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PREPARATION DU CONGRES

Un Comité consultatif international de neuf membres, désigné par 1’Union mathé-
matique internationale, et présidé par M. Adrian ALBERT, a constitué 33 Commissions
spécialisées ; les compositions de ce Comité, de ces Commissions et les recommanda-
tions faites par eux au Comité d’organisation, sont confidentielles.

Le Comité national frangais de mathématiciens a constitué le Comité d’organisation
dont les membres sont : MM. F. BRUHAT, H. CABANNES, J. CERF, G. CHOQUET, J. DIEU-
DONNE, J.-P. KAHANE, P. LELONG, J. LERAY, président, A. LICHNEROWICZ, J.-L. LIONS,
J. NEvEU, L. SCHWARTZ, J.-P. SERRE.

Ce Comité d’organisation a constitué un Comité local dont les membres sont:
MM. J. DIEUDONNE, président, P. KrREE, E. MENAGER et un Comité financier, dont les
membres sont: MM. P. BELGODERE, R. CHERADAME, J. DIEUDONNE, R. FORTET,
P. LELONG, président, Y. MARTIN, E. MENAGER, L. MOTCHANE, M. d’OLIER.

Le Congrés a bénéficié de ’aide d’un Comité de soutien pour la diffusion des travaux
du Congrés, composé comme suit : Président : M. Georges DESBRIERE, Vice-Président
de Péchiney, Président de I’Association pour le Développement de I’Enseignement et
des Recherches auprés des Facultés des Sciences de I’Université de Paris (A.D.E.R.P.).

Membres : MM. BAUMGARTNER, Président de Rhone-Poulenc, CHASSAGNY, Prési-
dent de I'Union syndicale des industries aéronautiques et spatiales, DELOUVRIER,
Président de PElectricité de France, DoNToT, Président de la Fédération nationale des
industries électroniques, FERRY, Président de la Chambre syndicale de la sidérurgie,
GALICHON, Président d’Air France, GLASSER, Président du Syndicat général de la
Construction électrique, GRANDPIERRE, Président de I’Institut des hautes études
scientifiques, HAAs-PICARD, Président de I’Union des Chambres syndicales de I’indus-
trie du pétrole, HOTTINGUER, Président de 1’Association professionnelle des Banques,
HuvELIN, Président du Conseil National du Patronat Francais, LESOURNE, Président
de la S.E. M. A. (METRA International), d’ORNHJELM, Président de la Chambre
syndicale des Constructeurs d’Automobiles, Ambroise Roux, Président de la Com-
pagnie générale d’Electricité.

M. Etienne WoLFF, Administrateur du Collége de France, a eu ’obligeance d’y
accueillir le Secrétariat du Comité d’organisation.

Ce Secrétariat a été assuré par Mme M. GOYVAERTS.

*
* %k

La publication des Actes du Congrés a é1é assumée par MM. M. BERGER, J. DIBU-
DONNE, J. LERAY, J.-L. LIONS, P. MALLIAVIN, J.-P. SERRE.






VII

Monsieur Georges POMPIDOU,

Président de la République Francaise,
a accordé son haut patronage au Congrés.

Monsieur Jacques CHABAN-DELMAS,

Premier Ministre,
a accordé son patronage au Congreés.

Le Congrés a bénéficié des dons suivants :

Subvention du Gouvernement de la République Fran-

gaise . . 328.000 F
Don du Comité de soutxen pour la dlﬁ'usmn des tra-

vaux du Congrés. . . 162.000 F
Subvention du Conseil général des Alpes Marltlmes 50.000 F
Prét gracieux du Palais des Expositions par la Ville

de Nice. .
Prét gracieux et subvention de I’Université . . . 15.000 F

Le total des cotisations des Congressistes fut de . 576.000 F
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Les Donateurs qui ont répondu & I'appel du Comité de soutien pour la
diffusion des travaux du Congrés sont:

Organisations professionnelles

Association professionnelle des Banques

Chambre syndicale des Constructeurs d’Automobiles
Chambre syndicale de la Sidérurgie francgaise

Comité des Salines de France

Fédération nationale du Batiment

Fédération nationale des Travaux Publics

Syndicat général de la Construction électrique

Union des Chambres syndicales de I'Industrie du Pétrole
Union des industries textiles

Conseil national du Patronat francais

Entreprises

Air France

L’Air Liquide

Alcatel

Banque frangaise du Commerce extérieur
Banque de France

Banque de I’Indochine

Banque Nationale de Paris

Banque de Paris et des Pays-Bas

Banque de I'Union parisienne C. F. C. B.
Bertin et Cie

Boussois-Souchon-Neuvesel

Chantiers de I’Atlantique

Ciments Lafarge

Compagnie Electro-Mécanique

Compagnie financiére de Suez et de I’'Union parisienne
Compagnie frangaise de Crédit et de Banque
Compagnie Générale d’Electricité

Compagnie 1. B. M. France

Compagnie industrielle des Télécommunications
Compagnie de Saint-Gobain-Pont-4-Mousson
Comptoir des Entrepreneurs

Comptoir Lyon-Alemand



Crédit foncier de France

Crédit industriel et commercial

Crédit Lyonnais

Dunlop

Electricité de France

Engins Matra

Esso-Chimie

Générale sucriére

Gervais-Danone

Groupe des Assurances nationales

Groupe de Paris

Imprimerie Georges Lang

Kodak-Pathé

Laboratoire Central de Télécommunications
La Fonciére-Capitalisation

L’Oreéal

Penarroya

Péchiney

La Radiotechnique

Régie autonome des Transports parisiens
Rhéne-Poulenc

Roussel-Uclaf

SIC-SAFCO (Condensateurs)

Société anonyme de Télécommunications
Société d’Applications générales d’Electricité et de Mécanique (SAGEM)
Société Audax

Société d’Etudes et de Mathématiques appliquées
Société Générale

Société marseillaise de Crédit

Société nationale des Chemins de fer frangais
Société nationale d’Etude et de Construction de Moteurs d’Aviation
Solvay et Cie

Sopad

Thomson-C. S. F.

Ugine-Kuhlmann

Caisse des Dépdts et Consignations

Don adressé directement au Congrés

Springer-Verlag



SEANCE INAUGURALE

Monsieur Olivier GUICHARD, Ministre de ’Education nationale, déclare ouvert
le Congrés international des mathématiciens de Nice, le mardi 1° septembre 1970,
a9 h 30.

11 donne la parole & Monsieur Henri CARTAN, Président de I’'Union mathématique
internationale, qui propose aux Congressistes d’élire Président du Congrés Monsieur
Jean LErAY, Président du Comité d’organisation ; cette élection a lieu ainsi que celle
d’un Président d’honneur, Monsieur Paul MONTEL.

Monsieur Paul MONTEL et Monsieur Jean LERAY accueillent les Congressistes et
remercient les personnalités qui ont collaboré a I’organisation du Congrés.

Monsieur Jacques MEDECIN, Député-Maire, souhaite la bienvenue aux Congres-
sistes dans le Palais des expositions de la Ville de Nice.

Monsieur Henri CARTAN fait le rapport suivant:

C’est au Professeur J.-C. FIELDs que revient Iinitiative d’une fondation qui per-
mettrait, d I'occasion de chaque Congrés International des Mathématiciens, d’honorer
par deux médailles d’or des travaux mathématiques d’un intérét exceptionnel. Sa pro-
position fut acceptée, aprés sa mort, par le Congrés International de Ziirich en 1932.
Les fonds nécessaires provenaient d’un excédent de recettes du Congrés International
de 1924, tenu @ Toronto (Canada), sous la présidence du Professeur FIELDS. Les deux
premiéres médailles Fields furent attribuées en 1936 au Congrés d’Oslo; puis, aprés
une longue interruption due d la guerre, deux médailles furent décernées lors de chacun
des Congrés Internationaux des Mathématiciens: ¢ Harvard en 1950, a Amsterdam
en 1954, @ Edinburgh en 1958, @ Stockholm en 1962. Au Congrés de Moscou, en 1966,
quatre médailles Fields furent attribuées. Chaque médaille est accompagnée d’un chéque
de 1.500 dollars canadiens ; le nom de Fields ne figure pas sur la médaille.

Se conformant d une procédure maintenant bien établie, le Comité Exécutif de I’Union
Mathématique Internationale a nommé, il y a quelque temps, un Comité International
de huit membres, chargé de choisir les lauréats pour le présent Congrés. Ce Comité
Fields 1970 se composait des Professeurs J. L. Doos, F. HIRZEBRUCH, L. HORMANDER,
S. IYANAGA, J.-W. MILNOR, I. R. SHAFAREVITCH, P. TURAN, et moi-méme comme pré-
sident. J’ai hautement apprécié la collaboration de chacun de mes collégues, et je suis
heureux de leur exprimer mes chaleureux remerciements. Je suis aussi reconnaissant
aux mathématiciens qui, consultés en privé, ont préparé des rapports qui ont grandement
aidé notre Comité dans sa tdche.

Le Comité a décidé, non sans quelque hésitation, de se conformer a la tradition qui
veut que seuls soient pris en considération les titres de mathématiciens dgés de moins
de quarante ans. Les candidats proposés par les différents membres du Comité compo-
saient initialement une liste d’une vingtaine de noms. Aprés une discussion au cours de
laquelle, conformément au veu du Professeur FIELDS, nous n’avons pris en considération
que le point de vue scientifique en laissant de cété toute question de nationalité, nous

Y

sommes progressivement arrivés d établir une liste de quatre noms. Ce fut un choix



X1 SEANCE INAUGURALE

difficile ; nous sommes parfaitement conscients que d’autres mathématiciens trés brillants
auraient aussi pu étre choisis pour une médaille Fields; nous savons également que
d’autres, plus jeunes encore, et dont les titres n’ont méme pas été discutés cette fois-ci,
pourront avoir des chances sérieuses dans quatre ans. Quoi qu’il en soit, nous sommes
convaincus que ceux que nous avons finalement choisis sont des mathématiciens d’un
mérite exceptionnel, et que chacun d’eux a contribué @ donner un nouveau visage @ une
branche importante des mathématiques. Ce sont, dans ’ordre alphabétique :

Alan BAKER,
Heisuke HIRONAKA,
Sergei Novikov,
John G. THOMPSON.

Malheureusement, Sergei NOVIKOV a été dans I'impossibilité de venir d ce Congrés.
Je prie Messieurs BAKER, HIRONAKA et THOMPSON de venir recevoir leur médaille des
mains de Monsieur le Ministre de I’Education nationale, M. Olivier GUICHARD.

Monsieur Olivier GUICHARD, Ministre de I’'Education nationale, remet les médailles
Fields aux quatre lauréats, qu’il félicite.

11 prononce un discours, qui décrit ’essor mathématique actuel et la gravité des
problémes d’enseignement et d’éducation en résultant. Ce discours est publié et analysé
le jour-méme par la presse.

Monsieur Jean LERAY rappelle le fonctionnement du Congrés :

— chaque matin, deux conférences générales consécutives, d’une heure, s’adressent
a tous les Congressistes ;

— chaque aprés-midi, un choix d’exposés spécialisés, de cinquante minutes, chacun
des Congressistes ayant la possibilité d’en écouter trois ;

— chaque Congressiste a regu, imprimées, les 265 Communications individuelles ;
elles ne peuvent pas &tre exposées oralement ;

— des groupes de Congressistes peuvent obtenir des salles pour des réunions
mathématiques non prévues au programme officiel.

Les travaux des quatre nouveaux titulaires de médailles Fields sont alors exposés
par les rapports ci-aprés (p. 1-16).



SEANCE DE CLOTURE

Monsieur Jean DIEUDONNE, au nom du Comité d’organisation, déclare notam-
ment :

The Acts of the Congress will be printed as soon as possible, and distributed to every
mathematician regularly registered at the Congress. The cost of the printing will be
borne partly by the fees of the participants, partly by a subsidy from the French govern-
ment, and partly by a subsidy granted by the « Comité de soutien pour la diffusion des
travaux du Congrés » sponsored by associations of french companies and chaired by
Mr. G. DESBRIBRE, Vice-Chairman of Péchiney.

Puis il pose la question suivante, en frangais et en anglais:

As you know, this Congress is the first one in which there are no 10 minutes talks,
although printed communications have been accepted. The decision to allow only
50 minutes lectures given by invitation was taken unanimously by the international
advisory Committee and the organizing Committee. Of course the corresponding
Committees for the 1974 Congress are not bound by this decision and may adopt a different
policy. But the Organizing Committee thinks that it might be useful to the organizers
of the 1974 Congress to have the opinion of this Congress regarding the new organization
of the lectures. I will therefore ask those who are in favor of the continuation of the
policy adopted in the 1970 Congress, namely to have only 1 hour and 50 minutes invited
1alks, plus written communications, but no 10 minutes talks, to raise their hands.

Against this continuation, and for a return to the previous tradition ?

Abstentions ?

Le résultat de ce sondage d’opinion est le suivant: deux fois plus de voix pour la
suppression des Communications individuelles orales que pour leur rétablissement;
pas d’abstention.

Monsieur M. F. ATivAH, au nom du Comité exécutif de 'Union Mathématique
Internationale, remercie tous ceux qui ont subventionné et organisé le Congrés.
Monsieur Henri CARTAN fait la communication suivante:

Comme Président sortant de I’Union Mathématique Internationale, j’ai I’agréable
devoir d’annoncer que la Sixiéme Assemblée Générale de I’Union, tenue ¢ Menton les
28 et 29 aoiit 1970, a élu pour une période de quatre ans, commengant le I°* janvier 1971,
le nouveau Comité Exécutif que voici:

Président Professeur K, CHANDRASEKHARAN,

Vice-Présidents { Dean Adrian A. ALBERT,
Académicien M. PONTRYAGIN,
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Secrétaire Professeur Otto FROSTMAN,

Professeur M. F. ATIvaH,
Professeur Y. KAWADA,
Membres Professeur N. H. KUIPER,
Académicien M. NICOLESCU,
Professeur G. VESENTINI.

Vous voudrez certainement, comme moi-méme, souhaiter au nouveau Comité Exécutif
un plein succés dans les tdches qui attendent. L’Union Mathématique Internationale
s’efforcera, comme par le passé, j’en suis sir, de prendre toutes les initiatives pouvant
Sfavoriser la coopération active et amicale entre les mathématiciens du monde entier,
ou contribuer au développement des mathématiques dans les pays moins favorisés.

Je me réjouis que ce Congrés ait permis de réunir @ Nice de nombreuses délégations
de presque tous les pays o I’on cultive les mathématiques. La participation de certains
d’entre eux aurait été souhaitée plus compléte encore ; j exprime le veu qu’elle le soit
lors du prochain Congrés de 1974.

Au nom du Comité qui a été désigné pour étudier le lieu du Congrés de 1974, je prie le
Président LERAY de bien vouloir donner la parole au Professeur H. A. HEILBRONN,
qui va parler au nom de la Société Mathématique du Canada.

Monsieur H. A. HEILBRONN, au nom de la Société Mathématique du Canada et au
nom de I’Université de la Colombie Britannique, offre au Congrés International des
Mathématiciens de se réunir en 1974 & Vancouver (Canada).

Cette offre est chaleureusement acceptée par le Congreés, dont le Président remercie
Monsieur H. A. HEILBRONN et I’Université de la Colombie Britannique.

Aucun Congressiste ne demandant la parole, le Président remercie tous ceux qui ont
apporté leur patronage et qui ont généreusement contribué a la diffusion des travaux
du Congrés, notamment Monsieur le Président de la République, Monsieur le Premier
Ministre, Monsieur le Ministre de ’'Education nationale et le Comité de soutien pour
la diffusion des travaux du Congres. Il adresse ses remerciements & tous les Congres-
sistes et spécialement aux Conférenciers. Il déclare le Congrés International des
Mathématiciens de 1970 clos, le jeudi 10 septembre, & 15 h 30.



LISTE DES CONGRESSISTES

Les noms des Membres de Délégations sont en italique.
(G) désigne les Auteurs d’une conférence générale (T. I. de ces Actes),
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Actes,

* désigne les auteurs de I'une des

« 265 Communications Individuelles, Congrés International des Mathématiciens, Nice,
1970, Gauthier-Villars, éditeur ».

A

AARNES Johan F. (Norvége)
4BELLANAS Pedro (Espagne)
ABHYANKAR S. (U.S.A)
ABRAHAM Samuel (Israél)
ABUBAKAR Iya (Nigéria)
ACKERMANS Stan T. (Pays-Bas)
ACKLER Lynn (U.S. A)
ACZEL Janos (Canada)
1{DAMS Frank (Grande-Bretagne) *
ADAMSON lain Th. (Grande-Breta-
gne)
ADJAN S. I. (U.R.S.S.) (B)
ADOMIAN G. (U.S. A)
AGINS B. R. (U.S. A)
1GMON Shmuel (Israél) (D10)
1GOSTINELLI Cataldo (Italie)
{GOSTON Max (U.S. A))
AHLUWALIA Daljit (U. S. A.)
AHMAD Salah (Syrie)
AIGNER Alexander (Autriche)
AIRAULT Héléne (France)
AKBAR-ZADEH Hassan (France)
AKIZUKI Yasuo (Japon)
1KKAR Marie-Thérése (France)
{KKAR Mohamed (France)
\KUTOWICZ Edwin J. (France)
\LAS Ofelia (Brésil)
\LBASINY Ernest L. (Grande-Bre-
tagne)
\L-BASSAM Mohammed (Irak)
\LBERT Adrian (U. S. A.)
\LBRECHT Ernst (All. de I'Ouest)
\LBRIGHT Hugh (U. S. A.)
(LDER Henry (U.S. A))
\LDERSON POPOVA Helen
(Grande-Bretagne)

AL DHAHIR Nawar (Grande-Bre-
tagne)

ALEKSANDRIAN R.A. (U.R.S.8.)

ALEXEYEV V. M. (U.R.S.S8)) (D12)

ALIC’ Mladen (Yougoslavie)

ALJANCIC Slobodan (Yougoslavie)

ALLEN Rory J. (Grande-Bretagne)

ALLING Norman (U. S. A.)

ALMGREN Frederick (U. S. A.)
(D11)

ALPERIN Jonathan (U. S. A))

ALTERMAN Zipora S. (Israél) *

ALTMAN Allen (U. S. A))

AMANN Herbert (All de I'Ouest)

AMARA Mohamed (Tunisie)

AMATO Francesco

AMATO Vittoria

AMAYO Ralph (Grande-Bretagne)

AMBROSE Thomas (Irlande)

AMICE Yvette (France)

AMIR Dan (Israél)

AMIR-MOEZ Ali (U.S.A)*

AMITSUR Shimshon (U. S. A.) (Bl)

AMMANN André (Suisse)

ANANDAM Victor (France)

ANCOCHEA German (Espagne)

ANCONA Vincenzo

ANDERSEN Erik (Danemark)

ANDERSON Donald W. (U. S. A))
(1

ANDERSON Karl (Suéde)

ANDERSON Richard D. (U. S. A.)
(C1)

ANDERSON Robert V. (U.S. A)

ANDRE Bernard (France)

ANDRE Michel (Suisse) (B2)

ANDREIAN CAZACU Cabiria
(Roumanie) *

ANDREOTTI Aldo (Italie) (D8)

ANDREW Merle (U. S. A))

ANDRIANOV A, N. (U. R. 8. S)
(Cs)

ANDRUNAKIEVITSH V. A,
(U.R.S.8S)

ANDRUSHKIW Joseph (U. S. A.)*

ANTCHEV-ATANASOYV Atanas
(Bulgarie)

ANTIBI André (France)

ANTILLE André (Suisse)

ANVARI Morteza (Iran) *

APERY Roger (France)

APPLEBY Peter G. (Grande-Bre-
tagne)

AQUARO Giovanni (Italie)

ARAKELIAN N. U. (U.R.S.S)
(D7)

ARAKI Fyjihiro (Japon) (D2)

ARAKI Shoro (Japon)

ARATO Midtyas (Hongrie)

ARBAULT Jean (France)

ARCHINARD Gabriel (France)

ARHANGELSKIJ A. (U.R.S.8)
(C1)

ARIS Henri (France)

ARKOWITZ Martin (U.S.A)

ARLT Dietmar (All. de I'Ouest)

ARMBRUST H. K.

ARMENTROUT Steve (U. S. A))

AROCA HERNANDEZ lJos¢ M.
(Espagne)

AROIAN Leo A. (U.S.A)

ARONSSON D. G. (Suéde)

ARREGUI FERNANDEZ Joaquin
(Espagne)

ARTIN Michael (U. S. A.) (BS)

ARTZNER Philippe (France)
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ARVESON William B. (U.S.A)
ASCHER Marcia (U. S. A)
ASH Marshall (U. S. A.))
ASTESIANO Egidio (Italie)
ATIYAH Michael (U. S. A.) (C4)
ATTEIA Marc (France)
AUBERT Karl E. (U.S. A)
AUBIN Thierry (France)
AUBINEAU Jean P.
AUCHMUTY Giles (U.S. A)
AUGE Juan (Espagne)

AULT John C. (Grande-Bretagne)
AUPETIT Bernard (Canada)
AURORA Silvio (France)
AUSFELD Christoph (Suisse)
AVANISSIAN Vazgain (France)
AX James (U. S. A)) (B6)
AXELSSON Owe (Suéde)
AYEL Marc (France)

AYKAN Faruk (Turquie)
AYOUB Raymond (U.S. A.)
AZRA Jean-P. (France)

B

BA Boubakar (France)
BAAS Nils (Danemark)
BABENKO K. I. (U.R.S.8))
BACHMAKOV M.
BACOPOULOS Alex (Gréce)
BADE William (U.S. A)
BADIJJ Cherif (France) *
BAGGETT Lawrence (U. S. A.)
BAHLOUL (France)
BAHVALOV N. S. (U. R. S. S.) (E8)
BAILEY G. H. (Grande-Bretagne)
BAILLETTE Aimée (France)
BAILLOT Geneviéve (France)
BAIOCCHI C. (Italie)
BAJPAI A. C. (Grande-Bretagne)
BAKER Alan (Grande-Bretagne) (G)
BAKER Irvine (Grande-Bretagne)
BAKER John A. (Canada)
BAKTAVATSALOU (Céte-d’Ivoire)
BALABAN T. (Pologne)
BALAKRISHNAN A. V. (U.S.A)
(E4)
BALAZS Jdnos (Hongrie)
BALCERZYK Stanislaw (Pologne)
BALCONI Giorgio (Italie)
BALLET Bernard
BALLIEU Robert F. (Belgique)
BALSLEV Erik (U. S. A)) )
BANCHOFF Thomas (U. S. A)
BANG Thoger (Danemark)
BANTEGNIE Robert (France)
BAOUENDI Mohamed (Tunisie)
BARBANCE Christiane (France)
BARBIERI Francesco (Italie)

LISTE DES CONGRESSISTES

BARCILLON Victor (U. S. A.)

BARDOS Claude (France)

BAREISS Erwin (U.S. A.) *

BARKER Charles (Grande-Bretagne)

BARLOTTI Adriano (Italie)

BARLOW Richard (U. S. A.)*

BARNARD Anthony (Grande-Bre-
tagne)

BARNEYV Petar (Bulgarie)

BARR Michael (Canada) (B2)

DE BARRA Gearoid (Grande-Bre-
tagne)

BARRETT John (Grande-Bretagne)

DE BARROS Constantino (Brésil) *

BARRUCAND Pierre (France)

BARSKY Daniel (France)

BARTH Karl (U.S. A))

BARTH Theodore (U. S. A.)

BARTLETT Maurice S. (Grande-Bre-
tagne) *

BARWISE Jon (U. S. A)

BASKIOTIS Chrysostome (France)

BASS Hyman (U.S. A))

BASS Jean (France)

BASSOTTI-RIZZA Lucilla (Italie)

BATEMAN Paul Tr. (U.S.A))

BATHO Edward (U.S. A.)

BAUER Gunther (All. de I’Ouest)

BAUM Leonard (U. S. A.)

BAUR Walter (Suisse)

BAUSCH Helmut (All. de I’Est)

BAUSSET Max (France)

BAXENDALE Peter (Grande-Breta-
gne)

BAZLEY Norman (Suisse)

BEALS Richard (U.S. A)

BEARDON Alan F. (Grande-Breta-

gne)
BECKENBACH E. F. (U.S.A)
BECKER Ronald (Le Cap)
BECKMANN Martin (All. de
I’Ouest)
BEETHAM Michael (Grande-Breta-
gne)
BEGUERI Lucile (France)
BEHBOODIAN Javad (Iran)
BEHNKE Heinrich (All. de I"Ouest)
BEHNCKE Horst (All. de I'Ouest)
BEHR Helmut (All. de I'Ouest)
BEITER Marion (France)
BELAGE Abel (France)
BELLAICHE André (France)
BENABOU J. (France)
BENEDICTY Mario (U.S. A)
BENENTI Sergio (Italie)
BENES Vaclav (U. S. A))
BENGEL Gunter (All. de I'Ouest)
BENIAMINO J.-Claude (France)
BENNETT Mary (U.S. A)
BENOS Anastase (France)

BENZAGHOU Benali (Algérie) *
BERAN Ladislav (Tchécoslovaquie,
BERARD BERGERY Lione:
(France)
BERG Christian (Danemark)
BERGAU Peter (All. de I’Ouest)
BERGER Marcel (France)
BERGER Neil Ev. (U.S. A)
BERGLUND-FINDLEY John
(Grande-Bretagne)
BERGMAN Stefan (U. S. A))
BERGSTROM Harald (Suéde)
BERLEKAMP E. (U.S. A)
BERMAN Joél (U.S. A)
BERNARD Alain
BERNARD Daniel (France)
BERNARDI Marco (Italie)
BERNARDI Marco (Italie)
BERNAT Pierre (France)
BERNEZ Madeleine Jeanne (Maroc)
BERRICK Jon (Grande-Bretagne)
BERRIEN MOORE 3 Berrien
(U.S.A)
BERROIR André (France)
BERTHELOT Pierre R. (France)
BERTHIAUME Gilles (Grande-Bre-
tagne)
BERTIN Emile M. (Pays-Bas)
BERTIN Jean (France)
BERTIN Marie-José¢ (France)
BERTOLINI Fernando (Italie)
BERTOLINO Milorad (Yougosla-
vie) *
BERTRANDIAS Jean-Paul (France)
BESCHLER Edwin (U. S. A))
BESOV O. V. (U.R.S.8S.) (D4)
BESUDEN Heinrich (All. de I’Ouest)
BEYER William (U.S. A)*
BEZUSZKA Stanley (U. S. A))
BEZZI Franco (Italie)
BHATNAGAR P. L. (Indes)
BIALYNICKI Andrzej (Pologne)
BICHOT Jacques
BIEBINGEN
BIERLEIN Dietrich (All. de ’Ouest)
BIERSTEDT Klaus (All. de I'Ouest)
BILINSKI Stanko (Yougoslavie)
BILLIGHEIMER Claude E
(Canada) *
BILLOTTI Joseph (U. S. A))
BING R. H. (U.S.A)
BINGEN Franz (Belgique)
BINGHAM Nicholas (Grande-Bre-
tagne)
BIRCH Bryan (Grande-Bretagne)
BIRKELAND Bent (Norvége)
BIRMAN Joan (France)
BIROLI Marco (Italie)
BITSADZE A. V. (U.R. S. S.) (D10}

BJORCK Coran (Suéde)



BKOUCHE Rudolphe (France)
BLACKSTOCK May C. (U.S.A))
BLAIR David (U.S. A))
BLANC Brice (France)
BLANCHARD André (France)
BLANCHARD Philippe (Suisse)
BLANCHETON Eliane (France)
BLANTON John D. (U.S. A)
BLANUSA Danilo (Yougoslavie)
BLATTER Christian (Suisse)
BLATTNER Robert (U. S. A))
BLICKENDOERFER Arndt (All de
I’Ouest)
BLOCK Richard (U.S. A))
BLONDEL J.-Marie (France)
BLOOM Thomas (Canada)
BLUM Lenore (U. S. A.)
BLUMAN George (Canada)
BLYTH Thomas S. (Grande-Breta-
gne)
BOCHNAK J. (France)
BODEKER Werner (All. de I'Ouest)
BODFISH Edward (U. S. A.)
BODIOU Georges (France)
DE BOER Jan (Pays-Bas)
BOGDAN M. Baishanski (U. S. A.)
BOHNKE Georges (France)
BOHUN-CHUDYNIYV Boris
(U.S.A)
BOHUN-CHUDYNIV Volodymyr
(U.S.A)
BOJOROFF (Bulgarie)
BOLDER Harm (Pays-Bas)
BOLLE Erik (Pays-Bas)
BOLSHEV L. N. (U.R.S.S.) (E6)
BOMAN Jan (Suéde)
BONDESEN Aage (Danemark)
BONDY Adrian (Canada)
BONGAARTS Peter (Pays-Bas)
BONIC Robert (U. S. A.)
BONNAN Raymond (Grande-Bre-
tagne)
BONNARD Michel (France)
3ONNET Robert (France)
30NY J.-M. (France) (D10)
30ONZINI Celestina (Italie)
BOONE William (U. S. A.)
300THBY Ruth R. (U.S. A)
300THBY William M. (U.S.A.)
3ORCHERS Hans-Juergen (All. de
I’Ouest)
3OREL Armand (U, S. A.)
JORGHI Osvaldo (Argentine)
3ORJA Manuel (Suisse)
JOROVKOV A. A. (U.R.S.S)
JOROWCZYK Jacques (France)
JIOROZDIN K. V. (U.R.S. S))
3ORSCH-SUPAN Wolfgang (Al de
1’Ouest)

LISTE DES CONGRESSISTES

BORSUK Karol (Pologne)
BOS Werner (All. de I'Ouest)
BOSAK Juraj (Tchécoslovaquie)
BOSE Raj. C. (U.S. A))
BOSSARD Yvon (France)
BOTT Raoul (U. S. A)) (G)
BOUCHE Liane (France)
BOUCHON Héléne (France)
BOUIX Maurice (France)
BOURGIN David G, (U.S. A)
BOURGIN Richard (U. S. A.)
BOURGUIGNON J.-P. (France)
BOUTET DE MONVEL Louis
(France) (D10)
DE BOUVERE Karel (U. S, A))
BOUVIER Alain (France)
BRADISTILOV Georgi (Bulgarie)
BRADSTEDT Walsh J. (U. S. A.)
BRAM Leila (U.S. A))
BRANNAN David A. (Grande-Bre-
tagne)
BRAUER Richard (U.S. A.) (B3)
BRAUMANN Pedro B. (Portugal)
BRAUN Hel (All. de I'Ouest)
BRAUN Martin (U. S. A.) *
BRAUN Robert (All. de I'Ouest)
BRAUNER Claude (France)
BRAWN Frederick (Grande-Breta-
gne)
BREGER Manfred (All. de ’Ouest)
BRELOT Marcel (France)
BRENNER Philip (Suéde)
BREZIS Haim (France)
BRIESKORN Egbert (All. de I’Ouest)
(C5)
BRILLA Josef (Tchécoslovaquie)
BRINKMANN Hans (All. de
I’Ouest)
BRISCHLE Till (All. de I'Ouest)
BRITTON John L. (Grande-Breta-
gne)
BRONDSTED Arne (Danemark)
BROUE Michel (France)
BROUSSE Pierre (France)
BROWDER Felix (U. S. A.) (D11)
BROWDER William (U. S. A.) (G)
BROWN Edgar (U.S.A))
BROWN Michael (U. S. A))
BRUHAT Frangois (France) (C5)
DE BRUIJN Nicolaas (Pays-Bas)
(ES)
BRUMER Armand (U.S. A)
BRUMFIEL Gregory (U. S. A.)
BRUNGS H. H. (Canada)
BRUTER Claude P. (France) *
BUCUR Lionell (Roumanie)
BUEKENHOUT Francis (Belgique)
BUI DOAN Khanh (France)
BUI TRONG LIEU (France)
BUKOVSKY (Tchécoslovaquie)

XVII

BUNDSCHUH Peter (All. de I'Ouest)
BUNGE Marta C. (Canada)
BUNKE Olaf (All. de I'Ouest)
BURACZEWSKI Adam (Ghana)
BURDE Gerhard (All. de I’Ouest)
BURDE Klaus (All, de I'Ouest)
BUREAU Florent (Belgique)
BURGESS David (Grande-Bretagne)
BURGESS Derek Ch. (Irlande)
BURGHELEA Dan (Roumanie)
BURILLO LOPEZ Pedro (Espagne)
BURKHOLDER Donald L,
(U.S.A) (D6)
BURKILL John (Grande-Bretagne)
BURLEY David (Grande-Bretagne)
BURNS Robert (Canada)
BURR Stefan (U. S. A.)
BUSH Kenneth (U.S. A))
BUSHNELL C. J. (Grande-Breta-
gne)
BUSK Thoger (Danemark)
BUTTIN Claudette (France)
BUTTON Lilian G. (Grande-Bre-
tagne)
BUTZER Paul (All. de I'Ouest) *
BUZANO Piero (Itale)
BYERS William (Canada)

C

CABANNES Henri (France)

CABY Dominique (France)

CADE Roger (U.S. A))

CAGNON

CAHEN Michel (Belgique)

CAILLEAU Annie (France)

CAILLIEZ Jean (France)

CALABI Eugenio (U. S. A.) (C4)

CALAIS Josette (France)

CALICA Arnold (U.S.A))

CALIS J. N S. (Pays-Bas)

CAMINA Alan (Grande-Bretagne)

CAMPBELL Colin M. (Grande-Bre-
tagne)

CAMPOS FERREIRA Jaime (Por-
tugal)

CAMUS Jacques L. (Tunisie)

CANNONITO Franck B. (U.S. A))

CANTINAT J.-Claude (France)

CAPOBIANCO Michael (U. S. A))

CAPPELL Sylvain (U. S. A))

CAPRIZ G.-Franco (ltalie)

CARADUS Selwyn R. (Canada)

CARDON Albert (Belgique)

CARICATO Gaetano (Italie)

CARLSON James (U. S. A.)

CARLSTEDT Linda (U. S. A))

CARMONA Jacques (France)

CARMONA René (France)
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CARNAL Henri (Suisse)

CARR Peter (Grande-Bretagne)

CARRAL Michel (France)

CARRIER George (Grande-Breta-
gne) (E3)

CARRINGTON David C. (Grande-
Bretagne)

CARRUCCIO Ettore (Italie)

CARTAN Henri (France)

CARTER Roger W. (Grande-Bre-
tagne)

CARTIER Pierre (France) (C5)

CARTON Edmond (Belgique)

CARTWRIGHT Mary (Grande-Bre-
tagne)

CASLAV V. Stannojevic (U.S. A))

CASSELS John W. S. (Grande-Bre-
tagne) (B4)

CASSOUNOGUES Philippe
(France)

CASSOUNOGUES Pierrette
(France)

CASTELEET Manuel

DE CASTRO Antonio (Espagne)

CATHELINEAU Jean-Louis
(France)

CATHERINE Frangoise (France)

CATTABRIGA Lamberto (Italie)

CATTANEO Carlo (Italie)

CATTANEO Ida (Italie)

CAUBET Jean-P. (France)

CAYFORD S.

CECCHERINI Pier U. (Italie)

CERF Jean (France)

CERNAVSKII A. V. (U.R.S.8S)
(C2)

CESARI Lamberto (U. S. A.) (E4)

CHABERT Jean-Luc (France)

CHACON Rafael V. (U.S.A.) (D6)

CHACRON Maurice (Canada)

CHADEMAN Arsalan (France)

CHADEYRAS Marcel (France)

CHALK John H. H, (Canada) *

CHAMBERS Barbara (U. S. A)

CHAMBERS Llewelyn (Grande-Bre-
tagne)

CHAN LAI K. (Canada)

CHAN Sui-Wah (U. S. A))

CHANDRASEKHARAN Komaravol
(Suisse)

CHANG Kok Wah (Canada) *

CHAPKAREYV lljja

CHAPMAN Thomas (U. S. A.)

CHAPTAL Nicole (France)

CHARLES Bernard (France)

CHARNES A. (U.S.A)*

CHARPENTIER Rémy (France)

CHASTENET DE GERY Jérome
(France)

CHATELET Frangois (France)

LISTE DES CONGRESSISTES

CHATTERIJI Srishti (Suisse)
CHATTERIJI Subodh (Indes)
CHAVES Manuel L. (Portugal)
CHAZARAIN Jacques (France)
CHEIN Michel (France)
CHEN Kuo Tsai (U.S. A)
CHEN Tung Liu (U. S. A))
CHEN Yuh-Ching (U. S. A))
CHEN Yung-Ming (Hong-kong) *
CHEN Yu-Why (U.S. A))
CHENEY E. W. (U.S. A)
CHENON René (France)
CHERKAS Barry (U. S. A)
CHERN 8. S. (U.S. A) (G)
CHERUBINI Alessandra (Italie)
CHEVALIER Michel (France)
CHEVALLIER Dominique (France)
CHEVRIER Jean (France)
CHILLINGWORTH David R.
(Grande-Bretagne)
CHING Wai-Mee (U.S.A)
CHITCHONG THINGE Jean
(Grande-Bretagne)
CHOQUET-BRUHAT Yvonne
(France) (E2)
CHOW Pak S. (Grande-Bretagne)
CHRISTENSEN Carlton (Australie)
CHRISTENSEN Jens Peter (Dane-
mark).
CHRISTIANSEN Bent (Danemark)
CHRYSSAGIS Vassilios (Gréce)
CHUNG Kai-Lai (U. S. A.) (D5)
CHURCH Alonzo (U.S. A))
CHURCHHOUSE Robert F.
(Grande-Bretagne)
CIARLET Philippe (France)
CIESIELSKI Zbigniew (Pologne)
CILIBERTO Carlo (Italie)
CIMMINO Gianfranco (Italie)
CINQUINI Silvio (Italie)
CITRON Richard (U. S. A.)
CLAESSON Tomas (Suéde)
CLARK Allan (U.S. A.)
CLARK John (Grande-Bretagne)
CLAY J. R. (U.S. A)
CLEMENS Charles (U.S. A))
CLEMENT F. M. (France)
CLEMENT Philippe (Suisse)
CLIFFORD Alfred (U.S. A))
CNOP Ivan (Belgique)
COATMELEC Christian (France)
CODDINGTON Earl A. (U.S. A)
COEN Salvatore (Italie)
COEURE Gérard (France)
COFFI-NKETSIA B. J. (France)
COGHLAN Francis (Grande-Breta-
gne)
COHEN Hirsh G. (U.S. A)
COHEN Joel M. (U.S. A)
COHEN Maurice (France)

COHEN Simone (France)
COHN Harvey (U.S. A)*
COHN John H. E. (Gde-Bretagne)
COHN Paul M. (Grande-Bretagne)
(BI)
COHN Richard (U. S. A))
COIFMAN Ronald R. (U.S. A)
COLE Nancy (U. S. A))
COLLATZ Lothar (All. de I'Ouest)
COLLINGWOOD Edward (Grande-
Bretagne)
COLLINS Donald J. (Grande-Bre-
tagne)
COLLINS Peter J. (Grande-Breta-
gne) *
COLLOP Michael (Grande-Bretagne)
COLOMBEAU Jean-F. (France)
COLOMBO Serge (France)
-COLTON David (U.S. A))
COMBES Frangois (France)
COMBESCURE Jacques (France)
COMBET Edmond (France)
COMINCIOLI Valeriano (Italie)
COMPOINT Philippe (France)
COMTET Louis (France)
DI CONCILIO Anna (Italie)
CONLAN James (Canada)
CONLEY Charles (U.S. A.) (D12)
CONLON Lawrence (U. S. A.)
CONNETT William (U. S. A)
CONWAY John H. (Grande-Breta-
gne) (B3)
COOPER Graeme (Grande-Bretagne)
CORAL Max (U.S.A)*
CORREL Ellen (U.S.A)
CORWIN Lawrence (U. S. A))
COSTE Alain (France)
COUDRAIS Jacques (France)
COULOMB Geneviéve (France)
COUOT Jacques (France)
COURTILLOT Marcel (France)
COUTRIS Nicole (France)
COUTY Raymond (France)
COVACI-MUNTEANU Marie-
Janne (Belgique)
COX Maurice (Grande-Bretagne)
CRAW Ian G. (Grande-Bretagne)
CREE George (Canada)
CROFT Hallard (Australie)
CRUMEYROLLE Albert (France)
CRYER Colin (U.S. A)
CSASZAR Akos (Hongrie)
CUADRA FERNANDEZ José-Luis
. (Espagne)
CUDAKOV N. G. (U.R. S. 8.) (B6)
CUDIA Dennis F. (U.S. A)
CUMMINGS Larry (Canada)
CUPONA Georgi (Yougoslavie)
CUPPENS Roger (France)
CURRY Haskell (Pays-Bas)



CURTIS Alan Rob (Grande-Breta-
gne)

CURTISS J. H. (U.S. A)

CUSIK Thomas (U. S, A.)*

D

DACIC Ljubisa (France)

DACIC Rade (Yougoslavie)

DADE Everett (France)

DAGUENET M. (France)

DALLA VOLTA Vittorio (Italie)

D’AMBROSIO Ubiratan (U. S. A) *

DAMERELL Robert M. (Grande-
Bretagne)

DAMKOHLER Wilhelm (Argen-
tine) *

DANCIS Jéréme (U.S. A.)*

DANCS Stephen (Hongrie)

DANG NGOC Nghiem (France)

DANICA Nikolic (Yougoslavie)

DANICIC Ivan (Grande-Bretagne)

DANIEL James W. (U.S. A))

DANILYUK I I (U. R. S. S)*
(D10)

DANKERT Gabriele (Canada)

DARK Rex S. (Grande-Bretagne)

DAVIES Hilda M. (Grande-Breta-
gne)

DAVIDSON Luis (France)

DAVIS

DAVIS Chandler (Canada)

DAX Jean-P. (France)

DAYANITHY Kandiah (Grande-
Bretagne)

DAYKIN David E
tagne)

DAZORD Jean (France)

DAZORD Pierre (France)

DEBRUNNER Hans (Suisse)

DECUYPER Marcel (France)

DEGRANDE-DEKIMPE Nicole
(Belgique)

DEHEN Daniéle (France)

DEHEN Michéle (France)

DEKKER Jacob (U. S.A.)

DELANGHE Richard (Belgique) *

DELAROCHE Claire (France)

DEL FRANCO Georgia (U. S. A.)

DELIGNE Pierre (France) (BS)

DELMER Francine (France)

DELMEZ Claude M. (Belgique)

DELPORTE Jean (France)

DEMBOWSKI Peter (All. de I'Ouest)

DEMENGEL G. (France)

DEMETRIUS L.

DENES Jozsef (Hongrie) *

DENJOY Arnaud (France)

DENK Franz (All. de I’Ouest)

(Grande-Bre-

LISTE DES CONGRESSISTES

DENNEBERG Dieter (All. de
I’Ouest)

DENNETT John Roy (Grande-Bre-
tagne)

DENTONI Paolo (Italie)

DEPAIX Michel (France)

DESCHASEAUX J.-Pierre (Maroc)

DESCLOUX Jean (Suisse)

DESFORGE Julien L. (France)

DESHOUILLERS Jean-Marc
(France)

DESPLAND J.-Claude (France)

DESQ Roger (France)

DESTOUCHES Jean-Louis (France)

DEUTSCH Nimet (France)

DEVIDE Vladimir (Yougoslavie)

DHAHIR M. W. (Irak)

DHALIWAL Ranjit S. (Canada) *

DHOMBRES Jean (France)

DIAS AGUDO Fernando (Portugal)

DIAZ Joaquin (U. S. A.)

DICKINS John (Grande-Bretagne)

DIENER Karl (All. de I'Ouest)

DIEUDONNE Jean (France)

DIMITROV Georgiev (Bulgarie)

DIMOVSKI Ivan (Bulgarie)

DIONNE Philippe (Nouvelle-
Zélande)

DITZIAN Zeev (Canada)

DIXMIER Jacques (France)

DIXMIER Suzanne (France)

DIXON John (Canada)

DIXON Peter Gr. (Gde-Bretagne)

DJAJA (Yougoslavie)

DJOKOVIC Dragomir (Canada)

DJORDJEVIC Radoslav (Yougos-
lavie)

DJRBASHIANM.M.(U.R. S.S.) *

DJURIC Milan (Yougoslavie)

DLAB Vlastimil (Canada) *

DO Claude (France)

DOBBER Eclkje (Pays-Bas)

DOBRAKOV 1Ivan (Tchécoslova-
quie)

DODSON Michael (Grande-Breta-

gne)
DOITCHINOYV Doitchin (Bulgarie) *
DOLAPTSCHIEW Blagowest (Bul-
garie)
DOLBEAULT Pierre (France)
DOLBEAULT-LEMOINE Simone
(France)
DOLINSKY Rostislaw (All. de
I’Ouest)
DOMINYAK Imre (Hongrie)
DONEDDU Alfred (France)
DONNELLY John (Gde-Bietagne)
DONOGHUE William (U. S. A.)
DORING Boro (All. de I'Ouest) *
DOSS Raoul (U. S. A)

XIX

DOSTAL Milos (France)
DOTCHEV Guetchev (Bulgarie)
DOU Alberto (Espagne)
DOUGLAS Jim. Jr. (U. S. A)) (E3)
DOUGLAS Ronald (U. S. A.)
DOUIN Frangoise (France)
DOWLING Thomas A, (U.S.A)
DOWSON Henry (Grande-Bretagne)
DOXIADIS Apostolos (U. S. A))
DOYEN Jean (Belgique)
DRASCIC Rajko (Yougoslavie)
DRESHER Melvin (U.S. A.)
DRESS Frangois (France) *
DUBIN Daniel A. (Grande-Bretagne)
DUBINS Lester E. (U.S. A))
DUBINSKY Ed. (Canada)
DUBOIS Donald (U. S. A))
DUBREIL Paul (France)
DUDA Edwin (U. S. A))
DUDLEY Richard M. (U. S. A))
DUGDALE Jack (Grande-Bretagne)
DUHOUX,Michel (Belgique)
DUISTERMAAT Johannes (Pays-
Bas)
DULMAGE Andrew (Canada)
DUNN Kenneth (Canada)
DUNWOODY Martin J. (Grande-
Bretagne)
DU PLESSIS Johanners (Afrique du
Sud)
DU PLESSIS Nicolaas (Grande-Bre-
tagne)
DUPUY Maryvonne (France)
DUREN Peter (U.S. A.)
DUSSAUD R. (France)
DUVAL Victor (France)
DUVAUT Georges (France) (E3)
DWIVEDI T. O. (Canada)
DVORETZKY A. (Israél) (D6)
DYER-BENNET John (U. S. A)
DYNKIN E. B. (U. R. 8. 8.) (D5)
DZYADYK V. Kirillovitch
(U.R. 8. 8.) (D7)

E

EARLE Clifford (U. S. A))

EASTRATIOS Galunis

EBERHARD Walter (All. de I’'Ouest)

EBERSOLDT Franz (All. de I’Ouest)

EBIN D. G. (U.S. A)) (C4)

ECHIVARD Michel (France)

ECKERT John

ECKMANN Beno (Suisse)

EDER Otmar (All. de I’Ouest)

EDMONDS Sheila M. (Grande-Bre-
tagne)

EDWARDS D. A. (Grande-Breta-
gne) (D1)
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EELLS James (Grande-Bretagne)
(C4)
EFFROS Edward (U. S. A))
EFIMOV A. V. (U.R.S.8)
EGOROV Iu. V. (U.R. S. S.) (D10)
EGUCHI K.
EHLERS lJiirgen (U. S. A.) (E2)
EHRENPREIS Leon (U.S. A))
EILENBERG Samuel (U.S.A.) (E7)
EINARSSON B. O. (Suéde)
EINSELE Carl (Suisse)
EISELE Carolyn (U.S.A)*
EISENBUD David (U. S. A))
EISNER BILLO Silvia (Suisse)
EKE B. G. (Irlande)
EKELAND lIvar (France)
ELIAS Josef (Tchécoslovaquie)
ELIASSON Halldor (Islande)
ELJOSEPH Nathan (Isragl)
ELKINGTON Gordon (Grande-Bre-'
tagne)
ELLIS Alan (Grande-Bretagne)
ELLMER Horst (All. de I’Est)
ELMABSOUT Badaoui (France)
ELWORTHY Kenneth (Grande-Bre-
tagne)
ENFLO Perhenrik
ENGUEHARD Michel (France)
EPSTEIN Mordechai (Israél)
ERDELYI Ivan (U.S. A)*
ERDOS John Al (Grande-Bretagne)
ERDOS Paul (Hongrie) (E5)
ERIKSSON S. Folke (Suéde)
ERLANDER Sven (Suéde)
ERSOV Iu. L. (U.R.S.8)) (A)
ERVYNCK (Belgique)
ESCASSUT Alain (France)
ETHERINGTON Ivor (Grande-Bre-
tagne)
EVANS Edward (U. S. A))
EVANS W. Buell (U.S. A)
EVIATAR Asriel (Isragl)*
EWEN Alex Jam (Grande-Bretagne)
EWING John (U.S.A))
EXBRAYAT Jean-Marie (France)
EXNER Robert (Australie)
EYMARD Pierre (France)
EYMERY Bernard (France)
EZAWA Hiroshi (Japon)
EZRA Jacques (France)

F

FADDEEV L. D. (U.R.S.S.) (E2)
FADELL Albert (U.S. A.)
FAGUE M. K. (U.R.S.8))
FAISANT Alain (France)

FALK Sigurd (All. de I'Ouest)
FALL Souleyman (Sénégal)
FARAUT Jacques (Tunisie)

LISTE DES CONGRESSISTES

FARKAS Hershel (U.S. A.)

FARKAS Miklos (Hongrie) *

FARKOVA'’ Jana (Tchécoslovaquie)

FARRELLF Thomas (U. S. A.) (C2)

FAST Henryk (U.S. A))

FAURE Robert (Sénégal)

FAVE

FEDIDA Edmond (Congo)

FEENEY Walter (U.S. A.)

FEFERMAN S. (U. S. A.) (A)

FEFFERMAN Charles (U. S. A.)

FEIT Walter (U. S. A.) (G)

FELD Joseph (U. S. A.)

FELDMAN Jacob (U. S. A.)

FELIX Lucienne (France)

FELL James (U. S. A.) (D2)

FENSTAD Jens. E. (Norvége)

FERNANDES DE CARVALHO José
Alb. (Portugal)

FERON Robert (France)

FERRARI Mario

FERRIER Jean-P. (France)

FERRO Ruggero

FICHERA Gaetano (Italie) (E3)

FIDELIS Eugeniusz,(Pologne)

FIELDS Jerry (Canada)

FINKELSTEIN Mark (U. S. A)

FINLEY

FINN Robert (U. S. A.) (E3)

FINZI Bruno (Italie)

FISCHER Pal. (France)

FISCHER-: Walther (All. de I’Ouest)

FISCHER Wolfgang (All. de ’Ouest)

FLETCHER Colin R. (Grande-Bre-
tagne)

FLETCHER Trevor (Grande-Breta-
gne)

FLETT Thomas (Grande-Bretagne)

FLORES ESPINOZA Ruben (Mexi-
que)

FLORIDES Petross (Irlande)

FLOYD R. W. (U.S. A) (E7)

FOATA Dominique (France)

FODOR Gesa. (Hongrie)

FOIAS Ciprian (Roumanie) (D3)

FONG Paul (U.S. A))

FORD James W. (Grande-Bretagne)

FORELLI Frank (U. S. A.) (D4)

FORSTER Otto (All. de I'Ouest) (D8)

FORT Jacques (France)

FOUNTAIN John (Grande-Breta-
gne)

FOUNTAIN Leonard (U.S. A.)

FOURES Léonce (France)

FOURNIER J.-Claude (France)

FOWLER David (Grande-Bretagne)

FOX Charles (Canada)

FOX Leslie (Grande-Bretagne)

FRAENKEL Aviezri (U. S. A.)

FRAGOZO ROBLES Arturo (Mexi-

que)

FRANK (U.S.A)

FRANK Evelyn (U.S. A.)

FRASNAY Claude (France)

FREDRIKSON Einar (Pays-Bas)

FREEDMAN Haya (Grande-Breta-
gne)

FREEDMAN Herbert (Canada)

FREESE Ralph (U.S. A)

FREI Gunther (Canada)

FREMLIN David H. (Grande-Bre-
tagne)

FREMOND Michel (France)

FRESNEL Jean (France) *

FREUD Geza (Hongrie) *

FREUDENTHAL Hans (Pays-Bas)

FRIED Jean (France)

FRIEDMAN Nathaniel (U. S. A.)

FRIESEN Donald (U. S. A:)

FRISCH Jacques (France) (D8)

FRITSCH Rudolf (All. de I'Ouest)

FROBERG Carl Erik (Sugde)

FROSTMAN Otto (Suéde)

FUAD Milla (Koweit)

FUCHS Laszlo (U.S. A))

FUCHS Wolfgang (U.S. A)

FUCHSSTEINER Benno (All de
I’Ouest)

 FUGLEDE Bent (Danemark) (DS)

FUKAWA Masami (Japon)
FURSTENBERG Harry (Is1aél) (C5)
FUSTIVIA (Italie)

G

GAAL Steven A. (U.S.A)
GAEDE Karl (All. de I'Ouest)
GAFFNEY Matthew (U. S. A))
GAGLIARDO (U.S. A)
GAIR Frank (Nouvelle-Zélande)
GALAMBOS Janos (Grande-Breta-
gne) *
GALBRAITH Alan St. (U.S. A))
GALOFRE Modesto (U.S. A.)
GAMKRELIDZER.V.(U.R.S. S.)
- (E4)
GAMST (All. de I'Ouest)
GANDHI Jeetmal (U.S. A.)
GANELIUS Tord H. (Suéde)
GANI Naoum (France)
GARABEDIAN Paul (U. S. A.) (E3)
GARCIA ALVAREZ Miguel
GARCIA PEREZ Pedro (Espagne)
GARDINER Anthony (Grande-Bre-
tagne)
GARDING Lars (Su¢de) (DI0)
GAREL Emmanuelle (France)
GARG Krishna (Canada)



GARLING David (Grande-Bretagne)
GARNER Robert (U. S. A))
GARNIER Henri G. (Belgique)
GARREAU Gabriel (Suisse)
GARRETT James R. (U. S. A))
GARRISON Betty (U.S.A)*
GASIMOV M. G. (U.R.S.S8)*
GAUDEFROY Alamn L. (France)
GAVRILOV Mihail (Bulgarie)
GEBA K. (Pologne)
GEFFEN Nima (Israél)
SELBART Abe (U.S. A))
SELBART Stephen (U. S. A))
GELFAND 1. M. (U.R. S, 8) (G)
SGENTCHEV Todor G. (Bulgarie)
SEORGE Gwyneth (Canada)
GERARD Raymond (France)
GERGELY Tanas (Hongrie)
GERHARDTS Max D. (All de
I’Ouest)
GERLACH Eberhard (Canada)
SERMAIN Paul (France)
JERMAY Noél (Belgique)
JEROCH Robert (U. S. A.) (E2)
FERVOIS Mlle (France)
SETOOR Ronald (U. S. A.) (D5)
SEYMONAT Giuseppe (Italie)
SHAFFARI Abolghassem (U.S.A.)*
SHIRCOIASIU Nicolas (Roumanie)
SIELEN Wimpie (Pays-Bas)
SIFFEN Charles (U. S. A.)
JIGNETTI Alberto (Italie)
3IKHMAN L. I. (U.R.S.S)*
SILBARG David (U. S. A))
SILBERT William (Canada)
SILLAM B. E. (U.S. A)
SILLIGAN Brucc (Canada)
SILLIS Joseph (U. S. A))
3ILLIS Paul P. (Belgique)
SILLMAN Leonard (U.S.A))
SILMORE Lynnette (Grande-Bre-
tagne)
SILORMINI Claude (France)
SINZBURG Abraham (Israel)
JIRARDEAU J.-Pierre (France)
7IRAUD Georges (France)
FJIRAUD Jean (France) (B2)
3IUSTI Enrico
SIVENS Monique (France)
SIVENS Wallace (U. S. A))
SLAESER Georges (France)
SLASNER Moses (U.S. A))
3JLAUBERMAN George 1. (U.S.A))
(B3)
SLAUS Christian (Suisse)
SLEASON Andrew (U.S. A.) (ES)
SLICKSBERG Irving Leonard
(U.S.A)
FLIMM James (U. S. A.) (El)

LISTE DES CONGRESSISTES

GLODEN Raoul (Luxembourg)

GOBLOT Rémy

GODEAUX Lucien (Belgique)

GODET-THOBIE Christiane
(France)

GODUNOYV S. K. (U. R. S.8S.) (E3)

GOLAY Eric (Suisse)

GOLDIE Alfred (Grande-Bretagne)

GOLDIE Charles (Grande-Bretagne)

GOLDSCHMIDT Hubert (France)

GOLDSTEIN Jérdme A, (U.S. A.)

GOLOMB Michael (U. S. A)

GONTSHAR A. A. (U.R.S.8)

GONZALEZ Hilda (U. S. A))

GONZALES VALLES Carlos (Espa-
gne)

GOODINSON Patricia (Grande-Bre-
tagne)

GOODMAN Gerald (Italie)

GOPALA KRISHNA Jonnalag
(Indes)

GORDON Cameron (Grande-Breta-
gne)

GORDON Gerald (U. S. A))

GORDON Samuel (U.S. A)

GORENSTEIN Daniel (U. S. A.) (B3)

GORLICH Ernst (All. de I’Ouest) *

GOSSEZ Jean-Pierre (Belgique) *

GOULAOUIC Charles (France)

GOULD Gerald G. (Grande-Breta-
gne)

GOULD Sydney (All. de I’Ouest)

GOULLET DE RUGY Alain
(France)

GOURSAUD Jean-Marie (France)

GOUT Gérard (France)

GOUYON Luce (France)

GRAD Harold (U. S. A.) (E3)

GRAFFI Dario (Italie)

GRAHAM Victor W. (Irlande)

GRAMSCH Bernhard (All. de
I’Ouest)

GRANAS Andrzej (Canada)

GRANDALL Michael (U.S. A))

GRANDET Marthe (France)

GRASSIN Jacques (France)

GRAVELEAU Jean (France)

GRAY Alfred (U.S. A))

GRAY Jeremy (Grande-Bretagne)

GRAY Joan W. (Suisse)

GRAY Mary (U.S. A)

DE GRAY Ronald W. (U.S. A)

GRECO Antonio (Italie)

GREECHIE Richard (U. S. A.)

GREEN Mark L. (U.S.A)

GREGUS Michel (Tchécoslovaquie)

GREVILLE Thomas (U. S. A.)

GRIFFITH J. Gareth (Canada)

GRIFFITH Philipp (U.S. A.)

XXI

GRIFFITHS H. Brian (Grande-Bre-
tagne) (F2)
GRIFFITHS Phillip (U. S. A) (G)
GRIGUELIONIS B. I. (U.R.S.S))
GRISVARD Pierre (France) (D10)
GROH Hans J. (Canada)
GROMOLL Detlef (U. S. A.) (C3)
GROMOV M. L. (U.R. 8. 8) (C4)
DE GROOTE Hans (All. de I'Ouest)
GROSSWALD Emil (U. S. A.)
GROTHENDIECK Alexandre
(France) (BS)
GROWE Maledar (Grande-Bretagne)
GRUBB Gerd (Danemark)
GRUENBERG Karl (Grande-Breta-
gne)
GRUSHIN V. V. (U.R. 8. S.) (DI10)
GUARALDO
GUCKENHEIMER John (Grande-
Bretagne)
GUEHO M.-France (France)
GUENHAN Asaf V. (Turquie)
GUENZLER Hans F. (All de
I’Ouest)
GUERARD DES LAURIERS
Michel (France)
GUERASIMOV I. 8. (U.R.S.8)
GUERINDON Jean (France)
GUEVARA VASQUEZ Francisco
(France)
GUGGENBUHL Laura (U.S. A))
GUICHARDET Alain (France)
GUILLAUME Marcel (France)
GUILLEMIN Victor (U. S. A.) (C4)
GUILLERAULT-ASTIER Michel
(France)
GUILLERNVO Fleitas (Espagne)
GUILLOT Christophe
GUILLOT J.-Claude (France)
GUINAND Andrew P. (Canada)
GUIRAUD Jean-Pierre (France) (E3)
GULDEN Samuel L. (U.S. A)
GULONOV Alexander (Bulgarie)
GUNNING Robert (U. S. A.) (D8)
GUPTA Narain (Canada)
GUPTA Shiv-K. (U. S. A.)
GUREL Okan (U.S. A)*
GUSEINOV A. I. (U.R.S.8)
GUSTAFSON Sven-Ake (Suéde)
GUY Roland (Canada)
GUZMAN Miguel (Espagne)
GYORY Kalman (Hongrie)

H

HADDAD Labib (France)
HAEFLIGER André (Suisse)
HAIGHT Frank (France)
HAIMO Deborah (U.S. A.)*
HAIMOVICI Mendel (Roumanie)
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HAINZL Josef (All. de I'Ouest)

HAJNAL Andras (Hongrie)

HALBERSTADT Emmanuel
(France)

HALE Jack K. (U.S. A))

HALE Victor (Grande-Bretagne)

HALES Richard (Grande-Bretagne)

HALL Marshall (U. S. A.) (E5)

HALL Thomas (Grande-Bretagne)

HALPERIN Israél (Canada)

HAMITI Ejup (Yougoslavie)

HAMMER Peter (Canada)

HAMMOND SMITH David
(Grande-Bretagne)

HAMOUI Adnan (Syrie)

HANANI Haim (Israél)

HANATANI Yoshito (Japon)

HANIOTIS Zeppos (Suisse)

HANN Alexander (Suisse)

HANN Robert

HANNER Olof (U.S. A))

HARARI Roger (France)

HARBORTH Heiko (All. de

_ "Ouest) *

HARDER Gunter (All. de I’Ouest)
(C5)

HARDY F. Lane (U.S. A))

HARMEGNIES René Victor

HARPER John R. (U.S.A)

HARROLD Orville (U.S. A)*

HART Neal (Kenya)

HARTIG Klaus (All. de I’Est)

HARTLEY Elizabeth (Ghana)

HARVEY Reese (U. S. A)

HARZALLAH Khelifa (Tunisie)

HARZHEIM Egbert (All. de I’Ouest)

HATCHER William (Canada)

HATORI Tsukasa (Japon)

HATTON Michael (Grande-Breta-
gne)

HATZIANASTASSION Despina
(France)

HAUDIDIER

HAUGAZEAU

HAUSSMANN Werner (All. de
I’Ouest)

HAYEK CALIL Nacere (Espagne)

HAYMAN Walter (Grande-Bretagne)
(D7)

HAZEWINKEL Michiel (Pays-Bas)

HECQUET Gérard (France)

HEDBERG Lars (Suéde)

HEDBERG Torbjorn (Suéde)

HEDRLIN Z. (Tchécoslovaquie)(B2)

HEIDEMA Johannes (Afrique du
Sud)

HEILBRONN H. A. (Canada)

HEINIG Hans Paul (Canada)

HEINRICH Jurgen (All. de I’Ouest)

LISTE DES CONGRESSISTES

HEINS Maurice (U.S. A.)

HEINS

HEINTZE Ernst (All. de I’Ouest)

HEJNY Milan (Tchécoslovaquie)

HELFRICH Hans Peter (All. de
I’Ouest)

HELGASON Sigurdur (U.S.A.) (CS)

HELSON Henry (U. S. A.) (D4)

HELTON J. William (U. S. A.)

HELVERSEN Anna (France)

HENDERSON David W. (U.S. A)

HENNEQUIN

HENRARD Paul (Belgique)

HERRLICH Horst (All. de I’Ouest)

HERSZBERG Jerry (Grande-Breta-
gne)

HERZ Jean-Claude (France)

HERZOG F. (U.S.A)

HERZOG Marcel (Isragl)

HEUZE Guy (France)

HIGGINS Philip J. (Grande-Breta-
gne)

HIGGINSON John Alb (Canada)

HIGMAN D. G. (U.S. A)) (B3)

HIJAB Wasfi (Liban)

HILL C. Denson (Italie)

HILL Raymond (Grande-Bretagne)

HILL Walter (U.S. A.)

HILLE Einar (U.S. A))

HILTON Peter (U. S. A.) (B2)

HINDLEY Roger (Grande-Bretagne)

HIRONAKA Heisuke (U.S. A)
(D8)

HIROSHI Umemura (Japon)

HIRSCH Gérard (France)

HIRSCH Kurt A. (Grande-Breta-
gne)

HIRSCHFELD James W. (Grande-
Bretagne)

HITCHCOCK Anthony (Grande-
Bretagne)

HITCHIN Nigel (Grande-Bretagne)

HOCQUENGHEM Alexis (France)

HOCQUENGHEM Serge (France)

HODGES Wilfrid (Grande-Bretagne)

HODGSON Jonathan (U. S. A.)

HOEDE Cornelis (Pays-Bas)

HOEHLE Ulrich (All. de 1’Ouest)

HOFBAUER Johann (Autriche)

HOFFMAN Peter (Canada)

HOGBE-NLEND Henri (France)

HOLLADAY John (U.S.A)

HOLLAND Samuel (U. S. A))

HOLM Per (Norvége)

HOLMANN Harald (Suisse)

HOLME Audun (Norvége)

HOLVOET Roger (Belgique)

HOO C. (Canada)

HORMANDER Lars (Suéde) (G)

HORNIX Elisabeth (Pays-Bas)

HORVATH John (U.S.A)

HORVATIC Kireso (Yougoslavie)

HOSLI Hansueli (Suisse)

HOSSRU Miklos (Hongrie)

HOUDEBINE Jean (France)

HOUGHTON Charles (All. de
I’Ouest)

HOUILLOT-ROYER Josette
(France)

HOUSEHOLDER Alston (U. S. A)

HOWES Norman R. (U.S.A)*

HOWIE John M. (Grande-Bretagne)

HSIANG Fu-Cheng (République de
Chine) *

HSIANG Wu-Chung (U. S. A.) (C2)

HSIUNG Chuan C. (U. S. A))

HUARD Pierre (France)

HUBBUCK John R. (Grande-Bre-
tagne)

HUBERT Jacqueline (France)

HUBERT Miche!l (France)

HUDSON John F. P. (Grande-Bre-
tagne) (C2)

HUDSON Robin (Grande-Bretagne)

HUET Denise (France)

HUET Patrick (France)

HUGHES Kenneth (Grande-Breta-
gne)

HULANICKI Andrzej (Pologne)

HULSE John (Grande-Bretagne)

HUMBLOT Lionel (France)

Von der HUMBOLDT (All de I’Est)

HUMPHREYS James E. (U.S. A.)

HUMPHREYS John (Grande-Bre-
tagne)

HUNT John H. V. (Canada)

HUNT Richard (U. S. A\) (D9)

HUPPERTZ Hermann (All. de
I’Ouest)

HUSAIN Tagqdir (Canada)

HUTSON Vivian (Grande-Bretagne)

IBISCH Horst (France)
IBRAGUIMOV I. I. (U.R.S.8.) *
IHARA Yasutaka (Japon) (B4)
ILIEFF Ljubomir (Bulgarie)

ILJIN V. A. (U.R.S. S.) (D10)
ILLUSIE Luc (France)

IMAI Masataha (Japon)
IMANISHI Hideki (Japon)
IMHOF Jean-P. (Suisse)

IMRICH Wilfried (Autriche)
INFANTOZZI Carlos (Uruguay) *
INGELSTAM Lars Erik (Sucde)



INSELBERG Alfred (U. S. A))

INVERARITY William M. (Grande-
Bretagne)

ION Patrick (Grande-Bretagne)

IONESCU Dumitru (Roumanie) *

IONESCU TULCEA Alexandra
(U.S. A)

De IONGH Johan J. (Pays-Bas)

IRWIN Michael (Grande-Bretagne)

ISBELL John (U.S.A)

ISHAQ M. (Canada) *

ISHIHARA Shigeru (Japon)

ISHIHARA Tadashige (Japon)

ISLA Emilio (Pérou)

IVAN Jan (Tchécoslovaquie)

IVANOFF Vladimir (U. S. A))

IWASAWA Kenkichi (U. S. A.) (B4)

IYAHEN Sunday (Nigéria)

IYANAGA Shokichi (Japon)

IZANS Chantal (France)

1ZBICKI Herbert (Autriche)

1ZUMI Maseko (Australie)

IZUMI Shin Ichi (Australie)

J

JACKSON Howard L. (Canada)
JACOBINSKI Heinz (Suéde)
JACOBS Konrad (All. de 'Ouest)
JACOBSON David (Canada)
JACOBSON Florence (U. S. A.)
JACOBSON Nathan (U. S. A))
JAEGER Arno (All. de I’Ouest)
JAFFARD Paul L. (France)
JAGERS Albertus (Pays-Bas)
JAGERS Peter (Suede)
JAKUBIK Jan (Tchécoslovaquie)
JAMBOIS W.

JAMES Donald (U. S. A.)
JAMES loan (Grande-Bretagne)
JAMES Ralph D. (Canada)
JAMES Robert (U.S. A))
JANEKOSKI Viktor (Yougoslavie)
JANET Maurice (France)
JANICH Klaus (All. de I’Ouest)
JANIN Monique (France)
JANIN Pierre (France)

JANKO Zyonimir (U. S. A.) (B3)
JANKOVIC Zlatko (Yougoslavie)
JANSEN Karl (All. de 1’Ouest)
JANSSEN Gerhard (All. de I’Ouest)
JANSSEN Jacques (Belgique)
JANSSENS Paul (Belgique)
JAYNE John E. (U.S.A)
JEAN Michel (Canada)
JEANCLAUDE André (France)
JEANQUARTIER Pierre (Suisse)
JEFFERY R. L. (Canada)
JEFFRIES Clark D. (Canada)
JENSEN Christian (Danemark)

LISTE DES CONGRESSISTES

JENSEN Ronald, Bjérn (U.S.A.)
(A)

JERISON Meyer (U. S. A.)

JIMENEZ POZO Miguel (France)

JOHN John (Grande-Bretagne)

JOHNSEN V. Ben (Norvége)

JOHNSON Guy (U.S. A)

JONAC M.-Louise (France)

JONES Burton W. (U.S. A)

JONES F. Burton (U. S. A.) *

JONES Harold T. (U.S. A)

JONKER Peter (Pays-Bas)

JORDAN Dominic (Grande-Breta-
gne)

JORIS Henri (Suisse)

JOUBERT Gérard (France)

JOURLIN Michel (France)

JOUSSEN lJakob (All. de I’'Ouest)

JUHASZ Istvan (Hongrie)

JULIA Gaston (France)

JUN Tomiyama (Japon)

JUN-ICHI Igusa (U.S. A.)

JUPP Peter (Grande-Bretagne)

K

KADISON Richard (U.S. A)) (D2)
KAHANE Jean-Pierre (France)
KAHRAMANER Suzan F. (Turquie)
KAIJSER Thomas (Sutde)
KAJDAN D. (U.R.S.8.) (C5)
KAKA Léo
KAKUTANI Shizuo (U. S. A))
KALISCH Gerhard K. (U.S. A)) *
KALLINA Carl (U.S.A)
KALMAN John A. (Nouvelle-
Zélande)
KALMAR Lészl6 (Hongrie)
KALVANI Raghuraja (Indes)
KAMBER Franz (U.S. A))
KAMENAROVIC Ivan (Yougosla-
vie)
KAMPE DE FERIET Joseph
(France)
KANEYUKI Soji (U.S. A))
KAPADIA Ranesk (Grande-Breta-
gne)
KAPLAN Samuel (U. S. A.)
KAPLAN Wilfred (Suisse)
KAPPOS Demetrios (Gréce)
KARANIKOLOV Christo (Bulgarie)
KARATOPRAKLIEV Gueorgui
(Bulgarie) *
KAREMAN Herman (U. S. A.)
KARGAPOLOV M. L (U.R.S.8S)
KAROUBI Max (France) (Cl)
KARTSAKLIS A. (France)
KASSAB Jani (Grande-Bretagne)
KATO Mitsuyo (France)
KATO Tosio (U. S. A)) (G)

XXIII

KATONA Gyula (Hongrie)
KATSURADA Yoshie (Suisse) *
KATTSOFF Louis (U. S. A)
KATZ Leo (U.S.A))
KATZ Moshe (Israél)
KATZ Nicholas (U. S. A.) (B5)
KATZNELSON Yitzhak (Israél) (D9)
KATZOUPAKHS layan
KAUFMANN-BUHLER Walter
(All de I’Ouest)
KAUP Burchard (Suisse)
KAWAGUCHI Akitsugu (Japon)
KAWAKAMI Hiroshi (France)
KAZCKES
KAZDAN Jerry L, (U.S. A)
KEARTON Cherry (Grande-Breta-
gne)
KEATES Michael (Grande-Bretagne)
KEEDWELL Anthony (Grande-Bre-
tagne)
KEGEL Otto (Grande-Bretagne)
KEIMEL Klaus (France)
KEISLER Jérdme (U. S. A)) (G)
KELENSON Philip (Israél)
KELLER Hans (Suisse)
KELLEY Al (U.S.A)
KELLY Gregory (Australie)
KENNEDY Hubert (U. S. A)
KENNEY Margaret (U. S. A.)
KEOWN E. Ray (U.S.A.)
KERKYACHARIAN Gérard (France)
KERR-LAWSON Angus (Canada)
KERVAIRE Michel (U. S. A.)
KESTEN Harry (U. S. A.) (D5)
KEUNE Frans (Pays-Bas)
KHALIL Idriss (France)
KHARATISHVILIG. L.(U.R.S.8.)
(E4)
KIBBEY Donald (U.S. A)
KIEFER Jack (U.S. A.) (E6)
KIEFFER Lucien (Luxembourg)
KIEHL Reinhardt (All. de I'Ouest)
(D8)
KIELY John (Grande-Bretagne)
KIRBY David (Grande-Bretagne)
KIRBY Robion (U.S. A)) (C2)
KISELMAN C. O. (Suéde)
KITBALIAN A. A. (U.R.S.8))
KJELDSEN Kjell (Norvége)
KLAMKIN Murray S. (U.S. A))
KLASSEN John (Canada)
KLEIMAN Steven (U. S. A.) (BS)
KLEIN (France)
KLEIN Abraham (Isra&l)
KLEIN Samuel (U. S. A.)
KLEIN Thérese (Israél)
KLEISLI Heinrich (Suisse)
KLEPPNER Adam (U.S.A)
KLINGENBERG Wilheln (All. de
I’Ouest)
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KLUVANEK Igor (Australie)

KNAUER Ulrich (All. de I'Ouest)

KNAUFF Werner (All. de ’Ouest)

KNEEBONE Geoffrey (Grande-Bre-
tagne)

KNESER Martin (All. de I'Ouest)

KNIGHT Dorothy (U. S. A.)

KNIGHT Lyman C. (U.S. A)

KNILL Ronald (France) *

KNOPFMACHER John (Afrique du
Sud) *

KNUS Max (Suisse)

KNUTH Donald (U. S. A.) (E7)

KNUTSON Donald 1. (U.S. A))

KOBAYASHI Shoshichi (U.S.A))
(C3)

KOCH Alois (Australie)

KOCH Wilfried (All. de ’Ouest)

KOCHER Franck (U. S. A))

KOECHER Max (All. de I’Ouest)
(B1)

KOEMHOFF Magclone

KOETHE Gottfried (All. de ’Ouest)

KOHNEN Walter (All. de I’Ouest)

KOITER Warner (Pays-Bas) (E3)

KOLAR Wonnfried (All. de I'Ouest) *

KOLIBIAR Milan (Tchécoslovaquie)

KOLIBIAROVA Blanka (Tchécoslo-
vaquie)

KOLMOGOROV A.N. (U.R.S. 8.
(E7)

KORANYI Adam (U.S. A))

KORGANOFF André (France)

KORN D. G. (U.S. A)) (E3)

KOSCHMIEDER Lothar (All. de
I’Ouest)

KOSHELEV A. I (U.R.S.8)

KOSINSKI Antoni (U.S. A))

KOSKAS Maurice (France)

KOSMANN Yvette (France)

KOSNIOWSKI Czeslaw (Grande-
Bretagne)

KOSTANT Beriram (U. S. A.) (D2)

KOSTRIKIN A. I (U.R. S. 8.) (Bl)

KOSZUL J. L. (France)

KOVARI Thomas (Grande-Bretagne)

KOZOBROD V.P. (U.R.S.8S.)

KRABBE Gregers (U. S. A))

KRAINES David (U. S. A.)

KRAJA Osman (Albanie)

KRAJNAKOVA Dorota (Tchécoslo-
vaquie)

KRAMER LASSAR Edna (U. S. A))

KRASNER Marc (France) *

KRASOVSKY N. N. (U.R.S.8))
(E4)

KREE Paul (France)

KREISS Heinz O. (U. S. A.) (E8)

KRESS Rainer (All. de I’Ouest)

KRETTEK

LISTE DES CONGRESSISTES

KRIEF Henry (France)
KRIEGER Wolfgang (U. S. A.)
KRIPKE Saul A. (U.S.A.) (A)
KRISHNAN Viakalath (U. S. A.)
KRISTENSEN Leif (Danemark)
KRONHEIMER Erwin (Grande-
Bretagne)
KRUSE Arthur (U. S. A.)
KRUSKAL Martin (U. S. A.)
KRYGOWSKA Zofia (Pologne) (F2)
KUBILIUS J. P. (U.R.S.S)*
KUBOTA Tomio (Japon) (B4)
KUHNERT (All. de I’Est)
KUICH Werner (Autriche)
KUIPER Nicolaas (Pays-Bas) (C2)
KUIPERS L. (U.S.A)*
KULIKOVSKII A. G. (U.R.S.8S)
(E3)
KULKARNI Bavindra (All. de
I’Ouest)
KUNZ Ernst (All. de ’Ouest)
KURAN Ulku (Grande-Bretagne)
KURANISHI Masatake (U.S.A.)
(C4)
KURATOWSKI Kazimierz (Pologne)
KUREPA Svetozar (Yougoslavie)
KURODA S. T. (Japon) (D3)
KURODA Sigekatu (U.S. A))
KURSMAN Robert P. (U.S. A))
KURSS Hebert (U. S. A.)
KURZWEIL Jaroslav (Tchécoslova-
quie)
KUTTNER Brian (Grande-Bretagne)
KUYK Willem (Belgique)
KUZNETZOV Yu. A. (U.R.S. S.)) *
KVESELAVA D. A. (U.R.S.8))
KWAPIEN 8. (Pologne)

L

LABARRE Jr. Anthony (U. S. A.)

LACHAUD Gilles (France)

LACROIX Norbert (Canada)

LADYJENSKAIA O. A. (U.R.S.S)

LAFON Jean-P. (France)

LAFON Monique (France)

LAHA R. G. (U.S.A)*

DE LA HARPE Pierre (Grande-
Bretagne)

LAITOCH Miroslav (Tchécoslova-
quie)

LALAGUE Pierre (France)

LAL DUGGAL Krishan (Canada)

LAMAN Gerald (Pays-Bas)

LAMBERT John (Grande-Bretagne)

LAMBERT John D. (Grande-Bre-
tagne)

LAMBERT Pol V. (Pays-Bas)

LA MENZA Francisco (Argentine)

LA MOUCHE

LAMOUREUX Claude (France)

LANCASTER Peter (Canada) *

LANCE Christophe (Grande-Breta-
gne

LANCHON Hé¢léne A. (France)

LANDESMAN Peter (U. S. A.)

LANDMAN Alain (U.S. A)

LANGE Horst (All. de I'Ouest) *

LANGLANDS Robert (U. S. A)
(C5)

LANKOVA (France)

LARDNER Robin (Canada)

LASCAUX Patrick (France)

LASCOUX Jean (France)

LASHOF Richard K. (U. S. A)) (C2)

LATOUR Frangois (France)

LAUDAL Olav (Norvege)

LAUFER Henry (U.S. A)

LAVELLE Arthur (Grande-Breta-
gne)

LAVENDHOMME R. (Belgique)

LAVIGNE J.-Pierre (France)

LAVOIE Jean L. (Canada)

LAVRENTIEV M. A. (U.R.S.8)

LAVRENTIEV M. M. (U.R.S.8)
(D10)

LAVROV S. S. (U.R. S.S.) (E7)

LAW Alan (Canada)

LAWRUK B. (Canada)

LAWVERE F. William (Canada)
(B2)

LAX Peter (U.S. A) (D11)

LAXTON Ronald (Grande-Breta-

gne)
LAZZERI Fulvio
LEAVITT Jay A. (U.S.A)
LEBAUD Georges (France)
LEBLANC Noel (France)
LEBON Georgy (Belgique) *
LE DOURNEUF Jean (France)
LE DUNG Trang (France)
LEE Chung Nim (U. S. A))
LEE Shing-Meng (République de
Chine)
LEEDHAM-GREEN C. R. (Grande-
Bretagne)
LEFRANC Marcel (France)
LEGRAN D. 1.
LEGRAND Denise (France)
LEGRAND Gilles (France)
LE GRAND Pieter (Pays-Bas)
LEGRAND Solange (France)
LEHMANN Daniel (France)
LEHMANN Mme Josiane (France)
LEHMANN N. Joachim (All. de
I’Est)
LEHNER Guydo R. (U.S. A))
LEHRER Gustav (Grande-Breta-

gne)



EHRER ILAMED Yehiel (Israél)
EHTO Olli (Finlande)

EIBOVIC Nicholas (U. S. A.)
EIGHTON Walter (U. S. A))
EIMANIS Eugéne (Canada)
EINDLER L4zl6 (Hongrie) *
EIPNIK Roy (U.S.A)
EKKERKERKER C. G. (Pays-
Bas)

EKO Marko (Yougoslavie) *
ELAND Kenneth O, (U. S, A))

E LIONNAIS Frangois (France)
ELONG Pierre (France)
ELONG-FERRAND Jacqueline
(France)

EMAIRE Claude (Belgique) *
EMMENS Petrus W. (Grande-Bre-
tagne)

ENAGAN Thomas (Grande-Breta-
gne)

ENGAGNE Guy (France)
ENZING Helmut (All. de I’Ouest)
EONARD Pierre (France)
EONOR Concepcion (U. S. A.)
EPINGLE Dominique (France)

E POTIER (France)

ERAY Jean (France)

BSIEUR Léonce (France)

ETAC Gérard (France)

2 THANK-PHONG (France)
EVEQUE William (U. S. A.)
EVIN Frank (U.S. A))

EVIN Martin (U.S. A))

BVINE Jérome (U. S. A)) (C2)
EVITAN B. M. (U.R.S. S.)) (D3)
EVITT Normann

BVY Paul (France)

BVY-BRUHL Jacques (France)
EWIS Donald J. (U.S.A)
EWIS Jeff E. (U.S.A)
HEUREUX James (U. S. A.)
[BERMANN Paulette (France)
[CHNEROWICZ André (France)
(E2)

[CKORISH W. B. Raym. (Grande-
Bretagne)

[EBECK Hans (Grande-Bretagne)
[EBLEIN Julius (U. 8. A.)
[GAUD Jean-Pierre (Maroc)
[GOZAT Gérard (France)
INDENSTRAUSS Joram (Israél)
(D1)

INGUA Pierre (Italie)

INNIK Y. V. (U.R. S. 8.) (E6)
[ONS Jacques-Lous (France) (D11)
[PINSKI J. (Pologne)

[U Shih-Chao (République de
Chine)

[ULEVICIUS Arunas (U. S. A.)
[VERANI Francesco (Italie)

LISTE DES CONGRESSISTES

LJUNGGREN Wilhem (Norvége)

LLUIS Emilio (Mexique)

LOESCH Friedrich (All. de I'Ouest)

LOETTGEN Ulrich (All. de 1'Ouest)

LOHOUE Noél

LOJASIEWICZ S. (Pologne) (C4)

LOMBARDI Yves

LONDON Hymie (Canada)

LONSTED Knud (Danemark)

LOPEZ DE MEDRANO Santiago
(Mexique) (C2)

LORCH Edgar (U.S. A))

LORCH Lee (Canada)

LORENZ Falko (All. de I’Ouest)

LORIS-TEGHEM Jacqueline (Belgi-
que)

LOSEY Gérald (Canada)

LOSEY Nora (Canada)

LOSONCZI Laszl6 (Hongrie)

LOUD Warren S. (U.S. A))

LOVASZ Laszlo (Hongrie)

LOVORKA Tomasic (Yougoslavie)

LUBIN Clarence (U.S. A))

LUCAS Keith (Grande-Bretagne)

LUCAS Thierry (Belgique)

LUDWIG Garry (Canada)

LUE Abraham (Grande-Bretagne)

LUKACS Eugéne (Autriche) *

LUNA Domingo

LUNDSGAARD HANSEN Vagn
(Grande-Bretagne)

LUPANOV O. B. (U.R.S.S.) (E7)

LUPO Filomena (U. S. A.)

LYNN Erbe (Canada)

M

MAC CLUER Charles (U. S. A.)

MACDONALD J. G. (Grande-Breta-
gne)(C5)

MAC DONNELL John (U. S. A.)

MACHADO Armando (Portugal)

MACHENRY Trueman (Canada)

MACHI A.

MACHIZ Joan (Grande-Bretagne)

MACINTYRE Angus (Grande-Bre-
tagne)

MACK Cornelius (Grande-Bretagne)

MACKEY George W. (U. S. A) (D2) |

MAC LANE Saunders (U. S. A.)

MAC LEOD Robert (Canada)

MACLEOD Roderick (Grande-Bre-
tagne)

MAC MAHON James (Irlande)

MACPHAIL Moray (Canada)

MADLENER Klaus E. (All. de
I’Ouest)

MADORE John (France)

MADSEN Gutmann (Danemark)

XXV

MADSEN Kaj (Danemark)
MAEZAWA Seiichiro (Japon) *
MAFFIOLI Franco
MAGARIAN Elisabeth (U.S. A.)
MAGENES Enrico (Italie)
MAHAMMED Norredine (France)
MAHJOUB Bechir (Tunisie)
MAHOWALD Mark E. (U.S. A))
MAILHOS Line (France)
MAIRE Henri M. (Suisse)
MAJUMDAR Samir R. (Canada)
MALET Henri (France)
MALGRANGE Bernard (France)
MALLIAVIN M.-Paule (France)
MALLIAVIN Paul (France)
MALON Stanislas (Tchécoeslovaquie)
MAMATOV M. (U.R.S.8S)
MAMMITZSCH Volker (All. de
I’Ouest)
MAMMOUTH Claude (France)
MAMOURIS Athanasios (Gréce)
MANACORDA Tristano (Italie)
MANDELBAUM Richard (U. S. A.)
MANDJAVIDZEG.F.(U.R.S.8.)*
MANDELKER Mark (U.S. A.)*
MANDRELLA Renate (All. de
I’Ouest)
MANFREDI Bianca (Italie)
MANIA G. M. (U.R.S.S)*
MANIN Y. L. (U.R.S. S.) (B4)
MANN Horst (All. de I’Ouest)
MANOLOV Spas (Bulgarie)
MANTEL Nathan (U.S. A))
MANUCEAU Jéréme (France)
MARATHE Kishore (U. S. A.)
MARCHUK G. L. (U.R.S.S)) (G)
MARCONI Paulo (Italie)
MARDEN Morris (U. S. A.)
MARDESIC’ Sibe (Yougoslavie)
MARECHAL Odile (France)
MARIC Vojislav (Yougoslavie)
MARIJA Vencelj (Yougoslavie)
MARINI Alberto (Italie)
MARINKA Feratic (Yougoslavie)
MARKSJO Bertil (Suéde)
MARLEY Gerald (U. S. A.)
MARQUETTY Antoine
MARRY Pierre D. (France)
MARTENS Henrik H. (Norvége)
MARTIN Benjamin (U. S. A.)
MARTIN George (U. S. A))
MARTIN Nigel (Grande-Bretagne)
MARTINDALE Wallace (U. S. A)*
MARTINEAU André (France) (D8)
MARTINET Jacques (France) *
MARTINEZ NAVEIRA Antonio
(Espagne)
MARTIN GUZMAN Maria P.
(Espagne)
MARTINOV Nikola (Bulgarie)
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MARTINS Philipp
MARTSHENKO V. A. (U.R.S. S.)
MASANI Pesi (U. S. A)
MASCORT Olga (France)
MASLOV V. P. (U.R.S.8.) (D10)
MASSAZA Carla (Italie)
MATHER John (U. S. A)) (C4)
MATHIAK Karl (All. de ’Ouest)
MATHIAS Adrian R. (Grande-Bre-
tagne)
MATHIEU Gérard (France)
MATHIS Robert (U. S. A.)
MATSUMOTO Hideya (France)
MATSUSHIMA Yozo (U.S. A))
MATTHEWS Geoffrey (Grande-Bre-
tagne
MATIJASEVIC Y. V. (U.R.S.S)
A)
MAUDE Ronald (Grande-Bretagne)
MAURER Christian (Grande-Breta-
gne)
MAURO Santi A. (Cote-d’Ivoire)
MAUTNER Friederic (France)
MAVINGA Honoré (Belgique)
MAVRON Vassili (Grande-Breta-
gne
MAWHIN Jean (Belgique)
MAXWELL Edwin (Grande-Breta-
gne)
MAY Kenneth (Canada)
MAYER Karl (All. de I'Ouest)
MAYER Stephen (Grande-Bretagne)
MAYOH Grete (Danemark)
MAZARAKIS George (Gréce)
MAZAT Frangoise (France)
MAZET Pierre (France)
MAZZOLA Venzo (Suisse)
MC ARTHUR Charles (U. S. A.)
MC CARTNEY James R. (Grande-
Bretagne)
MC CONNEL James R. (Irlande)
MC CRORY Clinton (U. S. A))
MC DONOUGH Thomas (Grande-
Bretagne)
MC DUFF Dusa (Grande-Bretagne)
MC KILLIGAN Sheila (Grande-Bre-
tagne)
MC LAUGHLIN Harry (U.S. A))
MC NAME John (Canada)
MC QUEEN Paul C. (Canada)
MEDEK Vaclav (Tchécoslovaquie)
MEHRA K. L. (Canada)
MEIJERINK Koos (Pays-Bas)
MEISE Reinhold (All. de I’Ouest)
MEJER H. G. (Pays-Bas)
MELCHIOR Ulrich (All. de I’Ouest)
MELDRUM John D. (Grande-Bre-
tagne)
MENARD Jean (Canada)
MENDEL

LISTE DES CONGRESSISTES

MENDES FRANCE Michel
(France) *
MENY Georges (France)
MENZEL Klaus (All. de I’Ouest)
MEREDITH Patrick (Grande-Bre-
tagne)
MERGUELIAN S. N. (U.R.S.8.)
(D9)
MEROVCI Ymer (Yougoslavie)
METELLI Claudia (Italie)
METIVIER Michel (France)
METZGER Pierre (France)
MEYER Yves (France) (D9)
MEYNIEUX Robert M. (France)
MICHAEL Ernest (U. S. A))
MICHAUD Pierre C. (France)
MICHEL René (France)
MICHON Gérard (France)
MIGLIORATO Renato
MIHAI Alexandre (Roumanie)
MIKLOSKO Josef (Tchécoslova-
quie) *
MIKOLAS Miklos (Hongrie) *
MILIC Svetozar (Yougoslavie)
MILLER D. D. (U.S. A)
MILLER John J. H. (Irlande)
MILLER Leonhard (U. S. A.)
MILLETT Kenneth (U.S. A.)
MILLIONSCIKOV V. M. (U.R.S.S.)
(D12)
MILLOUX Henri (France)
MIMURA Yukio (Japon)
MINTZ George
MIRANDA Mario (Italie) (D11)
MIRBAGHERI Ahmad (Iran)
MISCHENKO A. S. (U.R.S.S)
€2
MISIK Ladislav (Tchécoslovaquie)
MISLIN Guido (U.S. A)
MITCHELL Joséphine (U.S. A.)
MITROPOLSKY Iu. A.(U.R.S.8.)*
MITROVIC Dragisa (Yougoslavie)*
MITTAS Jean (Gréce)
MITTEAU J.-Claude (France)
MOCH Frangois (France)
MOGYORODI Jozsef (Hongrie)
MOHN Karl H. (All. de I’Ouest)
MOISE Edwin E. (U.S.A)
MOISHEZON Boris (U.R.S.S.) (D8)
MOKOBODZKI Gabriel (France)
(D3)
MOLINARQO Italico (France)
MOLINO Pierre (France)
MOLTSHANOV A. M. (U.R.S.8)
MONJARDET Bernard (France)
MONK Donald (U.S. A))
MONSKY Paul (U.S. A) (BS)
MONTESINOS Vicente
MONTGOMERY Deane (U. S. A.)
MOODY Robert V. (Canada)

MOORE Berrien (U.S. A.)
MOORE Calvin C. (U.S.A)) (D2
MOORE John (U.S.A)
MOORE John C. (U.S. A)) (B2)
MORAWETZ Cathleen (U. S. A.)
MORDELL Louis J. (Grande-Bre
tagne)
MOREAU J.-Jacques (Canada)
MORENO Carlos J. (U.S. A))
MORET-BAILLY Frangoise
(France)
MORGADO Jr José (Brésil)
MORGAN Kathryn (U. S. A))
MORICZ Ferenc A. (Hongrie)
MORREY Charles (U. S. A.)) (DII
MORRIS Grainger (Australie)
MORRIS Rosa M. (Grande-Breta:
gne)
MOSER Jurgen (U.S. A)
MOSS Cyril (Grande-Bretagne)
MOSS Robert M. (Grande-Bretagne
MOSSINO Jacques (France)
MOSTOW George D. (U. S. A.) (C3;
MOTCHANE Léon (France)
MOTHON Bernard (France)
MOTZKIN Elhan (France)
MOTZKIN Theodore (U. S. A.)
MOUKOKO PRISO Paul (France
MOULIS Michel (France)
MOULIS Nicole F. (France)
MSEVETT Allan (Grande-Bretagne;
MUHLRAD Greif C. (France)
MUHLY Paul (U.S. A.)
MULDOON Martin (Canada)
MULHALL Harold (Australie)
MULTHEI Heinrich (All. ds
I"Ouest) *
MUMFORD David (U. S. A)) (BS
MUNROE Evans (U.S. A))
DE MUNTER Paul (Belgique)
MURDESHWAR Mangesh (Indes
MURPHY Timothy (Irlande)
MURRE Jacob P. (Pays-Bas)
MURTY Usr (Canada)
MUSKHELISHVILIN. I. (UR.S.S.
MUSTAFA Abdalla (Grande-Breta:
gne)
MUWAFI Amin (Liban)
MYERS Donald (U.S. A)
MYERS Peter (U.S. A))
MYSAK Lawrence (Canada)

N

NACHBIN Leopoldo (U. S. A.)
NAGAEYV S. V. (U.R.S.S)
NAGAMI Keio (Japon) (Cl)
NAGASAWA Masao (Japon)
SZ-NAGY Bela (Hongrie) * (D3)



NAIMAR R. A. (U.R.S.8))
NAIMARK M. A. (U.R. S. 8.) (D2)
NAIMPALLY Som. A. (Indes)
NAKANO Takeo (Japon)
NAKASSIS Anastase (France)
NARASIMHAN M. S. (Indes) (C3)
NARASIMHAN Ramabhadran (All
de I’Ouest)
NASIM Cynl (Canada)
NASR Saad K. (Egypte) *
NASTOLD Hans (All de I’Ouest)
NATHANSON Melvyn B. (U. S. A)
NEDERSKI Petar
NEF Walter (Suisse)
NEFTIDJI Phédre (Gréce)
NEGREPONTIS Stelios (Gréce)
NEGRO Angelo (Italie)
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SCHWERDTFEGER Hans (Canada)
SEAL Hilary (Grande-Bretagne)
SEED Margaret (Grande-Bretagne)
SEELEY Robert (U.S. A.) (D10)
SEGAL Graeme (Grande-Bretagne)
(C1)
SEGAL Irving E. (U. S. A)) (D2)
SEGAL Sanford (U.S. A.)

SEGRE Beniamino (Italie)
SEIDEL J. J. (Pays-Bas)
SEIDEN Esther (U.S.A)
SEINIGE Lothar (Suisse)
SELBERG Sigmund (Norvége)
SELDIN Jonathan (U.S. A))
SELENIUS Clas-Olof (Suéde)
SELIGSON Stuart A. (U.S.A)
SEMADENI Zbigniew (Pologne)
SEN Dipak K. (Canada)

SEN R. N. (Israél)

SENDOQOYV Blagovest (Bulgarie)
SEPER Kajetan (Yougoslavie)
SERNA Juana (U.S.A))
SERRE Jean-Pierre (France)

LISTE DES CONGRESSISTES

SERRIN James (U. S. A.) (D11)
SESHADRI Conjeev. (Indes) (B5)
SETH Bhoj Raj (Indes)
SETHURAMAN Jayaram (U.S.A.)*
SEVASTIANOV B. A. (U.R.S.8S)
SEVERO Norman (U. S. A))
SEWELL Walter (U.S. A)
SEYDI Hamet (France)
SHACKELL John R. (Grande-Bre-
tagne)
SHAFAREVICH I. R. (U.R.S.8)
(B4)
SHAFFER Dorothy (U. S. A))
SHANESON Julius (U. S. A))
SHANKS Merrill (U. S. A.)
SHAPIRO Harvey (U. S. A))
SHAPIRO Victor (U.S. A))
SHARP William (Canada)
SHARPE David (Grande-Bretagne)
SHEPP Lawrence (U. S. A.)
SHIDLOVSKII A. B. (U.R.S.8S.)
SHIH Kung-Sing (République de
Chine)
SHIMAMOTO (U.S. A))
SHIMURA Goro (U.S. A)) (C5)
SHIOZAWA Yoshinori (France)
SHIPPAM G. K. (Pays-Bas)
SHIRYAYEV A. N. (U.R.S.8)
(D5)
SHKLOV Nathan (Canada)
SHORE Samuel D. (U.S. A)
SIBIRSKII K. S. (U.R.S.8S.)
SIBONY Moise (France)
SIDDIQI J. A. (Canada) *
SIEBENMANN Laurence (U.S. A.)
(C2)
SIEVEKING Malte (Suisse)
SIGMUND Karl (France)

SIGRIST Frangois (Suisse) !

SIKORSKI Roman (Pologne)
SILBERSTEIN Josef (Australie)
DE SILVA Carl (Portugal)
SIMHA Roddam R. (Indes)
SIMMONS Harold (Grande-Breta-
gne)
SIMOES PEREIRA José (Portugal)
SIMON Barry (U. S. A)
SIMON Udo (AlL de I'Ouest)
SIMONS Stephen (U. S. A.)
SINAI J. G. (U.R.S.S.) (D12)
SINGH Kuldip (Canada)
SINGH 8. P. (Canada)
SINGH U. N. (Indes)
SION Maurice (Canada) (D6)
SIRAO Tunekiti (Japon)
SIU Yun-Tong (U. S. A))
SJODIN Gunnar (Suéde)
SJOLIN Per (Suéde)
SKARDA Vencil (U.S. A)
SKENDZIC Marija (Yougoslavie)

SKLAR A. (U.S.A)
SKODA Henri (France)
SKORDEYV Dimiter (Bulgarie)
SKOROHOD A. V, (U.R.S.S.) (D6)
SKOVGAARD Helge (Danemark)
SLATER Michael (Grande-Bretagne)
SLOSS James (U. S. A))
SLOT J. V. D. (Pays-Bas)
SMALE Stephen (U. S. A.)
SMILEY Malcolm (U. S. A))
SMITH Anthony (Grande-Bretagne)
SMITH Edwin (Grande-Bretagne)
SMITH Hammond D. (Grande-Bre-
tagne)
SMITH Roland (Grande-Bretagne)
SMITH Willem (Pays-Bas)
SMYRNELIS Emmanuel (France)
SMYTH Christoph (Grande-Breta-
gne)
SMYTH Malcolm (Irlande)
SNAJDER Zagorka (Yougoslavie)
SOBOLEY S. L. (U.R.S.S) (F2)
SOLOMON Louis (U.S. A))
SOLOVAY Robert (U. S. A.) (A)
SOMEN André (France)
SONNENSCHEIN Jacob (Belgique)
SONS Linda (U.S. A)
SOTO ANDRADE Jorge (France)
SOUBLIN Jean-P. (France)
SPAGNOLO
SPATHIS Spyros (Gréce)
SPECHT Edward J. (U.S.A)
SPECTOR René (France)
SPENCER Donald C. (U. S. A.) (C4)
SPIJKER Marc (Pays-Bas)
SPIRA Gabriel
SPRECHER D. (U.S. A))
SPRINDZUK V. (U.R.S.S.)) (B6)
SPRING David (U.S. A)
SPRINGER George (U. S. A)
SPRINGER Tonny A. (Pays-Bas)
SREBRO Uri (Israél)
SRINIVASAN Bhama Mrs (Indes)
SRIVASTAN Ram (U. S. A)
SRIVASTAVA H. M. (Canada)
SRIVASTAVA R. S. L. (Indes) *
STAKGOLD Ivar (U.S. A)
STALLINGS John (U. S. A)) (C2)
STALLMANN Friedem (U.S. A.)
STAMM Emile (Canada)
STAMPACCHIA Guido (Italie)
(D11)
STANAITIS Otonas E. (U. S. A)
STANKOVIC Bogoljub (Yougosla-
vie)
STAPLES John (Grande-Bretagne)
STARK David (Italie)
STARK Harold (U. S. A.) (B6)
STATULIAVICIUS V. A.
(U.R.S.S)*



STECKIN S, B, (U.R.S.S.) (D4)
'TEEN Lynn A. (U.S. A)
'7TEENROD Norman E. (U. S. A))
'TEENSHOLT Gunnar (Norvége) *
‘TEER Brian (France)
'TEFAN Peter (Grande-Bretagne)
‘TEGEMAN Jan (Pays-Bas)
\TEIN Elias M. (U. S. A)) (G)
' TEINER Eugeéne (Canada)
'TEINFELD Ott6 (Hongrie)
‘TEINLAGE Ralph (U. S. A))
‘TENSTROM Bo (Su¢de)
'TEPHENS Nelson M. (Grande-Bre-
tagne)
‘TEPHENSON William (Grande-
Bretagne)
TEPIN A. M. (U.R. S.8)) (D12)
TERGHIOU Georges (Gréce)
TIEFEL Edouard (Suisse)
'TIEGLER Karl (All. de I'Ouest)
TIEGLITZ Andreas (All. de I'Ouest)
TOJAKOVIC Mirko (Yougoslavie)
TOLL Wilhelm (U.S. A.)
‘TONE Marshall (U. S. A))
‘TORMER Erling (Norvége)
TRASBERG,Marcel (Belgique)
TRELLYN Jean-Marie (France)
TROMMER Gyula (Hongrie)
TROOKER Jan R. (Pays-Bas)
TRUBECKER Karl (All. de I'Ouest)
‘UCCI Tamarco
UCHESTON Louis (U. S. A))
‘UGIURA Mitsuo (U. S. A)
‘ULLIVAN Dennis (U.S. A.)(C2)
{ULLIVAN Theodore (U. S. A.)
‘UPRUNENKO D. A. (U.R.S.8)
URANYI lJanos (Hongrie)
URAY Saffet (Turquie)
URIN Aline (France)
UTHERLAND Frame (Thailande)
UTHERLAND Wilson A. (Grande-
Bretagne)
UWA Tatsuo (Japon)
UZUKI Haruo (Japon)
UZUKI Michio (U. S. A.) (B3)
'UZUKI Satoshi (Japon)
VESHNIKOV A. G. (U.R.S.S.)*
‘'WAMINATHAN Srinivasa
(Canada)
WAN Richard (U. S. A) (G)
WANSON Ellen (U. S. A)
WEENEY William (U. S. A.)
WIFT J. Dean (U.S. A))
YNOWIEC John (U. S. A))
YSKI Ryszard (U. S. A.)
ZANKOWSKI Andrzej (Dane-
mark)
ZASZ Gabor (Hongrie)
ZEKERES Georges (Australie)
ZENDREI Janos (Hongrie)

LISTE DES CONGRESSISTES

SZENTHE Janos (Hongrie)
SZEP Jenoe (Hongrie)
SZMYDT Zofia (Pologne)

T

TAAM C. T. (U.S. A)
TAFT Earl Jay (U.S. A)*
TAGAMLITZKI Ydroslaw (Bulga-
rie)
TAIMANOV A, D. (U.R.S.8S.)
TAKAHASHI Moto-O. (Japon) *
TAKAHASHI Reiji (France)
TAKENS Floris (Pays-Bas)
TAKESAKI Masamichi (U, S. A.) *
(D2)
TAKETA Kiyosi (Japon) *
TAKEUCHI Junji (Japon)
TALALIAN A. A, (U.R.S8.8)
TALENTI Giorgio (Italie)
TAMARI Dov (Israél)
TAMASCHKE Olaf (All. de I'Ouest)
TAMBURINI Maria (Italie)
TAMRAZOV P. M. (U.R.8.8)
TAMURA Takayuki (U. S. A))
TANAKA Minoru (Japon) *
TANDORI Kdroly (Hongrie) *
TANGORA Martin (Grande-Breta-
gne)
TANI MOTO Taffee (U. S. A.)
TANNER Rosalind (Grande-Breta-
gne)
TAPE Walter (U.S. A))
TARGONSKI Gyorgy (Suisse)
TARSKI Alfred (U.S. A))*
TARSKI Jan
TARTAR Luc (France)
TATE John (U. S. A)) (G)
TATON René (France)
TAYLOR J. Chr. (Canada)
TAYLOR William (U. S. A.)
TCHAKALOFF Vladimir (Bulgarie)
TCHONKANOF Vladimir
TEGHEM Jacques (Belgique)
TEGHEM Jean (Belgique)
TEICHER A.
TEISSIER Bernard (France)
TEIXIDER Joseph (Espagne)
TEMAM Roger (France) (E8)
TEMPERLEY David J. (Grande-
Bretagne)
TENENBAUM Marian (U. S. A))
TENNISON Barry Roy (Grande-Bre-
tagne)
TEODORESCO M. (Roumanie)
TERJANIAN Guy (France)
TERPSTRA Teunis (Pays-Bas)
TERRIER J. H. (Canada)
THEODOR Raymond (France)
THIAM Magatte (Sénégal)

XXX1

THIRY Yves (France)

THOFT Christense Npalle (Dane-
mark) *

THOM René (France) (C4) *

THOMAS Garth H. M. (Canada)

THOMAS Richard (Grande-Breta-
gne)

THOMEE Vidar (Suéde) (E8)

THOMEIER Siegfried (Canada)

THOMPSON Christoph (Grande-
Bretagne)

THOMPSON John (U. S. A.) (B3)

THOMSEN Donald (U. S. A))

THOMSEN Per Grove (Danemark)

THOMSON Brian (Canada)

THORIN Olof (Suéde)

THORP Edward O. (U.S. A))

THWAITES Bryan (Grande-Breta-
gne)

TIMONEY Jr (Irlande)

TIMOURIAN James (Canada)

TITS Jacques (All. de 'Ouest) (C5S)

TOBERGTE Jurgen (All. de I'Ouest)

TOBIN Sean (Irlande)

TOCHEYV Bogidar (Bulgarie)

TOGNOLI Alberto (Italie)

TOMIC Miodrag (Yougoslavie)

TOMTER Per (Norvége)

TONDEUR Philippe (U. S. A.)

TONG Van Duc (France)

TONOLLI Antonelia (Italie)

TON THAT LONG (France)

TONTI Enzo (Italie)

TOPSOE Flemming (Danemark)

TORALBALLA L. V. (U.S.A)*

TORELLI Alessandr (Italie)

TORNHEIM Leonard (U.S$.A.) *

TORRANCE Ellen (U.S. A))

TORRANCE Esther (U.S. A))

TORRES IGLESIAS Miguel (Afri-
que du Sud)

TORTRAT Albert (France)

TOTH Imre (Hongrie)

TOTOV Gueorgui (Bulgarie)

TOUGERON Jean-Claude (France)
(C4)

TOURE Saliou (Cote-d’Ivoire)

TOWERS David (Grande-Bretagne)

TRANSUE William (U. S. A))

TRAUTMANN Gunther (All. de
I’Ouest)

TREBELS Walter (All. de ’Ouest) *

TREDER J. (All. de I’Est)

TREVES Frangois (U. S. A.) (D10)

TRONEL Gérard (France)

TRPENOVSKI Branko (Yougosla-
vie)

TRUDINGER Neil S. (Australie)

TSAGAS Grigorios (All. de 1'Ouest)

TSHERNIKH I. I. (U.R. S. S.)



.

XXXII

TSHERNIKOV S. N. (U. R. 8. 8))
TSHOGOSHVILI G. S. (U.R.S.8.)
TUCKER C. T. (U.S. A)
TUCKER John (Canada)

TURAN Paul (Hongrie) (B6)
TURNER Nura (U.S.A)*
TURNER Robert (U.S. A))
TURQUETTE Atwell R. (U. S. A) *
TURRELL Franklin (U. S. A.)
TUTSCHKE W. (All. de I’Est) *
TWILT Frank (Pays-Bas)

U

UDESCHINI-BRINIS Elisa (Italie)
UHL J. J. (U.S. A)
UHLENBECK Karen (U.S. A))
UL’JANOV P. L. (U.R. S. S.) (D9)
ULLMAN Joseph L. (U.S. A)
ULLOM Stephen (U. S. A.)
UNGER Heinz (All. de I’Ouest)
UPSCHUTZ
URALTSEWA N. N. (U.R.S.8)
(D11)
URBANIK K. (Pologne)
USTINA Fred (Canada)
UYBORNY Rudolf (Australie)
UZGOREN Nakibe (Turquie)

v

VACCARO Giuseppe (Italie)

VAILLANT Jean-Léon (France)

VALENCIA ARVIZU Marco A.
(Mexique)

VALETTE Guy (Belgique)

VALLEE Robert (France)

VAMOS Peter (Grande-Bretagne)

VAN ALBADA Pieter (Pays-Bas)

VAN BECKUM Frederick (Pays-
Bas)

VAN DEN BERG Johann J.
(Grande-Bretagne)

VAN DEN BOSSCHE Gilberte (Bel-
gique)

VAN DEN BROM Lourens (Pays-
Bas)

VANDERGRAFT James (U. S. A))

VAN DER PUT (Pays-Bas)

VAN DER WAERDEN Bartel L.
(Suisse) (FI)

VAN DIJK Gerrit (Pays-Bas)

VANDOOREN René (Belgique)

VAN DULST Dick (U.S. A)

VAN ECK H. Nico (Pays-Bas)

VAN EST W. T. (Pays-Bas)

VAN GOETHEM Pierre (U. S. A.)

VANHAMME Jacqueline (Congo)

LISTE DES CONGRESSISTES

VANHAMME Willy (Congo)
VAN ISEGHEM Frangois (France)
VAN KEMPEN Hubert (Pays-Bas)
VAN PRAAG Paul (Belgique) *
VAN SCHEEPEN Frans (Belgique)
VAN SPIEGEL Willem (Pays-Bas)
VAQUER Joseph (Espagne)
VARADHAN Srinivasa (U.S. A.)
VARGA Laszlo (Hongrie)
VAROPOULOS Nicholas (France)
(D4)
VASIC Petar (Yougoslavie)
VASILACH Serge (Canada) *
VEKUA I. N. (U.R.S.8.)
VEKUA N. P. (U.R.S.8)
VELDKAMP Ferdinand (Pays-Bas)
VELDMAN Willem (Pays-Bas)
VELPRY Christian (France)
VELU Jacques (France)
VENKOV B. B. (U.R.S.8.)
VERCUEIL Nicole (France)
VERDIER Jean-Louis (France)
VER EECKE Paul (France)
VERGNE Michéle (France)
VESELIC Kresimir (Yougoslavie)
VESNA Tomasic (Yougoslavie)
VETTER Udo (All. de I’Ouest)
VICENTE CORDOBA José (Espa-
gne)
VIDAL Enrique (Espagne) *
VIDICI Christian (All. de I’Ouest)
VILLAMAYOR Orlando (Argen-
tine)
VILLE Frangoise (France)
DE VILLIERS Raoul A. (U.S.A)
VINCENSINI Paul (France) *
VINCENT Georges (Suisse)
VINCENT-SMITH Graham (Suisse)
VINTI (Italie)
VIOLA Carlo (Italie)
VIORT Bernard (France)
VISHIK M. I. (U.R.S.8))
VISSER Cornelius (Pays-Bas)
VITANOV Alexander (Bulgarie)
VITUSKIN A. G. (U.R.S.S)) (D4)
VIVIENTE José L. (Espagne)
VIVIER Marcel (France)
VLADIMIROV V. S. (U.R.S.8)
(ED)
VOGEL Walter (All. de I’Ouest)
VOGT Dietmar (All. de I'Ouest)
VOLKMANN Bodo (All. de I'Ouest)
VOPENKA Petr. (Tchécoslovaquie)
(A)
VOREADOU Rodiani (Gréce) *
VOWDEN Barry (Grande-Bretagne)
DE VRIES Hendrik (Pays-Bas)
DE VRIES Rudolf (Pays-Bas)
VUIJICIC Veljko (Yougoslavie) *
VYTHOULKAS Denis (Gréce)

w

WADA Junzo (Japon)
WAELBROECK Lucien (Belgique)
WAESCHE Hans (All. de I’Ouest)
WAGONER 1J. B. (U.S.A)
WAGSCHAL Claude M. (France)
WAKABAYASHI Isao (Japon)
WALDSCHMIDT Michel (France)
WALKER Arthur (Grande-Bretagne)
WALKER Gordon L. (U.S.A))
WALL Charles T. C. (Grande-Bre-
tagne) (G)
WALLBANK Sarah (Grande-Breta-
gne)
WALLINGTON John Eve (Grande-
Bretagne)
WALLISSER Rolf (All. de I'Ouest)
WALSH Joseph L. (U.S. A)
WALTER Jan (Pays-Bas)
WALTHER Heinrich (All. de
I’Ouest) *
WANNER Gerhard (Autriche)
WARNER Frank W. (U.S.A)
WASSEF Pierre
WATANABE Takesi (Danemark)
(D5)
WATERMAN Daniel (U. S. A))
WATKINS Mark (U.S. A))
WATSON George (Grande-Breta-

gne)
WATTERS J. Francis (Grande-Bre-
tagne)
WEBBER David B. (Grande-Bre-
tagne)
WEBER Claude (Suisse)
WEFELSCHEID Heinrich (All. de
I’Ouest)
WEIDENFELD Michéle (France)
WEILL Georges (France)
WEINGRAM Stephen (U. S. A.)
WEINMANN Alfred (Grande-Bre-
tagne)
WEINSTEIN Alan (U.S. A)
WEINSTEIN Alexander (U.S.A.)
WEISFELD Morris (U. S. A.)
WEISS Guido (U. S. A.)
WELLS G. S. (Grande-Bretagne)
WELLS J. C. (Canada)
WELLS Raymond (U. S. A.)
WENDEL James G. (U.S. A))
WERMER John (U.S. A.)
WESSELING Pieter (Pays-Bas)
WESSELIUS Willem (Pays-Bas)
WEST Alan (Grande-Bretagne)
WEST James (U.S. A)
.WESTMANN Joel (U.S. A)
WESTWATER Michael (U.S. A)
WETS Roger (U.S. A))
WETTE Eduard (All. de I’'Ouest) *



WETTERLING Wolfgang (Pays-
Bas)

WEVERS Jan (Pays-Bas)

WHEELER Roger (Grande-Breta-
gne)

WHITE David (Grande-Bretagne)

WHITE Derck (Suisse)

WHITEHEAD George W. (U. S. A)

WHITMAN Andrew P. (U. S. A))

WHITNEY Hassler (U.S. A.)

WICK Joachim (All. de I'Ouest) *

WIDOM Harold (U.S. A)

WIEGMANN Klaus W. (All de
I'Ouest)

WIESNER Gunter (All. de I'Ouest)

WILANSKY A. (U.S.A)

WILCOX Ch. (U.S.A)

DE WILDE Marc (Belgique)

WILHELMI Gerhard (All. de
I’Ouest)

WILKEN (U. S. A))

WILKENS David L. (Grande-Breta-
gne)

WILKINSON James (Grande-Bre-
tagne)

WILLE Friedrich (All. de I’Ouest) *

WILLIAMS Graham D. (Grande-
Bretagne)

WILLIAMS Kenneth (Canada)

WILLIAMS R. F. (U.S. A)) (D12)

WILLIAMSON John H. (Grande-
Bretagne)

WILLS Jorg M. (All. de I'Ouest) *

WILSON Robin (Grande-Bretagne)

LISTE DES CONGRESSISTES

WILSON Stephen (Grande-Bretagne)
WINKLER Jotg (All. de I’Ouest) *
WINOGRAD Samuel (U. S. A.) (E7)
WIRSZUT Issac (U. S. A.)
WITT Ernst (All. de I’Ouest)
WLODARSKI Lech (Pologne)
WOLF Joseph A, (U. S. A))
WOLFF Georg (All. de I’Ouest)
WOLFOWITZ Jacob (U. S. A.) (E6)
WOLFSON Kenneth (U. S. A.)
WOLFSSON Richard (Grande-Bre-
tagne)
WOLKE Dieter (All. de 1'Ouest)
WOLSKA-BOCHENEK Janina,
(Pologne)
WONG Yau-Chuen (Hong-Kong) *
WONG Yung-Chow (Hong-Kong)
WOODS (Canada)
WORONOWICZ S. (Pologne)
WOUK Arthur (U.S. A)
WRIGHT John Day. (Grande-Bre-
tagne)
WRONA Wtodrimen (Nigéria)
WUERGLER Urs (Suisse)
WULFSOHN Aubrey (U. S. A))
WURGES Gerhard (All de I'Ouest),
WUYTS Piet (Belgique)

Y

YABLONSKY S. V. (U.R.S. 8.
YANENKO N. N. (U.R.S. S.) (E8)
YANO Kentaro (Japon)
YOSHIHIKO Ito (Japon)

YOSIDA Kosaku (Japon)

XXXIIT

YOSIDA Yoiti (Japon)
YOUNG Leslie (Grande-Bretagne)

V4

ZAGIER Don (All. de I'Ouest)
ZAHIR Mohsen (France)
ZAHORSKI Zygmunt (Pologne)
ZAIDMAN Samuel (Canada) *
ZAXKARIAN V. S. (U.R.S.8.)
ZAKS Abraham (U.S. A)*
ZAMBELLI Vittorina (Italie)
ZARA Frangois (France)
ZAREMBA Stanislaw (Canada) *
ZEDEK Mishael (U. S. A))
ZELAZKO Wieslaw (Pologne)
ZELINSKY Daniel (U.S. A))
ZELLER Karl L. (All. de I’Ouest)
ZELMER Graham K. (Canada)
ZERNER Martin (France)
ZERVOS Spiros (Grece) *

ZEULI Tino (Italie)

ZIEGLER Hans (Grande-Bretagne) *
ZIEGLER Zvi (Israél)
ZIERMANN Margit (Hongrie)
ZIMMERBERG Hyman J. (U.S.A))
ZISMAN Michel (France)

ZIZI Khelifa (France)

ZNAM Stefan (Tchécoslovaquie)
ZOLOTAREV V. M. (U.R.S. S8.)*
ZORITSH V. A. (U.R.S.8S)
ZUMBRUNN 1J. R. (U.S.A)
ZVONIMIR Bothe (Yougoslavie)
ZYGMUND Antony (U.S. A))






RAPPORTS

SUR LES

MEDAILLES FIELDS

(Tome 1 : pages 1 & 16)






Actes, Congrés intern. math., 1970. Tome 1, p. 3 4 5.

RAPPORTS
SUR LES MEDAILLES FIELDS

ON THE WORK OF ALAN BAKER

by PauL TURAN

The theory of transcendental numbers, initiated by Liouville in 1844, has been
enriched greatly in recent years. Among the relevant profound contributions are
those of A, Baker, W. M. Schmidt and V. A, Sprindzuk. Their work moves in impor-
tanti directions which contrast with the traditional concentration on the deep problem
of finding significant classes of functions assuming transcendental values for all non-
zero algebraic values of the independent variable. Among these, Baker’s have had
the heaviest impact on other problems of mathematics. Perhaps the most significant
of these impacts has been the application to diophantine equations. This theory,
carrying a history of more than thousand years, was, until the early years of this cen-
tury, little more than a collection of isolated problems subjected to ingenious ad hoc
methods. It was A. Thue who made the breakthrough to general results by proving
in 1909 that all diophantine equations of the form f(x, y) = m, where m is an integer
and f is an irreducible homogeneous binary form of degree at least three, with integer
coefficients, have at most finitely many solutions in integers. This theorem was
extended by C. L. Siegel and K. F. Roth (himself a Fields medallist) to much more
general classes of algebraic diophantine equations in two variables of degree at least
three. They even succeeded in establishing general upper bounds on the number
of such solutions. A complete resolution of such problems however, requiring a
knowledge of all solutions, is basically beyond the reach of these methods, which are
what are called “ ineffective . Here Baker made a brilliant advance. Considering
the equation f(x, y) = m, where m is a positive integer, f(x, y) an irreducible binary
form of degree n = 3, with integer coefficients, he succeeded in determining an effec-
tive bound B, depending only on n and on the coefficients of f, so that

max (| xgl, [ yol) = B

for any solution (xg, yo). Thus, although B is rather large in most cases, Baker has
provided, in principle at least, and for the first time, the possibility of determining
all the solutions explicitly (or the nonexistence of solutions) for a large class of equa-
tions. This is an essential step lowards the positive aspects of Hilbert’s tenth problem
the interest of which is largely increased by the recent negative solution of the general
problem by Ju. V. Matyaszevics. The significance of his theorem is also enhanced
by the fact that the so-called elliptic and hyperelliptic equations fall, after appropriate
transformation, under its scope and again he gave explicit upper bounds on the tota-
lity of their solutions.

Joint work of Baker with J. Coates made effective for curves of genus 1 Siegel’s
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classical theorem. FElaborating these methods and results Coates found among others
the first explicit lower bound tending to infinity with n for the maximal primefactor
of | f(n)| where f(x) stands for an arbitrary polynomial with integer coefficients apart
from a trivial exception. The more fact that the maximal primefactor of | f(n)|
tends to infinity with n (conjectured for polynomials of second degree by Gauss)
was established by K. Mahler several decades ago as well as an explicit lower bound
for n =2 by*him and S. Chowla.

In collaboration with H. Davenport, Baker has shown by some examples how the
upper bounds thus obtained permit actually the determination of all solutions.

As another consequence of his results he gave an effective lower bound for the approxi-
mability of algebraic numbers by rationals, the first one which is better than Liouville’s

As mentioned before, these results are all consequences of his main results on trans-
cendental numbers. As is well known, the seventh problem of Hilbert asking whether
or not & is transcendental whenever « and f§ are algebraic, certain obvious cases
aside, was solved independently by A. O. Gelfond and T. Schneider in 1934. Shortly
afterwards Gelfond found a stronger result by obtaining an explicit lower bound for
| By log ay + B, log o, | in terms of a}s’s and of the degrees and heights of the fs’s
when the log o)s are linearly independent. After Gelfond realised in 1948, in colla-
boration with Ju. V. Linnik, the significance of an effective lower bound for the three-
term sum, he and N. I. Feldman soon discovered an ineffective lower bound for it. The
transition from this important first step to effective bound for the three-term sum,
and more generally for the k-term sum, resisted all efforts until Baker’s success in
1966. This success enabled Baker to obtain a vast generalization of Gelfond-Schnei-
der’s theorem by showing that if a,, a,,..., &, (# 0, 1) are algebraic, 81, B,,..., B
linearly independent, algebraic and irrational, then of:af? ... af* is transcendental.
Some further appreciation of the depth of this result can be gained by recalling Hilbert’s
prediction that the Riemann conjecture would be settled long before the transcen-
dentality of «f. The analytic prowess displayed by Baker could hardly receive a
higher testimonial. On the other hand, his brilliant achievement shows, after Gelfond-
Schneider once more, that mathematics offers no scope for a doctrine of papal infalli-
bility concerning its future. Among his other results generalizing transcendentality
theorems of Siegel and Schneider I shall mention only one special case, in itself suffi-
ciently remarkable, according to which the sum of the circumferences of two ellipses,
whose axes have algebraic lengths, is transcendental.

His pathbreaking role is not diminished but perhaps even emphasized by the fact
that in 1968 Feldman found another important lower estimate for the k-term sum
which is stronger in its dependence upon the maximal height of the f, coefficients;
it is weaker in its dependence upon the maximal height of the ’s which is relevant in
most applications at present. It is reasonable to expect also new applications depend-
ing more on the former.

The 1948 discovery of Gelfond and Linnik, mentioned above, revealed an unexpected
connection between such lower bounds for the three-term sum and a classical class-
number problem. This has as its goal the determination of all algebraic extensions R(6)
of the rational field with class number 1. 1In its full generality this seems hopelessly
out of reach at present. Restricting themselves to the imaginary quadratic case
R(/— d), d > 0, H. Heilbronn and E. Linfoot showed in 1934 that at most ten such
“ good ” fields can exist. Nine of these were found explicitly. Concerning the tenth
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it was known that its d would have to exceed exp (107). Hence, if it can be shown
that there exists an upper bound d, < exp (107) for all “ good > d’s then the tenth pos-
sible field cannot exist. Now the Gelfond-Linnik discovery was that the afore men-
tioned effective lower bound for the three-term sum could furnish such an effective d,.
Baker found that one of his general results implies an upper bound d, = 10°°° enough
by far for this purpose. This outcome provides a striking new example, illustrating
once more how effectivity can play a decisive role in essential problems. Again,
the value of this approach is of course not diminished by H. M. Stark’s outstanding
achievement in showing the non-existence of the tenth field, simultaneously and inde-
pendently, by quite different methods.

To illustrate further the many-sided applicability of Baker’s work I mention that
it could be employed to make effective some ineffective results of Linnik on the coeffi-
cients of a complete reduced set of binary quadratic forms belonging to a fixed nega-
tive discriminant (Linnik had used ideas from ergodic theory).

As one can guess, obtaining such long-sought solutions was a very complicated
task. It is very difficult to attempt even a sketch of the underlying ideas in the short
time at my disposal beyond the remark that they are of hard-analysis type. Fortu-
nately, you will have the opportunity of hearing about them in some detail from
Baker himself in his address to this Congress. To conclude, I remark that his work
exemplifies two things very convincingly. Firstly, that beside the worthy tendency
to start a theory in order to solve a problem it pays also to attack specific difficult
problems directly. Particularly is this the case with such problems where rather sin-
gular circumstances do not make it probable that a solution would fall out as an easy
consequence of a general theory. Secondly, it shows that a direct solution of a deep
problem develops itself quite naturally into a healthy theory and gets into early and
fruitful contact with other significant problems of mathematics. So, let the two
different ways of doing mathematics live in peaceful coexistence for the benefit of
our science.

P. TurRAN Alan BAKER
Mathematical Institute Trinity College
of the Hungarian Cambridge
Academy of Sciences, (Grande-Bretagne)

Budapest, Hungary
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TRAVAUX DE HEISOUKE HIRONAKA
SUR LA RESOLUTION DES SINGULARITES

par A. GROTHENDIECK

Le résultat principal de Hironaka est le suivant:

THEOREME DE HIRONAKA. — Soit X une variété algébrique sur un corps k de carac-
téristique nulle, U un ouvert (de Zariski) de X tel que U soit non singulier et partout
dense. Il existe alors une variété algébrique non singuliére X’ et un morphisme pro-
pre f: X' — X, tels que le morphisme f~!(U) — U soit un isomorphisme, et que
D = X'— f~Y(U) soit un diviseur « & croisements normaux » dans X" (i. e. localement
donné par une équation de la forme f,f, ... f, = 0, ou les f; font partie d’un systéme
de « coordonnées locales »).

En fait le théoréme complet de Hironaka est plus précis : il donne une information
trés précise sur la fagon d’obtenir une telle « résolution » du couple (X, U) a l'aide
d’une suite « d’éclatements » de nature trés particuliére. Cette précision supplémentaire
est inutile dans toutes les applications connues du rapporteur, sauf pour nous dire
que si X est projective, on peut choisir X’ également projective. Le théoréme complet
de Hironaka est aussi plus général: il s’applique & tous les « schémas excellents »
de caractéristique nulle, et en particulier aux schémas de type fini sur les anneaux de
séries formelles ou de séries convergentes (au-dessus d’un corps de caractéristique
nulle). Cela implique par exemple facilement que le théoréme énoncé reste vrai au
voisinage d’un point de X, lorsqu’on suppose maintenant que X est un espace analy-
tique complexe (ou sur un corps valué complet algébriquement clos, plus généralement),
et U est le complémentaire d’une partie fermée analytique de X. Il semble que Hiro-
naka ait démontré également la version globale de ce résultat local.

Contrairement & ce qui était 'impression générale chez les géométres algébristes
avant qu’on ne dispose du théoréme de Hironaka, celui-ci n’est pas un résultat tout
platonique, qui donnerait seulement une sorte de justification aprés coup d’un point
de vue en géométrie algébrique (celui ou les variétés sont plongées & tout prix dans
I'espace projectif) qui est désormais dépassé. C'est au contraire aujourd hui un outil
d’une trés grande puissance, sans doute le plus puissant dont nous disposions, pour
Pétude des variétés algébriques ou analytiques (en caractéristique zéro pour le moment).
Cela est vrai pour I'étude des singularités d’une variété, mais également pour I'étude
« globale » des variétés algébriques (ou analytiques) non singuliéres, notamment pour
le cas des variétés non compactes. L’application du théoréme de Hironaka pour ces
derniéres se présente généralement ainsi: X étant supposée quasi projective i. e. immer-
geable comme sous-variété (en général non fermée) dans P’espace projectif P, I'adhé-
rence X de X dans P contient X comme ouvert partout dense non singulier, de sorte
qu’on peut appliquer le théoréme de Hironaka au couple (X, X). On en conclut que
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X est le complémentaire, dans une variété non singuliére compacte X’, d’un diviseur D
a croisements normaux. Un tel théoréme de structure pour X, et diverses variantes
qu'on prouve de fagon analogue, sont extrémement utiles dans I’étude de X.

Les théorémes démontrés a I'aide du théoréme de Hironaka ne se comptent plus.
Pour la plupart, on a I'impression que la résolution des singularités est vraiment au
fond du probléme, et ne pourra étre évitée par recours 4 des méthodes différentes.
Citons quelques-uns de ces résultats (sur un corps de car. nulle).

a) Si f: X’ - X est un morphisme birationnel et propre de variétés algébriques
non singuliéres, alors les faisceaux R¥f,(Ox.) sont nuls pour i > 1 (Hironaka).

b) Si X est une variété algébrique affine sur le corps des complexes, sa cohomologie
complexe peut &étre calculée a l'aide du « complexe de De Rham algébrique », i. e.
le complexe formé des formes différentielles algébriques sur X (Grothendieck ; divers
raffinements, inspirés par une question soulevée par Atiyah et Hérmander, ont été
développés par P. Deligne).

c¢) Si X est une variété algébrique sur le corps des complexes, alors ses « groupes
de cohomologie étales » a coefficients dans des faisceaux de torsion sont isomorphes
aux groupes de cohomologie de I’espace localement compact sous-jacent 4 X (M. Artin
et A. Grothendieck).

d) La construction par P. Deligne d’une théorie de Hodge pour les variétés algé-
briques complexes quelconques (supposées ni compactes ni non singuliéres) utilise
de fagon essentielle la résolution des singularités.

e) Méme remarque pour divers théorémes de P. A. Griffiths et de ses éléves sur la
« variation des structures de Hodge », ou pour divers théorémes de E. Brieskorn sur
I’étude locale de certains types de singularités (singularités de Klein des surfaces,
points critiques isolés d'un germe de fonction holomorphe...).

Certains des résultats mentionnés dans d) et e) figureront sans doute dans des rap-
ports des auteurs cités dans ce méme Congrés.

Du point de vue technique, la démonstration du théoréme de Hironaka constitue
une prouesse peu commune. Le rapporteur avoue n’en avoir pas fait entiérement
le tour. Aboutissement d’années d’efforts concentrés, elle est sans doute 'une des
démonstrations les plus « dures » et les plus monumentales qu’on connaisse en mathé-
matique. Elle introduit d’ailleurs, comme on peut s’en douter, diverses idées géomé-
triques nouvelles, dont il est trop t6t d’évaluer le réle dans le développement futur
de la géométrie algébrique (*). Notons d’autre part que Hironaka souligne que plusieurs
de ces idées étaient dé&ja en germe chez son maitre, O. Zariski, qui avait beaucoup fait
depuis longtemps pour populariser le probléme de la résolution des singularités parmi
un public réticent, et qui avait dans un travail classique traité le cas de la dimension 3.

Pour terminer, il faut souligner que le probléme de la résolution des singularités
est loin d’&tre résolu. En effet, seul le cas de la caractéristique nulle est actuellement
réglé. La solution de nombreux problémes de géométrie algébrique, en caractéris-
tique p > 0 comme en inégales caractéristiques, dépend de la démonstration d’un

(*) Cela est d’autant plus vrai que le développement de la géométrie algébrique s’arrétera
court, comme tout le reste, si notre espéce devait disparaitre dans les prochaines décades,
— éventualité qui apparait aujourd’hui de plus en plus probable.
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théoréme analogue pour n’importe quel « schéma excellent », par exemple pour
n’importe quelle variété algébrique sur un corps k de caractéristique arbitraire. Le
cas de la dimension 2 a été traité par Abhyankar, et a déja été un outil indispensable
dans diverses questions, par exemple dans la théorie de Néron de la dégénérescence
des variétés abéliennes ou des courbes algébriques (« théoréme de réduction semi-
stable »), et ses applications par Deligne-Mumford aux variétés de modules des courbes
algébriques, en caractéristique quelconque. Depuis plusieurs années déja, Hironaka
travaille sur le cas de la dimension quelconque. Nul doute que le probléme mérite
qu’un mathématicien du format de H. Hironaka lui consacre dix ans d’efforts incessants.
Nul doute aussi que tous les géométres Jui souhaitent, de tout cceur : Bon succés !

A. GROTHENDIECK H. HIRONAKA
Collége de France Harvard University
11, Place Marcelin-Berthelot, Department of Mathematics,
Paris 5° 2 Divinity Avenue
(France) Cambridge, Massachusetts 02138

(U.S.A)
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ON THE WORK OF SERGE NOVIKOV

by M. F. ATIYAH

It gives me great pleasure to report on the work of Serge Novikov. For many
years he has been generally acknowledged as one of the most outstanding workers
in the fields of Geometric and Algebraic Topology. In this rapidly developing area,
which has attracted many brilliant young mathematicians, Novikov is perhaps unique
in demonstrating great originality and very powerful technique both in its geometric
and algebraic aspects.

Novikov made his first impact, as a very young man, by his calculation of the uni-
tary cobordism ring of Thom (independently of similar work by Milnor). Essentially
Thom had reduced a geometrical problem of classification of manifolds to a difficult
problem of homotopy theory. Despite the great interest aroused by the work of
Thom this problem had to wait several years before its successful solution by Milnor
and Novikov. Many years later Novikov returned to this area and, combining
cobordism with homotopy theory, he developed some very powerful algebraic machi-
nery which gives one of the most refined tools at present available in Algebraic Topo-
logy. In his early work it was a question of applying homotopy to solve the geometric
problem of cobordism; in this later work it was the reverse, cobordism was used to
attack general homotopy theory.

On the purely geometric side I would like to single out a very beautiful and striking
theorem of Novikov about foliations on the 3-dimensional sphere. Perhaps I should
remind you that a foliation of a manifold is (roughly speaking) a decomposition into
manifolds (of some smaller dimension) called the leaves of the foliation: one leaf
passing through each point of the big manifold. If the leaves have dimension one
then we are dealing with the trajectories (or integral curves) of a vector field, and closed
trajectories are of course particularly interesting. In the general case a basic question
therefore concerns the existence of closed leaves. Very little was known about this
problem. Thus even in the simplest case of a foliation of the 3-sphere into 2-dimen-
sional leaves the answer was not known until Novikov, in 1964, proved that every
foliation in this case does indeed have a closed leaf (which is then necessarily a torus).
Novikov’s proof is very direct and involves many delicate geometric arguments.
Nothing better has been proved since in this direction.

Undoubtedly the most important single result of Novikov, and one which combines
in a remarkable degree both algebraic and geometric methods, is his famous proof
of the topological invariance of the Pontrjagin classes of a differentiable manifold.
In order to explain this result and its significance I must try in a few minutes to sum-
marize the history of manifold theory over the past 20 years. Fortunately, during
this Congress you will be able to hear many more detailed and comprehensive
surveys.
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There are 3 different kinds or categories of manifold: differentiable, piece-wise
linear (or combinatorial) and topological. For each category the main problem
is to understand the structure or to give some kind of classification. There was no
clear idea about the distinction between these 3 categories until Milnor produced
his famous example of 2 different differentiable structures on the 7-sphere. After
that the subject developed rapidly with important contributions from many people,
including Novikov, so that in a few years the distinction between differentiable and
piece-wise linear manifolds, and their classification, was very understood. However,
there were still no real indications about the status of topological manifolds. Were
they essentially similar to piece-wise linear manifolds or were they quite different?
Nobody knew. In fact, there were no known invariants of topological manifolds
except homotopy invariants. On the other hand, there were many invariants known
for differentiable or piece-wise linear manifolds which were finer than homotopy
invariants. Notable among these were the Pontrjagin classes. For a differentiable
manifold these are cohomology classes which measure, in some sense, the amount
of global twisting in the tangent spaces. For a manifold with a global parallelism
like a torus they are zero. In the context of Riemannian geometry there is a gene-
ralized Gauss-Bonnet theorem which expresses them in terms of the curvature. In
any case their definition relies heavily on differentiability. Around 1957 it was shown
by Thom, Rohlin and Svarc, using important earlier work of Hirzebruch, that the
Pontrjagin classes are actually piece-wise linear invariants (provided we use rational
or real coefficients). When Novikov, in 1965, proved their topological invariance
this was the first real indication that topological manifolds might be essentially simi-
lar to piece-wise linear ones. It was a big break-through and was quickly followed
by very rapid progress which, in the past few years, through the work of many mathe-
maticians — notably Kirby and Siebenmann — has resulted in fairly complete infor-
mation about the topological piece-wise linear situation. Thus we now know that
nearly all topological manifolds can be triangulated and essentially in a unique way.
You will undoubtedly hear about this in the Congress lectures.

Perhaps you will understand Novikov’s result more easily if I mention a purely
geometrical theorem (not involving Pontrjagin classes) which lies at the heart of
Novikov’s proof. This is as follows:

THeoREM (*). — If a differentiable manifold X is homeomorphic to a product M x R"
(where M is compact, simply-connected and has dimension > 5) then X is diffeo-
morphic to a product M’ x R"

Here both M, M’ are differentiable manifolds. The theorem thus asserts that a
topological factorization implies a differentiable factorization: it is clearly a deep
result. Combined with the earlier Thom-Hirzebruch work it leads easily to the
invariance of the Pontrjagin classes.

I hope I have now indicated the importance of this result of Novikov's and its place
in the general development of manifold theory. I would like also to stress the remar-
kable nature of the proof which combines very ingenious geometric ideas with consi-
derable algebraic virtuosity. One aspect of the geometry is particularly worth men-
tioning. As is well-known many topological problems are very much easier if one

(*) This formulation is due to L. SIEBENMANN.
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is dealing with simply-connected spaces. Topologists are very happy when they
can get rid of the fundamental group and its algebraic complications. No so Novikov!
Although the theorem above involves only simply-connected spaces, a key step in
his proof consists in perversely introducing a fundamental group, rather in the way
that (on a much more elementary level) puncturing the plane makes it non-simply-
connected. This bold move has the effect of simplifying the geometry at the expense
of complicating the algebra, but the complication is just manageable and the trick
works beautifully. It is a real master stroke and completely unprecedented. Since
then a somewhat analogous device has proved crucial in the important work of Kirby
mentioned earlier.

I hope this brief report has given some idea of the real individuality of Novikov’s
work, its variety and its importance, all of which fully justifies the award of the Fields
Medal. It is all the more remarkable when we remember that he worked in relative
isolation from the main body of mathematicians in his particular field. We offer
him our heartiest congratulations in the full confidence that he will continue, for
many years to come, to produce mathematics of the highest order.

Michael ATIYAH Serge Novikov
Institute for Advanced Study Steklov Mathematical Institute
Department of Mathematics, ul Vavilova 42,
Princeton, New Jersey 08540 Moscow V 333

(U.S. A) (U.R.S. S)
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ON THE WORK OF JOHN THOMPSON

by R. BRAUER

It is an honor to be called upon to describe to you the brilliant work for which
John Thompson has just been awarded the Fields medal. The pleasure is tempered
by the feeling that he himself could do this job much better. But perhaps I can say
some things he would never say since he is a modest person.

The central outstanding problem in the theory of finile groups today is that of
determining the simple finite groups. One may say that this problem goes back to
Galois. In any case, Camille Jordan must have been aware of it. Important classes
of simple groups have been constructed as well as some individual types of such groups:
French mathematicians, Galois, Jordan, Mathieu, Chevalley, have been the pioneers
in this work. In recent years, mathematicians of many different countries have
joined. However, the general problem is unsolved. We do not know at all how
close we are to knowing all simple finite groups. I shall not discuss the present situa-
tion of the problem since this will be the topic of Feit’s address at this congress. 1 may
only say that up to the early 1960’, really nothing of real interest was known about
general simple groups of finite order.

1 shall now describe Thompson’s contribution. The first paper I have to mention
is a joint paper by Walter Feit and John Thompson and, of course, Feit’s part in it
should not be overlooked. Here, the authors proved a famous conjecture, to the
effect that all non-cyclic finite simple groups have even order. I am not sure who
was the first to observe this. Fifty years ago this was already referred to as a very
old conjecture. While it was usually mentioned in courses on algebra, it is only fair
to say that nobody ever did anything about it, simply because nobody had any idea
how to get even started. It was not even clear that the whole problem made much
sense. Was the role of the prime 2 simply a little accident; did 2 play an entirely
exceptional role, or were there properties of other prime divisors of the group order
which bore at least some resemblance to those of 27 It was only after the Feit-Thomp-
son paper that one could be sure that the whole question has been a reasonable one.

Thompson’s work which has now been honored by the Fields medal is a sequel to
this first paper. In it, he determines the minimal simple finite groups, this is to say,
the simple finite groups, whose proper subgroups are solvable. Actually, a more
general problem is solved. It suffices to assume that only certain subgroups, the
so-called local subgroups, are solvable. These are the normalizers of subgroups
of prime power order larger than I.

These results are the first substantial results achieved concerning simple groups.
A number of important corollarics show that one is now able to answer questions
on finite groups which had been completely out of reach before. I mention one: a finite
groups is solvable, if and only if every subgroup generated by two elements is sol-
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vable. You only have to try to prove this yourself if you want to see how deep the
result lies.

Both investigations are very long and complicated and their logical structure is
extremely intricate. Unfortunately, I cannot even give you a vague idea of the methods.
Reading the papers, one reaches stages repeatedly that one feels caught in a hopeless
situation, in an abyss from which there is no escape. Then, miraculously, a way
out appears, an amazing turn, which saves us. A famous 19-th century mathematician
once remarked that group theory could be done by people who did not know much
else of mathematics. There may be some truth in this, but I think, this was not meant
in a very nice way. However I believe it was overlooked that if you work in a field
where you have few tools, you have to create your own tools. In order to reach posi-
tive achievements, mathematical imagination must replace knowledge from other
fields.

There is other important work of Thompson in group theory which I cannot dis-
cuss here. His methods have already been used successfully by other mathematicians
who have developed some of them further. In this way, Thompson has had a tremen-
dons influence. Since he first appeared at the International Congress in Stockholm
eight years ago, finite group theory simply is not the same any more.

Let me finish with a personal remark. One reaches a point in life where one wonders
what one still expects of life, what one would still like to see happen. This applies
to events in Mathematics too. I have passed the point I mentioned. I like to say
that I would like to see the solution of the problem of the finite simple groups and the
part I expect Thompson’s work to play in it. Quite generally, I would like to see
to what further heights Thompson’s future work will take him. I feel I should also
say the same about the three other Fields medallists.

Richard BRAUER John, G. THOMPSON
Harvard University University of Cambridge
Department of Mathematics, Department of Mathematics,
2 Divinity Avenue, 16 Mill Lane
Cambridge, Mass. 02138 Cambridge

(U.S. A) (Grande-Bretagne)
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G - CONFERENCES GENERALES

EFFECTIVE METHODS
IN THE THEORY OF NUMBERS

by A. BAKER

1. Problems concerning the determination of the totality of integers possessing
certain prescribed properties such as, for instance, solutions of systems of Diophantine
equations or inequalities, have captured man’s imagination since antiquity, and a
wide variety of different techniques have been employed through the centuries to
resolve a diverse multitude of problems in this field. Most of the early work tended
to be of an ad hoc character, the arguments involved being specifically related to the
particular numerical example under consideration, but gradually the emphasis has
altered and the trend in recent times has been increasingly towards the development
of general coherent theories. Two particular advances stand out in this connexion.
First, investigations of Thue [39] in 1909 and Siegel [33] in 1929 led to the discovery
of a simple necessary and sufficient condition for any Diophantine equation F(x, y) = 0,
where F denotes a polynomial with integer coefficients, to possess only a finite number
of solutions in integers; this occurs, namely, if and (reading “ ganzartige ” for “integer )
only if the curve has genus at least 1 or genus 0 and at least three infinite valuations.
The proof depends upon, amongst other things, Weil’s well-known generalization [40]
of Mordell’s finite basis theorem and the earlier pioneering work of Thue and Siegel [32]
concerning rational approximations to algebraic numbers. Secondly, in answer
to a question raised by Gauss in his famous Disquisitiones Arithmeticae, Hecke,
Mordell, Deuring and Heilbronn [29] showed in 1934 that there could exist only finitely
many imaginary quadratic fields with any given class number, a result later to be
incorporated in the celebrated Siegel-Brauer formula. These theorems and all their
many ramifications, though of major importance in the evolution of much of modern
number theory, nevertheless suffer from one basic limitation that of their non-effecti-
veness. The arguments depend on an assumption, made at the outset, that the relevant
aggregates possess one or more elements that are, in a certain sense, large, and they
provide no way of deciding whether or not these hypothetical elements exist. Thus
the work leads merely to an estimate for the number of elements in question and
throws no light on the fundamental problem of determining their totality.

Some special effective results in the context of the Thue-Siegel theory were obtained
in 1964 by means of certain properties peculiar to Gauss’ hypergeometric function,
in particular, the classic fact, certainly known to Padé, that quotients of such functions
serve to represent the convergents to rational powers of 1 — x (see [1, 2, 3]), but the
first effective results applicable in a general context came in 1966 from a completely
different source. One of Hilbert’s famous list of problems raised at the International
Congress held in Paris in 1900 asked whether an irrational quotient of logarithms of
algebraic numbers is transcendental. An affirmative answer was obtained indepen-
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dently by Gelfond [26] and Schneider [30] in 1934, and shortly afterwards Gelfond
established an important refinement giving a positive lower bound for a linear form
in two logarithms (cf. [27]). It was natural to conjecture that an analogous result
would hold for linear forms in arbitrarily many logarithms of algebraic numbers and
a theorem of this nature was proved in 1966 [4]. The techniques devised for the
demonstration form the basis of the principal effective methods in number theory
known to date. I shall first describe briefly the main arguments and shall then proceed
to discuss some of their applications (¥).

2. The key result, which serves to illustrate most of the principal ideas, states that
if a4 ,...,a, are non-zero algebraic numbers such that log o, ,. .., log a, are linearly

independent over the rationals then 1, log a,,...,log «, are linearly independent
over the field of all algebraic numbers. This implies, in particular, that efoaf! ... afn
is transcendental for all non-zero algebraic numbers a;,...,0,,80,...,8,- It

will suffice to sketch here the proof of a somewhat weaker result namely, if oy ,. .., a,,
By .., Ba—y are non-zero algebraic numbers such that a,,. .., &, are multiplicatively
independent, then the equation af! ... af~* = «, is untenable; it is under these condi-
tions that our arguments assume their simplest form. We suppose the opposite and
derive a contradiction. The proof depends on the construction of an auxiliary func-
tion of several complex variables which generalizes the function of a single variable
employed originally by Gelfond. Functions of many variables were utilized by
Schneider [31] in his studies concerning Abelian integrals but, for reasons that will
shortly be explained, there seemed to be severe limitations to their serviceability in
wider settings. The function that proved to be decisive in the present context is
given by

L L
B(Zy e orZym)) = Do wee Y PApse sy At andm | glncs A )i
21=0 An=0

where L is a large parameter and the p(4,,.. ., 4,) denote rational integers not all 0.
By virtue of the initial assumption we see at once that

L L
Oz,....,2)= ) ... Y p(Ay,..., Adadt® ... o2e

41=0 in=0

and so, for any positive integer J, the value of ® at z; = ... = z,_, = lis an algebraic
number in a fixed field. Moreover, apart from a multiplicative factor given by pro-
ducts of powers of the logarithms of the «’s, the same holds for any derivative

D@,y = (0/0z,)™ ... (0/02,_ )" .

It follows from a well-known lemma on linear equations that, for any integers 4, k,
with hk"~! a little less than L" one can choose the p(1, ,. .., 4,) such that

(Dml,...,m,,_l(lr-- ,l) =0 (1 < IS h,ml + ... + m,_, < k)

and, furthermore, an explicit bound for | p(4,,. .., 4,)| can be given in terms of h,k
and L.

(*) For a fuller survey of the applications see [13].
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The real essence of the argument is an extrapolation procedure which shows that
the above equation remains valid over a much longer range of values for I, provided
that one admits a small diminution in the range of values for m; + ... + m,_.
Although interpolation arguments have long been a familiar feature of transcendental
number theory, work in this connexion has hitherto always involved an extension in
the order of the derivatives while leaving the points of interpolation fixed; when deal-
ing with functions of many variables, however, this type of argument requires that
the points in question admit a representation as a Cartesian product and, as far as I
can see, the condition can be satisfied only with respect to special multiply-periodic
functions, Our algorithm proceeds by induction and it will suffice to illustrate the

1
first step. We suppose that m; + ... + m,_; < Ek and we prove that then

f(Z) = q)nu,...,m.._x(z’- . .,Z)

vanishes at z = I, where 1 <1< h%. Now the condition hk"~! < I" allows one to
take L < k'~° for some ¢ > 0 and h about k*. This “ saving ” by an amount ¢ is
crucial for it leads to a sharp bound for | f(2)| on a circle centre the origin and radius
slightly larger than h?, thus including all the points I as above. Further, apart from a
trivial multiplicative factor, f(I) represents an algebraic integer in a fixed field and a
similar bound obtains for each of the conjugates. But, by construction, we have

1
Jul?) =0 <O<m<§k,1<r<h>,

and the maximum-modulus principle applied to the function f(z)/F(z), where
F@)={(z—1)...(z — )},

now shows that | f (/)| is sufficiently small to ensure that the norm of the algebraic
integer is less than 1. Hence f(/) = 0 as required. The argument is repeated inducti-
vely and after a finite number of steps we conclude that

o,...)=0 (1<I<(L+ 1.

But these represent linear equations in the p(4;,...,4,). The determinant of coeffi-
cients is of Vandermonde type and since, by hypothesis, a, ,. . ., a, are multiplicatively
independent, it does not vanish. The contradiction establishes our result.

3. The argument just described is capable of considerable refinement and generali-
zation. In particular several other auxiliary functions can be taken in place of @,
the points of extrapolation can be varied and greater use can be made in the latter part
of the exposition of our information regarding the partial derivatives. Thus, for
instance, results in the context of elliptic functions have been derived and, in particular,
the transcendence has been established of any non-vanishing linear combination with
algebraic coefficients of periods and quasi-periods associated with a Weierstrass
p-function with algebraic invariants [10, 11, 12]. More relevant to the main theme of
this talk, however, are refinements giving quantitative lower bounds for linear forms in
logarithms. The main change in the preceding discussion required to obtain results
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of this nature is the replacement of the maximum-modulus principle by the Hermite
interpolation formula. With this device one can show that

[Bo+ By logay + ... + B, log a,| > Ce (8",

where a,,...,a, denote non-zero algebraic numbers such that log a,,...,log «,
are linearly independent over the rationals, f,,..., B, denote algebraic numbers,
not all 0, with degrees and heights at most d and H respectively,x > n + 1and C > 0
depends only on n, log a,.. ., log a,, ¥ and d; by the height of an algebraic number
we mean the maximum of the absolute values of the relatively prime integer coeffi-
cients in its minimal defining polynomial [S]. With more complicated adaptations
the number on the right can be strengthened to CH ™*, where k > 0 is specified like C
above; this was shown by Feldman [22, 23]. In applications it frequently suffices to
have simply a lower bound of the form e™%# | valid for any § > Oand all H > C, where C
now- depends on 4§, and interest then attaches to the exact expression for C. Some
explicit forms have been calculated (cf. [5, 6, 23, 24]) but there is certainly scope for
improvement here and, indeed, the general efficacy of our methods seems to be closely
linked to our progress in this connexion.

4. We now discuss some applications of our results in the theory of Diophantine
equations. To begin with, they can be utilized to obtain a complete resolution of
the equation originally considered by Thue, namely f(x,y) = m, where f denotes
an irreducible binary form with integer coefficients and degree at least 3 [6]. Indeed
our arguments enable us to find more generally all algebraic integers x, y in a given

field K satisfying any equation f; ... B, = mwhere §; = x — a;y,n > 3anda,,...,q,,
m denote algebraic integers in K subject only to the condition that the o's are all dis-
tinct (cf. [15]). For denoting by 8,..., 0% the field conjugates of any element 8

of K and by #,...,7, a fundamental system of units in K, it is readily seen that an
associate

Y= Byt ..o

of B, can be determined such that
[log 4?1 <C, (1<j<a),
where C;, C,, ... can be effectively computed in terms of f and m. Writing

H; = max | b;| and H, = max H;
we have | B{" | < C,e™#4/€3 for some h; and without loss of generality we can suppose
that B = B,. From the initial equation we see that | B,| = C; ! for some k # I

and if now j is any suffix other than k or I, the identity

(o — “z)ﬁj - (“j — o)fy = (o4 — “j)ﬂz

gives

b b, —
1’]11...?],. — Uy = W,
where

by=by, —b;, 0<|w|<Cse M

and o, ; is an element of K with degree and height < C,. Now|b,| < 2H, and hence



EFFECTIVE METHODS IN THE THEORY OF NUMBERS 23

the work of § 3 can be applied to obtain a bound for H,, whence also for all the conju-
gates of the f's and, finally, for the conjugates of x and y.

The last result enables one 1o solve many other Diophantine equations in two
unknowns. In particular, one can now effectively determine all rational integers x, y
satisfying y" = f(x), where m is any integer > 2 and f is a polynomial with integer
coefficients possessing at least three simple zeros [8]. This includes the celebrated
Mordell equation y? = x* + k, the hyperelliptic equation and the Catalan equation
x" — y" =1 with prescribed m,n. The demonstration involves ideal factorizations
in algebraic number fields similar to those appearing in the first part of the proof
of the Mordell-Weil theorem; in special cases one has readier arguments and, in parti-
cular, the elliptic equation has been efficiently treated by means of Hermite’s classical
theory of the reduction of binary quartic forms [7). There is, moreover, little difficulty
in carrying out the work more generally when the coefficients and variables represent
algebraic integers in a fixed field, and, indeed, Coates and I have used this extension
1o give a new and effective proof of Siegel’s theorem on F(x, y) = 0 (see § 1) in the case
of curves of genus 1 [15, 21]. Here the equation of the curve is reduced to canonical
form by means of a birational transformation similar to that described by Chevalley,
the rational functions defining the transformation being constructed to possess poles
only at infinity and thus be integral over a polynomial ring. Explicit upper bounds
have been established in each instance for the size of all the solutions [6, 7, 8, 15]. The
bounds tend to be large, with repeated exponentials, and current research in this field
is centred on techniques for reducing their magnitude. In particular, Siegel [34]
has recently given some improved estimates for units in algebraic number fields which
should prove useful for this purpose, and, furthermore, devices have been obtained
which, for a wide range of numerical examples, would seem to render the problem
of determining the complete list of solutions in question accessible to practical compu-
tation (cf. [16]).

5. Finally we mention some further results that have been obtained as a consequence
of these researches. One of the first applications was to establish an effective algo-
rithm for resolving the old conjecture that there are only nine imaginary quadratic
fields with class number 1 [4, 18]. The connexion between this problem and inequa-
lities involving the logarithms of algebraic numbers was demonstrated by Gelfond
and Linnik [28] in 1949 by way of an expression for a product of L-functions analogous
to the well-known Kronecker limit formula. By a remarkable coincidence, Stark [38]
established the conjecture at about the same time by an entirely different method with
its origins in a paper of Heegner. Attention has subsequently focussed on the problem
of determining all imaginary quadratic fields with class-number 2, and I am happy
to report that an algorithm for this purpose was obtained very recently by means of
a new result relating to linear forms in three logarithms [9, 14] (*¥). It seems likely
that this latest development will lead to advances in other spheres.

Among the original motivations of our studies was the search for an effective impro-
vement on Liouville’s inequality of 1844 relating to the approximation of algebraic
numbers by rationals; from the work described in § 4 we have now

lo = plg| > cq e 0™

(*) See also Stark’s address to this Congress.
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for all algebraic numbers o with degree n > 3 and all rationals p/q (g > 0) where k > n
and ¢ = c(o, k) > 0 is effectively computable [6, 25]. For some particular «, such
as the cube roots of 2 and 17, sharper results in this direction have been obtained from
the work on the hypergeometric function mentioned in § 1. Further, in the special
case when p, g are comprised solely of powers of fixed sets of primes, a much stronger
result can be obtained directly from the inequalities referred to in § 3; indeed we have
then
le — p/g| >c(log g)7"

where ¢ > 0, k¥ > 0 are effectively computable in terms of the primes and a, and this
in fact furnishes an improvement on Ridout’s generalization of Roth’s theorem.

Analogues of the arguments of § 3 and § 4 in the p-adic realm have been given by
Coates [19, 20]; his work leads, in particular, to an effective determination of all rational
solutions of the equations discussed earlier with denominators comprised solely of
powers of fixed sets of primes and so, more especially, provides a means for finding
all elliptic curves with a given conductor (see also [35, 36, 37]). Furthermore, Brumer
obtained in 1967 a natural p-adic analogue of the main theorem on logarithms which,
in conjunction with work of Ax, resolved a well-known problem of Leopoldt on the
non-vanishing of the p-adic regulator of an Abelian number field [17].

6. And now I must conclude my survey. It will be appreciated that I have been able
to touch upon only a few of the diverse results that have been established with the aid of
the new techniques, and, certainly, many avenues of investigation await to be explored.
The work has demonstrated, in particular, a surprising connexion between the appa-
rently unrelated seventh and tenth problems of Hilbert, as well as throwing an effective
light on both of the fundamental topics referred to at the beginning concerning Dio-
phantine equations and class numbers. Though the strength of this illumination has
been steadily growing, and indeed the respective regions of shadow in these contexts
have been receding at a remarkably similar rate, it would appear nevertheless that
several further ideas will be required before our theories can be regarded as, in any
sense, complete. The main feature to emerge is, I think, that the principal passage to
effective methods in number theory lies, at present, deep in the domain of transcendence,
and it is to be hoped that the territory so far gained in this connexion will be much
extended in the coming years.
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ON TOPOLOGICAL OBSTRUCTIONS
TO INTEGRABILITY

by Raour BOTT (')

§ 1. Introduction.

In this lecture I would like to describe the state of the art in the problem of “ foliat-
ing ” a manifold or, as I prefer to view it, the problem of constructing integrable fields
on a manifold. This subject has seen some interesting developments in the past two
years and is also contemporary in the sense that, as you will see, it leads to “ huge
spaces ”. By a huge space I mean here simply one whose homotopy groups are not
finitely generated in every dimension. In the past we—and I think quite rightly—
have shied away from such objects, but recently they have cropped up in various
contexts: notably in the index theory associated to Von Neumann algebras of type II,
and also in the localization of spaces at a given prime, and I am confident that in the
future these “ huge ” spaces will enter into many of the analysis inspired problems in
topology.

§ 2. Integrability.

Let me start by recaliing the basic facts concerning the local theory of integrability.
Consider a C®-manifold M and let TM denote its field of tangent planes. By a section
of TM one means a smooth function p — X, which attaches to each pe M a tangent
vector at p. These are therefore the “ vector-fields ” or “ infinitesimal motions ”
of M. If x, y are any two such sections their Lie bracket [x, y] is again a well deter-
mined vector-field on M and the bracket operation satisfies the Jacobi-identity:

2.1) [x, [y 211 = [[x, 3}, 2] + [y, [x, 2]

By a field of tangent k-planes on M one means a smooth family E = {E,; pe M }
of k-subspaces of T,M. In short a k-dimensional “ sub-bundle ” of TM, and such
a field is called integrable if its space of sections is closed under the bracket:

2.2) x, ye(E) = [x, yleT(E). (*)

The term integrable is here justified by the well-known theorem of Frobenius [7],
Clebsch-Deahna to the effect that if E is integrable, then locally E is generated by

(') This work was partially supported by National Science Foundation grant GP 9566.
(?) T'(E) denotes the set of smooth sections of E.
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parallell translation—relative to some coordinate system—from a fixed k-plane E,.
Quite equivalently this may also be put in the following way:

There exists a covering {U,} of M by coordinate patches U,, with coordinates
{x%,...,x2%} such that on U,, E consists of the planes tangent to the slices

Xgt1 =Cq oo Xp = Cy, q=n-—k

These slices are therefore local integral manifolds of maximal dimension, which
fiber U, into submanifolds of codimension g.
1t follows that if one defines

f:U, - R
by the formula

fp) = {x5410), . .., x3(p) }

then f, defines a “ submersion ” of U, in R?, in the sense that the differential of f,,
dfy: T,U, = TypR?

is onto at each point of U,, and our previous slices now are simply the fibers, f,~*(p),
of f,.

The { f, } may therefore be thought of as a system of maximal local integrals of E,
which completely describe E.

Now using the implicit function theorem, it is easy to see that because f, and f;
are both submersions, one can, for each xe U, n Uy, find diffeomorphisms:

& Wi — W,
of a neighborhood of fj(x)eR? into a neighborhood of f(x)eR?, such that near x

(2.3 gapofp =t

Finally, it follows from (2.3) and again the submersion property of f, that for points
near xe U, nUynU;:

2.9 g:p° ﬂj=g:j'

I have written these equations mainly for future reference. At this point, I want
you essentially only to understand that integrable subbundles E of TM can either be
described by the integrability condition (2.2), or by a system of local integrals { f, }
of E which are local submersions of M in R?. Then, in particular any global submer-
sion f: M — N of one manifold on the other defines an integrable field or “ folia-
tion ” on M. Thus, for instance, if f is a fibration, then the field of tangents along the
fiber is always integrable. Integrable fields generated in this way may be thought
of as the most trivial examples.

To show you what may happen in more interesting cases let me remind you of two
classical examples.
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The first is the foliation on the torus R2/Z induced by the “ foliation ” of R? by lines
of a given slope m:

\

FiG. 1.

Thus, here I am drawing the “ leaves ”, i. e., the maximal integral submanifolds of the
line field. If m is rational these leaves are all circles. If m is irrational they are all
dense in T.

Next let me show you the beautiful Reeb foliation of the three sphere: First foliate
the strip | y| < 1 in R? as indicated in Figure 2:

DIDIDIDID

FiG. 2.

Next rotate this figure about the x-axis to obtain a foliation of a cylinder. There
after identity points which differ by a integer x coordinate.

The result is a foliation of the anchor-ring,

FiG. 3.
whose leaves are either planes coiling up to the bounding torus, or the bounding torus
itself. Now if we take, for S* the set in complex 2-space C,, given by
|z > + |22|2= 1
it is easy to see that S* is the union of two anchor rings

S3 = A, UA4,,
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given by the equations |z, | < |z, | and | z, | < | z; | which intersect in the torus
T ={z|=|z,|=1/2}. The foliations just described on 4, and A, therefore
fit together to form a foliation of S5, which has one compact leaf, namely the torus T.
All the other leaves are non-compact and curl up around this torus in opposite direc-
tions as we approach T from outside and inside. One may use this fact to show that
this foliation though C%, is not analytic.

Concerning the higher spheres we know very little, in fact, we do not know whether
any odd sphere S", of dim > 3 admits an integrable (n — 1) field (*). One only
has A. Haefliger’s beautiful result that: analytic integrable (n — 1)-fields exist on a
compact n-manifold only if its fundamental group is infinite.

Another question which arises immediately in connection with this example is the
existence of a compact leaf, and in this regard we have another beautiful result,
due to Novikov, which asserts that every integrable 2-field on S? has a compact leaf.
For 1-fields on S? it is not known whether a compact leaf has to exist. In fact, this is
the famous Seifert problem. But these interesting and deep questions are really not
pertinent to the problem (2.5) and I will have to leave them without further comment.

.§ 3. On the nature of the global problem.

It is clear from the preceding that locally one can always conmstruct integrable
g-fields on a manifold M. The question therefore arises as to what difficulties one
encounters in trying to construct a global field.

Now first of all, observe that difficulties will arise, because in general M does not
admit a g-field, integrable or not. For instance, as is very well known, the 2-sphere S?
admits no smooth line-field. On the other hand, the nature of this first question
“ does M admit a g-field ? ” has been understood and much studied for many years.
In particular, it has been converted into a purely homotopy-theoretic question.

- Let me describe this translation to you, as it also points the way for our more refined
question.

Please keep in mind during this development, that the homotopy theorist is a most
singleminded person who treats only questions which can be phrased in terms of homo-
topy classes of continuous maps. Hence to please him we must convert all our geo-
metric information into spaces and maps. In the present context this is not hard
to do.

First of all one forms the Grassmanian variety
3.1 G, R ={AcR"}
consisting of the set of m-subspaces of RY, topologized by the requirement that two
such subspaces A and B are close, if and only if the unit spheres of 4 and B are close

in R¥. Next one includes RY < R¥*! in a standard manner and takes the limit of
the compact spaces G,(R¥) under the induced inclusions, to obtain the space

(3.2) Gy = lim G,(RY).

(*) Added November 10, 1970. Quite recently B. LAWSON has constructed such foliations
on all spheres of dimension 2* + 3. '
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This “ infinite Grassmanian ” is of fundamental importance in topology, because
it classifies the vector-bundle functor; that is, there is a natural m-vector bundle E,,
over G,,, with the property that for any reasonable space X the set of isomorphism
classes of m-vector bundles over X, say Vect, (X), is naturally in one to one corres-
pondance with the homotopy classes [X, G,] of maps of X into G,,.

(3.3) Vect,, (X) ~ [X, G,].

This correspondence assigns to a map f: X — G, the pullback f~1E, of E, to X.

In case some of you are lost at this point, let me describe for you a particular conse-
quence of (3.3) in quite elementary terms.

First of all note that an imbedding of M in a Euclidean space, M = R" induces
a map

3.4 M - G,.

Indeed, simply let y(p) equal the subspace of R¥ parallel to the tangent plane to M
at p.

Now it turns out that these maps all belong to the same homotopy class y, € [M, G,],
and that this homotopy class which we refer to as the Gauss map of M, corresponds
to the tangent bundle under the isomorphism (3.3).

The class v, is the first and fundamental homotopy theoretic invariant of the
differentiable structure on M. Incidentally y,, also serves to define the Pontrjagin
ring of M. This is the image of the cohomology H*(G,,; Q) under y¥ in H*(M ; Q).
In fact, quite generally, if E is any vector bundle over X, one defines its rational Pontr-
jagin ring by the formula

(3.5) Pont (E) = fFH*(G,,; Q)

where f;: X — G, is the map corresponding to E under the isomorphism (3.3).

But to return to our problem of finding a k-plane field on M. The class y,, is very
pertinent to this question because, as is actually not hard to see, constructing a k-field
on M amounts to giving a “ lifting ” 7 of the Gauss map in the following diagram:

/"Gk X Gy
?'."‘ n
—_—
M M Gm

Here = is induced by the direct sum maps
Gk(RN) X Gm—k([RN‘) - Gr)x(RN+N’)

sending (4, B) to A + B.
Problems of the type

3.7)
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where the solid arrows are given homotopy classes of maps and a map from X to Z
is sought which makes the diagram homotopy commutative, are called lifting problems
and one has by now quite standard methods of treating them. Because, as we have
just noted, the problem of constructing a k-field on M can be translated into such a
lifting problem for the Gauss map, it is natural to ask whether our more refined question
concerning the existence of integrable fields has a similar translation into a further
lifting of y,,. Now in the last two years Haefliger [5] and Milnor [7], using different
approaches, but both based on deep results of Phillips [8, 9 and 10] and more generally
Gromov [3], have essentially clarified the status of this question. Let me very briefly
summarize Haefliger’s point of view here.

Recall that an integrable E gave rise to local submersions
i Up = R,

and transition functions g, satisfying the equations (2.3) and (2.4). Haefliger now
drops the condition that f, be submersions, and considers more general systems (f, , g,p)
satisfying only (2.3), and (2.4). Under a suitable equivalence relation, these systems
give rise to a set-valued functor 5# (M), which one should think of as homotopy classes
of foliations with singularities. The virtue of this construction is first of all that 5,
makes sense on all-spaces (not just on manifolds!) is homotopy invariant and satisfies
the “ Meyer-Vietoris ” condition of E. Brown [2]. Hence by Brown’s general existence
theorem there exists a space BI', which “ classifies ” 5#,. That is, there is a natural
correspondence:

(3.8) #X) = [X, BT].

The space BT, thus plays the same role relative to 5, as the space G, plays relative
to the isomorphism classes of vector-bundles Vect,(X). Furthermore, passing
from Haefliger’s “ cocycle ™ { f,, g, } to the differential dg,, gives rise to a map

(3.9) v:BT, - G,

which expresses the fact that each element of J#,(M) has an associated “ quotient-
bundle ”.

The construction of 5#, and hence BI', now naturally leads to the questions:

A. How does the functor # (M) differ from the classes of integrable fields on M
under a suitable equivalence relation?
B. To what extent does the homotopy of BI', differ from that of G,?

For both these problems the Phillips-Gromov generalization of the Smale-
Hirsch immersion theory it of fundamental importance. Essentially is enables
one to push all the singularities of a “ Haefliger structure ” on open manifolds off to
infinity. As a consequence on open manifolds any Haefliger structure compatible
with the Gauss map is homotopic to an honest foliation! The precise result is as follows:

TuroreMm 1 (Haefliger, Milnor). — Let &,(M) denote the classes of integrable plane
fields on M of codimension q; under the following equivalence relation: two such fields E
and E' are equivalent if and only if there exists a field & of codimension q on M X I,
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which is transversal to all the slices M x const, and induces E (resp. E’) on the slice
M x 0 (resp. M x 1).

Then on open manifolds

(3.10) &,(M) = homotopy classes of liftings of yy
in the diagram
#Gy_g X BT,
1xy
3.11) A Gueg X G,

n

M————6n

Concerning the second problem these same methods lead to the result.

"TuEOREM II (Haefliger, Milnor). — The map v: BI', = G, induces isomorphisms
in homotopy in dimension < q and is onto in dimension < q + 1.

Thus, in particular, combining these two theorems we see that if M is open and
of the homotopy type of a complex of dimension < g + 1 then every plane field of
codimension g on M is homotopic to an integrable one.

To summarize the situation, these developments show that first of all on open
manifolds our problem reduces to a lifting problem, and secondly that in low dimen-
sions integrability induces no new difficulty. In short, these theorems are both of the
existence type.

I would finally like to report on the meager crop of nonexistence theorems which
are at present known.

§ 4. Some global obstructions to integrability.

Classical obstruction-theory teaches one that a complete understanding of the
obstructions to lifting a map from X to ¥,

Y
//‘/" l‘"
M—X
involves, first of all, the homotopy groups of the “ homotopy-theoretic fiber ” of =.

This is the space F which occurs as the inverse image of a point p in X under x, when = is
replaced by a fibering in its homotopy class.

For instance if FI'; denotes this fiber for the map v: B, - G,, so that we have
the exact “ sequence ”:

4.1) FT, - BI', = G,,
then Theorem II is quite equivalently expressed by the statement

4.2) n(F[) =0, for r<agq.
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The homotopy groups of the fiber are important because there is no impediment
to lifting over successive skeletons as long as these homotopy groups are zero, while,
in general the obstruction to lifting from ¢ to the (¢ + 1)st skeleton is in H** (M, m,(F)).
Of particular interest therefore is the first nonvanishing homotopy group of F.

Now in many of the classical lifting problems one could get at this information
because the universal spaces X and Y were given explicitly by some relatively easy
constructions. For instance, in the classical problem G, x G,_, & G, all the spaces
can be treated directly.

In the present instance, and this is really typical of all the more subtle modern uni-
versal spaces such as Brg,, Bpy, €tc., the space BI, is not really known to us in any
manageable manner, and one can therefore get at this type of information only by
very roundabout methods.

At present only the following results are known about the higher homotopy of FT', .
First of all, J. Mather [6] has very recently constructed a surjection (¥):

4.3) Diff, (R') — n,(FT,) - 0.

On the other hand, one can use the integrability condition which I noticed two
years ago to prove that:

(4.4) For q = 2, some m(FT',) is nonzero, and in fact not finitely generated.

Let me remark briefly how this first nonexistence—or obstruction—result comes
about.

First I recall the integrability criterion alluded to earlier [1].

INTEGRABILITY CRITERION : 4 sub-bundle E of the tangent bundle TM is integrable only

if the ring Pont (T/E) generated by the rational Pontrjagin classes of T/E vanishes in
dimension greater than 2 x dim (T/E)

@.5) Pont* (T/E)=0 if k> 2dim TJ/E.

The proof of this proposition is very direct, provided only that one uses the geometric
definition due to Pontrjagin, Chern, Weil of the Pontrjagin classes as real cohomology
classes represented by differential forms. Indeed, to give a clue to the initiated in this
geometric framework, the infinitesimal integrability condition can be exploited to
define a connection on T/E which is flat along the leaves, and then the result follows
immediately. Essentially the same construction can be used to strengthen this crite-
rion as follows:

Tueorem III. — The homomorphism
4.6) VviH*{G,; Q} - H*BI,; Q)
is zero in dimensions greater than 2q.

Now the rational cohomology of G, is well known to be a polynomial algebra
Q[P,,. .., Pyl in the universal Pontrjagin classes P;e H*(G,, Q), and is therefore,

(*) Diff, (R') denotes the group of diffeomorphisms of R! with compact support.
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in particular, non-trivial in positive dimensions provided g > 2. By a standard
spectral sequence argument if follows therefore that m,(FI')) must be nontrivial for
some k. To obtain the nonfinite generation, one still has to show that if one uses Z,
coefficients then:

4.7 v¥: H¥G,, Z,) - H*BI'};Z,)
is injective.
To prove this one merely has to construct many examples of integrable fields E

whose quotient bundles T/E have large mod p Pontrjagin rings, and such examples
are easy to construct by taking E to be the horizontal space of flat vector bundles.

A question which seems to me of great interest is whether some of the groups m,(FI";)
are uncountable or not. In particular, one can relativize the integrability criterion to
obtain homomorphisms of certain homotopy groups of FI, into the Reals and I
would dearly like to know whether they are onto. The first case of interest occurs
when g = 3 and in this situation the relative invariant gives rise to a homomorphism

4.8) 0: n,(FT3) - R.

Let me now conclude with a very brief remark about the complex analytic case,
where some of these questions can be settled.

As is pointed out in Haefliger’s paper [5], the space BI', should be thought of as the
classifying space associated to the groupoid of germs of diffeomorphisms of R?. (Recall
that the g, were local diffeomorphisms of R? ). A corresponding construction for
germs of complex-analytic automorphism of C? is possible, and leads to a space BI',C.
One also has a corresponding fibering

(4.9) FT,C - BI,C ' GC,

where now GC, denotes the Grassmanian of complex subspaces of C*.

In this situation one can compute the relative invariants alluded to earlier and is
then led to the

THEOREM IV. — The homomorphism
4.10) v&: H*{GC,; R} —» H*BIC;R)

is zero in dim > 2q + 1.

Furthermore there exists a relative invariant 0, which maps 7y, (FT, ,C) onto

Cx...xC
\_V_J
d(q) 0
@.11) m(FT,L) ™ Cx ... xC - 0

d(a)
where d(g) = dimg H?4*1Y(GC,, R).

In this case at least, I have therefore fulfilled my promise to introduce you to some
genuinely huge spaces.
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MANIFOLDS AND HOMOTOPY THEORY (*)

by WiLLiaM BROWDER (*¥)

If one considers the problem of classifying manifolds, as the dimension increases
one soon finds even the homotopy type classification to be impossibly complex. For
example, any finitely presented group is the fundamental group of some closed mani-
fold for any dimension > 4. Thus one is led to consider the problem of “ relative
classification ”, such as (a) classifying up to diffeomorphism all the smooth manifolds
of one fixed piecewise linear (PL) type, or (b) classifying up to homeomorphism all
manifolds of one fixed homotopy type, etc. The prototype of such a theory is the theory
of (a), which began with the work of Milnor on differential structures on spheres, and
culminated in the smoothing theory developed by Hirsch, Mazur, Lashof and Rothen-
berg. Their theory may be described briefly as follows:

Given a PL manifold M™, it has a PL stable tangent bundle t,,, which is induced
from the universal PL bundle over the classifying space By, by a map f: M — Bp,.
The classifying space for stable linear bundles B, maps into Bpy, p: B; — Bpp,
and if M has a smooth structure y compatible with its PL structure, then the linear
tangent bundle of the smooth M, defines a lift of f to f': M — B, such that pf’ = f.

THEOREM. — M has a compatible smooth structure if and only if 7, has a linear
structure, i. e, f lifts to f': M — By, such that pf’ = f. Furthermore, concordance
classes of such structures correspond one to one to homotopy classes of lifts f* of f
(homotopies lying over f).

COROLLARY. — If M is a smooth manifold, concordance classes of smooth structures
on M compatible with a C®-triangulation are in 1-1 correspondence with elements
in the homotopy set [M, PL/0], where PL/0 is the fibre of the map p: By — Bp,.

(Two smooth structures on M are called concordant if there is a smooth structure
on M x [0, 1] which restricts to the two structures at the two ends M x 0 and M x 1).

It remains a difficult problem to calculate the homotopy set [M, PL/0], and in fact
the calculation of =, (PL/0) depends on the homotopy groups of spheres. However,
the neat and closed form of the result is attractive and useful for many applications.
One would like to describe a similar theory for the problem of classifying manifolds

(*) A more detailed exposition on the subject of this talk is found in my article of the same
title in the Proceedings of the Amsterdam Conference on Manifolds, 1970, Springer lecture
notes.

(**) The author was partially supported by the National Science Foundation.
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in a fixed homotopy type, and I will describe the analogous theory, and where the
analogies break down.

A Poincaré pair is a pair (X, X) which satisfies Poincaré¢ duality, i. e., there is an
element [X] e H,(X, 0X) such that [X] n: H{X) — H,_,(X, 0X) is an isomorphism
for all g. The dimension of X is defined to be n. If dX = @, X is called a Poincaré
space, and for a Poincaré pair (X, dX) of dimension n, it follows that dX is a Poincaré
space of dimension n — 1.

Instead of a tangent bundle for a Poincaré pair (X, dX), we define the Spivak normal
fibre space of (X, 0X) which is the analog of the normal bundle of a smooth manifold
(M™, M) = (D™** S™*k=1)  If(X, 0X) is a connected Poincaré pair of dimension m,
for k > m + 1 there is a (k — 1) spherical fibre space & over X, and a pair of maps

(£ fo): (Eo(&), Eo(¢10X)) — (¥, Yo)
(where E, denotes the total space of the (k — 1)-spherical fibrations) such that
1) the pair X UE&UY, X UEq€|0X) Yy) = (4, B) is homotopy equi-
valent to (D™ ¥, S"':"'l), ar{d " "
2) the map fy,: Hypx—2(Eo(€]|0X)) = H,yp—2(Yo) is zero.

This fibre space is called the Spivak normal fibre space of (X, dX) and it is unique up
to fibre homotopy equivalence.

There is a classifying space Bg for stable spherical fibrations and maps
By —» Bp, —» Brgp > Bg

(where By is the classifying space for stable euclidean space bundles). If there is a
smooth (PL, Top) manifold of the homotopy type of X then the classifying map of the
Spivak normal fibre space ¢ lifts to Bo(Bpy, , Brop), but the converse is not true in general,
which leads to a rich theory.

Note first that if one lift of £ to By exists (H = 0, PL or Top) then the homotopy
classes of lifts (homotopies covering a constant map into Bg) correspond 1-1 to ele-
ments of the set of homotopy classes of maps [X, G/H], where G/H is the fibre of the
map By — Bg.

Let us define the set of concordance classes of homotopy H-structures (H = 0,
PL or Top) on X = &H(X) as follows. Consider pairs (M, h) where M is a manifold
(in the category of H) and h: (M, dM) — (X, 0X) is a homotopy equivalence of
pairs. Two pairs (M;, h), i =0, 1, are concordant if there is a cobordism W,
OW =Myou M, UV, dV =0dM,udM, and a homotopy equivalence of pairs

k:(W,V) - (X x[0, 1], 0X x [0, 1])
with
h(x) = (h{(x), i) for xeM;.

Then ZH(X) is the set of concordance classes of such pairs.

The development of theory of surgery by Milnor, Kervaire, S. P. Novikov, the
author, and Sullivan has culminated in the following theorem:
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THEOREM. — Let X be a 1-connected Poincaré space of dimension n > S and suppose
that its Spivak normal fibre space admits an H-structure (H = 0, PL or Top). Then
there is an exact sequence of sets

Pn+l 5 yH(X) 5 [X> G/H] 5 Pn

0 n odd
P, = { VA n =4k

Z, n=4k+2

where

Here o is defined if #(X) % @, and in that case there is an action of P, ; on &%(X)
such that n(x) = n(x’) if and only if x, x’ are in the same orbit of the action.

In the case of pairs we have the result of Wall:

THEOREM. — If (X, 0X) is a Poincaré pair of dimension m > 6, with X, X 1-con-
nected, 0X # @, and suppose the Spivak normal fibre space admits an H-structure
(H =0, PL or Top). Then ¥*(X) = [X, G/H].

(The techniques used were proved first in the smooth case (H = 0), and extended
to the PL case using the smoothing theory of PL manifolds above, and recently exten-
ded to the topological case using the work of Kirby and Siebenmann).

Thus we see an exactl analogy with the smoothing theory of PL manifolds where
0X # O, but in case 0X = @ there is an obstruction to getting the analogous result,
an obstruction lying in the group P,. The underlying reasons for the difference in
the theories arise from transversality. One has a Thom transversality theorem for
either linear or PL bundles (or even Top bundles for higher dimensions) and this
makes possible the exact correspondence between smoothings and lifts. But trans-
versality fails for spherical fibre spaces and this failure is what creates the obstiuction
groups P,. This relation has been precisely described in recent work of Levitt, which
gives an obstruction theory to transversality for a map of a manifold M into a spherical
fibre space, with values in cohomology H/*'(M: P)).

The whole theory has been generalized by Wall to the non-simply connected case,
where one assumes Poincaré duality with local coefficients, and other properties.
Then one gets a similar exact sequence as above, and the obstruction groups depend
only on the fundamental group system of X, X and are again periodic of period 4.
These obstruction groups are algebraically defined, for example, for 0X = @, as
certain Grothendieck groups of quadratic forms over Zn or automorphisms of forms.
This is analogous to the simply connected case where P, is the Grothendieck group
of even, unimodular Z-forms for n = 4k, or non-singular Z,-quadratic forms for
m = 4k + 2. The calculation of these groups (over Zz) has proven very difficult,
and there is much work going on in this direction by both geometers and algebraic
K-theorists.

For the term in the exact sequence [X, G/H], the calculation is very difficult for
H = 0, because again the homotopy groups of spheres are closely related. For
H = PL however, the homotopy properties of G/PL have been very well analyzed
by Sullivan, and the work of Kirby-Siebenmann has enabled one to extend Sullivan’s
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results to G/Top. The results make possible the explicit description of [X, G/Top],
in terms of the cohomology and real K-theory of X, and have been used in the topo-

logical and PL classification of homotopy projective spaces, lens spaces, and many
other manifolds.

Princeton University
Department of Mathematics,
Fine Hall, Box 37
Princeton, N. J. 08540
(U. S. A)
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DIFFERENTIAL GEOMETRY;
ITS PAST AND ITS FUTURE

by SHING-SHEN CHERN (¥*)

A. Introduction.

It was almost a century ago, in 1872, that Felix Klein formulated his Erlanger Pro-
gram. The idea of unifying the geometries under the group concept is simple and
attractive and its applications in the derivation of different geometrical theorems
from the same group-theoretic argument are usually of great elegance. This leads
to the development of differential geometries of submanifolds in homogeneous (or
Klein) spaces: conformal, affine, and projective differential geometries. The latter
had in particular an energetic development in the twenties.

It was also about a century ago that the greatest modern differential geometer
Elie Cartan was born (on April 9, 1869). Among his contributions of a basic nature
are his systematic use of the exterior calculus and his clarification of the global theory
of Lie groups. Fiber spaces also find their origin in Cartan’s work.

Differential geometry is the study of geometry by the methods of infinitesimal calculus
or analysis. Among mathematical disciplines it is probably the least understood (*).
Many mathematicians feel there is no geometry beyond two and three dimensions.
The advent into higher and even infinitely many dimensions does make the intuition
unreliable and the dependence on algebra and analysis mandatory. The basis of
algebra is the algebraic operations and the basis of analysis is the topological structure.
I would like to surmise that the core of differential geometry is the Riemannian structure
(in its broad sense).

The main object of study in differential geometry is, at least for the moment, the
differentiable manifolds, structures on the manifolds (Riemannian, complex, or other),
and their admissible mappings. On a manifold the coordinates are valid only locally
and do not have a geometrical meaning themselves. Historically the difficulty in
achieving a proper understanding of this situvation must have been tremendous (I
wonder whether this was part of the reason which caused Hadamard to admit his

(*) This paper was written when the author held a Research Professorship of the Miller
Institute and was under partial support of NSF grant GP 20096.

(!) G. D. BIRKHOFF, « The second is a disturbing secret fear that geometry may ultimately
turn out to be no more than the glittering intuitional trappings of analysis ». Fifty years of
American mathematics, Semicentennial Addresses of Amer. Math. Soc. (1938), p. 307.

G. W. MAckey, « Geometrical intuition, while very helpful, is not reliable and cannot be
depended upon for rigorous arguments », Lectures on the Theory of Functions of a Complex
Variable, p. 21, Van Nostrand, notes.
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psychologicdl difficulty in the mastery of Lie groups) (3. For technical purposes
the Ricci calculus was a powerful tool, but it is inadequate for global problems. Global
differential geometry, with the exception of a few isolated results, had to wait till
algebraic topology and Lie groups have paved the way.

Global differential geometry must be considered a young field. The notion of a
differentiable manifold should have been in the minds of many mathematicians, but
it was H. Whitney who found in 1936 a theorem to be proved: the imbedding theorem.
In the case of the richer complex structure a definition of a Riemann surface by over-
lapping neighborhoods was given and the theory rigorously treated by H. Weyl in
his famous book “ Idee der Riemannschen Fliche, Gottingen, 1913 » (3), following
which Caratheodory gave the first definition of a high-dimensional complex manifold.
More general pseudo-group structures were treated by Veblen and J. H. C. Whitehead
in 1932 [34]. Only special cases of the general theory, such as Riemannian, conformal,
complex, foliated structures, etc. have been found significant.

B. The development of some fundamental notions and tools.

Perhaps the most far-reaching achievement in differential geometry in the last
-thirty years lies in its foundation. Not only are the notions clearly defined, but nota-
tions are devised to treat manifolds which could be infinite-dimensional. The notations
are up to now on the diversive side and are thus at an experimental stage. We believe
in the survival of the fittest. Important as these foundational works are, no mathe-
matical discipline can prosper without deeper study and simple challenging problems.
We will comment briefly on a few fundamental developments in differential geometry
and its related subjects, without endeavoring to make the list complete.

(1) Lie Groups. — It is one of the happiest incidents in the history of mathematics
that the structure of Lie groups can be so thoroughly analyzed. The existence of the
five exceptional simple Lie groups makes a deep study necessary and leads to a better
understanding. Even so the subject has unity and is so much simpler than (say)
finite groups. The quotient spaces of Lie groups give a multitude of examples of
manifolds which are easy to describe. They include the classically important spaces
and form a reservoir on which new conjectures can be tested.

(2) Fiber Spaces.— When a manifold has a differentiable structure, it can be locally
linearized, giving rise to the tangent bundle and the associated tensor bundles. The
first idea of a connection in a fiber bundle with a Lie group can be found in Cartan’s
“ espaces généralisés ”. _It was algebraic topology which focused on the simplest pro-
blems, e. g., the problem of introducing invariants which serve to distinguish a general

(*) J. HADAMARD, Psychology of Invention in the Mathematical Field, Princeton (1949),
p. 115,

E. CARTAN, in his classical « Legons sur la géométrie des espaces de Riemann » says, « La
notion générale de variété est assez difficile 4 définir avec précision », p. 58.

(®) Weyl’s book was dedicated to Felix KLEIN, to whom he acknowledged for the funda-
mental ideas. Weyl’s definition of a Riemann surface and Hausdorff’s introduction of his
axioms in 1914 must have made it superfluous to give formally a definition of a differentiable
manifold. Chevalley’s book on Lie groups (1946) exerted a great influence in the clarification
of many concepts attached to it.
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fiber bundle from a product bundle. Among them are the characteristic classes.
Characteristic classes with real coefficients can be represented by the curvature of a
connection, the simplest example being the Gauss-Bonnet formula, The bundle
structure is now an integral part of differential geometry.

(3) Variational Methods. — The importance of the notion of measure (length, area,
volume, curvature, etc.) makes the variational method a powerful and indispensable
tool. The study of geodesics on a Riemannian manifold is a brilliant chapter of
mathematics. It led to Morse’s creation of the critical point theory whose scope
extends far beyond differential geometry. Another example is the Dirichlet problem
and its application to elliptic operators. Multiple integral variational problems open
a vista whose terrain is still rocky. It promises, however, a fertile field of work. When
a geomatrical problem involves a function, either over the given manifold or in some
related functional space, it always pays to look at its critical values and the second
variation at them. Much of differential geometry utilizes this idea, in its various
ramifications. The importance of variational method in differential geometry can
hardly be over-emphasized.

(4) Elliptic Differential Systems. — The geometrical properties of differential geo-
metry are generally expressed by differential equations or inequalities. Contrary
to analysis special systems with their special properties received more attention.
While analysis is the main tool, geometry furnishes the variety. Differential systems
on manifolds with or without boundary are the prime objects of study.

Elliptic systems occupy a central position because of their rich properties, which
follow from the severe restrictions on the set of solutions. Hodge’s harmonic diffe-
rential forms, with their applications to Kahlerian manifolds, will remain a crucial
landmark. A simple idea of Bochner relates them to curvature and leads to vanishing
theorems when the curvature satisfies proper “ positivity ” conditions. This has
remained a standard method in the establishment of such theorems, which in turn
give rise to existence theorems. The indices of linear elliptic operators on a compact
manifold include some of the deepest invariants of manifolds (Atiyah, Bott, Singer).

1

In the study of mappings an important problem consists in the analysis of the sin-
gularities. Important progress has been made recently on the singularities of diffe-
rentiable mappings (Whitney, Thom, Malgrange, Mather). If the mappings are
defined by elliptic differential equations, cases are known where the singularities take
relatively simple form. Singularities in differential geometry remain a relatively
untouched subject.

C. Formulation of some problems with discussion of related results.

We will attempt to discuss some areas where it is believed that fruitful researches
can be carried out. The limited time at my disposal and, above all, my own limitation
make it impossible for the treatmeni to be even remotely exhaustive. Any subject
left out carries no implication that it is considered less significant.

My object is to amuse you by stating some very simple problems which have so
far defied the efforts of geometers. The danger in formulating such problems is that
the line distinguishing them from mathematical puzzles is thin. Personally I think
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there is no such line except that the “ serious ” problems concern with a new domain
where the phenomena are not well understood and the basic concepts not well deve-
lopped. Geometry and analysis on manifolds are still at this stage and will remain so for
years to come. When such problems are solved, similar ones will tend toward puzzles.

Many of the problems to be given below are known. It is hoped that its collection
may attract mathematicians not engaged in this field and lead to further progress.

1. RIEMANNIAN MANIFOLDS WHOSE SECTIONAL CURVATURES KEEP A CONSTANT SIGN

It was known to Riemann that the local properties of a Riemannian structure are
completely determined by its sectional curvature. The latter is a function R(s) of a
two-dimensional subspace o of the tangent space at a point x, which is equal to the
gaussian curvature of the surface generated by the geodesics tangent to o at x. Mani-
folds for which R(g) keeps a constant sign for all ¢ have a simple geometrical meaning.
For their global study it is important to require that they are not proper open subsets
of larger manifolds and, following Hopf and Rinow, it is customary to impose the
stronger completeness condition: every geodesic can be indefinitely extended. In
fact, without the completeness requirement the sign of the sectional curvature imposes
hardly any condition on the manifold, as Gromov [21] proved that there exists on any
non-compact manifold a Riemannian metric for which the range of the values of R(o)
is any open interval on the real line.

For complete Riemannian manifolds M for which R(s) keeps the same sign the two
classical theorems are:

(1) TueoreM OF HADAMARD-CARTAN. — If R(s) <0, the universal covering
manifold of M is diffeomorphic to R®, n = dim M.

(2) THEOREM OF BONNET-MYERS. — If R(0) = ¢ (= const) > 0, M has a diameter
< w/ct? and is therefore compact.

The case of positive curvature turns out to be more elusive. Cheeger and Gro-
moll [9] achieved what is essentially a structure theory of non-compact complete
Riemannian manifolds M with R(c) = 0 (all ¢) by proving the following theorem.
There is in M a compact totally geodesic and totally convex submanifold S, (to be
called the soul of M) without boundary such that M is diffeomorphic to the normal
bundle of S,,. If the sectional curvature is strictly positive, then Gromoll and
Meyer [20] proved that the soul is a point and M is diffeomorphic to R”. In particular,
M must be simply connected.

Compact Riemannian manifolds of positive curvature obviously satisfy the stronger
condition R(s) = ¢ > 0 (all ¢). By the Bonnet-Myers Theorem they are identical
with the complete Riemannian manifolds with the same property. They are not
necessarily simply connected, as the example of the non-euclidean elliptic space shows.
So far the simply connected compact differentiable manifolds known to admit a
Riemannian metric of positive curvature are the following [3]: (1) the n-sphere; (2) the
complex projective space; (3) the quaternion projective space; (4) the Cayley plane;
(5) two manifolds discovered by Berger, of dimensions 7 and 13 respectively.

It is very unlikely that there are no others, but nothing more is known. The follow-
ing question was asked by H. Hopf:
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ProBLEM 1. — Does the product of two 2-dimensional spheres admit a Riemannian
metric of strictly positive curvature ?

More generally, it is not known whether the exotic 7-spheres, some of which are
bundles of 3-spheres over 4-spheres, admit Riemannian metrics of positive curvature.
The answer 1o the question in Problem I is probably negative. A supporting evidence
is furnished by the following theorem of Berger [5]: Let M and N be compact Rieman-
nian manifolds. Let g(f) be a family of Riemannian structures on M x N, such
that g(0) is the product structure and such that the following condition is satisfied:

dR(o)
at

=z
t=0

for all o spanned at xe M x N by a tangent vector to M and a tangent vector to N.

Then
dR(o)
dt

=0

t=0

for all such o.

To get deeper topological properties of a manifold of positive curvature Rauch
introduced the notion of pinching. M is said to be f-pinched if 0 < § < R(o) < 1
for all ¢. After the pioneering work of Rauch the following are the main theorems
on the topology of compact pinched Riemannian manifolds of positive curvature:

(1) (Berger-Klingenberg) [4, 25]. If a simply connected Riemannian manifold of

1 . . 1

positive curvature is f-pinched, f > e it is homeomorphic to the n-sphere; if = 7

and it is not homeomorphic to the n-sphere, it is isometric to a symmetric space of
rank 1.

(2) (Gromoll-Calabi) [19]. Let M be an n-dimensional compact simply connected
Riemannian manifold of positive curvature. There exists a universal constant
B(n) < 1, depending only on n, such that if M is f(n)-pinched, it is diffeomorphic to the
standard n-sphere.

Similar problems can be studied on the global implications of curvature properties
of complex Kéhlerian manifolds. A new feature is the notion of holomorphic sectional
curvature, i. €., sectional curvature R(c), where ¢ is the two-dimensional real space
underlying a complex line in the complex tangent space. A most attractive question
is the following one formulated by Frankel:

PrOBLEM II. — Let M be a compact Kéhlerian manifold of positive sectional curva-
ture. Is M biholomorphically equivalent to the complex projective space?

Andreotti and Frankel [17] proved that the answer is affirmative if M is of dimen-
sion 2. The proof makes use of the classification of algebraic surfaces. Partial results
were recently obtained by Kobayashi and Ochiai [26] for 3 dimensions.

2. EULER-POINCARE CHARACTERISTIC

Among the important topological invariants of a manifold is the Euler-Poincaré
characteristic. Its role is well-known on problems such as the Lefschetz fixed-point
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theorem, singularities of vector fields, and indices of some elliptic operators. Geo-
metrically it is closely related to the total curvature (curvatura integra) as expressed
by the Gauss-Bonnet formula

(="
(M) = 2_3"'1sz_‘ N (gﬁu...izmeil...Jz...,Rilizmz o Ry tamiom - 12V (1)

Here M is a compact orientable Riemannian manifold of even dimension n = 2m,
x(M) is its Euler-Poincaré characteristic, dv is the volume element, and R;, are the
components of the curvature tensor relative to ortho-normal frames. The g,
is the Kronecker symbol and is zero if i, ,. . ., i,,, do not form a permutation of 1, . . ., 2m
and is equal to + 1 or — 1 according as the permutation is even or odd.

In spite of the explicit expression for y(M) the following has not been established:

ProBLEM IIT AND CONJECTURE. — If M has sectional curvatures > 0, then (M) = 0.
If M has sectional curvatures < 0, then y(M) = Oor < 0,accordingasn = 0or2 mod 4.

The above statement has been proved for n = 4 [10] and for the case that M has
constant sectional curvature. A first approach would be to study the sign of the inte-
grand in the Gauss-Bonnet formula, a purely algebraic problem. Even this algebraic
problem seems to be of great interest [33].

As with the classical Gauss-Bonnet formula the relationship is more useful for
compact manifolds with boundary (in which case a boundary integral should be added
to make the formula (1) valid) and the problem is more interesting for non-compact
manifolds, because a deeper study of the geometry will then be necessary. We will
denote by C(M) the right-hand side of (1) and we shall formulate the problem:

PrROBLEM IV. — Let M be a complete Riemannian manifold of even dimension.
Suppose x(M) and C(M) both exist, the latter meaning that the corresponding integral
converges. Find a geometrical interpretation of the difference

o(M) = x(M) — C(M).

Of course (M) = 0 if M is compact. In two dimensions Cohn-Vossen’s classical
inequality says that 6(M) > 0. For a class of two-dimensional manifolds Finn and
A. Huber [16, 23] obtained a geometrical interpretation of 6(M), which implies that it
is non-negative. Partial results on Problem IV have been obtained by E. Portnoy [30].
Perhaps the case of Kihlerian manifolds has a simpler answer and should be studied
first.

In a different direction Satake [31] obtained a Gauss-Bonnet formula for his V-mani-
folds and applied it to automorphic functions and number theory. V-manifolds are
essentially manifolds with singularities of a relatively simple type.

Another problem on the Euler-Poincaré characteristic concerns compact affinely
connected manifolds which are locally flat. These can be described as manifolds with
a linear structure, i. e., having a covering by coordinate neighborhoods such that the
coordinate transformation in overlapping neighborhoods is linear.

PrOBLEM V. — Let M be a compact manifold with an affine connection which is
locally flat. Is its Euler-Poincaré characteristic equal to zero?
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Bensecri proved that the answer is affirmative if M is of two dimensions (For proof
and generalization cf. Milnor [27]). The high-dimensional case has been investigated
by L. Auslander who proved the theorem [1]: suppose the affine connection be complete
and suppose that the homomorphism 4 : n;(M) — GL(n, R) defined by the holonomy
group is not an isomorphism of the fundamental group =, (M) onto a discrete subgroup
of GL(n, R). Then y(M)=0.

It is not known whether & can imbed =,(M) as a discrete subgroup of GL(n, R).

In spite of great developments in algebraic topology there are simple problems
on the Euler-Poincaré characteristic which remain unanswered.

3, MINIMAL SUBMANIFOLDS

A minimal submanifold is an immersion x: M" — XV of an n-dimensional diffe-
rentiable manifold M" (or simply M) into a Riemannian manifold X" of dimension N,
which locally solves the Plateau problem: Every point x e M has a neighborhood U
such that U is of smallest n-dimensional area compared with other n-dimensional
submanifolds having the same boundary 6U. Analytically the condition can be
expressed as follows: Let D2x be the second differential on M in the sense of Levi-
Civita. Then (D2x, &), where ¢ is a normal vector to M at x, is a quadratic differential
form, the second fundamental form relative to £&. The differential equation to be
satisfied by M is

Tr (D?x, £) = 0, all & 2)

It is a system of non-linear elliptic partial differential equations of the second order,
whose number is equal to the codimension N — n. A minimal submanifold of dimen-
sion one is a geodesic.

We wish to study the properties of complete minimal submanifolds in a given
Riemannian manifold XV (cf. [12]). Except for geodesics the interest has so far been
restricted to the case when the ambient space XV is either the Euclidean space EV
or the unit sphere S¥(1) imbedded in E¥*!,

For a minimal submanifold x: M" — E¥ in the Euclidean space a condition equi-
valent to (2) is that the coordinate functions are harmonic (relative to the induced
metric). It follows that for n > 0 a complete minimal submanifold in E¥ is non-
compact.

For various reasons the case of codimension one (i. e., the minimal hypersurfaces)
is the most important, Let x;,...,X,, z be the coordinates in E"*!. Consider
minimal hypersurfaces defined by the equation

z=F(x,...,x,) 3)

for all xy,...,x,. The following fundamental theorem generalizes the classical
theorem of Bernstein and was the combined effort of de Giorgi (n = 3), Almgren
(n = 4), Simons (n < 7), Bombieri, de Giorgi, Giusti (n > 8) [6, 32]. The minimal
hypersurface defined by (3) must be a hyperplane for n < 7 and is not always a hyper-
plane for n > 8.

The main reason for this difference is the existence of absolute minimum cones in

high-dimensional Euclidean space, which in turn depends on properties of compact
minimal hypersurfaces in S"(1). From a general viewpoint the study of compact
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minimal submanifolds in S¥(1) is attractive for its own sake. The first uniqueness
theorem is the theorem of Almgren-Calabi [11]. If a two-sphere is immersed as a
minimal surface in $3(1), it must be the equator.

By a counter-example of Hsiang [22] this theorem is not true for the next dimension.
However, the following question, which can be designated as the “ spherical Bernstein
problem ”, is unanswered:

ProBLEM VI. — Let the n-sphere be imbedded as a minimal hypersurface in $**1(1).
Is it an equator?

Two-dimensional minimal surfaces in EV and in S¥(1) have been more thoroughly
studied, because of the application of complex function theory. If the surface is itself
a two-sphere (hence in S¥(1)), severe restriction is imposed for global reason and we
have the following theorem (Boruvka, do Carmo, Wallach, Chern, but mainly
Calabi [8, 14]). Let the two-sphere be immersed in S¥(1) as a minimal surface, such
that it does not belong to an equator. Then we have: (1) N is even; (2) The total area
of the surface is an integral multiple of 2zx; (3) If the induced metric is of constant Gaus-
sian curvature, it is completely determined up to motions in S¥(1) and the Gaussian
curvature has the value

2

(4) There are minimal two-spheres in S¥(1) of non-constant Gaussian curvature; all
these with a given area form a finite-dimensional space.

The immersion of the n-sphere as a minimal submanifold of S¥(1) is a fascinating
problem. If the induced metric has constant curvature, the immersion is given by
the spherical harmonics (Takahashi). For n > 2 two isometric minimal immersions
S"(a) — S™(1) are not necessarily equivalent under the motions of the ambient space
(do Carmo, Wallach [15]). In view of the precise results on the two-sphere we wish
to propose the following problem:

ProBLEM VII. — Consider minimal immersions S" — S¥(1) with total area < 4
(= const) and identify those which differ by a motion of the ambient space. Is the
resulting set a finite-dimensional space with some natural topology?

4. ISOMETRIC MAPPINGS

A differentiable mapping f: M — V of Riemannian manifolds is called isometric
if it preserves the lengths of tangent vectors. It is therefore necessarily an immersion,
and dim M < dim V. Classical differential geometry deals almost exclusively with
the case that V is the Euclidean space EV of dimension N. We believe this is the most
interesting case and we will adopt this restriction in our discussion.

The first problem is that of existence. Since the fundamental tensor on a Rieman-
nian manifold of dimension n involves n(n + 1)/2 components, Schléfli conjectured
in 1871 that every Riemannian manifold of dimension n can be locally imbedded

1
in EN, with N = En(n + 1). This was proved by Elie Cartan in 1927 for the real

analytic case. For smooth non-analytic manifolds this local isometric imbedding
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problem is unsolved, even for n = 2, unless some restriction on the metric is imposed
such as the Gaussian curvature keeping a constant sign. In other words, it is not
known whether any smooth two-dimensional Riemannian manifold can be locally
isometrically imbedded in E3. The answer is probably negative.

The two important global imbedding theorems are:

(1) (Weyl'sProblem). A compact two-dimensional Riemannian manifold of positive
Gaussian curvature can be isometrically imbedded in E® (as a convex surface).

(2) (Nash’s Theorem [18, 28]). A compact (resp. non-compact) C® Riemannian
manifold of dimension n can be isometrically imbedded in EV,

N = %11(311 + 11) (resp. N = 2(2n + 1)@n + 7)) (¥

The second problem is the uniqueness of the isometric imbedding, also called rigidity,
which is the problem whether an isometric immersion is determined up to a rigid
motion of the ambient space EN. Most interesting is the classical case of surfaces
in E3, Cohn-Vossen proved the rigidity of compact surfaces with Gaussian curva-
ture K > 0 and the theorem was extended by Voss [35] to the case K > 0. Even
before Cohn-Vossen, Liebmann proved that a smooth family of isometric compact
convex surfaces (i. e., K > 0) is trivial, i. e, it consists of the surfaces obtained by the
rigid motion of one member of the family. It is not known whether the same is true
when the curvature condition is dropped and we believe the following problem is
fundamental:

ProBLEM VIII. — Let M be a compact surface and I be the interval — 1 < ¢t < 1.
Let f: M x I —» E? be a differentiable mapping such that f,: M — E3 defined
by fi(x) = f(x, t), xe M, t€ I, is an immersion for each z. Suppose that the metric ds?
induced by f; on M is independent of z. Does there exist a rigid motion g(t) such

that
fix) =g folx),  xeM, (5

where the right-hand side denotes the action on f; by g(t)?

The following remarks may be relevant to the problem. Cohn-Vossen [13] proved
the existence of an unstable family of compact surfaces of revolution, i. e., that the above
conclusion is not true if the hypothesis that ds? is independent of ¢ is replaced by

2
2 5w = 53 ds?ling = 0 ©

There are well-known examples showing that Cohn-Vossen’s rigidity theorem is
not true without the convexity condition K > 0. A generalization of the latter condi-
tion to surfaces of higher genus is the notion of tightness. Let f: M — E® be an
immersed surface. The tangent plané at a point x is a local (resp. global) support
plane if a neighborhood of the surface at x (resp. the whole surface f(M)) lies at one
side of it. The surface is called tightly immersed if every local support plane is a global

(*) The value for N in the case of non-compact manifolds is an improvement of NASH’S
value by GREENE [18].
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support plane. A. D. Alexandrow proved that a real analytic tightly imbedded surface
of genus one is rigid and Nirenberg [29] replaced the analyticity condition by some
other conditions.

On the other hand, the notion of tightness has a meaning for polyhedral surfaces.
In this case the rigidity problem asks whether the congruence of corresponding faces
of two tightly imbedded polyhedral surfaces implies that they differ by a rigid motion.
Cauchy’s classical theorem says that this is true if the surfaces are of genus zero. But
Banchoff [2] has constructed examples showing that this is untrue for surfaces of genus
one. From these remarks it is anybody’s guess whether the answer to the question
in Problem VIII is affirmative or negative.

When M is of dimension greater than two, isometry is a strong condition and there
are local rigidity theorems.

5. HOLOMORPHIC MAPPINGS

A holomorphic mapping f: M — V of complex manifolds is a continuous mapping
which is locally defined by expressing the coordinates of the image point as holomorphic
functions of those of the original point. The most significant example is the case
when M is the complex line C and V is the complex projective line P,(C) (or the Riemann
sphere), in which case the mapping is known as a meromorphic function. Much
recent progress has been made in extending classical geometrical function theory to
the study of holomorphic mappings.

A holomorphic mapping is called non-denegerate if the Jacobian matrix is of maxi-
mum rank at some point. For given M, V there may not exist a non-degenerate
holomorphic mapping. Let B be a closed subset of V. Classically the following
problem has been much studied.

Intersection or non-existence problem. Find B such that there is no non-dege-
nerate holomorphic mapping M — V — B, i. e., every non-degenerate holomorphic
mapping f: M — V has the property f(M)n B # @.

The Picard theorem concerns the case M = C, V = P,(C), and B is the set of three
distinct points. Clearly if the property holds for B, it holds for a subset containing B,
so that a stronger theorem results from a smaller subset B. In view of the extreme
importance and elegance of the Picard theorem, we wish to state the following conjec-
rure of Wu:

PROBLEM AND CONJECTURE IX. — Let C, be the n-dimensional complex number
space and P,(C) the n-dimensional complex projective space. Let B be the set of
n + 2 hyperplanes of P,(C) in general position (i. e., any n + 1 of them are the faces of
a non-degenerate n-simplex). Then there is no non-degenerate holomorphic mapping
Cn - P n(C) — B.

The Picard theorem says that this is true for n = 1. Wu has established this for

n < 4. Moreover, if we set
n 2
(5 + 1) + 1, n even

p(n) =
n+1\/n+3
( ' )(2 )+1, n odd,
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and let B’ be the set of p(n) hyperplanes in general position in P,(C), then Wu [36]
proved that every holomorphic mapping f:C, — P,(C) — B’ must reduce to a
constant.

A far-reaching generalization of the Picard theory is the equi-distribution theory
of Nevanlinna, which studies the frequency that a non-constant meromorphic function
takes given values. In terms of vector bundles the problem can be generalized as
follows [7]. Let M be a complex manifold and p: E - M a holomorphic vector
bundle over M. A holomorphic mapping s: M — E is called a section if p-s = iden-
tity. Let W be a finite-dimensional vector space of holomorphic sections. Suppose
the manifold and the bundle fulfill some convexity conditions (which are automatically
satisfied in the classical case). Then we can define, to each s(# 0)e W, a defect d(s)
satisfying the conditions: (1) 0 < &(s) < 1; (2) 8(4s) = 6(s), Ae C — {0}; (3) &(s) = 1
if shas no zero. The equi-distribution problem is to find an upper bound of an average
of &(s) (a sum in the case of a finite number of sections and an integral in the case of an
infinite set). The problem has been studied recently by several authors..

Dual to the intersection problem is the extension problem: Given complex mani-
folds M, V and a closed subset A = M. When is a holomorphic mapping M — 4 - V
the restriction of a holomorphic mapping M — V?

Many extension theorems are known. In several complex variables thie most
famous are the Hartogs and Riemann extension theorems, which concern with the case
that V is either the complex line or a bounded set of it. We wish to formulate the
following problem of Hartogs type where the curvature of the image manifold enters
into play:

ProBLEM X. — Let A be an n-ball in C,, n > 2, and let V be a complete hermitian
manifold of holomorphic sectional curvature < 0. Is it true that every holomorphic
mapping of a neighborhood of the boundary dA of A into V extends into a holomorphic
mapping of A into V?

It is known that without the curvature condition on V the assertion is not true [24].
The problem belongs to an area which might be described as “ hyperbolic complex
analysis ”. The philosophy is that negative curvature of the receiving space limits
the holomorphic mappings and allows strong theorems. In fact, a bounded holo-
morphic function is a mapping into a ball which has the non-euclidean hyperbolic
metric.
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THE CURRENT SITUATION
IN THE THEORY OF FINITE SIMPLE GROUPS

by WALTER FEIT (*)

Dedicated to Richard Brauer
on the occasion of his 70th Birthday

§ 1. Introduction.

As the title indicates the aim of this paper is to survey some of the known results
concerning the structure of finite simple groups. All groups are assumed to be finite
from now on.

This paper is concerned with exactly one problem.

MAIN PROBLEM. — Give a reasonable description of all noncyclic simple groups.

The key word here is “ reasonable ”.  Thus this is not a well defined problem. What
is wanted is a list of all known simple groups which makes it possible to prove or
disprove various group theoretic statements by checking all groups on the list. Known
simple groups are not really completely known. One cannot for instance give a
complete description of all subgroups of all the alternating groups.

It should also be observed that it is not clear that there necessarily is an answer
to the main problem. Conceivably an infinite number of simple groups may exist,
each one of which owes its existence to a large number of arithmetical and group
theoretical accidents.

Having stated some of the difficulties concerning the main problem I now wish
to spend the rest of this paper in describing some of the results that have been obtained
in answer to various special cases of the main problem. The results described below
are mostly of the type that give a complete classification of all simple groups G which
satisfy certain conditions. Possibly there are no such simple groups in which case
the classification is vacuous. The conditions are of various sorts.

(I) Assumplions concerning the structure and imbedding of various subgroups
of G.

(IT) Assumptions about the order of G.

(III) Assumptions that G has a linear representation over a suitable field satisfying
certain conditions.

(IV) Assumptions that G has a permutation representation of a special type.

(V) Assumptions concerning the multiplication table of G.

(VI) Various technical assumptions, such as that G has a given character table.

(*) This paper was written while the author was partially supported by the NSF.
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I will attempt to give a (necessarily superficial) description of how one goes about
proving results of this sort.

There are a large number of results which assert that if a group G contains certain
special configurations of subgroups then G cannot be simple. Some of these date
back to the nineteenth century, the most recent are the content of current research.
There are more sophisticated theorems which assert that under suitable hypotheses a
simple group must contain certain special configurations of subgroups.

Suppose that G is a simple group which satisfies certain hypotheses, call them (H).
The results referred to in the previous paragraph can be brought to bear on G and,
depending on (H), one may get a great deal of information concerning a large number
of subgroups of G. This stage of the argument can loosely be called the purely group
theoretic part of the argument since it consists in studying in great detail the structure
of various subgroups of G.

After this has been done it is often possible by using the given information to construct
a portion of the character table of G. The theory of modular characters developed
by Brauer is frequently a useful tool here. The information from the character table
can then be used to refine the information concerning subgroups of G. At this stage
a contradiction may have been reached and so there are no simple groups satisfy-
ing (H).

If however no contradiction has been reached one may have to face the following
situation. G is a simple group satisfying (H) many of whose subgroups are explicitly
given and a large portion, possibly all, of its character table is known. One of the
following questions has to be answered.

(1) (Existence Problem) If no known simple group satisfies (H) does G exist?

(2) (Recognition Problem) If some known simple groups satisfy (H) is G iso-
morphic to one of them?

One may be fortunate at this point and be able to find a linear representation of G
over some field which makes it possible to recognize G, or more likely one may be
able to construct a combinatorial configuration on which G acts as a group of auto-
morphisms thus making it possible to recognize G. If these methods fail there is
only one recourse left. Either construct the multiplication table of G or derive a
contradiction from this multiplication table. In other words study generators and
relations. Unfortunately there appear to be no general methods in this connection
and each case needs to be handled individually.

This approach has in recent years (with the essential help of computers) led to the
discovery of several new finite simple groups. At present there is a potential group
investigated by Lyons [1] whose existence has not yet been established. A complete
character table is known and an enormous amount of information about the structure
of various subgroups is also known. A group satisfying all the appropriate conditions
will be denoted by Ly. Conceivably there is more than one such group.

Similarly the recognition problem can be quite intractable. There is an infinite
class of groups, known as groups of Ree type, which have many properties in common
with the Ree groups 2G,(3?2"*!). In spite of the efforts of various authors, e. g.,
Ree [3], Thompson [7], Ward [1] the question of whether these groups are isomorphic
to the Ree groups has not yet been settled.



THE CURRENT SITUATION IN THE THEORY OF FINITE SIMPLE GROUPS 57

The pattern of proof outlined above is a bare skeleton which in itself is quite mean-
ingless. To make it work it is necessary to have methods available that make it
possible to use this pattern for the purpose of proving meaningful results for groups
which satisfy appropriate hypotheses. It is precisely the development of such methods
that constitutes the achievement of the post war work in the theory of finite simple groups.

The first critical step was taken by Brauer. It is quite trivial to prove and has
been known for probably over a century that a group generated by two involutions
is a dihedral group. Brauer [3] first observed that this fact, when combined with
surprisingly simple counting arguments, has profound consequences concerning
groups of even order. Amongst other things he showed that if ¢ is an involution in
the simple group G then |G| < {|Cq(?)|*} ! and so in particular there exist only
finitely many simple groups which contain an involution with a given centralizer.
Further results of this type, all quite elementary and yet of fundamental importance,
can be found in Brauer-Fowler [1]. Related results were later proved by various
authors. Some of these are described in Gorenstein [3].

This result of Brauer established the program of characterizing simple groups of
even order in terms of centralizers of involutions and related conditions.

Independently of this the second critical step was taken by Thompson [3] a few years
later in his thesis. Using the work of P. Hall and a theorem of P. Hall and G. Higman
he introduced some completely novel purely group theoretic methods. Extensions
of these methods when combined with some developments in the theory of characters
made it possible to use the above described pattern of proof to show that noncyclic
simple groups of odd order don’t exist, Feit-Thompson [3]. It was to be expected
that the group theoretic and character theoretic arguments would be enormously
more complicated than they were in some previously proved special cases, Feit-Hall-
Thompson [1], Suzuki [2]. However it is perhaps surprising that it was (and still is)
necessary to actually look at the multiplication table of the group before reaching a
contradiction from the assumption that G is noncyclic simple and has odd order.

The purely group theoretic methods which are continually being extended and
generalized by many authors form a vital part of much of the current work on Brauer’s
program and other characterizations of simple groups. In many cases these methods
now constitute the bulk of the proof. Surveys of some of these results and methods
can be found in Glauberman [3] and Gorenstein [1], [3].

Since noncyclic simple groups have even order, the approach initiated by Brauer
leads to a systematic attempt to provide an answer to the main problem. Whether
it will ultimately be successful in providing such an answer remains to be seen.
However the discovery of several new simple groups in this way has already vindicated
this approach and indicates that it gets much closer to the heart of the problem than
any previous attempts.

A subject as old as the theory of finite groups abounds with conjectures and unsolved
problems. Many of these would easily be settled if one could answer the main problem.
In fact this is one of the major reasons for attempting to solve the main problem since
it lies at the heart of the theory of finite groups.

There is no point in attempting to list unsolved questions in group theory since

the methods and results discussed in this paper are very singlemindedly aimed at
solving the main problem and generally avoid looking at questions which are not
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related to it. The progress that has been made on some questions not directly con-
cerned with the main problem is in the form of a bonus. See for instance Theorem 3.3
and Theorem 10.2 below. This singlemindedness is both the strength and weakness
of this approach. Should this approach ultiinately lead to the solution of the main
problem many of these other questions will be settled. On the other hand if the main
problem remains intractable more emphasis will be put in the future on attempting
to answer some of the well known unsolved questions in the subject.

There are also many questions concerning simple groups which are independent
of the main problem. For instance much work has been done in attempting to describe
the characters of known simple groups, especially groups of Lie type. These questions
fall outside the scope of this paper. They are only mentioned here to emphasize the
fact that while the main problem is of great importance in the theory of finite simple
groups it does not encompass the whole subject.

In the rest of this paper I will attempt to catalogue some of the known theorems
concerning finite simple groups which give partial solutions to the main problem.
These theorems are only the tip of the iceberg. Limitations of space unfortunately
make it impossible to describe a great many results (for instance P. Hall’s fundamental
work on solvable groups) which are a necessary prerequisite for many of the listed
theorems.

In the course of gathering material for this paper many people made valuable sugges-
tions. In particular I wish to express my thanks to J. Alperin, B. Fischer, D. Goren-
stein, R. Griess, A. Rudvalis, R. Steinberg and J. G. Thompson.

Standard notation and terminology from group theory is used freely throughout
this paper. If G is a group then G denotes some covering group of G. Numbers
in square brackets refer to the bibliography. Results attributed to a person without
bibliographical reference refer either to a personal communication or to an old well
known result.

Added in proof. — Since this paper was written C. C. Sims has proved the existence
of Ly on a computer. This will now be denoted by LyS. He has also proved the
uniqueness of LyS by using the fact, proved by R. Lyons and L. Scott, that LyS contains
G,(5).

§ 2. The known simple groups.

The existence of most of the known simple groups and the discovery of their pro-
perties is established by methods completely divorced from those discussed in the
previous section. The use of Lie theory to show the existence of finite simple groups
is due to C. Chevalley. The existence of finite groups of Lie type and the investigation
of many of their properties is due to many authors, in particular Chevalley, Ree, Stein-
berg, Suzuki and Tits. Actually Suzuki discovered an infinite series of groups in
trying to characterize some known groups and rather anticlimactically it later turned
out that they really were groups of Lie type. Of course it should be mentioned that
the classical groups over finite fields and finite analogues of G, and E4 were found
long ago by Galois, Jordan, Dickson and others. A detailed description of the groups
of Lie type can be found in Carter [1], Tits [1].
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In addition to the alternating groups and groups of Lie type there are 18 known
sporadic groups and Lyons potential group whose existence has not yet been esta-
blished. A description of these can be found in Tits [4] and his notation will be fol-
lowed here. A sporadic group is a simple group that no one has yet been able to fit into
an infinite class of simple groups in a natural way.

Five of the sporadic groups are the Mathieu groups which have been known for
over a hundred years (though their existence was not incontrovertibly established until
this century). The remaining 13 groups were discovered during the past decade.

Four of these groups were discovered by the methods described in the previous section
with the help of a computer. Namely:

Ja, Janko [6], see also Livingston [1], Whitelaw [1].
Hal, Hall [3], Janko [10], see also Tits [3], Wales [3], [4].
HJM, Higman-McKay [1], Janko [10].

HHM, Held [6], Higman-McKay.

The construction by M. Hall of HaJ as a rank 3 permutation group led to the disco-
very of 3 more groups by analogous methods.

HiS, Higman-Sims [1], see also G. Higman [3], Sims [2].
McL, McLaughlin [1].
Suz, Suzuki [20], see also Lindsey [3].

Three of the remaining groups, Co,, Co,, Co; were found by Conway by geometric
methods. See Conway [1], where he also establishes some connections with other
sporadic groups.

The remaining 3 known sporadic groups were found by Fischer [6] (see Theorem 4.5.2
below) by purely group theoretic methods related to those described in the previous
section.

The properties of Ly whose existence has not yet been established can be found in
Lyons [1].

The first table contains a list of all known sporadic groups, their orders, and
whatever is known about the order of their groups of outer automorphisms and the
structure of their Schur multipliers. A direct product of cyclic groups of order
My, Hg,... is denoted by (ny, n,,...). In the table n is an unknown integer. The
first five groups in the table are the Mathieu groups. Their automorphism groups
have been known for a long time. Their Schur multipliers were computed by Bur-
goyne-Fong [1].

Let Aut (G) denote the automorphism group of G. It has been known for a long
time that Aut (W,) = &, for n # 6 and | Aut (W,): | =2. In case G is a simple
group of Lie type Aut (G) is also known except possibly for 2F,(2)', Ree [1], [2], Stein-
berg [1], Suzuki [11, I]. In all of these cases Aut (G) is uniformly described in terms
of Lie goup theory.

The situation concerning Schur multipliers is more complicated. Let G be the
group of rational points over a finite field of a simply connected covering group of a
simple algebraic group over an algebraically closed field. If G is not solvable then
Steinberg has shown that G has no proper covering group except for the 11 cases in
the second table. In each of these cases he found the upper bound for the order of the
Schur multiplier. If G, is a nonsolvable Steinberg variation of G then Steinberg also



Order

M,, 2¢.32.5.11

M, 26.33.5.11

M,, 27.32.5.7.11
M, 27.32,5.7.11.23

M,, 210.33.5.7.11.23

Ja 22.3.5.7.11.19

Hal  27.33.52.7

HIM  27.35.5.17.19

HHM  210.3%,52.73.17

HiS 2°.32,5%.7.11

McL  27.35.5%.7.11

Suz 213,37 52.7,11.13

Co, 221,39 5% 72.11.13.23
Co, 218,36,53.7,11.23

Co, 210,37 53 7,11.23

Fiy, 217,39 52.7.11.13

Fiys 218 313 52 7 11,13.17.23
Fi}, 221,316,52 73 11,13.17.23.29
Ly? 28.37.56.7.11.31.37.67
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Order of group
of outer automorphisms

b N N

1 Janko [6]
2 Hall [3]
2n

2n

2

2 Lindsey [3]
1

1 Fendel [1]
2

1

2n, n odd

1 Thompson

Schur multiplier

(03]

03]

(6)

)]

¢)]

0]

(2) McKay-Wales [1]
(3) McKay-Wales [1]
(1) Griess

(2) Griess,McKay-Wales
(3) Thompson

(6) Griess

order 2n

(1) Griess
(6) Griess
(1) Griess
order 3", Griess
(1) Thompson

showed that if 51 is a universal covering group of G, then | G, : G, | is a power of p,
where p is the characteristic of the underlying field, except possibly if G, is an odd
dimensional unitary group. Griess has shown that | G,: G, | is prime to p except
for the cases listed in the table below. The table below contains all the nonsporadic

Group

U ~ SL,(4) = PSL,(5)
A, ~ PSL,(9)

7
Ay & SL,(2)
A, n>9
SL4(2) & PSLy(7)
PSL.(4)
Spe(2)

%(3)
D,(2)
G,(4)
G,(3)
Fy(2)
2D,(2)
PSU i +1(P7)
PSU,(2) ~ PSp,(3)
PSU,(3)
PSU2)
Sz(8)
Sz(22m+ l)’ m>2
2G2(32m+ 1)’ m>1
1F4(22m+ 1)’ m>2
2F(8)
2Fy2f

Schur multiplier

@
(6
(©
@
@
@

(4, 12) Burgoyne, Thompson

(2) Steinberg

(6) Fischer, Rudvalis

(2, 2) Steinberg

(2) Griess, Steinberg

(3) Griess
(2) Griess
(1) Griess
a p’-group Griess

@

(3, 12) Lindsey, Griess

(2, 6) Fischer, Griess

(2, 2) Alperin-Gorenstein [1]
(1) Alperin-Gorenstein [1]
(1) Alperin-Gorenstein [1]

(1) Ward [2]

(1) Griess
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groups and whatever is known about their Schur multipliers except the Chevalley
groups G for which it is known that G has no proper covering group and the Steinberg
variations G, for which it is known that G, has no proper covering group. The Schur
multipliers of the alternating groups were found by Schur [1].

§ 3. N-groups.
One of the deepest results of the past few years is the following theorem.

THEOREM 3.1 (Thompson [8]). — Let G be a simple group in which the normalizer
of any solvable subgroup of G of order greater than 1 is solvable. Then G is one of
the following groups.

(i) PSLy(q), g9 > 3.

(i) S222"*1), 5 > 1.

(iii) PSL(3).

(iv) My,.

) U,

(vi) PSU,(3).
(vii) 2F4(2) (the Tits group).

The author had originally overlooked case (vii). It was pointed out by T. Hearne
that Tits’ group satisfies the assumptions of the theorem. As an immediate corollary
to this result one gets.

THEOREM 3.2 (Thompson [8]). — Let G be a simple group in which all proper subgroups
are solvable. Then G is one of the following groups.

(i) PSL,(27), PSL,(3?) where p is any prime.

(ii) PSL,(p) where p is any prime withp > 3 and p = 2 or 3 (mod 5).
(iii) Sz(2?), p any odd prime.
(iv) PSL;(3).

These results can be used to give some characterizations of solvable groups.

‘THEOREM 3.3 (Thompson [8]). — The following conditions are equivalent for a
group G.

(i) G is solvable.

(ii) Every pair of elements of G generates a solvable group.

(iii) If x, y, z are three nonidentity elements of G of pairwise coprime order then
xyz # 1.

@iv) If xy, X3,... are nonidentity elements of G of pairwise coprime order then
X4Xy .. # L

(v) For any nonprincipal irreducible character y of G there exists a prime p and a
S,-group P of G such that the restriction of x to P does not contain the principal character
of P as a constituent.

P. Hall first pointed out that every solvable group satisfies condition (iv). Galla-
gher [1] first proved the equivalence of conditions (iv) and (v).
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§ 4. Characterizations in terms of involutions and Sylew 2-groups.

The results stated in this section are of various related types. They all consist of
the classification, or steps toward the classification, of simple groups which satisfy a
variety of conditions concerning involutions or S,-groups.

§ 4.1. STRONGLY EMBEDDED SUBGROUPS

A subgroup H of G is strongly embedded if | H | is even and | H n H*| is odd for all x
in G — H.

TuEOREM 4.1.1. — Suppose that G contains a strongly embedded subgroup H with
H % G. Then one of the following must occur.

(i) A S,-group of G is either cyclic or (generalized) quaternion.
(ii) G/0O,AG) has a normal subgroup of odd index which is isomorphic to one of the
following groups.

(a) SL,(2"), n > 2.
(b) PSU5(2"), n > 2.
(c) 8z2*"*1), n> 1.

This theorem, due to Bender [3], generalizes a result of Suzuki who reached the
same conclusion under the assumption that a normalizer of a Sylow 2-group is distinct
from G and is strongly embedded in G. The proof relies heavily on earlier work
which can be found in Feit [1], [2], G. Higman [1], Suzuki [4, III], [6], [11], [13], [14],
Zassenhaus [2]. Theorem 4.1.1 is of great importance for various characterization
theorems since it disposes of the recognition problem for the classes of groups
mentioned in the conclusion. Virtually every result which involves these classes of
groups makes use of Theorem 4.1.1.

§ 4.2. SYLOW 2-GROUPS

For any positive integer n let Z,, D, denote a cyclic group or a dihedral group of
order n. Let Qn+1, Sya+1 respectively denote the quaternion and quasi-dihedral
group of order 2"*!, Observe that D, ~ Z, x Z,. Here

Sper =X, y|x2 =y =1, x"lyx = y1+277",

For any group G let S,(G) be the S,-group of G.
TuEOREM 4.2.1 (Gorenstein-Walter [1], [2], [3]). — Let G be a simple group with

S,(G) & Dyn+1 for some n > 1. Then either G =~ W, or G = PSL,(q) for some odd
q>3.

The proof uses some results of Brauer [7, II] from the theory of modular characters
in an essential way.

THEOREM 4.2.2 (Alperin-Brauer-Gorenstein [1], [2]). — Let G be a simple group.

(@) If S3(G) = Syn+1 with n > 4 then one of the following occurs.
(a) G = PSLs(q) with q = 3 (mod 4).
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(b) G = PSU4(q) with g =1 (mod 4).
(c) G~ My,.

(ii) If 8,(G) = Z,.1 Z, with n = 2 then one of the following occurs.

(a) G ~ PSL,(q) with ¢ =1 (mod 4).
(b) G ~ PSU4(q) with g =3 (mod 4).

THEOREM 4.2.3 (Walter [2], [3]). — Let G be a simple group with S,(G) abelian. Then
one of the following occurs.

(i) G~ PSLy(q), g = £ 3 (mod 8), g > 3.
(ii) G ~ SL,(2") for some n > 2.
(iii) G is a group of Ree type.
(iv) G =~ Ja.

In particular S,(G) is elementary abelian.

In case S,(G) is generated by two elements in Theorem 4.2.3 Brauer [7, II] showed
that it has order 4 and so in this case the result follows from Theorem 4.2.1. In
case S,(G) has three generators earlier results of Gagen [2], Janko [6], [7], Janko-Thomp-
son [1], Ree [1], Thompson [5] and Ward [1] are of relevance and are subsumed by
Theorem 4.2.3. This result also includes as special cases earlier results in Brauer [6],
Feit [2], Gagen [1], Gorenstein [2] and Suzuki [4, 1], [4, II]. A simplification for part
of this proof can be found in Bender [4].

The next result is a composite of several theorems.

THEOREM 4.2.4. — Let G be a simple group.

(i) (Collins [1]). If S,(G) =~ S,(Sz(22"*Y)) for n =1 then G ~ Sz(2*"*1),

(ii) (Lyons [1]). If S,(G) = S,(PSU,(4)) then G =~ PSU;(4).

(iii) (Gorenstein-Harada [1], Janko [10]). If S,(G) ~ S,(Hal) then G ~ Hal
or G ~ HIM.

(iv) (Gorenstein-Harada [4], Lyons [1]). If S,(G) ~ S,(Ly) then G = Ly.

In (i) the case n = 1 had previously been settled by Brauer and Goldschmidt.

THEOREM 4.2.5 (Glauberman [1]). — Let T = Q,u+1 X Ty where every involution
in Ty is in the n'" term of the upper central series of T. Then T cannot be a S,-group
of a simple group.

The case that Ty is a product of quaternion groups was proved independently, but
later, by Mazurov [2]. The special case that T, = {1 ) which is the starting point
for this result has to be handled separately. This case is due to Brauer-Suzuki [1].
Alternative proofs for this case can be found in Brauer [7, II], Suzuki [10]. Actually
Theorem 4.2.5 is a consequence of Theorem 4.5.1 below which is of great importance
for many of the results in this paper. A related result is the following.

THEOREM 4.2.6 (Goldschmidt [1]). — Let T be a nonabelian S,-groupe of a simple
group. Suppose that T has nilpotence class n. Then Z(T) has exponent at most 2"~ !,
Furthermore T has exponent at most 2"~ 1.



64 W. FEIT G

THEOREM 4.2.7 (Alperin-Brauer-Gorenstein [2]). — Let G be a simple group. Assume
that S,(G) contains no elementary abelian subgroup of order 8. Then G is isomorphic
to one of the following groups: W, PSLy(q), PSL3(q), PSU;(q) with q odd or PSU5(4).

This powerful result which is essentially an amalgam of some of the previously
mentioned results in this section supersedes or has as simple corollaries a large number
of previously proved theorems. For instance: Brauer [3], [8], Brauer-Suzuki-Wall [1],
Camina-Gagen [1], Feit [2], Mazurov [1], Suzuki [1], [3], [4, I], Thompson [4],
W. J. Wong [3], [4], [6]

The question of finding all simple groups G such that S,(G) contains no normal
elementary abelian subgroup of order greater than 4 has not yet been settled. However
a great deal of progress has been made. MacWilliams [1] has shown that S,(G) is
one of a restricted class of 2-groups and under some additional assumptions on G
this class of groups has been classified. See Theorem 4.3.3.

THEOREM 4.2.8 (Harada [2]). — Let T= A x B where A is cyclic and B has a cyclic
subgroup of index 2. If A # (1) and T = S,(G) for a simple group G then T is abelian
(and hence G is determined by Theorem 4.2.3).

THEOREM 4.2.9 (Gorenstein-Harada [2]). — Let T = Dya+1 X Ty where T is either
dihedral or a noncyclic abelian group generated by 2 elements. Then T is not a S,-group
of a simple group.

The case that Ty = D,m+1 With m # n had previously been settled by Fong.

Two groups G and H have the same involution fusion pattern if S,(G) ~ S,(H) and
there exists an isomorphism f from S,(G) onto S,(H) such that for any involutions x, y
in S,(G), x is conjugate to y in G if and only if f(x) is conjugate to f(y) in H.

THEOREM 4.2.10 (Gorenstein-Harada [3]). — Let G be a simple group with
S,(G) ~ S,(Wg). Then either G ~ g or Wy or G has the involution fusion pattern
of PSp.q) with q = + 3 (mod 8).

This result generalizes earlier results by Held [1], W. J. Wong [1] which are needed
for the proof.

_ TuroreM 4.2.11 (Gorenstein-Harada [3]). — Let G be a simple group with
S:(G) ~ S;(U,q). Then either G =~ WU,y or W,, or G has the involution fusion pattern
of PSL4(q) with g = 3 (mod 8).

THEOREM 4.2.12 (Gorenstein-Harada [4], S. K. Wong [2]). — Let G be a simple
group with S,(G) = S,(M,;). Then one of the following holds:

(i) G~ M,,, M,; or McL.

(ii) G has only one class of involutions. If H is the centralizer of an involution in G
then H/O,.(H) is isomorphic to the centralizer of an involution in either PSL,(q),q = 5
(mod 8) or PSU,(q), g = 3 (mod 8).

Theorems of a different nature due to Brauer asserts that certain types of 2-groups
can only be the S,-group of a finite number of simple groups. Results of this type are
discussed in Brauer [6], [9].
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§ 4.3. GENERAL CONDITIONS ON CENTRALIZERS OF INVOLUTIONS

THEOREM 4.3.1 (Suzuki [16]). — Let G be a simple group in which the centralizer
of every involution has a normal S,-subgroup. Then G is isomorphic to one of the
following groups:

(i) PSL,(p), p a Fermat or Mersenne prime, p > 3.
(ii) SL,(2", n > 2.
(ili) Ag ~ PSL,(9).

(iv) PSL(q), PSU(q) or Sz(q) where q is a power of 2.

This powerful result is the end product of a large number of theorems which it
generalizes, See Feit [2], Suzuki [4], [7], [8], [11], [14].

THEOREM 4.3.2 (Gorenstein [4]). — Let G be a simple group in which the centralizer
of every involution has a normal 2-complement. Then G is isomorphic to one of the
Jollowing groups:

(i) PSL,(g), ¢ > 3.
(ii) Sz(2"), n > 3.
(ili) A, or PSLs(4).

The proof of Theorem 4.3.2 make use of Theorem 4.3.1 as well as the next result.

THEOREM 4.3.3 (Janko-Thompson [2], Lyons [1]). — Let G be a simple group and
let T= S,(G). Assume that T contains no normal elementary abelian subgroup of
order 8. Assume further than if t is an involution in T such that | T': C(t)| < 2 then
Cg(t) is solvable. Then G must be isomorphic to one of the following groups:

(i) PSLy(g), q > 3.
(ii) A,, My, PSLy(3), PSU4(3) or PSU,(4).

Theorem 4.3.1 in particular includes the classification of all simple groups in which
the centralizer of every involution is nilpotent. The problem of finding all simple
groups in which the centralizer of every involution is solvable is still open. The
answer to this would in particular have to include Theorem 3.1 as a special case.
At this conference Janko has announced the following result in this connection.

THEOREM 4.3.4. — Suppose that G is a simple group in which the normalizer of every
nonidentity 2-group is solvable with cyclic Sylow p-groups for all odd primes p. Then G
is isomorphic to one of the following groups.

(i) PSL,(g), Sz(22"*1), PSU4(2".
@) My, PSU,(3), PSLy(3), *F4(2).

§ 4.4. PRECISE CONDITIONS ON CENTRALIZERS OF INVOLUTIONS

An involution in Z(S,(G)) is called a central involution of G. The following table
lists a simple group G, a central involution ¢, in G, and all simple groups G which
contain a central involution ¢ such that Cg(t) &= Cg(to) and such that Cg(z) = Cg(t)
for every involution z in Z(Cg(t)). These conditions are sometimes redundant. For

1—3
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instance if Z(S,(G,)) is cyclic it suffices to assume that G contains an involution ¢ with
Co(t) =~ Cg,lto)-
Since t is assumed to be a central involution it follows that in particular S,(G) is

given. Results which follow directly from subsection 4.2 are not included in the
list.

G, to G
SL,(2), Kondo [2], Suzuki [4, II] A transvection SL4(2), Ug
SL,(2), Held [1], [4], Suzuki [4,1V],

W. J. Wong [1] A transvection SL,(2) ~ Ug, Ay
SLs(2), Held [6] A transvection SLs(2), M,,, HHM
PSL,(2") for (n, m) # (3, 1), (4, 1), (5, 1),

Suzuki [4, II], [4, IV], [19] A transvection PSL,(2™)

PSp,.(q),goddn > 2, W.J. Wong[7],[8] t,isrepresented in Sp,,(g) by an
element with exactly two cha-
racteristic values equal to —1 PSp,,(q)
A, ,, Yamaki [2] An involution of type 2° Uiz Wys, Spe(2)
Wypsrs =1, r=20r 3,4n+r # 6 An involution of type 22" )
Kondo [1], [2], [3], Yamaki [1]

In the remaining cases t, is any central involution.

PSU4(2™), Thomas [2] PSU4(2™)
G,(2™), Thomas [1] G,(2™)
3D,(2"), Thomas [3] 3D,(2m)
PSL4(g), g = 3 (mod 4), Phan [1], [3] PSL(q)
G,(q), 4 > 3, q odd, Fong [3] Gy(9)
Gy(3), Janko [11] G,(3)
PSU,(3), Phan [2] PSU,(3)
Co,, Fendel [1] Co,
2F4(2)" = Tits group, Parrot (announced at this congress) 2F 2y
2F4(2), (not simple), Hearne [1] 2F(2)

At this congress Suzuki has announced similar characterizations of the groups PSU,(2™)
and PSp,,(2™).

The remaining results in this section are characterizations which are quite similar
to those in the table above.

THEOREM 4.4.1 (Suzuki [4, III]). — Let G be a simple group with one conjugate class
of involutions. If t is an involution in G let Cg4(t) be isomorphic to the centralizer of
an involution in PSU4(2™), m > 2. Then G = PSU,(2").

THEOREM 4.4.2 (Guterman [1]). — Let x,, x,, x5 be central involutions in F,(2™),
no two of which are conjugate, such that x,x, = x5 and C(x{) n C(x;) = C(x3). Sup-
pose that G is a simple group which contains central involutions yy, y,, y3 With y1y, = 3
and Cg(y) ~ C(x;) for i=1,2,3. Then G = F,(2™).

THEOREM 4.4.3 (Asche [1]). — A simple group cannot contain a central involution t
with Cg(t) =~ D,m X PSL,(q) for odd q.
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THEOREM 4.4 .4 (Harada [2], Janko-Thompson [1]). — Suppose that t is an involution
in the simple group G with Cg(t) = (t) x PSLy(q). Then S,(G) is abelian.

THEOREM 4.4.5 (Lyons-Thompson, Janko [12] for n = 9). — Let G be a simple group
which contains a central involution t with Cg(t) ~ W,. Thenn=110orn=28 (The
cases n = 8, 11 occur for McL, Ly respectively).

THEOREM 4.4.6 (Fong [1]). — Let G be a simple group and let T= S,(G). Suppose
that | T| = 32 and T contains a self centralizing cyclic subgroup of order 8. Assume
further that the centralizer of every involution in G is solvable. Then G =~ PSU;(3).

THEOREM 4.4.7 (Brauer-Fong [1]). — Let G be a simple group and let T = S,(G).
Assume that | T | = 64 and T contains a self centralizing cyclic subgroup { x ) of order 8
all of whose generators are conjugate in G. Suppose that G has more than one class of
involutions. Then G = M,,.

THEOREM 4.4 .8 (Held [3], (4], [S], Janko [9, I]). — Let G be a simple group with Z(S,(G))
cyclic. Assume that if t is a central involution in G then Cg(t) is an extension of an
elementary abelian group of order at most 16 by &,. Then G is isomorphic to one of
the following groups.

() s, Ao, Ao,
(i) My;, Mgy, M,,.
(iii) PSL4(3).

THEOREM 4.4.9 (Janko [9, II]). — Let G be a simple group with Z(S,(G)) cyclic.
Assume that if t is a central involution in G then Cg(t) is an extension of an elementary
abelian group of order 16 by PSL,(7). Then G =~ M,;.

THEOREM 4.4 .10 (Janko-Wong [1]). — Let G be a simple group. Let H be the centra-
lizer of a central involution. Assume that H has a normal nonabelian subgroup S of
order 64 with H/S ~ &5. Assume further that if z is an element of order 3 in H then
Cs(z) € Z(S). Then G ~ HiS.

THEOREM 4.4.11 (Harada [S]). — Let G be a simple group. Assume that
Z(S5(G)) = {t)> has order 2 and S,(G)/ {t> = S,(WUg). Assume further that Cg(t)
does not normalize any nonidentity subgroup of odd order. Then Cg(t) is isomorphic
to the centralizer of a central involution in one of the following groups Wio, M35, M55,
PSL4(5), PSU,3), HaJ, McL.

THEOREM 4.4.12 (Fong-Wong [1]). — Let G be a simple group with subgroups L,, L,
such that L, ~ SL,(q,) fori = 1, 2, whereq,, q, areodd,[L,, L,] = land L, n L,={t)
has order 2. Suppose that |C4(t): LiL,| = 2. Then G is isomorphic to one of the
groups PSp,(q), Gy(q) or Dy(q) where g = min {4y, q, }.

§ 4.5. PRODUCTS OF INVOLUTIONS

THEOREM 4.5.1 (Glauberman [1]). — Let G be a finite group and let & be a set of
odd primes. Suppose that G is generated by a conjugate class D of 2-elements such
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that the product of any two elements in D is a n-element. Then G’ is a n-group and so in
particular G is solvable.

This strengthens earlier results of Fischer [4], [5] who first looked at problems of
this type. The following remarkable result led to the discovery of the simple groups
Fi225 Fizaa Fi’24'

THEOREM 4.5.2 (Fischer [6]). — Let D be the union of conjugate classes of G consist-
ing of involutions such that G = D). Assume that if x,y < D then |{xy)>| < 3.
Suppose further that G has no normal solvable nonidentity subgroup. Then G is iso-
morphic to one of the following groups.

(i) A semi-direct product of D,(2) or D,3) by ¥.
(i)) &> Sp2u(2) or 032).

(iii) A normal subgroup of OX(3).

(iv) PSU(2).

(V) Fiyy, Fiys, Fiyg (| Fiyy: Figg| =2).

Fischer and F. G. Timmesfeld are also studying groups G which are generated by
a union of conjugate classes D of involutions and for which the following holds: If x, y
are in D then xy has order at most 4 and in case xy has order 4 then (xy)? isin D. The
work on these groups is not yet complete.

§ 4.6. RELATED TYPES OF CHARACTERIZATIONS

This subsection contains a sample of results which use properties of involutions
but don’t fit naturally into any of the earlier subsections. Some of these results can
be considerably simplified by making use of some of the more recently proved theorems
mentioned in the previous subsections.

THEOREM 4.6.1 (Suzuki [9]). — A partition of a group G is a collection {U;} of
subgroups such that U;nU; = 1) for all i # j. The partition is proper if G # U,
for alli. Let G be a group with a proper partition which contains no solvable normal
subgroup. Then G = Sz(22"*') for some n> 0 or G = PSL,(q) or PGL,(q) for
some q > 3.

THEOREM 4.6.2 (Suzuki [18]). — Suppose that G contains a subgroup H such that
H — A consists of involutions for some proper subgroup A of H. Assume that4||H |
and H = Cg(t) for any involution t in Z(H). Then either G is solvable or G has a normal
subgroup N whose order is not divisible by 4 such that G/N ~ PSL,(q) or PGL,(q)
for some q > 3.

THEOREM 4.6.3 (Harada [1], Stewart [1]). — A subgroup A of G is special if
[Ng(d): A| =2 and Cg(x) = A for all nonidentity elements x in A. Suppose that G
is simple.

(i) If G contains two nonconjugate special subgroups then G~ SL,(2™), m > 1.
(ii) If G contains a special subgroup A with |G| < 4 (| A| + 1)? then G ~ PSL,(g),
q>3.



THE CURRENT SITUATION IN THE THEORY OF FINITE SIMPLE GROUPS 69

THEOREM 4.6.4 (Fischer [1]). — Let p be a prime. Assume

(i) Any two S,-groups of G generate a solvable group.
(ii) Either p=2 or if N < H are subgroups of G with H/N nonabelian
then p| |H: N|. Then G is solvable.

THEOREM 4.6.5 (Glauberman [4]). — Let p be a prime and let P be a S ,-group of G.
Assume

(i) If two elements of P are conjugate in G they are conjugate in N4(P).
@) If xisin P, x # 1 then Cg(x) has a normal p-complement.
(iii) Any two elements of order p in G generate a p-solvable group.
(iv) P is not an elementary abelian group all of whose nonidentity elements are conju-
gate in G.

If 0,(G) = (1) and P is not normal in G then p = 2 and G = Sz(2™) for somem > 3.

THEOREM 4.6.6 (Glauberman [4]). — Let p be a prime and let G be a group with a
cyclic S -subgroup. Then G is p-solvable if and only if any two p-elements generate
a p-solvable group.

THEOREM 4.6.7 (Martineau [1]). — Let G be a simple group. Suppose that G contains
a subgroup H = D,,, x D,, with m,n odd and m,n > 1. Assume that H contains
the normalizer of every nonidentity subgroup of H of odd order. Then G = Ja.

A different type of result concerning involutions can be found in Walter [1].

§ 5. Odd characterizations.

If x, y are elements in a group G such that x, y and xy all have order 3 then { x, y >
has a normal abelian subgroup. This can be exploited in a manner somewhat analo-
gous to the way involutions are used. See Feit-Thompson [2]. G. Higman has used
this and related relations in groups to systematically study certain questions about
groups. He calls these results odd characterizations. A survey of many of these
results can be found in G. Higman [2]. Here only three results will be mentioned to
give an idea of the type of theorem to be expected.

* THEOREM 5.1 (Stewart [1]). — Suppose that the simple group G contains a subgroup A
such that 3| |A|, |Ng(4): A| =2 and A = Cgyx(x) for every nonidentity element x
in A. Then G =~ PSL,(q) for some q > 3.

The case | A| = 3 had previously been handled in Feit-Thompson [2]. See also
Theorem 4.6.3.

THEOREM 5.2 (Fergusson [1], Herzog [1]). — Suppose that the simple group G contains
a subgroup M such that 3| |M|, Ng(M) = M, |Ng(M): M| is odd and C4(x) = M
for every nonidentity element x in M. Then G ~ PSL,(3*"*') for some n > 0.

Some variations on this result can also be found in Herzog [2], [3].

THEOREM 5.3 (G. Higman [2]). — Let G be a group which contains a maximal sub-
group isomorphic to D,y,. Then G =~ Us.
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§ 6. Properties of subgroups.

This section lists some results which do not refer to properties of involutions.
However some of these results make use of the methods of section 4.

§ 6.1. NILPOTENT SUBGROUPS

THEOREM 6.1.1 (Thompson [1], [2], [3], [6]). — Let G be a group which contains a
maximal subgroup that is nilpotent of odd order. Then G is solvable.

Janko [1], [5] and Deskins observed that this result can be generalized as follows.

THEOREM 6.1.2. — Let G be a simple group which contains a maximal subgroup M
that is nilpotent. Then M = S,(G) and M has class at least 3.

In all known cases of Theorem 6.1.2 M is a dihedral group. Harada [2] has verified
that if | M | < 64 in Theorem 6.1.2 then M is a dihedral group.

THEOREM 6.1.3 (Glauberman [5]). — Let p be a prime and let P be a S,-group of G.
Suppose that Ng(P)=P. If p>5 then G is not simple.

It remains an open question whether a simple group G can have a S;-group P with
Ng(P) = P. If p is a Fermat prime or a Mersenne prime with p > 5 then a S,-group
is maximal and hence self normalizing in PSL,(p).

§ 6.2. CHAINS OF SUBGROUPS

There are a variety of results which classify all groups satisfying some assumptions
on chains of subgroups. Some examples will be given. A chain of subgroups is a
set of subgroups which is linearly ordered by inclusion. The length of a chain is the
number of distinct terms in it minus 1. A subgroup of G is k'™ maximal if it is the k'
term in some chain of proper subgroups each of which is maximal in its predecessor
and k is the smallest such integer.

THeOREM 6.2.1 (Gagen [2], Harada [3]). — Let G be a simple group in which every
chain of subgroups has length at most 7. Then G is isomorphic to one of the following
groups. PSL,(q) for some values of g, PSU4(3), PSU,(5), U,;, My,, Ja.

This generalizes earlier results of Janko [3], [4].

THEOREM 6.2.2 (Gagen-Janko [1], Janko [2]). — Let G be a simple group in which
every 3 maximal subgroup is nilpotent. Then either G ~ Sz(8) or G ~ PSL,(q) for
some values of q.

THEOREM 6.2.3 (Berkovic [3]). — Let G be a simple group in which every 2°¢ maximal
subgroup is 2-nilpotent. Then G ~ PSL,(2") where p is a Fermat prime or G ~ PSL,(3°)
for some prime p > 3, or G = PSL,(p) for a prime p > 3 with p?> = 9 (mod 80).

Various other results which characterize groups in similar terms can be found in
Berkovic [1], [2], [3], [4], [5], [6], [7], [8], [9], Kohno-Vedernikov [1], Lelcuk [1], Mann [1],
[2] and Winkler [1].
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§ 6.3. FACTORIZABLE GROUPS

Let A4, B be subgroups of G such that G = AB. There are many results that assert
that under various conditions on A and B, G must be solvable. A survey of some
of these results can be found in W. R. Scott [1]. The following for instance generalizes
Burnside’s theorem which however is needed in the proof.

THEOREM 6.3.1 (Kegel [1], Wielandt [1]). — Suppose that G = AB where A and B
are nilpotent. Then G is solvable.

Another result about factorizable groups can be found in Camina-Gagen [2].

§ 7. Orders of simple groups.

There are various theorems which assert that the order of a noncyclic simple group
must have certain properties. One of the best known is Burnside’s theorem which
states that at least 3 distinct primes must divide | G | if G is simple. The results of §4.2
immediately yield a classification of all simple groups whose order is not divisible
by 16 (modulo the question of groups of Ree type). In this section results of this type
will be discussed.

THEOREM 7.1 (Brauer-Fowler [1], Feit-Thompson [4]). — Let G be a group of compo-
site order. Then G contains a proper subgroup of order greater than | G |3,

It is an open question whether a noncyclic simple group G always contains a proper
subgroup of order greater than | G|/2. Also it is not known whether a noncyclic
simple group G always contains a real element x with | C4(x) |* > | G|.

THEOREM 7.2 (Brauver-Tuan [1]). — Let G be a simple group with| G | = pq°g, where p,q
are primes and go < p — 1. Then G =~ PSL,(p) withp=2" 1+ 1 or G = PSL,(p — 1)
with p—1=2", p> 3.

THEOREM 7.3 (Brauer [12]). — Let G be a simple group of order p°q’g,, where p, q
are distinct primes and a > 0. If |G|+ p then g, — 1 > log p/log 6.
THEOREM 7.4 (Brauer [2], Nagai [1], [2], [3]). — See also MR, 14 p. 843). Let G be a
-1
simple group with |G| = py(l + np) where p is a prime. Assume that a S,-group
of G is self centralizing and t|(p — 1).

@) If n<p+2then G~ My, PSL5(3), PSL,(p) or PSL,(2™) where 2" + 1 =p.
@) If 2p—3<n<2p+3andtisodd t>1then2p+1=q">23 for some
prime q where q =3 for a > 1. Furthermore G =~ PSL,(2p + 1).

-1
(i) If n=2p+3and t = 22— then 2p+1 is a prime power and G~ PSL,(2p+1).

THEOREM 7.5 (Brauer-Reynolds [1]). — Let G be a simple group whose order is divi-
sible by the prime p. Supposethat p®> > | G|. Then G ~ PSL,(p),p > 3 or G =~ SL,(2™)
with p=2"+1> 3,
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A variation on this result can be found in Herzog [6)].

The only known simple groups whose order is not divisible by 4 distinct primes are
the eight groups PSL,(5), PSLy(7), PSL,(8), PSL,(9), PSL,(17), PSLs(3), PSU,(3)
and O5(3). It is an open question whether any others exist. As a corollary of
Theorem 3.2 one gets.

THEOREM 7.6 (Thompson [8]). — Let G be a simple group whose order is not divisible
by 4 distinct primes. Then |G| = 2°3°p° where p =5, 7, 13 or 17.

THEOREM 7.7 (Brauer [13], Wales [5]). — Let G be a simple group of order 2°3%p
where p is a prime. Then G is isomorphic to one of the eight groups listed above.

Related results can be found in Herzog [4], [S]. A discussion of questions related
to the theorems above can be found in Brauer [5].

There exist infinitely many pairs of nonisomorphic simple groups which have the
same order. However various simple groups have been characterized by their orders.
Seg for instance Theorem 7.5. In particular all the known simple groups of order at
most 106 except A and PSL4(4) which both have order 20, 160 have been characterized
by their orders. Here are a few other results in this direction.

THEOREM 7.8. — Each of the following groups is the unique simple group of its order.

(i) (Stanton [1]), M,,, M,,.
(ii) (Parrot [1]), My, M,,.
(ifi) (Bryce [1]), M.

(iv) (Hall-Wales [1]), Hal.
(v) (S. K. Wong [1]), HIM.

Hall [3] has undertaken a systematic survey to find all simple groups of order at
most 10%. This work is not yet complete. However since this work was begun one
new simple group, namely Hal, with order in this range has been discovered.

While there may be two nonisomorphic groups of the same order it seems possible
that a simple group is characterized by its character table. The following result is
known.

TueoreM 7.9 (Nagao [1], Oyama [1]). — The groups W, and &, are characterized
by their character table.

To conclude this section let me mention one curious fact pointed out by M. Benard
and A. Rudvalis in answer to a question I raised. The groups PSpg(2) and D4(2),
which are isomorphic to the simple factors of the Weyl groups of E; and Eg respecti-
vely, are the only known simple groups for which every character is rational valued.

§ 8. Linear groups.

One of the oldest results in group theory is the following.

THeorREM 8.1 (Jordan). — There exists an integer valued function J defined on the
positive integers such that if a group G has a faithful complex representation of degree n
then |G: A| < J(n) for some normal abelian subgroup A of G.
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Theorem 8.1 obviously implies the same conclusion with the same function J if
the complex field is replaced by any field whose characteristic does not divide | G|.
This has recently been generalized as follows.

THEOREM 8.2 (Brauer-Feit [1]). — Let p be a prime. There exists an integer valued
function f, defined on ordered pairs of integers such that if G has a faithful representa-
tion of degree n over a field of characteristic p and p™ is the order of a Sylow p-group
of Gthen|G: A| < f,(m, n) for some normal abelian subgroup A of G.

The following result generalizes Theorem 8.1 in a different direction.

THEOREM 8.3 (Isaacs-Passman [1]). — There exists an integer valued function f
defined on the positive integers such that if the degree of every complex irreducible
representation of G is at most n then|G: A| < f(n) for some normal abelian subgroup A
of G.

Under special assumptions more precise conclusions can be obtained in Theorem 8. 3.
See Isaacs [1], Isaacs-Passman [2], [3] and Passman [1].

Theorems 8.1 and 8.2 assert that the degree of a faithful representation of G over
some field and the order of a Sylow p-group in case the field has characteristic p > 0
restrict the nature of G. The remaining subsections of this section contain more
precise results along these lines.

If p is a prime then G is of type L,(p) if every composition factor of G is either p-sol-
vable or is isomorphic to PSL,(p).

§ 8.1. LINEAR GROUPS IN CHARACTERISTIC p >0

Let p be a prime, let G be a group and let d be the degree of a faithful representation
of G over a field of characteristic p. Let P be a S -group of G.

TueoreM 8.1.1(P. Hall-G. Higman [1]). — Suppose that G is p-solvable, 0 ,(G) = (1)
and P is cyclic. Then

(i) There exists an integer a with 1 < p*® < | P| depending on G such that

—1
dZIPI—p"ZP—p—]PL

(ii) If either p#2 or p — 1 # 2" for any integer b then d > | P|.

THEOREM 8.1.2 (Blau [1], Feit [4]). — Suppose that p > 11, P is cyclic, G is not of
type L,(p) and d < p. Then |P| = p, C4(P) = P X Z(G) and one of the following
holds.

@) p=11and d = 1.
3
(i) p > 11 and d > max {Z(p —1),p— e} where e = | Ng(P): Cg(P) |.
In case p = 11 Theorem 8. 1.2 gives the best possible estimate since Ja has a 7 dimen-

sional faithful representation over GF(11). However in case p > 11 the result is far
from satisfactory. A nonsolvable doubly transitive group on p letters satisfies the
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hypotheses of Theorem 8.1.2 with d = p — 2 but there is no known example of a
group which satisfies these hypotheses with d < p — 2. Under various restrictions
on e and | Z(G)| the inequality on d can be sharpened. A variety of results in this
direction together with a detailed discussion of the cases 13 < p < 31 can be found
in Blau [1].

The fact that P is assumed to be cyclic is essential in Theorems 8.1.1 and 8.1.2.
However Theorem 8.1.1 can be reformulated as follows.

THeorem 8.1.3 (P. Hall-G. Higman [1]). — Suppose that G is p-solvable and
0,G) =<1). Let M be a faithful GF(p)[G] module. Let x be a p-element in G,
x # 1 and let d be the degree of the minimum polynomial of x actingon M. If P ={x)
then the conclusion of Theorem 8.1.1 holds.

In this form the result has played a vital role in group theory during the past decade.
If |[P| =2 or 3 in Theorems 8.1.1 or 8.1.3 the results are of course trivially true.

§ 8.2. QUADRATIC PAIRS
A quadratic pair (G.M) consists of a group G and a faithful GF(p)[G] module M
such that G is generated by p-elements with a quadratic minimum polynomial on M.

Suppose that (G, M) is a quadratic pair with p > 5. If G is p-solvable and
0,(G) = (1) then Theorems 8.1.3 implies that G = {1 ). The situation is however
very different in case G is not p-solvable. In this connection the following profound
result has recently been proved.

THEOREM 8.2. 1 (Thompson [9]). — Let (G, M) be a quadratic pair withp > 5. Assume
that G = G’ # { 1) and G/Z(G) is simple. Then G/Z(G) is a simple group of Lie type
other than Eg defined over a field of characteristic p.

For any simple group of Lie type other than Eg a complete list of quadratic pairs
(G, M) is given in Thompson [9] with M irreducible and G any covering group of the
simple group. All types other than Eg occur in some quadratic pair.

§ 8.3. LINEAR GROUPS IN CHARACTERISTIC 0

Let G be a group and let d be the degree of a faithful complex representation of G.
Let 7 be the set of all primes pwith p — 1 > d. A survey of some results related to the
ones in this subsection can be found in Leonard [3].

TaEorREM 8.3.1 (Blichfeldt, Burnside). — G has an abelian Hall n-group.

—1
THEOREM 8.3.2 (Feit-Thompson [1]). — If p is a prime with d < ”—2— then the
S ,-group of G is normal in G.

THEOREM 8.3.3 (Feit [3]). — Let H be a Hall n-group of G. Then one of the follow-
ing holds.

(i) H is normal in G.
(ii) There exists a subgroup H, of prime index in H such that H, is normal in G.
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THEOREM 8.3.4. — Suppose that p € m and a Sylow p-group P of G has order p.
Assume that G is not of type L,(p). Then

(i)d>§(p—1). If p>11 thendZ%(p—l).

(ii) (Feit [S5]). If |Z(G)| is odd then d > p — 2.

(iii) (Feit [5]). If d=p — 2 thenp =2+ 1 for some b and G ~ SL,(2%) x Z(G).

(iv) (Blau [2], Brauer [7], Hayden [1]). Let t|Ng(P): Ce(P)|=p—1. If 3 <t
then 6 <tand p<t*—3t+ 1.

Theorem 8.3.2 was conjectured by G. de B. Robinson and first proved by Brauer [1]
in case p? Y |G| Brauer conjectured Theorem 8.3.3. Theorem 8.3.4 (i) is an
immediate consequence of Theorem 8.1.2 and is an improvement of earlier results
of Brauer [1] and Tuan [1]. Theorem 8. 3.4 (iii) is proved in Feit [5] under the assump-
tion that | Z(G)| = 1. This assumption can however easily be removed.

The estimate in Theorem 8.3.4 (ii) is clearly the best possible since any doubly
transitive permutation group on p letters has a faithful irreducible complex represen-
tation of degree p — 1. However it is an open question whether the assumption
about | Z(G)| can be removed or not. If not then this would lead to (presumably)
new simple groups. Under certain conditions the estimate on d can be improved as
follows.

THEOREM 8.3.5. — Let p be a prime and let P be a S,-group of G. Assume that
PP ={1) for x in G — Ng(P). If d* <|P| then P < G.

It seems possible that the same conclusion should hold for 4> < |P| Under
additional assumptions this has been proved, Brauer-Leonard [1], Leonard [1], [2].
In a different direction the following has been proved.

THEOREM 8.3.6 (Lindsey [2]). — Suppose that p is a prime and d = p — 1. Assume
that p*| |G: O/G)|. Then G/Z(G') contains a normal subgroup of index at most 2
which is isomorphic to PSL,(p) x PSL,(p).

Groups which have an irreducible complex representation of prime degree have
been studied by Brauer [11] and Wales [1]. The following is a simple consequence of
their results.

THEOREM 8.3.7. — Suppose that G has an imprimitive irreducible faithful unimodular
representation of prime degree p. Then p* } |G :0,G)|.

If p = 2 or 3 this result is the best possible since U5 and A4 have representations
of degree 2 and 3 respectively. It is not known whether it is possible to replace p?
by p? in Theorem 8.3.7 for p > 11. Since all 5 and 7 dimensional finite linear groups
have been classified it can be seen by inspection that p® can be replaced by p? in case
p=5orT7

The last two results in this subsection are more special in nature but the second of
them is used in characterizing Co;. The proofs depend on the arithmetic of cyclo-
tomic fields.

THEOREM 8.3.8. — Suppose that G has an irreducible faithful rational valued character
of degree 11. Then G has a subgroup of index 11 or 12.
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THEOREM 8.3.9. — Suppose that G has an irreducible faithful rational valued character
of degree 23. Then one of the following possibilities must occur.

(i) G has a subgroup of index 23 or 24.
(ii) G’ is isomorphic to a subgroup of Co, or Cos.

§ 8.4. THE 2 AND 3 DIMENSIONAL LINEAR GROUPS IN CHARACTERISTIC p >0

Let p be a prime. A subgroup G of GL,(p®) can be lifted if there exists a finite linear
group of degree n whose coefficients are local integers with respect to some prime
divisor of p in some algebraic number field and which maps onto G when read modulo
this prime divisor. To list all subgroups of SL,(p®) for n = 2, 3 it suffices to list those
which cannot be lifted since all 2 and 3 dimensional finite complex linear groups are
known (see the next subsection).

THEOREM 8.4.1 (Dickson). — Let G be an irreducible subgroup of SL,(p®) which
cannot be lifted. Then G is isomorphic to SL,(p") for some b| a.

THeOREM 8.4.2 (Bloom [1], Hartley [1], Mitchell [1]). — Let G be an irreducible
subgroup of SLs(p®) which cannot be lifted. Then G is isomorphic to one of the follow-
ing.

(@) SLs(p?) for some b|a.

(ii) In case 3b|a and 3 | (p® — 1) an extension of SL3(p®) by a group of order 3.
(ili) Us(p?) for some b with 2b|a.
(@iv) In case 6b|a and 3| (p® + 1) an extension of U,(p®) by a group of order 3.
() If p#2,b|aand p® > 3, either PSL,(p%) or PGL,(p").
(vi) If p =15 and a is even, a covering group of U,.

Mitchell [2] has also found all the subgroups of PSp,(q) for g odd.

§ 8.5. Low DIMENSIONAL LINEAR GROUPS IN CHARACTERISTIC 0

The finite linear groups in dimension n < 7 have been completely classified. The
tables below contains a complete list of primitive unimodular irreducible groups in
dimension n with Z(G) < G’. Let z =|Z(G)|.

For any prime p > 2 let H;, be the split extension of a nonabelian group P of order p?
and exponent p by SL,(p). Let (I,) denote the class of all primitive unimodular sub-
group of H, containing P.

The results for n = 2, 3 are classical and can be found in Blichfeldt [1].

n=2 g |G| z
1)) 2., SL,(3) 24z, 122 2
(Im) SLy(5) 60z 2
n=3

(13)

(I Ay 60 1
am %, 360z 3

(IV)  PSL,(7) 168z 1
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n=4 (Blichfeldt [1])
1) A x B/Z where A, B occur for n = 2 and Z is the central
subgroup of order 2 which is contained in neither A
nor B.
(I A subgroup of index 2 in GL,(3) x GL,(3)/Z which does
not occur in (I). 288z 2
() Let G, be the group in (II), there are two possible exten-
sions of G, which interchange the factors 576z, 576z 2
av) An extension SL,(3) x SL,(3)/Z which interchanges the
factors where Z is as in (I). 288z 2
v) As, &5 60, 120 1
ovn U, P 360z, 720z 2
1
v &, 571 2
(VIII)  SL,(5) 60z 2
(IX) SL,(7) 168z 2
(X) 0:(3) 26,3457 2
(X1) G is a primitive subgroup containing T of the extension of
an extra special group T of order 25 by its automorphism
group.
n=>5 (Brauer [11])
(Is)
m U, Ag, &5, L 60, 360, 120, 720 1
(I11) PSL,(11) 660 1
(Iv) 04(3) 26,345 1
n= (Lindsey [1])
08} A x Bwhere A occurs for n = 2and Bforn = 3
(11) SL,(5) 60z 2
(I11) s . 120z 2
(Iv)  9g ~ PSL,(9), an extension by an automorphism of
order 2 which is the product of the field automorphism
by the automorphism from GL,(9) 360z, 720z 3
W) A, 360z 6
1
(VD) A, &5 57!, 7! 1
1
vy 9, (57 !)z 3
~ 1
(vin o, (57 !)z 6
(IX) PSLy(7), PGL,(7) 168, 336 1
X) SL,(7), an extension by an automorphism of order 2 in
GL,(7) 168z, 336z 2
(X1) SL,(11) 660z 2
(XII)  SL,(13) 1092z 2
(XIII) 04(3), an extension by an automorphism of order 2 26,345 27,345 1
(XIV)  SUy4(3), an extension by the field automorphism 6048, 12096 1
(XV)  SU,(3) = Og(3) an extension by an automorphism of
order 2 27.36,5.72,28,36.5.7z2 6

(XVI) HaJ 604, 800z 2
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(XVII) SL,(4), an extension by an automorphism of order 2 which
is the product of a graph automorphism and a field auto-

morphism 20, 160z, 40, 320z 6
n=7 (Wales [2]).
(I)
I PSL,(13) 1092 1
(I1I) PSL,(8), an extension by the field automorphism 504, 1512 1

1

(Iv) Ay, Lg . 58!, 8! 1
(\%) PSL,(7), PGLy(7) 168, 336 1
(V) PSU,(3), an extension by the field automorphism 6048, 12096 1
(VII)  Spe(2) 29.34.5.7 1

§ 9. Permutation groups.

The theory of permutation groups is as old as group theory. See for instance
Passman [2] and Wielandt [5] for systematic expositions. This section contains a
list of some recently proved results. No attempt at completeness has been made,
rather the emphasis is on results which are related to questions concerning the structure
of simple groups.

Let G be a permutation group on a set Q and let « be in Q. Then G, denotes the
subgroup of G consisting of all permutations leaving o fixed.

§ 9.1. DOUBLY TRANSITIVE GROUPS

THEOREM 9.1.1. — Let G be a 2-transitive permutation group on Q. For a in Q
assume that G, has a normal subroup which is regular onQ — {a }. Then G has a normal
subgroup M with M < G < Aut (M) such that either M is a sharply doubly transitive
group or M is isomorphic to one of the following groups and Q is the set of S,-groups
of G.

(i) PSL,(p™), PSU5(p™).
(ii) Sz(22m*1), p=2.
(iii) A group of Ree type, p = 3.

(Sharply doubly transitive groups are completely known, Zassenhaus [3]).

This theorem appears in Hering-Kantor-Seitz [1], the proof incorporates the work
of many authors who proved various special cases of Theorem 9.1.1. The earliest
results in this connection are due to Burnside, Dickson and Frobenius. Essential
contributions can be found in Feit [1], Ito [3], Shult [1], Suzuki [4], [6], [11], [14], [15],
Zassenhaus [2], [3]. The groups Sz(22™*1) were discovered in proving a special case
of this result. Some simplifications of part of the arguments can be found in Glau-
berman [6], Huppert [1]. Special cases of this theorem can also be found in Harada [6],
Ito [11], Nagao [3, I].

THEOREM 9.1.2 (Kantor-O’Nan-Seitz [1]). — Let G be a 2-transitive permutation
group on Q. Suppose that G, is cyclic for a, B in Q. Then G is either sharply doubly
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transitive or G is isomorphic to one of the following groups and Q is the set of S,-groups
of G.

(i) PGLy(p™), PSL,(p™), PGU;(p™), PSU,(p").
(ii) Sz(22"*1), p =2,
(iii) A group of Ree type, p = 3.

Special cases and related results can be found in Iwasaki-Kimura [1], Kimura [1],
Passman [3].

TueoreM 9.1.3 (Ree [3]). — Let G be a 2-transitive permutation group on Q. Assume
that for a, f in Q G,, contains exactly one nonidentity element which leaves at least 3
letters fixed and every involution leaves at least 3 letters fixed. If |Q| is even then G
is a group of Ree type and Q consists of the Ss-groups of G.

THEOREM 9.1.4 (Harada [7]). — Let G be a 2-transitive permutation group on Q.
Assume that for o, B in Q, | G| is even and | G,y N Gyy | is odd for x in G — Ng(G,p).

@) If | Q| is odd then either G has a regular normal subgroup or S,(G) is dihedral,
quasi-dihedral, Z,n | Z, 0r Zyn X Zyu, n > 2.
(i) If | Q| is even then one of the following holds.

(a) PSLy(p™) = G < PT'Ly(p"), p # 2,Qistheset of S,-groupsof Gand| Q| = p"+1.

(b) G is isomorphic to an automorphism group of the 1 or 2 dimensional affine group
over a field of characteristic 2.

() G Ug, [Q] =6 0or Gz PI'L,y@8) and |Q| = 28.

See also Hering [2] and King [1].

THEOREM 9.1.5 (Harada [4]). — Let G be a 2-transitive permutation group on Q
which contains no regular normal subgroup. Suppose that G contains an involution t
such that every element in Cg(t) — {1} has the same number of fixed points. Then
G = PSLy(p") and Q is the set of S,-groups of G or G ~ Sz(2°™**) and Q is the set of
S,-groups of G.

THEOREM 9.1.6. — Let G be a 2-transitive permutation group on Q. Let m(G) be
the maximum number of fixed points of an involution in G.

(i) (Bender [2]). If m(G) = O then either G is solvable or PSL,(p™) < G for some p
and Q is the set of S,-groups of PSL,(p").

(ii) (Hering[2], see also Theorem 9.1.4). If m(G) = 2 and | G,g, | is odd for all o, B,y
in Q then either G ~ g and | Q| = 6 or PSL,(p™) = G < PT'L,(p") for some p and Q
is the set of S,-groups of G.

THEOREM 9.1.7 (Tsuzuku [3]). — Let G be a 2-transitive permutation group on Q.
Suppose that |Q| =1 + p + p? foraprimepand p*| |G| Theneither G = PGL4(p)
or Wyiypip2 €6

THEOREM 9.1.8 (Appel-Parker [1]). — Let G be a 2-transitive permutation group
on Q. Suppose that |Q| =1+ np for a prime p and n < p. If p*| |G| then
Ay € G Furthermore Wy, ,, = G for |Q| =29, 53, 149, 173, 269, 293 or 317.
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Groups which have two inequivalent doubly transitive permutation representations
with the same character lead to questions concerning block designs. See Feit [6],
Ito[2],[13],[15]. Itis not known whether a group can have three pairwise inequivalent
doubly transitive permutation representations which afford the same character.

Other questions which relate doubly transitive permutation groups and combina-
torial configurations are for instance discussed in Hall [2], Ito [16].

§ 9.2. TRANSITIVE EXTENSIONS
THEOREM 9.2.1 (Tits [2], Zassenhaus [1]). — The only transitive extensions of PGL,(q)
acting on projective space are the ones which give rise to the Mathieu groups unless q=2.

THEOREM 9.2.2 (Suzuki [17]). — Let G be one of the groups PSU,(p™), Sz(22"*1)
or a group of Ree type acting on the S -groups of G, where p = 2 or 3 respectively in the
last two cases. Then G does not have a transitive extension unless G = PSU 4(2) or Sz(2).

Related results can be found in Bender [1], Luneburg [1], [2]. By combining
Theorems 9.1.1,9.1.2 and 9.2.2 one easily gets.

THEOREM 9.2.3 (Hering-Kantor-Seitz [1]). — Let G be a 3-transitive group on
in which the stabilizer of 3 points is cyclic. Then PGL,(p™) < G < PTL,(p") where Q
is the set of S,-groups of PGL,(p™).

§ 9.3. PERMUTATION GROUPS OF PRIME DEGREE

Throughout this subsection p is a prime and G is a permutation group on Q with
[ Q| = psuch that a S,-group of G is not normal in G. A theorem of Burnside implies
that G is doubly transitive on Q. By Ito [9], G has an irreducible character of degree p.
The results of Brauer [2] are important for the study of these groups.

TreoreM 9.3.1 (Ito [1], [5], [10]). — Let P be a S,-group of G. Let N = Ng(P).

(i) (See also Feit [5] and Theorem 8.3.4 (iii)). If |N:P|=2 then p=2" +1
and G ~ SL,(2Y).

@) If |IN:P|=qwith2<qg<p—1and G is 2(q — 1) — transitive on Q thei
GrU,. :

"THEOREM 9.3.2 (Ito [14]). — If p is a Fermat prime and G contains an odd permutation
then G= & ,.

A related result can be found in Fryer [1].

TueoreM 9.3.3 (Ito [7], [8]). — Suppose that p = 2q + 1 with q a prime.
(i) Either G is 4-transitive on Q or G &~ PSL,(p) withp = 5,7 or 11.

G 1 p>2, 30 -9=11

and p — 4 are primes then A, < G.

§ 9.4. PERMUTATION GROUPS OF DEGREE 2p

Let p be a prime. The only known examples of primitive permutation groups
on 2p letters which are not doubly transitive occur for p = 5. The following results
are known in this connection.
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THEOREM 9.4.1. — Let G be a primitive permutation group on 2p letters which is not
doubly transitive.

(i) (Wielandt [2), [5]). 2p = m® + 1 for some integer m. p% y|G|. G, has 3
m-—1) m (m+1)
2 2

the permutation character have degrees 1, p — 1, p respectively.
(i) (L. Scott [1]). If p > 5 then p > 313 and m in (i) is not a prime.
-1
(iii) (Ito [12]). If G, is not faithful on the orbit of size m (m 2 )
(iv) (See also Theorems 8.3.4 (iii)). Let P be a S,-group of G. If |[Ng(P)| = 2p
then p = 5.

orbits of size 1, m respectively. The irreducible constituents of

then p = 5.

For results of this type for groups of degree 3p see for instance Ito [6].

THEOREM 9.4.2 (Nakamura [1]). — Let p, g = 2p — 1 be odd primes. A primitive
permutation group on 2p = q + 1 letters is either 3-transitive or is isomorphic to PSL,(q).

§ 9.5. PRIMITIVE PERMUTATION GROUPS

THEOREM 9.5.1 (Sims [1, I}, W. J. Wong [S]). — Let G be a primitive permutation
group on Q. If G, has an orbit of length 3 then G is solvable.

Related results concerning the structure of G under various hypotheses on G, can
be found in Cline-Keller [1], Keller [1], Sims [1, II], W. J. Wong [6].

§ 9.6. RANK 3-GROUPS

Rank 3 permutation groups have recently played an important role in the discovery
of several of the sporadic simple groups. The systematic study of these was begun
by D. G. Higman [1], [2], [3]. See also Tsuzuku [2]. Since this topic was covered by
D. G. Higman in his talk at this congress these results will not be mentioned here.

§ 9.7. MULTIPLY TRANSITIVE GROUPS

Let G be a permutation group on Q. The only known examples of groups G which
are 5-transitive are the groups %,, &, with |Q| =n, M, with |Q| =12 or M,,
with | Q| = 24.

TureoreM 9.7.1 (Nagao [2], [3], Wielandt [4]). — Suppose that G is I-transitive on Q.
If for any simple group G the group of outer automorphisms is solvable then W, = G
where | Q| = n.

|
THroreM 9.7.2 (Hall [1], Nagao [3], Nagao-Oyama [1]). — Suppose that G is 4-transi-
tive on Q. Let H be the subgroup of G leaving 4 letters fixed. If H leaves an additional
letter fixed then G =~ &5, g or My,.

THEOREM 9.7.3. — Let G be 4-transitive on Q. Let H be the subgroup of G leaving
4 letters fixed.
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(i) (Nagao [3]). If every involution fixes at most 5 points then G is isomorphic to
one of the following. &,,4<n<7 W,,6<n<9 My, M,,.
(ii) (Noda-Oyama [1]). If H has a cyclic S,-group then G ~ ¥4 or &.
(iii) (Oyama [2]). If a S,-group of H fixes exactly 6 points then G ~ Ug.
(iv) (Oyama [2]). If a S,-group of H fixes exactly 11 points then G =~ M, ;.
(v) (Oyama [2]). If a S,-group H is semi-regular on the remaining points and distinct
from {1 then G is isomorphic to one of the following ¥¢, &7, Wg, Wy, M, or M 5.

Other conditions on 4-transitive groups can be found in Parker [1]. A result of
this nature for 6-transitive groups is proved in Noda [1].

§ 10. Automorphisms of groups.

The central problem concerning automorphism groups of simple groups is to
prove or disprove the Schreier conjecture which asserts that if G is simple then Out (G)
is solvable. (Out (G) = Aut (G)/In (G) is the group of outer automorphisms of G).
This conjecture has been verified for the known simple groups (except for a few of the
most recently discovered sporadic groups), see section 2. However very little is
known in general. The next two results and some variations on them contain almost
everything known in this connection for general simple groups.

TueoreM 10.1 (Wielandt [6]). — If G is a simple group which contains a subgroup
of prime index then Out (G) is solvable.

TaeEoREM 10.2 (Glauberman [2]). — Let G be a simple group. If Aut (S,(G)) is
solvable then Out (G) is solvable.

Related results can also be found in Glauberman [2], these are all consequences of
Theorem 4.5.1 above. Special cases of Theorem 10. 2 were first proved by Brauer [10].

In a different direction the following result of Brauer, which has been generalized
by Wielandt [3], has played an important role in some of the previously mentioned
work.

THEOREM 10.3. — Suppose that G admits a noncyclic group A of order 4 as a group
of automorphisms. Let f; for i = 1,2, 3 be the number of fixed points of the three
nonidentity elements of A and let f be the number of fixed points of A. Then
Nifhfs =f*1Gl

An automorphism of a group which fixes only the identity element is said to be fixed
point free. It is not known whether a nonsolvable group can admit a fixed point
free automorphism though some results have been proved in this connection.

THEOREM 10.4 (Thompson [1], [2], [3], [6]). — A group which admits a fixed point
free automorphism of prime order is nilpotent.

Related results can be found in Hughes-Thompson [1], Kegel [2]. For other results
concerning groups which admit fixed point free automorphisms of special types see
Fischer [2], [3], Ralston [1].
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§ 11. Generators and relations.

An old conjecture states that a finite simple group is generated by two elements.
This has been verified for most of the known simple groups. See for example Stein-
berg [2). In general nothing is known although Theorem 3.3 above has a result in
this connection.

Tits has defined a (B, N) pair to be a group containing subgroups B and N that
satisfy various conditions. These conditions are modelled on the Bruhat decomposi-
tion of a semi-simple Lie group and have a very geometric flavor, He has succeeded
in characterizing all groups of Lie type of rank at least 3 in these terms, see Tits [5].
Theorem 9.1.1 above may be interpreted as a characterization of groups of Lie type
of rank 1 in related terms though the methods of proof are very different.
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THE COHOMOLOGY
OF INFINITE DIMENSIONAL LIE ALGEBRAS;
SOME QUESTIONS OF INTEGRAL GEOMETRY

by I. M. GEL’FAND

This report is concerned with certain results and problems arising in the theory
of the representation of groups. In the last twenty years much has been achieved
in this field and—most important—its almost boundless possibilities have become
apparent.

Indeed, its problems, touching on the interests of algebraic geometry, on many
questions of the algebraic number theory, analysis, quantum field theory and geometry,
as well as its inner symmetry and beauty have resulted in the growing popularity of
the theory of representations.

It is impossible to list even briefly its main achievements, and this is not the aim
of this communication. Nevertheless, one cannot omit mentioning the outstanding
papers by Harish-Chandra, Selberg, Langlands, Kostant, A. Weil, which considerably
advanced the development of the theory of representations and opned up new rela-
tionships; and, since we do not go into these questions, we will not be able to touch
upon many of the deep notions and results of the theory of representations.

We feel that the methods which have arisen in the theory of representation of groups
may be used in a considerably more general non-homogeneous situation. We will
give some examples:

1. The proof of the fact that the spectrum of a flow on symmetric spaces of constant
negative curvature is a Lebesgue spectrum [1] was based on methods of the theory
of representations, namely the decomposition of representations into irreducible
ones. One of the most useful methods of decomposing representations into irreducible
representations is the orisphere method [5]. In the works of Sinai, Anosov, Mar-
gulis [2], [3], [4], only the orispheres are considered and groups symmetries are left
out. This rendered possible the study of the spectrum of dynamic systems in a consi-
derably more general situation.

2. The theorem of Plancherel and the method of orispheres gives rise to the conside-
ration of more general problems of integral geometry, taking place in a non-homo-
geneous situation [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17].

3. If we have a manifold and its mapping, the study of distributions “ constant
on the inverse image of each point ” of this mapping is an extremely interesting problem,
special examples of which were studied in the homogeneous situation (functions in
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four-dimensional space, invariant relative to the Lorenz group, functions constant on
classes of conjugate elements of a semi-simple Lie group [18], etc.). There are various
aspects of this problem which are considerably more interesting and important than
may seem at first glance. Of course, the main interest of the problem is the study of
these distributions at singularies of the mapping. To be more precise, suppose X
is a manifold (C*-analytical, algebraic) and ¢ is some (perhaps infinitely dimensional)
Lie algebra of smooth vector fields. One wishes to describe the space of unvariant
distributions.

A more natural statement of the problem is obtained by replacing the distributions
by generalised sections of a vector bundle which vary according to a given finite dimen-
sional representation. Unfortunately consideration of length prevent me from giving
a series of existing examples. Those examples are particularly interesting when X
has only a finite number of orbits relative to 4. For interesting example in the non-
homogeneous situation see [34].

4. The theory of representation of groups makes the consideration of interesting
examples possible and shows the importance of studying the ring of all the regular
differential operators on those algebraic manifolds which are homogeneous spaces.
It is quite natural to wish to describe the structure of the ring R of regular differential
operators on any algebraic manifold. Perhaps, as in [19], [20], it would be helpful
to consider the quotient skew-field of the ring R. Another interesting problem is the
description of the involutions of this ring R.

In this report I would like to tell about certain problems which were studied by my
friends and myself while thinking about questions' connected with representation
theory.

I. Representations of semisimple Lie algebras.

0. Suppose %-is a semisimple Lie algebra. The study of representations is essen-
tially the study of a category of ¥-modules. The choice of the particular category
of ¥-modules considered in the algebraic problems of the theory of representations
is essential. Suppose /is a fixed subalgebra of ¥.%-the module will be called (g, 2
finite iff 1° it is a finitely generated #(%)-module and 2° as an #%(%)-module it is the
algebraic direct sum of finite dimensional irreducible representations of #and in this
decomposition each of the irreducible representation appears only a finite number
of times.

The following two cases are very interesting:

1° % is a real semisimple algebra, # is the subalgebra corresponding to the maximum
compact subgroup. The corresponding (g, #)-modules were considered by V. A. Pona-
maryov and the author and were called by them “ Harish-Chandra modules ”.

2° % is a real Lie algebra, ¢/ is a Cartan subalgebra or, more generally, the semisimple
part of the parabolic subalgebra.

1. Let us consider in more detail the category of Harish-Chandra modules in the
case when ¢ is the algebra of a complex semisimple Lie group.
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Further, each module is the direct sum of modules on each of which the Laplace
operators have only one eigen-value.

Consider an example. Suppose G is a simply connected Lie group over the alge-
bra %, B — its Borel subgroup, .4/ is a unipotent radical of B, H — a Cartan sub-
group. Consider the indecomposable finite dimensional representation p of the
group H. Note that since H = C* x C* x ... x C* the question of the finite
dimensional representations of H is reduced to the determination of a finite number
of pairwise commutative matrices. Let us extend this representation p of the group H
to a representation of the group B and consider, further, the representation of the
group G induced by this representation B. The representation thus obtained will
be called a Jordan representation. In the case when p is of dimension one, we obtain
the well-known representation of the principal series. Thus we have constructed,
using the representation of the group H, a representation of the group G. Note that
the description of the canonical form of the representation of H is in some sense an
unsolvable problem if the rang of H is greater than 1 [21].

If we consider the representation of the algebra % thus constructed only on the
space of vectors which vary over the finite dimensional representation of the maximum
compact subgroup, we will obtain Harish-Chandra modules. Apparently the follow-
ing hypothesis holds: at the points of general position all the indecomposable Harish-
Chandra modules are all Jordan representations (*).

For SL(2, C) this statement follows from work of Zhelobenko. The most interest-
ing is the study of Harish-Chandra modules at singular points. Of course, the problem
of listing all the Jordan modules is already a badly stated (unsolvable) problem,
since it is based on the classification of systems of pairwise commutative matrices.
However, it is not clear whether it is possible to solve this problem at a singular point,
considering the Jordan modules as given. If such a solution were possible, it would
have exceptional interest.

The problem of describing Harish-Chandra modules was completely solved by
V. A. Ponomaryov and the author for the Lie algebra of the group SL(2, C) [22], [23], [24].
Then these representations were constructed as a group representation (and not only
as an algebra representation) by M. 1. Graev and the authors cited above [25].

The classification of indecomposable Harish-Chandra modules is carried out in
two stages.

1. The problem is reduced to a problem in linear algebra.

2. The linear algebra problem obtained for SL(2, C) generalises the problem of
describing the canonical form of pairs of matrices 4, B such that AB = BA = 0. To
solve this problem we apply the Maclane relation theory, which allows us to use the
relations A* and B¥, inverse to the degenerate operators A and B, as well as the mono-
mials A#k1B#k2g#ks

The Harish-Chandra modules at a singular point may be divided into two classes.

(*) To be more precise, each HARISH-CHANDRA module is decomposed into direct sum of
submodules on which the Laplace operators have precisely one eigen-value. The set of eigen-
values thus obtained is called singular if the representation of the fundamental series with
the same eigen-values of the Laplace operator are reducible. The points of general position
will be exactly the non-singular points.
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The modules of first class are uniquely defined by any set of natural numbers, the
modules of the second class are determined by any set of natural numbers together
with one complex number A. It is thus interesting to note that at singular points the
module space is not discrete. The most convenient canonical form of Harish-Chandra
modules are given in [25].

In the case of SL(2, R) the problem of classifying Harish-Chandra modules is easily
reduced to a problem in linear algebra; explicitely the category of Harish-Chandra
modules at a given singular point is isomorphic to the following category of diagrams
in the category of finite dimensional linear spaces:

o B+
P, P, P,
o B_
with the condition a,x_ = f,.f_ =y, where y is nilpotent. The question of the

classification of the objects of this category is aparantly solvable but leads to consi-
derable difficulties.

CoNJECTURE. — The category of Harish-Chandra modules for any semisimple group
with given eigen-values of Laplace operators is equivalent to a certain category of
diagrams in the category of finite dimensional linear spaces.

2. This and the following section of the report summarise some results of I. N. Bern-
stein, S. I. Gel'fand and the author.

Suppose ¢ is a semisimple Lie algebra over C, b is its Borel subalgebra, u is a radical
and # is a Cartan subalgebra. Consider the following category @. Its objects are
(%, /) — finite modules M, satisfying the following condition: for every vector £ e M
the space #(u)¢ is finite dimensional. This category is most useful for the application
of the theory of highest weights. In this category, let us chose a class of objects which
will be called elementary. All the others will be constructed from them and their
factor modules by step by step extensions.

Suppose y is a linear functional over £ Denote by M,%(%)-module, generated
by f,, with the relations nf, = 0 and hf, = (x — p, h).fy forallhefand neu. Here p
denotes the half-sum of the positive roots. By studying the modules M, we get exten-
sive information on the representation of the algebras ¢, including finite dimensional
ones. We now state a few theorems on M, modules and their morphisms.

THEOREM 1 (Verma). — Let the modules M,, and M,, be given. Two cases are
possible:

1° Hom (M,,, M,,) = 0;
and
20 Hom (M, , M,,) = C,

then any non-trivial homomorphism M,, into M, is an embedding.
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To state the next theorem we must introduce a partial ordering in the Weyl group W.
Suppose s, s, € W, We shall say that s; > s, iff there exist reflexions oy,...,0,
in Wsuchthats; =6, ... 0,5,andl(0;4; ... 0,8) =1l(0)—1 ... 6,8) + 1,i=1,...,71
where [(s) is the length of the element se W.

THEOREM 2. — Let M, and M,, be given. M, imbeds into M,, if and only if,

1. There exists such an y that Re x lies in the positive Weyl chamber and such
a pair of elements s;, s, € W, s; > s, that y; = 81, X2 = SaX-

2. x1 — X2 = Enuo;, where n; are integers, o; are simple roots.

The module M, is richest in submodules for integer values of x, from the positive
Weyl chamber. It follows from theorem 2 that M, contains a submodule M,
for all se W. In this case the embedding of M, into M, is determined in the follow-
ing way. Suppose s, is the reflection with respect to the simple roots o;, s =5, . .. Sy,
is the decomposition of minimum length. Let

Xi = SaSapyq o+ ¢ SyXo-
Then
j-;'xo = af;to 4
where
(x2—x1,21) (X3~ x2,22) (X0~ X1co2x)
a = E—a; (o1 01) -E—a, (2,02) E—ak ()

Since the minimum representation s in the form of the product of s,, is not unique,
whereas the injection M, into M, is uniquely determined, the theorem gives rela-
tions between “ chains ” of the type described. In the general case the embedding
is more complicated.

The relations between M, may easily be shown by the following commutative
diagram. The vertices of the diagram are numbered by the elements s of the Weyl
group and correspond to the modules M, . Ifs; <s,, then an arrow going from s,
to s, is drawn. The mapping is defined by the embedding of M,,, into M, , . We
obtain a commutative diagram. It is not difficult, using this diagram, to get in parti-

cular, a resolution of the finite dimensional representation by free %(u)-modules.
The finite dimensional representation with highest weight yo, — p is of the form

M = MXO/Z Msxo '
s#l

The theorems stated above and this diagram contain, in this case, the formulas of
Kostant, Weyl’s formulas for characters, the Borel-Weil theorem and the Harish-
Chandra theorem concerning the left ideals of enveloping algebras.

3. The ring of differential operators on the principal affine space and the generalisa-
tion of the Segal-Bargman representation to any compact group.

Suppose G is a complex semisimple Lie group, /4" is the maximum unipotent sub-
group, H — a Cartan subgroup. The manifold 4 = A\G is called the principal
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affine space of the group G. It is an algebraic quasi affine manifold. It is interesting
to consider the ring 2 of regular differential operators on 4. Suppose f(g) ranges
over all the regular algebraic functions (polynomials) on the group G. We will give
a method allowing to construct for any such function a differential operator on A.
Since H normalises /4, the transformation g — hg may be carried over to A (left
translations [5]). Using these left translations we can assign to every element of the
Lie algebra # of the group H a differential operator on A. The commutative ring of
differential operators on A generated by these operators will be denoted, following [20],
by W,. Suppose = is the natural map of G into A. Denote by n* extension of the
functions over A to functions over G induced by m. The operation =, , mapping
the functions on G into functions on A is less obvious and supplements, in our case,
the operation of averaging the function over the subgroup. The construction of =,
is carried out in the following way.

Suppose f(g) is a regular algebraic function on G. Consider it as the linear combi-
nation of matrix elements of finite dimensional irreducable representations in the
basis of weight vectors H. Threw out all the elements of this sum except the summands
corresponding to those matrix elements whose first index is the highest weight of the
corresponding representations. Denote by =, f the function thus obtrained.

Suppose f is a fixed function on G. Define the operator f in the functions by the
formula

ﬂ‘P) = n*(ﬁt*(‘P))

THEOREM 1. — There exists an element w € W, such that w, f is a regular differential
operator on A. Conversely, every regular differential operator on A may be repre-
sented in the form Xw;. f;, w;€ W, where f; are functions on G.

Suppose A" is the quotient field of the W, ring, #(G) is the ring of regular algebraic
functions on G. The map constructed in theorem 1 may be expanded to the map

i9QAH - FRRH
Wu [

THEOREM 2. — i is a linear space isomorphism over J’, compatible with the right
translations by elements of G.

Note that the fact of the existence of an isomorphism of the spaces above was obtained
earlier in a joint paper of A. A. Kirillov and the author [20].

For the group SU(2) there exists an extremely useful realisation of the whole series
of representations of this group due to Segal and Bargmann. This realisation is in
the Hilbert space of analytic functions of two complex variables, square, integrable
with weight e~121>~1%2I", 'We will point out a generalisation of this construction
for any compact Lie group.

Suppose K is a simply connected compact Lie group of rang r, G — its complexifi-
cation, A — the principal affine space of the group G. Introduce the weight function
e H@ ge A, Suppose p; is the i’-th fundamental representation of G, let ¢; denote
the vector of highest weight in p;. Put

Hyg) = (pfg)s:, p8)E),
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where (, ) is the scalar product in the space of the representation p; invariant relative
to K. It is clear that H(g) is a function on 4 and we can then put

H@ = 3 H{a

Now consider the analytic functions on 4 which are square integrable with weight
e H@_  Call the Hilbert space of all these functions a “ generalised Segal-Bargmann
space ”. The group K thus obtained acts on it in a natural way and the unitary repre-
sentation thus obtained contains every irreducible one exactly once. Let us call any
operator with polynomial regular algebraic coefficients a “ differential operator on 4 *.

CONJECTURE. — The operator conjugate (in the generalised Segal-Bargmann space)
with a regular differential operator is again a regular differential operator.

The involutions which arise in the ring of regular differential operators are far from
trivial. Thus, for the case of SU(n) the operator, say, conjugate with multiplication
by a simple first order function, is a differential operator of the (n — 1)-st order. The
techniques developed in the previous section apparently will turn out to be very useful
in the study of the ring of differential operators on 4, in particular, for the proof of
the conjecture stated aboce. The fact of the matter is that the construction of the invo-
lution itself is most conveniently carried out in the terms developed there. Using
this method the conjecture was checked for SU(3).

We state another problem. Let the real form of the group G be given. Its unitary
representation naturally gives rise to an involution in the enveloping algebra %(%).
We must find all the possible extensions of this involution from #(%) to the ring of
all the regular differential operators on 4. In the simpliest examples these extended
involutions correspond to series of unitary representations (of real groups) contained
in the regular one. It would be interesting to list the involutions in the ring of regular
differential operators on any quasiaffine algebraic manifold.

It would also be interesting to consider the factor space of the group G, not only
over the maximal unipotent group, but also over any orispherical subgroup.

I1. Integral geometry.

In this paragraph I will only consider one elementary example [17]. The derivation
of the Plancherel formula for G = GL(n, C) is based on the following problem in
integral geometry. Denote by A4 € G the set of all the upper triangular matrices
with units on the diagonal. Suppose the function f(x), xe G is given. Let

o(xq, X3) = L’ f(x7 'zx,)dz,

where x; and x, are any matrices. The problem is: given ¢(x,, x,) find f(x). It
suffices to solve the problem when x = e is the unit matrix. We can assume that the
fonction f is given on C" and the equation y = x !zx, for fixed x, and x, defines
nn — 1)

in C* a plane of dimension 5
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Now replace our problem with the following, at first glance meaningless, problem.
nn — 1)
2

Consider the space H,,z,,,(k = ) of all the k-dimensional planes in C™.

For all he H,2, consider the function

olh) = L S (x)dx.

We must now recover f(x). In the paper [10] this problem is solved in the following
manner. Using the function ¢ and its derivatives construct a differential (k, k) form
¢ on the Grassman manifold G,., of k-dimensional planes containing the point x.

This form s#¢ is closed and the value of f(x) is equal to J H @, where 7, is any
Yo

cycle homologic to the set of all k-dimensional planes containing the point x and
lying in a fixed k + 1-dimensional plane passing through the point (Euler’s cycle (*)).
As to the integral over the other k-dimensional cycles in the basis of Schubert cells
in Gy, it is equal to zero.

In our case the function ¢(x;, x,) is known not on the whole manifold H,., but
only on a certain submanifold. The submanifold of H,., will from now on be called
the “ complex of k-dimensional planes ”. The complex is called permissible if the
form 2 ¢ on this complex is determined by the values of the function ¢ on this complex
only. In the case when ¢ is given on a permissible complex we can recover f(x)
by using the formula

flx) = C,j H o,

where 7 is a cycle lying in the complex; thus to find C, it suffices to decompose the
cycle y over the Schubert cell basis. In our case the complex will consist of planes
of the form h,, ., = { y/y = x{*zx, } and has dimension n2. It turns out to be per-
missible. The set of these planes of this complex which contain the point e has the
necessary dimension k and forms a cycle. The coefficient of the Euler cycle is equal
to n!  Considering the form s#¢ only on the complex, we will obtain the classical
inversion formula

d 7] J 7} _
£(©) = [2ifnnt] J (— - —)(——— - ——> x @(€16%) ;- \d%,, \ dqp.
‘1];[P 65p aaq aal’ aal] ’ q<p '“’q <p

Apparently one can obtain the Paley-Wiener theorem for GL(n, C), in a similar manner;
in other words, obtain conditions on ¢, which imply the decrease of f at infinity.
To do this we embed GL(n, C) not into C** but into CP™ and consider the problem
as a projective problem of integral geometry (see [15]). Since in this case we can recover
f(x) in the points at infinity as well, the Paley-Wiener conditions will consist in the

(*) Note that other problems of integral geometry give rise to integration over other cycles
in G,2,; see, for example [16].
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following: the function f’ and its derivatives (recovered by using ¢) must be equal
to zero at all the points of infinity.

ITII. Cohomology of infinite algebras.

0. This part of the report contains results obtained jointly by D. B. Fuks and the
author.

We know how difficult it is to describe any reasonable category of representations.
On the other hand, the problem of determining cohomology groups is a sumpler one.
Here we list results about the cohomology of Lie algebras of vector spaces, which
show that these cohomologies are reasonable, are not equal to zero and are not infinite
dimensional.

Recall that the cohomology H*(%; M) =Y H%% ; M) of the topological alge-

q
bra ¢ with coefficients in the ¥-module is defined as the cohomology of the complex
C(%; M) ={c4%; M), d"(¥%; M)} where c¢(¥%; M) is the space of continuous skew-
symetric g-linear functionals on % ranging over M, and the differential d° = d"(%¢; M)
is defined by the formula

(qu)(él,' . -1€q+1) = 1< E< +1(— l)s-H_lL([és’ 6!]’ 61’- R Ess' . -’Ety' L) €q+1)
- Z (_ l)sésL(flﬁ'"383’---96114-1)'

1<s<yq

If M is a ring, and the operators on ¢ are its differentials, then the complex C(%4 ; M)
has a natural multiplicative structure.

1. Problems and examples.

The main example of an infinitely dimensional Lie algebra will be the algebra of
smooth vector fields on a smooth manifold.

Suppose M is a closed orientable connected smooth (*¥) manifold. Denote by U(M)
the Lie algebra of smooth tangent vector fields on M with Poisson brackets for commut-
ing. The first of the problems considered is a follows. Define the cohomology
ring $*(M) = H*(A(M); R) of the algebra A(M) with coefficients in the unit repre-
sentation, i. e., in the field R of real numbers with a trivial U(M)-module structure.
This ring obviously is a differential invariant of the manifold M. Looking ahead
we shall say that the space HY(M); R) will turn out to be finite dimensional for
any q (see [28]). The problem of computing the ring $*(M) is not as of yet completely
solved.

We would like to point out the difference between the method of constructing
invarients of manifolds by using objects of differential geometry'(the Lie algebra of
vector fields) and the usual method of constructing differential invariants. Whereas
usually the differential form representing a Pontryagin of Chern class on the mani-
fold X is built up from the individual object (by using the metric) on the manifold,

(*) By smooth we always mean of class C*.
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in our case the invariants are constructed using the infinite dimensional set of all
smooth vector fields on the manifold.

As an example consider the case when M is the circle S!. We can show that the
ring H*(S!) is generated by a two-dimensional generator a and a three-dimensional
generator, the two being related only by the skewsymetry condition.

Further the generators ae $%(S'), € € H3(S') are represented by cocycles
AeCHUSY); R), Be C3(A(SY); R) given by the formulas

f'(x) (%)
g'(x) g"(x)
Fx) f'(x) f"(x)

gx) g'(x) g"(x)
hx) K(x) h"(x)

dx

Alf, 8) = L

B(f, & h) =J
sa

When the dimension of the manifold M increases the ring $*(M) becomes consi-
derably richer; thus the ring $*(S%) has 10 generators, and the ring $*(S' x §2),
20 generators (see [29]).

dx

The cohomology of the Lie algebra of smooth vector fields is intimately connected
with the cohomology of Lie algebras of formal vector fields. By a formal vector
field at the point O of the space R" we mean a linear combination of the form
2pi(xy,. .., X,)e; where e,,. .., e, are the standard basis vectors of the space R" and
px1,. . ., X,), the formal power series with real coefficients in the coordinates x,,.. ., x,
of the space. The set of formal vector fields is, in an obvious sense, a linear topological
space, and a natural commutation operation transforms it into a topological Lie
algebra. This algebra is denoted by W,.

2. The algebra of formal vector fields. The cohomology of the algebra W, with
coefficients in,R.

In order to state the final result it is necessary to describe a certain auxilliary topo-
logical space X, (n=1,2,...). Suppose A4 >2n and let p,E(N,n) —» G(N, n)
be the canonical U(n) bundle over the (complex) Grasman manifold G(A4", n). The
usual (W-complex of the manifold G(A", n) has the following property: the 2n-th
skeleton [G(A, n)],, does not depend on A when A > 2n. The inverse image of
the set [G(A, n)] under the map p will be denoted by X,,.

The space X, is a three-dimensional sphere, the other spaces do not have such a
simply visualised description. We have the following.

THEOREM 2.1. — For all g, n there is an isomorphism
HYW, ; R) = HYX,, ; R).
Multiplication in the ring H*(W, ; R) (as well as in the ring H*(X,, ; R)) is trivial, i. e.,
the product of any two elements of positive dimension is equal to zero.

The cohomology of the space X, may be computed by using standard topological
methods. For example, it is trivial for 0 < g < 2n and for g > n(n + 2).

Theorem 2.1 is the central result of the article [30]. Its proof uses a somewhat
modified version of the Serre-Hoschild spectral sequence [31] corresponding to the
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subalgebra of the algebra W,, generated by the elements x;e; (*); this subalgebra is
isomorphic to 4l(n, R). Beginning with the second member, this spectral sequence
turns out to be isomorphic to the Leray-Serre spectral sequence of the bundle
X, = [G(A, n)),, with fibre U(n).

It turns out also that each element o e H{W, ; R) is represented by such a cocycle
AeCYW,; R), that A({,,...,£,) depends only on the 2-jets of formal vector fields
Eiyennn &y (see [30])

To study the cohomology of W, with coefficients in other modules (and to describe
those modules) it is important to know the structure of the subalgebras

.cLyc...cLycW,

where L, consists of vector spaces whose components are series without terms of
power less than or equal to K.

The relation between the cohomology of the algebras W, and L,. The following
general fact is easily generalised to the case of the cohomology of infinite dimensional
Lie algebras.

Suppose B is an subalgebra of Lie algebra 4; M — some B-module; M — an induced
A-module (i. e. M = Homy, (M, [A]) where [4], [B] are enveloping algebras for A, B).
Then

H*(A; M) = H*B; M).

We will apply this statement in the case when M is a tensor representation of the
algebra L, (i. e. a finite dimensional representation obtained from the representation
of the algebra #l(n; R) by means of the projection L, — Lo/L; = %l(n; R)). At
the same time the induced representation M of the algebras W, is none other than
the space of the corresponding formal tensor fields. For example, if M = R is the
unit representation of the algebra L,, then M is the space F(R") of formal power series
in n variables with the natural action of the algebra W, ; if M is the space A"(R") of
skewsymetric r-linear forms in R”, then M is the space Q' of formal exterior differential
forms of r order in R".

The cohomology of the algebra W, with coefficients in the spaces of formal exterior
differential forms. The space

HYW,, Q%) = Y HYW, ; Q)
7,9
is obviously a bigraduated algebra (over R), isomorphic, as we just found out, to
H*(Lo; A*(R")').
THEOREM 2.2. — The bigraduated ring H¥(W, ; Q*) = H*(L,y; A*(R")) is multipli-

catively generated by 2n generators

pre H Lo A°RYY)  (i=1,...,m)

neH  (Lo; A'(R,)) @i=1,...,n)

These generators are connected only by the following relations p;0, = — pup;is
PiTi = TPy Tk = Ty TR .t =01l i) + 20, + ... + ni, > n.

*i,j=1,...,n
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In particular, the ring H*(Ly ; R) = H*(Ly; A°(R"Y) = H*(W, ; F(R") is an exterior
algebra in generators of dimension 1,3,5,...,2n— 1. i e.

H*W,; F(R") = H*(gl(n, R); R).
Moreover,

0
HA(Ly: A'(RY) = { where g<r

H'(Lo; A"(RY) ® H* "(glin, R); R)  where g>r

while the dimension of the space H'(L,, A"(R"’) is equal to the number of ways in
which the number r may be represented as the sum of natural numbers.

The computation of the cohomology of L, with coefficients in the tensor represen-
tation reduces to the computation of the cohomology of the algebra L, with coeffi-
cients in R. In a similar way for jets, to the cohomology of L, with coefficients in R.

Apparently the following statement holds.

ConJECTURE. — For any n the spaces H%L,; R) are finite dimensional.
For n=1 the dimension of the space HYL,; R) equals C~ !+ C¥;1, ¢,k=0,1,...).

Using previously mentioned results to compute the cohomology of the algebra L,
with tensor coefficients we can deduce that the classes of cohomology of the algebra W,
(even W) with coefficients in tensor fields is not always representable by cocycles
depending only on 2-jets of their arguments (in contrast with the cases of constant and
skewsymetric coefficients).

We have been unsuccessful, so far, in computing the cohomology H*(4, R) for
other Cartan algebras. Note that all these cohomologies are connected with very
important standard complexes. For this complex consists of the polynomials
P(ay,...,0); (Bi,. .., By, ;€ R", B;e(R"); the polynomial P is skewsymetric under
the simultaneous interchange of «;, f; with a;, B;. The differential is given by the
formula

dP(al,. ey Olgg 5 ﬂl" P} ﬂq+1)
= B(— 17 e, B) = (@ BYPas + 00, g sy e
ﬂl + ﬁta ﬁl 5. - -1ﬂf" "’Bt" . '=ﬂq+1)'

Usually, the infinite dimensional Lie algebras which arise in the formal theory are
factor subcomplexes of this complex.

3. The algebra of smooth vector fields. Cohomology with coefficients in R.

Suppose M is a compact connected orientable smooth n-dimensional manifold
without boundary, A(M) — the Lie algebra of smooth tengent yest fields on M. In
the standard complex C(M) = { C(M) = C(U(M); R)d*} we introduce-a filtration
0=CoM)=Cy(M) = ... =« C(M) where C(M) = {CiM)} is a subcomplex of
the complex C(M), defined in the following way. A cochain L e C*M) belongs to

“(M) if it equals zero on any C* the vector fields &,,. . ., £, such that for any k points
of the manifold M one of the fields &;, &,,.. ., &, equals zero in the neighbourhood
of each of these points. For example, C5(M) = 0; C{(M) consists of such cochains L
that L(&,,...,&;) = 0 when the supports of the fields ¢,,..., £, are pairwise non-
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intersecting; Cj_,(M) consists of such cochains L that L({;,...,¢;) = 0 when the
supports of the fields ¢&,,...,¢, have no common intersection to all of them;

W(M) = C(M) when k = g. It is clear that C(M) for all k is a subcomplex of the
complex C(M) and that C{M)Cj{(M) < CiTi(M).

To compute the cohomology of the factor complex C,(M)/C,_ (M) we have defined
a spectral sequence, the first term of which may be expressed by using the cohomology
of the manifold M and the algebra W,. A special role is played by the complex C,(M).
This complex we shall call a diagonal complex.

CoNJECTURE. — The image of the cohomology of the diagonal complex C,(M)
in $*(M) under the embedding C,(M) — C(M) multiplicatively generates all of the
ring $*(M). In particular the ring $*(M) is always finitely generated.

Remark. — This is true for the second term of the spectral sequence,

Let us describe a spectral sequence which converges to the cohomology of the dia-
gonal complex. It arises in connection with two different filtrations of the diagonal
complex of the manifold. In order to describe the first filtration, note that the
g-cochains of the diagonal complex C,(M) are determined by distributions (more
precisely, by the generalized sections of a certain fibre bundle) on M? which are sup-
ported by the diagonal. The m-th term C{ ,, of the first filtration consists of those dis-
tributions which have an order (relative to A) less than or equal to m.

To define the second filtration fix a triangulation of the manifold
M=M,oM,_ ;>...>5M,

where M; is the i-dimensional skeleton, and the m-th term C, ,, of the filtration consider
those g-cochains which are realised by distributions whose support is M,, = A.

Knowing the cohomology of W, can construct a spectral sequence which allows us
to compute the cohomology of the diagonal complex.

THEOREM 3.1. — There exists a spectral sequence & = { EP*4, d™?} which converges
to the cohomology of the diagonal complex $*(M) such that

EPt = H"™"(M) ® HYW, ; R);

EP, in particular, can be different from zero only when — n < p <0.

Let us clarify the operation of “ globalizing ” the formal cohomology: construct
a mapping of the space E, %" = H" (M) ® H*""(W,, R) into C{(M). This mapp-
ing is not uniqual determined: it depends on the choice of the system of local coordi-
nates on M. Suppose I'= {U,,..., U, }is a coordinate covering of M with coordi-
nates y,,..., ¥, on U; and {p,} is a decomposition of unily consistent with this
covering. In order to construct the element #(a @ ¥)ae H"*"(W,, R), ¥e H" (M)
find a cochain o e C"**(W, ; R) representing the closed form w from the class ¥. Set

N

j(an ® lIl)(él3 . -’ﬁq) = J‘ ('OA[ Zpk(p(a, Uk, &1" . '!fq)]

k=1
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where o(a, U;; &,...,&,) is a form on U,, which equals

Z o, Uy, ..., 5.1(“: Uy, ek,i;...ek,ir) Xdy; A ... Ady,

1<i<..<ir<n

at the point u € U;, where the &; are considered as a formal field in the neighbourhood
of the point u under the coordinates y,,. The theorem is proved in [29] (statement 1.4).

The cohomology with coef cients in the spaces of smooth sections of smooth vector
bundles. Suppose A is a finite dimensional GL(n, R) module and suppose M is a
smooth connected manifold (we do not assume M either orientable, or compact, or
without boundary). Denote by a the vector bundle over M with fiber isomorphic
to A4, induced by the tangent bundle and by means of the representation of the group
CL(n, R)in A. By &/ denote the space of smooth sections of the fiber bundle . The
space .o/ has an obvious (M) module structure. Our goal is the study of the cohomo-
logy of the algebra (M) with coefficients in the W(M) module .«7.

In the complex C(M ; A) = { C(UM); o£); d*} we will introduce a filtration
similar to the one considered above for C(M). We shall say that the cocycle
Le CYUM); o) has filtration no greater than k if the section L(£,,..., &) of the
bundle « is equal to zero for any point x € M with the following property: for any
points x4,. .., x, € M one of the vector fields &,,.. ., ¢, equals zero in the neighbour-
hood of each of the points x,,..., X, X.

The space of g-dimensional cocycles which have filtration no greater than k is denoted
by CHUA(M); ). It is clear that C(M ; o) = { CU(M); )} is a subcomplex of
the complex C(M ; ).

The subcomplex Cy(M ; &) is called “ diagonal ”. We denote it by C,(M ; o).

THEOREM 3.5. — We have the following spectral sequence { EF*%, d?} which
converges to HX(M; &) and is such that EP? = HY(M; R) ® HYL,; A). In the
multiplicative case the spectral sequence is a multiplicative one and the isomorphism
considered above is an isomorphism of rings.

CONJECTURE. — HZ(M, o) = H(Ty;, R) ® Homey, (4, H*(L, R)) where T is the
principal U(n) bundle over M induced by the complexification of the tangent bundle.

This conjecture has been proved in the case when A = A?is the exterior power of
the standard representation. The case g = 0 was independently studied by Locik [33].

In the end of this part of the report I would like to introduce a general concept of
formal differential geometry. It arises when one formalises and generalises the
methods of construction of Pontryagin and Chern classes (by means of metrics and
connections); also in the expression of the index of a differential operator in terms of
the symbol and the metric of the manifold.

Suppose we have an algebra W, of formal vector fields. Consider the jet space and,
in it, a invariant algebraic submanifold X. Examples of such manifolds are the space
of all symmetric tensors of rang 2, the set of all affine connections.

Let us define the complex Q(X). Any rational map of X into the complex of formal
differential forms will be called a chain of Q(X), the differential will be obtained by



THE COHOMOLOGY OF INFINITE DIMENSIONAL LIE ALGEBRAS 109

differentiation in the image. Set Q(X) = Hom (X, Q), where Q is the complex of
formal differential forms, and call the maps of the rational cohomology of Q(X)-
generalised Chern classes. It can be shown, in the case when X is the manifold of
symmetric tensors of rang 2, that they coincide with Pontryagin classes (g < n).
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A TRANSCENDENTAL METHOD
IN ALGEBRAIC GEOMETRY

by PHiLLiP A. GRIFFITHS

1. Introduction and an example from curves.

It is well known that the basic objects of algebraic geometry, the smooth projective
varieties, depend continuously on parameters as well as having the usual discrete
invariants such as homotopy and homology groups. What I shall attempt here is
to outline a procedure for measuring this continuous variation of structure. This
method uses the periods of suitably defined rational differential forms to construct
an intrinsic “ continuous ” invariant of arbitrary smooth projective varieties. The
original aim in defining this “ period matrix ” of an algebraic variety was to give, at
least in some cases, a complete invariant (i. e. “ moduli ”) of the algebraic structure,
as turns out to happen for curves. It is too soon to evaluate the success of this pro-
gram, but a few interesting things have turned up, and there remain very many attrac-
tive unsolved problems. In presenting this talk, I shall not give references as these,
together with a more detailed discussion of the material discussed, may be found in
my survey paper which appeared in the March (1970) Bulletin of the American Mathe-
matical Society.

Let me begin by discussing the example of hyperelliptic curves. Consider the
family of affine curves with the equation

V=X —5) ... (x— Sag+2)-
Denoting by ¥, the complete curve corresponding to s = (sy,. .., 55,4,) and letting
S={s: [I(s;—s)#0},
i<k

we see that { ¥, },.s forms an algebraic family of non-singular curves of genus g. Fur-
thermore, for a suitable smooth completion S of S (e. g. § = P, ), we may enlarge our
family to { ¥, },s by adding suitable degenerate curves ¥; corresponding to the points
5e § — S. The notations { V, },.s and { V, },.s will be used throughout this talk to
represent respectively an algebraic family of smooth, projective varieties ¥, with smooth
parameter space S, and a completion of this family where § is smooth and
S§—S8=D;u...uDis a divisor with normal crossings. The varieties ¥; (e D))
may be thought of as singular specializations of the general V.

On the curve ¥, we consider a basis ¢,,..., ¢, for the holomorphic differentials
and a canonical basis y,. .., V5, for the first homology H,(V;, Z). Thus we might
choose 1

x*tdx

y

@=1,..,8)

Pa =
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and, upon representing ¥, as a 2-sheeted covering of the x-line, we have the picture

Y1 Yg+1

g
The choice of the { ¢, } is determined up to a substitution ¢, — ). A%¢,, det (4£)50,
g=1

2g
and the {y, } are determined up to a transformation y, — ) T7y, where T = (T7)
o=1

0 I

g
-1, 0

is a 2g x 2g integral matrix which preserves the intersection matrix Q = <

of the {y,}. Thus Ae GL(g, C) and T e Sp(g, Z).
We now form the period matrix

f‘ﬂl--'f [

71' Ylg.
[oe | o
71 Y29

- o

2g

which is determined up to the equivalence relation
Q ~ AQT

arising from the indeterminacy of the { ¢, } and {7, }. Because of the obvious relations

j (pa A (pﬁ = 0
Ve .
AV IJ‘ Pu N Py > 0,
v,
the period matrix Q(s) satisfies the Riemann bilinear relations

QQ'Q =0
V=100 > o.

Thus, if we let D be the set of all g x 2g matrices Q which satisfy the Riemann bilinear
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relations and with the equivalence Q ~ AQ (4 e GL(g, C)), we see that the periods
of the holomorphic differentials on ¥, lead to the period mapping

Q: § - D/Splg, 2),

where Sp(g, Z) acts on D by sending Q into Q'T~!. We recall that D is a complex
manifold which is biholomorphic to the Siegel-upper-half-plane of all g x g matrices
Z=X+./—1Y with Z ='Z, Y > 0. Furthermore, D is a homogeneous complex
manifold with automorphism group Sp(g, R) which acts in the same way as Sp(g, Z)
above. For g =1, D is of course the usual upper half plane.

Here are a few properties of the period mapping:

(a) The point Q(s) depends only on the intrinsic structure of V,. Furthermore,
Q(s) = Q(s") if, and only if, the curves V; and V, are isomorphic (Torelli’s theorem).
Thus the period matrix gives a complete invariant for non-singular curves.

To discuss the next two properties, we need to digress a little about the monodromy
group of a family of smooth algebraic varieties. In the case of our family of hyper-
elliptic curves, the canonical basis { y, } of H(¥;, Z) will change when we displace ¥,
around a closed path in the parameter space S. More precisely, fixing a base point
5o € S and letting V = V, , the fundamental group 7,(S) acts on the homology H,(V, Z).
As is always the case, this action preserves the intersection pairing on homology,
and we have then the monodromy representation

{d

n,(8) > Aut (Hl(}/, 7)) 5*Aut (D)
I

Sp(g, 2)

The image I' = p(n(S)) will be called the monodromy group.

(b) For g =1, the monodromy group is of finite index in SL(2, Z) =~ Sp(1, Z)
(For an arbitrary family of elliptic curves, I is either a finite group or is of finite index
in SL(2, Z)). This result should be interpreted as being a first suggestion that the
monodromy group in an algebraic family of algebraic varieties has extremely remarkable
properties.

(c) A further indication of this is the “ rigidity property ”, due to Grothendieck in
this case. This states that if we have two families of curves { ¥, },cs» { V¥ }ses With the
same parameter space S, with V;, = V!, and with the same monodromy representa-
tions p and p’, then the period mappings Q and Q' are the same. In other words,
the period mapping is determined by the monodromy representation plus its value

al one point.

(d) The next property may perhaps be thought of as relating algebraic geometry
to group representations. We recall that the study of the discrete series representa-
tions of the automorphism group Sp(g, R) is intimately related to the construction
of certain I'-invariant meromorphic functions on D. If y is one such automorphic

function, then the composite
e

turns out to be a rational function on S. Roughly speaking, we may say that the study
of L*(Sp(g, R)) leads to functions which uniformize the period mapping (“ automor-
phic function property ).
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The proofs of properties (b), (c), (d) above may be based on studying asymptotically
the period matrix Q(s) as s tends to a point 5€ § — S. More precisely, a neighborhood
in S of a point se S — S will be a punctured polycylinder

P A*x ... x A*xAx ... xA
\ ~~ J N v J
k m—k

where A is a unit disc in C, A* = A — {0} is the punctured disc, and dim § = m.
By localizing the period mapping at infinity, we will have a holomorphic mapping

Q: P* » DT

where we are interested in the behavior of Q(s) as [|s|| — O (s = (s4,- - ., S,) € P¥).
This asymptotic analysis of the period mapping is a purely function-theoretic problem
which, in the end, should provide the best general method for proving the various
global properties of Q including the analogues of (b)-(d) above.

2. Construction and elementary properties of the period mapping.

We first observe that giving a g X 2g matrix Q with the condition rank (Q) = g
and the equivalence relation Q ~ AQ (4 € GL(g,C)) is the same as giving a point
Qe G(g, 2g), the Grassmann variety of g-planes in C2¢. In fact, the point Q is the point
in C28 spanned by the row vectors of the matrix Q. Thus, giving the period matrix Q(s)
above is the same as giving a g-dimensional subspace of H!(V, C), this subspace being
determined up to the monodromy group I'. It is now easy to see that this g-dimen-
sional subspace is simply the g-plane

HY(V,) = H'(V,, C)
spanned by the holomorphic 1-forms, followed by the identification
H'(V,, C) = H'(V, C)

which is determined up to I. Thus, giving the period matrix Q(s) is equivalent to
giving the g-dimensional subspace H':%(V,, C) of H'(V, C), and both of these are deter-
mined up to the monodromy group.

In general, let { ¥, },s be a family of smooth, projective algebraic varieties, and
introduce the notations, E = H'(V,,, C), Egx = H'(V,,, R), E, = H'(V,,, Z). Using
standard Kéhler manifold theory we find that the cup product on H*(V, C) together
with the Kihler class of the projective embedding give rise to a non-degenerate bilinear
form

Q: EQE—>C

which is rational on E,, is invariant under the monodromy group I, and satisfies
Qfe, ) = (— 1)"Q(¢’, e). We will denote by G, Gy , G, respectively the automorphism
groups of E, Eg , E; which preserve the bilinear form Q. G is a complex semi-simple
algebraic group, Gy is a real form of G¢, and G, is an arithmetic subgroup of Gg
such that the monodromy group I' = Gy.
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From Hodge theory we recall the Hodge decomposition

H'(V,,C) = @ H™(V) (H"(V,) = H*/(V),
ptg=n
and using this we define the Hodge filtration F(V,) c ... < F(V) = H"(V,, C) by
the formula
FXV) = H*(V) + ... + H""PH(V).

Using the Kodaira-Spencer continuity theorem, it follows that F?(V,) is a continuously
varying subspace of H"(V,, C). Consequently, if we identify all H"(V,, C) with
E = H"(V,,, C) and let F(E) be the flag manifold of all filtrations F° = ... < F" = E,
dim F? = dim FP(V,), then we have a continuous mapping

Q: S - FE)T

which is the first form of the general period mapping. It will be convenient to write
Q(s) = (Q%s),. . ., Q"(s)) where the QP(s) are subspaces of F(E) taken moduloI.  Using
the structure equations of the Kodaira-Spencer-Kuranishi theory of deformation
of complex structure, it follows that (s) varies holomorphically with seS.

The period mapping Q will satisfy three bilinear relations, two of which are classical
and generalize the Riemann-bilinear relations, and one which is non-classical but
which is crucial for understanding the general period mapping. Recalling the bilinear
form Q mentioned above, these bilinear relations are

M @, ") =0

an /=@, 07 >0
1) 0dQr, Q""?=2) = 0 infinitesimal bilinear relation.

} Hodge-Riemann bilinear relations

The first relation is self-explanatory; the second means that, for any choice of basis { e, }

for QF, the Hermitian matrix
W — 1)"Qle,, )

is non-singular and has a fixed signature; and the third bilinear relation means that

a P n—p- —
Q(-a;j{ﬂ ©} @ 2(s)>— 0

where (sq,..., s,) are local coordinates on S.

Suppose now that we let D be the algebraic variety of all points (F°,. .., F")e F(E)
which satisfy (1), and let D be the open set in D of all points which satisfy (II). Then
D is acted on transitively by the group G, and D turns out to be the Gy orbit of a sui-
table point in D. Thus we have a diagram

D cD
Il | (H = Gg n B)
Gg/H = G¢/B

where B is a parabolic subgroup of G¢ and H is a compact subgroup of Gg . In the
case of elliptic curves, D c D is the upper-hal-plane z = x + iy, y > 0 embedded
in P, =Cu{w}. The group Gg is the group of linear fractional transformations
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z — az + bf(cz + d), Gy is the subgroup of real transformations, and D is the Gy
orbit of ./ — 1. Since I = G, the monodromy group is a discrete subgroup of Gy
and acts properly discontinuously on D. Consequently, D/T" is an analytic space
and the period mapping is a holomorphic mapping

Q: S - DIT.

In the case of curves, D is biholomorphic to a bounded domain in C#¢+1/2, How-
ever, for n > 1, D is no longer a bounded domain and consequently the holomorphic
mappings into D will not have the strong function-theoretic properties (e. g. normal
families) which are present when D is a bounded domain. However, if we consider
only the mappings into D which satisfy the infinitesimal bilinear relation (III), then
it is increasingly becoming clearer that these have the qualitative properties of mappings
into a bounded domain. Thus, e. g., 2 holomorphic mapping

®: A* > D

of the punctured disc 0 < |¢] < 1 in D which satisfies (III) will extend continuously
across t=0. A much deeper recent result is due to Wilfried Schmid, who has proved
that an arbitrary holomorphic mapping

®: A* > D/G,

which satisfies (III) is, when |t| — O, strongly asymptotic to an orbit

1
exp (Lt N )Qo

2n/— 1
where N is a very special nilpotent transformation of E; and Q is a pointin D. From

this it follows that the asymptotic analysis of these periods of algebraic integrals is
reduced to a problem in Lie groups.

3. Deeper properties and open questions concerning the period mapping.

We want to discuss the analogues of the properties (a)-(d) for the periods of the
elliptic curve in the general case of a period mapping

Q: S - Dr

arising from an algebraic family { V, },.s of algebraic varieties.

(a) Of course the point (s)e D/T" depends only on the intrinsic structure of V.
However, except for curves there is essentially nothing general known about the global
equivalence relation determined by Q. There is some heuristic evidence that, in
general, the equivalence relation might be closely related to birational equivalence;
i. e. the “ Torelli property > should hold in general. Along these lines, it is perhaps
an easier problem to determine the equivalence relation infinitesimally; i. e. to find
the kernel of the differential dQ. The best example known here seems to be when the
V, are smooth hypersurfacés in projective space. Then, except for the obvious example
of cubic surfaces, the differential dQ is injective on the biregular moduli space of the ¥,
(“ local Torelli property ™).

The dual problem to finding the equivalence relation of Q is to determine which
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points of D come from algebraic varieties. When D is the Siegel upper-half-plane,
even though not every point Q € D is the period matrix of a curve, it is obviously the
case that every Q is the period matrix of an abelian variety and therefore may be said
to come from algebraic geometry. However, this is essentially the only case when
all points are a period matrix of some algebraic variety, and to my knowledge there is
not yet even a plausible candidate for the set of points in D which arise from algebraic
geometry,

(b) Concerning the “ size * of the monodromy group I', we have Deligne’s theorem
that I" is semi-simple and the result that the image Q(S) has finite volume in D/T.
From this it follows that if "’ is any larger discrete subgroup of Gy which leaves invariant
the inverse image n~{(®(S)) for n: D — D/I the projection, then T is of finite index
in I, These facts, plus a few examples, indicate that it might be the case that there
is a semi-simple subgroup Gg of Gg such that the monodromy group is commensu-
rable with G = G; N Gg(recall that this means that I' n G% is of finite index in both T’
and G%). The available evidence certainly indicates that " should be large.

(c) Matters are somewhat better regarding the “ rigidity property ”, which states
that the period mapping Q: S — D/I' is determined by its value at one point together
with the induced map Q, : n,(S) - I'. This property was proved by myself for an
arbitrary holomorphic mapping Q satisfying the infinitesimal bilinear relation (III)
but making the strong assumption that S is complete. Then Deligne proved the
result in case Q arises from a family { V, },.s of algebraic varieties. The result for a
general holomorphic mapping Q satisfying (III) follows from Schmid’s nilpotent
orbit theorem mentioned above.

(d) Given a period mapping Q: S — D/I, it is expected that the equivalence rela-
tion given by Q is at least an algebraic equivalence relation; i. e. there should exist a
sub-field Z of the field # of rational functions on S such that Q(s) = Q(s) if, and
only if, W(s) = Y(s’) for all Yy e A,. Furthermore, by analogy with the classical case
n = 1, it is to be hoped that 2, arises by composing the mapping Q with something
on D/T. More precisely, we should like it to be the case that the discrete series repre-
sentations in I?(Gy) lead to the construction of some “ analytic objects ” on D/I" which,
upon composition with Q, yield Z,. This is a problem of fundamental importance,
which may well be related to the question mentioned above of saying which points
of D come from algebraic geometry, and about which nothing really is known. What
is known is that the discrete series part of L?(Gg) seems to lead to “ automorphic coho-
mology ” on D/T’, but it is a mystery as to what this might have to do with algebraic
geometry.

These problems mentioned here are discussed in more details in the survey paper
referred to at the beginning of this talk. This survey paper also contains some conjec-
tures not discussed above as well as the references for all of the material presented.

Institute for Advanced Study
Department of Mathematics,
Princeton, N. J. 08540
(U.S. A)
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LINEAR DIFFERENTIAL OPERATORS

by LaRs HORMANDER

At the Edinburgh congress 12 years ago Girding [1] gave a general survey of the
theory of linear partial differential operators. I shall take his lecture as my starting
point and try to give some idea of the later development. Naturally it is necessary
to concentrate on a few topics and ignore others which are as interesting. I shall
not try to list the omissions but wish to specify the limitation to questions concerning
the existence and structure of solutions of differential equations with constant, C®
or analytic coefficients.

1. Operators with constant coefficients.

1.1. Interaction with complex analysis.

Let P(D) where P is a polynomial and D = — id/0x be a partial differential operator
in an open convex set X < R”, and let ue C*(X), P(D)u = 0. Already Malgrange [1]
proved that u can then be approximated by exponential solutions of the same equa-
tion. A significant improvement of this result was made by Ehrenpreis [1] who found
that u is actually a superposition of exponential solutions. If we assume for simpli-
city that P is irreducible, this means that '

ulx) = e
where dy is a measure carried by {{eC", P({) =0} and
fe= IO+ L du@) | < 0

forall N and xe X. A slightly weaker result is proved as follows. For a fixed convex
compact set K < X we consider the form

L: &'(K)sv— {u,v).
For any v we have if H is the supporting function of K
| L(w) | £ C sup | 5(0) | e #ImO(L + L)

That P(D)u = 0 means that L(P(— D)v) = 0 if ve ’(K), or since P is irreducible that
L) =0 if ved'(K) and 5 =0 on N ={{eC", P(—{)=0}. Thus L(v) depends
only on the restriction of 5 to N. Now the global theory of analytic functions (theo-
rem B of Cartan) gives that if f is an analytic function on N (that is, locally the res-
triction of a function analytic in a neighborhood) then f is the restriction of an entire
analytic function F. Ehrenpreis proved that one can give bounds for a suitable exten-
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sion F: for every v > 0 one can find C and v'> 0 so that for a suitable choice of F

sup | F(¢) | e #ImO(1 + ()™ = € sup | S@Qe MmO + ¢~

Taking f to be the restriction of § to N, where v € £'(K), we obtain F = W where w € ’(K)
also, and since L(v) = L(w) we obtain

|L@)| = Csup |90 e HImOL 1L~

Hence there is a measure p supported by N such that

[eImL + 1 L1 | dud) | < oo,
L) = [o)du(0), ve &'(K).

This implies that on K
u(x) = feX=Ddu(),

We have given this argument in some detail to show that the decisive point is the
application of a variant, involving bounds, of theorem B of Cartan. We shall refer
to this as theorem B with bounds. Ehrenpreis [1, 2], Malgrange [2] and Palamodov [1]
have pushed this technique very far and given existence theorems for general over-
determined systems with constant coefficients

1.1.1) S PuDNy =f;,  j=1..J
1

where u,, f;€ 2'(X) and X is a convex open set in R". They have also proved that
solutions of the homogeneous system can be represented by integrals over exponential
polynomial solutions. Obviously solutions of (1.1.1) cannot exist unless we have
the compatibility conditions

1.1.2) in(D)P,-,‘(D)=0, k=1,...K = L QD) =0
1

the existence theorems state that these conditions are sufficient. (It is clear that they
are finitely generated.) The results obtained in this way sum up a very substantial
part of our knowledge of differential operators with constant coefficients.

The proof of theorem B with bounds follows the lines of the Oka-Cartan theory
starting from existence theorems for the differential equation

(1.1.3) Ju =f ,

where u is a (0, p) form in C" and f a (0, p + 1) form. The compatibility conditions
are here df = 0. The proof of the sufficiency of this condition with methods from the
theory of partial differential equations was first achieved by Morrey [1] and Kohn [1]
(see also Kohn-Nirenberg [1]) in relatively compact strongly pseudo-convex domains
in C" (or Stein manifolds). Actually one solves a certain boundary problem for the
Laplacean on forms, called the  Neuman problem. A variant of this approach was
used by Hormander [2, 3] to prove that if ¢ is plurisubharmonic in C" and fe L,
then a solution of (1.1.3) exists when df = 0, with the bound

1.1.4) 2 uPe~(1 + | z|?)2dA < f| f |Pe~%dA,
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where dA is the Lebesgue measure. Starting from this result and local results on ana-
lytic functions one can give a proof of theorem B with bounds (see Hérmander [2, sec-
tion 7.6)).

1.2. Convexity with respect to an operator.

The restriction Lo convex open sets X in section 1.1 cannot be relaxed if one wants
to have an existence theory for arbitrary operators. However, for a fixed operator P(D)
one can consider more general sets X, and since the study of the appropriate conditions
on X is a source of interesting problems we shall discuss them briefly assuming that
P is scalar.

Malgrange [1] proved that a solution of the equation P(D)u = f existsforall f € C*(X)
(or LE,o(X), . ..) if and only if for every compact set K = X there is another compact
set K’ X such that

(1.2.1) ue&'(X), supp P(— Duc K = suppuc K.
To have solutions for arbitrary f € 2'(X) one must have in addition (see Hormander [1])
(1.2.2) uedé’(X), sing supp P(— D)u =« K = sing supp u = K’.

Here supp u (sing supp u) is the smallest closed subset of X such that u vanishes (is
C®) in the complement with respect to X. These results are essentially functional
analytic but the question of finding the geometric meaning of (1.2.1), (1.2.2) which
we shall now discuss is not.

Conditions (1.2.1) resp. (1.2.2) mean that if u is a distribution in a fixed neigh-
borhood of the boundary in X satisfying the equation P(D)u = O resp. P(D)Jue C®
and if u = O resp. u € C*® in an unspecified neighborhood of 0X, then this last property
is valid in a fixed neighborhood of the boundary. Such results are called theorems
on unique continuation (of singularities). For operators with constant (or more
generally analytic) coefficients the basic uniqueness theorem is the classical one of
Holmgren giving uniqueness across a non-characteristic surface, that is, a surface
with p(N) # 0 if N is the normal and p the principal part of P, the homogeneous part
of highest degree. That this breaks down for certain characteristic surfaces can be
shown by solving a Goursat problem. Combining these facts with essentially geo-
metric arguments one concludes (Malgrange [3], Hérmander [1]) if dX € C? and P is
of real principal type that (1.2.1) is valid if at characteristic points x € X the normal
curvature in the direction of the corresponding bicharacteristic is positive while (1.2.1)
is false if it may become negative. That P is of real principal type means that p is
real and that p’(§) = 0p/d€ # 0 for £e R"\0. Lines with the direction p’(£) are then
called bicharacteristics. More precise results along the same lines have also been
given by Tréves [2, section 6.7] and Zachmanoglou [1, 2]. (After the congress the author

as proved using the results on propagation of singularities mentioned below that
(1.2.1)is valid if X e C!, P is of real principal type, and no bicharacteristic emanating
from a characteristic point x € dX contains an interval I 5 x with 0 = X and I in the clo-
sure of X.)

Results of Zerner [1], Hérmander [1] and Grusin [1] show that for the same class
of operators the condition (1.2.2) is essentially equivalent to convexity of X in the
direction p’(£) for all £ e R"\0 with p(§) = 0. We shall now describe a partial gene-
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ralization of these theorems to general operators (see Hormander [10]). To do so
we first introduce the set L(P) of all limits

(1.2.3) Q%) = lim ¢,P(¢ + &)

where ;e C and ¢; —» oo in R*. One should think of Q as a localization of P at infi-
nity. We denote by B, the smallest subspace of R" along which Q acts and call an
affine subspace parallel to some B, with dim B, > 0 a bicharacteristic subspace.
For operators of real principal type this agrees with the earlier definition, and the
bicharacteristic subspaces carry the singularities as one would like them to do. More
precisely, for any Q € L(P) one can find u € 2’(R") with P(D)u = 0 and sing supp u=B,,
provided that dim B, > 0. Furthermore, for any closed cone F containing a half
space of every bicharacteristic subspace and the origin we can construct a fundamental
solution (that is, solution of P(D)E = §, the Dirac measure at 0) which is as smooth
as we like outside F. Gabrielov [1] has proved that the closed union of all By is semi-
algebraic of codimension = 1 so this statement is never empty. As a corollary one
concludes that (1.2.2) is always valid if X n B is convex for all bicharacteristic sub-
spaces, a condition which is also necessary when n = 2. However, when n > 2 the
results known are far from complete.

When P is of real principal type Andersson [1] has recently obtained analogous
results with singular support replaced by analytic support, defined as the complement
of the largest domain of real analyticity. In particular, these imply that (1.2.1) is
then a consequence of (1.2.2). (See also the lecture by M. Sato in these proceedings
as well as section 2.4 below.) Also for general operators one should expect results
similar to those described above for analytic supports or “ Gevrey supports ”. It is
clear that the localizations (1.2.3) must then be modified by allowing &; to tend to oo
in an appropriate complex neighborhood of R™

1.3. Supports of fundamental solutions.

To continue the work described in section 1.2 one seems to need additional infor-
mation on the supports and singular supports of fundamental solutions. More
precisely, given a closed set F — R" we would like to know which operators P(D)
have a fundamental solution with support or singular support in F. The question
concerning singular supports should be closely related to the question on supports
for all localizations so we shall only discuss the latter.

When F is a closed convex cone which is proper, that is, contains no straight line,
the existence of a fundamental solution with support in F means that P is hyperbolic
with respect to the proper supporting planes of F, and algebraic conditions for this
are known (see e. g. Hormander [1]). If F is a subset of such a cone we have the problem
of lacunas for hyperbolic differential operators where in addition to the classical work
of Petrowsky we now have extensive recent work of Atiyah, Bott and Garding [1].
Another case which has been completely solved is that where F = {x; {x, N> =0}
is a half space. A classical sufficient condition for the existence of a fundamental
solution with support in F is the Petrowsky condition that there is a constant C such
that the zeros of P(¢ + tN) =0 for £eR" lie in the half plane Imt> — C. The
necessary and sufficient condition turns out to be that by analytic continuation from ¢
to a point as distance < C from & one can bring 7 into this half plane (see Hormander [9]).
For general convex cones F we also have some sufficient conditions (see Gindikin [1]).
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Further results can be obtained using the methods of Hérmander [9] but the general
situation is far from clear yet.

2. Operators with C” coefficients.

2.1. Pseudo-differential operators.

The theory of (singular) integral operators has always been closely connected with
the theory of differential operators. A complete merger with the theory of diffe-
rential operators has been achieved by the notion of pseudo-differential operator
(Kohn-Nirenberg [2]). This development has been greatly stimulated by the solution
of the index problem for elliptic operators by Atiyah and Singer [1] where the restric-
tion to differential operators is awkward from the topological point of view. Actually
this work was originally based on the earlier techniques of singular integral operators
(see e. g. Calderén and Zygmund [1], Calderon [1]).

If X is an open set in R”, an operator 4: C(X) —» C*®(X) is called pseudo-diffe-
rential of degree m if A can be written in the form

(2.1.1) Au(x) = (2m)""[e<=Pa(x, HU(E)E, ue CP(X),

where ae C*(X x R") and the functions (x, &) — t™™a(x, t£) belong to a bounded
subset of C®(X x (R™0)) when ¢t — oo (Actually it is preferable to use less restrictive
hypotheses on a as in Hérmander [6]). One calls a the symbol of 4. Often it is possible
to write a = a° + a' where a°(x, £) is homogeneous with respect to & of degree m
and a' is of degree m — 1. Then one calls a° a principal symbol. If a is a polynomial
in & it is clear that A4 is the differential operator a(x, D) obtained by replacing ¢ by
D = — id/dx, put to the right of the coefficients. We shall therefore use the nota-
tion a(x, D) in general to suggest the analogy with differential operators. In fact,
most rules of calculus valid for differential operators remain true for pseudo-diffe-
rential operators with very small modifications. It is this ease of manipulation which
makes pseudo-differential operators so useful and not their generality ; the algebra
of pseudo-differential operators is essentially generated by differential operators and
say the Newtonian potential operator. In particular, the calculus leads to the defi-
nition of pseudo-differential operators on manifolds X and shows that the principal
symbol is invariantly defined on the cotangent bundle. Let us also note that pseudo-
differential operators can be extended to continuous operators &'(X) — 2'(X) and
in fact 2'(X) — 2'(X) if one is somewhat careful with questions concerning supports.

Finally,
sing supp Au < sing supp u, ue 2'(X),

which is called the pseudo-local property.

A (pseudo-) differential operator is called elliptic if the principal symbol never
vanishes in T*(X)\0. To every elliptic operator A of order m one can construct
a parametrix B of order — m, that is, an operator such that AB and BA differ from
the identity only by an operator with a C* kernel. Starting from this fact it is easy
to reduce the study of boundary problems for elliptic differential operators to the
study of (systems) of pseudo-differential operators inside the boundary (Calderén [2],
Hormander [5], Seeley [1]). Consider for example the Laplace equation Au =0
in X < R" with a differential boundary condition Bu = f on the smooth boundary
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0X. If u, is the restriction of u to dX, then u is the Poisson integral of u, and the
boundary condition Bu = f becomes a pseudo-differential equation

Buy =f

whose principal symbol is easy to calculate. In this way the study of elliptic boundary
problems (Agmon-Douglis-Nirenberg [1], see also Hérmander [1, chap. X]) is reduced
to the study of an elliptic system of pseudo-differential operators on the compact
manifold dX. The same reduction of more general boundary problems for elliptic
differential equations leads to the study of non-elliptic systems of pseudo-differential
operators (see also section 2.3). Another important conclusion is that mixed boundary
problems for elliptic differential equations, such as the boundary problem Au = 0,
in X, u = f and du/dn = g on complementary parts of dX, are essentially equivalent
to boundary problems for pseudo-differential systems on X, the new boundary being
the manifold where the shift of boundary condition occurs. A thorough study of
such questions has been given by VisSik and Eskin [1-5] and Boutet de Monvel [1, 2].

2.2. Hypoelliptic operators.

If a pseudo-differential operator A has a (left) parametrix (see section 2. 1), if follows
that A is hypoelliptic, that is, Au € C* implies that ue C*. Infact,u=BAu—(BA—Iu
where both terms are in C®. Using sufficiently large classes of pseudo-differential
operators one can prove the hypoellipticity of wide classes of differential operators
in this way. However, more subtle arguments are required for such operators as
the Kolmogorov operator

(2.2.1) Au = 8%u/0x? + x0u/dy — du/ot

at least in the present state of the theory of pseudo-differential operators. For (2.2.1)
it is easy to construct a fundamental solution explicitly but this is no longer the case
if one modifies A slightly. Starting from the hypoellipticity of (2.2.1), due to Kolmo-
gorov himself, a rather complete study of hypoellipticity for second order differential
equations with real coefficients was made by Hormander [7]. A remarkable simpli-
fication and extension of this work has been given recently by Radkevié [1,2]. He
proved in [1] that A is hypoelliptic if )

A=ZI:P;?Pj+iPo+Q

where P,,..., P, are pseudo-differential operators of order 2m — 1, m,..., m with
real principal symbols p,,. .., p,; Q is of order 2m — 2 and the functions
pi{p,pi b {pis {pjs e} b o5 Bink..=0,1,..,r;

have no common zero in X x (R™0). Here
{p, a} = Z(3p/0&;0q/0x; — dp/0x;09/0L))

is the Poisson bracket of functions in X x (R™0) (or rather T*(X)\0), and repeated
Poisson brackets of all orders should be considered. We recall that {p, g} is the
derivative of g along the Hamiltonian vector field defined by p, whose integral curves
are the bicharacteristic strips given by the Hamilton-Jacobi equations

dx/dt = dp/dE,  dE/dt = — dpJox.
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{p, q} is the principal symbol of i[P, Q] = i(PQ — QP) if p, q are principal symbols
of P, Q. When P, can be omitted in the condition above the same result was also
obtained by J. J. Kohn in 1968 (unpublished). Even somewhat more general results
have been announced by Radkevi¢ (See also the lectures by Bony and Olejnik in these
proceedings as well as a forthcoming book by Olejnik and Radkevic).

Closely related theorems on hypoellipticity have been obtained by Egorov [2, 3]
and by Tréves [1]. Since they are discussed in their lectures in these proceedings
we just remark that their conditions involve the repeated Poisson brackets of the
principal symbol a and its complex conjugate @ at the zeros of a. Clearly more work
should be done to unify all these new results.

In this connection we should also refer to the extensive work on boundary problems
for certain degenerating elliptic equations related to (2.2.1) (Kohn-Nirenberg [3],
Olejnik [1], Visik and Grusin [1, 2]).

2.3. Local solvability of pseudo-differential equations.

The close analogy between pseudo-differential and differential operators allows
one to extend the existence and non-existence theorems originally given for differential
operators by Hans Lewy and the author (see Hormander [1, chap. VI, VIII]). The
result is (Hormander [5]): '

a) If for some (x, £)e X x (R™\0) the principal symbol a of A vanishes but Im {a, 7} <0,
then the equation Au = f has no solution in any neighborhood of x if f € C* avoids
a certain set of the first category.

b) If Im {a, a} = Re ba for some smooth homogeneous b, it follows that 4 is sol-
vable, that is, there exist at least local solutions of the equation Au = f.

There is of course a wide gap between the conditions a) and b) above. This has
now been filled to a large extent by work of Nirenberg-Tréves [1, 2] and of Egorov [2, 3].
Since reports on these results are given by F. Tréves and Yu. V. Egorov in these pro-
ceedings, we shall not give any details here. Instead we shall give an application of
the results above to boundary problems. As an example we take the boundary pro-

bl
em Au=0 in X, oufov=f on 0X

where v is a non-vanishing vector field on dX such that the equation (v, N) =0
defines a non-singular submanifold Y of dX, if N is the interior normal of 0X. If
on Y the derivative of { v, N ) in the direction v (which is tangential to 06X on Y) is
negative, we obtain (local) solvability but no regularity theorem whereas there is a
strong non-existence theorem but regularity of solutions (when they exist) in the oppo-
site case (cf. Borelli [1], Hérmander [5]). This strange result was explained by Egorov
and Kondrat’ev [1] who found that in the two cases one should respectively introduce
an additional boundary condition on Y or allow a discontinuity on Y. The problem
then becomes well posed and solutions are smooth apart from a smooth jump. Using
the reduction described in section 2.1 one can view this as a result on a certain pseudo-
differential operator which is elliptic outside a submanifold Y of codimension one.
A general theorem of this type has been proved by Eskin (to appear in Mat. Sbornik).
More generally still J. Sjostrand has shown (to appear in C. R. Acad. Sci. Paris) that if
{a,a} + 0 and da/d¢ is proportional to a real vector when a = 0, then it is possible
to modify the requirements on u in a similar way on an immersed submanifold so that
an essentially correctly posed problem is obtained.
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2.4. Propagation of singularities.

For differential operators with variable coefficients or more generally pseudo-
differential operators we shall now discuss an analogue of the result of GruSin [1]
mentioned in section 1.2. The first point is to refine the notion of singular support.

If ue 2'(X) we have by definition
sing supp u = N {x; ¢(x) =0}

the intersection being taken over all ¢ € C*(X) with pue C®(X). Replacing the
function ¢ by a compactly supported pseudo-differential operator A4, with principal
symbol denoted by a, we introduce
(2.4.1) WFw) = ] {(x &eT*XN\O, a(x, &) =0}.

AueC®
It is clear that this is a closed cone in T*(X)\0 with projection in X contained in
sing supp u, and the regularity of solutions of elliptic equations gives easily that the
projection is precisely equal to sing supp u. It may be useful to think of WF(u) as
the set of all wave fronts contributing to the singularities of u. A similar concept has
been given by M. Sato in the case of hyperfunctions (see his lecture in these proceedings).
Indeed, he identifies a hyperfunction modulo analytic functions with a section of a
certain sheaf on the sphere bundle of T*(X), and the support of this section has proper-
ties analogous to WF(u).

If ue 2'(X) and Pue C*, where P is a pseudo-differential operator of order m with
principal symbol p, it follows from the definition that

WF(@u) < {(x, &); p(x, §) = 0}.

When p is real and dp/0¢ # 0 when p = 0 we claim that WF(u) is in fact the union of
bicharacteristic strips for p which of course contains the result of Grusin [1] discussed
in section 1.2. In sketching the proof we may assume that X < R" for it suffices
to make a proof locally. (This would not have been the case if we had not passed to
WF(u).)

Assume that (x°, £°)e WF(u). This means that for some pseudo-differential ope-
rator A with Aue C® the principal symbol a does not vanish at (x°, £°). We shall
exhibit another operator with the same property relative to all points on the bicha-
racteristic strip through (x° £°). To do so we shall construct a pseudo-differential
operator B such that [B, P] = BP — PB is of order — oo and Bu € C® near the plane
x, = x0, assuming that dp/d¢, # 0 at (x°, £9). The first condition requires first
of all that if b is the principal symbol of B then {b, p} =0, that is, b is constant on the
bicharacteristic strips of p. Clearly we can choose b in this way so that b is 1 at (x°, £°)
but vanishes outside a small conical neighborhood of the bicharacteristic strip through
(x° &9). The support of b will then lie in the set where a # 0 if x,, is close to x?. The
lower order terms of B can then be chosen successively with the same support so that
[B, P] is of order — co. Thus

PBu = BPu + [P, Blue C~.

Now it is easy to find an elliptic operator R such that the symbol of RP differs from
that of a hyperbolic pseudo-differential operator Q = D, — t,(x, D’) + to(x, D’)
only by a term of order — oo in the support of all terms in the symbol of B. Here
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T, is a homogeneous real valued function of degree 1 and t, is of degree O,
D’'= (Dy,...,D,_1). Hence QBue C*. The standard construction of a parametrix
finally shows that there is a pseudo-differential operator C such that B — C4 is of
order — co near the plane x, = x?. Thus Bu = CAu + (B — CAue C® for x,
near x?, so the simplest results on hyperbolic operators suffice to show that Bue C*.
Since the principal symbol of B is 1 on the bicharacteristic strip through (x°, £°) it
cannot meet WF(u), which proves the assertion.

We remark that the preceding result improves the existence theorems given in
Hoérmander [1, section 8.7] for operators of real principal type.

2.5. Fourier integral operators.

The calculus of pseudo-differential operators has to be extended if one wants to
construct a (left) parametrix for an operator which is not hypoelliptic. The form
which such an extension should take is suggested by the approximate solutions given
by the asymptotic expansions of geometrical optics. These were adapted by Lax [1]
to determine the location of the singularities of the solutions of the Cauchy problem
for a hyperbolic operator of arbitrary order. His local result was globalized by
Ludwig [1], and his constructions were developed and applied by Hérmander [8]
to give improved and in a sense optimal error estimates in the asymptotic formulas
for the spectral function of an elliptic operator. The best earlier results due 1o Agmon
and Kannai [1], Hérmander [12] were based, roughly speaking, on the approximations
to fundamental solutions given by the techniques of pseudo-differential operators.
Closely related ideas have been developed by some Russian mathematicians (Mas-
lov [1, 2], Eskin [1], Egorov [1]) and they play an essential role in the work of Egorov
and Nirenberg-Tréves mentioned in section 2.3. The work of Maslov seems to be
quite farreaching but is very inacessible and perhaps not quite rigorous so we must
content ourselves with a reference to the explanations given by him at this congress.
A systematic development of an enlarged operator calculus has also been undertaken
recently by Hérmander [11], and in joint work with I. J. Duistermaat, still unpublished,
it has been applied to give a global construction of a parametrix for arbitrary operators
of real principal type, and of solutions with a given bicharacteristic strip as wave
front set. This work also shows that the condition dp/0¢ # O can be dropped in sec-
tion 2.4.

2.6. Over-determined systems.

In section 1.1 we mentioned how existence theorems for the system du = f of
Cauchy-Riemann equations in the theory of functions of several complex variables
are obtained from the solution of the § Neuman problem. The same technique
can be applied to various related equations (see Sweeney [1], McKichan [1]) but the
hopes of obtaining a general theory of overdetermined systems with variable coeffi-
cients from this approach have not been fulfilled so far. For a generic overdetermined
system Spencer [1] introduced a sequence of first order operators, now called the
Spencer sequence, which is formally exact. The desired local existence theorems for the
original equation are equivalent to exactness of the Spencer sequence on the sheaf of
germs of C® functions. The algebraic machinery for the study of the Spencer sequence
has been highly polished (see the survey article by Spencer [2] and the references there)
but analytic results on exactness of the desired generality have not yet been obtained
(For very recent progress we refer to the lectures by Guillemin and Kuranishi in these

-5
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proceedings). However, an interesting new line of investigation is suggested by the
recent progress by Henkir [1, 2], Kerzman [1], Grauert and Lieb [1], Lieb [1], @vrelid [1],
Ramierez de Arellano [1] concerning the construction of kernels which reproduce
solutions of du = 0 or solve the equation du = f. If these constructions could be
adapted to more general systems with constant coefficients it seems reasonable to
expect that the techniques of Fourier integral operators mentioned in section 2.5
would allow the study of suitable classes of systems with variable coefficients.

3. Equations with analytic coefficients.

3.1. Hyperfunctions.

In the study of differential operators with C® coefficients it is natural to work with
Schwartz distributions which form the largest class on which all such operators are
defined. However, when the coefficients are real analytic it is possible to work within
the larger frame of Sato hyperfunctions (Sato [1], Martineau [1]). During the past
few years much work has been done along such lines which has given many results
parallel to those for Schwartz distributions. We must content ourselves here with
referring to the survey by Schapira [1] and the lecture by M. Sato in these proceedings.

3.2. Uniformization.

A study of the Cauchy problem with data on a hypersurface which is partly charac-
teristic was initiated by Leray [1]. He found that the solution ramifies around the
variety generated by the bicharacteristics passing through the characteristic points
of the initial surface. A detailed analysis was given by Garding, Kotake and Leray [1]
in the case of linear systems. Later Choquet-Burhat [1] has simplified the proofs
and extended the general result to non-linear equations.
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SCATTERING THEORY
AND PERTURBATION OF CONTINUOUS SPECTRA

by Tosio KATO

At this Congress in 1950 the late Professor F. Rellich [49] gave a lecture entitled
“ Storungstheorie der Spektralzerlegung ”. It was a survey of results known at that
time regarding the perturbation of the spectral properties of linear operators. The
emphasis was laid on the behavior of isolated eigenvalues and the associated eigen-
vectors. There was no detailed account of continuous spectra, although the
results [18, 19] of Friedrichs were described; in fact there were rather few results known.
During the past twenty years, however, there has been great progress in this direction.
It is my pleasure to be able to give a survey of the major developments.

To begin with, I have some remarks concerning the nature of the problem. We are
not considering a sharply defined mathematical problem; rather the problem itself
evolves with the development of the methods to solve it. Also, it is closely connected
with physical problems, in particular, scattering theory (classical as well as quantum-
mechanical). It is my aim to survey those results concerning the perturbation of
continuous spectra that are more or less related to scattering theory, with some appli-
cations to differential equations. But I shall restrict myself to abstract scattering
theory, which works in the framework of operator theory, thereby omitting results
obtained by more concrete analytical methods. For very recent results I refer you
to the lecture by Professor Kuroda. Also there will be a lecture by Professor Phillips
on scattering theory.

1. Let me start by reviewing what was known in 1950. It had long been known that
the essential spectrum was stable under perturbation by a compact operator but the
continuous spectrum was rather unstable. (Here and in what follows all operators are
assumed to be linear.) But these results are not in the direction of our interest here.

Another result, far more important for our purpose, was given by Friedrichs [18]
in 1938 and was mentioned in Rellich’s lecture. I repeat it in a specialized form.
In the Hilbert space H = L%(a, b) consider the operator H, of multiplication:
Hju(4) = Au(4), and perturb it by the addition of a symmetric integral operator:

b
H; =H, + eV, Vuld)= f k(Z, pyu(u)dp, k(4 p) = kg, 2).
Friedrichs shows that H, and H, are unitarily equivalent (so that H, has a pure conti-
nuous spectrum ranging over [a, b]) if the kernel k is Holder-continuous, vanishes on
the boundary of the square [a, b] x [a, b], and if || is sufficiently small. This is
done by constructing two unitary operators U, that implement the unitary equiva-
lence: H, = U H, Uz
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This result is not so special as might appear at first sight. All subsequent develop-
ments I am going to discuss are more or less related to it.

The significance of Friedrichs’ result became clear later, when gereral scattering
theory was developed by physicists. In 1943 Heisenberg [23] introduced the notion
of the S-matrix, or scattering operator as mathematicians now prefer to call it. The
formal theory of scattering was further developed by Mgller [45], who introduced the
wave operators. As was shown by Friedrichs [19], his model of 1938 contained essen-
tially all the proofs necessary to define these notions rigorously. The operators U .
which he constructed were exactly the wave operators, by which the scattering ope-
rator is expressed as § = U;1U_. These results were greatly generalized by Frie-
drichs in [19] and [21].

Here we have another example of a recurrent phenomenon. The mathematical
tools were ready when physicists needed them, although this was not recognized
immediately. Friedrichs remarked in [20] that it was strange that such a natural
notion as the scattering operator had not appeared earlier. It seems to me no less
remarkable that the paper of Friedrichs, written before the advent of this notion,
contained all the tools necessary for its rigorous construction.

2. Let me sketch a formulation of scattering theory in the simple case of single-
channel scattering, following Jauch [29] but with a slight modification. Consider
two unitary groups e ", j=1,2, — 0 <t < oo, in a Hilbert space H, with self-

adjoint generators H; = AdEj(4). Let P; be the orthogonal projection onto the

subspace of absolute continuity for H; (the set of all u e H such that (Ef.)u, u) is abso-
lutely continuous with respect to Lebesgue measure). P; commutes with H;.

Suppose that the strong limits
w) W, = W.(H,, Hy) = t_{iill gtHag=itHip,

exist; we call them the (generalized) wave operators for the pair H,, H,. W, are
partial isometries with the initial set P,H and intertwine H, and H,: H,W, > W H,.
It follows that the final sets (ranges) of W, are subsets of P,H. If they coincide with
P,H, we say that the wave operators W, are complete. In this case the absolutely
continuous parts of H, and H, are unitarily equivalent; this is why the wave opera-
tors are interesting mathematically.

The scattering operator is defined by S = W#W_; it commutes with H,, and is
unitary in P,H if W, are complete. S contains all information about scattering,
and is physically most important. In accordance with the canonical direct integral
decomposition P,H = [® H(2)dA of P,H by which the absolutely continuous part
of H, is diagonalized: H,P; = j' @ AI(A)dA, where I(4) is the identity operator in H(Z),
S is expressed as the direct integral S = [@® S(4)dA, where S(4) is unitary in H(2). S(2)
is called the S-matrix or the scattering suboperator.

In most applications H, is absolutely continuous so that P, = I, but it has been
found convenient to define W, as above in the general case. There is no a priori
reason why P;H should be the subspaces of absolute rather than mere continuity.
As it turns out, however, more existence theorems can be proved by the above defini-
tion than otherwise, which indicates that it is an adequate definition. In fact, one
of the important results of scattering theory is the discovery that the absolutely conti-
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nuous spectrum is rather stable under perturbation, whereas the continuous spectrum
is quite unstable (cf. Aronszajn [1]).

Thus the first mathematical questions are the existence and completeness of the
wave operators. They have been answered affirmatively in the Friedrichs model,
but it does not cover all interesting applications. Many attempts have been made
to give useful sufficient conditions. I would like to discuss some of the methods and
results, together with some typical applications.

3. There have been proposed two different methods: time-dependent and stationary,
although these are often used in conjunction. The time-dependent method works
with the groups e directly. In this way it is rather easy to deduce general proper-
ties of the wave operators and give useful sufficient conditions for their existence, as
was shown by Cook [13], Kuroda [39], and others. The completeness is more difficult
to establish. But a very simple condition for the existence and completeness was
obtained by Rosenblum [50] and Kato [31, 34] in the form H, = H,; + V, Ve B,(H),
where B;(H) is the trace class of compact operators in H. It is interesting to note
that B,(H) is practically the only class with this property (Kuroda [38]). This condi-
tion was later generalized by many authors. Here we mention the useful criterion,
due to Birman and Krein [10] and de Branges [11], that R,(z) — R,(z) € B,(H) for
some z€ p(H,) N p(H,), where Rj(z) = (H; — zI)™! and p denotes the resolvent set.
It was also shown [10] that in this case S(4) — I(4)e B,(H(4)) for almost all real A.

In this connection I note the invariance principle for the wave operators. It asserts
that W.(¢(H,), ¢(H,)) = Wi(H,, H,) holds for any real-valued, piecewise monotone
increasing function ¢ with a certain continuity property. The invariance principle
has not been proved in general, but it has been shown to hold in most of the cases in
which the existence and completeness of W.(H,, H,) has been proved (Birman [5],
Kato [32, 34], Kuroda [40], Kato and Kuroda [37]). It easily leads to many new
and old criteria, for example H;* — H{ %€ B,(H) for some « > 0 when H,, H, have
positive lower bounds (Birman [3]).

These criteria have been applied successfully to differential operators, including
single-particle Schrédinger operators. For example, consider the operators in
H = L*(R")

H, =

(A”)
Hy= - i a1 8 [ b+ b + et

where a;(x), by(x), q(x) are real-valued and the symmetric matrix (a;(x)) is positive-
definite. We refer to the special case ay(x) = 6, bfx) = 0 as (47). It was shown
in [39] that ge L' n L? is sufficient for the existence and completeness of W, for (43).
Ikebe and Tayoshi [28] show that, roughly, a similar decay rate for the ay — dy, b;,
and g is sufficient for (4,), certain smoothness conditions being assumed for the a;,
and b;. The existence of W, has been proved under weaker conditions. Another
interesting result, due to Birman [4], is the invariance of the absolutely continuous
spectrum of a differential operator on an exterior domain when the boundary and
the boundary conditions are changed.

=1 an

4. The stationary method, on the other hand, has many variants. In general they
work with the resolvents R(z) rather than the groups e ", of which the resolvents
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are the Laplace transforms. Roughly speaking, one tries to define two operators U,
by

O Ui=f

-0

E5(AI + VRy(A + i0))PydA = 4[ (I — VRy(A £ iQ)E{(A)PdA,
where V= H, — H, formally, and show that they have all (or some of) the properties
of the wave operators. (U) may be deduced by a formal Fourier transformation
from (W), but it has no precise meaning as it stands. The various stationary methods
arise from different attempts to interpret (U) rigorously. Since the derivatives E}(4)
and the boundary values VR4 + i0) do not exist in the ordinary topologies, one has
to introduce new topologies in certain spaces of operators. There are many ways
to do this but it is impossible to describe them in detail here. Unfortunately there
are few theorems in the stationary methods that can be stated concisely.

It has turned out, however, that the stationary methods are on the whole more
powerful than the time-dependent one. The main advantages are the following.
1) One may prove the unitary equivalence of H, P; and H, P, without proving U, =W,
completely. 2) Possibility of localization: one may define U, only on a subspace
E,(D)H to E,(H, where I' = R!. 3) Often one can obtain some information on
the singular parts H{(I — P;), for example their non-existence.

The stationary methods have been studied vigorously in the recent years. The
original method of Friedrichs may be regarded as one of them, although it cannot
be written directly in the form (U). The perturbations V permitted in this method are
called gentle perturbations. They were further studied by Faddeev [17] and Rejto [47],
who later arrived at the very general notion of partly gentle perturbations [48]. An
analogous notion was introduced by Howland [25] independently. Roughly speaking,
V is partly gentle if there is a Banach space X, partly contained in H, such that
i) d(E{(A)u, v)/d] exist as continuous sesquilinear forms in u, ve X for each 1eI" and
ii) the VR (z) map X into itself continuously and have boundary values when z approa-
ches the two edges of the part I" of the real axis.

Birman and Entina [9], on the other hand, give a more direct interpretation of (U),
assuming the trace condition Ve B,(H) or its generalizations. Birman [6] gives “ local ”
criteria, which are most useful in applications to differential operators as shown in [7].
For example, sufficient conditions analogous to those of [28] are deduced for (4,);
one can even admit as H, differential operators of higher order than H, if one does
not insist on the completeness of W..

Another interpretation of (U) is given by Kuroda [40] using the factorization method.
A recent paper [37] by Kuroda and myself gives a rather general theorem that covers
gentle (or “ smooth ) as well as trace-type perturbations. It has been found useful
in many applications. For example, in (42) it suffices to assume

g <ol +1xD7"  B>1,

to ensure the existence and completeness of W, [36]. (This is optimal in a certain sense
in view of the result of Dollard [14] for the Coulomb potential.) Kuroda [41] gene-
ralizes it to cases when g need not be locally bounded. He further applies the theorem
to (A,), assuming the decay rate O(|x|™#), B > 1, of the ay — 6, b;, and q; this is
a substantial improvement over the results of [7] and [28] stated above. For details
I refer to Kuroda [41 a].
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I should note that some of these results pertaining to differential operators were
obtained also by more concrete methods.

5. Finally I want to list other related problems and open questions.

(a) Two space theory. The formulation presented above is adapted to single-
channel scattering for quantum-mechanical systems. For applications to classical
wave equations and to more general hyperbolic systems of partial differential equa-
tions, one needs a more general formulation in which the two groups e™*® act in
different Hilbert spaces H;. See Belopol'skii and Birman [2], Birman [8], Kato [35],
Kuroda [41 a], Schulenberger and Wilcox [51], Wilcox [52]. Some of these results
have points of contact with the theory of Lax and Phillips [42].

(b) Multi-channel scattering. An abstract formulation was given by Jauch [30].
It has been verified in certain typical cases of many-particle Schrédinger operators
by Hack [22], Faddeev [16], Hepp [24], Combes [12], and others. To give a more
abstract treatment of this problem would seem to be one of the major open questions
in scattering theory.

(c) Eigenfunction expansions for the absolutely continuous spectrum. In concrete
problems like (4,), one can construct eigenfunctions of H, and H, explicitly and then
define the wave operators, cf. Povzner [46], Ikebe [27]. In the abstract theory one
reverses this order and constructs eigenfunctions for H, by a refinement of the statio-
nary method, assuming the existence of eigenfunctions for H,. Cf. Howland [26],
Kato and Kuroda [37].

(d) Scattering theory has been developed, though rather incompletely, for certain
non-selfadjoint problems in Hilbert and Banach spaces. Cf. Kato [33], Lin [43],
Mochizuki [44].

(e) The inverse problem. Consider the map H, — H; = V — S for a fixed H,.
One expects that the map is one-one and onto between certain classes of ¥V and S
(which should be sufficiently large) and wants to give the inverse map § — V
explicitly. Unfortunately, the situation is not so simple in general; it depends greatly
on H, and the classes employed. (For example, if H, is fixed arbitrarily and V is allowed
to vary on B;(H), then the map ¥V — S is not one-one.) Thus it does not seem easy
to develop an abstract theory of the inverse problem. But many interesting results
have been obtained for Schrédinger operators, especially for n = 1 (cf. Faddeev [15]).
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MODEL THEORY

by H. JeroME KEISLER

1. Introduction

Twenty years ago, A. Robinson and A. Tarski lectured on the subject of model
theory to the International Congress at Cambridge, Massachusetts. At that time the
subject was just beginning, and only two real theorems were known. Since then
progress has been so spectacular that today it takes years of graduate study to reach
the frontier. In this lecture I will try to give an idea of what the subject is like and
where it is going.

Model theory is a combination of universal algebra and logic. We start with a
set L of symbols for operations, constants, and relations, called a language; for exam-
ple, L={+,.,0,1, <}. The language L is assumed to be finite or countable
except when we specify otherwise. A model U for the language L is an object of the
form U = <A, +os o O Lo, <o)

A is a non-empty set, called the set of elements of W, +o and . are binary operations
on A x Ainto 4, Oy and ly are elements of 4, and <y is a binary relation on A.

ExampLEs. — The field of rationals, ( Q, +, ., 0, 1), is a model for the language
{+,.,0,1}. So is every other ring, lattice with endpoints, etc. The ordered field
(@, +,.,0,1, <) is a model for the language { +,.,0,1, <}. Each group,
partially ordered set, graph, etc., is a model for the appropriate language.

Most results in model theory apply to an arbitrary language. We frequently
shift from one language to another, for instance a new theorem about a given language
is often proved by applying an old theorem to a different language.

Many facts about models can be expressed in first order logic. In addition to the
operation, relation, and constant symbols of L, first order logic has an infinite list of
variables

X, Ys 2, Vg, Vg, Ugy...,
the equality symbol =, the connectives

A (and), V (or), —1 (not),
and the quantifiers
V (for all), 3 (there exists).

Certain finite sequences of symbols are counted as terms, formulas, and sentences.
The class of terms is defined as follows:
Every variable or constant is a term;

If t, u are terms, so are t + u, t-u.



142 H. J. KEISLER G

The formulas are defined by the rules:
If ¢, u are terms, then ¢t = u, t < u are formulas.

If @, ¥ are formulas and v is a variable, then =1 @,@ A Y, ¢ V ¥, Yoo, vp are
formulas.

A sentence is a formula all of whose variables are bound by quantifiers. For exam-
ple, the sentence

1) Vx (x=0V 3y (x-y=1))

states that every non-zero element has a right inverse.

Hereafter A=< 4,... >, B={B,...),... denote models for L, and ¢, ¥, 6,...
denote sentences.

The central notion in model theory is that of a sentence ¢ being true in a model %,
in symbols A = ¢. This relation between models and sentences is defined mathe-
matically by an induction on the subformulas of ¢. It coincides exactly with the
intuitive concept. For example, the sentence (1) is true in the field of rationals but
not in the ring of integers. A set of sentences is called a theory. Uis a model of a
theory T, in symbols U = T, if every sentence ¢ € T is true in .

ExampLes. — The theory of rings is the familiar finite list of ring axioms found in
any modern algebra text, and each ring is a model of this theory. The theory of real
closed ordered fields is an infinite set of sentences, consisting of the axioms for ordered
fields, the axiom stating that every positive element has a square root, and for each
odd n an axiom stating that every polynomial of degree n has a root.

For each model 2, the theory of U, Th (), is the set of all sentences true in A.

Model theory is a rich subject which studies the interplay between various kinds
of sentences and various kinds of models.

2. Two classical theorems.

Model theory traces its beginnings to two basic theorems which come out of the
1930’s. The mathematicians who proved them are the founders of the subject.

CoMPACTNESS THEOREM. — If every finite subset of a set T of sentences has a model,
then T has a model.

This theorem was first proved by Godel, 1930 for countable languages. Malcev,
1936 extended the theorem to the case where T is a set of sentences in an uncountable
language. The compactness theorem has many applications to algebra (see Robin-
son, 1963).

Example. — Suppose the sentence ¢ is true in every field of characteristic zero.
Then there is an n such that ¢ is true in all fields of characteristic p > n.

Proof. — Consider the set T of sentences consisting of the field axioms, the sentence
—1 ¢, and the infinite set

“(1+1=0, “1+1+1=0, "(A+1+1+1=0),...
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By the hypothesis, T has no models, so some finite subset of T has no models, and the
conclusion follows.

By the cardinal of a model A we mean the cardinal of the set A of elements of A.

LOWENHEIM-SKOLEM-TARSKI THEOREM., — If T has at least one infinite model,
then T has a model of every infinite cardinality.

Example. — Let T be the theory of real closed fields. Then T has a model of car-
dinal 2%, namely the field of real numbers. There are countable real closed fields
and also real closed fields of every other infinite cardinality. The LST theorem
shows that this happens in general.

Both of the theorems above assert that a certain kind of model exists, and their
proofs depend on techniques for constructing models. Indeed, almost all the deeper
results in model theory depend on the construction of a model. We shall indicate
some of the most useful methods of constructing models and state some of the theorems
which they yield.

3. The method of diagrams.

This method, due to Henkin, 1949 and Robinson, 1951, is the basis of Henkin’s
proof of the Gédel compleneness theorem. It also has many other uses.

The diagram language for U is obtained by adding to L a new constant symbol @
for each element a of A. The elementary diagram of U, denoted by Diag (), is the
set of all sentences in the diagram language of 9 which are true in . The difference
between Th (¥) and Diag (%) is that Diag (Y) has new constant symbols for the ele-
ments of A while Th (A) does not.

In many situations it is possible to construct a model of a set T of sentences by
extending T to a set of sentences T’ which happens to be an elementary diagram of
some model A. In this construction one is always working with seniences, and cons-
tant symbols are used for the elements of W. The compactness and LST theorems
can be proved by this method. The construction has many other applications; we
shall state three of them without proofs.

The notation ¢ =  means that every model of ¢ is a model of .

THEOREM 1 (Craig interpolation theorem, Craig, 1957, A. Robinson, 1956). — Sup-
pose ¢ = . Then there is a sentence 0 such that ¢ = 6, 6 =y, and every operation,
constant, or relation symbol which occurs in 6 occurs in both ¢ and y.

The next theorem concerns homomorphisms. A mapping # of A onto B is called
a homomorphism, and B is called the homomorphic image of W by h, if for all a, b, € A,

ha + b) = ha) +g h(b), h(ly) = g,
a <y b implies h(a) <g h(b),

etc. If his one-one and k™! is also a homomorphism, then k is called an isomorphism.
It is obvious that every sentence ¢ is preserved under isomorphic images, that is,
every isomorphic image of a model of ¢ is a model of ¢. But which sentences are
preserved under homomorphic images?
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A sentence ¢ is said to be positive if it contains no negation symbol 1, i. e. it is built
using only A, V,V, 3.

THeOREM 2 (Lyndon homomorphism theorem, 1959). — A sentence ¢ is preserved
under homomorphic images if and only if there is a positive sentence ¢ which has
exactly the same models as ¢.

The hard direction is “ only if ”.
Examples. — The theories of groups, abelian groups, rings, and fields (if we allow
the one element field) are preserved under homomorphic images because their axioms

are positive. But the theory of integral domains is not preserved under homomorphic
images. It has the axiom

VxVy x=0Vy=0V 1x.y=0),

and this axiom cannot be replaced by a positive sentence.
A theory is complete if it is equal to Th () for some . Let us consider the number
of (non-isomorphic) countable models of a complete theory T.

Examples. — We have examples of complete theories with exactly one countable
model (atomless Boolean algebras); 8, countable models (algebraically closed fields);
2% countable models (real closed fields); and n countable models for each n >3
(due to Ehrenfeucht).

But the following surprising theorem is due to Vaught, 1959.

THEOREM 3. — There is no complete theory which has exactly two countable models.

4. Elementary chains.

This construction was introduced by Tarski and Vaught, 1957.

A and B are said to be elementarily equivalent if Th (U) = Th (B), that is, they a-re
models of exactly the same sentences.

A is said to be a submodel of B, A = B, if A = B and the operations, constants, and
relations of U are those of B restricted to 4. W is an elementary submodel of B, A<B,
if A = B and every sentence of Diag (%) is true in B. A simple exercice: if A < B
then A and B are elementarily equivalent.

Example. — Tarski, 1948 has shown that if B is any real closed field and 2 is a real
closed subfield of B, then A <B. Similarly for algebraically closed fields. Such theo-
ries are called model complete (Robinson, 1963).

An elementary chain is a sequence of models
Wo, Wiy s Uy oy <,
where y is an ordinal, such that
if a<f<y then A <Y,.

The union of an elementary chain is the model A = U, ., U, such that 4 = U,.,4,
and each U, is a submodel of U.
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THEOREM 4 (Tarski-Vaught, 1957). — Let U, , o < 7y, be an elementary chain. Then
each U is an elementary submodel of U, ., %,.

A typical application of this construction is the following Ldwenheim-Skolem-
Tarski type result for pairs of cardinals. For this theorem we assume that the language
contains a one-placed relation symbol U. By a model of type (N,, X;) we mean a
model A such that A4 has cardinal &, and Uy has cardinal ;.

TueOREM 5 (Vaught, 1962). — Suppose a theory T has a model of type (X,, Np)
where ¥, > 8;. Then T has a model of type (¥, No).

The model U of type (N, Ny) is constructed as the union of an elementary chain 2,
o < wy, of N; countable models such that all the sets Ug, are the same.

Many results in model theory depend on the Generalized Continuum Hypothesis
(GCH), which states that for all infinite cardinals N, , 2% = &,,,. One such result
is the following.

THEOREM 6 (Chang, 1965) (GCH). — Suppose a theory T has a model of type
(N1, Ng). Then for every N,, T has a model of type (N,42, Nus1)-

The proof uses an elementary chain of length N,,, of models of cardinality &, ;.
Example (GCH). — Let U be the model
A=(R, +,.,0,1, <, Z).

where R is the set of real numbers and Z is the set of integers. A is a model of type
(N;, No). By Chang’s theorem, Th () also has a model of type (X,, N;). But Th ()
cannot have a model of type (X,, No).

5. Ultraproducts.
This construction was introduced by Skolem, 1934 to get a non-standard model
of arithmetic and in its present general form it is due to L.6s, 1955.

Let I be a non-empty set and let U, , iel, be models for L. An ultrafilter over I is
a set D of subsets of I such that D is closed under finite intersections, any superset
of a member of D is in D, and for all X < I, exactly one of the sets X, I — X belongs
to D. A statement P(i) is said to hold almost everywhere (D) if the set of i € I for which
P(i) holds is in D.

Now consider the Cartesian product IT,;4;. For f, ge Il ;4; we write
f=pg iff [f()=g()ae (D)
Then =p is an equivalence relation on IT,;4;. Let fj be the equivalence class of f
and II,A; the set of all equivalence classes.

The ultraproduct I1,%; is a model with the set of elements I1,4,. The relation <
on this model is defined by

fo<gp iff J()<gy, g() a.e (D)



146 H. J. KEISLER G

The operation + is defined so that
Jo+ g =hp iff f(i) +e,80) = h() a.e. (D).

The fundamental result about ultraproducts is the following.

TueoreM 7 (Lds, 1955). — For each sentence @, ® holds in the ultraproduct IT,%;
if and only if ¢ holds in ; almost everywhere (D).

Ultraproducts can be used to give us another proof of the Compactness Theorem.
Many applications of the Compactness Theorem can be done more neatly using ultra-
products directly.

Example. — Suppose all the models U; are fields, and form the complete direct pro-
duct ring IT, ;. It turns out that the set of ultraproducts IT,%; is exactly the same
as the set of quotient fields IT, 2;/J of the ring IT,.;A; modulo a maximal ideal J (The
fields I, A;/J were studied by Hewitt, 1948; see Gillman-Jerison, 1960).

Suppose all the models U, are the same model A. Then the ultraproduct IT,A is
called an ultrapower of A. By the theorem of £.6s, A is elementarily equivalent to
each ultrapower II,.

Example (non-standard analysis, A. Robinson, 1966). — Let U be the model

A=(R, +, , 0, 1, <,...)

where R is the set of real numbers, and the three dots stand for a list of all the 22N

operations, constants, and relations on R. Let D be an ultrafilter over the set
o ={0,1,2,...} which contains no finite set. Then the ultrapower II,% is a non-
Archimedean real closed field; for instance, {1, 1/2, 1/3, 1/4, 1/5,... >p is a posi-
tive infinitesimal and ¢ 1, 2, 3,... >, is positive infinite. Using the ultrapower IT,%,
the whole subject of analysis can be based on infinitesimals in the style of Leibniz.
For example, consider any real function f and real numberscand L. Then LL_[‘IE f(x)=L

if and only if for every b in II,A which is infinitely close but not equal to c, f(b) is infi-
nitely close to L.

Ultrapowers can also be used to give purely algebraic characterizations of model-
theoretic notions such as elementary equivalence.

THEOREM 8 (Isomorphism theorem). — Two models 2, B are elementarily equiva-
lent if and only if there is an ultrafilter D such that II,% and I1,® are isomorphic.

This theorem was proved by Keisler, 1963, using the GCH, and was proved without
the GCH by Shelah, 1971.

Among the important tools in model theory are the saturated models; they are
used in theorems 6 and 8 above. The ultraproduct is one way of constructing such
models. Let N, be an uncountable cardinal. U is N,-saturated iff for every set @
of fewer than N, formulas ¢(x) in the diagram language of %, if for each ¢,,..., ¢, € ®

the sentence
Ix (@(x) A ... A @)
is true in A, then the infinitely long sentence

Ax A peo 9(%)
is true in 2.
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THEOREM 9, — Let I be a set of power ¥,. There is an ultrafilter D over I such
that every ultraproduct IT,%; is N, -saturated.

The above result was proved under the GCH by Keisler, 1963, and without the
GCH by Kunen, 1970. N, -saturated models were first constructed in another
way by Morley-Vaught, 1962,

Example. — It turns out that a real closed field is N,-saturated if and only if its order-
ing is an n,-set, that is, for any two subsets X, Y of power < N, (perhaps empty), if
X < Y then there is an element z such that X <z < Y.

There are a number of applications of saturated models to algebra. For example,
they are the main tool in the proof by Ax and Kochen, 1965 of Artin’s conjecture:
for each positive integer d, the following holds for all but finitely many primes p. Every
polynomial in the field Q, of p-adic numbers, with degree d, more than d? variables,
and zero constant term, has a non-trivial zero in Q.

6. Indiscernibles.

Suppose we expand the language L by adding n new constant symbols ¢,,...,¢c,,
forming L,. For each model U for L and each n-tuple ay,...,a, of elements of U,
we obtain a model (¥, ay,...,4,) for L,. Consider a subset X of 4 and a linear
ordering < of X, which is not necessarily one of the relations of W. We say that
{ X, <) is a set of indiscernibles in U if for any n and any two increasing n-tuples

a; < ...<a,, by <...<b,

from { X, < ), the models (¥, a,,...,a,) and (U, by,. .., b,) are elementarily equiva-
lent. The basic result below shows that there always are models with indiscernibles.

THEOREM 10 (Ehrenfeucht-Mostowski, 1956). — Let T have infinite models and
let { X, <) be any linearly ordered set. Then there is a model ¥ of T such that
(X, <) is a set of indiscernibles in 2.

The construction of the model U uses the partition theorem of Ramsey.

Examples. — Let U be a field and B be the ring of polynomials over U with the set X
of variables. Then for any linear ordering < of X, { X, < ) is a set of indiscernibles
in B.

Let A be a non-Archimedean real closed ordered field and let X be a set of positive
infinite elements such that if x <y in X then x" <y, n=1,2,... Then X with
the natural order is a set of indiscernibles in 2.

Indiscernibles are used to prove results such as the following (Two elements a, be 4
have the same automorphism type if there is an automorphism of 4 mapping a to b).

THEOREM 11 (Ehrenfeucht-Mostowski, 1956). — If T has an infinite model, then
for every infinite cardinal N,, T has a model of power X, with only countably many
automorphism types.

The following very deep results use both the method of indiscernibles and saturated
models.

A theory T is said to be N,-categorical if all models of T of cardinal X, are isomorphic.
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THEOREM 12 (Morley, 1965). — If T is N, -categorical for some uncountable §,,
then T is Nj-categorical for every uncountable Nj.

Shelah, 1970, extended Theorem 12 to uncountable languages.

THEOREM 13 (Baldwin-Lachlan, 1970). — If T is N;-categorical, then either T is
No-categorical or T has exactly X, models of cardinal ¥,.

We mention one theorem at the opposite extreme from the above.

THEOREM 14 (Shelah, 1970). — Suppose T has a model A such that for some formula
¢(x, y) and some infinite set X < A, the relation

{{a,b>eX* Uk ¢la, b)}

is a linear order. Then for every uncountable ¥,, T has 2% non-isomorphic models
of cardinal N, .

Example. — The theory of algebraically closed fields is ¥,-categorical for every
uncountable N, and has ¥, countable models. The theory of abelian groups with
all elements of order two is N,-categorical for every X,. The theory of real closed
fields has 2%« models of each infinite cardinal &%,. The theory of atomless Boolean
algebras is ¥ -categorical but has 2™« models of each uncountable cardinal N, .

7. Recent trends.

The model theory of first order logic contains a number of substantial results, but
until recently only the compactness theorem has had many applications. This situa-
tion is changing and will change more as the subject becomes more widely known.
One of the bottle-necks has been that most properties arising in mathematics cannot
be expressed in first order logic. For this reason there is a strong move toward model
theory for more powerful logics. In the last few years there have been exciting deve-
lopments in the model theory of the infinitary logic L,,,. This logic is like first order
logic except that it allows the connectives A and V to be applied to countable sets
of formulas, that is, if ¢4, @;, ¢,,... are formulas of L,,,, then so are

o Nos Ao A ., oV, Vo V...
The formulas may thus be countable in length.
Examples. — The sentence
Vx x=0V x+x=0V x+x+x=0V...)
is true is an abelian group G if and only if G is a torsion group. The sentence
Vx x<1V x<14+41V x<1+141V ..)

is true in an ordered field if and only if it is Archimedean.

Both the Compactness Theorem and the LST Theorem in their original form are
false for L,,,. For the latter, note that every Archimedean ordered field has power
< Mo, Nevertheless, it turns out that all of the methods from first order model
theory can be used in L, ,. Many of the main results have been generalized to
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L, > often in a more subtle form. For example, the LST Theorem takes the follow-
ing form. The cardinal 1, is defined by the rule
:0 = NO, 3'az+1 = 2:1”
3, = Z;<,; for limit ordinals a.

THEOREM 15 (Morley, 1965). — Let ¢ be a sentence of L, ,. If ¢ has a model of
cardinal at least 1, , then ¢ has models of every infinite cardinal.

The proof is much deeper than the LST Theorem. It uses the partition calculus
of Erdds and Radd, 1956, and also yields an analog of Theorem 10 on indiscernibles
for L

Theorems 1 and 2 above were extended to L,,,,, by Lopez-Escobar, 1965, Theorem 5
by Keisler, 1966, various forms of Theorem 12 by Choodnovsky, Keisler, and Shelah,
1969, and Theorem 14 by Shelah, 1970.

Another basic result is

wiw *

THEOREM 16 (Scott, 1965). — For every countable model 2 there is a sentence ¢ of

L, ., such that % is a model of ¢ and every countable model of ¢ is isomorphic to 2.

(2312}
This result is analogous to Ulm’s theorem for countable abelian torsion groups.
In fact, L, , has been applied by Barwise and Eklof, 1970 to extend Ulm’s theorem
to arbitrary abelian torsion groups.

The model theory for L,,, is greatly enriched by the use of recursion theory as a
way to get a hold on infinitely long sentences (a suggestion of Kreisel). This has led
to the Barwise Compactness Theorem (Barwise, 1969) which is the analog for L,
of the Compactness Theorem.

(2310 ]

Another type of logic where model theory has had recent successes is logic with
extra quantifiers, such as “ there exist infinitely many ” and “ there exist uncountably
many ”. For more information see the paper [12].

A major recent trend is the impact of set theory on model theory and vice versa.
A number of problems have been shown to be consistent or independent using Cohen’s
forcing, notably by Silver. Moreover, forcing itself is being used as a technique for
constructing models (see A. Robinson’s lecture in this Congress). Other results
have been proved on the basis of strong hypotheses such as the existence of a measu-
rable cardinal (Rowbottom and Gaifman, 1964, Silver, 1966, Kunen, 1970,) or the
axiom of constructibility. For example, Jensen, 1970 has shown that if the axiom
of constructibility holds then Chang’s Theorem 6 above can be improved to:

If T has a model of type (X;, Ny) then T has a model of type (X, 1, ¥,).
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METHODS AND PROBLEMS
OF COMPUTATIONAL MATHEMATICS

by G. 1. MARCHUK

Computational mathematics being part of mathematics has currently at its disposal
powerful techniques for solving problems of science and engineering. The range
of computational methods is so wide that it is practically impossible to cover them
to a full extent in one report. A series of interesting investigations by Bellman, Greyfus
et al. devoted to dynamic programming and some related problems was discussed
at the previous Congress of Mathematicians. Therefore we shall confine ourselves
to some selected questions connected with the theory of approximate operations
in finite, and infinite-dimensional functional spaces which the author has been con-
cerned with, Even so, however, it is impossible to cover many interesting studies
in the field because of the time limit given to the report. For the same reason the
author, regretfully, had to reduce to minimum references to the original studies.

Large-scale electronic computers gave rise to algorithmic constructions and mathe-
matical experimentation over a wide area of science and engineering. This attracted
new research personnel to the problems of computational mathematics. The valuable
experience we had had in solving applied problems was later used to devise effective
methods and algorithms of computational mathematics.

The methods of computational mathematics are closely related to the state of com-
puter art. New concepts and methods are formed in computational mathematics
and its numerous applications influenced essentially by every new stage of computer
technology.

The standard of research in computational mathematics is largely dependent on
the actual connection with fundamental areas of mathematics. First of all I should
like to mention functional analysis, differential equations, algebra and logic, the
theory of probability, calculus of variations, etc. A mutual exchange of the ideas
between different branches of mathematics has been intensified in the recent decade.
This is true in the first place for computational mathematics which has used the results
of fundamental mathematical areas to develop new and more sofisticated methods
and to improve the old ones.

At the same time it should be emphasized that applications have an important
influence on computational mathematics. Thus, for instance, mathematical simula-
tion often stimulated a discovery of new approaches which are now a most valuable
possession of computational mathematics. Such applied areas as hydrodynamics,
atomic physics, mathematical economics and the control theory are most important
examples.
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1. The theory of approximation, stability and convergence of difference schemes.

The wide use of finite-differences method in differential equations of mathematical
physics required a detailed study of those features of difference equations that affect
in the first place the quality of difference schemes. Among them are above all the
stability and convergence conditions.

This unfavourable feature of difference equations and the corresponding studies
of John von Neumann initiated theoretical investigations in order to determine the
relation between convergence and stability and to find effective stability criteria of
difference schemes.

Later on several authors formulated the following fundamental theorem called the
equivalence theorem. If a difference scheme approximates a linear homogeneous
differential equation for a properly posed problem, then the stability of the difference
scheme is a necessary and sufficient condition for its convergence. The final formula-
tion and the proof of this theorem for an abstract evolution equation in a Banach
space were given by Lax. Generalization of the equivalence theorem for non-homo-
geneous linear differential equation was given by Richtmyer. One can make the
stability conditions of the scheme less strict provided that the initial data are suficiently
smooth. This idea is implemented in the Strang equivalence theorem using the
concept of weak stability.

Speaking of the effective stability conditions it is necessary to mention John von Neu-
mann-Richtmyer’s paper of 1950. They formulated a so-called local stability criterion.
They introduced such new notions as a symbol of a difference scheme, a spectrum of a
family of difference operators and a kernel of the spectrum of the family which made
it possible to estimate norms of the powers of the step operators. These estimates
were in many cases effectively used in the stability analysis.

An interesting approach to difference schemes with variable coefficients is associated
with the idea of dissipativity. This idea was implemented in the studies of Kreiss.
His theorems relate the order of dissipativity of the difference equations approximat-
ing systems of hyperbolic equations to the order of their accuracy. Important results
have been derived by a so-called energy method which is based on the concept of
strong stability. The idea of the method is to choose some norm for the vector solu-
tion. The norm of the vector solution grows from step to step not faster than I + 0(Az).

The energy method was first introduced by Courant, Freidrichs and Lewy and
developed by other authors, in particular by Ladyzhenskaya and Lees.

Here it is necessary to mention the theory of the convergence of difference schemes
developed by Samarsky who has used energy inequalities and a priori estimates. The
theory gives necessary and sufficient stability conditions for two- and three-layer
schemes formulated in a form of inequalities. The inequalities contain operator
coefficients of difference schemes.

Of late the interest of mathematicians has been attracted to stable boundary-value
hyperbolic problems. A certain contribution to that has been made by Kreiss. He
has formulated necessary and sufficient stability conditions for some classes of prob-
lems. Ryabenky has deeply studied the theory of baundary-value problems for
difference equations with constant coefficients. As before the theory of difference
equations for boundary-value problems of mathematical physics is of supreme concern
to mathematicians.
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2. A numerical solution of the problems of mathematical physics.

The studies of approximation, stability and convergence have provided the necessary
basis for a wide research of effective difference schemes applied to the problems of
mathematical physics. The algorithms of finite difference methods combine, as a rule,
the aspect of a construction of a difference equation-analogue as well as the aspect
of its solution. Therefore the advance of the constructive theory of the finite difference
methods depends on a mutually coordinated development of the two aspects mentioned
above.

If we try to summarize the vast experience of recent years in the development of
finite difference methods we can conventionally distinguish some main trends.

2.1 One of such trends is concerned with finding efficient algorithms for multi-
dimentional stationary problems on mathematical physics.

As a result of the success achieved in a solution of simultaneous linear algebraic
equations with Jacobi and block-tridiagonal matrices there have emerged a few excellent
algorithms in which factorization of the difference operator is used. At the Institute
of Applied Mathematics (AS, USSR) were proposed differeni variants of the direct
factorization method which have been effectively applied to a solution of different
classes of problems and which should be specially mentioned.

One can see that besides the precise factorization methods there is a rapid develop-
ment of the approximate factorization methods where factorization of the operator
is performed by means of iterations.

Early sixties were marked by a major contribution in computational mathematics
associated with the names of Douglas, Peaceman and Rachford who suggested an
alternating direction method. The success of the method was ensured by the use of a
simple reduction of a multi-dimensional problem to a sequence of one-dimensional
problems with Jacobi matrices which are convenient to handle. The theory of the
alternating direction method has been developed by Douglas and Gunn, Birknoff,
Wachspress, Varga and also by Kellogg, Bakhvalov, Vorobjov, Widlund et al.

Later Soviet mathematicians Yanenko, Diakonov, Samarsky and others developed
a so-called splitting-up method. The point is that the approximation of the initial
operator by each auxiliary operator is not necessary but on the whole such an approxi-
mation exists in special norms.

A series of investigations has been devoted to a choice of optimization parameters
of splitting-up schemes by means of spectral and variational techniques.

2.2 The experience we have in the solution of one-dimensional problems repre-
sents a solid base when we come to the development of algorithms for the problems of
mathematical physics. An important role in the development of new approaches to a
solution of non-stationary two-dimensional problems belongs to the alternating
direction method.

Further advancement of the methods for multi-dimensional non-stationary problems
is connected with splitting-up techniques based as a rule on non-homogeneous diffe-
rence approximations of the initial differential operators. The mathematical technique
is related with splitting of a compound operator to simple ones. If this approach
is used the given equation can be solved by means of integration of simpler equations.
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In this case the intermediate schemes have to satisfy the approximation and stability
conditions only as a whole which permits flexible schemes to be constructed for practi-
cally all problems of mathematical physics.

Splitting-up schemes for implicit approximations have been suggested by Yanenko,
Diakonov, Samarsky et al. and applied in various problems. Such schemes have
stimulated a more general computational approach to the problems of mathematical
physics which has been called a weak approximation method.

French scientists Lions, Temam, Bensoussan, Glowinsky et al. have made an impor-
tant contribution to the splitting-up methods and theoretically substantiated a number
of new approaches. These investigations are especially important for fluid dynamics,
the theory of plasticity and the control theory. The method of decomposition and
decentralization formulated by these scientists should be specially mentioned. It
is closely connected with the method of weak approximation.

Recently there has been found a class of splitting-up schemes equivalent in their
accuracy to the Crank-Nicolson difference scheme and applied to non-stationary
operators. These schemes are absolutely stable for the systems of equations with
positive semi-definite operators depending explicitly on space and time coordinates.
This method is easily extended to quasi-linear equations.

Lax and Wendroff have suggested a kind of a predictor-corrector scheme. This
approach is used in hydrodynamics, meteorological and oceanological problems.

2.3 In the recent years there has been a rapid development of a so-called particle-
in-the-cell method suggested by Harlow and applied to multi-dimensional problems
of mathematical physics. It is widely used to calculate multi-dimensional hydro-
dynamics flows with strong deformation of the fluid, big relative displacements and
colliding surfaces. We can expect that in the years to come the applicability of the
method will be extended to multi-dimensional problems.

2.4 The Monte-Carlo method suggested by John von Neumann and Ulam has
been developed now for more than two decades. From the very beginning it turned
out that the Monte-Carlo method was effective only on very fast computers because a
great number of samples is required to reduce the mean squared error of a solution.

However, in spite of the difficulties of putting this method on middle-scale computers
and, maybe, due to them the theory of the method has been considerably improved
which has increased its efficiency. The basic ideas intended to a considerable improve-
ment of the method comprise the use of conditional probabilities and statistical weight
coefficients which can be found when information on the solutions of conjugate equa-
tions is used, the latter being related to the essential functionals inherent in the problems.

The simplicity and universality of this method will undoubtedly make it an important
tool of computational mathematics.

2.5 Lately there has been much interest in variational methods applied to problems
of mathematical physics. The variational methods of Rits, Galerkin, Frefz and others
have long become classical in computational mathematics.

Not long ago there emerged a new trend in variational methodé, a so-called method
of finite elements or functions. The main idea of it was expressed by Courant as far
back as nineteen forties. The essence of this method is that one seeks an approximate
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solution in a form of linear combination of functions with compact support of order
of the mesh width h. In other words one takes as trial functions special functions
in a polynomial form identically equal to zero outside of a fixed domain having a
characteristic dimension of several h’s. The main problem here is the theory of
approximation of the functions by a given system of finite elements.

An important contribution to the finite element method has been made by Birkhoff,
Shultz, Varga et al. A systematic study of the theory and applications of the method
has been fulfilled by Aubin, Babuska, Fix and by Strang, Bramble, Douglas and others.

Usually the main obstacle one comes across using variational methods is a choice
of simple functions satisfying boundary conditions. It can be overcome by means
of special variational functionals. For this purpose one employs a so-called penalty
method or a weight method which reduce the initial problem to one with natural
boundary conditions. The finite element method is close in its idea to the method of
spline functions.

The finite element method is closely associated with the application of a variational
approach to constructing finite difference equations corresponding to differential
equations of mathematical physics. Lions, Cea, Aubin, Raviart and other authors
have contributed to this area of research.

There is no doubt that the scope of variational methods will grow as the problems
become more and more complicated. The variational approach in combination with
other methods will be a powerful tool in computational mathematics.

3. Conditionally properly posed problems.

Correctness of a problem plays an important role in a numerical solution of mathe-
matical physics equations. The concept of correctness was introduced by Hadamard
at the beginning of our century. We know a variety of classical problems properly
posed in the sense of Hadamard. However, with a more profound study of various
problems in natural sciences and engineering it became necessary to solve so-called
conditionally properly posed problems. Tykhonov has formulated the requirements
which proved to be natural in a formulation of improperly posed problems in the sense
of Hadamard. Tykhonov introduced a concept of regularization.

The results of the investigations of conditionally properly posed problems are
presented in M. M. Lavrentiev’s well-known monograph “ Some improperly posed
problems of mathematical physics .

An interesting approach to the formulation of the improperly posed problems in
the sense of Hadamard is based on probabilistic methods. Most complete investiga-
tions have been made by M. M. Lavrentiev and Vasiliev. Different aspects of the
theory of these problems in mathematical physics are discussed by Jones, Douglas,
S. Krein, Miller, Cannon and others.

Lions and Lattes have formulated a numerical method for the inverse evolution
equation using a so-called quasi-inversion.

As evidenced by the tendencies of solving conditionally properly posed problems,
the techniques used here is closely associated with the optimization theory of compu-
tation to be briefly reviewed in this paper.
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4. Numerical methods in linear algebra.

A solution of simultaneous algebraic equations and computing of eigenvalues and
eigenvectors of matrices are important problems of computational mathematics.
Speaking about the numerical methods and problems in linear algebra of recent years
it is necessary first of all to emphasize the growing interest in the solution of large
systems of the corresponding equations, in the solution of ill-conditioned systems and
in spectral problems for arbitrary matrices. Much attention has been paid to the use
of a priori information in the process of the solution. Under the influence of computer
development the old numerical methods in linear algebra have been reconsidered.
The increasing use of computers has stimulated a creation of new algorithms well
suited for automatic calculation.

4.1 Direct methods play an important role when simultaneous linear algebraic
equations are solved or inverse matrices and determinants are found.

Direct methods have been considerably developed first by Faddeeva, Bauer, House-
holder, Wilkinson and then by Henrici, Forsythe, Golub, Kublanovskaya, Voevodin
and others. Using some elementary transformations one can represent the initial
matrix as a product of two matrices, each being easily inverted.

We used to compare computational methods according to a number of arithmetic
operations and the memory requirements. Now we ought to pay attention also to
their accuracy. It means that round-off error analysis has become an essential feature
of the method itself.

The corresponding inverstigations were started by John von Neuman, Goldstein,
Turing, Givens et al. A systematic study of errors was first made by Wilkinson.
His results were later systematized in his excellent monograph “ An algebraic eigenvalue
problem ” where the method of equivalent perturbations was taken as a basic mathe-
matical technique. As a result estimates of the norms of perturbations were obtained
for all fundamental transformations of linear algebra.

In parallel with the method of equivalent perturbations there was an intensive
development of the statistical error theory. The results obtained by Bakhvalov,
Voevodin, Kim et al. initiated an investigation of the real distribution of round-errors.
The statistical methods are certain to play an important role in the round-off error
analysis.

4.2 TIterative methods remain very important in linear algebra. An active progress
of these methods has resulted in a number of powerful algorithms which are effectively
used on computers.

At present there are some trends in a construction of the iterative processes and
methods aimed at the minimization of the number of arithmetic operations for obtain-
ing a solution, with the emphasis put on the use of spectral characteristics of the opera-
tors involved. A choice of iteration process parameters is part of optimization of the
computational algorithm. The major difficulty here is as a rule to determine the
boundaries of the spectra of the matrices.

Spectral optimization of iterative methods stimulates a formulation of a number
of problems. Once again we shall discuss the two of them.
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More attention has been recently attracted to the Lanszos transform of arbitrary
matrices which leads to an equivalent system of equations with a symmetric matrix
whose spectrum occupies two segments symmetric with respect to zero.

The second problem is a search of effective methods intended to determine the
matrix eigenvalue with minimum modulus.

Let us discuss the application of variational principles to iterative methods. Such
methods allow a successive minimization of some functional which attains a minimum
on a desired solution. There has been much interest in such problems. Kantorovich,
Lanszos, Hestens and Stiefel as well as Krasnoselsky and Krein et al. have stated
a variational approach to iterative methods. I should like to mention the recent
papers of Petryshyn, Forsythe, Daniel, Yu. Kuznetsov, Godunov and others.

When the variational approach to iterative methods is used one can select relaxation
parameters on the basis of a posteriori information obtained at each step. This is
also the case for the steepest descent method and the iterative method with minimal
discrepancies. The above said is the merit of the variational approach. Th