
pour les p-algèbres de type Cartan pour lesquelles l'exposant m(L) n'est pas calculable, 

p - \ 
sauf pour m(W1) = —-—. La paramétrisation des représentations de l'algèbre L 

sur k par une variété algébrique (suivant l'idée de Zassenhaus) et la recherche de cette 
variété ne sont en fait résolues que pour l'algèbre Ax (cf. [20]). 

III. Soit L une des algèbres de type Cartan simples sur le corps fini Fq, soit 

L = L_q® ... © L ^ f f i L o . . . © L r , q < 2, 

sa graduation standard et soit F une p-représentation irréductible. Pour tout élément 
XeLt, i ^ 0, T(X)P = 0, considérons les exponentielles exp T(X) et le groupe 

Gg(L,r) = <exPr(Z)> 

qu'elles engendrent. Cela ressemble de loin aux groupes de Chevalley [4]. La structure 
du groupe Gq(L, T) dépend autant de L que de T. Dans le cas L = Wx et dim F = p — 1, 
on a un isomorphisme Gq(Wl9 T) £ Cp^^q), alors que Cg(P7ls ad) ^ Ap-^q). Rappe-

2 

Ions que le groupe Aut Wx est résoluble. Le manque de matériel expérimental ne permet 
de faire aucune hypothèse précise sur la structure de Gq(L, T) dans le cas général. 

IV. Il convient enfin d'expliquer que l'indice inférieur dans la notation des algèbres 
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de type Cartan W„, S„, Hn, K„ a la même signification que pour les algèbres clas­
siques A„,...9 G2; cet entier n (qui est la dimension de la sous-algèbre torique 
maximale) est appelé le rang de l'algèbre. A la différence du cas classique, les tores 
maximaux de la p-algèbre de Lie simple L de type Cartan ne sont pas conjugués. Plus 
précisément, ils se répartissent en n + 1 orbites relatives à Aut L, déterminées par l'inter­
section des tores avec la sous-algèbre invariante L-my (S. P. Démouchkine ; article sous 
presse). Ce résultat est vrai aussi pour les sous-algèbres de Cartan (normalisateurs 
des tores maximaux). Pour les algèbres de type Cartan L(!F), relatives à un drapeau 8F 
quelconque, la question des classes de conjugaison des tores maximaux reste ouverte. 
En tout cas, les sous-algèbres de Cartan de L(!F) ne sont plus tenues d'avoir la même 
dimension. Par exemple, l'algèbre Wi(&)9 dim Wv(ßF) = pm, a des sous-algèbres de 
Cartan de dimensions 1 et pm~1. Comme m'en a informé R. Block à ce congrès, H. Strade 
a découvert récemment l'existence d'algèbres simples avec des sous-algèbres de Cartan 
non commutatives. Ce fait était longtemps resté conjectural. 

6. Conclusion. 

Les idées du paragraphe 3 ont été énoncées sous une forme naïve et pas tout à fait 
exacte dans mon exposé au congrès de Stockholm de 1962 (cf. [18]) où il était en fait 
question d'autres problèmes. Finalement, il s'est trouvé que l'idée inattendue d'intro­
duire la sous-algèbre # est bien compatible avec la construction des algèbres de type 
Cartan. Les idées de E. Cartan, issues de l'analyse et de la géométrie, ont permis, grâce 
aux efforts conjugués d'une série d'algébristes, de faire avancer le problème de la clas­
sification. Ne me départissant pas de mon optimisme, qui s'est déjà largement mani­
festé dans les conjectures exprimées ci-dessus, je me permets de formuler le vœu que 
les travaux de ces huit dernières années permettront d'élaborer le bon cadre dans 
lequel des recherches à long terme seront possibles. 
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PROPERTIES OF COUNTABLE CHARACTER 

by B. H. N E U M A N N 

1. Preliminaries. 

We deal with algebraic systems, or briefly algebras, and abstract classes, or properties 
of algebras: the class X is abstract if with an algebra also all its isomorphic copies 
belong to X. 

As usual we denote by SX the class of subalgebras, by QX the class of epimorphic 
images, by RX (" residually X ") the class of subcartesian products of algebras in X; 
and by LX (" locally X ") the class of those algebras all of whose finitely generated 
subalgebras belong to X. To these we add CX (" countably X "), which we define to 
be the class of those algebras all of whose countable subalgebras belong to X. We 
say that the property X is of countable character if CX = X ; this is analogous to pro­
perties of local character, defined by LX — X. Clearly CCX = CX and LLX = LX9 

so that " countably X " has countable character and " locally X " has local character. 

The following assumptions are made once and for all: 

(i) All algebras considered belong to a fixed species defined by finitely many finitary 
operations; 

(ii) All algebras are " small ", in the sense that their carriers (or sets of elements) 
and the finitely iterated power sets of their carriers can be well-ordered. 

An immediate consequence of the first assumption is that countably generated alge­
bras are countable, and it follows that 

CX <= LX. (1) 

It is easy to see that if SX = X then X ^ CX and X £ LX; and that always SCX = CX 
and SLX = LX; and it then follows that a property of local character also has countable 
character. The converse is not true. 

2. Simple facts. 

The ordered set (S, <) is directed if every pair of elements of S, and consequently 
also every finite subset of S, has an upper bound in S. We define (S, < ) to be o-directed 
if every countable subset of S has an upper bound in S, or, equivalently, if it is directed 
and every countable chain in S has an upper bound in S. 

The properties of being directed and of being o--directed are preserved under isotone 
mappings. The following fact is an immediate consequence of this: 
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LEMMA. — Let (S, <) be a-directed, and let (co, <) be the set œ = {0, 1, 2, . . . } 
of non-negative integers in its natural order. If f: S -> co is an isotone function, 
then f is bounded. 

This leads at once to the following simple theorems. 

THEOREM 1. — Finiteness is of countable character. 

If gf denotes the class of finite algebras then clearly g ç CJÇ, so that only CJJ Ç JÇ 
need be shown. Let A e Cgf, and denote by S the set of countable subalgebras of A, 
ordered naturally by the subalgebra relation <. Then (S, <) is ff-directed. For 
Ce S put f(C) = | C |, the order of C. Then / is an isotone mapping of (S, <) into 
(co, <), hence bounded, say by n. Now | A | ^ n; for if A contained n + 1 distinct 
elements, they would generate a countable subalgebra C e S, and then 
n + 1 < | C | = f(C) < n, which is absurd. 

THEOREM 2. — Let 

»o E » i E » 2 £ - . . 

be an ascending sequence of properties of countable character, and let U be their union. 
Then U also has countable character. 

Proof. — As OQi = 8 f implies S5Bf = 93f, we have SU = U, and thus U E CU, 
and it only remains to prove the reverse inclusion. Let then A e CU and again denote 
by S the set of countable subalgebras of A, with the natural order <, so that (S, <) 
is <7-directed. For CeS put 

f(C) = min (ieco \ Ce %). 

Then / ; S -> co is isotone, hence bounded, say by n. Thus A e C93„ = 93„ E U. 

Among the applications of this theorem we mention the case that each 93f is a variety 
or a quasivariety; for they are even of local character, while their unions U are in 
general not of local character; for example we have [1]: 

COROLLARY. — Nilpotency, polynilpotency, and solubility of groups are properties 
of countable character. 

In fact if the 33f in Theorem 2 are assumed to be quasivarieties, one can prove a 
stronger theorem: 

THEOREM 3. — Let 

be an ascending sequence of quasivarieties, and let U be their union. Then RU has 
countable character. 

The proof is not very difficult but lengthy and omitted. Again we obtain as an 
example [1]: 

COROLLARY. — Residual nilpotency, residual polynilpotency, residual solubility of 
groups are properties of countable character. 
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3. Residual finiteness. 

THEOREM 4. — Residual finiteness is a property of countable character. 

We only sketch the proof, as it is very similar to the proof of the same fact for groups 
in [1], If g is the class of finite algebras of our given species, then Sgf = g, hence 
SR% = Kg and Rft E CRft, and only CR% E RS remains to be proved. Let A e CRft 
and let a, b be two distinct elements of A. Denote by S the set of those countable 
subalgebras of A that contain a and b9 and again order it naturally by < ; then (S, < ) 
if a-directed. If Ce S then there is an algebra F e g and an epimorphism n : C -*-* F 
with at] =|= bn. Denote by f(C) the least integer that occurs here as order of F as r\ 
varies. Then / is isotone, hence bounded, say by n. 

In every isomorphism class of algebras of order not exceeding n in the given species 
we choose a representative, and we denote by 9Î„ the set of the representatives so chosen 
and of their subalgebras. We note that assumption (i) in the introduction ensures 
that SR„ is finite. Next we consider the set T of finitely generated subalgebras of A 
that contain a9 b, and note that, again as a consequence of assumption (i), T E S. 
Thus to each DeT there is an algebra R e 9Î„ and an epimorphism r\ : D -*-* R such 
that ai] =# br\. This means that the set TD, say, of epimorphisms n: D -•-» Re$R„ 
with ai] =f= brf is not empty; it is also finite; for r\ is completely determined once the 
images of the members of some set of generators of D in some member of R are specified: 
but D is generated by a finite set, and there are only finitely many R in 9?„, and each 
of them is finite. Next we notice that if D < E e T and Ö e TE, then y = ö | D e TD, 
and thus there is then a mapping, the restriction mapping, of TE into TD. These mapp­
ings, say cpED :TE -• TD, form a coherent inverse system, and by a theorem involving 
something like well-order, and thus relying on assumption (ii)—say, for example, 
Steenrod's theorem—the inverse limit is not empty. This leads to the existence of a 
homomorphism of A to some member of 9l„, say some y* : A -+-> R e $R„, with 
a7* + by*. As a ={= b were arbitrary in A, A is indeed residually finite, and the theorem 
follows. 

4. Further results. 

If © denotes the class of finitely generated algebras, what is C©? It can not be 05 
itself, as SCdò = C© but S© 4= ©. Instead one has, almost obviously: 

THEOREM 5. — The class C© of algebras whose countable subalgebras are finitely 
generated is the class of noetherian algebras, that is the class of algebras with maximum 
condition for subalgebras. 

A noetherian algebra clearly belongs to C©, as all its subalgebras are finitely gene­
rated, hence countable. Conversely a non-noetherian algebra contains a properly 
ascending chain of subalgebras, which may be assumed finitely generated; and the 
limit of this chain is countable but not finitely generated, and thus the algebra is not 
in C©. 

Finally we remark that if 91 denotes the property of being non-simple, that is to say, 
of possessing congruences that are properly between the identity congruence and the 
universal congruence, then C9I E SR. In fact we have: 
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THEOREM 6. — If A is a simple algebra and C a countable subalgebra of A, then C 
is contained in a simple countable subalgebra D of A. 

We again omit the proof, which is an easy adaptation ofthat in the case of groups [1]. 
It is not difficult to see that C91 4= SR, and one can also show that L91 $ SR (see [1]). 
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SUMS OF SQUARES 

IN REAL FUNCTION FIELDS 

by A. PFISTER 

1. Introduction. 

g(x) 
Let f(x) = -—-eR(x) = R(xl9.. .,x„) be a rational function in n variables with 

n[x) 

real coefficients. / is called positive definite if 

f(a) >0 for all a = (a1,..., an) e Rn with h(a) / 0. 

Hubert's problem 17 is the following: 
Is every positive definite function / a sum of squares in R(x) 

This is trivial for n = 1 and was proved for n = 2 by Hilbert in 1893 [4]. He showed 
that in this case every positive definite function is a sum of 4 squares. The general 
rc-variable case was settled by E. Artin in 1926 [1]. However, his proof is purely abstract 
and does not give an estimate for the number of squares needed. In this quantitative 
direction progress was made in 1966 by J. Ax (unpublished) who showed that positive 
definite functions in 3 variables are sums of 8 squares. At the same time he simplified 
the proof for 2 variables and he gave a precise conjecture for the n-variable case, namely 
that every positive definite function should be a sum of 2" squares. In 1967 I have 
been able to prove this conjecture (see [7] or Corollary 1 below). 

One of the main ideas of Ax is to make use of a well-known theorem of Tsen [11] 
which has been rediscovered by Lang [6] : 

THEOREM 1. — Let C be an algebraically closed field, let K be a field of transcendence 
degree n over C. Let / be a form of degree d in more than d" variables with coefficients 
in K. Then / has a non-trivial zero in K. In particular, every quadratic form of 
dimension greater than 2" has a non-trivial zero. 

By means of the abstract theory of so-called multiplicative quadratic forms we can 
deduce from Theorem 1 the following result about function fields over R : 

THEOREM 2. — Let R be a real closed field, let K be an extension field of transcendence 
degree n over R. Let (p = (1, a t) ® . . . ® (1, a„) be a multiplicative quadratic form 
of dimension 2" over K and let b ^ 0 be a totally positive element of K, i. e. an element 
which can be represented as a finite sum of squares in K. Then cp represents b over K. 

COROLLARY 1. — Let K = R(x l 5 . . . ,xn) and let feK be positive definite. Then / 
is a sum of 2" squares in K. 
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Proof. — By Artin's Theorem / is totally positive. By Theorem 2 / is represented 
by cp ^ (1, 1) (g) . . . (g) (1, 1), i. e. / is a sum of 2" squares. 

n times 

COROLLARY 2. — Let K be a non-real- function field of transcendence degree n 
over R. Then cp = (I, at) ® ... ® (1, an) is universal in K. 

Proof. — Every element of K is a sum of squares. 

2. Preliminaries about quadratic forms. 

In this section K can be an arbitrary field of characteristic different from 2. Without 

restriction quadratic forms over K are assumed to be in diagonal form and non-dege­

nerate. The form cp(x) = YßiX2 is abbreviated by cp = (al9..., a„), f|a f ^ 0. Equi-
l i 

valence is denoted by = , direct orthogonal sum by ©, tensor product by (g). cp is 
called universal if cp represents every element of K, cp is called isotropic if cp has a non-
trivial zero in K. 

The following results are well-known: 

PROPOSITION 1. — cp represents beK* o cp © (— b) isotropic. 

In particular, every isotropic form is universal. 

PROPOSITION 2. — (a, b) ^ (c, abc) for c = a + b # 0. 

We are now able to prove the essential result of this section (see also [8], [10]) : 

PROPOSITION 3. — Let n ^ 0, al9..., an e K* and suppose that 

cp ^ (1, fll) ® ... ® (1, an). 

Then cp is multiplicative in the following sense: If ceK* is represented by cp then 
cp ^ cep. 

Proof. — By induction on n: 

The case n = 0, cp = (1) is trivial. 

Suppose now that Proposition 3 is true for cp and let us prove it for 

ifr = cp ® (1, an+1) ^cp® an+1cp. 

An element c which is represented by \j/ can be written in the form c = a + an+1b 
where a and b are represented by cp. The cases a = 0 or b = 0 are done by the induction 
hypothesis. Suppose now ab # 0. Using Proposition 2 we have 

\jj ^ cp 0 an+1cp ^ acp ® a„+i&<p ^ (a, a„+i&) ® cp = (c, caan+1b) ® cp 
^ cep © can+iabcp ^ cep ® can+1cp ^ ci/f. 

COROLLARY. — Let Gft(K) = { e e K* : c is a sum of fc squares in K }. If k = 2" 
is a power of 2 then Gfc is a subgroup of X*. 

For later application we also need: 



SUMS OF SQUARES IN REAL FUNCTION FIELDS 299 

LEMMA. — Let cp s (1, ax) ® . . . ® (1, an) ^ (1) © cp' and let b± e K* by represented 
by cp'. Then there exist b2,. .,,b„eK* such that cp ^ (1, &J ® . . . ® (1, bn). 

Proof. — See [8] or [10]. 

3. Proof of theorem 2. 

a) We may suppose that cp is anisotropic since otherwise cp is universal which imme­
diately gives the result. Also the case b = b\ is trivial, We will first treat the case 
b = b2 + b\, bxb2 7* 0. By Tsen's Theorem we know that cp is universal over the 
field K(i) = K(yf^l). lfK = K(i) then the result follows. If not, then ß = bt + ib2 

generates K(i) over K and cp represents ß over K(i). This shows that there are vec­
tors u, v with components in K such that cp(u + ßv) = ß, v =é 0. Hence 

cp(u) + 2ß<:u,v\ + ß2cp(v) = ß. 

Comparing with ß2 — 2biß + b = 0 we find cp(u) — bcp(v) = 0 (and 

2(u,v)<p + 2b1cp(v)= !)• 

Since cp is multiplicative this gives the result. 

b) We will now suppose that Theorem 2 holds for all forms cp of the given type and 
for all elements b e K* which are sums of k squares (k ^ 2) and will proceed by induc­
tion on k. Up to a square factor a sum of k + 1 squares looks like c = 1 + b where ò 
is a sum of fc squares. Putting cp = (1) © <p' the induction hypothesis gives b = b2 + b2 

where fc2 is represented by cp', and without restriction b2 # 0. We want to show 
that cp represents c. 

Consider the form ip = cp ® (1, - c) = (1) © (p' © ( - cep) = (1) © i/r'. ^ ' repre­
sents b2 — c = (£ — b2) — (1 + b) = — 1 — b\. By the Lemma we have therefore 
i// ^ (1, — 1 — b\) ® x with a form x = (1, c±) ® . . . ® (1, cn). Applying the induc­
tion hypothesis to % we have % represents 1 H- b\. Hence \j/ = cp © ( — c<p) is isotropic. 
Therefore ep(u) — cep(v) = 0 with non-zero vectors u, v over K. Since cp is anisotropic 
and multiplicative it follows that cp represents c over K. 

4. Open problems. 

If K is a field, denote by t = t(K) the minimal number such that every sum of squares 
in K is already a sum of t squares (Of course t may be infinite). 

PROBLEM 1. — Corollary 1 of Theorem 2 shows that t(R(xlt.. .,xn)) < 2". On the 
other hand a theorem of Cassels [2] shows that 1 + x\ + . . . + x2 is not a sum of n 
squares in R(x x , . . . , x„), hence t ^ n + 1. What is the true value of t(R(x±,..., xn)) ? 

Recently it has been shown [3] that t(R(xx, x2)) = 4, but the method is special to 
the case n = 2. 

PROBLEM 2. — Let K be as in Corollary 2 of Theorem 2. Is every quadratic form cp 
of dimension 2" universal in K? 
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PROBLEM 3. — Replace R by the field Q of rational numbers. Is t(Q(xl9.. .,xn)) 
boundecT by some function of n ? 

The only known results in this direction are: t(Q) = 4 (Theorem of Lagrange), 
t(Q(x)) = 5 (Landau [5], Pourchet [9]). 
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B2 - CATÉGORIES - ALGÈBRE 
HOMOLOGIQUE 

HOMOLOGIE DES ALGÈBRES COMMUTATIVES 

par MICHEL ANDRÉ 

A une ^4-algèbre commutative B, on sait associer un complexe de ß-modules LB/A 

défini à une homotopie près. Ce complexe peut être utilisé pour définir des groupes 
d'homologie H„ (A, B, W) et des groupes de cohomologie H" (A, B, W) en présence 
d'un ß-module W. Pour le faire on considère simplement l'homologie des deux com­
plexes suivants : 

LB/A ®BW et Horn* (LB/A, W). 

La définition du complexe LB/A utilisée par D. Quillen [9] et l'auteur [1] permet de 
donner aux groupes d'homologie deux propriétés essentielles, aussi importantes que la 
suite exacte et la propriété d'excision pour les groupes relatifs en homologie singulière. 
D'une part il existe une suite exacte * 

. . . -• Hn (A9 B, W) -> Hn (A, C, W) -+ h„ (B, C, W) 
-> J V i ( 4 B,W) ... ^ H0(B, C,W)^0 

en présence d'une ^-algèbre commutative B, d'une R-algèbre commutative C et d'un 
C-module W. D'autre part il existe un isomorphisme naturel ** 

Hn (A, B, W) 0 Hn (A, C, W) a Hm (A, B ® AC, W) 

en présence de deux A-algèbres commutatives R et C et d'un B (g) ^C-module W et 
cela sous la condition 

Torf(B, C) = 0 i = 1, 2, . . . , n. 

A l'aide de ces deux propriétés, de quelques suites spectrales et de résultats concernant 
les basses dimensions, il est possible de développer une théorie assez complète de l'homo­
logie des anneaux commutatifs. D. Quillen a publié un premier résumé de cette 
théorie [8]. A un niveau plus élémentaire, l'auteur a publié des notes [2] qui contien­
nent une bibliographie relativement complète du sujet. On peut considérer les pages 
suivantes comme une suite du résumé de D. Quillen. 

1. Anneau gradué associé. 

Si l'on excepte les dimensions 0 et 1, tous les groupes d'homologie peuvent se ramener 
au type suivant : H„ (A, A/I9 W) où A est un anneau commutatif quelconque, où J 
est un idéal de A quelconque et où W est un y4/7-module quelconque. Le foncteur 
Tor est apparu une première fois à propos de l'isomorphisme ** de l'introduction, 
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il apparaît une deuxième fois dans la suite spectrale de D. Quillen (section 6 de [8]), 
suite spectrale qui joue un rôle important dans l'étude de H^ (A, A/I, W). 

THéORèME 1.1. — Soient un anneau A et un idéal I et considérons B = A/I. Alors 
il existe une suite spectrale 

E*M = Hp+i[SÏLBIA] => Totf (B, B) 

où S% est la q-ième composante du fondeur « algèbre symétrique » SB de la catégorie des 
B-modules dans la catégorie des B-aïgèbres. 

Le corollaire suivant de ce théorème sera utilisé ci-dessous. 

COROLLAIRE 1.2. — Soient un anneau A et un idéal I tels que le A/I-module I/I2 soit 
projectif. Alors Valgèbre graduée Tor£ (A/I, A/I) est isomorphe à Valgèbre extérieure 
du A/I-module Tor£ (A/I, A/I) ^ I/I2 si et seulement si les groupes d'homologie 
Hn (A, A/I, A/I) sont nuls sauf en dimension n = 1. 

Considérons toujours un anneau A et un idéal / et en outre l'anneau gradué associé 

Gx(A) = £ / n /J B + 1 . 

En géométrie algébrique, on sait passer de la >4-algèbre A/I à la Gr (i4)-algèbre A/I et 
inversement. En particulier il existe une suite spectrale (voir la p. 11-17 de [10]), qui 
converge vers le module gradué Tor£ (A/I, A/I) et dont le terme E1 jouit de la pro­
priété suivante 

£ El
pq = Tor™ (A/I, A/Q. 

p + q = n 

Il existe un résultat analogue pour les groupes d'homologie étudiés ici (proposition 23.8 
de [1]). 

PROPOSITION 1.3. — Soient un anneau noethérien A et un idéal I. Alors il existe une 
suite spectrale qui converge vers H^ (A, A/I, A/I) et dont le terme E1 satisfait à Végalité 
suivante 

Y E\t = Hn(Gt(A),AH,AIT) 
p + q = n 

Il est assez difficile d'utiliser cette suite spectrale. On obtient de meilleurs résultats 
si l'on approche l'anneau A non pas par l'anneau Gr (A) mais par l'ensemble des 
anneaux A/Ik. En bref: on répète pour la cohomologie des anneaux munis de topologies 
adiques ce qui se fait classiquement pour la cohomologie des groupes topologiques 
totalement discontinus, les anneaux noethériens correspondant aux groupes discrets. 
On considère donc un anneau A, un idéal I et un .4/J-module W et pour chaque n ^ 0, 
on définit un nouveau groupe de cohomologie 

Hn(A, A/I, W) = lim Hn(A/Ik, A/I, W) 
k-*oo 

qui doit approcher le groupe de cohomologie Hn (A, A/I, W) dans une certaine mesure. 
Pour la définition de H", on a utilisé le fait que Hn est un foncteur contravariant de la 
première variable. 
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Dans l'introduction, il a été question d'un isomorphisme naturel pour Phomologie 
et dualement pour la cohomologie 

Hn (A, B ® AC, W) s Hn (A, B9 W) © Hn (A, C, W) 

si l'égalité suivante est satisfaite 

TorJ^R, C) = 0 î = 1, 2,...,n. 

Ce résultat peut être généralisé. 

PROPOSITION 1.4. — Soit un diagramme commutatif d'homomorphismes d'anneaux 

• • • Bn-1 -+ Bn = B' 
î î 

\ ï 
... c,_, -+ c„ = c 

Supposons nul Vhomomorphisme 

Torf ' - (£ ,_! , C,..!) -+ Tor^(Rf,C,) 
pour i = 1, 2, . . . , n. Soit W un B' ®A. C-module. Alors le carré commutatif suivant 
composé oVhomomorphismes naturels peut être complété d'une diagonale A 

Hn(A', B' ®A,C, W) -> Hn(A', B', W) © Hn(A', C, W) 

i ^ ^ i 
H" (A, B ® AC, W) -• Hn (A, B, W) © H" (A, C, W). 

Considérons toujours un anneau A et un idéal J. Une résolution d'Artin-Rees d'un 
v4-module M est une résolution projective de ce module 

• -. 4 P . 4 P - i 4 . . . p , 4 p 0 

qui jouit de la propriété suivante : pour tout n > 0 et pour tout k > 0, il existe un 
I = l(k, n) ^ k avec 

(IlP„)n(dPn+1)<=:Ik(dPn+1). 

II revient au même d'affirmer que l'homomorphisme naturel 

Tor*+1 (M, A/I1) -> Tov^, (M, A/Ik) 

est nul. Si le module M possède une résolution d'Artin-Rees, alors toute résolution 
projective de ce module est une résolution d'Artin-Rees. En particulier un module de 
type fini sur un anneau noethérien possède une résolution d'Artin-Rees. 

Lorsque le >4-module A/I possède une résolution d'Artin-Rees, on peut faire usage 
de la proposition 1.4 et démontrer que l'homomorphisme naturel 

Hn(A, A/F, W) -> Hn (A, A/Is, W) 

est nul pour s suffisamment grand par rapport à r. On a donc l'égalité suivante 

lim Hn(A,A/Ik, W) = 0 
fc-»oo 
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Par l'intermédiaire de la suite exacte * de l'introduction pour chacune des situations 
suivantes 

A -> A/Ik -> A/I 

de l'égalité ci-dessus découle un isomorphisme 

lim Hn (A/Ik, A/I, W) s Hn (A, A/I, W) 
ft-» oo 

THéORèME 1.5. — Soient un anneau A et un idéal I. Supposons que le A-module I 
possède une résolution d'Artin-Rees. Alors l'homomorphisme naturel 

Hn(A, A/I, W) -+ Hn(A, A/I, W) 

est un isomorphisme pour tout n ^ 0 et pour tout A/I-module W. 

En particulier pour un anneau A noethérien, on a toujours un isomorphisme 

Hn (A, A/I, W) s Hn (A, A/I, W) 

On peut aussi démontrer le théorème précédent en utilisant la suite spectrale du théo­
rème 1.1 (voir le théorème 6.15 de [8]). 

Il est possible de calculer les deuxièmes groupes d'homologie grace à l'égalité 

H2(A, A/I, W) s Tori04/1, W)/Torl(A/I, A/I).Torf (A/I, W). 

Par conséquent (d'après un résultat de S. Eilenberg) un anneau local et noethérien A 
d'idéal maximal J est régulier si et seulement si le groupe H2 (A, A/I, A/I) est nul. 
Il est possible de généraliser ce résultat en prenant soin d'utiliser les groupes de cohomo­
logie Hn. 

THéORèME 1.6. — Soient un anneau A et un idéal I. Alors les trois conditions suivantes 
sont équivalentes : 

1. le A/I-module I/I2 est projectif et la A/I-algèbre graduée Gr (A) est isomorphe 
à l'algèbre symétrique du A/I-module I/I2, 

2. le groupe H2 (A, A/I, W) est nul pour tout A/I-module W, 
3. le groupe Hn (A, A/I, W) est nul pour tout n ^ 1 et pour tout A/I-module W. 

La démonstration utilise les deux propriétés fondamentales * et ** décrites dans 
l'introduction et aussi l'égalité suivante 

H1 (A, A/Ik, W) s UomAÌI(I
k/Ik+1, W). 

En fait toute la démonstration est basée sur un diagramme commutatif 

B -• B/J 
i i avec A (g) BB/J s A/I 
A -> A/I 

où l'anneau B et l'idéal J sont suffisamment simples pour que la cohomologie de la 
R-algèbre B/J soit triviale. A vrai dire le procédé fonctionne parfaitement seulement 
sous certaines conditions : par exemple A local noethérien ou encore J nilpotent. 
On est amené à remplacer l'anneau A et l'idéal J par la famille des anneaux A/Ik et 
des idéaux nilpotents I/Ik. Comme conséquence il faut remplacer le groupe 
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Hn (A, A/I, W) par l'ensemble des groupes H" (A/Ik, A/I, W). Une démonstration 
complète se trouve dans [2], pages 212-229. 

COROLLAIRE 1.7. — Soit une algèbre topologique A sur un anneau topologique C. 
Supposons que la topologie de A est donnée par un idéal I et que la C-algèbre topologique 
discrète A/I est formellement lisse. Alors la C-algèbre topologique A est formellement 
lisse si et seulement si le A/I-module I/I2 est projectif et donne une algèbre symétrique 
qui est isomorphe à la A/I-algèbre graduée Gr (A). 

Il suffit de démontrer que l'hypothèse de lissité pour la C-algèbre A/I implique 
l'existence d'un isomorphisme 

Exalcotop C(A, W) ^ H2 (A, A/I, W). 

Pour une démonstration directe de ce corollaire on se reporte au corollaire 19.5.4 
de [4]. 

Il est possible de résumer les résultats précédents à l'aide d'une proposition dont la 
démonstration fait usage de la proposition 1.2, du théorème 1.5 et du théorème 1.6. 

PROPOSITION 1.8. — Soient un anneau A et un idéal I tels que le A/I-module I/I2 soit 
projectif. Alors les quatre conditions suivantes sont équivalentes: 

1. l'algèbre graduée Tor£ (A/I, A/I) est isomorphe à l'algèbre extérieure du A/I-
module Tori (A/I, A/I) ïê I/I2, 

2. l'algèbre graduée Gr (A) est isomorphe à l'algèbre symétrique du A/I-module I/I2 

et le A-module I possède une résolution d'Artin-Rees, 
3. le groupe H2 (A, A/I, A/I) est nul et le A-module I possède une résolution d'Artin-

Rees, 
4. le groupe Hn (A, A/I, W) est nul pour tout n ^ 1 et pour tout A/I-module W. 

2. Basses dimensions. 

Il a déjà été question de l'isomorphisme suivant qui, entre autre, permet d'identifier 
nos deuxièmes groupes d'homologie avec ceux de Lichtenbaum-Schlessinger [7] : 

H2 (A, A/I, W) s Tor^ {A/I, W)/To4 (A/I, A/I). Torf (A/I, W). 

On peut démontrer le résultat suivant qui en fait ne concerne que des algèbres et modu­
les gradués Tor. 

THéORèME 2.1. — Soient un anneau B et un idéal J, un anneau A avec un idéal I et 
un homomorphisme de B dans A qui envoie J dans I. Alors il existe une suite exacte 
naturelle 

H2(B,B/J,A/I) -> H2 (A, A/JA, A/I) -• Tor? (B/J9 A)/I Tor? (B/J9 A) -> 
H^B, B/J, A/I) -• H1 (A, A/JA, A/I) -> 0. 

Si A est un anneau local d'idéal maximal / et si x = (xl9.. .,xn) est un système 
minimal de générateurs d'un idéal K de l'anneau A, alors on peut choisir un anneau B 
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et un idéal J avec JA = K comme dans la démonstration du théorème 1.6 et la suite 
exacte ci-dessus donne un isomorphisme 

H2 (A, A/K, A/I) s H, (x, A)/IH1 (x, A) 

où H1 (x, A) désigne le premier groupe d'homologie de Koszul pour l'ensemble x 
d'éléments de A et pour le ^4-module A. Cet isomorphisme démontre de manière 
immédiate le cas particulier du théorème 1.6 dû à S. Eilenberg et mentionné ci-dessus. 

COROLLAIRE 2.2. — Soient un anneau B, local et noethérien, d'idéal maximal J, un 
anneau A, local et noethérien, d'idéal maximal I et un homomorphisme de B dans A qui 
envoie J dans I. On munit B de la topologie J-adique, B/J de la topologie discrète, A de la 
topologie I-adique et Aj JA de la topologie I/JA-adique. Alors la B-algèbre A est formel­
lement lisse si et seulement si d'une part la B/J-algèbre A/JA est formellement lisse et 
d'autre part le B-module A est plat. 

Il s'agit du théorème 19.7.1 de [4]. D'après le théorème 1.5 et l'égalité des fonc-
teurs H1 et Exalcom, on sait que la B-algèbre A (respectivement la B/J-algèbre A/JA) 
est formellement lisse si et seulement si le groupe H± (B, A, A/I) (respectivement le 
groupe H1 (B/J, A/JA, A/I)) est nul. L'homomorphisme naturel de ce groupe-là 
dans ce groupe-ci est un épimorphisme et même un isomorphisme si le B-module A 
est plat, d'après les propriétés * et * *. Il reste donc à démontrer que le B-module A 
est plat si la B-algèbre A et la B/J-algèbre A/JA sont formellement lisses. Si les grou­
pes H1 (B, A, A/I) et Ht (B/J, A/JA, A/I) sont nuls, alors l'homomorphisme naturel 
de Hn (B, B/J, A/I) dans Hn (A, A/JA, A/I) est une monomorphisme pour n = 1 
et un épimorphisme pour n = 2. D'après la suite exacte du théorème précédent le 
groupe Tor? (B/J, A) est donc nul. Le B-module A est idéalement séparé, il est donc 
plat d'après le critère de platitude. 

Sur un corps de caractéristique 0, une algèbre est formellement lisse si et seulement 
si elle est régulière. En caractéristique positive, on a le théorème 22.5.8 de [4] qui est 
un corollaire du résultat suivant. 

THéORèME 2.3. — Soit A une algèbre locale et noethérienne sur un corps K de carac­
téristique p. Alors il existe un isomorphisme naturel 

H, (K, A, R)®RTçz H2 (A ®KK^, T, T) 

où R désigne le corps résiduel de l'anneau local AetT celui de l'anneau local A ®KK1,P. 
Soit L une extension de degré fini du corps K, contenue dans le corps Klfp. Alors il existe 
un monomorphisme naturel 

H2 (A ®KL, S,S)®ST - H2 (A ®KK^P, T, T) 

où S désigne le corps résiduel de l'anneau local et noethérien A (g) KL. En outre la réunion 
des images des monomorphismes précédents est égale à H2 (A ® KKllp, T9 T) tout entier. 

On démontre la première partie du théorème à l'aide des propriétés * et ** et du 
diagramme commutatif suivant 

H2 (K^p, T, T) H, (K, A, T) > H, (K, T, T) 
ï ï ï 

H2 (A ®KK^P, T,T) -+ Ht (K^p, A ®KK^P, T) - Hx (K
1*, T, T). 
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Dans la démonstration de la deuxième partie du théorème on utilise le fait que les 
deuxièmes et troisièmes groupes d'homologie d'une extension de corps sont nuls. 
Dans la démonstration de la troisième partie du théorème on utilise le fait que l'homo-
logie des algèbres commute aux limites filtrantes. 

COROLLAIRE 2.4. — Soit A une algèbre locale et noethérienne sur un corps K de carac­
téristique p. On munit K de la topologie discrète et A de la topologie I-adique, I étant 
l'idéal maximal de l'anneau local A. Alors la K-algèbre topologique A est formellement 
lisse si et seulement si pour toute extension L de degré fini du corps K, contenue dans le 
corps K1,P, l'anneau local et noethérien A®KL est régulier. 

La X-algèbre A est formellement lisse si et seulement si Bx (K, A9 R) est nul et 
l'anneau A ® KL est régulier si et seulement si H2 (A (g) KL, S, S) est nul, d'après les 
théorèmes 1.5 et 1.6. 

PROPOSITION 2.5. — Soient deux corps K a M. Alors l'espace vectoriel Hn (K, M, M) 
est nul pour n différent de 0 et de 1. L'espace vectoriel H1 (K, M, M) est nul si et seulement 
si l'extension M/K est separable. Dans le cas d'une extension de type fini, son degré 
de transcendance est égal à la différence de Cartier 

rg HQ (K, M, M) - rg Ht (K, M, M). 

Lorsque l'extension M/K est monogène alors ou bien l'anneau M est le quotient 
d'une K-algèbre libre par un idéal principal (cas algébrique) ou bien l'anneau M est 
le corps des quotients d'une K-algèbre libre (cas transcendant). Cette remarque permet 
de démontrer les première et troisième parties de la proposition dans ce cas particulier. 
Le cas général est obtenu à l'aide de suites exactes * et de limites filtrantes. On démontre 
la deuxième partie de la proposition comme suit. D'après le théorème 2.3, le groupe 
l ïj (K, M, M) est nul si et seulement si chacun des anneaux locaux et noethériens 
M (g) KL est régulier. L'idéal maximal de M (g) KL est formé des éléments nilpotents. 
L'anneau M (g) KL est régulier si et seulement s'il s'agit d'un corps. Donc le groupe 
H^K, M, M) est nul si et seulement si M (g) KKl/p est un corps, ou encore d'après le 
critère de MacLane, si et seulement si l'extension M/K est separable. 

Le fait que le groupe H„ (K, M, M) est toujours nul pour n = 2 et est nul pour 
n = 1 si et seulement si l'extension est separable démontre le résultat de Gerstenhaber-
Knudson : la K-algèbre M est une algèbre commutative rigide si et seulement si l'exten­
sion est separable. 

Terminons par une généralisation du théorème 5.3 de [5]. On démontre de manière 
analogue une généralisation du théorème 5.2 de [5] : la condition de finitude semble 
nécessaire pour pouvoir passer de la lissité pour une topologie adique à la lissité pour 
une topologie discrète. 

PROPOSITION 2.6. — Soient deux corps K c M. Alors l'algèbre graduée 
Tor%®KM(M, M) est isomorphe à l'algèbre extérieure de l'espace vectoriel sur M des 
différentielles de Kaehler de la K-algèbre M si et seulement si l'extension M/K est 
separable. 

Pour la démonstration, on utilise les propositions 1.8 et 2.5 et les isomorphismes 
suivants 

Hn+1(M® KM, M, M) s H„ (M, M ® KM, M) « Hn (K, M, M). 
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On peut trouver dans les travaux [3] et [6] deux aspects de la théorie de l'homologie 
des anneaux commutatifs, deux aspects qui n'ont pas pu être traités dans ce résumé. 
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NON-ABELIAN FULL EMBEDDING: 

OUTLINE 

by MICHAEL BARR 

1. Introduction. 

If exactness is properly defined it is possible to formulate the theorems of Freyd-
Heron-Lubkin and Mitchell in the following way (see [Fr] and [Mi]). 

THEOREM (Freyd-Heron-Lubkin). — Let I be a small abelian category. Then 
there is an exact, isomorphism reflecting embedding X -• S, the category of sets. 

THEOREM (Mitchell). — Let X be a small abelian category. Then there is a monoid M 
and a full exact embedding X -• SM, the category of M-sets. 

The definition of exactness used here is as follows. 

DEFINITION. — Let X be a category with finite limits. A morphism / : X -* X' 
of X is called a regular epimorphism if the sequence X x X 4 X -+ X ' i s a coequa-
lizer diagram, where, of course, X x X is the kernel pair of / If U : X -• Y is a 
functor we say that U is exact if U preserves finite limits ( = projective limits) and regular 
epimorphisms. We call it reflexively exact if it preserves and reflects them. 

From this definition, such a functor X -* S lifts uniquely, when X is additive, 
through Ab, the category of abelian groups by virtue of preserving finite products. 
When X is abelian moreover, this definition of exactness translates to the usual defini­
tion of exactness of the lifted functor. Similar remarks apply to SM and AbM. Thus 
the usual formulations of these theorems are readily recovered. 

The point of this paper is to show that by a suitable reformulation it is possible 
to prove analogous results for categories which are not additive but which satisfy 
" exactness " type properties. As I am not entirely convinced that this is the most 
appropriate definition, I avoid elevating this to the status of a definition. 

We must define one more notion. An object $EX is called an empty object if 
it is initial and if any map to cj) is an isomorphism. 

2. Statement of the theorem. 

THEOREM. — Suppose the small category X has finite inverse limits and that the 
kernel pair of every map have a coequalizer. Then the following are equivalent. 

1. There is a monoid M and a full, faithful exact functor X -* SM. 
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2. There is a faithful reflexively exact functor X -> S. 
3. a) For any non-empty object X of X, the terminal morphism X -> 1 is a regu­

lar epi. 
b) In any pullback diagram 

/ regular epi implies / ' regular epi. 

A full embedding reflects isomorphisms and an exact functor reflects isomorphisms 
if and only if it is reflexively exact. From this remark, 1 => 2 and 2 => 3 are easy. 
Thus the main interest is 3 => 1. We will sketch the main argument here. The full 
paper will appear elsewhere. 

In unpublished work, M. Tierney has shown that an additive category is abelian 
if and only if it satisfies 3b together with the condition that every equivalence is effec­
tive. It is easy to see that 3a is automatic in the additive case so that this theorem 
is in fact a proper generalization of the above mentioned theorems. The example 
of torsion free abelian groups (in a small universe) shows that the generalization is 
proper. In addition it shows that in an additive-but-not-abelian category exactness 
may not coincide with the usual idea (of preserving all finite limits and colimits). 

3. Outline of proof. 

For convenience use the term diagram in X to mean a functor with codomain X. 
If D : I -> I w e will either say that D is a diagram or that (J, D) is a diagram. If 
(I, D) is a diagram and X e X, define (D, X) = colim (Di, X), the colimit taken over 
ieL If (I, D) and (J, E) are two diagrams then define (D, E) = lim (D9 Ej) the limit 
taken over je J. Explicitly, a map D -» E is represented by choosing a function 
a : objects J -> objects i together with a map fj : Daj -> Ej for each je J subject 
to the coherence condition required by lim and the equivalence relation entailed by 
colim. With this definition it is obvious how to compose representations of morphisms 
between diagrams and we can show that this gives a category Diag X. There is an 
obvious full embedding X -> Diag X in which X goes to the singleton diagram X. 
It is not hard to show that Diag X is precisely the opposite category to the functor 
category (X, S). However, for the purposes of this proof, it is much easier to deal 
directly with diagrams than with functors. 

At this point we must interpose a recent result of M. Tierney (unpublished). 

THEOREM. — If a category X has finite limits, if the kernel pair of any map have 
a coequalizer and if condition 3b of the main theorem is satisfied, then the regular epis 
and monos give a factorization system. 

The definition of a factorization system can be found, for example, in [Ba], 8.2. 
The implications of this result, among others, are that every map has such a facto­
rization, that a composite of regular epis is regular epi and that if fg is regular epi, 
so is / 
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Now we define a diagram (J, D) to be projective if 

P I . I is an inverse directed set. 
P2. For any / G J and any regular epi / : X -* Di there is a; < i such that D(i,j) = f. 

We define a diagram (7, D) to be acyclic if 

Al . 7 is an inverse directed set. 
A2. For any i < j in J, the interval [/, j] = { k \ i ^ k ^ j } is finite. 
A3. For any i < j in J, the natural map Di -• lim {Dk \ i < k ^ j } is a regular 

epimorphism. 

LEMMA. — Let (I, D) be projective, (J, E) acyclic. For any j 0 e J, any map D -> Ej0 

can be extended to a map / ) - > £ . 

For technical reasons AI will be replaced by 

Al ' . J is an inf semilattice. 

If (I, D) satisfies Al', A2 and A3 we call it strongly acyclic. 

It should be noted that these definitions are not isomorphism invariant. However 
in the argument below we will be dealing with the actual diagrams so this will not cause 
any problems. 

The following is due, almost without change, to Lubkin [Lu]. 

PROPOSITION. — Under the hypotheses of the main theorem, part 3, every diagram 
(7, D) in which I is an inverse directed set can be embedded in a projective diagram. 

By a careful analysis of Lubkin's argument, one can show. 

PROPOSITION. — Every strongly acyclic diagram can be embedded in a projective, 
strongly acyclic diagram. 

By applying the above diagram to the singleton diagram whose value is the terminal 
object we find a projective, acyclic diagram (J, D) in which every non-empty X e X 
appears at least once, since the terminal map X -+ 1 is a regular epi and hence by P2 
is represented. Since for any i < j the interval [i, j] is finite, there is a chain 

i = it < i2 < ... < ir = j 

such that there is no k between is and i s + 1 . Then A3 implies that Dis -> Dis+1 is 
a regular epi and since the class of regular epis is closed under composition, it follows 
that Di -+ Dj is regular epi. From this it will follow that (D, — ): X ->• S_ reflects 
regular epis. It obviously preserves finite limits which then implies that it reflects 
isomorphisms, is faithful and reflexively exact. Now we let U denote the obvious 
lifting of (D, — ) to SM, the category of right M sets where M is the monoid of endo-
morphisms of D. U is also a reflexively exact embedding. To show it is full it is 
required to show that is cp : (D, X) -> (D, Y) is a map with cp(gu) — cpg.u for any 
g: D -+ X, u: D -* D then there is some / : X -» Y with cpg =f .g. Let XeX 
and ieI be some vertex with Di = X. Let F be the diagram D, truncated above i. 
Then D ^ F since I is directed. Let d : F -+ X be the map represented by the identity 
on Fi. Let E be the diagram, defined on (J, i) by 

d°j 
Ej z* Fj -* X 

J V] J 
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is a kernel pair. Then is may be shown that E is acyclic and that 

E =£ F 4 X 

is a coequalizer diagram. The fact that E is acyclic implies that there are enough 
maps D -> E to separate maps from E. Now replace D by F and suppose 
cp : (F, X) -> (F, Y) is given with cp(g.u) = cpg.u for g: F -> X, u: F -> F. Now 
cpde(F, Y). If cpd.d°^cpd.d1 then there is some U: F -> E with cpd.d0.u^cpd.d1 .u. 
But cpd.d1.u = cp(d.d°.u) since d°.U : F -» F. But then cp(d.d°.u) = cp(d.d1.u) = cpd.d1.u 
for the same reason. Thus there is an / : X -> 7 with cpd =f .d. If ge(F , X) is 
an other map it factors, again using the projective/acyclic comparison lemma as 
g = d.u for some u: F -* F. But then cpg = cp(d.u) = cpd.u —f.d.u =f.g. 

ADDED NOTE. — The main theorem of this paper can be improved to the following. 

THEOREM. — Suppose the small category X has finite inverse limits and that the 
kernel pair of every map have a coequalizer. Then the following are equivalent: 

1. There is a small category M and a full, faithful exact functor X -> 5M . 
2. There is a small discrete category M and a faithful, reflexively exact functor 

X -» SM. 
3. In any pullback diagram 

/ regular epi implies / ' regular epi. 

Moreover the objects of M can be taken to be the set of non-empty subobjects of 
the terminal object. 

It is easily shown that 3a) of the original theorem is equivalent to the assertion 
that the terminal object has no proper non-empty subobjects. Just factor the ter­
minal map X -* 1 into a regular epi and a mono. Thus this theorem generalizes 
the original. 
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UTILISATION DES CATÉGORIES 

EN GÉOMÉTRIE ALGÉBRIQUE 

par JEAN GIRAUD 

En choisissant le titre de cette conférence, j'avais l'intention de montrer par des 
exemples comment les catégories fournissent un langage et, en même temps, une 
algèbre qui permettent de mettre de l'ordre dans des questions parfois fort touffues, 
de montrer aussi comment les applications que l'on a en vue servent de mentor au 
catégoricien, plus enclin qu'un autre, peut-être, aux digressions. Pour limiter les pre­
requisites, je me contenterai d'un exemple, déjà ancien, mais que l'on peut aborder 
(au § 3) en n'utilisant que la notion de champ sur un site (§ 1) ; au § 2, j'explique une 
construction permettant d'attacher un topos à un champ de groupoïdes et qui a son 
utilité pour l'étude des extensions de groupes (algébriques ou topologiques), mais 
je ne parlerai pas de ce dernier point. 

§ 1. — On rappelle qu'un champ sur un topos (ou, plus généralement un site) X est 
une catégorie fibrée p : C -> X satisfaisant à une condition supplémentaire qui 
exprime que les objets et les flèches se recollent. L'image directe de C par un morphisme 
de topos / : X -> Y est, par définition, le produit fibre C x XY, où Y est considéré 
comme une Z-catégorie grâce au foncteur image inverse / * : Y ->• X ; on la note f*(C). 
L'image inverse par / d'un champ D sur Y est un champ f*(D) sur X muni d'un mor­
phisme D -> f%f*(D) tel que, pour tout champ C sur X, le foncteur naturel 

Cartx(/*(Z)),C) -> Carty(D,/*(C)) 

soit une équivalence, où Cartx (A, B) désigne la catégorie des foncteurs cartésiens 
d'un X-champ A dans un autre B. En particulier, si S est un objet d'un topos X et si 
x:X\S -* X est le morphisme naturel, on peut prendre pour image inverse d'un 
X-champ C celui qui s'en déduit par le changement de base X| : X | S -> X, x\(T/S) = T; 
de plus, si q : G -> X | S est un champ sur X \ S, le composé x, ° q : G -* Z est encore 
un champ noté x,(G) et, pour tout Z-champ C, on a un isomorphisme 

Cartx(x,(G), C) « Cart^,s(G, x*(C)). 

THéORèME 1.1. — Soit C un champ de groupoïdes sur un topos X. Il existe un objet S 
de X et une gerbe G sur le topos induit X \ S tels que X\(G) soit isomorphe à C. 

Un champ de groupoïdes est un champ dont les fibres sont des groupoïdes ; on dit 
que c'est une gerbe s'il est localement équivalent au champ des torseurs (espaces princi­
paux homogènes) sous un faisceau de groupes. On prend pour S l'objet de X qui repré­
sente le faisceau associé au préfaisceau qui, à tout objet T de X, associe l'ensemble 
des classes à isomorphisme près d'objet de la fibre CT. On dit que S est le faisceau des 
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sous-gerbes maximales de C, car il est facile de vérifier qu'une section s e S(T) de S 
au-dessus d'un objet T de X s'interprète comme une sous-gerbe de la restriction de C 
à X | T qui est maximale en ce sens que toute sous-gerbe qui la contient lui est égale. 
On prend alors pour G la catégorie C elle-même, munie du foncteur q: G -> X \ S 
qui, à un objet c de C de projection T, associe la sous-gerbe maximale de C | T qui 
contient c, considérée comme un morphisme T -> S, c'est-à-dire un objet de X \ S. 
Le couple (C, q) est bien une gerbe G et l'on a p = x{ o q9 d'où la conclusion. L'intérêt 
de cette construction tient à ce qu'elle est fonctorielle par rapport au site. 

COROLLAIRE 1.2. — Soit encore f'.X' -> Xun morphisme de topos. L'image inverse O 
de C par f est un champ de groupoïdes, le faisceau S' des sous-gerbes maximales de O 
est l'image inverse de S et la gerbe G' sur X' \ S' attachées C est l'image inverse de G 
par le morphisme induit f\S:X'\S' -> X \ S. 

La démonstration repose sur l'étude du procédé général de construction de l'image 
inverse d'un champ. 

§ 2. — Puisque les topos forment une 2-catégorie, pour tout topos X, les Z-topos 
(topos munis d'un morphisme de topos f'.X' -> X) forment une 2-catégorie ; si X' 
et X" sont deux Z-topos, on notera MOTX (X', X") la catégorie des Z-mo/phismes 
de X' dans X". On a en fait une catégorie fibrée MORx(Z', X") sur X, dont la fibre 
en SeOb(X) est Morx,s (X' \ S', X" \ S"), où S' et 5" sont les images inverses de 5 
sur X' et X". D'après M. Hakim, cette catégorie fibrée est un champ, ce qui exprime que 
les morphismes de topos se recollent. 

THéORèME 2.1. — Soit p: C -> X un champ de groupoïdes sur un topos X. Il existe 
un X-topos %c(X) : BC(X) -> X et une section c de Vimage inverse de C par TC(X) tels 
que, pour tout X-topos f'.X' -> X, le foncteur 

(1) Mor* (Z', BC(X)) -> f*(Q(X'), m H m*(c), 

soit une équivalence de catégories. 

2.1.1. Le topos classifiant BC(X), aussi noté Bc, est donc défini par sa « propriété 
universelle », mais il n'est connu qu'à équivalence près, comme il arrive souvent dans 
ce genre de questions. Lorsque les fibres de C sont discrètes, C admet un scindage, 
donc est défini par un faisceau d'ensemble S, à savoir S(T) = Ob(CT), qui est d'ailleurs 
celui de (1.1). Dans ce cas, il est clair que le topos induit Z | S est un classifiant. Par 
ailleurs, si C est la gerbe des torseurs sous un groupe A de Z, on prend pour classifiant 
le topos BA(X) des objets de Z munis d'opérations à gauche de A, le morphisme 
zA(X) : BA(X) -> Z étant défini par son foncteur image inverse qui, à E e Ob(X), 
associe l'objet E1 obtenu en faisant opérer A trivialement. D'après une remarque de 
Grothendieck, le topos BA(X) jouit de la propriété universelle voulue : à un /*(G)-
torseur P sur un Z-topos / : Z' -> Z, on associe le Z-morphisme de topos 
coP: X' -> BG(X) dont le foncteur image inverse est cojS(E) = Pf*{G)f*(E). 

2.1.2. Indiquons maintenant comment le cas général se déduit des deux cas parti­
culiers précédents. On définit d'abord BC(X) en considérant la catégorie FL(X) des 
flèches de Z munie de son foncteur but : c'est un champ dont les fibres sont des topos 
et les foncteurs image inverse des morphismes de topos (en bref, un champ de topos). 
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On pose BQ(X) = Cart* (C, FL(X)). On vérifie que cette définition est en accord avec 
les précédentes lorsque C est à fibres discrètes ou bien est un champ de groupoïdes. 
Grâce à (1.1), on montre ensuite que l'on a une équivalence de catégories 
BC(X) « BG(X | S), avec les notations de (1.1). Pour voir que BC(X) est un topos, on 
peut donc supposer que C est une gerbe, il reste à trouver un procédé de localisation ; 
or il est clair que BC(X) est la fibre en l'objet final d'une Z-catégorie fibrée, laquelle est 
localement un champ de topos puisque C est localement équivalente à une gerbe de 
torseurs et que ce cas a été traité ; d'où la conclusion, car, jointe à une condition supplé­
mentaire que nous n'expliciterons pas, la condition d'être un champ de topos est de 
nature locale. On définit le morphisme TC(Z) par son foncteur image inverse, lequel 
associe, à un objet T de Z, le foncteur cartésien constant t : C -• FL(X)9 t(a) = p(a) x T. 
Par le même procédé de réduction au cas d'une gerbe de torseurs, on vérifie que c'est 
bien un morphisme de topos. Il reste à prouver la propriété universelle. Par dévissage 
et localisation, on montre qu'elle est satisfaite pour les Z-topos de la forme Z | T9 

T e Ob(X). On montre ensuite que si / : Z ' -+ Z est un morphisme de topos et si 
C = f*(C)9 on a un carré commutatif à isomorphisme près 

BC,(X') -+ BC(X) 

ï ï 
X' -+ X 

et que celui-ci est 2-cartésien dans la 2-catégorie des Z-topos. 

2.2. La construction de BQ(X) à partir de Z fournit un (« vrai ») 2-foncteur de la 
2-catégorie des champs de groupoïdes dans celle des Z-topos, qui est pleinement 
fidèle, c'est-à-dire que l'on a la proposition suivante. 

PROPOSITION 2.2. — Soient C et C deux champs de groupoïdes sur un topos X. Le 
foncteur naturel 

(1) Cart*(C, C')° -+ Mor*(Bc(Z), BC,(X)) 

est une équivalence de catégories. 

Il nous faut expliquer le retournement des flèches. Un morphisme de champs 
m: C -• C induit par composition un foncteur B* : Bc, -• Bc qui est le foncteur 
image inverse d'un morphisme de topos Bm: Bc -• Bc,, et un morphisme de mor­
phismes de champs u : m -> m' induit, par composition un morphisme de fonc-
teurs Bu : R* -• B*,, d'où, d'après les conventions habituelles, un morphisme de 
morphismes de topos en sens inverse Bu : Bm, -> Bm. 

§ 3. — Nous allons maintenant montrer comment on peut, en utilisant seulement 
la notion d'image directe et inverse de champs, formuler et démontrer les variantes 
non commutatives du théorème de changement de base pour un morphisme propre 
en cohomologie étale ; nous indiquerons en gros la marche de la démonstration. 

THéORèME 3.1. — Soit un carré cartésien de schémas 

X £ Z 0 

n i/o 
y v Y0 
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tel que f soit propre et Y localement noethérien. Pour tout champ ind-fini C sur le site 
étale Zé t de Z, le morphisme naturel u : g*f*(C) -* fo%g'*(C) est une équivalence de 
catégories. 

On dit qu'un champ C est ind-fini (resp. constructible) si, pour tout objet c de C 
de projection S e Ob(Xét)9 le faisceau Auts(c) des S-automorphismes de c est ind-fini 
(resp. constructible) [1]. Qu'un morphisme de champs soit une équivalence, se voit 
fibre par fibre, la fibre en un point x : (U-ens) -> Y0ét du site étale Y0ét de Y0 étant l'image 
inverse de u par x. On réduit ainsi l'énoncé au suivant. 

PROPOSITION 3.2. — Si, de plus, Y est le spectre d'un anneau local hensélien et noethé­
rien et si Y0 est le spectre du corps résiduel, le foncteur restriction v : C(X) -> C0(X0) 
est une équivalence. 

Si Z, ou F, ou C, est un schéma, ou un faisceau, ou un champ sur Z, on note Z 0 , 
ou F 0 , ou C0 son image inverse sur Z 0 . Lorsque C est la gerbe des torseurs sous un 
faisceau de groupes F (resp. le champ à fibres discrètes attaché à un faisceau d'en­
sembles F), la conclusion de l'énoncé signifie que l'application H\X, F) -> Hl(XQ, F0) 
est bijective pour i ^ 1 (resp. i = 0). En particulier, la condition (A) ci-dessous n'est 
autre que le théorème de spécialisation du groupe fondamental; on la démontre 
(ainsi que (B)) en utilisant le théorème d'approximation de M. Artin, qui permet de 
supposer que Y est le spectre d'un anneau local complet, auquel cas le résultat est dû 
à Grothendieck [2]. Du point de vue de la géométrie algébrique, ceci est évidemment 
l'ingrédient essentiel de la démonstration. 

(A) Pour tout Z-schéma fini Z ' , le foncteur restriction C(Xr) -> C(X'0) est une 
équivalence de catégories. 

(B) Pour tout faisceau d'ensembles F sur Z, l'application F(X) -> F0(X0) est 
bijective. 

(C) Pour tout champ ind-fini C sur Z, le foncteur v: C(X) -> C0(X0) est une 
équivalence. 

On montre que v est toujours pleinement fidèle en appliquant (B) au faisceau des 
morphismes entre deux sections quelconques de C. Soit alors c0 e Ob(C0(X0)) ; la 
sous-gerbe de C0 engendrée par c0 s'interprète comme une section de l'image inverse 
sur Z 0 du faisceau des sous-gerbes maximales de C (1.2), elle provient donc d'après (B) 
d'une sous-gerbe de C, ce qui permet de supposer que C est une gerbe. Introduisons la 
catégorie fibrée sur SCH/X qui, à un Z-schéma z: Z -> Z associe la catégorie C(Z) 
des sections de l'image inverse z*(C) de C. Il se trouve que c'est un champ pour une 
topologie qui est plus fine que la topologie étale et pour laquelle sont couvrants les 
morphismes surjectifs qui sont de plus entiers, ou propres, ou plat et localement de 
présentation finie. De plus, on prouve que les conditions (A) et (B) sont stables si l'on 
remplace Z par un Z-schéma entier Z ' et Z 0 par X'0 = X' x XX0 (ou même par 
X\ = Z ' x XXX, où X1 est un fermé de Z qui contient Z0). L'on en déduit par descente 
que v est une équivalence s'il en est ainsi de C(Xr) -> C(X'0). Il est alors facile de voir 
que l'on peut supposer que Z est intègre et, par récurrence noethérienne, il suffit de 
prouver qu'il existe un fermé X^^ XQ tel que C(X) -> C(X^) soit une équivalence. 
On construit Z ' et X1 grace au lemme suivant. 

LEMME 3.3. — Soit X un schéma intègre, quasi-compact et quasi-séparé et soit C une 
gerbe constructible (resp. ind-finie) sur X. Il existe un morphisme entier s: X' -> Z, 
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un faisceau de groupes fini et constant (resp. ind-fini) F sur X', un ouvert dense U de X 
et un morphisme de gerbes r : s*(C) -> T9 où T est la gerbe des F-torseurs, tels que la 
restriction de r à s~x(U) soit une équivalence. 

On note K' une clôture separable du corps des fonctions K de Z et l'on prouve 
le lemme en utilisant le fait que le site zariskien de Z ' est équivalent à son site étale. 
Prenant pour Xx un fermé contenant Z 0 et tel que U => (Z — Z J , il reste à prouver 
que C(X') -r C'(X\) est une équivalence, où C = s*(C). Soit cx une section de C 
sur X\ et soit K la catégorie fibrée sur X'éi dont les objets de projection S sont les (c, i), 
où c G Ob(C's) et où i : (c | S J -> (c1 \ Sx) est un Sx-isomorphisme. C'est une gerbe 
car X[ est fermé dans Z ' , et pour que c^ provienne d'un c e Ob(C(X')), il faut et il suffit 
que K ait une section ; soit K' la gerbe construite de façon analogue en remplaçant C 
par T et Cj par dl = r(Ci). On a un morphisme naturel K -> K', qui est une équi­
valence comme on voit fibre par fibre : aux points de X\, ces fibres sont équivalentes 
à la catégorie finale, aux points de U, le morphisme r est une équivalence. Il suffit donc 
de prouver que d1 provient d'une section de T. Puisque nous avons vu que le couple 
(Z' , Zi) satisfait à la condition (A), cela est vrai lorsque C est constructible car alors F 
est constant. D'où la condition (C) pour un champ constructible, donc aussi, par passage 
à la limite pour la gerbe des torseurs sous un groupe ind-fini, d'où le cas général, en 
reprenant le même raisonnement et en invoquant cette fois la partie respée de (3.3). 

Par un raisonnement tout analogue mais plus simple, car on peut ici se contenter de 
localiser pour la topologie étale, on démontre les variantes non commutatives du 
théorème de changement de base lisse. On doit à Mme Raynaud l'énoncé suivant qui est 
la variante non commutative du théorème de finitude des images directes supérieures 
par un morphisme propre. 

THéORèME 3.4. — Soit f'.X -» S un morphisme propre de type fini, S étant locale­
ment noethérien et soit C un champ sur X. Si X et son faisceau des sous-gerbes maximales 
sont constructibles, il en est de même de f%(C) et de son faisceau des sous-gerbes maxi­
males. 
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EXTENSIONS OF STRUCTURES 

AND FULL EMBEDDINGS OF CATEGORIES 

by Z. HEDRLIN 

Introduction. 

The objects of study of mathematics are often sets with some additional informa­
tion. E. g. for a group the additional information is the binary operation, for a topo­
logical space the family of open sets, for a graph the set of its edges. Equivalences 
and mutual relations between objects are studied by means of a special class of mappings 
which is chosen according to the pourpose of the study. The choice of the mappings 
usually depends on the additional information about the objects. Frequently used 
choices are e. g. isomorphisms or homomorphisms for groups, continuous mappings, 
open mappings or homeomorphisms for topological spaces, isomorphisms or compa­
tible mappings for graphs. 

We shall study the following problem: given objects and their mappings by means 
of a choice, under what condition we can simplify the additional information and the 
choice of mappings preserving in the same time all information about the original 
mappings. The main result can be roughly described as follows : no matter how many 
and how complicated objects are given, for any choice of mappings which is closed 
under composition and contains all identity mappings, it is always possible to replace 
the additional information by means of a binary relation and the choice of mappings 
by means of the choice of compatibility with the relations, maintaining all the infor­
mation about the original mappings. 

Definitions and conventions. 

We shall work simultaneously in two set theories. In the usual Gödel-Bernays 
set theory with the axiom of choice for classes and with the assumption that there 
is no measurable cardinal as specified in [2]. The other, finite set theory, is again the 
Gödel-Bernays set theory with the axiom of choice for classes but with the negation 
of the axiom of infinity. Our results considered in the latter set theory give theorems 
in combinatorics and finite algebra. 

We use the following convention: by a list we mean any ordered w-touple, n being 
a non-zero ordinal. We shall assume that a list can be distinguished from any ordinary 
set, which can be achieved by proper indexing. 

Let U1, U2 be sets. By a mapping from JJ1 into U2 we mean a triple 
/ = (Ul9 U29 f >, where fc U± x U2 is a functional relation. Let 

f=<vl9u29fy, g = <u39u4igy 
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be mappings. Their composition g ° / is denned if and only if U2 = 173 and then 
gof= < ul9 t / 4 , g ° / > , where gof designates the composition of relations. The 
mapping g will be called an extension of / if and only if U3 => Ul9 U4 => U2, g =>/ 
and g(l/3 — U±) <= £/4 — l/2 . By an object O we mean a list on the first place of 
which there is a set U called the underlying set of 0, We shall write O — < U, ... >. 
The elements on the other places describe the additional information. 

Let Oi = < Ul9... >, 02 = < l / 2 , . . • > be objects. By a morphism m from 0X 

into 0 2 we mean a triple m = < Ol9 02, f >, where / is a mapping from U^ into U2. 
f will be called the mapping of m. Let mx = < 0 l f 0 2 , / X m2 = < ö 3 , 0 4 , £> 
be morphisms. Their composition m2 o wit will be defined if and only if 02 = 0 3 

and in this case m2oml = < 0 t , 0 4 , g°f >. The morphism m2 is called an extension 
of the morphism m1 if and only if g is an extension of / The identity morphism of 
an object O is the morphism < 0, 0, i >, where i is the identity mapping of the under­
lying set of 0. 

We shall use also the standard categorical language. 

Structures and extensions. 

By a structure we mean a class S, whose elements are only objects and morphisms, 
such that 

(i) with each morphism S contains its range and domain, 
(ii) with each object it contains its identity morphism, 

(iii) if ml9 m2e S, m2 ° mt is defined, then m2°m1e S. 

Observe that an object is never a morphism and the other way around, since lists 
and sets differ. Thus a structure S can be written as S = mS u °S, where mS contains 
only morphisms and °S only objects. 

Let S be a structure. mS is then a class on which the partial binary operation ° 
is defined. mS together with this partial binary operation will be designate by alg (S). 
Obviously, alg (S) is a category. If we associate with every morphism its mapping 
we get a faithfull functor from alg (S) into the category of sets. Thus, alg (S) is a concrete 
category. On the other hand, it is obvious that each concrete category is isomorphic 
with alg (S) for some structure S. 

Let S be a structure. A structure S^ is called a substructure of S if S± c S. Sx is 
called a full substructure of S if S1 c S and m = < 0 l s 02, f yeS,Ol3 02eS1 implies 
meS1. Obviously, if S1 is a full substructure of S then alg(St) is a full subcategory 
of alg (S). 

Examples of structures. — Alg (1, 1) : objects-all algebras with two unary operations, 
morphisms—all their homomorphisms. Tlh: objects—all topological spaces, mor­
phisms—all their local homeomorphisms. Gra: objects—all graphs, morphisms— 
all their compatible mappings (see [2]). 

Now, we are going to define a notion which will enable us to compare structures. 
Let Ol9 02, 0\, 02 be objets, M a set of morphisms from Ot into 02, M' a set of 
morphisms from 0\ into 02. M' is called an extension of M if each m'e M' is an exten­
sion of some me M, and for every me M there is exactly one m'e M' such that m' 
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is an extension of m. Let S and S" be structures. We say that S has an extension 
onto S' if there exists a class bijection F from °S onto °S" with the following property : 
for every objects Olt 02e°S, the set of all morphisms from F(Ot) into F(02) in S" 
is an extension of the set of all morphisms from 0 j into 0 2 in S. We say that S has 
an extension into S' if it has extension onto a full substructure of S". 

Obviously, if S has extension onto S" then the categories alg (S) and alg (S") are 
isomorphic. If S has extension into S' then the category alg (S) can be fully embedded 
into the category alg (S"). 

Main extension theorem. 

THEOREM. — Every structure has an extension into each of the structures Alg (1, 1), 
Tlh and Gra. 

COROLLARY. — Every concrete category can be fully embedded into the category 
of all algebras with two unary operations. 

The theorem has been proved combining a few lemmas by L. Kucera and by myself. 
In the lemmas we used results by P. Goralöik, J. de G root, J. R. Isbell, J. Lambek, 
A. Pultr, J. Sichler, V. Trnkovâ and P. Vopënka. The proof is rather long. Since it 
uses new structural techniques not much from the already published results can be 
used which, together with the absence of L. Kucera in the civil life, postponed the 
publishing of the proof. The complete proof was presented in full at Charles Uni­
versity in Prague and at Tulane University in New Orleans. 

The theorem suggests to define: a structure S is called a super-structure if every 
structure has an extension into S. 

In addition to the structures Alg (1, 1), Tlh and Gra some other structures are known 
to be super-structures. J. Sichler developed a deep theory of superstructures which 
are primitive classes of algebras. P. Hell, E. Mendelsohn and J. NeSetril investigate 
similar questions for various substructures of Gra and related structures. 

All the results so far mentioned are true both in the infinite and finite set theories. 
There are two results which hold only in the infinite set theory. The structure of 
semigroups and all their homomorphisms is a super-structure (see [1]; this paper can 
serve as an introduction to the ideas) and so is the structure of antireflexive partly 
ordered sets with all order preserving mappings (common result with R. H. McDowell). 

Our proof shows a natural hierarchy of structures which can serve as a tool for a 
classification of some branches of mathematics. 

Kucera theorem and a new approach to categories. 

Examples of P. Freyd and J. R. Isbell show that not every category is concrete. 
Moreover, P. Freyd proved that the often used category, whose objects are topological 
spaces and morphisms are classes of homotopically equivalent mappings is not con­
crete. The Kuöera theorem will show that every category can be obtained from alge-
braization of a structure in a similar way as the last category was obtained from the 
category of topological spaces and continuous mappings. 

i - ii 
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Let K, L be categories. L is called an m-factorization (m for morphisms), if there 
is a functor F from K onto L which is one-to-one on objects and maps K onto L. 

KUCERA THEOREM. — For every category K there exists a structure S such that K 
is an m-factorization of alg (S). 

The proof can be presented on a few pages and can be found in the already mimeo­
graphed part of my lecture notes at Tulane University. An independent proof is 
announced by P. Freyd together with an internal characterization of concrete cate­
gories by means of an Isbell condition. 

Combining the previous theorems we get: 

COROLLARY. — Every category is isomorphic with an m-factorization of the alge-
braization of a full substructure of each of the structures Alg (1, 1), Tlh, Gra. 

Thus, the Kucera theorem enables to study even non-concrete categories by means 
of structures. In fact, the corollary to the main extension theorem, which was our 
aim to prove for a few years, could be proved only by introduction of structural methods. 

Further results. 

In addition to the mentioned results many other results have been obtained along 
these lines. They concern full embeddings of categories, functor theory, universal 
algebra, topology, graph theory, theory of semigroups and some other questions. 
Since the theory is developing, some of the papers are available only in the form of 
preprints. The mimeographed list of these papers and preprints can be obtained upon 
request from Prague. 
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EXTENSIONS OF FUNCTORS ON GROUPS 

AND COEFFICIENTS IN A COHOMOLOGY THEORY 

by PETER H I L T O N 

1. Introduction. 

It was shown in [7] (see also [1,8]) how to use co-Moore spaces to put finitely-gene­
rated coefficients G into a cohomology theory h. The extension to arbitrary coeffi­
cients (modulo a difficulty with 2-torsion) was then effected using a direct limit process. 

If BF is a nice pointed category of topological spaces, and h is a cohomology theory 
on 3F, we say that h is good if the Hopf map y : S3 -• S2 induces 

0 = h(lx A y) : h(X A S2) -> h(X A S3) 

for all X in $F. If h is multiplicative it is easily seen that h is good if h(y) = 0 and 
this follows if h(S°) is 2-torsion-free. Let ^ 0 be the category of finitely-generated 
abelian groups, ^ the category of abelian groups if h is good; otherwise let ^ 0

 De 

the category of finitely-generated 2-torsion-free abelian groups, y± the category of 
2-torsion-free abelian groups. Then we have a functor Wh:@0 -> Coh, the category 
of cohomology theories on <F9 given by: 

(1.1) Wh(G) = h(-9G) G i n ^ 0 . 

Here h(X ; G) is obtained by " smashing " X with the co-Moore space LG and then 
applying h [7]. We extend Wh to tf^ by taking direct limits, the argument being justi­
fied in [6] and relying heavily on the universal coefficient theorem (Actually, only 
the second case was discussed in detail in [7], but the first case, when h is good, is handled 
in exactly the same way). 

Ulmer pointed out that the extension given in [7] is, in fact, the Kan extension; 
his argument (see the last section of [6]) rested on the additivity of Wh. This suggests 
the general question of when an extension of a functor from some category ^ 0 to a 
category # x , effected by a direct limit process, is, in fact, the Kan extension. We give 
an answer in Section 3, in the form of some sufficient conditions, but this answer requires 
us to pass from direct limits over directed sets to direct limits over filtering categories 
(see [2]; filtering categories were called " quasi-filtered " in [4, 5]). This extension 
of the theory of [6] is given in Section 2. In Section 4, we show that, to speak infor­
mally, a natural universal coefficient sequence always splits (here our arguments 
were suggested by a study of Mislin's work on the Kiinneth theorem [9]), while there 
is essentially only one non-split sequence which can arise as a (non-natural) universal 
coefficient sequence, namely: 

O -• Z2 -+ Z4 -• Z2 -• 0 
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Details of results in this section are to be found in [3]; details of those in Section 2 
and 3 will be published later. 

We remark that if h is not good we still get a " quasi-functor " (in a sense made precise 
and studied by Paul Kainen in his doctoral thesis) Wh from the category of finitely-
generated abelian groups to Coh and that this may be extended to countable abelian 
groups by restricting attention to special direct systems consisting of sequences of 
inclusions. We still see no way of extending the quasi-functor (1.1) to uncountable 
groups with 2-torsion (unless, of course, the cohomology theory h is good). 

2. On filtered families of groups and direct limits 

Our object in this section is to generalise the results of Sections 2 and 3 of [6] by 
allowing direct systems over filtering categories instead of merely over directed sets. 
Thus we define, for a given category S£, the category ifE as follows: 

— An object of SZ* is a pair (J, F)9 abbreviated to F9 where J is a filtering category 
(" quasi-filtered " in [4, 5]) and F : J -• i f is a functor. 

— A morphism of S£*, O : (I, F) -+ (J, G) is a pair Q> = (T,u) where T: I -> J 
is cofinal [2, 4] and u : F -> GT is a natural transformation. 

Evidently, ££z is a category under the law of composition : 

(2.1) (S,v)(T,u) = (ST,vToU) 

We will also need the category / of filtering categories and cofinal functors defined 
in the obvious way. We note that there is a canonical embedding of i f in if2 which 
associates with Xe\S£\ the pair (1, Fx) where Fx maps the object of 1 to X. This 
embedding is full and faithful. If S£ is cocomplete, there is a left adjoint L: <£* -* ££ 
to this embedding yielding direct limits of objects of ifE. We assume if cocomplete 
and remark that: 

(2.2) (T,u) = (T,lGT)(ll9u), 
L(T, 1) = 1 since T is cofinal. 

We say that T: I -> J in / is a fibre map if, given T(i) - Ì / in J, we have i -^ ï 
in J with T(cp) = \j/. 

THEOREM 2.3. — Given (T,u)\ F -> G in <£*, there is a canonical factorization 

such that: 

F-<™*G 

(a) (Tlü)(S,l) = (T,u) 
(b) (S, 1)(S, 1) = 1 
(c) T is a fibre map. 
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THEOREM 2.4. — Let 

I 

'-r K 

be a diagram in /with T a fibre map. By taking pull-backs in the category of sets, one 
obtains a diagram of categories and functors 

(2.5) 

Then: 

(a) 
(b) 
(c) 

M) 
THEOREM 2.6. — Let 

l r lr 

J-r+K 

A is filtering 
V is a fibre map 
S' is in/ 
(2.5) is a pull-back in / 

tt F) 

[(T,u) 

(J, G) -jg-j* (K, H) 

be a diagram in £ffz with T a fibre map. Using (2.5) construct: 

(A, E) - ^ a (I, F) 

(2.7) I'1"'"'' |(r,u) 

where for (i, j) with T(i) = S(j), E(i, j) is the pull-back in S£ of : 

F(i) 

I« 
GU) ^ + HT(i) = HS(j) 

Then (2.7) is a pull-back in £*. 

THEOREM 2.8. — Let % be the category of groups. Then the direct limit in &* com­
mutes with pull-backs of fibre-maps. 

We remark that Theorem 2.8 certainly holds for categories other than the category 
of groups. Our results apply to precisely those categories (including the category 
of sets) for which Theorem 2.8 holds. 

Now let 0O Ç ^ i ç ^ be a triple of categories in which ^ 0 , 0 j are full subcategories 
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of ^ , and the groups in # t are precisely the direct limits of filtered families of groups 
in ^o- Suppose further that, for any diagram: 

Go 
i 

G'0 -> G1 

with G0, G0 in ^ 0 and G1 in (31, the pull-back is in 0O . We then say that 0O has 
property P. Let L: ^ j -» *8Y be the direct limit functor, and let L: ^g -• ^ i De 

the canonical extension of L to the category of fractions with respect to L. Then 
we deduce from Theorems 2.3, 2.6 and 2.8 the following proposition and main 
theorem. 

PROPOSITION 2.9. — If 0O has property P, then L: &1 -> ^ is full and faithful 
and surjective on objects: 

THEOREM 2.10. — Let W0: &0 -> ê be a functor from <&Q to the cocomplete cate­
gory ê such that, for any O in $%, 

(2.11) lim WQ(0) is an equivalence if lim <D is an equivalence. 

Then, if &0 has property P, W0 extends to a unique functor W1\^1 -> ê such that'. 

(2.12) W1 lim = lim W$ on <3\ 

It is evident that condition (2.11) is necessary in order that W1 exist satisfying (2.12). 
We will be concerned in the next section with the question whether W1 is the Kan 
extension of W0. 

3. Relation to the Kan extension. 

We again consider ^ 0 ç <3± ç ^ as in Section 2, and construct the Kan extension 
ofW0:&0 -> ê to <3. Given G in ^ , we consider the category IG of &0-objects over G. 
Thus an object of IG is a homomorphism % : G0 -* G where G0 is in 0O

 ana* a morphism 
<P '• X -> z' m ^G is a commutative triangle 

^ / ° 
* \ /x ' 

G 

We define WG\ IG -* ê by WG(X) = W0(G0), WG(cp) = W0((p) and then the Kan 
extension W of W0 is given by 

(3.1) W(G) = limWG 

Notice that there is an underlying functor U : IG -> ^ 0 and that WG = W0U. 
Suppose now that IG is filtering. Then: 

W(G) = lim WG = lim W0U = lim W$(U). 
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Thus if ^ 0 has property P and (2.11) holds we may apply Theorem 2.10 and infer 
that: 

(3.2) WilimU =W(G) 

We have thus proved. 

THEOREM 3.3. — tó^0g^g^ be as in Section 2 with &0 having property P 
and assume that W0'. &0 -» ê satisfies (2.11). Suppose further that, for a given G 
in 9U 

(a) IG is filtering 
(b) G = lim 17 

Then WX(G) = W(G) where W is the Kan extension of W0 to &. 

COROLLARY 3.4, — Let<^{i^^1 ^^ be as in Section 2 with 0O having property P 
and assume that W0 : @0 -> $ satisfies (2.11). Suppose further that there exists (I, F) 
in @o such that lim F = G. Then I is embedded canonically in IG and we suppose 

the embedding cofinal We conclude that: 

WX(G) = W(G) 

where W is the Kan extension of W0 to <S. 
For the hypotheses imply (a) and (b) of Theorem 3.3 (see [2, 4]). 

APPLICATION. — Let h be a good cohomology theory in the sense of Section 1. Then 
we suppose given (see [1, 7, 8]) a procedure for putting finitely-generated abelian 
coefficients into the theory h. Thus we are given a functor W0 : @0 -> Cohg, where 0O 

is the category of finitely-generated abelian groups and Cohg is the category of good 
cohomology theories. Then ^ = M, the category of abelian groups, ^ 0

 n a s pro­
perty P, and one uses the universal coefficient theorem ([7] ; see also (4.1)) to verify (2.11). 
Thus W1 : stfS -» Cohg is defined by (2.12). However it is plain in this case that the 
hypotheses of Corollary 3.4 are satisfied for all G in sta, so that W1 is just the Kan 
extension of W0 to M. This argument is, of course, quite different from Ulmer's, 
which was based on the additivity of W0, of which no apparent use is made in Corol­
lary 3.4. 

If h is not a good theory, we may carry out the same argument with ^ 0 the category 
of finitely-generated 2-torsion-free abelian groups, W0 : &0 -> Coh9 the category 
of cohomology theories. Again we conclude that W1 is the Kan extension of WQ 

to the category of 2-torsion-free abelian groups. 

4. The splitting of universal coefficient sequences. 

We confine attention to the universal coefficient sequence in general cohomology 

(4.1) 0 -• hn(X) (g) G -» hn(X\ G) -> Tor (hn+1(X)9 G) -+ 0 

though our arguments apply more broadly (see [3] for details). Then (4.1) is natural 
in G on M if h is a good theory, and is natural in G on M{2)i the category of 2-torsion-
free abelian groups, for any theory h. If G is countable with 2-torsion and h is not 
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good, then (4.1) still subsists and is quasi-natural in the sense that we may associate 
with cp : G -> G' a set of homomorphisms 

cp#:h
n(X;G) -> hn(X;G') 

in a quasi-functorial way such that: 

0 - • hn(X) (g) G -» /i"(Z; G) - • Tor (/in+1(X), G) -> 0 

IlOç» L # Tor(l,p) 

0 - • fcn(X) ® G' -> /i"(Z; G') - • Tor (fcn+1(*), G') -> 0 
commutes. 

PROPOSITION 4 .2 . — J/ (4.1) is pure (i. e., hn(X) (g) G is pure in hn(X : G)) t/ien it sp/its 
provided the torsion subgroup of hn+1(X) or G has bounded exponent. 

THEOREM 4 .3 . — Whenever (4.1) is natural it is pure. 

Let us say that an abelian group A is 2-high if every element a e A such 2a = 0 can 
be halved. Thus, if A is finitely-generated, A is 2-high if and only if Z2 is not a summand. 

THEOREM 4.4. — The sequence (4.1) is pure provided at least one of hn(X), hn+1(X), 
G is 2-high. 

Thus, if we confine attention to finitely-generated groups, (4.1) splits unless h"(X) (g) G 
and Tor (hn+1(X)9 G) have Z2 summands yielding Z 4 in hn(X ; G) and this can only 
happen when hn(X)9 hn+1(X)9 G all have Z 2 summands. Such a situation does indeed 
arise with real K-theory or stable cohomotopy theory mod 2. 
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QUANTIFIERS AND SHEAVES 

by F. W. LAWVERE 

The unity of opposites in the title is essentially that between logic and geometry, 
and there are compelling reasons for maintaining that geometry is the leading aspect. 
At the same lime, in the present joint work with Myles Tierney there are important 
influences in the other direction: a Grothendieck " topology " appears most naturally 
as a modal operator, of the nature " it is locally the case that ", the usual logical opera­
tors such as V, 3, => have natural analogues which apply to families of geometrical 
objects rather than to propositional functions, and an important technique is to lift 
constructions first understood for " the " category S of abstract sets to an arbitrary 
topos. We first sum up the principal contradictions of the Grothendieck-Giraud-
Verdier theory of topos in terms of four or five adjoint functors, significantly generaliz­
ing the theory to free it of reliance on an external notion of infinite limit (in particular 
enabling one to claim that in a sense logic is a special case of geometry). The method 
thus developing is then applied to intrinsically define the concept of Boolean-valued 
model for S (BVM/S) and to prove the independence of the continuum hypothesis 
free of any use of transfinite induction. The second application of the method outlined 
here is an intrinsic geometric construction of the Chevalley-Hakim global spectrum 
of a ringed topos free of any choice of a " site of definition ". 

When the main contradictions of a thing have been found, the scientific procedure 
is to summarize them in slogans which one then constantly uses as an ideological 
weapon for the further development and transformation of the thing. Doing this 
for " set theory " requires taking account of the experience that the main pairs of oppos­
ing tendencies in mathematics take the form of adjoint functors, and frees us of the 
mathematically irrelevant traces (e) left behind by the process of accumulating (u) 
the power set (P) at each stage of a metaphysical " construction ". Further, experience 
with sheaves, permutation representations, algebraic spaces, etc., shows that a " set 
theory " for geometry should apply not only to abstract sets divorced from time, space, 
ring of definition, etc., but also to more general sets which do in fact develop along 
such parameters. For such sets, usually logic is " intuitionistic " (in its formal pro­
perties) usually the axiom of choice is false, and usually a set is not determined by its 
points defined over 1 only. 

1. By a topos we mean a category E which has finite limits and finite colimits, 
which is (a) cartesian closed and which (b) has a subobject classifier T. That is (a) 
on the one hand there is for each object A an internal horn functor ( )A right adjoint 
to cartesian product ( ) x A, and (b) on the other hand there is a single map true: 
1 -» T such that any monomorphism X' >+ X in E is the pullback of true along a 
unique characteristic map X -> T. This is the principal struggle in the internal 
theory of an arbitrary topos, and leads to very rapid development. The " set " T of 
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" truth-values " for E is shown to be a Heyting-algebra object which is complete in 
the sense that for any map f'.X -» Y in E there is a left adjoint ^ to the induced 
map Tf and also a right adjoint f 

\/:Tx -+ TY 

f 

to Tf. Usually T is not a Boolean-algebra; for example if E = all S-valued sheaves 
on a topological space, T is that sheaf whose sections over any LT is the set of open 
subsets of U9 while if E = Ç = CopS is set-valued functors on a small category Ç, 
then T(C) = all cribles of C. For any cp : X -> T9 we denote by { X/cp } the corres­
ponding subobject, correctly suggesting that to appropriate formulas of higher-order 
logic, a corresponding actual subobject exists. 

All of the usual exactness properties of a topos follow quickly, most of them from 
the fact that there is for a n y / : X -> Y a functor 

ft.E/X -> E/Y 
f 

right adjoint to pulling back families E -> Y over Y along / to families E x X indexed 

by X. This extends to the case where the fibers are being acted upon as follows: 
If C in Cat (E) is an internal category object-in E with object-of-objects X, we can 
consider all actions of C on arbitrary families E -• X of objects internally paramete­
rized by X, obtaining a new topos C = Cop E of internal E-valued presheaves on C. 
If / : C -> Ç'- is any internal functor, there is a right adjoint / # : Ç -• Ç' to the induced 
functor (as well as a left adjoint f0), which means that in a very useful sense, any topos 
(even if countable) is internally complete. 

Let us denote by ox the " support " functor which to any family E -> X assigns 
the caracteristic map of the image of the structure map. This then allows considera­
tion of particular direct contradictions between logic and geometry of a kind arising 
in proof theory and reminiscent of virtual vector bundles: 

(n) E/X j E/Y 

For every map / : X 
r 

aY 

V 
E(X9 T) i E(Y9 T) 

The above diagram commutes for permutation representations of a group, but not 
for the category 2 S of maps in sets. On the other hand, both in intuitionistic logic 
and algebraic geometry we have to consider the extent to which the internal algebraicly 
defined operator 3 actually means existence, which is essentially means whether 

(3) For every object E, the epi part splits in the following diagram 

E - # { l | f f l ( E ) } - 1 

Now the latter condition fails for G S, G a non-trivial group, but holds for PS_ where P 
is any well-ordered set (such as 2). Actually the conjunction of the two conditions (n) 
and (3) is equivalent to the condition that every epi splits, which geometrically we 
would call O-dimensionality and logically we would call the axiom of choice. If E 
is the category of equivalence classes of formulas in some higher theory, the condi-
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tion (3) is a Skolem condition, but the problem arises also if £ is of a geometrical nature 
since 3cp = true usually means actual existence only locally. 

Often in a topos we have to make use of a further adjoint reflecting the contradiction 
between primitive recursion data and the family of sequences which it defines (T-valued 
sequences being the case known as mathematical induction), for example in analyzing 
a coequalizer or forming the free group or free ring object generated by a given object: 

(co) E^ -> E is not an equivalence and has a left adjoint ( ) x co. Here E^ 
is the usual category of objects-together-with an-endomap. However we did not 
include this axiom in the definition of topos partly because of the useful generality 
and partly because it is automatically lifted to any topos E " defined over " another 
one E0 in which it is true. 

" Defined over " refers to a given geometrical morphism of topos, by which we mean 
a functor having an exact left adjoint. There are also logical morphisms of topos, 
which means a functor preserving up to isomorphism all the structure involved in 
the concept of topos. The two unite in local homeomorphism9 which is a geometrical 
morphism u whose left adjoint part w* is actually a logical morphism. 

THEOREM. — Any geometrical morphism « : £ ' - > E" of topos can be factored 
i n t ° E' -*-> ET 

E 

Where E is also a topos, where u'9 u" are geometrical morphisms of topos with the 
additional properties that (u'% is full and faithful E -> E" while the left adjoint 
(«')* : E -> E! reflects isomorphisms. Further, u" (hence any full and faithful geo­
metrical morphism) is entirely determined by a single map ju : T" -* T" in Ê" of the 
kind we call a Grothendieck " topology ", in fact as the ju-sheaves. 

Shifting to a topos denoted by E (rather than E") the conditions which such a modal 
operator; : T -> T should satisfy are that it is (a) idempotent and that it (b) commutes 
with true and with the conjunction map A : T x T -> T. Such induces functorially 
a closure operator on the set of subobjects of any object (not a Kuratowski closure ; 
for example in presheaves on a topological space the appropriate j assigns to any 
order ideal of open sets the principal ideal determined by its union). In order to show 
that j yields a full and faithful geometrical morphism Ej -> E of topos, we show that 
the usual condition of being a /sheaf is equivalent to having a diagonal /closed in 
the square (" separated ") and being /-closed in any separated object into which 
embedded. Then the associated sheaf functor is constructed without any appeal 
to infinite direct limits by using the following four observations about a Grothendieck 
" topology " (= modal operator; satisfying axioms (a) and (b): 1) The image 7} of; 
is a;'-sheaf. 2) Yx is a/sheaf if Y is. 3) For any X9 the/closure i n l x l of the diagonal 
is an equivalence relation. 4) If X -• Y is any mono of X into any sheaf Y9 then the 
/closure in Y of X is the associated sheaf of X. (The first step (prior to applying 
the four observations) is to consider the singleton map { } : X -> Tx). One then 
proves that the associated sheaf functor is exact by studying the morphisms which 
it inverts. 

An important example in which we use the above factorization theorem is (lifted 
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to an arbitrary base topos E instead of S) the Godement construction of sheaves on a 
topology basis by the method of resolving the contradiction between presheaves and 
(" discrete ") espace étalé. By a topology basis is meant a triplet consisting of an 
object X (of " points "), an object A (of " indices for the basis elements "), and a pairing 
X x A -> T which satisfies a directness condition so that the induced pair of adjoints 

lim 

E/X tzps AopE 

is a geometrical morphism of topos (Here by A we mean the poset whose " horn " 
order relation F =t A on" objects " in A is just thepullback along A -> Tx of the 
standard order relation on subobjects of X). Then the " image " topos is the usual 
category of sheaves, describable either using a Grothendieck " topology " in A?PE 
or a left exact cotriple (standard construction) in E/X. 

There is a standard Grothendieck topology in any topos, namely double negation, 
which is more appropriately put into words as " it is cofinally the case that ". The 
category u h i of double negation sheaves always satisfies the additional condition 
that the logic is classical: 

(I) 1 + 1 => T 

which is equivalent with the condition that T (e. g. T-]-, in E-,-,) is a Boolean algebra 
object, which again geometrically is equivalent with the condition that every mono 
X' >-> X is part of a (unique) direct sum diagram X' + (~| X') ^ X. 

For constructing logical morphisms of topos we need to use geometrical morphisms, 
but also another construction, a generalized ultraproduct, which does not give a geo­
metrical morphism in general and hence leads outside the realm of externally complete 
(i. e. defined over given £0) topos considered up to now in geometry. The data needed 
for the generalized ultraproduct is a pair consisting of a functor u^: E -> E0 between 
two topos, which may be a geometrical morphism but which in general is only required 
to preserve finite inverse limits, and of a homomorphism h'.uJJT) -> T0 of Hey ting 
algebra objects of E0. A new category Eh is then obtained from E by formally invert­
ing all monomorphisms X' >-> X in E whose " universal quantification belongs to the 
ultrafilter " in the sense that 

M"*Mn^))) = true0 

THEOREM. — Eh is a topos and E -> Eh a logical morphism. Eh is defined over E0 

in the sense of closed categories but usually not in the geometrical sense of topos. 

The above is needed, for example, to show that a BVM/S can always be collapsed 
to a two-valued model, allowing most work on independence results to take place in 
higher topos without actually choosing h and making the collapse. 

2. We can now make more precise what it is usually necessary to assume about 
" the " category S of abstract sets: it can be any topos satisfying conditions (n), (3), 
(co), (~I) above as well as the following " irreducibility of 1 " condition: 

(V) If cpi'.l -+ T and cpt V cp2 = true, 



QUANTIFIERS AND SHEAVES 333 

then 
cpl = true or cp2 = true. 

Now conditions (~~|) and (V) together imply that there are only two subobjects of 1, 
but not conversely as MopS, for M a monoid but not a group, shows. On the other 
hand (3) and (""|) together imply that the subobjects of 1 (which form a " complete " 
Boolean algebra then) also form a generating family for the category; a topos satisfy­
ing (3) and (~|) we call " Boolean ", and in such usually write 2 = T. By a Boolean-
valued model E of S (in symbols EeBVM/S) we mean then simply that £ is a Boolean 
topos defined over JS. We can then show that any BVM over S actually also satis­
fies (n) i. e. the axiom of choice, and indeed that the bi-category BVM/S_ is equivalent 
to the category CBAjS) of 5-complete Boolean algebra objects in S. 

Actually the BVM's can be constructed another way, namely as double negation 
sheaves P = (PS)-n in the category of 5-valued functors on some poset P in 5. In 
this case (as well as others) the terminology of Cohen is suggestive: if XeP, q> p 
in P, cp: X -> 2 and x is an element of X defined at p, say that " q forces cp(x) " iff 
cp(x/q) — true. Then in P, q forces cp(x) iff r forces cp(x) for a set of r cofinal beyond q. 

To refute the continuum hypothesis in some BVMP we also follow Cohen by choos­
ing a set I in S with 2*° < J in the sense that there is a mono but no epi. Then P is 
the poset (ordered by extension) of all partial maps co x J -> 2 with finite domain 
(definable as an object in any topos). Then in P 

œ < M*(2W) < 2W 

where u* is the " constant sheaf " functor left adjoint to the " global sections " functor 
w* : £ -*• ±L For the proof, one notes that P itself is essentially the definition of a 
map u*(I) >+ 2e0 on a covering, hence for sheaves there is such a map. The main 
point is then the 

LEMMA. — If P is any poset in 5 satisfying a suitable " countable chain condition ", 
X in S and Y in S with Y x co ^ Y, then 

Epi (X, Y) = 0 in S implies Epi (u*(X), u*(Y)) = 0 in P. 

Here Epi (X, Y) is an object defined in any topos by pulling back " image " along 
" true ". 

3. A particular sort of topology basis arises if an object A has the structure of a 
(multiplicative) commutative monoid and one is given a homomorphism u: A -> Tx 

into the monoid of subobjects of an object X, where multiplication is defined as conjunc­
tion (intersection). In this case we have moreover that the order-relation-object F =£ A 
determines a submonoid of the constant functor ./Tin AopE and that the "membership " 
relation P >-> X x A induced by the pairing determines a submonoid of the constant 
family À in E/X. We may then form fractions to obtain new commutative monoid 
objects (À)P in E/X and (Ä)F in AopE and in particular A (in the intermediate sheaf 
category) which is the reflection of (A)F and which is reflected to (À)P. 

Suppose now that A is actually a commutative ring in E. Because of the intui-
tionistic nature of logic (already for E = 2R) we are forced to define a prime x of A 
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to be, not an ideal, but a subobject of A satisfying rather four conditions of the form 

1) [ l ex ] = true 
2) [f.gex] =[fex]A\gex] 
3) [0 e x] = false 
4) [f+g^x]<[fex]y\gex] 

Note that 2) is an if-and-only-if condition and that the disjunction in the conclusion 
of the implication in 4) means essentially sup of two subobjects, which in a general 
topos may mean actual disjunction only locally. We further say that a ring is local iff 
the subobject of units is a prime. By a finite inverse limit, we get X >-> TA, " the 
subobject of TA consisting of all subobjects of A which are prime ". This gives a 
topology basis in E whose sheaves form the topos Spec (4) known as the global spec­
trum of E, A ; in Spec (A), ^îis a local ring object, and indeed the universal local ̂ 4-algebra 
in topos defined over E. Note that in the process, the membership relation is exactly 
transformed into its opposite. 

4. While the application of our method to algebraic geometry has only begun, 
other questions also immediately arise. Unpublished work of George Rousseau 
shows that the semantics often given for intuitionistic logic is simply ordinary (i. e. for 
abstract sets) semantics done in a suitable topos AS; a similar statement is true for 
Läuchli's proof-theoretic interpretation, as was recently shown by Anders Kock. 
But it would seem also possible to consider parameters designed to be applied to 
actual materialist time rather than just to stages in an imagined " construction ". 
In any topos satisfying (co) each definition of the real numbers yields a definite object, 
but it is not yet known what theorems of analysis can be proved about it. 
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DIFFERENTIAL HOMOLOGICAL ALGEBRA 

by JOHN C. MOORE 

§ 1. A commentary on differential homological algebra. 

Homological algebra since its first formal appearance in the book of H. Cartan 
and S. Eilenberg more than fifteen years ago has proved useful in many parts of mathe­
matics, and indeed influenced their development. The original homological algebra 
was principally concerned with the study of various so called Horn ( , ) and tensor 
product functors defined on categories of modules, and with the derived functor of 
these functors. There have been many different generalizations and extensions of 
the original work, including the development of relative homological algebra, exten­
sions to appropriate Abelian category contexts of the original formalism, and intro­
duction and study of the derived functors of certain non-additive functors. However, 
the application to topology of homological algebra lead to somewhat different deve­
lopments than those mentioned above, which may be generally included under the 
heading of differential homological algebra. 

Before the formal advent of homological algebra there was already considerable 
evidence that it was necessary to study certain functors associated with differential 
algebras (i. e. differential graded algebras). This was to be found principally in the 
work of Eilenberg and MacLane on the homology of K(n, n)\ Later the work of 
H. Cartan including the calculation of the homology of the K(%, rc)'s gave further 
evidence in this direction, and many indications as to how to formulate a theory of 
homological algebra which would contain most of the original work, and the work 
of Eilenberg and MacLane on K(%, n)'s together with his own work. This theory is 
differential homological algebra. 

Another development of the last fifteen years has been the gradual realization that 
in the applications of homological algebra to algebraic topology the notion of diffe­
rential coalgebra (differential graded coalgebra) would play almost as important a 
role as that of differential algebra. Though from a modern point of view the idea of 
coalgebra is natural and straightforward it seems not to have appeared formally until 
some of the work of P. Cartier of the middle '50's. 

The notions of differential coalgebra, comodule over a coalgebra, and differential 
comodule over a differential coalgebra came into being and started to receive conside­
rable study in the following years. 

Differential homological algebra is essentially the study of differential algebras 
and the derived functors of the tensor product and Horn ( , ) functors defined on 
appropriate categories of differential modules over differential algebras on the one 
hand, and the study of differential coalgebras and the derived functor of the cotensor 
product and Horn ( , ) functors defined on appropriate categories of differential 
comodules ovet differential coalgebras on the other hand. 
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While differential homological algebra may be defined abstractly this is essentially 
a unifying process which clears the head a bit. It is the standard natural cases which 
are of principal interest, as with ordinary homological algebra. 

The process of defining derived functors in differential homological algebra is 
quite similar to that in ordinary homological algebra. One usually starts by forming 
" projective " resolutions or " injective " resolutions as required by the case under 
study. However, there are almost always two differences from the most classical 
homological algebra. First the resolutions are usually taken vis a vis a projective 
class or an injective class, and hence are part of relative homological algebra. Second 
the process of assembling the resolutions using the functor under study is slightly 
more complicated than classically; due to the fact that the differential in the complex 
which one forms comes in part from the morphisms in the resolution and in part 
from the fact that everything in sight had a differential to start out with. One of the 
early examples of this phenomenon occurred in the development of hyperhomology 
by Cartan and Eilenberg. Indeed hyperhomology may be viewed as the primitive 
basic example of differential homological algebra. The Künneth spectral theorem 
of hyperhomology is typical of trie phenomena of differential homological algebra. 
This is in part the case because of the spectral sequence itself which relates certain 
classical derived functors with those of differential homological algebra which are 
sometimes called differential derived functors. 

§ 2. Some relations between differential algebras and differential coalgebras. 

Let R be a commutative ring, and let Diff alg (R) denote the full subcaterogy of the 
category of supplemented differential R-algebras generated by those objects A such 
that Aq = 0 for q < 0, and Aq is flat for all q. Let Diff coalg (R) denote the full sub­
category of the category of supplemented differential R-coalgebras generated by 
those objects C such that Cq — 0 for q < 0, C0 = R, and Cq is flat for all q. 

THEOREM. — There are functors 

B( ) : Diff alg (R) -» Diff coalg (R), 
and 

Q( ) : Diff coalg (R) -» Diff alg (R) 

and morphism of functors a : QB -> loiffaig )̂» 
and ß : lDiffcoaig(K) -* B& such that 

1) (a, ß) : Q H B is an adjoint pair of functors, 

2) for any object C of Diff coalg (R) 

the morphism Hß(Q : H(C) -> HBQ(C) is an isomorphism, and 

3) for any object A of Diff alg (R) such that AQ = R, 

the morphism HOL(A) : 4QB(A) -» H(A) is an isomorphism. 
The functor B( ) is called the classifying functor of the category Diff alg (R), and 

is aside from the emphasis on its coalgebra structure the reduced bar construction 
of Eilenberg and MacLane. The functor fì( ) is called the loop functor of the category 
Diff coalg (R), and is essentially the cobar construction of J. F. Adams. 
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For X and Y differential graded A-modules, if / : X -+ Y is a morphism of degree n 
of the underlying graded structures, then Df:X -> Y is the morphism of degree 
(n — 1) of the underlying graded structures, defined by Df = d(Y)f — (— l)nfd(X). 
Note / is a differential morphism of degree n if and only if Df = 0, DDf = 0, and two 
differential morphisms of degree n, f, g, are homotopic if and only if there exists 
h : X -> 7 a morphism of degree n + 1 of the underlying graded structures such 
that Dh =f- g. 

If C in an object of Diff coalg (R), A is an object of Diff alg (R), f:C -> A is a mor­
phism of degree p of the underlying graded structures, and g : C -> A is one of degree q, 
then fug:C -> yl is the morphism of degree p + g which is the composite 

C^lc®C^A®AmA 

where A(C) is the comultiplication of C and cj)(A) is the multiplication of A. A morphism 
of degree — 1 of the underlying graded structures, x: C -> A is a twisting morphism 
(cochain) if Dx = + x u x. The notion of twisting morphism was introduced by 
E. H. Brown and further studied by V. K. A. M. Guggenheim and others. Its impor­
tance lies in its relationship with (A, C) bundles. An (A, C) object X is a differential 
left >4-module right C-comodule such that the diagram 

\A®MX) 

* é(X)®C 

A®X®C^^ X 

MX) 

is commutative where c/)(X) determines the module structure of X and A(X) the como­
dule structure. Such an object is an (A, C) bundle if neglecting differentials 

1) X admits the structure of an extended A — module, 
2) X admits the structure of an extended C — comodule, 
3) the natural morphism R^X -+ C is an isomorphism, and 

A 

4) the natural morphism A -> Z [ ] i ? is an isomorphism. 
c 

Any twisting morphism x : C -» A determines an (A, C) bundle and any (A, C) bundle 
is isomorphic with one determined by a twisting morphism. 

Given any object A of Diff alg (JR), there is an (A, B(A)) bundle W(A) determined 
by a twisting morphism xA : B(A) -* A such that H(W(A)) = R. This universal 
bundle is essentially the acyclic bar construction of Cartan. If C is any object of Diff 
coalg (R), and X is any (A, C) bundle, then there is a morphism / : C -» B(A) in 
Diff coalg (R) such that the (A, C) bundle X is isomorphic with that determined by 
the twisting morphism xAf: C -* A. 

Given any connected DGR-module X (i. e. such that Xq = 0 for q <L 0) there is 
associated with X a connected differential coalgebra T(X) and a morphism of DGR-
modules a(Z) : T(X) -> X such that if C is a connected differential coalgebras and 
g : C -> X a morphism of DGR-modules, then there is a unique morphism of diffe­
rential coalgebras g: C -• T(X) such that a(X)g = g, i. e. X -«• T(X) is an adjoint 
functor. Further if Xq is flat for all q, then so is T(X)q. 

If A is an object of Diff alg (R) with augmentation ideal 1(A), and y : s(I(A)) -> 1(A) 
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is the canonical isomorphism of degree — 1 of the suspension of 1(A) with 1(A), then 
there is a unique d" : T(sI(A)) -> T(sI(A)) which is a morphism of degree — 1 of the 
underlying graded structures and having the following properties: 

0 Dd" = 0, 
ii) d"d" = 0, 

iii) if 9 is the composite T(sI(A)) ^ S sI(A) -> 1(A) h A, then Od" = + 9 u 9, 
and 

iv) (d" ® l r + l r ® df,)A(T) = A(T)d,f. 

The classifying coalgebra of A, B(A), has the same underlying coalgebra structure as 
does T(sI(A)), its differential is the sum of the differential of T(sI(A)) and d", and 
xA : B(A) -• A is 9. 

Given any object C of Diff coalg (R), there is an (Q(C), Q bundle E(C) determined 
by a twisting morphism xc : C -> Q(C) such that H(E(C)) = Ä. This universal 
bundle has the property that if A is any object of Diff alg (K) and X is an (A, C) bundle, 
there is a morphism / : fì(C) -> 4 in Diff alg (R) such that the (A, C) bundle X is 
isomorphic with that determined by twisting morphism fxc: C -> A. 

The loop construction may be explicitly given in a manner dual to that sketched 
for the classifying construction. The flatness hypotheses are not necessary for part 1) 
of the theorem stated early in this paragraph or for the constructions indicated. How­
ever, they are needed for parts 2) and 3) of the theorem, and other homological pro­
perties. 

§ 3. Some relation between differential Lie algebras 
and commutative differential coalgebras. 

In this paragraph the ground ring will be assumed to be a field k of characteristics 
different from two. Let Diff coalg c(k) denote the full subcategory of Diff coalg (k), 
generated by those objects with commutative diagonal. Given an object C of Diff 
coalg c(k), there is a natural morphism of graded vector spaces xc : s~l(J(C)) -• Q(C) 
where J(C) is the augmentation coideal of C, and the sub Lie algebra of fì(C) generated 
by the image of xc is a differential sub Lie algebra of Q(C), where Q(C) is considered 
as a Lie algebra via [X,Y] = XY-(- l)rsYX for X e Q(C)r, Ye Q(C)S. Proceeding 
one obtains a functor L( ) : Diff coalg c(k) -» «£?(&), the category of differential Lie 
algebras overk. 

If X is an object of <£ (k), its universal enveloping algebra U(X) may be considered 
as an object of Diff alg (k). There is a natural diagram of graded vector spaces 
s(X) -• sIU(X) -• B(U(X)), and one lets C(X) be the largest sub coalgebra of B(U(X)) 
which is commutative, and has s(X) as its subspace of primitive elements. The coalge­
bra C(X) is a differential sub coalgebra of BU(X), and one has a functor 

C( ):S£(k) -+ Diff coalg c(k), 

special cases of which are classical. There are morphisms of functors a : LC -> l#{k) 

and ß: 1 Diffcoaig C(ft) -> CL such that (a, ß): L -\ C is an adjoint pair of functors. 

Given an object Y of £?(k), there is a twisting morphism xY: C(Y) -> U(Y) which 
is the composite C(Y) -• BU(Y) ^ U(Y). The (U(Y), (C(Y)) determined by this 
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twisting morphism is acyclic, and then the natural morphism HC(Y) -+ HBU(Y) 
is an isomorphism. Further this bundle admits additional structure so that it becomes 
a principal fibration in Diff coalg c(k) with base C(Y) and structural group U(Y). 

PARTIAL BIBLIOGRAPHY 

[1] J. F. ADAMS. — On the cobar construction, Proc. N. A. S., U. S. A., 42 (1956), pp. 409-412. 
[2] E. H. BROWN Jr. — Twisted tensor products I, Ann. of Math., 69 (1959), pp. 223-246. 
[3] H. CARTAN and S. EILENBERG. — Homological algebra, Princeton (1956). 
[4] Séminaire H. CARTAN, E. N. S., Paris (1954-1955). 
[5] Séminaire H. CARTAN, E. N. S., Paris (1959-1960). 
[6] S. EILENBERG and S. MACLANE. — On the groups H(n, n), I, Ann. of Math., 58 (1953), 

pp. 55-106. 
[7] — and J. C. MOORE. — Foundation of relative homological algebra, Memoirs A. M. S., 

55 (1965). 
[8] —. — Homology and fibrations I, Comm. Math. Helv., 40 (1966), pp. 199-236. 
[9] V. GUGENHEIM. — On the chain complex of a fibration (to appear). 

[10] S. MACLANE. — Homology, New York (1963). 
[11] J. C. MOORE and L. SMITH. — Hopf algebras and multiplicative fibrations I, Amer. J. 

Math., 90 (1968), pp. 752-780. 
[12] —. — Hopf algebras and multiplicative fibrations II, A mer. J. Math., 90 (1968), pp. 1113-

1150. 
[13] J. C. MOORE. — Some properties of the loop homology of commutative coalgebras (to 

appear). 
[14] D. QUILLEN. — Rational homotopy theory n, Ann. of Math., 90 (1969), pp. 205-295. 

Princeton University 
Department of Mathematics, 

Fine Hall, 
Princeton, New Jersey 08540 

(U. S. A. 





Actes, Congrès intern, math., 1970. Tome 1, p. 341 à 345. 

B3-GROUPES FINIS 

BLOCKS OF CHARACTERS 

by RICHARD BRAUER 

§ 1. Let G be a group of finite order g. Let p be a fixed prime number and take 
an algebraically closed field fì of characteristic p. We can write the group algebra fì[G] 
as a direct sum 

(1) Q[G] = 0 Zß 

of two-sided ideals B of Q[G] which themselves cannot be written non-trivially as 
direct sums of two-sided ideals. Equivalently, we can consider the algebra-homo-
morphisms coB of the class algebra (i. e. of the center Z(Q[G]) of fì[G]) of G over fì onto 
the field fì. These are in one-to-one correspondence with the ideals B in (1), if we 
require that coB maps the unit element of B non-trivially. 

We are concerned with the influence of the decomposition (1) on the linear repre­
sentations of G. For instance, if F is an irreducible representation of G in fì, we asso­
ciate F with the block B in (1), if the linear extension of F to a representation of fì[G] 
maps B non-trivially. If X is an irreducible complex representation of G, we asso­
ciate X with B, if the modular irreducible constituents F of X are associated with B. 
We then say that the character % of X belongs to the block B. 

I have studied these questions for a number of years, cf. [2] [3]. I wish to present 
here some newer developments. Since the theory is rather elaborate, it will be neces­
sary to remain somewhat vague. Our main interest is to obtain results which can 
be applied to a study of the complex irreducible characters of G. 

I may perhaps mention that it was recognized early in this work that especially 
strong results are available, if the prime p divides the order g with the exact exponent 1. 
For instance, such primes p occur for all known simple sporadic groups G, and for 
most of these, it is possible to obtain the characters of G assuming only the value of 
the order g and the simplicity of G. 

It seems therefore highly desirable to generalize these results to the case that an 
arbitrary power of p divides g. Unfortunately, the results are here far less precise. 
They are of importance, if we wish to study finite groups G with a given Sylow-p-sub-
group, especially for p = 2. 

§ 2. It will be necessary to describe briefly some back ground material. Each 
block B determines a class of p-subgroups D of G, the defect groups of B. If | D \ = pd, 
d is called the defect of B. If m ^ 0 is a rational integer, mp will denote the exact 
power of p dividing m. The degree #(1) of an irreducible character % in B is divisible 
by gp/p

d and we may set %(l)p = gpp
h~d with h ^ 0. Here, h is called the height of %. 

Since B contains characters of height 0, the defect d of B can be characterized in this 
manner. 



342 R. BRAUER B 3 

Consider a block b of a subgroup H of G with the defect group D0 in # . Assume 
that the centralizer CG(D0) of D0 in G is contained in JET. Then ò determines a unique 
block 5 of G which is denoted by B = bG. The relation between b and B is given by 

(2) coB(SK) = YJcob(SL). 
L 

Here coB is the algebra-homomorphism of Z(fì[G]) corresponding to B; cob has the same 
significance for b. Further, K is a conjugacy class of G and L ranges over the conju-
gacy classes of H contained in K. Finally, SK e fì[G] denotes the class sum of K, 
i. e. the sum of the elements of K; SL has the analogous significance. For fixed B9 

the set of all blocks b of H with bG = B is denoted by @l(H, B). The defect group D0 

of b then is contained in a suitable defect group of B. If an irreducible character 
\j/ e b is known, coft can be found, and (2) provides already some information concern­
ing the characters in B = bG. 

If B is again a block of G with the defect group D, there exist blocks b of DC(D) with 
fcG = J3. All these b are conjugate under the action of N(D) on DC(D). They all 
have the defect group D. Each b contains a unique canonical character 9 with the 
properties : 

(i) 9 is r̂zuzaZ on D9 i. e. the kernel of the corresponding representation of DC(D) 
contains D. Hence 9 can be considered as irreducible character of 

DC(D)/D ä C(D)/Z(D) 

or as an irreducible character of C(D) which is trivial on the center Z(D) of D. 

(ii) We have 
9(l)p = \C(D)/Z(D)\p. 

In other words, as character of C(D)/Z(D), 9 is the unique character of a block of defect 0. 
{iii) If M is the stabilizer of 9 in N(D) acting on DC(D) under conjugation, we have 

\M:DC(D)\p=l. 

Conversely, if 6 is an irreducible character of DC(D) satisfying conditions (i) and 
(ii) and if b is the block of DC(D) containing 9, then B = bG has a defect group contain­
ing D. The block B has the defect group D, if and only if (iii) holds. 

We see that we can characterize blocks by means of irreducible characters 9 of 
centralizers C(D) of p-subgroups D of G. If we apply this type of characterization 
not only to blocks B of G but also to blocks b of subgroups, we can describe the set 
m(H, B), cf. [3, I, 6]. 

§ 3. We state what appears to be a basic result on blocks. For a given p and d, 
the p-blocks of defect d for the category of all finite groups G are distributed into a 
finite number of types T. In order to avoid to become too technical, I shall not define 
precisely what is meant by a type of blocks but will only indicate the idea and describe 
some properties". 

First of all, all blocks B of a type T have the same defect group D considered as an 
abstract group. Moreover, we always have the same " fusion " of the elements of D 
in G. This is to say that the elements of this abstract group D are partitioned into 
subsets such that for each block B of type T, the defect group of B in the correspond-
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ing group G can be identified with the abstract group D in such a way that two elements 
of D are conjugate in G, if and only if they belong to the same subset. In particular, 
we can then find a set n of elements % of D which represent the conjugacy classes of G 
which meet D, and which is the same for all blocks of type T. 

Next, the number rK of members b of Bl(C(n), B) is the same for each % e W for all B 
of the type T. Moreover, these b can be taken in such an order bt, b2,..., brn that 
the number of modular irreducible representations in bj does not depend on B 
(j = 1, 2 , . . . , rJ. Finally, the arrangement can be chosen such that the decompo­
sition numbers as well for B as for the bj are the same for all B in question, provided 
that for each bj, a suitable " basic set " is chosen. 

It follows from this that, for all B of a given type, the number k(B) of irreducible 
characters % in B is the same. Likewise, the number 1(B) of modular irreducible cha­
racters in B is the same for all B of given type. 

Because of the finiteness of the number of types, it is clear that k(B) lies below a bound 
depending only on pd. It is not known if always k(B) < pd, but a weaker result has 
been obtained by W. Feit and the author by a different method. 

It can also be shown that the number k{0)(B) of irreducible characters of height 0 
is the same for all B of type T. If the degrees of these ki0)(B) characters are Xj, x 2 , . . . 
the value of the quotients xjxj (mod p) can be found. 

The really important properties of a block B of given type T appear, if we assume 
that we have additional information. Suppose for instance that, for each % e n 
with % 7̂  1, we know the irreducible characters of C(n). If we know how the conju­
gacy classes of C(n) are embedded in those of G, then we can find the values of all irre­
ducible characters / in 5 for all elements of G of order divisible by p. The known 
properties of group characters yield information concerning the remaining values 
of x. It will be clear how much this will mean for a discussion of the characters of G. 

There are further formulas available in the case p = 2 which express the group 
order g and which often lead to rather unexpected results. 

§ 4. If B is a block with the defect group D, the problem arises to determine its 
type. We assume that B is characterized by the character 9 of C(D) as described in § 2. 

The first step is to characterize the blocks b e @ïl(C(n), B) for each n e D. This can 
be done by the method of [3], cf. § 2. We require a certain amount of information 
concerning the centralizers of non-trivial p-subgroups of D and their characters. It 
suffices to take n in the system n . 

For the further discussion of the type of B, we have to use the known properties 
of characters, for instance, the orthogonality relations for decomposition numbers. 
This leaves us with a finite number of possibilities. Unfortunately, this number can 
be very large. 

The whole discussion is considerably simpler for a special class of blocks B which 
we call flat blocks. First of all, B has full defect, i. e. the defect group D is a Sylo w-p-sub-
group P of G. Here, PC(P) = P x V where F is a group of order prime to p. We 
may then consider 9 as an irreducible character of V. 

We say that B is flat, if for each p-subgroup g / 1 of G, we have a character \j/Q of 
C(Q) of degree 1 which is trivial on Z(Q) such that the following conditions are satisfied: 
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(0 If öo = Qa with tr e G, we have ^Qo = ^ . 

(ii) If ß j => Q => 1 are p-subgroups of G, then i/fQi is the restriction of \j/Q to C(g1). 

(«0 * F = Ö. 

In particular, 0(1) = 1. 

It can be shown that if a block B contains characters of degree 1, then B must be 
flat. In particular, the principal block B0 (i. e. the block containing the principal 
character of G) is flat. Here \j/Q is the principal character of C(Q). 

It can be seen that | VG'\ G' | blocks B of G contain characters of degree 1 and that 
each such B contains | G: VG' | such characters: thus, the number of flat blocks is 
at most | FG': G'\. Since the number of flat blocks can often be determined directly, 
we obtain upper bounds for | VG''. G' \. 

It is remarkable that there are cases where each flat block contains characters of 
degree 1. For instance, this is so, if p = 2 and if the Sylow 2-group of G is either 
quasi-dihedral or a wreathed 2-group, cf. [1]. The discussion of the type of B0 here 
shows that if G has no normal subgroup of order 2, B0 contains only one character 
of degree 1. Thus, VG' = G and we obtain a formula for | G : G'\. 

J. Alperin, D. Gorenstein and the author have recently studied finite groups with 
quasi-dihedral and wreathed Sylow 2-subgroups. In particular, they have determined 
all simple groups of this type [1]. The character theoretic part of this work is based 
on a study of the possible types of flat blocks. Also, the formula for | G: G' \ plays 
an important role as well as some results discussed below in § 5. 

§ 5. E; C. Dade [5] has determined the types of blocks with cyclic defect groups. 
This generalizes older results of the author for the case d = 1. This requires methods 
finer than the ones described above. Unfortunately, it has not been possible so far 
to find extensions of these methods to more general cases. 

Even in the case of abelian defect groups D, our information about the possible types 
of flat blocks seems rather incomplete, except when | D | is rather small. (It may be 
mentioned that for instance for | D | = 9, the results are sufficient to show that groups G 
of certain special orders g cannot be simple). 

We mention a result for blocks B with abelian defect groups D which improves results 
of [3]. If D has rank r, then the height h of any character % in 5 is less than r(r + l)/2. 
If p lies above a bound depending only on r, then h < r. 

This indicates that there are connections between the heights of the characters in 
blocks and the structure of D. It is not known whether or not characters of positive 
height occur in B, if and only if the defect group is non-abelian. 

The situation is somewhat more favorable, when p = 2. For instance, all types 
of blocks B with dihedral defect group D of order 2" ^ 4 can be determined. We 
mention that we have here k(B) = 2n~2 + 3, 1 < 1(B) < 3. In each case, we obtain 
formulas for the group order g, similar to the formulas which had been known pre­
viously for the case that the Sylow 2-subgroup P of G itself is dihedral and B is the 
principal 2-block of G. 

It seems certain that other 2-groups D can be studied successfully in a similar manner. 
Each result of this kind is of interest for an investigation of groups of even order. 
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THE SUBGROUP STRUCTURES 

OF THE EXCEPTIONAL SIMPLE GROUPS 

by J. H. CONWAY 

The exceptional simple groups are those simple groups which have not yet been 
fitted into natural infinite families. They comprise the 5 Mathieu groups (Mtl, Ml2, 
M2 2 , M2 3 , M24), 3 Janko groups (Jt = J, J2 = HJ9 J 3 = HJM), 3 Conway groups 
(C l s C2, C3), 3 Fischer groups (F22> F 2 3 , F24), and individual groups discovered 
by Higman and Sims (HS), McLaughlin (Mc), Suzuki (Sz), Held (HTH), as well as a 
putative group discovered by Lyons (Ly?). 

The relationships between these groups are not yet fully understood, although it 
is clear that there are many connexions. One informative approach is to investigate 
the subgroups of each of the groups above, and one purpose of this note is to record 
some of the progress made in this direction, mostly by the students of Professor 
D. Livingstone, of Birmingham University. 

Let M be a maximal proper subgroup of a non-abelian simple group G, and let N 
be a minimal normal subgroup of M. Then the normaliser of N in G is certainly not 
all of G, since G is simple, and so it must coincide with M, since it certainly contains M. 
On the other hand, JV is characteristically simple, and so a direct product of isomorphic 
simple groups. If these are cyclic p-groups Cp, N is an elementary abelian subgroup 
of G, and so may be supposed to be contained within a fixed Sylow p-subgroup P 
of G. So in this case it is sufficient to classify elementary abelian subgroups of P, 
find their normalisers in G, and check maximality. 

In the remaining case, N is a direct product of isomorphic copies of a non-abelian 
simple group S, say, and consideration of possible orders will often show that N = S. 
Here there is no general technique, but there are a number of restrictions on the order 
of S that can be deduced from the character table of G and the Sylow theory, and it 
might be possible to identify all possible subgroups of permitted orders. 

The programme has been completed for all the Mathieu groups, and for the groups J, 
HS, Me, C3 , and it would probably be fairly easy to add the groups J2 and J3 to this 
list. A certain amount is known about the geometric interpretations of the subgroups 
in some of these cases when G has a natural geometric representation. 

On the other hand, a certain amount of work has been done on the larger groups, 
although not in an exhaustive fashion. In Cx there are many naturally defined sub­
groups which arise in a geometric manner, and which have been partially classified 
by R. T. Curtis, they include the Mathieu groups, the other Conway groups, the Higman 
and Sims and McLaughlin groups, the Hall-Janko group J2, and a covering group of 
Suzuki's group. In F 2 4 ' Fischer has classified those subgroups generated by involu-
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tions of the defining class, and in the Lyons group, if it exists, there is a triple cover of 
McLaughlin's group, and probably a copy of the simple group G2(5). 

Character tables have been computed for all the groups except the two largest Fischer 
groups, in most cases by hand computation, and in many cases before the construction 
of the group. But for the larger groups machine computation is essential, thus for C0 

(the double cover of C±) the printed table measures 4 feet by 8, and required considerable 
calculations both by machine and by hand, the collaborators being M. J. T. Guy, 
J. G. Thompson and N. S. Patterson. It would be useful to have improved machine 
methods for calculating such tables, which are essential in any detailed investigation 
of a particular group. 

In addition to the cases where one group is known or believed to be a subquotient 
of another, there seems to be a curious relation between the groups F 2 4 and C0 on 
which I have commented elsewhere. I think that a complete explanation of this 
" twinning " phenomenon would probably shed light on most of the problems concerned 
with the reasons for the existence of these apparently isolated groups. 

Department of Mathematics, 
16 Mill Lane, 

Cambridge 
(Grande-Bretagne) 
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LOCAL AND GLOBAL PROPERTIES 

OF FINITE GROUPS 

by GEORGE GLAUBERMAN 

Let p be a prime and S be a Sylow p-subgroup of a finite group G. Suppose we are 
given information about the normalizers of several non-identity subgroups of S, 
perhaps all the non-identity subgroups of S, or perhaps a single characteristic subgroup 
of S. What does this tell us about the structure of G as a whole? 

We will discuss two special cases of this problem and one related result. Let Op(G) 
denote the largest normal p-subgroup of G and Op(G) denote the subgroup of G gene­
rated by the p'-elements of G. Define d(S) to be the maximum of the orders of the 
Abelian subgroups of S and define J(S) to be the Thompson subgroup of S, generated 
by the Abelian subgroups of order d(S). The characteristic subgroups Km(S) and 
Kœ(S) of S mentioned in Theorem 1 will be discussed below. We say that an element x 
of S is weakly closed in S with respect to G if the only element of S that is conjugate 
to x in G is x itself. Let D8, S4, and S5 denote the dihedral group of order eight and 
the symmetric groups of degree four and five. 

THEOREM 1 [5, II]. — Suppose p > 5. Let N be N^KJS)) or NG(Kœ(S)). Then 
G/Op(G) is isomorphic to N/Op(N). 

THEOREM 2 [7, II]. — Suppose \ S/Op(G) \ = p. Then there exists a characteristic 
subgroup K of S such that K :< G and such that the nilpotence class of S/K is at most 
three if p = 3 and at most two if p ^ 3. 

THEOREM 3 [4, II]. — Suppose p = 2, x e S n Z(NG(J(S))), and x is not weakly closed 
in S with respect to G. Then S contains a subgroup R that satisfies at least one of the 
following conditions : 

(a) R has index two in S, xeR, and x $ Z(NG(R))) ; 

(b) R is an elementary Abelian group of order 16 and NG(R)/CG(R) is isomorphic 
either to S5 or to an extension of an elementary Abelian group of order 9 by D8 ; 

(c) 02(CG(R)) has a dihedral or semi-dihedral Sylow 2-subgroup of order at least 8, 
and 02(CG(R)) n R = 1. 

The proof of Theorem 1 naturally depends on the definitions of K^S) and Kœ(S). 
They are obtained as " limits " of sequences of subgroups of S in the following way: 

For every finite p-group P and every subgroup Q of P, we define two subgroups 



350 G. GLAUBERMAN B 3 

K^P; Q) and K*(P; Q) of P. Our definitions are designed so that both subgroups 
contain Z(P) and 

if P 2 P1 => Q, 3 ß, then X t ( P i ; fiO s K*(P; Q) and K%Pi; ß j £ K*(P; Q). 

We then define 

K-i(P) = Pi 
Kt(P) = K#(P; Kf_i(P)) if i is even and i > 0; and 
Kt(P) = K*(P; K^^P)) if i is odd and i i> 1. 

Clearly, K-^P) 2 ^ ( P ) . By induction, Xf(P) 2 X£+2(P) for all odd i and 
Kf(P) ç K i+2(P) for all even i. We define Km(P) to be the set-theoretic union of the 
groups Ki(P)9 i even, and Kœ(P) to be the intersection of the groups K^P), i odd. Then 
both of these groups contain Z(P) and are therefore non-identity groups if P ^ 1. 
A short argument shows that if Q is a subgroup of P that contains K^P) and Kco(P), 
then KJP) = KJQ) and X°°(P) = X"(Q). 

Returning to our group G, we require some commutator notation to express the 
properties of Kœ(S) and Km(S). Let G' denote the commutator subgroup of G. Sup­
pose x e G. For every subgroup H of G, let [JÏ, x] be the subgroup of G generated 
by all the commutators h~1x~1hx as ft ranges over H. Let [if, x; 1] = [H, x] and 
[H, x; i + 1] = [[H, x; i], x] for i = 1, 2, 3 , . . . If x e S define the degree of x (rela­
tive to G) to be the smallest integer n such that [ff, x; n] ç X for every chief factor 
of H/K of G such that H <= Op(G). 

The main property of Kœ(S) and Km(S) used in the proof of Theorem 1 is the follow­
ing: 

(1.1) 1/ Km(S) dßGor K°°(5) dß G, then S contains an element x such that x $ Op(G) 
and x has degree at most four. 

To obtain (1.1), assume that no element of S satisfies the conclusion. Let T = Op(G). 
Let Q be a characteristic subgroup of T such that [T, Q] ç Z(Q) = CT(Q); the exis­
tence of Q was proved by Thompson ([8], p. 185). We prove (1.1) by showing that 
Q ç Kt(S) ç T for every non-negative integer i. By our remarks above, it follows 
that KJS) = Km(T) <3 G and K">(S) = K">(T) <j G. 

To apply (1.1), we use the following slight extension of some work of Feit [2], obtained 
independently by L. Scott and the author: 

(1.2) Let S* be the subgroup of S generated by the elements of degree less than p. 
Let T= Op(G). Then S* <3 S and T n G'= T n (iVG(5*))'. 

This result can be obtained by transfer techniques similar to those of Wielandt [14]. 

Given (1.1) and (1.2), the proof of Theorem 1 reduces to the proof of an earlier, 
similar theorem [5, I] which required p > 5. A theorem of Tate [11], [13] shows 
that it is sufficient to prove that G/S'Op(G) is isomorphic to N/S'Op(N). Let T = Op(G). 
By some basic work of Alperin and Gorenstein [1], we may assume that T # 1. By 
using induction on G/T, we see that it suffices to obtain that TnG'= Tn N'. Since 
p > 4, this follows from (1.1), (1.2), and induction. 

The proof of Theorem 1 suggests several possibilities for improvement. It would 
be interesting if (1.1) could be strengthened, perhaps by the use of different charac-
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teristic subgroups, to yield x of degree at most three. If one could obtain x of degree 
at most two, an analogue of Theorem 1 for p — 3 would follow. 

There are many other problems concerning local and global properties of groups 
that reduce to the case where Op(G) ^ 1 and it is desired that some characteristic 
subgroup of S be normal in G. If p is odd, CG(Op(G)) £ Op(G)9 and the special linear 
group SL(29 p) of degree two over GF(p) is not involved in G, then Z(J(S)) ^ G ([8], Theo­
rems 8.1.2 and 8.2.11). Although this result is false for p = 2 ([3], p. 1132-1133), 
it is an open question whether some other non-identity characteristic subgroup of S 
must be normal in G. Even if SL(29 p) is involved in G, result (1.1) suggests that 
when Op(G) is sufficiently " large " or complicated, then some non-identity characte­
ristic subgroup of S must be normal in G. Theorem 2 represents a small step in this 
direction. 

Theorem 2 is proved by considering various isomorphisms of subgroups of S. 
The main tool is a generalization of some results of Sims [10]: 

(2.1) [7, I] Let Q and R be subgroups of index p in a finite p-group P. Suppose cj) 
is an isomorphism of R onto Q. Let N(cj)) be the largest subgroup of R that is mapped 
onto itself by cj>. Then N(cj)) ^ P, and the nilpotence class of P/N(cj>) is at most two 
if p = 2 and at most three if p is odd. 

To apply (2.1), take an arbitrary automorphism a of S and an arbitrary Sylow 
p-subgroup S* of G. Let T = Op(G) and let f be the largest characteristic subgroup 
of S contained in T. Since Tcontains the Frattini subgroup of S9 S/f is an elementary 
Abelian group. Take he G such that h lies in the group generated by S and S* and 
/z-1S7i = S*. Let U be the inverse image of T under a. Define an isomorphism cj> 
of U onto T by 

cj)(x) = (xa)h, for all xeU. 

Take N(cp) as in (2.1). A short argument shows that N(cj)) ^ S* and hence that 
a maps N(cj>) onto itself. A more extensive investigation shows [7,1] that the nil­
potence class of S/N(cj)) is at most two unless p = 3. 

Let S = Sl9 S29 S39... and T = Tl9 T29 T 3 , . . . be the terms of the lower central 
series of S and T. Letting a and S* vary above, we define four sets of conditions, at 
least one of which must be satisfied by S and G. An examination of each of these 
cases yields the following: 

(2.2) [7, II] Assume the hypothesis of Theorem 2 and assume the above notation. 
Then S and G enjoy at least one of the following properties: 

(a) Z(S)^G; 
(b)J(S) = J(T); 

(c) St = Tt for all i > 4, and for i = 3 if p # 3; 

(d) f^G. 

Theorem 2 follows easily from (2.2) and induction. 

By using Theorem 2 and the method of proof of Thompson's factorization theo­
rem [12], we can prove the following corollary: 
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(2.3) Suppose H is a subgroup of G, p = 2, and P is a Sylow 2-subgroup of H. 
Assume that H/02(H) is a dihedral group, P Ç S, and P = NS(Q) for every non-identity 
normal subgroup of H contained in 02(H). Suppose P # S. Then \P\ < 24. 

Actually, (2.3) was obtained in an earlier result (Theorem 2 of [6]). This result 
also describes the structure of S if P ^ 1, based on some results of W. J. Wong [15]. 

Now let us consider the proof of Theorem 3. By a short argument, there exists 
a p-subgroup D of CG(x) such that xeD and x£Z(NG(D)). Replacing D by J(D) 
if necessary, we may assume that J(D) = D. Let P = NS(D). We choose D to be 
maximal with respect to a certain partial ordering (Theorem 6 of [4, I]). By the results 
of [4,1] and an additional argument, P is a Sylow 2-subgroup of NG(D) and P contains 
a subgroup T of index two that satisfies the following conditions: d(P) = d(T); xeT; 
x$Z(NG(T)); and P is a Sylow 2-subgroup of NG(T). 

Now we obtain condition (a) of Theorem 3 if P = S. Assume that P ^ S. Take 
T0^T maximal such that T0 ̂  H and NS(T0) => 17. We may assume that NS(T0) 
is a Sylow 2-subgroup of NG(T0). Of course, it is entirely possible that T0 = 1. 

At this point, it does not seem possible to stretch the methods of [4,1] any further, 
even in the case where T0 = 1. In fact, we were stuck at this point for several years. 
Here (2.3) seems to be necessary. From our above conditions, there exists a sub­
group H of NG(T) such that H 2 P, x £ Z(H), and H/T is dihedral. Replacing H 
by H/T0 and G by NG(T0)/T0 in (2.3), we see that | P/T0 \ < 24. We also obtain the 
structure of NS(T0)/T0, by the remark after (2.3). By an application of McLaughlin's 
Theorem [9] on transvections over GP(2) and by a transfer argument, we obtain condi­
tion (b) of Theorem 3 if x e T0 and condition (c) if x £ T0. 
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CENTRALIZERS OF INVOLUTIONS 

IN FINITE SIMPLE GROUPS 

by DANIEL GORENSTEIN 

It has been known for a long time that the structure of a finite simple group is inti­
mately connected with the structure of the centralizers of its involutions. An old 
result of Brauer and Fowler asserts, in fact, that there are at most a finite number 
of simple groups in which the centralizer of an involution has a given structure. A 
more specific, pioneering result of Brauer established that the groups PSL(3, q) with 
q = — l(mod 4) and the Mathieu group M u were the only simple groups in which 
the centralizer of an involution was isomorphic to a homomorphic image of GL(2, q) 
by a central subgroup of odd order. 

This last theorem was certainly one of the first of what has now become a major 
area of finite group theory, the characterization of the presently known simple groups 
in terms of the structure of the centralizers of their involutions. This work is develop­
ing at such a pace that it is not unreasonable to hope that within a very few years such 
characterizations will exist for all the known simple groups. We should mention 
that some of these investigations have led to the discovery of certain of the new sporadic 
simple groups. In fact, the first of these was discovered by Janko while studying 
groups in which the centralizer of an involution was isomorphic to the direct product 
of a group of order 2 and A5. 

In all these theorems one specifies to begin with the structure of the centralizer of 
one or more involutions of an abstract simple group G and then tries to prove that 
the structure of G (that is, its multiplication table) is essentially uniquely determined 
in terms of a set of generators and relations by the given conditions. On the other 
hand, in more general classification problems the objective of the analysis is, in contrast, 
the determination of the structure of these centralizers in the group under investiga­
tion. Once this is accomplished, the problem is thus reduced to precisely the kind 
of characterization theorem just described. 

For example, in the study of simple groups whose Sylow 2-subgroups are either 
quasi-dihedral or a wreath product of a cyclic group of order at least 4 by a group of 
order 2, which have recently been completely characterized by Alperin, Brauer, and 
myself, almost all of our effort was devoted to establishing that in such a group G 
the centralizer of an involution is necessarily isomorphic to a homomorphic image 
of either GL(2, q) or G U(2, q) for some odd q by a central subgroup of odd order. 
Using the above-mentioned result of Brauer together with other related characte­
rization theorems of Brauer, O'Nan, and Suzuki, we were able to conclude that G 
was isomorphic to one of the groups PSL(3, q), PSU(3, q), or M n . 

Even a cursory glance at the various general classification problems solved to date 
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will reveal the essential role played by the centralizers of involutions in each of the 
proofs. It is therefore natural to raise the following general question: 

What can one say about the centralizers of involutions in arbitrary finite simple 
groups? 

Put in this form, the question is actually too general and probably unattackable, 
for it omits an essential ingredient of each of the successfully completed general classi­
fication problems : namely, the role played by induction. For example, in the quasi-
dihedral and wreathed problem, our group G was by assumption a minimal counter­
example to the desired classification theorem. But then using induction together 
with the previously obtained classification of groups with dihedral Sylow 2-subgroups 
together with the solvability of groups of odd order, we were able to determine the 
general shape of every proper subgroup of G. Without such knowledge, it would 
have been impossible for us to have carried out the so-called local group-theoretic 
analysis that constitutes the non character-theoretic portion of the proof. More­
over, it is precisely by means of extensions of this type of local group-theoretic analysis 
that the attack on the general problem posed above is to be made. 

We see then that some hypotheses on the proper subgroups of G must be imposed 
if we are to expect to obtain any reasonable answers to our question. The most 
natural general condition is clearly the following: the composition factors of every 
proper subgroup of G are among the presently known simple groups. Indeed, in 
any specific general classification problem a minimal counterexample will always be 
a simple group of this type. 

Of course, in each particular argument only certain properties of the known simple 
groups will actually be used. It turns out, in fact, that only very few of what appear 
to be general properties of the presently known simple groups enter into the analysis. 
These properties can actually be systematically formalized and, moreover, it is impor­
tant to proceed formally since we want our results to remain valid, if at all possible, 
even if new simple groups are discovered in the future. 

It is not surprising that not every composition factor of every proper subgroup 
of our group G plays a role; in fact, only certain composition factors of the centralizers 
of the involutions of G are critical. To describe these, we introduce some termino­
logy. A quasisimple group is by definition a perfect central extension of a simple 
group and a semisimple group is any central product of quasisimple groups. Observe 
that any group H possesses a unique largest normal semisimple subgroup. As usual, 
0(H) denotes the unique largest normal subgroup of H of odd order, the so-called 
(2-regular) core of H. 

The key notion is that of L(G), which is a certain collection of quasisimple groups 
associated with the group G. A given quasisimple group L is in L(G) if and only 
if L is isomorphic to one of the quasisimple components of the largest normal semi-
simple subgroup of 

CG(x)/0(CG(x)) 

for some involution x of G. It is primarily properties of the elements of L(G) that 
are needed for our arguments. 

For a given group G, L(G) may, of course, be empty. Since each element of L(G) 
is nonsolvable, this will clearly be the case if the centralizer of every involution of G 
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is solvable. Actually L(G) is empty if and only if each such centralizer is 2-constrained. 
By definition, a group H is 2-constrained if CB(02(H)) ç 02(H), where H = H/0(H) 
and 02(H) denotes the largest normal 2-subgroup of H. 

What kind of results about the centralizers of involutions would one hope to esta­
blish? Obviously we would like to prove that these centralizers resemble those in 
the presently known simple groups, the closer, the better. Let us then briefly exa­
mine the centralizers of involutions in these groups. Apart from the alternating groups 
and the sporadic groups (and, of course, those of prime order), all the remaining known 
groups are of Lie type. Moreover, for a group L of the latter type, the centralizer 
of an involution r of L has sharply divergent form according as L is defined over a 
field of even or odd characteristic. This is natural since t is correspondingly a uni-
potent or semisimple element of L. 

In the even characteristic case, it appears that H = CL(t) is always 2-constrained 
and has a trivial core. In particular, the largest normal semisimple subgroup K 
of H is trivial. By contrast, in the odd characteristic case, it appears to be generally 
true that H/K is a small solvable group and that K has 1 or 2 components which are 
of Lie type of odd characteristic (except in certain degenerate cases in which the num­
ber of components is 0, 3, or 4). Thus in the odd case, K dominates the structure 
of H. The centralizers of involutions in the sporadic groups have structures similar 
to those in the groups of Lie type of even characteristic period. (In some instances, 
K is non-trivial, but in such cases K/Z(K) is isomorphic to a group of Lie type of even 
characteristic). In A„, the centralizers of involutions have features of those in groups 
of Lie type of both even and odd characteristic. 

I should like now to illustrate these considerations by describing two general results 
which pertain to the even and odd characteristic cases respectively. These results 
represent a joint effort with John Walter. 

We have seen above that 0(CL(t)) = 1 in the characteristic 2 case. Let us say 
that any quasisimple group L with this property is 1-balanced. In general, this pro­
perty is false if L is of Lie type of odd characteristic or isomorphic to A„ with n = 3 (mod 4), 
but holds for the remaining known simple groups. A second condition which we 
need to state our first result is called 2-generation. A quasisimple group L is said 
to be 2-generated if for any Sylow 2-subgroup R of L, we have 

L = < NL(Q) | Q ^ R, Q contains a noncyclic abelian subgroup >. 

(We have here simplified both these definitions slightly; actually it is necessary to 
impose the conditions on certain collections of groups which contain L as a normal 
subgroup). 

The so-called Bender groups PSL(2, 2"), Sz(2n)9 and PSU(39 2
n) and any of their 

central extensions by a group of order 2 are not 2-generated, as is easily checked, 
since in any of these groups a Sylow 2-subgroup is disjoint from its conjugates. Apart 
from the Bender groups, the only other known quasisimple groups that are not 2-gene­
rated are Janko's first group mentioned above and the perfect central extension Â9 

of A9 by a group of order 2. For brevity, we call any one of the groups on this list 
exceptional. 

Finally a group G is said to have 2-rank or normal 2-rank at least k if a Sylow 2-sub­
group of G possesses respectively an abelian or normal abelian subgroup of rank at 
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least k. In particular, G has 2-rank 1 if and only if G possesses no non-cyclic abelian 
2-subgroups and hence by a well-known result if and only if G has cyclic or genera­
lized quaternian Sylow 2-subgroups. 

We can now state our first result. 

THEOREM. — Let G be a simple group of normal 2-rank at least 3. If every element 
of L(G) is 1-balanced and either 2-generated or exceptional, then 0(CG(x)) = 1 for 
every involution x of G. 

Actually in this degree of generality, some technical additional assumptions must 
be made. However, the stated result does hold if L(G) is empty and hence if the centra­
lizer of every involution of G is 2-constrained. Likewise it holds if every element of 
L(G) is 2-generated. 

This result, although very powerful in certain situations, still leaves one, in general, 
a long way from pinning down the structure of the centralizers of the involutions in 
such a group G, which we may view as the general group of " characteristic 2 " type. 
The central problem in the classification of simple groups of characteristic 2 type (which 
we note includes all the presently known sporadic groups along with the groups of 
Lie type of characteristic 2) is the development of general methods which will enable 
one to restrict the structure of these centralizers much more sharply. A major por­
tion of Thompson's celebrated N-group paper (sections 8, 9, 13, 14, and 15) deals 
with a particular case of this problem. It will be important in this connection to deter­
mine how far his methods and results can be extended. 

In contrast, our results in the odd characteristic case are already quite definitive. 
We shall not attempt to state here the exact set of conditions which we impose on 
the elements of L(G), as some are fairly technical. Again they involve certain notions 
of balance and generation. They are embodied in the concepts of what we call a 
A-group and a weak A-group. The central point about a A-group or weak A-group G 
is that, in effect, we assume that the elements of L(G) are of known type with at least 
one of these elements (but not necessarily all) being a group of Lie type of odd charac­
teristic (and not isomorphic to one of even characteristic). The sole distinction bet­
ween a A-group and a weak A-group is that in the former case the groups An and Ân 

with n — 3 divisible by a high power of 2 are excluded from L(G). These particular 
groups require special treatment in our analysis, being the only known groups which 
do not have the property of what we call 3-balance. 

To state our principal result in the odd characteristic, we need one further notion. 
A group H is said to have standard form if H possesses a normal quasisimple subgroup L 
such that CH(L) has cyclic or generalized quaternion Sylow 2-subgrqups. L is called 
the standard component of H. 

Note that the possible structures of CH(L) are very restricted in this case and are 
completely known. Moreover, H/LCH(L) is isomorphic to a group of outer automor­
phisms of L. Hence the structure of H is essentially completely determined once the 
standard component L of H is specified. 

Our main result asserts 

THEOREM. — If G is either a simple A-group of normal 2-rank at least 13 or a simple 
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weak A-group of normal 2-rank at least 17, then the centralizer of some involution 
of G is in standard form. 

Our theorem actually asserts that the corresponding standard component satisfies 
conditions similar to those which hold in the groups of Lie type of odd characteristic. 
Thus, in effect, our result reduces the further study of such simple groups to the follow­
ing general problem: 

Determine all simple groups in which the centralizer of some involution is in stan­
dard form with standard component of Lie type of odd characteristic. 

This statement is simply a more precise formulation of the general question which 
we discussed at the beginning: characterize the simple groups in terms of the structure 
of the centralizers of their involutions. Indeed, apart from a few degenerate cases 
of low Lie rank, every group of Lie type of odd characteristic possesses an involution 
whose centralizer is in standard form. 

As indicated before, considerable progress has been made in this whole area and 
there is reasonable hope that the entire problem can be completely solved. If and 
when this is accomplished, our theorem could then be used as a basis for an inductive 
characterization of the groups of Lie type of odd characteristic. To complete such 
a characterization, it would be necessary, in addition, to determine all simple A-groups 
of normal 2-rank less than 13. Although some of our general arguments break down 
in such cases, there exist a number of special methods for handling the difficulties 
that arise. 

We note also that our result in the odd characteristic case gives further evidence 
that the sporadic simple groups are somehow more related to the groups of Lie type 
of even characteristic. 

We shall conclude now with a few remarks concerning the nature of the proof of 
the two stated theorems. Let S be a Sylow 2-subgroup of the group G satisfying the 
respective conditions. In each instance one proceeds by contradiction and the entire 
aim of the analysis is to demonstrate that the group 

< CG(x) | x ranging over the involutions of S > 

is a proper subgroup of G. 

Once this is established, the theorem in question follows immediately from a theorem 
of Bender. Indeed, the preceding assertion implies that G contains what is called 
a strongly embedded subgroup and Bender has completely classified all such groups. 
In particular, he has shown that PSL(2, 2"), Sz(2"), and PSU(39 2n) are the only simple 
groups which possess a strongly embedded subgroup. 

Thus the proof of both theorems comes down to what we may call " piecing toge­
ther " the centralizers of the involutions of S. This will explain why our analysis 
requires conditions primarily on the centralizers of involutions. Furthermore, the need 
for S to contain abelian subgroups of suitably high rank comes about from the fact 
that we must continually compare the centralizers of different involutions of S and 
some degree of freedom is required to carry this out effectively. 

The entire piecing together process is very general, most of it being almost formal 
in nature. In fact, I have come to think of the main steps in the argument as being 
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essentially " functorial ". Indeed, the proof rests ultimately on what I have previously 
termed a signalizer functor and the so-called signalizer functor theorem. 

If A is an elementary abelian 2-subgroup of the group G, we say that 9 is an A-signa-
lizer functor on G if for each involution a in A there is associated an ^-invariant sub­
group 9(CG(a)) of 0(CG(a)) which satisfies the compatibility condition 

9(CG(a)) n CG(b) ç= 9(CG(b)) 

for any pair of involutions a, b of A. 

The signalizer functor theorem asserts that if A has rank at least 3, then the subgroup 

< 9(CG(a)) | a ranging over the involutions of A > 

is of odd order. 

Since, in practice, G will be non-solvable, this result implies that the given subgroup 
is a proper subgroup of G. David Goldschmidt has recently given an improved 
version and much simpler proof of the signalizer functor theorem than the original 
one that appears in the Journal of Algebra. 

We note finally that under the assumptions of our first theorem, it turns out that 
9(CG(a)) = 0(CG(a)) defines an 4-signalizer functor on G. The aim of the proof is 
then to show that this 9 is, in fact, the trivial signalizer functor. From this, the desired 
conclusion follows easily. 

In summary, we have attempted to indicate that in simple groups whose proper 
subgroups have composition factors of known type and whose Sylow 2-subgroups 
are suitably large, general methods exist which enable one to determine, at least par­
tially, the structure of the centralizers of their involutions. 

Rutgers University 
Department of Mathematics, 

New Brunswick, 
New Jersey 08.903 

(U. S. A.) 
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A SURVEY OF SOME QUESTIONS AND RESULTS 

ABOUT RANK 3 PERMUTATION GROUPS 

by D. G. HIGMAN 

1. Rank 3 groups and stiongly regular graphs. 

We use throughout the notation of [5], to which we refer for the basic theory of 
finite rank 3 permutation groups G. The solvable primitive rank 3 permutation 
groups have been determined by Foulser [4] and, independently, by Dornhoff [2]. 
Since rank 3 groups of odd order are solvable we assume that G has even order. 
Then the graphs JA and JT associated with the non-trivial orbitals A and T of G are 
a complementary pair of strongly regular graphs, both of which are connected if and 
only if G is primitive. We call a strongly regular graph primitive if it and its comple­
ment are connected. A rank 3 graph is defined to be a strongly regular graph whose 
automorphism group has rank 3 on the vertices. 

The imprimitive rank 3 groups are certainly of interest, but our attention here is 
directed at the primitive ones. 

2. Simple rank 3 groups. 

Interest in rank 3 groups stems largely from the fact that many of the known finite 
simple groups have rank 3 representations, 3 being the minimal rank in many cases. 
The alternating groups of degree at least 5 and the classical groups of degree at least 4 
have parabolic representations of rank 3, as do the groups E2(q). At least 12 of the 
18 or 19 sporadic simple groups have rank 3 representations (the 5 Mathieu groups, 
the Hall-Janko group H J, the Higman-Sims group HS, the McLaughlin group Mc, 
and the 3 Fischer groups). A question which arises at once is 

QUESTION I. — What are the rank 3 subgroups of the known rank 3 groups? 

We mention the following results in this connection : 

(2.1) [8] The rank 3 subgroups of the symmetric group E„, n > 4, in its action on 
the 2-element subsets are precisely the 4-fold transitive groups, together with PTL2(8) 
in case n = 9. 

(2.2) [9] For q # 2, the rank 3 subgroups of PTLn(q), n ^ 4, in its action on the 
lines of the (n - l)-dimensional projective space P„_i(^) are precisely those contain­
ing PSLM 

In proving (2.2) we use Perrin's result [16] that for q ^ 2 and 3 < k < 1, 
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a subgroup of PTLn(q) transitive on the fc-dimensional linear varieties of Pn-i(q) 
contains PSLn(q). Perrin has proved the analogues of (2.2) for the symplectic and 
unitary groups acting on the absolute points, again under the assumption that q^2. 

3. The case k = I = 2p. 

From now on we assume that G is a rank 3 group of even order with parameter set 
<S> = (n9 k, l, k, p, r, s, f, g). A question which arises in connection with any transitive 
permutation group is: what is the rank of its normalizer in the symmetric group? 
In our present case an application of Clifford's theorem gives 

(3.1) If the normalizer of G is doubly.transitive, then 

(*) k = / = 2p. 

For any integer p9 (*) determines a parameter set satisfying the standard conditions. 
Solvable groups of this type of degree q exist for every prime power q = 1 (4), q > 1. 
Two results are 

(3.2) (J. J. Seidel, cf. [5]). If G satisfies (*), then n is a sum of two squares. 

(3.3) [10] If G satisfies (*) with p SL prime, then G is solvable. 

QUESTION II. — Are there non-solvable rank 3 groups satisfying (*)? 

4. Normal subgroups. 

Assume that G is primitive. There is a unique minimal normal subgroup M of G, 
which is elementary abelian if regular and simple if primitive. In contrast to the 
doubly transitive case it can happen that M is neither regular nor primitive, but the 
possibilities for this are severely limited. In fact 

(4.1) If G is primitive, M is not regular and N is a normal subgroup ^ 1 of G 
which is not primitive, then, for suitable choice of A, { a9 b } u (A(a) n A(b))9 (a, b) e A, 
is an imprimitive block for N of minimal length > 1 and is a clique. 

QUESTION III. — Is there a bound on the number of simple factors of M in case M 
is not regular? 

QUESTION IV. — Is there a bound on the rank of M in case M is not regular? 

As with doubly transitive groups there does not seem to be much information aside 
from the solvable case about 

QUESTION V. — What are the rank 3 groups with regular normal subgroups? 

Such groups arise in the theory of affine planes, since 

(4.2) (Kallaher [12], Liebler [13]). A finite affine plane admitting a group of 
collineations having rank 3 on the points is a translation plane. 
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5. Local to global. 

The first general question here is to obtain information about G form knowledge 
of Ga, the rank 3 extension problem being the case in which complete information 
about Ga is given and the question is that of the existence of G. Several sporadic 
simple groups were first constructed as solutions to this problem by first constructing 
a strongly regular graph, namely HS9 M

c, Sz, and the three Fischer groups [7,14, 20, 3]. 

We list some examples of results obtained for primitive G from information about 
the constituents of Ga. We easily see that if Ga \ A(a) and Ga | T(a) are both doubly 
transitive, then n = 5. 

(5.1) [6, 6'] If Ga | A(fl) is doubly transitive and p = 1, then either n = 5 and G is 
dihedral of order 10, n = 10 and G is isomorphic with one of A5 or 2 5 , or n = 50 
and G is isomorphic with U3(5) or U3(5) with the field automorphism adjoined. 

(5.2) (M. Smith [19]. If Ga \ A(a) is doubly transitive and Ga \ T(a) has rank 3, 

and if p > 2, then there exists an odd integer s > 3 such that (i) p = -(s2 — 1), 
1 1 

k = - ( s 3 + 3s2 - 5s + 1) and n = — (s - l)2(s + 5)2, (ii) if s = 3, then G is a split 
8 16 

extension of an elementary abelian group of order 16 by As or 2 5 , (iii) if s = 5, then 
G is isomorphic with HS or its automorphism group, and (iv) s = 1 is impossible. 

(5.1) and (5.2) are proved under weaker assumptions than stated here, and we have 
not given the full conclusion of Smith's result. (5.1) can be obtained as a consequence 
of a purely graph theoretic theorem of Hoffman and Singleton (cf. [18]) except that 
the case n = 3250 has only been eliminated under the rank 3 assumption. 

(5.3) (S. Montague [15]). If G J A(a) is faithful and isomorphic with PSL2(q) 
in its action of degree q + 1, then q = 4 or 9. 

Under the assumption that / = k(k — l)/2, Montague gets the same conclusion 
for PGL2(q) and rules out PSU3(q), An, the Ree groups and the Suzuki groups Sz(q), 
in their usual doubly transitive actions. 

(5.4) (D. Perrin [16]). If Ga \ A(a) is Frobenius, then G is either solvable or iso­
morphic with A5 or Z5 . 

QUESTION VI. — What are the G with Ga \ A(a) and Ga \ T(a) both doubly transitive? 

6. Rank 3 graphs with given minimum eigenvalue. 

The rank 3 graphs with minimum eigenvalue s = — 2 have been determined by 
Seidel ([17]; see also [18, 5]). A corresponding determination for s = — 3 is much 
more difficult, including as it does the determination of the Steiner triple systems. 
On the other hand we should soon have a reliable answer to 

QUESTION VII. — What are the primitive rank 3 graphs with minimum eigenvalue — 3? 

For a given prime power q > 2 there are two infinite families of primitive rank 3 
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graphs with minimum eigenvalue s = — (q + 1), namely (1) the graph having as 
vertices the lines of Pn(q), n > 3, two being adjacent if they intersect, and (2) the sub­
graph of this graph having as vertices the fines not meeting a given coline. An impor­
tant result proved by Sims [18] is 

(6.1) For a fixed integer m > 2 there are at most finitely many non-isomorphic 
primitive rank 3 graphs with s = — m not belonging to one of the families (1) or (2). 

The proof, which depends on a general graph theoretic result of A. Hofmman, does 
not give a useful bound for the number of vertices in such graphs. 

7. Characterization by the subdegrees. 

Coincidences of parameter sets of non-isomorphic rank 3 graphs do occur, for 
example, the symplectic and orthogonal groups of degrees 2m and 2m + 1 respecti­
vely over ¥q, m > 2, have parabolic rank 3 representations with the same parameter 
sets. On the other hand, some rank 3 groups are already determined by the sub-
degrees, or, what is the same thing, by n and k. As an example of a result of this kind 

we state the following in which Qm = qm 1 + q™ 2 + . . . + 1 and QMf2 
QmQm-l 

(7.1) [8, 9] Let « = Qm>2 and k = qQ2Qm-2 with m > 4 and q > 1 integers. Then 

I. For q = 1, either (a) G is isomorphic with a 4-fold transitive subgroup of degree m 
in its action on the 2-element subsets, (b) m = 9 and G « PrL2(8), or (c) p = 6 and 
m = 9, 17, 27 or 51,p = l and m = 51, or p = 8 and m = 28, 36, 385, 903 or 8128. 

II. For q > 2, either (à) G is isomorphic with a subgroup of PYLm(q) in its action 
of the lines of Pm-i(q), (b) m = 4 or 5, or (c) m is odd, 7 ^ m < 17 and p ^ (q + l)2. 

The case p = 6, m = 9 is realized by the automorphism group of E2(2). 

QUESTION VIII. — Which of the remaining exceptional cases in (7.1) are realized? 

8. Partial geometries. 

The importance of partial geometries in the study of rank 3 permutation groups, 
and especially of Bose's results [1] giving sufficent conditions for a strongly regular 
graph to be the graph of a partial geometry, was demonstrated by Sims in his proof 
of (6.1), and they play a similar role in the proof of (7.1). We conclude with two 
questions about partial geometries which we are forced to ask on the basis of present 
evidence. 

QUESTION IX. — Does there exist a partial geometry (whose automorphism group 
has rank 3 on the points or on the lines) with parameters (R, K, T) such that 

1 < T < m i n (R- 1, K- 1)? 

The partial geometries with parameters (R, K, 1) are precisely the generalized 
4-gons in the sense of Tits. 
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' QUESTION X. — Is a rank 3 graph with p = — s necessarily the graph of a generalized 
4-gon? 

A result in this direction, with various applications, is given in [11]. 

REFERENCES 

FG : Theory of finite groups, A symposium, edited by R. Brauer and C. S. Sah, Benjamin, 
New York (1969). 

[1] R. C. BOSE. — Strongly regular graphs, partial geometries and partially balanced designs, 
Pac. J. Math., 13 (1963), pp. 389-419. 

[2] Larry DORNHOFF. — Primitive solvable rank 3 permutation groups, Yale University 
notes (1968). 

[3] B. FISCHER. — Finite groups generated by 3-transpositions, Inventiones Math, (to appear). 
[4] D. FOULSER. — Solvable primitive permutation groups of low rank, Trans. Amer. 

Math. Soc. 
[5] M. D. HESTENES and D. G. HIGMAN. — Rank 3 permutation groups and strongly regular 

graphs, Proceedings of the symposium on computers in number theory and algebra (March 
1970). 

[6] D. G. HIGMAN. — Finite permutation groups of rank 3, Math. Z., 86 (1964), pp. 145-156. 
[6'] —. — Primitive rank 3 groups with a prime subdegree, Math. Z., 91 (1966), pp. 70-86. 
[7] — and C. C. SIMS. — A simple groups of order 44, 352, 000, Math. Z., 105 (1968), 

pp. 110-113. 
[8] —. — Characterization of families of rank 3 permutation groups by the subdegrees I, 

Archiv der Mathematik, 21 (1970), pp. 151-156. 
[9] —. — Characterization of families of rank 3 permutation groups by the subdegrees II, 

Archiv der Mathematik. 
[10] —. — Solvability of a class of rank 3 permutation groups, Nagoya Math. J., vol. 41. 
[i 1] —. — Strongly regular graphs and partial geometries (in preparation). 
[12] M. J. KALLAHER. — On finite affine planes of rank 3, J. Alg., 13 (1969), pp. 544-553. 
[13] R. A. LIEBLER. — Finite affine planes of rank 3 are translative planes, Math. Z. 
[14] J. E. MCLAUGHLIN.— A simple group of order 898, 128, 000 (Fg, 109-111). 
[15] S. MONTAGUE. — On rank 3 groups with a multiply transitive constituent, J. Alg. (1970), 

pp. 506-522. 
[16] D. PERRIN. — To appear. 
[17] J. J. SEIDEL. — Strongly regular graphs with ( - 1, 1, 0) adjacency matrix having eigen­

value 3, Lin. alg. and its appi., 1 (1968), pp. 281-298. 
[18] C. C. SIMS. — On graphs with rank 3 automorphism groups, / . Comb. Theory. 
[19] M. SMITH. — On a class of rank three permutation groups, Math. Z. (to appear). 
[20] M. SUZUKI. — A simple group of order 448, 345, 497, 600 (FG, 113-119). 

University of Michigan 
Department of Mathematics, 
Ann Arbor, Michigan 48104 

(U. S. A.) 





Actes, Congrès intern, math., 1970. Tome 1, p. 367 à 369. 

A CLASS OF NON-SOLVABLE FINITE GROUPS 

by ZVONIMIR JANKO 

Let I b e a finite group. If P is a p-subgroup of X different from identity (p is a 
prime), then the normalizer NX(P) of P in X is called a p-local subgroup of X. 

A subgroup Y of X is called a local subgroup of X if Y is a p-local subgroup of X 
for some prime p. 

The purpose of this work is to determine the structure of every non-solvable finite 
group G which has the following property: 

(S) Each 2-local subgroup H of G is solvable and all odd order Sylow subgroups of H 
are cyclic. 

We remark that John G. Thompson has considered in Section 15 of the N-groups 
paper all non-solvable finite groups X with the property that every local subgroup 
of X is solvable and every 2-local subgroup of X has cyclic Sylow p-subgroups for 
all odd primes p. Therefore this work can be considered as a generalization of the 
Thompson's (unpublished) work. Also the occurrence of the Tits simple group of 
order 211 -33-52-13 which is an N-group makes the above problem very complicated. 
Here an N-group is a non-solvable finite group all of whose local subgroups are sol­
vable. 

The only known non abelian finite simple groups with the property (S) are: L2(r), 
r > 3, L3(3), M1X, l/3(3), Sz(q), U3(q) where q = 2" ^ 4 and the Tits simple group. 
We shall call these groups SK-groups, 

Let G be a non-abelian finite simple group of the smallest possible order which has 
the property (S) but which is not isomorphic to any SK-group. We have proved 
so far that the group G has the following properties: 

(1) Let T be a fixed Sylow 2-subgroup of G. Then T possesses a normal elementary 
abelian subgroup of order ;> 8. Also T does not normalize any non-identity odd order 
subgroup of G. Here we have used a joint result with J. G. Thompson and also some 
unpublished results of D. Gorenstein and J. H. Walter about centralizers of involu­
tions. 

(2) A fixed Sylow 2-subgroup T of G is contained in at least two distinct maximal 
2-local subgroups of G. This result in particular rules out the possibility that T is 
a maximal subgroup of G. Also the chances to determine the structure of T are 
therefore increased. 

(3) Let H be any 2-local subgroup of G. Then the maximal normal odd order sub­
group 0(H) of H is equal 1. This is an immediate consequence of (1) and a result of 
D. Gorenstein about simple groups of characteristic 2 type. 
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(4) The group G does not have a maximal 2-local subgroup M with the following 
properties: (i) Every normal abelian 2-subgroup of M is generated by at most two ele­
ments. (U) M possesses a non-cyclic normal abelian 2-subgroup A such that CG(a) Ç M 
for every involution a of A. The proof of this result is a straightforward adaptation 
of the corresponding result in Section 13 of the iV-groups paper of J. G. Thompson. 

(5) The group G does not have a maximal 2-local subgroup M such that the maximal 
normal 2-subgroup 02(M) of M is of symplectic type. Here a 2-group X is of symplectic 
type if X is non-cyclic and every characteristic abelian subgroup of X is cyclic. The 
proof of this result is also a straightforward adaptation of the proof of the correspond­
ing results in Section 13 of the JY-groups paper of J. G. Thompson. 

(6) Let T be a fixed Sylow 2-subgroup of G. Let Mt and M2 be two distinct maximal 
2-local subgroups of G which contain T. Then we have Mx r\ M2 = T. 

This difficult result is proved in the following way. Assume that the result (6) is 
false. Then it is shown at first that G possesses one and only one maximal 2-local 
subgroup M containing T such that the order of M is divisible by a prime p > 7. 
Also NG(T) ç M. Let N be a maximal 2-local subgroup of G containing T which 
is different from M. Then we have M n N = TD, where D # 1, D is a cyclic odd 
order subgroup and T is normal in TD. Let E be a Hall 2'-subgroup of M contain­
ing D and let F be a Hall 2'-subgroup of N containing D. Then it is shown that E 
is a Frobenius group with kernel E' and a complement D and F is cyclic. We have 
| F/D | = 3 or 5 or 15. Also D is a Hall subgroup of F. The following result is crucial. 
For every subgroup D0 of prime order p of D, D0 centralizes a four subgroup of T, 
CG(D0) is non-solvable and a Sylow p-subgroup of G is non-cyclic. By the methods 
of Section 13 of the JV-groups paper of J. G. Thompson it is shown that Çïx(Z(T)) 
has order < 4 and that T0 = Q^ZÇT)) is a normal subgroup of M. This last result 
is very strong and leads quickly to a contradiction. It is shown that D possesses a 
subgroup P of prime order p such that P centralizes T0. It follows that the order 
of D is in fact equal p and that p = 5 or, 7. Also T0 = < z > has order 2, M has no 
normal four subgroups and M = CG(z). We have that Tt = CT(D) is a Sylow 2-sub­
group of NG(D) = CG(D) and Tt is either a dihedral group of order 8 or Tx is a direct 
product of a group of order 2 and a dihedral group of order 8. If p = 5, then 
Q?CD) = D x L where L is isomorphic to A6, S5 or S6 and if p = 7, then CG(D) = DxL 
with L m L2(7). Finally, we also get that | F/D \ = 3. In all these results the mini­
mality of | G | is used several times. After that we show that NG(T) = M. There 
are normal elementary abelian 2-subgroups of M of order > 8. Let F be one of these 
of the smallest possible order. Then for every subgroup F0 of index 2 of F we show 
that CG(F0) ç M. After that a standard consideration of the weak closure of F 
in T yields a contradiction. 

(7) A Sylow 2-subgroup T of G is self-normalizing in G. In the proof of this result 
the minimality of | G | is used together with a result of C. Sims about primitive permu­
tation groups. 

(8) Let M be any maximal 2-local subgroup of G containing the fixed Sylow 2-subgroup T 
of G. Then T= TU where the subgroup U has order 3 or 5 or 15. This result is 
proved by using the methods of Section 13 of the N-groups paper of J. G. Thompson. 



A CLASS OF NON-SOLVABLE FINITE GROUPS 369 

As a direct consequence of this result we also get that every maximal 2-local subgroup 
of G has order 2ak where a > 0 and k = 3 or 5 or 15. 

As a conclusion we may say that the last result heavily restricts the structure of 
2-local subgroups of G and so it is hoped that the final contradiction will be reached 
showing that there is no counter-example G. This will then show that every non-
abelian finite simple group with the property (S) is an SK-group. 

It is also easily seen that G is an JV-group. 

In the future work the following characterization of the Tits simple group given 
by D. Parrott (unpublished) will be very useful. 

Let X be a finite simple group which possesses an involution z such that the centra­
lizer H of z in X has the following properties: 

(i) 02(H) has order 29 and class at least 3. 
(ii) H/02(H) is a Frobenius group of order 10 or 20. 
(iii) If P is a subgroup of order 5 of H, then the centralizer of P in 02(H) is contained 

in Z(02(H)). 

Then H/02(H) has order 20 and X is isomorphic to the Tits simple group. 
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CHARACTERIZATIONS 

OF SOME FINITE SIMPLE GROUPS 

by MICHIO SUZUKI 

There have been many works done on the problem of characterizing some of the 
finite simple groups by the structure of the centralizers of some elements of order two. 
In a recent paper [4], we gave such a characterization of the special linear groups L„(q) 
over a finite field of characteristic 2. The purpose of this note is to report on similar 
characterizations of the unitary and the symplectic groups of arbitrary dimension 
over a finite field of characteristic 2. 

We denote by U = Un(q) the projective special unitary group of dimension n defined 
over the field of q2 elements. If cp is a non-degenerate hermitian form defined over an 
«-dimensional vector space V over the field of q2 elements, the group U is isomorphic 
to the factor group of the group of unimodular linear transformations of V leaving cp 
invariant by the subgroup of the scalars. Thus U is a simple group except when 
q = 2 and n = 3. In this note we consider only the case: 

q is a power of 2 and n ^ 4. 

Let t be an element of U, which corresponds to a unitary transvection on V with 
respect to cp. Then t is an involution in the center of a Sylow subgroup of U. It is 
easy to study the structure of the centralizer Cv(t). In particular the center of Cv(t) 
is an elementary abelian group of order q. The main result is the following theorem. 

THEOREM. — Let G be a finite group and H be a subgroup of G satisfying the follow­
ing two conditions: 

(i) H is isomorphic to Cv(t), and 
(ii) if j is any involution of the center of H, then we have 

CG(J) = H. 

Then one of the following three holds: 

(a) H is a normal subgroup of G; 
(b) H has a normal complement in G; 
(c) G is isomorphic to the unitary group U„(q). 

The special cases of n = 4 and n = 5 of this theorem have been discussed by Suzuki [3] 
and Thomas [5] respectively. The same result is almost true for n = 3; the only 
exception occurs when q = 2. We remark that in case (a) the structure of the 
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group G/H is very restricted. It is a group of'order dividing q — 1. The case (b) is 
possible only when q is equal to 2. 

The proof of the above theorem is similar to the one for the linear groups in [4] and 
we will omit the details here. 

We may assume that n ^ 6. The group H involves the unitary group of lower 
dimension. So H has a (BiVJ-pair of type Bm-t where n = 2m or 2m + 1. The main 
step of the proof is a construction of a (BiV)-pair of type Bm in G. Suppose that the 
Weyl group of the (BN)-pair of H is generated by the distinguished set of generators 
w2, w 3 , . . . , wm. We can choose the notation so that the corresponding diagram is 

w2 w3 wm 

O O O ŒZZZD 

Then the construction of a (jBiV)-pair of type Bm in G amounts to the addition of an 
involution wt to the left of the above diagram. We can find a candidate for Wi in the 
normalizer of certain subgroup of H, and prove the required properties. This process 
is essentially similar to the corresponding step in the special linear group case [4] 
and depends on the detailed study of fusions of involutions. We use the Z*-theorem 
of Glauberman, and remark that a recent theorem of Shult on fusions of involutions [2] 
is helpful in the proof. If the fusion pattern is the same with the unitary group, we 
can prove that the case (c) holds. Otherwise we have the non-simple cases (a) and (b). 
Although the proofs are similar we have to treat two cases separately in some points 
according as n is even or odd. 

The final identification is done by applying a theorem of Tits [6], which character­
izes the simple groups of Lie type of rank at least 3 as finite simple groups with (BN)-
pairs. Tits' theorem is applicable since we assumed that n = 6. In our situation we 
have so much informations on hand that we could prove the uniqueness of the structure 
without appealing the work of Tits. 

In the symplectic group case we have a similar result, which we omit to state. The 
proof is similar but in some sense harder. One reason is that there is an exceptional 
case when n = 6 and q = 2. This case has been treated by Yamaki [7]. We use a 
method similar to Yamaki's to treat the general case. 

Similar theorems are expected to hold for other type of classical groups. Recently 
Dempwolff [1] generalized the main theorem of [4] by assuming only that the structure 
of the centralizer of an involution in the center of a Sylow 2-subgroup is the right one. 
Similar generalization will be true in the unitary or symplectic case. 
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QUADRATIC PAIRS 

by J. G. THOMSON 

DéFINITION. — (G, M) is a quadratic pair for p if 

1. G is a finite group # 1. 
2. M is an irreducible FpG-module (Fp = Z/pZ). 
3. G acts faithfully on M. 
4. G = (Q\ where ß = { X ë G - {1 } | M(x - l)2 = 0 }. 

CENTRAL PRODUCT THEOREM. — If (G, M) is a quadratic pair for p and p ^ 5, then 
for some n ^ 1 : 

1. G = G l 9 . . . , G„, [G,, Gj] = 1 if i ^j and G,- = G'i9 GJZ(G^ is simple. 
2. For suitable M f , (G,, Mt) is a quadratic pair for p. 
3. M ^ Mi (g) . . . (g) MM as FpG-modules. 

MAIN THEOREM. — If (G, M) is a quadratic pair for p9p > 5, G = G'and G = G/Z(G) 
is simple, then S is isomorphic to one of the following groups: 

An(q\ Bn(q\ Cn(q), Dn(q), G2(q), F4(q), E6(q\ EM> 
2A„(q), 2DM, 3D4(q), 2E6(q). 

Here q is the order of the center of a Sylow p-subgroup of G. 

The proofs are not short, and begin with considerable notation. If xeQ, let 
p«*) = | M(x - 1) |, and set Qe = { x E Q \ d(x) = e }. Let d = min (d(x)). The set 

xeQ 

Qd is singled out for special study. If x, y eQd, write x ~ y if and only if 
ker (x — 1) = ker (y — 1) and im (x — 1) = im (y — 1). Let E(x)# — { yeQd\ y ~ x}. 
Then it is easy to see that E(x)# u { 1 } = E(x) is a subgroup of G for each x e Qd, 
and we let E be the set of such subgroups. 

An important preliminary result is that if E, F el, and H = < £, F} then one of 
the following holds: 

(a) H is abelian. 
(b) H' G E. 
(c) H^SL(2,\E\). 

This result immediately raises the question of classifying groups which are generated 
by a collection of subgroups S whose subgroups H satisfy (a), (b) or (c), and such that 
if E e E, then all conjugates of E are in E. This problem seems quite difficult. For 
example, the groups of Fischer (^22» ^23» ^24) satisfy this condition. 
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Keeping to our quadratic pair, let (9(E) = { F e E |< £, F} g* SL(29 \E\)}. By 
a theorem of R. Baer, (9(E) =£ cj) for all E e E. It turns out that it is possible to para­
metrize (9(E) in an exploitable fashion. To do this, define ME = ker (x — 1), 
ME = M(x - 1) (x e E - { 1 } ). By the construction of E, ME, ME do not depend 
on our choice of x. Let U(E) be the largest subgroup of G which is 1 on M/ME, 
ME/ME and on ME. Choose F E (9(E). Then there is a bijection of U(E) and (9(E) 
given by r\ h> r\~lFr\. This labelling of 0(E) is very helpful. In proving this result, 
we get a remarkable property of G. Namely, if Flt F2E (9(E) and the unique involu­
tion of < E, Fty coincides with the unique involution of <E, F2>, then 

< E , F 1 > = < E , F 2 > . 

This result reduces the study of (9(E) to the study of 1(E), the set of involutions i of G 
such that for some F E (9(E), i E < E, F >. 

The previous results lead quickly to a proof of the central product theorem, so we 
can concentrate on the main theorem. Again let E E E, F e (9(E), and set S = < E, F >, 
C = CG(E), D = CG(S). Then C = U(E) • D and U(E) <i C, U(E) n D = 1. Further­
more, Z(CG(E)) = E x Z(G) and we obtain all the possibilities for the isomorphism 
class of CG(E)/Z(G). Let P be a Sylow p-subgroup of CG(E). Then P is a Sylow 
p-subgroup of G. Let NG(P) = PH, where H is of order prime to p. A crucial but 
easy result is that if E0 is the set of elements of E which are normalized by H, then for 
each EQ E E0, E0 n (9(EQ) has precisely one element. Also, NG(H) is transitive on E0 . 
It is then relatively straightforward to construct the multiplication table of G via a 
Bruhat decomposition. 

It is to be hoped that the quadratic pairs for the prime 3 can be classified, but this is 
a substantially more difficult problem. 

The reason for studying quadratic pairs is that they seem to arise frequently in 
simple groups. More particularly, if G is simple and p is a prime such that for every 
p-local subgroup N of G, Op(N) contains its centralizer, then often quadratic pairs 
appears as (G0, M) where G0, M are subquotients of G. The study of such groups G 
is a vast program, a small corner of which is occupied by quadratic pairs. 
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B4-CORPS LOCAUX ET GLOBAUX 

ANALYSE P-ADIQUE 

ON CUBIC TRIGONOMETRIC SUMS 

by J. W. S. CASSELS 

0. We are concerned with a conjecture relating Gauss sums constructed with a 
character of order 3 (Kummer sums) and certain products of values of elliptic functions. 

1. Let 
P = 1 (3) 

be a rational prime. Then 

Ap = I2 + 27m2 

for integers /, m, where / is uniquely determined by the normalization 

* EE 1 (3) 

but m is allowed to take either sign. Then 

m = (I + 3my/-^)/2 

is a prime in the ring Z[o)], where co3 = 1, œ ^ 1. 

A character % of order 3 on Z/pZ is defined by the congruence 

X(a) = a{p~1)/3 (m) 

The trigonometric sum in question is 

x = E xm' (*) 
0<j<p 

where 
£ = e2nilp. 

Gauss showed that 
T3 = pm 

but there is very little additional information about T. 

2. The elliptic curve 
£>; y2 = 4x3 - 1 

with the usual Weierstrass parametrization 

x = p(z) , y = p'(z) 
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has the module of periods 

eZ[œ] 
where 

O = 3.0599 . . . 

As was probably known to Eisenstein, 

Ylp(ß6/m)=l/m2, 
ß 

where ß runs through all residue classes modulo m prime to m. 

A 1/3-set <5 of residues mod m is one such that 

ß, coß, co2ß (ßE<5) 

is a complete set of residues prime to m. By Wilson's Theorem 

Uß = - û « 
ße<5 

for some cube root of unity Qs. The product 

ßeS 

is independent of the choice of (5 and satisfies 

P 3 = Ü7"2. 

3. The following conjecture has been verified for all p < 5.000: 

T = P113WP, 

where p 1 / 3 is the real cube root. 

4. The conjecture can be formulated in purely algebraic terms, i. e. independent 
of any embedding into the complex numbers. Let e be a ro-division point on #. 
With an obvious convention we write 

ße<5 

Let P'(b) be the analogous quantity for a m'-division point b. Let £ be the Weil pairing 
of b, e and now define T by (*). The abstract version of the conjecture is 

T = x(3)2{P(e)}-VF(b). 

The factor %(3)2 occurs here because e2nilp is not in general the Weil pairing of the 
points with parameters 6/m and Q/m'. 

J 

5. The p-adic treatment of the conjecture leads to the following problem for # 
over the finite field F of p elements. Working modulo w, complex multiplication 
by w is just the Frobenius, but complex multiplication by m' is a separable isogeny. 
Let X be a generic point and put x = m'X. Then F(3ê)/F(S) is an Artin-Schreier exten-
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sion, where F is the algebraic closure of F. As a particular case of results of Deuring, 
there is a gE¥(X) (note: F not F) such that the automorphism group is generated by 

g - g+W (/eF), 
where 

W 1 

$ P - D I 

On the other hand, the automorphism group is just 

X -+ £ + b 

where b is a ro'-division point. The problem is to give the coordinates of the b corres­
ponding to g -> g + 3Ï. 

The author obtained formulae which are good enough for machine computation, 
and these led to the formulation of the conjecture. The formulae are deduced from 
the mod p analogues of some apparently quite new symmetry properties of the coeffi­
cients of classical elliptic functions. 

REFERENCES 
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NON-ABELIAN CLASSFIELDS 

OVER FUNCTION FIELDS IN SPECIAL CASES 

by YASUTAKA IHARA 

1. General formulations and conjectures. 

1.1. Primes and Conjugacy Classes Principle. 

One of our basic ideas is that a certain type of infinite discrete groups T plays a 
central role in arithmetic of non-abelian extensions of algebraic function fields of one 
variable over finite fields (abbrev. function fields). An origin of this idea was the 
following question: is there any identity between the Riemann ^-function of an arith­
metic field K and a " Selber g type ^-function " of a discrete group T, in some cases? 
Indeed, if we assume such an identity for a function field K, then we can proceed and 
meet, in a fairly natural way, the concept of " primes and conjugacy classes principle " 
(abbrev. p. & c.c. principle), and then of " non-abelian classfield theory of T-type ". We 
shall begin with this explanation. Another origin was an observation that if we 
introduce such a group as T = PSL2(Z

ip)), where p is a prime number and 

Z « = {fl/p>|ûWEZ}, 

then this theory holds for such a group [5]. But this explanation will be left to § 2. 

Recall that the original Selberg C-function is defined with respect to a discrete sub­
group T of G = PSL2(R) with finite volume quotient. While the Riemann C-function 
describes the distribution of prime divisors of an arithmetic field, the Selberg C-func­
tion describes that of T-conjugacy classes in the space of G-conjugacy classes. By 
" Selberg type Ç-functions, " we vaguely mean some " ^-functions " connected with 
the distribution problems of T-conjugacy classes, where G is some more general topo­
logical group, say, of Lie type. Since the space of G-conjugacy classes of a Lie type 
group G is roughly identical to the disjoint union of mutually non-conjugate tori T 
of G, we may fix one torus T in considering such a " C-function ". 

Let us formulate the above question in a more explicit way. Take an infinite discrete 
subgroup T of a topological group G, and let T be a closed abelian subgroup of G. 
Call T* the set of all such element r G T that the centralizer of t in G coincides with T. 
Then g~1tg = t' (t, t' e T*, geG) implies g~lTg = T. Now suppose that T contains 
an open compact subgroup T0 with T/T0 ^ Z (1). For each t E T, call deg (t) (the degree 
of t) the absolute value of the image of t by the induced homomorphism T -* Z. 
Since T0 is the unique maximal compact subgroup of T, it is clear that deg (t) is inva-

(*) This assumption is natural, when we presuppose an identity between a Selberg type 
C-function w.r.t (G, T, T) and a congruence (-function. 
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riant by any topological automorphism of T. In particular, if t, t' E T* are G-conju-
gate and hence conjugate by the normalizer of T, then deg (t) = deg (f). Assume 
now that if some element ^ 1 of T is G-conjugate to some t E T, then t E T*. Call 
a subset S of F, T-bolic, if there is some g e G with g~1Sg cz T. It is easy to see that a 
subgroup H of T is maximal T-bolic if and only if either of the following two equivalent 
conditions (i), (ii) is satisfied: (i) H is the centralizer of some T-bolic element ^ 1 of T ; 
(ii) for every y G H with y ^ 1, y is T-bolic and H coincides with its centralizer. It 
is clear that if H, H' are two distinct maximal T-bolic subgroups, then H n H' = { 1 }. 
Now let Jti? denote the set of all infinite (2) maximal T-bolic subgroups of T. Then if 
HEjtf, its torsion subgroup H° is finite and the quotient H = H/H° is isomorphic 
to Z. Suppose that we can assign one choice of isomorphism H = Z for each HE#?9 

in such a way as to be compatible with the conjugations by elements of T (3). Let T 
act on JP by the conjugation. From each T-conjugacy class of subgroups in Jf, choose 
a representative H9 and for each representative H9 let W denote the positive generator 
of H; i. e., the generator of H that corresponds to 1 by the above chosen isomorphism 
H ^ Z. Thus, H, % and its T-conjugacy class { % } r (which is more intrinsic than H, n) 
are in one-to-one correspondence with each other. Note that if T is torsion-free, 
{n }r * runs over all primitive T-bolic T-conjugacy classes; i. e., the T-conjugacy classes 
of such T-bolic elements of T that generate some HEJ?. NOW, define the degree 
deg {7f } r of { K } r , by deg { % } r = deg (r), where t = g - 1 ^ G T and % E H is a repre­
sentative modulo H° of 7c. By the above remarks, it is well-defined, and is a positive 
integer. Now define the C-function by 

Cr(u) = r i ( i -" d e g { Ä } r)- 1 . 

This is an analogue of Selberg C-function in idea, but in form, it is an analogue of con­
gruence C-functions (4) (5). 

Now we can raise our question more concretely: is there any (G, T, T) of the above 
type and a function field K, such that Cr(u) essentially coincides with the congruence 
C-function of K, at least for the principal parts? Since the C-function of K is by defini­
tion H( l ~ wdegP)~ \ (P: prime divisors of K,) this question is refined to the following: 

p 

Is there any (G, T, T) and K, and a " natural " degree-preserving one-to-one corres­
pondence between a set p(T) of almost all {n}r and a set p(K) of almost all prime divisors 
of K? 

If there is such a correspondence, we shall say that the primes and conjugacy classes 
principle holds between p(K) and p(T). That this principle actually holds for some K 

(2) If G/r is compact, then any maximal T-bolic subgroup H is infinite, since if g lHg c T, 
then T/g~iHg is compact. 

(3) This is possible if and only if the mutually inverse elements of H are not T-conjugate 
to each other for any H ; and when possible, in many ways so. But the " reciprocity ", i. e., 
(ii) (b) of § 1.2, can be expected only for good choices of isomorphisms. Thus, our conjectures 
and results that follow depend on their good choices. 

(4) If G/r is compact, or if (G, T, T) belongs to the type that we consider in § 1.3, there are 
at most finitely many {7f } r with the given degree, and hence Çr(u) is well-defined as a formal 
power series. 

(5) Note that Cr(") does not depend on the choice of the isomorphisms H ^ Z. 
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and T, is a basic point in making our program and proving some results on " non-
abelian classfield of T-type ". Indeed, then F would play the role of the ideal class 
group (in the sense of Takagi) of abelian classfield theory, and the conjugacy class 
{n } r E p(F) corresponding to a prime divisor P of K would play the role of the ideal 
class determined by P. 

1.2. Abstract formulation of non-abelian classfield theory of T-type. We assume 
that the p. & c. c. principle holds between some p(K) and p(r); 

P(r)3{7f}r tf ^ p ( K ) . 

We shall say that a non-abelian classfield theory of T-type is valid between K and F 
if there is an infinite Galois extension ft of K and an injective isomorphism i of F 
into the Galois group g = Gal (ft/K), satisfying the following conditions (i), (ii): 

(i) i(F) is dense in g. The subgroups Y'aYof finite indices and the closed sub­
groups g' <= g of finite indices are i?i a natural one-to-one correspondence. 

Hence F' also correspond in a one-to-one manner with finite extensions K' of K 
contained in ft. The next condition (ii) comes out naturally from the idea that the 
p. & c. c. principle should be assumed for all corresponding K' and F', in a compatible 
way. 

(ii) Let P E p(K) and let { n } r G p(T) be the corresponding F-conjugacy class. Then, 
there is a prime factor p of P in ft such that 

(a) i(H°), resp. the topological closure of i(H) in g, are the inertia group, resp. the 
decomposition group, of p in R/K; 

(b) i(n) is the Frobenius automorphism of p in R/K. 

This condition (ii) would describe the law of decompositions of prime divisors P 
of p(K) in ft/K completely, and would imply that the p. & c. c. principle holds for all 
corresponding K' and T" in a compatible way. In fact, it is enough to connect 

iGOPhr w i t h yHy~1nr 

for each yET and P G p(K). It is clear by definition that if the classfield theory of 
T-type is valid between K and T, then it is also valid for all corresponding pairs K' 
and r. 

1.3. Main conjectures. The detailed studies of some selected cases gave us a strong 
hope that the classfield theory of T-type is actually valid for the groups F of the type 
defined below, and tempted us to propose a following series of conjectures (C 1) ~ (C 5). 
It is stronger than the classfield theory of T-type defined in § 1.2. So far, it is proved 
only for some special cases of F, but seems to be supported also by some other results 
on T (e. g., § 3.1), 

We shall specify (G, T, T) as follows: 

G = PSL2(R) x PSL2(k?) (topological group), 

where R and kp are the real and a p-adic field respectively, and PSL2 = SL2/± 1. 
For each subset S <= G, SR resp. Sv denote its projection to GR = PSL2(R) resp. 
Gp = PSL2(/cp). Now, T is a discrete subgroup of G with finite volume quotient G/r, 
which is essentially indecomposable, in the sense that FR resp. Fv are dense in GR resp. Gv. 



384 Y. IHARA B 4 

For simplicity's sake, we shall assume F to be torsion-free. We shall take 

T = PS02(R) x (the diagonals), 

so that T/T0 s Z with T0 = PS02(R) x (unit diagonals). It is easy to check all 
assumptions of § 1.1 on (G, F, T). Let p(F) be the set of all { n } r . It is an infinite 
set, and the C-function can be explicitly calculated (§ 3.1). Besides p(F), a certain 
finite set p^F), and the degrees of its elements are defined ([7], vol. 2, Chap. 1). p^ÇF) 
is empty if and only if G/F is compact. Put F° = F n(GRx V), where V= PSL2((9^) 
and (9V is the ring of integers of kp. Then its projection FR is a discrete subgroup 
of GR with finite volume quotient. Let g denote the genus of FR, and let s be the number 
of distinct cusps in a fundamental domain of FR. Then g — 1 + s/2 > 0, and 

s = £ deg P. 
Pep00(D 

Put q = Np9 and H = (q — l)(g — 1 + s/2). Then H is always a positive integer 
([7], vol. 2, Chap. 1). Now, our main conjectures are the following (CI) ~ ( C 5 ) : 

(C 1) Each F defines a function field K with genus g and with exact constant field Fq2, 
and the p. & c. c. principle holds between p(K) and p(F). More precisely, the set of 
all prime divisors of K is decomposed into three mutually disjoint subsets p(K)9 p^K) 
and S(K); and we have degree-preserving one-to-one correspondences 

V(K) ~ p(r), pjK) ~ p j r ) , 

which agree with (C 2) ~ (C 5). 

We shall call the prime divisors of p(K), p^K) and <5(K) ordinary, cuspidal, and 
special, respectively. 

(C 2) There are exactly H special prime divisors, and they are of degree one over Fq2. 
Moreover, there is a differential co of K of degree (q — l)/2 (resp. q — 1, if 2 \ a), whose 
divisor (co) equals 

w = { Up}{ FI Ö}~ (*" 1 ) / 2 (resp. W2). 

(C 3) Non-abelian classfield theory of F-type is valid between K and F (for the above 
p(K) ~ p(F)). 

(C 4) (i) The ordinary and the special prime divisors are unramified in ft; (ii) the special 
prime divisors are decomposed completely in ft (6); (iii) the cuspidal prime divisors are 
at most tamely ramified in ft; (iv) the inertia group and the Frobenius of cuspidal prime 
divisors in ft can also be described in the language of p^F) (7). 

(C 5) ft is the maximum Galois extension of K satisfying the conditions (i) (ii) (iii) 
of (C4). 

Note. — Our conjectures implicitly contain the following. Let GR = PSL2(R) 

act on the complex upper half plane S by T -> (ax + b)(cz + d)~l I I j EGR\ . 

(6) This is the very reason why the special prime divisors do not correspond to any T-conju-
gacy classes (the Frobenius conjugacy class is trivial!). 

(7) We omit this detail here. It can be formulated easily by referring to [7], vol. 2 (Chap. 1, 
Th. 3 and Chap. 5, Th. 5). 
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Let HE#£. Then since 7^ = PS02(R)9 HR has a common fixed point z on £. Let P 
be any subgroup of F with finite index and put A' = Ff n (GR x V), so that AR is a 
fuchsian group. Then, we conjecture that there is a suitable algebraico-geometric 
model <$u. of A'R\£>, such that the reduction of #A< modulo some extension of p gives 
a model of iC' (of § 1.2 (/)), and that the reduction of the point z gives the element of 
p(K') corresponding to Hf = H n P G p(T'). In the special cases where our conjec­
tures are solved, the compatible p. & c. c. principle is established in this way. 

2. Solved cases. 

2.1. Elliptic modular case. 

Let p be a prime number, and consider the ring Z(p) = {a/px \a9 tE Z}. Let F 
be a subgroup of F(\) = PSL2(Z

{p)) with finite index. Then by the diagonal embedd­
ing T can be considered as a discrete subgroup of G = PSL2(R) x PSL2(Qp) (Qp: the 
p-adic field) with finite volume quotient, and with dense image of projection in each 
component of G. 

THEOREM. — Let F be as above, and moreover torsion-free. Then F satisfies 
(C 1) ~ (C 4). The torsion-freeness assumption can be dropped if we modify (C 2) (C 4) 
in a suitable way. (In particular, the non-abelian classfield theory of F-type is valid 
for these groups). 

The proof is given in [7], vol. 1, 2; Chap. 5. To prove them by our method is equi­
valent to synthesizing and reconstructing carefully in the language of the group T(l) 
the various results, on complex multiplication theory of elliptic curves (Deuring [1]), 
and on modernized and generalized Kroneckerian type theory of elliptic modular 
functions (Shimura [14] for char. 0, Igusa [4] for char, p) (8). The congruence subgroup 
property of F(i) proved by Mennicke [10], Serre [13] is also used. See also § 4. As an 
example, take F = T(2) (the principal congruence subgroup of level 2; p ^ 2). It 
is torsion-free. The corresponding K is rational; K = Fp2(x). Identify the prime 
divisor P of K with the residue class of x, and write P = Pa for x = a (mod P). Then, 
pjK) ={P0,P1,Poo}, and <5(K) = {Pa | u(a) = 0 } ; where u(x) is a polynomial 
of degree (p — l)/2 defined by 

u(x) = E?=0[ I xl (r =(p- l)/2) (9). 

The p. & c. c. principle p(K) <-> p(F) is established by the process described in the above 
note (§ 1.3). Namely, let AÄ = r£ = the principal congruence subgroup of PSL2(Z) 
of level 2. Let À(z) be the ̂ -function; i. e., a generator of the field of automorphic 
functions w. r. t. AR, whose values at the three cusps are 0, 1, oo. Then 

p(F) 3{n}r -» H -• z -• k0 = X(z) mod Sß -• P = PAo 

(8) IGUSA [4] is directly used in constructing ft and proving (C 4) (i), (Hi). 
(9) By HASSE-DEURING (cf. [1]), u(a) = 0 if and only if Y2 = X(X - 1)(X - a) is a super-

singular elliptic curve. That a e Fpi and a ^ 0, 1 follows from this (or also directly, by using 
our definition of œ given in [9]). That all roots a of u(x) = 0 are simple was directly proved 
by IGUSA [3], I am grateful to IGUSA and DWORK, since I was much inspired by [3] and 
DWORK [2] (§ on elliptic curves). 

I - 13 
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defines the bijection { ïï } r <-» P of p(F) «-> p(K). Here ty is a fixed prime factor 
of p (10). The field ft is obtained from the composite of Igusa's fields of modular 
functions for all levels # 0 (mod p), by lowering the field of constant down to Fp2 

in a suitable way. Once this is proved, the ramification properties (i. e., the prime 
divisors P ^ P 0 , Pl9 P œ of K are unramified and P = P0,P1,Pao are at most tamely 
ramified in ft) are reduced to the Igusa's theorem [4]. Moreover, by our theorem, 
P G <5(K) are decomposed completely in ft. But we do not know whether ft is 
characterized by these ramifications and decompositions properties. For example, 
S(K) = { P _ 1 } f o r p = 3; hence (C 5) is to conjecture that ft is the maximum Galois 
extension of K in which P ^ P0,P±,Pm are unramified, P 0 , Pl9 P«, are at most tamely 
ramified, and P _ ! is decomposed completely. 

The differential co of (C 2) is quite an interesting one. It is given by 

{x(l-x)YP~1)/2 

for the above example. We can prove that: 

(dxf 

THEOREM. — co is invariant, up to the signs, by all separable modular transforms x -> x' 
(cf. [8]). 

Here, x -*• x' is called a separable modular transform if the elliptic curve 

Y2 = X(X - 1)(,Y - x') 

is separably isogenous to Y2 = X(X — 1)(X — x). The above theorem is also equi­
valent to that œ is invariant, up to the signs, by all automorphisms of $t/Fp2. Conversely, 
a differential r\ ^ 0 of ft (of higher degree) having this invariance property must have 
the form: rj = c-coh; CEFP , / IGZ , h > 0. There is no analogue of co in characte­
ristic 0. Another theorem on co is the following. Take a (p — l)/2-th root cox of co 
in a separable extension of K. Then: 

THEOREM. — (i) co^ is invariant by the Cartier operator, (ii) Let z = z(X) be the 
inverse of X(z), and let ( # ) be the Schworf equation for dz: 

2(dz/dX)(d3z/dX3) - 3(d2z/dX2)2 _ X2 - X + 1 
( # ) (dz/dX)2 " X2(l - X)2 ' 

Replace X by x and consider (# ) in characteristic p. Then it is satisfied by co1 in place 
of dz. (iii) cox is uniquely characterized by (i), (ii) up to Fp -multiples. 

The differential co can be defined in a very natural way in more general cases. This, 
and the proof of the theorem (in generalized form) are given in [9]. 

Note. — The differential dz of the inverse of automorphic functions is always trans­
cendental (unlike the elliptic functions case, where dz is the invariant differential on 
the elliptic curve). Nevertheless, [9] shows that in certain cases there is a natural 
algebraic differential col in characteristic p which plays a role of " dz (mod p) ". 

(10) The choice of one isomorphism H ^ Z for each H, and the injection i : F -> g of 
§1.2 are also defined w. r. t a fixed prime factor ty of p. We must take the same Sß to validate 
our theorem. The effect of changing Sß is of subtle nature ([7], vol. 2 ; Chap. 5). 
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2.2. Some quaternion modular cases. 

Other known examples of F are obtained from some quaternion algebras B. If F 
is the center of 5, F is defined w. r. t. an order ® of B and a prime divisor S$ of F (cf. [7], 
vol. 1, Chap. 4). In these cases, FR is the unit group of 0 , and hence belongs to the 
fuchsian groups of Poincaré-Fricke type. For these fuchsian groups, Shimura [15] [16] 
proved beautiful arithmetic properties of the quotient FR\$>. His theories, combined 
with some detailed studies of endomorphism rings of abelian varieties (esp. their 
behavior under the reduction processes), may give us enough tool for proving some of 
our conjectures. Partial results along this line were obtained by Shimura and by 
(our student) Morita: 

THEOREM (Shimura) (n). — For almost all prime numbers p that remain träge in F 
(i. e.9 Sß — p)9 F satisfies the p. & c. c, principle in the way explained in the note (§ 1.3). 
Moreover, the number of special prime divisors can be computed, which agrees with (C 2). 

If F = Q, this result would imply the main parts of (C1) ~ (C 4), but for almost 
all p. Recently, Y. Morita [11] claimed: 

THEOREM (Morita). — If F = Q, the main parts of (C 1) ~ (C 4) are valid for all p 
not dividing the discriminant of B. 

His proof is based on Shimura's and Mumford's theory of moduli of abelian varieties, 
Tate's result on endomorphisms of abelian varieties, and on our theorem on Cr(M) 
(immediately below) (12). 

3. Some related results. 

3.1. The C-function of F. 

Here we sketch the results of our computations of Cr(M)> where (G, F, T) is as in § 1.3. 

n a - Piu)(\ - p\u) 
THEOREM (13). - « « ) x \[ (1 - u ^ T 1 = ^ ^ r y - * (* - ")H> 

with pip! = q2m
9 \ Pi\9 \ p't\ <> q2m, Pi, PÏ ¥" 1, q2- H is a positive integer defined in § 1.3. 

If T is not assumed torsion-free, then the formula is somewhat more complicated. 
In any case, this result agrees with (Cl) (C2). 

(n) This was informed by Shimura's letter to the speaker dated May, 1968. He announced 
a somewhat stronger result, but it cannot be explained briefly. 

(12) Thus, it is very long and involved. We may say that an interest of the (partial) proof 
of our conjectures in quaternion modular cases along this line lies more on the corelation 
between some problems on abelian varieties and our problems (see also § 4). 

(13) This has been announced in [5] in the case G/F: compact, F : torsion-free, and proof 
for this case is given in [7], vol. 1, Chap. 1. The general case is proved in [7], vol. 2, Chap. 1. 
It is on one hand based on Eichler-Selberg trace formula but on the other hand, it requires a 
detailed study of T-bolic and parabolic elements of F. Labesse then offered an alternative 
proof in the G/T : compact, F : torsion-free case, by using L2(G/F) in place of Eichler-Selberg 
(a letter to the speaker; Oct. 1969). 
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Note. — We can express f j ( l — p{u){l — p\u) by some Hecke polynomial. By 
i - l 

combining this with Shimura's work [16], it can be shown that the first term on the 
right side is a congruence C-function for almost all Sß, in quaternion modular cases. 
But this is weaker than the " p. & c. c. principle ", since this still does not guarantee 
any natural and compatible one-to-one correspondence between p(K) and p(F). 

3.2. The Gp-fields. 

The groups F of § 1.3 correspond in a one-to-one manner with the Gp-fields over C 
([7]), vol. 1, Chap. 2). Roughly speaking, Gp-field is an algebraic function field having 
non-compact automorphism group Gp = PSL2(kp) and satisfying some conditions on 
ramifications. One basic theorem is that we can lower the field of constant of Gp-fields 
down to algebraic number fields, and that under a certain (not too restrictive) condition 
on T, it can be done in a unique way ([7], vol. 1, Chap. 2, Pt. 2). This proof is long, 
but uses only some group theories of Gp and a deformation theory of F given in [7]. 
In our proof, a basic point is that Gp-fields have sufficiently many automorphisms (14). 
The relation between the Gp-fields and our problems (which seems essential) is roughly 
explained in [6], [7]. 

4. Concluding remarks. 

Our knowledge on non-abelian mathematics is so narrow that we could only have 
touched a part of " an iceberg above water ". Here we are satisfied by giving a concrete 
program for " non-abelian classfield theory of T-type " (which seems fairly probable), 
solving some special cases, and by showing that the problem is closely related to other 
arithmetical problems. We shall conclude this talk by the following remark. Func­
tion field is often compared with algebraic number field. The former has analogous 
but simpler structure than the latter, and also allows geometric treatments. Thus, 
some problems that offer no clues at all for number fields may offer some for function 
fields. This was first shown by Weil's proof of the Riemann hypothesis for function 
fields. So far, it does not help prove the Riemann hypothesis for number fields, but 
the related works of Hasse, Weil, etc. have shown that (some) arithmetic problems 
on function fields are closely related to some other problems (esp. complex multiplica­
tion theory) on number fields, not by a formal analogy between two problems, but more 
closely, by a " relation between warps and wooves of the same (if not apparently so) 
problem ". Now, a relation of our problem with complex multiplication theory is 
also of this sort. We have been talking in a view-point of trying some non-abelian 
mathematics on function fields (which are too difficult for number fields), but from 
another view-point, it is a " woof " of complex multiplication theory. Namely, if 
we call a " warp " of complex multiplication theory that theory of " fixed imaginary 
quadratic lattice and variable p ", then a woof is that theory of " fixed p and variable 
imaginary quadratic lattices ". There is an admirable generalization of warps (of 
complex multiplication theory) by Shimura [16], but its wooves are by no means 

(14) Usefulness of this point is also stressed in a recent work of PJATEZKII-SAPIRO [12]. 
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complete (only touched), and these are almost equivalent to our problems (C 1) ~ (C 4) 
for the quaternion modular groups! Finally, we note that the use of the groups F 
(of type § 1.3, § 2) is very natural and convenient for " woof theories ". 
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ON SOME INFINITE ABELIAN EXTENSIONS 

OF ALGEBRAIC NUMBER FIELDS 

by KENKICHI IWASAWA 

Let / be a prime number and let Z, and Qj denote the ring of /-adic integers and the 
field of /-adic numbers respectively; their additive groups will be also denoted by the 
same letters. 

Now, an extension K of a field k is called a Zrextension if K/k is a Galois extension 
and its Galois group is topologically isomorphic to the additive group Zl (*). For 
such an extension K/k, there exists a sequence of fields 

k = k0 c kt c . . . c k„ c= . . . 

such that each kjk is a cyclic extension of degree /" and K is the union of all kn, n ^ 0. 
Conversely, if there is a sequence of cyclic extensions kjk such as mentioned above, 
then the union K of all k„, n ^ 0, is a Zrextension of k. 

In the following, we shall consider Zrextensions of which the ground fields are 
finite algebraic number fields, i. e. finite extensions of the rational field Q. We first 
give some examples. For each n ^ 0, let PIn denote the cyclotomic field of /n+1-th 
or 2"+2-th roots of unity according as / > 2 or / = 2. Let P, = Pl0 and let P / o o 

be the union of all Pln, n ^ 0. Then Pjf00/Pj is a Zrextension with intermediate 
fields Pln, n ^ 0. The field P,|D0 has a unique subfield Qlao such that P, n Qloo = Q, 
PiQi,ao = ^i.oo) a n d this ß/,oo giv e s u s t n e unique Zrextension of the rational field Q. 
Furthermore, for any finite algebraic number field k, the composite kQlt00 is a Zrexlen-
sion of k. Hence each k has at least one Z,-extension over it. 

Let K be a Zrextension of a finite algebraic number field k and let kn, n ^ 0, be 
the intermediate fields of k and K. Let C„ denote the ideal-class group of k„, and 
An the Sylow /-subgroup of Cn. Denote by len the order of An, i. e. the highest power 
of / dividing the class number of k„. Then, for all sufficiently large n, the exponent e„ 
is given by a formula 

e„ = Xn + pi" + v, 

where X, p, and v are integers (X, p ^ 0), independent of n. Since these integers are 
uniquely determined for given K/k by the above formula, we shall denote them by 
X(K/k), p(K/k), and v(K/k) respectively. For the special Zrextension K = kQUao 

over k, they will be denoted also by Xt(k), pt(k), and Vj(k) respectively; furthermore we 

(*) In earlier papers, the author called such extensions T-extensions. 
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simply put Xl = XX(PX), pl = px(Px), vx = Vj(Pj). Thus we obtain arithmetic invariants 
Xi(k), pi(k), vx(k) depending upon k and /, and Xx, px, vz for each prime number /. 

Let 0 denote the ring of all algebraic integers in K, I the group of all invertible 
O-modules in K, and C the factor group of J modulo the principal 0-modules (2); 
we may simply call J and C the ideal group and the ideal-class group of 0 in K, respec­
tively. Let A be the Sylow /-subgroup (i. e. the /-primary component) of C. Then 
C is the direct limit of C„, n ^ 0, and A that of An, n ^ 0, and the Galois group Gal (K/k) 
acts on C and A in the obvious manner. The above formula for en is obtained by 
analysing the structure of this Gal (K//c)-module A. Thus we see in particular that 
the Tate module TX(A) for the abelian /-group A is a free Z rmodule and its rank over Zx 

is equal to the invariant X. 

At the present, little is known on the nature of the invariants X(K/k), p(K/k), and 
v(K/k) defined above. Yet it is clear that they play an essential role in the theory 
of Zrextensions. It seems particularly interesting to see when X = 0 or p = 0 or 
X = p = 0. It is easy to find a Zrextension K/k for which X(K/k) is arbitrary large. 
On the other hand, no example of K/k with p(K/k) > 0 is yet found. Although the 
number of such examples for which we have verified p(K/k) = 0 is quite limited, we 
are tempted to conjecture that p(K/k) = 0 for every Zrextension K/k, or at least that 
px(k) = 0 for every k and / or px = 0 for every /. 

For the invariants Xl and px, we know that Xx = px = 0 if and only if / is a regular 
prime, and if this is the case, then vx = 0 also. Let P\ denote the maximal real subfield 
of Pl and put 

x'l=x{p'ù P\ = P{P^ vl = v{p'l). 

Then X\ ̂  Xx, p\ ^ pl. Now, a well-known conjecture of Vandiver states that the 
class number of PJ is not divisible by / for every prime number /; it is checked by nume­
rical computation for a large number of primes. For given /, the conjecture is equi­
valent with X[ = p\ = v[ = 0. Unlike what is said above for Xx, pt, and vx, it is not 
known whether X\ = p\ = 0 implies v\ = 0 and, hence, Vandiver's conjecture. Never­
theless, it would be an interesting problem to find out if X\ = p[ = 0 for every /. 

Let TX(A) be the Tate module defined above and let V denote the tensor product 
of TX(A) and Ql over Zt: V= Vt(A) = TX(A) (g) Qt. F is a vector space of dimension X 
over Qi and the Galois group Gal(K/k) acts on V continuously so that it defines an 
/-adic representation of Gal (K/k). It is clear that the definition of V above is com­
pletely parallel to the usual construction of such /-adic representations by means of, 
say, abelian varieties (3). Note also that if k! is a subfield of k such that K/k' is a Galois 
extension, then the same vector space V defines an /-adic representation of the larger 
group Gal (K/k'). 

Let / > 2 and k = Px, K — PlQ0 in the above (4). Then V is decomposed into 
the direct' sum of / — 1 subspaces Vt, 0 ^ i < I — 1, with respect to the action of 

(2) In other words, C = Pic (0). Note that the ring O is not noetherian. 
(3) See J.-P. SERRE, Abelian /-adic representations of elliptic curves, Benjamin (New York, 

Amsterdam), 1968. 
(4) For / = 2, slight modification is needed in what is said below about the decomposition 

of V and the definition of <r0. 
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Gal (P//Q). Let W denote the group of all roots of unity in P/>00 with order a power 
of /. Let o0 be the automorphism of K/k such that GQ(Q = C1+/ for every Ç in W 
and let f(x) be the characteristic polynomial of o0 acting on Vt. Assuming Vandiver's 
conjecture for the prime /, we can describe the representation of Gal (K/k) on each Vt 

rather explicitly. It then follows (5) in particular that the characteristic polyno­
mials fx(x)9 0 ^ / < / — 1, are closely related to the /-adic L-functions of Kubota-
Leopoldt associated with the characters Gal (Pt/Q) ->• Z*. 

For a Zrextension K/k in general, we know very little on the structure of the /-adic 
representation Gal (K/k) -* GL(V). However the following fact might be of some 
interest, in particular when viewed as an analogue of a similar result in algebraic geo­
metry. Let k be any finite algebraic number field containing P, and let 

K = kQltO0 = kPitO0. 

Let 0' denote the ring of all /-integers in K, i. e. the union of all l~"0, n ^ 0. Let 
C be the ideal class group of 0' in K, and A' the Sylow /-subgroup of C. Let 
V = Tt(A') (g) Q, over Zx, where TX(A') denotes the Tate module for A'. As before, 
V defines an /-adic representation of Gal (K/k), and the natural map A -+ A' induces 
an epimorphism TX(A) -• TX(A') so that V is a factor space of the representation space V. 
Now, an element a in K will be called /"-hyperprimary (n ^ 0) if a is an /"-th power 
in the u-completion Kv for every place v of K lying above the place / of Q (6), and an 
O'-module û of K will be called hyperprimary if, for some n H , al"=(a) with an 
/"-hyperprimary element a in K. Let B' be the subgroup of all classes in A' which 
are represented by hyperprimary O'-modules and let V" = TX(B') ® Qx over ZX. Then 
V" again defines an /-adic representation of Gal (K/k), and B' -• A' induces a mono-
morphism TX(B') -*• TX(A') so that V" is a subspace of V. Hence V" is involved 
in the original representation space V. Let W be the group of roots of unity as defined 
above and let V0 = TX(W) (g) Qx over Z,. Then V0 defines a one-dimensional /-adic 
representation of Gal (K/k) through its action on W. 

Now, suppose that the ground field k is abelian either over the rational field or over 
an imaginary quadratic field. Then we can prove (7) that there exists a non-degene­
rate skew-symmetric ^/"bilinear form 

V" x V" -• V0 

such that 
< GU, GV > = <7« M, V » 

for all u, v in V" and G in Gal (K/k). It follows that V" is even dimensional and that 
the characteristic polynomial of each G in Gal (K/k) acting on V" satisfies a functional 
equation similar to the one for the zeta-function of an algebraic curve defined over 
a finite field (8). 

(5) See K. IWASAWA, On p-adic L-functions, Ann. Math., 89 (1969), pp. 198-205. 
(6) There exist only a finite number of such places v in K. 
(7) The proof will be published elsewhere. 
(8) Actually we can prove the above result for a wider class of ground fields including those 

mentioned above. It seems likely that the same result holds for an arbitrary ground field k 
containing P; , without any further assumption on k. 
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As already mentioned, the skew-symmetric form defined above is essentially an 
analogue of the classical Riemann forms on complex tori, of which a purely algebraic 
construction was given by Weil for abelian varieties of arbitrary characteristic (9). 
It would be interesting to pursue such analogy further in studying the structure of the 
representation space V". 

(9) The original idea of Weil appears in his paper: Sur les fonctions algébriques à corps 
de constantes fini, C. R. Paris, 210 (1940), pp. 592-594. 
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SOME RESULTS CONCERNING RECIPROCITY 

AND FUNCTIONAL ANALYSIS 

by TOMIO KUBOTA 

There is an old, well-known relationship" between the quadratic reciprocity and 
analytic functions. Briefly speaking, the transformation formula of a theta-function 
yields the quadratic reciprocity law. This fact is essentially contained in Gauss' work 
(see e. g. [10]), and has been generalized by Hecke [1]. It is not quite simple to find 
a corresponding result for the higher reciprocity, but it may motivate the investiga­
tion of a new branch of the number theory. 

In the present note, we shall review principal results which we can prove in the ana­
lytic theory of the reciprocity law, and after that we shall pick up some important 
problems which are still open. 

For the sake of simplicity, we take as our basic field once for all an imaginary qua­
dratic field F = Q(yJ' — d) with discriminant — d, and we denote by n a natural number 
such that F contains a primitive rc-th root of unity, i. e. n = 2, 3, 4, or 6. This setting 
causes no restriction of generality; what is stated in this note can be obtained for a 
general algebraic number field in the routine way of generalization, e. g. by taking 
a direct product of spaces in stead of a single one on which automorphic functions 
are considered. 

At the beginning of this note, it was mentioned that the theta-function yields the 
quadratic reciprocity law. What we propose to state now is that this procedure is 
invertible, i. e. by means of the general reciprocity law, we can construct generalized 
theta-functions. 

More precisely speaking, denote by H the three dimensional upper half space, 
whose points are of the form u = (z, v), (ZEC, v >0) . Then, H is the non-hermitian 

symmetric space SL(2, Q/SU(2), and the operation of G = ( ,1e SL(2, C) on H 
\c d) 

is given by the linear transformation GU = (au -f b)(cu + d) *, where we identify u 

with the matrix I _ J, and any t E C with the matrix ( 

\v ZJ \ t, 
Let now o be the ring of integers of F, denote by (a/b) the n-lh power residue symbol 

of F, and let F be a certain subgroup of <SL(2, C) which is commensurable with SL(2, o). 
Then, there exists a character % of F, which is, for a congruence subgroup of SL(2, o) 
modulo a sufficiently high power of n, given by %(G) = (c/d) or 1 according to c 4= 0 

= 0, f G — ( J I, [3]. This result is equivalent to the reciprocity law of the 

power residue symbol (a/b). The condition which the group F should satisfy will 
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not be discussed here, but we can take as F for instance the group generated by a 
certain congruence subgroup of SL(2, o) and by some elements of finite order in SL(2, C) 

including co = ( ) , and in this case we can fix the character i such that %(co) = 1. 

The kernel of % is a non-congruence subgroup of F. On the other hand, the group F 
operates on H discontinuously, and the fundamental domain D = F\H is of finite 
volume. 

Putting v(u) = v for u = (z, v) e H, let us now define an Eisenstein series by 

E(u, s) = m°)v(™)\ (tr e rœ\r), 

where s is a complex variable, and r œ is the group of G = ( J e T with c = 0. 
\c dj 

This series does not converge absolutely unless Re s > 2, but, as a consequence of 
Selberg's theory (see e. g. [11]) which is fully applicable to the present case, E(u, s) 
has a meromorphic continuation onto the whole s-plane, has a pole of first order 
at s = (n + l)/n, and the residue 9(u) of E(u, s) at the pole is a square integrable function 
on D satisfying 0(GU) = %(G)Q(U) for G E F. 

The function 0 is nothing else than a generalized theta-function which we have men­
tioned earlier. The series E(u, s) is so to speak the Eisenstein series attached to the 
cusp oo of D, so that a similar series can be defined for each cusp of £>, and the residues 
at s = (n + l)/n of all such Eisenstein series spans a finite dimensional complex vector 
space 0 of generalized theta-functions. A generalized theta-function 6 e ® not only 
reduces to a classical theta-function when n = 2, but also is in many aspects comple­
tely analogous to ordinary theta-functions. For example, the construction of a special 
type of unitary representation of a metaplectic group investigated in [12] finds some 
analogy also for generalized theta functions [5]. Since generalized theta-functions 
are defined on a non-hermitian space, it is impossible to use the theory of complex 
analytic functions in the study of them, and consequently our whole investigation 
should be based upon the functional analysis. 

We now propose to introduce some byproducts of our analytic investigation of 
the reciprocity law. Most important things are results on the value distribution of 
Gauss sums. Put e(z) = exp (2n^/ — \(z + z)) for ZEC; then the Eisenstein series 
E(u, s) has a Fourier expansion of the following form: 

E(u, s) = vs + cj>(s)v2~s 

+ S0(s, m)\\m\\^-1)/2(2n)sF(s)-1vKs_1(4n\ßm\v)-e(ßmz), (meo, m =f= 0), 

where K is a modified Bessel function, ß is a number in F, and 

0(S,m) = c o E j ^ | , ( c e o , c * 0 ) . 

Here, c0 is a positive constant, and, denoting by { c } the set of double cosets TooO-r«, 

represented by an element G = ( J with a fixed c, gm(c) is given by 

gm(c) = yLx(G)e(ßmd/c). 
{c} 
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Furthermore, if we denote by ((s) the Dedekind's zeta-function of F, then cj)(s) is equal 
to (s — l) -1f(ns — n)C(ns — (n — l))"1 up to an elementary factor. It is easily 
seen that gm(c) is essentially a classical Gauss sum defined for a power residue 
character of degree n modulo c. 

From the theory of the analytic continuation of Eisenstein series, one can extract 
various properties of the functions cj)(s, m). Among others, it is proved that cf)(s, m) 
is meromorphic, and its only singularity in the region Re s > 1 is possibly the simple 
pole at s = (n + l)/n. Only from this fact, it follows that 

G(Y) = Xgm(c)/\\c\\V2
9 (\\c\\<Y), 

has the asymptotic property G(Y) = o(Y) for n > 2 [4]. Observing Eisenstein series 
containing not only % but also a representation of the compact group SU(2), we can 
get a similar result for the product of gm(c) and the value of a Grössencharacter at c [7], 

To improve the asymptotic property of G(Y), we fix a fundamental domain D of F 
such that the set DY of all points u = (z, v) in D with v > Y is an infinitely long column 
parallel to the y-axis, and observe the function EY(u, s) defined on D by 

E(u, s) — vs, UEDY, 

EY(u, s) = for 
E(u, s) UED — Dy. 

By the general theory of the Eisenstein series, the function EY(u, s) satisfies 

. „y, , | 2 . Y2S~2 , W)Y2" - # ) r - a 

._ ' E ("' S) ' du = 2S=2 + 2Ü 

for s = S + it, S > 1, where du is the invariant measure of H. This formula enables 
us to evaluate each non-constant term in the Fourier expansion of E(u, s) on the line 
Re s = S with a fixed S > 1. On the other hand, the behaviour of Ks on the same 
line as the function of s can be investigated by the integral representation 

Using well-known properties of T-functions, we can therefore determine the growth 
of cj)(S H- it, m) with respect to t9 and, combining these results with the theorem of 
Schnee-Landau type [8], we can attain an asymptotic property of G(Y). The best 
result which one can expect in this way is 

G(Y) = 0\Y2 " ) 

for any ß > 0. Such a result may have some connection with [2], [9]. 

There are various open problems in the functional-analytic study of the reciprocity 
law. The most important one is to find a satisfactory relationship between the Fourier-
Bessel transformation and the automorphic property of the function 6(u). 

To speak more precisely, assume that the group F contains the element co 

with x(w) = 1, and denote by 0(v) the restriction to the u-axis of the function 9(u) derived 
• G " * ) 
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from the Eisenstein series E(u, s) for the cusp oo which we introduced earlier, i. e. 
0(v) = 0((O, v)). Then, we have 6(v) = 6(l/v)9 and from various reasons it is likely 
that there exists a function f(t)9 t ^ 0, satisfying the following properties: 

i) f\\z\H v, ZEC, belongs to the Schwartz space S(Q over C. 

is invariant under a Fourier-Bessel transformation, i. e. 

2TC f\f^)j0(2nlw)tdt =/(w"3 T) , w ^ O . 

ii) fit"-1) 

iii) Put dF = | y/— d/2 |, and m = <$p/2o; then m is a self-dual module with respect 
to the additive character e(z/2yj — 1) of complex numbers, and we have 

v n 0(ü) = E / ( | V | " " 1 ü ) , (ve m). 

If n — 2, then we may take e~nt as f(t), and the series in iii) reduces tö an ordinary 
theta-series. Therefore, the main meaning of the conditions i), ii), iii) is that, under 
these conditions, the general reciprocity law can be viewed as a theorem which is based 
upon analytic properties of the Schwartz function / , in such a way that the quadratic 
reciprocity comes from the Fourier transformation of e~nt2. 

The conditions i), ii), iii) have, however, also some other consequences. For example, 
it is possible to deduce from them an asymptotic property of Fourier coefficients 
of 6(u) derived from the Fourier expansion of E(u, s). This will imply again an asymp­
totic property of Gauss sums, because the Fourier coefficients of 0(u) is closely related 
to Gauss sums like gi(m), (meo) [7]. The results which we obtain in this way are 
different from the assertions on G(Y) which we have given above. 
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LE GROUPE DE BRAUER-GROTHENDIECK 

EN GÉOMÉTRIE DIOPHANTIENNE 

par Y. I. M A N I N 

Introduction. 

Soit k un corps, [k: Q] < cq, "T une classe de variétés algébriques sur k. Soit VE "V 
et soit kv un complété de k. 

La première condition nécessaire pour l'existence d'un /c-point sur V est que, pour 
tout v, V(kv) ne soit pas vide. Si pour tout VE"T cette condition est suffisante, on dit 
que le principe de Hasse est vérifié par "T. 

Si "T est la classe des espaces homogènes principaux sur une variété abélienne V0, 
Cassels [1] et Tate ont donné une obstruction au principe de Hasse et cette obstruction 
est effectivement calculable. Plus précisément, soit VE'V et soit bEH1(G, V0(k)) la 
classe de cohomologie correspondante, où G = Gai (k/k). Si tous les V(kv) sont non 
vides, b appartient au groupe de Chafarevitch-Tate LU(l/o)- Soit V0 la variété abélienne 
duale de V0 et soit LU(Fo) x LLl(̂ o) ~* Q/Z l'accouplement canonique de Cassels-Tate. 
Pour que V(k) soit non vide, il faut que la classe b de V appartienne au noyau (à gauche) 
de cet accouplement. 

Le premier but de cet exposé est de démontrer que l'utilisation du groupe de Brauer-
Grothendieck Br(F) de la variété V permet de construire une obstruction parfaitement 
générale au principe de Hasse. En calculant cette obstruction pour différentes classes 'f9 

nous obtenons tout d'abord une démonstration simple et unifiée d'une série de résultats 
déjà connus. On obtient ainsi : 

a) La forme de Cassels-Tate et la « suite duale » de Cassels [1, 2]. 

b) Le théorème de Voskresensky sur le groupe m pour les tores [14]. 

c) Les contre-exemples de Swinnerton-Dyer [12], de Mordell [9] et de Cassels et 
de Guy [3] au principe de Hasse pour certaines surfaces cubiques. 

La construction de l'obstruction est liée à l'existence d'un accouplement général 
Br(F) x Z(V) -• Br(fe), où Z(V) est le groupe des cycles de dimension zéro sur V. 
En appliquant cet accouplement lorsque V(k) est non vide, on peut obtenir des résultats 
qui vont plus loin : 

d) Des minorations pour le « rang » de la surface cubique V (nombre de points 
de V(k) à partir desquels on peut construire tous les autres par la méthode « des sécantes 
et des tangentes » ; voir [7]). 

e) Un certain accouplement de Br(F) et du noyau d'Albanese dans le groupe de 
Chow de dimension zéro, cet accouplement étant à valeurs dans Br(/c). Comme l'a 
démontré récemment Mumford [10], le deuxième groupe est de dimension infinie si 
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k = C9 dim V= 2 et pg(V) > 0. L'étude de ce groupe par voie arithmétique peut 
présenter un intérêt. 

Construction de l'obstruction. 

Soit V une variété sur k et soit Br(K) son groupe de Brauer-Grothendieck (voir 
Grothendieck [5]). A tout élément aeBr(7) et à tout point géométrique XEV(K\ 
K => k9 est attachée une spécialisation a(x) G Br(X). (Si a est la classe d'une algèbre 
d'Azumaya A sur V9 a(x) est la classe de la fibre géométrique A(x)). 

Supposons que k soit un corps de nombres et que V(kv) soit non vide pour tout v. 
Soit V(A) l'espace des k-adèles de V. 

Fixons un sous-groupe B de Br(7). 

DéFINITION. — a) Les adèles (xv)9 (yv) e V(A) sont B-équivalents si 

VaEB, Vu, a(xv) = a(yv) E Br(k0). 

b) On désignera par E Vespace quotient de V(A) par la relation de B-équivalence. 

c) Soit X e E ; on définit un caractère ix : B -• Q/Z par la formule 

ix(à) = Z inv«(û(x J)> 
V 

où (xv) adèle quelconque de la classe X et où inv„ : Br(fey) <+ Q/Z est le plongement 
classique (c'est un isomorphisme si v n'est pas archimédienne). 

1. THéORèME DE L'OBSTRUCTION: V(k) c \J X c V(A). 
ix=0 

La démonstration est triviale : si l'adèle (xv) e X est un adèle principal et correspond 
au point x G V(k), alors a(x) appartient à Br(fc) pour tout a E B et, par conséquent, 

Z inv„a(x) = 0. 
V 

Si l'on choisit convenablement V et B, il se peut que ix # 0 pour tout X : alors V(k) 
est vide, bien que V(A) soit non vide. 

Avant de passer aux exemples, donnons quelques propriétés du groupe de Brauer-
Grothendieck Br(F). 

Les fc-morphismes canoniques V -> k et V® k -> V induisent des homomorphis-
mes Br(fe) -> Bv(V) et Bv(V) -> Br(F(g) fe). Désignons par Br0(7) l'image du premier 
homomorphisme et par Br^K) le noyau du deuxième. 

La filtration 
Br0(7) a Bv^V) œ Br2(V) = Br(F) 

joue un rôle essentiel dans l'étude du groupe de Brauer. Il est évident que, quels que 
soient B et X, on a B n Br0(F) c Ker ix. Ici, seuls les sous-groupes B contenus dans 
BT^V) nous intéressent. C'est pourquoi il faut savoir calculer Br1(K)/Br0(F). Ce groupe 
est décrit, dans une large mesure, par le résultat suivant, dans lequel on suppose que 
V est une varité projective lisse : 
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Soit VQ la variété d'Albanese de V, V0 la variété duale et NS le groupe de Nêron-
Severi. 

2. THéORèME. — Si H3(G, k*) = 0, on a une suite exacte 

Pic (V® k)G -+ NS(V®kf -+ H\G, V0(k)) A Br^VyB^V) 
*> H\G, NS(V® k)) -+ H2(G, V0(k)). 

Cas particuliers 
a) Si H1 (G, NS(V® k)) = 0 (par exemple, si V est une courbe, ou, plus généralement, 

si NS(V® k) est libre et G opère dessus de façon triviaje), il existe un épimorphisme à 
noyau fini 

Hl(G, V0(k)) A Br1(F)/Br0(F) - 0. 

b) Si K0 = { 0}, alors Br^/B^V) s H\G, 1S[S(V® k)). 

Pour la démonstration, nous aurons besoin de deux lemmes. 

3. LEMME. — Br1(F)/Br0(F) s H\G, Pic(V®k). 

Démonstration. — Soit k(Ç) le corps des fonctions rationnelles sur V® k. De la lissité 
de V, on déduit facilement, par passage à la fibre générique, la suite exacte (cf. Grothen­
dieck [5], II) 

0 -> Br,(V) -+ H2(G,k(Ç)*) -• H2(G, Div(V®k)). 

On peut l'inclure dans le diagramme commutatif: 

Br(/c) ^ Br(k) 

1 i_ 
0 -» BTiiV) -> H2(G, fc(ö*) -> H2(G, Div (K® fc)) 

i i1 

0 -• iî^G, Pic (F® k)) -+ H2(G, k(Ç)*/k*) -+ H2(G, Div (f ® A:)) i 
H3(G, /c*) = 0 

La ligne du bas de ce diagramme provient de la suite exacte de G-modules 

0 -• k(Ç)*/k* -+ F)iv(V®k) -+ Pic(V®k) -+ 0, 

tandis que la colonne provient de la suite 0 -• k* -> k(â)* ->• k(Ç)*fk* -*• 0. 
En utilisant la partie gauche de ce diagramme, on obtient facilement le résultat 

cherché. (Ce raisonnement a été utilisé par Lichtenbaum [6] dans le cas où V est une 
courbe et où, par conséquent, BT^V) = Bv(V)). 

Remarque. — La condition H3(G, k*) = 0 peut être remplacée par la suivante : V(k) 
est dense pour la topologie de Zariski. 

4. LEMME. — Pic°(V®k) = V0(k) en tant que G-modules. 

Démonstration. •— Pic0 est le groupe des classes des diviseurs qui sont algébriquement 
équivalents à zéro. L'application canonique a : V x V -> V0 induit un plongement 

a*: Pic°(F0) -> Pic°(Fx V)\ 
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en outre, l'application L H> pfL ® p%L~^ (où pt'. Vx V -> F est la ième projection) 
définit un plongement 

ß*: Pic°(F) -> Pic°(Fx V). 

On voit facilement que a* et ß* ont même image, formée des classes des faisceaux 
inversibles sur V x V qui sont triviaux sur la diagonale. Ceci donne des isomorphismes 
VQ(k) -* Pic°(F0) ; on a une construction analogue sur le corps k. 

DéMONSTRATION DU THéORèME 2. — On l'obtient en considérant la suite exacte 
de cohomologie associée à la suite de G-modules 

0 -> Pic°(V®k) -+ Pic(V®k) -> NS(V®k) -> 0 

et en appliquant les lemmes 3 et 4. 

Applications. — Nous nous limiterons à deux exemples: 

5. LA SURFACE DE SWINNERTON-DYER [12]. — Cette surface F est donnée par l'équa­
tion homogène sur g : 

T2(T0 + T3)(TQ + 2T3) = f i (T0 + fl»7i + 0(f)2T2) (1) 
i = l 

où les 0(O sont les trois racines du polynôme O3 + 7(0 + l)2 = 0. On vérifie facilement 
que V(Qp) et V(R) sont non vides. Soit K = Q(0). C'est une extension cubique normale ; 
V® K est birationnellement équivalente à P\. On a donc Br(F) = Br^F) et VQ = 0. 
Il découle du théorème 2 que 

Br1(F)/Br0(F) = H1 (Gai K/k9 Pic (F® K)) ^ Z3 x Z3. 

Étant donné que G0 = Gal(K/k) est cyclique, il est commode d'identifier BT(V) au 
sous-groupe de Br(Q(Ç)) que voici : 

Ker [H2(G09 K«)*) -+ ff2(G0, Div (F® K))] 
S Ker [H°(G0f X(0*) -> H°(G0, Div ( 7 ® K))] c: /cfâVN^K^)*), 

où ^ est un point générique de V. 
Désignons par B le sous-groupe de Bv^V) engendré par les deux éléments de 

k(Ç)*/NK/k(K(Ç)*) représentés par les fonctions 

, T0 + T3 , _T0 + 2T3 
Jl ~ rp > J2 rp 

J 3 ^3 

(Leurs diviseurs sont des normes, comme on le voit sur l'équation (1) ; c'est pourquoi 
les cocycles fonctionnels correspondants se décomposent dans la cohomologie à 
coefficients dans Div (V). Un calcul facile montre que Bv(V) est engendré par Br0(F) 
et B). 

Une étude locale élémentaire permet d'établir le fait suivant : 

PROPOSITION. — a) Soit XEV(R) OU V(Qp)9 avec p^l, T3(T0 + T3)(T0 + 2T3)(x)^0. 
Alors 

invv(fi(x)) = invv(f2(x)) = 0. 

b) Soit XE V(Q7). Alors, ou bien inv7(fl(x)) ^ 0, ou bien m\1(f2(x)) # 0. 
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Le résultat relatif à Q7 provient de ce que 7 est complètement ramifié dans K, et 
fi(x) e t /2W doivent être des unités locales, tandis que f2(x) — ft(x) = 1. Mais les nor­
mes des unités locales sont congrues à ± 1 (mod. 7) et leur différence ne "peut donc 
être égale à 1. 

COROLLAIRE. — L'ensemble V(Q) est vide. 

En effet, il découle clairement de la proposition précédente que, pour tout adèle 
(xv) E V(A), on a £ invX/lM) ^ 0 ou £ mvv(f2(x)) ï 0. 

V V 

On peut interpréter de la même façon les contre-exemples de Mordell [9] qui cons­
tituent plusieurs séries infinies. 

L'exemple plus fin de Cassels et Guy [3] rentre aussi dans notre schéma général 
mais non sans quelques difficultés. Pour les détails, voir [7]. 

VARIéTéS ABéLIENNES. — Soit V un espace homogène principal sur une variété abé­
lienne V0 et soit bEH1(G, V0(k)) sa classe de cohomologie, où G = Gai (k/k). Si tous 
les V(kv) sont non vides, alors bE 111(̂ 0)-

Choisissons maintenant le sous-groupe B de Br(7). L'obstruction la plus écono­
mique est obtenue si l'ensemble E = V(A) mod B est composé d'une seule classe, autre­
ment dit si, pour tout a e B, la spécialisation a(xv) ne dépend pas du choix de xv dans 
V(kv). Pour cela, il suffit que a ® k0 eBr 0 (F® kv) pour tout v; dans ce cas, l'obstruc­
tion est alors l'homomorphisme i: B -> Q/Z défini par 

i(a) = £ inv„(fl(xy)). 
V 

En particulier, le théorème 2 montre qu'on peut prendre pour B le groupe suivant : 

B^p-'ocpmVo)), (2) 

où p ; Br(F) -• Br(F)/Br0(F) est l'épimorphisme canonique. 

Dans ces conditions, on a 

6. THéORèME. — Soit üEB, p(a) = cp(a'), a'E LU(K0), et soit bE [U(V0) la classe de 
l'espace V. On a alors 

i(a) = <:b,a'yEQ/Z, 

où < , > est la forme de Cassels-Tate lil(F0) x LU(F0) -> Q/Z. 

La démonstration s'obtient par une simple comparaison de deux définitions (cf. la 
proposition 8 c) ci-dessous, qui contient l'idée centrale des calculs). 

Remarques. 

a) Regardons ce que l'on obtient si on construit l'obstruction à l'aide d'un sous-
groupe plus grand que le groupe (2). Ceci a une raison d'être si l'obstruction précédente 
est nulle, ou, autrement dit, si (classe JOeL-K t̂)), a v e c les notations de Cassels [2]. 
Posons alors B'= p - 1 o cp(H1(G, V0(k)). Il est évident que pour toute classe 
X E V(A) mod B', nous avons B E Ker ix, où B est défini par (2). Chaque classe X 
définit donc un caractère 

i'x: B'/B = H\G9 FoW)/UJ(?o) - Q/Z 
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Si, comme le suppose Cassels, m est fini, alors L-|(F0) = { 0 } et V= V0; l'ensemble 
V0(A) mod J3' possède une structure de groupe naturelle. On peut alors montrer que 
i' fournit une dualité topologique 

V0(A) mod B' x H\G, V0(k))/[U(V0) -> Q/Z, 

et donner une description plus transparente de la ^'-équivalence. 

Ceci constitue l'étape essentielle dans la construction d'une suite exacte duale à 

0 -> H\G, V0(k))/iU(Vo) -> I t f 1 ^ , %(K)) - 6(?o) -+ 0. 
V 

En fait, Cassels [2] considère une suite à 4 termes, avec |_U(F0) à gauche, et il obtient 
la suite duale 

o «- LU(F0) «- e - rpS(*J «- W « - o (3) 
V 

où VóikJ est le quotient de V0(kv) par sa composante neutre et V0(k)~ le complété de 
V0(k) pour la topologie induite. 

b) Soit V0 un tore et V sa fermeture projective lisse. Voskressensky a construit la 
suite exacte suivante ([14], théorème 6): 

0 4- Uj(Ko) «- H\G, Pic(7®k) <- n ^ o W «- W « - 0- (4) 

L'analogie avec (3) est presque complète puisque, en raison du théorème 2, on a 

tf HG, Pic(F® k)) s Br^Fj/BroW 

(dans (3), le groupe 0 est effectivement dual de Br^Fy/Br^Fo) . . . ) . 

c) Plusieurs propriétés de la forme de Cassels-Tate résultent directement de notre 
définition. Toutefois, l'additivité par rapport au premier argument (voir théorème 6) 
n'est pas évidente. C'est pourquoi nous allons reformuler la « composante locale » 
de notre construction de manière à rendre évidente l'existence d'un accouplement 
complétant les homomorphismes ix. 

Produit scalaire. 

Soit k un corps parfait, V une variété sur k, Z(V) le groupe des cycles de V de dimen­
sion zéro. Les points fermés XEV forment une base de ce groupe. 

7. DéFINITION. — L'accouplement 

Br(F) x Z(V) -+ Br(/c) 

est défini par la formule 

(a, Zn^xJ) = 2n£ c o r ^ ^ a f o ) (5) 

pour aeBr(F), £n£x{ G Z(V), Où cor est l'homomorphisme de corestriction 

Br(k(xt)) -> Br(k). 

Cette définition a été proposée dans [8]. Lichtenbaum [6], et avant lui D. K. Fad-
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deev [4], ont étudié une construction analogue lorsque V est une courbe ; dans le cas 
dim V^ 2, on observe de nouveaux phénomènes qui sont intéressants. 

Pour formuler les principales propriétés de l'accouplement ci-dessus, considérons 
la filtration 

Z,(V) a Za(V) œ Z0(V) c Z(V). 

Le groupe Z0(V) est formé des cycles de degré zéro : 

z = Srcpc, G Z0(F) <^ deg z = E«,[/c(x,): le] = 0. 

Pour définir Za(V), on utilise le fait que l'application canonique d'Albanese 
a : V x V -* V0 induit l'homomorphisme « de sommation » ß : Z0(V) -> V0(k). Son 
noyau est Za(V). 

Enfin, Zt(V) est le groupe des cycles rationnellement équivalents à zéro. Il est engen­
dré par les cycles de la forme z(0) — z(oo), où { z(t), t} <= Vx P1 est un système plat 
quelconque de cycles de V de dimension zéro, de base P1. 

8. PROPOSITION. 

a) Pour tout aGBr0(F) et tout ZEZ0(V), on a (a, z) = 0. 
b) Pour tout aEBr(V) et tout ZEZX(V), on a (a, z) = 0. 

c) Soit cp: H^G, 90(k)) -> Br^/Br« ,^) et soit p: Br^K) -» Br^VyBr^V) les 
applications canoniques. Si p(a) = cp(a'), z E Z0(V) et si V(k) n'est pas vide, on a 

(a,z) = (a'9ß(z))T, (6) 

où ( , )T est l'accouplement de Tate 13 : H1(G9 %(k)) x V0(k) -* Br(fc). En particulier, 
p~1oq>(H1{G, F0$))) et Za(V) sont orthogonaux. 

(Il est probable que la condition « V(k) est non vide » n'est pas indispensable). 

De cette proposition découle immédiatement le théorème suivant : 

9. THéORèME. — Le produit scalaire défini ci-dessus induit des accouplements 

BT(V)/BT(V0) X Zéy)/Zx(V) -> Br(fc), (7) 

Bri(7)/Br0(K) x Z0(F)/Z1(F) - Br(/c), (8) 

où Bi\(V) = p-'ocptf^G, V0(k))) c BTt(V); 

Br(F)/Brl(7) x Za(V)/Zjy) -> Br(fe). (9) 

Commentaires. — Il n'y a rien à dire de spécial sur l'accouplement (7) ; il est intervenu 
dans la construction de l'obstruction au principe de Hasse. L'accouplement (8) pour­
rait être considéré comme une « explication » de la construction de Tate, si celle-ci 
n'était pas déjà classique. 

L'accouplement (9) est vraisemblablement nouveau. Les deux groupes qui y figurent 
ne peuvent être non triviaux que si dim V*& 2, et ils ont encore été très peu étudiés 
(même pour les variétés abéliennes). Voilà ce que l'on sait à leur sujet : 

Supposons pour simplifier que H 1 (G, NS(V® k)) = 0 (pour des V abéliennes et, 
plus généralement, pour des variétés sans torsion, cette condition peut être réalisée 
après extension finie du corps de base). 
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Alors Bri(F) = Br^F) (théorème 2). D'après la définition de Br l s le morphisme de 
projection V® k -> V induit un plongement 

BrtPO/Br^F) e» (Br(7® k))G, 

où G agit sur Br(F® k) par le deuxième facteur. D'après Grothendieck [5], il existe 
un isomorphisme canonique 

Br(F®I) = H2(V, fio0)/(Q/Z®NS(V®k))9 

où H2(V9 p^) = lina H2(V9 p,„). En particulier, Br(F® k) est un groupe divisible de 
corang fini B2 — p. 

Selon une conjecture de Tate, le groupe (Br(F® k))G doit être fini si [k : Q] < oo. 
On connaît peu de choses sur l'action de G sur H2(V, p^) dans le cas des corps locaux. 
Lorsque V = X x Y, où X et Y sont des courbes elliptiques, on peut construire, en 
utilisant la théorie de Serre [11], des exemples intéressants de V pour lesquels le corang 
de (Bx(V® k))G est non nul. Toutefois, j'ignore dans quelle mesure Br(F)/Br1(F) peut 
être différent de (Br(7® k))G. 

Considérons maintenant le groupe Zfl(F)/Z1(F). Le seul résultat connu concernant 
ce groupe est le théorème suivant de Mumford [10] : si k — C et dim H°(V9 Q}) > 0, 
alors ZJ^/Z^V) est de dimension infinie. Malheureusement, la méthode de Severi-
Mumford ne donne presque pas de renseignements supplémentaires sur ce groupe; 
en particulier, j'ignore dans quelle mesure il peut être non trivial sur un corps dénom-
brable. 

C'est pourquoi il est logique d'essayer d'utiliser l'accouplement (9) pour l'étude de 
ce groupe. 

Il est à noter que les deux approches sont liées, d'une certaine façon, à l'existence 
de cycles transcendants de dimension deux sur V (par l'intermédiaire des inégalités 
h2'0 > 0 ou B2 - p > 0). N'y a-t-il pas d'explication de ce fait? 

Autre question: peut-on construire un élément infiniment divisible dans LLl(̂ o), 
où V0 est une variété abélienne convenable, en utilisant l'obstruction sur Br(F)/Br1(F)? 
En tout cas, la structure du noyau d'Albanese doit jouer un rôle dans l'arithmétique 
des variétés abéliennes. 

10. DÉMONSTRATION DE LA PROPOSITION 8 

a) Soit aGBr0(F) l'image de a'eBr(fe). Alors, pour tout point fermé XEV9 a(x) 
est l'image de resk/fc(x)a'. On a donc 

corft(jc)/fta(x) = [k(x): k]a 

et par suite 

(a, z) = deg (z)-a pour tout ZEZ(V). 

b) Soit C c Vx P 1 le graphe d'un système plat irréductible z(t) de cycles de dimen­
sion zéro sur V. La compatibilité de la corestriction et de la spécialisation montre 
que pour tout élément aEBr(V) et tout point tEP\k), on a: 

(a, z(t)) = (corc/Pi(pî(a) |c), t), 
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où px : V x P1 -• V est la projection et l'homomorphisme corc/^i: Br(C) -> Br(Pl) 
est induit par la corestriction habituelle aux points génériques. Mais 

Br(Pl) = Br0(P
x) = Br(k), 

et (a, z(t)) ne dépend donc pas de t. 

c) La démonstration de la formule (6) repose sur une comparaison détaillée des 
définitions. 

Puisque V(k), par hypothèse, est non vide, il existe une application a0 : V -* V0 

telle que l'application d'Albanese a : V x V -> V0 soit donnée par a(x, y) = a0(x) — a0(y). 
Identifions Z(V) avec Z(V® k)G. Alors, l'application ß : Z0(V) -» • V(k) est donnée 
par la formule 

ß( L_ nx(x)) = En,a0(x). 
xeV(k) 

Soit a' E H1 (G, Po(fe)) ; choisissons un cocycle { as} représentant a' dans une extension 
normale finie K/k où a' se décompose. Soit en outre : 

z= £ nx(x)EZ0(V). 
xeV(Jc) 

Nous garderons ces notations jusqu'à la fin de la démonstration. 

Calcul de (a!, ß(z))T. 

Suivant la méthode de Tate [13], calculons d'abord da', où ô provient de la suite 
exacte (où S désigne l'homomorphisme « somme »): 

0 -+ Za(% ® K) -+ ZQ(V0 ® K) A V0(K) -+ 0. 

Pour image inverse de as dans Z0(V0 ® K), prenons le cycle (a$ — (0). La classe de 
cohomologie ôa' est alors représentée par le cocycle 

{ (sa) - (am) + (as) - (0)} e Z2(G, Za(% ® K)). 

Soit D c VQ X V un diviseur de Poincaré. Pour tout point géométrique x E V0(K), 
notons D(x) E Div (V0 ® K) sa fibre géométrique en x. Si s, t E G, le diviseur 

D(sa) - D(ast) + D(as) - D(0) (10) 

est un diviseur principal d'après le théorème du carré. Soit gst la fonction rationnelle 
correspondante sur VQ ® K. 

Ici se terminent les opérations pour le premier terme a'. 

Il reste encore à choisir une image inverse pour S du point ß(z). Nous prenons pour 
cela le cycle _ 

X nx(a0(x))EZ0(V0®k)G. 
xeV(k) 

Maintenant, par définition, la classe de cohomologie (a'9 ß(z))T appartenant à 
H2(G9 K*) est représentée par le cocycle 

{ n U « . W M 6 Z 2 ( G , P ) . (il) 
xeVŒ) 

(Le diviseur de Poincaré D doit être choisi tel que Supp ÇLsD) ne contienne pas 
de points a0(x) avec nx ^ 0, ce que l'on peut toujours réaliser). 
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Calcul de (a, z). 

Il faut d'abord calculer l'élément 

cp(a') EBr^/Br^V). 

L'homomorphisme composé V0(K) -> Pic°(V0®K) ^ Pic°(V® K) c» Pic(V®K) 
transforme le cocycle {as} en 

{ CU*(a§(D(fls))} G Z\G, Pic (V® K)). 

De plus (voir la démonstration du lemme 3), l'homomorphisme bord associé à la suite 

0 -+ K(Ç)*/K* -> Div(F®X) -> Pic(F®K) -> 0, 

transforme ce cocycle en le cocycle { fSjt mod K* } G Z2(G, K(v)*/K), Où 

div ( / J = <*t(D(sat) - D(ast) + D(as)). (12) 

La classe de ce cocycle est égale à l'image de cp(a') dans H2(G, K(Ç)*/K). La défini­
tion 7 montre clairement que (a, z) est représenté par le cocycle 

{ Il fs.t(xr*}eZ2(G,K*). (13) 
xeVQi) 

Mais le diviseur D peut être choisi de telle sorte que D(0) = 0. On voit alors, en com­
parant les formules (10) et (12), que, après une normalisation convenable, on a 

fs,t = <**(gs,t), 
et donc fStt(x) = gStt(aQ(x)). 

Ceci démontre l'égalité de (11) et (13) et termine la démonstration de la proposition 8. 
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LE THEOREME DE TORELLI 

POUR LES SURFACES ALGÉBRIQUES DE TYPE K3 

par I. R. SHAFAREVITCH 

Ce qui suit est l'exposition d'un travail effectué en commun avec I. I. Pjatetckii-
Shapiro. Nous étudions les surfaces algébriques sur le corps des nombres complexes 
qui possèdent une classe canonique nulle. Cette condition équivaut au fait que la 
première classe de Chern est égale à 0 ou encore au fait que le groupe structural du 
fibre tangent peut être réduit au groupe spécial linéaire. 

Il est bien connu qu'il existe deux classes de telles surfaces. L'une d'entre elles 
est constituée par les variétés abéliennes de dimension 2. Les surfaces de l'autre classe 
sont simplement connexes. On les appelle surfaces de type K3. 

Une variété abélienne est uniquement déterminée par les périodes de ses formes 
différentielles holomorphes de degré 1. Il est facile d'en déduire qu'elle est également 
déterminée par les périodes de sa forme différentielle holomorphe de degré 2. Sur 
une surface de type K3, il n'y a pas de forme holomorphe de degré 1, mais, en revanche, 
il existe une forme holomorphe de degré 2, unique à un facteur constant près. Nous 
examinerons dans quelle mesure les périodes de cette forme différentielle déterminent 
la surface. La question ne se pose de façon naturelle que pour les surfaces polarisées, 
i. e. munies d'une classe d'homologie de dimension 2 correspondant à une section 
hypcrplane. Pour énoncer le résultat, il est nécessaire d'introduire quelques notions : 

Comme on le sait (cf. par exemple [1], chap. IX), pour une surface X de type K3, 
le groupe H2(X, Z) est un Z-module libre de rang 22 et l'indice d'intersection y déter­
mine une structure de réseau pair unimodulaire euclidien de signature (3, 19). On sait 
que les réseaux euclidiens qui possèdent ces propriétés sont tous isomorphes. Fixons 
l'un d'eux, soit L, et un certain vecteur l de L. Nous appellerons surface distinguée 
de type K3 un triplet (X, c;, cp) = X où X est une surface de type K3, Ç e H2(X, Z) 
une classe de sections hyperplanes pour un certain plongement projectif et 
cp : H2(X, Z) -• L un isomorphisme de réseaux euclidiens tel que cp(Ç) = l. 

Posons fì = Horn (L, C) et définissons dans cet espace un produit scalaire bilinêaire 
sur C qui prolonge celui donné sur L. Désignons par fì le domaine de l'espace pro­
jectif de dimension 21 correspondant à fì, dont les points correspondent aux vecteurs 
œ G fì tels que 

œ2 = 0 
œ.œ > 0, 

et par fì(/) l'ensemble des w e f ì tels que œ.I = 0. L'ensemble fì(J) se présente comme 
la réunion disjointe de deux variétés complexes dont chacune est isomorphe à un 
domaine borné symétrique du type IV de la classification de E. Cartan. 
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Comme on le montre dans [1], chapitre IX, à toute surface distinguée de type K3, 
on peut associer un point T(X) E fì(Z). Pour cela, considérons une forme différentielle 
régulière co sur X et, pour y E H2(X9 Z), posons 

m -i 
Il est clair que / G Horn (H2(X9 Z), C) et que cp transforme / en g G Horn (L, C) = fì. 
Puisque la forme œ est déterminée de manière unique à un facteur constant près, le 
point correspondant de l'espace projectif, dont on vérifie facilement qu'il appartient 
à fì(/), est donc parfaitement déterminé. Ce point est noté t(Jt). On l'appelle périodes 
de la surface X et on appelle x l'application des périodes. 

Le résultat fondamental (théorème de Torelli pour les surfaces de type K3) affirme 
que la surface distinguée X de type K3 est déterminée de manière unique par ses pério­
des, i. e. par le point t(%) G fì(/). 

Voici le schéma de la démonstration de ce théorème. Nous nous appuierons sur le 
« théorème de Torelli local » pour les surfaces de type K3 démontré par G. N. Turina 
dans [1], chapitre IX. On construit une famille analytique âf -> S de surfaces de type K3 
dont toutes les fibres sont des surfaces distinguées, toutes les surfaces distinguées 
figurant (à isomorphisme près) parmi les fibres ; cette famille est effectivement para­
métrée par une base S de dimension 19. La construction repose sur la construction 
du schéma de Hilbert des surfaces de type K3 plongées dans un espace projectif et sur 
un passage au quotient selon le groupe projectif. Du résultat principal de [1], cha­
pitre IX, résulte que l'application des périodes T : S -> fì(Z) est un isomorphisme local 
holomorphe de la base de notre famille dans fì(Q. 

Nous construisons ci-dessous un ensemble partout dense Z c: fì(/) au-dessus duquel 
la représentation T est bijective. Notre théorème découlera alors du résultat simple 
suivant : 

Soit / : % -> V une application localement isomorphe de variétés analytiques. 
Supposons qu'il existe un ensemble Z cz V, partout dense dans V, tel que f~1(z) soit 
réduit à un point pour tout point ZEZ. Alors / est un plongement. 

Il reste à décrire la construction de l'ensemble Z c fì(Z) pour lequel on démontre 
d'abord le théorème de Torelli. Elle repose sur l'étude de certaines classes spéciales 
de surfaces du type K3. 

Considérons une variété abélienne A de dimension 2 et son automorphisme 6: 
Qx = — x, XEA. Désignons par g le groupe composé de 1 et 0. L'espace quotient A/g 
est un espace complexe normal. Il possède 16 points doubles correspondant aux 
points d'ordre 2 de A. Chacun de ces points peut être désingularisé par une transfor­
mation quadratique; la variété ainsi obtenue est une surface de type K3, appelée 
surface de Kummer. 

Si la variété abélienne A est réductible, c'est-à-dire contient une courbe elliptique, 
alors la surface de Kummer correspondante est dite spéciale. 

Il se trouve qu'il est possible d'exprimer qu'une surface de type K3 est une surface 
de Kummer spéciale en termes du réseau euclidien H2(X, Z) et de l'application des 
périodes T. 
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De manière précise, la structure de surface algébrique sur X particularise dans le 
groupe d'homologie H2(X, Z) un sous-réseau de cycles algébriques que nous désigne­
rons par S. Le théorème de Lefschetz caractérise le réseau S en termes de H2(X, Z) 
et de la représentation des périodes T : si X = (X, cp, Ç) est une surface distinguée, 
% = z(X) est une forme linéaire complexe sur L déterminée à une proportionnalité 
près, et S = Ker cp*(n). Ainsi, le réseau S est défini par les périodes de la surface dis­
tinguée X. 

Si A est une variété abélienne réductible et C une courbe elliptique contenue dans A, 
alors l'homomorphisme A -> A/C définit une fibration en courbes elliptiques. Cette 
fibration définit un faisceau de courbes elliptiques sur la surface de Kummer spéciale X 
correspondante. Les classes des fibres d'un tel faisceau peuvent être décrites par leurs 
propriétés dans le réseau S. Cela donne un critère pour que X soit une surface de Kum­
mer spéciale. 

Le théorème de Torelli se démontre directement pour les surfaces de Kummer 
spéciales. Parmi les périodes de telles surfaces de Kummer figure l'ensemble partout 
dense dont nous avons besoin. 

Indiquons quelques applications du théorème de Torelli. D'abord, il permet de 
décrire la « variété grossière des modules » des surfaces de type K3. Nous appellerons 
classe d'une telle surface le minimum des nombres \ B2, où Q) est un diviseur effectif 
sur la surface et 0 2 > 0. Alors, la variété des modules Mk des surfaces de classe k est 
une variété algébrique F — F0. Ici F est la compactification standard de l'espace fì(Q/r, 
quotient du domaine symétrique fì(Z) par son groupe discret d'automorphismes T, 
induit par les automorphismes du réseau L qui conservent un vecteur l9 le vecteur l 
étant arbitraire de longueur 2k. La sous-variété algébrique F0 c F se compose des 
images de la frontière de la compactification et du sous-ensemble défini par la condi­
tion œ.a = 0, aEL, a.l = 0, a2 — — 2. 

Si k = 2, nous avons affaire aux surfaces de degré 4 dans P3 . Dans ce cas, la variété M2 

est affine. Il est tout à fait vraisemblable qu'il en est toujours ainsi. 

La variété Mk possède un modèle défini sur le corps Q et tel que, pour tout point 
m G Mk, le corps Q(m) coïncide avec le « corps des modules » de la surface correspon­
dante X au sens de Shimura [2]. En particulier, si X ne possède pas d'automor-
phisme ^ 1, alors Q(m) coïncide avec le corps de définition de cette surface. 

Les autres applications sont liées à la structure du groupe des automorphismes de 
la surface de type K3. Soit S le groupe des classes de diviseurs d'une telle surface; on 
peut le considérer comme un réseau euclidien. Chaque vecteur a E S avec a2 — — 2 
définit un automorphisme du réseau S: 

x (-> x 4- (x.a).a, 

réflexion dans l'hyperplan orthogonal à a. Désignons par H le sous-groupe qu'ils 
engendrent dans le groupe de tous les automorphismes du réseau S ; il est clair que 
c'est un sous-groupe distingué. Il résulte facilement du théorème de Torelli que le 
groupe AutS/H, « à des groupes finis près », est isomorphe au groupe des automor­
phismes de la surface. Ici deux groupes G et G' sont dits isomorphes à des groupes 
finis près s'il existe des sous-groupes Gt c G et G\ c G' d'indices finis et des sous-
groupes distingués finis G0 c G, G'Q c G\ tels que GJG0 ~ G'JGQ. 
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Par exemple, si le réseau S est de rang 2, il est déterminé par une forme quadra­
tique indéfinie à deux variables F(x9 y). Le groupe des automorphismes de la surface X 
est infini si et seulement si la forme F ne représente ni 0 ni — 2. Pour toute forme qua­
dratique paire à deux variables indéfinie F, il existe une surface correspondante. Dans 
le travail [3], Severi a étudié le cas des surfaces du quatrième degré qui contiennent 
une courbe de degré 6 et de genre 2. Pour ces surfaces, la forme F est du type 

4x2 + 12xy + 2y2, 

et, en accord avec nos résultats, le groupe des automorphismes est infini. Comme 
dernière application, considérons les surfaces pour lesquelles le rang du groupe S 
est de valeur maximum possible 20. Nous les appellerons singulières. Le complémen­
taire orthogonal de S dans H2(X, Z) est le réseau défini positif des « cycles transcen­
dants ». Il est facile de déduire du théorème de Torelli qu'une surface singulière est 
entièrement définie par le réseau T. Le réseau T est pair, c'est-à-dire que £2= 0 (mod. 2) 
pour tout t G T, et tout réseau pair défini positif correspond à une certaine surface 
singulière. La surface singulière est de Kummer si et seulement si t2 = 0 (mod. 4) 
pour tout tET. 

Passons à certains problèmes soulevés par le théorème de Torelli. Si l'on compare 
cette situation à celle des variétés abéliennes de dimension 2, il est clair que, dans la 
théorie des surfaces de type K3, il manque un analogue à la notion d'isogénie. Il est 
facile de le définir dans le langage des périodes. Sur le domaine symétrique Q(l) agit 
un groupe discret F dont les transformations correspondent aux différents isomor-
phismes H2(X, Z) -> L qui transforment Ç en /. Des points équivalents correspondent 
à une même surface. Le groupe F est composé des points entiers d'un certain groupe 
algébrique G, F = G(Z). Il est naturel d'appeler isogènes des surfaces auxquelles 
correspondent des points dans fì(/) qui se déduisent l'un de l'autre par des transfor­
mations du groupe G(Q). Donc le problème d'un équivalent algébrique de cette notion 
se pose. 

Plus précisément, soit g E G(Q), X et y G fì(Q, y = gx, et Z et Y des surfaces distinguées 
telles que T(X) = X, z(y) = Y. La transformation g détermine un homomorphisme 
H2(X, Z) -> H2(Y, Z). Cet homomorphisme est-il donné par une certaine corres­
pondance algébrique entre X et Y ? Telle est la formulation précise de notre problème. 
Une réponse négative à cette question réfuterait la conjecture de Hodge. Une réponse 
positive démontrerait la méromorphie et l'équation fonctionnelle des fonctions £ 
des surfaces singulières de type K3 (et de beaucoup d'autres classes intéressantes). 
La recherche des surfaces de type K3 sur un corps fini est d'un grand intérêt. Quelle 
peut être la valeur minimale du rang du groupe S des classes de diviseurs sur de telles 
surfaces? Si l'on admet la conjecture de Tate, il est facile de montrer qu'elle est ^ 2. 
Nous ne savons pas si cette valeur peut être atteinte. Quelles sont les surfaces qui 
correspondent à la valeur maximale 22 de ce rang? Sont-elles toutes des surfaces de 
Kummer ? 

En conclusion mentionnons le problème extrêmement intéressant de la générali­
sation de ces considérations aux variétés algébriques de dimension quelconque et de 
classe canonique nulle. 
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B5- GÉOMÉTRIE ALGÉBRIQUE 

CONSTRUCTION TECHNIQUES 

FOR ALGEBRAIC SPACES 

by M. ARTIN 

This report may be viewed as a continuation of the discussion of the etale topology 
of [1], beginning with a partial answer to a question raised there. The idea here is, 
basically, to combine a theorem on the existence of algebraic functions, and known 
methods, with the notion of algebraic space [9, 12]. 

§ 1. Approximation of formal solutions 
of polynomial equations by algebraic ones. 

Let R be a field or a discrete valuation ring such that the field of fractions K of R 
is separable over K = tract (R), and let p denote the maximal ideal of R. We consider 
a finite set / = / i , . . .,frER[x, y] of polynomials in the variables x = xl9.. .,xm; 

THEOREM (1.1). — Let c be an integer. Given elements y = ylt.. .,y„ER[[x]] 
with f(x, y) = 0, there are elements yeÄ[[x]] with y = y (modulo (p, x)c) which are 
algebraic over JR[X], such that f(x, y) = 0. 

This result was proved by Greenberg [7] in case m = 0 (no x), and in general in [3]. 
There are examples showing that some hypothesis on JR is necessary [7]. 

A variant of this theorem would be the following: 

CONJECTURE (1.2). — Let c be an integer. There is an integer N = N(c) such that 
if f(x, y) = 0 (mod (p, x)N), there are elements y = y (mod (p, x)c) with /(x, y) — 0. 

Of course, y could be taken algebraic over ,R[x], by Theorem (1.1). This conjecture 
has been proved when m = 0 [7] or if R is a field [3]. In the latter case, it can moreover 
be shown that N depends only on the degrees of the / ; and on the number of variables 
(and not on R). It would be very interesting to have estimates on N(c) for a given 
system of equations / = 0. When m = 0, P. Cohen (unpublished) has shown that N 
is a linear function of c. 

One consequence of (1.2) is that a system of equations having an approximate 
solution (mod (p, x)c) for every c has an actual solution. Interestingly enough, this 
is easy to prove if the residue field is finite or algebraically closed and uncountable, 
but does not seem trivial in general. 

Here is a more general version of (1.1). 
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CONJECTURE (1.3). — Let A be an excellent [6] henselian local ring, let 

f = f1,...,fnEA[Y1,...,Yn], 

and let JEÂ be elements such that f(y) = 0. For every c, there exist yEA with 
y = y (mod mc) and f(y) = 0. 

From (1.1), one can show. 

COROLLARY (1.4). — This conjecture is true if A is the henselization of an Ä-algebra 
of finite type. 

An important further case of this conjecture would be that A is the henselization 
of a polynomial ring over a complete local ring, say of Ä[[x]][x'], where x=xu..., xm; 
x'= Xi,..., x'm. If JR is a field, then the case that m = 1 follows from (1.1). I do not 
see how to handle m = 2. 

§ 2. Existence of deformations. 

Using theorem (1.1), one can prove the existence of universal deformations of 
certain structures. Since our results are all local for the etale topology, we may as 
well work with henselian rings: Let R be a discrete valuation ring as in section 1 or an 
algebra of finite type over such a ring, with a chosen residue field k. Denote by C 
the category of henselian Ä-algebras with residue field k. We consider functors 

(2.1) F: C -• (sets) 

such that F(k) consists of one element. Let A E C be a complete local ring. A formal 
element c; of F(Ä) is a compatible sequence of elements Ç„EF(A/mn+1) for every n. 
Such an element is called formally versai (resp. universal) if given a ring B' EC of 
finite length, every diagram of solid arrows 

B *r\ 
(2.2) AÏ sending d£ 

*£' 

where B' is a quotient of R and { = | , can be completed with a dotted arrow (resp. 
with a unique dotted arrow). Schlessinger [16] gives the following criterion for the 
existence of a formal versai element : Let A' -» A be a surjective map in C whose kernel 
is of dimension 1 over k, and let B -> A be another map. 

THEOREM (2.3) (Schlessinger). — F admits a formal versai deformation if 

(1) The map 
F(A'xAB) -+ F(A') x F{A)F(B) 

is surjective whenever A, A', B are finite dimensional over k, and is bijective when 
moreover A = k, A' = k[t]/(t2). 

(2) F(k[t]/(t2)) is a finite dimensional /c-vector space. 

If t; E F(A), where A is essentially of finite type over JR, i. e., is the henselization of 
an K-algebra of finite type, then we call £ an algebraic element. An algebraic element 
is (uni) versai if every diagram (2.2) can be completed, where now B E C is arbitrary. 
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In addition, we will call £ weakly versai if the associated formal element is formally 
versai, and if the map Horn (A, B) -> F(B) is surjective for every B, i. e., if (2.2) holds 
when B' = k. 

THEOREM (2.4). — Suppose F admits a formal versai element l E F(A), and that F 
commutes with filtering direct limits in C. 

(i) If I is represented by an actual element J E F(A), then it is represented by an 
algebraic element £ e F(A) for some A essentially of finite type. 

(ii) If F satisfies (i) and condition (2.5) for every complete local ring B E C, then ^ 
is weakly versai. 

(iii) If in addition F satisfies condition (2.3) (1) when A, A', B are essentially of 
finite type, and condition (2.5) below for every B9 then c; is versai. 

CONDITION (2.5). — Let & r\EF(B). If <̂, rj induce the same element in F(B/mn) 
for every n, then Ç = n. 

I do not know an example of a weakly versai element which is not versai. They 
are certainly pathological if they exist. In any case, if in (ii) the element | is formally 
universal of if k is a finite field, then ^ is (uni)versal. 

The formal nature of the hypotheses of (i) is not clear to me. In the complex analytic 
analogue, the substitution of a complete local ring A into F would not seem to make 
much sense. This suggests that the conditions on direct and inverse limits might 
be combined into a single one. But, techniques don't seem available to handle such 
a condition. 

Theorem (2.4) has been applied successfully to various functors [4] [13]. One 
important case which is not yet settled is that of deformations of isolated singularities. 
The existence of algebraic deformations was proved by Deligne (unpublished) for 
complete intersections, and the analogous analytic problem has been settled by Kas-
Schlessinger (unpublished), and Tiurina [17]. 

§ 3. Application to global constructions. 

The natural global context for the results of section 2 is that of algebraic space [9], 
or, more generally, of algebraic stack [5]. An algebraic space X may be defined as a 
quotient X = U/R of a sum of affine schemes U by an equivalence relation R a U x U 
which is etale over U. (For a precise definition, see Knutson [9], Moisezon [12]). 
Algebraic spaces are more general objects than schemes, but behave in a similar way. 

Here is the basic existence theorem. Let S be a scheme of finite type over R (cf. § 1), 
and let 

F : (schemes/^)0 -• (sets) 

be a functor. When X = Spec A is affine, we write F(A) = F(X). 

THEOREM (3.1). — F is represented by an algebraic space locally of finite type over S 
if and only if 

(0) F is a sheaf for the etale topology. 
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(1) F is locally of finite presentation, i. e., F (lim A) = lim F(A) for every filtering 
system of 6Valgebras. 

(2) Let X be of finite type over S and Ç, n E F(X). The condition Ç = r\ is represented 
by a closed subscheme of X. 

(3) F is effectively pro-representable ([8], [4]). 
' (4) If Ç E F(U), where U is of finite type over S, and if the corresponding map U -+ F 
is formally etale at a point u E U of finite type, then it is formally etale at every point of 
finite type in a neighborhood of u. 

These conditions follow the general pattern introduced by Grothendieck [13, 14]. 
Condition (4) is rather technical and is explained at length in [4]. The pro-representa-
bility (3) can be replaced by 

(3.2) Let £0 e F(k0), where k0 is an eVfield of finite type. There is a complete 
local ring A and an element Ç e F(A) such that the map Spec A -> F is formally etale 
at the closed point of Spec A, and that £0 lifts to a map Spec k'0 -> Spec A for some 
separable extension fe'0 of k0. 

If the residue fields of finite type of S are perfect, this condition can be expressed 
in terms of Schlessinger's criterion (2.3). Otherwise one has to take into account 
inseparable field extensions (Levelt [10], [4]). 

The above theorem can be used to prove representability of Hilbert and Picard 
functors [4], [13] and the existence of modifications of algebraic spaces [4]. An ana­
logous result can be proved for algebraic stacks (cf. Deligne and Mumford [5]), viz. 

THEOREM (3.2). — Let F be a category fibred in groupoids over (schemes/S). Then F 
is an algebraic stack locally of finite type over S if and only if 

(0) F is a stack for the etale topology. 
(1) F is locally of finite presentation. 
(2) Let £, rj be 1-morphisms from X to F. Then Isom (x, Ç, n) is an algebraic space 

locally of finite type over S. 
(3) Condition (3.2) holds for 1-morphisms £0 : Spec k0 -+ F. 
(4) Condition (3.1) (4) holds for 1-morphisms U -• F. 
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THÉORIE DE HODGE I 

par PIERRE DELIGNE 

On se propose de donner un dictionnaire heuristique entre énoncés en cohomologie 
J-adique et énoncés en théorie de Hodge. Ce dictionnaire a notamment pour sources [3] 
et la théorie conjecturale des motifs de Grothendieck [2]. Jusqu'ici, il a surtout servi 
à formuler, en théorie de Hodge, des conjectures, et il en a parfois suggéré une démons­
tration. 

DéFINITION 1.1. — Une structure de Hodge mixte H consiste en 

(a) Un Z-module de type fini Hz (le « réseau entier ») ; 

(b) Une filtration croissance finie W sur HQ = Hz ® Q (la « filtration par le poids ») ; 

(c) Une filtration décroissante finie F sur Hc = Hz ® C (la « filtration de Hodge »). 

Ces données sont soumises à Vaxiome : 

Il existe sur Grw(Hc) une (unique) bigraduation par des sous-espaces Hp'q telle que 

(ï) Gr»w(Hc) = © Hp>q 

(U) la filtration F induit sur Grw(Hc) la filtration 

dv(F)' = 0 H™ 

(iii) H™ = Hqp. 

Un morphisme f : H -> H' est un homomorphisme fz : Hz -• f/2 tel que / Q : Hu -• H'Q 

et fcm. Hc -> H'c soient respectivement compatibles aux nitrations W et F. 

Les nombres de Hodge de H sont les entiers 

(1.2) hpq = dim 1P* = hqp. 

On dit que H est pure de poids n si hpq = 0 pour p + q ^ n (i. e. si Gr^(if) = 0 
pour i # n). On dit encore que H est une structure de Hodge de poids n. 

La structure de Hodge de Tate Z(l) est la structure de Hodge de poids — 2, pure­
ment de type ( - 1 , -1 ) , pour laquelle Z(l)c = C et Z(l)z = 2TCïZ = Ker (exp: C -> C*) <= C. 
On pose Z(n) = Z(l)®w. 

On peut montrer que les structures de Hodge mixtes forment une catégorie abé­
lienne. Si f : H -* H' est un morphisme, alors fQ et fc sont strictement compatibles 
aux filtrations W et F ([1], 2.3.5). 

2. Soient A un anneau normal intègre de type fini sur Z, K son corps des fractions 
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et K une clôture algébrique de K. Soit Knr la plus grande sous-extension de K non 
ramifiée en chaque idéal premier de A. On sait que, ou on pose 

n, (SpQc (A), K) = GB\ (KJK). 

Pour chaque point fermé x de Spec(X), défini par un idéal maximal mx de A, le 
corps résiduel kx = A/mx est fini; le point x définit une classe de conjugaison de « sub­
stitutions de Frobenius » cpxEn1 (Spec (4), K). On pose qx = # kx et Fx = cp"1. 

Soient K un corps de type fini sur le corps premier de caractéristique p, K une clôture 
algébrique de K, l un nombre premier ^ p et H un Z r (ou un Q r ) module de type fini 
muni d'une action continue p de Gai (K/K). On supposera toujours par la suite 
qu'il existe A comme plus haut, avec Z inversible dans A, tel que p se factorise par 
nt (Spec (A), K) = Gai (Knr/K). On dira que H est pur de poids n si pour tout point 
fermé x d'un ouvert non vide de Spec (4), les valeurs propres a de Fx agissant sur H 
sont des entiers algébriques dont tous les conjugués complexes sont de valeur absolue 

PRINCIPE 2.1. — Si le module galoisien H « provient de la géométrie algébrique », 
il existe sur HQl = H ®ZlQt une (unique) filtration croissante W (la « filtration par 
le poids »), invariante par Galois, telle que Gv^(H) soit pur de poids n. 

On peut penser que Gr^(H) est de plus semi-simple. 

Lorsqu'on dispose de la résolution des singularités, on peut souvent donner de W 
une définition conjecturale, dont la correction résulte des conjectures de Weil [5] (cf. 6). 

Soit jp le sous-groupe de K* formé des racines de l'unité. Le module de Tate Zz(l), 
défini par 

Zz(l) = Horn (QJ/ZJ , p) 

est pur de poids - 2. On pose Zt(n) = Zj(l)®". 

Il est trivial que tout morphisme / : H -+ H' est strictement compatible à la filtra­
tion par le poids. 

Le principe 2.1 concorde avec le fait que toute extension de Gm (« poids — 2 ») 
par une variété abélienne (« poids — 1 > — 2 ») est triviale. 

3. TRADUCTION. — Les modules galoisiens qui apparaissent en cohomologie l-adique 
ont pour analogue, sur C, les structures de Hodge mixte. On a de plus le dictionnaire 

module pur de poids n 

filtration par le poids 

homomorphisme compatible à Galois 

module de Tate Zj(l) 

structure de Hodge de poids n 

filtration par le poids 

morphisme 

structure de Hodge de Tate Z(l) 

4. Soit X une variété algébrique complexe (= schéma de type fini sur C, qu'on 
supposera séparé). Il existe un sous-corps K de C, de type fini sur Q tel que X puisse 
être défini sur K (i. e. provienne par extension des scalaires de K à C d'un X-schéma X'). 
Soit K la fermeture algébrique de K dans C. Le groupe de Galois Gal (K/K) agit alors 
sur les groupes de cohomologie l-adique H*(X, Z); on a 

H*(X(C), Z) ® Zt = H*(X, Z) = H*(X'K, Z). 
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D'après 3, il y a lieu de s'attendre à ce que les groupes de cohomologie Hn(X(C), Z) 
portent des structures de Hodge mixtes naturelles. C'est ce qu'on peut prouver (voir [1], 
3,2.5, pour le cas où X est lisse ; la démonstration est algébrique, à partir de la théorie 
de Hodge classique [6]). Pour X projectif et lisse, les conjectures de Weil impliquent 
que Hn(X, Z) est pur de poids n, tandis que la théorie de Hodge classique munit Hn(X9 Z) 
d'une structure de Hodge de poids n. Pour tout morphisme / : X -> Y et pour K 
assez grand, / * : H*(Y9 Z) -> H*(X9 Z) commute à Galois (par transport de struc­
ture); de même, / * : H*(Y9 Z) -> H*(X9 Z) est un morphisme de structures de Hodge 
mixte. Pour X lisse, la classe de cohomologie dans H2n(X, Z}(n)) d'un cycle algébrique 
de codimension n, Z, défini sur K, est invariante par Galois, i. e. définit 

C(Z)eHomG a l(Z,(-n),tf2"(X, Z,)). 

De même, la classe de cohomologie c(Z) E H2n(X(£), Z) est purement de type (n, n), 
i. e. correspond à 

c(Z) E Hom/J(M. (Z(- n)9 H2»(X(C)9 Z)). 

5. Si / : H -> H' est un morphisme, compatible à Galois, entre Qrvectoriels de 
poids différents, on a / = 0. De même, si / : H -> H' est un morphisme de structures 
de Hodge mixte pures de poids différents, alors / est de torsion. Une remarque plus 
utile est la 

SCHOLIE 5.1. — Soient H et H' des structures de Hodge de poids n et n'9 avec n > n'. 
Soit f : HQ -> H'u un homomorphisme tel que f : Hc ->• H'c respecte F. Alors f= 0. 

6. Soient X une variété projective et lisse sur C, D = J D , un diviseur à croise-
î 

ments normaux dans X, somme de diviseurs lisses, et; l'inclusion dans X de U = X — D. 

Pour Q cz [1, n], on pose DQ = Ç\ D{. 
ieQ 

En cohomologie Sadique, on a canoniquement 

(6.1) * % Z I = © U-<ÙDQ, 

et la suite spectrale de Leray pour j s'écrit 

(6.2) Ef = © Hp(DQ, Q) ® Z,(- q) => Hp+q(U, Q). 

D'après les conjectures de Weil [5], HP(DQ, Q) est pur de poids p, de sorte que E?>q 

est pur de poids p + 2q. En tant que quotient d'un sous-objet de Ep
2

q
9 E

pq aussi est pur 
de poids p + 2q. D'après 5, dr = 0 pour r ^ 3, car les poids p -f 2q et p + 2q — r + 2 
de EPq et EP+r'q~r+1 sont différents. On a donc F§* = Epq. A une renumérotation près, 
la filtration par le poids de H*(U9 Q) est l'aboutissement de (6.2) 

(6.3) Gr*(Hk(U, Q)) = E2k~n'n-k 

1. En cohomologie entière, pour la topologie usuelle, la suite spectrale de Leray 
pour j s'écrit 

(7.1) 'EÇ = © Hp(DQ9 Z) => Hp+q(U9 Z). 
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Puisque chaque DQ est une variété projective non singulière, 'Ef9 est muni d'une 
structure de Hodge de poids p. On pose Elq = 'Efq ® Z( — q) (structure de Hodge 
de poids p 4- 2q). Comme groupe abélien, Ef * = 'Ef * ; il y a intérêt à considérer (7.1) 
comme une suite spectrale de terme initial Ep

2
q. D'après 3, il faut s'attendre à ce que 

d2 : Ef* -> Ef"1"2,9-1 soit un morphisme de structure de Hodge. On le prouve en 
interprétant d2 comme un morphisme de Gysin. Dès lors, Ef* est muni d'une structure 
de Hodge de poids p + 2q. D'après 3, on s'attend à ce que, modulo torsion, la suite 
spectrale (6.4) dégénère au terme E3 (E3 = E«,), et à ce que la nullité des dr (r > 3) 
soit une application de 5.1. Ce programme est mené à bien dans [1] 3.2. On y définit 
la filtration par le poids de H*(U, Q) comme aboutissement de (7.1), à la renuméro­
tation (6.3) près. 

En fait, pour munir des groupes de cohomologie H* d'une structure de Hodge mixte, 
le point clef a toujours été jusqu'ici de trouver une suite spectrale E d'aboutissement H* 
telle que l'analogue Z-adique de Ef* soit conjecturalement pur (de poids p + 2q); 
Ef* doit alors porter une structure de Hodge naturelle (de poids p + 2q), et la filtra­
tion W est l'aboutissement de E. 

8. Soit Spec (V) le spectre d'un anneau de valuation discrète hensélien (un trait 
hensélien) de corps de fractions K et de corps résiduel k de type fini sur le corps premier 
de caractéristique p. Soient K une clôture algébrique de K et H un vectoriel de dimen­
sion finie sur Qt (/ # p), sur lequel Gai (K/K) agit continûment. D'après Grothendieck, 
on sait ([4], appendice) qu'un sous-groupe d'indice fini du groupe d'inertie I agit de 
façon unipotente. Remplaçant V par une extension finie, on se ramène au cas où l'action 
de J tout entier est unipotente (cas semi-stable) ; elle se factorise alors le plus grand 
pro-/-groupe It quotient de I, canoniquement isomorphe à Zz(l). 

PRINCIPE 8.1. — Dans le cas semi-stable, si le module galoisien H « provient de la 
géométrie algébrique », il existe une (unique) filtration croissante W de H (la « filtra­
tion par le poids ») telle que I agisse trivialement sur Gr^(H) et que Gr^(H), en tant 
que module galoisien sous Gal (k/k) cu Gai (K/K)/I, soit pur de poids n. 

On comparera à 2.1 et à l'appendice de [4]. 

Lorsqu'on dispose de la résolution des singularités, on peut parfois donner de W 
une définition conjecturale, dont la validité résulte des conjectures de Weil. A l'aide 
de la résolution et de Weil, il est souvent facile de montrer qu'en tout cas H se dévisse 
en modules galoisiens (sous Gai (k/k)) purs. 

Supposons H semi-stable. Pour TEI{, on définit log T comme la somme jznie 
— Ys (I& — T)nln- L'application (T, x) -> log T(x) s'identifie à un homomorphisme 

n>0 

(8.2) M: Zt(l)®H -> H. 

Puisque Zz(l) est de poids — 2, on a nécessairement (cf. 5) 

(8.3) M(Zt(l)®Wn(H))c:Wn_2(H) 

et M induit 

(8.4) Gr (M) : Z,(l) ® GrJT(tf) -+ Gv^2(H). 
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8.5. Si X est une variété projective non singulière sur un corps algébriquement 
clos /c0, on définit 

L : Z | ( - 1) (S H*(X, Z) - H*{X, Z,) 

comme étant le cup-produit avec la classe de cohomologie d'une section hyperplane. 
On notera une analogie formelle entre L et M ; de même que M est défini par une action 
de Zj(l), on peut regarder L comme défini par une action de Zt(— 1); L augmente 
le degré de 2, et Gr M (8.4) le diminue de 2. 

9. Soient D le disque unité, D* = D - {0 } et X 

X c • Pr(C) x D 

r 'pr 2 

D 

une famille de variétés projectives paramétrée par D, avec / propre et f \D* lisse. 
Gardons les notations de 8, et rappelons que dans l'analogie entre trait hensélien et 
petit voisinage de 0 dans la droite complexe on a le dictionnaire suivant (noter que 
le spectre de l'anneau des germes de fonctions holomorphes en 0 est un trait hensélien): 

. 1 . D 

D* 
un revêtement universel £>* de D* 

groupe fondamental n^D*) 

(avec TT^D*) = Z ~ Z(l)2) 

X 
X* =/"1(Z)*) 

x = XxDB* 
système local R%Z\D* 

H\X, Z) 

Spec(F) 

Spec(jq 

Spec(K) 

groupe d'inertie J 

(avec J, = Z,(l)) 

schéma projectif X sur Spec(K) 

XK 

XY 
module galoisien H\XK, Z) 

H\XK, Z) 

On notera que X est homotopiquement équivalent à chacune des fibres Xt =f~1(t) 
(t E £>*) : H{(XK, Zj) a encore pour analogue H\Xt, Z) et à l'action de I correspond 
la transformation de monodromie T. 

Ici encore, on sait qu'un sous-groupe d'indice fini de n^D*) agit de façon unipotente 
sur H\X, Q) = H\Xt, Q). Plaçons-nous dans le cas semi-stable où n^D*) tout entier 
agit de façon unipotente (ceci revient à remplacer D par un revêtement fini), et soit T 
l'action du générateur canonique de n^D*). 

Par 3 et 8, on s'attend à ce que H\X, Q) ~ H\Xt, Q) soit muni d'une filtration 
croissante W, que G r ^ H ^ , Q) soit muni d'une structure de Hodge de poids n, que 
log T(Wn) c Wn-2

 e t Que l°g 7" induise un morphisme de structures de Hodge 

M. : Z( - 1) ® GrJfW) -> Gr^2(H>). 

On aimerait de plus que (8.2), et non seulement (8.3) et (8.4), aient un analogue. 

On parvient en fait à définir, pour chaque vecteur u de l'espace tangent à D en { 0 }, 
une structure de Hodge mixte J^u sur H\X, Z). La filtration W et les structures de 
Hodge sur les Gr^(üT) sont indépendantes de w, et la dépendance en w de J^u s'exprime 
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simplement en terme de T. En analogie avec (8.2), on trouve que, quel que soit u, 
log T induit un homomorphisme de structures de Hodge mixtes 

M : Z(l) ® Hl(X, Z) -> H\X, Z). 

Enfin, l'analogie 8.5 n'est pas trompeuse (mais ici, le fait que / 1 D* soit supposé 
propre et lisse est sans doute essentiel). On prouve que 

(log Tf: GvY+k(H
n(X, Q)) -+ Gr^k(H»(X, Q)) 

est un isomorphisme pour tout k (cf. [6], IV 6, cor. au th. 5). Ceci caractérise la filtra­
tion W. Jusqu'ici, on ne dispose d'un analogue du théorème de positivité de Hodge 
(cf. [6], IV 7, cor. au th. 7) que dans des cas très particuliers. On espère que les structures 
mixtes JfH déterminent le comportement asymptotique, pour t -> 0, de la famille de 
structures pures H\Xt ,Z)(tE D*). 
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GROUPES DE BARSOTTI-TATE ET CRISTAUX 

par A. G R O T H E N D I E C K 

Dans la suite, p désigne un nombre premier fixé. Nous nous proposons d'exposer 
l'esquisse d'une généralisation de la théorie de Dieudonné [4] des groupes formels 
sur un corps parfait de car. p, au cas « des groupes de Barsotti-Tate » (« groupes p-divi-
sibles » dans la terminologie de Tate [5]) sur un schéma de base S sur lequel p est 
nilpotent. Un exposé plus détaillé se trouvera dans des notes développant un cours 
que j'ai donné sur ce sujet en juillet 1970 au Séminaire de Mathématique Supérieure 
de l'Université de Montréal, cf. aussi [7], 

1. Généralités. 

Si S est un schéma, on identifie les schémas X sur S aux faisceaux (fppf) [2] qu'ils 
représentent. Les (faisceaux en) groupes sur S sont supposés commutatifs. Un groupe G 
sur S est appelé un groupe de Barsotti-Tate sur S (ou p-groupe de BT sur S, si on veut 
spécifier p), s'il satisfait aux conditions suivantes: 

a) p.G = G, i. e. G est p-divisible. 
b) G est de p-torsion, i. e. G = lim pnG. 

c) Les groupes G(n) = pnG = Ker (p".idG) sont (représentables par des 5-schémas) 
•finis localement libres. 

En fait, il suffit (moyennant a) et b)) de supposer que G(l) = pG soit fini localement 
libre, pour que les G(n) le soient comme extensions multiples de groupes isomorphes 
à G(l). Notons que G(l) est de rang de la forme pd

9 où d est une fonction sur S localement 
constante à valeurs dans les entiers naturels, et que pour tout n, G(n) est alors de rang pdn. 
L'entier d s'appelle le rang ou la hauteur du groupe de Barsotti-Tate G. Remarquons 
qu'une extension de deux groupes de BT est un groupe de BT, et que le rang se comporte 
addilivement pour les extensions. Notons aussi que l'image inverse par un changement 
de base S' -* S d'un groupe de BT est un groupe de BT. 

Lorsque p est premier aux caractéristiques résiduelles de S, la catégorie des groupes 
de BT sur S est équivalente à la catégorie des faisceaux p-adiques libres constants 
tordus sur S [3], en associant à G le faisceau p-adique 

Tp(G) = « lim » G(n), 

le morphisme de transition G(n') ->• G(n) étant induit par la multiplication par p"'~" 
(pour n' ^ n). Si S est connexe et muni d'un point géométrique s, la catégorie en question 
est donc équivalente à celle des représentations linéaires continues du groupe fonda­
mental n = n^S, s) dans des Zp-modules libres de type fini. 
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Lorsque A est un schéma abélien sur S, son sous-groupe de p-torsion maximal 

poaA = lim pnA 
n 

est un groupe de BT, de rang égal à 2d, ou d est la dimension relative de A. Les pro­
priétés de A ont tendance à se refléter de facon très fidèle dans celles du groupe de BT 
associé, ce qui est une des raisons principales de l'intérêt des groupes de BT. Signalons 
à ce propos le 

THéORèME DE SERRE-TATE [6] [7], — Supposons que p soit localement nilpotent sur S 
(i. e. les car. résiduelles de S sont egales a p) et soit S' un voisinage infinitésimal de S. 
Alors, pour tout schéma abelien A sur S, les prolongements A§ de A à S' « correspondent 
exactement » aux prolongements du groupe de BT G associe à A en un groupe de BT G' 
sur S'. 

En fait, on obtient une équivalence entre la catégorie des schémas abéliens A' sur S', 
et la catégorie des triples (G', A, $) d'un groupe de BT G' sur S', d'un schéma abélien A 
sur S, et d'un isomorphisme 0 : G' | S ~ paoA. 

2. Groupe formel associé à un groupe de BT. 

Si G est un faisceau sur S muni d'une section e, on définit de façon évidente le voisi­
nage infinitésimal d'ordre n de cette section dans G, Inf" (G, é)9 et le voisinage infini­
tésimal d'ordre infini 

G = Inf00 (G, e) = lim Inf" (Gve). 

Lorsque G est un groupe de BT sur S et que p est localement nilpotent sur S, on prouve 
que G est un groupe de Lie formel, qu'on appelle le groupe formel associé au groupe 
de BT G. Sa formation est fonctorielle en G et commute au changement de base. 
Lorsque S est réduit à un point, G lui-même est un groupe de B T, et G est une extension 
d'un groupe de BT G/G ind-étale par le groupe de BT ind-infinitésimal G. La catégorie 
des groupes de BT ind-infinitésimaux n'est alors autre que celle des groupes de Lie 
formels qui sont p-divisibles, i. e. ou la multiplication par p est une isogénie [5]. 

3. Théorie de Dieudonné. 

Nous supposons maintenant p localement nilpotent sur S. Pour la notion de « cristal 
en modules localement libre » sur S, nous renvoyons à [1]; nous considérons ici S 
comme un schéma sur Zp, l'idéalpZp de Zp étant muni de ses structures de puissances 
divisées. La théorie de Dieudonné généralisée consiste en la définition d'un « foncteur 
de Dieudonné ». 

D : B?(S)° -> Crismodloclib (S), 

ou BT(S) désigne la catégorie des groupes de BT sur S. Ce foncteur est compatible 
avec les changements de base. On peut le construire par deux procédés assez distincts 
en apparence (méthode de l'exponentielle, et méthode des £j-extensions), dont la descrip­
tion dépasse le cadre de cette note. La première méthode a l'avantage de se prêter 



GROUPES DE BARSOTTI-TATE ET CRISTAUX 433 

directement à la théorie des extensions infinitésimales de groupes de BT du paragraphe 
suivant ; la deuxième, de permettre une comparaison assez directe de ce foncteur et le 
foncteur défini classiquement par Dieudonné, dans le cas où S est le spectre d'un corps 
parfait: dans ce cas, on trouve un isomorphisme canonique entre ce dernier, et le 
foncteur que nous construisons. 

Lorsque S est de caractéristique p, on dispose des morphismes de Frobenius et de 
Verschiebung (décalage) : 

G 2 <pm 

d'où, en transformant par le foncteur de Dieudonné O, des morphismes 

M 5± M(p/S), M = D(G), 

satisfaisant les conditions habituelles 

FMVM = P-idi*» VMFM = P• i c W o . 

Un cristal M muni de morphisme FM, VM satisfaisant aux conditions précédentes 
sera appelé un cristal de Dieudonné. Ainsi, la théorie de Dieudonné généralisée nous 
fournit un foncteur contravariant de la catégorie des groupes de Barsotti-Tate sur S 
dans celle des cristaux de Dieudonné, compatible aux changements de base. Lorsque S 
est le spectre d'un corps parfait, la théorie de Dieudonné classique nous apprend que 
c'est une équivalence de catégorie. Dans le cas général, on peut espérer que ce foncteur 
soit pleinement fidèle. 

On peut d'ailleurs donner une description conjecturale assez simple de l'image essen­
tielle de ce foncteur, que nous n'expliciterons pas ici. 

4. Filtration du cristal de Dieudonné et déformations de groupes de BT. 

Nous supposons toujours p localement nilpotent. Avec la construction du cristal 
de Dieudonné 0(G) d'un groupe de BT G, on trouve en même temps une filtration 
canonique du module localement libre 0(G)S sur S par un sous-module localement 
facteur direct Fil (0(G)S). De façon précise, on trouve une suite exacte canonique 

0 -> çoG -> B(G)S -> mG> -• 0, 

où coG est le faisceau localement libre sur S des 1-formes différentielles le long de la 
section unité du groupe de Lie formel G associé à G (n° 2), et G* = lim G(n)* désigne 
le groupe de BT dual de G (pour la dualité de Cartier), enfin " désigne le module dual. 
La suite exacte envisagée est fonctorielle en G, et commute aux changements de base. 

Soit maintenant S" un épaississement à puissances divisées de S, et supposons que, 
ou bien les puissances divisées envisagées sont nilpotentes, ou bien que les fibres de G 
sont connexes, ou qu'il en soit ainsi de celles de G* (i. e. G(l) est unipotent). Considérons 
le module localement libre D(G)S» sur S'. Pour tout prolongement G' de G en un groupe 
de BT,sur S, 0(G)S, peut s'identifier à 0(G')S, et à ce titre il est muni d'une filtration 
par un sous-module localement facteur direct Fil D>(G'), qui prolonge la filtration 
Fil 0(G) dont on dispose déjà sur 0(G)S. Ceci dit, on trouve que les prolongements 
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de G en un groupe de BT Gf sur S" « correspondent exactement » aux prolongements 
de la filtration qu'on a sur D(G)S en une filtration de 0(G)S, par un sous-module locale­
ment facteur direct. Plus précisément, on trouve une équivalence entre la catégorie 
des groupes de BT G' sur S' (resp. ceux à fibres connexes, resp. ceux à fibres ind-
unipotentes) avec la catégorie des couples (G, Fil), où G est un groupe de BT sur G 
(resp. un groupe de BT à fibres connexes, resp. à fibres und-unipotentes), et où Fil 
est une filtration de D(G)5* par un sous-module localement facteur direct, prolongeant 
la filtration canonique de 0(G)S. 

Remarques. 

1. Sans hypothèse sur les puissances divisées envisagées ou sur les fibres de G, 
on a en tous cas un foncteur 

G' K (G, Fil), 

mais même si G est la somme du groupe constant Qp/Zp et de son groupe de BT 
dual p00Gm, il n'est plus vrai (si les puiss. div. ne sont pas nilpotentes) qu'un prolonge­
ment de G soit connu quand on connaît le prolongement correspondant d'une filtra­
tion. Ceci est lié au fait que le logarithme sur 1 + J (J l'idéal d'augmentation) n'est 
plus nécessairement injectif. 

2. Soit toujours S un schéma où p soit localement nilpotent, et soit S0 c» S le 
sous-schéma Var (p) défini par l'annulation de p. Alors S est un épaississement à puis­
sances divisées de S, et si p # 2, il est à puissances divisées (localement) nilpotentes. 
On peut donc appliquer la théorie de déformations précédentes, pour expliciter les 
groupes de BT sur S en termes de groupes de BT sur le schéma SQ de car. p, et du pro­
longement d'une filtration, à condition, si p = 2, de se borner aux groupes de BT à 
fibres connexes ou ind-unipotentes. Si la théorie de Dieudonné du n° 3 fournit une 
description complète de la catégorie des groupes de BT sur S0 en termes cristallins 
(ce qui pour l'instant reste conjectural), on en déduit donc une description de la catégorie 
des groupes de BT sur S en termes purement « cristallins », avec toutefois le grain de 
sel habituel pour p = 2. 

5. Groupes de BT à isogénie près. 

La catégorie des groupes de BT « à isogénie près » sur S est par définition la catégorie 
dont les objects sont les groupes de BT sur S, et ou Homisog (G, G') est défini comme 
Horn (G, G') ®ZQ. Si p est localement nilpotent sur S, on trouve donc un foncteur de 
la catégorie des groupes de BT sur S à isogénie près, dans celle des cristaux sur S à 
isogénie près. Lorsque S' est un voisinage infinitésimal de 5, l'idéal d'épaississement 
étant annulé par une puissance de p, on trouve que le foncteur restriction induit une 
équivalence de la catégorie des groupes de BT à isogénie près sur S', avec la catégorie 
analogue pour S: ainsi, la théorie des déformations infinitésimales à isogénie près est 
triviale. 

Par un passage à la limite facile, on déduit des résultats du paragraphe précédent le 
résultat qui suit. 

Soit A un anneau séparé et complet pour la topologie p-adique, An = A/pn+1A. 
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Pour tout groupe de BT G0 sur SQ = Spec (A0), on définit par passage à la limite sur 
les D(G0)An un y4-module de type fini localement libre M = O(G0), et si G0 est prolongé 
en G sur A, M est muni d'une filtration par un sous-module facteur direct 
M' = Fil M a M. Localisant par rapport à p, on trouve un ^-module localement 
libre Mp, muni d'un facteur direct Fil Mp. On trouve ainsi un foncteur G0 -• O(G0)p 

de la catégorie des groupes de BT à isogénie près sur A09 dans la catégorie des modules 
localement libres sur Ap, et un foncteur G H- (G0, Fil) de la catégorie des groupes 
de BT à isogénie près G sur S, dans la catégorie des couples (G0, Fil) d'un groupe 
de BT à isogénie près G0 sur S0, et d'un sous-module facteur direct Fil O(G0)p. Ce 
dernier foncteur est pleinement fidèle. 

Considérons notamment le cas où A est un anneau de valuation discrète complet 
à corps résiduel k parfait de car. p, et à corps des fractions K de caractéristique nulle. 
On trouve qu'un groupe de BT G sur A est connu à isogénie près, quand on connait 
a) le groupe de BT G0 = G ® Ak sur k à isogénie près, ou ce qui revient au même, 
son espace de Dieudonné E = D(G0)W ® WL (ou L est le corps des fractions de l'anneau 
des vecteurs de Witt sur k)9 muni de FE et VE, et b) la filtration correspondante de 
D(G0)p = E®LK. 

Remarques. — Le résultat qui précède soulève de nombreuses questions auxquelles 
je ne sais répondre: 

1. Quelles sont les filtrations sur E ® LK qu'on peut obtenir par un groupe de BT 
à isogénie près sur A ? Forment-elles un ouvert de Zariski d'une grassmanienne ? 

2. Comment peut-on expliciter G, et plus particulièrement sa fibre générique GK 

(qu'on peut interpréter comme un vectoriel de dimension finie sur Qp sur lequel 
Gai (K/K) opère), en termes du couple (E, Fil a E ® LK), ou E est un L-vectoriel 
muni de FE et VE1 

3. Quels sont les modules galoisiens qu'on trouve à l'aide de groupes de BT à 
isogénie près G sur Al Comment, à l'aide d'un tel module galoisien, peut-on reconsti­
tuer plus ou moins algébriquement le couple (E, Fil)? (Cette question se pose à cause 
du théorème de Tate [5], qui nous dit que G est connu quand on connait le module 
galoisien associé.) 

Enfin, pour traiter la cohomologie cristalline et ses relations avec la cohomologie 
p-adique, il y a lieu de se poser des questions analogues, où les cristaux de Dieudonné 
avec filtrations à 2 crans sont remplacés par des cristaux avec un morphisme de Frobe­
nius et des filtrations finies de longueur quelconque (la cohomologie en dimension n 
donnant lieu à des filtrations à n + 1 crans). De plus, il y a lieu de ne pas se restreindre 
au cas des bases de dimension 1, et de revenir au cas des anneaux A supposés simple­
ment séparés et complets pour la topologie p-adique. 
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THE REGULARITY THEOREM 

IN ALGEBRAIC GEOMETRY 

by NICHOLAS M. KATZ 

I. Introduction. 

A basic finiteness theorem for families of algebraic varieties is that the Picard-
Fuchs differential equations have only regular (in the sense of Fuchs) singular points. 
The theorem was proved analytically by P. A. Griffiths [3], then by P. Deligne, both 
of whom used Hironaka's resolution of singularities [5] to be able to estimate the 
growths of solutions. 

Just recently, Deligne and the speaker independently found a purely algebro-geo-
metric proof, which makes the theorem a simple corollary of resolution. The method 
also leads to a direct proof of the monodromy theorem. 

II. The notion of regular singular points [1]. 

Let U be a smooth C-scheme. An algebraic differential equation on U is by defi­
nition a pair (M, V) consisting of a coherent sheaf M on U with an integrable connec­
tion (the existence of V implies that M is, in fact, locally free). We will view V as a 
homomorphism of abelian sheaves 

(2.1) V:M -> ni(g>% M 

(writing fìj; for Qj,/c) which satisfies the usual product rule and which extends to define 
a structure of complex on toy ®GV M, the " absolute de Rham complex " of (M, V). 

Now let S be a proper and smooth C-scheme, D = u Dt a union of connected smooth 
divisors in S with normal crossings, such that U ^ S — D, which we will refer to as 
a compactification of 17. Let DerD(S/C) denote the (locally free) sheaf on S of deriva­
tions which preserve the ideal sheaf of each branch Dt of D. The sheaf of differentials 
on S with logarithmic singularities along D is defined by 

Qh (log D) ^ HomGs (DerD (S/C), Os) 
{ ' } Og (log D) = Aj^Qì (log D) 

It is immediate that Çl's (log D) is a subcomplex of i^Q'u (i:U <+ S denoting the inclu­
sion). 

Following Fuchs and Deligne, we say that an algebraic differential equation (M, V) 
on U has regular singular points if, for every compactification U = S — D as above 
(by Hironaka [5], such compactifications exist!), there exists a pair (M, V) consisting 
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of a locally free sheaf M on S which prolongs M and a homomorphism V of abelian 
sheaves 

(2.3) V: M -> Q$(\ogD)®0sM 

which prolongs V. 

III. Remarks on the definition. 

(3.1) It is rather forbidding in appearance, but is certainly satisfied by (%, d = exte­
rior differentiation). 

(3.2) A consideration of the local monodromy around D shows that the underlying 
analytic differential equation (Man, Wan) always admits an analytic extension (Man

9 V5") 
as above, which, by GAGA, is uniquely algebrifiable. Restricting this algebraic data 
to U9 we get a second algebraic differential equation (Mf, V) on U, which depends 
only and functorially on (M, V), and an isomorphism of (Man, Vfln) with (M'an, Yaw). 
The condition that (M, V) have regular singular points is that the above isomorphism 
come from an isomorphism of (M, V) and (M', V). 

(3.3) It follows easily from (3.2) that (M, V) has regular singular points if and only 
if for every morphism / : V -> U with V a smooth curve, the inverse image /*(M, V) 
on V has regular singular points. 

(3.4) If U is a connected smooth curve, and 17 = S — D its canonical compacti­
fication, (M, V) has regular singular points if there exists an extension (M, V) as above 
with M coherent (M/torsion is a locally free extension to which V passes over). 

(3.5) Combining (3.3) and (3.4), it follows that (M, V) has regular singular points 
if for one compactification U = S — D there exists an extension (M, W) as above 
with M coherent 

IV. Relative de Rham cohomology [7]. 

Let / : U -> V be a proper and smooth morphism of smooth C-schemes, and 
(M, V) an algebraic differential equation on U. Composing V with the projection 
Qu ®0u M -> QU(V ®0U M, we obtain an integrable ^connection, still noted, 

(4.1) V: M ^ Qhiv®0üM 

which extends to provide a structure of complex to £lUfV ®0u M, the " relative de 
Rham complex of (M, V) ". The relative de Rham cohomology sheaves on V of 
(M, V) are defined by 

(4.2) H%R(U/V, (M, V)) = U%(iiviv ®„u M) 

These sheaves are coherent, as / is proper, and are endowed with an integrable con­
nection, whose construction we now recall. 
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Filter the absolute de Rham complex of (M, V) by the subcomplexes 

(4.3) F' = F'(ffD ®0u M) = image: f*[Ofy) ®C)v Q.^ ®0V M - Q„ » , „ M. 

The associated graded objects are given by 

(4.4) gr* = F'/F"1 =/*(n;,) ® , B ( O ^ ®ßv M) 

The integrable connection sought on H%R(U/V, (M, V)) is the differential d\,q in 
the spectral sequence of the filtered complex Qv ®Gu M and the functor U°f^, or, 
in more down to earth terms, it is the coboundary map 6q, in the long cohomology 
sequence of the Uqf^ arising from the short exact sequence 0 ->• gr1 -» F°/F2 -• gr° -> 0. 
Remember that, by (4.4), we have 

u 5) f ®%(gr°) = Hq
DR(U/V9 (M, V)) 

1 ' ' I W+1fM) = &v » ^ H^([//F, (M, V)). 

(4.6) Thus (H%R{U/V9(MfV))9ôq) is an algebraic differential equation on V. 
In particular, H%R(U/V9 (M9 V)) is locally free; this being so for all q9 it follows that 
the formation of the Hq

DR(U/V9 (M, V)) is compatible with arbitrary change of base. 

We remark that in the case (M, V) = (Gv, d), the connection just constructed on 
HDR(U/V)==:Ufiit(QViV) is the Gauss-Manin connection, and the resulting algebraic 
differential equation is classically called the Picard-Fuchs equation. 

V. The regularity theorem. 

THEOREM. — Assumptions as in IV, if (M9 V) has regular singular points, then the 
algebraic differential equations (H%R(U/V, (M, V)), öq) on V have regular singular 
points. 

Proof. — Combining (3.4) and (4.6), it suffices to treat the case in which F is a smooth 
connected curve. Let T be the complete non singular model of the function field 
of V, so that V= T— Y, Y a finite set of points of T, is the canonical compactification 
of V. By Hironaka [5], we can " compactify " the morphism f : U -+ V into a mor­
phism n: S -> T, so as to have a cartesian diagram 

U c—> S, 

V c—> T 

in which D = {n~1(Y) }red- is a union of connected smooth divisors in S which cross 
normally, and U = S — D is a compactification of U in the sense of II. 

Notice that TC*(Q£ (log Y)) is a subsheaf of Q£ (log D)). We define the (locally 
free) sheaf of relative differentials with logarithmic singularities along D by 

f QljT (log D) ^ flj (log D) /TT*(^ (log 7)) 
1 • j j Q£/r (log D) = Ap,Ql/T (log D) 
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The complex £l'S(T (log D) on S is a prolongation of ÇÏV(V, and fits into a short exact 
sequence of complexes 

(5.3) 0 -> 7c*(fì̂  (log Y) ®0sQ'sJT
1 (log D) -» Qs (log D) -> Q^T (log D) -> 0 

Now let (M, V) be an extension of (M, V) to 5, with M locally free and 
V: M -> fìg (log D) ®0S M a prolongation of V, and consider the complex deduced 
from V, 

(5.4) fìj (log 0) ®0S M 

which is a prolongation of Q'v ®ßu M. 

Filter 0,'s (log D) ®0S M by the subcomplexes 

(5.5) F1 = image n*(al
T (log 7) ®, s Clf* (log D) ® ^ M -• n ; (log D) ® §3 M 

The associated graded objects are given by 

(5.6) gf = F f/F f + 1 = 7C*(Qf
r(log Y)) ® % ( n ^ ( l o g D) ® % M). 

In particular, gr° is a prolongation of the relative de Rham complex QVfV® M of 
(M,V). 

We define the coherent sheaves on T. 

(5.7) HMS/T, (M, V)) ^ R%(Qi/T (log D) ®*s M) 

which are prolongations of the locally free sheaves Hq
DR(U/V9 (M, V)) on V. The 

extensions of Sq to homomorphisms of abelian sheaves 

(5.8) Jq : Ä%S/T, (M, V)) -> Q* (log Y) ®0T Hq
DR(S/T, (M, V)) 

are provided by the coboundary maps of the long cohomology sequence of the IR%# 

arising from the short exact sequence 0 -> gr1 -> F°/F2 -> gr° -+ 0 

Remember that, by (5.6), we have 

(5 Q) f Wiz*(gr0) = HÎ,R(S/T, (M, V)) 
1 ' j 1 B ^ ^ f e r 1 ) = fì^log Y) ®0T H%R(S/T, (M, V)). 

Thus the (Hq
DR(S/T, (M, V)), 5q) provide the desired extensions of the 

(Hq
DR(U/V, (M, V)), öq). QED. 

VI. The exponents. 

Notations as in II, let (M, V) be an algebraic differential equation on S with loga­
rithmic singularities along D. For each b r a n c h ^ of D, we denote by M(D) the 
locally free sheaf (9Di ®0s M on Dt. Composing V with the map " residue along Dt " 

(6.1) Q.I (log D) ®0s M " * " ° » g A " ® i &Di ^ M = M ( D j ) 

we obtain an (0Di-linear) endomorphism Lt of M(D). As Dt is proper, the characte-
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ristic polynomial of Lt, Pt(X) = det (XI — Li ; M(Dt)) lies in C[X]. Classically, 
Pt is called the indicial polynomial of (M, V) around Dt, and its roots are called expo­
nents pf (M, V) around Dt. The numbers exp (2nie)9 e an exponent, are the proper 
values of the local monodromy transformation " turning once around Dt " of the 
space of local holomorphic horizontal sections of (M, V) | S — D ; thus the exponents, 
which depend on (M, V), are determined modulo Z by (M, V) | S — D. 

VII. The Monodromy theorem. 

THEOREM. — Let V be a smooth connected curve, T its canonical compactification, 
f\U-*Va proper and smooth morphism, and n: S -> Ta compactification of 
f as in (5.1). Let (M, V) be an algebraic differential equation on U, and (M, V) an 
extension to S as in (2.1). Denote by P{(X) the indicial polynomial of (M, V) around D{. 

Let yeT— V9 and %~\y) = 'Lr
i=iaìDì its scheme-theoretic fibre. Then the indicial 

polynomial at y of (H%R(S/T9 (M, V)), öq) divides a power of 

fl 'flPfaX-Jd 
i=l ji = 0 

Proof — The question being local around y, let us base-change the entire situation 
by the inclusion Spec ((VTy) -*• T, but for simplicity keep the same notations (so T 
henceforth means Spec (0T>y), etc.). We must now adopt the dual view of the " con­
nection with logarithmic singularities " V as an action of DerD(S/C) on M satisfying 
the usual rules [8], and similarly of Jq as an action of Dery(T/C) on H%R(S/T, (M, V). 
Let t be a uniformizing parameter at y. Then the indicial polynomial at y of 
(H%R(S/T, (M, V)), <5 ) is just the characteristic polynomial of the endomorphism 

<«â of H%R(S/T, (M, V))0>). We will show that 

(7.1) O °ff P(?<ôhÇ) 'J') ^ W K W 7 ; (M, V))] = tHUßlT, (M, V)) 

H)-To do this we will use the explicit formulas of [8] for 5 J t — j . Let U be a covering 

of S by affine open sets Ult U2,... which is sufficiently fine, in the sense that each 
Uv admits coordinates xl9..., xn9 in terms of which Dt is defined by the equation 
xt = 0 (or by the equation 1 = 0, if Dadoes not meet l/v), and in terms of which t=IVi=1x

b
i
i
9 

with òj = 0 or ûj. Let C" denote the Cech bicomplex of quasi-coherent T-modules 
C'(U9 Q's/T (log D) ®0S M)9 whose (total) cohomology objects are just the 

HUS/T, (M, V)). 

d 
According to [8], we may construct an action a of t — on the underlying sheaf of C 

dt 
dh 

(i. e., for he(9Tty and ceC", a(hc) = t— c + ha(c)) which commutes with the total 

coboundary of C" and induces <5J t — I upon passage to cohomology. Indeed, if we 

choose for each open set Uv of the covering an element dv ET(UV, DerD(S/C)) which 
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d 
prolongs t —, there is a cr as above which preserves the filtration Fq of C" by the first 

dt 
degree, and which on gr%C" = Cq,m is just the Lie derivative Lie(V(dvJ) on 

r(ryVo n...nuVq, as/T (log D) ®0S M\ 

for v0 < . . . <vq. 

For each branch Dt of D, we denote by crf the action of t —- on C" corresponding 

d 
the choices of liftings of t— to an element d^eT(Uv, DerD(S/C)) given by 

dt 

(7.2) £#>=< 

1 S .„ 
— xt -r— if Dt meets Uv a{ dxt 

1 ô 
- Xj — if Dt does not meet Uv, and j is the least integer such that 

L aJ dxJ D, meets Uv 

We define 

n ~ J &t =\[PlWi - Ju for i = 1,. .., r 

IJS? = J2?i . . . J2?r 

The product rule assures that ££(tFq) a tFq
9 so that to conclude the proof we need 

only show that S?(Fq) c tFq + F«+ 1 , or equivalently, that S£(gr%C") c tgrJC". But 
this last is a " local " statement, namely that over UVo n ... r\UVq, v0 < ... < vq, 
we have 

(7-4) f i a n P£ (Lie (fl,V(dS2)) - MQi/r (log D) ®* M] cz *QS/T (log D) ®0S M 
i=l j , = 0 

or, what is equivalent, that over UVo we have 

(7.5) fi E ^ i W £ ) - Jt)M c ;M; 
i = l ji = 0 

Since the various lifting d® of £ — to U"Vo were so chosen as to mutually commute, 

the V(dij5) mutually commute (integrability), so we may rearrange the product and 
" absorb " those Pt corresponding to Dt which do not meet UVQ. Thus we may assume 

that all the Dt meet UVo,t = xa
1
l . . . xa

r
r
9 and atd® = xt ——. Since Pt is a polynomial 

ÖXi 

with constant coefficients and V( xt — ) is ^-linear for ; ^ i9 it suffices to show that, 

for i = 1 , . . . , r, we have 

(7.6) " n ^ i ( ^ ( * f ^ : ) —-̂ )CJB0 «= x?<Ar over C7V( 
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Recalling that the endomorphism Lt of M(Dt) is deduced from V ( x f — I over UVl 

by reduction modulo (x), we have, by definition of Pt, 

(7.7) p{v{x,'t)yM) *= x<M °ver ^ 

Combining this with the commutation formula 

the desired formula (7.6) (and hence the theorem) follows by induction on at. QED, 
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FINITENESS THEOREMS 

FOR ALGEBRAIC CYCLES 

by STEVEN L. KLEIMAN (*) 

Fix an algebraically closed ground field k and consider non-singular projective 
varieties X, Y irreducible of dimension n, m. Let C(X) denote the group of cycles 
of codimension r. An equivalence relation ~ is called adequate if the quotient 
®(Cr(X)/~) becomes a ring under intersection product which behaves functor-

r 

ially under /^ and / * for maps / : Y -+ X. We seek to filter C(X) by means of 
adequate equivalence relations so that the successive quotients are free groups of 
finite rank, finite groups or continuous systems of finite dimension. Since Samuel [13] 
spoke on this problem at the International Congress in 1958, some of the questions 
he raised have been answered, new questions have captured our attention and our 
techniques have greatly matured. 

Let Cr^g(X) denote the subgroup of cycles algebraically equivalent to 0 (resp. Cr
rQX(X) 

the cycles rationally equivalent to 0), i. e., those cycles which deform to 0 in an alge­
braic family {Z(t)} defined by a cycle ZeC(Tx X) parametrized by an irreducible 
non-singular variety T (resp. by T = P1) (2). We first seek the finest adequate relation ~ 
such that (Q lg(X)/~) is continuous of finite dimension in one of the usual senses 
explained below. 

A family F of" cycle classes is said to be limited by an algebraic family { Z(t)} if every 
class is represented by some cycle Z(t). This notion is rather crude because two 
different cycles may represent the same class. 

On a surface X with pg > 0, the residue classes (C|lg(X)/rat) do not form a limited 
family (cf. Mumford [11]). Consequently, on the Kummer surface of the self-product 
of an elliptic curve, the points rationally equivalent to a given point do not form a 
closed set (cf. [13], § 4.2). 

In a more refined condition on ~ , we require (Qig(X)/~) to correspond to the 
Jc-points of a variety A in such a way that the natural map w : C^g(X) -+ A(k) turn 
algebraic families { Z(t) \ t e T(k)} into T-points of A; precisely, a morphism 

(*) Much of this report is the fruit of meditation on some of the work and comments of 
David LIEBERMAN; / am personally indebted to him for pointing out the consequences of 
Mumford's work, for explaining his own work, Griffiths' insight and Grothendieck's con­
struction, and for giving birth with me to the simple proof that numerical and homological 
equivalence coincide on a complex abelian variety. 

(2) Algebraic equivalence is an adequate relation, and rational equivalence is the finest 
adequate relation (cf. [13], § 2). Unfortunately, in the literature there is not yet a satisfactory 
account of rational equivalence, especially of the « moving lemma ». 
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B(Z, w) : T -> A must exist which carries t to w(Z(t)). Now, these T-points form 
an additive group, and any algebraic family parametrized by an open subset of a non-
singular curve T extends over all of T (the condition of the valuative criterion of 
completeness); hence, we also require A to be an abelian variety and w a group homo­
morphism. Such w are called rational homomorphisms. The " image " of w is an 
abelian sub variety because any Z in C^g(X) can be deformed to 0 in a family parame­
trized by an abelian variety; so we may take w surjective. 

A cycle is abelian (cf. [13]) if it lies in the kernel of every rational homomorphism w. 
Abelian equivalence is adequate because every Ze(Cs(Yx X)/alg) determines a 
well-defined rational homomorphism w(Z(.)) on C^g

s+m)(Y). We seek one rational 
homomorphism w whose kernel is precisely the abelian cycles, in other terms, the 
universal surjective w. If such a w exists, then (Cr

aig(X)/Abl) is limited. 

In fact, given any surjective rational homomorphism w: Ca\g(X) -> A(k), there 
exists an abelian variety T and a class Ze(C(Tx Z)/rat) such that B(Z, w): T-> A 
is an isogeny. For, take such a pair (T, Z) where B(Z, w) has finite kernel and assume 
dim (T) is maximal. Suppose there is a cycle in Qlg(X) whose image under w does 
not lie in the image of B(Z, w), and take a family W(j) parametrized by an abelian 
variety J which deforms this cycle to 0. Construct a maximal abelian subvariety T' 
of TxJ containing TxO, with (T" n Ker (B(Zx J + TxW, w))) finite. Then 

dim (T) < dim (T'\ 
a contradiction. 

A homomorphism w : CaXg(X) -> A(k) is P-rational (3) if A is a Picard variety Pic°(Y) 
and w is Z(.): Cr

aig(X) -» (Ciig(Y)/mi) = A(k) where Ze(Cn~r+1(X x 7)/alg). For 
example, the natural homomorphism v: Clig(X) -> Pic°(X)(k) is defined by the 
diagonal class on X x,X, and v: C£\g(X) -> AAb(X)(k), by the Poincaré class %x on 
X x Pic°(X)'9 in both examples v is the universal surjective rational homomorphism, 
and in the first, Ker (v) is C^at(X). 

The P-rational homomorphism w is rational. For, if W e (Cr(T x X)/alg), then 
(ZoW)(t) represents B(W, w)(t). However, (Z<>W)e(C1(Tx Y)/mt), so there is a 
morphism / : T -> Pic°(Y) such that Z ° W = f*nY. A cycle is Picard equivalent 
to 0 if it lies in the kernel of every P-rational homomorphism; Picard equivalence is 
clearly adequate and coarser than abelian equivalence (One might boldly hope they 
coincide!). 

Abelian (resp. Picard) equivalence ~ would define continuous finiteness in the most 
refined sense if there existed an abelian variety A and a class ne(Cr(A x X)/~) such 
that TE(.) : A(k) -> (Cr

aig(X)/~) is bijective. Then (cf. [7], § 2), w = %(.)-* is rational 
(resp. P-rational) and universal (4), and any family (Z(£)e(Qig(X)/~)} paramete­
rized by a variety T, is the pull-black of { %(a)} under a map / : T ->• A and / = B(Z, w). 

It is an (unrecorded, 1964) observation of Grothendieck that (Qig(X)/Pic) is limited 

(3) It amounts to the same to consider compositions C^\g(X) —'+ (C£ig(i4)/Abl) -^ A(k) 
where We (Cn~r+a(X x A)/alg), A is an abelian variety of dimension a and S is the canonical 
sum map: given W, take Y= Pic°(/4); given Y, replace A = Pic°(Y') by the jacobian of a gene­
ral 1-dimensional linear space section of Y. 

(4) Notice w can be obtained by melding the various rational (resp. P-rational) maps on 
Qlg(X) which distinguish from 0 those cycles not ~ 0. 
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by a family {nr(p)} (defined up to Picard equivalence) parametrized by an abelian 
variety Pr(X) (5). For, given a P-rational homomorphism w: Ca\g(X) ->• A(k), con­
struct (as above) an abelian variety P and a class n e (C(P x Z)/Pic) such that / = B(n, w) 
is an isogeny from P to A = Pic°(y) and consider the commutative diagram of corre­
spondences (where Z defines w): 

H<2"~2r + 1\X) <^- H^-^Y) 
k(-) \ny(-) 

H\P) < £ H\A) 

Since %Y(. ) and / * are isomorphisms (cf. [6], § 2, Appendix), dim (4) < dim (H{2n~ 2r+ ^(X)) 
and the process of melding the (w, A) is bound to finish. 

Over the complexes, we also have (cf. Weil [14] and Lieberman [7]) the Weil-jacob-
ian Jr(X) = H2r-\X9 RJ/Imtff2 ' -1^, Z)) and the Weil homomorphism 

w: C{wm(X) - Jr(X) 

where C^om(X) denotes the group of cycles homologically equivalent to 0, the kernel 
of the cycle map C(X) -• H2r(X, U). The torus Jr(X) has a structure of an abelian 
variety (that does not vary analytically) and w | Cr

a\g(X) is a rational homomorphism; 
so Jr

a(X) = w(Cr
a\g(X)) is an abelian subvariety. Weil equivalence, defined by Ker (w), 

is adequate, finer than Picard equivalence and coarser than abelian equivalence. 
If homological and torsion (6) equivalence coincide onAxX for all abelian varieties A, 
then Weil and abelian equivalence coincide; if homological and numerical (6) 
equivalence coincide on X x Jr

a(X)9 then Weil and Picard equivalence coincide on X 
and Jr

a(X) and Jg~r+1(X) are dual abelian varieties. Now, Jr
a(X) is contained in 

the largest complex torus in Im(H r_1 , r(X) -• Jr), but w(Cj;om(X)) is not; this obser­
vation led Griffiths [2] to his celebrated example (valid in any characteristic, cf. Katz [4]) 
of a 1-cycle on a 3-fold which is homologous to 0, but not torsion equivalent to 0. 

It is generally conjectured that homological and numerical equivalence coincide 
on all X (in every characteristic). If there is a surjective map f : Y -+ X, then the 
conjecture holds for X if it does for Y; in fact, for any adequate equivalence relation ~ 
and any cycle Z on X, if f*Z ~ 0 then dZ ~ 0 where d is the degree over X of an «-dimen­
sional linear space section of Y (in view of the projection formula). If X is an abelian 
variety and C a 1-dimensional linear space section, then there are canonical surjec-
tions Jac (C) -> X and Cxg -> Jac (C) for g » 0. Thus, to verify the conjecture 
for an abelian variety, we need only verify it for a product of curves, where it is obvious 
in characteristic 0. In fact, the conjecture follows from Grothendieck's two standard 
conjectures (cf. [5]): the Hodge index theorem for algebraic cycles (known in positive 

(5) If X K H(X) denotes a Weil cohomology such as /-adic cohomology, then 

dim (Pr(X)) <; dim (H^-^X)); 

in fact, H(Pr(X)) is a certain subspace of H(2n~2r+1)(X). Further, ,
n
("~r+1) ° nr defines a sur-

jection Pr(X) -+ Pic°(P<n-r+1)(X)), which has finite kernel by symmetry. Also, P*(X) = Pic°(Z) 
and Pn(X) = Alb (X). This theory ought to be further explored. 

(6) A cycle is torsion (or T — ) equivalent to 0 if some (nonzero) multiple is algebraically 
equivalent to 0. Numerical equivalence is defined to render the intersection pairing non-
singular and is clearly the coarsest nontrivial adequate relation. 
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characteristic only for surfaces) and the algebricity of the cycle defining the *-opera­
tor (7). 

The group (Cr(Z)/alg) is countable and invariant under extension of the ground 
field after the theory of Chow coordinates; hence, we expect discrete finiteness here. 
In fact, the group (Cr(Z)/num) is free of finite rank (8). A finer study (apparently a 
difficult study) of Chow coordinates might bound the number of maximal algebraic 
families of positive r-cycles of degree d by a polynomial in d. This bound would easily 
imply that (Cr(X)/z) has finite rank. For r = 1, such a polynomial bound exists 
a fortiori because (C^XJ/alg) has finite type (Néron-Severi theorem [12]) and dis­
tinct maximal families sufficiently close numerically to a polarization represent dis­
tinct cycle classes modulo algebraic equivalence. 

For r = 1, the entire above theory is virtually satisfactory even within the sharper, 
richer context of schemes (cf. Grothendieck [3]) or better, algebraic spaces (cf. Artin [1]). 
The Picard space has well been constructed by methods which are moreover logically 
independent of any finiteness theorem. The finiteness theorems may then be stated 
in terms of limited families of invertible sheaves (generalizing divisor classes modulo 
rational equivalence). The key result (cf. [5], (3.13)) is: let I b e a projective scheme 
over a noetherian base with geometrically integral fibers of dimension n and F a family 
of invertible sheaves L on these fibers. Then the following conditions are equivalent: 
(i) F is limited (9); (ii) There exists an integer A independent of L such that A> \at \, —a2 

where x(L(x)) = ^ o ^ * * * ) is the Hilbert polynomial; (iii) There exists an integer N 
independent of L such that iV > K D i P 1 " 1 > |and iV> - <D2-HB-2 >whereD = Cl(L) 
and H = ^(0(1)); (iv) There exists an integer N independent of L such that L(N) 
and L~\N) are ample. This theorem implies in particular (Matsusaka's result [9]) 
that numerical and torsion equivalence of divisors coincide and that (C^ZJ/alg) is 
finite. The proof of the theorem is achieved through development of a technique 
introduced in this connection by Mumford [10], and it does not rest on the traditional 
theory of Chow coordinates but rather gives the finiteness of the Hilbert and Chow 
schemes as corollaries. 
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ONE DIMENSIONAL FORMAL COHOMOLOGY 

by P. MONSKY 

Let V be a variety over a field k. When k = C, the cohomology groups of the ana­
lytic space attached to V are useful in the study of V. For arbitrary k it is natural 
to look for a purely algebraic substitute for these groups. Suppose for example that 
V is non-singular and affine. Let Of be the sheaf of i-forms on V, d: Qf -> Q i + 1 be 
exterior differentiation and H'DR(V) the homology of the complex r(Q°) -4 T(Q1) ^ ... 
More generally if V is an arbitrary non-singular variety take H'DR(V) to be the hyper-
cohomology of the complex of sheaves Q° -4 Q1 -4 . . . H'DR(V) is known as the 
" De Rham cohomology " of V. When k = £ Grothendieck has shown that 

H-DR(V)*H-(Vma{;C) 

(see [1]). When k has characteristic 0, F h H'DR(V) is a good cohomology theory 
for non-singular varieties. But in characteristic p > 0, De Rham cohomology goes 
wrong. For example, when V is the affine line, H%R(V) and HßR(V) may be identified 

with the kernel and cokernel of the map —- : k[T] ->• k[T], spaces which are far too 
dT 

large. And pathology occurs even when V is complete. 
Even so it appears likely that there is a satisfactory cohomology theory of De Rham 

type for varieties in characteristic p. The coefficient field however must be taken 
io be a complete discretely valued field of characteristic 0 with residue class field k 
rather than k itself. Indeed work done by Dwork and Katz, by Lubkin and by 
Washnitzer and me all seem to reflect aspects of a single underlying " p-adic " coho­
mology theory. Though this theory is far less developed than De Rham cohomo­
logy in characteristic 0 or the /-adic cohomology of Grothendieck and Artin, it is 
quite promising. In this talk I'll describe the approach taken by Washnitzer and me 
and then discuss some recent work of mine on H1. 

1 

Let (R, (n)) be a complete mixed characteristic discrete valuation ring, k = R/(n), 
and K = R (X) Q. If A is a finitely generated smooth /c-algebra we shall define 

z 
certain " formal cohomology groups " Hl(Ä; K) attached to the non-singular variety 
Spec Ä; the Hl(Ä'9lK) will be vector spaces over K. 

The definition makes use of a certain class of R-algebras; the " w. c. f. g. algebras ". 
An jR-algebra A is said to be weakly complete if n nlA = (0), and every sum 

fjn
ipi(al9...9am) 
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with at e A, Pi e R[XX,..., Z J and deg p{/(i + 1) bounded above converges to an 
element of A in the rc-adic topology. If A is an Ä-algebra let Â be the completion 
of A with respect to the ideal (K) and A* be the smallest weakly complete subalgebra 
of Â containing A. Af is known as the weak completion of A. The weak comple­
tion of R[X1 , . . . , Xm] may be identified with a ring of restricted power series over R. 
By a w. c. f. g. algebra we mean an R-algebra which is a homomorphic image of 
R[Xt,..., Xm]f for some m. If A is w. c. f. g. it is weakly complete, and A/njA is a 
finitely generated R/nj algebra for all j . One may develop a theory of differential 
forms on a w. c. f. g. algebra A. Namely, let Q'A/R be a free exterior algebra on QAfR, 
and D'(A) = üA/R/n nJQ'AiR. Then the D\A) are finite A modules and one may 
define a degree 1 exterior differentiation d on D'(A). Let #'(.4) be the homology of 
the complex D°(A) 4 D\A) -4 . . . 

Suppose A is finitely generated and smooth over k. By a weak formalization 
of J w e mean an R-üaX w. c. f. g. algebra A together with an isomorphism A/% A ^ Ä. 
Under a mild restriction on A, which I'll ignore in this talk, such an A exists and is 
unique up to (non-canonical) isomorphism. If A and B have A and B as weak for­
malizations then any ^-algebra map J: A -+ B lifts to an Ä-algebra map / : A -• B 
and any two liftings induce the same map H'(A) ® Q -> H'(B) ® Q. Thus the assign­
ment Ä |-> H'(A; K) = H'(A) ® Q is functorial. For full details, see [3]. 

Calculation of H (A; K) is difficult in general but there are scattered results. H° for 
example is easily handled; if Äis the coordinate ring of an absolutely irreducible affine 
variety then H°(A; K) = K. Hl is amenable to attack; I'll talk about this later. 
One case in which all of H'(A; K) may be computed is when ,4 is the coordinate ring 
of the complement of a non-singular hypersurface in «-dimensional projective space. 
Then, Hl(A; K) = 0 for 1 < î < n - 1, while Hn(Ä; K) is finite dimensional and 
coincides with a space introduced by Dwork in his study of the zeta-function of a 
hypersurface. 

We come now to the question of " globalization ". If U is a non-singular affine 
variety over k set Hl(U\ K) = H\T(U)9 K). U h H\U\ K) are contravariant 
functors and one hopes to extend these functors to all non-singular varieties, affine 
or not. This seems to be hard; the trouble is that global liftings, even in a formal 
sense, need not exist. 

One approach, satisfactory for if1, is the following. U h> Hj(U; K) defines a 
pre-sheaf on the affine open sets of our given non-singular variety V; let J^j be the 
associated sheaf. In some cases the JifJ may be used to give a satisfactory definition 
of Hl(V' ; K). For example U H> H\U \ K) is actually a sheaf and we set 
Hl(V; K) = T(V, 2/P1). There is no obvious way of defining H2(V; K); however 
HX(V, ffll) and T(V9 J^2) should be thought of as the algebraic and transcendental 
parts of H2(V; K). For i > 2 this approach to globalization breaks down; Lubkin 
and Washnitzer have proposed methods that may resolve the problem. 

For the rest of this talk we'll be concerned with H1, and shall assume for simplicity 
that k is algebraically closed. Let V and W denote non-singular varieties over k. 
Our main results are the following: 
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(1) H1^; K) is finite dimensional. 

(2) If F and W are irreducible, then H\V x W; K) « H\V\ K) © H\W', K). 

(3) Let cp: V -> W be a morphism with dense image. Then 

cp* : H\W\ K) -> HW; K) 
is injective. 

(4) Suppose there is a scheme V9 smooth and projective over R such that V x k « F. 

Let K' be the variety V x K. Then H*(F; K) « HiR(V'). If Alb(F) is the Albanese 

variety of V9 then dim H\V\ K) = 2 • dim Alb(F). 

(5) Suppose F is complete and non-singular in codimension 1 and W is the set of 
regular points of F Then, dim H\W; K) ^ 2-dim Alb(F). 

(1) and (2) are difficult; I'll discuss the proof of (1) later. (3) reduces easily to the 
case when F is a dense open subset of W; this is handled by Meredith in his thesis. 
The first part of (4) comes directly from a comparison theorem proved by Meredith 
in [2], relating the cohomology of a coherent sheaf on P"(R) to the cohomology of 
the " weak completion " of the sheaf. To prove the second part let Alb(F') be the Alba­
nese variety of V. Since K has characteristic 0, the Hodge spectral sequence for V 
degenerates and dim HkR(V) = h°A(V) + hU0(V'). As we're in characteristic 0, 
h0tl(V) = huojy') = dim Alb(F') = dim Alb(F), completing the proof. Turning 
to (5), let cp : W -* Alb(F) be the obvious map. The image of cp generates Alb(F); 
some formalism using (2) and (3) shows that cp* : H^AlbfF) ; K) -+ H\W'9 K) is 
injective. Now Mumford has shown that all Abelian varieties are liftable. So by (4), 

dim H\W\ K) ;> dim H\A\b(y) ; K) = 2- dim Alb(F). 

It seems likely that equality always holds in (5); i. e. that cp* is actually bijective. The 
analogous result for De Rham cohomology in characteristic 0 follows easily from the 
analytic definition of the Albanese. 

In this section and the next we'll sketch a proof of the finite dimensionality of H\V\ K), 
assuming k algebraically closed for simplicity. First we describe two of the basic 
tools; the Gysin sequence and the differentiation of cohomology classes with respect 
to parameters (i. e. the Gauss-Manin-Grothendieck-Katz-Oda connection). 

Let Q be a base ring and A be a finitely generated 0 algebra. Suppose te A is not 
a zero-divisor, and that A and A/(t) are smooth over 0. Let H'Q(A/0), or more briefly 
H'Q(A), be the homology of the complex Q'Aie, ® Q. Define H'Q(At) and H'Q(A/(t)) 
similarly. Then there is a long exact Gysin sequence: 

-> H<Q-2(A/(t)) - H'Q(A) -> H'^A,) -> Hìfl(A/(t)) -» 

Suppose next that A is finitely generated and smooth over 0. Then the derivations 
of & operate on the homology H'(A) of fì^/fl,. More precisely, each A:@->(9 induces 
an operator A^ : H'(A) -> H'(A) such that A#(ba) = Ab a + fc-AJa) for all bs&. 
The operators A^ commute with all mappings of finitely generated smooth 0-algebras, 
and with the maps in the Gysin sequence. 
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We begin the proof that H 1 (F; K) is finite dimensional. One may assume that F 
is affine and irreducible. Let k" be the function field of F. It proves sufficient to show 
the finite dimensionality of H1 for any one particular affine model of k"/k. Also we 
are free to replace k" by any finite extension. We argue by induction on r = t. d. k"/k. 
r = 0 is trivial; for the rest of this section assume that r = 1. 

Let f(X, Y) = 0 be an affine plane model of k!'/k of degree n having d ordinary 
double points. We may assume that the coefficient of Yn in / is 1, and that / has 
n distinct points at infinity. There is a plane curve g(X, Y) = 0 of degree m which 
passes through all the double points of / and has mn — 2d additional simple inter­
sections with /, none of them at infinity. A = (k[X, Y]/f)g is a non-singular affine 
model of k"/k; we'll show directly that Hl(Ä; K) is finite dimensional. 

Using arguments from Severi [5], and the completeness of R we can find an F e R[X, Y] 
of degree n lifting / and having d ordinary double points. We can further construct 
a G in R[X, Y] of degree m lifting g and passing through the double points of F. Let 
A0 = (R[X, Y]/F)G and A be the weak completion of A0. Ais a. weak formalization 
of Ä. H'Q(AQ) and H'Q(A) will denote the homology of the complexes £l'Ao/R ® Q 
and D'(A) ® Q. It suffices to show that H^(A0) is finite dimensional and that 

H%A0) - H&A) 
is onto. 

Denote the images of X and Y in A0 by x and y and set u = G(x, y)~x. A0 = R[x, y, u], 
and dx and dy generate £lAo/R. Since F(x, y) = 0, QAQ/R is spanned as an K-module 
by the forms tfyjco where co runs through the finite set 

{ dx, dy, ydx, ydy,..., f~1dx, yn~1dy}. 

Let p be the characteristic of k and X(s) = [logp(s + 1)] for s > 0. One sees easily 
that it suffices to prove the following: 

Let co e £lAofR. Then there is an integer s, a constant c, and a finite R-module M 
of 1-forms such that for all i and j > 0 we have ps+X{i+j)uixjco = dhtj(x,y,u) + cofj-
where htj has coefficients in R and degree < c(i + j + 1), and co^ e M. 

So what we need is a method for studying all the M'VCO simultaneously. This is done 
by the following trick. Introduce indeterminates Tt and T2. Then 

6 = co/(l - TlU)(l - T2x) 

is a 1-form which carries information about all the uWco; information which may 
be extracted by expanding 0 in powers of T± and T2. 

More precisely, let (V be the localization of ß[[7i, T2]] with respect to the powers 
of T{T2. By analyzing the intersections of F(X, Y) = 0 with the curves G(X, Y)= 7i 
and X =T2~

1 one may show that A0 (X) (9/(1 — Txu)(l - T2x) is isomorphic as & alge-
R 

bra with Omn+n. Thus both A0®0 and A0®0/(1 - T^l - T2x) are smooth over 
(V and we have a Gysin sequence. Let Q' be the localization of A0 ® (9 with respect 
to the powers of (1 — 7in)(l — T2x). The Gysin sequence in this situation is just the 
short exact sequence: 

0 -• HQ(A0/R) ® O À Hç((9'/e)) 4 Omn+n ® Q -+ 0 
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Now 0 = CD/(1 — 7i«)(l — T2x) may be interpreted as an element of H ^ ; we 
shall use the above exact sequence to get information about 0. 

Any 0 in fìj,^ ® Q may be " expanded " as TlLu(9)T1
iT2

j where the Lu(6) are in 
£lAo/R ® Q. Consider the following 2 conditions on 0: 

(a) There exists an integer s, a constant c, and a finite R-module M of 1-forms such 
that for all i and j we have psLij(Q) = dh^x, y, u) + co^ where hy has coefficients in R 
and degree < c(\ i\ + \j| + 1), and all CO^EM. 

(b) There exists an integer s, a constant c, and a finite i?-module M of 1-forms such 
that for all i and 7 we have p*+A(l'l + lJ')Ly(0) = dfy/x, y, M) + co0- where h{j has coeffi­
cients in R and degree < c( | i | + \j \ + 1), and all CD^EM. 

Note first that every exact 0 and every 0 in £iio/JR satisfies (a). Since an 0 (g) Q 
linear combination of forms satisfying (a) also satisfies (a), we find that (a) holds for 
every 0 which represents an element of Htyß'/®) that lies in the image of i. Let 0k 

be elements of ß j , ^ (g) Q whose images under; are the basic idempotents in 0mn+n(g)ß-

We show that the 0k satisfy (b). Observe that the derivations -— and -— of & operate 

(dB \ d l 2 

on H0((9'/(9) and that ; (—M = —— j(0k) = 0. So dOJd^ represents an element in 
\ÔTJ ÔTX 1 . 

the image of i, and the same is true of d9k/dT2. When i ^ 0, Lfj-(0fc) = T A - i j ( ~^f ) \ 
1 /d6k\ dOk d9k

 l ^ *' 
when; ^ 0, L^ÔJ = T ^ < J - I ( T=T I • Since (0) holds for — and — , an easy calcu­

lation shows that (b) holds for 0k. But an (9 ® Q linear combination of forms satis­

fying (b) also satisfies (b). Thus (ò) holds for all 0, and taking 0 = m/(l - Txü)(l - T2x) 

with co in £lAofR we get the desired estimates. 

If t. d. k"/k > 1 things are more complicated. We choose k! so that kak'ak", 
t. d. k"/k' = 1 and k"/k' admits an absolutely irreducible absolutely non-singular 
projective model. By taking a suitable plane projection of this model and extending 
k! and k" finitely if necessary we can find / and g in k'[X, Y] as in the last section, 
/ being an affine plane model of k"/k' with d ordinary double points. Take B to be 
a finitely generated smooth /c-algebra with quotient field k', containing the coefficients 
of / and g and ÄXo be (B[X, Y]/f)g. The generic fibre of the map 

7p: Spec Ä -> Spec B 

is a projective plane curve with d ordinary double points from which the double points 
and mn + n — 2d additional points have been removed. Replacing B by a localiza­
tion we may assume that every fibre of cp looks like this. 

If B is a weak formalization of B then cp may be lifted to a good family of curves over 
Spec B. More precisely one can find F and G in B[X, Y] lifting / and g such that 
every fibre of the map cp : Spec (B[X, Y]/F)G -• Spec B has the description just 
given. Again this is done using ideas from Severi and a form of Hensel's lemma for 
weakly complete algebras. Let A0 = (B[X, Y]/F)G and A be the weak completion 
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of A0 ; A is a weak formalization of Ä. Set D'(A/B) = Q'(A/B)/n %ja\A/B). The 
D\A/B) are finite A modules and D\A/B) = 0 for i > 1. 

One shows directly that H°(D'(A/B)) = B and deduces from this an exact sequence: 

0 -* Hç(B) -+ H&A) ^ H\D\A/B) ® Q) 

Since HQ(B) = Hl(B; K) is finite dimensional by the induction assumption, it suffices 
to show that the image of a is finite dimensional over K. Now the R-linear derivations 
of B may be shown to act on ^(DXA/B) ® Q), and image cr is annihilated by all the A+. 
So it's enough to show that the intersection of the kernels of the A^ is finite-dimensional 
over K. 

By a generalization of the argument sketched in the last section one shows that 
H\D'(A/B) ® Q) is a finite projective B ® Q module. The finite dimensionality of 
n ker A* is then a straightforward argument with formal differential equations. 
Full details will appear in [4]. 
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THE STRUCTURE OF THE MODULI SPACES 

OF CURVES AND ABELIAN VARIETIES 

by DAVID M U M F O R D 

§ 1. The purpose of this talk is to collect together what seem to me to be the most 
basic moduli spaces (for curves and abelian varieties) and to indicate some of their 
most important interrelations and the key features of their internal structure, in parti­
cular those that come from the theta functions. We start with abelian varieties. 
Fix an integer g ^ 1. To classify g-dimensional abelian varieties, the natural moduli 
spaces are: 

C moduli space of pairs (X, X), X a g-dimensional "Ì 
sfW = 1 abelian variety, X : X -• X a polarization such > 

[ that deg (X) = n2 J 

Here and below when we talk of a moduli space, we mean a coarse moduli space 
in the sense of [11], p. 99 and in all cases these moduli spaces will actually exist 
as schemes of finite type over Spec (Z). This can be proven by the methods of [11], 
Ch. 7, for instance, which also shows that all the moduli spaces used are quasi-pro-

jective at least over every open set Spec Z\ -

The local structure of stf(n) seems quite difficult to work out at some points. However, 
g 

for every sequence öl9..., ög such that <5j | . . . | <5g, Y\öt = n> let 

J*W = 

the open subscheme of srf{n) of pairs (X9 X) 
such that 

ker (X) s flZ/öiZ x f\pôt 

The j^w's are disjoint and exhaust all of j ^ ( n ) except for (X, A)'s such that char|n and 
ker (À) contains a subgroup isomorphic to ap. The local structure of j / ( a ) is not 
hard to work out (using results of Serre-Tate [20], and Grothendieck and myself on 
the formal deformation theory of abelian varieties and p-divisible groups, see Oort [17]). 
In particular all components of séKS) dominate Spec (Z). Now I have proven that 
for all n and all p, the open subset of sé{n) x Spec Z/pZ of (X, Xfs such that X is ordi­
nary (*) is dense (cf. [14] for a sketch of the proof). Therefore \Jjrf{6) is dense in jtf{n). 

ô 

Since sé{si) x Spec (Q is irreducible (see below), it follows that the components of sé{n) 

are the closures srf{0) of the sé{ò) and that all of them dominate Spec (Z). It is not 

(*) i. e. has the maximal number p« of points of order p. 
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known, however, whether the geometric fibres of sé{ô) over finite primes are irreducible 
or not. 

Now these various schemes sé(n) are all related by the isogeny correspondences: 

Z.1Äifc = { (X, XjB^l\ (Y, A0^ (n2) 

3 an isogeny n : X -> Y* 
of degree k such that 

n2% o/xo % = (kn2)
2k 

To uniformize all of these, one introduces a second more convenient sequence of 
moduli spaces. Firstly, over the base scheme Z[ÇJ, Ç„ a primitive «-th root of 1, let 

r moduli space of triples (X, k, a), X a ^-dimensional Ì 
sé* = < abelian variety, k : X %-Jt. a principal polarization, > 

(. and a : X„ >̂ (Z/nZf x p?n a symplectic isomorphism J 

These spaces are normal and irreducible and form a tower with respect to the natural 
quasi-finite morphisms sé*m -> sé* given by (X, k9 a) h» (X9 k9 res Xna). Secondly, 
we enlarge these schemes somewhat by letting sé„ be the normalization of sé1 in the 
field of rational functions Q(sé*9 Ç„). Then sén is a normal irreducible scheme in 
which sé* is an open subscheme, and the sé^s form a tower with respect to finite 
morphisms sénm -* sén. Note that sén = sé* except over primes dividing n. More­
over, if n ^ 3, sén is smooth over Z except at non-ordinary abelian schemes in characte­
ristics dividing n. Next, we can uniformize very nearly all of séiô) by the natural 
morphism: 

sél -> d 
(X, A, a) h> (Y9 n) 

where 7 is the etale covering of X defined by requiring its dual to be the quotient: 

Y=X/z-1[(0)xnfjLol]9 

and p is the polarization on Y induced by k. In the tower { sé„ } one now has the 
Hecke ring of correspondences instead of the isogeny correspondences. These come 
essentially from 2 types of morphisms: 

(a) Q(sén, CJ is a Galois extension of Q(sé1, £„) with Galois group Sp (2g9 Z/nZ\ 
hence Sp (2g9 Z/nZ) acts as a group of automorphisms of sén ; 

(b) the morphism 
sé* - sé1 

(X, k9 a) h> (Y9 ii) 

(where Y= X/a~l[{Z/nZy x (0)], and if TI : X -> 7 is the natural map, then 
p : Y >̂ y is determined by the requirement n<> pan = nk). For a discussion on 
Hecke operators in the classical case, see Shimura [21]. The picture is even clearer 
when you pass to an inverse limit: e. g. for all n, 

lim sénu x Spec Rn 

where * 

ß n = Z \ ~ J C n , C n 2 » • • • 

exists as a scheme and JJSp (2g, Qp) acts on it (See [12], § 9 for the case n = 2). 
p\n 
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Over the complex ground field, these moduli spaces have well-known analytic 
uniformizations coming from the theory of Siegel modular forms: 

where 

sé{n) x Spec (Q = ]Jsé<ô) x Spec (Q 

sé™ x Spec (Q = § / r , 
sé„ x Spec (Q = sé* x Spec (C) = %/T(n) 

§ = Siegel upper - — plane = 

where 

Z = g x g complex matrix 
'Z = Z, Im Z > 0 

T(n) = {,4eSp(2g,Z)/(± I)\A = I2g mod n} 
rô={AEGL(2g9Z)l(±I)\<A.J0.A = Jô}9 

K 

* i 
, \ 

5* 

Thus § is the analytic " inverse limit " of the jtf„'s over Spec C. All the irreducibility 
assertions made so far are proven by these analytic uniformizations. 

Summary of moduli spaces. 

§ 2. The next point is that there is a moduli space intermediate in the tower bet­
ween sé* and sé%n on which there are canonical coordinates. Following Igusa, we 
christen this sé*2n and it is defined as follows in char. ^ 2: 

f moduli space of triples (X9 L, a), X an abelian 
variety of dimension g, L an ample symmetric 
invertible sheaf, a a symmetric isomorphism: 

«aC.2M = < 
a : 0(L) * Gmx (Z/nZ)8 x p* 

such that 

i) if n even, e\ = 1 oxv X2, 
ii) if n odd, e\ takes the value + 1 more often 

than the value — 1. 
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For definitions of 0(L), e\, etc., see [12], § 1, 2 and [15], § 23. There is an obvious map 

<<2„ -> * ! 

(X, L, a) K (x,-<pL,aj 

where â is the induced map from &(L)/Gm ^ X„ to (Z/nZ)8 x pl. There is a not so 

obvious map sé%n x Spec Z - -• «ß/*2„ (see [12], § 2). Over C, sé*2„ is simply 

the quotient £/r(n, 2«), where T(n, 2n) is the subgroup between T(n) and T(2n) des­
cribed by Igusa [9]. Canonical coordinates on sé*2n (where n ^ 2) are defined as 
follows: 

. i) &(L) and hence Gm x (Z/nZf x p\ acts on H°(X, L). Write this action as 
UiXiatb): H°(X, L) -+ H°(X,L), 

ii) there is a section G E H°(X, L) unique up to scalars such that U ( 1 0 C ) ö - = a, 
all e e pg

n, 

iii) let a -> <T(0) denote evaluation of sections at OEX. We obtain a function: 

(Z/nZf -» X 
a H (U(1>a>0)<7)(0) 

unique up to multiplication by a constant, which is never identically zero. 
iv) If N = n8 — 1, and the homogeneous coordinates of PN are put in one-one 

correspondence with the elements of (Z/nZ)8, this defines a morphism: 

© : ^n*2„ -> P* 

THEOREM. — If rc ^ 4, O is an immersion. 

This theorem was proven over C for various w's by Baily [4] and Igusa [9] ; in the 
general case, all the essentials for the proof are in [13]. Over C, 0 is the morphism 
defined by 

*(--4i>-). ae(Z/nZ)9 

where Z e §, and 6 is Riemann's theta function. If 8 | n, one can even find a finite 
set of homogeneous quartic polynomials—Riemann's theta relations—such that 
the image of 0 is an open part of the subscheme of PN defined by these quartics (see 
[12], § 6). 

Even in the char, p case, it is possible to reformulate these canonical coordinates 
as values of a type of theta function. These theta functions are not functions on the 
universal covering space of X, but rather on the Tate group. 

If p = char, of ground field, 
V(X) = group of sequences { xt}, i ^ 1 but p)fi, where xt E X, nxin = x{ and x1 

has finite order k prime to p. 
Let T(X) = { (x) E V(X) such that Xl = 0 }. 
We get an exact sequence: 

0 -• T(X) -• V(X) -+ (torsion on X prime to p) -> 0 
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We use the result: 

THEOREM. — Let L be an ample symmetric invertible sheaf of degree 1 on an abelian 
variety X of char. p. If p)f2n, then for all XE Xn for every choice of a point y e X 
such that 2ny — x, there is a canonical isomorphism: 

L ® k(x) ^L® k(0) 
Ox Ox 

COROLLARY. — If a E T(L), then evaluating a via the above isomorphisms defines 
a function 

6 : V(X) -+ L ® k(0) 9Ê k 
Ox 

such that if XE-T(X\ then 6(x + y) = 6(x) if y E2nT(X). 
n 

In fact the functions that we obtain in this way have the following properties : 

a) 6(x + a) = e * ( j V ( j , x W x E V(X), a E T(X) 

where 

e* : ~ T(X) -+ { ± 1} and e : V(X) x V(X) -• k* 

are the functions induced by e\ and e„ on V(X). 

b) 0( — x) = ± 6(x), the sign depending on the Arf invariant of e\. 

c) n o(x) = 2-« Y <y> ni ft 0(xt + y + n)), 
i = l tjE±T(X)/T(X) i=l 

where 

d) Vx E V(X), 3rjE- T(X) such that 6(x + rj) ï 0. 

e) Up to an elementary linear transformation whose coefficients are roots of 1, 

the set of values of 6 on - T(X) is equal to the set of values of the canonical coor-
n 

dinates O on the triple (X, L"2, a) (for any symmetric a). 
/ ) Over C, if Z is a period matrix for X, 9 is essentially the function a K 0z[a] (0), 

aEQ28. 
g) Moreover, if we restrict the domain to V2(X), this 2-adic Tate group, all functions 

i// : V2(X) -+ k satisfying a), b), c) and d) arise from a unique principally polarized 
abelian variety. 

(Cf. [12], § 8 through § 12). 

§ 3. We turn next to curves. Fix g > 2. Let 

{ moduli space of non-singular 1 

complete curves C of genus g J 
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Jt is not only irreducible, but it has irreducible geometric fibres over Spec (Z), cf. [5]. 
This is proven by introducing a compacification Jt of Jt, where 

_. f moduli space of stable complete curves C 1 
| such that dim H1^) = g j 

and where a stable curve is one with at most ordinary double points and such that 
every non-singular rational component has at least 3 double points on it. 

Jt has recently been proven by F. Knudsen, Seshadri and my self to be a scheme 
projective over Z 

Define: 
t: Jt -> sé\ 

C r- (Pic0 (C), k) 

where k is the theta polarization, viz: fixing a base point x0 on C, we obtain a morphism: 

cj) : C -> Pic0 C 
x \-> class of oc(x — x0) 

hence ^ ^ 
Pic0 C = Pic0 (Pic0 C) Ü Pic0 (C) 

and 2 = - ( 0 * ) - 1 . 

According to Torelli's theorem (cf. [1], [10]), t is injective on geometric points. Its 
image however is not closed since t extends to a morphism on Jt\ 

Jt 
^Stable curves made from") 
J non-singular components L _ s 
j connected together like a [ — \ 7 
v.tree J „ N . 
v Jt -* séx 

and 1 can be shown to be a proper morphism taking each stable curve C'mJtXo Pic0 C 
with a suitable polarization (cf. Hoyt [8]). Let 3~ = t(Jt) = %M) : this is called the 
Torelli locus. A famous classical problem is to describe 5", or its inverse image in 
some sén, by explicit equations, e. g. polynomials in the theta-nulls. Partial results on 
this were obtained in characteristic zero by Riemann [18], Schottky, and Schottky-
Jung [19]. Their results have been rigorously established recently by Farkas and 
Rauch [6], and some interesting generalizations have been given by Fay [7]. A comple­
tely different approach to this problem is given in the beautiful paper of Andreotti 
and Mayer [2]. I want to finish by sketching the key point in Schottky's theory 
and stating a theorem on what his equations do characterize. We assume char. ^ 2. 

Let II : C -> C be an etale double covering, and let i : C -» C be the corresponding 
involution. If g = genus of C, then 2g — 1 = genus of C. The Jacobians J = Pic0 C, 
J = Pic0 C are related by 2 homeomorphisms : 

J*£ J 
n* 

such that JVmoII* = 23. i acts on J also. Define: 

P = locus of points { ix — x } in J. 
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We get isogenies: 
J £ J x P 

a 

a(x, y) = II*x -f y 
ß(z) = (Nmz, z — iz) 

such that aoß — 0 o a = mult. by 2. Next fix y, a division class on C such 
that 2y = Kc, the canonical divisor class, and such that dim H°(o(y)) is even (cf. [16] 
for this). We get symmetric divisors: 

g - i 
0 = {locus of div. classes £ P,- — y } <= J 

1 I 

0 = {locus of div. classes £ pt ~ ^*y } cz J 

representing the standard polarizations of J and J. 

LEMMA 

a) II* - H©) = 0 + 0 K , where { 0, K } = Ker JIT"). 
b) 3 a symmetric divisor S on P such that &.P = 2S. 
c) a _ 1 (é ) = 0 x P + 0 K x P + 2 J r x S . 

In particular, S has degree 1 and defines a principal polarization on P. Abstractly 
put now we have a situation with. 

i) 3 abelian varieties X, Y, Z of dimensions g, g — 1, 2g — 1 resp., 
ii) 3 ample degree 1 symmetric divisors ®x <= X, 0 y c î ; 0 Z C= Z, which define 

as in § 2 theta-functions 6X on V(X)9 0Y on K(7) and 0Z on K(Z), 
iii) isogenies Z ?± X x Y such that a°/? = /?°a = mult, by 2. In such a case, 

Z^X x Y/H9 where H is a so-called Göpel group, and V(Z) ^ V(X) x V(Y). More­
over 0Z can be computed from 6X and 0y by one of the basic theta formulas. But 
then the lemma, esp. part a), implies non-trivial identities on 9X and 0Y. In fact, it 

follows that for a suitable n E - T(X) with image K in X and a suitable homeo-
morphism: 

cp:lxE^T(X)\e(x,n)=l\ -+ X-T(Y) 

Ox(x).ex(x + n) 0x(y).0x(y + n) 

(*) 

6Y(cpx)2 0Y(cpy)2 

all x,yE-T(X) 

I with e(x, n) = e(y, rj) = 1 

If we globalize this set-up, we get the following moduli situation: Jt# is to be the 
normalization of Jt is a suitable finite algebraic extension of its function field such 
that for every point of Jt^ there is given rationally not only a curve C of genus g, but 
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(a) a (4,8)-structure on J (i. e. a point of séi4.t8) lying over J in sé y), (b) a double cover­
ing Il : C -> C, (c) a (4,8)-structure on P (cf. [5], pp. 104-108 for a precise discussion 
of such " non-abelian levels "). Thus, if we let sé's (resp. ^f's) represent moduli spaces 
for abelian varieties of dim. g (resp. dim. g — 1), we have morphisms: 

Jt* 

and since 6j on - T(J) I resp. 6P on - T(P) j are coordinates on séA# (resp. ^4 > 8) , 

the identities (*) define a locus # c j?/4 8 x ^ 4 8 (the rj and 9 must be independent of 
the curve you start with). We find: 

THEOREM. — Im (r ,̂ s j is an open subset of one of the components of locus # 
of solutions of the Schottky-Jung identités (*) inside the moduli space J^4>8 x ^ 4 > 8 . 
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QUELQUES CONJECTURES DE FINITUDE 

EN GÉOMÉTRIE DIOPHANTIENNE 

par A. N. PARSlN 

Suivant une tradition établie, j'aimerais examiner une série de conjectures relatives 
à l'arithmétique des courbes et des variétés abéliennes. Dans ce domaine, Chafare-
vitch a formulé au Congrès de Stockholm [13], il y a huit ans, deux conjectures fonda­
mentales. Elles concernent la situation suivante. 

Soit K un corps de nombres de degré fini sur Q ou un corps de fonctions algébriques 
d'une variable ; dans ce dernier cas, nous désignerons par k le corps des constantes. 
Nous étudierons les schémas projectifs lisses X géométriquement irréductibles sur K. 
Si v est une place du corps K9 alors X a bonne réduction en v si v n'est pas archimé-
dienne et s'il existe sur Spec Ov (Ov est l'anneau local de la place v) un schéma lisse 
propre de fibre générique X9 et a mauvaise réduction dans le cas contraire. Nous 
désignerons par S l'ensemble fini des places du corps K ou X a mauvaise réduction 
et ces notations seront utilisées dans toute la suite. Enfin, soit k(v) le corps résiduel de 
l'anneau local Ov. 

CONJECTURE Cl. — Il existe seulement un nombre fini, à K isomorphismes près, 
de courbes sur K de genre g ^ 1 donné et d'ensemble S donné (si g = 1, on suppose 
qu'il y a une X-place sur les courbes et si K est un corps de fonctions il est nécessaire 
de se limiter à des courbes non constantes). 

La courbe X est dite constante si elle est de la forme Y ® L sur une extension finie L 
du corps K, ou Y, est définie sur le corps des constantes du corps L. 

CONJECTURE C2. — Soit K = Q ou k(x). Toute courbe sur K de genre g ^ 1 dont 
l'ensemble S est vide est constante. 

En particulier, dans le cas arithmétique K = Q, il n'existe pas de telle courbe. Cette 
conjecture est donc analogue aux classiques théorèmes de Hermite et Minkowski 
en théorie des nombres. 

La conjecture Cl est en liaison avec la conjecture suivante de Mordell. 

CONJECTURE M ([5], [7]). — Si X est une courbe non constante de genre g > 1 sur K, 
alors l'ensemble X(K) est fini. 

Si K est un corps de fonctions dont le corps des constantes est fini, il existe des cour­
bes constantes sur K pour lesquelles la conjecture M est en défaut. 

THéORèME 1. — La conjecture Cl entraine la conjecture M. 

La démonstration repose sur l'argument suivant : si X/K est une courbe de genre 
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g ^ 1 et P e X(K), alors on peut construire des courbes XP, définies sur des corps KP, 
dont le degré et le genre sur K ne dépendent pas de P. Ces courbes sont des revêtements 
de la courbe X ramifiés seulement en P et les corps KP sont ramifiés sur K seulement 
sur l'ensemble S relatif à la courbe X. Enfin, les courbes XP possèdent la propriété 
suivante : si n est la projection canonique de l'ensemble des places du corps KP dans 
l'ensemble des places du corps K, alors XP a une bonne réduction en dehors de 7U-1(S). 

Cette construction généralise un résultat connu de Kodaira [4]. L'étude des cour­
bes XP,PE X(K), montre, en utilisant Cl, qu'il n'y a, à isomorphisme près sur le corps 
de définition, qu'un nombre fini de telles courbes (et aussi un nombre fini de corps KP). 
Pour g > 1, on en déduit la finitude de l'ensemble X(K) puisque, pour une courbe, 
il n'y a qu'un nombre fini de morphismes sur une courbe de genre g > 1. 

La conjecture M a été démontrée pour un corps de fonctions par Yu. V. Manin [6] 
et H. Grauert [2]. Nous donnons une autre démonstration dans [9], en utilisant le fait 
que si XP est le modèle minimal de la courbe XP, alors la hauteur du point P e X(K) 
relativement au faisceau Qx est bornée par l'indice de self-intersection d'une classe 
canonique sur la surface XP. De considérations topologiques faciles il résulte que cet 
indice est borné explicitement en fonction du genre du corps KP9 du genre de la 
courbe XP et du nombre de ses points où la courbe a mauvaise réduction ; par suite, 
ce nombre est borné uniformément par rapport à P. 

Quant à la conjecture Cl, elle a été démontrée récemment ([13]) pour les courbes 
hyperelliptiques (dans le cas d'un corps de fonctions, il faut supposer k fini) et pour 
les courbes sur un corps de fonctions de caractéristique nulle avec un ensemble S 
vide ([9]). Dans le cas fonctionnel, on montre aussi dans [9] que l'ensemble des courbes 
étudiées a une « hauteur bornée ». 

Enonçons maintenant l'analogue de Cl pour les variétés abéliennes. 

CONJECTURE 51. — Soient N et d des entiers et soit S un ensemble fini de places du 
corps K. Alors, il existe seulement un nombre fini de variétés abéliennes X sur K 
telles que 

1) dim X = N et il existe sur X une polarisation de degré d ; 
2) X a une bonne réduction en dehors de S. 

Cette conjecture a été énoncée par J.-P. Serre ([10]) dans le cas N = 2, d = 1. J'ignore 
le lien entre Cl et SI dans le cas d'un corps de nombres, sauf pour la situation triviale 
N = d = 1. Les tentatives en vue d'utiliser le théorème de Torelli pour déduire Cl 
de SI se heurtent au fait que, pour une variété abélienne sur un corps de nombres, il 
peut exister une infinité de polarisations de degré donné définies sur K non équi­
valentes à automorphisme près. Il est possible que, dans cette conjecture, il faille tenir 
compte des « points de dégénérescence » de la polarisation, définis de façon conve­
nable. Noter aussi qu'une courbe sur K peut avoir en une certaine place v mauvaise 
réduction alors que sa variété jacobienne a bonne réduction. La conjecture 51 a été 
démontrée dans [13] pour les courbes elliptiques. On peut formuler la conjecture sui­
vante, plus accessible. 

CONJECTURE 52. — Il existe seulement un nombre fini de variétés abéliennes X sur K 
de dimension N donnée ayant une polarisation de degré d donné et de conducteur A 
donné. 
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On se reportera à [12] pour la définition du conducteur. Remarquons seulement 
que X a une mauvaise réduction seulement aux places v divisant A ; donc 51 implique 52. 
Réciproquement 52 entraine 51 pour les ensembles 5 tels que 

VVES, car k(v) = 0 ou > 2N + 1. 

De 51, et aussi de 52, résulte que : 

CONJECTURE T [15]. — Soit X une variété abélienne sur K et soit d un entier ^ 1, 
Il existe seulement un nombre fini, à X-isomorphisme près, de variétés abéliennes Y/K 
telles que 

1) Y est isogène à X; 
2) il existe sur Y une polarisation de degré d donné. 

J. Tate a considéré un énoncé un peu plus faible. La conjecture T est liée à la conjec­
ture de Tate sur les homomorphismes des variétés abéliennes (cf. [15], [16]). L'implica­
tion 51 => T résulte de ce que les ensembles 5 coincident pour des variétés abéliennes 
isogènes (cf. [12]). Introduisons maintenant la nouvelle définition suivante : soit X et Y 
des variétés abéliennes (ou des schémas) avec des polarisations k et œ respectivement ; 
une isogénie f: X -> Y s'appelle une isogénie de Tate si deg / = X8, g = dim X 
et f*œ = Cfk (de telles isogénies ont été considérées par Tate dans [15]). 

THéORèME 2. — Soient K un corps de nombres, X/K une variété abélienne ayant 
potentiellement une bonne réduction (cf. [12]) et k une polarisation de X de degré 1. 
Alors, il n'existe qu'un nombre fini de variétés abéliennes Y avec une polarisation œ 
telles qu'il existe une isogénie de Tate / : X -> Y satisfaisant à la condition suivante: 
si v est une place non archimédienne du corps K et car k(v) | deg /, alors X a en v une 
bonne réduction et / définit une isogénie étale des modèles minimaux de Néron des 
variétés X et Y sur Spec Ov. 

THéORèME 3. — Soient K un corps de fonctions sur un corps fini k, d un entier ^ 1, 
X une variété abélienne sur K ayant potentiellement bonne réduction. Désignons 
par M(K, X, d) l'ensemble des couples (Y, k) — ou Y est une variété abélienne et k 
sa polarisation de degré d — tels qu'il existe une isogénie f\ Y -* X degré premier 
à p = car k. Alors, pour tout p n'appartenant pas à un ensemble fini I(d, N), qui ne 
dépend que de d et dim X = N, les ensembles M(K, X, d) sont finis modulo les K-iso-
morphismes conservant la polarisation. 

COROLLAIRE. — Sous les hypothèses du théorème, 51 entraine Cl pour presque 
tout p. 

Comme l'a remarqué J.-P. Serre [10], on peut, en utilisant la méthode de Tate [15] 
et une considération additionnelle, déduire du théorème 3 le résultat suivant. 

THéORèME 4. — Soient X et Y des courbes elliptiques sur un corps de fonctions K, 
de corps des constantes k fini avec car k £ 1(1, 2), et soient Tt(X) et Tt(Y) leurs modules 
de Tate. Alors, la représentation naturelle 

UomK(X, Y)®Qt - Hom(7;(X), Tt(Y)) 

est bijective. 
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COROLLAIRE. — Sous les hypothèses du théorème, les assertions suivantes sont 
équivalentes : 

1) il existe J tels que les modules Tt(X) et 7](Y) soient isomorphes ; 
2) les courbes X et Y sont isogènes. 

Probablement, les théorèmes 3 et 4 sont vrais quelle que soit la caractéristique du 
corps k. On peut montrer qu'il en est ainsi si le théorème d'irréductibilité de Mumford 
et Deligne [1] est vrai pour les schémas de modules des variétés abéliennes, et si le groupe 
de Picard de l'espace modulaire de Siegel module la torsion est égal à Z (*). 

Terminons en disant maintenant quelques mots de la conjecture C2. Elle a été démon­
trée pour g = 1 (cf, [13]) et pour g = 2 (B. V. Martinov, non publié). Si K = k(x), car 
k = 0, alors C2 est vraie pour tout g > 1, cf. [14], [3] (dans ce cas, il n'y a pas de variété 
abélienne non constante). Dans le cas d'un corps de fonctions, C2 est aussi vérifiée 
si K est un corps de genre 1 et car K = 0, cf. [9]. 

Bien que, dans le cas ou g = 1 et où K est un corps de nombres, les conjectures 52 
et C2 aient été démontrées, on peut dire qu'elles résultent aussi de la conjecture sur 
l'équation fonctionnelle des fonctions zêta, de la conjecture de Tate, et du travail de 
Weil [17]. Pour C2, cela a été remarqué par A. Ogg [8]. Il est possible que cela soit encore 
vrai en dimension supérieure. Ce point doit être lié à la forme la plus précise, due à 
Serre [11], de la conjecture sur l'équation fonctionnelle. 
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VARIÉTÉS ABÉLIENNES 

ET GÉOMÉTRIE RIGIDE 

par MICHEL RAYNAUD 

Soient R un anneau de valuation discrète complet, K son corps des fractions, k son 
corps résiduel et n une uniformisante. Soit d'autre part A une courbe elliptique sur K 
dont l'invariant j n'est pas entier. Quitte alors à remplacer éventuellement R par son 
normalisé dans une extension quadratique de K, on peut prolonger A en un K-schéma 
en groupes A, dont la fibre spéciale A ®R k est isomorphe au groupe multiplicatif (Gm)k. 
De plus, Tate a montré que A est le quotient analytique rigide du groupe multiplica­
tif (Gm)K par un sous-groupe discret M engendré par les puissances d'un élément q 
de K*, avec \q\ < 1. Une démonstration de ce théorème est parue récemment dans [6]. 
Nous allons indiquer comment ce résultat s'étend aux variétés abéliennes. 

1. Structure des schémas semi-abéliens. 

Soit i4aig une variété abélienne sur K. Grothendieck a montré que y4alg avait poten­
tiellement une réduction semi-abélienne sur R [2]. Cela signifie, que quitte à remplacer 
jR par son normalisé dans une extension finie convenable de K, on peut prolonger 
Aalg en un R-schéma en groupes Aa\g, lisse sur JR, dont la fibre spéciale Â=Aaig®R k 
est extension d'une variété abélienne B par un tore T. Supposons maintenant que 
A possède sur R une réduction semi-abélienne A et notons A le groupe analytique 
rigide défini par A . C'est un groupe lisse, connexe, propre au sens de Kiehl [3]. 
Un groupe rigide qui possède ces propriétés sera appelé une variété abéloïde. Les 
variétés abéloïdes sont l'analogue en géométrie rigide des tores complexes de la géo­
métrie analytique classique. Soit A le R-schéma formel en groupes completion de 
Aa\g le long de sa fibre formelle A. Rappelons que tout A-schéma formel X définit 
ipso-facto un K-espace rigide XK : « la fibre générique » de X. Dans le cas présent, la 
fibre générique AK de A correspond à un sous-groupe ouvert rigide connexe de A. 
On a AK = A si et seulement si A a bonne réduction sur R, c'est-à-dire encore, si le 
tore T est nul. 

Pour tout entier n > 0 et tout .R-schéma formel X, posons R„ = R/nn+1R, X„ = X®R Rn. 
Il résulte des propriétés infinitésimales des relèvements des sous-tores des schémas 
en groupes lisses [1], que T se relève, de manière unique en un sous-tore T'„ de An. 
Posons B„ = AJTn qui est un ^„-schéma abélien, qui relève B. Par passage à la limite, 
on trouve que le schéma formel A est extension du A-schéma abélien formel B = lim Bn, 
par le tore formel T = lim T'n. Par suite, le groupe rigide AK est extension de la variété 
abéloïde BK = B par le groupe rigide TK. Soit M'le groupe des caractères du tore T. 
Il s'identifie canoniquement au groupe des caractères du tore formel T et c'est aussi 
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le groupe des caractères d'un tore rigide T' sur K. Le groupe rigide TK, fibre générique 
de T, est un sous-groupe ouvert de T' ; c'est le sous-groupe ouvert de T' où les carac­
tères de T' prennent des valeurs de valuation 0 ; nous dirons aussi que TK est le groupe 
des unités de T'. 

Ceci étant, on peut utiliser l'immersion ouverte T'K -> T', pour déduire du groupe AK, 
extension de B par TK, un groupe rigide E extension de B par le tore T'. Le théorème 
de Tate mentionné au début, se généralise alors comme suit : 

THéORèME 1. — Soient i: AK -> A et j : AK -> £ les immersions ouvertes canoni­
ques. Alors, il existe un unique morphisme rigide p : E -> A tel que le diagramme 
suivant soit commutatif: 

4K -> 4 
• K A 

E 

De plus, p est surjectif et son noyau M est un sous-groupe discret de E, sans torsion, 
de rang égal à la dimension du-tore T'. 

Autrement dit, A est le quotient, par un sous-groupe discret M, du groupe E, exten­
sion d'une variété abéloïde JB ayant bonne réduction par un tore T non ramifié sur R. 

2. Indications sur la démonstration du théorème 1. 

Soit X un K-espace rigide propre [3], tel que T(X, 0X) = K et possédant un point 
rationnel. Procédant comme dans le cas algébrique, on peut définir le foncteur de 
Picard P de Z au-dessus de K. Lorsque X provient d'un schéma propre Xa lg, il résulte 
de théorèmes du type « Gagà », que P est représenté par le groupe rigide associé au 
schéma de Picard de Xaig. Soit H1(X, Z) le groupe des revêtements galoisiens de X, 
localement triviaux, de groupe Z. En interprétant Z comme groupe des caractères 
du groupe multiplicatif Gm et du groupe des unités U, on trouve un diagramme com­
mutatif canonique : 

H\X, Z) ^ Horn(Gm,P) 
ß\ /res. 

Horn (U,P) 

Il résulte alors formellement de la nullité des faisceaux Ext1(Gm, Gm) (resp. Ext1^, Gm)) 
que les flèches a et ß sont des isomorphismes. Par suite, tout morphisme U -> P 
se relève de manière unique en un morphisme Gm -> P. Appliquons ce résultat en 
prenant pour X la variété abélienne duale de A. On prouve ainsi l'existence de la 
flèche p : E -> A. Le fait que p soit surjectif se voit par exemple en étudiant les compo­
santes connexes du modèle de Néron de A. 

3. Description de certaines variétés abéloïdes. 

Partons maintenant d'un groupe rigide E extension d'une variété abéloïde B qui 
a potentiellement bonne réduction par un tore T'. L'extension E est décrite par un 
morphisme 

CD' : M' -• B1 
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du groupe M' des caractères de T" dans la variété duale B' de B. Soit d'autre part 
M -* E un morphisme d'un groupe discret M sans torsion dans E, Cherchons à quelles 
conditions M est un sous-groupe de E tel que le quotient de E par M soit une variété 
abéloïde A. Soit 

O: M -• B 

la flèche canonique composée de M -• £ et de la projection q: E -> B et soit P le 
faisceau inversible universel sur B x B'. On sait que P est muni d'une structure de 
bi-extension [2]. La donnée du morphisme M ->• E qui relève 0 équivaut alors à 
la donnée d'une trivialisation s de l'image réciproque de P par le morphisme 

(J> x $' : M x AT -> B x B' 

qui dépend bi-additivement de (m, m') E M x M'. 

Nous allons maintenant associer à s une donnée discrète. 

a) Supposons d'abord que T' et M soient déployés et que B ait bonne réduction sur 
R, donc provient d'un A-schéma abélien formel B. Le dual B' provient alors du schéma 
formel dual B' et le faisceau inversible P se prolonge en un faisceau inversible P sur 
B x B'. Sur le groupe multiplicatif Gm on dispose de la fonction définie par la valuation 

où T est le groupe de la valuation de K. En utilisant le prolongement P de P, on montre 
que l'on a aussi une « valuation » canonique sur P vP : P -> T. Composant vP avec 
la section s, on obtient une application bi-additive canonique 

M : M x M' -> T. 

Le fait que M -• E soit injectif et que le quotient de E par l'image de M soit une 
variété abéloïde A est alors équivalent au fait que u soit non dégénéré. 

b) Dans le cas général, par descente, on trouve un accouplement canonique 

w: M x M' -• T 

où F est le divisé du groupe Y. Cet accouplement est compatible avec l'action du groupe 
de Galois fini qui « tord » M et M'. 

Nous résumons la construction précédente dans le diagramme suivant 

0 
i 

M 
ï 

n 
A 
ï 
0 
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Notons que l'on passe de A à la variété abéloïde duale A' en échangeant les rôles 
de B et W, M et M', O et <£'. 

4. Algébrisation des variétés abéloïdes. 

Partons de la variété abéloïde A construite au n° 3 et cherchons à quelle condition 
A provient d'une variété abélienne. Il revient au même de chercher s'il existe un fais­
ceau inversible L ample sur A. Supposons pour simplifier que B a bonne réduction et 
que T' est déployé. Soit L un faisceau inversible sur A, p*(L) son image réciproque 
sur E. On peut montrer qu'il existe un faisceau inversible N sur B tel que p*(L)~q*(N). 
Réciproquement, si N est un faisceau inversible sur B, q*(N) provient d'un faisceau 
inversible sur A, si et seulement si q*(N) est muni d'une donnée de descente relative­
ment au sous-groupe M. 

Soit A! la variété abéloïde duale de A, de sorte que A' est extension de B' par le tore T 
dont le groupe des caractères est M. Si L est un faisceau inversible sur A, il lui corres­
pond de la manière habituelle un homomorphisme cpL : A -> A'. Celui-ci se relève 
en un morphisme cp: E -> E', d'où un morphisme cp : M -» M'. Par passage au 
quotient, on obtient un morphisme de B dans B', qui n'est autre que cpN. De plus, 
le diagramme suivant est commutatif: 

M % B 

M' % B' 

En composant u avec cp, on obtient une forme quadratique sur M à valeurs dans T 

m l-> u(m, cp(m)) 
qui est symétrique. 

Ceci étant, supposons que L possède une section non nulle a, donc est de la forme 
O^À), où A est un diviseur > 0. Alors p*(A) est un diviseur > 0 sur E, invariant par M. 
Lorsque B = 0, donc E = T', p*(A) est un diviseur principal, défini par une équation 

Z am>Tm'=0 
m'eM' 

du type fonction thêta non archimédienne étudié par Morikawa [4]. Dans le cas géné­
ral, p*(A) n'est pas principal, mais on a p*(L) ~J q*(N). Pour tout m'e M', notons Pm, 
le faisceau inversible sur B qui correspond au point 0'(m') de B'. La donnée d'une sec­
tion de L, donc de p*(L), définit alors une famille am,tm.GÌA. de sections de N ® Pm.. 
Ces coefficients am. jouent le rôle des coefficients de la série de Laurent du cas de réduc­
tion torique. Finalement, on obtient le résultat suivant: 

THéORèME 2. — Pour que L soit ample sur A, auquel cas A provient d'une variété 
abélienne, il faut et il suffit que les deux conditions suivantes soient réalisées : 

1) La forme quadratique m h» u(m, cp(m!)) est positive non dégénérée sur M. 

2) Le faisceau inversible N est ample sur B. 

COROLLAIRE. — Sous les hypothèses du théorème 1, la variété abéloïde B et l'exten­
sion E sont algébrisables. 
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QUOTIENT SPACES 

MODULO REDUCTIVE ALGEBRAIC GROUPS 

AND APPLICATIONS TO MODULI 

OF VECTOR BUNDLES ON ALGEBRAIC CURVES 

by C. S. SESHADRI 

It has been known for quite some time that the problem of constructing moduli 
spaces e. g. of curves, abelian varieties or vector bundles on algebraic curves can be 
reduced to one of constructing quotient spaces under an algebraic group (in these 
examples it is the projective group). In his book [2], Mumford developed a theory 
of quotient spaces and showed how this can be applied to the above moduli problems. 
However his general theory is valid only in characteristic zero and for the purpose 
of carrying it over in arbitrary characteristic he made a conjecture. In § 1, we report 
on some progress (made in collaboration with D. Mumford) towards the proof of 
this conjecture. In § 2 we give a resume of our results on the moduli of vector bundles 
on algebraic curves. It is interesting to note that whereas there are now alternative 
methods for the construction of moduli for abelian varieties (or curves), for the case 
of vector bundles on algebraic curves, the construction of moduli (at least in the diffi­
cult cases) rests on Mumford's theory [2]. 

NOTATION. — We work with a base field k which is algebraically closed. However 
a more systematic treatment would involve a more general base scheme. 

§ 1. Geometric reductivity. 

An affine algebraic group G is said to be geometrically reductive if V rational repre­
sentation of G on a finite dimensional vector space V and a G-invariant point v E V, 
v 7e 0, 3 a G-invariant polynomial / on V such that f(v) # 0, /(0) = 0 or equivalently, 
3 a G-invariant homogeneous form / on V such that f(v) ^ 0. If the characteristic 
of the ground field k is zero and G is reductive (i. e. the radical of G is a torus group), 
then by the complete reducibility of every linear representation of G one concludes 
easily that G is geometrically reductive. A torus group is easily seen to be geometri­
cally reductive in arbitrary characteristic. The conjecture of Mumford states that 
a reductive algebraic group is geometrically reductive. It has been proved in [6] 
that GL(2) is geometrically reductive. 

Let G be a geometrically reductive algebraic group acting on an affine algebraic 
scheme X = Spec A and Xt, X2 two G-invariant closed subsets of X such that 
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Xx n X2 = 0 . We see easily that 3 a G-morphism cp : X -• V, V being the affine 
variety associated to a rational G-module such that cp(Xt) = 0 and cp(X2) = v,v being 
a non-zero G-invariant point of V. From this it follows easily that 3 / e AG such that 
f(Xt) = 0 and f(X2) = 1. Thus geometric reductivity is equivalent to separation 
of disjoint closed G-invariant subsets (in affine schemes). 

Let G be a reductive algebraic group acting on the affine space An+1 through a 
rational linear representation. Then G operates on the projective space Pn. Let 
X be a closed G-invariant subscheme of Pn and X = Proj R, R being the homogeneous 
coordinate ring of X. We say that a (/c-valued) point x e X is semi-stable (resp. stable) 
(with respect to the above projective imbedding or the ample line bundle L defining 
this imbedding) if for some x E X (X, the cone over X), the closure of the G-orbit through 
x does not pass through the vertex (0) (resp. the orbit morphism G -> % defined by 
g h> x °g is proper). We denote these subsets by Xss = XSS(L) (resp. XS = XS(L)). 

Let X, G be as above. Suppose moreover that G is geometrically reductive. Then 
we see that Xss coincides precisely with the set of points x such that 3f E RG with 
f(x) ^ 0 (or equivalently If E T(X, Ln) for some n > 0 such that f(x) ^ 0 and / 
is G-invariant); in particular Xss would be open. Conversely, since a G-invariant 
point of X is in Xss, we see that this property characterizes geometric reductivity. 
Let Y = Proj RG. Then it can be shown that RG is a fc-algebra of finite type (cf. [3], 
if k = C this is classical) so that Y is a projective algebraic scheme. Let cp : X -> Y 
be the rational morphism defined by the inclusion RG a R. Then cp is regular in 
Xss and if the same cp denotes the canonical morphism Xss -* Y induced by cp, it 
can be shown that (i) epis a. surjective, G-invariant affine morphism and (cp*(Ox))

G = 0Y ', 
(ii) cp separates disjoint closed G-invariant subsets of X and (iii) Xs is cp-saturated 
(i. e. 3 an open subset Ys of Y such that Xs = cp~l(Ys)) and the morphism Xs -> Ys 

is a geometric quotient i. e. 7 s is the orbit space Xs mod G. These properties have 
been proved, for example when fe = C in [2] and are the ones used in moduli problems; 
further we see trivially that these properties again characterize geometric reductivity. 
Thus geometric reductivity of G is equivalent to constructing a nice quotient cp : Xss -> Y 
as above. 

Suppose now that G is a reductive group G operating on X as above. Then using 
the techniques introduced in [2], one can prove the following (i) Xss, Xs are G-inva­
riant open subsets of X; (ii) the action of G on Xs is proper i. e. the canonical morphism 
Xs x G -> Xs x Xs defined by (x, g) h> (x, x ° g) is proper (this would imply that 
the orbit space Xs mod G is a separated algebraic space in the sense of Artin) and 
(iii) there is a generalized completeness property for Xss mod G, for example if XSS = XS, 
this means that the algebraic space Xs mod G is complete. Now the main results 
are as follows: 

THEOREM 1. — Suppose that Xss = Xs. Then a suitable multiple of the line bun­
dle L on X descends to an ample line bundle on the complete orbit space Y = Xs mod G. 
In particular Y is projective. 

THEOREM 2. — Let Z — X x G/B where B is a Borei subgroup of G (G semi-simple) 
and p'.Z^X the canonical projection (p is a G-morphism for the diagonal action 
of G on Z). Then we can find an ample line bundle M on G/B such that for the ample 
line bundle 

N = aL + bM, a,bEZ, a, b > 0 
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on Z (aL + bM means a fold tensor product of L ® b fold tensor product of M) if 

- is sufficiently small, we have 
a 

(Q p_1(Xs(L)) c ZS(JV); (if) p(Zss(N)) c XSS(L) and (iii) ZM(N) = ZS(JV). 

One proves Theorem 1 by appealing to the criterion of Nakai-Moishezon. It 
can be supposed without loss of generality that G operates freely on Xs, that Y exists 
in the category of algebraic schemes and that L descends down to a line bundle M 
on 7. One proves first that if C is a closed integral curve in 7, deg (M |c) > 0 and 
that if 7 is integral of dimension n that Mn = M • • • M (n times) > 0 by blowing up 
a smooth point of 7 and using functorial properties of stable points. 

Suppose that Xs ^ 0, X integral and that we have a nice quotient Xss mod G 
as in the case when G is geometrically reductive. By Theorem 1, Zs mod G (Zs = ZS(N)) 
is a projective variety. Let q : Zs mod G -• XM mod G be the canonical morphism 
induced by p. Then by Theorem 2 we see that q is proper, surjective and that over 
Xs mod G, q is an equidimerfsional fibration. Then one concludes easily that Xs mod G 
is quasi-projective without supposing that a nice quotient Xss mod G exists. In fact 
we have the following 

Cor. (to Th. 2). — Let X, G be as in Theorem 2. Then given x E XS
9 3 s 6 T(X, Ln) 

for some n > 0 such that s(x) ^ 0 and s is G-invariant. A suitable multiple of L 
descends to an ample line bundle on Xs mod G. 

§ 2. Moduli of vector bundles. 

Let X be a smooth projective curve defined over k. We say (after Mumford [1]) 
that an algebraic vector bundle on X is stable (resp. semi-stable) if V proper subvector 

deg W deg V 
bundle W of V9 — < —-— (resp. ^ ) . If V is a semi-stable vector bundle such 

rkW rkV 
deg V 

that a = —-—, one sees easily (cf. [5]), that 3 a Jordan-Holder series 
rkV 

Vt cz ... œ Vi cz .. . a V 

deg W-
such that W, — VJVi-i is stable and = a. The vector bundle gr V = © Wt is 

uniquely determined upto isomorphism. Let S(n9 a) denote the set of equivalence 
deg V 

classes of semi-stable vector bundles F o n J such that rkV = n and —-— = a under 
rkV 

the equivalence relation V1 ~ V2 if gr Vi = gr V2. The subset S(n, a)s of S(n9 a) 
formed by equivalence classes containing stable bundles is just the isomorphism classes 

deg V 
of stable vector bundles V such that rkV= n and ——— = a. We have then 

rkV 

THEOREM 3. — Let k = C and genus of X > 2. Then on S(n9 a), there is a natural 
structure of a normal projective variety and S(n, af is a smooth open subvariety 
(cf. [1], [5]). 

We note that if (n, no) = 1 (no, is the degree of any VES(n, a)), S(n, a)s = S(n, a); 
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in particular S(n9 a) is smooth in this case. When n = 2, Theorem 3 has been proved 
in arbitrary characteristic by using the geometric reductivity of GL(2) (cf. [6]). For 
more general rank by applying Theorem 1 and Theorem 2, we have 

THEOREM 4 (characteristic of k is arbitrary). — Let genus of X ^ 2. On S(n9 a)s 

there is a natural structure of a smooth quasi-projective variety. In particular if 
(n9 net) = 1, S(n9 a) is a smooth projective variety. 

In [4] the following result was proved 

THEOREM 5. — The underlying topological space of S(n9 0) can be identified with 
the set of equivalence classes of unitary representations of rank n of the fundamental 
group of X. A similar property holds also for S(n9 a) by means of unitary represen­
tations of rank n and of a particular type of a Fuchsian group T acting on the upper 
half plane H such that X = H mod T (genus of X ^ 2). 

One can ask whether on the set U(T9 n) of equivalence classes of unitary represen­
tations of rank n of a Fuchsian group T acting on the upper half plane H such that 
H mod T has finite measure, there is a natural " algebraic structure ". If H mod T 
is compact this is the case as has been checked in [7]. Similar results seem to hold 
even in the more general case. If X is the canonical compactification of H mod T, 
this problem can be studied algebraically on X via the functor p£ (cf. [4] and [7]) and 
one gets a situation similar to Theorem 2. In fact this served as the motivation for 
Theorem 2. 

REFERENCES 

[1] D. MUMFORD. — Projective invariants of projective structures and applications, Proc. 
Intern. Cong. Math., Stockholm (1962), pp. 526-530. 

[2] —. — Geometric Invariant Theory, Springer-Verlag (1965). 
[3] M. NAGATA. — Invariants of a group in an affine ring, J. Math. Kyoto Univ., 3 (1964), 

pp. 369-377. 
[4] M. S. NARASIMHAN and C. S. SESHADRI. — Stable and unitary vector bundles on a compact 

Riemann surface, Ann. of Math., 82 (1965), pp. 540-567. 
[5] C. S. SESHADRI. — Space of unitary vector bundles on a compact Riemann surface, 

Ann. of Math., 85 (1967), pp. 303-336. 
[6] —. — Mumford's conjecture for GL(2) and applications, Algebraic geometry (Papers 

presented at the Bombay Colloquium, 1968), Oxford University Press (1969). 
[7] —. — Moduli of 7c-vector bundles over an algebraic curve, Questions on algebraic 

varieties, C. I. M. E. (1969), III CICLO, pp. 141-260). 

Tata Institute 
of Fundamental Research 

Department of Mathematics, 
Colaba, Bombay 5 (Inde) 



Actes, Congrès intern, math., 1970. Tome 1, p. 483 à 485. 

B6- THÉORIE DES NOMBRES, 

ÉLÉMENTAIRE ET ANALYTIQUE 

TRANSCENDENCE 

AND DIFFERENTIAL ALGEBRAIC GEOMETRY 

by JAMES AX 

There are certain problems whose resolution ultimately depends upon the algebraic 
intersection properties of analytic varieties defined by algebraic differential equations. 
The problem of this sort which first attracted our attention (and still holds it most 
strongly) is Schanuel's conjecture [1 and 2, § 1] on the transcendentality properties 
of the exponential function: 

(S) Let y1,..., y„ E C be Q-linearly independent. Then 

d im ß ß(y 1 , . . . , y„ , eyi,...,ey») > n. 

Here dim£ F for any extension of fields F/E denotes the cardinality of a maximal 
E-algebraically independent subset of F. 

(S) Implies all the known transcendentality properties of the exponential function 
including the theorems of Lindemann and Baker as well as all reasonable conjectures 
such as the algebraic independence of n and e. 

Let G be the algebraic group defined over Q consisting of the product of n copies 
of the additive group with n copies of the multiplicative group and identified with 
its C-valued points C" x C*n. Let A be the analytic subgroup which is the graph of 
the map C" ^» C*". Then we can restate S as 

(S") If V is an algebraic subset of G defined over Q of dimension less than n, then for 
all p E Vn A there exists a proper subgroup L of C" such that L x exp (L) is an algebraic 
subgroup of G and contains p. 

S' is a statement of the type described at the beginning since A can be described 
as the integral manifold through the identity of the completely integrable system of 
one forms dyv — dzv/zv, v = 1, . . . , n. Of course, S" involves an arithmetic aspect 
since V is required to be defined over Q. 

Schanuel also conjectured a formal version of S : 

(SF) Let y1 yMetC0Xl] be Q-linearly independent. Then 

dimc C(yl9. ..,y„eyi,. ..,ey») > n + 1. 

This conjecture is a consequence of the following result. 

THEOREM 1. — Let G be an algebraic group, V an algebraic subvariety, A an analytic 
subgroup. Let K be a component of V n A containing the identity. Then the 
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Zariski closure of K is the unique component of Vn G' which contains K, where G' is 
the smallest algebraic subgroup of G containing K. 

This theorem also implies the generalizations of S F to several variables and to the 
exponential map of any commutative algebraic group. Applied to the case where G 
is the product of multiplicative groups (over the completion of the algebraic closure 
of the p-adic numbers) it yields the results of Chabauty's thesis [3, § 2]. The corollary 
below contains these last results as well as Chabauty's proof [4] of Mordell's conjec­
ture in the special case of a curve of genus > 1 whose Jacobian J is simple and such 
that the rank of the group of rational points of J does not exceed the genus. 

COROLLARY. — Let G be an algebraic group defined and simple over C ^ Q. Let R 
be a finitely generated subgroup of the C-valued points of G. Let V be an algebraic 
subvariety of G. 

If RnV is infinite then rank JR + dim V > dim G. 

Another problem of the kind mentioned at the beginning also occurs in the literature 
of transcendental numbers. In [1], Lang asked whether a hyperplane section V of 
an abelian variety G necessarily meets every Zariski-dense one parameter subgroup A. 
The affirmative answer to Lang's question is contained in the following result. 

THEOREM 2. — Let G be an abelian variety, V the intersection of d hyperplane sections 
of G and Cd A G an analytic homomorphism. Then there exists £ > 0 such that for 
all sufficiently large r, 

# { z e £ d | |U| |<r ,<7(z)EF}> £r 2 d , 

provided no coset of A = cT(Çf) in G intersects F in a positive dimensional set. 

The proviso must hold if d = 1 and A is Zariski dense so Lang's problem is thereby 
resolved (actually V need not be a hyperplane section, but only of codimension one). 
The proviso is also satisfied if G is simple; this follows from Theorem 1. The assump­
tion that V is a complete intersection is probably avoidable when G is simple. In 
the proof it is used to insure that the harmonic 2d-form œ which represents the cohomo­
logy class corresponding to V by Poincaré duality is positive whenever evaluated 
on 2d tangent vectors spanning a complex subspace of the tangent space. By (topo­
logical) intersection theory we conclude V n Ä #= 0 where A, the topological closure 
of A, is a compact (possibly of odd topological dimension ! ) subgroup of G and therefore 
carries an integral fundamental homology class. The completion of the proof depends 
on noting that we need only prove (V + A) n A 4= 0 and that by the Proper Mapping 
Theorem V + A is an open subset of G since our proviso guarantees that the map 
V x A -> G, given by (v, u) -> v + a, has discrete fibres. 

The generalization of Theorem 2 to complex tori also holds. Here is another 
formulation of the answer to Lang's question. 

COROLLARY. — Let 6 be a reduced theta function on Q and L a complex line in Q. 
Then either (9 \ L) is constant or has an infinite set of zeroes (in fact its associated 
canonical product is a function of order 2). 

Finally, let us indicate two well-known results of the same type as we first mentioned 
which it seems to us, call out for extension. One is Siegel's theorem [5, 6] on the 
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algebraic independence of Bessel functions. It would be nice to have a satisfactory 
criterion for determining the dimension of the field generated by the solutions of a 
linear system of differential equations over the field of rational functions. 

The last result we mention is taken from physics: Brun's theorem [7, Ch. XIV] on 
the algebraic integrals of the three body problem. Here we consider a certain real 
algebraic variety S (state spaces) of dimension 19 together with a certain algebraic 
vector field W defined on S whose value on any function is its Poisson bracket with 
the Hamiltonian of this system. An algebraic integral is an algebraic function F on S 
which is constant on the orbits of W. One such is the energy function. Nine more 
independent algebraic integrals were also known classically. These come from the 
linearity of the motion of the center of gravity together with the constancy of linear 
and angular momenta. In 1887 Bruns proved that the frequent efforts to obtain 
other independent algebraic integrals were doomed to failure: all algebraic integrals 
are functions of the classical ones. In order to restate this result in a convenient form 
it is necessary to pass to a finite covering T of the complexification of S so that there 
is a (single-valued) vector field Y on T corresponding to W. 

Brun's theorem then says there exists a universal morphism T A T0 of algebraic 
varieties with cp constant on the orbits of Y and that dim T0 = 10. 

Thus if T -4 V is any morphism either there exists T0 A V such that \j/ = T ° cp 
(in which case dim T(T0) < 10) or else for some fibre V of if/ and some orbit A of Y 
we have 0 ^ V n A =J= A. This statement shows that Brun's theorem is again of 
the type originally mentioned and reveals that one aspect of this same problem is the 
algebraic analogue of the theory of dynamical systems. 
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ON THE GENERALIZED CHARACTERS 

by N. CHUDAKOV 

For a Dirichlet's character x(". ®) it has been proved that 

£ z ( n ) = ocx + 0(l) 

where x -» oo; a = cp(Qi)l^ for x = Xo an (* a = 0 for % =1= #0. 

The generalized character is a completely multiplicative function h(n) (morphism of 
the set of natural numbers) for which an analogous relation is satisfied: 

S(x) = £ h(n) = <*x + 0(1). 

The basis of a function h(n) is the set E {p, p-prime, h{p) =f= 0 }. 

Hypothesis : if h(n) has an almost complete basis, i. e. containing almost all primes p, 
there is an identity: h(n) = %(n, 20) where %(n, 90) is a Dirichlet's character. 

For a 4= 0 this hypothesis has been proved by Glazkov V. V. (1964). The question 
is open for a = 0. When the basis of h(n) contains a finite set of elements or its density 
has a logarithmic order, then S(x) is not bounded for x -* oo (Bredihin, Linnik, Chu-
dakov). 

It has been proved that 

(Chudakov, Pavliuchuk). 

More precisely: 

(Chudakov, Leibovich). 

S(x) = fi(^/log4x) 

S(x) = Q(<Jlog3x) 
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THE EFFECTIVE METHODS 
IN THE THEORY OF QUADRATIC FIELDS 

by N . C H U D A K O V 

Let Q be the field of the rational numbers, k = Q(y/- A) be the imaginary qua­
dratic field with the discriminant = — A, Qv(x, y) = avx

2 + bvxy + cvy
2 (v= 1, 2 . . . h, 

h is equal to the class-number of k) be the reduced quadratic forms of discrimi­
nant — A, corresponding to the ideal-classes of k, 

a(A) = max av (v = 1, 2 . . . h). 

W" H. Heilbronn (1935) has proved that a(A) > I - A J if (a, A) = 1. Using new 

A. Baker's papers on the linear forms of logarithm of algebraic numbers we have 
obtained a new amelioration of Heilbronn's result: for every given value of h there 
is an effective finite set of values of A for which 

a(A) < yfi (log AP<*> 

where T(/I) is an effective function of h. 

For h = 1 we can prove Stark's theorem [3] using only a Gelfond theorem (1939) 
for two logarithms (in print) (see also [2]). 
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REDUCIBILITY OF POLYNOMIALS 

by A. SCHINZEL 

Reducibility without qualification means in this lecture reducibility over the rational 
field. Questions on such reducibility occupy an intermediate place between questions 
on reducibility of polynomials over an algebraically closed field and those on pri-
mality. I shall refer to these two cases as to the algebraic and the arithmetic one and 
I shall try to exhibit some of the analogies considering several irreducibility theorems 
as'opposed to numerous irreducibility criteria (cf. [34], p. 140) usually without ana­
logues. 

Historically first is Hilbert's irreducibility theorem (1892 [13]), which asserts that a 
polynomial f(xl3.. .,x„, t) irreducible as a polynomial in n + 1 variables becomes 
irreducible as a polynomial in n variables for infinitely many integer values of the 
parameter t. As its analogon in the algebraic case one can consider the theorem of 
Salomon (1915 [22]) which precises the conditions under which a polynomial 
f(x±,..., x„, t) irreducible over an algebraically closed field as a polynomial in n + 1 
variables becomes irreducible as a polynomial in n variables (n > 1) by suitable choice 
of the parameter t (In contrast to Hilbert's theorem certain conditions must be ful­
filled). 

In the arithmetic case an analogon of Hilbert's theorem is formed by the following 
conjecture of Bouniakowsky (1857 [3]). If a polynomial f(t) with integer coefficients 
and the leading coefficient positive is irreducible and has the greatest constant factor 
d then for infinitely many values of tf(t)/d is a prime. The only case where the conjec­
ture was proved is—no need to say—Dirichlet's theorem on arithmetic progression. 

Hilbert's theorem in its full generality applies to arbitrarily many polynomials with 
any number of parameters (see [15]). Similar generalizations are possible in the alge­
braic and the arithmetic case (for the former see [14], for the latter see [23], [24] and [1]). 
However in contrast to the latter case, the m, say, parameters occuring in Hilbert's 
theorem can be chosen independently from m suitable arithmetic progressions ([27]). 

Hilbert's theorem for n = 1 is closely related to the following statement : if an equa­
tion f(x, t) = 0 is soluble in rational x for any integer value of t then it is identically 
satisfied by a certain rational function of t. The question arises whether an analogous 
statement holds for n > 1. It can be easily disproved for n > 2; for n = 2. Davenport, 
Lewis and I proved it for polynomials quadratic in xl9 x2, [7]; there are several open 
problems here for which I refer to [25] and [27]. 

The second irreducibility theorem I wish to comment upon is the theorem of Capelli 
(1901 [4]). It gives a necessary and sufficient condition for the reducibility of a bino­
mial x" — a over an arbitrary field. Originally it was proved for algebraic number 
fields but the proof extends easily to the general case ([39]). In virtue of Galois theory 
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this implies a necessary and sufficient condition for the reducibility of F(xn), where F 
is any fixed polynomial. 

The question arises whether one can give such a condition for the reducibility of 
polynomials of the form (A) F(x\1,..., xp) or (JB) F(xni,..., xnk). For the complex 
field the question (A) has been settled by the work of Ritt [21] and Gourin [12] about 
1930. In order to state the result it is convenient to introduce the notation: 

F(xl9...,x„)^constn Fa(xu.. .,xn)e°, 
<r=i 

which means that the polynomials on the right hand side are irreducible and relatively 
prime in pairs. Now Gourin's theorem can be stated as follows. 

Let F consist of more than two terms. Then for each vector [nl9..., nk] consisting 
of positive integers there exist integer vectors [pt,...,pk] and [ul9...,uk] such that 

(i) 0 < pt^ c(F), 

(ii) ni = piui9 

(iii) F{x? ,..., xp) = const f\ Fa(xx,..., xk)
e-

implies 
F(xY , . . . , 3?) 3? const f\ W , . . . , xTY°. 

The first progress with the rational field and the question (B) was made by Selmer [33], 
Tverberg [34] and Ljunggren [18] about 1960. Selmer proved the irreducibility 
of x11 ± x ± 1 deprived of its cyclotomic factors, Tverberg extended this to x" ± xm ± 1 
and Ljunggren developed a new method which permitted him to decide about reduci­
bility of xn ± xm ± xp ± 1 (see also [19]). Following the idea of Ljunggren I have 
recently proved a certain though not quite satisfactory analogon of the result of Gourin 
for both questions (A) and (B). In order to formulate the theorems it is unfortunately 
necessary to introduce some more notation. 

If 

4>(X19. . ., Xk) = / ( * ! , . . ., X fc)f[x?', 
i = l 

where / is a polynomial not divisible by any xt9 then J4>(^i,- • -, xk) =f(xl9..., xk). 
Let 

J<i>(x1,..., xk) = const n fÂ*i » • • •. xkYa-
a = l 

We set 
Kcß(xl9.. .,xk) = const Iïj/^Xi,. . .,xk)

e°, 

Ltf>(*i *fc) = const n 2 / f f (x 1 , . . . , xk)
e°, 

where ^ is extended over all fa which do not divide J(x{1 ... xk
k — 1) for any 

[Sl3.. .,ôk] 7E Ö, n 2 is extended over all fa such that 

•Vcr^rS-'-^fc"1) 7e ±fff(xi,..-ixk). 

For k = 1, Keß is Jcj) deprived of all its cyclotomic factors, Lcj) is Jcj) deprived of all 
its reciprocal factors. We have (see [29], [31], [40] and [41]. 
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(4) For any polynomial F # 0 and any vector [nlf.. .,nk] consisting of positive integers 
there exist integral vectors [pl9.. .,pk] and [ul9.. .,uk] such that 

(i) 0 < /i, ^ Ct(F), 

(ii) nt = PiUf, 

(iii) LF(x^ ,..., xp) = const f\ Fa(x,,..., xk)
e° 

implies 4 
LF(xV , . . . , *f) = const f ] W ,. . . , x?)*. 

(B) For any polynomial F and any integral vector [nl9...,nk] such that 
F(xni,. . . , x"k) T̂  0 there exist an integral matrix N = [vy]j<ri of rank r and an integral 
vector v = [vl9..., vr] such that •><* 

(i) max | vy | < C2(F)9 

(ii) 7T = vN, 

(iii) LF( ft tf" , . . •, fi y!1") = const f i Fa( y,,.. ., j , , ) -

implies 
LF(xni,. . . , x"k) = const f i ^ f f (x Ü I , • • • > x"r)e' 

The example F = x — 1 shows that without the operation L applied to the left 
hand side of (iii) both (A) and (B) would be false. However, they still may be true 
with L replaced by K. I have proved it for k — 1 and for k = 2 under the condition 
KF(xl9 x2) = LF(xl9 x2). (B) which lies much deeper than (A) has the following 
consequence: if k > 1, a{ / 0 (/ = 0, 1, . . . , k) and L(a0 + fljx"1 + .. . + akx

nk) 
is reducible then between nl9.. .9nk holds a linear relation y1n1 + . . . + yknk = 0, 
where 0 < max \yt\ < C(a09..., ak). Another consequence is this: the number N(f) 
of irreducible non-reciprocal factors of a polynomial / with integer coefficients does 
not exceed a bound depending only on || / || = the sum of squares of the coefficients 
of / . The bound which follows from the quantitative form of (B) is extremely 
large ([29]). Recently, G J. Smyth has proved that for a monic non-reciprocal poly­
nomial the product of all zeros lying outside the unit circle is in absolute value greater 

than -y/5 (*). This implies N(f) = O (log || / || ). 

The modified form of (B) with L replaced by K is related to an analogon of the theorem 
of Smyth for reciprocal but not cyclotomic polynomials. According to the recent 
result of Blanksby and Montgomery [2] the product of the zeros of such a polynomial 

lying outside the unit circle is in absolute value greater than 1 -\ , where n 
52n log 6n 

is the degree. It was asked by D. H. Lehmer (1933 [16]) whether this product can be 
made arbitrarily close to one but this seems to be difficult. 

The aforesaid modified form of (B) form k = 2 has the following consequence. 
For any non-zero integers a, b and any polynomial / with /(0) =̂  0, / ( l ) ^ — a — b 

(*) Soon after the Congress SMYTH proved that the product in question is greater than or 
equal to the least Pisot number ([42]). 
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there exist infinitely many integers m, n such that axm + bxn + f(x) is irreducible ([30]). 
The arithmetic analogon of this theorem has not been proved and may well be false. 
If instead of axm + bxn + f(x) we take axn + f(x) then for a = 12 and suitable f(x) 
with integer coefficients and /(0) # 0, f(l) ^ — ano choice of n gives an irreducible 
polynomial. For a = 1 the corresponding problem is related to the socalled covering 
systems of congruences. In particular if there is no covering system with distinct 
odd moduli then for any f(x) with /(0) ^ 0, f(l) ^ — 1 there exists n such that 
xn + / (* ) is irreducible ([28]). 

In connection with the result of Gourin I have evoked the name of Ritt. In the 
theory of polynomials he is perhaps best remembered for his theorem about the quasi 
uniqueness of representation of a polynomial in the form of a superposition of inde­
composable polynomials. This was proved originally for the complex field (1922, [20]), 
but later Engstrom [8] and Levi [17] proved it for any field of characteristic zero. 
Recently, M. Fried has found remarkable connection between reducibility and decom-
posability of polynomials. He has proved that if f(x) is indecomposable then either 
(/(*) — f(y))l(x — y) is absolutely irreducible or f(x) is up to a linear transformation xp 

or the Chebyshev polynomial Tp(x). This has led him [9] to the solution of 50 years 
old Schur problem on permutation polynomials. Fried has also proved [10], [11] that 
if f, g have rational coefficients and the degree of / is a power of an odd prime or / 
is indecomposable then f(x) — g(y) is reducible over complex field if and only if 
f(x) = h(f±(x)), g(y) = h(g±(y)), where degree h > 1. Cassels [5] and Fried [11] 
have translated the problem into one in combinatorial group theory. However, no 
necessary and sufficient condition for the reducibility of f(x) — g(y) over rational 
or complex field in terms of / and g has been found and puzzling examples of reduci­
bility over complex field were given by Guy and Birch (see [5]), Tverberg [37] and 
Fried [11]. On the other hand f(x) + g(y) + h(z) is absolutely irreducible for all non 
constant f, g and h (see [25] for the proof due to Ehrenfeucht and Pelcynski, [35], [36]) 
and f(xl9. . .,xm) + g(yl3.. .,y„) is reducible in any field if and only if 

/=fi(fi(xi , • • •, *„)), g = giteiiyi » • • • » yn)) 

and fx(x) + g±(y) is reducible in the said field ([6] and [26]). The unsolved problems 
could be multiplied but I hope I have said enough to witness that the topic abounds 
in simple and interesting questions. 
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SOME RECENT PROGRESS 

IN DIOPHANTINE APPROXIMATIONS 

by WOLFGANG M. SCHMIDT 

- 1 . Considerable progress has recently been made in this field. A. Baker's result 
on linear forms whose coefficients are logarithms of algebraic numbers, which has 
spectacular applications on transcendental numbers, on diophantine equations and 
elsewhere, may be considered as being at least on the border line of diophantine approxi­
mations. There is no need to go into details since he will give an account of this work 
in a lecture next week. Mahler's classification of transcendental numbers into S-, 
T- and [/-numbers also may be regarded as belonging to our subject. A few years 
ago Sprindzuk showed that almost every number is an S-number of type 1, and thereby 
proved a long standing conjecture of Mahler. Sprindzuk and Turan will also next 
week speak on recent results and applications of diophantine approximations. The 
problem of the existence of T-numbers was solved less than two years ago. Erdös 
recently proved the following difficult metrical result. Let n1 < n2 < .. . bea sequence 
of positive integers with Z,™ icp(n)/nf = oo, where cp is Eulefs cp-function. Then for 
almost every a and for every e > 0, the inequality 

nf 

has infinitely many solutions in rationals a/n{ in reduced form. 

Last winter I was able to extend Roth's famous theorem on rational approximation 
to an algebraic irrational to simultaneous approximations. I hope you will forgive 
me if I devote the rest of this lecture to this subject; I had not anticipated this result 
when I gave the title of my talk in the fall of 1969. 

2. In the year 1842 Dirichlet, using the pigeonhole principle, showed that every 
irrational a has infinitely many rational approximations p/q with 

1 

In 1844 Liouville proved a result pointing in the opposite direction. He showed 
that if a is algebraic of degree d^2, then there is a constant C(OL) > 0 such that 

P a > 
c(a) 
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for every rational p/q. In 1908 Thue showed that for an algebraic number a of degree 
d ^ 2 and every 

d) ii > i + 1, 

there is a constant c(a, p) such that 

P 
a 

4 

c(a, V) 

for every rational p/q. This had an important application on diophantine equations. 
Namely, if f(x, y) is a form of degree d ^ 3, which has rational coefficients and is 
irreducible over the rationals, then the equation 

(2) f(x, y) = c, 

where c is a constant, has at most finitely many integer solutions (x, y). Thue's result 
was further improved by Siegel, who showed that (1) may be replaced by p > 2y/d. 
This was improved to p > y/2d by Dyson and finally to p > 2 by Roth [3] in 1955. 
Putting /i = 2 + e we may state Roth's theorem as follows. Given an algebraic 
number a and given e > 0, there are only finitely many rationals p/q with 

_P 

In view of Dirichlet's theorem, the number 2 + e may not be replaced by 2, and thus 
in a sense Roth's theorem is best possible. 

We now turn to simultaneous approximation. Dirichlet showed that if a i , . . . , a „ 
are any reals which are not all rational, then there are infinitely many n-tuples of rationals 
Pi/q,---,pJq with 

1 
7l+d/n) 

( i = l , . . . , « ) . 

Note that the exponent 1 + - is 2 when n = 1, and it is less than 2 when n > 1. There 
n 

is a dual theorem. Namely, for any numbers a x , . . . , a„, there exist infinitely many 
(n + \ytuples of integers ql,.. ., qn, p with 

\0Liq1 + . . . +ang„ + p | <—, 
q 

where q = max ( | qY \,.. ., \qn \ ) > 0. 

Recently I proved the following theorems. 

THEOREM 1. — Suppose OL19. . .,anare algebraic, with l9al9 

over the rationals. For every e > 0, the inequalities 
, a„ linearly independent 

(3) <q - l - ( l / / l ) - 8 (i = ! , . . . , « ) 

have only finitely many solutions in n-tuples of rationals pjq,..., pjq. 

Dual to this is 

file:///ytuples
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THEOREM 2. — Suppose al9. .., a„ and e are as above. There are only finitely many 
(n + lytuples of integers ql9. . .,q„, p with q = max ( | qt \,. .., \ q„ \ ) > 0 and with 

(4) l«i«i + ••• + « A + P l < ^ " " " £ -

By the results of Dirichlet quoted above, the exponents in these theorems are best 
possible. Both theorems reduce to Roth's theorem when n = 1. From Roth's 
theorem it was clear that Theorem 1 would be true with the exponent — 2 — e instead 
of — 1 — (I/77) — e, and hence the improvement in the exponent may not seem specta­
cular. On the other hand, in Theorem 2 no exponent depending only on n had been 
known until now. It had been known, however, that either theorem implies the 
other. 

A very simple application of Theorem 2 yields 

THEOREM 3. — Suppose a is algebraic, k a positive integer and s > 0. There are 
only finitely many algebraic numbers ß of degree k with 

I cx — jff I <H(ßy{k+1+E). 

Here H(ß) denotes the height of ß, defined in the usual way. It can be shown that 
the number fe + 1 in the exponent is best possible here. Wirsing [7] had proved this 
result with 2fe instead of fe + 1. The proofs of our theorems will appear in [4]. 

3. The proofs of Theorems 1 and 2 have as their basis the method of Roth, which 
already is rather complicated; but many new complications arise in the present context. 
It is necessary to refer to a number of results of the Geometry of Numbers. 

Let K be a convex symmetric body in Euclidean Ek of volume V(K) with 0 < V(K) < 00. 
The first minimum Xt of K is defined as the infimum of the numbers X > 0 such that XK 
(i. e. the set of points Xx with x e K) contains an integer point g =j= 0. More generally, 
the j-th minimum Xj of K9 where 1 ^ ; ^ fe, is the infimum of the numbers X > 0 such 
that XK contains j linearly independent integer points. It is clear that 

0 < Xt S . • • è k < °°. 

A theorem of Minkowski says that 

27/d ^X1 ... XkV(K)^2k. 

In our applications, K will be a parallelepiped of volume 2k, and we may write 

1 « X1 .. . Xk « 1, 

with the constants in « depending only on fe. In particular, we have 

Xk » 1. 

Suppose now that (3) holds for some pjq , . . ., pjq. Put 

k = n + 1, b,= ...=bn = ^-dW-W"), bk = q1+^2). 
Then 

(5) I w -Pi\< btq^2 (1 g 1 £ n), \q\£ bkq~^. 
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Put 
«! = (1, 0 , . . . , 0 , - OCi), 

( 6 ) a„ = ( 0 , 0 , . . . , l , -a„) , 
flfc = ( 0 , 0 , . . . , 0 , 1), 

and consider the parallelepiped fi in Ek consisting of points x with 

\aix\^bi (z = l , . . . , fe), 

where a{x denotes the standard inner product. Since det (al9.. .,ak) = 1 and since 
bx ... bk = 1, this parallelepiped has volume 2k. Now in view of (5), the point 
*o = (Pi.-.-.P«. q) satisfies 

\aiXo\^biq-^ ( i = l , . . . , f e ) . 

Therefore the first minimum Xt of II satisfies Xx ^ q~Bl2. Thus in order to show 
that the inequalities (3) have only finitely many solutions, it suffices to show that 
^i = ^I(Q) » q~5 f°r every Ô > 0. We shall write f(q) > g(q) if the functions /, g 
have f(q) » q~5g(q) for every ö > 0. We have to show that 

^ > - l . 

In Roth's proof of his theorem, the index of a polynomial P(Xt,..., Xm) plays an 
important role. As it turns out, the most suitable generalization of this index is as 
follows. Let P(Xli9.. .,Xlk; ... ; Xml,.. .,Xmk) be a polynomial in mk variables, 
and let ri9.. .,rm be positive integers. Let 

L1 = o^iiXll + ... + ot±kXlk9.. .,Lm = am lXm l + . . . + &mkXmk 

be linear forms, none of them identically zero. For c ^ 0, we denote by J(c) the 
ideal generated by the polynomials 

U{Lci ... LSr with — + . . . + — ^ c. 
ri rm 

The index of the polynomial P with respect to (Ll9.. .,Lm;rli.. .,rm) is the largest 
value of c such that P lies in J(c). In the course of some arguments involving this 
index one has to have available n = fe — 1 linearly independent integer points of Ek 

with certain approximation properties. In particular, these points are needed to span 
the subspace consisting of the zeros of some linear form L(X1,..., Xk). Thus it 
turns out that after rather long arguments instead of the desired X1 >- 1 one only 
gets 

I had reached this stage by the end of 1966. Of course when n — 1, then fe — 1 = 1, 
and one obtains Xx > 1, i. e. Roth's theorem. 

A\ 4. Suppose that 1 ̂  p ^ fe — 1, and put I = [ I • Let il9..., ip be integers with 
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1 è h < h < • • • < ip = k- Let al9..., ak be the vectors of Ek given by (6). We 
define a,, A ah A . . . A at as the vector in El whose components are the (p x p)-deter-
minants of the (p x fe)-matrix with row vectors ah ,.. .,aîp , arranged in lexicographic 
order (This is a special type of product of the Grassmann algebra of Ek). For brevity 
we shall write Aa — ah A . . . A a{ where a is the set { il9..., ip }. There are / such 
sets a with 1 ^ ix < ... < ip g fe, hence / such vectors Aa of El. Write 

teff 

We recall that fl was the parallelepiped in Ek defined by 

\atx\ S bt (i = l , . . . ,fc), 

and that its successive minima were X1,..., Xk. We now define a new parallelepiped 
Uip) in El by 

|^ffAT| ^ Ba (all possible sets a). 

This parallelepiped n (p ) is related to the p-th compound body of II as defined by 
Mahler [2] ; we shall call it the p-th pseudocompound of II. Denote its successive 
minima by v l 5 . . ., v,. 

Now Mahler [2] could show that except for bounded factors, the numbers vt v, 
are the same as the I products obtained by multiplying p of the numbers Xl9...,Xk. 
In particular we have 

Vj « Xk_p+1Xk-p+2 . . . Xk « v, 
and 

V|-l « V p V p + 2 ••• 4 « Vi-i-

For n ( p ) one can show again that v,_t >• 1, and using another argument from the 
Geometry of Numbers, one obtains v,_j >- vf. With the inequalities just stated this 
implies that Xk-p >- Aft_p+1. Applying this with p = fe — 1, fe — 2 , . . . , 1, we get 
Xi >- X2 > . . . >• Xk9 and since Xk >• 1, we get Xx > 1. This is the desired result. 

5. Our main theorems may be generalized in several directions. A sample is the 
following. Suppose u ^ 1, v ^ 1, fe = u -f- v9 and let Lt(x),..., Lv(x) be linear forms 
in x = (xl9.. .,xk) with real algebraic coefficients. By Minkowski's lemma on linear 
forms there is for every Q > 0 an integer point x 4= 0 with 

| x | « Qv and with | Lt(x) | « Q~u (i=l,...,v), 

where | x \ = max (\x1\,.. .,\xk\). Hence there are infinitely many solutions of 

\Li(x)\«\x\-"fv (i = l,...,v). 

We shall call LY,..., Lv a Roth system if for every <5 > 0, the inequalities 

| L ^ ) | < | j c r ^ - 5 ( î = l , . . . , ! > ) 

have only finitely many solutions. 
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THEOREM 4. — (To appear in [5]). Necessary and sufficient for L±,...,Lv to be a 
Roth system is that on every rational subspace Sd of dimension d with 1 ^ d ^ fe, the 
restrictions of these forms have a rank r with 

r ^ dv/k. 

When v = 1, this condition simply says that r ^ 1, and hence it means that Lt(x) 4= 0 
for every integer point x =t= 0. The form L1(*) = a 1 x 1 + . . . + auxu + xk with 
ul9..., au, 1 linearly independent satisfies this condition, hence is a Roth system, and 
the inequality | L±(x) | < \x\~u~ô has only finitely many solutions. This immediately 
implies Theorem 2. It is almost as easy to deduce Theorem 1. 

6. Finally we return to Thue's equation (2). A binary form f(x, y) as in (2) factors 
into linear forms with complex coefficients. Now we shall discuss more general 
forms f(x) =f(x1,...,xk) with rational coefficients which are irreducible over the 
rationals and which are decomposable, i. e. which factor into linear forms with complex 
coefficients. It turns out that there is a number field K, of degree t, say, and a linear 
form L(x) with coefficients in K, such that f(x) = aL(x)L{2)(x)... L{t)(x) where L, 
L ( 2 ) , . . . , L w are the conjugates of L and where a is a constant. Thus f(x) = aN(L(x)), 
where N denotes the norm. Thus the study of all equations 

(7) "" fix) = e 

with constants c is equivalent with the study of all equations 

(8) N(L(x)) = c. 

Now as x runs through the integer points, the numbers L(x) run through a module M 
in K. A slight extension of Dirichlet's unit theorem shows that if M is a full module, 
i. e. if it contains t linearly independent elements over the rationals, and if K is neither 
rational nor imaginary quadratic, then there are infinitely many p in M with | N(p)\ « 1. 
The same is true for any degenerate module M, namely a module M which contains a 
submodule M' which is proportional to a full module in a subfield K' of K, where K! 
is not of the type excluded above. For a degenerate module M there are constants c 
for which the equation N(p) = c has infinitely many solutions p in M. It had been 
conjectured (see, e. g. [1, Chap. IV]) that the opposite is also true. This is in fact the 
case. 

THEOREM 5. — (To appear in [6]). Suppose M is not degenerate. The equation 

N(p) = c, 

where c is an arbitrary constant, has only finitely many solutions p in M. 

In other words, the equation (7) above has only finitely many solutions unless f(x) 
is of some obvious exceptional type. When the number of variables fe = 2, then this 
is Thue's result, and when n = 3, then it contains results of Skolem and of Chabauty, 
which were obtained by p-adic methods. It now appears that for this type of equation 
the Geometry of Numbers is more powerful than p-adic methods. 
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NEW APPLICATIONS 

OF ANALYTIC AND P-ADIC METHODS 

IN DIOPHANTINE APPROXIMATIONS 

by V. G. SPRINDZUK 

1. Metric theory of diophantine approximations to dependent values. 

Let OL1 a„ be a set of reals and let us consider the inequality 

II «i«i + '•• + anan\\ < a~w, 

where al9.. ,9a„ are integers, a = max (\at\ | a„\ ) ^ 0, \\x\\ is the distance 
from x to the nearest integer. Let w(aj , . . . , a„) be the least upper bound of those 
w > 0 for which (1) has infinitely many solutions in ax,..., a„. It is well known 
that w(al9..., a„) ^ n for every set a1 ? . . . , a„, and there are such al9..., a„ that the 
equality holds 

w(a1,...,a„) = n. (2) 

It is also well known that (2) holds for almost all sets (ul9.. .9a„)e Un (in the sense of 
Lebesgue measure in Un). This is the case of " independent " ocj,. . . , a„, and the theory 
of the approximation for this case has been developed quite far after the works of many 
authors; it has reached now the satisfactory stage [3, 10, 14]. 

Those a!, . . . , aB, for which (2) holds, we shall call " badly approximable numbers ". 
The following problem has arisen recently [2, 15]. 

PROBLEM. — Let us take a manifold P in Un of dimension less than n. Under what 
conditions on P can one say that almost all points of P (in the sense of the measure 
on P) are the sets of badly approximable numbers ? 

The manifold with this property we shall call " extreme ". 

Historically the first example of such a problem was Mahler's conjecture [12], having 
its origin from the theory of transcendental numbers. The conjecture stated that 
w(t9 t

2
9.. .9t

n) = n for almost every real t (n = 1, 2, . . . ) . or for almost every t there 
are only finitely many polynomials P(x) = a0 -f axx + • • • + a„xn with integer 
coefficients, satisfying | P(t) \ < hpn~E, where e > 0 is any number, 

ÄP = m a x ( | f l o | , . . . , K | ) . 

This conjecture has been proved [2, 3, 6], and also its analogy for the polynomials 
of the 2nd degree with any number of variables has been proved, but by the different 
way [3]. At the same time Schmidt [15] proved the general Theorem: 

If P is a curve in U2, P = (f1(t)9f2(t)), where the functions ft(t), f2(t) are 3-times 
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differentiable and (fifi' — /"/2XO does n o t vanish almost everywhere, then P passes 
almost only through badly approximable numbers. 

Schmidt's theorem shows that if the curve P is not " very straight ", it is extreme. 
One easily suppose in general that if the manifold P is not " very plane ", it is extreme. 
In this general approach the following weak result may be obtained easily. 

THEOREM 1. — Let us take the curve Pin Un, P = (A(t),.. -,fn(t)), where f±{t)9.. .9fn(t) 
are n-times differentiable functions and det (fi(j\t)) (i, j = 1, 2 , . . . , n) does not vanish 
almost everywhere. Then w(/1 , . , .,/„) < n(n + l)/2 almost everywhere. 

The proof of this theorem is based on the method of trigonometric sums, but the 
inequality w(ft,... ,/„) < n2 + n — 1 can be obtained directly [5]. 

If we have ehough information on the structure of the manifold P, we can prove 
in many cases that it is extreme using the method of trigonometric sums. 

THEOREM 2. — Let m, n be any integers with 1 < n < m, 

fi = fih, • • -, t J = cLncp^h) + • • • + ocimcpm(tm) (i=l n), 

where cpj(t) are differentiable and cp"(t)^Q almost everywhere (j = 1, 2 , . . .,m), 
0Li} are any rationals with rank (ay) = n. Then we have 

yv(t1,...,tm,f1,...9fm) = m + n (3) 

for almost all (tl9..., tm)eUm. 

THEOREM 3. — Let s, m, n be positive integers, 

ft =/iC*i,. • -, tm) = <%*! + • • • + cLimfm + <pjfl9..., r j (i = 1, 2 , . . . , n), 

where cp^t1,..., tm) are polynomials with real coefficients and with degrees not greater 
than s - 1. If m ^ 2s" \ then we have (3) for almost all (tl9.. .9tm)eUm in the follow­
ing two cases at any rate: 

(0 ay are rationals, n < m, rank (ay) = n, 
(ii) aij=ajßi, where a^O (j = l, 2 , . . . , m) are some reals, and fi^O ( i= l , 2 , . . .,w) 

satisfy w(ß2ßl\.. .JJï1) < m + n. 
The inequality m ^ 2s"1 arises here due to the application of H. Weyl's estimates 

for the exponential sums. It can be improved to m » s2 log s for the large s, if we 
appeal to I. M. Vinogradov's method. 

The application of the method of trigonometric sums leads also to the statements 
of another kind. 

THEOREM 4. — Let T > 0 and £(f) be the stochastic process of the brownian motion, 
0 < t < T, a ! , . . . , a„ are distinct reals. Then almost every random curve 

P=(t,Z(t + OL1),... ,£(! + «„)) 

passes almost only through badly approximable numbers in IRB+1 for every n ^ 1. 

These were only a few examples of the problems which one can solve using the 
method of trigonometric sums. In spite of that there are a lot of problems where the 
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application of this method leads to unovercomed difficulties. It is most of all so when 
the dimension of the manifold P in Rn is " small " compared with n. This is so, for 
example, if Pis a curve in IR" and n is " large " (very often " n is large " means " n > 3 "). 
We know only one (up to a nonsingular affinity over the field of rationals) curve 
P = (t, t2,..., t") in Un, which is extreme. This curve just corresponds to the Mahler's 
conjecture mentioned above. I suppose the main ideas of the solution of Mahler's 
conjecture are quite useful for the investigation of some more general problems of 
the same kind. But it is clear, of course, that some more technique should be involved. 
Recently I learned that following this way R. Sliesoraitiene from Vilnius proved the 
analogy of Mahler's conjecture for the polynomials of the 3rd degree with 2 variables. 
The work of Baker [6] with its refinements of the proof of Mahler's conjecture was 
useful there. 

2. Effective rational approximation to algebraic numbers. 

Let / = f(x, y) be an irreducible binary form with integer coefficients and degree 
n ^ 4, p j , . . . , ps are any fixed prime numbers, pt ^ pj(i ^ j), A is an integer. It was 
well known due to Mahler [13] that the equation 

f(x9 y) = Aft . . . pl% (x, y) = 1 (1) 

has only finitely many solutions in integers x,y,z^ ^ 0 zs > 0. But Mahler's 
method does not allow to find out all its solutions because it is not effective. Recently 
A. I. Vinogradov and the author [1] indicated the method of effective determination 
of all the solutions of (1), using the work of Baker [7]. The same time Baker [8] investi­
gated the equation f(x, y) = A and obtained for its solutions the effective estimate 

max ( | x |, | y | ) < cx exp (log \A\f9 (2) 

where ^ f = w + 1 + e, ß > 0 is any number and cY is a computable number independ-
ing on A. Coates [9] extended the arguments of Baker to the equation (1) and obtained 
the estimate of the form (2) with «# = n(s + 1) + 1 + e. Independently the author 
tried to obtain the best possible estimate of the form (2) and partially succeeded on his 
way when he proved (2) with X = 2 + e for the forms of special kind and provided 
that Api,..., ps has no common factor with the discriminant of f(x, y) [4]. Recently 
the author realised that further development of his method leads to (2) with Jtf = 2 + e 
for " almost all " binary forms and without any restrictions on the A, p1,..., ps. 

THEOREM 1. — Suppose f — f(x, y) — aNm(x — ay), where a is an integer. Let 
us call the form / (and algebraic number a) " exceptional ", if there is such a numeration 
of the conjugates a (1 ) , . . . , a(n) that 

q(1) - a<*> a(2) - «U) _ i - Ç. 

a(2) _ a(0 " a d) _ au> " 1 - f. (3) 

for every i9j (i ^ j , 3 < i, j ^ n)9 where Ç,- ̂  1 (i = 3, 4 , . . .,n) are some roots of 1. 
All the solutions of (1) satisfy (2) with Jf = 2 + e provided that / is not an exceptional 
form. 
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It follows immediately that we have 

THEOREM 2. — If a is not exceptional algebraic number at least of the 4th degree 
and S is any fixed set of prime ideals of the field Q(a), then we have for every non-zero 
pair of integers x, y 

I x - ay | n I x - ay |p > c2X~n+1 exp (log Xfl2~\ (4) 
peJS 

where n is the degree of a, | . . . |p is the p-adic norm in Q(a), e > 0 is any number, 
c2 > 0 is a computable number independing o n I = max (\x\, \y\). 

Obviously, if a is totally real or a = j/D (D is an integer), it is not exceptional one. 
More than that, it follows from (3) that if the polynomial f(x, 1) has symmetric Galois 
group and n ^ 5, then / is not exceptional. It is well known that " almost all " poly­
nomials with integer coefficients have the symmetric Galois group, so " almost all " 
binary forms are not exceptional (*). 

To introduce a lemma we suppose that p is a rational prime, Qp is the p-adic comple­
tion of the field of rationals Q, Jp is the p-adic completion of the algebraic closure 
of Qp, | . . . |p is the p-adic valuation on Jp, \ p \p = p - 1 , log z is the logarithmic 
function, defined in the disc \z — 1 \p < 1, ze Jp. For a finite extension IK of Q the 
embedding K -• Tp defines a valuation | . . . | p on IK. 

The height of algebraic a we denote by h(a). 

LEMMA. — Let a l 9 . . .,an be n ^ 2 algebraic numbers, ßl9.. .,ßn-1 are algebraic 
integers, h(oc„) = A, max h(ß) < H (i = 1, 2 , . . . , n — 1), 

log ,4 <H* ( 1- f i l ) , 

where sx is a fixed number with 0 < ex < 1, IK = Q ^ , . ..9aH9ßl9..., jß„_i), | . . . \p 

is a valuation on IK, | a- — 1 \p ^ p~ep (i = 1, 2 , . . . , n) with some integer r > 0 and 
e2—2, ep = 1 for p ^ 3. Further suppose that e = s±(n + l)"1 and the following 
inequality holds 

| ßt log fa) + • • • + /?„_! log K-J - log (0Ö I, > P'""4-

Then for any ö > 0 we have 

| ft log « ! + • • • + ft,-! log <x„-1 - log a„ | > e~âH (5) 

provided that H exceeds a computable value depending on K,a1,...,a„-1,el,p, r, Ò. 

The same suppositions lead to the analogy of (5) in every g-adic metric (q ^ p is 
any prime). 

For the application of this lemma to the study of the equation (1) we need to choose 
in some appropriate way the prime numbers p and, consequently, to involve some 
information on the distribution of prime numbers. It can be done due to the theorem 
of Frobenius [11]. 

(*) If n ^ 5 no exceptional form exists, but if n = 4 such forms do exist. 
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As I can see, the method in the consideration may be developed so far to give the 
best possible estimate of the form (2), i. e. (2) with MP = 1 -}- e (and then (4) with 1 — g 

instead of - - E) (*). 
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CLASS-NUMBER PROBLEMS 

IN QUADRATIC FIELDS 

by H. M. STARK 

1. Introduction. 

Four years ago, Baker and I gave the first accepted solutions to the problem of 
finding all complex quadratic fields of class-number one. This paper will be a report 
on some of the more interesting developments in class-number problems and the 
functions connected with these problems. It is now possible to completely settle 
the class-number two problem; this was discovered this summer independently by 
Baker and myself. The functions connected with this problem lead naturally to a 
study of the values of Abelian L-functions and more generally Artin L-functions 
at s = 1. An interesting consequence of these studies is a theorem on the factorization 
of regulators of extension fields. I wish to acknowledge that I have had the benefit 
of many conversations with Prof. Siegel. He has given me many valuable insights 
and references. 

2. The Heegner method. 

We begin with Heegner's discounted solution [5] to the class-number one problem 
of 18 years ago. For Im z > 0, q = e2niz, put 

{ 1 + 2 4 0 £ Q W } 3 

Y <y n = l d\n 

M = = • 
«na-«")24 

Suppose d is the discriminant of a complex quadratic field of class-number h(d). If d 

is odd, then J = ji -^— ) is an algebraic integer of degree h(d) and in fact Qf^Jd, J) 

is the absolute class field (i. e. the maximal unramified Abelian extension) of Q(^/d). 
If d = — 3 or 3 / d, the real cube root of J is also of degree h(d); we denote this real 
cube root by y. 

Let 

/(z) = <r1/48ft(i + <r1/2) 
n = l 

and set f = f(y/d). Then 

(1) f24 + yf16 - 256 = 0. 
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Thus f8 is an algebraic integer of degree < 3h(d). Assume further that | d \ = 3 (mod 8). 
It is an old result of Weber [13] that in this case f8 is of degree exactly 3h(d). Weber 
proved that f2 is in fact of degree 3h(d) and conjectured that / is of degree 3h(d). This 
conjecture was proved two years ago by Birch [2], Contrary to popular opinion, 
this conjecture plays no role in the part of Heegner's paper dealing with class-number 
one. 

Thus Q(f2) = Q(f8) is a cubic extension of Q(y) = Q(J). Hence f2 satisfies a 
unique cubic equation over Q(y) which we write as 

(2) f6 - 2ßf* - 4a/2 - 4 = 0, 

since it ultimately turns out that the constant term is — 4 and a and ß are algebraic 
integers in Q(y). Transposing 2jß/4 + 4 to the other side and squaring gives 

(3) f12 - (8a + 4ß2)f8 + (16a2 - 16ß)f4 - 16 = 0. 

Transposing (8a + 4ß2)f8 + 16 to the other side and squaring gives 

(4) Z24 - 16(2a2 + 4ajS2 + jß4 + 2ß)f16 + 128(2a4 - 4a20 + ß2 - 2a)/8 - 256 = 0 . 

This is the unique cubic equation for f8 over Q(y) as is (1). Equating the coefficients 
of f8 in both equations gives 

(5) 2a(a3 + 1) = (2a2 - ß)2. 

In the case of h(d) = 1, a and ß are rational integers and (5) is easily solved. The 
solutions are 

(a, ß) = (0, 0), (1, 0), ( - 1, 2), (2, 2), (1, 4), (2, 14). 

From the coefficients of / 1 6 in (1) and (4) we find the corresponding values of y to be 

y = 0, - 32, - 96, - 960, - 5 280, - 640 320 

which are known to correspond to 

d = - 3, - 11, - 19, - 43, - 67, - 163 

respectively. This gives the six fields of class-number one and \d\ = 3 (mod 8); 
the only other discriminants with h(d) = 1 are d = — 4, — 7, — 8. This is my 
version [10, 12] of Heegner's solution to the class-number one problem; his solution 
has also been „resurrected by Birch [2, 3] and Deuring [4]. 

Set 
C = 2 0 - 2 a 2 ; 

the coefficient of / 4 in (3) is simply — 8f and, thanks to (5) the coefficient of / 8 is 
just — 2Ç2. The connection of £ with y is then seen to be 

(6) - y + 12 = 4(C + 1)2(C2 - 2C + 3). 

We write it in this form because of a footnote on p. 232 of Heegner's paper (and proved 
by Birch [3]) which states that — y 4- 12 is 3 times the square of an algebraic integer 
of degree h(d) when \d\ = l (mod 12). This is related to the fact that - J + 1 728 
is | d | times a square which was already known by Weber. Hence when we consider 
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\d\ = 19 (mod 24), so that we also have \d\ = 3 (mod 8), we see from (6) that there 
is an integer S in Q(y) = Q(J) such that 

(7) f 2 - 2 £ + 3 = 3<52. 

This integer ô is very useful. Let F be defined by the quadratic equation, 

^ ( C - l ) if l ü ± l s i ( m o d 4 ) 

| - V2(C - 1) if l ^ ± i = 3 (mod 4). 
(8) F-F~1 = 

[The ± is introduced so that the right side of (8) will always be positive. This comes 
about because there are four equations of the form 

yl2 _ 2(2fB - 8Ç - 16 = 0 

that are factors of (1) and only one of them has £ in Q(y). Two of the values of £ are 
complex and certainly not the correct value since Q(y) is a real field. The other two 
values are real, one positive and one negative. It is a non-trivial fact [11] that the 

positive value is the correct one if — = 1 (mod 4) and the negative value is 

the correct one if — = 3 (mod 4)]. By its very definition, F is a unit. We 

will now show that Bï2
I2F is a unit in Q(J9 >/3) where e12 is the fundamental unit in 

the field Q(s/3) of discriminant 12. We find that the positive root of (8) is 

(9) F - ± <&-» + <&=&+} . A ± e _ „ + ^ 

and since £ 2̂
1/2 = (2 - y/3)112 = —^(^ß - 1), it follows that £Ï2

1/2F is a unit in 
Q(J9 y/3) as claimed. v ^ 

3. Class-number two. 

We wish to examine this unit more closely in the case of class-number two. So 
suppose h(d) = 2 and \d\ = 19 (mod 24); this is the only case that the old methods 
couldn't settle. Then we may write 

d = — pq9 p = 1 (mod 4), q = 3 (mod 4), 

where p and q are odd primes. In this case J is in Q(sfp) and there are three funda­
mental units in Q(J9 y/3) = Q(N/p, y/3). The units e12, ep, el2p are independent in 
this field but not fundamental; however, any unit squared is representable in terms of 
these units. In particular F2 = e12(eï2

il2F)2 is so representable and we write 

(10) F 2 = 8Ì2B
B

12p8
C

p. 

In fact C = 0 since from (8), the quadratic equation for F2 over Q(yfp) is 

F4 - [2(C - l)2 + 2]F2 + 1 = 0 

I - 17 
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and hence 

1 = NQ(rP,Jî)iQ(J-p)(F2) = elc-

It can further be shown that A and B are both positive by considering si2sï2p and 
how it is related to the conjugate of J in Ql^/p). 

Next, using (9) and tracing things back to J, we see that 

nijd nj\d\ 

F = e 1 2 + 0 ( l ) = e 1 2 +0(1 ) as | d | - o o 

and hence 

\A log si2 + B log s12p + ^ l o g ( - 1)1 = l o g U ^ F 2 ) = 0{e~^2'} 

This gives a very nice linear form in three logarithms with A and B = 0(y/ \ d \ ) since 
they are both positive. However log s12p may be as large as (roughly) yfp log p. 
For a given e > 0, Baker's earlier transcendence results could handle the class-number 
two problem when the smaller of p and q were less than | d |*~E. Thus we will further 
restrict ourselves to p <\d\k+E and hence 

\ogs12p = 0(\d\*+'). 

Therefore we may write our linear form as 

(11) | y/d log ( - 1) + 6A log e12 + 6B log sl2p | < e~H 

with A, B, Jd = 0(H) 

and log e12p = 0(H*+2s) 

But H*+2e is still too large to be able to apply the previous general results of Baker. 
Here, however, we have only one large logarithm and hence should expect to be able 
to improve the general transcendence results in this case. This is indeed possible 
and was done simultaneously this summer by Baker and myself. An exact formula­
tion of my version is 

THEOREM 1. — Let ^ = — 1 and a2 , . . .,a„ be the fundamental units of different 
real quadratic fields (n > 2). Set 

A = max | log a.-1 

where log a;- is the principal value. Let b± = yj — D where D is a non-negative 
rational integer and let b} (j > 2) be rational integers. Suppose 0 < e < l , v > 1 
and H are real numbers with 

8 = (8H4 + 4n3 + 4n2)A 

such that max (A, log a„) < H1~B, 

\b}\<H\ j=l,...,n; 

(24n3 3211+3/^ _|_ 3 \2n-2^ \ l / (8n 2 -8n-2 )A 

( « A ) — ) 
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If not all the bj are zero then 

| bx log a! + . . . + bn log a„ | ^ e~H. 

This theorem clearly applies to the linear form (11). A numerically better version 
of this theorem, which is too complicated to state here, then leads to the result, 

THEOREM 2. — If h(d) = 2 then \d\< 101100. 

4. The unit F. 

It may well be asked how one would dream up the equations leading to F. The 
answer is that my original solution to the class-number one problem and Heegner's 
solution are closely related. The unit F comes from my original method as the value 
of a certain L-function at s = 1. Let Q(x, y) be a positive definite binary quadratic 
form of discriminant d and let k be the discriminant of a quadratic field (real or complex) 
with (k, d) = 1 and the associated real character %k defined by the Kronecker symbol 

&W = ( H - Set 

(12) L h * . 0 - ± I X-§^ 
« m,n*o,o G(w, n)s 

where œ = 6, 4, 2 for d = — 3, d = — 4, and d < — 4 respectively. For the particular 
form 

^ / v 2 Ml + ! 2 
Q0(x, y) = x2 + xy + i—^—y 2 

and | d | = 19 (mod 24), it turns out that 

(13) ^ l , * l a > ß 0 ) = - ^ = l o g F . 

Let efc denote the fundamental unit of Q(*Jk) when k > 0 and set g = 1, t = d for 
k > 0, g = d, £ = 1 for k < 0. It has been known since Heilbronn's work [6] that 
for (k, d) = 1, /c * - 3, - 4, 

(i4) i m . x,, e) = m. wm. &> = 2 ^ f , ^ g % 

where the sum is over a complete set (/i(d) in all) of inequivalent quadratic forms. For 
example, if h(d) = 1 and | d \ = 19 (mod 24) then 

F = eî^i1 2^-4"8 

which agrees with the general result on the field containing F since in this case 
h(12d) = 4 (mod 8). It has recently been realized by Baker, myself (after being given 
the result in terms of ring class characters by Prof. .Siegel) and, I believe, L. J. Goldstein 
that there is a similar formula to (14) for each genus. 

Let us decompose d in all possible ways as d = gt where g and t are also discrimi­
nants of quadratic fields (or are 1 and d) with g and k having the same sign. There 
are 2 r _ 1 such decompositions where r is the number of distinct prime factors of d. 
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To each decomposition, there corresponds a genus character %gtt (i. e. a character on 
the group of genera) and for (k, d) = 1, k =j= — 3, — 4, we have 

(15) £ L(l, Xk,Q) = 21 -rY,Xg,t(G)L(l, Xkg)L(l, Xkt) 
QßG g,t 

22 T% -lxg,ÀG)h(kg)h(kt) log skg 

where the sum on the left is over a complete set (h(d)/2r~1 in all) of inequivalent forms 
in the genus G. 

For example in the case of h(d) = 2, | d \ = 19 (mod 24), go is the principal genus 
and we have 

r — b12 e12p 

which incidentally shows that in (10), 

A = h(12d)ß, B = h(12p)h(- 12g)/8, C = 0. 

In fact we may use (15) in the case of one class per genus and | d \ = 19 (mod 24) to 

calculate J = /( -^— ) from Dirichlet's class-number formula. This would have -m 
saved Weber a lot of trouble. 

The result (15) also gives us a good start on h(d) = 4 and one class per genus. We 
can get an effective solution to the problem for odd discriminants except in the case 
that d = — PiP2p3 ; Pi, p2, p3 are primes, p1 = 3 (mod 4) and p2 and p3 are between 
| d |*~fi and | d |*+E. In this case the best that we can do is to find a linear form in four 
logarithms, two of which are large. The corresponding problem for even discrimi­
nants is also still open. Conjectured improvements in Theorem 1 would appear 
to be capable of effectively settling the problem of class-number 2" and one class per 
genus (n fixed) although since the number of logarithms is increasing with n, we still 
might not get an effective solution to the problem of one class per genus. 

5. Values of Z-functions at s = 1. 

The result of (13) is more specific than (14) or (15) when there is more than one class 
per genus. On the basis of it and similar results for k = 5 and 8, we make the following 
conjecture (Conjectures 1, 2 and 4 are given as conjectures rather than theorems 
because I have not had sufficient time to examine my proofs which I have found only 
in the last month); 

CONJECTURE 1. — When (k, d) = 1, 

L(UXk>Q) = r - 7 = l o g e 

Where r is a rational number depending on k and e is a unit in (the real part of) the 
absolute class field of Q(y/d) with y/k adjoined. 

The key to the proof is that Xk(Q(m, n)) is also a ring class character (mod k). It 
is in fact a primitive ring (and even ray) class character as may be seen by comparing 
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the functional equations of L(s9 %k, Q) with those of Abelian L-functions for complex 
quadratic fields. If % (1),..., %(h) are the characters of the absolute ideal class group, 
then XkXiJ) *s a l s o a primitive ring class character (mod k) and 

L(l, Xk , Q) = TT^ E XU)(Q)L(U XkXU\ yß) 
n\a) j=l 

where xU)(Q) is xU) evaluated on the ideal class corresponding to the form Q and for 
ring or ray class characters %9 

where the sum is over all integral ideals of Q(yfd). Conjecture 1 is then a special 
case of the following conjecture. 

CONJECTURE 2. — Let / be an integral ideal in Q(^fd), / # (1), and x a primitive 
ray class character (mod / ) corresponding to the ray class field K/Q(xfd) with relative 
Galois group G. Then 

L(l, x,y/d) = a —= Y,x(g) log | ßg I 

where the 8g are units in K and a is a rational number times a Gaussian sum. 

Unless I have missed something, the proof is a simple matter of deciphering the 
notation of Ramachandra [8] and applying his results to L(l, x> y/d) as expanded by 
Siegel [9] from Kronecker's second limit formula. Conjecture 2 is a striking analogy 
to the well known similar results for ordinary Dirichlet L-functions. Because of this, 
we come to 

CONJECTURE 3. — Any Abelian L-function or Artin L-function at s = 1 is an alge­
braic number times na times a homogeneous form in logarithms of units from the 
corresponding over-field with algebraic coefficients and degree b (and which is in 
fact a b by b determinant of linear forms of logarithms). If the L-function is an Abelian 
L-function defined over a field k of degree n then a + b = n and a and b can be deter­
mined from the gamma factors in the functional equation. 

Both extremes of a = 0, b = n (a totally real extension of a (totally real) field) and 
a = n, b = 0 (a totally imaginary quadratic extension of a totally real field) can occur. 
Besides the result of Conjecture 2 and Dirichlet L-functions, there are only isolated 
verifications of this conjecture. When one multiplies all the L-functions at s = 1 
corresponding to a particular over-field K, one gets the residue of the Dedekind zeta 
function of K at s = 1. Thus a particularly interesting consequence of Conjecture 3 

CONJECTURE 4. — A regulator of a relatively normal extension field factorizes in 
accordance with Conjecture 3. 

A simple consequence is that if k c K then the regulator of k divides (in the obvious 
sense) the regulator of K. This is simple to prove, we take a set of fundamental units 
8l9.. .,8r of k and complete them to a system of independent units el9.. .,8R in K. 
The regulator for el9..., 8R is a rational number times the regulator of K and by sub-
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tracting rows fs easily seen to have a factor of the regulator of k The result of this 
corollary allows us to verify many instances of Conjecture 3 since a zeta function 
of one field is sometimes an L-function times the zeta function of a subfield. 

The simplest case of Conjecture 4 is the case of a totally real relatively normal exten­
sion X of a field k. When k = Q, the proof is based upon Minkowski's theorem on 
units [7] which shows that the regulator of K is essentially a group determinant. For 
k T* Q, Minkowski's theorem is replaced by Artin's generalization [1]. 

The proofs sketched above of Conjectures 1, 2 and 4 will appear in due course, 
assuming that they continue to hold up. A proof of Conjecture 3 would appear at 
this time to be very difficult. 
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DIOPHANTINE APPROXIMATION 

AND ANALYSIS 

by PAUL T U R Ä N 

A fundamental difficulty of complex analysis, inherent in it from the very beginning 
on, lies in the fact that—apart from trivial cases—the expression 

£ rjj | (rjj complex) 
7=1 

in general cannot be estimated from below neither by £ | rjj | nor by max \rfj\ or 
7 = i j 

by min | rjj |. Calling these Problems I, II or III respectively H. Bohr was the first 

who—in the case of Problem I—discovered in 1909 two inequalities which could 
serve in certain situations as substitutes for the required lower bounds. These assert 
—in slightly more general form than he ever stated or used them—that for arbitrary 
complex bj numbers, arbitrarily small e > 0 and complex z^-numbers with linearly 
independent arguments for a suitable integer vt the inequality 

\lw\ 
(1) ~ ^ l - e . 

l\bj\ \zj\» 

further for positive bfs and arbitrarily complex zf& with a suitable integer v2 the ine­
quality 

£v?l 
n\ ->=1 2TE 
(2) — ^ cos — 

Ì\bj\ \zj\V2 5 

j = i 

holds. The great difference between (1) and (2) is that whereas suitable v2 in (2) can 
be found in every interval of form (n, rj. 5"), no localisation for vx in (1) can be given. 
Bohr's ingenious proofs were based on two results taken from the seemingly farlying 
theory of diophantine approximation, due to Kronecker and Dirichlet respectively 
and he applied (1) and (2) to various questions concerning almost periodical functions, 
Dirichlet series in particular to Riemann zeta function. No doubt this was the first 
interaction between the two theories in the title of the talk. 

Some years later analysis shot back. H. Weyl's theory of uniform distribution 
mod 1, the Siegel-Mordell analytical proof for Minkowski's fundamental theorem, 
Bohr-Jessen's analytical proofs for the above used Kronecker-theorem seemed to 
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give a decisive advantage to " continuous " methods compared to " discontinuous " 
ones. Much later I observed that the number of fields of applications of diophantine 
approximations to analysis, envisaged by Bohr, could be essentially enlarged if the 
absolute value of the " generalised power-sum " 

/(v) = £ bjZvj (v positive integer) 
7 = 1 

could be estimated for appropriate v-values from below without the above mentioned 
strong restrictions on the bj coefficients and Zj-vectors, not necessarily by the " H. Bohr-
norm " 

(3) M0(v)= £\bj\ \ZjY 
7 = 1 

but—depending on the intended application—by other " norms " as 

M±(v) = (min \zj\y (" minimum norm ") 

M2(v) = (max | z} | )
v (" maximum norm ") 

( 4 ) M3(v) = ( £ | bj |2 | zj |2 v)1 / 2 (" Wiener norm ") 
7 = 1 

M4(v) = max | bj | (" Cauchy norm ") 

or even by other appropriate norms. The essential further requirement was however 
that the v-values, for which the lower estimation holds, could be localised and even 
much stronger than in (2). It turned out that such lower bounds can actually be given, 
furnishing substitutes for problem II and III among others and pursuing systemati­
cally this point of view it was possible to extend the scope of applicability quite essen­
tially. We shall discuss the main results of this theory, parallel with some of its appli­
cations with a cursory classification of its (to a great extent open) problems. 

Generally speaking the problems are extremal problems, more exactly minimax 
problems. Restricting ourselves to the norms in (3) and (4) a typical among our 
problems of first type is to determine at given 0 ^ I ̂  3, nonnegative integer m and 
fixed complex ^-coefficients 

(5) min max — T T T T - = Ui(m>n) 
zi,...,z„ v = m+l,m + 2 m + n iWi(v) 

and to determine all extremal-systems (zf, zf,.. .,z*). A complete solution of such 
problems succeeded seldomly; for the intended applications however generally good 
estimations are sufficient. Particularly important for applications are the norms 
M±(v) and M2(v); no wonder since they are the substitutes for Problems II and III. 
As to the first norm I proved using exclusively classical algebraic tools the inequality 

M—Y 
\2e(m + n)J 

(6) Ul(m,n)>[ J \b± + . . . +bn\; 
\2e(m + n)J 

by a more cautious treatment of my basic identity de Bruijn and Makai found the best 
possible inequality 

(7) [Mm, ») > | "£2'-(m ^+J) | ' | & ! + . . . + U 

file:///zj/y
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which is however less fit for the applications. As to the second norm fixing the order 
of terms by 

(8) \Zl\^\z2\^ . . . £ | z „ | 

we found in collaboration with Vera T. Sós the sharpest known inequality 

U2(m'"K84^)"mÌn|bl + (9) ^•")>(vMmT7ôjT |bl+"-+fcj|-
As was shown by Makai in an ingenious example the constant 8e cannot be replaced 
by 4e. In the very important special case of bx = b2 = ... = bn = \ this is equivalent 
to 

(10) max I z\ + z\ + . . . + zv„ I > (77-7-^ ) 
v = m + l , m + 2 m + n 1 z " ' \%e(m + w)/ 

if only max \zj\ = 1; it would be of importance to replace in (10) the constant 8e 

by 1 + e if — is " small ". The dependence on the b/s on the right of (9) is rather 

clumsy; simple examples show however, that this difficulty is inherent in the matter 
since they show that the minfactor cannot be replaced either by \bt + . . . + b„ \ 
or by min | bj | generally. 

We open the long sequence of applications with the remark that (6) leads after 
simple substitutions for arbitrary complex ^-coefficients to the inequality 

(11) max I f V*-" I Û (2e^-Z4Y max I t b^x I 
***** j=i \ y ~ ß) Pâ^y j=i 

if only 

(12) 

Trivial passage to limit leads from (11) to the inequality 

(13) max | g(t) | £ (le i ^ - j Y max | g(t) | 

for all solutions of all linear ordinary differential equations with constant coefficients 

(14) y(M) + aiy
in-1)+ . . . +a„y = 0 

if only a < ß < y < Ö and all zeros of the characteristic equation 

(15) zn + a1z»-1 + . . . +a„ = 0 

are in the half plane Re z ^ 0 (which is of course only a normalisation). (6) leads 
also to an L2-form of (13); this is—in an improved form by R. Tydeman— the inequality 

(12) a < ß < y < ô and min Re a, = 0. 

Cß+Ö ( a - ß + ö\2n 

(16) J \g{t)\2dt^\2e J j 2 . I*« I2* 
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if only (15) holds and also 

(17) a > ß and Ô > 0. 

Since (13) and (16) does not depend on (14), only through (15), various transitions 
from these to the general theory of differential equations are possible. One result of 
these refers to the system in the canonical form 

A Y" 

(18) -=• = AX + W(X, t)9 W(0, t) = 0 
dt — 

where X = X(t) and W(X, t) stand for n x 1 column-vectors and A is an n x n matrix 
with complex entries; (18) makes sure that X = 0.is a solution of the system. Let A 
be such that all eigenvalues of A are in the half-plane Re z = A and all aik elements 
of A be such that \aik\ = d. Then one can give an explicit A0 = A0(n, A) with follow­
ing property. Let A > A0 and suppose that W(Z, t) satisfies in some fixed cylindrical 
neighbourhood of Z = 0 in the (n 4- l)-dimensional (Z, t) space the inequality 

(19) l l ^ H s ^ , , , , 

with a certain explicit c(A, d, n). Then for all sufficiently large a's the inequality 

Mb (20) max | | X ( 0 l k V > cx 
a_:f = <*+A 

(Ci positive numerical constant) 

is valid for all X(t) # 0 -solutions of (18), if only 

(21) lim n arcoil = o. 
Qualitatively speaking (and a great deal weaker) an asymptotically stable solution 
cannot be " too stable " in a very strong " finite " sense. 

The same reasoning can be used for difference and retarded differential equations. 
Also the inequality (20) can be used (negatively) to prove that certain functions cannot 
satisfy certain types of differential equations, reminding one to Liouville's necessary 
condition for a number being algebraic of n the degree over the rationals. 

Another application of (6) refers to value distribution of solutions of linear diffe­
rential equations. The germ of these results is the trivial observation that in the 
simplest type of such equations 

y{n+l) = 0 

also the value-distribution is of simplest type namely all solution take all values in all 
disks of the plane at most n times (with multiplicity). It was a plausible next step 
to investigate the analogous value distribution problem in the case of linear differential 
equations in (14) (some problems of this circle of ideas were treated often in the lite­
rature (*)). Using a power sum theorem devised especially for this application we 

(*) An account of these works is given in S. R. E. LANGER'S paper, On the zeros of expo­
nential sums and integrals, Bull. Amer. Math. Soc, vol. 37 (1931), pp. 213-239 and more recently 
the book of R. BELLMAN and K. L. COOKE, Differential-difference equations, London, 1963. 
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exhibited with I. Danes an explicit upper bound \j/(n, R, M, m) for the number of 
y4-places for every solution of (14) in every disks | z — z0 | ^ R; here M resp. m stand 
for the maximal resp. minimal distance of the different roots of the characteristic 
equation (15) (multiple roots permitted). The point of this theorem was of course 
the independence of the upper bound from A9 z0 and from the choice of the solution 
and the very loose dependence on the coefficients of (14). Recently however R. Tyde-
man discovered that again a proper use of (6) leads to the much more elegant upper 
bound 

(22) 6n + ARM 

which has also the advantage over our upper bound that it does not depend on m 
too. A consequence of (22) (i. e. a propagation of the effect of (6)) to the theory of 
transcendental numbers was noted by J. Coates. This refers to the fundamental 
theorem I of Gelfond dealing with algebraic independence over the rationals of certain 
types of numbers (see p. 132 of his book " Transcendental and algebraic numbers ") 
where the most inconvenient restriction (112) from the hypotheses of this theorem 
can simply be dropped (*). 

The inequality (6) has also several consequences in the complex function theory, 
notably to gap-theorems. From (13) (i. e. from (6)) one can deduce for 0 < Ö < 1 
and real a at once the inequality (Aj real) 

* /40\* * 
(23) max I Y bje^x I ^ — max I V b^x I 

xreal jtTi l \0 J a^x^a+ö j=i 

This gives—combined with a simple approximation-lemma—at once Fabry's gap 
theorem. It offers also a short direct proof to one of the main theorems in Pólya's 
classical paper from 1929 according which if the entire function of finite order is repre-

00 

sented by the power series ]£ anz
Xn with Fabry gaps (**) then with the usual nota­

tions the inequality n = 1 

(24) log M(r„, a, a + Ö) ^ (1 - a) log M(rn) 

holds for arbitrary small positive e and Ò and real a for an appropriate unbounded 
resequence. An appropriate combination of (23) with Wiman-Valiron theory led 
Ko'vâri to a refined form (24) which in turn enabled W. H. J. Fuchs to the first proof 
of Pólya's longstanding conjecture according which under the previous conditions the 
stronger inequality 

(25) log m(r) ^ (1 - e) log M(r) 

holds for arbitrarily small e > 0 except an r-set with finite logarithmic measure. 
Among the further results of Kövari in this direction I mention his proof for (25) for 

(*) My conjecture, that conversely from the above type value distribution of all solutions 
of the linear equation y(n) + a^y^'^ + . .. + an(z)y(z) = 0 (av(z) entire functions) one 
can conclude that all av(z)'s are constants, was subsequently proved by H. Wittich. 

(**) I. e. with > 0 for n -> oo. 
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all entire functions (i. e, not necessarily of finite order) if only the Fabry-gap-condition 
is replaced by 

kn> n(log n)2+E
9 £ > 0 

which is very close to the gap condition £ — < oo which is probably necessary 

and sufficient condition for the validity of (25) without any order-condition on the 
function. 

An unexpected further application of (6) via (23) was found by D. Gaier in his first 
proof of the longstanding conjecture of Hardy-Littlewood according which if the 
series Za„ is Borel-summable and lacunary in the sense that an ^ 0 implies 

n = nk9 nk+1-nk> d^/nk 

with some positive d, then the series converges. 

From applications to quasi-analytic function classes with one or several variables 
we mention only the simplest theorem that the class M of functions 

fix) = Wh* 
j 

with real k/s satisfying the condition 

(26) lîm g*«**« V | f l | | < oo 
j><o 

form a quasi-analytic class in Mandelbrojt's sense (*). The interest of this class is that 
it depends exclusively on the coefficients, in contrast to an analogous theorem of 
Mandelbrojt-Wiener which defines the class exclusively with the (integer) exponents. 
For the sake of orientation we remark that the functions satisfying (26) can e. g. be 
nowhere differentiable. 

Next we turn to some applications of the inequality (9) and (10). They refer to 
such farlying subjects as analytic number theory and numerical analysis. As to the 
second one I mention only the theorem that applying (10) with m = 0—or rather the 
improvements of this case by Atkinson, Buchholtz, Cassels—one can construct to 
each natural n and arbitrarily small e > 0 an algorithm, with elementary steps the four 
fundamental operations and taking (the positive value of) roots of positive numbers, 
the length of which depends exclusively on n and s and which—applied to arbitrary 
algebraic equations (15) with complex coefficients and an ^ 0—gives a complex num­
ber xjf such that for a suitable zero z* of equation (15) the inequality 

(27) T " 1 < 8 

(*) This means that 

Um eh\ \Mt)~f2(t)\
2dt<œ, fl9f2eM 

h~* + 0 Jxo-h 

with a real x0 implies ft(x) = f2(x). 
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holds. Since the solubility of (15) by radicals would mean a solving algorithm of 
length depending only on n9 the theorem could be formulated a bit loosely that the 
analogon of Ruffini-Abel theorem does not hold for the approximative solubility of 
algebraic equations in the sense of (27). Among the applications of (10) to analytical 
number theory I mention first the theorem which says—again a bit loosely expressed 
—that the position of roots of the Riemann zeta function £(s) (s = a + ir) in the hori­
zontal strip T ^ t ^ 2T depends only on primes of the interval T2 ^ p ^ TB. Among 
the applications to the distribution of zeros of £(s) or more generally to all Dedekind 
zeta function (K(s) belonging to the number field K I mention only two theorems, 
found in collaboration with G. Halâsz. The first one asserts that denoting for 

a ^ - the number of roots of ÇK(s) in the parallelogram a ^ f f ^ l , 0 | f ^ T b y 

NK(OL, T)9 the relation 

,def—log+ iV x ( a iT) ^ M x 3 / a i 3 1 
(28) ^ ( c f l g l i m % Ky ' < c ( l - a ) 3 ' M o 8 , 

T->ao log I 1 — a 

with c = c(K) holds uniformly in a ^ - . This means that the A*i(a)-function, which 

would be = 0 for a > - in the case of truth of the generalised Riemann conjec­

ture, touches at least the a-axis at a = 1 in a rather strong sense. The second asserts 

that the analoga of the Lindelöf conjecture referring to the rate of increase 

H 
3 

for r -» oo, implies p^a) = 0 for a > - . Another application of (10) refers to Diri­
chlet L-functions belonging to the modulus D; it asserts—due in its last form to Fogels— 
that the total number of roots of all L-functions belonging to the modulus D for a ^ a, 
0 ^ t ^ D cannot exceed 

(29) D«a<l-«0 

with a numerical c2 (the point being the absence of any log-factor). This enabled us 
with S. Knapowski to give a relatively short proof for the theorem of Linnik, sharpen­
ing Dirichlet's classical result, by giving the upper bound D°3 with a positive numerical c3 

for the smallest prime in every coprirne residue classes mod D. 

The investigation of sign changes of n(x) — Li x initiated by Riemann and Little-
wood, furthermore analogous general problems in prime number theory led to the 
necessity to find onesided theorems for generalised power sums under the M2(v)-
norm. Easy examples show that such theorems cannot exist in general; however it 
turned out that restricting the zj-variables (beyond the M2(v)-norm which means only 
normalisation) by the side-condition 

(30) Ö ^ | arc Zj | ^ n j = 1, 2, . . . , n 
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the situation is saved. More exactly I found that under (30) for arbitrary nonnegative 
integer m there exist integer vx and v2 with 

2n 
(31) m + l ^ V i , v 2 ^ m + — 

o 

such that with f(v) = £ bjZ) the inequalities (*) 

* ^ W " ,Tmin|ReÉM 

< - • ? » , : 

<32> „ « X 

/ 2n\ i*i< 

V + -s)J --
hold. Among the many applications we found with S. Knapowski I mention here 
only one. According to this for T > c4 we have «̂  and £2 with 

(33) log log log T ^ t2e~J^ < { 1 < { a g T 

so that (p primes) the inequality 

(34) £ logp- £ l o g p > V ^ 
P = K4) P=3(4) 

holds. I. e. " relatively concentrated " we have " much more " primes = 1 (4) than 
= 3 (4). It is interesting to compare this with the fact that for suitable numerical c5, 
c6, c7 positive constants for x > c5 the inequality 

(35) I logp.e-«*"1*- £ l o g p . e - C 6 l o g 2 | < - C 7 v ^ 
p=l(4) P = 3(4) 

is equivalent to the truth of the Riemann-Piltz conjecture concerning the L-functions 
belonging to modulus 4. 

I found also the onesided analogon of (6) under the restriction (30). This was applied 
by Danes to investigation of onesided stability-properties of differential equations; 
the usefulness of this theorem seems to me not exhausted by this. 

The onesided theorem (32) is also an example of " conditional " power sum theorems 
where the variables are subjected to some geometrical restrictions. Some further 
applications (general coefficient estimations, asymptotical periods of entire func­
tions, etc.) made necessary to use the M0(v)-norm but replacing the linear independence 
of the arc z/s by a more manageable geometrical restriction on the z/s. As serviceable 
restriction proved to be the restriction 

min \zß- zv\ 
(36) - ^ ^ ^ ^ A > 0 ; 

max I z.-1 
j J 

(*) Under the convention (8). 
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this implies at any positive integer m the inequality 

v = ro+l m + n MQ(v) 2n\2J 

Some other applications lead to " dual " problems, a typical being what is 

(38) max min i ^ i 
zj m + l g v g m + n M 3 ( v ) 

v integer 

if the z/s satisfy some geometrical restriction Lack of space permits me only to 
mention one application; this is the inequality 

(39) min | £ atr^U) \ è y/ï^fn. { £ | A, \2V2ff0 }1 / 2 

valid for all real £0'
s a n d °o's a n d Dirichlet-polynomials £] atl~

s. 

Beside the " simultaneous " problems aiming e. g. the proof of existence of 

x1 < x2 < . . . - > oo 

such that with the usual notation the inequalities 

(40) 7u(xv, 4, 1) > - Li xv , n(xv, 4, 3) > - Li xy 

should hold simultaneously I mention the " operatortype " problems, suggested also 
by some possible applications to the theory of Ç(s). They refer to minimax problems 
of type 

I I *}&(*/> I 
(41) V(gk) Ü min max j \£ . .— 
V ' V 6 W z, z n v = m + l m + n M2(v) 

where gk(z) = zk + . . . is a fixed polynomial of k th degree. Then e. g. in the case 
when all zeros of gk(z) are in the disk 

\z\ < 
m + n + k' 

the inequality 

(42) V(gk) £ 
n + k V 
n + n + k)J ^16e(m 

holds. 

The methods of proofs for the power sum theorems consist generally speaking of 
construction of suitable rational identities through classical algebra; these are appro-
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priate also to fit to ihe discrete and diophantine character of the problems. So " dis­
crete " methods seem to be in a successful counterattack. Remembering to a letter 
written by Weierstrass to H. A. Schwarz in 1875 which says " . . . Je mehr ich über die 
Prinzipien der Funktionentheorie nachdenke—und ich thue dies unablässig— um 
so fester wird meine Überzeugung, dass diese auf dem Fundament einfacher algebrai­
scher Wahrheiten aufgebaut werden müssen... " it is perhaps not an unfounded belief 
that at least Weierstrass would be pleased with the content of this talk. 
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