JOURNAL

DE

MATHEMATIQUES PURES
ET APPLIQUEES

Neuviéme série publiée par H. VILLAT.

Comité de rédaction : M. BERGER, G. CHOQUET, Y. CHOQUET-
BRUHAT, P. GERMAIN, P. LELONG, J. LIONS, P. MALLIAVIN,
Y. MEYER, J. LERAY (Secrétaire, Collége de France, Paris 05).

Cette revue internationale parait trimestriellement.
Publie des travaux de mathématiciens de tous pays,
en frangais et en anglais, des mémoires originaux
sur toutes les branches des mathématiques.

Le JOURNAL DE MATHEMATIQUES PURES ET
APPLIQUEES qui se trouve étre le plus ancien des
journaux scientifiques du monde est indispensable
aux savants qui dominent et créent la mathématique
moderne.

Dans ses pages ont paru d’'innombrables découvertes
sur des sujets essentiels.

C’est la revue des chercheurs qui doivent demeurer
au courant de la science qui s’élabore. 1 Tome par an.

Tarif d’abonnement 1971 :
— France : 165 F — Etranger : 185 F

ANNALES SCIENTIFIQUES
DE
L'ECOLE NORMALE SUPERIEURE

Comité de rédaction : F. BRUHAT, H. CARTAN, J. DIXMIER,
A. LICHNEROWICZ, J.-L. LIONS.

Revue internationale, parait trimestriellement, publie

les travaux les plus récents des mathématiciens de
tous les pays.

Tarif d’abonnement 1971 :
— France : 150 F — Etranger : 200 F

GAUTHIER-VILLARS, Editeur, PARIS




BULLETIN
DES ,
SCIENCES MATHEMATIQUES

Directeur: Paul MONTEL.

Rédaction : C. PISOT, R. DEHEUVELS, M. HERVE. Secrétaire .
P. BELGODERE.

Comprend deux parties avec pagination spéciale qui

peuvent se relier séparément.

La premiére partie contient :

a) des comptes rendus de livres et analyses de
mémoires,

b) des mélanges scientifiques.

La deuxiéme partie contient une revue des publica-

tions académiques et périodiques.

Tarif d’abonnement 1971 :
— France : 120 F — Etranger : 145 F

BULLETIN DE LA SOCIETE
MATHEMATHIQUE DE FRANCE

Comité de rédaction : P. LELONG, Mme Y. AMICE, J. GIRAUD.

Organe officiel de la Société Mathématique de
France publie des travaux de mathématiques de trés
grand intérét en frangais et en anglais.

4 fascicules par an, format 16 X 25.

Afin de permettre la publication de travaux qui ne
pourraient trouver leur place dans les limites d'un
article, la Société a créé en 1964 un supplément
permettant de publier de véritables « Mémoires » de
mathématiciens frangais et étrangers.

Un tome par an.

Tarif d’abonnement 1971 :

— France : 150 F — Etranger : 150 F

GAUTHIER-VILLARS, Editeur, PARIS




JOURNAL DE MECANIQUE

Comité de rédaction : P. GERMAIN, L. MALAVARD,
R. SIESTRUNCK.

Revue ftrimestrielle, publie des articles originaux
aussi bien théoriques qu'expérimentaux dans toutes
les disciplines de la mécanique classique.

Mécanique .des fluides : hydrodynamique, aérodyna-
mique, dynamique des gaz, magnétodynamique des
fluides, aérothermodynamique...

Théorie des vibrations, théorie de la stabilité, etc.

Tarif d’abonnement 1971 :
— France : 110 F — Etranger : 130 F

COMPTES RENDUS
DE
L'ACADEMIE DES SCIENCES

Diffusent chaque semaine, depuis 1835, les derniers
résultats des travaux de la recherche scientifique

frangaise, deux semaines seulement aprés leur pré-
sentation a I'Académie.

Les comptes rendus sont consultés par les ingé-
nieurs, les savants, les professeurs les techniciens
et les industriels du monde entier, en raison de leur
contenu toujours inédit.

Les comptes rendus sont répartis en trois grandes
catégories.

— Séries AB (sciences mathématiques et physiques)
— Série C (sciences chimiques)

— Série D (sciences naturelles).

Tarif d’abonnement 1971 :

— Séries AB : France 470 F — Etranger 765 F
— Série C : France 405 F — Etranger 675 F
— Série D : France 450 F — Etranger 755 F

Les 3 fascicules :
France 980 F — Etranger 1655 F



\ TARIF 1971
PERIODIQUES SCIENTIFIQUES
ABONNEMENTS ET ANNEES ANTERIEURES

Tous nos abonnements sont payables d'avance et partent de janvier

) P Tarif Etranger
Titre et périodicité des revues France E.E.

Annales d'Histochimie (4 N°%) . . . ... ............... 90 110
Annales de I'Ecole Normale Supérieure (4 N°%). .. ........ 150 200
Annales de Physique Biologique et Médicale (4 N°%) ., . .. .. . 80 96
Annales de I'Institut Henri Poincaré (2 séries) . . ......... 174 195

Série A (Physique théorique) (2 tomes de 4 N°%) . ... .. 116 130

Série B (Calcul des Probab. et Statistiq.) {1 tome de 4 N“) 58 65
Bulletin de la Société Mathématique de France

(4 N°S + 4 suppléments) . .. .. ........ ... 150 150
Bulletin des Sciences Mathématiques (4 N°%) . . .. . ........ 120 145
Comptes rendus de I’Académie des Sciences : Hebdomadaire de

2 tomes par an

1°" Fascicule. Séries AB : Sciences Math. et Phys. . . ... .. 470 765

2° Fascicule. Série C : Sciences Chimiques . . ... ... .. 405 675

3° Fascicule. Série D : Sciences Naturelles . . ........ 450 755
Les trois Fascicules . . . . . .. v vt it e e . 980 1655
Journal de Mathématiques pures et appliquées (4 N°%) . . .. .. 165 185
Journal de Mécanique (4 N°) . . ... ..........c.o.... 110 130
Mathématiques et Sciences Humaines (4 N°) . . .......... 35 45
Qecologia Plantarum (4 N°5) . . . ... .........covuu.n 80 96
Physiologie Végétale (4 N°5) . . . ... ... ....0uonvuennn 95 110
Revue d’Ecologie et de Biologie du Sol (4 N°%) . ......... 80 96
Revue de Chimie Minérale (6 N°%) . . . .. ... ....... ... 175 200

BULLETIN D’ABONNEMENT 1971
3 retourner aux Editions GAUTHIER-VILLARS — 55, quai des Grands-Augustins, Paris 6°

Veuillez m’inscrire pour un abonnement d’un an a

Je vous adresse le montant de cette commande soit

France Etranger

Par chéque : [J  bancaire ou O  postal (CC.P Paris 29 323) — Par mandat*
* Rayer la mention inutile.

NOM Adresse

ATTENTION !

Cet abonnement peut &tre pris en charge par le Laboratoire, I'Organisme ou la Société dont vous
dépendez. Ceux-ci peuvent imputer la dépense & leur budget ““Documentation scientifique”. Dans
ce cas, c'est bien volontiers que nous ferons parvenir la facture en plusieurs exemplaires.




ACTES

DU

CONGRES INTERNATIONAL
DES MATHEMATICIENS

1970






AGTES

DU

CONGRES INTERNATIONAL
DES MATHEMATICIENS

1970

publiés sous la direction du
Comité d’Organisation du Congrés

2

Géométrie et Topologie (C)
Analyse (D)

GAUTHIER-VILLARS EDITEUR
55, qual des Grands-Augustins, Paris 6°

1971



© GAUTHIER-VILLARS 1971

Toute reproduction, méme partielle, de cet ouvrage est interdite. La copie ou reproduction, par

quelque procédé que ce soit : photographie, microfilm, bande magnétique, disque ou autre,

constitue une contrefagon passible des peines prévues par la loi du 11 mars 1957 sur la protection
des droits d’auteurs.



GEOMETRIE
ET
TOPOLOGIE

(Tome 2 : pages 14 355)






Actes, Congrés intern, Math., 1970. Tome 2, p. 3 4 11.

C 1 - TOPOLOGIE GENERALE ET ALGEBRIQUE

K-THEORY, SIMPLICIAL COMPLEXES
AND CATEGORIES

by D. W. ANDERSON

Recently, there has been quite a bit of activity centered around the problem
of directly constructing spaces which are infinite loop spaces. Boardman and
Vogt [2] constructed the classifying space BF for sphere fibrations, as well as
other classifying spaces, in such a way that they were naturally infinite spaces.
More recently, Barratt [1] and Quillen independently have shown how to cons-
truct *X”X, for any simplicial set X. Finally, G. Segal [3] has shown how to
fit the Barratt-Quillen construction into the framework of a category-theoretic
construction which is motivated by standard K-theoretic constructions. Segal
obtains also the Boardman-Vogt results in a particularly simple fashion, and
obtains some new results.

Our approach to the problem can be described as follows. We construct func-
tors of the form ¢ : 8.8. > 8.8. where $.§. is the category of simpli-
cial sets (c.s.s. sets). These functors have the property that X = 7 ®(X)is a ho-
mology theory. Furthermore, the simplicial sets ®(X) are automatically infinite
loop spaces, as ®(X) = & (ZX). This is a major advantage over taking functors
which define cohomology theories, where the relationship between £ and X is
reversed.

The functors ® which we construct will give rise to most of the well known
homology theories, except for bordism theory. As mentioned before, stable
homotopy theory is of this form. Also, the homology theories associated to
connective K-theory for real, complex, and PL bundles, as well as for sphere
fibrations is of this form. Ordinary homology theory arises from a particularly
degnerate type of functor. Other types of homology theories can also be cons-
tructed using functors arising from algebraic geometry. These may prove to
be quite interesting, especially as some of them are closely related to the theories
which arise out of Quillen's work on the Adams conjecture on the order of the
image of the J-homomorphism.

Our method for producing the functors*® breaks into steps as follows. First,
we begin with a suitable simplicial category @, which has a monoid structure of
a suitable sort. Next. we define, for a simplicial set X, a new simplicial category
€(X), which also has a suitable monoid structure. Next, we apply the “morphism
complex” functor M and obtain a simplicial monoid M(C(X)). Finally, we let
®(X) be the group completion of M(C(X)).

To obtain various homology theories, we choose the categories @ as follows.
For stable homotopy, € is the category with one object [n] for each positive
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integer n, with Hom([n], [k]) = @ if n # k, and Hom([n], [n]) the symmetric
group X, on n letters.

If we replace Z, by the signed permutations (the wreath product Z, f (Z/2)),
we obtain the homology theory “stable homotopy with RP™ coefficients”, where
RP* is the infinite dimensional real projective space.

If we replace Z, by the unimodular group of n x n matrices, we obtain a
homology theory, which might be called the Whitehead homology theory for
Z, as the O-dimensional group of a point is the group Ky(Z[Z]).

If we replace Z, by the singular complex of the general linear group GL(n, &)
for a Banach algebra & we obtain the homology k,.(X), the connective K-theory
whose Spanier dual cohomology theory is the connective K-theory obtained from
&-bundles with finitely generated projective fibers. Other forms of K-theory
are defined analogously.

Finally, if we replace Z, by the group with one element, we obtain ordinary
integral homology.

1. Simplicial Categories.

The category A of ordered simplicies has as its objects the setsn = {0,1,...,n}
for n = 0, and as its morphisms the order preserving set maps. If @ is any category,
a simplicial C-object is a contravariant functor A = €. For example, a simplicial
category is a contravariant functor A > €A F = the category of small categories
and functors.

As an elementary example of a simplicial category, every simplicial monoid
and every simplicial group may be considered as a simplicial category.

Notice that if X is a simplicial set and € is a category, one can easily define a
simplicial category X x €, by letting the set of morphisms be given by

Mor((X x €) (n)) = X(n) x €,

and letting (x;, o;) (x,, «,) be defined and equal to (x,, «, , «,) if and only
if x; = x,;, and a;a, is defined. Similarly one can define the product €; x &,
of two simplicial categories €; and €,. The product above is a special case of
this product if we consider X to be a simplicial category in which all morphisms
are identity maps, and € to be the same in each degree.

The n-simplex A(n) is defined by A(n) (k) = Hom, (k, n).

Remark. — Notice that if M is a simplicial monoid, A(1) x M is a simplicial cate-
gory. A map of simplicial sets A(1) x M > N into a simplicial monoid N is
what is called a loop homotopy if and only if it is a simplicial functor. Most
ideas involving simplicial monoids can be organized to fit into the framework
of simplicial categories in a reasonable way.

The W construction for simplicial monoids can be extended to simplicial cate-
gories. There are two forms of the W construction, one homogeneous and one
inhomogeneous. (The homogeneous form is a fibering over the inhomogeneous
form with contractible fiber for a simplicial group). In most accounts, W is used
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for the inhomogeneous construction, so we shall use M to denote the homogeneous
form of this construction.

An elegant description of M(C) for a simplicial category @ can be given as
follows. Regard n as the category with objects 0,.1,...,n, and a morphism
i—j if and only if i <j. Then A is the category of functors between the n's .
Define a bisimplicial set (2 A x A-set) M(@) by M(@) (i,j) = S.F. [A(G) xj,e],
where S.F. is the set of simplicial functors.

From the bisimplicial set M(€), we can extract a simplicial set, which we also
write as M(C), by taking the diagonal A > A x A.

Remark. — There are two obvious ways to obtain a simplicial set from a bisimpli-
cial set (as well as some less obvious ways). One is to take the diagonal as we
have done here. The second is condensation, where one takes the disjoint union
of simplicial set A(i) x A(j), one for each bisimplex of bidegree (i,j), and
make identifications by means of the horizontal and vertical face and degeneracy
operators. It is an elementary, though tedious, matter to verify that the two
resulting simplicial sets are the same.

Notice that M(€) (-, 0) is the set of objects of €, and M(C) (—, 1) is the set
of morphisms of €. If n = 1, M(€) (—,n) is the set of strings of morphisms
(@ ,...,a,) so that each o;a;,, is defined. Notice that if ooy, is defined,
both «; and «,,, have the same degree.

If @ and @ are two simplicial categories, and &, ,®, : € - @ are two sim-
plicial functors, a simplicial natural transformation from &, to ®, is a simplicial
functor ® : € x 1 >®, such that (1 xd;) () = &, for i =0,1. Since M
carries products of simplicial categories into products of simplicial sets, and
since M(1) = A(1), M(P) defines a homotopy from M(d,) to M(P;). Not
all such homotopies are of the form M(®) — for example, every homotopy of
functors gives rise to a homotopy on M. Homotopies on the M's give the defi-
nition for natural transformation of simplicial functors, which generalizes the
notion of simplicial natural transformation. We shall not study this more general
concept here.

2. Multiplications on Categories.

If € is a category, a multiplication on € is a functor # : € x € > €. We shall
only consider associative multiplications unless we specifically say otherwise. If
€ is a simplicial category, we assume that g is a simplicial functor.

Notice that M(u) : M(C) x M(€) > M(€) defines the structure of an asso-
ciative simplicial monoid on M(C).

Let py, =u, p, :€" > € for n > 2 be defined by p, = p(p,_; x 1). We
will say that p is n-isomorphism commutative if g is (n — 1) isomorphism com-
mutative and if there is a function 6, from the symmetric group Z, on n letters
into the natural transformations of u, to itself, satisfying the following properties

0,(mm) =6,(m)0,(m,), 0,(1) = identity 2.1
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if m,€Z,, T,€Z,, and @ Xm, (2.2)

is their product in Z,.., 0,., (@ x m,) = u(6,(mr,), 0,(w,)). We say that
4 is isomorphism commutative if g in n-isomorphism commutative for all .

The most obvious examples of isomorphism commutative structures are pro-
vided by categories of sets with u being either disjoint union of Cartesian product
(defined in such a way as to be strictly associative). Then the permutation groups
act either by interchanging the order of subsets (in the case of disjoint union)
or interchange the coordinates (in the case of Cartesian product). More generally,
if @ is a category with either direct sums or direct products defined (in such a
way as to be associative), the direct sum (resp. the direct product) are isomorphism
commutative.

Finally, suppose € is a category with an isomorphism commutative product,
@' is a category with multiplication, and I" : €' = @ is a functor of categories
with multiplication. Then if I' is faithful, and if every 6(w) lies in the image
of I', @ inherits an isomorphism commutative structure.

As an example of this last phenomenon, let J be the category whose objects
are the spheres S” for n = 1, and whose morphisms are the basepoint homotopy
equivalences S” = S". Then if we consider S” to be the one point compactifica-
tion of R™, there is a faithful functor to sets given by S” - underlying set of R".
If we define a multiplication in by S * §¥ = §"*¥  the functor to sets pre-
serves products, if the product on sets is Cartesian product. However, the per-
mutations of factors certainly define homotopy equivalences, so they lie in §.
Thus g has an isomorphism commutative multiplication.

3. Free Categories.

If @ is a simplicial category with a multiplication, the set of morphism Mor( @)
is a simplicial monoid. We shall say that @€ is a free category if Mor(€) is a free
monoid (without neutral element), and if Hom({,¢) is empty unless when §
and { are written as a product of indecomposables, they differ only by order.
The following two results are elementary.

ProrosiTION 3.1. — If @ is a free category, the objects of @ form a free monoid.

ProrosiTioN 3.2. — If € is a free category, M. (@) is a free monoid.

The concepts “free monoid” and “free simplicial monoid” agree for simpli-
cial monoids without neutral element (for any element). To see this, we need
to know that the set of indecomposable elements of a simplicial monoid which
is free as a monoid is closed under face operators. However, if s,(0) = 01#02,
o = d;s;(0) = (d;0,) * (d;0,), so ¢ indecomposable implies s; (¢) indecompo-
sable.

If @ is a free category, and C;, C, are two objects, then the product defines
an injection End(C;) x End(C,) = End(C; * C,), where End(C;) = Hom(C;, C)).
To see this, suppose 7v,, 'y,' € End(C;), and thaty, * v, = 71' ® 'yz'. Since Mor(@) is
free, either v, divides y{ or v, divides ;. However,
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C, = source(y,) = source ;)

does not divide itself (as there is no identity for any element), so v, does not
divide v, . Similarly, vy, does not divide v,, so vy, = v, for i = 1,2.

If @ is a free monoid category with an isomorphism commutative sum, we
can define, for any set X a new category € (X) as follows. The objects of €(X)
are the elements of the free monoid generated by the pairs (x;, C;), where
x; €X, C; € Ob(®), C; indecomposable. If x EX, CEOb), C=C, *... ¥ C,,
with each C' indecomposable, we write (x, C) for (x, C;) * (x, C))* ... *(x, C,).

We define morphisms in €(X) as follows. If ¢ = (x, C), End(x, C)= End( ).
If&=0,,C)*...% (x,,C,), where all of the x; are distincts,

End(§) = End(C,) x ... x End (C,)
(to be thought of as a subset of End(C, * ... * C))). If

E=0,,C)*...*x(3,,C),

let 7 be a permutation of n objects which puts ¢ into the form
) =¢ =0, B)) *... % (x,, B),

where the x, are distinct. Then End(£) is the subset 6 (7~') End({)0(w) of
End(C, * ... * C,).
We let Hom(%, , £,) be empty, unless there is a permutation which trans-

forms &,, written as a product of indecomposables, into &,. If w(§,) = &,, we
let Hom(¥, , £,) be the “coset” 0 (w) End(§,). If

7 (§) =&, = m,(E,), 0(m)" O(x,) = 0(x7" m,) €EEnd(§,).

The category €(X) has an obvious multiplication, and is easily seen to be free.
If € is a simplicial category, © (X) is also a simplicial category. Ignoring the com-
ponents in X, we have a faithful functor € (X) - € whose image contains the
0(w)'s. Thus €(X) also has an isomorphism commutative product.

ProrosiTioN 3.3. — If X, Y are two sets, there is an isomorphism, natural
in all three variables, between €(X) (Y) and €(Y x X).

Proof. — The indecomposable objects in the first case have the form (y, (x, @)),
and in the second, ((y, x), ©). The correspondence is obvious.

Given a free category €, we can form a new category €, obtained from €
by adjoining a neutral object 0, with End(0) consisting of the identity ob-
ject only, Hom(C,0 =@ = Hom(0, C) if C # 0. Products are defined by
Cx0=C=0=*C. Then Mor(€,) is just Mor(€) with a neutral element, the
identity of 0, adjoined.

If X is a set with basepoint x,, we define g(X) =C(X,x,)tobe C(X-{xy)), -
Notice that €, and €,(X, x,) are free categories with neutral objects, in the
sense that they are the disjoint union of a free category with 0.

If X and Y are sets with basepoint, we can form the one point union XvY.

The inclusions X,Y > XvY define a functor of categories with multiplication
CXvY)=CWX)xCY).



8 D.W. ANDERSON C1

ProrosiTION 3.4. — If € is a free isomorphism commutative (simplicial) ca-
tegory, (X v Y) > §(X ) x ¢ (Y) is an equivalence of categories (resp. simpli-
cial categories). Furthermore, the inverse functor and the natural transforma-
tions are natural in all three variables €, X, and Y.

Proof. — Define €(X) x €(Y)>€(X v Y) by (§,8) > & * ¢, where €(X) and
@(Y) are included in &(X v Y) by means of the projections. Then the composition
of this with the functor above is the identity, so that €(X) x g(Y) is a retract
of &X v Y).

The composition 5(){ v Y)—>5(X v Y) is given on objects by taking any
sequence of indecomposables, and rearranging them so that all the terms invol-
ving X — (basepoint) occur first, followed by all the terms involving Y — (base-
point). As internal order of the X-terms and the Y-terms is preserved, there
is a well defined permutation which does this. For any object &, let w(§) be this
permutation. Then & - 6(w(¢)) defines a natural equivalence from the identity
to the composition of the two functors above. Since &+ w(§¢) is simplicial,
£ - 0(w(§)) is simplicial.

There is an obvious map of simplicial categories X x €, = €(X), given by

(x, C) > (x, C) if x is not the basepoint, C # 0, (x, C) = 0 if x is the basepoint
or C=0.

ProrosITION 3.5. — If fy, f1 : X = Y are homotopic relative to the basepoint,
where X, Y are simplicial sets @(f;) is homotopic to @€(f;) as simplicial functors
from €(X),, to €(Y), by a product preserving homotopy.

Proof. — Let I = A(1)I1A(0). Then there is a-map F: X Al > Y which provi-
des a homotopy form f; to f,. Composing € (F) with the functor

IxCX)y>CX)U)y =C(XAT),,

we obtain the desired homotopy.

4. The Simplicial Groups ® . (€, X).

Let € be a free isomorphism commutative simplicial category. Then for any
set X with basepoint, M (@(X )) is a free simplicial monoid with neutral element.
If X is a simplicial set, ' (€, X) =M (5()( )) is a trisimplicial free monoid with
neutral element. We define ®(€, X) to be the group completion of ®* (€, X).
Since ®*(@, X) is free, this is well defined. The simplicial group ® . (€, X)
is the diagonal part of ®(€, X).

Recall that there was a functor X xeohg(X ). Since M(X) = X, where
X is considered as a cetegory with only identity maps, we have an induced map
X xM.(€) > M.(EX)). Since €, =E(S®), where S°= A(0)IIA(0) is the
O-sphere, this defines a map X x @.(€,5,) > ®.(€, X). A little observation
will convince the reader that this map is constant on the axes, and so defines
amap XA®d.(C,5% > &.(C,X). Thus we have a map

®.e,5)>0d.(e,5").
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THEOREM 4.1. — The map ®. (€, 8%+ Q®.(C,S") is a homotopy equiva-
lence.

To prove this theorem, we need a result which follows from 3.4, and some
slight additional arguments. We will discuss the proof of this proposition later.

ProrosiTION 4.2. — If X, Y are two sets with basepoint, the natural map
PE,XvY)>P(C,X)x ®(C,Y) is a homotopy equivalence.

To return to our theorem, observe that S! (n) contains n + 1 objects, one
of which is the basepoint. Thus & . (€ ,S'(Zz_)) ~¢ (€, So(ﬂ))”, since So(g)
contains two objects.

We can consider ®(€,S') to be a bisimplicial complex, with the vertical
complexes the & . (€, S’ (n)). Thus the vertical homotopy groups of ®(& )
are the (m, (®(€,S°)))". The horizontal face operators correspond to the face
operators in S*,

It is not a difficult matter now to see that the horizontal homotopy groups
of the vertical homotopy groups vanish, except for those whose horizontal degree
is equal to 1. By a theorem of Quillen [5], this implies that

m(@.C,8") =7,_,@.@€,S5%).
By checking the constructions, one sees that the maps
m(@.e,8%) > e.e,Ss")
are isomorphisms, so that ®.(e¢,S%) = ®. (@, sh.

COROLLARY 4.3. — The spaces ®.(€,S%,...,®.(€,S8",... forman Q-
spectrum Spec (€).

If X is any space, we have maps Xad.(C,S") > ®.(€,S"rX). Thus,
we have a natural transformation of functors

H, (X : Spec(€)) » m,(® (€, X)) (4.4)

where the left hand side is defined as in the paper of G. Whitehead [6]. If we
knew that the right hand side defined a cohomology theory, since the map is
an isomorphism for X = S°, it is an isomorphism for all X.

PRrOPOSITION 3.5. — Implies that w,(®(C, X)) satisfies the homotopy axiom for
a homology theory. The homotopy exact sequence for a pair provides a sui-
table sort of definition for relative homology groups and for the long exact
homology sequence of a pair. What remains to check is the excision axiom —
that ® . (@, —) carries cofibrations into quasifibrations.

There are several approaches to the excision axiom. We outline two of them
here.

The first approach was suggested to me by D. Kan. The functors ®(€, -)
are degreewise convergent functors from simplicial sets to bisimplicial groups,
in the sense of [4], which carry one point unions into products, up to homotopy
type. If we argue as in [4], we see that such functors carry cofibrations into
quasifibrations, and we are finished.






