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C 1 - TOPOLOGIE GENERALE ET ALGEBRIQUE

K-THEORY, SIMPLICIAL COMPLEXES
AND CATEGORIES

by D. W. ANDERSON

Recently, there has been quite a bit of activity centered around the problem
of directly constructing spaces which are infinite loop spaces. Boardman and
Vogt [2] constructed the classifying space BF for sphere fibrations, as well as
other classifying spaces, in such a way that they were naturally infinite spaces.
More recently, Barratt [1] and Quillen independently have shown how to cons-
truct *X”X, for any simplicial set X. Finally, G. Segal [3] has shown how to
fit the Barratt-Quillen construction into the framework of a category-theoretic
construction which is motivated by standard K-theoretic constructions. Segal
obtains also the Boardman-Vogt results in a particularly simple fashion, and
obtains some new results.

Our approach to the problem can be described as follows. We construct func-
tors of the form ¢ : 8.8. > 8.8. where $.§. is the category of simpli-
cial sets (c.s.s. sets). These functors have the property that X = 7 ®(X)is a ho-
mology theory. Furthermore, the simplicial sets ®(X) are automatically infinite
loop spaces, as ®(X) = & (ZX). This is a major advantage over taking functors
which define cohomology theories, where the relationship between £ and X is
reversed.

The functors ® which we construct will give rise to most of the well known
homology theories, except for bordism theory. As mentioned before, stable
homotopy theory is of this form. Also, the homology theories associated to
connective K-theory for real, complex, and PL bundles, as well as for sphere
fibrations is of this form. Ordinary homology theory arises from a particularly
degnerate type of functor. Other types of homology theories can also be cons-
tructed using functors arising from algebraic geometry. These may prove to
be quite interesting, especially as some of them are closely related to the theories
which arise out of Quillen's work on the Adams conjecture on the order of the
image of the J-homomorphism.

Our method for producing the functors*® breaks into steps as follows. First,
we begin with a suitable simplicial category @, which has a monoid structure of
a suitable sort. Next. we define, for a simplicial set X, a new simplicial category
€(X), which also has a suitable monoid structure. Next, we apply the “morphism
complex” functor M and obtain a simplicial monoid M(C(X)). Finally, we let
®(X) be the group completion of M(C(X)).

To obtain various homology theories, we choose the categories @ as follows.
For stable homotopy, € is the category with one object [n] for each positive
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integer n, with Hom([n], [k]) = @ if n # k, and Hom([n], [n]) the symmetric
group X, on n letters.

If we replace Z, by the signed permutations (the wreath product Z, f (Z/2)),
we obtain the homology theory “stable homotopy with RP™ coefficients”, where
RP* is the infinite dimensional real projective space.

If we replace Z, by the unimodular group of n x n matrices, we obtain a
homology theory, which might be called the Whitehead homology theory for
Z, as the O-dimensional group of a point is the group Ky(Z[Z]).

If we replace Z, by the singular complex of the general linear group GL(n, &)
for a Banach algebra & we obtain the homology k,.(X), the connective K-theory
whose Spanier dual cohomology theory is the connective K-theory obtained from
&-bundles with finitely generated projective fibers. Other forms of K-theory
are defined analogously.

Finally, if we replace Z, by the group with one element, we obtain ordinary
integral homology.

1. Simplicial Categories.

The category A of ordered simplicies has as its objects the setsn = {0,1,...,n}
for n = 0, and as its morphisms the order preserving set maps. If @ is any category,
a simplicial C-object is a contravariant functor A = €. For example, a simplicial
category is a contravariant functor A > €A F = the category of small categories
and functors.

As an elementary example of a simplicial category, every simplicial monoid
and every simplicial group may be considered as a simplicial category.

Notice that if X is a simplicial set and € is a category, one can easily define a
simplicial category X x €, by letting the set of morphisms be given by

Mor((X x €) (n)) = X(n) x €,

and letting (x;, o;) (x,, «,) be defined and equal to (x,, «, , «,) if and only
if x; = x,;, and a;a, is defined. Similarly one can define the product €; x &,
of two simplicial categories €; and €,. The product above is a special case of
this product if we consider X to be a simplicial category in which all morphisms
are identity maps, and € to be the same in each degree.

The n-simplex A(n) is defined by A(n) (k) = Hom, (k, n).

Remark. — Notice that if M is a simplicial monoid, A(1) x M is a simplicial cate-
gory. A map of simplicial sets A(1) x M > N into a simplicial monoid N is
what is called a loop homotopy if and only if it is a simplicial functor. Most
ideas involving simplicial monoids can be organized to fit into the framework
of simplicial categories in a reasonable way.

The W construction for simplicial monoids can be extended to simplicial cate-
gories. There are two forms of the W construction, one homogeneous and one
inhomogeneous. (The homogeneous form is a fibering over the inhomogeneous
form with contractible fiber for a simplicial group). In most accounts, W is used
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for the inhomogeneous construction, so we shall use M to denote the homogeneous
form of this construction.

An elegant description of M(C) for a simplicial category @ can be given as
follows. Regard n as the category with objects 0,.1,...,n, and a morphism
i—j if and only if i <j. Then A is the category of functors between the n's .
Define a bisimplicial set (2 A x A-set) M(@) by M(@) (i,j) = S.F. [A(G) xj,e],
where S.F. is the set of simplicial functors.

From the bisimplicial set M(€), we can extract a simplicial set, which we also
write as M(C), by taking the diagonal A > A x A.

Remark. — There are two obvious ways to obtain a simplicial set from a bisimpli-
cial set (as well as some less obvious ways). One is to take the diagonal as we
have done here. The second is condensation, where one takes the disjoint union
of simplicial set A(i) x A(j), one for each bisimplex of bidegree (i,j), and
make identifications by means of the horizontal and vertical face and degeneracy
operators. It is an elementary, though tedious, matter to verify that the two
resulting simplicial sets are the same.

Notice that M(€) (-, 0) is the set of objects of €, and M(C) (—, 1) is the set
of morphisms of €. If n = 1, M(€) (—,n) is the set of strings of morphisms
(@ ,...,a,) so that each o;a;,, is defined. Notice that if ooy, is defined,
both «; and «,,, have the same degree.

If @ and @ are two simplicial categories, and &, ,®, : € - @ are two sim-
plicial functors, a simplicial natural transformation from &, to ®, is a simplicial
functor ® : € x 1 >®, such that (1 xd;) () = &, for i =0,1. Since M
carries products of simplicial categories into products of simplicial sets, and
since M(1) = A(1), M(P) defines a homotopy from M(d,) to M(P;). Not
all such homotopies are of the form M(®) — for example, every homotopy of
functors gives rise to a homotopy on M. Homotopies on the M's give the defi-
nition for natural transformation of simplicial functors, which generalizes the
notion of simplicial natural transformation. We shall not study this more general
concept here.

2. Multiplications on Categories.

If € is a category, a multiplication on € is a functor # : € x € > €. We shall
only consider associative multiplications unless we specifically say otherwise. If
€ is a simplicial category, we assume that g is a simplicial functor.

Notice that M(u) : M(C) x M(€) > M(€) defines the structure of an asso-
ciative simplicial monoid on M(C).

Let py, =u, p, :€" > € for n > 2 be defined by p, = p(p,_; x 1). We
will say that p is n-isomorphism commutative if g is (n — 1) isomorphism com-
mutative and if there is a function 6, from the symmetric group Z, on n letters
into the natural transformations of u, to itself, satisfying the following properties

0,(mm) =6,(m)0,(m,), 0,(1) = identity 2.1
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if m,€Z,, T,€Z,, and @ Xm, (2.2)

is their product in Z,.., 0,., (@ x m,) = u(6,(mr,), 0,(w,)). We say that
4 is isomorphism commutative if g in n-isomorphism commutative for all .

The most obvious examples of isomorphism commutative structures are pro-
vided by categories of sets with u being either disjoint union of Cartesian product
(defined in such a way as to be strictly associative). Then the permutation groups
act either by interchanging the order of subsets (in the case of disjoint union)
or interchange the coordinates (in the case of Cartesian product). More generally,
if @ is a category with either direct sums or direct products defined (in such a
way as to be associative), the direct sum (resp. the direct product) are isomorphism
commutative.

Finally, suppose € is a category with an isomorphism commutative product,
@' is a category with multiplication, and I" : €' = @ is a functor of categories
with multiplication. Then if I' is faithful, and if every 6(w) lies in the image
of I', @ inherits an isomorphism commutative structure.

As an example of this last phenomenon, let J be the category whose objects
are the spheres S” for n = 1, and whose morphisms are the basepoint homotopy
equivalences S” = S". Then if we consider S” to be the one point compactifica-
tion of R™, there is a faithful functor to sets given by S” - underlying set of R".
If we define a multiplication in by S * §¥ = §"*¥  the functor to sets pre-
serves products, if the product on sets is Cartesian product. However, the per-
mutations of factors certainly define homotopy equivalences, so they lie in §.
Thus g has an isomorphism commutative multiplication.

3. Free Categories.

If @ is a simplicial category with a multiplication, the set of morphism Mor( @)
is a simplicial monoid. We shall say that @€ is a free category if Mor(€) is a free
monoid (without neutral element), and if Hom({,¢) is empty unless when §
and { are written as a product of indecomposables, they differ only by order.
The following two results are elementary.

ProrosiTION 3.1. — If @ is a free category, the objects of @ form a free monoid.

ProrosiTioN 3.2. — If € is a free category, M. (@) is a free monoid.

The concepts “free monoid” and “free simplicial monoid” agree for simpli-
cial monoids without neutral element (for any element). To see this, we need
to know that the set of indecomposable elements of a simplicial monoid which
is free as a monoid is closed under face operators. However, if s,(0) = 01#02,
o = d;s;(0) = (d;0,) * (d;0,), so ¢ indecomposable implies s; (¢) indecompo-
sable.

If @ is a free category, and C;, C, are two objects, then the product defines
an injection End(C;) x End(C,) = End(C; * C,), where End(C;) = Hom(C;, C)).
To see this, suppose 7v,, 'y,' € End(C;), and thaty, * v, = 71' ® 'yz'. Since Mor(@) is
free, either v, divides y{ or v, divides ;. However,
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C, = source(y,) = source ;)

does not divide itself (as there is no identity for any element), so v, does not
divide v, . Similarly, vy, does not divide v,, so vy, = v, for i = 1,2.

If @ is a free monoid category with an isomorphism commutative sum, we
can define, for any set X a new category € (X) as follows. The objects of €(X)
are the elements of the free monoid generated by the pairs (x;, C;), where
x; €X, C; € Ob(®), C; indecomposable. If x EX, CEOb), C=C, *... ¥ C,,
with each C' indecomposable, we write (x, C) for (x, C;) * (x, C))* ... *(x, C,).

We define morphisms in €(X) as follows. If ¢ = (x, C), End(x, C)= End( ).
If&=0,,C)*...% (x,,C,), where all of the x; are distincts,

End(§) = End(C,) x ... x End (C,)
(to be thought of as a subset of End(C, * ... * C))). If

E=0,,C)*...*x(3,,C),

let 7 be a permutation of n objects which puts ¢ into the form
) =¢ =0, B)) *... % (x,, B),

where the x, are distinct. Then End(£) is the subset 6 (7~') End({)0(w) of
End(C, * ... * C,).
We let Hom(%, , £,) be empty, unless there is a permutation which trans-

forms &,, written as a product of indecomposables, into &,. If w(§,) = &,, we
let Hom(¥, , £,) be the “coset” 0 (w) End(§,). If

7 (§) =&, = m,(E,), 0(m)" O(x,) = 0(x7" m,) €EEnd(§,).

The category €(X) has an obvious multiplication, and is easily seen to be free.
If € is a simplicial category, © (X) is also a simplicial category. Ignoring the com-
ponents in X, we have a faithful functor € (X) - € whose image contains the
0(w)'s. Thus €(X) also has an isomorphism commutative product.

ProrosiTioN 3.3. — If X, Y are two sets, there is an isomorphism, natural
in all three variables, between €(X) (Y) and €(Y x X).

Proof. — The indecomposable objects in the first case have the form (y, (x, @)),
and in the second, ((y, x), ©). The correspondence is obvious.

Given a free category €, we can form a new category €, obtained from €
by adjoining a neutral object 0, with End(0) consisting of the identity ob-
ject only, Hom(C,0 =@ = Hom(0, C) if C # 0. Products are defined by
Cx0=C=0=*C. Then Mor(€,) is just Mor(€) with a neutral element, the
identity of 0, adjoined.

If X is a set with basepoint x,, we define g(X) =C(X,x,)tobe C(X-{xy)), -
Notice that €, and €,(X, x,) are free categories with neutral objects, in the
sense that they are the disjoint union of a free category with 0.

If X and Y are sets with basepoint, we can form the one point union XvY.

The inclusions X,Y > XvY define a functor of categories with multiplication
CXvY)=CWX)xCY).
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ProrosiTION 3.4. — If € is a free isomorphism commutative (simplicial) ca-
tegory, (X v Y) > §(X ) x ¢ (Y) is an equivalence of categories (resp. simpli-
cial categories). Furthermore, the inverse functor and the natural transforma-
tions are natural in all three variables €, X, and Y.

Proof. — Define €(X) x €(Y)>€(X v Y) by (§,8) > & * ¢, where €(X) and
@(Y) are included in &(X v Y) by means of the projections. Then the composition
of this with the functor above is the identity, so that €(X) x g(Y) is a retract
of &X v Y).

The composition 5(){ v Y)—>5(X v Y) is given on objects by taking any
sequence of indecomposables, and rearranging them so that all the terms invol-
ving X — (basepoint) occur first, followed by all the terms involving Y — (base-
point). As internal order of the X-terms and the Y-terms is preserved, there
is a well defined permutation which does this. For any object &, let w(§) be this
permutation. Then & - 6(w(¢)) defines a natural equivalence from the identity
to the composition of the two functors above. Since &+ w(§¢) is simplicial,
£ - 0(w(§)) is simplicial.

There is an obvious map of simplicial categories X x €, = €(X), given by

(x, C) > (x, C) if x is not the basepoint, C # 0, (x, C) = 0 if x is the basepoint
or C=0.

ProrosITION 3.5. — If fy, f1 : X = Y are homotopic relative to the basepoint,
where X, Y are simplicial sets @(f;) is homotopic to @€(f;) as simplicial functors
from €(X),, to €(Y), by a product preserving homotopy.

Proof. — Let I = A(1)I1A(0). Then there is a-map F: X Al > Y which provi-
des a homotopy form f; to f,. Composing € (F) with the functor

IxCX)y>CX)U)y =C(XAT),,

we obtain the desired homotopy.

4. The Simplicial Groups ® . (€, X).

Let € be a free isomorphism commutative simplicial category. Then for any
set X with basepoint, M (@(X )) is a free simplicial monoid with neutral element.
If X is a simplicial set, ' (€, X) =M (5()( )) is a trisimplicial free monoid with
neutral element. We define ®(€, X) to be the group completion of ®* (€, X).
Since ®*(@, X) is free, this is well defined. The simplicial group ® . (€, X)
is the diagonal part of ®(€, X).

Recall that there was a functor X xeohg(X ). Since M(X) = X, where
X is considered as a cetegory with only identity maps, we have an induced map
X xM.(€) > M.(EX)). Since €, =E(S®), where S°= A(0)IIA(0) is the
O-sphere, this defines a map X x @.(€,5,) > ®.(€, X). A little observation
will convince the reader that this map is constant on the axes, and so defines
amap XA®d.(C,5% > &.(C,X). Thus we have a map

®.e,5)>0d.(e,5").
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THEOREM 4.1. — The map ®. (€, 8%+ Q®.(C,S") is a homotopy equiva-
lence.

To prove this theorem, we need a result which follows from 3.4, and some
slight additional arguments. We will discuss the proof of this proposition later.

ProrosiTION 4.2. — If X, Y are two sets with basepoint, the natural map
PE,XvY)>P(C,X)x ®(C,Y) is a homotopy equivalence.

To return to our theorem, observe that S! (n) contains n + 1 objects, one
of which is the basepoint. Thus & . (€ ,S'(Zz_)) ~¢ (€, So(ﬂ))”, since So(g)
contains two objects.

We can consider ®(€,S') to be a bisimplicial complex, with the vertical
complexes the & . (€, S’ (n)). Thus the vertical homotopy groups of ®(& )
are the (m, (®(€,S°)))". The horizontal face operators correspond to the face
operators in S*,

It is not a difficult matter now to see that the horizontal homotopy groups
of the vertical homotopy groups vanish, except for those whose horizontal degree
is equal to 1. By a theorem of Quillen [5], this implies that

m(@.C,8") =7,_,@.@€,S5%).
By checking the constructions, one sees that the maps
m(@.e,8%) > e.e,Ss")
are isomorphisms, so that ®.(e¢,S%) = ®. (@, sh.

COROLLARY 4.3. — The spaces ®.(€,S%,...,®.(€,S8",... forman Q-
spectrum Spec (€).

If X is any space, we have maps Xad.(C,S") > ®.(€,S"rX). Thus,
we have a natural transformation of functors

H, (X : Spec(€)) » m,(® (€, X)) (4.4)

where the left hand side is defined as in the paper of G. Whitehead [6]. If we
knew that the right hand side defined a cohomology theory, since the map is
an isomorphism for X = S°, it is an isomorphism for all X.

PRrOPOSITION 3.5. — Implies that w,(®(C, X)) satisfies the homotopy axiom for
a homology theory. The homotopy exact sequence for a pair provides a sui-
table sort of definition for relative homology groups and for the long exact
homology sequence of a pair. What remains to check is the excision axiom —
that ® . (@, —) carries cofibrations into quasifibrations.

There are several approaches to the excision axiom. We outline two of them
here.

The first approach was suggested to me by D. Kan. The functors ®(€, -)
are degreewise convergent functors from simplicial sets to bisimplicial groups,
in the sense of [4], which carry one point unions into products, up to homotopy
type. If we argue as in [4], we see that such functors carry cofibrations into
quasifibrations, and we are finished.
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A second approach is suggested by Barratt's talk at the recent meeting in
Madison [1]. Notice that ®.(€,A(0)) = A(0). Thus, if X(j)= A(0) (j) for
i<n, ®(@,X)(,J) contains only one element for j < n, so that

®.(€,X)() = A©) (j) for j<n.

Thus ®.(@,S™ is (n — 1) connected. Indeed, we see that without changing
its homotopy type, we way assume that GO(S") ( _1_ )= A(p_) forj < n.

By suitably adapting Barratt's argument, one can prove that for an n-connected
category €, X Ad . (C,S% > &.(C, X) is a homotopy equivalence in the stable
range (< 2#n). This shows that (4.4) is an isomorphism.

TuroreM 4.4. — H,(X : Spec(€)) = 7.(C, X)).

We now consider 4.2. We know that ®*(€, X) x ®*(€, Y) is a deformation
retract of ®*(€, X v ¥.), though not necessarily as a simplicial monoid. Because
®d*(€, X) is homotopy abelian, 7 = o (®* (€, X)) is abelian. Thus 7 is an abelian
monoid, and can be considered to be a semi-directed set, by x + y =2 x all
x, y, and a suitable quotient 7’ a directed set. The homology groups of ®*(€ , X)
are indexed by m, using representatives as basepoints and using the homotopy
commutativity. In fact, they are indexed by 7', because right translation by
elements of 7 makes the homology groups into a semidirected set.

By a slight modification of a theorem of J. Moore,
lim{H,(®*(€,X), p) : pEx'}=H,(®(C, X), identity) .

Thus the map in 4.2 induces an isomorphism on reduced homology. It clearly
induces an isomorphism on m,. Thus it is a homotopy equivalence.

5. Examples.

Let 3 be the category whose objects are the positive integers, all of whose
morphisms are identity maps. Then % has an obvious product : n*k =n + k.
This is clearly isomorphism abelian.

The morphism complex M(%) is the simplicial set with the positive integers
in each degree, with the face operator s, always an isomorphism. Thus (3,59
is the simplicial group Z x A(0), where Z denotes the integers. Thus

T, (®(%,8%) =0 if i#0,

Z if i=0. Thus the theory defined by % satisfies the dimension axiom, and
SO is grdinary integral homology. Notice that if X + 5%, ®(%, X) does not
equal C,(X ; Z), but is a fibering over it with acyclic fiber.

If @ is Banach algebra, let ¥(@) be the category whose objects are the @-modules
Q, Xe &,..., etc, and whose morphisms are the singular simplices of the
group of X-linear automorphisms of the objects. Then, up to homotopy type,
PH(V(A), S% is the disjoint union of the classifying spaces BGL(n, &) for
n > 0. Thus &% (&), S®) can be seen to be Z x BGL(co, &).

If ®(X) is the category whose objects are the projection operators on the
aQ,doe &,... etc, PR (X),S°) = Ky(X) x BGL(ee, @). Thus, for dimensions
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> 0, both ¥ (&) and % () define the same theory. However, @ (&.) will have
a periodicity theorem, in the sense that m;(® (R(Q), X)) = 7, 3(P(R(Q), X))
for i 2 dim(X)) = highest degree in which non-degenerate simplices occur. We

define k, ,(X) = m (2@R(A), X *)). This gives us our usual connective K-theory
based on &.

Similarly, one can define connective K-homology based on the groups PL (1),
F(n), and, assuming that they have the homotopy type of CW-complexes, (so
that they can be replaced by their singular complexes), Top(n).
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HOMEOMORPHISMS
ON INFINITE-DIMENSIONAL MANIFOLDS

by R. D ANDERSON
Dedicated to Prof. R. L. Moore*

1. Introduction.

An infinite-dimensional (/-D) manifold is a paracompact Hausdorff space
admitting an open cover of sets homeomorphic to open subsets of a given I-D
homogeneous space called the model. In this paper we restrict ourselves to a
survey of results in the set-theoretic topology of such manifolds. In other papers
N.H. Kuiper and J. Eells discuss the differential topology of I-D manifolds.
Both subjects have seen many new and striking results since the last Congress.

It is almost true that in J-D spaces or manifolds, every conjecture about ho-
meomorphisms is true and can be proved unless it is reasonably obvious that
it is false. The theorems quoted below support this assertion.

We shall state a number of theorems illustrating the nature and flavor of recent
research. We concentrate on the manifold aspect of the theory and not on linear
space theory or the Hilbert cube per se although results in these areas have been
and are vital to the development of the subject. For simplicity, we restrict our-
selves to shorter forms of somewhat more general theorems and, except in Sec-
tion 9, to separable metric spaces. In several of the theorems to be cited below,
for example, the homeomorphisms asserted to exist can be further specified to
be the result of a small isotopic motion. A reasonably complete list of references
would be longer than this paper. We give only a brief list and refer the reader
to good lists in recent papers of several of the authors mentioned in Section 5.
Many recent results are still in preprint form. Where feasible, theorems are attri-
buted to the authors of the essential arguments, limitation of space prevents
proper designation of authors of partial results or even of some of the important
lemmas. Of necessity, in any short summary of a currently active field many
valuable and impressive contributions must be omitted or mentioned only
briefly.

2. Agreements.
Except for Section 9, all spaces are separable metric. Let

2= ¥ x,2<°°‘, s=TT (Ui, 1/i) and Q=TT [— 1/i, 1/i].
i=1 i=1

i=1

(1) All of the American mathematicians who have made recent contributions to the
theory described below, are mathematical descendents of R.L. Moore.
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Then sCQC! 2, Q is the Hilbert cube and ! is Hilbert space. Let E denote an
I-D topological vector space (TVS) or Q and let M, M, and M, denote manifolds
modeled on E.

For X =1% s, or Q, we say that K C X has infinite deficiency in X, if, in
infinitely many coordinates, KX projects onto a single point. Let ‘““~” denote
either “is homotopic to” or “is of the same homotopy type” and let “=”
denote “is homeomorphic to”, for single spaces or for pairs of spaces. Let
H(X) denote the space of all homeomorphisms of X onto X, H,(X) denote
the space of all elements of H(X) isotopic to the identity, id. Let H(X into Y)
and H(X onto Y) denote the spaces of all homeomorphisms as indicated. Let
X “ be the countable infinite product of X by itself. Let lf={(x,)€ 12| for all
but finitely many coordinates x, = 0}. Let g and (E“’)f be similarly defined.
Let 0 = Iy and let ¥ be the linear span of Q in 12. Then o and T are dense o-
compact linear subspaces of I2.

We denote a countable locally finite (— dimensional) simplicial complex
by clfsc (or clf — dsc, using the metric derived from barycentric coordinates).
Note that every clfsc is automatically clf — dsc. For K a complex, we let | K|
be a geometric realization of K.

3. Methods.

The original methods of convexity and of renorming of TVS's as well
as the more recent method of (local) compactification have largely been super-
ceded. In addition to coordinate juggling and the exploitation of the existence
of infinitely many coordinates, a dominant procedure in homeomorphism theory
in the past several years has been the development and use of convergence pro-
cedures for sequences (f;*----f,.f,) with f} € H(X) and with the limit ho-
meomorphism f in H(X) or in H(Y onto X) for some Y C X. Such procedures
frequently involve the use of homeomorphisms close to the identity, i.e. within
€ > 0 for compact spaces and limited by an arbitrarily given cover for some
more general spaces. For example, convergence in a complete metric space, X,
can be guaranteed with f€ H(X) if f;,, can be inductively required to be close
enough to the identity. In many cases, f;,, is a homeomorphism defined geome-
trically by an isotopic motion on a product of a small number of coordinate
lines or intervals. The exploitation of negligibility properties and techniques (see
Section 7) continues to play a vital role. The use of selected finite-dimensional
manifold techniques is becoming more important.

4. Two phenomena.

Among the phenomena that play especially useful roles in I-D topology
and that have not been previously identified in finite-dimensional topology,
are Z-sets and (f-d) cap sets.

A set K in a space X is a Z-set (has Property Z) if K is closed and for each
non-empty homotopically trivial open set UE€ X, U\K is non-empty and homo-
topically trivial. It is an important lemma that a closed set K in X = I?, s, or
Q is a Zset in X iff there is an element # € H(X) such that #(K) has infinite-
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deficiency. “Boundary” sets are Z-sets as are all compact sets in 7% and all compact
subsets of Q \s or of s in Q.

The next property was developed concurrently and independently by Bessaga
and Pelczynski and by the author. The former used a more abstract treatment
involving (G, K)-skeletons where G is a group of homeomorphisms and K a col-
lection of compacta related to G. Here we use the author's terminology but a
form of the property close in spirit to the Bessaga-Pelczynski treatment. In
what follows two parallel properties are defined, the ‘“‘finite-dimensional’”’ con-
dition being used throughout or not at all. A set A C X has the ( finite-dimensional)

compact absorption property (the (f-d) cap) in X if A= :G A; where for
=1

each { > 0, A, is a (finite-dimensional) compact Z-set in X with 4, C4,,, and
for any integer m > 0, any open cover U of X and any (finite-dimensional)
compact Z-set K C X, there exist an integer n and an 4 € H(X) such that
h(K)CA,, h{(KNA,)=id and h is limited by U.

The cap characterizes @\s in Q and I in 12, whereas the f-d cap cha-
racterizes Qy or 5pin Q (or sy in s) and 0 = Iin | %, The (f-d) cap is the basis for
the development of the theory of ¢ and ¥ manifolds by Chapman.

5. A brief history of homeomorphism theory of I-D spaces.

The history falls naturally into two main periods with an interim period between.

(I) Prior to 1966. — The main contributors in this period were O.H. Keller,
V.L. Klee, M.I. Kadec, and C.M. Bessaga and A. Pelczynski. Keller (1931) and
Klee (with occasional collaborators, 1953-1965) used convexity to get signifi-
cant and useful results on the topological properties of subsets of (normed)
TVS's and of Q. Kadec and Bessaga and Pelczynski attacked the problem of
Fréchet and Banach on the topological classification of TVS's culminating in
the theorem of Kadec (1965) that all separable /-D Banach spaces are homeo-
morphic. A principal tool used was the renorming of TVS's.

(I) 1966-67. — In early 1966, the author showed that I, ~ s, thus completing
the proof that all separable I-D Fréchet spaces are homeomorphic. In other
related papers, the author studied the topology of s and of Q and of their rela-
tionship using homeomorphism convergence procedures and leading to Property
Z and initial theorems about it. R.Y-T. Wong studied isotopies and wild sets
in s and Q and J.E. West group actions on s.

(III) 1968-date. — In this period the emphasis has shifted to manifolds,
initially to those modeled on s or 1% and later to more general ones. Some of
the techniques are outgrowths of those of the second period. A number of very
able younger mathematicians have joined the earlier researchers in making valuable
contributions. Among these are D.W. Henderson, R.M. Schori, T.A. Chapman,
H. Torunczyk, A. Szankowski, R. Geoghegan, W. Cutler, W.K. Mason, J. McCharen,
D.E. Sanderson, R.A. McCoy, D. Curtis. This period has seen many problems
on manifolds solved. The open embedding theorem, 6.3 below, and other results
reduce many problems on manifolds to problems on TVS's. A number of useful
N. and S. conditions have been established.
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6. Manifolds.

The following representation and characterization theorems have been proved
for manifolds modeled on E = ]2, These theorems, or combinations of them,
seem to be definitive with respect to a wide class of questions.

6.1 (Anderson and Schori) MxE~M

6.1A (Anderson and Schori) MxQ=M

6.2 (Henderson) MxE=U"CE
6.3 (6.1 and 6.2, Henderson) M ~ U C E

6.4 (Kuiper and Burghelea,

Moulis) Given U™, UP*" CE. U, = U, iff U, ~ U, .
6.5 (6.3 and 6.4, Henderson) M, ~ M, iff M, ~ M,.
Theorem 6.4 was originally proved in the domain of differential topology.

The final two theorems relate /2-manifolds with cifsc's or ¢lf — dsc's. The proof
of the second is technically very delicate.

6.6 (Henderson) For every M, there exists K°/* such that
IKIxE~M

6.7 (West) For every K7~ 9% there exists M such that
K| x E~M.

Theorems 6.5, 6.6 and 6.7 give useful and essentially complete characteri-
zations of /2-manifolds.

Using the above results for E ~ /2, Chapman has proved Theorems 6.1-6.7
for E =~ 0,2 except for 6.1A for E =~ g, and with — K°"** The case for
E =~ Q is not as completely known. Theorems 6.1A and 6.7 (for K°*"*¢) are known
and Chapman has many partial results. The conjecture replacing 6.5 for E =~ Q
is “M, ~ M, iff M, and M, are properly homotopic”.

Under any definition of “manifold - with - boundary” of which the author
is aware, such a ‘“‘manifold - with - boundary” is homeomorphic to a manifold.
Furthermore, the ‘“boundary’” is homeomorphic to a Z-set in this manifold.
Thus the study of “manifolds- with-boundary” becomes simply a special
case of the study of manifolds and Z-sets contained in them. Theorems 7.1 and
8.1 below may be considered as part of such a study.

7. Negligibility.

Many of the proofs of the theorems in I-D topology employ negligibility con-
siderations. Historically, negligibility questions were among the first considered
by Klee and by the author. Theorem 7.1 below was a main result in the first of
the current series of papers written on the set-theoretic topology of /2-manifolds.
A subset K of a space X is {strongly} negligible if {for each open cover U in X}
there is an element # of H(X onto X\ K) {and % is limited by U}.

7.1 (Anderson - Henderson - West) A closed subset K C M is strongly negligible
iff K is a Z-set.

7.2 (Anderson) A subset KCM is strongly negligible
iff K is a countable union of Z-sets.
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Chapman has proved 7.1 for E =0, X but 7.2 is obviously false for such
manifolds.

8. Homeomorphism Extension Theorems.

Klee proved the basic lemma : Given K, , K, closed sets in complementary
subspaces of 1% and heHK, onto K,). There exists h* GH,(I’) such that
h* | K = h. The theorem below has several previously known corollaries which
have been used in other proofs.

8.1 (Anderson and Mc Charen for E =~ 12). Let K be a Z-set in M and
h€H(K, into M). Then there exists h*EH,(M) with ¥ | K = h iff h(K) is
a Z-set and h ~ id.

Independently, Henderson proved 8.1 for the special case of K an ANR,

Chapman has proved the theorem for E =~ ¢ or £ and Chapman and the
author have proved a similar theorem for E =~ Q but with the necessarily altered
condition that 4 be properly homotopic to id.

9. Non-Separable Manifolds.

Culter made the first useful generalization to non-separable manifolds while
studying certain negligibility questions. Within the past year the results cited
in Sections 6, 7 and 8 have all been generalized to manifolds modeled on any I-D
Banach space E for which E = E“, (It is conjectured that E =~ E* for every I-D
Banach space and it is known, by Bessaga and Pelcynski, for every I-D Hilbert
space). The use of the product structure for E® lets many of the processes of
the separable case be applied to the other manifolds. Specifically, Schori and
Henderson using some separate and some joint work have established 6.1 to 6.5
for all such Banach spaces. West has very recently established results like 6.6
and 6.7 for manifolds modeled on such Banach spaces but with K a metric locally
finite - dimensional simplicial complex related to the weight of E. Using results
of Cutler and Henderson, Torunczyk and Chapman have, independently, gotten
results implying Theorems 7.1, 7.2 and 8.1 for E any such Banach space.

Henderson and West have also established results like those of Section 6 for
certain incomplete TVS's E for which E =~ (E*),, thus generalizing Chapman'’s
results for E~ o or Z.

10. Miscellaneous other results.

Georghegan has recently proved that for any compact finite - dimensional
manifold Y, H(Y) x I ~ H(Y), thus giving a partial coordinatization to H(Y).
The general question as to whether H(Y) is an /?-manifold is open. It is known
true for dim Y = 1 and recent results of Mason and Henderson strongly suggest
that it is true for dim Y = 2. A positive solution of the general question would
let the results and methods of infinite - dimensional manifolds be much more
readily available for finite - dimensional manifold problems.

West has used the methods employed in the proof of Theorem 6.7 to show
that for every finite contractible complex K, [K| x Q ~ Q and indced that all
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countable infinite products of such (non - degenerate) polyhedra are homeomorphic
to @. The question of whether A x @ = @ for each compact absolute retract
A is still open. Recent results of West show that 27 x Q =~ Q where 2/ is the space
of closed subsets of /. The question “Is 2/ ~ Q ?” remains open.

Chapman has proved that (M, 4,) ~ (M, A,) for A, and A, both cap or
both f-d cap sets in M with E ~ 1? or Q and that for any Z-set K or countable
union of compact (finite - dimensional) Z-sets K*,

M, A)~M, A \NK)~ M, A, UK*).

Torunczyk has slightly weaker results in a much more general setting.

Bessaga and Pelczynski have used their version of the (f-d) cap to show
that all N,-dimensional locally convex metrizable TVS's are homeomorphic,
to give a new and easier proof that all separable /-D Fréchet spaces are homeo-
morphic and to show that the space S, of all measurable functions on [0, 1]
into any complete metric space Y is homeomorphic to 72.

Many interesting questions remain open. The exploitation of the several
useful topological models of a manifold should lead to significant further results
However, more general and useful characterizations of I? and Q are needed.
The identification of other important /-D phenomena could well open up new
areas of activity.
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A SURVEY OF SOME RECENT ADVANCES
IN GENERAL TOPOLOGY,
OLD AND NEW PROBLEMS

by A. V. ARHANGELSKL

The four years after the Moscow Congress have brought advances in all
main directions of General Topology. New lucky notions were introduced, new
interesting classes of spaces were discovered. New general theorems were found,
the formulations of which are as unexpected as simple, and the proofs are non-
trivial and exquisite. Much of those will become a natural part of the courses
of General Topology in seventeenth years. I must say also that some old pro-
blems were solved and many new challenging problems were posed.

Nearly without comments - because of the lack of the place, -1 will men-
tion here some results. Of course, the exposition is not full.

I — Besides paracompactness, all metric spaces and all bicompact Hausdorff spaces
enjoyes being feathered (mepucrne)spaces (p-space). The notion of p-space
was introduced in [1].

DEFINITION. — X is p-space if in BX (the Stone-Cech bicompactification
of the space(*) X) there exists a family ¢ of coverings of X by sets open in X
such that N{A(x) : AEyp} C X for each x EX

(here A\(x) =U{U : LW EN and U Dx)).

Among p-spaces we find some non-paracompact spaces- for example, all
spaces complete in the sense of E. Cech are p-spaces. Paracompact p-spaces are
characterized as preimages of metric spaces under perfect maps [1,7]. The product
of a countable family of paracompact p-spaces is a paracompact p-space [7].
Clearly preimage of a p-space under a perfect map is again a p-space. V.V. Filippov
was the first to prove that the image of a paracompact p-space under a perfect
map is a paracompact p-space [24]. A little later, but independently, this result
was obtained by K. Morita and T. Ishii [12]. Recently H.H. Wicke announced
an analogous assertion for p-spaces. It is worth noticing that a closed map of a
metric space preserves metrizability if and only if it preserves the property of
being p-space [7]. Each p-space with a countable grid (network, net - see[6,7]),
has a countable base, hence, it is metrizable [7]. A map of arbitrary topological
space onto a p-space doesn't increase the weight [7]. If a paracompact p-space
can be mapped onto a metric space by a one-to-one continuous map, then it

(*) In what follows, “a space” means ‘““‘completely regular space” — until anything different
is explicitly stated. The term “map” means everywhere ‘“continuous one-valued function”.
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is metrizable [7]. Each paracompact p-space with a point-countable base is me-
trizable [27]. Paracompact p-space is metrizable iff it is symmetrizable [6].
If an open finite-to-one map of a p-space X onto a metric space Y is given, then
X is metrizable [30] (the conclusion doesn’t hold for open countable-to-one
maps). Among Hausdorff space explicitly those which are of point-countable
type [6] can be represented as an image of a paracompact p-space under an
open map (H.H. Wicke [19]).

Two theorems are to be distinguished. These are theorems-schemes about
perfect maps. They constitute a base for unified approach to the proofs of many
specific theorems, concerning with preservation - from image to preimage - of
topological properties under such maps. If & is a class of spaces such that : (&)
each closed subspace of a space in & belongs to & ; (8)if X €& and @ is bicompact,
then X x & € &. Then the preimage of a space in & under a perfect map is in
& (up to a homeomorphism) ([21] - van der Slot).

The theorem may be applied to bicompact spaces, paracompact spaces, locally
bicompact spaces, as well as to k-spaces, Lindel6f spaces, spaces complete in
the sense of E. Cech and to many other classes of spaces.

Let @ be a class of Hausdorff spaces, such that : (a*) the product of each
two spaces in @ is in & ; (8*) each closed subspace of a space in & is in %. Then
each space which can be mapped by a perfect map onto a space belonging to %
and can also be mapped by a one-to-one map into a space in % belongs to &
(Archangelskij [2]). For example, the conditions (a*) and (8*) are satisfied by
the following classes of spaces (1) spaces with countable base ; (2) spaces with
the first axiom of -countability ; (3) metrizable spaces ; (4) finite - dimensional
spaces ; (5) spaces with countable grid ; (6) developable spaces ; (7) quasidevelo-
pable spaces (in the sense of H.R. Bennett) ; (8) all completely-regular spaces.

The last two theorems are of the mixed, topologically - cathegorical, nature ;
we have few results of this type yet. Among purely topological theorems dealing
with maps of general topological spaces we find many new interesting - often
unexpected results ; more than we can mention here. First of all, the class of
bifactor maps was discovered (it was done by E. Michael [15] - and soon afterwards
and independently - by V.V. Filippov [26]). I dare say that bifactor maps will
become a central notion of the theory of maps.

DEFINITION. — A map f: X—> Y is called bifactor iff for each y €Y and
and each covering v of the set f~'y by sets open in X there exists a finite family
A C 4 such that Int (U{fU:U €A} Dy.

All open maps and all perfect maps are bifactor maps, but there are closed
maps which are not bifactor. Bifactor maps are always pseudoopen - hence,
hereditarily factor [6]. The following fact is of particular importance : the product
of arbitrary family of bifactor maps is bifactor map (Michael [15]). To feel all
the sweetness of the assertion it is sufficient to remember that even the product
of a factor map with identity may be a non-factor map. Moreover bifactor maps
are exactly those, the product of which with each identity is a factor map (Michael
[15]). Two hard and deep theorems on bifactor maps were proved by V.V.
Filippov [26]. A. Let f: X = Y be a bifactor map, 7-a cardinal number, 7> ¥,
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and the weight of the space f~'y doesn't exceed 7 for each y €Y. Then if X
has a point-countable base, a point countable base has the space Y also. B. Let
f:X—=Y be a factor s-map, X-a space with a point countable base, Y- a
Hausdorff space of point-countable type [6] (for example, ¥ may be taken to
be a p-space or even a bicompact) and fX = Y. Then f is bifactor map. The both
theorems arose from the work on the solution of the following problem : is it
true that each bicompact Hausdorff space Y which is an image of a metric space
X under a factor S-map, is metrizable [6] ? As we see now, the answer is positive
(even in the case if Y is a p-space), but for the proof we need the mentioned two
theorems of V.V. Filippov, the theorem of A.H. Stone about paracompactness
of metric space and the theorem of A.S. Mischenko about point countable bases
of bicompact spaces. In particular, among bifactor maps we find all pseudoopen
bicompact maps.

The following result [ consider as a very refined one : if a paracompact
space Y is an image of a metric space under a pseudoopen bicompact map, then
Y is metrizable (M.M.4Yo06aH - M.M. Coban). Here is the proof. The topology
of the space agrees with the symmetric d(y, , y,) on Y, defined by the formula :
d(y, ., y,) = 'y f“y,) (see [6])- where p is the given metric on X. As
the space X has a point-countable base (A.H. Stone), the space Y also has such
a base (V.V. Filippov). But each symmetrizable space with a point countable
base has a development (R.W. Heath). Hence we need only to use the following
known theorem of R.H. Bing : each paracompact with a development is metri-
zable. The proof is complete. I don’t know whether a direct proof of the assertion
can be found.It would be fine to have it,

Some other results on maps. An image of a complete metric space under
an open map has always a base of countable order (H. Wicke, J. Worrell [20]) —
i.e. a base such that each decreasing sequence of its elements with non-empty
intersection constitutes a base of some point. As each paracompact with a base
of countable order is metrizable [6], the cited result due to H. Wicke give a
new performance to the known theorem due to E. Michael about metrizability
of each paracompact space, which is an image of a complete metric space under
an open map. If f: X > Y is an openclosed finite-to-one map and fX =7,
then the weight of X equals to the weight of Y, and Y is metrizable iff X is
metrizable [5]. But an open countable-to-one map of a nonmetrizable perfectly
normal bicompact space onto a bicompactum with countable base exists (V.V.
Filippov [25]). Let us mention, that there is a countable space X, all bicompact
subsets of which are finite, and there is an open finite-to-one map of X onto
the simplest countably infinite bicompactum. This means that the results cited
above are in some sense conclusive. Besides, we see that an open finite-to-one
map of a Lindeldof space onto a metric space may be not k-covering (compact-
covering) (a map is called k-covering, iff each bicompact subspace of the image
is contained in the image of some bicompact subspace of the preimage — see
[6]). On the other hand each closed map of a paracompact space is k-covering
(E. Michael [13]). If X is a space with countable grid (for example, with countable
base), and f: X > Y — a closed map, then the set of all y Y suchthat 'y is
not bicompact is countable (may be, finite, or empty) (Arhangel'skij [6]).
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In conclusion of this most general part of the survey I wish to point on
some new classes of spaces — which are very interesting in my opinion. These
are : N,-spaces of E. Michael [14], Z-spaces of K. Nagami, stratifiable and semis-
tratifiable spaces (C.R. Borges , E.Michael, G.Creede , . Kogiuep), spaces with
countable quasidevelopment (H.R. Bennet) — a quasidevelopment differs from
a development in that its elements needn’t be coverings. Rather general method
of defining natural classes of spaces is shown in [6] (see definitions of Mobi,
Mobos and Fabos). The M-spaces introduced by K. Morita [16] are being in-
vestigated successfully (K. Morita, T. Ishii, A. Okuyama, J. Nagata and others).
For paracompact spaces the notion of M-space is equivalent with the notion
p-space. So in most important points the theories of p-spaces and of M-spaces
closely  correspond to each other (compare the results of V.V. Filippov and
M.M. Choban with the results of Japanese mathematricians).

Fundamental works on symmetrizable spaces were fulfilled by S. Nedev
(C. HemeB), R. Heath, and S. Nedev jointly with M. Choban. Beautiful results
on k-spaces received N. Noble.

II — At last one of the central problems of general theory of dimension (posed
by P.S. Alexandroff in 1935) was solved. V.V. Filippov has constructed bicom-
pactum X such that ind X # Ind X.

I don't fear to call the result sensational. A serious corollary of it is evident :
even for bicompact Hausdorff spaces we must construct two theories separately :
the theory for ind and the theory for Ind. The result of Filippov was being
improved afterwards by B.A. Pasynkov (B.A.Tacuuxos), I.K. Lifanov (4. K.
Jiugparop)and by V.V. Filippov himself. Now we have a bicompactum X, satis-
fying the first axiom of countability such that dimX #ind X # Ind X. It is
well known, that for all perfectly normal bicompact spaces ind = Ind. But is
ind = dim for these spaces ? This old question was also answered, in a negative
way, by V.V. Filippov — but the continuum — hypothesis is assumed.

A new characterization of the dimension dim of metric spaces was established
by V.V. Zolotarev (B.B. 3onorapén). His theorem : let X be a metric space,
Then dim X < n iff the topology of X can be represented as intersection of a
family F of topologies on X such that () the power of F is equal n + 1 ; (8)
dim (X, %) = 0 for each BE F, and (y) the intersection of any subfamily of
F is a metrizable topology. I don’t know whether the result can be improved
by inclusion instead of (y) the following condition (y') : (X, %) is metrizable
for each 6 € F.

Il — I begin here with a brief consideration of some important and exquisite
results obtained by Z. Frolik.

(A) The set of all fixed points of a homeomorphism of an extremally dis-
connected bicompactum into itself is open — closed [27].

(B) (a corollary from A) : if X is a subspace of an extremally disconnected
bicompactum Y and X contains a topological copy of Y as a nowhere dense
subspace then X is not homogeneous [27]. Particularly, BN \ N contains a topo-
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logical copy of BN, and BN is extremally disconnected. Hence BN \ N is not
homogeneous (the continuum hypothesis is not used in this argumentation of
Z. Frolik — which differs it principally from the well known argumentation
due to W. Rudin). Another method (also discovered by Z. Frolik) of investigation
of the problem of homogeneity of extemally disconnected bicompacta is based
on consideration of the set T, of types of a point x related to arbitrary countable
discrete subsets M, having x as a point of accumulation. Types are defined as
equivalence classes of ultrafilters induced on M by the system of all neighborhoods
of the point x. The remarkable fact discovered by Z. Frolik : the set T, has a
natural linear order [28]. Another fundamental and astonishing result in this
area : each point x €SN \N, considered as an ultrafilter on N, is not equivalent
to the ultrafilter, induced on a discrete countable set M C BN \ N by the system
of neighborhoods of x in SN — for each such M. Comparing the cardinalities
of the sets T, and T = U{T, : x € X}, Frolik proves that each infinite extre-
mally disconnected bicompactum is not homogeneous — but here he uses essen-
tially any from the following two nearly opposite suggestions : 1) 2° > ct,
or 2) 280 = R,. It may be mentioned that nonhomogeneity of an infinite ex-
tremally disconnected bicompactum the weight of which is less or equal ¢, was
proved without any suggestion of the sort (Arhangel'skij). Some fine results
about the structure of N \ N belong to M.E. Rudin. It was established (under as-
sumption that 2No = N,), that some points of SN \N aren’t accumulation points
for any countable subset of SN \N. Besides the points were found which are
accumulation points for a countable set but aren’t accumulation points for any
countable discrete subset of BN \N (K. Kunen [11]). In a recent survey of M.E.
Rudin two new interesting partial orderings on the set of types of the points
in BN\N are described. An interesting article on BN \N was written by W.W.
Comfort and S. Negrepontis. But the main problem in the area : of topological
classification of points of BN \N is far from the solution. Let us mention that
a separated extremally disconnected topological group exists the topology of
which is non-trivial (S. Sirota — C. Cupora [18]). But each bicompact subspace
of each extremally disconnected topological group is finite (Arhangelskij [8]).

In other aspects the extremal disconnectedness was investigated by B. Efimov
(B. Edpumon), Each nonmetrizable dyadic bicompactum contains a topological
copy of BN — this assertion is equivalent to thc continuum hypothesis [9].
Without any assumption of this sort B. Efimov proved that each bicompactum
X the Souslin number of which is not greater than 7 and the weight of whichis
bigger than expexpexp 7, contains all extremally disconnected spaces the weight
of which is not greater than (exp 7)*, hence contains the Stone-Cech bicompactifica-
tion of the discrete space of cardinality 7 [10].

IV — 1. Juhasz and A. Hajnal derived from a fundamental theorem proved by
Erdds, Rado and Hajnal, that the power of each Hausdorff space with Souslin
number < 7 and the character in each point less or eqgial 7, isn't greater than
27, This result is deep and useful ; some of its topological generalizations and
applications see in [4], [29]. Another result of A. Hajnal and I. Juhasz : if the
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power of a Hausdorff space X is bigger than 22" then a discrete subspace Y of
the space X exists the power of which is bigger than 7. In the proofs of the
following results very essential role plays the notion of a free sequence of the
length o, introduced in [3]. Let A be a well ordered (by a relation <) subset
of a topological space X such that

[{a€A :a<a*}N[{a€A:a*<a}]=A.

for each a* € A. Then A is called a free sequence in X. The length of this sequence
is the type of A. If the Souslin number of a sequential bicompactum X equals
N, then the power of X (i.e. |X])is less or equal 2No (by a sequential bicompac-
tum I mean bicompact Hausdorff space which is sequential space (in the sense
of S.P. Franclin) also). If RIS 2“", then each sequential bicompactum X satis-
fies the first axiom of countability on a set of points dense in X (Arhangelskij
[4]). If sequential bicompactum X is homogeneous then either it is finite, or
its power equals 280 The proof of the last assertion heavily depends of a
bunch of serious theorems. It would be nice to find an elementary or more
direct proof. In 1922 the following problem was posed by P.S.Alexandroff:
is it true that the power of each bicompactum satisfying the first axiom of
countability at each point is less or equal than 2809 1 have proved in [3] — using
free sequences and ramifications, — that the power of each Lindelof space satis-
fying the first axiom of countability at each point is less or equal 280, The
generalizations of the result dealing with arbitrary cardinal number 7 are also
received [3].

V — Problems (unsolved so far as I know).

(1) Is each completely regular metacompact space an image of a paracompact
space under an open bicompact (continuous) mapping ? (Arhangelskij).

(2) Let f be a k-covering map of a complete separable metric space X onto
a metrizable space Y. Is Y metrizable by a complete metric then ? (E. Michael).

(3) Suppose that an image of a metric space under an open bicompact
(and continuous) mapping is normal space. Is this space metrizable then ? (P.S.
Alexandroff).

(4) Is it true that ind X = Ind X = dim X for each regular space with a
countable grid ? (one need only to verify the inequality ind X < dim X for
such spaces) (Arhangelskij).

(5) Does there exist an infinite homogeneous extremally disconnected bi-
compactum ? (without using the continuum hypothesis or its negation) (Arhan-
gelskij).

(6) Is each regular countable space X imbeddable into a bicompactum (depen-
ding from X) the power of which is less or equal than 280 ¢ (Arhangelskij) .

(7 Is it true that each Hausdorff space with the power greater than 280
contains an uncountable discrete subspace ? (A. Hajnal, I. Juhasz).

(8) Is it true that the power of each hereditarily separable bicompactum
is less or equal than 2o 9 (A. Hajnal, I. Juhasz).
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(9) Let us say that a topological space X is of countable density, if for
each x €X and for each M C X from x € [M] it follows that x € [M'] for some
countable subset M' of the set M. Is it true that each bicompactum of countable
density satisfies the first axiom of countability at some point ? (even in the
assumption that 280 = 8, ?) (A. Arhangelskij, B. Efimov).

(10) Is it true that each bicompactum of countable density contains a non-
trivial convergent sequence of points ? (A. Arhangelskij, B. Efimov).

(11) Is there a homogeneous bicompactum of countable density the power
of which is greater than 280 9 (A. Arhangelskij).

(12) Prove that the power of each bicompactum of countable density satis-
fying the Souslin condition (i.e. cX = R,) is not greater than 2Ro0 (A, Arhangelskij).

(13) Suppose that the generalized continuum hypothesis is fulfilled. Let X
be a bicompactum, 7-a cardinal number, and the character of each point x € X
in X is strictly less than 7. Is it true then that |X| < 7 ? (A. Arhangelskij). (The
answer is ‘“‘yes” when 7 is a regular cardinal number).

(14) Let X be a Lindelof space of countable density and each x € X is an
intersection of countably many open sets in X. Is it true than that |X| < oMo q
(or at least is it true that |X| < 2°7)(%).

(15) Suppose a completely regular space Y is an image of a completely regular
space X having a uniform base under an open (continuous bicompact mapping.
Is it true than that Y has also a uniform base ? (A Arhangel’skij)(*).
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FONDEMENTS DE LA K-THEORIR

par Max KAROUBI

0. Introduction.

Depuis le travail de Grothendieck sur le théoréme de Riemann-Roch en géo-
métrie algébrique, la K-théorie a connu un développement intensif, marqué essen-
tiellement par des applications nombreuses dans divers domaines des mathéma-
tiques. Elle s’est méme divisée en deux branches essentielles : la ‘‘K-théorie
topologique” dont une idée peut étre donnée dans le livre connu d’Atiyah [1]
et la “K-théorie algébrique” exposée par exemple dans le livre de Bass [2]. Ces
deux livres et bien d’autres publications contiennent évidemment des résultats
importants dont je ne parlerai pas ici. Mon but est essentiellement théorique :
on va ticher d’unifier les deux “K-théories” en les intégrant dans la perspective
générale de ’algébre homologique.

De maniére plus précise, considérons un anneau A avec élément unité (pour
Pinstant) et la catégorie ©(4) des A-modules (1) projectifs de type fini. Soit G
un groupe abélien et soit

f:0b%RA4)~> G
une application qui satisfait 4 la propriété suivante : si
0P - P->pP' >0

est une suite exacte de A-modules projectifs (nécessairement scindée), on a
@) =f(P) + f£(P"). Parmi les couples (G , f) il en existe évidemment un d’uni-
versel : on le notera (K(4), ). Un homomorphisme € : A = B induit un foncteur
“extension des scalaires” M - M f B de ®(A) dans ®(B), d’olt un homomorphisme

K(e) de K(A) dans K(B). 1l est clair que K(A4) devient ainsi un foncteur covariant
de I'anneau A. Si A n’a pas nécessairement d’élément unité, considérons ’ensemble
A* = A x Z muni des deux lois de composition suivantes

@N+@ ,\Y=@+d ,A+1\)
@,N) - @,\N)=(a +Na+2Ad',\\).

Alors A* est un anneau avec élément unité et A s’identifie au noyau de “I’homo-
morphisme d’augmentation” € : A* = Z ol e(@,\) = \. On définit alors K(4)
comme le noyau de K(e) : K A") = K(Z). 1 est facile de voir que cette définition
est cohérente avec la définition antérieure dans le cas oil 4 a déja un élément
unité . ..

(1) a droite pour fixer les idées.
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Considérons une suite d’anneaux et d’homomorphismes
(S) 0-4-»a454">0

Cette suite est dite exacte si elle est exacte en tant que suite de groupé€s abéliens
(ainsi A' s’identifie & I'idéal noyau de f et n’a pas en général d’élément unité).

THEOREME 0. — (Bass-Schanuel). La suite
K@A" > K@) »> KA4")

obtenue a partir de la suite (S) en appliquant le foncteur K est une suite exacte.

Le premier réflexe d’un spécialiste d’algébre homologique ou d’un topologue
est évidlemment de chercher & construire les foncteurs “satellites” du foncteur
“semi-exact” K. En d’autres termes, on aimerait pouvoir définir des foncteurs
K"(4) (1), n€Z, tels que K°(4) = K(A4) et tels qu’on ait une suite exacte infinie :

s> KN4 > KA > KMA') > KMA) > KA > -

Nous allons voir que, sous certaines hypothéses restrictives sur les suites (S),
il est effectivement possible de définir des foncteurs K. Pour cela, nous allons
adopter la définition de Villamayor et de l'auteur qui est présentée dans [6].
Des définitions différentes ont été proposées par d’autres auteurs (avec de moins
bonnes propriétés formelles en général). Faute de place, nous nous bornerons
4 les mentionner au passage.

1. Anneaux de Banach.

L’originalité de la K-théorie dans la présentation adoptée réside dans le fait
que la définition des groupes K"(4) va dépendre du choix d’une topologie (plus
précisément d’une norme) sur Panneau A. Ainsi, si I’anneau A est discret, on
obtiendra des foncteurs K" intéressants pour les algébristes ; si A est une algébre
de Banach réelle ou complexe, les foncteurs K" obtenus seront intéressants pour
les topologues. De maniére plus précise, posons la définition suivante :

DEFINITION 1. — Un “anneau de Banach’ est un anneau A (non nécessairement
unitaire) muni d’une ‘“norme” p : A - R satisfaisant aux axiomes suivants :

MDpx)=0+¢x=0

) px +y) < px) +py)

3) p(—x) ()

@ pixy) <pkx)p0O)

(5) A est complet pour la distance d(x ,y) =p@x —y).

Il est clair que les anneaux discrets, les algébres de Banach ordinaires ou ultra-
métriques sont des exemples d’anneaux de Banach. Pour simplifier I’écriture, on
notera lxll ’expression p(x) comme il est d’usage.

(1) Dans la littérature on écrit aussi K_, au lieu.de K". Nous nous conformons ici 4
la tradition de la K-théorie topologique.
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Si A est un anneau de Banach, 4 <x > est le sous-anneau de A [[x]] formé

+o0 +o0
des séries formelles S = S(x) = Y ax' telles que D gl <+ ; 4<x>

=0 i=0

400
est évidemment un anneau de Banach pour la norme IS1= Y gl (si A est

i=0
discret, on a A <x > = A[x]). Plus généralement, le sous-anneau 4 <x,,...,x, >
de A[[x,,..., x,]] formé des séries S telles que la somme des normes des coeffi-
cients soit finie est un anneau de Banach. Un homomorphisme borné f: A > B
induit un homomorphisme borné f, : 4 <x,,..., x, >>B<x;,..., x,>.

Pour tout anneau C, posons
GL(C,p) =Ker[GL(C*,p) = GL(Z ,p)] et GL(C)= 1i_{n GL(C,p).
Alors f,, induit un homomorphisme de groupes

GLA <xy,...,%>) > GLB<x,,...,x,>)

n

que nous noterons encore f,.

DEFINITION 2. — L’homomorphisme f: A = B est une “fibration’ si, pour tout
élément [ =P (xy,..., x,) de GL B<xy,...,Xx,>) tel que $(0,..., 0) =1,
il existe un élément o de GL (A <xy,..., x,>) tel que f,(a) = y. L’homo-
morphisme f est une “‘cofibration” si f est surjectif et si la norme de B est équi-
valente a la norme quotient de A.

Exemples. — Si A et B sont des algébres de Banach sur R ou C, tout homo-
morphisme surjectif est & la fois une fibration et une cofibration. Il en est de
méme si f est surjectif et si B est un anneau noethérien régulier discret.

Soit

) 04 >45L 4750
une suite exacte d’anneaux de Banach et d’homomorphismes bornés. Par abus
de langage, on dit que (S) est une fibration (resp. une cofibration) si la norme

de A' est équivalente 3 la norme induite par A et si f est une fibration (resp.
une cofibration).

2. Définition des foncteurs K",

Soit @ la “catégorie” des anneaux de Banach, les morphismes étant les homo-
morphismes bornés. Une “théorie de la cohomologie positive” (resp. “négative’’)
sur @ est la donnée de foncteurs K" ,n > 0 (resp. n < 0) de ® dans la caté-
gorie des groupes abéliens ainsi que d’opérateurs de connexion naturels

" K'Yy > K"A) , n=1 (resp. n < 0)

définis pour toute cofibration (S) (resp. toute fibration (S)). On suppose en
outre que la suite

K" > K"N4) > K74y > K"(A') > K"(4) > KMA")

est exacle pour les valeurs de n ou elle est définie.
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DEFINITION 3. — Soit A un anneau de Banach et soient q; : A <x>—> A,
i =0, 1, les homomorphismes définis par q,(S) = S(i). On dit que A est “contrac-
tile” s'il existe un homomorphisme borné h : A > A <x> tel que gyeh =0
et q, « h=1d.

Exemple. — L’anneau EA = Ker q, est contractile.

THEOREME 4. — Il existe une théorie de la cohomologie négative et une seule
a isomorphisme prés sur 03 qui satisfait aux axiomes suivants :

(1) K"(4) = 0 pour n <0 si A est contractile.
2) K°4) = K).

Cette définition est évidemment & rapprocher de celle des groupes d’homotopie
d’un espace topologique. La définition des groupes K” pour n positif va néces-
siter quelques préliminaires techniques qui trouvent leur origine dans la théorie
des opérateurs de Fredholm dans un espace de Hilbert (cf. [4]).

Soit M = (a;;) une matrice infinie 4 coefficients dans A. On pose
Ml = Sup 2 lay, I
i iZo

Les matrices M telles que Ml <+ oo forment un anneau de Banach B. Une
matrice diagonale M est dite de type fini si elle ne contient qu’un nombre fini
d’éléments de A différents. Le “cone” CA de A est le plus petit anneau de
Banach contenu dans B qui contient les matrices diagonales de type fini et les
matrices de permutation. La limite inductive 4A(«) = li__mA(n) suivant les inclusions

MO)

M—>(0 0

est un sous-anneau ge CA. Son adhérence A est “l'anneau stabilisé” de A (dans
le cas discret on a A = A(«)). L’anneau _stabilisé est en fait un idéal dans CA et
I’anneau de Banach quotient SA = CA/A est la “‘suspension” de A.

Un anneau de Banach unitaire C est dit “flasque™ s’il existe un bimodule
de Banach M sur C, projectif de type fini & droite, tel que M @ C soit isomorphe
4 M en tant que bimodule (exemples : le cone CA d’un anneau de Banach uni-
taire A ; l'algébre des endomorphismes d’un espace de Hilbert de dimension
infinie).

THEOREME 5. — Il existe une théorie de la cohomologie positive et une seule
d isomorphisme prés sur G3 qui satisfait aux axiomes suivants :

(1) L'inclusion naturelle A~ A induit un isomorphisme K™(4) > K"(A).

(2) K"(A) = 0 si A est un anneau flasque.

3) K°(4) = K(A).
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3. Comparaison avec d’autres définitions.

THEOREME 6. — Soit A une algébre de Banach sur R (resp. C). Alors les groupes
K"(A) définis ici coincident avec les groupes K" de la catégorie de Banach %.(A)
définis dans [3) En particulier, ils sont périodiques de période 8 (resp. 2). Si A
est l'algébre de Banach des fonctions continues sur un espace compact X, on
retrouve les groupes K"(X) introduits par Atiyah et Hirzebruch [1].

THEOREME 7. — Soit A un anneau discret. Alors, pour n = 0, K"(A) coincide
avec le groupe K_,(A) défini par Bass [2]. En particulier K"(4) = 0 pour n >0
si A est un anneau noethérien régulier. Enfin, on a la formule

n—1

: )K—”“(A)e)(n;l)K—”+2(A)$"‘$K_l(A)

K,() = k") e (

ou K, est le foncteur introduit par Nobile et Villamayor [8].

THEOREME 8. — Soit A un anneau de Banach. On a alors des homomorphismes
naturels

hy 1K (4) = K71(4)
hy : Ky(A) > K~%A)

ou K, et K, sont les foncteurs introduits par Bass et Milnor respectivement [2]
[7]. L’homomorphisme h, est toujours surjectif. Si A est noethérien régulier
discret, h, est bijectif et h, est surjectif.

4. Interprétation de la périodicité de Bott.

La périodicité de Bott “naive” K"(4) =~ K"**(4), a # 0, pour tout auneau
de Banach A est fausse en général (considérer par exemple un anneau noethérien
régulier). Cependant, Bass a montré dans [2] que la “bonne” généralisation de la
périodicité s’exprime par une formule du type “LK”" =~ K"*'”, Avec nos nota-
tions, ceci peut se formuler de la manidre suivante. Soit A <t, ¢t~ !> Panneau

400 400
des séries formelles Y, af telles que », lall <+ w. Si F est un foncteur

I=—oo i=—o0

quelconque de @3 dans la catégorie des groupes abéliens, on pose
(LF) (A) = Coker [FA<t>)® FA<t™'>) > FA<t,t™'>)].
THEOREME 9. — Pour tout entier n =0, on a un isomorphisme naturel de
foncteurs K™~ LK.

Le théoréme analogue pour » < O va nécessiter quelques hypothéses restric-
tives sur 'anneau de Banach A. On a par exemple le résultat suivant :

THEOREME 10. — Soit A une algébre de Banach sur R ou C ou un anneau
noethérien régulier discret. Pour n <0, on a alors un isomorphisme naturel de
foncteurs K"*' ~ LK" (voir [5] pour un résultat de portée plus générale).
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Remarque. — Notons T'A I'idéal de A <t ,t™'> formé des séries S(t) telles que
S(1) = 0. Alors le théoréme précédent peut s’écrire aussi K*(['4) =~ K"*'(4).
Dans le cas ol A est une algébre de Banach complexe, K"(I'4) est isomorphe
A KNQA) =~ K" Y(A), QA désignant I'idéal de 4 <x > formé des séries S(x)
telles que S(0) = S(1) = 0. La périodicité de Bott classique (dans le cas complexe)
en résulte.

Les techniques permettant de démontrer le théoréme précédent servent aussi
4 démontrer le résultat suivant sur le foncteur X, de Milnor :

THEOREME 11. — Soit A un anneuu discret. Alors K (A[t ,t™]) peut s’écrire
de maniére naturelle sous la forme K,(A)® K, (A)® X oi X est un groupe en
général inconnu (1).
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NORMALITY OF PRODUCTS

by Kei6 NAGAMI

1. — Finite products. All spaces in this address are assumed to be Hausdorff
and all mappings continuous. Let spaces X,, a € 4, be given. Then the product
ILX, is regular or completely regular according as each X, is respectively regular
or completely regular. In other words the regularity and the complete regularity
are productive. A celebrated example due to Michael [9] shows that :

THEOREM 1. — There exists a hereditarily paracompact space whose product
with a separable metric space is not normal.

Thus we know that the normality is not even finitely productive. Let X be
a normal space and I the unit closed interval. Is X x J normal.? This is Dowker's
problem in 1951. Dowker [6] shows that :

THEOREM 2. — X x I is normal if and only if X is normal and countably
paracompact (i.e. every countable open covering is refined by a locally finite
open covering).

Dowker’s problem is related to Souslin's problem [19] in 1920 : Does

there exist a linearly ordered space which is not separable and in which every
collection of disjoint segments is countable ? Mary Rudin [18] shows that :

THEOREM 3. — If there exists such a space, then Dowker's question has a
negative answer.

It is known that Souslin’s problem is independent of our axioms for set
theory ; yet the negative answer of Dowker's problem may still be obtained in
the usual set theory. From the following two theorems we can realize that the
normality of the product has a great influence upon the factors.

THEOREM 4 (Tamano [21]). — If X x BX is normal, then X is paracompact,
where X is the Stone-Cech compactification of X.

THEOREM 5 (Morita [11]). — Let m be an infinite power. Then X is nar-
mal and m-paracompact (i.e. every open covering consisting of at most m elements
is refined by a locally finite open covering) if and only if X x I™ is normal, where
I™ is the product of m copies of I.

The following are some of problems which are naturally raised.

ProBLEM | (Morita). — Let X x Y be normal and X compact. Let Z be
the image of Y under a closed mapping f. Is X x Z normal ? Catch the nice

-2
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property of I, x f, where /, is the identity transformation of X to X, which may
assure the normality of X x Z.

PROBLEM 2. — Let X x ¥ be normal and Y metric. Let Z be the image
of Y under a closed mapping. Is X x Z normal ?

All of the preceding theorems are concerned with the influence of the nor-
mality of X x Y, with Y fixed, upon X. If Y ranges in a class of spaces, say €,
the normality of X x Y, Y € @, will characterize the feature of X. Morita did
the characterization for the class of metric spaces using the idea of Morita space.
A space is said a Morita space if for each index set & and for each open collec-
tion {G(a,... @) : a;,...,0,EQ} with

Gl,...a,)CTG(ay...ap),n=1,2,...,
there exists a closed collection {F (¢, ...a,)} such that

F(y...o)CG(a, ...a)
and such taht "Ql G(a,...a,) =X implies 'gl F(,...a))=X.

THEOREM 6 (Morita [12]). — X x Y is normal (paracompact) for each metric
space Y if and only if X is a normal (paracompact) Morita space.

A space is said compact-dispersed if every closed set has a point one of
whose relative neighborhood is compact. Then the following gives a nice suffi-
cient condition on X assuring the paracompactness of X x Y, where Y ranges
in the class of paracompact spaces.

THEOREM 7 (Telgarsky [22]). — Let X be a paracompact space which is the
countable sum of closed compact-dispersed spaces. Then X x Y is paracompact
for each paracompact space Y.

2. — Countably productive class. Let C be a class of paracompact spaces which
is productive. Then by Stone [20], € has to be a subclass of the class of compact
spaces. If we are interested in a classof spaces which are not necessarily compact,
it is the best possible for such a class to be countably productive. I think that
the discovery of countably productive classes of normal spaces, containing non-
compact spaces, is one of the main event in the history of general topology.
Frolik [8] is the first to find such a class : The class of paracompact absolute
G; (i.e. being G in its Stone-Cech compactification) spaces is countably produc-
tive. The concept of absolute G, space, originally due to Cech [4], is extrinsic.
Frolik [7] gave an equivalent intrinsic definition. As a generalization of absolute
G5 space Arhangelskii [1] obtained the concept of p-space along the line of
extrinsic definition. Morita [12] also got the concept of M-space as a generaliza-
tion of absolute G; space along the line of intrinsic definition. Both concepts
cqincide for paracompact spaces.

DEFINITION 1. — A space X is-a p-space if there exists a sequence
U,,i=1,2,...,
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of open collections of 8 X such that for each point x of X the intersection N S(x ,U,)
is in X, where S(x, U,) is the sum of all elements of U, which contain x.

DEFINITION 2. — A space X is an M-space if there exists a normal sequence
U,,i=1,2,...,of open coverings of X satisfying the condition: If K; DK, D>...
is a sequence of non-empty closed sets such that K, C S(x, U,) for some fixed
point x of X and for each i, then N K, is not empty.

THEOREM 8 (Arhangelskii [1] and Morita [12]). — The class of paracompact
p-spaces is countably productive.

Let us list up other countably productive classes of normal spaces obtained
during the last ten years.

DEFINITION 3 (Ceder [S] and Borges [3]). — A space X is said a stratifiable
(or an M) space if each open set U of X, one can assign a sequence U, i =1,2,...,
of open sets of X such that U, CU, UU,=U and U;C ¥V, whenever UCYV,

THEOREM 9 (Ceder [S]. — Each stratifiable space is paracompact and the pro-
duct of a sequence of stratifiable spaces is again stratifiable.

DEFINITION 4 (Arhangelskii [2] and Okuyama [17]). — A collection & of
sets of X is said a net if for each point x of X and for each neighborhood U of
x one can find an element S of & with x €S C U. If X has a o-locally finite net,
then X is said a o-space.

THeoREM 10 (Okuyama [16] and [17]). — The product of a sequence of
paracompact o-spaces is again a paracompact o-space. The intersection of the
class of paracompact p-spaces and the class of paracompact o-spaces is precisely
the class of metric spaces.

Quite recently it is reported that Heath proved the following :
THEOREM 11. — Every stratifiable space is a o-space.

DEFINITION 5 (Nagami [13]). — We say that X is a Z-space provided there
exists a sequence &,, i =1,2,..., of locally finite closed coverings of X such
that if K, D K, DO ... is a sequence of non-empty closed sets with

K, CN{FEg :x€EF}, alors NK,+Q.

THEOREM 12 (Nagami [13]). — The product of a sequence of paracompact
Z-spaces is again a paracompact Z-space. Both every o-space and every M-space
are Z-spaces.

We obtain thus the following diagram of implications.

stratifiable space - o-space

7

2-space

M-space S—

Just recently Michael [10] has gotten an interesting example as follows :

metric space

THEOREM 13. — There exists a space Y such that Y' is paracompact for
i=1,2,..., but the countable product Y is not normal.
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It is to be noticed that if ¥ is normal for each i and Y'* is countably paracom-
pact, then Y* is also normal by Nagami [14]. We have had no countably productive
class of normal spaces containing non-paracompact spaces. So we want to know
the answer of the following :

ProBLEM 3. — If X* is normal, is X paracompact ?

3. — Perfect class. Consider the following five conditions which may be satis-
fied by a class of spaces C.

(1) If X € @, then X is normal.
QIf XECand YCX, then YEC.
3Ifx,eei=1,2,..., then ILX, €C.

(4) If XE@, then there exists an element ZEEC with dim Z < 0 such
that X is the image of Z under a perfect mapping (i.e. a closed mapping each of
whose point-inverse is compact).

(5) If X€ @ and Y is the image of X under a perfect mapping, then Y € C.

If @ satisfies these five conditions, then € is said perfect. Indeed € with
the five conditions is worth saying perfect : The classes of metric spaces and
of separable metric spaces are perfect and only these two classes are known to
be perfect. The following is a natural question in this respect.

ProBLEM 4. — Let X be a paracompact o-space (a stratifiable space). Then
is X the image of a paracompact o-space (a stratifiable space) Z with dim Z < 0
under a perfect mapping ?

I think an appropriate perfect class may be a rich ground where we can
build harmonious dimension theory. Let us present a perfect class. A space is
said o-metric by Nagami [15] if it is the countable sum of closed metric subsets.
A space is said a p-space if it is a subset of the countable product of paracompact
o-metric spaces. A space is said a v-space if it is the image of a p-space under
a perfect mapping.

THEOREM 14. — The class of v-spaces is perfect.
PrROBLEM 5. — Is every v-space a p-space ?

PrOBLEM 6. — Find another perfect class containing all metric spaces.
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ANALOGUES HERMITIENS DE LA K-THEORIE

par S.P. NOVIKOV

1 — Le développement rapide de lalgébre stable, ces derniéres années, est
un fait bien connu. Ce développement est di, surtout, & trois facteurs : aux succés
de la K-théorie en théorie de I’homotopie (et a4 ses applications), 4 la brillante
application de la K-théorie algébrique (pure) a4 la théorie des variétés non simple-
ment connexes, et, enfin, aux liens avec l’algébre et la théorie des nombres. Les
notions fondamentales de la K-théorie algébrique sont les groupes K°(4) et K'(A4)
pour un anneau A, leurs propriétés, et leurs extensions K¥(4) (i = 2).

On ne pourra pas donner ici une présentation de ce vaste théme ; son histoire
et ses résultats sont I’ceuvre de beaucoup de mathématiciens remarquables appar-
tenant 4 des domaines différents.

Néanmoins, je vais attirer I’attention sur une lacune de la K-théorie algébrique
dans son état actuel : il n’y a pas d’analogue algébrique de la théorie des classes
caractéristiques (Pontryaguine et Chern) qui sont 'un des objets importants de la
K-théorie habituelle (topologique). Ceci n’est pas un hasard. Je ne connais aucun
exemple de probléme naturel, ou de théoréme, qui fasse appel 4 un foncteur du
type Chern-Pontryaguine, défini sur le groupe de Grothendieck K°(A4), ou sur les
groupes de Dieudonné-Whitehead K'(A4) ou sur ceux de Milnor K*(4).

Une autre lacune, moins évidente, est 1’absence d’un analogue algébrique de
la périodicité de Bett. C’est une lacune assez compréhensible, vu que, déji dans le
cas topologique, la périodicité n’est pas une conséquence des propriétés homoto-
piques générales de la K-théorie, mais un théoréme difficile qu’on démontre
aprés, séparément.

2 — On va s’occuper maintenant de l'aspect algébrique des problémes de clas-
sification en topologie (différentielle ou P.L.), liés 4 la technique de chirurgie
(surtout dans le cas non simplement connexe).

Déjd, dans les années 1965-66, on avait remarqué (Novikov [3], [7], Wall [5]) que
le formalisme général des obstructions pour la chirurgie, dans le cas des dimensions
paires, conduit & des analogues du groupe K°(A), construits avec des formes hermi-
tiennes ou hermitiennes-gauches (skew-hermitian) sur des modules libres (ou pro-
jectifs) avec la forme

comme objet trivial ; ces formes sont 4 valeurs dans ’anneau a involution A = Z[w].
Lesgroupes obtenus sont respectivement Kj (4) et Kg,, (A). L’involution sur A est liée
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a “lorientation” m = Z,, nous ne mentionnons pas l'invariant d’Arf ; le groupe K
apparait dans le cas des dimensions 4k et K3, apparait dans le cas des dimensions
4k + 2. Essentiellement, K}, et K3, sont des objets trés classiques (les classes stables
de formes quadratiques).

Une belle découverte géométrique (qui est justifiée a posteriori, de maniére
naturelle, du point de vue algébrique) est faite par Wall [6] en 1968 : la théorie
de la chirurgie pour les variétés de dimension impaire conduit, pour 4k + 1
(resp. pour 4k + 3) a des groupes du type K,‘, ,KgH, construits pour 4 = Z [«],
4 partir d’automorphismes qui conservent un certain produit scalaire (il est néces-

saire de multiplier A par Z [‘;-] puisqu’on ne parle pas de linvariant de Arf).

On savait déja qu’en général un probléme de chirurgie se présente plus ou
moins de la méme fagon pour toutes les dimensions congruentes mod. 4. Serait-ce
ici un analogue de la périodicité de Bett ? Dans les problémes de chirurgie, il
y a un mélange de concepts algébriques de deux types différents : les objets
“hermitiens” KJ , K}, et les objets “hermitiens —gauches” K, K}, D’autre
part, ces objets sont définis, pas directement sur les variétés, mais 4 partir de
A = Z[n]. On devrait se demander s’il existe un formalisme algébrique, dans le
cadre des analogues hermitiens de la K-théorie, utilisant la suite des dimensions
(croissantes), et qui donnerait une relation entre KgH et ’objet hermitien “K%”
qui reste & construire. La collection K%, (i = 0, 1, 2, 3) devrait étre une “théorie
homologique”. On devrait au moins pouvoir faire ce qui suit. On s’intéresse
a4 A=2Z[m] et “lextension de Laurent” A > A[Z,Z '] conserve la classe
des algébres de groupe Z [r] > Z [w x Z] ; on devrait donc construire un opéra-
teur de Bass, reliant Kt} (A [Z,Z7']) et Ki(A) K5 (A [Z,Z7' )= Ky (4),
dans un certain cadre algébrique, en particulier pour i = 1, ou K%(4) devrait
coincider essentiellement avec K.s‘.’H(A) (comme le montre la théorie de la chirurgie).

Notons tout de suite qu’un énoncé sur un “théoréme d’existence” non effectif
pour un opérateur du type Bass peut étre extrait des travaux de Browder (1966,
m, = Z) et de Shaneson (1968, m, = G x Z), quoiqu’il n’y ait pas de construc-
tions algébriques dans ces travaux ni de définition algébrique de I’obstruction & la
chirurgie non simplement connexe.

Dans le travail récent [4], ’auteur a étudié le probléme de la construction algé-
brique d’un analogue hermitien 4 la K-théorie, sur un anneau avec involution 4, du
point de vue de ce qu’on appelle le formalisme hamiltonien. En parlant de fagon
plutdot vague (puisque, par exemple, dans [4] on introduit plusieurs K-théories
hermitiennes U* , V*  W*), l'auteur a réussi 4 construire ’opérateur de Bass
dans le cas crucial

B
KepAZ ,Z7']) % K (A)
et
0 B
KyAl(z,z7') <;;’ Kgyr (4),

ou
2 0 ~ KO
Ky = Kgy K§H= Ky,
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C’est plus facile de comprendre la construction de I’“opérateur de Bass”
B
Ky (A1Z,27Y) % Kg(A)
B
Ky AlZ,Z27) TE’ K3 ),
par analogie avec la construction classique (de Bass). Par contre, en ce qui con-
cerne les opérateurs
Ky (A1Z,Z7') > Kgy (A)
et
Ky (A 1Z2,Z27']) » Ky (),
leur construction est faite de maniére algébrique et elle est difficile 4 deviner
par des considérations de topologie différentielle. Toujours par voie algébrique,
on montre que si K° (4 [Z,Z~']) = K°(A), alors on a
KY(AIZ,Z7') = K} (4) + BKy (4)
et
Kgy (A (2, Z7") = Kgy (A) + BKy(A)

C’est montré seulement pour l’'une des K-théories hermitiennes de [4] ; mais
pour nos autres K-théories hermitiennes, on peut définir des homomorphismes
naturels (qui “changent la symétrie”) K% = K3, , K3y = K. Cela permet d’affir-
mer que, du point de vue algébrique, dans la catégorie des modules avec produit
scalaire hermitien, le role des “éléments de K},” est joué par les modules avec
produit scalaire hermitien-gauche. En fait, tous les résultats de [4] sont dans

1 1
la théorie ® Z[E] Si on ne multiplie pas (tensoriellement) par Z [—2-] , le forma-

lisme hamiltonien de l’auteur doit étre remanié d’une maniére assez délicate.

Encore une remarque. Quand on a plusieurs variablesz,, ..., z; €7, = G x zk,
la composition des opérateurs de Bass

B(z,)-...B(z,)

dépend seulement du produit extérieur z¥a ... Az} € A¥ 7% 11 en résulte, en
particulier, une construction algébrique de I’*homomorphisme de la haute signa-
ture” :

o= o, (K A) > Y Nk = H,_,, (n}*), 7* = Hom, (7,2),
q
ol w¥* = Z* (abélien libre) et
N* of* = H* (n}*, 0),

Q ensemble des rationnels. Il s’agit du fait que, ici, 7}* =7, = Z¥ et I’homo-
morphisme o : K,‘;" — Z induit un produit scalaire symétrique sur M ®, R (ou
A = Z [n]). Par définition
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<aq(x),z;"l A ...Az;’;_4q >= a~B(z;“lA...l\z;';_4q)[x].

L’existence de cet “homomorphisme des hautes signatures” (pour i pair) a
été établie par I'auteur dans [3], [7] tandis que le fait que ¢ est un isomorphisme

1
(quand on tensorise par Z [E]) est démontré, dans un autre langage, par Shaneson

[8]. Tout ceci étant fait comme un théoréme non effectif “d’existence et unicité”
sans constructions algébriques.

4 — Ayant montré le formalisme des théories hermitiennes et ayant construit
l’opérateur de Bass, on peut dire que le probléme d’un analogue de la périodicité
de Beétt a un sens pour les K-théories hermitiennes sur un anneau a involution.

Essayons de comprendre la relation de la périodicité hermitienne avec celle de la
K-théorie habituelle K(X). Dans [1], Gelfand et Mischenko ont montré que, dans
I’anneau des fonctions complexes A = C (X), les groupes K% (4) = K3, (A) (ona
i=4/— 1€ A) sont canoniquement isomorphes aux groupes habituels K°(X).
IIs ont montré aussi que, pour # commutatif, les groupes K% (4) et K3, (4) se
raménent, par le passage X = char w, au foncteur K(X) habituel (on plonge
A - CX) ou X = char w, ramenant ainsi K,‘} 4) a4 KX)).

Voici quelques résultats simples et importants qui ne sont pas mentionnés
dans [1] :

a) En appliquant ’homomorphisme de Gelfand-Mischenko : K — K (X) et
le caractére de Chern ch : K (X) > H*(X, @), on obtient, précisément I’homo-
morphisme des “hautes signatures” pour X = char 7,7 = Z*. Ceci m’a été com-
muniqué par Mischenko.

1

b) 11 est utile de remarquer que K& (4) = K°(X) ,4 = Z[n] (modulo e Z [E]) .

Dans la théorie habituelle, on a K°U) =0 ,KO(X) # 0. Lci
A = Z[n], X = char 7 = T*.

Tout ce qu’on vient de dire sur K& (4) et K°(x) (pour A = C(X)) reste vrai quand
on passe 4 K} (4) = K'(X).

Dans le cas réel, A = R(X), on a aussi I’égalité K} (4) = KO*(X) module
o)

2

Ainsi, I’examen des anneaux de fonctions montre que les théories hermitiennes
K} se présentent comme une autre forme de la K-théorie classique ou, dans une
certaine mesure, on a la périodicité de Bett.

Ii est difficile de juger ici dans quelle mesure 1’auteur a réussi (ou pas) avec
son formalisme hamiltonien, et on renvoie 4 [4] pour plus d’information. Dans
le méme travail, on montre les relations entre les constructions algébriques et la
topologie différentielle, ainsi que les notions d’analyse qui entrent en jeu.

Remarquons que la bonne présentation des notions fondamentales du forma-
lisme hamiltonien (la classe des variétés lagrangiennes, les particularités de la pro-
jection sur X, I’index de Maslov et ses relations avec la théorie de Morse, le rdle
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du hessien dans la théorie lagrangienne) a été donnée pour la premiére fois par
Maslev [9] ; elle a beaucoup influencé ’auteur.

5 — Revenons au probléme des classes caractéristiques. Existe-t-<il un foncteur
du type “caractére de Chern” pour les anneaux 4 involution 4, défini dans K} (4) ou
K¥.(A) ? (et ol prendrait-il ses valeurs?). Dans quels problémes serait-il nécessaire ?

Pour I’anneau A’ = C (X) ou A" = R(X), il existe un tel “caractére de Chern-
Pontryaguine” vu les isomorphismes

Kf A" = K, A" = K(X)

Kpam £ koxx)
et prend ses valeurs dans H*(X, Q). De méme ch : K} (A) > H*(X, Q) pour
A = C(X).

Pour I'anneau de groupe A = Z [w] (o 7 = Z¥), on a I’homomorphisme des
hautes signatures

0: Ky (A) > Hy(n,Q),

qui, comme 1’a montré Mischenko, devient D. ch quand on passe 4 K(X), pour
X = char w = T*.
Hypothése ; 11 existe un homomorphisme généralisé des signatures

0:K5(A)> Hy(n, Q),

pour tout A = Z [w], ol 7 est un groupe de représentation finie (I’auteur ne sait
pas s’il faut se limiter au cas ol I’homologie est de type fini ou méme, peut-étre,
au cas ou K(w, 1) est une variété compacte).

Une telle construction introduirait les classes caractéristiques en algébre.

Pour certains 7 (par exemple les groupes abéliens libres), un tel “caractére de
Chern-Pontryaguine™ existe et peut étre construit par voie algébrique. Il est facile
de faire la méme construction pour les groupes fondamentaux des nil-variétés
ou des solv-variétés. Néanmoins le formalisme général d’une telle construction
n’apparait pas clairement 4 l’auteur.

Un tel “homomorphisme de la signature généralisée” o, ou un “caractére de
Chern-Pontryaguine” ch pour A = Z[w], jouent un rdle fondamental dans la topo-
logie des variétés non simplement connexes. Pour Z* , ’auteur I’avait déja rencontré,
pour la premiére fois, en 1965-66. Un probléme d’actualité, comme celui des
“formules de Hirzebruch non-simplement connexes” ou de la classification des
invariants homotopiques issus des classes de Pontryaguine, peut se formuler comme

suit : Si L = Z Ly, ...,Dp;) est un polynome de Hirzebruch, M" une variété
k
fermée de groupe fondamental 7, , on définit ’'homomorphisme naturel
H¥(m, ,Q) > H*(M" , Q),

et la forme linéaire (DL(M"),x), x = @(»), sur H*(w, ,Q) ; c’est un élément
de H,(m, , Q) désigné par <L ,M">, Cette quantité <L ,M"> est-elle un invariant
homotopique ? comment peut-on la calculer ?
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Récemment, Mischenko {2] a trouvé la construction d’un invariant homotopique
qui associe 4 M" un élément 7(M") de K}, (A) (A = Z[n]), déterminé modulo

1
®Z [E] . Cette construction définit une représentation de la théorie du SO -

bordisme (comme pour 7 = 1) :
1
Q(m) P KEA)® Z [E] .

Si 'homomorphisme
og:KA)>H, (n,Q)
existait, alors la “formule de Hirzebruch non simplement connexe” serait
o-7[M"] =<L ,M">.

Pour m = Z¥, une telle formule a été établie par I'auteur.
Notons que, par le passage de A = Z [x] 4 A = R (X), ’homomorphisme r de
Mischenko s’identifie 4 la transformation bien connue de Riemann-Roch :

Q*x) "% ko*(x),

|
construite 4 partir de I’isomorphisme spécial de Thom en KO* ® Z [5] - théorie,

lié au L-genre (ou 4 un élément de KO* (MSQ)).On sait aussi que g devient ch.
La seule existence de I’'hnomomorphisme

0:Kt(A)>Hy,(n,Q)
implique déja que
(1) Si K(w,1) est une variété compacte, toutes les classes caractéristiques
sont formellement définie par w.

(2) Si 0 est monomorphe (modulo des groupes finis, le nombre des variétés
compactes (lisses ou P.L.) du type d’homotopie de K(w, 1) est fini.

(3) Si la structure de la cohomologie H*(M" , Q) est telle que toutes les classes
de Pontryaguine rationnelles se calculent par la “formule de Hirzebruch” non
simplement connexe, et si

H %l (x, Q) > H*M" , Q)

est un monomorphisme, alors il n’y a qu’un nombre fini de variétés du méme
type d’homotopie que M" (en suppose que ¢ ® Q est injectif).

Pour # = Z* les classes caractéristiques sont toujours des invariants d’homotopie
(Novikov [3], [7]). et le théoréme de finitude a été démontré en 1969 par Wall
et Hsiang-Shaneson (3 paraitre). Dans [7], 'auteur a montré que tous ces résultats
sont des exemples d’un analogue non-simplement connexe de la formule de Hirze-
bruch. Pour 7 = 1, le théoréme de finitude correspondant (quand b, = 0,
0 < 4k < n) était déja un exemple connu.
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En conclusion, toute une série de problémes sur les classes caractéristiques
des variétés différentiables conduisent 4 la nécessité de la construction d’un
analogue du caractére de Chern (la haute signature) pour les K-théories hermi-
tiennes sur les anneaux de groupes.
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COHOMOLOGY OF GROUPS

by Daniel QUILLEN *

This is a report of research done at the Institute for Advanced Study the
past year. It includes some general results on the structure of the ring H* (BG , Z/pZ)
when G is a compact Lie group, a theorem computing this ring for a large number
of interesting finite groups, and applications to algebraic K-theory consisting of
a definition of K-groups K;A for i = 0 agreeing with those of Bass and Milnor
and their computation when A is a finite field.

1. The spectrum of H*(BG, Z/pZ).

Let G be a compact Lie group (e.g. a finite group) and let H*(BG) be the
cohomology ring of its classifying space with coefficients in Z/pZ where p is
a fixed prime number. According to Venkov (and Evens for finite G) the ring
H*(BG) is finitely-generated, hence its Poincaré series ¥ (dimz,pz H"(BG)) "
is a rational function of ¢t and one may define the dimension dim H*(BG) to
be the order of the pole of this function at t = 1. For example if A = (Z/pZ)"
is an elementary abelian p-group ([p]-group for short) of rank r, then

dim H*(BA) = r.

The following for finite G has been conjectured independently by Atiyah and
Swan.

ProrosITION 1. — dim H*(BG) = the maximum rank of a [pl}subgroup of
G.

To prove this one follows the method used by Atiyah-Segal to prove the
completion theorem in equivariant K-theory and first generalizes it to G-spaces,
which for the sake of simplicity I suppose to be smooth compact G-manifolds
with boundary. Let X, be the associated fibre space over BG with fibre X and
set H(X) = H*(Xg) .

ProposITION 1' — dim Hj(X) = the maximum rank of a [pl-subgroup of
G fixing some point of X.

To prove this one can replace the pair (G, X) by (U, Y) where U is a
unitary group containing G and Y = U x ®X ; then one can reduce to the case
(A,Y) where A is the subgroup of elements of order p in a maximal torus of
U, because H}‘(Y) is a finitely-generated free H[;(Y)-module. Hence one can

(%) Supported by The Institute for Advanced Study and the Alfred P. Sloan Foundation.
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suppose that G is a [p)-group, in which case the result can be checked by using
the spectral sequence

EY = H'(X/G, Gx ~ Hé(Gx)) = Hé"(X) .
The same technique can be used to prove the following result.

THEOREM — Consider the [pl-subgroups A of G as the objects of a category
in which a morphism from A to A' is a component of the set of g such that
gAg~'C A', and let

u: H*(BG)—~> liln H*(BA)

be the homorphism induced by restriction. Then every element of Ker (u) is
nilpotent and if z is an element of the inverse limit then zP" € Im (u) for largen.

In other words "up to extraction of p-th roots’ a cohomology class of BG is
the same as a family of cohomology classes for each [pl-subgroup compatible
with conjugation and restriction. One should compare this result with Brauer's
theorem asserting that the analogous map with character rings and the category
of elementary subgroups is an isomorphism when G is finite.

This theorem and some commutative algebra permit one to deduce the
following description of the space Spec H*(BG) of prime ideals in H*(BG) (i.e.
inverse images of prime ideals in the commutative ring H* (BG),oq = H* (BG)/ideal
of nilpotent elements). If A is a [p]-subgroup of G, let

by = Ker {H*(BG) - H* (BA) o4} -

Then A - §p, gives an order-reversing bijection between conjugacy classes of
[p}subgroups and ‘those homogeneous prime ideals of H*(BG) which are closed
under the Steenrod operations. In particular the irreducible components of
Spec H*(BG) are in one-cne correspondence with maximal [p]-subgroups up to
conjugacy. If T, is the & »set of prime ideals containing %, but not %, for
A’ < A, then there is a s tification

Spec H*(BG) = LIT,

into irreducible locally closed subspaces indexed by the conjugacy classes of
[p]-subgroups. Moreover

T, = (Spec S(4") [e;*])/N(4)

where N(4) is the finite group of components of the normalizer of 4 in G,
where S(4VY) = H* (BA),4 is the symmetric algebra of the dual of A over Z/pZ,
and e, is the product of the non-zero elements of A.

2. Computations using etale cohomology and the Lang isomorphism.

One knows (Chevalley, Steinberg) that a large number of interesting finite
groups occur as the group G° of fixpoints of an endomorphism ¢ of a connec-
ted algebraic group G defined over an algebraically closed field k. For example
if G is defined over a finite subfied k, of £ then the group of rational points
G(ky) is the group of fixpoints of the Frobenius endomorphism associated to
this finite field of definition. Since G° is finite there is an inseparable isogeny
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G/G° » G
gG’ - g(og)™*

(the Lang isomorphism when o is a Frobenius endomorphism), hence G/G° and G
are homeomorphic for the etale topology. This suggests that H* (BG?) (coefficients
in Z/IZ where [ is a prime number different from the characteristic of k) might
be computed by using the analogue in etale cohomology of the Leray spectral
sequence of the ‘“‘fibration” (G/G°, BG°® BG), because the rings H*(BG) and
H*(G) are usually known, e.g. by lifting G to characteristic zero.

Before going on I should explain what is meant by BG in this context. Let
% be the topos of sheaves for the etale topology on the category of all algebraic
k-schemes. Identifying a k-scheme with the sheaf it represents, G becomes a
group object of % and so it has a “classifying topos” B consisting of objects of
® endowed with G-action (Grothendieck, reedition of SGAA). If X is a k-scheme
endowed with a G-action, let X; be the object of B it gives rise to, and denote
by Hj(X) the cohomology of X, with coefficients in the constant sheaf Z/IZ ;
write BG instead of e; where e = Spec k. The Leray spectral sequence for the
map X; = BG, or as I shall say of the fibration (X, X;, BG) takes the form

) E, = H*(BG) ® H*(X) = HX(X)

provided the map X — e is cohomologically proper, which is the case for X = G
because the map factors into a sequence of principal G, and G,, bundles and
the proper map G/B - e.

Taking X to be G acting on itself by left translations gives a spectral sequence
) E, = H*(BG) ® H*(G) = H*(e) .

Assume that this spectral sequence has the nice form studied by Borel in his
thesis, namely H*(G) has a simple system of transgressive generators, whence
H*(BG) = S(V) is a polynomial ring and the transgression sets up an isomorphism
of the primitive subspace P of H*(G) and V [— 1] (the [— 1] means degrees are
shifted down by one). When X = G', the G-scheme obtained by letting G act
on itself by the rule g(g,) = gg, (og)~!, (1) takes the form

3) E, = H*(BG) ® H:(G) = H*(G/G°) = H* (BG®).

on account of the Lang isomorphism. To determine the differentials in (3), let
G* be the (G x G)-scheme obtained by letting G x G act on G by the rule
(g,,8) =888 ! and consider the map of spectral sequences associated to
the map (G, (G')g, BG) = (G, (G")g g B(G x G)). In the latter spectral sequence
a primitive element z of H*(G) transgresses to v® 1 — 1 ® y if z transgresses
to v in (2), consequently in (3) z transgresses to v — ¢*(v). Thus the spectral
sequence (3) can be determined completely and it yields the following.

THEOREM — Let G be a connected algebraic group defined over an algebrai-
cally closed field k, and let o be an endomorphism of G such that G° is finite.
Assume that the etale cohomology H* (G) (coefficients in Z/RZ, % prime # char (k))
has a simple system of transgressive generators for the spectral sequence (2)
(e.g. if H*(G) is an exterior algebra with odd degree generators), and that the
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subspace V of generators for the polynomial ring H* (BG) can be chosen so as
to be stable under o*. Let V° and V,, be the kernel and cokernel of the endomor-
phism id — o* of V. Then there is an isomorphism of graded Z[RZ — vector
spaces

H*(BG°)=S(V,)8 N (V°[-1])

which is an algebra isomorphism if 1 is odd.

This theorem may be used to determine the mod £ cohomology rings of
the classical groups over a finite field k, (at least additively when & = 2) provided
L is different from the characteristic. For example if k, has q elements and r
is the order of ¢ mod &, then H* (BGL ,(ky), Z/fZ) is the tensor product of a po-
lynomial ring with one generaror of degree 2jr and an exterior algebra with one
generator of degree 2jr — 1 for I.<j < [n/r], except that this is only true ad-
ditively when 2 = 2.

3. Applications to algebraic K-theory

Let A be a ring, GL(A) its infinite general linear group, and E(4) the sub-
group generated by elementary matrices. As E(A4) is perfect, by attaching 2- and
3-cells to BE(A) to kill its kundamental group without changing homology one
can construct a map f: BGL(A) > BGL(A)" such that m,(f) kills E(4) and
such that f as a map in the homotopy category of pointed spaces is universal
with this property. Set K; 4 = m,BGL(A)* for i > 1 ; it is not hard to show
that this definition agrees with those of Bass and Milnor.

The representable functor on the homotopy category
KX ;A =[X,K,A x BGL(A)"]

deserves to- be called K-theory with coefficients in A, because it enjoys many
of the properties of topological K-theory. For example it is the degree zero
part of a connected generalized cohomology theory. Indeed Graeme Segal has
recently associated such a cohomology theory to any category with a coherent
commutative associative composition law, and the cohomology theory in ques-
tion come from the additive category of finitely-generated projective A-modules .
Also K(X ;A) is naturally a A-ring when A is commutative.

If one wants to compute the groups K; 4 by standard techniques of homotopy
theory (e.g. unstable Adams spectral sequence for the H-space BGL(A)*) it is
necessary to know the homology of BGL(A)*, which is the same as that of
BGL(A). For example K;A ® Q is isomorphic to the primitive subspace of
H,(BGL(A), Q). For a finite field enough is known about the homology to
do the computation :

Let k, be a finite field with g elements, let k¥ be an algebraic closure of
ks, and let ¢ : k* > C* be an embedding. By modular character theory one
knows how to associate to a representation of a group G over k, a virtual com-
plex representation fixed under the Adams operation ¥? by using ¢ to lift eigen-
values. Lifting the standard representation of GL,(k,) on kg, one obtains a map
BGL,(k,) > E¥Y, where the latter space is the fibre of the endomorphism
W9 — id of BU. This map kills elementary matrices, hence gives rise to a map
in the pointed homotopy category
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BGL (k,)" ~ E¥7

which depends only on the choice of ¢.

THEOREM 1. — The map (*) is a homotopy equivalence.

This is proved by showing that the map induces an isomorphism on homology
and using the Whitehead theorem. The homotopy groups of EW¥9 may be computed
by using Bott periodicity, so one obtains the formulas

Ky(ky) =0 i=21
Ky (ky) =Z/(g'— 1) Z i>1
The functorial behavior of these groups as the finite field varies may be determined
in similar fashion, and it leads to the following :
THEOREM 2. — If k is an algebraic closure of Fp, then
K, (k)=10 izl
K, (k)= & Qp/Zy i=1
Ltp

and the Frobenius automorphism of k over F, acts on K,,_, (k) by multiplying
by p'. If k, is any subfield of k, then the extension-of-scalars homomorphism
induces an isomorphism

Gal(k/k,)
Ky_y(ky) = Ky _y (K) !

in terms of which the restriction-of-scalars homomorphism
Uyt Ky (k). > Ky (k)

associated to a finite extension u : k, = k, is given by the norm from Gal (k/kz)—
invariants to Gal(k/k,)-invariants.

Massachusetts Institute of Technology
Dept. of Mathematics
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ON A CERTAIN CLASS OF EQUIVARIANT MAPS

by Helmut ROHRL (*)

Let M be a topological monoid and denote by Top,, the category of left M-
spaces and continuous M-equivariant maps. For a given M-space B, we denote
by Top,, |B the category of M-spaces over B. Both Top,, and Top,,|B are com-
plete as well as cocomplete. Given the object B in Top,,|B we denote by I'(B , B)
the set of global sections of 6. Such a section s is called an equivariant section
if it is an equivariant map. The set of global equivariant sections of % is denoted
by I'(B,®). The corresponding functors I'(B, ) and I'(B, )M both possess
a coadjoint.

Let ¢ : M, = M, be a morphism of topological monoids, i.e. a continuous
homomorphism that preserves the neutral element. Then there is an obvious
functor ¢« : Topy, > Top,, which describes the “restriction of operators by ¢”.
@+ has as a coadjoint the functor p* which describes the “extension of operators
by ¢”. s gives rise to a functor g4 |B, : I_QEMQ |B, > IgBMl | ¢xB,. Denoting
the counit ¢*p* - Top,,, that is associated with the above adjunction by 8,

one sees that p, |B, possesses the functor ’_I‘_o!)M2 |ﬂB2 - p* lp,B, as a coadjoint.

For the morphism ¢ : M; = M, of topological monoids with kernel N con-
sider the following conditions

(0) ¢ is a surjection

(i) there are maps ¥ : M; > M, and x : M; x N = N such that for all m €M,
and n €N, nm = x(m, n) y(m) holds.

For the M, -space B consider the condition

(ii) for every b€ B and for every m', m'"' €M, satisfying pm' = pm' there
isa c€B and n', n'' €N with m'b = n'c and m''b = n''c.
It should be remarked that conditions (o) — (ii) are satisfied for both the identity
morphism M : M-+ M and the terminal morphism 7 : M — 1. Moreover, if
@' i M] > M, and ¢" : M{' > M, are surjective morphisms and if B is a M| x M}~
space such that (o) — (ii) are satisfied for ' and ", with M} resp. M} operating
on B through M; = M; x {1}»M; x MY resp. M}’ > My x {1} “>M; x M;', then
¢ x " M, x M{ = My x M, again satisfies (0) — (ii). It should alos be noted
that (i) is satisfied if M, is either a group or an abelian monoid.

Calling a continuous map h from the M,-space B, to the M,-space B, a -
equivariant map if h(m, b,) = p(m,) h(b,) holds, one has the following

(*) Research partially supported by the Air Force Office of Scientific Research, Office
of Aerospace Research, United States Air Force, under AFOSR Grant No. 68-1572.
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"I‘..EMMA 1. — Sli‘pp‘ose that for the morphism y : M, = M, of topological mo-
noids and for the M, -space B the conditions (o) — (ii) are satisfied, and that
the kernel of ¢ is denoted by N. Then there is a ¢-equ1var1ant mapclg: B>N\B
sucht that for every p-equivariant map 4 : B > B' there is a unique M -equivariant
map h' : N\B—~>B' such that h = h' .clg holds. The set underlymg N\B is
the set of equivalence classes generated by the operation of N on B.

Let "Top My, denote the full subcategory of TopM defined by those objects
for which (ii) is satisfied (note that Top,, . = Top,p. If (0) and (i) are also satis-
fied then Lemma 1 gives rise to a unique functor N\: TopM - TopM for
which- the assignmant B - ¢/, is a morphism of functors from TopM to @y - N \.
Similarly, N\ induces a functor from TopM IB to Top,,, IN \B which shall
be denoted by N\ g .This functor, in turn, glves rise to an obvious functor
Ty, )*:T@B, M ->TW\B, Y2 N\;.

._If- (o) (ii) are satisfied then we can form the composite of functors

IN\B B x
Top,,, IN\B &-"—"> Top,, 1gx W\ B) =20 W \BL Top, LB

Since both functors involved preserve limits and since, evidently, a solution set
exists, this composite possesses a coadjoint. Specifically, one obtains the

‘THEOREM 1. — Suppose that for the morphism ¢ : M, - M, of topological
monoids and for the M ,-Space B the conditions (0) — (11) are satisfied, and that
the kernel of o is denoted by N. Then B X, (v\B)- 0uIN\B has N\gas a
coadjoint.

A closer scmtfnity of the associated counit b leads to
PROPOSITION 1. — Suppose that ¢l : B > N\B is an open map. Then the counit

b associated with the adjunction expressed in Theorem 1 is an isomorphism of
functors, that is for every object 8 of Top,., | N\B, by is a homeomorphism.

Using a well-known theorem of Gabriel [1] we therefore have the

COROLLARY. — If Z denotes the set of morphisms in MMI |B that are
made invertible by N\, then Topy, |N \B is equivalent to I(_)pM IB [=7.

On account of this Corollary it is of some interest to obtain condltlons —
necessary or sufficient — for a morphism of TopM wlB to be made invertible
by N\ . For that purpose we formulate the followmg condition

(A) for every n,, n, €N there exist n}, nj €N with n}n, =n}n,.

It should be noted that condition (A) is satisfied if NV is either a group or an
abelian monoid. Moreover, if both N' and N"' satisfy condition (A) then so does
N x N".

" PROPOSITION 2. — Suppose that the conditions (o) — (ii) and (A) are satis-
fied. Suppose furthermore that N\ g is an isomorphism. Then

(1) g is N-finally surjective, i.e. for every element ¢ in the codomain T of g
there is an element » € N and an element ¢’ in the domain T’ of g with nt = g (¢'),
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(2) g is N-finally injective, ie. for ¢|, t; € T' with g(t;) = g(t;) there are ele-
ments n,, n, EN with n,t,' = n,t, ; moreover, t; and f;, belong to the same
fiber

(3) for every open subset ¥ of N\ T', g(cly' (V)) is the intersection of g(T")
with an open, N-saturated subset of T.

COROLLARY. — Assumptions as in Proposition 2. Assume furthermore that
N operates on T' - B as a monoid of fiber bijections and on T — B as a monoid
of fiber injections. Then N \Bg being an isomorphism implies that g is a bijec-
tion that preserves open, N-saturated sets.

There is a partial converse of Proposition 2, namely
ProrosITION 3. — Suppose that the conditions (o) — (ii) and (A) are satis-

fied. Suppose furthermore that the statements (1) — (3) of Proposition 2 are
fulfilled and that, in addition,

(4) N\T is the quotient space of T under cl.
Then N \g g is an isomorphism.

The unit f associated with the adjunction expressed in Theorem 1 fails to be
an isomorphism of functors. Yet, it is of interest to obtain conditions — necessary
or sufficient — for an object ¥ of 'MMI 0 | B to render f; an isomorphism, i.e.

a homoemorphism. For that purpose we assert the

LEmMMA 2. — Given the object B = T35 B of PIEPMI 0 | B, the unit f, is the
unique map rendering the following diagram commutative

r cly
fﬁ
Bx (N\T) — g7 NAT
P\ #.(N\B) N\p
i proj
B s N\B

From it one concludes
PRrorosITION 4. — Suppose that f; is an isomorphism. Then
I'(cly,B)?: T(B,®)" > T(W\B, N\, )"
is a bijection.
Another consequence of Lemma 2 is the
ProrosITION 5. — Suppose that f; is an isomorphism. Then N operates on @
as a monoid of fiber bijections.

Proposition 5 suggests to call an object ® of Top, |B a N-regular object, N
being a submonoid of M, if N operates on ® as a monoid of fiber bijections.
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The full subcategory, for instance, of Top,, [ B that is defined by the N-regular
objects shall be denoted by TopN 2| B.

There is a partial converse of Proposition 5 (see also [3], Proposition 2.1),
namely

PROPOSITION 6. — Suppose that the conditions (0) — (ii) and (A) are satisfied and

that N operates on B freely. Then for every object ® = T 5B of TopN o8 IB
f=is a bijection. If, in addition,

(a) both p : T—>B and cl,: T>N\T are open maps

(b) for every ¢, € T there are neighborhoods W of ¢, and V of p(¢,) such that
for any t', t" € T and any n', n” €N, the relations n't' = n"t", p(t") €V,
t'EW imply t" € W.

Thenf 5 is an isomorphism.

It should be noted that assumption (») of Proposition 6 is satisfied if for every
by € B there is a neighborhood ¥V of b, such that for any b', b" € V and any
n',n'" €N, n'b' =n''p" implies b’ = b".

Let T£> B be a principal G-bundle in the sense of Steenrod and let the topo-
logical monoid M operate equivariantly on it. Then we speak of a M-equivariant
principal bundle if

(@) m(tg) = (mt)g holds forall mEM, t €T, gEG

(B) in suitable fibercoordinates, the map m, : p~'(b) > p~! (mb) induced by
the operation of m € M, is the left multiplication with some element of the
structural group G.

We regard a M-equivariant principal G-bundle as a M x G°P-space over B,
with G operating trivially on B. With this in mind we denote the full subcategory
of Top,,gorl B defined by the M—equlvanant principal G-bundles by Bun, .|B.
Evidently we have Bun Bun,, ;| B C Top M "G » °|B. Similarly, one defines M-
equivariant bundles with a given flber, m partxcular, Vec,, | B and \_Leﬁﬁ"‘ |B.
(See also [3]).

Let 7 : M x G? - G be the projection. Then the functor B x,_qs\g)-T«|M\ B
maps Bung|M\B into the full subcategory Bunhy “| B of BunM e IB that is
defined by those objects that are M-locally trivial, i.e. are trivial over clg 'y with
V a suitable neighborhood of any given element clzb € M \ B. Conversely, one

wishes. to have conditions under which for an object %® of Bun,, | B, M\ is
in Bung | M\ B. Here we have

PropPOSITION 7. — Let % be an object of Bun, olB such that M\® 1s an
object of Bung|M \ B. Then % is M-locally trivial, and thus an object of BunM"

A partial converse (see also [3]) of this proposition is
THEOREM 2. — Suppose that the condition (A) is satisfied by M, that M operates

freely on B, and that clg : B~ M\ B has local corss-sections. Then the functor
M\ g maps Bunﬁ“c"lB into Bung|M\B. Moreover, the unit f restricted to the

objects of Bunjy Buny, & | B is an isomorphism |, in particular, Bun", Bun, & | B is equivalent
to Bung | M\B and the morphism
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I(clg, ) :T@B, W>TWNB, ) -M\g
is an isomorphism.

CoROLLARY. — Under the assumptions of Theorem 2 and the additional assump-
tion that M \ B is paracompact, there is a bijection

Iso. classes (Ob Bunjy, »'|B) = [M\B, X;]
— X being the classigying space for G — that is natural in both B and G.

COROLLARY. — Under the assumptions of Theorem 2 and the additional as-
sumption that M \ B is paracompact, there is a bijection

Iso. classes (Ob Veches: M1 | gy kJ_[o M\B, G,],
>
with G, the Grassmannian.
Clearly, the results concerning equivariant principal bundles carry over to
arbitrary equivariant fiber bundles.

By a difference equation we mean a M-equivariant fiber bundle over B such
that

(i) M is a submonoid of Z*
(ii) M operates on B freely

(iii) for every element of M\ B there is an open neighborhood ¥ such that

cl,;l V is the disjoint union of contractible open sets each of which is mapped
topologically into V by clp.
If M C Z* operates on the Euclidean space E by translation and if B is an
open subset of £ with MB C B, then the concept of a trivial M-equivariant fiber
bundle over B coincides with the classical concept of a (system of) difference
equations on B. One checks easily that for such a fiber bundle % ,I'(B, %8
coincides with the set of solutions of the difference equation .

If G is the structural group and F is the fiber involved then the corresponding
category of equivariant fiber bundles is denoted by Ag | B and is called the
category of difference equations of type G, F over B. Also, this instance of
Vec|B is denoted by AVec|B and is called the category of linear difference
equations over B. Evidently we have A‘é‘},{'lB = Ag, | B. Thus Theorem 2 leads
to

ProrosITION 8. — The category A’gy}f"ng of regular difference equations is
equivalent to the category of fiber bundles over M \B with structural group
G and fiber F. Moreover, for every such difference equation % there is a bi-
jection I'(B, ®)"=T'(M\B, M \3‘6) that is natural in both B and 6.

The bijection given in Proposition 8 can be used to obtain existence theo-
rems for solutions of difference equations. It can also be employed to study
boundary value problems and initial value problems.

COROLLARY. — Suppose that the group G operates effectively on F. If M \B
is paracompact then the set of isomorphy classes of M-regular difference equa-
tions of type G, F over B are in bijection with the set [M\B, X;]. This bi-
jection is natural in both B and G.
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Proposition 8, together with [4], furnishes the

COROLLARY (Linearization Theorem). — Every M-regular difference equation
of type Diff (R”), R” over B is isomorphic to a linear one.

Using [2] we obtain.

COROLLARY. — Let H be a separable Hilbert space. Then every M-regular
difference equation of type GL (H) ,H over B is isomorphic to the one given
by f(b + m) = f(b).

Proposition 8 implies that the equivariant K-theory based on M-regular linear
difference equations is isomorphic with K( )-M \. Yet the equivariant K-theory
based on all linear difference equations has some interest. In general, they will
be different from each other.

Finally it should be remarked that these ideas could be used in studying dif-
ference approximations of completely integrable systems of total differential
equations.
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EQUIVARIANT STABLE HOMOTOPY THEORY

by G. B. SEGAL

Equivariant maps between spheres.

Let G be a finite group.

A finite-dimensional real vector-space ¥ on which G acts linearly will be called
a G-module. Its one-point compactification S is a sphere with G-action, in which
we shall regard oo as a base-point. Our object is to describe the homotopy-classes
of equivariant maps between such spheres.

For each G-module V there is a concept of suspension : if X is a G-space with
base-point x, we define the suspension SV X as

SY A X = (S x X)/((>> x X) U (S x xp)).

If X and Y are G-spaces with base-points then [X ; Y], denotes the set of
homotopy-classes of base-point-preserving G-maps X — Y. There is a suspension-
map [X ;Y]; ~ [S¥x ;SVY]G for any G-module V. One can order the isomorphism-
classes of G-modules by

V < V' <>V is isomorphic to a submodule of V' ;
then one defines the set of stable equivariant maps

X ;Y = tim [$'X ; VY],
14

which is an abelian group. (Strictly speaking the limit is taken over the category
of G-modules and embeddings).

ProposiTIoN 1. — [SV*"; 8"] is independent of W if W is sufficiently large,
and can be identified with the set of cobordism-classes of compact V-framed
G-manifolds.

The terminology in the proposition is explained by

DEFINITION 1. — If V is a G-module, a compact G-manifold M is called V-framed
if there is given a stable G-isomorphism ,, of its tangent bundle T,, with M x V,
ie. if there is given a G-module W and an isomorphism of G-vector-bundles
TyoWM x Wy=M x (Ve W). Such a manifold is said to bound if there is a
G-manifold N with boundary M and a stable isomorphism of T) with N x (V @ R)
wich induces ¢y,.

The proof of Proposition 1 depends essentially on the concept of ‘“‘consistent
transversality” introduced by Wasserman [2]. Details can be found in [1].
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Proposition 1 makes clear in particular what plays the role of the degree of
a map in the equivariant theory. Recall that one defines for any group G its
Burnside ring A(G) as the Grothendieck group of the category of finite G-sets,
ie. A(G) is the free abelian group on the set of conjugacy-classes of subgroups
of finite index in G. Then we have

CoroLLARY. — For large W, [S¥;S"]; = A(G) as rings, where the multipli-
cation in [SW;SW]G is composition of maps, and that in A(G) corresponds to
forming the product of G-sets.

Thus the equivariant homotopy class of a map "> S" is determined by
the degrees of its restrictions to the fixed-point subsets of the subgroups H of
G ; and the diagram

s ;8% ——— A@©G)

074
(" (" z
commutes, where €y assigns to a G-set S the cardinal of SH .
ProrosITION 2. — If ¥ = R" with trivial G-action then

SV ; §¥]¢ = ® = BWy) ,

where the sum is taken over the conjugacy classes of subgroups H of G, 1rf denotes

stable homotopy, and Wy = Ny/H, where Ny is the normalizer of H in G.

Proof. — If M is a V-framed G-manifold then the isotropy-group must be constant
on each component of M, for'if g is an element of the isotropy group at x then
g acts trivially on the tangent-space to M at x, and so leaves fixed all the geodesics
through x. But if M has all its isotropy-groups conjugate to H one can write
it as (G/H) x y,, M¥, where M", the H-invariant part of M, is a free Wy space.

Thus a general V-framed manifold can be written u (G/H) x WHMH, where My
H

is a V-framed free Wy-manifold. The cobordism-classes of such My can be iden-
tified with 75 (BWy,), and Proposition 2 follows.

Equivariant stable cohomology theory

For any pair Y C X of compact G-spaces and any virtual G-module @ (i.e. any
a € RO(G)) let us define

ws (X, Y) =lim [SY(X/Y) ; V"] = {X/Y ; §*}.
v

This is a generalized cohomology theory in the sense that it satisfies obvious
homotopy, exactness, and excision axioms (for any pair (X, Y) there is a boun-
dary homomorphism w@(Y) - w& ' (X,Y)). It has the additional stability pro-
perty that @&X) = &% Y(SYX) for any X and V. Furthermore it is universal
among cohomology theories with those four properties.
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On free G-spaces and trivial G-spaces one can express wg in terms of ordinary
stable homotopy, at least when oo € Z C RO(G), as follows.

ProrosiTioN 3. — If X is a free compact G-space, then
wg (X) = W"(X/G) = g (X/G).
ProroSITION 4. — If G acts trivially on X then
Wi (X) = ® (X ; S"BWg},

where BW}; is the union of BWy with a disjoint base-point.

As ordinary stable homotopy coincides with homology when tensored with
the rationals, and as classifying-spaces for finite groups have trivial rational homo-
logy, one deduces from Proposition 4 that wg(X)® Q = A(G)® H"(X ; Q) when
G acts trivially on X. More generally one has

PROPOSITION 5. — For any compact G-space X, and any o € RO(G),
wgeQ= & A¥ " ; Q¥

where, if @ = ¥V — W € ROG), ay = dim V¥ — dim W9,

It is easy to see that {SV;SW}G is a finitely generated abelian group, so Pro-
position 5 implies the

CoroLLARY. — {8V ; 8™}, is finite unless dim V* = dim W for some subgroup
H of G.

The equivariant J-homomorphism (1).

The relationship between equivariant stable cohomotopy as defined here and
equivariant K-theory is precisely analogous to that in the classical case. There
is a J-homomorphism

J : KOg'(X) > wl(X)

(from the additive group KOg' to the multiplicative group of w@) defined by
the usual Hopf construction. Its image can be determined in the following way.

The Adams operations ¥ act on KO4;(X), and hence on the profinite com-
pletion KOg-(X)". They define an action of Z on KOg-(X)* which is continuous
when Z is given the profinite topology, and so the action extends to an action
of the profinite completion Z. The group of units Z* of this ring is the product
of the subgroup (+ 1) with a topologically cyclic group I. Let o be a generator
of I. Then y* :KOG(X)A ->KOG(X)A extends to a transformation of multipli-
cative cohomology theories, and so one can define a new multiplicative coho-
mology theory J% with a multiplicative transformation J¥ - KOX" fitting into
an exact triangle

._)J’G"_,Ko'g\ ﬂi) KO;A > e

(1) The proofs of the results in this section depend on the work of Sullivan on the
Adams conjecture.
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Thus there is a short exact sequence '
0»—>coker(|lz“—1)—>.l*—>ker(tp“—~1)—>0 o)

In terms of the theory JG one can describe the J-homomorphism as follows.

The Hurewicz homomorphism wG - KOGA factorizes through Jg, giving a multi-
plicative transformation % : wG —>JG In view of the exact sequence (1) one
sees that this assigns to an element of stable cohomotopy its d- and e-invariants
in the sense of Adams. The J-homomorphism J : KOG‘(X)-> wG(X) factorizes
through JG X) to nge an exponential map J : ﬁ X))~ wG X). If Gis a p-group
the composite AJ : JG X)->JEX)isa ﬁ?omorphlsm ‘between the additive group
.73(}{) and the multiplicative group 1 +J%(X). Then G(X) is a direct summand
in the multiplicative group 1 + wG(X)

The definition of an equivariant cohomology theory.

In conclusion I shall mention two facts which tend to support the use of all
real representations for suspending in equivariant stable homotopy theory, and
> the indexing of equivariant cohomology theories by RO(G).

The first is the generalization of the construction of Eilenberg-Maclane spaces
as the infinite symmetric products of spheres.

ProrosiTioN 6. — If 4 is a topological abelian group with G-action, and V
is a G-module, there is a G-space BYA and a G-homotopy-equivalence

A - Map (S ;B"A) ;
and' if A = Z with trivial G-action one can take BYA = F(SY), the free abelian
group on S”.

‘The second is the generalization of a theorem of Barratt and Quillen. If S is
a finite G-set let us write Zg for the group of G-automorphisms of S. One can
form an associative monoid I'g =]3[ BZg, the sum being over all finite G-sets S.

The monoid can also be written | | L[ B(Z, [ Wy), where H runs through the

H neN
‘conjugacy-classes of subgroups G, and Z, [ Wy denotes the semi-direct product

~ “< n -
T, XWg x ... x Wy
ProrosiTioN 7. — The classifying-space for I'; is homotopy-equivalent to that
of lim MapG Y ; 8, where V runs through all G-modules.
v
The theorem of Barratt and Quillen tells one that

4 BB, swy) ~ B@=S=BW;),
so one deduces. "

CoroLLARY. — lim Mapg (8" ; S¥) ~ ];I Q= S™ (BWE).
14

This is of course just a restatement of Proposition 4, but it provides a comple-
- tely different proof of it.
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C2 - TOPOLOGIE DES VARIETES

ESPACE DE PLONGEMENTS

par A. V. CERNAVSKII

1. Au cours des quelques derniéres années on étudiait extensivement les propriétés
locales des espaces de plongements. Bien que ce travail soit encore en progrés on
peut néanmoins présenter aujourd’hui un tableau de résultats assez complet.

Les problémes fondamentaux ayant ici un caractére local, c’est de plongements
dans Pespace euclidien R" qu'il s’agira plus loin. Aussi nous nous limiterons, a
quelques exceptions prés, au cas de variétés de dimension k¥ <n — 3. Le cas
k=n -2 a, comme on le sait bien, ses traits spécifiques, liés au groupe fon-
damental local non-trivial.

Dans le cas Kk =n — 1 on peut pousser I’étude plus loin, mais la situation
touche ici au probléme de base, tel que 'approximation des homéomorphismes ;
on n'y doit espérer avancer qu’a 'aide des résultats récents et encore peu acces-
sibles de Siebenman, Wall, Kirby etc.

Je vais maintenant rappeler les définitions usuelles :

Le plongement q : u* - R" est dit localement plat, s'il est possible de donner
dans le voisinage de chaque point ¢ x € R" des coordonnées locales telles que g
devienne linéaire & proximité de x.

Le plongement g : u* = R" est dit localement 1-connexe (1 — LC), s'il est
possible, pour chaque point x € q u et pour chaque voisinage ¥V, de contracter
dans v\qu en un point tout contour fermé pris dans u \qu, u un autre voisinage
de x suffisamment petit. D’aprés un résultat récent ces deux classes coincident
pourvu que k <n — 3.

Etant donnés deux plongements q,q' : u - R". I'isotopie qui fait passer g
4 q' est une famille 2, & un paramétre d’homéomorphismes de R" tel que hy =1
et hyqg =q'.

2. Les problémes fondamentaux dont il sagira ici sont : Iisotopie locale, 'appro-
ximation et les propriétés locales des espaces de plongements.

Quant 3 P'isotopie locale je veux citer deux résultats :
Soit ¢ et ¢' : u* = R" deux plongements.

THEOREME 1. — Si q' est assez proche de q, les deux étant localement plats
et k#n—2, alors il y a quel que soit € une e-isotopie qui fait passer q' dq
(A. Cernavski, Doklady 187, (1969)).

-3
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THEOREME 2. — Si q et q’ sont linéaires par morceaux et k <n — 3 le méme
reste vrai, en admettant l'isotopie linéaire par morceaux (Miller, USA, thése i
paraitre).

Le premier résultat s’obtient par le méme raisonnement (légérement généra-
lis¢) 4 l'aide duquel j’ai prouvé le théoréme sur la contractibilité locale d’espace
des homéomorphismes d’une variété. Cependant la situation est ici plus compli-
quée et il faut se servir d’'une gamme plus large de moyens pour avoir des résultats
plus faibles. On doit s’appuyer ici sur un argument de type d’“Engulfing lemma”,
notamment sur une modification du résultat de J. Bryant et C. Seebeck (Quart.
j. Math. 19 (1968), 275) que 'on a vu déja plus d’'une fois comme un moyen
technique trés utile :

Pour chaque plongement 1 — LC,q : u* > R", k #n — 2, et chaque € > 0
il existe un & > O tel que pour un plongement 1 — LC, q’ : u* - R" §-proche de
q et un voisinage v de q'u, il existe une e-isotopie #, telle que sz, = 1,A,v C qu
et h, = 1/q'u (voir A. Cernavski, Doklady, 181 (1968), 290).

Quelques autres formes de ce théoréme sont utiles dans de différentes situations.

Ces résultats s’étendent aussi au cas kK = n — 2 mais leur présentation devient
alors trop compliquée. Nous indiquerons des généralisations possibles du théo-
réme 1 2 la fin de cette communication.

3. Passons maintenant aux approximations. Le premier résultat & citer ici est
un théoréme de M. Stanko :

THEOREME 3. — Le plongement q d'un espace K localement compact de di-
mension k <n — 3 dans R" pour lequel q (K) est localement fermé peut étre
approché par un plongement 1 — LC. Cela reste encore vrai pour les variétés de
dimension n — 1. :

A T'aide de ses résultats précédents Staniko déduit de 13 une solution compléte
du célébre probléme de Menger : Le compact de Menger M¥ est universel pour
les sous-compacts k-dimensionnels de R". Une autre conséquence, c’est que les
plongements des variétés u* , k <n — 3, sont approximables  I'aide de plonge-
ments localement plats.

En effet, chaque plongement 1 — LC est localement plat pour k <n — 3. Ceci
est une conséquence presque immédiate du théoréme 1 et du théoréme suivant :

THEOREME 4. — Chaque plongement d’une boule B de dimension k <n — 3
peut étre approché par un plongement linéaire par morceaux (Cernavski, Matem.
Sborn., 80 (1969)) (°).

Une autre démonstration de ce résultat a été donnée récemment par Miller.

Avec ce résultat local on peut obtenir par des voies différentes une démonstra-
tion du théoréme général que voici :

THEOREME 5. — Chaque plongement d'une variété linéaire par morceaux u*
dans une autre w", k < n — 3, peut étre approché par un plongement linéaire par
un plongement linéaire par morceaux.

(*) Cet article contient une erreur, signalée par C.D. Edwards ; une rectification sera publiée
ultérieurement.
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Ou bien on doit aller du local au global en utilisant des approximations locales
a Paide des théorémes d'isotopie locale (Théoréme 1 et 2). Cette voie a été choisie
par Miller, Bryant, Connely et par moi-méme (voir Matem. Sbornik 1970, Juli),

Ou bien on peut se baser sur le théoréme de M. Stafiko qui donne une appro-
ximation localement plate. Alors il ne reste qu’a appliquer un résultat récent de
Rushing sur lisotopie d’un plongement localement plat d’une variété linéaire
par morceaux (k <n — 3) 3 un plongement linéaire par morceaux.

Par ailleurs ce résultat de Rushing est une conséquence directe des théorémes 1
et 5.

Des résultats analogues pour les plongements de polyédres ont été démontrés
tout récemment par Cobb, Bryant etc.

4. Aujourd’hui c'est I'étude de I'espace total & = 8mb (B* , R") qui est 3 Ior-
dre du jour. Soit &, C & le sous-espace des plongements localement plats, H I'espace
des homéomorphismes de R" et f: H—+ & une fonction telle que fh = hq, et
q, un plongement localement plat quelconque.

THFEOREME 6. — f est un fibré au sens de J.P. Serre, k + n — 2.

Essentiellement, c’est une conséquence du théoréme 1 et du travail de Michael
sur les “continuous selections”.

Certainement, il serait désirable de prouver que f est un fibré localement tri-
vial. Ce serait possible si I'on pourrait construire un voisinage de I'unité en H
qui soit contractible. Ce fait serait aussi utile (comme D. Henderson l'affirme)
dans une démonstration que H est une variété modelée sur I'espace /,.

On peut aussi déduire des résultats précédents que pour k < n — 3 I’espace
& de tous plongements est localement connexe dans toutes les dimensions.

Steklov Mathematical Institute
ul Vavilova 42,
Moscow
V 333 (URSS)
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THE OBSTRUCTION TO FIBERING A MANIFOLD
OVER A CIRCLE

by F. Thomas FARRELL

Let M be a compact, connected, smooth manifold whose dimension is greater
than five, and let f be a continuous map from M to the circle, which we denote
by S'. Suppose that f restricted to the boundary of M, denoted by dM, is a
smooth fibration. We note that a map k from a smooth manifold N to S is a
smooth fibration if 4 is smooth, and for each point x of N the derivative of A
maps the tangent plane to N at x onto the tangent plane to S* at #(x). We wish
to address ourselves in this talk to the following problem.

Fibering Problem.

When does there exist a smooth fiber map g from M to S* which agrees with
f when restricted to the boundary of M and which is homotopic to f relative
to the boundary of M ?

Before we can state our solution to this problem, we must introduce some
notation and make some constructions. Denote the additive groups of real
numbers by R, the additive group of integers by Z, and the exponential map
from R to S* by exp. Then, R %¥ S'is a principal Z bundle. Pull this bundle
back over M via f, and denote the pullback by X B M. When the answer to the
cartesian product of the fiber of g and R. Hence, whenever the answer to the
fibering problem is affirmative, X is homotopically equivalent to a finite C.W.
complex. Denote the principal R fibration associated to X 5M by X xz R Lm.
Since R is contractible, g is a homotopy equivalence, and X x, R is diffeomorphic
to M x R.

Under the assumption that X has the homotopy type of a finite C.W. complex,
we formulate a torsion obstruction, denoted by 7(f), which is an element of
W AIT, M. Before the smooth fiber map sought can exist, it is necessary that 7(f)
vanish. 7(f) is defined as the Whitehead torsion of the composite of g and F
where F is any admissible homotopy equivalence. In order for this definition
to be meaningful, we must formulate what constitutes an admissible homotopy
equivalence. Before we can do this, we need the concept of mapping torus.
Let Y be a topological space and ¢ a continuous map from Y to itself. The
mapping torus of ¢, denoted by Yy,: is the quotient space of Y x [0, 1] ob-
tained by introducing the identifications (y , 1) = (¢ (), 0) for each y in Y. We
will consider Y as identified with ¥ x O inside of Y ,. Recall that the mapping
cylinder of ¢, denoted by Y(y), is the quotient space of ¥ x [0, 1] U Y ob-
tained by identifying (y , 1) to ¢ () for each y in Y. By construction, Y is iden-
tified with a subspace of Y(p). A C.W. complex structure on Y, which has Y
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as a subcomplex, induces a C.W. complex structure on Y(p) so that Y is a sub-
complex. Let T be the self diffeomorphism of X corresponding to the action of
the integer 1 on X. Then, X x, R is cannonically identified with X .

A map F from Y‘p to X, is an admissible homotopy equivalence if 1) F is a
homotopy equivalence ; 2) F~(X) = Y ; 3) F : Y - X is a homotopy equivalence,
and 4) the domain of F, Y, is a finite C.W. complex having Y as a subcomplex
such that the inclusion map of Y into the mapping cylinder of ¢ is a simple
homotopy equivalence. ’

Next, we show that admissible homotopy equivalences always exist. Assume
that K is a finite C.W. complex which is homotopically equivalent to X via conti-
nuous maps / from K to X and k from X to K. Define ' from K to K to be
ko Tol, and let ¢ be a cellular map which is homotopic to ¢'. Then, K, has a
natural C.W. complex structure with the required properties. To / is homotopic
to [ o p, and we denote the homotopy by k. Define F : K¢ - X, by

Fk,ty=Gk&, 1,1,

then F is an admissible homotopy equivalence. If F and F’ are two admissible
homotopy equivalences, we can show that the Whitehead torsion of g o F equals
the torsion of g o F'. Hence, we can define an element 7(f) in Wh II, M as the
torsion of g o F where F is an arbitrary admissible map. We note that by an
extension of the above technique we can define a torsion 7(f) in Wh II, M under
the weaker assumption that X is dominated by a finite C.W. complex. Now, we
state our solution to the fibering problem.

Fibering Theorem.

A smooth fiber map g exists if and only if 1/ X is homotopically equivalent to a
finite C.W. complex, and 2/ 7(f) = 0.

We note that conditions 1/ and 2/ of the fibering theorem can be replaced
by different conditions I and II. Namely, I : X is dominated by a finite C.W.
complex, and II : 7(f) = 0.,

We have already demonstrated the necessity of condition 1/. We now show
that condition 2/ of the fibering theorem is necessary. Suppose that a smooth
fibration g exists, then we can construct a cross section F to the fibration
q : X; > M such that F ~1(X) is a fiber of g, and F maps this fiber homoto-
pically equivalently to X. F is an admissible map, and since g o F is the iden-
tity, 7(f) = 0. Now, we will indicate why conditions 1/ and 2/ are sufficient to
produce a smooth fibration g. In order to facilitate our discussion, we will assume
that M has no boundary, and that X is connected. The second assumption is
equivalent to the assertion that f*(a) is an indivisible element of H M, 2)
where o is a generator of H'(S',Z). Let F: Kw - X, be an admissible map,
then go F: Kv -> M ia an homotopy equivalence, and the covering space in-
duced from X B M via g o F is properly homotopically equivalent to X and to
K x R. Hence, X is properly homotopically equivalent to K x R. Since the
Whitehead torsion of g o F is zero, we can show that the splitting obstruction
of Siebenmann [7] vanishes and therefore by the splitting theorem of Sieben-
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mann [7] and Novikov [8], there exists a closed smooth manifold N such that
X is diffeomorphic to N x R.

We say that a closed, smooth manifold M’ prefibers a circle if there exists a
closed co-dimension one submanifold N' of M' with trivial normal bundle such
that after deleting a small open tubular neighborhood of N' from M' the resul-
ting cobordism is an A-cobordism. If this h-cobordism is trivail, then M’ fibers
a circle. Next, we indicate how to construct an A-cobordism between M and a
manifold which prefibers a circle. Since N is compact, some translate of it, say
T"N, is disjoint from both N and TN. Let W and W' denote the regions between N
and T"N, and between T"N and TN respectively. Both W and W' are h-cobordisms.
Let ¢ : W—[5/8, 7/8] and ' : W' - [1/8, 3/8] be a smooth Urysohn functions
such that  is identically 5/8 and 7/8 on neighborhoods of 7"N and N respecti-
vely while y' is identically 1/8 and 3/8 on neighborhoods of TN and T"N respec-
tively. M’ denotes the union of the following five subspaces of X x, R :

T"N x [3/8, 5/8], TN x [0, 1/8] , N x [7/8, 1],

graph of ¥, and graph of y'. M’ is a closed codimension one submanifold of
X x; R, and the inclusion map of M' into X x, R is a homotopy equivalence.
The diagram below illustrates the construction of M'.

T"Nx[3 E]
TN 8’8
Graph ' Graph ¢
TNx[O l] 7
,8 NX[—S-,I]
TN
N
1 3 5 7
Xx0 X x = — = _
X x8 Xx8 Xx8 Xx8 X x1

M' would be a smooth manifold which prefibers a circle except that it has corners
at X x [0, 1/8] N graph ', graph ' N T"N x [3/8, 5/8], T"N x [3/8, 5/8]N graph
¥, and graph ¢ NN x [7/8, 1]. But, by a techniquely more complicated construc-
tion, we could have avoided these corners. Assuming that we have done this and
recalling that X x, R is diffeomorphic to M x R, we see that M’ is disjoint from Mx¢
for ¢ small enough, and that the region between M' and Mxt is an h-cobordism.
By analyzing the torsion of this h-cobordism utilizing the generalization of the
formula of Bass, Heller, and Swan [1] found in [10], we verify the existence of a
smooth fiber map g : M = S' homotopic to f.

Finally, we wish to make a few remarks about the history of the problem we
have been discussing. John Stallings was the first person to consider this problem.
He solved it for 3-manifold in [3]. W. Browder and J. Levine solved it for mani-
folds of dimension greater than five whose fundamental group is infinite cyclic.
(See [4]). Our original solution, given in [9], to the problem proceeded by
extending the techniques of Browder and Levine. The approach outlined above
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was partially motivated by the work of C.T.C. Wall in [5]. The algebraic formula
due to Bass, Heller, and Swan (See [1]) as generalized by W.C. Hsiang and the
author is needed in this approach as well as in applications and extensions of
the fibering theorem due to W.C. Hsiang and the author. (See [11] and [12]).
The example of an h-cobordism which is not topologically a product, given in
[11], also makes crucial use of the work of H. Bass and M.P. Murthy. (See [2]).
In my first approach to the fibering problem (See [9]), I defined two torsion
obstructions. L. Siebenmann (See [6]) was the first person to combine them
into a single obstruction, but the method of combining the two obstructions pre-
sented in this talk differs from that found in [6].
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DIFFERENTIABLE ACTIONS
OF COMPACT CONNECTED LIE GROUP ON R"

by Wu-Chung HSIANG ®

I. Introduction.

In this lecture, I shall summarize some joint work on differentiable actions
(unpublished yet) with my brother Wu-yi Hsiang. Let ¥ : G x R" - R" bea
differentiable action of a compact connected Lie group G on R". ¥ defines a
representation of G into Diff (R") which we also denote by ¥ : G — Diff (R").
For a fixed inner product structure on R", we have an inclusion SO(n) C Diff (R"),
We say that W is linear if, up to conjugacy in Diff (R"), if factors through SO(n).
Even though most actions are non-linear, we may still find many features of an
action resembling a linear one. Therefore, we shall follow the following guiding
principle in our study : Compare the behaviour of general differentiable actions
with that of linear ones. At the end, I shall also discuss actions on homotopy
spheres. Although the result summarized here are extensions of [21, II ], the
proofs are actually independent of the previous works. We make use of the weight
system of [9] and the group generated by differentiable reflections [6] as our new
ingredients.

II. Geometric weight system and a fundamental fixed point theorem :

Let ¥ be a differentiable action of a compact connected Lie group G on a
Q-acyclic manifold X. Let T be a fixed maximal torus of G and it follows from
P.A. Smith theory [1] that the fixed point set of T, F(T, X) =M is also
Q-acyclic and consequently, connected. Hence, the local representation (2), (¥|7),,
is independent of the choice of x. It is an invariant of ¥, and shall denote it by
(V). We may split the representation of T as a sum of 2-dim representations
and some trivial representations. As usual, we write a non-trivail 2-dim repre-
sentation .of T as exp (+ 2iam) and identify the corresponding weights in ()
by * o We shall identify the trivial representations with the zero weights in Q(¥)
and denote the subset of non-zero weight in (¥) by Q'(¥). Q(¥) is symmetric
with respect to W(G) = N(T)/T the Weyl group of G. The weights in Q'(¥)
appear in pairs * o. §2(¥) was first introduced in [9] for studying effective ac-
tions of Spin (m) en acyclic manifolds, and was used to determine the identity

(1) Partially supported by NSF Grant GP-9452.

(2) After we give an invariant metric on X, the local representation (¥|X), is just the
induced action of T on the tangent space at x.
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component of the principal isotropy subgroup(l) of a classical group acting on
acyclic manifolds [2H]. (¥) is not a complete invariant of ¥, but it is a rather
good book-keeping device. Our first problem is to find possible patterns of Q(¥),
and then determine whether it resembles the weight of some linear representation
of R". If G itself has a fixed point, (¥) coincides with the character of the lo-
cal representation ® of G at the fixed point. But unfortunately, G does not
always have a fixed point [21], [9]. So we would like to find a large maximal
rank subgroup K such that ¥|K has fixed pomts For this purpose, let us intro-
duce the following subsets of the root system A(G) of G relative to $2(G) : Z,(¥)
is the subset of a in A(G) such that the integral multiples of a in &'(¥) form
exactly a j-string, ie., * @, * 2a, ..., * jo, Note that most of E,(\II) are empty,
W)= o€ A(G) aG Q'(¥) and E 1 (¥) is the subset of a in A(¥) such
that Q'(¥) contains only one pair of mtegral multiples of o, * a.

THEOREM 1. — Let X be a Z,-acyclic manifold (2) and ¥ be a differentiable
action of a compact connected Lie group G on X. Then, there is a maximal
rank subgroup K of G such that F(K, X) is also Z,-acyclic and

AK)DZ,(¥)U I, () U Z,(¥).

Theorem 1 seems technical, but it is rather strong. As we shall see in the next
section, it gives a strong hold of the principal isotropy subgroup of the action.
The following results are also consequences of Theorem 1. (A) If ¥ has at most 3
types of orbits(3), then G has a fixed point. One may eventually classify actions
on R" with up to 3 types of orbits. (B) If the dimension of the orbit space of
V¥ is less then or equal to 6, then G has a fixed point(4). Therefore, we shall
call Theorem 1 the fundamental fixed point theorem. It was proved by a combi-
nation of weight system, the fixed point theorem of differentiable reﬂectlons
and an analysis of SO(3) actions on Z ,-acyclic manifolds.

III. Determination of principal isotropy subgroups and a reduction theorem.

For a differentiable action ¥ of G on a manifold M, there is an absolute mi-
nimum among the conjugate classes of isotropy subgroups under the partial or-
dering by inclusion. Denite it by (H,). For Hy, € (Hy), G/H,, is called the principal
orbit of ¥. The Montgomery-Samelson-Yang theorem [13] [14] asserts that the
union of all principal orbits in M is an everywhere dense open submanifold.
From [211] [3], we see that (Hy ) has a strong influence on other isotropy subgroup
classes and it is desirable to determine (f,). We say that (H) is non-trivial if

(1) For the definition of principal isotropy subgroups, see § III.

(2) Z,-acyclicity implies Q-acyclicity.

(3) L e, there are at most three conjugate classes of isotropy subgroups. For results on
actions with up to 2 types of orbits, see {I, Ch. XIV].

(4) Montgomery-Samelson-Yang had results for actions with the orbit space of the dim
less or equal to 2 [15].
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Hy, is not equal to the kernel of the representation ¥ : G — Diff (M). For deter-
mining (Hy) of a differentiable action ¥ of G on an acyclic manifold, it would
be desirable, of course, if G had a fixed point whenever (Hy) was non-trivial.
Then the classification of (Hy) would be reduced to the linear actions. Unfor-
tunately, there are actions of F,, on euclidean spaces with (Spin (5)) and (Spin (2))
as the principal isotropy subgroups without a fixed point. So, we can only expect
the next best thing.

THEOREM 2. — Let ¥ be a differentiable action of a simple compact connected
Lie group G on R". Suppose that (Hy,) is non-trivial. Then, we have either

) F(G,R") is Z,-acyclic, or
(2) G=F,, (Hy) = (Spin (5)) and

1
QL) =2 - 501i02103i94),161,i62,163,i04%, or
(3) G =F,, (Hy) = (Spin (2)) and
1
Q') = 3-% S 0,200, £0,),£0,, %0, %0, i042.

In fact, the cases (2), (3) do occur.

We can extend the result of Theorem 2 to semi-simple connected compact
Lie groups, but the statement becomes a little technical due to the possible
normal factors of F,-type. However, we can still show that for a differentiable
action ¥ of a compact connected Lie group G on R", if (H ) is not-trivial, then
there is a linear representation @ such that (Hy) = (Hy). If G is simple, it is a
consequence of Theorem 2 that we may choose @ such that (Hg) = (H,)and
Q'(®) = Q'(¥). In any case, we complete the determination of principal isotropy
subgroups of actions on R". (Cf. [ZH] [7] [12]). The basic reason why we can
do this is because of the fundamental fixed point theorem (Theorem 1).

Of course, we recover all the regularity theorems of [21: II] for euclidean
spaces as we did in [2H]. In fact, we have the following reduction theorem mo-
tivated by [21], [10], [11].

THEOREM 3. — Let ¥ be a differentiable action of a compact connected Lie
group G on R". Let Hy, be a fixed principal isotropy subgroup, i.e., a fixed
element in (Hy). Set W(¥) = NHy)/Hy,. Then ¥ induces a differentiable action
®of W) on M =FHg, R") and ® determines ¥ .

For example, if H,, is a maximal torus of G, then M is Z-acyclic and W(¥) = W(G)
acts on M as a group generated by differentiable reflections. Using [6], we have a
complete understanding of this case. In fact, if G is a classical group, then it follows
from Theorem 2 that either ¥ is a regular action in the sense of {211], [11] or
the induced action & is generated by reflections. For this case, we also have a
fairly good understanding by [2L II] [6].
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IV. Concluding Remarks.

When we started our work [ZI], we made use of the dimension restriction of
the total space relative to the group and the property of ‘vanishing first Pontrjagin
class’ to nail down the identity components of the isotropy subgroups. We then
applied P.A. Smith theory and a formula of Borel [I, pp. 175-179] to get the
structure of isotropy subgroups. Under this approach, euclidean space and ho-
motopy spheres are completely parallel. But now, we use weight system and the
group generated by reflections as our tools. They depend on the fact that the
fixed point set of the restriction of the action to a maximal torus is acyclic. The
situation becomes somewhat different for these two cases. However, it seems to
us that we still have all the parallel results if we use Borel’s formula quoted above
carefully and systematically. The interest in working out the homotopy sphere
case is because of the existence of various differentiable structure on spheres.
One expects to have more refined and interesting results on the ‘degree of
symmetry of spheres’ [4] [5] [8] when the corresponding results for spheres are
obtained.

Finally, let us pose two rather important problems from the present point
of view :

ProBLEM 1. — For a given differentiable action ¥ of G on R", is there a linear
representation ® such that Q'(®) = Q'(¥) ?

PROBLEM 2. — Classify all the differentiable actions of SO(3), Sp(l) on R"
and write down their weight system.
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SOME CONJECTURES ABOUT FOUR - MANIFOLDS

by R.C. KIRBY

The theory of topological manifolds and their piecewise linear structures has
reached a certain level of completeness in dimensions not equal to four, (see
references [2]-[10]). We list below some theorems on existence and uniqueness
of PL structures, TOP transversality, and TOP handlebodies which are unknown
in dimension 4. There are some natural conjectures about these and other theories
for dimension 4 ; we show that they are all related, and that in fact the Product
Structure Theorem in dimension 4 would imply all of them.

The theory presented here is rather simple ; basically it assumes that the higher
dimensional theory holds as much as possible in dimension 4, given Rohlins
theorem [12] and the uniqueness of PL structures on 3-manifolds [11], both of
which are anomalies. If this theory does not hold, it would seem that the correct
theory must be much more complicated.

Q will always refer to a TOP manifold of dimension g, and C will be a closed
subset. A property is said to hold near a closed set if it holds on a neighborhood
of the closed set. “CAT” refers to either the PL or DIFF category. A CAT struc-
ture on a manifold is denoted by a capital Greek letter, e.g. Oy, except that
I=1[0,1] and R® denote the unit interval and Euclidean s-space with their usual
linear structures.

Two PL structures £ and © on Q which agree near C are equivalent if there
exists a PL homeomorphism # : Qy = Qg with & = identity near C. £ and @
are equivalent up to isotopy (resp. homotopy) if 4 is isotopic (resp. homotopic)
modulo C to the identity homeomorphism.

Let h :B*¥ x R" > V*¥*" be a homeomorphism of the unit k-ball cross n-
space onto a PL manifold V**" such that & is PL near the boundary $¥~! x R".
“Straightening the k-handle #” means finding an isotopy h,:B*¥ x R" >V,
t €10, 1), such that hy = h, h, is PL near B* x B", and h, = h near S*"'x R"
and outside a compact set.

A central theorem in the theory of TOP manifolds is the.

PRODUCT STRUCTURE THEORFM [5]. — Let q =5 or q =35 if 9Q CC. Let Z,
be a CAT structure near C. Let © be a CAT structure on Q x R® which agrees
with Z, x R® near C x R®. Then Q has a CAT structure Z, extending = near C,
and Z x R® is concordant to ® modulo C x R®.

In fact, there is an e-isotopy h, : Qg X R® = (Q x R®)g with hy = identity, h,
a CAT homeomorphism, and h, = identity near C x R®, wheree : Q x R® — (0, =)
is a continuous function.

This theorem is easy to prove for g <2, and g +s=26 or g+ s=3 or
q+s=15if 8Q C C, for then Q and Q x R® have unique PL structures up to
isotopy.
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The Product Structure Theorem is known to fail for closed 3-manifolds ; the
PL structures up to isotopy on 0% x R", Q closed and n = 2, are classified by
H3(Q; Z,) = Z, but there is only one PL structure up to isotopy on Q*. Moreover,
these counterexamples are not valid just for equivalence up to isotopy, because
S% x R? has two PL structures which are not equivalent (PL homeomorphic)
(2], 8l

Conjecture A,. The Product Structure Theorem holds for ¢ = 5 and 9Q ¢ C
or for ¢ =4 and 0Q C C.

Conjecture A,. The Product Structure Theorem holds for g = 4 and aQ ¢ C
(respectively for g = 3) if 8Q (respectively @) has a handlebody decomposition
with no 3-handles which are not in C.

Conjecture A, implies Conjecture A, (see Theorem 6). In fact Conjecture A4,
implies all the other conjectures in this paper. Note that Conjectures A, and A4,
imply that the Product Structure Theorem holds for all open manifolds with C = Q.

To prove A, it would suffice to know that several 5-dimensional relative CAT
s-cobordisms were CAT products [5]. Consider the CAT s-cobordism (Z ; Y,, Y,)
where (Z ; Y, Y,) is homeomorphic to either (/;0, 1) x B¥ x T** or

J;0,1)xB*x8S¥* xR

and the homeomorphism is CAT near 1 x Y, and near I x 3Y,. Then Conjecture
A, is equivalent to knowing (Z ; Y, Y,) is CAT homeomorphicto(/ ; 0, 1) x Y,
relative to 1 x Y, and I x 9Y,.

CONCORDANCE-IMPLIES-ISOTOPY THEOREM [2], [5], [8]. — Let q =6 or q =5 if
8Q C C. Let T be a CAT structure on I x @, and 0 x X its restriction to 0 x Q. Sup-
pose I' = I x X near I x C. Then there exists an €-isotopy h, : I x @5 = (I x Q)p,
t € [0, 1], such that h, = identity, h, = identity on O x Q and near I'x C, and
h, is a CAT homeomorphism, where € : I x @ > (0, ) is continuous.

This theorem is well known [11] for ¢ < 2. It also fails in dimension 3 or 4
because if it was true in all dimensions, it would imply the Product Structure
Theorem in all dimensions [5].

Conjecture B,. Concordance implies isotopy for ¢ =5 and 8Q ¢ C or ¢ = 4
and aQ C C.

Conjecture B,. Concordance implies isotopy for ¢ = 4 and 9Q ¢ C (respecti-
vely for g = 3) if 3Q (respectively Q) has a handlebody decomposition with no
2-handles that are not in C.

THEOREM 1. — Conjecture A, is equivalent to Conjecture B, .

Proof. — In [5], it is shown that the Concordance-implies-isotopy Theorem plus
the Annulus Theorem are together equivalent to the Product Structure Theorem.
The same method of proof gives Theorem 1 since Conjecture B, implies the Annulus
Conjecture in dimension 4.

CLASSIFICATION THEOREM [3] [6] [8] [10]. — Let ¢ = 6, or ¢q =5 and 8Q C C.
The homotopy classes of reductions of the stable tangent bundle of Q to a CAT
bundle, modulo C, correspond bijectively to isotopy classes of CAT structures
on Q@ agreeing with a given CAT structure I, near C.
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This theorem fails for closed 3-manifolds, for there exist two reductions but
only one CAT structure on Q.

However the non-stable Classification Theorem [6], [8], [9], (for reductions of
the tangent bundle itself) holds for ¢ < 3 as well as g =6, or g = 5 and 8Q C C.

TuroreM 2. — Conjecture A, implies that the stable Classification Theorem
holds also for q = 5 or q = 4 and 3Q ¢ C, and that the non-stable Classification
Theorem holds without dimensional restriction.

Proof. — The only ingredients in the proof of the stable Classification Theorem
requiring dimensional restrictions are the Product Structure Theorem and the
Concordance-implies-isotopy Theorem ; the dimensional restrictions are lowered
by one in Conjectures A, and B,. The non-stable version uses immersion theory
and requires only Conjecture B, to hold in all dimensions.

ThrorieM 3. — Conjecture A, implies
@) h : B* x R*™* > V* can be “straightened” if k + 3,
(ii) there exists h' : B® x R > V which cannot be straightened, and
Kh xid:B*xR*> V xR
corresponds to the non-zero element in w,(TOP,,PL;) = Z,.
(iii) =, (TOP,, PL,) ( 0 k#3
l =
iii) m, FER R 1 Z, k=3

(iv) m,(TOP,, PL,) = 0 > m,(TOP,, PL,) —> m,(TOP,, PL;) = - - - where s is
the stabilization map.

Note that similar statements are true in dimensions > 4.

Proof. — (i) h pulls back a PL structure from V onto B*¥ x R*~¥, say Z, which
agrees with the standard structure near the boundary. £ x R is equivalent (modulo
boundary) up to isotopy with the standard structure because # x id can be straigh-
tened [S]. By Conjecture A,, Z is equivalent (modulo boundary) up to isotopy
with the standard structure, so we compose this isotopy with # to straighten A.

(ii) B® x R? has an exotic PL structure which agrees with the standard one near
the boundary, so by Conjecture 4,, B® x R has an exotic PL structure ' which
is standard near S* x R. Let i’ =id : B> x R = (B® x R)&..

(iii) and (iv) follow as in [2], or [3] or [7].

It is known that if Z, is a PL structure near C, then Q has a PL structure
extenting X, near C if ¢ <3 or if g 2 6 and H4(Q,C;Zz)= OQorifg=S5,
90 C C and HY(Q, C ;Z,) = 0. The remaining cases are taken care of by

THEOREM 4. — Conjecture A, implies

(@)Ifgq=4and 3Q CCor q =5 and 3Q ¢ C, then Q has a PL structureZ
extending Z, near C ifH4(Q ,C32,) =0,

(i) If g = 4 and 3Q ¢ C then X exists if H*(Q,C VU 3Q ;2,) = 0.

Proof. — (i) The theorem follows immediately because the stable Classification
Theorem holds in these dimensions (see Theorem 2).
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(ii) 8Q has a unique PL structure [11] so we extend X, to a neighborhood of
0Q U C and use (i).
Also it is known that if Q has a PL structure Z, then the PL structures, agreeing

with 2 near C, are unique up to isotopy if ¢ < 3, and are classified up to isotopy
byHa(Q,C;Zz) ifg=>6,o0rif g =5 and 0Q C C.

THEOREM 5. — Conjecture A, implies

(i) the isotopy classes of PL structures mod C are still classified by H 3@Q,c¢ 3 Z5)
ifq=5and 8Q € Cor if q = 4 and 3Q C C.

(ii) the isotopy classes of PL structures mod C are classified by

H*Q,CUQ;Z,)
if q =4 and 3Q ¢ C.

Proof. — See the proof of Theorem 4.

THEOREM 6. — Conjecture A, implies Conjecture A, and Conjecture B, implies
Conjecture B, .

Thus we have
Conjecture A, ¢ Conjecture B,

N\ ’

Conjecture A, = Conjecture B,

Proof. — These Conjectures depend on the following conjecture which is a
handle version of concordance-implies-isotopy (see §§ 3, 4, 5 of [S]).

Let H: {,0)xB*xR">(X,V) be a homeomorphism, which is CAT near
(1 x B¥ x R®) U (I x S*' x R™), onto a CAT manifold X where V is a codimen-
sion one, CAT locally flat, submanifold. Then there exists a pairwise isotopy
H, . (UI,0)x B¥xR®* > (X ,V),t€][0,1], with Hy = H, H, = CAT homeomor-
phism on I x B* x B", and H, = H near (1 x B¥ x R") U (I x §*" ! x R") and
outside a compact set.

The Concordance-implies-isotopy Theorem gives an H, if k + n # 3, 4. Conjec-
ture A, implies the casesk +n =4,andk + n = 3 withk # 2. Butifk =2 ,n = 1,
then some H cannot be straightened. The implications in Theorem 5 can be derived
from this.

THEOREM 7 (TOP transversality). — Let £" = (E (£") X ) be an n-plane bundle
over a topological space X and let f : M™ — E (£") be a continuous function. Then
if m# 4 and m — n # 4, f is homotopic to a map f, which is transverse to the
O-section of & (this means that f ~1 (0-section) is an (m — n)-manifold P with normal
bundle in M equal to (x f,|P)*(§)). Moreover, if f is already transverse near a closed
set Cin M, then the homotopy equals f near C.

THEOREM 8. — Conjecture A, implies that TOP transversality holds in all di-
mensions.

Proof. — The proof of Theorem 7 (see [2]) uses only the Product Structure
Theorem for open manifolds with C = @ which follows in all cases from Conjec-
ture 4,.
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THEOREM 9 (TOP handlebody structures). — If m = 6, then M™ is a TOP hand-
lebody (if m = 6 and oM # Q, then we obtain M by adding handles to oM).
Equivalently, M admits a Morse function f : M = R (that is, fis locally of the form

2 2 __ 2 — 2
Xyt F T X T T Xy

TurorrM 10. — Conjecture A, implies that all S-manifolds are TOP handlebodies.
It follows that there is a 4-manifold which is not a TOP handlebody.

Proof. — See [2] [13]. Note that if dim (0M) = 4, then we give M a handlebody
structure by adding handles to 0M. The boundary of a S-dimensional TOP handle-
body is not necessarily a TOP-handlebody.

It is known [7] that Z = w,(Bp.) > 74 (Brop) = Z is multiplication by two. If
£ is the generator of m,(B;qp), then § represents a TOP n-plane bundle

g =(EE) D X)

which is fiber homotopy trivial. If f: E(§") > R" is the trivialization, then using
TOP transversality (Theorem 8), M* = f~'(0) is a closed, almost parallelizable
4-manifold. Furthermore, the identification of m,(Bgp) With Z tells us that
index (M*) = 8, because the generator of m,(Bp,) corresponds to a PL 4-manifold
of index 16.

M* cannot be PL by Rohlins Theorem [12). Therefore M* is not a TOP hand-
lebody. (Any 4-dimensional TOP handlebody is PL since the attaching maps are
3-dimensional imbeddings and can be straightened [11]). A more explicit construc-
tion of such an M* appears in [13].
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THE DIFFERENTIAL TOPOLOGY
OF SEPARABLE BANACH MANIFOLDS

by Nicolaas H. KUIPER *

1. Introduction.

The differential topology of separable metrisable Banach manifolds has recently
made considerable advances. Five years ago Bessage proved (following an analogous
homeomorphy statement of Klee) that two specific homotopy trivial manifolds,
namely Hilbert space H and H\{0} are in fact diffeomorphic. At present, the
main, interesting but not so stimulating, conjecture or conclusion is that manifolds
of infinite dimension and their embeddings have not more structure than that
given by homotopic invariants, like the tangential homotopy type, easily suggested
by a topologist concerned with finite dimensional manifolds. The same general
conclusion holds for the topology of topological manifolds modelled on possibly
non-separable Fréchet spaces (compare the lecture of R.D. Anderson), and also
for differentiable Hilbert manifolds with Fredholm or layer structure (compare
the lecture of J. Eells in which he announces that Fredholm Hilbert manifolds
are completely classified by their Fredholm reduced tangential homotopy type).
It is easy to see that a smooth Hilbert manifold carries many non-equivalent
complex analytic structures. Nothing, except the equivalence of H and H \{0},
is known yet concerning real analytic structures, however. Also non-separable
smooth Banach manifolds have not been touched upon.

This paper gives only a survey of some pure differential topological aspects
of Banach manifolds without applications to analysis on finite dimensional mani-
folds. Such analysis will need consideration of additional geometric structure in
the manifold as space of maps.

2. Tangential homotopy types.

Let E be a separable Banach space of infinite dimension with a C*norm n :
E = |0,9), n(x) = ||x||, i.e. n has continuous m-th derivatives for m < k < oo
at all x # 0 € E. We call £ a C*Banach space. Recall that for example the Banach
space [,, 0 <p & 2Z, has a C*-norm for k < p, but not for k > p. It is not known
whether the existence of a non-zero C*-function of bounded support implies
the existence of a C*-norm. An E-chart (k, U) for a topological space M is a
homeomorphism k between open sets UCM and «(U) C E. A metrisable topo-

(*) Supported in part by National Science Foundation grant NSF GP-7952XI. at the
Institute for Advanced Study Princeton.
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logical space M covered by an atlas of E-charts is called a topological E-manifold.
It is called a A-E-manifold or short A-manifold in case for any two charts (k, , U,)
and (k, , U;) the restriction of K,k;" to any component of k, (U; N U,) belongs
to A, a subpseudo group of the pseudo group C°® of homeomorphisms between
open sets of E.

For example : A can be the pseudo group of diffeomorphisms & that are of
class C? in E, 1 < g < k ; or, real analytic (C*) ; complex analytic (C) ; or Fredholm
(d®, = identity + p,, p, a compact operator).

If ACC!, then the derivatives dy, of elements Y €A generate a subgroup
G, of GL(E) the group of invertable linear operators from E to E with the norm
topology. It may be of interest to consider the group generated by 2-ets ]'::(lll)
for Y € A C C?, for example if A is the affine group, or if A consists of elements
that locally differ from the identity by a map with image in a finite dimensional
subspace (Layer maps).

A will be the set of equivalence classes of A-E-manifolds. If A C A’ then there
is a natural forget map o = a(A, A) : A > A'.

Let CW be the class of locally finite CW complexes, and CW the set of homotopy
equivalence classes or homotopy types in CW. Homotopy equivalence will be de-
noted by ~. Two E-vector bundles £ and 1 over X and Y in CW, are called equiva-
lent (~) if there is a bundle map, which is an isomorphism on each fibre, f* :
¢ > 1, that covers some homotopy equivalence f : X = Y. The equivalence
classes are E-bundle fypes. They form a set E(CW). If the bundle is reduced to
some subgroup G C GL(E) we get a set of equivalence classes Eg(CW).

Every A-E-manifold (A C C%) has the homotopy type € CW of a locally finite
countable CW-complex for g 2 0, and its tangent E-bundle for ¢ = 1 has an
E-bundle type, called its tangential homotopy type, € E(CW) and (if G, # GL(E))
a Gy-reduced tangential homotopy type GEGA(CW).

Here is a diagram of maps :

A c? ct c®
) i R lan I
Eg(CW)—— E(CW)—>CW

The values are invarignts, that can distinguish certain manifolds. No counter-
example has been found to the following :

MAIN CONJECTURE 1. — If E has a C%norm, then C'-E-manifolds are completely
classified by their tangential homotopy type, and «o, is bijective for 1 <r <gq.
(Also in case g <r = oo, there are no counter-examples). One can prove :

THEOREM 1. — a,, is surjective in case there is a splitting E = E' ® E" with
dim E" = oo, inducing a homotopy equivalence g' > g' @ idg, : GL(E") > GL(E).
(Every E seems to have such a splitting). § is bijective if and only if GL (E), the
space of invertable linear operators from E to E with the norm topology, is con-
tractible. Since my proof for E = H(= Hilbert space), such contractibility was
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established for ¢, (Arlt) ; 7,(1 < p < ) (Neubauer) ; C, the space of continuous
functions on a compact metric space with more than a countable number of
points (Edelstein, Mitjagin, Semenov) ;Lp([O,l]) (isometric to Lp(#) for p non
atomic measure on a space) (Mitjagin). On the other hand Douady found that
GL(c, ® H) ~ Z x BO is not contractible, hence 8 is not bijective for E = ¢, ® H
(co ® H as well as ¢, has a compatible C”-norm).

R.C. James constructed long ago (1951) the interesting Banach space
J=J,={x=(x,%,...): ; ER, lim_.x = 0}
with norm ||x| = sup | (x,cl — x,,z)” + ... (xkn — xkl)‘"l”” < oo, where sup is
the least upper bound over finite sequences 1 <k, <k, ...<k,, for p= 2.

Crucial is that J embeds naturally with codimension one in its double dual
J** Then for any bounded linear operator o : J" = J" we obtain Elworthy’s
invariant 6 (o) in the commutative diagram with exact rows :

0—>J"—>J**n—> R"—>
(2) [/a 'o** 5(0)

0—=J"'"— J**'— R"—=>0
Mitjagin and Edelstein proved :
(3)6 : GLU™ —~> GL (R™) is a homotopy equivalence,
(Observe (Dieudonné) that J2™*! has no complex structure o : 0% = — 1, because
(8(0))> = — 1 is impossible).

The (fairly simple) most complicated homotopy type for GL(E) known is
obtained with Douady’s method applied to James spaces Jp for different values
of p (1 <p<oo):

GL(E)~GL®R™®) x --- x GLR™) x (BO x Z)" for
E=J0®...0J;™ (Mitjagin — Edelstein).

3. Hilbert manifolds.

The first main result was.

THEOREM 2. — o, (and B of course) is bijective for separable Hilbert manifolds
and 0 < g < oo,

The history of the proof for g = oo was as follows. Burghelea and Kuiper
proved :

(1) If a complete Riemannian manifold M has a Morse function giving a handle
decomposition, then M is Palais stable : M =~ M x H (conjectured in general by
Palais ; =~ means diffeomorphic) ;

(2) M ~ M' implies M x H ~ M' x H. Nicole Moulis exhibited such a function
for any open set in H. Consequently homotopy equivalent open sets of H are



88 N.H. KUIPER c2

diffeomorphic. Next Eells and Elworthy used a theory of Fredholm maps f for
example into H, earlier developed by Elworthy, and a transversality of Mukherjea
with respect to a dense flag embedding R! CR2CR?...CH, to show that
M is a union of nicely nested tubes around compact manifolds f~!(R"). This
led to an open embedding M < H and direct proofs of all statements required
here for g = oo, Nicole Moulis proved that C!'-functions on H with values in a
linear space can be Cl-approximated by C™-functions, whence a C%-embedded
image in H can be approximated by a C”-image. The case ¢ = 1 then follows.
The case ¢ = 0 is due to Henderson (See Anderson’s lecture).

Eells and Elworthy obtained considerable generalisations. 1 mention :

THEOREM 3. — If E has a C™-norm, a Schauder basis, and for some F,E ~E ©F,
dim F = oo, and the map g > g ® id, : GL(E) = GL(E ® F) = GL(E) is a homo-
topy equivalence, then f o a, is bijective for parallelisable E-manifolds.

This applies to E = ¢, ® H for example. The main conjecture is still open for
non parallelisable manifolds and for 1 < g < oo, but the most interesting theorems
may have been obtained now.

4. Embedding an E-manifold in F.

Following finite dimensional immersion theory we propose the conjecture 2.
There is a closed split C%-embedding f of a separable C?-E-manifold M into a
Banach space F, if and only if there is a bundle map for the tangent bundle
Ty —> F which is injective on each fibre. f E ~E ® E = F (e.g. = ¢, ® H), then f
exists always (Kuiper-Terpstra). If M is parallelisable and F = E @ E', dim E' = oo,
then also (Elworthy). A more interesting illustration concerns J"-manifolds :

THEOREM 4. — The following conditions are equivalent for a_J"-manifold M :
(a) M has a closed split embedding into J* ;
(b) There is a bundle map, monomorphic on each fibre :

o T > JE,
(c) There is a bundle map, monomorphic on each fibre :
o 8(ry) > R*

Proof. — Clearly (a) = (b), and (b) = (c) with the definitions of the R”-bundle
8(7y,) and of o' = 8(a) by the commutative diagram with exact rows :

0—=7y—> 71— 8(1)) —0
La o** L& ()
0—J¥—=J** =R —= 0
Given (c) we find a normal R*"-bundle ¢ over M, such that
d(ry) ® ¢ ~R*  (trivial bundle)
hence 7,, ® (¢ ® J) = R* ® J = J* (trivial bundle ; see (3)).
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As J = J ® H (Jameson), Elworthy’s embedding theorem above gives an embed-
ding of the parallelisable (!) total space of ¢ ®J (with O-section M) into J¥.
A closed split embedding for M is obtained with a suitable additional C -function
whose values space R can be absorbed into J", to obtain (a).

CoroLLARY. — (Elworthy, modified). If n,, is the universal R"-bundle over BO,,
then & =1, 0J is a J"-bundle over BO,. By theorem 1 there is a J"-manifold
M with tangential homotopy type & M has no C'-embedding in J* for 1 < k< oo,
For the proof observe that (7)) ~ n,.

5. Hilbert manifold pairs, knots.

Following finite dimensional theory (e.g. W. Browder) one can guess and prove
with Elworthy’s results :

THEOREM 5. — A complete set of invariants for a pair (X, Y) consisting of a
connected separable C™-H-manifold X and a connected closed C™-H-submanifold
Yis:

(a) the homotopy type h(X,Y)of X,Y) ;
(b) the homotopy type h(X\Y) of the complement ;
(c) hv(X, Y) the bundle type of the normal bundle v(X,Y)of Y in X, and

(d) yv(X, Y), the homotopy class of the normal exponential embedding of a
small normal sphere bundle of Y in X into X\Y.

COROLLARY 6. — All knots (H, S™%), where S7* is a closed embedded Hilbert-
space of codimension k in H, are trivial for k # 2. For k = 2 the knot is charac-
terised by the homotopy type h(H\S?) and some element yEm,(H\S™?
representing yv(H , S7?). Sufficient for the existence of a knot with given homo-
topytype L = h(H\S™?) is that H.(L) 5H*(S') =~ 7 and w,(L) is generated
by elements conjugate to some element y € m, (L) which generates H, (S") (More
complicated is the situation in finite dimensions (Kervaire)). Finally we observe
that the cone from 0 on an essential knot of codimension 2 in the unitsphere of H,
gives an essential isolated singularity on a manifold of codimension 2 in H (a
question suggested by R.D. Anderson).
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THE IMMERSION APPROACH TO TRIANGULATION
AND SMOOTHING

by R. LASHOF

That immersion theory should be useful in triangulation and smoothing pro-
blems is indicated by the following (where we abbreviate piccewise linear by PL) :

Lemma 1. — Let f: M" - Q" be an immersion (i.e. a local homeomorphism)
of a topological manifold into a smooth (PL) manifold ; then f induces a smooth
(PL) structure on M.

Topological immersion theory was developed by Jack Lees [8] using a result
of R. Kirby on stable homeomorphisms. Namely, Lees proved an isotopy ex-
tension theorem for topological manifolds using the result that a homeomorphism
of the n-torus induces a stable homeomorphism of R" by passing to the univer-
sal cover [3].

The following lemma is a direct result of immersion theory :

LEMMA 2. — Let K be a smooth (PL) compact n-manifold with boundary
embedded topologically in Euclidean n-space E" as a locally flat submanifold.
Let 7K be the tangent microbundle of K. Suppose the reduction of 7K to a
smooth (PL) microbundle, defined by the smooth (PL) structure of K, entends
to a reduction of TE" to a smooth (PL) microbundle. Then the smooth (PL)
structure on K extends to a smooth (PL) structure on E" — P, where P is a
finite subset.

Further one may show that the reduction of 7(E"” — P) defined by the smooth
(PL) structure is the assumed reduction.

An immediate consequence of Lemma 2 is :

THEOREM 1. — Let M" be an open topological manifold, and suppose ™ has
a smooth (PL) reduction. Then, for any n, M" admits a smooth (PL) structure.

CoROLLARY. — Every contractible open topological manifold is smoothable.

To prove uniqueness we use engulfing techniques (and hence require n = 5)
and the following :

ProprosITION. — (Haefliger and Poenaru [3] : Let f: I x M" = I x Q" be a regu-
lar homotopy (i.e. a level preserving local homeomorphism). Let X CM be
compact. Then for any ¢, € I, there is an € > 0, and a neighbourhood U of K,
such that f, |U can be factored

ft=fto°hfalt'—tol<ey

where h‘o is the inclusion and h, : U = M is an isotopy.



92 R. LASHOF c2

The uniqueness theorem implies existence for closed manifolds of dimension
at least five, and we obtain :

THEOREM 2. — Let M", n > 5, be a topological manifold without boundary.
Then the isotopy classes of smooth (PL) structures on M are in one to one corres-
pondence with the equivalence classes of reductions of ™ to a smooth (PL)
microbundle.

Similar results hold for manifolds with boundary. Details appear in [6]. See
also [5].

‘Theorem 2 has also been proved by Kirby and Siebenmann using other tech-
niques [4].

For n = 4 it can be shown that if M* is a closed manifold and 7M reduces to a
smooth microbundle then M # k(5% x S?), (connected sum with % copies of
S? x §%) is smoothable, for some k. Further if two smoothings M,, M, of M*
correspond to equivalent reductions, then

M, # k(S® x §?) is isotopic to M, # k(S* x §?) for some k.

(PL and smooth are equivalent for » = 4). This will appear in a forthcoming
paper with J. Shaneson.

Reductions of 7M correspond to homotopy classes of lifts of the classifying
map

T:M" > B Top,

to BPL, or BO, ; and hence are determined by the homotopy type of the fibres
Top,,/PL,, and Top, /O,

Using a result of Kirby [3] on stable homeomorphism and Lees’ immersion
theorem one may prove [7] :

TueoreM 3. — @,(Top, /PL,) ~ m;(Top/PL),i<n,n>=5.
m,(Top,/0,) = m, (Top/0), i <n, n=>5.

Using non-simply connected surgery results of Hsiang, Shaneson and Wall [2]
and [9], Kirby and Siebenmann [4] have shown

THEOREM 4. — m,(Top/PL) = 0 , i # 3
Z,,i=3.

Thus the only obstruction to putting a PL structure on M", n > 5, lies
in H*M ; Z,) ; and the only obstruction to equivalence of PL structures lies in
HM ; Z,).
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THE ROLE OF THE SEIFERT MATRIX
IN KNOT THEORY

by J. LEVINE

1. I will be interested in the following situation.

K" CR"™? s an imbedded oriented sphere (topological) — the imbedding may
be smooth or PL locally flat. If n is odd, say n = 2q — 1, one can associate to
K" a matrix, called the Seifert matrix, in the following way. Let M"*! C R**?
be a submanifold bounded by K" — one always exists. Then define a pairing & :
Hq(M) ® HQ(M) - Z as follows. If o, 8 & Hq(M), choose representative cycles
o/, B'. Translate o' off M in the positive normal direction (defined from the orien-
tation of K) and define ®(a® B) to be the linking number of the translated o'
with B'. @ is bilinear and satisfies : ® + (— 1)? ®"=— B where 7 is the transpose
of ® and B is the intersection pairing of M. Any representative matrix A of ® is
called a Seifert matrix of K. A * AT is unimodular, since B is. Conversely any A
satisfying this property is the Seifert matrix of a knot — unless » = 3, in which
case the additional condition — signature (4 + AT) =0 mod 16 — is needed and
even then it is not quite true. See [1] for details.

Naturally K does not determine a unique Seifert matrix — any congruent
matrix is clearly also a Seifert matrix. But even more so, the size of A can be
changed by altering M. For example adding a handle to M of index g which
links the other g-cycles in M will enlarge A to one of the forms :

A | g0 A|O
or

001 £ | 00

00 10

where £ is, respectively, a column or row vector. We call these, respectively,
right and left enlargements.

These types of enlargements, together with congruence, generate an equivalence
relation we call S-equivalence (in [1], it is called equivalence). This was first consi-
dered by Trotter [3] and Murasugi [2].

THEOREM [1]. — Any two Seifert matrices of a knot are S-equivalent.

This was proved by Murasugi [2], when n = 1. The proof proceeds by consi-
dering a cobordism ¥ CI x R™? between two choices of M, stationary on K.
By considering a handle-body decomposition of V, the transition between the
Seifert matrices can be broken down into steps of the sort used to define S-
equivalence.

(1) This work was done while the author was partially supported by NSF GP 21510.
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Thus S-equivalence is the correct relation on Seifert matrices. It cannot be
expected that the S-equivalence class of its Seifert matrices is a complete invariant
of knot type, since it contains no information pertaining to other than the middle
dimension. On the other hand, it seems to contain all the information on the
middle dimensional behavior.

THEOREM [1]. — Two knots with S-equivalent Seifert matrices are of the same
knot type if they satisfy the conditions : (1) I, R""? — K) = I,(S") for i<gq,
(i.e. the complement looks like a circle up to dimension q) and (2) n > 1.

2. We now look at the algebraic problem.

One problem is the variable size of the matrix. There are two ways of dealing
with such a situation. The usual approach is to stabilize ie. consider infinite
matrices. This does not seem to be of much use here. Another approach is to
find minimal representatives and restrict attention to these. This seems to be
more fruitful.

LEMMA [3]. — Any matrix , satisfying A + AT unimodular, is S-equivalent to
a non-singular matrix. Moreover the rank and determinant are invariants of the
S-equivalence class.

This is the algebraic analogue of a minimal spanning surface of a knot of di-
mension one, ie. a surface of minimal genus. Actually a minimal spanning surface
need not give rise to a non-singular Seifert matrix.

We may now restrict our attention to non-singular matrices of a fixed rank.
One question that arises is whether S-equivalence may coincide with congruence
(among non-singular matrices). This corresponds algebraically to asking whether
minimal spanning surfaces are unique. We shall see the answer is NO. One approach
to this problem is to find ways of generating all the matrices S-equivalent to a given
one (or rather congruence classes) in a finite number of steps, and to recognize
when we are through. We show how this can be done. Proofs will appear in a
future work.

The first step is :

THEOREM 1. — Any two S-equivalent non-singular matrices can be joined by a
sequence of the following two types of moves :

(i) right enlargement, then left reduction

(ii) left enlargement, then right reduction.
Moreover, we can do all of type (i) first and then all of type (ii).

Thus we never have to deal with matrices much larger than the original one.

The next step would be to examine a single move of the type (i) or (ii) and
be able to write down all the matrices obtained by such a move from a given one.
A priori this may seem improbable since the vectors £ used in the enlargment
may vary over an infinite number of choices. But, in fact, only a finite number
of distinct (up to congruence) enlargements occur and these can be constructed
in a finite number of steps.
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Suppose A has rank r. Consider the free abelian group of rank 7, written as
column vectors, and the subgroup generated by the columns of A. Let the quotient
group be denoted V(4). Then V(A4) is a finite group with det A elements. Let
0(A) = {P unimodular : PAP' = A} be the orthogonal group of A. Then O(A4)
acts on V(A) by left multiplication, Given A clearly one can completely write
down this situation.

THEOREM 2. — If &, n are two column vectors, the right enlargements of A
given by E and n are congruent if and only if the corresponding elements of V(A)
lie in the same orbit of O(A).

Thus we can write down all the enlargements of 4. To handle the reductions :

LEMMA. — Two non-singular right (left) reductions of a matrix are congruent.

Thus we can effectively write down all the matrices obtained from A by one
step of the form (i) or (ii) in Theorem 1.

One useful observation one can already make at this stage is :

COROLLARY [3]. — Two unimodular matrices are S-equivalent if and only if
they are already congruent.

This follows immediately from the above results and V(4) = 0. For example
fibered knots have unimodular Seifert matrices.

As illustration I would like to give some examples.

Example 1. — A =((2J ; — this seems to be the simplest non-trivial example.

V(4) = Z, generated by ((1)) O(A) = %=1 . Thus there are four orbits and

right enlargement gives four different matrices. Upon left reduction this reduces
. (2 0y _ 11 .

to three : A together w1th( 1 3) =4 and( 0 6)’ all of which are non-congruent.

Repeating these steps always yields the same three matrices. Since A' appears
here, we have also considered left enlargement and right reduction of A. It is
easy to then conclude that these matrices comprise the S-equivalence class of A
(up to congruence).

aNt 1
0 b
(g)- but they are congruent only if A =+ 1 or a = b = 1. This gives examples

Example 2. — )is S-equivalent to(g b;@) — by right enlargement by

of S-equivalence classes containing arbitrarily large numbers of congruence classes.
21
For example (xO xi ,) for all i + j = k gives k non-congruent, but S-equivalent,

matrices, for x > 1.

Finally we would like to know how many steps are needed to obtain all matrices
S-equivalent to A. We must first ask whether it is finite i.e. are there only a finite
number of matrices (up to congruence) S-equivalent to 4 ? If so, how many ?
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Of course we can tell when we are done by noticing that no new matrices are
produced at a given step, but it would be nicer to have a number given a priori
from A which would serve as an upper bound for the number of steps required.
This would also give an upper bound a priori for the number of matrices (up
to congruence) S-equivalent to 4.

THEOREM 3. — If B is obtained from A by a sequence of steps of type (i)
in Theorem 1, then no more than (rank A) of such steps are needed. Similarly

for steps of type (ii).

COROLLARY. — If d = |detA| and r = rank A, then there are at most d?”
congruence classes of non-singular matrices S-equivalent to A.

Question. — Is A always S-equivalent to A’ ?
This is related to the existence of non-invertible knots of dimensions > 1.
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INVARIANT KNOTS AND SURGERY
IN CODIMENSION 2

bv Santiago LOPEZ DE MEDRANO

In the first part of this paper we study the problem of finding an invariant knot
for an involution of a homotopy sphere ¥, By an involution (T', £") we unders-
tand a fixed point free involution T : " - ", smooth or p.L, of a homotopy
sphere X". Reference [17] contains the properties of these involutions that will
be needed. In the second part we use the experience obtained in the study of in-
variant knots to suggest the lines along which future research in the study of codi-
mension 2 problems could be carried out, and we state a few results, which are only
the initial steps in this direction.

Conversations with Drs. F. Gonzilez Acufia and Mauricio Gutiérrez were very
helptul in the elaboration of the ideas presented in this paper.

1. Invariant Knots.

An invariant knot for an involution (7", £") is an embedded (locally flat, in the
p.l. case) homotopy sphere "% C Z" which is invariant under T(i.e. T Ez-? =
zn2),

="-2),and a trivial invariant knot is one that is trivial as a knot, i.e. one that bounds an
embedded disc D"~! C Z". In this last definition no relation between D and T is
required, but it can be assumed that D N TD = "2 if n > 6, by the fibering
theorem ([5]).

We want to consider the problem of finding an invariant knot for a given invo-
lution (T, £"). For n 2 7, n not a multiple of 4, this can be solved using the
Browder-Livesay theory and its developments ([6], [17]), and for n = 7 we can
solve the problem of finding trivial invariant knots. Browder and Livesay defined
an invariant o (T, £") which lies in the following groups :

Z for n=3mod. 4
o(T,Z"YE({Z, for n=1mod. 4
0 for n even.

and using this invariant and some of its properties, another invariant p (T, Z")
can be defined for n # 4 with values in the groups
{Z, for n=3mod 4

T,z €
Pl ) lo for »n =3 mod. 4
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The results are :

TaEOREM 1. ([17]). — For n= 7, n £ 0 (mod. 4), (T, ") admits an invariant
knot if, and only if p(T,Z") = 0. For n =1, (T, Z") admits a trivial invariant
knot if, and only if, 0(T,Z") =0 and p(T,Z") = 0.

All values of the invariant ¢ can be realized both in the p.l. and in the smooth
cases, and all values of the invariant p can be realized in the p.l. case and for #» odd
in the smooth case, but known examples with non-zero value of p in the smooth
case are scarce for n even. In any case, this shows that there are plenty of examples
of involutions that do not admit invariant knots, and, for » = 3 mod. 4, of invo-
lutions that admit invariant knots but do not admit trivial ones.

The case n = 4k is the only one that cannot be reduced to the Browder-
Livesay theory, and is the one that we shall study in this section. We shall present
all the ideas and proofs, including a direct definition of the invariant p for this
case, so that only ocassional references to the theory of involutions are needed.
These ideas appear also in [17], but have been refined and simplified for this pre-
sentation to make it as self-contained as possible, and in view of the generalization
given in section 2.

So far we know that (T, 2**) admits a trivial invariant knot if, and only if,
p(T,=%) = 0. The general form of Theorem 1 suggests that this condition is
also necessary for the existence of an invariant knot, but it could still be possible
that (7', Z**) admits an invariant knot, even if it doesn’t admit a trivial one, just
as in the case mentioned above of an involution (7, Z***3). We shall see what
happens.

It is convenient to rephrase the problem in terms of the quotient spaces : if
(T, Z") is an involution, the quotient Q" = X"/T is called a homotopy projective
space. As the terminology suggests, it can be shown ([17],IV.3.1) that Q" is
homotopy equivalent to real projective space P", and the homotopy equivalence
is essentially unique. We can reformulate the problem of finding an invariant
knot as follows : given a homotopy projective space Q", find an embedded ho-
motopy projective space Q"2 C Q”, such that the embedding induces an isomor-
phism of fundamental groups. From Levine’s unknotting theorem ([13]) it follows
that the problem of finding a trivial invariant knot for (T, £") is equivalent to that
of finding an embedded Q" % C Q" so that the complement Q" — Q" 2 has the
homotopy type of S', as is case for the standard embedding P"~2 C P".

Browder’s embedding theorem

The best way to attack the problem is to use the methods of the proof of
Browder’s embedding theorem (in fact, there is a theorem that says that this is
the best possible way : [17], Theorem VI.1) which we proceed to describe.

Let M™ be a closed manifold (smooth or p.l.) and N CM™ a submanifold
with normal bundle £. Then, given a homotopy equivalence f: M' - M we would
like to find inside M’ a manifold N' homotopy equivalent to N. We have to state
this problem in a more precise form, and sometimes we have to consider also the
complements of the submanifolds. For this purpose, it is natural to introduce the
following definitions :
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DEFINITION, — Let f : M' = M be a homotopy equivalence and N a submanifold
of M. We say that f is weakly h-regular at N if

@) f is t-regular at N, and
(i) if N' = f~Y(N), fIN' : N' > N is a homotopy equivalence.
If, further, we have
(iii) fIM'—N' : M' —N'-> M — N is a homotopy equivalence, then we say
that f is strongly h-regular at N.

(“Homotopy equivalence” will mean “‘simple homotopy equivalence”, whenever
the distinction is relevant).

The problem now is, when is a homotopy equivalence f : M' - M homotopic
to one that is weakly, or strongly, h-regular at N ? If we make f z-regular at N, and
we consider the map g = f|f~ (W) : f~'(W) = N, it is easy to see that gis a normal
map in a natural way, whose normal cobordism class depends only on the homo-
topy class of f, and defines a surgery obstruction 8 (g) in the appropriate group.
0 (g) is the obstruction to obtaining a homotopy equivalence, normally coborant
to g, so 68(g) = 0 is a necessary condition for making f weakly h-regular at N.
Browder’s embedding theorem says that, under some circumstances, this condition
is sufficient for making f strongly h-regular at N.

Browder’s Embedding Theorem ([3]). Assume that both M and M — N are
l-connected and n = 5. Then, if 60(g) =0, f is homotopic to a map strongly
h-regular at N.

Actually a more general situation is covered by this theorem, where instead of
the pair (M ,N) one gives only the homotopy theoretical information which is
called a “normal system” or a “Poincaré embedding”, and the manifold N' can
be specified from the begining within its normal cobordism class. Also, if instead
of assuming 6(g) = 0, one assumes that g is normally cobordant to a homotopy
equivalence to cover the small dimensions, we only have to ask m = 5. Wall has
generalized this theorem to the case where m, (M — N) = w, (M) (induced by the
inclusion), which is always the case when m = n + 3, and has described the obstruc-
tion groups in the general situation ([21]). In all these results, the final conclusion is
strong A-regularity, which is more than we can hope for in our problem when
p #+ 0.

We describe the proof of this theorem only for m = 4k, for simplicity, the
other cases requiring only minor modifications. Since 6(g) = 0, g is normally
cobordant to a homotopy eqmvalence g :N'>N.If G: V— N is the normal
cobordism, we can glue M' x I and E(G*§) along E (g*£) x {1}, where E(G*§)
denotes the total space of the closed disc bundle of G*§, etc., and where E(g* ) x {1}
has been identified with a tubular neighborhood of f _’(N )x {1} in M' x {1}, thus
obtaining a normal cobordism between f and a new normal map f, : M; > M,
such that f “!(N)=N'. (This trick will be refered to as the normal cobordism
extension lemma).

Now f, restricts to the homotopy equivalence g, : N' = N, but is not itself a
homotopy equivalence. We correct this by doing surgery on the complement of
N'in M ; Let X = M — U, where U is an open tubular neighborhood of N in M
and X, =M, — U', where U' is an open tubular neighborhood of N' in M;.
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M —>

mtan

Since we can assume that f, sends U; onto U as a bundle map, and X, onto X,
we have a normal map & = f, | X, : X; - X, and since #|9X, is ahomotopy equiva-
lence, we can try to make 2 a homotopy equivalence, by doing surgery on the in-
terior of X { The obstruction to doing this, being the index of the intersection
form on ker #,, can be identified with the obstruction to making f; a homotopy
equivalence. But this obstruction is 0, since f, is normally cobordant to the homo-
topy equivalence f. Therefore we can find a normal cobordism, rel. boundary,
between h and a homotopy equivalence, and this cobordism, together with U, x I,
gives a normal cobordism between f, and a homotopy equivalence f, : M; > M
which is strongly A-regular at N. Since f and f, are normaily cobordant and the
normal cobordism is odd dimensional, we can turn it into an A-cobordism, and
therefore M' = M, and f is homotopic to f,, so the theorem is proved.

The invariant p.

We want to conmsider the case M = P** N = P*~2 In this case n, (M) = Z,
and X =M — U is a closed tubular neighborhood of the P! that links P*¥~2 in
P* Therefore X is the total space of the non-orientable (4k — 1)-disc bundle
over S' = P!, so it is non-orientable and m,(X) = Z. In another description, X
is the mapping torus of the orientation reversing diffeomorphism D%~ -» D*¥~1,

Let f: Q* - P* k> 1, be a homotopy equivalence, t-regular at P*=2and
g = flf '(P*~%). It is shown in [17], Theorem 1, IV.3.3, that 6(g) = O (and this
is the only place where we shall use the Browder-Livesay theory ; there is a coho-
mological proof of the same fact in [20]), so we can apply the normal cobordism
extension lemma to obtain a hormal map f, : M, - pok, normally cobordant to
f, such that f7'(P*~ %)= Q% 2 and g, = £,10%* 2 : 0*~? > P*~? isa homo-
topy equivalence, and such that f, sends a tubular neighborhood U, of Q*~2 in
M, onto U as a bundle map, and X, = M, — U, onto X, Let » = f,|X,. To carry
out the next step in the proof of Browder’s embedding theorem in our case, we
should have 6 (%) = 0, but this will not always be the case. Therefore, we defi-
ne.

p(Q*)=0)
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To show p is well defined, let f] : M; - P** be another normal map with the
same properties as f,, and let A’ be the corresponding map. If F : W - P* is a
normal cobordism between £, and f|, t-regular at P**~2 and ¥V = F~'(P*~?),we
can turn F|V into an h-cobordism because L,.._,(Z,,—) = 0 ([20], [21]). But,
by the normal cobordism extension lemma (for manifolds with boundary this
time) we can assume that V itself is an A-cobordism, by changing F through a normal
cobordism, rel. boundary. Since we can further assume that F sends a tubular neigh-
borhood of V in W onto U by a bundle map, and Y, the complement of that
neighborhood, onto X ,F|Y : Y = X is a normal cobordism, rel. boundary, bet-
ween h an k', so 8(h) = 0(h') and p is well defined.

Therefore, if p (Q**) = 0 we can proceed as in the proof of Browder’s embedding
theorem, and obtain a homotopy equivalence f, : Q3¥ - P** which is normally
cobordant to f and strongly h-regular at P* % Since Ly (Zy,—) =0([20],
[21]) we can turn a normal cobordism between f and f, into an h-cobordism, and
therefore Q3% = Q% and f, is homotopic to f. In other words, (7', Z**) admits
the trivial invariant knot @**~2. It is not difficult to see that a trivial inva-
riant knot for (T', £**) induces a homotopy equivalence f : Q*F - P** strongly
h-regular at P**~2 ([17], Theorem VI.1) and therefore p (T , 2**) = p (Q*¥), being
the obstruction to strong h-regularity, is the obstruction to the existence of a trivial
invariant knot for (T, £%%). We have then proved the second part of Theorem 1
for n = 4k with our new definition of p, and also that this definition must coincide
with the original one. To study the case p # O we need a detailed description of the
surgery obstruction 6 (k).

The surgery obstruction.

The surgery obstruction 6 (%) can be described using the methods of [2] (see also
[21]). Let h : X, & X be a normal map such that z#|0X, is a homotopy equiva-
lence, and let D = D**~! be a fibre of X - S'. By the fibering theorem ([5])
we can assume that #7'(dD) is a homotopy sphere. Make h f-regular at D and let
W =h"' (D).

W is a framed manifold with boundary 47! (8D), so it is framed cobordant, rel.
boundary, to a disc D', and by the normal cobordism extension lemma we can
assume that h~*(D) = D'. Let X and X be the manifolds obtained from X, and
X by cutting along (i.e. by removing 2 tubular neighborhood of )D and D, respec-
tively. Then % induces a normal map I X - X. Since X is a disc, H(h) =

1/8 (Index X,). We claim that the mod. 2 class of B(h) is the surgery obstruction
of h. This is because

(a) G(ﬁ) mod. 2 depends only on the normal cobordism class of 4. For if
H:Y — X is a normal cobordism, rel. boundary, between 2 and another normal
map k' X — X such that #'""'(D) is a dlSC, we can again assume that H ™! (dD)
is an A- cobordlsm If V=H Y(D) and Y is obtained from Y by cutting along v,
then Y can be considered as a (normal) cobordism, rel. boundary between X and
|49 X U V. (V gets the same orientation twice, because Y is non-onentable)
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Therefore 6 (') = 6 (h) + 26 (H| V).

(b) If 0(};) is even A is normally cobordant, rel. boundary, to a homotopy
equivalence. This is because we can construct a cobordism like the above Y with
any value of @ (H|V) (using the normal cobordism extension lemma), and by
choosing it properly we can assume (2") = 0. But that means that we can perform
surgery on the interior of X to obtain a disc, which amounts to performing sur-
gery on the interior of X, to make it homotopy equivalent to X.

(c)Ifhisa homotopy equxvalence, then 6 (h) = 0. Because we can assume from
the beginning that A~ (D) = D', by the fibering theorem ({5]), and then X , is a
disc.

We can further say that a normal map with non-zero obstruction is normally
cobordant to one with X, = X # M, (connected sum along the boundary),
where M, is the Milnor manifold obtained by plumbing along E; ([4],[10]).

Now let £ : Q* - P* be a homotopy equivalence, weakly A-regular at P**~2
0* — 71 (P*~2%) is not necessarily homotopy equivalent to X, i.., to S*, but
anyway it must be quite simple ; in particular, it must have the same homology
groups as X. The question now is whether such a simple manifold can carry a
non-zero surgery obstruction or not ; or in other words, whether we can or cannot
“simplify” X # M, enough. Now, the fact that the surgery obstruction of a normal
map X, - X doesn’t change if we add to X, two copies of M, can be interpreted
as follows : we can move one of the copies around an orientation reversing loop,
and it will come back as — M, so we can cancel it with the other copy of M, by
surgery. For the map X # M, - X, if we could somehow split M, into two equal
parts, and move one of the parts around the loop so it comes back with the opposite
orientation, we could expect to simplify X # M, by surgery, and hopefully get
something that looks like the complement of a 0%**? in a g*. Thisisin principle
what we shall do next.

Cracking.

We now describe a process that is, in a sense, the opposite of plumbing. Recall
([4], [10]) that by the process of plumbing we can associate to a weighted graph,
such as

2 2 2 2

A, : @ > —e

and 2 2 2 2
E;, eo— ® o ®

o——o
[N
’N
o
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a parallelizable 4k-manifold with boundary, as follows : for every vertex (with
weight 2) take a copy of the tangent closed disc bundle of S¥, and plumb two of
these copies together if the corresponding vertices are joined by an edge in the
graph. This plumbing of two copies consist in identifying product neighborhoods
D?** x D* — one in each bundle, and disjoint from any other such neighborhoods
where plumbing has been done at a previous stage — with each other by an identifi-
cation that interchanges the base and fibre factors. The manifold constructed from
A, will be denoted by A, again, and the one constructed from Ej is, by definition,
the Milnor manifold M,. Let L = 04,, and W the manifold obtained from L by
removing an open disc. £, = 0M, is the generator of 6**~*(ar). The homology
groups of these manifolds can be computed : H;(4,) = 0 for i # 2k, and H,,(4,)
is free on 4 generators, represented by the O-sections of the bundles, with respect
to which the intersection form has as matrix

2 1 0 0
1 2 1 0
01 2 1
0 0 1 2

which has index 4 and determinant 5. This last fact implies that
Hy, (L)~ Hy, (W)= 1Z;.

All the other homology groups of L and W are trivial, except the top dimensional
for L, being an orientable closed manifold. Similarly, H,(M,) = O for i # 2k, and
H,,(M,) is free on 8 generators e, ..., eg with respect to which the intersection
from has as matrix

COOCOCOO =N
COOOO=N—
COO0OO—=N—O
COO=N—=OO0O
—O=N= 000
O=N—= 0000
ON=—= OO0 O0OO0
NOO=OOOO

We want to show that M, is the union of two copies of 4,, glued along W. Sym-
bolically, the proof of this can be viewed as the process of cracking the E, into
two copies of 4,, by breaking one of the links :

—o oo I—o—o
In precise terms, let e}, ..., e; be the elements of H,, (M,) given by
1 8 2k WMy

ey =e¢ IF5
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es =—e, +2e,— 3e, + d4e, — Se; + de, — 2e, + 3¢,

These elements do not form a basis of the group ; in fact they generate a sub-
group of index 5 of H,,(M,). The interesting thing about them is that the matrix

of intersection numbers e; . e; is - - —
2 1 0 0 0 O O O
1 2 1 0 O 0 0 O
o 1 2 1 0 0 0 O
o 0 1 2 O 0 0 O
0o 0 0 0 2 1 0 1
g 0 0 0 1 2 1 O
0O 0 0 0 0 1 2 O
0O 0 0o 01 0 O 2

which is clearly equivalent to the block sum of two copies of the matrix of 4,.
That is, the link between the fourth and fifth rows and columns has disappeared !
If we represent these elements by embedded spheres whose only intersections with
each other are those given by this matrix and are transversal, then a regular neigh-
borhood of the union of the spheres representing e'l, ...,eq is easily seen (by
choosing an adequate Riemannian metric near the intersection points) to be diffeo-
morphic to A, (and we will call it A,). So is a regular neighborhood of the spheres
representing ey, . . ., e, and we will denote it by A;. We can assume 4, and 4, are
disjoint and contained in the interior of M,, but we will take a small tube joining
the boundary of 4, to the boundary of M, and we will consider it as also forming
partof 4,.

N

(o "o 5 o)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ NN

MATIIIRTRIININN

(This picture can be misleading ; the “tube” representing e really goes all over
M,, but missing the “tubes” representing e}, ... ., e, and es).
Let K = M, — A,. We now show that the inclusion A; C K induces an isomor-

phism of homology groups, which implies that K — A4, is an #-cobordism and, every-
thing being simply connected, that K is diffeomorphic to A'4. To prove this, first
one can see, using Lefschetz duality, excision and universal coefficients, that
H,,_,(K) = 0. Then the Mayer-Vietoris sequence of (M, ;4,, K),

0->H, A)eH, (K)>H, (M) >H,,_ (W)—>0

shows that H,,(A4,) ® H,,(K) can be identified with a subgroup of H,,(M,) of
index 5. Since H,. (4,) eaHZk(AQ) is contained in this subgroup, and has also
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index 5 in H,,(M,), being the subgroup generated by the {e,’}, it follows that
these two subgroups are equal, and that the inclusion induces an isomorphism
H,,,(A",) ~ H,,(K). Since all other groups are trivial, this proves our assertion.
Therefore M, can be expressed as the union of two copies of 4,, glued along
W by an orientation reversing diffeomorphism d.

We shall be interested in the mapping torus of d, which we shall denote by X,
whose boundary is the mapping torus of a diffeomorphism of $**~2 representing
Z,. We clearly have a normal map h; : X, = X, obtained by collapsing the comple-
ment of a collar neighborhood of 9.X,; fibrewise to an S, (There is no obstruction
to making this map normal, because all the homology of X; comes from St see
below). Now X # M, has the same boundary as X,, and in fact it is normally
cobordant, rel. boundary, to X,, since the framed cobordism 4, from W to a disc
induces, by the normal cobordism extension lemma, a normal cobordism, rel.
boundary, from X, to X # M, (which now appears as the union of two copies
of A,, joined by a tube, and then glued along W by d).

w

I

Therefore h; : X; > X represents the normal cobordism class with non-zero
surgery obstruction.

The only thing left to do is to see if X; looks like the complement of a tubular
neighborhood of a 0**~? in a @**. For this to be true it is necessary that the double
cover X, looks like the complement of a knot. Now X/, is the mapping torus of d 2
so it can be described as the union of two copies of W x I glued along one end by
d? and along the other one by the identity. Therefore we have a Mayer-Vietoris
sequence

0-H, (X)) > Hyy ((WxT) > Hy ,(WxI)oHy ,(WxI)~>H, ,(X;)~0

Identifying both middle groups with Z, @ Z, it follows that the central homo-
morphism has as matrix
1 1
dz 1

so we have to compute d2. dy itself must be multiplication by a certain number m.
Let x ,y € H,,_,(W) be such that L(x,y) = 1, where
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L:Hy,, (W)xH,_,W)->Z

is the non-degenerate bilinear pairing given by linking numbers ([12]). Since d is
orientation reversing we have
1=L(x,y)=—L(dyx,dyy) =— L(mx ,my) =—m?L(x,y) =—m*> ~-
Therefore d: is multiplication by m? = — 1, the above matrix in non-singular,
and the central map in the Mayer-Vietoris sequence is an isomorphism. Therefore

we have - -
T (Xy) =H,(X) =1

HX)=0 , i>1

(and since m must equal * 2, the same holds for X), and also m;(X,) =0 for
1<i<2k— 1. So we have shown that we can represent the normal map into
X with non-zero surgery obstruction by X,, which has very little homology, and
looks like the complement of a 0*-?% in a Q*. In fact we can now prove :

THEOREM 2. — Every involution (T, =%%), k> 1, admits an invariant knot.
In fact, it admits one that is simple and equivarantly fibered.

For the proof, we only have to do a weak version of the last steps of the proof
of Browder's embedding theorem. We had arrived before at a normal map
f, :M, ~> P*, such that f7'(P*~%) = 0*"2,£,10*? is a homotopy equiva-
lence and f,|X, = h : X, > X. The case 6 (#) = 0 has already been considered.
If 6 (k) # 0, we know that 7 is normally cobordant to #, : X, - X, rel. boundary,
5o we_get a new normal map f, : Q'** > Q*, where Q' = U, U X,. Now
5 = U U X is clearly a homotopy sphere because it is simply connected and
it is easy to see from the pioperties of X -that it has no homology below the top
dimension, so f, is a homotopy equivalence weakly A-regular at P**~2 The
rest of the proof follows as in the case 8 (4) = 0 : Q = 0* and f is homotopic
to fa, 80 (T, E‘“‘) admits the invariant knot Q'"‘ . The exterior of this knot is
X , and since 1r,(Xd) ~1r,(S ) for 1 <i<2k— 1, the knot is simple, by defi-
nition ([14]), and Xd/T X, fibers over S', which can be taken as a definition
of an “equivariantly fibered” knot.

Remarks. — The proof of this theorem gives us a direct geometric way of com-
puting the surgery group L, (Z,,—) =1Z,, since it can be used to prove [17]
Theorem 1, IV.3.3 without having to appeal to this computation. Also, it can be
used to construct very simple examples of non-standard p.l. involutions : In P**
substitute X by X, (their boundaries are p.l. homeomorphic) and the involution
obtained has p # 0.

The decomposition M, = A, U, A, is interesting in itself, since it shows that
M, (and also the closed p.l. manifold M,, obtained from M, by attaching to it the
cone on its boundary) is a “twisted double”. This is a case not covered by the
theorems of Smale [18], Barden [1], Levitt [16] and Winkelnkemper [22], which
show that under certain, quite general conditions, a manifold must be a twisted
double. Our example is more twisted than any of those covered by these theorems,
in the sense that d is orientation reversing.
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The process of cracking can be applied to other situations. For example, the
Eg graph can be cracked at other links, giving a decomposition of M, as the
union of the manifolds obtained by plumbing according to the subgraphs into
which Eg is divided. In the following diagram those links at which this cracking
process can be carried out are labeled W (eak), and those at which it cannot be
done are labeled S(trong) :

W W |4 |4 S

[ ® ® -& . 4 S—.

For the weak links, formulas giving the e; are very similar to the ones we have
given here.

This gives several relations between the boundaries of the plumbed manifolds.
For example, we have shown that L # Z, is diffeomorphic to — L. It is possible
that this process could be exploited to complete the classification of highly con-
nected odd dimensional manifolds up to diffeomorphism ([19]).

Another remark can be made about the comparison with the situation of a
knot Z*~2 c §%. It is proved in [11] that every such knot is cobordant to
the trivial knot. If one tried to carry over the proof to the equivariant case, one
would have to carry out Kervaire’s proof, which can be done, and then apply
some equivariant version of the engulfing theorem, as in [14] Lemma 4. But
since we know that there are involutions (7', Z*¥) which admit invariant knots, but
do not admit trivial ones, it is not true that every invariant knot for a (T, =4y
is equivariantly cobordant (with the obvious definition of this term) to a trivial
invariant knot. Therefore, there must be something wrong with equivariant engulfing
(as could be expected from the fact that the connectivity conditions on the quo-
tient spaces are as bad as possible).

2. Surgery in Codimension 2.

The proof of theorem 2 suggest the general philosophy for dealing with surgery
problems in codimension 2 : do not insist on obtaining homotopy equivalences
when you are doing surgery on the complement of a submanifold, be happy if
you can obtain the correct homology conditions. This has relevance both in the
existence problems, as in the existence of invariant knots, and in the classification
problems, as in the cobordism classification of knots.

In its simplest form, this approach suggests the following definitions and pro-
blems :

A map f: X =Y is a homology equivalence (H-equivalence) if it satisfies the
following conditions :

@) f, : 7, (X) > w,(Y) is an isomorphism.
@) f, : H(X) = H/(Y) is an isomorphism for all i.

A cobordism (W ; My, M,) is an H-cobordism if both inclusions M, C W are H-
equivalences. Two H-equivalences f; : M, - M between manifolds are H-cobordant
if they extend to a map F : W = M, where W is an H-cobordism between the M,.
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PROBLEM 1. — When is a normal map M’ - M normally cobordant to an H-
equivalence ?

PROBLEM 2. — When are two normally cobordant H-equivalences H-cobordant ?

Problem 1 is equivalent to the question of which elements in the Wall group can
be represented by H-equivalences, so this problem is in a certain sense simpler that
the standard surgery problem, since its obstruction cannot be stronger than the
standard surgery obstruction. On the other hand Problem 2 is much more complica-
ted than the standard problem of obtaining A-cobordisms, since in the only known
non-simply-connected example, that of cobordism of knots, the obstruction groups
are not finitely generated ([14]).

In the applications the problems are more complicated to formulate. First of
all, we are really interested in the relative case, where manifolds have a boundary,
and the restrictions of the maps and cobordisms to the boundaries are homotopy
equivalences and A-cobordisms. This is the situation when we consider cobordism
classes of knots : two knots are cobordant if, and only if, their exteriors are H-
cobordant, rel. boundary, when we consider them together with their normal
maps onto the exterior of the trivial knot. This example also suggests that con-
dition (i) in the definition of an H-equivalence could and should be weakened, if
not totally forgotten, in the sense that the solutions to Problems 1 and 2 will
probably be unaffected by this modification of the definitions. This also seems to
be the case in other situations, like in the study of H-cobordism classes of homology
spheres ([8]).

The other complication has been already found in the proof of Theorem 2 :
we had to make sure that the double covering of the map 4, : X; = X, and not
only h, itself, was an H-equivalence. In general we can say that f: X - Y is an
H-equivalence with respect to a subgroup G of 7, (Y) if the induced map F: X-Y
is an H-equivalence, where Y- Y is the covering corresponding to G. (If G = 0,
this means that f is a (weak) homotopy equivalence). In the applications G is the
kernel of w, (M — N) - m, (M). Another interesting case is when G is the kernel of
the orientation map.

When M is orientable, the best possible solution of Problem 1 would be that a
normal map is normally cobordant to an H-equivalence if its surgery obstruction
lies in the kemel of the homomorphism L,, (7, (M)) = L, (0) induced by the orien-
tation map, that is, if its good old index or Kervaire invariant is 0. It this were true
the weak h-transversality problem in codimension 2 would be solved whenever
the ambient manifold is simply connected. For other forms of Problem 1 there are si-
milar conjectures with equally nice consequences. For the moment we can prove
some of these conjectures when the fundamental group is Z, obtaining the follo-
wing theorem on weak A-regularity :

THEOREM 3. — Assume (M™,N™%) is such that m,(M — N)=1Z and either
7, (M)=0or m,(M)=12Z,. Then, if m — 2 25, a homotopy equivalence

f:M->M

is normally cobordant to a homotopy equivalence weakly h-regular at N if, and only
if, the surgery obstruction 0 (g) = 0, where g = fIF~ V).
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The proof rests on the knowledge of a good number of examples from knot
theory and the theory of involutions. When one is trying to do surgery to make the
complement of the inverse image of N H-equivalent to M — N, one can make it a
homotopy equivalence outside the inverse image of a tube representing a generator
of m,(M — N). Then one can use these examples to substitute this inverse image
by something H-equivalent (with respect to the kernel of m (M — N) > w, (M)
to the tube, just as we did in the proof of Theorem 2. In this way we get a homo-
topy equivalence, weakly h-regular at N and normally cobordant to f. When
m, (M) = Z, there are a few cases when we cannot conclude that this homotopy
equivalence is #-cobordant (and therefore homotopic) to f, butunderextra hypo-
theses, which are probably irrelelevant, we can obtain this stronger result. When
7, (M) = 0 there is no problem.

About Problem 2 we have very little to say. One would hope that there are
obstruction groups, similar to Levine’s knot cobordism groups, and that these
groups depend only on the fundamental group. If this were the case, there would
be nice consequences again : many problems of classification of embeddings in
codimension 2 up to concordance would be reduced in a large measure to knot
cobordism theory, and there would be a geometric interpretation of the periodicity
of Levine’s groups.

The methods of knot cobordism theory are in most cases too specific to be di-
rectly helpful in the general situation. One such method is the use of engulfing to
show that every knot is cobordant to a simple knot ([14], Lemma 4) since we have
shown in particular that this method cannot work for the case of invariant knots.
We have found a proof of this result that only uses surgery (similar proofs have
been found independently by Kervaire and Ungoed-Thomas) which works also for
invariant knots :

THEOREM 4. — Every invariant knot for (T ,Z") is equivariantly cobordant to a
simple invariant knot.

The proof consists in constructing an (equivariant) H-cobordism between the
complement of the knot and the complement of a simple knot, which gradually
kills the homotopy groups. The general step goes as follows : If X is the comple-
ment of the knot and if we assume , (X) ~ m,(S") for i < g and q is below the
middle dimension, we can perform equivariant surgery on the generators of
T, (X), obtaining a cobordism W between X and X', rel. boundary. Now both X'
and W have some unwanted homology in dimension g + 1. However, since
1rq+1(X')->Hq+1(X') is onto, because HqH(Z) =0 (See [7], p. 483) we can
kill this homology by doing surgery on X', which kills automatically also the extra
homology in W, thus obtaining an H-cobordism W' between X and X', where
X "= m " fori < g. This type of proof also works when we consider knots
which are invariant under other group actions, and for links in codimension 2 ([9]).

The next step would be to compute the equivariant cobordism classes of invariant
knots, which means that we should identify the obstruction to doing the last step
(the middle dimension) of the homology surgery process described above. There are
further complications because there are in some dimensions examples of two trivial
invariant knots which are not equivariantly cobordant ([17], VL3, Corollary),
and in the cases where there is no trivial invariant knot, we don’t know if there
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is a simplest invariant knot to which we could refer all the others. There is the
nice circumstance, however, that the equivariant H-cobordism class of the exterior
of an invariant knot, and the involution restricted to the invariant knot itself, de-
termine completely the involution.

There is another problem, even more difficult than-Problem 2, namely-thatof--
deciding when two H-equivalences are A-cobordant. This has to do with the problem
of isotopy of embeddings, and one case has been solved in [15].

REFERENCES

[1] BArDEN D. — The structure of manifolds, Ph. D. Thesis, Cambridge, 1963.

[2] BRowDER W. — Manifolds with w, = Z, Bull. AM.S., 72, 1966, p. 238-244.

[3] BROWDER W. — Embedding smooth manifolds, Proc. 1.C.M., Moskow, 1966.

[4] BROWDER W. — Surgery on simply connected manifolds (to appear).

[5] BRowpER W. and LEVINE J. — Fibering manifolds over a circle, Comment. Math.
Hely., 40, 1966, p. 153-160.

[6] BRowpER W. and Livesay G.R. — Fixed point free involutions on homotopy
spheres, Bull. Amer. Math. Soc., 73, 1967, p. 242-245.
[7]1 BiLENBERG S. and MACLANE S. — Relations between homology and homotopy

groups of spaces, Ann. of Math., 46, 1945, p. 480-509.
[8] GonzALEZ AcuNA F. — On homology spheres, Princeton Ph. D. Thesis, 1970.
[91 GUTIERREZ M. — Links in codimension 2, Brandeis Ph. D. Thesis, 1970.

[10] HirzeBrUCH F. — Differentiable manifolds and quadratic forms, Mimeographed
notes, Berkeley 1962.
[11] KERVAIRE M. — Les nceuds de dimensions supérieures, Bull. Soc. Math. France,

93, 1965, p. 225-71.

[12] KERVAIRE M. and MiLNOR J. — Groups of homotopy spheres I, Ann. of Math.,
717, 1963, p. 504-537.

[13] LeviNE J. — Unknotting spheres in codimension 2, Topology, 4, 1965, p. 9-16.

[14] LeviNeE J. — Knot cobordism groups in codimension two, Comment. Math. Helv.,
44, 1969, p. 229-244.
[15] LEVINE J. — An algebraic classification of some knots of codimension two,

Comment. Math. Helv., 45, 1970, p. 185-198.

[16] LevitT N. — Applications of Engulfing, Princeton Ph.D. Thesis, 1967.

[17] LépEz DE MEDRANO S. — Involutions on manifolds, Ergebnisse der Mathematik
und ihrer Grenzgebiete, 59, Berlin-Go6tingen-Heidelberg, Springer, 1971.

[18] SMALE S. — On the structure of manifolds, Amer. Jour. of Math., 84, 1962,
p. 387-399.

[19] WaALL C.T.C. — Classification problems in differential topology - VI, Classification
of (s — 1)-connected (2 s 4 1)-manifolds, Topology, 6, 1967, p. 273-296.

[20] WALL C.T.C. — Free piecewise linear involutions on spheres. Bull. Amer. Math.
Soc., 74, 1968, p. 554-558.

[21] WaLL C.T.C. — Surgery of compact manifolds, London Mathematical Society
Monographs, No. 1, Academic Press, 1971.

[22] WINKELNKEMPER E.H. — On equators for manifolds and the action of ®n, Prince-
ton, Ph. D. Thesis, 1970.

Instituto de Matemdticas
Universidad Nacional Auténoma de México
Torre de Ciencias
Ciudad Universitaria
México 20
Mexique



Actes, Congrés intern. Math., 1970. Tome 2, p. 113 4 119.

EXTRAORDINARY HOMOLOGY THEORIES :
BORDISM AND K - THEORY

by A.S. MISHCHENKO

The modern position of algebraic topology is characterized by appearance of
new, so called extraordinary, homology theories.

While the reduction of a problem of analysis to a homotopy problem was
formerly considered as the best achievement, now the main interest is concen-
trated in making computations in various domains of algebraic topology. The
effective method of spectral sequences is now an usual instrument of algebraic
topology. On one hand, the extraordinary homology theories enlarged the number
of useful spectral sequences, on the other hand they are the simplest instrument
for working with spectral sequences.

Moreover, we tend to consider that the extraordinary homology theories are
not only useful methods for computing various topological invariants, but to a
greater extend they are a new language able to describe these very invariants
in a more adequate fashion.

This report is devoted to several problems dealing with two well known extra-
ordinary homology theories : K-theory and bordism.

"The results which have been reported here were obtained by Bukhshtaber and
the reporter partly jointly and partly independently.

I. K-theory on the category of infinite complexes.

In 1956 appeared the Milnor construction of functorial filtration, which is
in a sense the geometric realization of the bar-construction. The spectral sequence
corresponding to this filtration is called the Milnor spectral sequence. However,
it was useless for classical homology because the E,-term has a simple algebraic
form only when the homology groups of the loop space £2X are torsion-free.
There is a wider supply of such spaces for K-theory but there a new difficulty
appears : one needs a reasonable extension of the definition of K(X) to infinite
complexes X. Now one may give two definitions of the groups K (X) :

(@) k(X) = [X, BU]
(b) H(X) = lim K (X,)

where X, is the n-skeleton of X. The groups k(X) define a homology theory but
it is difficult to compute them, whereas the groups JC(X) can be computed
but they do not constitute a homology theory.
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TueoreM 1 [1]. — The following statements are equivalent :
H KWX) =k*X)
(ii)) The Chern character
h: K*(X) @ Q> H**(X,Q)
is an isomorphism

(iii) In the Atiyah-Hirzebruch spectral sequence, for any p and q, there exists
ro =ro®, q) such that ER% = E2°.

Each of these conditions implies that the Atiyah-Hirzebruch spectral sequence
is strongly converging to K*(X).

There exist examples where the Atiyah-Hirzebruch spectral sequence does not
converge to HK*(X).

Theorem 1 and its analogues for K-theory mod p provide the extension
of the Milnor spectral sequence method to the category ot infinite complexes.
THeOREM 2 ([2]). — If n = 3, then
k*K(@Z,n),Z,)=0 for p=>2,
K*K(Z,n) =0, K"(K(Z,n) =0
kK"YK(Z,n)=2]Z for n odd,
KUK (Z,n)=ZI[[t]1/Z[[t]] forn even,
where Z. is the completion of Z under the topology for which all non-trivial

subgroups are neighbourhoods of zero.

By means of theorem 2 it is possible to compute the groups K*(X) and A*(X)
for any Filenberg-Mac-Lane complex and for spaces with finite Postnikov system
as well.

The computation of cohomology operations in K-theory mod. p ,p =2, is
another application of the Milnor spectral sequence.

THEOREM 3 ([2]). — The cohomology Operations ring for K-theory mod p is
isomorphic to Z [[<IJ"]] ® A [[7\"]] where k is prime to p,

k _ 2k Kyl _ 1 k k—1
M@ =2\ and @\ =k, (@ + &5,

THEOREM 4 ([2]). — The group of all stable operations from stable K-theory
mod p to Z,-graded K-theory mod p is isomorphic to Z,[[67]] ® A(c,) where
q and p are prime, q ¥ p, where
— 1 qtl s-1
#2 Ciq,q—i L 0, =50, g4

s" j=o0

91 =

for q =kp +s.
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II. The Atiyah-Hirzebruch spectral sequence.

Let & be an extraordinary cohomology theory, 4, be the ring of stable ope-
rations. It is useful to notice that the A — H spectral sequence is a differential
A,-module. The action of 4, on E, is completely defined by the representation
of 4, in the cohomology group of a point. This representation, in contrast to the
classical case, is non-trivial, as it is for K-theory and complex cobordism.

Let us define, for any differential d} = ¥ d*, the A,-module @} with gene-
rators d! and relations a. d! = O, where a € 4, is such that for any complex X
and x € EP*(X) it annules d*(x).

Let A =Z A, be the cohomology ring of a point, let 4,(f) C A, be the set
of operations that kill the elements of the group A,.

THEOREM 5 ([4]). — If the A — H spectral sequence in the theory h for the
stable spectrum which represents the theory of cohomology h is trivial, then

D2 =A4,/A,0) + A4, -7r).

Theorem 5 provides the algebraic description of the differential module (Df
for cobordism theory which correspond to the SO, U, Sp and trivial groups.

COROLLARY 1. — For the U-theory, one has the following formula :

§12 for r=2

0 — 1L,2r =
ord dy, =ord Extj " (A, A= KN (" — 1) for r#+2.

Using the Adams operations in K-theory and the Riemann-Roch transformation
from U-theory to K-theory we can get a similar result for K-theory. Especially
for any prime p,d, =0 mod. p if r # 2s(p — 1) + 1,

THEOREM 6 ([3]). — There exist a 2(p — 1) periodical cohomology theory :
hy = Zh} such that
p—1
2 hP X)) ~K(X,Z).
i=0 P

An analogous theorem holds for K-theory with p-adic coefficients.

The known problem of the realization of (co) cycles in U-theory by submanifolds
(and accordingly in K-theory by Chern classes) has an useful interpretation in
terms of A — H spectral sequences. These two problems, and the problem of the
denominators of Chern characters as well, are reduced to computations of diffe-
rentials of a spectral sequence. Namely, for any complex X, number g and cocycle
a € H* " (X), there exist a new complex V(X) and a cocycle v(a) and this corres-
pondance is functorial.

THEOREM 7 ([4]). — Let N\, be the smallest number such that N\, v(a) is a cycle
for all the differentials. Then \, is maximal among the denominators of the ra-
tional cocycles of the following form :

chyy, ) ="Lta. for £EEK; (X).

M
A
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Due to theorems 6 and 7 there exist an estimate of the multiples of cycles
realisable by submanifolds ; one can get it from information on the homology
groups. If one uses information about the Steenrod operations it is possible to
improve this estimate.

THEOREM 8. — For K-theory, one has the following formulas :
dorp-1y+1 (pr—lx)p =€, (BPHE),

where d ( )p is the p-component of a differential, €, ¥0 mod p, (BP")is the in-
tegral Steenrod operation.

III. The Chern-Dold character and formal groups.
The natural transformation of cohomology theories
ch, :h*X) > H*(X,A* ®Q),

where A* is the cohomology ring of a point, is called the Chern-Dold character.
If X is a point, then ck, is the canonical homomorphism A* > A* ® Q. It is
also a useful fact that ch, is a homomorphism of A,-modules. The following
theorem gives useful formulae for the Chern-Dold character for unitary and sym-
plectic cobordism.

THEOREM 9 ([5]). —(a) Let u € U*(C P™) be the geometrical cobordism. Then
chy@)=x+Z [M*]x™ [ (n + 1)!

where x EHZ(CP“‘,Z) is the generator, [M?"]= 0,(¢,41), Where & . is the
generator of K° (S*™*V) and o, is the first Chern class in cobordism. The elements
[M?"] are undivisible because the Todd genus, Td (M*"), is equal to (— 1)
They are completely defined by the following conditions :

5,(= TM*™)) = 0, W # (), 55— TM")) = — (n + 1)!, where s, are the
Chern numbers.

(b) Let ¢ € Sp* (HP™), be the geometrical cobordism, then

chsg, W) =z + Za, ;c, 2"/2n)!,

where z € H*(HP™,Z), is the generator, c, , € Qgg”“ €y = (= D" py&,)
Where p, is the first Pontrjagin class in cobordism, a, = 1 if n is odd, a, = 2
if n is even.

There are formulas which express C, in function of the M ntg,

COROLLARY 2.—chy 0, (%) = ch,(§) + Z [M*"] ch,,, (%).

Theorem 9 and Corollary 2 give the connection between the functions ¢ (#) and
the multiplicative homomorphisms p* : &, = Q:

COROLLARY 3. — If chy p(u) = x + Z o, x", then ¢* ((M*"]) = (n + 1)! «,.

The Chern-Dold character is the inverse series for the logarithm of the formal

group of the geometrical cobordisms, which is the universal formal group accor-
ding to what Quillen has shown not long ago. Namely,



EXTRAORDINARY HOMOLOGY THEORIES 117

(chy@N™ =gw)=n+Z [CP"]u™|/(n + 1).

This formula allows us to produce the Adams projectors and some other projectors.

Let Q,(Z) be the logarithm coefficient ring of the universal group. Then the
Chern-Dold character coefficients generate £2(Z). Thatis, the ring £,(Z) consists
in all bordisms of £, ® R for which all Chern numbers are integral. Finally
Qy(Z) can be viewed as the integral homology of MU. The Chern-Dold character
defines the following natural transformations :

() Hy(X) > Hom, (U*(X), Qy@),
(2) Hy (X, 2y (2)) = Homg (U*(X) , Qy(2)) ;

they give rise to new spectral sequences which connect cobordism and homology.
The exact sequence

0> Qy > QyZ) > Qy(2) /Dy~ 0

produces an interesting connection between the first spectral sequence and the
Adams spectral sequence in U*-theory.

Due to Conner and Floyd, the bordism class of a manifold with action on
the group Zp is defined by the set of bundle-bordisms of fixed submanifolds
with normal Zp-bundles. The family of all sets of bundle bordisms which have
a realisation as fixed submanifolds for some actions of Zp can be described by
mean of the universal formal group in a useful way.

Let P be a fixed point of the periodic transformations T,x,,..., x,, be the
weights of dT' at the point p. Then the “Conner-Floyd invariant”,

axy,...,x,) €Uy, ,BL),
is defined.
THEOREM 10 (Novikov, Kasparov, Mischenko ([6])). —
n
axy,...,x,)=1I —l—u—n
=1 g7 (x; gW))

In the general case the fixed submanifolds have more complicated descriptions
by the series of pairs (x,, k,),..., (x,, k,). Their geometrical interpretation
is given by CP™ x....x CP*n with the normal bundle £, x ...x £,, with
the weight x,, on the Hopf bundle £,,.

a(l,..., .

THEOREM 11 ([7]). — We have the following formula :

@Gy ke Gy k) = 11 25K (g7 (x; g@))

1,...,1
=1 g7 (g ) o )

where

9/dt (g(u1)
g ' (gw) — g(ur))

1+ Z G, ) =
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Theorems 10 and 11 give the additive basis of the £,-module of fixed submani-
folds for all actions of the group z,.

IV. Bordism of Eilenberg-Mac-Lane complexes and homotopy invariants of
non simply connected imanifolds. R ek

S. Novikov raised a problem, (see his report at L.C.M., 1966), on homotopical
invariants of non-simply-connected manifolds which are responsible for surgery
to homotopy equivalences. In the case of simply-connected manifolds, the si-
gnature is the only such invariant. We give a new interpretation of Wall groups
L, (m), L}, (r) as some version of bordism of the Eilenberg Mac-Lane complexes.

Let A be the group ring of the group 7 over the dyadic numbers ring. Let
C ={C;,d} be a Afree chain complex and & : C¥ ,~> C; be homomorphisms
such that g, = (— 1Y §,_, di ., & = (- DO g% where, : H(C*)~> H(C)
are isomorphisms. The triad o = (C, d, §) is called an algebraic Poincaré complex.
Similarly there is a definition of an algebraic Poincaré pair 8 and a notion of a
boundary 98 of the pair 8. If o = a8, then « is considered to be equivalent to
zero. Then 2, (A) is the set of bordism classes of algebraic Poincaré complexes.
According to Wall, £; (A) is defined in a similar way.

TuroreM 12 ([8]). — Let L2(w), L2 ° (n) be the Wall groups for the ring A.
Then §,(A) ~ L2(x) and §%,(A) =~ LE*(x). If two algebraic Poincaré complexes
are (simply) homotopically equivalent, then they define the same element in
the group Q,(A) (resp. in the group £ (A)).

COROLLARY 4. — Let q : L} (m) > Lf“(w) be the natural homomorphism. There
exist homomorphisms ¢ : ,(K (1 , 1)) > L2* (x) such that :

(a) If M, and M, are simply homotopically equivalent manifolds then
aM)=a0M,).

®IFM, . f.)EQ, M, ,n),0M,f,p) €EL,(n) is the obstruction to sur-
gery M, to simple homotopy equivalence, then q (86 (M, ,f,9)) = c (M) — 0o (M,).
Such a statement is still true if one omits the word ‘“‘simple”.

THEOREM 13. — There exist an exact sequence
LI ) > 18 > LY (> L9 (e) 5 -
where L9™ (n) consists of elements of order smaller than four.

Corollary 4 gives a method of classification of smooth structures of
non-simply-connected manifolds with fundamental group =, provided the
Wall groups L,(m) are known. For instance the L, (m) are known if m is free
abelian, if # = Z_, if w is the fundamental group of a surface or of a so called
solvable manifold. Theorem 13 gives the way that one can follow to extend the
Farrel-Hsiang method to a wide class of groups such asthe free product GxZ.
Let Gy, CG, v: G, > G be any monomorphism. Let us consider the group
G, = G ©, Z, which is the quotient group of the free product G * Z by the rela-
tions gt = tp(g) , g € G,; then the following sequences
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0~>Kera—L,(G)* L, (Gy)~>0
0->Kera— L, (G)

are exact modulo elements of finite order.

Another problem arises from the analysis of the Hirzebruch formula which
expresses the signature of a manifold by means of the characteristic numbers
of the tangent bundle. C.G. Kasparov suggested the following generalisation of
the notion of “higher signatures” for non-simply connected manifolds. Let
x € H¥(K(n,1),Q), f: M~ K(m, 1) be the canonical mapping. Let us write
o, M) =<LWM)f*x),[M]> If o,(M)=0 for any x, then o(M) = O.The
converse statement is true for the above mentioned class of groups II.

Conjecture. (G.G. Kasparov). The “higher signatures” o, (M) are homotopy
invariants if K(w, 1) is an oriented manifold.
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CHARACTERISTIC CLASSES AND COBORDISM

by F.P. PETERSON

1. Coalgebras over Hopf algebras.

Let A be a connected Hopf algebra over Z,. Let M be a connected coalgebra
over A. Let ¢ : A > M be given by ¢(a) = a(l). Let B be a Hopf subalgebra
of A such that there exist differentials Q, € B such that a B-module P is free
if and only if H(P, Q,) = 0 all i, If N is an A-module, let N ™ = the A-submodule
generated by all elements of dimension < n.

THEOREM 1.1. — Assume Ker ¢ = AB where B is finite. Assume there is an
A-module N and an A-map 0 : N > M such that

0, : HWN,Q)>HWM, Q)

is an isomorphism for all i. Assume N© = A[AB and that if x € N®W/N @1
with |x| = n, then there is a non-zero b € B such that bx = 0. Then 0 is a mo-
nomorphism and Coker 8 is free, i.e.

M =~ N ® a free A-module.

This is a generalization of an algebraic theorem in our Spin cobordism paper
[2] and for a proof, see [10]. See Margolis [7] for a related theorem.

Example 1. — Adams and Margolis [1] have shown that all Hopf subalgebras
of the mod 2 Steenrod algebra @ satisfy the condition on differentials. The
case B = {1 ,S8q'} gives the structure of H*(MSO ; Z,) and we now show how
it applies to H*(M Spin ; Z,) using B = @, = {l,Sq!, Sq°}.

LetJ =(j;,...,}) with r=0, j,> 1. Let
P, =P ...P, €H"" (B Spin ; Z,).
THEOREM 1.2. — If n(J) is even, there exist classes u; such that
x; =P; + Q,0,(u,) € Ker Sq' N Ker Sq2.
If u(J) is odd, then there exist classes y; such that
Sq*(yy) = Py.

This was proved in our paper [2] using KO-theory and a lot of work. An
elementary proof can be constructed as follows. If n(J) is even, by induction
it is enough to find u 5y and u ., 44y - Let

Zg = 2 Wisi - Weizsi

i=0
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Let

Uy = Zag—z A Ui ame1) = Zak - Zam

and compute. If n(J) is odd, let J = (j,,J') with n(J') even and j, = 2k +_1.
Then let

Yy=z4, . xp Sq* (Pyyry - tyr)

and compute.
To apply Theorem 1.1 to M Spin we define

N=2 @/&Sq ,Sq%) @ & @& (Sq?)
n() n{J)

even odd
and define 6 by sending

J=2x, .U if n(J) iseven
and
J=>y,. . U if n(J) isodd.

By Theorem 1.2, 6 defines an (L-map. One must, of course, prove that 6, is an
isomorphism. Finally, one reads off ﬂi"“‘ from the Adams spectral sequence.

Example 2. Let A = CZP, the mod p Steenrod algebra, and B be an exterior
subalgebra, for example

B=E@,,Q,)
where
Q, =8 and Q, =P §—BP.
It is reasonable to expect that
M =H*MSPL ; Z,)
satisfies the hypothesis of 1.1 with this B ; in particular it is known that
Qo,Q, €Ker¢ and @, ¢ Ker ¢

and my computations produce N and 0 for a range of dimensions. H*(BSPL ;Zp)
is “known” by Madsen and May, but at present it is not known in a strong
enough form to compute Q/(U). I have computed the p-torsion of Q5 = QP
for some range, say in dimensions < p? (2p — 2). An interesting case is

PL
Q2pr) @p-2)-1

which contains Z p2 and p times the generator is not detected by ordinary coho-
mology characteristic numbers (see [9] for details).
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2. Secondary characteristic classes
Let
r= Mr)' Ker (v* : H* (BO) > H* (M")) C H*(BO ; Z,)

be the ideal of relations among Stiefel-Whitney classes. In [6] we proved that

= X H®B0)SY,
2j>n—i

where right operations by & on H*(BO) are defined by
W)a =& (x@) p)),

where
® . H*(BO) > H*(MO)

is the Thom isomorphism. Furhtermore, we can write down an additive basis for
I, and a minimal generating set as a right &-module, but we do not know the
structure of J, as an ideal over &. Let {y,} be a minimal generating set for I,
as an ideal over &. Let |y,| = r,. Construct

B

n

!

BO —>TNK(Z, ,r)

where
Y*(L,) = Vi
n
Note that r, =[—]+1 and y,=v, .If
2 [3]+1
v:M" - BO

is the normal map to a closed, C™-manifold, then

where
V:M" > B,.

Hence any element x € H*(B,,) gives P*(x) € H*(M), a secondary characteristic
class defined for all n-manifolds. For example, right Q-relations give rise to such
elements x € H*(B,) which are not in Im 7*. E.g.,

(1) Sq3Sq> =0 and (1) Sq® €1;.

This gives an x € H"(Bs ). (Many such examples were noted in [8]). We also note
that if we form cobordism with respect to B, we get a theory where the Arf
invariant is defined [4]. This may give an interesting multiplicative cobordism
theory.
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Let M, be the Thom spectra for B, and let F, be the fibre of
M T@MO.
As a corollary of a theorem of Browder [3], we have the following result.

THEOREM 2.1. — In dimensions <n, F, is a wedge of K (Z, Y's, one for each
element of

{y,}® {additive basis of H*(BO)}.

The following result has been checked by explicit computation by E.H. Brown
and myself in a range of dimension and we believe it to be true in general.

STATEMENT 2.2. — In dimensions < 7,
T H*F,) > H**'*(MO)
is a monomorphism on the (L-generators of H*(F,).
The following are corollaries of 2.2.
COROLLARY 2.3. — In dimensions < 3n/4,
H*B,) = Im n* = H*(BO)/I,.
This follows because 7, is a free right &-module in that range.

COROLLARY 2.4. — If x € H*(B,), x| <n, then P*(x) is independent of the
lifting 7 of ».

COROLLARY 2.5. — If x € H*(B,), x| < n, then there exists w € H*(BO) such
that

VE(x + 7% (w)) =0 forall M" and 7.
2.4 and 2.5 follow from the arguments given in [5].
COROLLARY 2.6. — H*(B, ) can be computed in dimensions < z.

COROLLARY 2.7. — Let
¢, = the number of y; with r, = [-’12-] +1+k.

Then ¢, is independent of n and
c(t) =Zc, t*
is given by the polynomial

2 tm/2 + Z t(m1+m2+m3)/2 + Z t(m1+...+m5)/2 +...

melL my,ma,m3eL my,...,mseL

c(t) = :
¥)

2 II (1 —#m)
meL

where L is the set of odd positive integers not of the form 2" — 1 and 1.
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BLOCK STRUCTURES IN GEOMETRIC
AND ALGEBRAIC TOPOLOGY

by C.P. ROURKE

I want to describe some homotopy functors which are defined on the category
of CW complexes but which are naturally defined on the PL category first. The
point being that the ‘kinky’ nature of PL topology turns out to be a positive
advantage in the definition : we use the description of a polyhedron as an equi-
valence class of simplicial complexes under the relation of common subdivision.
I shall give two examples of such functors and then a general recipe which in-
cludes both examples.

Example 1. — “Block bundles”.

The first example is the classical example constructed by Kato [4], Morlet [7]
and Rourke-Sanderson [10] ; it belongs in the realm of geometric topology.

Let K be a PL cell complex, i.e. a polyhedron |K| and a collection {0} of PL
balls contained in | K|, the cells, which cover |K| and satisfy

(i) the interiors of the cells are disjoint
(ii) the boundary of a cell or the intersection of two cells is a union of cells.

A g-block bundie £9/K is a total space E (¢£) D |K| and for eachi-cell 0 € K a
block B, C E(§) such that (8, , o) is an unknotted (g + i, i)-ball pair. The blocks
cover E(£) and satisfy axioms which can be summarised by saying that they
“fit together like the cells of K,

The crucial theorem for turning block bundles into a functor is the subdi-
vision theorem :

Let X' be a subdivision of K. Then there is a natural 1: 1 correspondance
between isomorphism classes of block bundles over K and block bundles over K'.

The correspondence is established by subdividing the bundle itself, that is by
finding blocks of £'/K’' inside blocks of £. In the next example I shall give a gene-
ral proof of subdivision which includes this theorem. We can now define pull-
backs for a PL map f: |L|— |K| by constructing the bundle § x L/K x Lwith
total space E(£) x |L| and block 8, x 7 over ¢ x 7 and then subdividing and res-
tricting to "' fC |K x L|. And we get a homotopy functor as stated earlier
(for details see [10 ; § 1]). It is worth noting that there is also a natural notion
of Whitney sum given by restricting ¢ x n/K x K to A . Block bundles were
invented to give a ‘normal bundle’ theory for the PL category.
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Example 2. — “Cobordism”.

The second example belongs to algebraic topology. For details of this example,
see Rourke-Sanderson [12]. A g-mock bundle £/K consists of a total space
E(%) and for each i-cell 0 €K a (¢ + i)-manifold M, C E(§), the block-over o.
The blocks cover E () and satisfy two axioms :

@) ler are disjoint
(i) aM, = U {M_ |7 C 3}
M,NM =UM,|pCanr}

Note the similarity of these axioms to those for a cell complex ; so we can
again summarise the definition by saying that the “blocks fit together like the
cells of K™,

E)

K 4+ - f t
g a

Figure 1 — Picture of a 1-mock bundle ; the block over a is empty. Possible subdivisions
corresponding to the new vertex B are shown dotted.

Subdivision theorem. — Let K' be a subdivision of K and £/K a mock bundle.
Then there is a mock bundle £ /K’ with E(§")=E (§)and M, (§) = U{M, (") 1 T Co}.

In other words we cut up the blocks of § over cells of K'. As figure 1 illustrates,
this theorem is a kind of transversality theorem ; so I am going to include a
sketch of proof to stress the elementary nature of the method, which uses only
collars.

Sketch of proof. By induction we can assume & already subdivided over the
(n—1)—skeleton of K and we have to extend over one n-cell 0 € K. If we can
subdivide ¢ over a further subdivision o'’ of o', then on taking unions of blocks
(amalgamating) we get a subdivision over o’. So we can assume that ¢’ has a top
dimensional cell o, Co and ¢ — 0, is a ‘cylindrical triangulation’, using a PL
isomorphism of ¢’ — G, with ¢’ x I Choose a collar on M, and define the blocks
over cells of o' — 0, by identifying the two collar parameters, -and finally define
M"l = M, -collar.

Now subdivisions are not unique, but they are unique up to cobordism by
the same proof, where mock bundles &,, & are cobordant if they are restric-



GEOMETRIC AND ALGEBRAIC TOPOLOGY 129

tions of a mock bundle over K x I. And the cobordism classes of mock bundles
define a contravariant functor T9( ) on polyhedra.

THEOREM. — There is a natural equivalence
T9( )=( )
where 9L 3, denotes the r-th unoriented PL cobordism group.

Sketch of proof : It suffices to construct an Alexander duality isomorphism
between mock bundles and bordism. As usual this follows from Poincaré duality.
So let £7/M" be a mock bundle over a manifold. Then E (£)is an (n + g)—manifold
(for proof see[3;1-2]) and p : E(¥) > M (a projection constructed inductively over
cells) is a bordism class which defines the Poincaré dual to £ Conversely, given
f: W - M then make f simplicial and consider dual cells in M. Then f~(cell)is
a manifold by [2] and all the manifolds give a mock bundle structure with total
space W.

Finally to end this example we observe that the various operations in co-
bordism have easy geometric pictures in terms of mock bundles :

Addition
Cup product = Whitney sum (defined as for block bundles)

disjoint union

Cap product = Amalgamated pull back : ie. given f: W —> K and &/k, form
FEE)W, then f. p : E(f*(¥)) = K is the required bordism class.

General recipe.

Let 9 be a category of “pseudo-manifolds” and inclusions in the boundary,
where a pseudo-manifold is an object with a virtual dimension and a boundary
of one dimension lower. For a cell complex K define the associated category
denoted K, as in [11 ; § 1], to have objects the cells of K and morphisms the
face inclusions in K.

Then an (O, ¢)-bundle, £9/K, is a functor
£: K->

which raises dimension by g and such that the blocks £(o) “fit together like the
cells of K™ i.e.

(i) 9k()=uU{t@|7Co)
(@ E@NE@ =Vt Ipcont}

Example (i)
Oob@) ={D? xD?|p, q >0}
dim D x DY) =p +¢q
0 (DP x D?) = 0DP x D?
(N.B. 8 not necessarily in J1¢!)
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Mor () ={f: D* x DD x D-|p'<p and f(D? x 0)CD'x 0}
Then an (QIX , g)-bundle is a g-block bundle.
Ex (ii). — (Block bundles with arbitrary fibre)

Ob (M) = {DP x F} virtual dim. p

o(DP x F) = 0DP x F

Mor (M) ={f: D?" x F&aDP x F blockwise j.e. Im (f) = X x F, some X}

Then an (M , 0)-bundle is a block bundle with fibre F in the sense of [1,11]
with charts.

Ex (iii). — Homology cell analogue of (i) (Martin-Maunder [6]), where a homolo-
gy cell is the cone on a homology manifold which is a homology sphere. This
theory is the normal bundle theory for the “homology” category.

Ex (iv). — U = all manifolds (graded by dimension) then an (I, g)-bundle is
a g-mock bundle.

Ex (v). — 9 = {manifolds with restriction on normal block bundle}. Then the
corresponding mock bundle theory gives a more general cobordism theory.
E.g. (a) normal bundle smooth oriented ; result smooth oriented cobordism.

(b) normal bundle trivialised ; result stable cohomotopy.
Another direction to generalise example (iv) is to introduce singularities. For
example if we introduce all possible singularities :

Ex (vi). — 91K = {principal n-polyhedra}, 9 = Zz-boundary. Then the resulting
theory is Z,-cohomology (same proof as for mock bundles).

Ex (vii). — M = {Poincaré duality spaces}. Then the resulting theory is the
cohomology theory corresponding to Levitt’s “transversal subcomplex” of MG [5].
Axioms for a theory.
We now axomatise the properties of X which are needed to set up the theory :
Axiom 1. — Objects of 9 have collars up to cobordism.
Axiom 2. — M€ W =M x I € L.

Axioms 1 and 2 allow the proof of the subdivision theorem to work, to provide
subdivisions up to cobordism.

Axiom 3 (amalgamation). — Suppose M, , M, , M, N M, € IR, where M, and M,
have “dim” n, and M, N M, has “dim” n — 1, and that the inclusions M, N M, C M,,
i=1, 2, are in M. Then M, UM, € ).

Axiom 3 is necessary to pass from a bundle over K’ to one over K by “amal
gamating blocks”, Axioms 1, 2 and 3 imply independence of the cell structure
of K and that we have a homotopy functor by the proof outlined for mock bundles.
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Remark. — There are significant cases where axioms 1 and 2 are satisfied but not
axiom 3, for example T = unions of discs . In this case we can again define a
functor by letting an object “over K be an object over some subdivision of K.
Amalgamation is then formal and the proof goes through. The functor corres-
ponding to unions of discs , in codim 3 at least, is dual to “immersed bordism
theory”, for details see [14].

Axiom 4. — N closed under disjoint union.

Axiom 4 implies that we have an abelian semigroup functor under disjoint
union ; in most natural cases, an abelian group.

Axiom 5. — M closed under cartesian product.

Axiom 5 gives an external product and by restriction an internal product
(cup product, Whitney sum).

Two final remarks

(1) The general description of an T -bundle applies directly for a A-set, as in
[11 ; § 1], so that our functors are defined for the CW category.

(2) There is a universal bundle 7,,/Gsm where G, is the “Grassmannian” of

Mt-bundles over A*¥ embedded in A¥ x R and Y. is the obvious functor (compare
[11; 8§ 1]). Seealso [8; § 1].

Credits

Sanderson and myself were awakened to the possibility of more general “block
bundles” by the work of Martin and Maunder [6] ; however the construction
has strong relations with the ideas of Casson and Sullivan, as exposited by myself
[9], and, in a more general setting, by Quinn [8]. The terminology “mock bundle”
is due to Cohen.
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TOPOLOGICAL MANIFOLDS *

by L.C. SIEBENMANN

0. Introduction.

Homeomorphisms — topological isomorphisms — have repeatedly turned up in
theorems of a strikingly conceptual character. For example :

(1) (19™ century). There are continuously many non-isomorphic compact
Riemann surfaces, but, up to homeomorphism, only one of each genus.

(2) (B. Mazur 1959). Every smoothly embedded (n — 1)-sphere in euclidean
n-space R" bounds a topological n-ball.

(3) (R. Thom and J. Mather, recent work). Among smooth maps of one compact
smooth manifold to another the topologically stable ones form a dense open set.

In these examples and many others, homeomorphisms serve to reveal basic rela-
tionships by conveniently erasing some finer distinctions.

In this important role, PL (= piecewise-linear)(**) homeomorphisms of simplicial
complexes have until recently been favored because homeomorphisms in general
seemed intractable. However, PL homeomorphisms have limitations, some of them
obvious ; to illustrate, the smooth, non-singular self-homeomorphism f: R - R

1
of the line given by f(x) = x + Z exp (— 1/x?)sin (1/x) can in no way be regarded

as a PL self-homeomorphism since it has infinitely many isolated fixed points near
the origin.

Developments that have intervened since 1966 fortunately have vastly increased
our understanding of homeomorphisms and of their natural home, the category
of (finite dimensional) topological manifolds(***). I will describe justa few of them
below. One can expect that mathematicians will consequently come to use freely
the notions of homeomorphism and topological manifold untroubled by the frus-
trating difficulties that worried their early history.

(*) This report is based on theorems concerning homeomorphisms and topological mani-
folds [44] [45] [46] [46 A] developed with R.C. Kirby as a sequel to [42]. I have reviewed
some contiguous material and included a collection of examples related to my observation
that 7,(TOP/PL) # 0. My oral report was largely devoted to results now adequately descri-
bed in [81], [82].

(**) A continuous map f : X = Y of (locally finite) simplicial complexes is called PL if
there exists a simplicial complex X' and a homeomorphism s : X' = X such that s and
fs each map each simplex of X' (affine) linearly into some simplex.

(***) In some situations one can comfortably go beyond manifolds [82]. Also, there has been
dramatic progress with infinite dimensional topological manifolds (see [48]).
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1. History.

A topological (= TOP) m-manifold M™ (with boundary) is a metrizable topo-
logical space in which each point has an open neighborhood U that admits an open
embedding (called a chart) f: U~ R} ={(x,,...,x,) € R"|x, > 0}, giving a
homeomorphism U = f(U).

From Poincaré’s day until the last decade, the lack of techniques for working with
homeomorphisms in euclidean space R™ (m large) forced topologists to restrict
attention to manifolds M™ equipped with atlases of charts f,: U,~> R}', VU, =M,
(a varing in some index set), in which the maps f fo, ! (where defined) are especially
tractable, for example all DIFF (infinitely differentiable), or all PL (piecewise
linear). Maximal such atlases are called respectively DIFF or PL manifold struc-
tures. Poincaré, for one, was emphatic about the importance of the naked
homeomorphism — when writing philosophically [68, §§ 1, 2] — yet his memoirs
treat DIFF or PL manifolds only.

Until 1956 the study of TOP manifolds as such was restricted to sporadic
attempts to prove existence of a PL atlas (= triangulation conjecture) and its
essential uniqueness (= Hauptvermutung). For m = 2, Rado proved existence,
1924 [70] (Kerékjartd’s classification 1923 [38] implied uniqueness up to isomor-
phism). For m = 3, Moise proved existence and uniqueness, 1952 [62], cf. amisproof
of Furch 1924 [21].

A PL manifold is easily shown to be PL homeomorphic to a simplicial complex
that is a so-called combinatorial manifold [37]. So the triangulation conjecture is
that any TOP manifold M™ admits a homeomorphism # : M - N to a combinatorial
manifold. The Hauptvermutung conjectures that if h and A' : M > N' are two
such, then the homeomorphism #'h™' : N> N' can be replaced by a PL homeo-
morphism g : N> N'. One might reasonably demand that g be topologically isotopic
to h'h~Y, or again homotopic to it. These variants of the Hauptvermutung willreap-
pearin §5 and §15.

The Hauptvermutung was first formultated in print by Steinitz 1907 (see [85]).
Around 1930, after homology groups had been proved to be topological invariants
without it, H. Kneser and J.W. Alexander began to advertise the Hauptvermutung
for its own sake, and the triangulation conjecture as well [47] [2]. Only a misproof
of Noebling [66] (for any m) ensued in the 1930’s. Soberingly delicate proofs of
triangulability of DIFF manifolds by Cairns and Whitehead appeared instead.

Milnor’s proof (1956) that some ‘well-known’ S2 bundles over S* are homeomor-
phic to S7 but not DIFF isomorphic to S7 strongly revived interest. It was very rele-
vant ; indeed homotopy theory sees the failure of the Hauptvermutung (1969) as
quite analogous. The latter gives the first nonzero homotopy group 7,(TOP/O)= Z,
of TOP/O ; Milnor’s exotic 7-spheres form the second 7,(TOP/O) = Z,,.

In the early 1960’s, intense efforts by many mathematicians to unlock the geo-
metric secrets of topological manifolds brought a few unqualified successes :
for example the generalized Shoenflies theorem was proved by M. Brown [7] ;
the tangent microbundle was developed by Milnor [60] ; the topological Poincaré
conjecture in dimensions = 5 was proved by M.H.A. Newman [65].
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Of fundamental importance to TOP manifolds were Cernavski’s proof in 1968
that the homeomorphism group of a compact manifold is locally contractible
[10] [11], and Kirby’s proof in 1968 of the stable homeomorphism conjecture witls
the help of surgery [42]. Key geometric techniques were involved — a meshing idea
in the former, a particularly artful torus furling and unfurling idea(*) in the latter,
The disproof of the Hauptvermutung and the triangulation conjecture I sketch
below uses neither, but was conceived using both. (See [44] [44 B] [46 A] for
alternatives).

2. Failure of the Hauptvermutung and the triangulation conjecture.

This section presents the most elementary disproof I know. I constructed it
for the Arbeitstagung, Bonn, 1969.

In this discussion B" = [— 1, 1]" C R" is the standard PL ball ; and the sphere
S"~1 = 9B" is the boundary of B". T"=R"/Z" is the standard PL torus,the n-fold
product of circles. The closed interval [0, 1] is denoted 1.

As starting material we take a certain PL automorphism o of B x T",n > 3,
fixing boundary that is constructed to have two special properties (1) and (2) be-
low. The existance of o was established by Wall, Hsiang and Shaneson, and Casson
in 1968 using sophisticated surgical techniques of Wall (see [35] [95]). A rather naive
construction is given in [80, §5], which manages to avoid surgery obstruction groups
entirely. To establish (1) and (2) it requires only the s-cobordism theorem and
some unobstructed surgery with boundary, that works from the affine locus
Q*:2 +23+22=11in C3 This Q* coincides with Milnor’s E; plumbing of
dimension 4 ; it has signature 8 and a collar neighborhood of infinity M3 x R,
where M? = SO(3)/As is Poincaré’s homology 3-sphere, cf. [61, § 9.8].

(1) The automorphism B induced by o on the quotient T**" of B* x T" (obtai-
ned by identifying opposite sides of the square B*) has mapping torus

T(B) =1Ix T*"[{(0,x) = (1,Bx)}

not PL isomorphic to T**" ;indeed there exists(**)a PL cobordism (W ; T™*3, T(B))
and a homotopy equivalence of W to {I x T* # Q U oo} x T" extending the stan-
dard equivalences T3*" ~ 0 x T® x T" and T(B) ~ 1 x T3 x T". The symbol # in-
dicates (interior) connected sum [41].

(2) For any standard covering map p :B* x T" - B% x T" the covering automor-
phism o, of a fixing boundary is PL pseudo-isotopic to a fixing boundary. (Co-
vering means that pa, = ap). In other words, there exists a PL automorphism H of
(I;0,1)x B> x T" fixing I x 8B* x T" such that H|0 x B* x T" = 0 x o and
H|1 xB*xT" = 1xa,.

(*) Novikov first exploited a torus furling idea in 1965 to prove the topological inva-
riance of rational Pontrjagin classes [67]. And this led to Sullivan’s partial proof of the
Hauptvermutung [88]. Kirby’s unfurling of the torus was a fresh idea that proved revo-
lutionary.

(**) This is the key property. It explains the exoticity of T(f) — (see end of argument),
and the property (2) — (almost, see [80, § 5]).
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In (2) choose p to be the 2"-fold covering derived from scalar multiplication
by 2 in R". (Any positive integer would do as well as 2.) Let o(=0),0,,a,,...
be the sequence of automorphisms of B% x T™ fixing boundary such that oy, ,

_covers &, i.e. poy,, = o p. Similarly define Hy(= H) ,H,,H,, ... and note that
H, is a PL concordance fixing boundary from o to &, ,. Next define a PL auto-
morphism H' of [0,1) x B x T" by making H'|[a,,a,,,] x B> x T", where

1
a, =1 —7,’ correspond to Hy under the (oriented) linear map of [a,a,,,]

onto [0, 1] = I. We extend H' by the identity to [0, 1) x R? x T". Define another
self-homeomorphism H' of [0, 1) x B> x T" by H" = pH'p~! where

p,x,)=0¢,0—x,y)
Finally extend H” by the identity to a bijection
H':IxB*xT">IxB*xT"

It is also continuous, hence a homeomorphism. To prove this, consider a sequence
q:,4,, ... of points converging to q = (f;,x,,¥,) in I x B? x T" Convergence
H"(q;) > H"(q) is evident except when #, = 1,x, = 0. In the latter case it is
easy to check that p,H"(q;) > p;H"(q) = 1 and p,H"(q;) > p,H"(q) = 0 as
j = o, where p,,i=1,2,3 is projection to the i-th factor of I x B x T". 1t is
not as obvious that p,H"(q;) > p;H"(q) = y,. To see this, let

H:IxB*xR"->1IxB*xR"
be the universal covering of H, fixing I x 3B x R". Now
sup {|psz —psH z| ; z€[0,1]xB*x R"} =D,
is finite, being realized on the compactum I x B> x I". And, as ﬁk is clearly
0;1§°0,‘, where 0,(t,x,y)=(t,x,2"y), we have D, = %,Do. Now D, is

> the maximum distance of p,H,, from p,, for the quotient metric on 7" = R"/Z" ;
so D — 0 implies p;H"'(q;) > p3H"(q) = yo, a8 ] > o=

As the homeomorphism H” is the identity on I x 3B x T" it yields a self-
homeomorphism g of the quotient I x T2 x T = I x T?**, And as

gloxT*"=0x8
and g|1 x T?"" = jdentity, g gives a homeomorphism 4 of T(8) onto
T(id) =Tl X T2+n = T3+n

by the rule sending points (¢ ,z) to g~ '(¢t,z) — hence (0, z) to (0,6 '(2)) and
(1,2) to(l,2)

The homeomorphism h : T3*" ~ T(B) belies the Hauptvermutung. Further,
(1) offers a certain PL cobordism (W ; T3+%, T(B)). Identifying T3*" in W to T'(B)
under 2 we get a closed topological manifold



TOPOLOGICAL MANIFOLDS 137

XM (ST X TP #QUoo)x T"

(=~ indicating homotopy equivalence).

If it had a PL manifold structure the fibering theorem of Farrell [19] (or the
author’s thesis) would produce a PL 4-manifold X* with w, (X*) = w,(X*)= 0
and signature 0 (X*) = 0(S" x T° # Q U ) =0(Q U =)= 8 mod. 16, cf. [80, § 5].
Rohlin’s theorem [71] [40] cf. §13 shows this X* doesn’t exist. Hence X**" has no
PL manifold structure.

Let us reflect a little on the generation of the homeomorphism # : T(8) =~ 73",
The behaviour of H" is described in figure 2-a (which is accurate for B! in place of
B? and for n = 1) by partitioning the fundamental domain I x B x I" according
to the behavior of H". The letter « indicates codimension 1 cubes on which H"'
is a conjugate of a.

=}
1\
R R
2R
2R\/8/%

Q
/]
=\ /]
/sz\\/' [

[
J
_\/ R

7
\fez
N

: S

Figure 2a

B?

Observe the infinite ramification (2"-fold) into smaller and smaller domains
converging to all of 1 x 0 x 7. In the terminology of Thom [92, figure 7] this
reveals the failure of the Hauptvermutung to be a generalized catastrophe !

Remark 2.1. — Inspection shows that & : T(B) ~ T**" is a Lipschitz homeo-
morphism and hence X**" is a Lipschitz manifold as defined by Whitehead [98]
for the pseudogroup of Lipschitz homeomorphisms — see §4. A proof that
T(B) =~ T>*" (as given in [44]) using local contractibility of a homeomorphism
group would not reveal this as no such theorem is known for Lipschitz homeo-
morphisms. Recall that a theorem of Rademacher [69] says that every Lipschitz
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homeomorphism of one open subset of R™ to another is almost everywhere
differentiable.

3. The unrestricted triangulation conjecture.

When a topological manifold admits no PL manifold structure we know it is
not homeomorphic to a simplicial complex which is a combinatorial manifold
[37]. But it may be homeomorphic to some (less regular) simplicial complex
— i.e. triangulable in an unrestricted sense, cf. [79]. For example Q U oo (from §2)
is triangulable and Milnor (Seattle 1963) asked if (Q U %) x S! is a topological
manifold even though Q U oo obviously is not one. If so, the manifold X “n of
§ 2 is easily triangulated.

If all TOP manifolds be triangulable, why not conjecture that that every locally
triangulable metric space is triangulable ?

Here is a construction for a compactum X that is locally triangulable but is
non-triangulable. Let L,, L, be closed PL manifolds and

(W;L, xR,L, xR)

an invertible (*) PL cobordism that is not a product cobordism. Such a W exists for
instance if w,L;=Z,;, and L, =~ L,, compare [78]. It can cover an inver-
tible cobordism (W', L, x S’,L2 x 8') [77, § 4]. To the Alexandroff compac-
tification W U o of W adjoin {(L, x R) U o}x [0, 1] identifying each point
(x , 1) in the latter to the point x in W U oo. The resulting space is X. See Figure 3-a.
The properties of X and of related examples will be demonstrated in [83]. They
complement Milnor's examples [57] of homeomorphic complexes that are PL. (com-
binatorially) distinct, which disproved an unrestricted Hauptvermutung.

(L, X R) U o0
(\ A
{L; xR) U=} x[0,1] w0 x[0,1]
Figure 3a

(*) This means that W can be expressed as a union W = C, U C,, where C, is a closed
collar neighborhood of L, x R in W.
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4. Structures on topological manifolds.

Given a TOP manifold M™ (without boundary) and a pseudo-group G of homeo-
morphisms (*) of one open subset of R™ to another, the problem is to find and
classify G-structures on M™. These are maximal “G-compatible” atlases {U, , fy}
of charts (= open embeddings) f,,: U, = R™ so that each fofe ' js in G. (Cf. [29]
or [48].)

One reduction of this problem to homotopy theoretic form has been given
recently by Haefliger [28][29]. Let G (M™) be the (polyhedral quasi-) space (**)
of G-structures on M. A map of a compact polyhedron P to G (M) is by definition
a G-foliation & on P x M transverse to the projection p, : P x M = P (i.e. its de-
fining submersions are transverse to p,)(***). Thus, for each ¢t € P,  restricts to a
G-structure on ¢ x M and, on each leaf of &, p, is an open embedding. Also note
that & gives a Gp-structure on P x M where G, is the pseudo-group of homeomor-
phisms of open subsets of P x R™ locally of the form (¢,x) = (¢, g(x)) with
g€G. If G consists of PL or DIFF homeomorphisms and P = [0, 1], then
& gives (a fortiori) what is called a sliced concordance of PL or DIFF structures
on M (see [45] [46]).

We would like to analyse G(M™) using Milnor’s tangent R™-microbundle 7 (M)of
M, which consists of total space E(rM) = M x M, projectionp, : M x M = M, and
(diagonal) section § : M > M x M, 8(x) = (x,x). Now if " is any R™ micro-
bundle over a space X we can consider G*(§) the space of G-foliations of E (§)
transverse to the fibers. A map P - G*(f) is a G-foliation & defined on an open
neighborhood of the section P x X in the total space E (P x §¥) = P x E (§) that is
transverse to the projection to P x X. Notice that there is a natural map

d: GM™) - G*(tM™)

which we call the differential. To a G-foliation & of P x M transverse to p,, it
assigns the G-foliation d% on Px M x M = E(P x 7(M)) obtained from & x M

(*) e.g. the PL isomorphisms, or Lipschitz or DIFF or analytic isomorphisms. Do notcon-
fuse G with the stable monoid G = U G, of § 5.5.

(**) Formally such a space X is a contravariant functor X : P - [P, X] from the category
of PL maps of compact polyhedra (denoted P, Q etc.) to the category of sets, which carries
union to fiber product. Intuitively X is a space of which we need (or want or can) only
know the maps of polyhedra to it.

(***) A G-foliation on a space X is a maximal G-compatible atlas {V,, g,} of topological sub-
mersions g, : ¥, = R™. (See articles of Bott and Wall in these proceedmgs JAmapg: V> W
is a ropological submersion if it is locally a projection in the sense that for each x in V there
exists an open neighborhood W, of g(x) in W a space F, and an open embedding onto a
neighborhood of x, called a product chart about x, ¢ : F,, x W, = V such that gy is projec-
tion p,: F, x W, - W,, C W. One says that g is fransverse to another submersiong': V> W'
if for each x, y can be chosen so that F, = W, x F, and g'p is projection to W, an open subset
of W'. This says roughly that the leaves = ﬁbers) of f and g intersect in general position.
Above they intersect in points.
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by interchanging the factors M. If P is a point, the leaves of d¥ are simply
{PxMxx|x€EM)}
Clearly d¥ is transverse to the projection P x p; to P x M.

THEOREM 4.1. CLASSIFICATION BY FOLIATED MICROBUNDLES. — The differential
d: G(M™) > G*(tM™)

is a weak homotopy equivalence for each open ( metrizable) m-manifold M™ with no
compact components.

Haefliger deduces this result (or at least the bijection of components) from the
topological version of the Phillips-Gromov transversality theorem classifying maps
of M transverse to a TOP foliation. (See [29] and J.C. Hausmann’s appendix).

As formulated here, 4.1 invites a direct proof using Gromov’s distillation of im-
mersion theory [25] [26]. This does not seem to have been pointed out before,and
it seems a worthwhile observation, for I believe the transversality result adequate
for 4.1 requires noticeably more geometric technicalities. In order to apply
Gromov’s distillation, there are two key points to check. For any C C M™ let
Gy(C) = inj lim {G (U)|C C U open in M}.

(1) For any pair A C B of compacta in M, the restriction map 7 : Gy (B) > Gy, (A)
is micro-gibki — i.e., given a homotopy f : P x I > Gy, (A) and F, : P x 0 > G,,(B)
with 7Fy = f|P x 0 there exists € >0 and F: P x [0,€e]l> G, (B) so that
@F = f|P x [0, €]. Chasing definitions one finds that this follows quickly from
the TOP isotopy extension theorem (many-parameter version) or the relative local
contractibility theorem of [10] [17].

(2) d is a weak homotopy equivalence for M™ = R™. Indeed, one has a commu-
tative square of weak homotopy equivalences

G(R™-S GLar™)
~| | =

G (@<= G*(TR™|0)

in which the verticals are restrictions and the bottom comes from identifying
the fiber of 7R™|0 to R™, cf. [27].

Gromov’s analysis applies (1) and (2) and more obvious properties of G, G* to
establish 4.1. Unfortunately, M doesn’t always have a handle decomposition over
which to induct ; one has to proceed more painfully chart by chart.

We can now pass quickly from a bundle theoretic to a homotopy classification
of G-structures. Notice that if £ : X’ - X is any map and §" is a R™ microbundle
over X equipped with a G-folitation &, transverse to fibers, defined on an open
neighborhood of the zero section X, then f*§ over X' is similarly equipped with
a pulled-back foliation f*g. This means that equipped bundles behave much like
bundles. One can use Haefliger’s notion of “gamma structure” as in [29] to deduce
for numerable equipped bundles the existence of a universal one (vg ,% ;) over a
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base space Bpg,(*). There is a map Bygy = Brop(,) Classifing vg as an R™-
microbundle ; we make it a fibration. Call the fiber TOP(#)/T'(G). One finds that
there is a weak homotopy equivalence G* (¢¥) ~ Lift (f to Bp () to the space of
liftings to By of a fixed classifying map f : X = Bygp f)or &m. Hence one
gets

THEOREM 4.2. — For any open topological m-manifold M™, there is a weak ho-
motopy equivalence G(M) =~ Lift (r to Br(c)) from the space of G-structures G(M)
on M to the space of liftings to By, of a fixed classifying map map 7 : M - Brovm)
for v (M).

Heafliger and Milnor observe that for G = CAT™ the pseudo-group of CAT
isomorphisms of open subsets of R”™ — CAT meaning DIFF (= smooth C%),
or PL (= piecewise linear) or TOP (= topological) — one has

4.3) m; (CAT(m)[T' (CAT™) =0 , i<m

Indeed for CAT = TOP, 4.2 shows this amounts to the obvious fact that

7o(G (S' x R™™")) = 0. Analogues of 4.2 with DIFF or PL in place of TOP can
be proved analogously(**) and give the other cases of (4.3). Hence one has

THEOREM 4.4. — For any open topological manifold M™, there is a natural bi-
jection wy CAT™(M™) ~ m, Lift (7 to Bear(my)-

This result comes from [44] for m = 5. Lashof [50] gave the first proof that was
valid for m = 4. A stronger and technically more difficult result is sketched in
[63] [45]. It asserts a weak homotopy equivalence of a “‘sliced concordance”
variant of CAT™(M™) with Lift (r to Boap(m))- This is valid without the openness
restriction if m # 4. For open M™ (any m), it too can be given a proof involvinga
micro-gibki property and Gromov’s procedure.

5. The product structure theorem.

THEOREM 5.1 (Product structure theorem). — Let M™ be a TOP manifold, Ca
closed subset of M and oy a CAT (= DIFF or PL) structure on a neighborhood of
Cin M. Let T be a CAT structure on M x R’ equal 0, x R* near C x R’. Provide
that m 2 5 and oM C C.

Then M has a CAT structure o equal o, near C. And there exists a TOP isotopy
(as small as we please) h,: M, x R°> (M x R");,0<1t <1, of hy = identity ,
fixing a neighborhood of C x R®, to a CAT isomorphism h,.

It will appear presently that this result is the key to TOP handlebody theory and

transversality. The idea behind such applications is to reduce TOP lemmas to their
DIFF analogues.

(*) Alternatively, for our purpose, Bp, can be the ordered simplicial complex having
one d-simplex for each equipped bundle over the standard d-simplex that has total space in
some R" C R™.

* % .
(**) The forgetful map ¢ : Br @m

Bl“(PL"‘) a simplicial complex, then define ¢ simplex by simplex.

= Bpy(m) is more delicate to define. One can make



142 L.C. SIEBENMANN c2

It seems highly desirable, therefore, to prove 5.1 as much as possible by pure geo-
metry, without passing through a haze of formalism like that in § 4. This is done
in [46]. Here is a quick sketch of proof intended to advertise [46].

First, one uses the CAT s-cobordism theorem (no surgery !) and the handle-
straightening method of [44] to prove — without meeting obstructions — -

THEOREM 5.2 (Concordance implies isotopy). — Given M and C as in 5.1, con-
sider a CAT structure T'on M x I equal 0y x Inear C x I, andletT'|M x 0 be cal-
led 0 x 0. (" is called a concordance of ¢ rel C).

There exists a TOP isotopy (as small as we please) h,: M, x I > (M x I)g,
0<t <1, of hy = identity, fixing M x 0 and a neighborhood of C x I, to a CAT
isomorphism h, .

Granting this result, the Product Structure Theorem is deduced as follows.

In view of the relative form of 5.2 we can assume M = R™. Also we can assume
s = 1 (induct on s !). Thirdly, it suffices to build a concordance I' (= structure on
M x R* x I) from ¢ x R* to 2 rel C x R®. For, applying 5.2 to the concordance I'
we get the wanted isotopy. What remains to be proved can be accomplished quite
elegantly. Consider Figurq 5-a.
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We want a concordance rel C x R from Z to o x R. First note it suffices to
build £, with the properties indicated. Indeed £, admits standard (sliced) concor-
dances rel C x R to 0 x R and to Z. The one to ¢ x R comes from sliding R over
itself onto (0, o0). The region of coincidence with ¢ x R becomes total by a sort
of window-blind effect. The concordance to £ comes from sliding R over itself
onto (— o0, — 1). (Hint : The structure picked up from X, at the end of the slide
is the same as that picked up from X).

It remains to construct Z,. Since M x R = R™"', we can find a concordance
(not rel C x R) from X to the standard structure, using the STABLE homeomor-
phism theorem(*) [42). Now 5.2 applied to the concordance gives £,, which is
still standard near M x [0, %0). Finally an application of 5.2 to Z,|N x [— 1, 0],
where N is a small neighborhood of C, yields Z,. The change in Z,|M x 0 (which
is standard) on N x O offered by 5.2 is extended productwiseover M x [0, o).
This completes the sketch.

It is convenient to recall here for later use one of the central results of [44].
Recall that TOP,/PL, is the fiber of the forgetful map By () = Bropmy- And
TOP/PL is the fiber the similar map of stable classifying spaces By — Bygp. Si-
milarly one defines TOP,,/DIFF,, = TOP,/O,, and TOP/DIFF = TOP/O.

THEOREM 5.3(**) (Structure theorem).— TOP/PL ~ K (Z,, 3) and
7, (TOP,/CAT,,) = m, (TOP/CAT)

for k <m and m = 5. Here CAT = PL or DIFF.

Since m(0,,) = m,(0) for k <m, we deduce that , (TOP,TOP,) =0 for
k<m?>S5, a weak stability for TOP,,.

Consider the second statement of 5.3 first. Theorem 4.4 says that

m, (TOP,,[CAT,,) = m,(CAT™(S* x R™*)) = S}

for k <m > 5. Secondly, 5.1 implies S} = S7*! = §¥"*? = ..., m > k. Hence
w, (TOP, /[CAT,,) = m, (TOP/CAT).

We now know that m, (TOP/PL) is the set of isotopy classes of PL structures on
S* if k = 5. The latler is zero by the PL Poincaré theorem of Smale [84], combined
with the stable homeomorphism theorem [42] and the Alexander isotopy. Simi-
larly one gets m, (TOP/DIFF) = @, for k > 5. Recall ©; = @ = 0 [41].

The equality m, (TOP/PL) = 7, (TOP/DIFF) = m, (K (Z,, 3)) for k <5 can be
deduced with ease from local contractibility of homeomorphism groups and the
surgical classification [35] [95], by H*(T® ; Z,), of homotopy 5-tori. See [43]
[46 A] for details.

Combining the above with 4.4 one has a result of [44].

(*) Without this we get only a theorem about compatible CAT structures on STABLE
manifolds (of Brown and Gluck [8]).

(**) For a sharper result see [63] [45], and references therein.
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CLASSIFICATION THEOREM 5.4. — For m = 5 a TOP manifold M™ (without boun-
dary) admits a PL manifold structure iff an obstruction A(M) in H ‘™ 3 Z,)
vanishes. When a PL structure Z on M is given, others are classified (up to concor-
dance or isotopy) by elements of H*(M ; Z,).

" Complement. — Since m, (TOP/DIFF) = x, (TOP/PL) for k < 7 (see above calcu-
lation), the same holds for DIFF in low dimensions.
Finally we have a look at low dimensional homotopy groups involving

G = lim{G,|n > 0}

where G, is the space of degree*] mapsS"~ ' - S"~!. Recall that 7, G = w,,,, S,
k large. G/CAT is the fiber of a forgetful map B,y = By, Where B is a stable
classifying space for spherical fibrations (see [15], [29]).

7, G 0
N\ 7\
m,G/0 -~ 7,G/TOP zZ —

(onto)
/ N

/
7, TOP/O l al ,TOP/O 0 l al .

\. / AN
1r30\-+ m, TOP zZ —>

4 (onto)\
LAY 224/

The left hand commutative diagram of natural maps is determined on the right.
Only #,TOP is unknown(*®). So the exactness properties evident on the left
leave no choice. Also @ must map a generator of n,G/TOP =Z to (12,1) in
Z o Z[2Z = 7, TOP.

The calculation with PL in place of O is the same (and follows since 7,(PL/O) =
I'; = 0 fori < 6).

6. Simple homotopy theory [44] [46 A].

The main point is that every compact TOP manifold M (with boundary oM)
has a preferred simple homotopy type and that two plausible ways to define
it are equivalent. Specifically, a handle decomposition of M or 4 combinatorial
triangulation of a normal disc-bundle to M give the same simple type.

The second definition is always available. Simply embed M in R", n large,
with normal closed disc-bundle E [31]. Theorem 5.1 then provides a small ho-
meomorphism of R" so that 4 (0E), and hence % (E), is a PL submanifold.

(*) That 7,G/TOP is Z (not Z ® Z,) is best proved by keeping track of some normal
invariants in disproving the Hauptvermutung, see [46A]. Alternatively, see 13.4 below.
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Working with either of these definitions, one can see that the preferred simple
type of M and that of the boundary oM make of (M, oM) a finite Poincaré
duality space in the sense of Wall [95], a fact vital for TOP surgery.

The Product structure theorem 5.1 makes quite unnecessary the bundle theoretic
nonsense used in [44] (cf. [63]) to establish preferred simple types.

7. Handlebody theory (statements in [44 C] [45], proofs in [46 A]).

7.1. The main result is that handle decompositions exist in dimension = 6.
Here is the idea of proof for a closed manifold M™, m > 6. Cover M™ by finitely
many compacta A,,...,A,, each A; contained in a co-ordinate chart U, ~R™.
Suppose for an inductive construction that we have built a handlebody H C M
containing A, U ...UA,,,,i = 0. The Product Structure Theorem shows that
HNU; can be a PL (or DIFF) m-submanifold of U; after we adjust the PL
(or DIFF) structure on U;. Then we can successively add finitely many handles
onto H in U, to get a handlebody H' containing 4,V . .. UA,. After k steps we have
a handle decomposition of M.

A TOP Morse function on M™ implies a TOP handle decomposition (the con-
verse is trivial) ; to see this one uses the TOP isotopy extension theorem to prove
that a TOP Morse function without critical points is a bundle projection. (See
[12] [82, 6.14] for proof in detail).

Topological handlebody theory as conceived of by Smale now works on the model
of the PL or DIFF theory (either). For the sake of those familiar with either, I des-
cribe simple ways of obtaining transversality and separation (by Whitney’s method)
of attaching spheres and dual spheres in a level surface.

LEMMA 7.2. (Transversality). — Let g : R > R™,m =5, be a STABLE ho-
meomorphism. In R™, consider R? x 0 and O0x R, p + q = m, with ‘ideal’
transverse intersection at the origin. There exists an e-isotopy ofgtoh : R™ - R™
such that h(RP x 0) is transverse to 0 x R? is the following strong sense. Near
each point x € h~*(0 x RY) N RP x 0, h differs from a translation by at most a
homeomorphism of R™ respecting both R x 0 and 0 x R9.

Furthermore, if C is a given closed subset of R™ and g satisfies the strong trans-
versality condition on h above for points x of R™ near C, then h can equal g near
C.

Proof of 7.2 — For the first statement €/2 isotop g to diffeomorphism g' using
Ed Connell’s theorem [14] (or the Concordance-implies-epsilon-isotopy theorem
5.2), then €/2 isotop g' using standard DIFF techniques to a homeomorphism A’
which will serve as & if C = Q.

The further statement is deduced from the first using the flexibility of homeo-
morphisms. Find a closed neighborhood C' of C near which g is still transverse
such that the frontier C' misses g"(O xRN NRP x0) — which near C is a
discrete collection of points. Next, find a closed neighborhood D of C' also missing
g ' (0Ox R N(RP x 0), and 6 : R™—> (0, ) so that d(gx, 0 x R?) < §(x) for
x in D N (R? x 0). If € : R™ = (0, o0) is sufficiently small, and #' in the first pa-
ragraph is built for e, Cernavskii’s local contractibility theorem [11] (also [17]
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and [82, 6.3]) says that there exists a homeomorphism # equal g on C’ and equal
h' outside C' U D so that d (', g) < 8. This is the wanted h.

7.3. THE WHITNEY LEMMA.

The TOP case of the Whitney process for eliminating pairs of isolated transverse
intersection points (say of MP and N7) can be reduced to the PL case [99] [37].
The Whitney 2-disc is easily embedded and a neighborhood of it is a copy of
R™,m = p + q. We can arrange that either manifold, say M?, is PL in R™, and(*)
N? is PL near M? in R™. Since 5 <m = p + q, we can assume q < m/2 ; so N9
can now be pushed to be PL in R™ by a method of T. Homma, or by one of R.T.
Miller [54 A], or again by the method of [44], applied pairwise [44 A] (details in
[73]). Now apply the PL Whitney lemma [37]. On can similarly reduce to the ori-
ginal DIFF Whitnev lemma [99].

7.4. CONCLUSION.

The s-cobordism theorem [37] [39], the boundary theorem of [76], and the
splitting principle of Farrell and Hsiang [20] can now be proved in TOP with the
usual dimension restrictions.

8. Transversality (statements in [44 C] [45], proofs in [46 A]).

If f: M™ - R" is a continuous map of a TOP manifold without boundary to
R" and m — n > 5,we can homotop f to be transverse to the origin 0 € R". Here
is the idea. One works from chart to chart in M to spread thé ftransversality,
much as in building handlebodies. In each chart one uses the product structure
theorem 5.1 to prepare for an application of the relative DIFF transversality
theorem of Thom.

Looking more closely one gets a relative transversality theorem for maps
f:M™—> E(") with target any TOP R"-microbundle ¢” over any space. Itis
parallel to Williamson’s PL theorem [100], but is proved only form # 4 +¥m — n.
It is indispensible for surgery and cobordism theory.

9. Surgery.

Surgery of compact manifolds of dimension = 5 as formulated by Wall [95]
can be carried out for TOP manifolds using the tools of TOP handlebody theory.
The chief technical problem is to make the self-intersections of a framed TOP
immersion f : $¥ x R*¥ > M?* of S¥, k > 3, transverse (use Lemma 7.2 repeatedly),
and then apply the Whitney lemma to find a regular homotopy of f to an embed-
ding when Wall’s self-intersection coefficient is zero.

In the simply connected case one can adapt ideas of Browder and Hirsch [4].

Of course TOP surgery constantly makes use of TOP transversality, TOP simple
homotopy type and the TOP s-cobordism theorem.

(*) Use of the strong transversality of 7.2 makes this trivial in practice.
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10. Cobordism theory : generalities.

Let QT [respectively Q57°F] be the group of [oriented] cobordism classes
of [oriented] closed n-dimensional TOP manifolds. Thom’s analysis yields a ho-
momorphism

0, : 2, ~ 7,(MTOP) = lim ,,, (MTOP (k))
k

Here MTOP (k) is the Thom space of the universal TOP R*-bundle yX,, over
BTop(k) — obtained, for example, by compactifying each fiber with a point
(cf. [49]) and crushing these points to one. The Pontrjagin Thom definition of
6, uses a stable relative existence theorem for normal bundles in euclidean space —
say as provided by Hirsch [30] and the Kister-Mazur Theorem [49].

Similarly one gets Thom maps

6, : QST > (MSTOP), and 0, : QSPINTOP ¢ (MSPINTOP)

and more produced by the usual recipe for cobordism of manifolds with a given,
special, stable structure on the normal bundle [86, Chap. II].

TueoreM 10.1. — In each case above the Thom map 0, : Q,, ~ n,(M) is surjec-
tive for n # 4, and injective for n # 3.

This follows immediately from the transversality theorem.

PROPOSITION 10.2. — By, ® Q ~ Bgrop ® Q, wWhere Q denotes the rational num-
bers.

Proof. — m,(STOP/SO) = m,(TOP/O) is finite for all i by [40] [44] cf. § 5,
STOP/SO being fiber of By, ~> Byrop. (See §15 or [90] for definition of @ Q).

ProrositioN 10.3. — 7,MSO ® Q- = 7, MSTOP ® Q.

Proof. — From 10.2 and the Thom isomorphism we have

H,(MSO ; Q) = H,(MSTOP ; Q)
Now use the Hurewicz isomorphism (Serre’s from [75]).
ProposiTION 10.4. — Q50 @ g = QST°% @ Q each being therefore the polyno-

mial algebra freely generated by CP,,,n = 1.

Proof of 10.4. — The uncertainty about dimensions 3 and 4 in 10.1 cannot pre-
vent this following from 10.2. Indeed, S257°F - 7,MSTOP is injective because
every TOP 3-manifold is smoothable (by Moise et al.,, cf. [80, § 51). And

Q3T%F - 7, MSTOP

is rationally onto because 250~ m,MSTOP is rationally onto.

Since m, (STOP/SPL) = w,(TOP/PL) is Z, for i = 3 and zero for i # 3 theabove
three propositions can be repeated with SPL in place of SO and dyadic rationals
Z[}] in place of Q. The third becomes :
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ProposiTioN 10.5. — Q5" © Z[}] = Q™ e Z[1] .
Next we recall
ProPosITION 10.6. — (S.P. Novikov). 23° > Q5™ is injective.

This is so because every element of ﬂio is detected by its Stiefel-Whitney

numbers (homotopy invariants) and its Pontrjagin numbers (which are topological
invariants by 10.2).

In view of 10.2 we have canonical Pontrjagin characteristic classes p, in
H* (Bgpop ; Q) = H** (Bso 5 Q)

and the related Hirzebruch classes L, = L (p,, ..., p,) € H*. Hirzebruch sho-
wed that L, : Q3¢ ® Q - Q sending a 4k-manifold M** to its characteristic num-
ber L, (M*) = L, (r(M**)) [M**] € Q is the signature (index) homomorphism.
From 10.2 and 10.4, it follows that the same holds for STOP in place of SO. Hence
we have

ProOPOSITION 10.7. — For any closed oriented TOP 4k-manifold M** the signa-
ture o (M**) of the rational cohomology cup product pairing H** ® H** > H* = @
is given by o(M**) = L, (r M*) [M**] € Z.

11. Oriented cobordism.

The first few cobordism groups are fun to computé geometrically — by elemen-
tary surgical methods, and the next few pages are devoted to this.

THEOREM 11.1. — Q3™ ~ Q0 © R, forn <7, and we have R,, = O forn <3 ,
R,<Z,,Rs=0,R,=2Z,,R,<Z,.

Proof of 11.1. —For n=1,2,3, Q5™ = Q30 =0 is seen by smoothing.

For n = 4, first observe that Z = Q5° > Q57" maps Z to a summand because
the signature of a generator CP, is 1 which is indivisible. Next consider the Z,
characteristic number of the first stable obstruction A € H* (Bgpop 5 Z,) to smoo-
thing. It gives a homomorphism Q37°F - Z, killing Q3°. If

AMHY=ACHY)M1=0

then, by 5.3, M* x R has a DIFF structure 2. Push the projection (M* x R)y = R
to be transversal over 0 € R at a DIFF submanifold M' and behold a TOP oriented
cobordism M toM'. Thus R, < 0.

For n = 5 note that any oriented TOP manifold M" is oriented cobordant to a
simply connected one M' by a finite sequence of 0 and 1-dimensional surgeries.
But, forn =5,H*(M' ; Z,) = H,(M' ; Z,) = 0so M’ is smoothable. Hence R; = 0.

For n = 6 we prove

PrOPOSITION 11.2. — The characteristic number Aw, : Qg Z, is an iso-
morphism.
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Proof. — It is clearly non-zero on any non-smoothable manifold M ~ CP,,
since w,(M®) = w,(CP,) # 0, and we will show that such a M® exists in 15.7
below.

Since £5° = 0 it remains to prove that Aw, is injective. Suppose Aw, (M®) = 0
for oriented M®. As we have observed, we can assume M is simply connected.
Consider the Poincaré dual DA of A = A(M) in

H,M%;Z,)=H,M®;Z)® Z, = m,(M®) ® Z,
and observe that it can be represented by a locally flatly embedded 2-sphere S C M 6
(Hints : Use [24], or find an immersion of S? x R* [52] and use the ideaof Lemma
7.1).

Note that A|(M — S)= A(M — §) is zero because A[x] = x - DA (the Z, in-
tersection number) for all x € H,(M ;Z,). Thus M — S is smoothable.

A neighborhood of § is smoothed, there being no obstruction to this ; and S
is made a DIFF submanifold of it. Let N be an open DIFF tubular neighborhood
of S. Now 0 = Aw, [M] = w,y[DA] = w,[S] means that w,(vM)|S is zero. Hence
N = S? x R%. Killing S by surgery we produce M, oriented cobordant to M, so
that, writing M, = M — §? x B*, we have M’ = M, + B® x S (union with boun-
daries identified). Now M’ is smoothable since M, is and there is no further obstruc-
tion. As 920 = 0, Proposition 11.2, is established.

ProroSITION 11.3. — The characteristic number (fA)w, : QETOP - Z, is injec-
tive, where 8 = Sq"*.

Proof of 11.3. — We show the (BA) w, [M] = 0 implies M” is a boundary. Just as
for 11.2, we can assume M is simply connected. Then m,M = H,(M ; Z)and we can
kill any element of the kemel of w, : H,(M ;Z)~ Z,, by surgery on 2-spheres in
M. Killing the entire kernel we arrange that w, is injective.

We have 0 = (8A)w,[M] = w,[DBA]. So the Poincaré dual DA of BA is
zero as w, is injective.

Now A = 0 means A is reduced integral ; indeed B is the Bockstein
8:H'M;Z,)>HWM, Z)
followed by reduction mod 2. But
HSM ;Z)=H°M ; Z,), since H,(M ;Z) = H,(M ;Z,)

(both isomorphisms by reduction). Thus A = O implies A = 0, which means
A is reduced integral. Hence DA is reduced integral. Since the Hurewicz map
maM = H (M ; Z) is onto, DA is represented by an embedded 3-sphere S. Follo-
wing the argument for dimension 6 and recalling 7,0 = 0, we can do surgery onS
to obtain a smoothable manifold.
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12. Unoriented cobordism (*).

Recalling calculations of Q? and ﬂ?o from Thom [91] we get the following
table

i 4 5 6 7
QP z z, 0 0
Q™" IQ° =R, | <2z, 0 z, R,<Z,
Q z,92, |2, |2,02,92, z,
Qo0 <R,<2Z,| z, Z,02, Z,®Z,®R,

The only non zero-entry for 0 <i <4 would be Q3 = Z,.

To deduce the last row from the first three, use the related long exact sequences
(from Dold [16])

@,
>

QP >0 e, eqe, La® - ..

(12.1) 4

@,d) I
> QP QI U5 e Q1% S Q7T .
If transversality fails 7,(M ?) should replace Q] in the TOP sequence. (See
[93, §6], [3] for explanation).

All the maps are forgetful maps except those marked j and (9, d). The map
j kills the second summand, and is multiplication by 2 on the first summand (which
is also the target of j).

At the level of representatives, 9 maps Mitoa submanifold M =1 dual to w, (M h,
and d maps M’ to M*~2 C M'""' dual to w, (M) IM"~*.

The map d is onto with left inverse ¢ defined by associating to M'~ 2 the RP?
bundle associated to \ @ €2 over M'~%, where \ is the line bundle with

W) = w, M%)
and €? is trivial
The diagram (12.1) gives us the following generators for S, = QToFaf.
S, <Z,: Any M* with A(M) # 0---if it exists.
S; =Z,: Any M*® detected by Aw,,
S, = Z, ® Z,:Non-smoothable M =~ CP;, detected by Aw, ;
M$ ~ RP, x (Q U )

(*) Added in proof : A complete calculation of 2TOPhasjust been announced by Brumfiel,
Madsen and Milgram (Bull. AMS to appear).
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detected by Awf. M : X R can be RP, x A"\"s, where X5 is the universal covering
of a manifold constructed in [80, § 5].

S, =2Z, ®R,;:M] = pM] detected by Aw}; M] is detected by Aw,w,,
MZ = T'(p), the mapping torus of an orientation reversing homeomorphism of
M ‘,‘ =~ CP; homotopic to complex conjugation in CP;. Such a p exists because con-
jugation doesn’t shift the normal invariant for M f = CP, in [CP,, G/TOP]. Finally
M Z a generator of R, detected by (BA)w, (if it exists).

13. Spin cobordism.

The stable classifying space Bgpnrop I8 the fiber of w,: Bgrop = K(Z,,2) .
So mBgpnrop 18 0 for i < 3 and equals m,Byop for i > 3. Topological spin cobor-
dism is defined like smooth spin cobordism Q5™ but using TOP manifolds. Thus
QSPINTOP s the cobordism ring for compact TOP manifolds M equipped with
a spin structure — i.e. a lifting to Bgpypop Of a classifying map M = B, for 7(M)
— or equivalently for the normal bundle v(M).

THEOREM 13.1. — For n <17, Q™% js isomorphic to QSF, which for
n=0,1,...,8 has the values Z, Z,,Z,,0,Z,0,0,0,Z Z [59] [86]. The
image of the forgetful map Z = Q57N+ Q§P™NTOP = Z is the kernel of the stable
triangulation obstruction A : Q§PINTOP > Z,,

The question whether A is zero or not is the question whether or not Rohlin’s
congruence for signature 0 (M%) = 0 mod 16 holds for all topological spin mani-
folds M*. Indeed o (M*) = 8 A(M*) mod 16, A(M*) being O or 1.

Proof of 13.1. — The isomorphism Qf‘,"NTOP = ﬂi"m for n < 3 comes from
smoothing.

Postponing dimension 4 to the last, we next show QSPINTOF/QSPIN — o for
n =5,6,7. Note first that a smoothing and a topological spin structure determine
a unique smooth spin structure. The argument of § 11 shows that the only obstruc-
tion to performing oriented surgery on M” to obtain a smooth manifold is a charac-
teristic number, viz. 0, Aw,, (BA)w, forn = 5, 6, 7 respectively. But w, (M") = 0
for any spin topological manifold. It remains to show that the surgeries can be
performed so that each one, say from M to M', thought of as an elementary co-
bordism (W"*1;M", M'™), can be given a topological spin structure extending that
of M. The only obstruction to this occurs in H>(W , M ; Z,), which is zero except
if the surgery is on a 1-sphere. And in that case we can obviously find a possibly
different surgery on it (by spinning the normal bundle !) for which the obstruction
is zero.

Finally we deal with dimension 4. If A(M*) = 0 for any spin 4-manifold, then
M* is spin cobordant to a smooth spin manifold by the proof of 11.1. Next sup-
pose M* is a topological spin manifold such that the characteristic number A(M*)
is not zero. If we can show that (M%) = 8 A(M*) mod 16 the rest of 13.1 will
follow, including the fact that Q5 ™" = Z rather than Z ® Z,. We can assume
M* connected (by surgery).
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LemMA 13.2. — For any closed connected topological spin 4-manifold M*, there
exists a (stable) TOP bundle £ over S* and a degree 1 map M - S* covered by a
TOP bundle map v(M) —> &. This & is necessarily fiber homotopically trivial A
similar result (similarly proved) holds for smooth spin manifolds.

Proof of 13.2. — Since any map M, =M — (point) > Bgpryrop IS contractil;le—,
v(M)|M, is trivial, and so »(M) —> £ exists as claimed. Now £ is fiberhomotopically

trivial since it is — like »(M) — reducible, hence a Spivak normal bundle for $*.
(Cf. proof in [40].) :

LEmMA 13.3. — A fiber homotopically trivialized TOP bundle § over the 4-sphere
1
is (stably) a vector bundle iff 3 p,(® [S*1= 0 mod. 16.

1
Proof of 13.3. — Consider the homomorphism 3 p,: TyG/TOP = Z given by
1
associating the integer 3 p, () [S*] to a such a bundle ¢ over S*. The composed

1
map 3P : ,G/0 ~> Z sends a generator 9 to * 16 € Z. Indeed, by Lemma 13.2 ,

1
DIFF transversality, and the Hirzebruch index theorem, ; Py (n) is the least index

of a closed smooth spin 4-manifold, which is * 16 by Rohlin’s theorem [40]. The
lemma follows if we grant that 7,G/TOP = Z (not Z  Z,).

Now we complete 13.1. In Z/16 Z we have

1 1
oM*) = 3P EM M =2 p(® [S%] = 8A(H) [S*] = BAGr(M)) [M*] = 8AM*)

the third equality coming from the last lemma.
7,G/TOP = Z is used in 13.3 and in all following sections. So we prove it as

PROPOSITION 13.4. — The forgetful map 1, GJO - m,G/TOP is Z = Z,
Proof of 13.4. — (cf. naive proof in [46A]). Since the cokernel is 73 TOP/O =

1
7, TOP/PL = Z,, it suffices to show that 3P G/TOP > Z in the proof of 133

sends some element { to * 8 € Z.

Such a ¢ is constructed as follows. In §2, we constructed a closed TOP mani-
fold X**" with w,(X) = w,(X) = 0 and a homotopy equivalence f: N* x T" ~ X**",
where N? is a certain homology manifold (with one singularity) having o(NV*) = + 8.
Imitating the proof of 13.2 with N* and ¥’ = f*»(X**")| N* in place of M* and
v(M*) we construct & over §* and »' = § over the degree 1 map N* — $*. This
¢ is fiber homotopically trivial because »(X),f*»(X) and »' are Spivak normal
bundles. Let ¢ represent ¢ in 7,G/TOP.

It remains to show %pl(f) = % 8. First we reducen to 1 in f: N* x T" =~ X**"

by using repeatedly a splitting principle valid in dimension 2 6. (eg. use the TOP
version of [76], or just the PL or DIFF version as in the latter part of 5.4 (a)
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in [80]). Consider the infinite cyclic covering
F:N*xR~X* of f:N*xT!'=~XS5

Splitting as above, we find that CP, x X* ~ Y® xR for some 8-manifold Y®,
Thus using the index theorem 10,7, and the multiplicativity of index and L-
classes we have

+8=0(N*)=0(CP, xN) = o(Y®) = L,(¥®) = L, (CP,) L, (X°) [CP, x N] =
- 1 1 1
L) N ==LV INT= —op ONIN'] = —2p, OS*]= —3p, ().

(We have suppressed some natural (co)homology isomorphisms).

14. The periodicity of Casson and Sullivan.
A geometric construction of a “periodicity” map
7 :G/PL » Q*G/PL

was discovered by A.J. Casson in early 1967 (unpublished)(*).

He showed that the fiber of 7 is K (Z,, 3), and used this fact with the ideas of
Novikov’s proof of topological invariance of the rational Pontrjagin classes to esta-
blish the Hauptvermutung for closed simply connected PL manifolds M™,m > 5,
with H3M™, Z,) = 0. (Sullivan had a slightly stronger result [88]).

Now precisely the same construction produces a periodicity map 7’ in a ho-
motopy commutative square

G/PL— Q*G/PL
( 1 4 1 ) "3 1 , 1 ﬂ4w
G/TOP > Q*G/TOP

The construction uses TOP versions of simply connected surgery and transver-
sality. Recalling that the fiber of p is K (Z,, 3) we see that 2% is a homotopy equi-
valence. Hence 7' must be a homotopy equivalence. Thus (7')~! o (%) gives a ho-
motopy identification of 7 to ¢ ; and an identification of the fiber of 7 to the fiber
TOP/PL of ¢. Thus TOP/PL had been found (but not identified) in 1967 !

The perfect periodicity #' : G/TOP ~ Q*(G/TOP) is surely an attractive feature
of TOP. It suggests that topological manifolds bear the simplest possible relation
to their underlying homotopy types. This is a broad statement worth testing.

(*) Essentially the same construction was developed by Sullivan and Rourke later in
1967-68, see [72]. The “periodicity” = is implicit in Sullivan’s analysis of G/PL as a fiber pro-
duc of (G/PL)(Z) and By @ Z[%] over B, @ Q, [88] [89].
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15. Hauptvermutung and triangulation for normal invariants ; Sullivan’s thesis(*).

Since TOP/PL—— G/PL-%> G/TOP-=> K (Z,, 4) is a fibration sequence of H-
spaces see 15.5 we have an exact sequence for any complex X

H*(X ;Z,) = [X,TOP/PL] > [X, G/PL] 2> X, G/Top]i H*X ;Z,)

Examining the kernel and cokernel of y using Sullivan’s analysis of G/PL),,(**)
we will obtain

THEOREM 15.1. — For any countable finite dimensional complex X there is an
exact sequence of abelian groups :

. a
H3*(X ;Z,)/Tmage H*(X ; Z)2> [X, G/PL] 2> [X , G/TOP]—> {Image (H? (X ; Z)

+ Sa?H*(X ;Z,)}
The right hand member is a subgroup of H*(X 3 Z,), and j* comes from

K(Z,,3) ~ TOP/PL-> G/PL

In 1966-67, Sullivan showed that yp, is injective provided that the left hand group
vanishes. Geometrically interpreted, this implies that a homeomorphism # : M' - M
of closed simply connected PL manifolds of dimension = 5 is homotopic to a PL
homeomorphism if H*(M ; Z,)/Image H3(M ; Z) = 0, or equivalently if H*(M ;-Z)- -
has no 2-torsion [88). Here [M, G/PL] is geometrically interpreted as a group of
normal invariants, represented by suitably equipped degree 1 maps f: M'> M
of PL manifolds to M, cf. [95]. The relévant theorem of Sullivan is :

(15.2) The Postnikov K-invariants of G/PL, except for the first, are all odd ;

hence
(G/PL)(Z) ={K(Z, ;2) x q,K(Z(z), 4)}x K(Z,, 6) x K(Z(z) ,8) x K(Z,,10)

xK(Z(z),IZ)x... ,

5S¢

1 1 .
Where Z,, = Z [-% > % g ] is Z with ; for an odd primes p adjoined. This is
one of the chief results of Sullivan’s thesis 1966 [87]. For expositions of it see
[72] [13] [74] [89].

(*) Section 15 (indeed § §10-16) discusses corollaries of w;(TOP/PL) = Z, collected in
spring 1969. For further information along these lines, the reader should see work of
Hollingsworth and Morgan (1970) and S. Morita (1971) (added in proof).

(**) The localisation at 2, A(z) =A4® Z(z) of a space A will occur below, only for countable
H-spaces A such that, for countable finite dimensional complexes X, [X , A] is anabelian
group (usually a group of some sort of stable bundles under Whitney sum). Thus E.H. Brown’s
representation theorem offersa space 4,y and map A > 4, so that [X,A1®Z,) = [X,A4)
For a more comprehensive treatment of localisation see [89]. The space 4 ® Qisdefined
similarly.
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Sullivan’s argument adapts to prove
(15.3) The Postnikov K-invariants of G/TOP are all odd ; Hence
(G/TOP)(Z) =K(Z,,2) x K(Zyy,4) x K(Z,, 6) x K(Zg3y,8) x. ..

Indeed his argument needs only the facts that (1) TOP surgery works, (2) the
signature map Z = m,,(G/TOP) - Z is x 8 (even for k = 1, by 134),and (3) the
Arf invariant map Z, = m,,,,(G/TOP) = Z, is an isomorphism.

Alternatively (15.2) = (15.3) if we use £%(G/PL) ~ G/TOP from §14.

Remark 15.4.

it is easy to see directly that the 4-stage of G/TOP must be K (Z,,2) x K(Z ,4).
For the only other possibility is the 4 stage of G/PL with K-invariant 6Sq?® in
HS(K(Zz, 2),Z)=Z,. Then the fibration K(Z,,3) = TOP/PL - GL/PL - G/TOP
would be impossible. (Hint : Look at the induced map of 4 stages and consider the
transgression onto 8Sq?). This remark suffices for many calculations in dimension
< 6. On the other hand it is not clear to me that (15.2) = (15.3) without geometry
in TOP.

Proof that Kernel p = H*(X ;Z,)/image H>(X ; Z).

This amounts to showing that for the natural fibration

QG/TOP - TOP/PL - G/PL
the image of [X , 2G/TOP] in [X , TOP/PL] = H3(X ; Z,), consists of the reduced
integral cohomology classes. Clearly this is the image of [X , (G/TOP)(Z)] under

b/
ﬂ(G/TOP)(z)—@)(TOP/PL)(Z) = TOP/PL. Now b is integral reduction on the

factor K(Z,y,3) of ﬂ(G/TOP)(z) because 7,(G/TOP) - m,(TOP/PL) is onto,

and it is clearly zero on other factors. The result follows. The argument comes
from [13] [72].

Proof that Coker(p) = {Image H*(X ;Z) + Sq*H*(X ; Z,)}.
The following lemma is needed. Its proof is postponed to the end.
LemMA 15.5. — The triangulation obstruction A : Byop = K(Z,, 4) is an H-map.

Write ¢ : A = B for ¢ : G/PL -~ G/TOP and let p, : A, - B, bethe induced map
of Postnikov 4-stages, which have inherited H-space structure. Consider the fibra-

(2 A
tion 4, — B, — K(Z,, 4).
Assertion (1). — (A, [X ,B,] = {Image H*(X ;Z) + S*H>(X 3 Z,)}.
Proof of (1). — Since B, = K(Z,,2) x K(Z ,4) and
[X,B,l=H*X;Z,)® H*(X ;Z)
what we have to show is that the class of A, in
[B,,K(Z,,4)] = HY(K(Z,,2) xK(Z,4);Z,) =

=H*(K(Z,,2),Z,) e H*(K(Z , 4) ; Z,)
is (Sq2, p) where p is reduction mod 2.
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The second component of A, is A,|K(Z,4) which is indeed p since
Z=mn,G/TOP » Z, = n,K(Z,, 4)

The first component A, |K(Z,,2) can be Sq? or 0 a priori, but it cannot be 0
as that would imply A, ~ K (Z,,2) x K(Z,4). This establishes Assertion (1).

Assertion (2). — (A,)4[X ,B,]1 = A,[X, B] by the projection B~ B,.

Proof of (2). — In view of 15.5, localising B, and B at 2 does not change the
left and right hand sides. But after localization, we have equality since B, is the
product (15.3).

The theorem follows quickly
[X,A)/p.[X,A]= A, [X,B]=(A,),[X,B,] = {Image H*(X ,Z) + S*H* (X ; Z,)}

The three equalities come from Lemma 15.5 and (1) and (2) respectively.
It remains now to give

Proof of Lemma 15.5 (S. Morita’s,replacing something more geometrical).

We must establish homotopy commutativity of the square

g
Byiop X Byop — Byop
AxAl Al
K(Z,, 4 x K(Z,,4) —> K(Z,, 4)

where o represents Whitney sum and « represents addition in cohomology.

Now a°(A x A) represents Ax 1+ 1 x A in H*Brop X Byop 3 Z,). Also
A og certainly represents something of the form A x 1+ 1x A + Z, where
= is a sum of products x x y with x , y each in one of H'(Byop ; Z,) = H'(Byy, ; Z,),
for i = 1,2 or 3. Since A °o restricted to By, x By is zero, X must be zero.

Theorem 15.1 is very convenient for calculations. Let M be a closed PL
manifold, m-manifold m > 5, and write SCAT (M), CAT = PL or TOP, for the
set of h-cobordism classes of closed CAT m-manifolds M' equipped with a homo-
topy equivalence f : M' = M. (See [95] for details).

There is an exact sequence of pointed sets (extending to the left) :

... [ZM,G[CAT] > L, (m,w,) = Scar(M)—> [M , G/CAT] > L, (x , w,)

It is due to Sullivan and Wall [95]. The map v equips each f : M' - M(above) as
a CAT normal invariant. Exactness at 8., (M)isrelative to an actionof L, ., (7, w; )
on it. Here L, (m , w,) is the surgery group of Wall in dimension k for fundamental
group # = m, M and for oriéntation map w; = w, (M) ; 7 > Z, . There is a generali-
sation for manifolds with boundary. Since the PL sequence maps naturally to the
TOP sequence, our knowledge of the kernel and cokernel of

[M,G/PL] - [M,G/TOP]
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will give a lot of information about 8y (M)~ 8,,5(M). Roughly speaking failure
of triangulability in 8,,, (M) is detected by non triangulability of the TOP normal
invariant ; and failure of Hauptvermutung in &, (M) cannot be less than its failure
for the corresponding PL normal invariants.

In case m, M = 0, one has S, (M) = 8, (M,) = [M,, G/CAT] where M, is
M with an open m-simplex deleted, and so Theorem 15.1 here gives complete
information.

Example 15.6. — The exotic PL structure £ on S3 x 8", n =2, from
1€eH3S?,2,)=2,

admits a PL isomorphism (S®x S"); = §° x §" homotopic (not TOP isotopic) to
the identity.

Example 15.7. — For M = CP, (= complex projective space), n = 3, the map
[M,, G/PL] » [M,, G/TOP] is injective with cokernel Z, = H4(Mo,Zz). This means
that ‘half’ of all manifolds M' ~ CP,, n = 3, have PL structure. Such a PL structure
is unique up to isotopy, since H®(CP,,Z,) = 0.

16. Manifolds homotopy equivalent to real projective space P".

After sketching the general situation, we will have a look at an explicit example
of failure of the Hauptvermutung in dimension 5.

From [54] [94] we recall that, for n = 4,
(16.1) [P",G/PLI = Z, ® ¥\ m,(G/PL) ® Z,
=6

This follows easily from (15.2). For G/TOP the calculation is only simpler.
One gets

(16.2) [P",G/TOP] = ¥ ,(G/TOP) ® Z,

i=2
Calculation of 8, (P")=1, is non-trivial [54] [94]. One gets (for i > 1)
(16.3)  Lypuy =Lapey = [PY,GIPL] 3 4115 = T4y ® Z 3 1gps =143 @ Z, .
The result for $;,p(P") is similar, when one uses TOP surgery. Then
Sy (P™) > 8p6p(P")
is described as the direct sum of an isomorphism with the map
z, = [P*,G/PL] - [P*,G/TOP] = Z, © Z, ,
which sends Z, onto Z, = m, G/TOP.

Remark 16.4. — When two distinct elements of 8, (P") ,n = 5, are topologically
the same, we know already from 15.1 that their PL normal invariants are distinct
since H3(P" ;Z,) is not reduced integral. This facilitates detection of examples.
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Consider the fixed point free involution 7 on the Brieskorn-Pham sphere in
Cm+l

2m—t . d 2 2 2 _ —
2 igg itz ez, =0, Jzl=1

given by T'(zy,24,-..,2,,) = (Zg,— 2;,-.., 2,,). Here d and m must be odd
positive integers, m > 3, in order that Z3"~! really be topologically a sphere
[61].

As T is a fixed point free involution the orbit space IG"* = 322" /T is a
DIFF manifold. And using obstruction theory one finds there is just one oriented
equivalence [12"~! —~ P2~ (Recall P~ = K(Z,, 1)). Its class in 8,.(P*"™")
clearly determines the involution up to equivariant CAT isomorphism and con-
versely.

THEOREM 16.5. — The manifolds 113, d odd, fall into four diffeomorphism classes
according as d =1,3,5,7 mod 8, and into two homeomorphism classes accor-
dingasd =+ 1,* 3 mod 8. 11 is diffeomorphic to P*.

Remark 16.6. — With Whitehead C' triangulations, the manifolds I}, have a
PL isomorphism classification that coincides with the DIFF classification (§5,
[9] [64]). Hence we have here rather explicit counterexamples to the Hauptver-
mutung. One can check that they don’t depend on Sullivan’s complete analysis of
G/ PL)(Z). The easily calculated 4-stage suffices. Nor do they depend on topological
surgery. .

ProBLEM. — Give an explicit homeomorphism P*° ~ II;.

Remark 16.7. — Giffen states [23] that (with Whitehead C! triangulations) the
manifolds 13"~ ,m =5,7,9,... fall into just four PL isomorphism classes
d=1,3,5,7 mod 8. In view of theorem 16.4., these classes are already distin-
guished by the restriction of the normal invariant to P* (which is that of IT3).

So Giffen’s statement implies that the homeomorphism classification s d =+ 1,
+ 3 mod 8.

Proof of 16.5.

The first means of detecting exotic involutions on S°, was found by Hirsch
and Milnor 1963 [32]. They constructed explicit(*) involutions (M;,_l,ﬁ,), r an
integer = 0, on Milnor’s original homotopy 7-spheres, and found invariant spheres
M},_, DMS,_, DM;,_,. They observed that the class of M), ;| in [, /2T, is
an invariant of the DIFF involution (Mj,_, ,,) — (consider the suspension opera-
tion to retrieve (M},_, , ) and use I'y = 0). Now the classof M}, _, inZ,; =T, is
r (@ — 1)/2 according to Eells and Kuiper [18], which is odd iff » = 2 or 3 mod 4.
So this argument shows (M:,._l ,B,) is an exotic involution if » =2 or 3 mod 4.

Fortunately the involution (M:,_l ,B,) has been identified with the involution
G5 T)-

(*) B, is the antipodal map on the fibers of the orthogonal 3-sphere bundle M],_, .
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There were two steps. In 1965 certain examples (X s,a,) of involutions were
given by Bredon, which Yang [101] explicitly identified with (2‘;,_1 , T). Bredon’s
involutions extend to O(3) actions, &, being the antipodal involution in O(3). And
for any reflection @ in O(3) aa, = o, has fixed point set diffeomorphic to
L3Qr+1,1):22*" + 2} + 27 =0; |z| = 1. This property is clearly shared
by (2:,+l ,T), and Hirzebruch used this fact to identify (22,+l ,T) to (X,a,)
[33, §4] (34]. The Hirsch-Milnor information now says that I15 is DIFF exotic.
if d = 5,7 mod 8.

Next we give a TOP invariant for Il;, in Z,. Consider the normal invariant
v, of I, in [P*,G/O] = Z,. Its restriction »,|P? to P? is a TOP invariant because
[P%, G/O] = [P?, G/TOP] = Z,.

Now Giffen [22] shows that v, |P?is the Arf invariant in Z, of the framed fiber
of the torus knot zg +22 =0,z + |z,1> =1 in S§* C C2. This turns out to
be O ford =11 mod 8 and 1 for d = * 3 mod 8, (Levine [53], cf. [61, § 8]).

We have now shown that the diffeomorphism and homeomorphism classifica-
tions of the manifolds II] are af least as fine as asserted. But there can be at most
the four diffeomorphism classes named, in view of 16.3. (Recall that the PL and
DIFF classifications coincide since I'; = 7, (PL/0) = 0,i < 5). Hence, by Remark
16.4, there are exactly four — two in each homeomorphism class.
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GROUP THEORY AND 3-MANIFOLDS

by John R. STALLINGS

The Sphere Theorem of Papakyriakopoulos [1] gives an algebraic criterion
(m,(M) # 0) which implies a topological decomposition of the 3-manifold M (M is
either a non-trivial connected sum, or S! x S?, or something analogous where
the real projective plane P? takes the role of S?). This topological decomposition
determines a similar decomposition of the fundamental group.

Conversely, we have results [2] about group theory which from an algebraic
criterion (the finitely generated group G has more than one end) derives an
algebraic decomposition (G is a non-trivial free product with finite amalgamated
subgroup, or else a group with a sort of finite handle attached). It is possible
to use this group theory plus Dehn’s Lemma to give an independent proof of
the Sphere Theorem.

In the course of this investigation we have noticed certain general situations
which may be of interest.

1. Bipolar structures.

A group G is said to have a bipolar structure over F, if F is a subgroup of G,
and G\F is partitioned into four sets A,.,, i,j = 0, 1, satisfying these four axioms :

(1) 45" = 4,
(2) Aij L4 Al_],k c Aik
(3) Foe Al[ = Ai/'

For the fourth axiom, we need to define an indecomposable element to be an
element of A, which cannot be written as a product as in axiom 2. Then let P
denote F plus all indecomposable elements.

(4) G is generated by P.

The bipolar structure is said to be non-trivial if Ay, # Q.

In our group-theoretic investigation, we showed, using graph-theory, that a
finitely generated group with more than one end has a non-trivial bipolar struc-
ture over a finite subgroup F.

Bipolar structures are closely related to free products with amalgamation. Let
G, = F U {indecomposable elements of 4,).

Then if there are no indecomposable elements of A,,, we have G = G, % G,.
If there is, however, an indecomposable element of A,, then G can be described
as the result of adding an /*-handle to G,,.
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Conversely, suppose G = G, *; G,, then every element of G\F can be written,
according to Schreier, uniquely in the form

h=foa, ...q,

where fE€F, and o; are coset representatives of the non-trivial cosets of the
form Fg , g€G,UG,, the sequence a,, a,, ..., o, alternating between G,
and G,. We say h €4, if and only if o) €G;,a, €G,. This gives G a bipolar
structure over F.

It is worth noting that if G has a bipolar structure over F, then any subgroup
H inherits a bipolar structure over H N F, by simply defining By = HN Ay. Inde-
composable elements of H may well be decomposable in G. The nature of H
as a subgroup of G can perhaps be studied by investigating the inherited bipolar
structures of all the conjugates of H.

2. Pregroups.

A group G with a bipolar structure over F defines in particular the subset P
consisting of F together with all indecomposdble elements. It is a theorem then
that every element g € G can be written as

g§=p,...p, where p,€P, pp;,, P

and that if there is another such expression for g :

£=qy.---qm 41€P»11141+1¢PW,-

then m = n and p; = f,_,"' q,f; for some f,,..., f, €EF, f; = f, = 1. In other
words, every element of G is expressible as a reduced word in P, and two such
words for the same element are equivalent modulo interleaving of elements of F.

This situation has an interesting generalization which, like bipolar structures,
may provide insight into the nature of free products with amalgamation. It is
as follows. ’

A pregroup P is a set having a distinguished element 1, a unary operation
x = x~!, and a binary operation partly defined (x, y) > xy, satisfying the follo-
wing five axioms.

(1) x1 and 1x are always defined and equal to x.

(2) xx~* and x'x are always defined and equal to 1.

(3) If xy is defined, then y ' x~! is defined and equal to (xy)~".

(4) If xy and yz are defined, then, x(yz) is defined if and only if (xy)z is de-
fined, in which case x(y¥z) = (xy)z.

(5) If xy ,yz ,zw are defined, then either x(yz) or (yz)w is defined.

The principal theorem about pregroups is that there exists, for any pregroup P,
a largest group U(P) generated by P, and that the elements of U(P) are expressible
as reduced words in P, two reduced words giving the same element of U(P) if
and only if they have the same length and are related by an interleaving of ele-
ments of P.
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Pregroups P and their universal groups U(P) generalize the amalgamated free
product situation, in which P = A UB, where A and B are two groups inter-
secting along a common subgroup C, and U(P) = A *, B. There are examples,
however, of pregroups which do not seem to be in any sense reducible to amal-
gamated free products.

The study of pregroups, we feel, offers a rich prospect for investigating free
products and amalgamated free products.

3. Topological implications and analogues.

If XCY are path-connected spaces, and X is bicollared in Y, and w,(X)
injects, monomorphically, to ,(Y), then any closed loop based at y, € X is
homotopic to a kind of irreducible loop whose start is to one particular side
of X and whose end is to a particular side. For any element of w,(Y)\m;(X),
these beginning and ending sides are well-determined ; thus 7,(Y) has a certain
structure, which turns out to be a bipolar structure over m;(X). Furthermore,
every bipolar structure has this sort of topological reflection.

Our proof of the Sphere Theorem is based on this circumstance. If, say, M
is a closed 3-manifold with w,(M) # 0, then Poincaré duality in the universal
cover shows (M) has more than one end, and thus m,(M) has a non-trivial
bipolar structure over a finite group. This allows us to find X and Y as above,
with 7,(X) finite, and a map ¢ : M = Y inducing a m,-isomorphism. We now
perform surgery of ¢, using Dehn’s Lemma and the Loop Theorem, so that ¢
will have the property that ¢ '(X) is a two-sided 2-manifold, each component
of which, having finite =, is either S or P% The non-triviality of the bipolar
structure will then imply that at least one of these components carries a non-
trivial element of w,(M).

It would be interesting to know whether pregroups have some kind of topo-
logical picture, but we conjecture that pregroups are too general and rich for
this to happen.
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GALOIS SYMMETRY IN MANIFOLD THEORY
AT THE PRIMES

by Dennis SULLIVAN

Let O denote the category generated by compact simply connected manifolds(!)
and homeomorphisms. In this note we consider certain formal manifold categories
related to . We have the profinite category iﬁ‘(,, the rational category My and
the adele category 91t ;. The objects in these categories are CW complexes whose
homotopy groups are modules over the ground ring of the category (Z = lim Z/n,

0, and A = Q ®Z), and which have certain additional manifold structure.

From these formal manifold categories we can reconstruct 9L up to equivalence.
For example a classical manifold M corresponds to a profinite manifold M, a
rational manifold M, and an equivalence between the images of M and M, in
O, . In fact 9T is the fibre product of I and W, over IT,.

Thus we can study 91T by studying these related categories. Here we find
certain advantages.

— the structure of OIU finds natural expression in the related categories .

— these categories are larger and admit more examples — manifolds with certain
singularities and more algebraic entities than topological spaces.

— there is a pattern of symmetry not directly observable in 91T,

For the last point consider the collection of all non-singular algebraic variétiés
over C. The Gaiois group of C over Q permutes these variétiés (by conjugating the
coefficients of the defining relations) and provides certain (discontinuous) self
maps when these coefficients are fixed.

As far as geometric topology is concerned we can restrict attention to the
field of algebraic numbers @ (for coefficients) and its Galois group Gal (Q/Q).
Conjugate variétiés have the same profinite homotopy type (canonically) so
Gal (Q/Q) permutes a set of smooth manifold structures on one of these profinite
homotopy types. [S3]

If we pass to the topological category Jit we find this galois action is abelian
and extends to a natural group of symmetries on the category of profinite man-
ifolds ;

. | group of 3
abelianized units ! acts on JTt.

Gal @) = | 57 )

(1) The case m; # 0 can be treated to a considerable extent using families (see S3).
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First description.

The possibility of defining formal manifold categories arises from the viewpoint
begun by Browder and Novikov. For example, Browder observes that

(i) a manifold has an underlying homotopy type satisfying Poincaré duality.

(ii) there is a Euclidean bundle over this homotopy type — the normal bundle
in R™ (which is classified by a map into some universal space B)

(ili) the one point compactification of the bundle has a certain homotopy
theoretical property — a degree one map from the sphere S”. (the normal invariant)

Novikov used the invariant of (iii) to classify manifolds with a fixed homotopy
type and tangent bundle, while Browder constructed manifolds from the ingredients
of (i), (ii), and (iii).

We propose tensoring such a homotopy theoretical description of a simply
connected manifold with a ring R. For appropriate R we will obtain formal
manifold categories M .

To have such a description of L, we assume there is a natural construction in
homotopy theory Y = Y, which tensors the homotopy groups with R (under
the appropriate hypotheses) and that a map X 3>BR has an associated sphere
fibration (sphere = S3).

There are such constructions for R any of the subrings of Q,Z,any of thg
non-Archimedian completions of @, Q,,the arithmetic completions of Z, Zp and Z,
the finite Adeles Q ® Z (see S'1). —

The fibre product statement
M ~AMy x 4, T @i = o1tz)

follows from the Browder surgery theorem and analogous decomposition of ordi-
nary (simply connected) homotopy theory (see [B] and [S1] chapter 3).

Second description.

If one pursues the study of Browder’s description of classical manitolds in
a more intrinsic manner — internal to the manifolds studied — certain transversality
invariants occur in a natural way. These signature and arf invariants of quadratic
forms on submanifolds control the situation and the structure which accrues
can be expressed in the formal manifold categories see [S2] and [S3].

In the “rational manifold theory”, a manifold is just a rational homotopy
type satisfying homological duality over Q together with a preferred characteristic
class

Lo+l g+ ...+l g +...=ly €EH, 4.(X,0),n=dim X.

Here /, is an orientation class and /, is the signature of X (if n =0 (4)).

To pursue a more precise discussion we should regard X as a specific CW complex
endowed with specific chains representing the characteristic class.

Then a homotopy equivalence X S Y between two such complexes and a chain
wy so that fuly - Iy = 8w, determines a “homeomorphism” up to concordance.
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There is an analogous “homological” description for 9T, if we replace Q by
A = Qe Z, (or by any field of characteristic zero).

The profinite manifold theory has a more intricate structure. First of all there
is a complete splitting into p-adic components
g ~I0 3,
p
where the product is taken over the set of prime numbers and Gﬁtp is the for-
mal manifold category based on the ring R = Zp, the p-adic integers.

For the odd primes we have a uniform structure. Let (k« ,k*) denote the
cohomology theory constructed from the p-adic completion of real K-theory by
converting the filtration into a grading. Then the p-adic manifolds are just the
k-duality spaces at the prime p. That is, we have a CW complex X (with p-adic
homotopy groups) and a k-homology class.

My € Kk, (X) m = dim X (defn)
so that forming cap products with the orientation class gives the Poincaré duality
K (X) ~ Fep_ (XXCH

The homeomorphisms in 91T , correspond to the maps X + Y giving an isomor-
phism of this natural duality in k-theory

ke X 2k, Y
“homeomorphism
N ~ N [
"XT s condition”
k*Y <« k*Y,

ie f is a homotopy equivalence and f, uy = y.

Again a more precise discussion (determining a concordance class of homeo-
morphisms. . .) requires the use of cycles (analogous to the chains above) and a
specific homology producing the relation f,uy, = uy .

Note that K(X)*, the group of units in k°X), acts bijectively on the set of all
orientations of X. Thus the set of all manifold structures (up to equivalence) on
the underlying homotopy type of X is parametrized exactly by this group of
units.

Also note that a homotopy type occurs as that of a p-adic manifold precisely
when there is a k-duality in the homotopy type : (see [S2] and [S3]).

At the prime 2 the manifold category is not as clear. To be sure the 2-adic
manifolds have underlying homotopy types satisfying homological duality (coef-
ficients Z,). Thus we have the natural (mod 2) characteristic classes of Wu.

(1) We could reformulate this definition of a k-duality space at the prime p in terms of
homological Poincaré duality and the existence of an orientation class in “periodic” K-
homology. Using the connective k-theory seems more elegant and there is a natural cycle
interpretation of k, in terms of manifolds with signature free singularities. (see [S2])

We also note that the Pontryagin character of 4, would be compatible with the rational
characteristic class of a classical manifold determining X.
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_ '<dimX
Ve =V, Fy, +oo oy L z\—z-

where v, € H! (X, Z/2) is defined by duality and the Steenrod operations
vwUx=S8tx dimx+i=dimX
The square of this class only has terms in dimensions congruent to zero mod 4
vi 2+l L
and the “manifold structure” on X defines a lifting of this class to Z, coefficients.
e)) Be=1,+L +...+L,+... inH¥"X,Z,),

The possible manifold structures on the homotopy type of X are acted on bijec-
tively by a group constructed from the cohomology algebra of X. We take inho-
mogeneous cohomology classes,

u=uytu, tug +...tu;+...

using Z/2 or Z, coefficients in dimensions congruent to 2 or 0 mod 4 respectively.
We form a group G from such classes by calculating in the cohomology ring using

the law,
u-v=u-+v+ 8uv.

Note that G is the product of the various vector spaces of (mod 2) cohomo-
logy (in dimensions 4/ + 2) and the subgroup—G;z generated- by-inhomogeneous
classes of H** (X, Z,).

If we operate on the manifold structure of X by the element u in G, the
characteristic class changes by the formula
Lou= By +8u(l+£y)
For example, the characterictic class mod 8 is a homotopy invariant.(see S3)
Local Categories

If I is a set of primes, we can form a local manifold category IR, by construc-
ting the fibre product

M, =, x I de
1 Q .mA(pG f 4
The objects in O, satisfy duality for homology over Z, plus the additional
manifold condition imposed at each prime in / and at Q.

For example we can form X, and 3N, the local categories corresponding to
I ={2} and !/ = § ={odd primes;. Then our original manifold category 31T
satisfies

M = IR, x,ngm,

and we can say

(1) Again, the Poincaré dual of £, would be compatible with the rational characteristic
class of a classical manifold determining X.
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L is built from AT, and O, with coherences in AN,

I, is defined by homological duality spaces over Z(z) satisfying certain
homological conditions and having homological invariants (at 2).

O, is defined by homological duality spaces over Z[1/2] with the extra struc-
ture of a KO e Z[1/2] orientation.

My is defined by homological duality spaces over Q with a rational characté-
ristic class.

Examples

(1) Let V be a polyhedron with the local homology properties of an oriented
manifold with R coefficients. Then V satisfies homological duality for R coef-
ficients.

If R = Q, the rational characteristic class can be constructed by transversality.
(Thom) and we have a rational manifold

Ve,

The Thom construction can be refined to give more information. The charac-
teristic class I, satisfies a canonical integrality condition. At 2 [/, can be lifted
to an integral class. At p > 2 [, can be lifted (via the Chern character) to a canonical
K-homology class [S1].

So if V also satisfica Z/p — duality (p > 2) we have a k-duality space and
a local manifold at odd primes, V €01,

If V satisfies Z/2 — duality we have a good candidate for a manifold at 2.
Ve,

Note that such polyhedra are readily constructed by taking the orbit space of an
action of a finite group m on a space W(1). For example if the transformations of m
are orientation preserving then W/r is a Z/p homology manifold if W is and p is
prime to the order of . W/ is a Q homology manifold if W is.

(2) Now let V be a non-singular algebraic variety over an algebraically closed
field k of characteristic p. Then the complete etale type of V determines a g-adic
homological duality space at each prime g not equal to p (See [AM]and [S'1]).

V has an algebraic tangent bundle T. Using the etale realization of the projec-
tive bundle of T one can construct a complex K-duality for V. To make this
construction we have only to choose a generator y, of

H'(k —{0},2) ~ Z,

This K-duality is transformed using the action of the Galois group to the appro-
priate (signature) duality in real K-theory, g > 2. If 7, ¥V = 0, we obtaina g-adic
manifold foreachg # 2or g #p

vieam, )

(1) More generally with finite isotropy groups.
(2) The prime 2 can also be treated. [S3].
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Now suppose that V is the reduction mod p of a variety in characteristic zero.
Let V¢ denote the manifold of complex points for some embedding of the new
ground ring into C

Of course V¢ determines g-adic manifolds for each g, [V¢] € dic,,.

We have the following comparison. If u, corresponds to the natural generator
of H'(C—0, Zq) then

[V1=~[Vc] in O,
The Galois symmetry

To construct the symmetry in the profinite manifold category I we consider
the primes separately.

For p > } we have the natural symmetry of the p-adic units Zp* in isomorphism
classes in I p- If M is defined by the homotopy type X with k-orientation uy,
define M* by X and the k-orientation 1% using the Galois action of a € Z* on
k-theory.(q € Z: acts by the Adams operation Y7 when g is an ordinary 1nteger)
Note that M and M® have the same underlying homotopy type(l).

For p = 2 we proceed less directly. Let M be a manifold in o‘iz2 with charac-

teristic class 2, =1, +1, +.... If « € Z} define u, € Gg(M) by the formula
+a?l +atl, +...
l+8ua=l bl B
T+ +1, + ...
. o? —1 at—1 1—ao®
ie U= () b+ gt B) .

Define M® by letting u, act on the manifold structure of M. An interesting
calculation shows that we have an action of Z* on the isomorphism classes of 2-adic
manifolds — again the underlying homotopy type stays fixed (1)

We have shown the

THEOREM. — The profinite manifold category Ot possesses the symmetry of the
subfield of C generated by the roots of unity.

The compatibility of this action of Z* on 9L with the Galois action on complex
variéties discussed above is clear at p > 2, and at p = 2 up to the action of elements
of order 8 in the underlying cohomology rings of the homotopy types. We hope to
make the more precise calculation in [§3]
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C3 — GEOMETRIE DIFFERENTIELLE

MANIFOLDS OF NONNEGATIVE CURVATURE

by Detlef GROMOLL

Let M be a complete riemannian manifold of dimension n. It is a classical
problem to study geometrical and topological properties of M if the curvature
is nonnegative. Here curvature means either the sectional curvature K or the
Ricci (mean) curvature Ric.

Until a few years ago, the efforts of geometers had been directed almost
entirely towards compact manifolds of positive curvature. Open manifolds seemed
to be much less promising to deal with. This has rapidly changed during the last
three years. It became apparent that the most significant aspect of the problem
is a strong interaction of nonnegative sectional curvature and convexity in the
large, which gave rise to some new techniques and surprising results. The structure
of complete manifolds of nonnegative sectional curvature is now known to a very
large extent, modulo the structure of compact manifolds of that type. Some of the
new results even have generalizations in the case of nonnegative Ricci curvature.
There are also applications in the compact case as far as the fundamental group
is concerned.

The purpose of my talk was to outline these recent developments. I refer to
joint work of J. Cheeger, resp. W. Meyer, and myself in [1], [2], [3], and [4].
All definitions, details, and references not given here explicitly can be found there.

A set ) # C C M is called totally convex if for all geodesics ¢ : [0,1] = M with
¢(0),c(1) €EC, also c[0,1]C C. A point can only be totally convex in case M is
contractible. A closed totally convex set C carries the structure of a k-dimensional
topological submanifold of M with totally geodesic interior and not necessarily
smooth boundary aC,0 <k <n.

Let M be noncompact. Then given any p € M, there is a ray ¢ : [0,00) > M
with ¢(0) = p. The union of all open metric balls of radius ¢ > 0 centered at c(?) is
called the open half-space B, with respect to c. Now let X = 0.

THEOREM 1 (Basic construction). — Forany half-space B, the complement M—B,,
is totally convex.

The proof is: based on a limiting argument involving Toponogov’s angle com-
parison theorem for generalized triangles. The case K > 0 can be handled more
easily by direct second variation techniques. Using Theorem 1 it is not hard to
construct compact totally convex sets in M. Moreover :

THEOREM 2 (Expansion principle). — There exists a continuous filtration of M
by compact totally convex sets C,, t 20, such that whenever t, <t,, Cy, is
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the subset of all points in C,, having distance at least t, — t, from the boundary
9Cy,-
Doing the basic construction at an arbitrary point p, one may choose
y = N (M — B,,), where the intersection is taken over all rays emanating from
D, and c, is the restricted ray with ¢,(s) = c(¢ + s). The structure of compact
totally convex sets can be studied by means of the following result.

THEOREM 3 (Contraction principle). — Let C be compact totally convex, 9C #* Q.
Then the set C* of all points in C at distance = a = 0 from the boundary 9C is
totally convex. In particular, the set of furthest points C™** = N C? (intersection
over all a with C® # Q) is totally convex, and dim C™* < dim C. But C™* may

have boundary again.

The argument uses Rauch comparison techniques. In a certain sense, the expan-
sion principle may be viewed as an extension of the contraction principle for the
noncompact manifold M having convex boundary at infinity. Both principles
together have very strong implications.

THEOREM 4. — There exists a compact totally convex submanifold S of M
without boundary, the soul of M, such that M is diffeomorphic to the normal
bundle v(S) of S in M. If K> 0, then S is a point and M is diffeomorphic to
euclidean space R".

The exponential map »(S) > M is not a diffeomorphism in general. The soul
of M need not be unique. Up to diffeomorphism, complete manifolds of nonne-
gative curvature are vector bundles over compact manifolds of nonnegative curvature.
For some time we had conjectured that M might even be a locally isometrically
trivial bundle over its soul S, so in particular, »(S) would be flat. But there seem
to be nontrivial counterexamples now. The rigidity conjecture is true in many
interesting cases, say when S has dimension or codimension 1, or when M is locally
homogeneous. Very recently we were able to show in addition : If M is diffeo-
morphic to S x R?, then M is an isometric product of its soul S and some com-
plete open surface of nonnegative curvature. In dimensions < 3, complete open
manifolds with K = 0 can be classified up to isometry.

We mention some further applications. The global behavior of geodesics in
M can be described, though not completely yet. For example, if K > 0, then for
any p € M, the exponential map exp, : M, = M is proper. Both branches of
every nonconstant geodesic ¢ : R = M go to infinity. M does not contain lines.
If K>0, then every line splits off M isometrically as a factor (Toponogov ;
[51), which is an easy conclusion within our methods. Hence :

THEOREM 5. — There is a unique isometric decomposition M = M, x R¥, where
M, does not contain a line and R* is flat euclidean space.

Using this result and some arguments derived from an equivariant basic construc-
tion we obtain information about the isometry group I (M) of M.

THEOREM 6. — I(M) = I(M,) x I(R¥), where I(M,) is compact.

I (M) is always compact if K> 0 and has a fixed point. To study the fun-
damental group 7 of a complete manifold M of nonnegative curvature, it suffices
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to consider the compact case, in view of Theorem 4. 7 acts as a group of isome-
tries on the universal riemannian covering M of M. By compactness of M there
exist lines in M when = is infinite. The main results are :

THEOREM 7. — There is a diagram of covering maps
My > M = M, x R* > R¥
¥ ¥ v

M,>M————— Tk

]&\Ml x T*

where the vertical maps are isometric coverings, the horizontal maps locally
isometrically trivial fibrations, and the diagonal map is a diffeomorphism. T* is
a flat torus.

THEOREM 8. — There exists an invariant finite subgroup ¢ C w such that n* = wfp
is isomorphic to a crystallographic group, so w* contains a free abelian normal
subgroup T' of rank k, 0 < k <dim M, w*/1" finite.

We give only one immediate corollary : A compact K (7, 1) —manifold with
K = 0 is flat.

We conclude with some remarks on complete manifolds M of nonnegative
Ricci curvature. The interesting fact is that the splitting Theorem 5 ‘and all direct
consequences remain true. In particular, the structure Theorem 8 for the fun-
damental group of M holds, if M is compact with Ric = 0. The crucial step
was inspired by the basic construction in Theorem 1.

THEOREM 9. — Let ¢ : [0,0) > M be a ray. The functions g, on M with
g@)=p@,c(®)—t

converge pointwise to a continuous function g on M for t - o Now g is super-
harmonic.

The proof combines geometric and analytic arguments and is not easy.

Our last application concerns the holonomy group ¢ of an arbitrary compact
riemannian manifold M. If in the de Rham decomposition of the universal rieman-
nian covering M = M x R* either M compact or k < 1, then ¢ is compact. The
classical results had some gap related to questions about manifolds of zero Ricci
curvature.
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PSEUDO-DISTANCES INTRINSEQUES
SUR LES ESPACES COMPLEXES

by Shoshichi KOBAYASHI

Rappelons d’abord le lemme classique de Schwarz-Pick. Soit D le disque de

rayon unité, D ={z €C ; |z| <1}, muni de la métrique de Poincaré-Bergman
dz dz

1 ds? =——

o ST P

de courbure — 4. Alors toute application holomorphe f : D = D est décroissante
pour la métrique ds?, c’est-a-dire,

(2) frds? < ds?.
Si I'on désigne par p la distance définie par ds? dans D, I'inégalité (2) est équiva-
lente 4

3) p(f@) ,f() < p@,b) a,bED.

C’est M. Ahlfors qui a démasqué le caractére vraiment géométrique du lemme
de Schwarz-Pick en démontrant en 1938 la généralisation suivante :

Soit M une surface de Riemann munie d'une métrique dsy = 2gdwdw de
courbure k < — 4. Alors toute application holomorphe f : D - M satisfait a I'iné-
galité

“ fxdsi, < ds®.

D’autre part, Carathéodory a trouvé en 1926 une autre généralisation du lemme
de Schwarz-Pick. Soit M un domaine borné dans C”. Carathéodory n’est parti
d’aucune métrique donnée sur M, mais a construit une distance intrinséque c,,
sur M (que 'on appelle la distance de Carathéodory) telle que toute application
holomorphe f : M - D satisfasse

) P )2 p(f(P),f(@) p,qEM.

Soit F la famille des applications holomorphes f: M — D. Alors la distance ¢,
est définie par

(6) ey(p,q) = ﬁg}g p (f(p), f(q)).

Cette définition s’applique évidemment 4 tous les espaces complexes M. Si M
est un espace complexe quelconque, ¢, est seulement une pseudo-distance ; car
cp ,q) =0 n’implique pas nécessairement p =gq. En particulier, si M est
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compact, on a ¢,(p, q) =0 pour p, p €M, (d’aprés le principe du maximum).
Pour le plan complexe C, on a aussi ¢c(p, q) = 0 identiquement d’aprés le théo-
réme de Liouville). La pseudo-distance de Carathéodory posséde les deux pro-
priétés suivantes :

) Cp =P ;
(8) Si f:D — X est une application holomorphe, on a
ey(f(0) ,f(@) S cx(p,q) p,gEX

Tandis que (7) est équivalente. au lemme classique de Schwarz-Pick, (8) est une
conséquence immédiate de la définition (6). Le lemme de Schwarz-Pg;k géné-
ralisé (8) s’applique aux applications holomorphes entre espaces complexes arbi-
traires. Cependant c; n’est qu'une pseudo-distance pour la plupart des espaces
complexes X.

En réunissant I'idée de Carathéodory et celle de Ahlfors, nous allons maintenant
construire une pseudo-distance dy sur X qui sera caractérisée par les trois pro-
priétés suivantes :

&) dp =p;
(10) Si f:D - X est une application holonorphe, on a
dy@a,b) 2 dye(f@),f(®)) a,bED;
(11) dy est la pseudo-distance la plus grande possédant les propriétés (9) et (10).
Etant donnés deux points p et ¢ de X, nous choisissons des points
D =PosPys>++>PpysPr =14

de X, des points a;,...,a, b,;,..., b, de D et des applications holomorphes
fis..., [, de D dans X satisfaisant aux conditions suivantes :

(12) Do =f1(a1) sDy =f1(b1) =fz(a2) 3e e
P = fk..l (bk-l) = fk(ak) sPr = fk (bk)-
(Nous pouvons considérer f, (D), ..., f, (D) comme des disques holomorphes
qui joignent p 4 ¢q). La distance dy(p,q) est alors définie par
k
(13) dy(p,q) = inf Y, p(a;,b),
i=1

ou l'infimum est pris sur tous les choix possible de points et d’applications. On
voit immédiatement que

(14) si f: X = Y est une application holomorphe, on a
dy(f(0),f(9) Sdy(q,q) Pp,qEX.

Cette définition de dy ressemble a celle de la distance sur une variété rieman-
nienne. (M. Roydon a annoncé récemment que d, peut étre définie par une
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métrique finslérienne pris dans le sens le plus général de la méme maniére qu’est
définie la distance riemannienne). A cause de cette ressemblance, la pseudo-
distance d, posséde de nombreuses propriétés des distances riemanniennes. Par
exemple,

(15) Sim: X - X est un revétement de X, on a

dx(p,q) =dx(@'(p),(@"'(q)) p,q€EX,

(16) Dans le cas ol dy est une distance, X est complet dans le sens de Cauchy
si est seulement si tout ensemble fermé et borné dans X est compact.

Nous disons qu’un espace complexe X est hyperbolique si dy est une (vraie)
distance et qu’il est Ayperbolique-complet si d, est une distance compléte. Voici
quelques exemples d’espaces complexes hyperboliques.

(i) Une variété hermitienne X a courbure holomorphe sectionnelle < — A <0
est hyperbolique. Si la métrique hermitienne est compléte, X est hyperbolique-
complet. En particulier une surface de Riemann compacte de genre = 2 ou
X = C — {2 points }est hyperbolique-compléte.

(ii) Puisque dy 2 ¢y, tout domaine borné X dans C" est hyperboligue.
>4 X

(iii) Si f est un revétement de X, il suit de (15) que X est hyperbolique
(-complet) si est seulement si X lest,

(iv) Un sous-espace complexe (fermé) d’un espace hyperbolique (-complet) est
hyperbolique (-complet), (c’est une conséquence de (14))

(v) M. Royden a montré que l'espace de Teichmiiller X = T* des surfaces de
Riemann compactes de genre g = 2 est hyperbolique-complet. En effet, il a mon-
tré que la distance dy coincide avec la distance de Teichmiiller sur X = T%.

Par contre, dc s’annule identiquement. Si f est une application holomorphe
du plan complexe C dans un espace complexe hyperbolique X, f est une appli-
cation constante d'aprés (14). En particulier, une application f : C = C — {2 points}
se réduit & une application constante, (c’est le petit théoréme de Picard).

Le grand théoréme de Picard établit que si une fonction holomorphe dans le
disque épointé D* ={0<|z|< 1} a deux valeurs lacunaires, elle est méro-
morphe dans D ={|z| < 1}. Je préfére Iinterpréter comme un théoréme d’ex-
tension d’applications holomorphes. C’est-d-dire, si f est une application holo-
morphe de D dans P,(C). Voici notre généralisation du grand théoréme de
Picard. Soit M un espace complexe hyperbolique contenu dans un espace complexe
Y et tel que M soit compact. Soit X une variété complexe sans singularité et A
une sous-variété sans singularité, Supposons que, pour tout point p € oM (= M — M)
et pour tout voisinage U de p dans Y, il y ait un voisinage V C U de p tel que
dy(VNM, (Y — U)NM)>O0. Alors toute application holomorphef: X — A->M
s’étend a une application holomorphe f: X - Y. En particulier, on en déduit,
un résultat de Kwack : toute application holomorphe f de X — A dans un espace
complexe hyperbolique compact M s’étend en une application holomorphe
f: XM
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Citons deux applications de notre généralisation du grand théoréme de Picard :

(D Y=P(C)et M=P (C) — Q, ou Q est un quadrilatére complet. (Par un '
quadrilatére complet, on entend la réunion des six lignes complexes joignant
quatre points indépendants dans P,(C)).

(ii) Soit ® un domaine borné symétrique et T' un groupe arithmétique discon-
tinu d’automorphismes de ® (ou, un peu plus généralement, un groupe normal
discontinu dans le sens de Pyatetzkii-Shapiro). Soit M = @[T, et Y le compac-
tifié de M dans le sens de Satake. Par soucis de briéveté, supposons que tout
élément de I' ayant des points fixes soit I'identité. En utilisant la théorie de
Pyatetzkii-Shapiro sur les domaines de Siegel du troisiéme type et la distance d,
on peut montrer que la paire (M, Y) satisfait aux conditions du grand théoréme
de Picard généralisé (résultat d’Ochiai et de 'auteur). On obtient ainsi une dé-
monstration simple d’un résultat de Borel (non-publié) sur ’extension d’une
application D* - M C Y.

Au lieu de donner d’autres applications de pseudo-distances intrinséques, nous
allons esquisser une théorie semblable pour des éléments de volume et des mesures.
Soit M une variété complexe de dimension n possédant un élément de volume
Ve =K. i"dz! pdZ' p...adz" pdZ", o0 z',...,z" est un systéme de coor-
données locales de M et K une fonction positive. A cet élément de volume vy,
est associée une forme hermitienne

(17 @ =Zih,gds®, dz, ob h,g=20"log K/3z°0F" .

Supposons que (haﬁ) soit définie positive et que (W/vM)Zc > 0. Sous cette
hypothése, nous avons le lemme de Schwarz-Pick généralisé comme suit. Si VDp

est un élément de volume invariant dans une boule D, de rayon unité de C", on a
(18) f*vy Sa.vp

pour toute application holomorphe f: D, > M. On peut toujours normaliser v,,
de sorte que a = 1, c’est-a-dire, f est décroissante en volume. Par exemple, une
variété complexe compacte M, 4 premiére classe de Chern négative (c’est-d-dire, a
fibre canonique ample), posséde un élément de volume v,, satisfaisant aux condi-
tions ci-dessus. On en déduit que si A est un sous-espace complexe d'une variété
complexe X de dimension n et si f est une application holomorphe, non identi-
quement dégénérée, de X — A dans une variété complexe compacte M a c, an <o,
f s'étend en une application méromorphe de X dans M, (résultat d’Ochiai et de
Pauteur). Cela est aussi un théoréme de type du grand théoréme de Picard. Le
lemme de Schwarz-Pick est valable dans le cas un peu plus général olt I'élément
de volume v, est de la forme vy = |a|? K. i"dz' A dZ'a ... A dz" A dZ", OU K
est une fonction positive et o est une fonction holomorphe éventuellement avec
zéros. Dans ce cas, la forme ¢ est encore définie par (17) et on a I'inégalité (18).
Cette généralisation s'applique aux variétés algébriques de type général dans le
sens de Kodaira, c’est-d-dire, 4 presque toutes les variétés algébriques. On en
déduit le théoréme de type de Picard pour ces variétés aussi.

De la méme maniére qu'on a construit la pseudo-distance dy,, on peut définir
une mesure intrinséque p,, sur M. Soit B un ensemble borélien dans M. Choi-
sissons des ensembles boréliens E; dans la boule D, C C" et des applications
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k
holomorphes f; : D,, > M de maniére que il=J1 fi(E) O B. La mesure py(B) est
définie par

k
by(B) =inf ¥, u(E,),
i=1

ol u désigne la mesure définie par la métrique invariante de Bergman dans D,,.
Nous disons qu’une variété M est hyperbolique en mesure si u,,(B) > 0 pour tout
ouvert B non-vide de M.

Un analogue du petit théoréme de Picard dit que foute application holomorphe
f de C" dans une variété M hyperbolique en mesure et de dimension n est partout
dégénérée.

Du lemme de Schwarz-Pick généralisé il résulte que foute variété algébrique de
type général est hyperbolique en mesure.

La classe des variétés hyperboliques contient toutes les variétés hermitiennes a
courbure holomorphe sectionnelle assez négative ainsi que tous les quotients
®/T" de domaines bornés par des groupes discontinus opérant librement. La classe
des variétés hyperboliques en mesure contient toutes les variétés hermitiennes a
courbure de Ricci assez négative, toutes les variétés algébriques de type général
et toutes les variétés hyperboliques. J’espére que les distances et les mesures
intrinséques seront utiles en géométrie algébrique et en géométrie différentielle
ainsi que dans la théorie géométrique des fonctions.

Pour plus de détails et des références, voir ma monographie “Hyperbolic ma-
nifolds and holomorphic mappings”, (1970) ; Marcel Dekker, New-York.
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THE RIGIDITY OF LOCALLY SYMMETRIC SPACES

by G.D. MOSTOW *

1. Introduction

I shall outline in this talk a proof of the following rigidity theorem.

THEOREM. — Let X and X' be simply connected symmetric Riemannian spaces
of negative curvature having no factors of rank one. Let T and I be discrete sub-
groups of isometries on X and X' respectively such that T'\X and T'\X' are
compact. If T and T' are isomorphic, then T\X and I'"\X' are isometric with
respect to suitably selected invariant metrics on X and X'.

The conclusion of this theorem is equivalent to the assertion :

The isomorphism 6 : I' - I'' extends to an analytic isomorphism of the group
G of isometries of X onto the group G’ of isometries of X'.

The principal strategy of our proof pursues an idea first introduced in [4d]
and employed in [4e] to treat the case of real hyperbolic space of dimension
greater than 2. (In dimension 2 it is false). The idea is to find a homotopy equi-
valence g of I'\ X into I\ X', to lift p to a map ¢ : X = X, and then to study ¢
at infinity. That is, the symmetric space X has a compactification X introduced
independently by Satake ([5]) and Furstenberg ([2]) on which G operates, and
which is a finite union of G-orbits. In any such compactification X, there is
in X — X a unique compact G-orbit X,. Now X and X, are not unique, but
there is a certain maximal compactification for which the stabilizer of a point
in X, is a minimal parabolic subgroup. This X, has been called by Furstenberg
the maximal boundary of X. In [4d] I proved in case X' = X :

If the map o induces a differentiable map ¢, : X, = X, ,then6 : I' > I extends
to an analytic automorphism of G. There are no restrictions on the rank of the
rank of the factors for this result.

On the other hand, for the case of real hyperbolic space, if the map
o : \X->TI"\X

is a diffeomorphism, it was possible to show that yp, exists and is in fact analytic
(cf. [4e].

In the case at hand, the proof is divided into two diverse steps.

(*) Supported in part by NSF Grand GP 12810
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(I) The proof that ¢, exists and is a homeomorphism.

(II) The proof that g, o G o p;' = G' where we have identified G with its
action on the maximal boundary X,.

The proof of part I rests on the introduction of a new class of mappings called
pseudo-isometries (cf. Section 5) and rests on a study of pseudo-isometries of
flat spaces into symmetric spaces.

The proof of part II rests on the study of the action of I' on X,,. The special
fixed point properties of the elements of G operating on X, together with various
density properties of I' permit us to prove that ¢, sends orbits of parabolic groups
to orbits of parabolic groups. This leads us into a situation that has been axioma-
tized by Tits, and the desired conclusion for i, rests on Tits' generalization to the
geometry of parabolic subgroups of a theorem of W.L. Chow generalizing the
fundamental theorem of projective geometry.

Any mapping of real projective space taking planes to planes is a projective
mapping.

The weakening of the hypothesis that I'\ X is compact to the assumption
that '\ X has finite measure is discussed in our concluding remarks (Section 13).

2. Preliminaries

Let X be a simply connected symmetric Riemannian space and let G be the
connected component of the identity in the group—of-isometries of X. To say
that X is of negative curvature is equivalent fo assuming that G is semi-simple
and has no compact factors. That is the case that we shall deal with exclusively.
In that case, G has no center. Let K be the stabilizer of a point in G. Then X
is a maximal- compact subgroup of G, and we can identify X with G/K. The
group G has a faithful linear representation - the adjoint representation for example,
and we can choose coordinates in a representation space for G so as to have

G=GNPnr,R)xGNO(n,R)

where P(n, R) denotes the space of positive definite real hermitian n x n ma-
trices, and X =G N 0(n,R). The map p : g > g’e can be identified with the
canonical projection of G onto G/K. Set P = G N P(n, R). The tangent space
to X at u(1) can be identified with the tangent space P, to P at 1.

The invariant metric on P is given by
ds? = Tr (p~'p)?

and this in turn gives an invariant metric on X. The space X has no product
decomposition if and only if G does not ; that is to say G is simple if X is irreducible.
In that case, any invariant metric is unique up to a constant factor.

The image under u of a maximal abelian subgroup A of P is a maximal flat
subspace F of G. Their common dimension is called the R-rank of G and also the
rank of X. We call A and F r-flats in G and X respectively, and any image of these
under an automorphism is also called an r-flat.
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We consider the adjoint action of A on the Lie algebra G of G. Then Ad 4 is
diagonalizable and its irreducible one dimensional subrepresentations are called
the roots on A. The set of roots £ forms a root system just as in the case of
roots on Cartan subalgebras of complex semi-simple Lie algebras, except that 2«
may be a root if « is. In any case, there is a fundamental system of r roots A such
that © = =¥ U(— Z%) where =* lies in free abelian semi-group generated by A.
We call the r roots in T* positive roots. If A, C A, we denote by {A,} the set
of linear combinations of A, .

The connected components of 4 — % Ker o are called chambers. The sub-
ae

group W = N(A)/Z(A) opérates simply transitively on the chambers, where N( )
denotes normalizer and Z( ) denotes centralizer in G.

The image of a chamber in 4 under p : G > X is called a chamber in X with
origin u(1). Geodesics in X lying on a wall of a chamber are called singular geodesics,
They can be described equally well as geodesics lying in more than one r-flat .
The roots of G have a simple interpretation is in terms of the curvature tensor
Rof X :forany Y,,Y,, Y, in P,

R(Yl ) Yg ) Ya) = [[Y1 5 Yg] 5 Ya]
The image of the r-flat A under conjugations by K covers P. Correspondingly
K F = X for any rflat F and the stabilizer X of a point in F.
Let A" be a chamber in A. Then K[A'] = (K/M) x A' (direct) where x[y]
denotes xyx~!, and M = Z(4) N K.

Let F' be a chamber in X with origin X,, and let K denote the stabilizer of x .
The map (K/M) x F' > K F' given by (k,x)~> kx is called orbital coordinates
with respect ot x, and F'.

The metric on X can be represented in orbital coordinates as :

ds* = Y sinh? u, d6? + da?
a
where we identify A' with F' via u, and u, = log a(h) for n € A', and d6? is a
K-invariant quadratic differential on K/M with support in the K-orbit of the
o?-eigenspaces of (ad log h)2.

There is also another type of subgroup that we shall consider. Let A, be a
subset of the fundamental system of roots A. We set

A = N Kera,G(4,) = Z(A]) , N(A,) = Gq
llfl

II
0¢A1
a>0

where G, is the analytic group whose Lie algebra is the set of eigenvectors belongs
to a,

PA)=GA)NA)).
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Then N(A,) is a unipotent group, that is its elements are unipotent in any repre-
sentation of G. P(4,) is the normalizer of N(A,) and G = K P(A,). In particular
G/P(A,) is compact. We shall call any subgroup of G conjugate to P(A)) for
some A, C A a parabolic subgroup.

3. Polar decomposition

Let g be an invertible real matrix. Then there exist unique commuting elements
m, s, u such that their eigenvalues are respectively of modulus 1, positive, and
equal to 1, and such that m and s are semi-simple (that is diagonalizable over
C). One calls ms and u the semi-simple and unipotent Jordan parts of g. We call s
the polar part of g and denote it by pol g. If G is an algebraic linear group, then
the connected component of the identity contains pol g whenever G contains
g. In particular, semi-simple analytic linear groups have this property.

An element g of G is called R-split if its semi-simple part is pol g ; it is called
polar regular if dim Z (pol g) < dim Z (pol x) for all x € G.

LeMMA 3.1. — An element of G is polar regular if and only if it leaves inva-
riant a unique r-flat in X. For suitable choice of an invariant metric on X we have

forallg € G
inf d(x, gx)* = Tr (log pol g)?
xeX

4. The maximal boundary X,

As noted above, we can assume that G=G N P(n,R)x GNO0(n,R), and
thus X may be identified with the subset P = G N P(n,R). Let § denote the
linear space of all n x n real matrices, and let 8 denote the projection of 8 — (0)
onto the projection space [8] of lines through the origin. Then the map o u
yields an injection of X into [8]. The G-action on X goes into the action

p>gp'g

which is linear on 8 and thus passes to an action on [$8]. The closure of § o u(X)
is denoted X. It is the Furstenberg-Satake compactification of X([2], [5]). (It
depends on the representation of G as a linear group.) The function X — X
consists of a finite number of G orbits and among these, there is a unique compact
G-orbit, which we denote by X|, ; it is also characterized as the orbit of least di-
mension. The stabilizer of a point in X is a parabolic subgroup. For a suitable
representation of G, the stabilizer is a minimal parabolic subgroup P. It that is
the case, X, is called the maximal boundary. The maximal boundary can be
defined intriniscally as follows :

Let &, denote the set of chambers in X with arbitrary origins. Define two
chambers F, and F, to be equivalent if and only if 6(F, ,F,) < oo, where
denotes Hausdorff distance. Let X, denote the quotient of &, by this equi-
valence relation. We take as topology on X, the quotient of convergence
in compact sets of X. A set of representatives for X, is provided by the set of
all chambers with common origin. Thus X, = K F' where F' is a chamber with
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origin fixed by K, and X, = K/M = G/MAN = G/P where M = Z(A) N K and
N = N(¢)and P =P(¢).

5. Pseudo-isometries

DEFINITION, — Let X and X' be metric spaces. Let k and b be non-negative
numbers, A continuous map ¢ : X - X' is called a (k, b) pseudo-isometry if

n d(pkx),p(¥)) <kd(x,y) foral x,yinX
(2) d(pk),e(y) 2k d(x,y) if d(x,y)>b.

A pseudo-isometry is a map which is a (k, b) pseudo-isometry for some k
and b.

LEmMA 5.1. — Let G and G' be semi-simple analytic groups without compact
factors, and let I" and T"' be discrete subgroups such that G/I' and G /T are
compact. Let 8 : ' > I'' be an isomorphism. Let X and X' be the associated
symmetric spaces. Assume I' and I'’ have no elements of finite order. Then there
is a pseudo-isometry ¢ : X = X' equivariant with respect to 6. Moreover, let
F and F' be rflats such that P\I'F and I'"\I''F' are compact. Then ¢ may
be selected so as to be linear on F.

1. Some inequalities

Let F be an r-flat in X and let x € F. Let F,,l denote the union of geodesics
through x perpendicular to F at x. Then each point of X lies in a unique set

F; [4b]. Let 7 : X = F denote the map sending each point of F, into x.

For any p € X, let X » denote the tangent space to X at p, and 1'rp X » I'?',,(p)
the differential of 7 at p.

LEMMA 6.1. — Let p € X. Let Y be the unique element of P; such that exp
Y(w(p)) =p. Let CE Xp and set 4 = 1'rp(C).

Then
[C>>Z2 w, A}
where A = ZA, n;, the set of tangent vectors n,,..., 7, in X,,(p) is an ortho-
]

normal set of vectors for (ad Y)?, w,=v; cosh v,/2 (2 sinh v,/2)"! and
(@d Y)Y g, =vln, (i=1,...,n).

LEMMA 6.2. — Continue the above notation. Then

IC| Y A4
— =02 —1/4yl/2[__.’_
SO G| NT7RIY
This lemma implies that if Y is large and [4|/ |C] not small, then A lies close

|A|
to a singular element A’ and Y lies close to the centralizer of A' (identified with
and element in the Lie algebra of G)
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7. Application to I'-compact r-flats

Let I' be a discrete subgroup of G. An r-flat F of X (resp. A of G) is called
Icompact if I'\I"' ¥ (resp. I'\I" A) is compact. This is the case if and only if there
is a free abelian subgroup A in I' of rank r which keeps F invariant and such that
A\ A F is compact.

LemMa 7.1. — Let X and X' be symmetric spaces, I' and '’ discrete subgroups
of isometries on X and X', 8 : T' - I'' an isomorphism, and ¢ : X - X'a pseudo-
isometry equivariant with respect to 8. Then there is a number v, such that :

For any free abelian subgroup A of I' and for any A-compact r-flat F, ¢ (F) lies
within a distance v, of a flat space F' " which is invariant under 6 (A).

LEMMA 7.2. — Let X; be a symmetric space of rank r, A; a free abelian group
of isometries of X,, F; a Arcompact r-flat in X, =1,2). Let 0 : A, > A, be
an isomorphism and ¢ : X, > X, a pseudo-isometry which carries F, linearly
into F,. Then y sends singular geodesics of F, to singular geodesics of F,.

The proof is based on a chain of consequences of Lemma 6.2.

LemMMA 7.3. — Let G; be a semi-simple analytic group, I'; a discrete subgroup
such that I';\ G, is compact, A; an abelian group of rank 7 in I', pol A; the set
of polar parts of elements of A,, and j; the canonical injection of pol A; ®g R
onto the rflats A; containing pol A, (i = 1, 2). Let  : T, = I, be an isomorphism
and let § denote the induced map of pol A, ®g R to_pol A, ®g R. Thenj, § j~!
sends singular elements of A, to singular elements of 4,.

The proof of Lemma 7.3 comes from constructing a pseudo-isometry of the
associated symmetric spaces X, onto X, sending F, linearly onto F, as in
Lemma 5.1, and then applying Lemma 7.2.

8. Density properties of I

LeEmMA 8.1. — Let X be a symmetric space of rank » and let I" be a discrete
group of isometries on X such that '\ X is compact. Let B be a ball of positive
radius in X. Then the union of all I-compact r-flats meeting B is dense in X.

This lemma is based on a conjugacy theorem for polar regular elements
announced in [4d] (where we used the term R-regular for polar-regular) and a
proof of the conjugacy theorem can be found in [4f].

LemMA 8.2. — Let G be a semi-simple analytic group having no compact fac-
tors and I' a discrete subgroup such that G/I' be finite measure. Then
(1) Ad T' is Zariski-dense in Ad G ([1])

(2) Any R-split semi-simple element b of G operates ergodically on H/HN T
where H is the smallest normal analytic subgroup of G such that I' H is closed

([4gD
(4) TP = G for any parabolic subgroup of G ([4d, f])
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In the special case that the H of assertion 2) is the smallest analytic normal
subgroup of G containing b, the result is proved by C. Moore ([3]) and gene-
ralizes a result of F. Mautner.

9. The boundary map ¢,.

THEOREM 9.1. — Let Q and Q' be compact locally symmetric spaces of negative
curvature, let X and X' be their simply connected covers, and let T' = m, (Q),
I' = m,(Q"). Assume there is an isomorphism 0 : T' - I". Then there is a pseudo-
isometry ¢ : X ~ X' equivariant with respect to 0. Such a ¢ induces a homeo-
morphism ¢, : X, > X,, where X, and X, denote the maximal boundaries of
X and X'

Sketch of proof — The ranks of X and X' are equal since they are given by
the maximal rank r of abelian subgroups of I'. Let p € X, let &, be the set of all
I'-compact r-flats through some ball containing p, and let &} denote the union
of all the F in & .

The existence of ¢ is given by Lemma 5.1. By Lemma 7.1, there is a number
v, such that o(F) lies within a distance v, of a I'-compact r-flat F' for every
FEGS, Let A and A' denote the stabilizers in I' and I' respectively of F and
F.

Applying Lemma 7.3, we can see that singular lines of F are mapped by ¢
to within a distance v, of singular lines in F'. Let F be an r-flat through p and
let L be a ray well within a chamber (say for definiteness all the fundamental
roots are equal along L). Then ¢ carries L into a region bounded away from S,
the union of singular lines through ¢(p). Using the orbital coordinate form of
the metric (cf. § 2) we see that the K-orbital distance (i.e. the “angle’’) dimi-
nishes exponentially along a path receding to infinity so long as the chamber
coordinates stays away from the walls. Thus given a family of nearby chambers
with origin p, the K'-orbital coordinates of their images diminishes exponentially
as one passes to infinity. Therefore ¢ induces a continuous map ¢, : X, = Xg.

Clearly yp, is equivariant with respect to 6. Similarly, we can get a continuous
6~'-equivariant map Y, : X:, - X,. Without loss of generality we can assume
that o ¢ is the identity on some r-flat F (Lemma 5.1)

Therefore Y, o ¢, leaves fixed a point x, of X, and hence each point of I'x,.
Sonce the stabilizer of x, is a parabolic subgroup we get I'x, = X, by Lemma
8.2(3). Hence Y, © ¢, is the identity and similarly ¢, o Y, is the identity. Thus
¥, is a homeomorphism.

10. Stable fixed points

Let A be a semi-group operating via diffeomorphisms on a manifold X,. We
denote by f(A) the set of fixed points of 4 in X,.

DEFINITION. — A point p € f(A4) is of A-type (m, n) if there is a neighborhood
of p of the form R™ + R” + R*¥ with each element of A contracting on R, ,n,0)
for all n € R", fixing (0, R" , 0), and expanding in the complement of (R™, R" , 0),
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thatis{a"(¢,n,¢) ;n = 1, 2, . . .} has no point of accumulation in R” + R* + R*
if { # 0 for any a €E A.

DEFINITION. — Type (m , dim X, — m) is called stable fype. The subset of f(4)
of stable type is denoted by f(A)°* and is called the stable part of f(4).

The type of fixed point of a diffeomorphism does not vary along a connected
component of the fixed point set. In particular f(4)* consists of connected compo-
nents of f(A4).

LemMMA 10.1.— Let G be a semi-simple analytic group and X, the maximal
boundary of its associated symmetric space. Let A be a cyclic semi-group of
R-split semi-simple elements. Then f(A4)* is connected and its stabilizer is a para-
bolic subgroup which operates transitively in f(4)°.

11. Approximating sequences

Let G be a semi-simple analytic group and I' a discrete subgroup such that
G /T has finite measure. Let A be a cyclic semi-group of G.

DEFINITION. — A is the set of all sequences {y,} of elements of I' satisfying
the condition : there is an increasing sequence of positive integers such that
lim y,a "™ =1

k=
where a is a generator of A. If the element a is R-split and semi-simple, and

if Ap is not empty, we call the semi-group I'-approximable, and elements in A
are called A-approximations.

DEFINITION. — Let {y,} be a sequence of elements in I'. Set
f@)={pip€X,, lim v,p=p)

Let p € f('y,,) We say that p is of 'y-type (m, n) if there is a neighborhood of
the form R” + R* + R* satisfying

¢)) li;l Y. (.,1n,0 =(0,n,0) for £ER™,n ER"

(2) v,(¢,n, ) has no accumulation point in R™ + R” + R¥if ¢ # 0.

We call a point of 'yn-type (m , dim X, — m) a point of stable type. We denote
by f('y,,)‘ the points of stable type in f('y,,) If C is a collection of sequences of
T', we set

— ->
o) = ¢ ?c 1)

Tn}€
O'= N @,y
0 m}ggf(‘r,.)

LEmMMA 11.1.— Let A be a cyclic semi-group of R-regular semi-simple elements .
Then gdg~! is Tapproximable for almost all g € G.

This follows form Lemma 8.2 (2).
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LEMMA 11.2.— Let {7,,} be a sequence on I'. Then f(';"") = f(A) where A is
the subgroup of G fixing the points of f(¥,).

LEmMA 11.3.— Let A be a cyclic semi-group of R-split semi-simple elements
which is [-approximable. Then f(Ap) = f(4) and f(Ap)* = f(4)°.

Lemma 11.4. — Let X, X', and 6 : I' = I be as above, and let @, : X, = X}
be the induced 0-equivariant homeomorphism. Let 4 be an abelian semi-group
of R-split semi-simple elements of G. Then ¢,(f(4)*) = f(A4'y for some abelian
semi-group of R-split semi-simple elements in G'. If A lies in a chamber or chamber
wall, then so also does A’'.

12. Tits geometries and the main theorem

Let 7 denote the set of all fixed point parts f(A4)* as A varies over cyclic semi-
group of R-split semi-simple elements of G. Let P(4) denote the stabilizer of f(4)*.
Two elements of 7 are called incident if they have a non-empty intersections, this
is equivalent to saying that their stabilizers intersect in a parabolic subgroup.
We have thus arrived at a Tits geometry !

In his famous Erlanger program, Felix Klein urged that the properties of a
geometry be translated into properties of its automorphism group. Tits has used
this principle in reverse to define a geometry on the set of parabolic subgroups
of any algebraic group ; in the classical geometries, this amounts merely to labelling
every point, line, plane etc., by its stabilizer. In particular, Tits defines two para-
bolic subgroups as incident if their intersection is a parabolic subgroup. From
Lemma 11.4 we see that the boundary map g, induces an isomorphism also
called ¢, : 7(G) > 7(G’) of the associated Tits geometries.

A basic result of Tits, specialized to the case of semi-simple real analytic
groups G having-no center, no compact factors, and no factors of R-rank one :

G = (Aut 7(G))°

where the superscript denote the connected component of the identity (cf [7]).
Since ¢, is incidence preserving, we get

¥, © Aut 7(G) ° p5' = Aut 7(G")
and therefore for any g € G
Yo°8°9" €G'
where each elements of G are identified with its action on X,. Set
6 =p,°8° 05"

Then 5(7) =60 (y) for y—T. Thus 6 is an analytic isomorphism of G to G’
extending @ and therefore induces an isometry of I'\X onto I''\ X’ with respect
to suitably normalized metrics.

13. Concluding remarks

To sum up. we have
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THEOREM 13.1. — Let X and X' be simply connected symmetric Riemannian
spaces of negative curvature having no factors of rank 1. Let T and T be discrete
groups of isometries on X and X' respectively operating freely. Assume T'\X
and T'\X' are compact. If 0 : ' > I" is an isomorphism, then 0 extends to an
analytic isomorphism of the group G of isometries of X onto the group G' of
isometries of X'.

The groups G and G' above have no centers. According to a result of Selberg
([6]), any finitely generated matrix group has a subgroup of finite index having
no elements of finite order. Such a subgroup of G operates freely on the asso-
ciated symmetric spacé X and conversely, a subgroup operating freely on X has
no elements of finite order. Thus we get

THEOREM 13.2. — Let G and G' be semi-simple analytic groups with no center,
no compact factors, and no factors of R-rank 1. Let T and T" be discrete sub-
groups of G and G' respectively such that G|T' and G'|T" are compact. Let
6 : T - I be an isomorphism. Then 0 extends to an analytic isomorphism of
G onto G'.

In the hypotheses of Theorem 13.2, we have dropped the assumption that I
has no elements of finite order because each element of I' is uniquely deter-
mined by its action on a normal subgroup I', of finite index in I' — this follows
at once from the Zariski-density of I'; in G.

It is natural to wonder about the validity of Theorem 13.2 for groups of
R-rank 1. If G = PL(2,R), the result is false since two compact Riemann sur-
faces of the same genus need not be conformally equivalent. For the case of the
group of isometries on real hyperbolic space, the boundary map turns out to be
quasi-conformal; (this result has been recently announced by G.A. Margulies,
Dokl. Akad. Nauk SSSR v. 192, No. 4 (1970)) and therefore ¢, is conformal
by [4e].

As for generalization of Theorem 13.2 to the case where G /I’ has finite
measure, such an extension is possible as soon as one can establish

(1) A pseudo-isometry of '\ X to I''\X'.
(2) The existence of sufficiently many I'-compact r-flats.

An affirmative solution to the questions above in rank 1 would lead to the fol-
lowing generalization of the theorem on solvmanifolds in [4a].

THEOREM. — Let G; be a simply connected analytic group having no compact
factors and let T; be a discrete subgroup such that G,/T; is compact (i = 1, 2).
Let 0 : T, > T, be an isomorphism. Then there exist subgroups of finite index
I, and Ty in T, and T, respectively since that 0 is induced by a homeomorphism
of G, /T, onto G, |T,.

If the questions relating to the finite measure case have affirmative answers,
then the above result should remain true if G/I' has finite measure.
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GEOMETRY OF MODULI SPACES
OF VECTOR BUNDLES

by M.S. NARASIMHAN

Moduli spaces of vector bundles.

I shall speak about certain varieties which arise in the moduli problem for holo-
morphic vector bundles on a compact Riemann surface.

Let X be a compact Riemann surface of genus g = 2. By a vector bundle we
shall always mean a holomorphic vector bundle. If W is a vector bundle on X
we shall denote by d(W) its degree and by n(W) its rank.

As is well known, the classification of line bundles of degree zero on X is
achieved by the Jacobian J of X. The underlying differentiable manifold for J
is the space of characters of the first homology group H,(X, Z). Moreover,
the holomorphic tangent space to J at any point is identified with the cohomo-
logy space H'(X, ®), where © is the sheaf of germs of holomorphic functions
on X. We remark that there is a natural positive definite hermitian form on
H'(X,0) : the space H' (X, 0) is identified with the space H of closed (0, 1)
forms on X and if w,n € H we set

1 _
(w,n)—TLwAn-

Passing on to vector bundles of higher rank, to obtain good moduli varieties
one has to restrict the class of vector bundles. A vector bundle W on X is said
to be stable if for every proper subbundle V of W one has d(V)/n(V) < d(W)/n(W).
D. Mumford proved that the isomorphism of classes of stable bundles of rank »
and degree d form a non-singular quasi-projective variety.

Let w, be the fundamental group of X. If p is a representation of w, in the
unitary group U (n), p defines a holomorphic vector bundle W(p) of rank n and
degree 0 on X. Moreover if p, and p, are unitary representations of w,, then
the holomorphic vector bundles W(p,) and W(p,) are isomorphic if and only
if p, and p, are equivalent representations. It was proved in [2] that a vector bundle
of degree 0 on X is stable if and only if it arises from an irreducible unitary repre-
sentation of w,. This result suggests a natural compactification for the space
of stable bundles of degree 0. In fact C.S. Seshadri proved [4] that there is a
natural structure of a projective variety on the space equivalence classes of all
n-dimensional unitary representations of w,. This structure depends in general
on the complex structure on X. In general this space has singularities and the
singular points have been determined in [3]. The singular points correspond
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precisely to reducible representations except when g = 2, n = 2, in which case
the variety is non-singular. Other moduli spaces (corresponding to vector bundles
of degree # Q) are obtained by considering unitary representations of suitabley
defined Fuchsian groups [2].

Non-singular moduli spaces.

The moduli spaces are non-singular for vector bundles whose degree and rank
are coprime. These varieties are constructed in the following way. Let w be a
discrete group acting effectively, properly and holomorphically on the unit disc
Y such that Y/ = X and such that the natural projection p : ¥ > X is rami-
fied over a single point x, € X with ramification order n. Let y, € p~! (x,) and
Tyo be the isotropy group at y,. Let 7 be a character of Ty such that 7 is an
isomorphism of =, o Onto the n'™ roots of unity. A representation p of 7 into
unitary group U(n) is said to be of type 7 if p |1ry o= T- I,, where I, is the n x n
identity matrix. Such a representation is irreducible. To each p of type 7 we
can associate a holomorphic vector bundle W(p) of rank n and degree d on X
(Here d is an integer coprime to n, associated with 7). There is a natural struc-
ture of a compact complex manifold ([1], [2, Remark 10.1]) on the set M of
equivalence classes of n-dimensional unitary representations of type 7 of #. (In
fact M is a projective variety).

Let m € M and p a representation of type 7 in the class m. Let Adp denote the
representation of m« in gl (n, C) obtained by composing-p-and_the adjoint repre-
sentation of U(n) in gl(n, C). Adp is a representation of m,. Let W(Adp) be
the holomorphic vector bundle on X associated with Adp. Then the holomorphic
tangent space to M at m is naturally identified with the cohomology space
H'(X , W(Adp)) [1].

Canonical hermitian metrics

We now introduce a hermitian metric on M. To do this it is sufficient to in-
troduce a positive definite hermitian form on HY (X, W(Adp)). Since W(Adp)
is given by a local system, the operator of exterior differentiation, d, is well
defined on C® differential forms with values in W(Adp). Let T(p) denote the
space of d-closed C” forms of type (0, 1) with coefficient in W(Adp)-. Then T (p)
is canonically isomorphic to H'(X, W(Adp)). So it suffices to introduce a posi-
tive definite hermitian form on T(p). If w € T(p), let w* denote the (1, 0)
form with coefficients in W(Adp) obtained by using the conjugation 4 +~ A*
in gl(n ,C). (A* denotes the conjugate transpose of A. Locally, if w = A(z2)dz,
w* = A*(z2) dz). Define the hermitian scalar product in T(p) by

1
(W, ,w,) = T ‘/;{Trace (w, , w¥), w,,w, €ET(),

where the exterior product is taken with respect to the multiplication

gl(n,C)x gi(n,C)>gl(n,C).
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This defines a hermitian metric on M. This metric is Kéhlerian. In fact, using
the forms in T(p) we can construct at each point P of M a geodesic holomorphic
coordinate system (i.e., one in which all first derivatives of the components of
the metric tensor are zero at P).
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SOME GENERALIZATIONS OF CHRISTOFFEL
AND MINKOWSKI'S THEOREMS

by A.V. POGORELOV

This lecture deals with the problem of existence of the closed convex surface
with the given function of the main radii of curvature. I mean the surface whose
main radii of curvature are R, ,R, and the unit vector of normal in each point
satisfies the condition

(e} f(R, ,R;) = p(n)
Here f and o are the given functions.
In the case when f(R, ,R,) =R ,R, it is the well-known problem of Min-

kowski. It is known that the problem of Minkowski is solvable if the given func-
tion ¢ is twice differentiable, positive and satisfies the condition

) Jfnp@m)dw =0

Here the integration extends over the unit sphere. The condition (2) is not only
sufficient but also necessary.

In the other particular case when f= R, + R, we obtain the problem of
Christoffel. It is known that this problem is solved in compact form. As far as I
know these two results are all that is known about the solution of the general
problem.

About the uniqueness of the solution of the problem mentioned here we have
a rather general theorem of A.D. Alexandrov. According to this theorem the closed
convex surface is exactly defined to the parallel transfer by the condition (1),
if the function f is strictly monotonous over both variables, that is

3) 3f/dR, > 0, 3f/dR, >0

The main difficulty of the solution of the general problem in my opinion is to
find the necessary conditions which in the case of Minkowski’s problem are reduced
to the system of three equations (2). There is no hope to find these conditions in
the general case. I think. Here we hope to solve the problem using some sufficient
conditions.

One of these sufficient conditions of common character is the requirement of
the symmetry of the function ¢(n), that is

4) p(n) =p(n)

This condition restricts our consideration to the case of the central symme-
trical surfaces. It is clear that if the condition (4) is realized, the condition (2)
for the solution of Minkowski’s problem is fulfilled in the trivial way.
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For the solution of the problem we use the continuity method. That is why
we include the function ¢(n) in the family of continuous functions :

(C) I @) =rpm) + (A —Nf(,1),0<A<1

It is clear that the problem can be solved for A = 0. The solution is given by the
sphere of a unit radius.

For the complete solution of the problem it is sufficient to prove two
statements :

a) If the problem is solvable for some value of the parameter A = A, then
it is solvable for all the values near this parameter ;

b) If the problem is solvable for the values of the parameter N\ convergent to
some A, it is also solvable for A = A,.

Let us consider the statement a). The equality (1) is the equation in partial
derivatives of the second order for the surface support function. If the function
f is symmetrical f(R, ,R,) =f(R, ,R,) and satisfies the condition (3), this
equation will be of elliptical type. In the following discussion this condition is
supposed to be realized.

Consider the equation in variations for the equation (1). This equation will
be a linear one of the elliptical type

©) Lu)=y®m

It appears that the gomogeneous equation L () = 0 in the class of the center
symmetrical infinitesimal surface deformations has no other solutions except
the trivial 4 = 0. From this we conclude that the nonhomogeneous equation (6)
is solvable for any symmetrical function Y (n), that is Yy (n) = ¢ (—n).

Now applying the method of successive approximation the statement a) is
proved.

To prove the statement b) it is sufficient to establish the a priori estimates for
the normal curvatures of the unknown surface. The proof for the existence
of such estimates is based on the following theorem.

In the point P, of surface F satisfying the equation (1) where the larger of the
main radii of the curvature R, reaches its maximum, we have

I SN A
70 (R =R 3R, * dR? (3f/3R,)? = ¥ss

In the point P, of surface F where R, reaches its minimum, we have

gy L P 4
(72) ®Ri =R o, T 3RT @afrar,y < OsS

Let us give an example. Let f(R, ,R,) = R|R,. The unequality (7,) takes
the form

(R; —R)D R, = ypg
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From this as R, R, = p we obtain the estimate
RY < ¢~ ¢
Now let the functions f and ¢ satisfy the following conditions

of LI e |

— |
8 i —R) L 4
@) Ryt m| B2 RO 3p TIRT Grer, ) < s
Ry~
. ( of | 3f ¢ |
8 ! R,—Ry)—— +—L ¥ [
@) Ry | Bt TR 3R Y oRT Gapjer, Y T OsS
Ry~>0

Then there exists € > 0, depending only on functions and ¢ such that on the
surface

1
) e <R, <R, <:

Thus the condition (8,) and (8,) make it possible to obtain the a priori esti-
mates we need.

So the surface saticfying the Eq. (1) always exists if the functions f and ¢ are
twice differentiable and satisfy the conditions (3), (4), (8,), (8,).

It is known that Minkowski came to the solution of the problem stated by him
starting from the corresponding problem for the closed convex polyhedra. The
problem is to prove the existence of the closed polyhedron with given directions
faces and their areas. In the case of the general problem I think it is possible to
state the corresponding problem for polyhedra. Here the role of the area takes
the arbitrary function defined on the faces and having the properties similar
to the area.

Let o be the arbitrary plane and w, the function defined on the closed convex
polygons lying in the planes parallel to o plane. Let this function satisfy the
following conditions.

(1) Function w, is positive and continuous.

(2) Function w, is invariant with respect to parallel transfer. It means that if
the polygons P and Q are superimposed by parallel transfer the values of the func-
tion w, on these polygons are equal :

(3) The function w, is strictly monotonous, that is, if the polygon Q is a part
of the polygon P then w,(Q) < w, (P).

(4) If the polygon P changes so that its area S(P) > oo then w, (P) = . If the
polygon P degenerates into a segment, then w,(P) = 0.

We have the following theorem.

Let o, ,0,, ... @, (n >3) be a system of planes not parallel to one straight
line : w,, ... w, be the system of functions defined in polygons parallel to planes
a,, ... o, satisfying the conditions (1) — (4).
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Then for any positive numbers ¢, , ...y, there exists a closed convex poly-
hedron with 2n faces parallel to planes ,, . .. @, and the values of the functions
w on those faces equal to ¢, ... p,.

This polyhedron has a centre of symmetry and is defined uniquely to the
parallel transfer.

The reported results were published in Proceedings (Doklady) of the Academy
of Sciences of the U.S.S.R. 1967, volume 173, number 6, and volume 174, number
2,3.

Physico-Technical Institude of Low Températures
of the Academy of Sciences of the Ukraine
Lenin’s Prospect 47,

Kharkov 86 (U.R.S.S.)
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C4 - ANALYSE SUR LES VARIETES

ELLIPTIC OPERATORS AND SINGULARITIES
OF VECTOR FIELDS

by M.F. ATIYAH

Introduction.

On a compact smooth manifold X there is a well-known theorem of H. Hopf
which asserts that the number of zeros of a smooth field v of tangent vectors
depends only on X (not on v) and is equal to the Euler-Poincaré characteristic
E(X). Here we assume of course that the number of zeros of v is finite (which
is true in general) and that each is counted with an appropriate multiplicity.
If we consider now r vector fields v;,..., v,, and denote by S(,,..., »,)
their singular set (i.e. the points P at which v, (P),..., v,(P) become linearly
dependent) we have, in general, dim § = r — 1. The homology class of S (with
appropriate coefficient group) turns out to be independent of v,..., », : this
is called the Stiefel-Whitney class of X. The study of these invariants is part of
the general theory of characteristic classes. However this theory does not give
complete topological information about the singular sets S. Thus if the Stiefel-
Whitney class vanishes the theory merely tells us that we can modify v,,..., v,
so that dim S <r — 2.

At the opposite extreme from the theory of characteristic classes we can,
following E. Thomas |4], attempt to study the case of finite singularities (i.e. S
a finite set) and ask for generalizations of Hopf’s theorem. At each singular
point P we have a local obstruction

0p(y, ..y V) Em,_ (V)

(where V, . is the Stiefel manifold SO(n)/SO(n —r). Thls obstruction is, by
definition, the homotopy class of the map x - i (x), RS P (x) where x € S" !
is a point on a small sphere centre P and v, P(x) is the parallel through P to v,(x)-
using a local coordinate system. For r = 1 we have

Ve, =8""' and m,_,(S"H=Z

gives the multiplicity used in the Hopf theorem. We can now form the global
obstruction Y, 0p(vy, ..., v,) and ask how far this is independent of X.
P
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There are now many results in this direction (see [4]) and the invariants -of
X which appear in these results (as global obstructions) are the Euler charac-
teristic, the signature and the Kervaire semi-characteristic k(X) (defined (for

dim X odd) to be 2 dimRHz" (X ,R) mod 2). As an explicit example we mention
p

here the following.

THEOREM 1. — Let X be oriented and of dim 4q + 1, and let v, , v, be 2 vector
fields with finite singularities. Then

2 0p(vy ,¥,) = k(x) € Z,
P

Note. —m,_,(V, ,)=Z, for nodd>3.

Now the invariants of X mentioned above all occur as indices of elliptic ope-
rators on X or as mod 2 analogues of such indices. Because of this it is reasonable
to expect some interesting connection between Theorem 1 and elliptic operators.
In fact it turns out that Theorem 1, and others like it, can be proved using ana-
lysis and the topology appropriate to elliptic operators, namely K-theory. As
an indication in this direction I will briefly indicate how to prove, by analysis,
the weak form of Theorem 1 — namely its corollary.

COROLLARY. — If X is as in Theorem 1 and if there exist vector fields v, ,v,
everywhere independent, then k(X) = 0.

First of all we can construct on X an elliptic operator D which is real and
skew-adjoint and such that

Ker D = ), H*® (X,R)
p

This is done by choosing a Riemannian metric on X and using the Hodge theory
of harmonic forms. Explicitly D is an operator defined on all even-dimensional
differential forms by
D=1V d*¢+ (— 1P =dp ¢€Q
where * is the duality operator defined by the metric.
Next we define for any 1-form v an operation R (v) on forms by

R(W¢ =¢Ay — vy

(where ¢ vv denotes the interior product with », adjoint of the exterior product).
If v, ,v, are 2 independent vector fields, we may suppose them orthonormal
for convenience and (using the metric) we may also identify them with 1-forms.
If we then define the composite operation R(¥) = R(v,) o R(v,) on forms we
can verify the following :

(1) R@)* = — Identity
(2) RD - DR has order zero

(D is a 1st order differential operator, R has o-order so (2) asserts that the highest
order terms of RD and DR cancel).
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Using (1) and (2) we shall now prove the corollary. First we replace D by D’
defined by

1
D' = 5 (D + RDR™)

Clearly D' now commutes with R, so that by (1) Ker D' admits a complex struc-
ture and so has even dimension. On the other hand (2) implies that D and D'
agree in 1st order and hence

D,=tD+({(—1D 0<t<1

is a family of real skew elliptic operators connecting D and D'. But it is not
difficult to show (see [2]) that this implies

dim Ker D = dim Ker D' mod 2 ;

since dim Ker D = 2 dim H?** (X, R) this completes the proof.
?

Note. — dim Ker D mod 2 for D real skew elliptic is a kind of mod 2 index —
having the basic property of homotopy invariance.

To prove Theorem 1 by similar analysis one would have to excise small balls
around the singular points P and set up a suitable boundary value problem. It
is however technically easier to pass at this stage to K-theory which is essentially
the topological machinery for dealing with elliptic problems (see [3]). The details
are reasonably standard but cannot be described here.

For a general survey concerning vector fields with such singularities we refer
to [4] while the material described here is explained in more detail in [1]. My
purpose here has simply been to illustrate the interaction between the geometry
of vector fields and index theory.
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ON THE MOTION OF INCOMPRESSIBLE FLUIDS

by D.G. EBIN and J. E. MARSDEN

We are concerned with the initial value problem for an incompressible inviscid
fluid. Specifically, given a bounded domain M in R® (or any compact Riemannian
manifold which may have boundary) and a smooth vector field V, tangent to
bdy (M), we seek a time dependent vector field V(¢) satisfying :

oVt
t40] + V,,(,)V(t) =—grad p V(t) tangent to bdyM

ot
£) .
div (V) =0 V)=V,

3 av.
Where V is the affine connection in M (so inRV, V=% ¥, 5(1[) div means
j=1
divergence, and grad p is the gradient of a time dependent function on M, which
is determined implicitly.
We have shown [2] that given V,, there exists a unique V satisfying (E), defined
on a time interval depending on V,. In this report we will discuss the methods
of [2].

Our approach to the problem is patterned after the work of Arnold, [1] ; that
is, we translate the problem into a Hamiltonian system on a certain non-linear
infinite dimensional space. We show that this space has a natural Riemannian
structure and we solve the problem by finding geodesics on this space.

We first present a typical situation from mechanics : Let X be differential mani-
fold with Riemannian structure ( , ) ; let TX be its tangent bundle and T*Xx
the cotangent bundle. ( , ) defines an isomorphism between 7X and T*X, and
T*X has a natural sympectic two form £ (cf. [3], p. 86). By means of the iso-
morphism, we can consider £ as a sympectic form on T'X. We define Kinetic
energy K : TX = R by K(V) = %2 (V, V). Then there exists a unique vector field
Z on TX which satisfies the equation : Q(Z,Y) = — Y(X), for Y any vector
field on TX. The integral curves of Z project to geodesics on X, and also they
are the curves of motion of the Hamiltonian system with energy K.

We proceed to find X for the problem of fluid motion. We assume that the
manifold M is filled with fluid and Tet v, : M > M be the map which takes each
particle of fluid from its position p at time zero to its position p,(p) at time .
Since the fluid is incompressible ¢, will preserve the volume element of M. (For
a domain in R3, this means that the Jacobian of ¢, is everywhere 1). From this
and the assumption that y, is onto, it follows that ¢, must be a volume-preserving
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diffeomorphism of M. Thus, we let X equal ®, the set of all volume preserving
diffeomorphisms of M (u being the volume element), and our next task is to endow
A®, with a differentiable structure. For simplicity, we shall assume that M has no
boundary.

First consider @, the set of smooth diffeomorphisms of M, with the C” topo-
logy. This space is locally like C™(T), the Frechet space of smooth vector fields
on M. Since one cannot in general solve ordinary differential equations on Frechet
spaces, we enlarge @ so that it is locally a Hilbert space.

Specifically, we let @ be the set of bijective maps n : M - M such that q
and 7! are both of class H. That is, when written in local coordinates, nfand 1),
together with all partial derivatives up to order s, are square integrable. For
s>nf2 + 1, (n = dim M) the smoothness of n does not depend on the choice
of coordinates ; furthermore, @®°, with the H* topology, is a topological group
which is continuously included in the group of C'-diffeomorphisms.

Now we construct a differentiable structure for @". Let H'(T,)) be the space
H*® vector fields over 7 ; i.e.

H(T) ={V:M~>TM|V €EH’ and ToV =10}

(m : TM - M is the bundle projection). It is a Hilbert space with the H® topology.
let e: TM - M be the exponential map of M coming from its Riemannian
Structure. Then K, : H'(T,)) > @°, defined by £.(V) = e° ¥ has domain a neigh-
borhood of the origin of H' "’(Tn) and is a homeomorphism from some neighborhood
of 0 in H*(T,) to a neighborhood of 7.

For each 7, %, H‘(T ) > @®° provides a chart about n and using the fact
that e : TM >M is C , one can show that the transitions between charts are
smooth. Thus @° is a C -manifold and for each n, the tangent space to @®° at
n (denoted T, ®) is identified with H*(T,).

Using the manifold structure of @° we will derive a manifold structure for
®D°u ={n €D In*(u) = y}, where p is the volume element of M and 7*(u) is
the usual pull-back of an n-form u by 7.

Let H*~! (A") be the space of H*~* n-forms of M and let
—_ -1 —
A= (weER (A")|wa—fMpf.

A is clearly a closed linear subspace of H*~!(A") of co-dimension 1.

Let ¥ :®° > A by ¥(n) = 'n*(n) ¥ is a smooth map and is a surjection ;
i.e., the tangent map T, ¥ : T, @D > Ty wn) A is onto. From the implicit function
theorem it follows that \If"1 (u) =® a submamfold of @°. It is also a subgroup.
Furthermore, at the identity id € ®°, one computes that T; ¥ : Ty, @° > 7,4
satisfies T;q W (V) = Ly (u) where “L” means Lie derivative. Therefore,

L, @, = {VE€H(T)|Ly@) = 0},
the set of divergence free vector fields. Also,

T,®5 ={VEHT,)|div(Von') = 0}.
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Our next step is to define a Riemannian structure on @®°u. On Tn o = H"(Tn),
we define (V, W) = f " (V,W)u where ( , ) is the Riemannian metric of M.

This gives a weak Riemannian metric on ®°. That is ( , ) has all the usual properties
except that on each tangent space T, ?°, (, ) does not induce the H*-topology.
However, ( , ) is invariant under right multiplication by elements of G);. CD;
inherits a weak Riemannian structure because it is a submanifold of @°. Also the
right invariance of ( , ) means that @,‘: is actually a weak Riemannian homo-
geneous space.

Our final task is to find the geodesics on @} To do this we look for geodesics
of ®° and these can be found virtually by inspection. Indeed to find a geodesic
n(¢) from n, to 7, in @° we want to minimize the energy :

1 ’ 1
[ [ o no) dr)

and here the integral in braces is, for each p € M, the energy of the path ¢ = 5(¢) (p).
If each such path is a geodesic, the integral will be minimal at each point of M
and hence the total energy will be minimal. Thus, the geodesics of @° are those
curves n(#) in ®° which have the property that for each p EM ,t > n(¢) (p)
is a geodesic in M.

Of course, the geodesics on @° are related to an affine connection on @° which
we will call V, and also to a Hamiltonian vector field Z on T °. Furthermore,
since @° is a Riemannian submanifold of @°, it inherits a connection V=PoV
where at each tangent space T, (®"), P is the orthogonal projection

P:T, ®F - Tn@;
Similarly T®* u gets a Hamiltonian vector field Z= TP(Z_ ).

Since our Riemannian structure is weak, it is not clear that P is a smooth
map. However, at id€®', P: T, ®° > T,;®,, is simply the projection onto
the first summand of the well-known decomposition :

H(T) = div'}(0) @ grad ¥ **!

where the first summand is the set of divergence free H® vector fields and the
second is the set of gradients of H**! functions on M. This direct sum is topo-
logical and P is in fact smooth.

Thus a); has a smooth Hamiltonian vector field which can of course, be
integrated to give the required geodesics.

d
Af n(¢) is such a geodesic and W(t) =E;(n(t)) € Tn(,) sy, then V(#) = W(t) o n()™*

is a time dependent vector field which satisfies our original system (£).

Given V, a vector field on M, V, €T, @, and there exists a unique geodesic
n(¢) starting at id in direction V. By the above each n(f) corresponds to a so-
lution of (E).
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ON FREDHOLM MANIFOLDS

by J. EELLS and K.D. ELWORTHY

1. Introduction.

Spaces of maps arising in analysis often are smooth manifolds modeled on
Banach spaces. As such they have very regular structure : their algebraic topo-
logical invariants are especially easy to handle ; and in many instances their homeo-
morphism and diffeomorphism types are effectively describable through homo-
topy type. See [5] for general background, as well as [1] and [14] for recent deve-
lopments in the topology of C°- and C™-manifolds of infinite dimension.

Certain concrete problems of global analysis (e.g., variational and elliptic boun-
dary value problems) not only provide a manifold of maps but also a more
refined structure (called a Fredholm structure) on that manifold. Fredholm mani-
folds are rich in topology, for we can find non-trivial analogues of many of
the notions of finite dimensional theory (e.g., Brouwer degree, Poincaré and
Alexander-Pontrjagin duality, characteristic classes). We refer to [6, 12] and their
bibliography for background.

Here we describe a classification theorem for Fredholm structures on a smooth
Hilbert manifold (for simplicity of exposition — our theorem is valid for a somewhat
broader class of Banach manifolds). We exhibit the close relationship between
these structures and Fredholm maps (a class of maps which arise naturally in
elliptic problems). In fact, our theorem can be viewed (see Example 2) as a
contribution to the structure theory of Fredholm maps. Also, we indicate briefly
how our theorem provides new proofs of the basic results on the differential
topology of smooth Hilbert manifolds ; and, by way of illustration, how Fredholm
structures arise naturally in certain path spaces.

2. Fredholm structures.

Let E denote the infinite dimensional separable real Hilbert space, L(E) the
Banach algebra of bounded endomorphisms of E (with its norm topology), and
GL (E) its Banach Lie group of units, with identity operator I. If C(E) is the
closed ideal in L(E) of compact endomorphisms, let

GL,(E) ={I1+ u€GL(E) : u€C(E)).

Then GL_(E) is a closed Banach Lie subgroup of GL(E), and the coset map
p : GL(E) > GL(E)/GL,(E) is a locally C°-trivial fibration (it is not locally

00

C -trivial).
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Let X be a metrizable C -manifold modeled on E. Its principal GL (E)-bundle H
has the associated bundle n with fibre the homogeneous space GL (E)/GL (E) :

f(if)\
X /‘n

It is elementary that the reductions of &£ to GL,(E)-bundles correspond bijec-
tively to the sections of the associated bundle 7.

PX)/GL_(E)

Remark. — A theorem of Palais-Svarc asserts that GL,(E) has the homotopy type
of lil)n GL(R"), where the limit is defined through the standard inclusions

R” CR"*! C... It follows (a) that GL,(E)-bundles are classified by real K-theory,
and (b) that they have characteristic (Stiefel-Whitney, Pontrjagin) classes.

A Fredholm structure on X is an integrable GL.(E)-reduction of & ; otherwise
said, a maximal atlas &= {(0;, U;)} for the differential structure of X such that
the transition maps 6, o 6, have differentials belonging to GL,(E) at every point.
A Fredholm manifold is a Hilbert manifold with a specified Fredholm structure.
If X and Y are Fredholm manifolds with tangent vector bundles 7'(X) and T'(Y),
a map f: X Y is a tangential homotopy equivalence (of Fredholm manifolds)
if f is a homotopy equivalence such that T'(X) and f*7T(Y) are isomorphic as
vector bundles with their natural GL (E)structure. A Fredholm diffeomorphism
f: X —Y is a diffeomorphism which is an- isomorphism-of-Eredholm_structures.

THEOREM. — Let X and Y be two Fredholm manifolds, and f: X > Y a tan-
gential homotopy equivalence. Then f is homotopic to a Fredholm diffeomor-
phism of X onto Y.

COROLLARY. — Every GL.(E)reduction of & is homotopic to one and (up to
diffeomorphism) only one integrable reduction.

Any Hilbert manifold admits a parallelizable Fredholm structure [9, 12]. There-
fore, two such manifolds are diffeomorphic if and only if they have the same
homotopy type. That result is discussed in [2 § 4] ; the methods described below
provide a different and more direct proof, which moreover can be applied to
manifolds modeled on more general Banach spaces. Another consequence is that
any Hilbert manifold admits an embedding onto an open subset of E. The proof
below is similar to that given in [8].

3. Some methods.

Let us now indicate the main steps in establishing the above-mentioned results.
Qur primary aim is to illustrate the role played by Fredholm maps.

(1) Since GL(E) is an absolute retract (a theorem of Kuiper), the principal
bundle £ is trivial. Consequently, by choosing a parallelization of X we can iden-
tify the sections of 1 with the maps X - GL (E)/GL,(E).

(2) Let p : L(E) > L(E)/C(E) be the coset projection. If ®,(E) denotes the
subset of L (E) consisting of all ®, ~operators (i.e., those u € L (E) with dim Keru =
dim Coker u < o), then it is elementary that p induces a homotopy equivalence
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®,(E) > GL(E)/GL,(E). In particular, p induces a bijection between the spaces
of homotopy classes

[X,®,(E)] > [X, GL(E)/GL,(E)].

(3) A Fredholm map of index O (briefly, a ®,-map) f: X - E is a smooth
map such that its differential at each point is a ® -operator. Let ®,[X, E] denote
the space of homotopy classes of these ®,-maps. It is established in |9, 12] that
a choice of parallelization of X determines a bijection ®,[X ,E] —~ [X , ®,(E)].

(4) For technical reasons it is important now to refine our notion of Fredholm
structure : A layer structure on X is a maximal atlas @ = {(¢, , U;) } such that
the transition maps have the form 0; o 0;7' =1+ o, where o is locally finite
dimensional (i.e. every point of its domain has a neighborhood whose a-image
lies in a finite dimensional subspace of E). Then [9, 12] every ®,-map X - E
determines a unique layer (and hence Fredholm) structure on X ; every layer
structure on X determines a ®,-map X = E, unique up to locally finite dimen-
sional perturbations. Thus we now have relations between [X , ®,(E)], ®,[X , E],
and layer structures on X. These steps give the existence part of the Corollary.

(5) 117] If E, is the subspace of E spanned by the first n vectors of a base
for E, then we can choose a ®,-map f : X = E which is transversal to each E,.
Therefore the X, = f _'(En) form a nested sequence of finite dimensional closed
submanifolds of X whose union is dense in X. Furthermore, the natural map of
the inductive limit space li_r)n X, = X is a homotopy equivalence.

(6) Any two open discs in E are layer diffeomorphic (i.e., by a diffeomorphism
of the form I + o, as above) ; and are ambient layer isotopic [4]. Any two closed
layer tubular neighborhoods of a layer submanifold of the layer manifold X are
ambient layer isotopic. This refines [2, § 4].

(7) There are nested open neighborhoods U, of X, in X (which are rather
like layer tubular neighborhoods) such that U U, = X.

(8) Induction on n and repeated use of Step (6)are used to prove that there
is a layer diffeomorphism of X onto X x E (with its product layer structure) ;
here a layer diffeomorphism is locally of the form T + a with T a fixed linear
isomorphism of E onto E x E). That X and X x E are diffeomorphic (conjec-
ture of Palais) was first established in [2, 16, 7] via Morse-Smale handlebody theory ;
then more directly in | 10] for open subsets X C E.

(9) A layer manifold X has X x E layer diffeomorphic to the total space of
a layer vector bundle over an open subset of E. This follows immediately from
the existence of closed layer embeddings and tubular neighborhoods.

(10) A version of a theorem of Mazur [15, 2] asserts that if two layer mani-
folds are tangentially homotopy equivalent (e.g., as Fredholm manifolds) by a
map [ : X = Y, then f is homotopic to a layer diffeomorphism f, : X x E > Y x E.
Because of (9) it suffices to prove this in the case of parallelizable layer manifolds.
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4. Illustrations and applications.

Exumple 1.

If U is a contractible open subset of E, then its layer (or Fredholm) structure —
determined by the single chart U — is unique. In particular, there is a layer
diffeomorphism of U onto E. By way of contrast, there are many distinct real
analytic layer structures on E, for there is no real analytic bounded layer map
E - E. Similarly, some other Banach spaces (e.g., the space C[0,1]) possess
distinct smooth Fredholm structures.

Example 2.

A ®y-map f: E—> E induces a layer structure on E. The uniqueness part of
the Corollary implies that there is a diffeomorphism d on E suchthat fo d =1 + a,
where « is locally finite dimensional. Equivalently, any such ®,-map differs from
a diffeomorphism by a locally finite dimensional map.

Example 3.

Let M be a complete finite dimensional Riemannian manifold, and a € M. Let
P,(M) denote the space of all paths x : I = |0, 1] > M with x(0) = a, and x
absolutely continuous with square integrable derivative. Then P, (M) is a sepa-
rable smooth Hilbert manifold ; a complete Riemannian structure on P,(M) is
given by the inner product

_ Du(t) Dv(t)
<u,v>, = el >xw dt,

where D/dt denotes covariant differentiation along the path x. If M(a) denotes
the tangent Euclidean space to M at a, then E. Cartan’s development % induces
a natural diffeomorphism of P,(M) onto the Hilbert space Py(M(a)). Thus b exhibits
the unique Fredholm structure on the contractible manifold P,(M). (Here b is
defined as follows : Let 7y denote parallel translation along x from M(x(s)) to
M(a). Then

t=> 5 )= ‘/o" 75 x'(s)ds

defines a path in P,(M(a)).

Let us remark in passing that % plays a basic role in the theory of Wiener
measure w, on the Banach manifold C,(M) of continuous paths on M starting
at a. (w, is defined via the Riemannian heat kernel of M). If w, denotes the
Wiener measure on the Banach space C,(M(a)) (using the Euclidean heat kernel
of M(a)), then stochastic integration determines an extension of % such that
% ,w, =w,. This is a reformulation of a theorem of Gangolli [13]. It can be
viewed as a transformation of integral formula, presumably related to that given
by Cameron-Martin [3] in the case M = R. Indeed, various types of layer struc-
tures arise naturally in attempting to establish a differentiable measure theory
on Banach manifolds, owing to the restrictive nature of the transformation of
integral formulae.
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Example 4.

Let 7 : P,(M) > M be defined by w(x) = x(1). Let P,z(M) = n~'(B), where
B is a closed submanifold of M of codimension q. Then P,4(M) is a closed g-codi-
mensional submanifold of P,(M), with normal bundle

2P, M), Py (M) = m* (M , B).

The Fredholm structure of P,(M) induces a Fredholm structure on P,,(M). Its
Stiefel-Whitney class w(P,z(M)) can be identified as the inverse of n*w(M ,B),
where w(M , B) is the normal class of B in M.

REFERENCES

[1] ANDERSON R.D. — Homeomorphisms of infinite-dimensional manifolds, 1.C.M.
Nice, 1970.

{2] BurGHELEA D. and KurpEr N.H. — Hilbert manifolds, Annals of Math., 90,
1969, p. 379-417.

[3] CaMmERON R. and MARTIN W.T. — Transformations of Wiener integrals by non-
linear transformations. Trans. Amer. Math. Soc., 66, 1949, p. 385-392.

{41 Douapy A. — Egquivalence de Fredholm entre les boules d’un espace de Hilbert.

[5] EeLLs J. — A setting for global analysis. B.A.M.S., 72, 1966, p. 751-807.

[6] EELLs J. — Fredhalm structures. Proc. Symp. Non-linear Functional Analysis,
Chicago A.M.S., 1968.
{71 EerLLs J. and ErwortHY K.D. — On the differential topology of Hilbertian

manifolds. Proc. Summer Institute on Global Analysis, Berkeley A.M.S., 1968.

[8] EeLLs J. and ELworTHY K.D. — Open embeddings of certain Banach manifolds.
Annals of Math., 91, 1970, p. 465-485.

[9] ELworTHY K.D. — Fredholm maps and GL. (E)-structures. Oxford Thesis (1967).
B.AM.S., 74, 1968, p. 582-586.

[10] ELrworTHY K.D. — Embeddings, isotopy, and stability of Banach manifolds.
Comp. Math. (to appear).

[11] ELworTHY K.D. and TrRoMBA A.J. — Degree theory on Banach manifolds, Proc.
Symp. Non-linear Functional Analysis, Chicago, A.M.S. 1968.

[12] ELworTHY K.D. and TRoMBA A.J. — Fredholm maps and differential structures on
Banach manifolds. Summer Institute on Global Analysis. Berkeley. A.M.S.
1968.

[13] GangoLLl R. — On the construction of certain diffusions on a differentiable
manifold. Z. Wahrscheinlichkeitstheorie, 2, 1964, p. 406-419.

[14] Kuiper N.H. — The differential topology of separable Banach manifolds, 1.C.M.
Nice, 1970.

[15] Mazur B. — Stable equivalence of differentiable manifolds. B.4.M.S., 67, 1961,
p. 377-384,

[16] Mouris N. — Sur les variétés hilbertiennes et fonctions non-dégénérées. Proc.
Ned. Ak. v. W. Amsterdam, LXXI-5, 1968, p. 497-512.

[17] MuknerIEA K. K. — Cohomology Theory for Banach Manifolds, Jour. of Math.
and Mech., 19, 1970, p. 731-744.

University of Warwick
Dept. of Mathematics,
Coventry
Grande-Bretagne






Actes, Congrés intern. Math., 1970. Tome 2. p. 221 i 225,

A TOPOLOGICAL TECHNIQUE
FOR THE CONSTRUCTION OF SOLUTIONS
OF DIFFERENTIAL EQUATIONS AND INEQUALITIES

by M.L. GROMOV

1.— For smooth fibering a = {X = M} we denote by X" the manifold of r-jets
of cross-sections M= X and by « = {X" =M} the natural fibering. Consider a
set £ C X" and let us call it a r-order differential condition. We denote by B =B*(£2),
s=0,1, ..., 0 a(ais the real analyticity) the space of C*-cross-sections

M->QCX"

and by A4 = AS*"(Q) the space of C5*" cross-sections y : M = X with J, EB
(i.e. the jet J7 : M= X" maps M in Q). Consider the map J : 4 = B ,J : y=JJ.

If the map J, : wy(A) = w,(B) induced on O dimensional homotopies is sur-
jective we say that for £ and for cross-section from 4 e-principle is true. If all
homomorphisms J, : m,(A) = m,(B) are bijective we say that w.h.e. -principle is
true.

2. — On the examples 1.—7. the space A appears without describing the corres-
ponding condition £ which is of the second order in the examples 2, 3, 6 b and
of the first order in the rest.

In all the examples except 7, we deal with trivial fibering o = {M x N ~ M|
and so we consider maps M — N instead of cross-sections M = M x N,

(1) If M is open or if K < dim N, then for smooth maps M~ N having rank
= K at each point m € M w.h.e. -principle is true (S. Feit [3]). For immersions
(K = dim M) it has been proved by M. Hirsch and for submersions (K = dim N)
by A. Phillips [14] proved also w.h.e. -principle for maps M -+ N (M is open)
which are transversal to leaves of given foliation on N and pointed out the corollary :
A plane field £ on an open manifold M is homotopic to an integrable field if the
structural group of the factor bundle T (M)[§ can be reduced to a discrete group.

(2) A C?> —map f: M — RY is called a free map (see [10]) if at each mEM

0 92
vectors—-): (m), f (m) € R?, 1 <j <i < dim M= n are linearly independent.
0x, ox; Ox;

2 3
If q >% +?n or if M is open then for free maps w.h.e. -principle is true [8]
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(3) Consider a connected manifold M (non-empty !) closed manifold C C M
with codim C = 1 and a manifold N with dim N = dim M.

For smooth maps M ~ N with a crease at C C M and without other singularities
2! (see [11) e — principle is true (Eliashberg [2]).

COROLLARY. — For any closed surface C CS?3 there exists a map S® -~ R whose
restrictions to C and to M\C are immersions.

(4) Let M and N be complex manifolds and M a Stein manifold.

a) If N is a complex Lie group then for holomorphic maps M - N w.h.e. -prin-
ciple is true (Grauert [4]).

b) For holomorphic immersions (regular maps) M > C? w.h.e. -principle is
true if q > dime M([9)).

COROLLARY. —If 2q = 3 dim¢ M— 1, q > 1, then there exists a holomorphic
immersions M~ C? (If ¢ > 2 + dimg M (I +In 2), then there exists a proper
regular holomorphic embedding M~ C? ([9])).

c) If M is a complexification of a real manifold My C M, then for holomorphic
immersions M > N w.h.e. — principle is true near My (i.e. in an inductive limit
over neigbourhoods of M, C M (Author, unpublished).

COROLLARY. — A (real) n-dimensional w-manifold has a complexification which
can be holomorphicly immersed in C".

(5) Let M and N be symplectic manifolds i.e. exact nondeégenerate 2-forms w, oh
M and w, on N are given.As a rule for symplectic immersions f: M—> N (i.e.

fH(w,) = w,)
even e - principle is not true (An obvious obstruction is given by
f* :H*(N;R)—> H*(M;R))

a) If dim M <dim N — 2, then for symplectic immersions f : M > N with
permissible homomorphisms f* : H* (N ; R) > H> (M ; R) w.h.e. — principle is
true. (Author, unpublished).

COROLLARY. — If the periods of w, are integrals then w, can be induced by some
map M - CP9q = dim M, from the standard 2-form on CP9.

b) If M and N possess the standard symplectic structures of cotangent bundles
of My C M and N, CN, then for symplectic immersions M-~ N w.h.e — prin-
ciple is true near M, (Author, unpublished).

COROLLARY. — If M, is an n-dimensional m-manifold then there exists a Lagran-
n
gian (ie. f* (w,) = 0)immersion M, > R" x R", w, = Y dx;a dy, (compare
i=1
with 4.c).

(6) Let M be an n-dimensional Riemannian manifold.

a) For isometric C' — immersions M — R? w.h.e. — principle is true if ¢ > dim
M (Nash [11]).
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2 7
b)If q >n7 + 771_‘_ 5, then for free (see(2)) isometric C*(C%) — immersions
M— R® w.h. e. — principle is true ([6]).

COROLLARY. — An n-dimensional Riemannian C=(C%) — manifold can be isome-
2

7
tricaly C* (C*) imbedded in R with q =£2- +-2— n+5 ([6],[10]).
c) For free isometric C*(C*) — immersions M~ R? w.h.e. — principle is
true near any submanifold M, C M with codim M, = 2 (q is arbitrary !) ([6]).
d) Theorems similar to a., b., c. are true for isometric immersions M > N
where M and N are pseudoriemannian manifolds ([10]).

7) Consider an n-dimensional manifold M, an [-dimensional (real) vector
bundle y over M and a k-dimensional vector bundle £ over M with an Euclidean
connection. A monomorphism Y = £ is called a regular one if (first) covariant deri-
vatives of cross-sections of & which came from y generate in ¢ a subbundle of
dimension (n + 1) 1.

If K > (n + 1) I, then for regular monomorphisms y —> & which induce a given
Euclidean connection on y w.h. e. — principle is true. (Author, unpublished).

COROLLARY. — A bundle  with an arbitrary Euclidean connection can be indu-
ced by a map M~ G, with q =In+n+1 from the standard l-dimensional
bundle with the standard connection over Grassmanian manifold Giq.-

3. — Using the notation of 1. let us formulate an abstract fact which generalizes
2(1) and partly 2(2). Let M, be a smooth manifold with dim M, < dim M and
W¥: M, = M a smooth map. Consider the induced fibrations a, = p*(a) ={X, = M, }
and B = p*(a”) ={Y = M,}. Let ¢ : Y = X" be the fibrewise map associated with
¥,I1: Y- Xj the natural map and ot (Q) = M~ 1(NR)) C X35. Let the pseudo-
group of the local diffeomorphisms of M fibrewise act on X and so on X" (For
example a is the tangent bundle 7(M) or o is associated to 7(M)). Let Q CX"
be invariant and open.

A. Let p be a generic map (for example p is an immersion or  is locally struc-
turally stable) :

(1) If M is open then for ¢*(Q2) e-principle is true.

(2)If M,, is open or if dim M, < dim M, then for ¢*(Q) w.h.e. — principle
is true (Author, unpublished).

Examples 2.4.c. and 2.5.b. illustrate the complex and symplectic generalisations
of A. Let us give some other examples connected with 4.

B. Let M be a connected manifold with a non-empty boundary @ and V CM
be a closed tubular neighbourhood of ®.Let a finite group G free and smoothly
acts on V. If @ is invariant then there exists a Riemannian metric of positive
(negative) curvature in M for which acting G (on V')is isometrical.

C. If M lS open then for free maps M~ RP x R? which induce from the form

P
z dy, the zero form on M w.h.e. — principle is true ([7]).
i=1 -1
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4. — Let  and & be (real or complex) vector bundles over Mand o = y®. .. @Y.
— 4

Let @ : I'"(Y) = ' (¥) be a differential operator. We say that a cross-section

7 ={71, L ;'Yq}eru(a), 7[6 P“('p)

is k-regular if the cross-sections @ (y,) EI'" (§),i =1, ..., q, generate in any fibre
of ¢ a space of dimension = k.

If k<gq then for k-regular cross-sections w.h.e. — principle is true ([8]).

The maps M — RY (i.e. cross-sections M > M x R? from 2.(1) and 2.(2) give
examples of k-regular sections.

5. — Besides e— and w.h.e. — principles there are approximation theorems of
the following types :

(1) Let M be an n-dimensional w-manifold 1 > 0 be an integer and p 21 a

real number. If (I — 1) p <q —n then any smooth map M - RY can be W"P-
2

3
approximated by immersions M > R and if | —2)p <q —% —-5 n it can be

approximated by free maps M = RY. (||f]| whe = f IJ}I”) 81).
M

(2) Let M be a compact n-dimensional Riemannian C* (C*)y-manifold. If
2

n 7
._+—. + e
q>2 2n 5,

then any isometric C'-immersion M~ R? can be C'-approximated by free iso-
metric C* (C*yimmersions ([6], [10]).

Methods.

=

: Smale’s covering homotopy property ([S]) M, proves 2.(1),2(4c., 2.(5)b.,
3A.Q2).

M, : Nash’s implicit function theorem ([12], [13], {10], [7].).

M, : Nash’s twisting ([111,1121,[10], [15]) M4 proves 2.(1), 2.(5)a., 2.(6)a.

M, : The elimination of singularities ([8], [9]) M, proves 2(1),2.(2),2.(4)b,,
4, 5.1. i

M; : Eliashberg’s model ([2]). M; proves 2.(3).

Besides, M, + M, proves 3.C. ; M, + M, proves 3 A.(1),3 B. ; M, + M;proves
2(6)b. —d, 5.(2).
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ON SUBELLIPTIC ESTIMATES FOR COMPLEXES

by Victor GUILLEMIN

Let E®, E', E?, etc. be vector bundles on a manifold X. Let
(% 0->E°BE'B B9

be a complex of differential operators. For simplicity we will assume all the D’s
are of order one. Given a complex covector { € T* ® C, we get the symbol sequence
attached to (*)

) 0> E (@O, g1, DO, pN

which is a complex of linear mappings. We will say { € T¥ ® C is characteristic
if this sequence fails to be exact. The set of characteristic vectors forms an alge-
braic subvariety of T* ® C, which we will denote by AU,. This is the zero variety
of an ideal of polynomial functions on T¥ ® C which we will call the characte-
ristic ideal. The characteristic ideal is defined as follows : Consider all homotopy
operators for the sequence (**), i.e. all polynomial mappings

EYN 4@, EN-! AQ, -A&’Eo -0
such that :
aD) () A®) + A) o(D) () = p(§) ldentity

p(¢) being a polynomial in §. The set of all p occuring on the RHS of this equation
form an ideal. This is the characteristic ideal of (*), denoted by I..

Example — Let E®and E* be trivial line bundles over R”, and let D be the Laplacian
squared. The characteristic variety is the set of points where ;‘f +...+ {,’, =0
and the characteristic ideal is generated by (Q‘f +...+ ;‘:)2.

As we vary x, U, and I, get deformed. If (*) is a Spencer complex, one can
show :

(i) dim U, is the same for all x.

(i) degree U, is a lower semi-continuous function of x and hence is constant
on an open dense set. From now on we will assume (*) is a Spencer complex
and that both dimension and degree are the same for all x. (This is to avoid
pathological examples like the Tricomi operator).

DerINITION 1. — We will say that a characteristic, ¢, is generic if :
(a) U, is non-singular at §.



228 V. GUILLEMIN c4

(b) dimension H(x , ) is as small as possible, H(x , {) being the homology of
the symbol sequence at the characteristic x , §.

DeFINITION 2. — We will say ¢ is simple if :

(a) There exist p,,..., p, €L such that (9p,/0%;) is of rank q and U, is
locally the locus of points where p, =... =p, = 0.

(b) dimension H(x , ) is as small as possible.

Note. — Definition 2 is much stronger than definition 1. If D is the Laplacian
squared, every non-zero characteristic is generic but no characteristic is simple.

ProrosiTION. — (Generic characteristic parameterization theorem).

Let ;oeuxo be a generic charactetistic. Then there exists a neighborhood,

U, of (xq,$,) in the complex cotangent bundle and smooth functions f, . . ., fq
on U such that :

(a) fi(x , $) is holomorphic and homogeneous of degree one in §.

(b) The Jacobian criterion rank (af,/ag,) = q is satisfied.

U= Ux U, is just the locus of points where Sy oo, [, are zero on U.
Xe

@ {5 ,f,} = 0.

The proof of this theorem is rather complicated, and we won’t attempt t
describe it here. et ot T o

Let §, E‘U.xo be a real generic characteristic. Let f, ..., f, be a paramete-
rization of the characteristic set around x, , {, satisfying (a), (b), and (c). We

will call the Hermetian form \/—?_1 {f; ,}"; }the Levi form at x,,§,. It can be
regarded as a Hermetian form on the normal space to the set of characteristics at
X, §o providing we use as a basis for this space dfy, ..., df,.

Before stating our main results we need one further notion, that of subellip-
ticity for a complex of differential operators.

DEeFINITION 3. — Let X be a compact manifold without boundary. The complex
(*) is subelliptic at its ith position if, there is an estimate of the form :

CIDpll + ID*gll + lipl) = Ilg,olll/2
for all sections ¢ of E'.
One can show by standard techniques :

ProrosiTION. — If X is a compact manifold without boundary and (*) is subel-
liptic in its ith position, then its ith homology group is finite dimensional.

The main results about subellipticity which we will quote here are due to
Hormander. At each characteristic § € U, Hormander associates a certain test
operator on R" of the form :

3
A+ B'W +Cly,
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whose coefficients are functions of x and ¢. The HGrmander localization theoren
says that (*) is subelliptic if and only if, for every characteristic x ,{ the test
operator satisfies an L? estimate uniformly in a neighborhood of x , . We will
call this condition the Hormander localization condition.

DEFINITION 4. — If the Hormander localization condition is satisfied at x,¢
we will say that the complex (*) is subelliptic at x,¢.

THEOREM 1. — If ¢ is a simple characteristic, then (*) is subelliptic at (x, ¢)
in its ith position, 0 < i < q, if and only if the Levi form had i + 1 positive eigen-
values or ¢ — i + 1 negative eigenvalues.

CoroLLARY. — If ¢ is simple, then (%) is subelliptic at (x , ) in all positions
except i = 0 iff and only if the Levi form is negative definite.

This corollary has a kind of converse :

THEOREM 2. — If ¢ is a generic characteristic and the Levi form is negative
definite, thenin order for (*) to be subelliptic at (x ,{) in all positions except
i =0, { must be a simple characteristic.

Conjecture — If ¢ is generic, then a neccessary and sufficient condition for ()
to be subelliptic at (x, ) in all positions except i = 0 is that the Levi form be
negative definite and that { be simple.

Let X be a compact manifold with a smooth boundary. Suppose that the
boundary is non-characteristic. Then one gets a differential complex induced on
the boundary, called the boundary complex.

Example — Let D be the ) complex and X a smooth domain in C". The boun-
dary complex is the complex of Cauchy-Riemann equations tangent to dX. This
has been studied by Kohn and Rossi.

At x €0X the characteristic variety of the boundary complex is the image
of U, under the projection T#* ® C - T*(8X)® C. This variety can be highly
singular ; however, we will show that the boundary complex is subelliptic providing
the complex characteristics of the D complex satisfy certain conditions.

THEOREM 3. — Let & be a real characteristic of the boundary complex. We
will assume :

(a) the complex characteristics in U, lying above & are simple ;

(b) (Calderon condition) the normal vector n, € T¥ is not tangent to U, at
the characteristics indicated in (a).

Then we can conclude :

(i) the characteristic variety of the boundary complex at & is locally the union
of a finite number of complex submanifolds, ¥, UW, .. UW, .

(ii) To each %), we can associate a Levi form L,. The boundary complex is
subelliptic at (x , ) in its ith position if and only if, for all 5, L, has i + 1 positive
eigenvalues or ¢ — i negative eigenvalues.
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We will say that %9, is positive if it is the image of a sheet of the characteristic
variety U, passing through a characteristic of the form ¢ + rn, with Im 72> 0.

Conjecture — Suppose the complex (*) is elliptic and suppose conditions (a) and
(b) of theorem 3 are satisfied at all real characteristics of the boundary complex.
Then the ith homology group of (x) is finite dimensional providing the Levi
forms L, associated with positive %, have either i + 1 positive eigenvalues or
q — i negative eigenvalues.

We have been able to prove the following slightly weaker assertion :

THEOREM 4. — The ith homology group is finite dimensional if each of the
indicated L's has either i + 1 positive eigenvalues or q — i + 1 negative eigen-
values.

M.IT.
Cambridge
Massachusetts 02139 (USA)
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CONVEXITY CONDITIONS RELATED
TO 1/2 ESTIMATE ON ELLIPTIC COMPLEXES

by Masatake KURANISHI

Let & be an elliptic complex defined on a manifold Y¥ ie. we are glven a
pair consisting of a sequence of vector bundles E°, E? ,E,...on Y* and
a sequence of C° differential operators D/ : C (Y# E’) > C™(Y¥, B,
j=0,1,2,..., satisfying the following conditions :

(1) p'*? oD’ =0 for all j

(2) for each non-zero cotangent vector ¢ at x € Y*# the sequence of linear
mappings o (DY, £ E! - EI*' is exact. In the above, C7(Y¥, E) denotes the
vector space of C~ sections of E over Y¥#, E, the fiber over x of the vector bundle
E, and o(D,§) denotes the symbol of the differential operator D at x. For
simplicity we assume that each D/ is of the first order. Since it is usually clear
from the context we omit the index j in D. We consider only C” category here,
so the adjective C” will be omited.

Let Y be an open submanifold of Y# with compact closure Y~ such that its boun-
dary M is a submanifold. Then the complex on Y¥ induces a complex

(%) C (Y ,E®>C"(Y,EY)~ ...

where the arrows are induced by D. The j-th homology of the complex (x)
is denoted by H/(Y ", 8). The problem we discuss here is to find conditions
which guarantee the finite dimensionality of H/(Y~, 8) for a given j. The pro-
blem is also discussed by D.C. Spencer and Victor Guillemin in this Congress.
There are a number of methods to attack the problem. For example, to solve
Neuman-Spencer boundary value problem is one of them. Another method is the
one developed by Calderon, Hérmander, Seeley, and others, by which the problem
is transformed to one on the boundary. Namely, for a given j we can construct vec-
tor bundles E , F on M and a pseudo-differential operator4 : C"(M ,E) -~ C"(M , F)
of order 1 such that the finite dimensionality of H/(Y ", &) is equivalent to that
of the kernel of A. Since we can calculate the symbol of A in terms of the given
datum, to find an answer to our original problem it would be enough to find
conditions on the symbol of A so that the kernel is finite dimensional. This,
in turn, follows if we have an estimate

) lAul? + lul? > c(lul,,?  (WEC™M,E))

for a constant ¢, where | I (resp. I I 12) denotes L, -norm (resp. Sobolev 1/2 norm).
This is due to the theory developed by Morrey, Kohn, and Nirenberg. Neuman-
Spencer procedure leads to an estimate of the same type. So we will discuss
conditions on the symbol of 4 which imply the estimate (**). We set

o) = lAul® + lul?.
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It is easy to see that in order to have the estimate (#+*) it is necessary and suffi-
cient that each point of M has a neighborhood U such that (**) holds for all u
with support in U. So we may assume that A is a pseudo-differential operator
C”(R" ,E) > C(R" , F), and we wish to have the estimate (+#*) for u# with support in
a sufficiently small neighborhood of origin. We generally denote by x = (x,,..., x,,)
apointinR" and (x , §), £ = (§,, ... ,&,), the cotangent vector & dx, +. ..+ §,dx,
at x. We denote by a(x , £) the symbol of 4. If p(x, &) is a symbol of pseudo-
differential operator, p(x, D) denotes the pseudo-differential operator defined by
it.

Let a' (x , £) be the homogenous order 1 part of a (x , £). If a' (x , £) is injective
for all non-zero cotangent (x , £) with x in the closure of a neighborhood U of origin,
we have a stronger estimate Q (u) 2 ¢ |lu llf for all 4 with support in U. In the follo-
wing U generally denotes a neighborhood of origin which we may shrink if necessary.
Thus, it is natural to consider the set @ of non-zero (x., £) such that a'(x , £)
is not injective. An element in € is called a characteristic of A. Then we have
the following.

LEMMA 1. — Let f(x , £) be a symbol of pseudo-differential operator of order o
such that Supp fN @ is compact. Then

QW) 2 clf(x,Dyul?.

Since we can construct partitions of unity by symbols of p.d. operators of
order o and apply the corresponding operators, it is left to analyze f(x ,D)u
where Supp f N @ is not compact. To proceed further along this line, we introduce
the following conditions. We say that characteristics of A are smooth if each
point x in M has a neighborhood U such that € over U is a disjoint union of
a finite number of (non=closed) submanifold €*, ..., @* such that

(1) the projection m : T*M - M induces a map with constant rank of e? onto
a submanifold '@ of M and

(2) the dimension of the kernel of a'(x, &) for (x ,£)Ee? is a constant for
each A,

Choose a cone neighborhood U of @* in T*U such that the closures of them are
still disjoint except origin. If we choose ur sufficiently small, there will be € > 0 such
that the dimension of the sum W (x , £) of the eigen-spaces of a' (x , £)* a'(x , &)
with eigen-values less than € is independent of (x,§) in U, and such that
W(x, ) = ker a'(x,§) for (x,8)€E @*. Denote by pi‘(x,E) a symbol of p.d.
operator which (when restricted to U™) coincides with the projection to W(x , §)
outside a bounded neighborhood of the set of zero cotangents of T*U. We
define p," (x, %) by the condition : pi‘ + p’,‘ = 1.

LEMMA 2. — Assume that characteristics of A are smooth. Let f(x ,£) be a
symbol of p.d. operator of order o such that Supp f CU™. Then

Q) =>c If(x,D) pi(x,Dyul?

for all 4 with support in U.
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Thus we reduced the problem to analyse pi‘(x ,Du. So, we try to extract
the essential (as far as our estimate is concerned) part of «!(x, £) pi‘(x,‘;‘).
Since the matter is fairly complicated, we introduce the following simplyfing
conditions : We say that the fiber dimension of characteristics of A at origin
is zero when 7 : €M N S*U > '€ is bijective (where S*U is the bundle of unit co-
tangent vectors). We say that a characteristic { of A is non-degenerate, when
(assuming ¢ € €") we choose a submanifold 9* of S*U transversal to €} = e* N S*U
which intersects e} only at ¢/|¢|, ¢ is a non-degenerate critical point of the func-
tion |a(x , £) p:‘(x , ©)u|? restricted to ON? foreachu € W (§).

From now on we assume that characteristics of A over U are smooth, fiber
dimension zero, and non-degenerate. Then over each x € @ there is a unique
characteristic {*(x) of unit length. We extend the vector field & (x) over 'e?
to that over U and still denote it by §*(x). Denote by x(x , £) the projection
of (x , £) to the orthogonal complement of ¢{*(x). Thus we have

G, 8) = (M), E) o)+ xx, D).

We choose a real valued symbol of p.d. operator ¢*(x, §) (resp. w(x , §)) of
order o with Supp ¢* C U Un~! (complement of U) (resp. Supp ¢ N €* bounded)
such that

1=px,5 +o'(x,8+...+o"x,§).
We choose a sufficiently small submanifold N* of U which is transversal to

'e* at origin such that the map N* x '@*D (w,y) > w + y is a diffeomorphism
onto a neighborhood U of origin. Thus we can write

x=wk)+ykx) xEU"

where w and y are considered (as we will do in the following) as maps U* > N
and UM - '@?, respectively. We may choose $*(x) so that ¢Nx) = ¢*(y). Note
that |£]™ x(x , £) on Supp ¢* can be made arbitrary small by choosing ¢* so that
its support lies very close to @M. This suggests that we may, for each u € W (¢ (»)),
expand a'(x,§) pl(x,§£)u in Taylor series in W, x) at (v ,(E* (), £) O,
and examine the contribution of each term in ll@*(x ,D)a(x,D) pi(x ,D)ulP.
This approach leads to the following results : We set

a0 =2 %) (5 0), 8)wy + 2 g/6%) x,(x, ®
where x° is origin and
oy =a'De, o) o, 20N +ai, 00 5P ., ()
g0) =a" (o, 000 o2, 0N +a(r, 2'ON X v, )

where the upper indexs (j) (resp. the upper indexes (j)) denote the partial
derivatives a/ax, (resp. 3/82,).

THEOREM. — Assume that characteristics of A over a neighborhood of origin
ure smooth, non-degenerate, and of fiber dimension zero. Then the estimate ( **)
holds for any u with support in a sufficiently small neighborhood of origin
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provided we have the following estimate for each \ : There is an integer d > 0
such that for any sufficiently small 8 > 0 there is a constant C, with an estimate
of the form

(e#x) IFMGe ,D)vl? + C) IvI? = c 0% M (x), D)y, v) — ™' IIvIIf/2
+ R{SG,D)v,v)

for all functions v values in W(¢M(x°)) with support in a sufficiently small neigh-
borhood gf origin x° In the above, S(x, %) is the sum of a term linear in w and
x(with C~ coefficient) and a term which is zero at ¢ (x°).

In order to find algebraic conditions on f/(x°) and g/(x®) so that the above
estimate holds for FM(x , £) we introduce skow-symmetric ce(s,t=1,2,...,2n)
as follows : ¢z, = 0j,k=1,...,n,

dw; =Z ¢, X%V ,dx) (mod (M (y) ,dx ),
A8 =2 Cuip ey (0, AX) A X (¥, dx) (mod ($* (), dx)),

where the cotangent vector field {* is considered as a differential form.
Forn = (ny,..., N,,) € R*" we set

) =2 &)y + Z g/ m, = 2 K .

PROPOSITION 1. — Under the assumption on A mentioned in the theorem, F(x , D)
satisfies the estimate (*#*) if we can find 4y € Hom(W , G), where G is a vector
space, depending differentiably in § and satisfying the following :

B*nt = m*h
and for any sufficieritly small § > 0
@) rm)* h(n) — hem)* hy(n) = 0 (mod 6%*1),
Z e, 0 (B B — hg*h) u,u) = c 07 |ul?
for all u € WQEM(x0) = W.

It is fairly complicated to find good algebraic conditions on 4(n) so that the
above conditions are satisfied. We will state here a necessary and sufficient condi-
tions in the case d <2 : Let h: W8 R* - G be defined by h(w ® n)=h{n)w,
wE W. For v in Hom(W ® R** , W @ R*") we define tr,(y) € Hom(W , W) by the
formula { tr (Y)w,w')=Z{(yw®r),w ®r ) where r,, ..., r,,is the standard
base of R*. We define J : R*” - R*" by

J@)=2Z c, 1,
We also define 7 Hom(W @ R* , W @ R*) > Hom(W @ R*" , W @ R*") by
(Ywer),wer)=(ywer),wer).

ProrosiTION 2. — For a given h(n), A satisfying the condition_(#) ford <2
exist if and only if we can find a self-adjoint
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B: WeR™ > WeR™ such that
g =-8,
pioBop, =0,
tr,(iBo(I®J) >0

where K is the kernel of 4 ,p, is the orthogonal projection to K, and 7 is the
identity map of W.

Columbia University
Dept. of Mathematics,
New York
N.Y. 10027 (USA)
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SUR LES ENSEMBLES SEMI-ANALYTIQUES

par S. LOJASIEWICZ

1. Soit M une variété analytique réelle. Pour chaque @ € M notons avec X, la
plus petite famille de germes de sous-ensembles de M en a contenant tous les
{f> 0}, avec f analytique au voisinage de a, et vérifiant

u,vEZ,~uVUv,uNveZ,

Un sous-ensemble £ de M est dit semi-analytique si £, € Z, pour tout a € M.

Une autre description équivalente est la suivante. On dit qu'un 4 C M est
décrit dans un U C M par une famille F de fonctions réelles définies dans U, si

ANU= (:J ff\A,, avec des A, de la forme {f;; > 0}ou{f;; = 0}ou{f; <0}, f; € F.

Un sous-ensemble A de M est semi-analytique si et seulement s'il est décrit par
des fonctions analytiques dans un voisinage de chaque point de M.

La définition entraine trivialement que le complémentaire, Iintersection finie,
la réunion localement finie, le produit et I'image inverse par une application ana-
lytique d’ensembles semi-analytiques est semi-analytique. Si N est une sous-variété
analytique de M et E C N, alors la semi-analyticit¢é de £ dans M entraine celle
dans N, et réciproquement pourvu que E C N.

2. On appelle systéme normal (dans R") une famille {H; Gy XX} ogicjen
de polynomes distingués, ayant des discriminants D; xy,...,x;)¥0, des coef-
ficients analytiques au voisinage de 0 et vérifient

(WH'=0,Hf =0=H/"'=0 N
sur un voisinage complexe de O .
)Df=0=H"=0 )
Un voisinage Q@ = {|x,| < §,} s’appelle normal, si :
(a) les H; sont holomorphes ; (1) et (2) subsistent au voisinage de
{ze€C": |z, <8}
(b) H;(u »2) =0, |yl <8, = |z| <&, (dans le complexe).
Alors les
VE={x€Q:H'=--.=HE,  =0,Hi" #0},
(V" ={H'"#£0},V°={H"' =---=H; =0})
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forment une partition de Q ; on montre que V¥ est 4 la fois ouvert et fermé dans
{(x€Q:HE, =---=H=0,H"+ 0}, et est donc une sous-variété analyti-
que de dimension k. On appelle la partition

n
N = kgo {la famille des composantes connexes de V'*}

une stratification normale de Q selon {H}}.

Les voisinages normaux (selon {H,’}) forment une base de voisinages de 0.

On montre les propriétés suivantes :

(1) Une stratification normale est toujours finie.

(2) Pour chaque strate I' € 9, (f \I') N Q est une réunion de strates de 9T
de dimension inférieure a celle de I'" (propriété de la frontiére).

(3) Chaque strate I' € 9C de dimension k est le graphe d’une application ana-
lytique d’un ouvert de R* dans R" %,

4 Sir,, red avecrI’y, C F, alors chaque sous-variété (différentiable) trans-
versale 4 T, intersecte I'.

(5) Soit w: (x;,...,x,) > (x;,...,%,) ; alors m(Q) est un voisinage normal
pour {H ;}o <i<jems €t m (') est und strate ou une réunion de strates de la partition
normale de w(Q) pour I' € 9T selon que dimI' <m ou >m ; dans le premier
cas ona a((C\ N Q)=(7(D)\ () N 7(Q).

Soit M une variété analytique. Une stratification normale en a € M est I'image
d’une stratification normale par une carte g telle que g(a) = V.

3. On montre que les strates d’une stratification normale sont semi-analytiques.

On dit que 9T est compatible avec une famille d’ensembles F si pour chaque
re,EEFonal CE ou’ CM\E. On montre que :

(1) Pour chaquea E M et E,, . . ., E, semi-analytiques il existe une stratification
normale en a, compatible avec E,,..., E,, d’un voisinage arbitrairement petit de
a. '

(2) Un ensemble E C M est semi-analytique si et seulement si pour chaque
a € M il existe une stratification normale en a, compatible avec E.

Ceci entraine que : chaque composante connexe d’un semi-analytique est semi-
analytique ; la décomposition en composantes connexes d’un ensemble semi-
analytique est localement finie ; chaque semi-analytique est localement connexe ;
Padhérence (donc lintérieur et la frontiére) d’'un ensemble semi-analytique est
semi-analytique ; enfin ce critére utile : un sous-ensemble F d’un semi-analytique E
est semi-analytique si et seulement s’il en est de méme de F N E\ F et F\intgF.

4. Un point a d’un ensemble semi-analytique A est dit régulier de dimension k,
si ¥ N A est une sous-variété analytique de dimension k pour un voisinage V dea.
On montre que ensemble des points réguliers de dimension k d’un ensemble semi-
analytique est semi-analytique.
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5. Une notion utile est celle de la dimension d’un ensemble semi-analytique :
dim,E = maximum des dim. des points réguliers dans un voisinage suffisamment
petit de @ = max(dimI' : T €9C, " C E) o I est une stratification normale en a
compatible avec E ; dim E = max dim,E. Une propriété utile (dans les raisonne-
ments qui procédent par récurrence sur la dimension) : dim E \Ey) < dimE ol
E, est ensemble des points réguliers de dimension maximale de E.

6. Soit M un espace euclidien.

Deux ensembles semi-analytiques compacts A et B tels que A N B # @ jouissent
de la propriété de séparation régulidre : p(x ,4) = dp(x ,4A N B)" lorsque x € B
avec certaines constantes d ,N > 0.

Si f est analytique dans G, E compact C G,Z ={f = 0}, alors on a
|fO = dp (x, Z)V

pour x € E, avec certaines constantes d , N > 0.

Si f(a) = 0 (f analytique), alors |grad f(x)]| = | f(x) [ dans un voisinage dea avec
un 0 <6 < 1. (Cette inégalité peut servir 3 démontrer que{f = 0} est rétracte
fort par déformation de son voisinage).

Si f(a) = 0 (f analytique), 0 < 8 < 1, alors |grad f(x)| |x| = 61f(x)| dans un
voisinage de a. (Cette inégalité est utile par exemple pour démontrer qu’une condi-
tion de Kuiper-Kuo caractérise les germes f de classe C’, qui sont C°-équivalents a
leur développement de Taylor d’ordre r,voir [12](1)).

Pour démontrer ces inégalités on utilise le *“‘curve sellecting lemma” de Bruhat-
Cartan-Wallace : Si A est semi-analytique et si a € A n’est pas un point isolé de
A, alors A contient un arc semi-analytique qui aboutit 4 a(2).

Théoréme (P. Lelong [16], M. Herrera [17]). La mesure de dimension k d’un
relativement compact semi-analytique de dimension < k est toujours finie.

THEOREME ([1] et [14]). — Un semi-analytique compact posséde toujours la pro-
priété de Whitney. (Majoration de la longueur d’un arc qui permet de joindre deux
points de I'ensemble dans cet ensemble, en fonction d’une puissance positive de la
distance de ces points).

Pour démontrer ces faits on utilise le lemme de Rham : tout semi-analytique re-
lativement compact est une réunion finie de variétés analytiques semi-analytiques
chacune étant le graphe d’une application ¢ vérifiant |d, | < K (constante) dans
un systéme de coordonnées.

En utilisant les propriétés métriques on montre que tout ouvert (resp. fermé),
semi-analytique est localement de la forme U N{f,;>0} (resp. U ni{r,=0)
avec f;; analytiques. i P

(1) Ces deux inégalités restent vraies dans le cas complexe. (On considére z — |f(2)]?) .

(2) C’est-d-dire un arc un semi-analytique A relativement compact qui est I'image de
0,1] par un plongement analytique (0,2) = M, et tel que @ =\ — X\ ; le fait important
est que A est toujours un arc simple de classe C!.
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7. On peut répéter toute la partie précédente de la théorie en remplacant la
classe des fonctions analytiques par celle des analytiques-algébriques c’est-a-dire
vérifiant de plus w(x ,p(x)) =0 avec un polyndme w ¥ 0 (dépendant de y) ;
alors on a des variétés de Nash au lieu de variétés analytiques et des ensembles lo-
calement semi-algébriques au lieu d’ensembles semi-analytiques. On montre que
dans R" ce sont précisément les ensembles localement décrits par des polyndmes ;
ceux qui sont décrits globalement s’appellent semi-algébriques ; si P, est 'espace
projectif considéré comme R” complété par “Ihyperplan i I'sc”; alors, dans laclasse
des sous-ensembles de R", les semi-algébriques de R"” coincident avec les locale-
ment semi-algébriques de P,. Un sous-ensemble E de M x N, avec N affine, s’appelle
N-semi-algébrique si chaque x € M posséde un voisinage U tel que E soit décrit dans
U x N par des fonctions analytiques qui sont des polyndmes par rapport a la variable
qui parcourt N.

8. Théoréme de Seidenberg. Soient M, N des espaces affines, n : M x N> M
la projection naturelle. Si E C M x N est semi-algébrique alors w(E) est semi-
algébrique ; dans le cas plus général ol M est une variété analytique, si E est
N-semi-algébrique alors w(E) est semi-amalytique.

Dans le cas général o M et N sont des variétés analytiques on a encore le
théoréme suivant : si E est un semi-analytique relativement compact de M x N et
si 'on admet que dimE <1 ou dimM <2, alors w(E) est semi-analytique
(cf.[1]). Mais il y a un exemple d’une sous-variété analyiique compacie de dimen-
sion 2 de P; x P, dont la projection (par P, x P, - P,) n’est pas semi-analytique.

Si M est un espace vectoriel, P 'ensemble des droites dans M, m, : M - M/\, pour
A\ € P, la projection naturelle, on a le théoréme de Koopman-Brown:Si E C M est
un semi-analytique relativement compact alors m, (£) est semi-analytique sauf quand
\ appartient 4 un fermé rare de P.

9. Soit M une variété analytique, F une famille localement finie de semi-
analytiques de M ; alors il existe une stratification semi-analytique 9C de M (par-
tition localement finie de M en sous-variétés analytiques, semi-analytiques, avec la
propriété de la frontiére), compatible avec F (on aI' C E ou I' C M \ E quels que
soient I' € 9T et E € F) et jouissant des propriétés (A) et (B) de Whitney (si
,,FEN etacI'y CT, alors : (A) tous les sous-espaces-limites en a des es-
paces tangents de I' contiennent ceux de I'y on a ; (B) si z €' et x € I, tendent
vers a alors I'“‘angle” entre z — x et Pespace tangent de I' en z tend vers zéro).

10. Soit M une variété analytique de type dénombrable, F une famille localement
finie de semi-analytiques de M. Alors il existe un complexe simplicial localement
fini K dans un espace affine L et un homéomorphisme 4 : |K| > M tel que

(a) le graphe de h soit L-semi-algébrique (donc I'image par # d’un semi-algébrique
est semi-analytique) ;

(b) pour tout s € K, h(s) est une sous-variété analytique (et semi-analytique) et
h, : s = h(s) est un isomorphisme analytique ;
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(c) la famille {4 (s) : s € K} est compatible avec F.
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BANACH MANIFOLDS
OF FIBER BUNDLE SECTIONS

by Richard S. PALAIS *

1. Introduction.

In the past several years significant progress has been made in our understanding
of infinite dimensional manifolds. Research in this area has split into two quite
separate branches ; first a study of the theory of abstract Banach manifolds, and
secondly a detailed study of the properties of certain classes of concrete mani-
folds that arise as spaces of differentiable maps or more generally as spaces of
sections of fiber bundles. A survey of the remarkable progress made in the first
mentioned area, (i.e. infinite dimensional differential topology) will be found
in the reports to this Congress by N. Kuiper and R. Anderson. Here 1 would
like to survey a part of the recent work in the second area, which for obvious
reasons (made explicit in § 1 of [12]) has come to be called non-linear global
analysis. 1 shall also attempt to indicate what in my opinion are fruitful directions
of current research and hazard a few guesses for the near future. An attempt
to be comprehensive would be futile since the subject shades off imperceptibly
into many extremely active classical fields of mathematics for which in fact it
plays the role of ‘“foundations” (e.g. non-linear partial differential equations and
continuum mechanics). I shall therefore concentrate on those few topics which
have most engaged my personal interest, particularly the intrinsic structures of
manifolds of sections and applications to the calculus of variations. I shall also
not attempt to cover research prior to 1966 which is surveyed in the excellent
and comprehensive review article [4] of James Eells Jr.

2. Manifold structures for spaces of bundle sections.

If £ is a smooth (= C”) vector bundle over a smooth compact manifold M
we can define the Banach spaces C*(£) of C¥ sections of & as well as many more
exotic Banach spaces of distributional sections of &, such as the Sobolev spaces
LE(¥). Let us use the symbol I' to denote a generic “differentiability class”
such as C* of LP. We can regard I' as a functor defined on the category VB(M)
of smooth vector bundles over M and taking values in the category of Banach
spaces and continuous linear maps (if f: § & n is a smooth vector bundle mor-
phism then I'(f) : I'(¢) = I'(n) is of course just s = f o 5). We shall assume that
we have a continuous inclusion I'(§) C C%¢) (e.g. if T' = Lz the condition for
this is kK > n/p where n = dim M). A central foundational question for many

(1) Research supported in part by USAF Grant No. AFOSR 68-1403.
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problems of non-linear analysis is : when can we ‘“extend” I' to a functor from
the category FB(M) of smooth fiber bundles over M to the category of smooth
Banach manifolds ? This is an abstract and general version of the question, “when
is the technique of linearizing non-linear problems meaningful and “natural” ?
If E and E' are smooth fiber bundles over M, a smooth map f: E—~>E' is a
morphism of FB(M) if for each x €M f(Ex)CE;. A smooth vector bundle §
over M is called an open vector sub bundle of E if £ is open in E and the inclu-
sion map & = E is a morphism of FB(M). If s, € C%(E) then such a £ is called
a vector bundle neighborhood (VBN) of s, in E if s, € C%%). The existence
of such a ¢ is a basic lemma [12, Theorem 12.10]. Let us say so € '(E) pro-
vided so €ET'(§). It is easily seen that a sufficient condition for this to be inde-
pPendent of the choice of such a § is that :

FB(I") : Given objects £ and n of VB(M) and a morphism f: § > n of
FB(M), s = fos defines a continuous map I'(f) : I'(¢) = I'(n).

Equally obvious is the fact that if we define the “natural atlas” for I'(E) to
be the collection {I'(¢)} of Banach spaces indexed by the open vector subbundles
¢ of E, then this same condition FB(I') is just what is required to make these
charts C%related and hence for the natural atlas to define I'(E) as a C° Banach
manifold. More surprising perhaps is the observation that FB(I') implies that
the maps I'(f) of its statement are C™, whence the natural atlas defines I'(E)
as a smooth Banach manifold and we have our desired extension of I'. Given
a smooth fiber bundle « : £ = M its “tangent bundle along the fiber” is a smooih
vector bundle~over E, p: TF(E) ~> E, but may also be regarded as a smooth
fiber bundle p =mwop : TF(E) > M over M and it is easily seen that there is
a canonical identification of I'(p) : I'(TF(E)) - I'(F) with the tangent bundle
of I'E). If f: E~E' is a smooth fiber bundle morphism then its “differential
along the fiber” is a smooth fiber bundle morphism &f : TF(E) - TF(E') over
M and with the above identification I'(§f) is the differential of I'(f). For further
details see [12]. A similar treatment will be found in Eliasson |5], [6]. Recently
JP. Penot has given a detailed and comprehensive treatment of this problem
including several new approaches to the manifold structure of I'(E), [13], and
Mike Field has shown that when G is a compact Lie group, M a G-manifold
and E is a G-fiber bundle over M, then I'(E), the equivariant G-sections of E,
is a smooth submanifold of I'(E) [8]. One should also mention here the important
related work of A. Douady [1] and Kijowski [9] concerning manifold struc-
tures for spaces of submanifolds of a given manifold.

3. Extra structures for manifolds of sections.

The manifolds I'(E) have aside from their differentiable structure much added
structure whose properties are of the utmost importance in dealing with concrete
problems in non-linear analysis. The “essence” of this extra structure is as yet
not fully understood and manifests itself in differing though related guises in
varying circumstances. The elucidation and axiomatization of this additional struc-
ture I regard as one of the most intriguing and important foundational questions
of non-linear global analysis and I shall remark here on the current status of such
research.
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In dealing with the manifolds I'(E) it is appropriate to use only the charts
I'(¢¥) of the natural atlas ; the “extra structure” whatever it is, gets lost in passing
to the maximal atlas. We should therefore look at the coordinate transformations
between two such charts. These are of the form I'(f) : I'(¥) = I'(n) where f : £ = ¢
is a fiber bundle morphism of vector bundles. It makes sense to speak of bounded
sets in the Banach spaces I'(¢() and I'(n) and with mild conditions on " one
can prove that the following condition holds :

BF(X) : If f: £ n is a fiber bundle morphism of vector bundles over
M ,T'(f) maps bounded sets to bounded sets.

(see e.g. [12, 19.12] for the case I' = I£). From this observation Karen Uhlenbeck
in her thesis |17] developed a notion of intrinsically bounded (/B) subsets of
LZ(E) and used them very effectively to prove that certain wide classes of calculus
of variations problems satisfied Condition (C) (See § 6 below). Perhaps the simplest
of many diverse descriptions of IB sets is “a finite union of subsets of LE(E),
each a bounded set in some L{(£)”. What gives them their usefulness (aside from
their being preserved by induced morphisms LZ(f)) is that they are relatively
compact in C %E), by Rellich’s theorem. U. Koschorke has investigated an abstract
axiomatic notion of ‘“‘boundedness structure” suggested by IB sets and made
several interesting applications (unpublished). About a year ago J. Dowling and
K. Uhlenbeck independently made what 1 consider a very surprising and important
observation ; namely that if f: £ > n is a smooth fiber bundle morphism of
vector bundles over M, then for p > 1 LE(f) maps weakly convergent sequences
to weakly convergent sequences, or equivalently L?(f) is weakly continuous on
bounded sets. What makes this so remarkable is that LE(f) is highly non-linear
and usually even the mildest non-linearity destroys weak continuity. [For example,
consider the quadratic map ¢ of Hilbert space H to itself, p(x) = x + Il where
e is a non-zero vector in H. Dy, = identity so ¢ maps some ball (say of radius
2r) diffeomorphically. If {e,} is an orthonormal base then re, > 0 weakly,
w(re,) = r’e weakly, but p(0) = 0 # r?e]. As a result it makes no sense to speak
of the “weak topology” of an infinite dimensional manifold in general, yet the
theorem of Dowling and Uhlenbeck shows that it does make sense for the L} (E),
and moreover the /B sets turn out to be just the relatively compact sets of this
topology. Quite recently Richard Graff has found a simple and elegant proof
of this theorem which moreover works whenever BP(I') is satisfied, I' is reflexive
(i.e. each I'(¥) is), and I' satisfies “Rellich’s condition” (i.e. I‘(E)CCO(E) is a
compact map), hence for any such I' one can define the “weak topology” for
the manifolds I'(E). This weak topology is certainly a part of the extra struc-
ture we seek. How big a part is not yet clear.

Another approach to “extra structure” starts with the observation that the

functors I do not exist in isolation ; there is a vast collection of them (the various
IF's, C¥'s etc.) related by various “embedding theorems” (e.g. L CC" if

n
k>—+r; LECL? for k>1 and k — % >1— 5) . These relationships are
p

known to be absolutely crucial in the analysis of concrete linear and non-linear
problems and it is quite plausible to me that it is to this family of relationships
that we must look to fully understand the “extra structure”. H. Omori has
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axiomatized at least part of this structure with his notion of ILH and ILB mani-
folds [10]. While too complicated to explain here it is clear from the applications
already made by Omori and others that this is an important concept ; it is also
probably the natural setting for some eventual abstract form of the Nash-Moser
implicit function theorem.

Additional structures for the I'(E) deserving of special attention are the geo-
metric structures (Finsler metrics, affine connections etc.) induced from similar
structures for E and M. These are of course intimately related to numerous
classical non-linear problems, particularly in the calculus of variations. Interesting
work has been done in this area by Eliasson ([5], foundations), Dowling ([2],
Hopf-Rinow theorem) and Ebin ([3], differential geometry of manifolds of Rie-
mannian metrics). One should mention also Uhlenbeck’s theorem [17] that IB
sets in LE(E) are just those which are bounded sets for any one of a certain
natural class of ‘“‘admissible” Finsler structures. For a while there was a hope
that the I'(E) would carry “natural” layer or Fredholm structures (see |7] and
also the report to this congress by J. Eells). This could have important conse-
quences (e.g. a degree theory and Leray-Schauder type fixed point theorems).
Unfortunately, despite considerable effort there is little evidence to support such
a conjecture.

4. Partial differential operators.

Let E be a C™ fiber bundle over M. Then J" (E) the bundle of r-ets of sections
of E, is a C” fiber bundle over E ; if s € C (E) then J(8),;-its rjet at x€EM
lies in J"(F) ) Let F be another C fiber bundle over E and let ® : J’(E) ->F
be a fiber bundle morphism over E. Given s €C “(E) define ®4(s) € C(s*F) by

D(s) (x) = D (j,(5)x) € Fypyy = ¥ 1),
If we define Fz(C™,C") to be
{{0,5)EC™M ,F) x C"(E)| 6(x) E Fy,, all x EM}

then F E(C",C") is a fiber bundle over C(E) whose fiber over s € C (E) is just
C”(s*F), and ®, is a section of this bundle. For this reason K. Uhlenbeck, who
introduced such operators in [17], called them differential section operators. This
concept seems to capture the notion of partial differential operator in its full
generality. Consider the special case when F = 7*E’ is induced from a bundle
E' over M (w : E > M being the projection). Then we may regard J'(E) as a
bundle over M also and ® then becomes a bundle morphism J"(E) > E' over
M. Moreover s*F = s*1*E' = (1s)*E' = E' for any s EC (E) so FC™,C") is
the trivial bundle C(E") x C(E) and ®4 a map C (E) > C(E'). This is just
the class of non-linear partial differential operators defined in [12, § 15]. As
a natural example of a differential section operator D which is not a partial diffe-
rential operator in the latter more restricted sense, let M = I =[0,1],E =W x I
where W is a Riemannian manifold, and let F = TW x L. Given 6 EC(E) = C'( , W)
let Do € o*(TW) = ¢*(F) denote the covariant derivative of ¢’ along ¢ (so
Do = 0 is the condition that ¢ be a geodesic). More generally the Euler-Lagrange
operator for a calculus of variations problem can in general only be interpreted
globaliy as a differential section operator.
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The elucidation of the general properties and structure of differential section
operators is clearly a very difficult problem but deserves considerable effort
since it is the very core of the foundations of global non-linear analysis.

One of the first natural questions that comes to mind, and an extremely
important one for applications, is the following. Given E and F as above and
section functors I' and I we can define analogously to FE(C”,CN) the bundle
F(I',T)={(0,s)ET'M , F) x I'(E) | o(x) € Fyyy all x €M} over I'(E) whose
fiber over s is I''(s*F). Given a fiber bundle morphism ® : J'(E) = F when does
the differential section operator ®, extend to a continuous or differentiable
section of Fg(I",T). For the case that I' and "' are Sobolev functors (L?) and
P+ a “polynomial” differential operator (almost the only case ever arising in
practice) this is now fairly well understood ([12, § 16], [6], [17] and the thesis
of Mark Schmidt [15] which is devoted to this question).

5. The Calculus of variations.

Let M have a smooth measure g and let £: C7(E) > C"(M ,R) be a diffe-
rential operator which extends to a smooth map 2 : I'(E) = L'(M , R). Then we
have a smooth real valued function J : I'(E) = R defined by J(s) = [ £2(s) (x) du(x).
The calculus of variations is concerned with the study of the “extremals” or cri-
tical points of functionals such as J on certain submanifolds of I'(£) (where in
general I is a Sobolev functor). Given f€ C™(E) let I‘af(E) denote the closure
in I'(E) of the set of s €EI'(EF) which agree with f in a neighborhood of oM.
Then I‘af(E) is a smooth submanifold of I'(¥) called the Dirichlet space of f
and of particular interest is the ‘‘Dirichlet problem” of describing the critical
points of J | I‘af(E). An account of this will be found in [12, § 19] with the
simplifying assumption that E is a sub-bundle of a trivial vector bundle and that £
is of a special form relative to this embedding. Two more general intrinsic treat-
ments will be found in [6] and [17]. The major concern of this research has been
two-fold. First to find conditions for £ that will guarantee J | I‘af(E) satisfies
Condition (C) of |11] and [16] (which in turn implies existence theorems for
extremals) and secondly to prove that extremals have greater smoothness than
is a priori evident ; under appropriate conditions on @2. The restrictions on @2
assume the form of “coerciveness” or “ellipticity”’ conditions familiar from linear
theory. While the present state of affairs is far from definitive and much remains
to be done there has been considerable progress in this area.

An important question in the case I' = L,zc is “when are all the critical points
of J| I‘af(E) non-degenerate for most choices of f''. For the case of geodesics

1
on a Riemannian manifold V, where M =1, E=V x I,2(0) = 5 lo'l?, T =L32.

Morse showed this was so. In this case Paf (E) consists of all g €EI'(E) having
the same endpoints (p,q) as f and Morse’s theorem is equivalent to the sta-
tement that for almost all (p,g)EV x V, q is not a conjugate point of p, a
result which follows fairly directly from the Sard-Brown theorem or the more
general Thom transversality theorem. For calculus of variations problems with
several independent variables it has long been suspected that with appropriate
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conditions on # similar results could be proved, however only very recently
have such conditions been found [18] by Uhlenbeck. Her proof involves regarding
I’(E) as a smooth bundle of Hilbert manifolds with the l"af(E) as fibers and
depends on F. Quinn’s generalization of Smale’s transversality theorem for
Fredholm maps [14].

There is an application of the above results which should be fairly easy to
carry out and would have interesting connections with topology. Assume M is
a compact Riemannian symmetric space of rank one and V another Riemannian
symmetric space of rank one. Among the natural Lagrangians for maps M > V
there is the well-known higher order “energy” function whose extremals are the
so called polyharmonic maps. Condition (C) and the regularity theorem are satis-
fied for this functional and moreover, because of the high degree of symmetry
involved, the problem of finding explicitly the critical submanifolds and their
indices should reduce to reasonably straightforward calculations. Using standard
results of Morse theory this would lead to information about the homotopy type
of C°M , V) and in particular, taking M to be S”, of the higher loop spaces of V.

Let me close by saying that I have only been able to give a small sample of
the many promising lines of current research in non-linear global analysis. In
particular I have not even mentioned here what I consider one of the most
interesting and promising such programs, namely that initiated by Arnold in
continuum mechanics and developed considerably in the past several;years. For
this I refer to D. Ebin’s report to this Congress.
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OVERDETERMINED OPERATORS :
SOME REMARKS ON SYMBOLS

by D.C. SPENCER

The purpose of this note is to exhibit explicitly the operator § (which defines
the “&-cohomology”) in the symbol of a differential operator, in order to try
eventually to relate its properties to the characteristic ideal of the operator. The
symbol sequences associated with an arbitrary (formally integrable) operator can be
given the same form as those of a flat operator, and we therefore include a discussion
of flat operators.

1. Flat operators.

We begin by defining the notion of a flat operator, and we use the notation
and terminology of the summary article [6] (in which, in particular, the same
notation is used for a vector bundle and its sheaf of sections).

Let E,F be vector bundles over the differential manifold X (dim X = n),
and let ¢ : J,(E) > F be a morphism of vector bundles where J, is the functor
(from the category of vector bundles and their morphisms into itself) which
associates to £ the vector bundle J, (E) of k-jets of sections of E. The /-th prolon-
gation p,(¢) : J,, (E) = J,(F) of ¢ = p,(p) is the restriction to J,,, (E) C J,(J,(E))
of the map Jy(p) : J;(Jx(E)) = Ji(E). Recalling that S/ T*® E is the kernel of
the projection m,,,_, :Ji,; (B)~ Jypy_, (E), we define g,(p) : S*' T*® E~> S'T* F
to be the morphism obtained by restriction of p;(p). Now let ® : E - F be a
differential operator of order k, i.e., there exists a morphism ¢ : Ji(E) = F such
that ® = g o j,, where j, : E > J (E) is the sheaf morphism induced by forming,
by differentiation, jets of order k of sections. We let R;,, = ker p,(p) C J,,, (E),
8+ = ker 0,(p) CS*' T*®E, and observe that g,,, is the kernel of the por-
jection m ., : Ry, = Ry,,_,. The differential operator ® is said to be for-
mally integrable if, for ] =2 0, R,.,, is a vector bundle and m,, : Rpypey > Ry
is an epimorphism. If ® is formally integrable, as we assume henceforth, the
operator can be extended to a complex of which the initial portion is

(1.1) ESF%¢,

where @' is a differential operator from F to the vector bundle G, and this complex
is formally exact in the sense of Goldschmidt [1].

Next, we have a morphism & : A'T*®g, - A™'T*®g of vector bundles
where 8% = 0, and we call the cohomology of the resulting complex the ““8-coho-
mology” (of ®). There exists an integer 4 depending only on n (dim X), k (order
of ®) and the fibre dimension of E (if X is connected, as we suppose) such that
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the §-cohomology vanishes at A” T* ® g, for s = u — n and all r. Moreover, writing
© (solution sheaf of ®) for the kernel of ® : E - F, we have the sheaf complex

(1.2) 0-0->C"Bc' S B
where D is a first-order differential operator and
C'=C, =(\N'T*®R,, )6\ 'T*eg,.,),
where m is a fixed integer, m = u, and C”" is a vector bundle. The cohomology
of this complex at C' is isomorphic to the cohomology of (1.1) at F.
Now let P: R, >R, ., be a splitting of the sequence of vector bundles

0->g,., >R,y >R, >0 and denote by Q : R,,,, 2> g,., the correspon-
ding projection. The splitting induces an isomorphism

(1.3) C"=(N"T*eR,)8 8N T eg,,.,),
and defines a connection for R,, with differential operator
Dy : NT*®R, > N*'T*eR,,,,
where Dy = DoP and
D:NT*eR,,, > N*"'T*eR,
is the so-called “‘naive” operator (see [1], [6_]). Identifyigngga (_l" with the direct
sum in (1.3), the operator takes the form
(1.4) D(0,p) = (Dy0-p, Dy(Dy0-p)), (0,p) (A'T*@R,,) @ 5(A'T*®g,,. ).

The operator ® : E — F is flat if it is formally integrable and there exists a
splitting P such that Dz (the curvature of the connection) vanishes. We say that
the operator is completely integrable if, for / = k (order of ®), R, is the vector
bundle of /Hets of its solution sheaf ®. It is easily verified that an operator is
flat if and only if it is completely integrable. For example, any formally inte-
grable operator with analytic coefficients is flat ; in particular, the famous ope-
rator of H. Lewy [4] is flat.

From (1.3) and (1.4) we obtain for a flat operator the following commuta-
tive diagram :

0 0 0 0
& J/ J' D, D, D,
0-0 —“— R, — T*eR, —> AT*eR, —>...
i ! b { b ) b
(15) 0 —— (C*° — c! — c? —,..

{ { _ ¥ _ + -
00" 2m, 5 )72 5(T*eg,.,) =% (A’ T* eg,, ) —3...
+
0 0 0 0
Here ©' = {0 € ©|Fj,,(0) = j,usy (0)} and @" = 8Qj .., (©). The columns of (1.5)
are exact, and the rows are exact at R,,,, C° and 8(g,,.,)-
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The exactness of the first row of (1.4) is trivial and is equivalent to the
Poincaré lemma for the exterior differential operator d. Hence the second row
is exact if and only if the third row is. However its exactness (which implies
that of (1.1)) does not hold in general. Since the curvature vanishes, the ope-
rator D, reduces to d (by introducing flat frames), but d operates on the image
of & and exactness is therefore equivalent to a Poincaré lemma for a restriction
of d.

By introducing a splitting P the symbol sequences of diagram (1,5) remain valid
for an arbitrary (formally integrable) operator (see (1.4));their consideration is then
reduced to the third row.

2. Structure coefficients.
We first introduce some notation. Let g, be the fibre dimension of R,, set
@ ={lez|1 <l<q(s)}, —1,5 ={I€Z|q(:_l) +1 <I<q(,)}

and, if 4 = (a,,,,) is a matrix whose coefficients @, are functions, write

7]
Afs"—l"'") = {aup PI= (sl), p c (S" —1 ’su)}’

s)

AL = e, e —1,5),0€6" 1,5

Multiplication is the usual matrix one, for example

A(""yﬂ"—l) A(-"—lu") = Z a

@ @ —1.5%) vE(G), TE( — 1,9).
p e —1.8%

vo %7 >

A flat frame for the connection on R,, has the form J,(nm) ={j,.(0,) | v E (m)}

where the 0, are local sections of ®' and the jm(0,) are independent and span

R,, locally over the functions. The structure matrix Afz::;m) is defined by

Jotm = g A s™ |, where J4 ™ =1, ,(0,)1vE€ (m — 1, m)} and
(m—1)
m-1

(m—1,m)
m—1 >

@.1) dA 3™ + A ™D L dAf e = 0.

(m-2,m-1)

similarly for J . Applying to this identity the (naive) operator D which

annihilates J we obtain the structure equation

Let J¢” be another flat frame for R, ; then Jo” = J& B where B((,':; is a
constant matrix (as is seen by applying again the operator D).

Next, let Jf,',':l) be a frame for R,,,, which is obtained by first prolonging
J,(,',") to Jf,','?l ={Jp+1 (0,) v € (n)} and then adjoining the set

T = 019 € 0m,m + 1)

to make a frame, where the 6,, vE(m, m + 1), are local sections of ©. If

T is another frame for R,,,, obtained by adjoining to J, a different

set Jon,™Y | then JUV = jimiD B{m:l) where Bmi]) is a constant non-
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‘singular matrix and By =7 i) (identity matrix). Writing J&* ™ = jm Al

Jlmam) . gm) Z((,',,”)’m“) , and substituting into 7™ = Jem D g e obtain

m m (m+1) »

“m,m+i) _ (m,m+1l) p(m,m+l) amm+i) _ ,m+1) ,m+1
Al =A% B miyy and hence dA(my™ " = dalrmth  plwmr

We observe that F,,, =J& "m0 — jm Af™* Y s a frame for g,,,, since
Jomm+y —Jf,',")Ag,',')’m”) =0 (but it is not flat). We use this frame for g, ,,

and the corresponding frame F,, = J&"~ 1™ — jom-b A ™ for g, and we

denote by ¥ the (local) section F,,,, . ¥ of A""'T*eg, ., , where ¥ = ¥, ..

is a vector-valued differential form of degree r — 1. Writing 4 = A((',','":";' '1,3,), we
find easily that

2.2) SV =dAAVY, — Do (6W) =dANdY.

Of course, the image under § of a section of g,,,, is independent of the choice
of frame in g,,, and D, operates as d on its components with respect to F,,,
ie., F,, is a flat frame for the connection restricted to & (A"T™* ®g,.:1)

Now suppose that the operator ® : E = F has a (real) analytic symbol. That
is to say, E and F are analytic vector bundles over the analytic manifold X and
the maps a,(p) : S**T*® E - S'T* ® F are analytic for / > 0, where g : J(E) > F
is the morphism associated with ®. The bundles A* T*Og, are analytic and,
since § is an analytic mapping, the bundles §(A”"'T*®g, . )) are also analytic.
The third row of (1.5) is then an analytic complex if and only if its operators
D, are analytic, i.e., if and only if the flat connection is analytic. For a flat
analytic connection it is well known that flat frames can be introduced by means
of analytic transformations. Since flat frames are related to one another by trans-
formations whose matrices have constant coefficients, we conclude that a section
of 8(A”'T*®g,, ) is analytic if and only if it has the form F,. ¥ where ¥ is
analytic and F; is a flat frame. The representations (2.2) are valid and, since
8 maps analytic sections into analytic sections, we conclude that the matrices

dA =dA{"")), and hence the AS™[), are analytic. It then follows from the
structure equation by recursion that all the structure coefficients are analytic.
However, given analytic coefficients satisfying the structure equation, we can
construct an isomorphic analytic operator (“third fundamental theorem” for flat
operators) with a flat analytic connection having these structure coefficients.
Therefore we say that a flat operator is analytic if it has an analytic symbol
~and flat connection with analytic structure coefficients. An elliptic analytic flat
operator is locally solvable (i.e., (1.1) is exact) since the third row of (1.5) is

exact by a well known theorem.

3. Guillemin decomposition.

For simplicity we write [ = I, = § (A" 'T*@g,,,,) where ['® = 0 ; then the
third row of diagram (1.5) becomes

@3.1) 0>0">rt=28p2 2, Do, pnog,



OVERDETERMINED OPERATORS 255

In order to display some formal properties of (3.1), we decompose the operator
D, : T'' > TI'? according to Guillemin’s prescription [2].

Let U be a non-characteristic sub-bundle of 7* defined over a neighborhood of
a point of X, i.e., the map o(—D,) : U eI" - I js injective. Let U be spanned
by the differentials dx!,..., dx*, and let W be the complementary sub-bundle
spanned by dx**' , ..., dx". Writingg = T*eg, . .g' = Ueg,,  .g" =Weg,,,
(m a large fixed integer), we have the following exact commutative diagram :

0 0 0
{ v !
0—>I‘:”_Hﬁg'—> g a4, dA ng' -0
4 ¥ a {
(3.2) 0> I, > g = r2 -0
e yooo 4
()___> h” - g“ —_ dA Ag”/dA A h” - 0
4 V {
0 0 0

Here "' is the projection onto g”’,and " = #"'(T'},,,). Let A : dAA g"/dAA h" ~ g"

m
be a splitting of the :hird row of (3.2) ; we then have the decomposition

g= gl ® hN ® Ra(gll)

and we let ¥' : g—>h",@" : g > Aa(g") be the projections where %', @' vanish

on g'. Since dA A X''g C dA A w'g, we have the decomposition

I =@dArr'g)o(dAr&"g).

Next, writing E; = dx' AT'" we note that the map o, ;(— Do) : I'' = E;, where
0,4(—Dg) : dA . ¥ > dANdx! . ¥, is an isomorphism for i=1, 2, ..., k and
that we have the decomposition dAAn'g =E,®E,®...® E, (since the dx!
are non-characteristic) ; therefore[? = E, ® E, ® .. . ® E, ® C where C = dA A &'B.
Let p:T?2>dAnan'g, p; : T* > E,;, q:I?>C be the projections, where
pidANY >dA AT +X")V,q:dAANY >dA AG"Y, and define D; : T > T
Dy : T = C by setting D; = 04,1 D,,)‘l op;o (—D,), Dy=gqeo (—Dy). Then

— D, =p(—Dy,) + q(—D,) = 2% 04, (—D)D,; + Dy,

where p(—Dg) :dA- ¥ > dAN (@' +X")d¥, q(—D,) : dA- ¥ > dA A w"d¥,
and Guillemin’s argument yields the same commutation relations as were originally
obtained for the decomposition of the operator D : C° - C*, namely : there exist
operators Dy : [* > T, D} : T > T such that (D, , D;] = DyDy, DoD; = D/D,,
1<i,j< I«;‘

n
Let § =Y, &dx'+ Y. mdx' =&+ n ; then we have the symbol maps
in

I=k+1
o(p(—Dy))(§) :dA . Y P dANE+ XDV,
0(g(—=D))(}) : dA . ¥ dANG"y. ¥
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and Eﬂ =kero(q(—D,)) () =dA .q ' (n") where
n—l(hn) = {\I, (=] - ln‘l’ e-h"} .
On E, we have 0 (p(—D,))(§) : dA. ¥ > dAA(§ + 1) . ¥ where

K
dAANY =dAAs(n¥) and s@¥) =), s5;0¥).dx' € 7T,
=1

Let —a;(x ,n) =dA.s;07. dA"IEn where dA™':T! =g, ; then for

ventn"
k
(D) :dA. ¥ Y {§ —a(x,m}(dA. ¥)rdx’
=1

where the matrices a,(x , n) commute, q;,(x ,7) = 0;(x, ) .id-b,(x ,n) ,b; (x , )
nilpotent. If the differential operator ® satisfies the 8-estimate then, by a theorem
of MacKichan [5], the a, (x , ) are normal, therefore simultaneously diagonalizable
and the b,(x , 7) all vanish. In this case the method of parameterization of the charac-
teristic variety adopted by Guillemin, Quillen and Sternberg [3] shows that the cha-
racteristics (which are the characteristics of the given operator ®) are generically sim-
ple (simple at all points of a Zariski open subset of the maximal dimensional compo-
nent of the complex characteristic variety).
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STRUCTURE LOCALE
DES MORPHISMES ANALYTIQUES

by R. THOM

1. Les modéles locaux : Croix normale.

DEFINITION 1. — On appelle croix normale de codimension k dans ’espace eucli-
dien R™ la figure constituée par k hyperplans se coupant transversalement. La
variété linéaire W™ ¥ intersection des k hyperplans sera dite I'axe de la croix
normale.

Lorsque le nombre % des hyperplans est égal a la dimension & de l’espace,
la croix normale sera dite canonique. Par exemple, dans I’espace R* de coor-
données t,, t2, ..., t, les k hyperplans d’équations 4, =1, /=1, 2, ... k,
forment une croix normale canonique ayant pour axe le point (1, 1, 1, ... 1).
Evidemment, une croix normale de codimension k& dans R™ est le produit topolo-
gique d’une croix normale canonique de R* par I'axe W™¥, Il suffit donc d’étudier
les croix canoniques.

Croix normale canonique,

La croix normale canonique H, de R¥ divise I’espace en 2¥ composantes connexes.
Désignons par (k) I'ensemble 1, 2, . .. k des k premiers entiers. A tout sous-ensemble
A de (k) on associe I’ensemble M(A) du complémentaire R* — H, défini par :

4 <1 pour i€A ; 4>1 pour jEE) -4

Si A et B sont deux sous-ensembles de (k), les adhérences M(A) , M(B) se
rencontrent selon la variété linéaire définie par

t,=1 pour r€EU;B)=AUB—ANB

Une telle sous-variété est I’axe d’une croix normale de dimension s-cardinal
(4 ; B). Une telle croix normale sera dite subordonnée a la croix normale cano-
nique H, .

Si, en particulier, on prend pour A I’ensemble vide ), on posera

N(B) = M(@) N M (B)

N (B) est I'axe d’une croix normale de codimension cardinal de B ; on I’appelle
la trace de 'ensemble B sur la région M(@). Si les deux sous-ensembles B et
C de (k) sont disjoints, les variétés traces N(B), N(C) s’intersectent transversa-
lement selon la trace N(B U C).
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DEFINITION 2. — Application linéaire gradudée.

Soit n =1i, +i, + ...+ i, une partition de I'entier naturel n en k entiers
non nuls. On considére la suite des applications linéaires surjectives :

) ELEDBELE, . 5B >0
ol les E; sont des espaces vectoriels de dimension respective : §; + i, + ... +i,.

Désignons par F le noyau de l’application f; : C’est un espace vectoriel de di-
mension 3. On deflnlra une décomposition de E; en somme directe (splitting)
4 Taide d’une application surjective g : E; > F;. En usant de ces “scissions’’
gj, on pourra dans E; former un drapeau-conoyau de la forme :

OCR,CRyyy , C... C Ri,,+...+1, C...CR,=E,
Désignons par 7; une norme dans le noyau F, ; par abus de notation, on désignera
par la méme lettre #; les fonctions induites 7; o g; sur £, et ;0850... 0 f,_ 10...0f;
sur Ei o0 < i .
Ces fonctions nous serviront a définir localement un voisinage tubulaire du
drapeau-conoyau.

2. Voisinage tubulaire d’un drapeau.
Considérons dans Iespace R¥ de coordonnées #;,i =1, 2, ... ,k, application
linéaire graduée . o

RS R RBR > SR B

ou I’application f, s’'obtient en oubliant la coordonnée ¢ .

La fonction # définit alors une scission de t, projection de R! sur Paxe oy,
noyau F; de t, Ces scissions permettent de définir un drapeau-conoyau :

OCR!'CR?C...CRC...CRF,
ou 0 est définie par ¢,, t,, ..., =0
Ri1 T =0
R fore £, =0
On se restreindra 4 “octant” positif R§ de R* (¢, > 0). En posant R, — R"' = V',

on définira 1’espace R entier comme réunion disjointe des V' ; on se propose
de définir les V' comme des intérieurs de variétés a coins M’, puis de reconsti-
tuer l’espace R par identification le long des bords des M Dans ce but,

désignons par 5;=[(t,;,,)* + (t;2,)* + ... (#,)*1"* la distance euclidienne 2 la
variété R' du drapeau.
Considérons alors les variétés tubes :

= = 2 = 3 = k
Sp =€, S =€, S5, =€,...,85 =¢€

Pour € assez petit, ces variétés-tubes se coupent transversalement ; & un infiniment
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petit d’ordre supérieur prés, les équations locales en un point de l'intersection
s’écrivent :

—_ — 22 —_ —_
t, =€, t=€,... L=¢, t, =c¢

Dans chaque R’, ces équations définissent une croix normale canonique H, ;
lorsque € tend vers zéro, les axes de H, et des H,, s <i qui lui sont subordonnées,
décrivent des variétés tendant vers zéro, qui avec les positions initiales sont homéo-
morphes & des simplexes de sommet O ; on obtiendra une image homéomorphe
de l'ensemble de ces variétés en considérant l’application d’éclatement Q qui
transforme le cube unité 0 <u, <1, dans le simplexe standard de sommets

©,...,0,0,0...00...,0,1,...,1,0,...0 @, 1, 1,..., 1), définie
par
U, =u,
U, = u
Qk 2 Uy uy
U =uy uy ... u
Ug=u; uy ...u,

On associera 4 chaque R’ une variété & coins M’, définie par
s, <€’ pour r<i , s;=>¢€ pour j>i.

On pourra reconstituer 'espace R comme réunion disjointe des M, identifiés
le long de leur bord par la convention définie au § 1 précédent pour les régions
M(w) définies par une croix canonique. La remarque essentielle est la suivante :
si on veut identifier la croix normale H, située dans R’ avec un voisinage tubu-
laire d’une strate du bord R¥, s <i, on introduira les trajectoires d’attachement
obtenues en faisant tendre € vers zéro, alors la croix normale H;, pour étre cons-
truite dans un voisinage normale de R®, devra étre soumise & un homéomor-
phisme O ainsi défini : sur le cube t; < 1, on effectue I’application Q ; sur les
régions extérieures au cube #; < 1 ; un homéomorphisme en principe arbitraire.
Une telle transformation, en général, n’est pas compatible avec la structure diffé-
rentiable ambiante de V; : un demi-hyperplan de la croix normale 0 < f; <1,
t, =1 pour H, par exemple est rabattu vers I’axe f,, pour former la parabole
t, =t,%. cf. Fig. 1.

La construction faite ici dans le cas de R¥ avec I’application linéaire graduée
définie par les f/ peut se généraliser 4 une application linéaire graduée arbitraire,
telle que celle définie par (1). Les équations r = ¢ définiront dans E' une croix
normale H,, et I'application f, projette cette croix normale sur une croix nor-
male subordonnée dans E,, ... elc.

DEFINITION 3. — Application linéaire subordonnée d une application linéaire
graduée.

Si dans I’application linéaire graduée (1) : Elﬁ* E,ﬁ> RSN k& 0, on
supprime un E,, on obtient encore une application linéaire graduée en compo-

. ] fi fia ,
sant les fléches E,_, — E,— E,,, en E,_ | — E,,, de part et d’autre

de E;. En itérant ce procédé pour tous les E, dont les indices appartiennent 4 un
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(L1 —? ol
012 1
[012] (1]
H,
0
Fig. 1

sous-ensemble A de X, on définit I'application linéaire graduée F, subordonnée
4 F pour le sous-ensemble 4.

Le drapeau conoyau de Papplication F, (pour les scissions g; relevées) s’obtient
a partir du drapeau conoyau de F en supprimant les variétés linéaires X; dont
les indices j appartiennent 4 A. Si I'on construit pour F4 la croix normale définie
par les fonctions #;, cette croix normale est localement subordonnée 4 la croix.
normale définie pour F.

DEFINITION 4. — Secteur.

Soient X;, X,, ... X, k espaces topologiques ; le joint J de ces espaces est
le quotient du produit des espaces X, X ... x X, et du simplexe standard A*~?
par la relation d’équivalence suivante :

Soient s5;, j =1, 2,..., k, des coordonnées barycentriques sur A*~1, alors
deux points ey, X; ... X, 84 -. ., S, (¥, X[ ... X, 81, ... 8 ... 5;) sont iden-
tifiés si s; = s,' pour tout j, et x; = x; pour tout indice i tel que s; # 0. (Au contraire
x; et x; peuvent étre arbitraires, si 5; = 0). Soit ¢ : X; x ... X x A¥™! > J ce
passage au quotient. On considére alors une suite d’applications surjectives :

2) AL AL AN 'S

Elle définit dans le produit X;, x X, x X; x ... x X, un fermé F, constitué des
suites x, €X,, x, €X,, ..., x,(.—‘.X,, covy X, €X,, telles que x, = fi(x;),...,
Xper =), oo, X = fi(x_,). On appellera secteur associé 4 la suite (2),
Pimage par ¢ du fermé F dans le joint J des espaces X;. Pour une suite composée
d’une seule fléche, X, = X, le secteur associé n’est autre que le “mapping cylinder”
de P'application.
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DEFINITION 5. — Secteur associé d une application linéaire graduée.

Revenons a 'application linéaire graduée F () e § 1, avec ses scissions g E, - F.

Dans E;, un voisinage tubulaire du drapeau-conoyau est défini par

= = ¥l = ¢k
r,—e’,rlﬂ—e R

Pour e petit, ces équations définissent dans E,; une variété W,. Chaque f; applique
W, surjectivement sur W),+l , par une fibration dont la fibre est définie par r; = cste

dans F, Ces fibrations sont triviales, et par suite chaque W, est un produit de
sphéres.

On appelle secteur associé a ’application linéaire graduée le secteur défini par
la suite des applications surjectives :

w W W

1A Wka* 0

N
Tk —1

Si on considére une application linéaire graduée F, subordonnée & (F), alors
la suite correspondante des W, permet de définir un secteur qui s’injecte canoni-
quement dans le secteur associ€é & F. Pour toute suite de points x,, x,,, = fi(x;) ,
le simplexe sous-tendu par ces points x, est I'image, par I'application Q, de la
trace N(4) dans M('I\c') dans la croix normale associée 4 F au point (x;, x;,, ...X,).

II. Ensembles stratifiés.

(1) Variétés a coins. On appelle variété différentiable d coins une variété ouverte
paracompacte, ouvert M dans une variété ambiante U, telle que tout point m du
bord M — M admette dans M un voisinage difféomorphe 4 une région M(A) d’une
croix normale dans U. L’axe d’une telle croix normale de codimension r sera
dit un coin de codimension r de la variété. Ainsi en tout point intérieur de M on
a un coin de codimension zéro, en tout point régulier du bord, un coin de codi-
mension un, en un coin ordinaire, un coin de codimension deux ... etc.

(2) Pour définir un ensemble stratifié £, on se donne tout d’abord son schéma
d'incidence. 11 s’agit d’un graphe fini orienté, avec une fonction définie positive
de I’ensemble des sommets dans N, la dimension d. Si une aréte va de a en b,
alors d(@) > d(b). Sia—> b et b~ ¢, on a aussi une fléche a — c.

(3) A tout sommet a est associé une variété & coins M(a).

(4) A toute chaine de fléches ay < a; < ... < a; < b est associée dans le
bord 0M(b) un coin dont la codimension est égale a la longueur de la chaine c,
i.e. le nombre total |c| des fléches qu’elle contient. L’axe de cette croix normale
H(c) est une sous-variété de codimension |c|.

Si une chaine ¢’ partant de b est une sous-chaine de c alors le coin N (c') associé
est I’axe d’une croix normale H |c') subordonnée a la croix normale N(c) associée

a ¢ : il suffit pour cela d’oublier dans la carte locale en tout point de N(c), les
coordonnées relatives aux sommets de ¢ qui ne figurent pas dans c'.

(5) Applications d’attachement,

Soit une chaine de la forme A X B Y, ol A et B sont des blocs de fléches.
A la chaine A XBY est associée dans le bord M (Y) un coin de codimension
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|A XB|, de croix normale H(A XB) ; de méme dans 0M(X), on a un coin de
croix normale H(4). On postule alors qu’il existe une application différentiable
surjective ky, définie sur un voisinage de aM(Y) a valeurs dans un voisinage
de M (X), telle que ky, s’obtient, dans la carte locale autour de tout point de
H(ABXY) en oubliant les coordonnées relatives aux sommets de BY ; I'image
est alors la croix normale H(4) C oM (X).

En vertu méme de cette définition, si 'on aX < Y < Z, alors ky, = kyy o ky,
sur toutes les croix normales de M(Z) et M(Y) associées aux chaines de la forme
AXBYCZ, A, B, C blocs de fléches.

Ceci étant posé, I’ensemble stratifié £ se définit ainsi : sur la réunion disjointe
M(X) des “strates” des sommets X, on effectue les identifications obtenues en
identifiant tout point y € aM(Y) avec son image x = k,,(y) dans oM (X).

Un ensemble stratifié s’obtient donc en recollant un certain nombre de va-
riétés 4 coins (les “‘strates™) selon les modéles locaux décrits plus haut.

Au lieu d’identifier brutalement sur les bords par les applications k,, on
pourrait aussi ajouter aux bords les “mapping cylinder (s)” (généralisés) des appli-
cations d’attachement. Ceci conduit i la construction suivante : A toute strate
M(X) on associe son étoile St(X) ainsi définie : pour toute chaine de la forme
X< A, A bloc de fléches, on construit le secteur associé aux applications li-
néaire graduée définie par les ky, sur les voisinages des croix normales des strates
de A. Si XB est une sous-chaine de XA, alors une partie du bord des siraies de
B s’injectent dans le bord des strates de A : on prolonge alors cette injection
aux secteurs construits sur ces chaines. L’ensemble stratifié E s’obtient également
en prenant la réunion disjointe de toutes ces étoiles Sz(X), et en les identifiant
selon les injections canoniques : ¥ = St(X) si X « Y.

Dans un article antérieur (EM S), j’ai proposé une autre définition d’un ensemble
stratifié, usant des strates, de lambeaux d’incidence, d’applications d’attachement,
et de “fonctions tapissantes”. La procédure de ‘“‘normalisation” décrite dans cet
article revient a montrer que tout ensemble stratifié admet une présentation
comme quotient de variétés a coins selon les modéles locaux décrits plus haut.

Morphismes stratifiés.

J’ai donné dans (E M S) une définition des morphismes faiblement stratifiés. Un
tel morphisme p : E~>E'a la propriété que I'image par p d’une strate X de E
est une strate X' de E’, par une application surjective de rang maximum, et
que p commute aux applications d’attachement. Pour un tel morphisme, la contre-
image p~!'(X’) de toute strate X' de E’ est un espace fibré (Premier théoréme
d’isotopie).

Cette notion souléve le probléme suivant :
ProOBLEME. — Tout morphisme analytique (réel, resp. complexe)admet-il loca-

lement un morphisme polynomial (réel, resp. complexe) qui a localement méme
schéma d’incidence et lui est isotope ? Une réponse positive impliquerait :

CorOLLAIRE. — Tout ensemble analytique (réel, resp. complexe) est localement
homéomorphe 4 un ensemble algébrique (réel, resp. complexe).
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La notion de morphisme faiblement stratifié n’exclut pas une grande patho-
logie, car, dans un diagramme de la forme

Xk_X‘L,Y

L) P
X — Y
kx'y’
rien n’est postulé sur le rang de I'application kyy : Ker p|Y = Ker p | X.

On rappelle que si ces applications sont surjectives, on définit ainsi les mor-
phismes “doux”, sans éclatement.

Pour un morphisme doux, il est possible d’adapter la présentation de E & la
présentation de E', de maniére que toute croix normale de E' soit subordonnée
4 une croix normale de E par oubli de coordonnées correspondant aux fléches
verticales (une fléche X — Y est dite verticale, si p(X) = p(Y)). Mais, dans la carte
associée, la propriété que p s’exprime en oubliant certaines coordonnées verti-
cales n’est vraie que sur une partie du complémentaire de la croix. Aprés appli-
cation d’une transformation de type (Q) 4 la croix normale, cette propriété peut
étre supposée vraie partout sur I’image de la croix normale par Q.

Exemple.

Prenons pour application stratifiée la projection paralléle a I’axe Oy du rectangle
ABCD du plan (Oxy) défini par A0, — 1), Bl@a,— 1), C(a,+ 1), DO, + 1).
L’image est le segment [0, 1] dans un espace 0,X, quotient de (O xy). Ajoutons
a I'aréte AD Torigine O comme O-strate (figure 2). Soit (R la strate de dimension
deux définie par l'intérieur du rectangle, dont I’image par p est Pintérieur de
101[ de sur O,X,. Autour de O, dans la 2 strate (R, on a une croix normale
définie par la chaine O < (0 A) « R d’axe le point (+ 1/2,— 1/2) par exemple.

Dans cette croix normale, les courbes de la forme p'l p(a) ont I’allure ci-dessous
(courbes pointillées). Elles ne sont linéaires que sur les régions y < — 1 /ﬁ2 de
la croix normale d’axe (— 1/2, 1/2). Aprés un homéomorphisme de type Q, on
transforme cette croix normale en la figure F (cf, Fig.3) qui, elle, contient les
classes p~' p(a) comme verticales.

De maniére générale, dans un morphisme doux, sans éclatement une croix
normale associée a une chaine (c¢), contient comme croix subordonnée I’image
réciproque par p de la chaine image p(c). C’est seulement aprés une transformation
de type Q, associée aux fléches “verticales” de ¢ (une fléche x, < x, est verti-
cale si p(x;) = p(x,)) qu’on peut imposer la condition que p est une projection

linéaire globale de la carte.

Morphismes analytiques généraux.
Dans un morphisme analytique général, d’application
kyy : Ker p/Y = Ker p/X

n’est en général pas de rang constant. Mais, trés vraisemblablement, on peut
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substratifier X et Y de maniére 4 ce que ces applications soient de rang constant.
Ceci oblige 4 introduire pour toute application d’attachement kyy, leurs espaces
image et noyau, ainsi que leurs images par p dans le but. On définira ainsi, dans
le bord de toute strate X, des germes de feuilletage (en nombre fini) auxquels
on pourra imposer des conditions de transversalité ou d’inclusion. Ainsi dans
une théorie généralisée des morphismes analytiques, les applications d’attachement
k yy ont une structure linéaire graduée, dont les noyaux et les images par p

définissent les germes de feuilletage introduits plus haut.

Alors un morphisme général “rude” avec éclatement, apparait- comme conte-
nant implicitement un nombre fini de morphismes “doux” dont les sources et
but sont les feuilles de ces feuilletages auxiliaires. Par suite ces morphismes doux
implicitement contenus dans un morphisme rude s’organisent en familles continues.
Il n’est pas interdit de penser qu'une telle description d’un morphisme permet
de donner une interprétation géométrique des procédures de désingularisation
utilisés en géométrie algébrique. Ces procédés d’éclatement, en effet, permettent
d’expliciter ces familles continues sous jacentes en espaces topologiques éclatés
au-dessus des strates du but.

On pourra se demander, en conclusion, si toute I’évolution récente de la géo-
métrie analytique n’a pas détourné Pattention du probléme central qui est ’étude
topologique des ensembles définis par des équations (et inéquations !) algébriques
et analytiques. En substituant aux ensembles les idéaux qui (parfois) les définissent,
on a cru faire un grand progrés conceptuel. En fait, ce progrés n’est le plus souvent
qu’illusoire. Car reconnaitre que deux algébres locales définies par générateurs et
relations sont isomorphes oblige & résoudre un probléme linéaire d’une telle di-
mension qu’il en est en général impraticable. Il est souvent préférable (et toujours
utile) d’inspecter topologiquement les germes correspondants et de rechercher
8’ils sont ou non homéomorphes. De plus, la notion fondamentale d’*‘équisingu-
larité” de deux algébres locales attend toujours sa définition algébrique. Enfin
les définitions algébriques sont impuissantes devant les ensembles constructibles
(semi-algébriques, semi-analytiques, etc.) introduits par projection propre. Pour
toutes ces raisons, je ne peux que croire qu’il n’est pas vain d’essayer de construire
une théorie purement topologique des morphismes analytiques, théorie dont on
a esquissé ici les premiers rudiments.
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IDEAUX DE FONCTIONS DIFFERENTIABLES

par Jean-Claude TOUGERON

Soit &, (resp. (9p) I’'anneau des germes 4 l'origine des fonctions numériques,
définies et indéfiniment dérivables (resp. analytiques) au voisinage de l’origine
de R” (resp. RP). Notons C™(n,p) I'ensemble des germes & I’origine de R” des
applications ®, indéfiniment dérivables de R" dans R”, et telles que ®(0) = 0.

Il est bien connu que 'anneau &, n’est pas noethérien ; en outre, tout germe
de fermé 4 lorigine de R” est le germe des zéros V(J) d’un idéal de type fini
F de &,. 11 est donc sans intérét d’étudier tous les idéaux de &,. Aussi, avons
nous considéré une famille trés particuliére d’idéaux :

Soit / un idéal de ©, engendré par des germes fy,..., f; ; nous étudions
lidéal de &,, noté ®* I, engendré par les f;o ®, 1 <i<gq. Bien entendu, si
® est quelconque, on ne peut rien dire ; mais nous montrons que, sous des hypo-
théses de transversalité sur ®, vérifiées “en général” (nous préciserons ultérieu-
rement cette expression), Iimage réciproque ®*I posséde des propriétés ana-
logues 4 celles de I

Ce travail s’inspire d’une part, de la théorie des singularités des applications
différentiables, développée d’abord par H. Whitney et R. Thom (R. Thom étudie
les germes d’ensembles ®~' (V' (1)), ot V(I) désigne le germe des zéros de I, d’un
point de vue topologique, en particulier leur stabilité topologique) ; d’autre part,
de résultats de L. Hdérmander, S. Eojasiewicz et B. Malgrange, concernant les
idéaux de I'anneau &,, engendrés par des fonctions analytiques (c’est le cas par-
ticulier : n = p ; ® = identité, de notre probléme).

1. Propriétés généralement vraies (J. Cl. Tougeron, [6]).

Soit & (n,p) lensemble des séries de Taylor & I'origine de R"” de tous les
®E€C”(n,p) ; de méme, si ¢ €N, soit F?(n, p) 'ensemble des polyndmes de
Taylor d’ordre g & lorigine de R”, de tous les PEC (n,p). On a des projec-
tions évidentes : 7 : C (n,p) > & (n,p) ;

Ty F@,p)>F(n,p) 5 Ty 5T (,p)>Fn,p) siq >q.

Pour tout g € N¥ soit Vq une sous-variété algébrique réelle de §9(n,p) et
supposons que : ... Dw;l (Vq)Dﬂ;ll (VqH) D ...

Nous dirons que V = ﬂN' Trq" (Vq) est une sous-variété algébrique de & (n , p)
qEe

et par définition, sa codimension sera égale a lim codim’q(,, 2 Vq. La variété V
q-o ’
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est de codimension infinie, si et seulement si la condition suivante est satisfaite :
Vq ENI* et qu € Vq, il existe un entier ¢' = q et I €1rq_,f,v (fq), tels que
Vomg (fg) = .

DEFINITION. — Une propriété (P) relative aux éléments de C™ (n ,D) est vraie
en général si pour tout §E%'(n,p) il existe une sous-variété algébrique de
codimension infinie ¥, de % (n , p) telle que tout ® appartenant & T~'(x; " (§) — V)
satisfasse a (P).

On ne doit pas confondre cette notion avec celle de “propriété générique”
au sens ol l’entend Thom. Par exemple, dans le cas p = 1, on sait que généri-
quement P est une “fonction de Morse”, i.e. I'idéal engendré dans &, par les
dérivées partielles 9®/dx,, ..., a®/dx, contient I'idéal maximal m, de &,. Mais
cette propriété n’est pas générale : on peut simplement affirmer qu’en général
Pidéal engendré par les 9®/dx; contient une puissance de m,,.

Soit 7 un idéal propre de GP : dans les paragraphes suivants, nous énongons
quelques propriétés vérifiées en général par ®* I, lorsque ® décrit C™(n,p).

2. Le théoréme de quasi-transversalité (J. Cl. Tougeron, [6])

Si ¥ est un idéal de &,, on note 3 ridéal de P'anneau des séries formelles
&,=RI[x,,..., x,]], formé par les séries de Taylor, & I'origine de R", des
éléments de ¥. On a d’abord le résultat suivant (conservation de la hauteur) :

THEOREME 1. — En général : ht ®%1 = inf (n, htD).

En particulier, si ht I > n, en général ®* I est un idéal de définition de &,
i.e. ®* I contient une puissance de m,,. Par exemple, si n < p, I'idéal (®) engendré
dans &, par les composantes ®,,..., ®, de ® est, en général un idéal de défi-
nition de &,,.

Venons en au théoréme de quasi-transversalité. Si ¥ est un idéal de 8, et si
k € N*, notons J,(@) I'idéal engendré dans &, par J et tous les jacobiens
D(wl,"" wk)

ol ¢1,..., @ appartiennent a ¥ et 1 <iy,..., i <n. Cet
D(xiys - -5 Xy)

idéal ne dépend pas du systéme de coordonnées locales choisi et J;(¥) =¥ si
k > n. Désignons par o, @) l'idéal de &, engendré par les £ tels que &.d soit

contenu dans un sous-idéal de & engendré par k éléments, et posons :

R, @) =T, @) Ny 0, @)

Si I est un idéal de o, (ou de l'anneau ©(U) des fonctions analytiques sur un
ouvert U de RP), on définit pareillement des idéaux J, (), o, (), R, (D).
L’interprétation de I'idéal R, (J) est facile. Par exemple, si I est un idéal de
O(U), I'ensemble V(I) — V(R () est exactement I’ensemble des points x de V()
tels que @, | I, soit un anneau local régulier de dimension p — k. En particulier,
V) — V(R (1)) est une sous-variété analytique de codimension k de I’ouvert U.

DEFINITION. — Une k-strate de &, est un couple 4 ,¥J ") de deux idéaux de
type fini de &, tels que J C/J' C R, (¥). Visiblement, si (¥, ") est une k-strate,
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le germe d’ensemble V(@) — V(#') est un germe de variéié C™, de codimension k,
a Porigine de R".

On définirait de méme une k-strate de O, Ceci dit, on a le résultat suivant :

THEOREME 2. — Soit (I ,I') une k-strate de 6, :
(1) si I' # ©,, en général (*1,D*I') est une k-strate de &,
Q) si I' = 0, en général (P*1,m,) est une k-strate de 8,

Le théoréme précédent est une version algébrique et locale du théoréme de trans-
versalité de Thom [5] : si (I, I') est une k-strate de ©,,0nen déduit qu’en général ®
est transverse sur le germe de variété analytique V(I) — V({I'), sauf peut-&tre a
origine de R" (mais en fait le théoréme 2 est beaucoup plus précis que cette
conséquence).

3. Idéaux fermés (J. Cl. Tougeron et J, Merrien, [7]).

Soient £ un ouvert de R" ; &(2) la R-algébre des fonctions numériques défi-
nies et de classe C” sur £. Munissons & (£2) de sa structure habituelle d’espace
de Fréchet (convergence uniforme des fonctions et de leurs dérivées sur tout
compact). Si a € 2, I'application 7, : &(2) = R[[x,, ..., x,]] qui & toute fonc-
tion f associe sa série de Taylor en a est surjective (théoréme de Borel généralisé).
SiZ (S2) est un idéal de &(S2),on pose F () = {f€EE(Q) |Va EQ,T, fFE T, ()}:
un_théoréme de Whitney affirme que I’adhérence de & (£2) dans & (2) est égale
a4 ¥ (). La notion d’idéal fermé se localise : un idéal ¥ de &, sera dit “fermé”
il existe un voisinage ouvert £ de lorigine de R" est un idéal fermé ¥ (Q2)
de &(Q) tels que J () engendre & sur 8,,.

On a le résultat suivant, di 4 B. Malgrange [3], et démontré d’abord dans le
cas d’un polynome par L. Hormander [1], et dans le cas d’une fonction ana-
lytique par S.Eojasiewicz [2] :

Un idéal de &, engendré par un nombre fini de germes de fonctions analy-
tiques est fermé.

Le théoréme suivant généralise le théoréme précédent (la démonstration utilise
les théorémes 1 et 2 et aussi les techniques développées pas S.-Eojasiewicz et
B. Malgrange) :

THEOREME 3. — Soit I un idéal de (9,,. Si ®ECT(n, p), en général l'idéal *I
est fermé.

Enfin, il résulte facilement du théoréme de B. Malgrange que ’anneau &, est
plat sur 'anneau ©, des germes des fonctions numériques, analytiques & P'origine
de R". L’analogue de ce résultat dans le présent contexte est le suivant :

THEOREME 4. — Soit I un idéal de 0, Si ® €C”(n, p), en général TOR‘,"(@,,/I, &,)
est un R-espace vectoriel de dimension finie (et méme, en général

TORY (0,/1,8,) =0,

si la dimension homologique dh ((9p/1) de (9p/1 sur O, est < n).
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|Un germe d’application ® € C”(n, p) munit &, d’une structure de o, -module :
le module TOR“’(@ /I, &,) est alors noté TOR"'(O /I, &,) ; la condltlon
TOR"(@ /I, )=0 s1gmfie simplement ceci : si 7 est engendré sur @, par
fis-.., f, le module des relations entre les f; o ® a coefficients dans 8 est
engendré sur &, par les relations entre les f; & coefficients dans © ol

On déduit des théorémes précédents de nombreux renseignements sur I’idéal
®* ] : par exemple, si © /I est réduit (i.e. sans nilpotents) et si dh(6,/)<n,
en général & /'I>*I est rédu1t ; si Op/I est normal et si an(©,/)<n—1, en

général F /<I)*I est normal.

4, Stabilité locale des idéaux (J.Cl. Tougeron, [6]).

Désignons par Dif(n) le groupe des germes % (4 l’origine de R") des difféo-
morphismes C d’un voisinage de Porigine de R" sur un voisinage de I’origine
de R”, tels que B(0) =

DEFINITION. — Un germe d’application ® € C™(n , p) est I-déterminant s’il existe
un entier g tel que la condition suivante soit satisfaite :

Pour tout &' € C”(n, p) tel que ® — &' soit g-plat i Porigine
e. mg 0 T(®) = 1y o T("),

il existe un élément de Dif(n) qui transforme 1'idéal ®* I en I'idéal ®'* I.

En particulier, sous cette derniére hypothése, et si ®, désigne le polyndome
de Taylor de degré q de @ a lorigine, il existe un élément de Dif(n) qui trans-
forme I'idéal ®* I en l'idéal ®7 I : donc, 4 difféomorphisme C” prés, Iidéal ®* I
est engendré par des germes de fonctions analytiques.

Nous dirons que I’idéal I est rigide, si en général un élément de C”(n ,p) est
I-déterminant. On a le résultat suivant :

THEOREME 5. — Soit I un idéal de hauteur k de ©,, tel que
I=yT1 et ht (R (D)) = inf (n, p — 1).
L’idéal I est rigide.

Soit I un idéal de ©, tel que I =+/Tet ht () = inf (n — 1, p — 2) : ’hypo-
thése du théoréme précédent est alors satisfaite (I’hypothése 7 =+/7T entraine en
effet : ht (R, (1)) > k = ht (1)) et donc I est rigide. En particulier, si n <2 ou
si p < 3, tout idéal premier de 0, est rigide (par contre sin=>3 et si p 24, il
existe dans Op des idéaux non rigides).

Signalons enfin la conséquence suivante. Soit y,,..., Yp un systéme de coor-
données locales a 'origine de R?. L’idéal I engendré par y,,..., Yp dans @, est
évidemment rigide et ®* I est égal a I'idéal (®) engendré dans &, par les compo-
santes de ®. Ainsi, en général il existe un entier ¢ > 0 et un elément de Dif(n)
qui transforme l’idéal (®) en I'idéal (<I>q) engendré dans &, par les polyndmes
de Taylor d’ordre g des composantes de ¢ (en fait, on a des résultats beaucoup
plus précis : nous renvoyons le lecteur a [6], ch. II).
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C5 - GROUPES ALGEBRIQUES
FONCTIONS AUTOMORPHES
ET GROUPES SEMI-SIMPLES

ON THE ZETA-FUNCTIONS
OF THE GENERAL LINEAR GROUP

by A.N. ANDRIANOV

1. Spherical functions.

Let G be any unimodular locally compact topological group, and U is a com-
pact sub-group of G. Let L(G, U) be the C-algebra of all complex-valued conti-
nuous functions on G with compact support which are constant on each double
coset UxU of U in G. Multiplication in L(G, U) is defined as the convolution :

f*xp)(x) = ff(xy")cp(y) dy, where dy is a Haar measure on G. Assume
G

now that L(G, U) is commutative. Then a (zonal) spherical function on G rela-
tive to U is defined to be a complex-valued continuous function w on G which
satisfies the following three conditions : (/) w is bi-invariant with respect to
U; QDQwl)=1;@B) f*w=Nw for all fEL(G,U), where 7\Jr is a complex
number depending on f. Denote the set of all spherical functions on G relative
to U by (G, U). For the theory of spherical functions see [4], [8], [10].

2. Spherical functions on GL,,.

Let @ be a division algebra over a complete discrete valuation field ; let ©
be a maximal order in @ ; let p= (7) be the maximal ideal in ©. Suppose that
the residue field of © is finite and has g elements and let

G=GL,(®), U=GL,(0) (n=2).
In this case the set (G, U) can be parametrized as follows [8], [II]. We set
H = {diag(r*) = diag(a™ ,..., 7"\, ..., \,)EZ"LN={(x,)EG; x, = 0
if i>j, x,=10G=1,...,m}.

Then G = UHN = UHW.Fors = (5, ,...,5,) EC" and x € U diag #* N define
®,(x) = I7 gNC1*D  Now let

o= [ o6 wa x€6)

where du is the Haar measure on the compact group U, normalized so that the
measure of U is I. Then w,€Q(G,U), and all w € Q(G, U) are obtained
in this way.
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Since w, is bi-invariant with respect to U it follows that w, is uniquely deter-
mined by its values on H. Then we have the following formula.

THEOREM 1 [3]. — Let NEZ", N\, =>..- >\, and let s€EC". Then
=1A0-1) sy =S40

4 o X PR IO 1-g 2070
P(q77) ges, 1i<jgn 1 — g @~ %W

where S, is the symmetric group of degree n, and P(t) = (t — 1)™" II} (¢! - 1).

1

w,(diag m) =

Remark. — It is easy to see that the expression (1) is in fact a polynomial in
eiGi=1,...,n).

Theorem 1 can be reformulated as a purely algebraic statement about the
explicit structure of the ring L(G, W) [3].

Macdonald had anounced the analogous formulas for the p-adic Chevalley
groups [7]. Langlands conjectures that the analogous formulas take place for
each quasi-split reductive group over a local field [6].

3. Local zeta-functions of GL,.

Keep the notations and the assumptions asin § 2. Fori=1,...,nand x€G
we set V(x) = g~ M where
UxU = Udiag(a™ ,..., 7", ..., PHU A <---<A,.

The integral

s Zy W)= w(x™Y) {1} Vi(x)"} dx , 2

CoErseeeszn s @) {nMM ) 1T V0™ )

where z,(i = 1,...,n) are complex variables, w € Q(G, W), will be called the

multiple zeta-function of the group G with ‘“character” w. The following Theorem
is the consequence of Theorem I.

THEOREM 2 [3]. — Given an arbitrary w = w,€Q(G,U), the integral (2)
converges absolutely in the domain Re z; > max Res; (j=1,...,n), and in

and domain {(z, ,...,2, ; w) has the form

_P(s;zy,...,2,)

§0(21s""z";w)_Q(S;Z1 seensZy) ’

where

r
n IV e
06 ;2 ,...,2)=T] (l—q ooea e ) ,
r=1 1€#<--<i,<n

P(s;z,,...,2,) is a polynomial in q*,...,q" sq 2R TP ik

the coefficients in Q.

It is easy to see that the fraction Q(s;z,,... ,z,,)_1 can be expressed as a
product of the zeta-functions of Langlands [5], [6] which correspond to the
exterior degrees of the standard representation of G = GL,(®). The nature of
P(s;z,,...,z,)isnot clear. The analogous statements can be infered for the y-adic
Chevalley groups from the Macdonald’s formulas [7].
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4. Applications to Sp, [3].
Let the notations be as in § 2 and suppose that @ = k is a field. Let

S = Sp,(k) =

gE€EGL,, (k) ;g (_01 10") g=rg (_01 16‘) , r(g)Gk;

be the symplectic group of genus n over k, ¥V = SN GL,,(0). The integral

Z ;W)= wEg™) Ir(@l dg,
6z 5 @) [rw,,.m &™) Ir@)F, de
where w €8(S, V) (see § 1), dg is a Haar measure on § and z is complex variable,
is called the zeta-function of the group S with the “character” w

Given an arbitrary w € Q(S, V), it exists & € Q(GL,, (k), GL,(©)) such that
Q=g " NEE ) =8 @En—0—1D,...,—2,24+7-1;8)

for suitable Yy €C (Rez is large enough) [2]. It follows from this relation and
Theorem 2 that ¢ (z ;w) is the rational function in g% and its denominator
has the form which was conjectured by Satake [8]. It gives also the proof of the
Shimura’s conjectures [9] about rationality of the Hecke series for Sp, (k) and the
degrees of their nominators and denominators.

5. Global zeta-functions of GL,.

Let A be a central simple algebra over an algebraic number field k¥ of finite
degree ; let G be the multiplicative group of 4 ; let ® be a maximal order in A.
For each valuation $ on k we shall denote by kpthe completion of k at b ;
A?=A 8, k#‘« ; Gy is the multiplicative group of Ah' For a nonarchimedean
valuation § we denote by On the closure of © in Ay and set

‘uh= {MPEGF ;ub0p= @p}
For an archimedean valuation § we set aly, = {upeGy ; upupy = 1} where
xf = x% is a positive involution of A y. For xy€ Ay we set Vp(xp) = |9tx ;pl v

where 9C is the norm of the regular representation of Ap over kp ;| | is the
usual norm in kp. For x PE AP we let

exp(— 7 Tr(x hx’@)’ if % is archimedean

‘I’h(xb) = 1, if xp€ Op

0, if xp& @p

where Tr is the reduced trace over the field of real numbers.

Let G, be the group of adeles of the group G. For x = (.. E
we set V(x) = Iy Vip(xp), (x) = Hptbp(xb) We denote by I' G e subgroup
of principal adles, and set U= I'Ip‘up

if b is nonarchimedean

Continuous function f on G, are said to be I'-automorphic if :
(1) fluxy) = f&x) forallueU, x€G,,yET ;
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(2) for any ®E€L(G,,U) (see § 1) there exists a complex number A, such
that @ * f= N, f.

To every nontrivial I'-automorphic function f there corresponds uniquely a
zonal spherical function w € Q(G, , W) which satisfies the condition -

[ Fouy) du = w(x) f(») [10] .

We shall say that w belongs to f. By the spectrum s(I') of I' we shall mean the set
of all w<€ (G, ,U) which belong to some nontrivial I'-automorphic function
and which are positive definite functions [10] and satisfy the relation w(§x) = w(x)
for every ¢ from the center of G,.

By the zeta-function of the group G with “character”
w= Hp whE s (wbe Q(Gp ) Mh))

we mean the function

$6(z s w) = ‘/;A Px) wEx™) V(x)Ydx = Hh ‘/G'p @b(xh) wh(x“) Vp(xb)‘ dxh=
= Mo, (2 5 wpp,
where dx = Ilpdxy is a Haar measure on G,. The function {;(z ; w) is regular

in the region Rez > 1. The h-factors {;(z ; wy) are computed explicitly by
Tamagawa in [11]. Then we have the theorem.

TueoreM 3 [I]. — With the notations and assumptions mentioned above the
function §;(z ; w) extends meromorphically over the entire z-plane with only
a finite number of poles and satisfies the functional equation

¢z w)=WW) AP ¢ (1 —z;@),

where W(w) is a constant depending only on w ; |W(w)| =1 ; A is the absolute
discriminant of the algebra A.

The analogous theorem for the ground functional fields k are proved by Maloletkin
(MaT.3aMeTKu 55 (1969)). Note, that {;(z ; w) coincides with the Langlands’s
zeta-tunction of G corresponding to the standard representation of G [5], [6].
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SINGULAR ELEMENTS
OF SEMI-SIMPLE ALGEBRAIC GROUPS

by E. BRIESKORN

Four years ago Steinberg lectured in Moscow on classes of elements of semi-
simple algebraic groups [12]. In a very modest sense my talk may be viewed as
a continuation of Steinbergs lecture. However, I shall not try to give a report on
all the problems posed by Steinberg. Instead of that I shall concentrate on some
recent results concerning one of Steinbergs problems. The problem is : Study
the variety of unipotent elements thoroughly.

Let G be a semisimple algebraic group over an algebraically closed field K = K.
We want to study the conjugacy classes of elements x € G. This problem can be
decomposed into two parts, corresponding to the Jordan decomposition x = x; - x,,
of x into its semisimple and unipotent parts. The conjugacy classes of semisimple
elements are obviously classified by 7'/W, where T is a maximal torus and W is
the Weyl group. Thus, associating to x the conjugacy class X, of x,, one obtains
a morphism G = T/W, the fibres of which are unions of conjugacy classes of G.

Steinberg, Springer and Kostant studied the classes of elements of the most
general type, that is, the regular elements ([11]. [9], [7]).

DEFINITION. — x is regular if and only if the dimension of its centralizer Zy(x)
is minimal, i.e. equals the rank r of G.

Steinberg and Kostant have obtained various characterizations of regular
elements, for instance the following ones.

THEOREM. —

(i) x is regular if and only if x is contained only in finitely many Borel groups.

(ii) x is regular if and only if G = T|W is regular, i.e. smooth, at x.

A good deal is known about the regular elements. For instance, they form an
open dense subset in G whose complement is an algebraic set of codimension 3,
and each fibre of G = T/W contains exactly one regular class. For a singular x
one has dim Zg(x) = r + 2.

DEFINITION. — x is subregular if and only if dim Z;(x) =r + 2.

It was Grothendieck who recommended to study the subregular elements. In
fact, he conjectured most of what is going to follow after reading a paper of mine
on a mysterious connection between Weyl groups and rational singularities[2].

I am going to explain two characterizations of subregular elements, which
correspond to the two characterizations of regular elements given by Steinberg.
First I shall talk about the one using Borel groups.
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Let D be the projective variety of all Borel groups of G, and let Y be the sub-
variety of G x D consisting of all pairs (x, B) such that x €B. One has natural
morphisms Y = G and Y - T such that the diagram formed by them, G- T/W
and T - T/W commutes.

The following theorem was proved by Grothendieck and, as far as the unipotent
fibre is concerned, already by Springer [10].

THEOREM. — The following diagram is a simultaneous resolution of the singu-
larities of the fibres of G = T[W :

Y-> G
{ e
T > T/W

The term “resolution” is explained by the following definition.
DEFINITION. — A resolution of X = § is a commutative diagram

Y > X
{ ¥
T~ S

where Y — X is proper and surjective,
T - S is finite and surjective,
Y = T is regular,
Y, X, is a resolution of singularities for all fibres Y,, tET.

In general, a morphism does not admit a resolution. It is a very particular property
of G - T/W and the singularities of its fibres that it has a resolution.

In order to study the singularity of a fibre X at a point x € X,, we consider
the reduced exceptional fibre F, over x in the resolution Y, = X. For unipotent
x by construction F, = {BE€D | x €B}. The regular x are those with F, a point,
by Steinbergs theorem. We shall now describe the F, for x € G subregular unipo-
tent and G simple. — It is easy to reduce the consideration of the general situa-
tion to this case.

Choose a Borel group B, let A be the corresponding system of simple positive
roots, and P, for a € A the parabolic group generated by B, and U_,. The fibres
of G/B, > G/P, are projective lines in D called lines of type a. Let (n,,) bethe
Cartan matrix, and n,, = — n,, if —n,, # char K, and n,, = 1 otherwise.

DEFINITION. — A Dynkin curve is a connected curve in D, the components of
which are lines of type @, a € A, such that any component of type a intersects
n,, components of type b.

Tits and Steinberg proved the following.

THEOREM. — Let G be simple.
(i) There is exactly one conjugacy class of subregular unipotent elements.

(ii) A unipotent x €G is subregular if and only if its exceptional fibre F,
is a Dynkin curve. All Dynkin curves occur as exceptional fibres,
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The first statement follows of course from Dynkins classification of all uni-
potent classes [4], if K = C, and this proof carries over to the more general case
of good characteristic. The second statement is exactly the analogue of Steinbergs
first characterization of regular elements.

Exceptional curves of the type mentioned above are well known in algebraic
geometry. They occur in the theory of rational singularities. This notion was intro-
duced by M. Artin [1].

DEFINITION. — Let V be an algebraic surface, v € ¥V a normal point and f :
V' = V the minimal resolution of singularities. (V, v) is a rational singularity
if for the higher direct images of the structure sheaf (R’ f,'= 0,),=0,i>0.

THEOREM. — (V, V) is a rational singularity with emb. dim, V < 3 if and only
if the reduced exceptional curve over v is isomorphic to a Dynkin curve of type
A,, D, or E, with self-intersection — 2 for all components.

Hence the theorem of Tits and Steinberg means that the unipotent variety
has a rational singularity “along” its subregular orbit.

For K = C, in the category of complex analytic spaces —to which 1 shall
switch from now on — the rational singularities with embedding — dimension 3
admit the following beautiful description.

ProroSITION. — The rational singularities with emb. dim <3 are exactly the
singularities of C?/T', " a finite subgroup of SZ (2 , C).

The finite subgroups of SL(2,C) are well known, they are the cyclic groups,
and the binary dihedral, tetrahedral, octahedral and icosahedral groups. For
example, if I" is the binary icosahedral group, the corresponding Dynkin curve
is that of Eg, and C%/T' C C? is the set of zeros of the equation

> +y’+z25=0.

This equation is now almost one hundred years old — it first occurs in a paper
of H.A. Schwarz [8] in 1872. Note that the equation is weighted homogeneous,
this notion being defined as follows :

i . . . -
DEFINITION. — Zag; i x!.. .xi," with w i, + ...+ w,i, =» is weighted

homogeneous of weight (w,,...,w,) and degree ».
The equations of all C2/T" were determined by F. Klein in 1874 (see e.g. [6]).

PrOPOSITION. — The equations of C2/I' are weighted homogeneous. Their
weights and degrees are given in the following table.

type weight degree
D, @2, r=2, r-1) 2r — 2
E, @3, 4, 6) 12
E, 4, 6, 9) 18
Eg 6, 10, 15) 30
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Up to analytic isomorphism the equations, which have to describe isolated sin-
gularities, are uniquely determined by these weights and degrees.

In order to give our second description of subregular unipotent elements,
we need one more notion, that of “universal deformation’ (“‘universal unfolding™
in Thoms theory of singularities).

DEFINITION. — Let X, be a complex space, x € X,,. A deformation of the germ
(X,,x) is a flat morphism (X,x)— (T,t) together with an isomorphism of
(X,,x) with the germ (X,,x) of the fibre over .

(X, x) > (T, t) is semi-universal if for all

X', x)>(T', t") there existsag : (T', "> (T, t)
with uniquely determined dgl,,, such that X' is isomorphic to X x,T".

Tjurina [13] and Schlesinger-Kas proved independently :

THEOREM. — For isolated complete intersections semi-universal deformations
exist and are unique.

It is an easy consequence of this theorem that one can give a very explicit
description of the universal deformation. For the sake of simplicity, I shall explain
this only for the case of hypersurfaces.

COROLLARY. — Let X, be the hypersurface in C" given by f(z) = 0, and 0 € X,,.
The universal deformation of (X, , 0) is the germ at the origin of C" x Ck > C!x CF,

3

where (z, ) maps to (F(z,1),t) and F(z,t) =f(z) + 2 g;(2) t;, where the
i=1

polynomials 1, g, ,. .., g, represent a basis of C{z,,..., z,}Y/(f, 3f/dz,).

COROLLARY. — The universal deformation of (C2/T',0) is defined by a weight-
ed homogeneous polynomial F of degree », and weight (w, , w, , w3, »,,..., ¥,),
where v, <-..<, are the degrees of a minimal set of generating W-invariant
polynomials.

The following result was conjectured by Grothendieck.

THEOREM. — Let G be a simple complex Lie group of type A,, D, or E,. Then
a unipotent x € G is subregular if and only if there exists a factorization of

map-germs
™
> X, x)

where 7 is regular and ¢ is the universal deformation of the corresponding Kleinian
singularity C*|T".

G, x)

(T/W, e

The idea of the proof is very simple. It suffices to prove the corresponding
statement for x a subregular nilpotent element in the Lie algebra. g = ¢/W given
by a set ¢, ,...,9, of G-invariant polynominals. X is a transversal subspace of
dimension r + 2, intersecting the orbit of x in x. As pointed out by Varadarajan
[15], it follows from the Jacobson-Morosov-Lemma, that ¢, | X is weighted homo-
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geneous of degree ¥, and weight (w,,w,,w;,?;,...,¥,,). From this onc
deduces rank,(dy, ,...,dp,_;) =r— 1 and subsequently ¢, = F.

CorROLLARY. — The set of subregular x € G forms a nonsingular submanifold
of codimension 3.

COROLLARY. — Any deformation of a Kleinian singularity admits a resolution.

This has independently been proved by Tjurina [14] and for 4, by Kas [5],
using methods developed in [2].

The universal deformation is a nonsingular fibration over the set of regular
semisimple classes. In order to analyze this fibration, one needs the fundamental
group of its base space. The following result was conjectured by Tits and is proved
in [3].

ProposITION. — Let H,,, be the space of regular elements in a complex Cartan
algebra. w (H,

Bg/W) has a presentation with A as set of generators and with

relations
afo... = Baf...
S—~—~—
Mag factors Mag factors ,

where (maﬂ) is the Coxetermatrix.
Applying this proposition for E; and Picard-Lefschetz-theory, one obtains :

COROLLARY. — ZE€C*| ||lz]| = 1, 22 + 22 + 22 + 2z} + 2z} = O} is an exotic 7-
sphere representing Milnors standard generator of ©,.

Thus we see that there is a relation between exotic spheres, the icosahedron
and Eg. But I still do not understand why the regular polyhedra come in. It is
perhaps interesting to note that Klein in his lectures on the icosahedron empha-
sizes his indebtedness to Lie dating back to the years 1869-70, when Lie and
Klein studied together at Berlin and Paris.

Klein writes : “At that time we jointly conceived the scheme of investigating
geometric or analytic forms susceptible of transformation by means of groups
of changes. This purpose has been of directing influence in our subsequent labours,
though these may have appeared to lie far asunder. Whilst I primarily directed
my attention to groups of discrete operations, and was thus led to the investigation
of regular solids and their relations to the theory of equations, Professor Lie
attacked the more recondite theory of continued groups of transformations, and
therewith of differential equations™.

Maybe the two theories do not lie so far asunder.
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GROUPES ALGEBRIQUES SEMI-SIMPLES
SUR UN CORPS LOCAL

par Frangois BRUHAT

Soit K un corps local, i.e. un corps complet pour une valuation discréte non
impropre, & corps résiduel k parfait ; on sait que le groupe additif des entiers
de K, ou le groupe multiplicatif des entiers inversibles, peut &tre muni d’une
structure de limite projective de groupes algébriques sur k. La théorie que nous
allons résumer ci-dessous fournit une construction analogue pour un groupe
semi-simple sur K, le faisant ainsi apparaitre comme un ‘“objet algébrique de
dimension infinie” sur k. D’autre part, notre théorie fournit des analogues (mais
“de rang infini’’) des systémes de racines, sous-groupes de Borel, sous-groupes
paraboliques, systémes de Tits (ou BN-paires) de la théorie maintenant classique
des groupes réductifs sur un corps quelconque.

Nos recherches trouvent leur origine dans I’étude des sous-groupes compacts
maximaux des groupes h-adiques. Un pas fondamental a été fait par lwahori
et Matsumoto lorsqu’ils ont démontré en 1964 I'existence d’un systéme de Tits
a groupe de Weyl infini dans un groupe semi-simple déployé sur un corps local,
résultat généralisé peu aprés a divers types de groupes par Hijikata. Les résultats
qui suivent sont dus a J. Tits et a I'auteur.

1. — Soit @ un groupe algébrique réductif connexe défini sur un corps K
(quelconque) ; soient ©un tore déployé maximal sur K de @, R le centralisateur
et % le normalisateur de 6. On pose G = @(K), Z = B(K), etc. La théorie clas-
sique permet d’introduire les objets suivants :

(1) un systéme de racines ® dans le dual V* d’un espace euclidien V ;

(2) un homomorphisme surjectif v, de N sur le groupe de Weyl W, de &,
de noyau Z ;

(3) pour chaque racine a € ®, un sous-groupe unipotent U, défini sur K.

Ces objets possédent les propriétés suivantes :

(4)nUan_l = U,,o(n)(a) (pour n€N et a€®) ;

(5) pour a,b€®, le groupe des commutateurs (U, ,U,) est contenu dans
le sous-groupe engendré par les U,,,,, avec p,q entiers > 0 et pa + gb€ P ;

6)sia,2a€®,0onalU, CU, ;

(7) pour a € ®, posons M, = v;'(r,), our r, est la réflexion par rapport d la
racine a. Pour tout u € U,, u # 1, il existe un triple (u' ,m(u),u")EU_, xM, x U_,
et un seul tel que u = u'm@u)u'" ;
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(8) Soit U* (resp. U™) le groupe engendré par les U, pour a décrivant I’ensemble
des racines positives (resp. négatives) pour un ordre total choisi sur V* ; on a
ZU* NU~- = {1};

9) le couple (ZU*,N) est un systéme de Tits de groupe de Weyl W, dans

G ; en particulier, l'application naturelle est une bijection de W, sur I'ensemble
des doubles classes ZU\G/ZU".

Notons que 81" est un sous-groupe parabolique défini sur K minimal.

D’une maniére générale, nous appellerons donnée radicielle de type ® dans
un groupe G la donnée de sous-groupes N et U, (pour a € ®), engendrant G,
et d’un homomorphisme surjectif vy : N > Wy de noyau noté Z, satisfaisant aux
conditions (4) & (8) ci-dessus. Elles entrainent (9).

2. — Lorsque @ est déployé sur K, les sousgroupes U, sont isomorphes au
groupe additif de K et le choix d’une “base de Chevalley” dans ’algébre de
Lie de @ permet de choisir les isomorphismes u, : K = U, de maniére “cohé-
rente”. Si K est muni d’une valuation w non impropre, on peut alors trans-

porter w & chacun des U, en posant p,(u,(f)) = w(?). La famille ¢ = (p,)
posséde les propriétés suivantes :

(10) pour tout kE€R, l'image réciproque U,, = «p;'([k , T+ «]) est un sous-
groupe de U, non réduit a {1} et l'intersection des U, , est égale a {1};

(11) soient a ,b € ®, avec b ¢ — R, a, et soient h , k €R ; le groupe des commu-
tateurs (U, ,, , U, ;) est contenu dans le groupe engendré par les U, . op pn + q
pour p, q entiers > 0 et pa + qb € ®.

Pour énoncer commodément les autres propriétés, introduisons un langage géo-
métrique. Pour a€ ® et K ER, soit @, , le demi-espace fermé de V défini par
inéquation a(x) + k>0 ; pour o = &, ,, on pose encore U, = U, .. Les a, ,
pour a€® et k€, (U,)NR seront appelés les racines affines de V et leurs
bords les murs de V.

(12) il existe un homomorphisme v de N dans le groupe des automorphismes
offines de V tel que v(N) permute les racines affines et que nU, nt=U v(n) (@)
pour Yout n €N et toute racine affine a.

Posons W = »(N) : c’est une extension du groupe de Weyl W, par son sous-
groupe des translations. On pose H = Ker ».

(13) soient a€E® et u€ U, ,u # 1 ; posons k = p,(u) et écrivons u = u'm(u)u'"
comme en (7). Alors ¢_,(u') = p_, ") = — k et v(m(u)) est la réflexion ortho-
gonale par rapport d Uhyperplan d’équation a(x)+ k = 0.

D’une maniére générale, nous appellerons valuation d’une donnée radicielle
W, (U,)) une famille ¢ de fonctions ¢, : U, > R U {oo} satisfaisant aux condi-
tions (10) & (13) et aussi

(14)si a, 2a € P, ¢,, est la restriction ¢ U,, de 2¢,.

Pour simplifier ’exposé, nous supposerons désormais que ® est irréductible
et que G est engendré par H et les U, (ce qui est le cas pour les groupes algé-
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briques simples simplement connexes) ; on passe de li au cas général comme ’on
passe, dans la théorie classique, du cas des groupes connexes au cas général.

11 est immédiat que, pour tout xE€ ¥V et tout A € Rf, la famille des ¥, = A, + a(x)
est encore une valuation de la donnée radicielle, notée Ap + X, On dit que ¢ et
Ap + x sont équivalentes.

3. -- A la valuation ¢ est associée une bornologie sur G, a savoir la plus petite
bornologie compatible avec la loi de groupe et pour laquelle sont bornés d’une
part les U, ,, d’autre part les parties M de N telles que »(N) soit borné (C’est-
a-dire relativement compact) dans le groupe des automorphismes affines de V.
Cette bornologie détermine la valuation a équivalence preés.

Revenons alors au cas des groupes algébriques simples sur un corps valué.
La valuation de K détermine une bornologie naturelle sur G : une partie M de
G est bornée si chaque fonction réguliére reste bornée sur M. Nous conjecturons
que, si K est complet, il existe une valuation de la donnée radicielle de G (et
une seule a équivalence prés) dont la bornologie associée est la bornologie natu-
telle de G. Sans pouvoir actuellement démontrer ce théoréme dans toute sa
généralité, nous savons le faire dans des cas fort larges : lorsque @ est déployé
ou quasi-déployé sur K (et alors méme si K n’est pas complet), lorsque G est
un “groupe classique” (et méme pour des groupes classiques non algébriques,
associés 4 des corps gauches valués de rang infini sur leur centre), et, ce qui est
le plus important pour les applications, lorsque K est un corps local au sens
rappelé ci-dessus.

Notons que ce théoréme entraine que © est anisotrope sur K (i.e. que ® = Q)
si et seulement si le groupe G tout entier est borné.

4. — Nous allons maintenant introduire des sous-groupes de G qui vont étre
P’analogue des sous-groupes paraboliques minimaux du cas classique. Soit x €V
et soit D une chambre de Weyl de ® dans V. Considérons le cone x + D et soit
B = Bx' p le sous-groupe de G engendré par H et les U, , ol « décrit 'ensemble
des racines affines contenant un voisinage de x dans x + D. Alors :

(15) B est borné. Plus précisément, on a

B = ae];['fd Uﬂ.—ﬂ(x) x H x ae]:[ied U—a. —a(x)+

(ots ®™ désigne 'ensemble des racines indivisibles positives sur D et oi Ugpe dé-
signe la réunion des U, , pour h > k).

(16) On a une “décomposition d’lwasawa” G = BNU' = BW,ZU". Si de plus
x est un point spécial (i.e. si —a(x)€y,(U,) pour tout a € ®™%), il existe un
sous-groupe PD B qui est un sous-groupe borné maximal tel que G = PZU".

(Rappelons que ZU* est un sous-groupe parabolique minimal).

(17) On a une “décomposition de Bruhat” G = BNB ; plus précisément, l'appli-
cation naturelle est une bijection de W sur B\G/B.
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On peut compléter ce qui précéde lorsque y est discréte (ie. v, (U, — {1}
discret dans R pour tout a). Il existe alors un systéme de racines réduit ¥ dans
V*, de méme groupe de Weyl W, que ® (c’est-d-dire dont les directions des
racines sont les mémes que celles de ®, mais ® peut par exemple étre de type
B, et ¥ de type C, ou inversement) tel que W soit le groupe de Weyl affine
de ¥ : quitte & remplacer  par une valuation équivalente, les murs de ¥ sont
les hyperplans d’équation b(x) + k=0 pour bE Y et K EZ. Les murs déter-
minent alors sur V une structure de complexe simplicial, les chambres de V, c’est-
a-dire les simplexes de dimension maximale, étant ce que N. Bourbaki appelle
les alcoves de ¥. Le groupe B, , ne dépend alors que de la chambre de V' qui
contient un voisinage de x dans x + D et les divers groupes B sont tous conjugués
(ce qui n’est pas nécessairement vrai lorsque ¢ n’est pas discréte). De plus, le
couple (B ,N) est un systéme de Tits de groupe de Weyl W, ce qui explique la
décomposition G = BNB (17).

5. — Pour x €V, soit N, le stabilisateur de x dans N et soit P, le sous-groupe
de G engendré par N, et les U, pour x €a (lorsque x est un point spécial, c’est
le sous-groupe P de (16)). Disons que deux points (g,x) et (4,y) de Gx V
sont équivalents s’il existe n €N tel que y = v(n).x et g~ hn € P, : I'immeuble
I de G est par définition le quotient de G x V par cette relation d’équivalence.
Le groupe G opére sur I, P’espace affine V se plonge canoniquement dans 7,
PPaction de G sur I prolonge celle de N sur V et le stabilisateur d>un point x € V
n’est autre que P,. Il existe sur I une distance et une seule-invariante par G et
induisant sur ¥V la distance euclidienne. Lorsque ¢ est discréte, / est aussi muni
d’une structure de complexe simplicial invariante par G et prolongeant celle de V.

L’espace métrique 7 ainsi défini joue alors un role analogue a celui de I’espace
riemannien symétrique d’un groupe de Lie semi-simple réel. C’est un espace
contractile ; deux points quelconques sont joints par une géodésique unique ;
I est “a courbure négative” en ce sens que si x,y,z €I et si m est le milieu
de la géodésique [xy], on a

dix,2z)? +d(y,z)?* =>2d(@m,z)? + % d@x,y)?

Mais I n’est pas toujours complet, sauf toutefois lorsque y est discréte ou,
dans le cas des groupes algébriques, lorsque le corps de base K est maximale-
ment complet. Cependant, la propriété de courbure négative entraine un “théoréme
de point fixe” : le stabilisateur dans G d’une partie bornée de I posséde au moins
un point fixe dans le complété I de I. Ceci permet de déterminer les sous-groupes
bornés maximaux de G : lorsque ¢ est “dense”, ce sont les stabilisateurs des
points du complété 7 ; lorsque p est discréte, ce sont les stabilisateurs des sommets
du complexe simplicial / et ils se répartissent en r + 1 classes de conjugaison,
oll 7 est le rang de G, C’est-d-dire la dimension de V. Remarquons ici que si ’on
ne fait pas les hypothéses simplificatrices de la fin du n° 2 et si 'on étudie le
cas “non simplement connexe”, la classification des sous-groupes bornés maxi-
maux est un peu plus compliquée 4 décrire : ce sont les stabilisateurs des sommets
et des centres de certaines facettes de 7.
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6. — Bornons-nous désormais au cas d’un groupe algébrique simple et simple-
ment connexe sur un corps local. Les sous-groupes parahoriques de G sont par
définition les sous-groupes contenant un conjugué de B et différents de G lui-
méme lorsque G n’est pas anisotrope sur K. A tout sous-groupe parahorique P
de G = 8(K), est alors canoniquement associé un “groupe proalgébrique connexe
P défini sur le corps résiduel k” tel que P =P (k) : autrement dit, a P est associé
un systéme projectif (513,,),,>0 de groupes algébriques connexes définis sur k,
tel que P s’identifie & lim $,(k). Les homomorphismes §Bm - $,, sont surjectifs,
de noyaux unipotents connexes, et $, est réductif. Les sous-groupes paraho-
riques contenus dans P sont les images réciproques des sous-groupes parabo-
liques de $y(k).

On a aussi des résultats relatifs 4 la “descente non-ramifiée” du corps de base
analogues 4 ceux de la théorie classique : si K est une extension galoisienne
non-ramifiée de K, un sous-groupe parahorique de @(K) est le groupe des points
rationnels sur K d’un sous-groupe parahorique P de @(K) invariant par le groupe
de Galois ' de K sur K, et d’un seul, et ceci de mamére cohérente avec les
structures de groupe proalgébrique : ’action de 1" sur P définit sur chaque Y{l,,

une structure de groupe algébrique défini sur & et §B,, s’identifie alors a4 ,,.

7. — Pour terminer, donnons une application : la démonstration de la nullité
du H' d’un groupe simple simplement connexe sur un corps local dont le corps
résiduel est de dimension cohomologique < 1, théoréme dii & M. Kneser dans
le cas des corps p-adiques. Pour cela, on peut supposer @ déployé sur K. Soit
K Pextension non-ramifiée maximale et soit I' le groupe de Galois de K sur K.
On sait que H'(@) = H'(T', 8(K)). Soit donc a = (a,) un l-cocycle de T 2 va-
leurs dans 8(K) et soit @, la forme de @ sur K obtenue en tordant @ par a.
Puisque les sous-groupes parahorlques de @,(K) correspondent aux sous-groupes
parahoriques de @,(K) = 8(K) invariants par la nouvelle action de T, il existe
au moins un tel sous-groupe parahorique Q de @(K) Comme @ est déployé sur
K, on voit facilement que Q est conjugué dans @(K) d’un sous-groupe paraho-
rique P invariant par I'ancienne action de I'. On en déduit que a est cohomologue
a un cocycle a' tel que auPa' ~! = P pour tout ¢ €. Mais P est son propre nor-
malisateur et ceci entraine a4, € P. Ecrivons alors P comme limite projective des
$, : comme dim k<1, on a H’(éB,,) = 0, d’ou Pon tire H'(I',P) = 0 et a' est
cohomologue a 0.
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GROUPES FORMELS, FONCTIONS AUTOMORPHES
ET FONCTIONS ZETA DES COURBES ELLIPTIQUES

par P. CARTIER

A ANDRE WEIL et JEAN DIEUDONNE,
dont les travaux ont été notre source
d’inspiration constante et féconde

1. Congruences pour les coefficients des fonctions automorphes.

Nous allons rappeler quelques-unes des remarquables congruences satisfaites par
les coefficients des formes modulaires, et qui ont été découvertes par Ramanujan,
Newman, Atkin, O’Brien et Swinnerton-Dyer (voir Atkin [1] pour les détails).
Considérons d’abord la forme modulaire A de poids 12 (discriminant) :

(¢)) A(r) = et ﬁ (1 - 82"1"7)24 = 2 T(n). g2minT
n=1

n=1

Soit p un nombre premier ; les coefficients 7(n) de A satisfont & la relation de
Ramanujan-Mordell(!) :

) T(mp) —1(p).7(n) + p.7(nfp) = 0

pour tout entier n = 1. Sous I'hypothése 7(p) ¥ 0 mod. p, on déduit de cette
égalité des congruences comme suit : définissons par récurrence les nombres ration-
nels p-entiers B, par B, = 7(p) et B,,, = 7(p) — p'!/B, ; on a alors

3) T(np*) =B,.T(np*!') mod. p''*

pour n 21 et & 2 1. On notera qu’il existe une unique unité p-adique B satisfaisant
4 Péquation B> —7(p).B + p'' =0 et qu’on a B, =B mod. p''* pour tout
a =1 ; on peut donc remplacer B, par B dans (3), 4 condition de se placer dans le
domaine des nombres p-adiques.

Considérons par ailleurs les coefficients ¢ (n) définis parj(r) = Y, c(n)e®™"" |
n=—1

ol j est Pinvariant modulaire elliptique de poids O bien connu. En 1968, Atkin a
obtenu le résultat suivant, qui généralise et résume une longue suite de résultats
partiels : étant donné un entier & = 1, on pose ¢ (n) = ¢ (2%n)/c (2%) ; on aalors les
relations

(1) Nous faisons la convention que 7 (a) est nul si a n’est pas entier ; on fera des conventions
analogues pour ¢ (@) dans (4), pour B (a) dans (9), etc . ..
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4 timp)—t@).t(m) +p~ . t(nfp) =0 mod. &*
5) tm) =t(m.t(®)

(n 2 1, p premier # ) lorsque £ = 13 et a quelconque ou lorsque £ = 17, 19, 23 et
o assez petit. Atkin a formulé une conjecture précise pour le cas des nombres pre-
miers £ quelconques [1].

Le troisitme exemple que nous considérerons se référe 4 des formes modulaires de
poids 2, c’est-d-dire & des formes différentielles de premidre espéce sur des courbes
modulaires. D’une maniére plus générale (cf. n° 5 pour le rapport entre ces deux
points de vue), considérons une cubique plane C d’équation non homogéne
Y2 = X3 —aX — b avec a et b entiers. Choisissons au voisinage du point 3 Pinfini

de C un paramétre local & tel que Pon ait X = £ 2 + Z a(n) . £" avec des coeffi-
n=—1
cients a(n) entiers ; la forme différentielle de premiére espéce w = — dX/2Y surC

se développe sous la forme w = Z B(r) . E" ! dt avec des coefficients §(n) entiers,

n=1
et B(1) = 1. Soit p un nombre premier différent de 2 et 3 ; Atkin et Swinnerton-
Dyer(1) ont établi les congruences suivantes :

6) B(np) =B(n).B(p) mod.p
t3-at-b
0 )= ¥ —(——) mod.p,
t mod. p p

ou (g ),est le symbole de Legendre. Supposons qu’on ait (p) ¥ 0 mod. p, c’est-a-

dire que la réduction de C modulo p soit d’invariant de Hasse-Witt non nul ; il
existe alors une suite (k,),,, de nombres entiers tels que

8) B(np?%) = kB (np®~') mod. p® pourtout n > 1

L’analogie avec la démonstration de (3) 4 partir de (2) a conduit Atkin et Swinnerton-
Dyer 4 postuler une congruence de la forme

&) B(np) — B(p).B(m) + p.B(n/p) =0 mod. p*

pour tout entier » = 0 mod. p®~!, y compris lorsque (p) = 0 mod. p.

Il semble prématuré de faire des conjectures précises contenant tous ces cas parti-
culiers (et d’autres analogues). Le schéma général semble &tre le suivant : on considére

une certaine forme modulaire de poids 2g, soit 4 (1) = z r(n).e

n=1
coefficients r (n) entiers, normalisée par r(1) = 1 ; on est en droit d’attendre des
congruences de la forme

minT avec des

(1) A notre connaissance, les résultats d’Atkin et Swinnerton-Dyer n’ont pas encore été
publiés et sont contenus dans la correspondance échangée entre ces auteurs et Serre. Nous
remercions Serre qui, en nous communiquant cette correspondance et en nous obligeant 2
répondre & ses questions pertinentes, a été a Porigine des résultats exposés ici.
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10) r(np) —r(p).r(n) + p® ' .r(n/p) =0 mod. p&~1e

lorsque p est premier et n =0 mod. p®~'. Rappelons que la relation (2) de
Ramanujan-Mordell signifie que A est fonction propre de l'opérateur de Hecke
T, . Par analogie, les résultats sur 'invariant modulaire elliptique j suggérent la pos-
sibilité suivante : soit 2 premier ; & 'aide des coefficients de Fourier de certaines
formes modulaires de poids 0, on pourrait définir une “cohomologie étale 2-adique”
qui serait un module libre Hy de rang [2/12] sur I'anneau Zj des entiers £-adiques
et un opérateur de Hecke T}, ¢ dans Hy pour tout nombre premier p # £. Par contre,
les congruences sur les courbes elliptiques suggérent la possibilité dans certains cas
de définir un opérateur de Hecke Tp, p dans un module de cohomologie p-adique
H,', analogue a la cohomologie de Washnitzer-Monsky.

2. Groupes p-adiques rigides.

La suite de cet exposé est motivée par les congruences d’Atkin et Swinnerton-Dyer
pour les différentielles de premiére espéce sur les courbes elliptiques. Le cadre na-
turel semble celui des groupes p-adiques rigides, dont nous empruntons la défini-
tion (en la simplifiant pour notre usage) a4 Tate [6]. Notons p un nombre premier,
s ou Z, 'anneau des entiers p-adiques et X ou Q, le corps des fractions de ». Pour
tout entier n = 0, on note D" Pensemble des vecteurs & n composantes dans o
divisibles par p, et ¥, la n-algébre des fonctions sur D" de la forme

fey= 3 aliy,. .. i) . %" ...

.

(les coefficients a (i, , . . . , i) étant pris dans o). Une variété rigide de dimension n
est un couple (X, %(X)) isomorphe i (D", ¥,) ; un systéme de coordonnées rigide
sur X est une suite (§,,...,§,) d’éléments de U(X) telle que lapplication
x (£ (x),...,E,(x)) soit un isomorphisme de X sur D". Une variété rigide
X porte une structure de variété analytique sur le corps K pour laquelle tout
systtme de coordonnées rigide est un systétme de coordonnées analytique ; les
éléments de (X ) sont certaines fonctions analytiques sur X, qualifiées de rigides ().
A partir des fonctions analytiques rigides sur X, on pourra définir les champs de
vecteurs (ou les formes différentielles) rigides.

Les variétés rigides forment une catégorie avec produit, et 'on peut par suile
définir la notion de groupe p-adique rigide. Deux exemples de tels groupes sont le
groupe additif G,, ayant D! pour variété sous-jacente, et I'addition pour opération,
et le groupe multiplicatif G,, qui se compose du groupe multiplicatif des x = 1
mod. p dans o, avec la coordonnée rigide ¢ donnée par £(x) =x — 1.

Dans la suite, nous désignerons par G un groupe p-adique rigide de dimension 1
(nécessairement commutatif) ; les formes différentielles rigides de degré 1 sur G

(1) Rappelons qu’une fonction qui est localement égale & une fonction analytique est
analytique. Par contre, une fonction qui appartient localement & %(X) n’appartient pas
nécessairement & Y(X), d’ol la terminologie : “rigide”.
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invariantes par translation forment un s-module libre de rang 1, dont nous choi-
sirons une base w,. Alors w, est la différentielle df d’une fonction analytique %
sur G, appelée le logarithme de G. Ce logarithme est un isomorphisme de groupes
de Lie p-adiques de G sur G,, mais n’est pas en général une fonction analytique
rigide. Pour préciser ce point, introduisons les opérateurs de Lazard ¥,(n =>1)
dans %A(G) par
n n
a1 v, i@ =Y o (e

i=0

si & est une coordonnée rigide dans G, normalisée par w, = d£ 4 l'origine, on a
(12) L) =Y D", £@)/n.
n=1

Cette formule de Lazard permet le contrdle des dénominateurs dans 2 ; lorsque
G=G,,Ex)=x—1¢et wy, =dx/x,ona ¥, &=E§" et (12) redonne le dévelop-
pement en série classique du logarithme usuel.

Le lien avec les groupes formels est le suivant. Choisissons une coordonnée
rigide & sur G ; il existe alors une série formelle F € o [[X , X']] caractérisée par
£(xx") = F(&(x) ; £(x")) pour x,x’' dans G (“Théoréme d’addition”). Cette série
satisfait aux identités

13) FX;0)=F(0;X)=X , FX;Y)=F({;X) ,
FFX;Y);Z)=FX;F(Y;Z)) ;

autrement dit, c’est une loi de groupe formel commutatif 4 coefficients dans o.

3. Classification des groupes p-adiques rigides.

Le théoréme de classification repose sur deux notions essentielles : la hauteur
et le module différentiel. Soit G un groupe p-adique rigide de dimension 1. L’anneau
% = Y(G) est local, et son idéal maximal m se compose des fonctions analytiques
rigides dont les valeurs sont divisibles par p en tout point de G. La hauteur de G
est la borne supérieure (finie ou non) 4t (G) des entiers z = 1 tels que

o
YW Cp. U+ nP.

On a nt(G,) =1 et ht(G,) = ; la formule (12) montre facilement que tout

groupe de hauteur infinie est isomorphe, comme groupe p-adique rigide, & G,.

Une courbe dans G est un morphisme de variétés rigides y : D' > G, normalisé
par vy (0) = e (élément neutre de G). Les courbes forment un groupe commutatif
C(G) pour Paddition définie par (y + v') (/) = v(#).7'(¥). Pour tout nombre
premier £, Iopérateur de décalage dans C(G) est défini par Vpy(¢) = 'y(tg), et

2
Popérateur de Frobenius par Fpy(t) = Il'[ v @Y 2). Dans cette derniére formule,
=1

¢ est une racine 2-iéme de I'unité, distincte de 1, que I'on adjoint & o ainsi que la
racine +Y/% de t, mais le résultat de la multiplication se trouve définit sur O.
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Notons maintenant ¢ la coordonnée naturelle sur D! et  le o-module des formes
différentielles rigides sur D' ; nous représenterons toujours celles-ci sous la forme

(14) w=Y a@."'ar (@a(n) € o pourtout n=1) ;

n=1

enfin, soit d¥, I'ensemble des différentielles des fonctions f € %,. L’application
¥ y¥(w,) définit un isomorphisme u du groupe C(G) des courbes de G sur un
sous-groupe 9(G) de . On dit que D(G) est le module différentiel de G ; il carac-
térise G 4 un isomorphisme rigide prés. De plus, u transforme Vj et Fy en les opé-
rateurs suivants sur (G) :

as) Vo=73 La@®."d , Ro=73 a@9."dr
n=1 n=1

(pour w de la forme (13)).

Soit F la loi de groupe formel définie 4 la fin du n° 2, et soit F( » la loi de groupe
formel a coefficients dans le corps F, = n/p.o déduite de F par réduction modulo
p. Sa hauteur au sens de Lazard et Dieudonné est égale a la hauteur 4 de G ; nous la
supposons désormais finie(!). Le module de Dieudonné de Fp) est un n-module
libre 9,(G) de rang h muni d’un opérateur linéaire ¥, donc un module sur 'anneau
de polyndmes o[V]. On démontre qu’il existe un unique polynéme d’ Eisenstein
P=V"+b, V"' + ...+ b, V+b, dans s[V]tel que 9,(G) soit isomorphe
au o[V }module 5 [V]/(P). De plus, la théorie résumée dans [2] permet d’identifier
9,(G) au quotient de 3(G) par le sous-groupe formé des différentielles de 1a forme
p.df + ZeVewg avec fE€ U, et wg € BD(G) pour tout nombre premier £, et V
provient de Vp par passage au quotient.

Le polyndme d’Eisenstein P, ou ce qui revient au méme, les coefficients b,, ..., b,
déterminent entiérement le module différentiel D(G) qui se compose des formes
différentielles w telles que

(16) Viw+b,. Vi 'w+ - +b, ,.V,w+b,. w=0 mod.p.dy,.

De maniére plus explicite, soient a(1),a(2),...,a(n),... des éléments de o ;

posons

b _ h—lb _ h

Ponst anpp) + - - - + 221 a(ufp" Yy +E= atnfp”) .
by, by, by,

an tm=am) +

La forme différentielle w = 2 a(n).t" ‘ar appartient @ 3(G) si et seulement si
n=1

l'on a les congruences t(n) =0 mod. p“ pour tout o> 1 et tout entier n =0

mod. p%. De plus, tout polyndme d’Eisenstein de degré h provient d’un groupe

p-adique rigide de dimension 1 et de hauteur 4.

(1) Lorsque G est de hauteur infinie, il est isomorphe (de manitre rigide) 4 G,, et 'on
a 9(G) = dy,.
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En résumé, on peut répartir les groupes p-adiques rigides de hauteur h en familles
non vides F(b,,...,b,) (avec b,,...,b, dans p.o et b, non divisible par p?).
Supposons que G soit de type F (b, , ..., b,) et soient £ une coordonnée rigide dans

G w= Z a(n) . £" ' d& une forme différentielle rigide invariante par translations
n=1

sur G. Alors les coefficients a(n) € o satisfont aux congruences t(np®)= 0

mod. p® pour a =1 et n > 1, en définissant t (n) comme plus haut(1).

4. Courbes elliptiques.

On note Z lanneau des entiers rationnels, Q le corps des nombres rationnels
et F, le corps fini 4 p éléments. Soit H € Z[X, Y, Z] un polynéme non nul, ho-
mogéne de degré 3, irréductible et de discriminant non nul. On suppose que la
courbe elliptique d’équation homogéne H = 0 a un point d’inflexion i coor-
données rationnelles. Quitte a faire un changement linéaire de variables a coeffi-
cients entiers, on peut ramener H 3 la forme

(18) HWX,Y,Z)=Y*Z+ (@X+bZ)YZ+(X? +uX?*Z +vXZ? +wZ?)

et supposer que la réduction H( ) de H modulo p est irréductible dansF,[X , Y, Z]
pour tout nombre premier p. Soit I' le schéma projectif sur Z associé 4 'algébre
graduée Z[X ,Y, Z]/(H) ; on pose C=Q &I et Cipy = F), 8, T',de sorte que C
est la courbe elliptique sur Q d’équation H = 0, et que C( p)-est la réduction modulo
p de C, d’équation H_,, = 0. On dit que I' est le modéle de Néron de C (cf. [4]). On
considére C (resp. C(p)) comme un groupe algébrique sur Q (resp. F,), d’élément
neutre le point a Pinfini e (resp. ep).

Soit p un nombre premier. Nous associons comme suit un groupe p-adique rigide
G, a T : les points de G, sont les points de I' dans Z, qui se réduisent modulo p en
e, et les fonctions analythues rigides sur Gp sont les éléments du complété de
Ianneau local du schéma I' au point e, € I' (F,). De maniére plus concréte, G, se
compose des points g = (x ,y ,z) de C dans Q, tels que x/py € Z,, et 'on définit

une coordonnée rigide £ par £(g) = x/y. On note w = i B(n) . £"'dt 1a forme
n=1

différentielle de premiére espéce sur C normalisée par 8(1) = 1 ; c’est une forme

différentielle rigide invariante par translations sur G,,.

Supposons d’abord que C(p) soit une courbe elliptique sur F,, ce qui exclut un
nombre fini de valeurs de p. Le nombre des points rationnels de C,, est dela forme
1—f, +pavec|f,I < 2p‘/2 (inégalité de Hasse-Weil). De plus, la réduction modulo
p de w est une forme de premiére espéce sur C(p) iet “l’operatloln de Cartier’’ la multi-
plie par £, ; comme cette opération transforme hP ~'dh en hP ~1dh, on en déduit les

(1) En particulier, le groupe p-adique rigide G est défini 4 isomorphisme prés par sa réduc-
tion modulo p, qui est un groupe formel sur F, = o/p.n, et il n’y a donc pas de “modules”
Cette situation est particulidre au cas envisagé o = Z, (cf. [2]).
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congruences §(np) = fp. B(n) et en particulier (p) = fp mod. p. Lorsque H est de

t3-at-b
la forme Y?Z — (X —aXZ® — bZ’),onaf, = Y —-( 2 ) et Ion re
t mod.p p

trouve ainsi les congruences (6) et (7) du n° 1 (cette démonstration est due a
Serre). Enfin, f, détermine la structure du groupe p-adique rigide G, comme
suit(l) :

(@) si f, # 0, le groupe G, est de hauteur 1, associé au polyndme d’Eisenstein
V — pu~! o l'unité p-adique u satisfait a u? — fHutp=0;

(b) si fp = 0, le groupe Gp est de hauteur 2, associé au polyndme d’Eisenstein
V2 +p.

La congruence (9) du n° 1 se déduit immédiatement de 14 et des résultats du n° 3.

La fonction zéta de la courbe elliptique C a été définie par A. Weil comme le
produit eulérien {,(s) = II ;‘p (s) ; lorsque C(p) est une courbe elliptique, on a
P

§p(5) = (1 — f,p™" + p'~2*)!, et 'on a une recette bien définie [7] lorsque p est
un nombre premier exceptionnel pour C. On peut aussi définir le schéma formel
I complété de T le long de la section neutre ; c’est un groupe formel sur Z. Le
choix du paramétre local ¢ permet de représenter I\ par une loi de groupe formel
F a coefficients dans Z, telle que & (xx') = F (£ (x) ; £ (x')) pour tout nombre premier
petx,x dansG,.

Un de nos résultats fondamentaux (démontré aussi partiellement par Honda [3])

est le suivant : il existe un paramétre local bien déterminé t dans I" au voisinage de la
section neutre tel que la forme différentielle de premiére espéce w s’écrive

w=S bm.t"at

n=1
et que la fonction zéta de C s'écrive §,(s) = Y, b(n).n™" avec les mémes coef-
n=1

ficients entiers b(n). Le choix usuel des facteurs exceptionnels de §. est le seul
pour lequel ce résultat soit vrai, et l'on peut donc dire que la fonction zéta de C
ne dépend que du groupe formel associé a C.

5. Relation avec les fonctions automorphes.

Les résultats précédents nous semblent jeter une lumiére supplémentaire surles
conjectures de Weil [7], [8] (mais non sur leur démonstration !). Notons C ’ensemble
des nombres complexes, P le demi-plan de Poincaré et, pour tout entier N > 0, soit

az+b
Ty (N) le groupe des transformations conformes de P de la forme z = e avec

(1) Lorsque C(p) n’est pas une courbe elliptique, elle est isomorphe comme groupe algébrique

sur F,, soit & G,, soit 4 G, soit 4 1a forme non-déployée de G,, qui se déploye sur extension
quadratique de Fp .
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a,b,c,d entiers,ad — bc = 1 et ¢ = 0 mod. N. Les coefficients entiers b (n) étant
définis comme précédemment, on note ¢ la forme différentielle holomorphe

Y. b(n).e*™""dr sur P. Enfin, soit N le conducteur de C ; c’est un entier >0
n=1

dont les diviseurs premiers sont les nombres premiers exceptionnels pour C. La
conjecture de Weil est que y est toujours invariante par I'o(N).

Soient D le disque unité ouvert dans C, et C, le tore complexe de dimension 1
formé des points complexes de C. Le groupe commutatif A formé des applications
holomorphes v de D dans C, telles que 7 (0) = e est I'analogue du groupe C(G)
défini au n° 3. On définit pour chaque nombre premier p des opérateurs V, et F,
par

P
(19 Voy@=7@" ., F@) =Y r¢p
i=1

(avec ¢ = 1,¢ # 1) ; lopérateur de Hecke associé a p est T,=V,tF, Le
paramétre local ¢ auquel il est fait allusion 2 la fin du n® 4 définit en fait une coor-
donnée locale holomorphe au voisinage de e dans C, et il existe un élément § de
A caractérisé par ¢ (8 (q)) = q pour g assez petit dans D.

Posons H (1) = § (¢*"'") ; alors H est une application holomorphe de P dans C,,
caractérisée par la propriété suivante : l'image réciproque par H de la forme de
premiére espéce v sur C, est la forme différentielle holomorphe ¢ sur P. Soit p un
nombre premier tel que C( 2 soit une courbe elliptique ; on peut montrer qu’on a
T,8 = f,8, c’est-a-dire la relation

T

+j

(20) Hpn+ Y H( )= f,-H@ (rdansP)
jmod. p p
La conjecture de Weil signifie que H se factorise en P> P/T (N )L C..
De plus, par adjonction a P/T'; (V) des points 4 Pinfini correspondant aux “pointes”,
on obtient une courbe algébrique compléte Sy sur C. Or Shimura a construit dans
[5] un modéle de Sy, sur le corps Q des nombres rationnels, et 'on peut raffiner sa
méthode(!) de manire & obtenir un schéma X, sur Z tel que S, = C @, Z. Nos
résultats entrainent que, si C satisfait ¢ la conjecture de Weil, H' est un morphisme

de schémas de Z , dans T' au-dessus de Spec (Z).

(1) Pour tout nombre premier p, Panneau local de Z,, au point de Z, générique au-dessus
de p se compose des fonctions méromorphes sur P, invariantes par I'y (V) et qui se développent

o
en série de Fourier c.. e*™" avec des coefficients p-entiers c,,.
n n
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BOUNDARIES OF LIE GROUPS
AND DISCRETE SUBGROUPS

by Harry FURSTENBERG

1. Introduction.

It G is a non-compact semi-simple Lie group, there is a compact homogeneous
space B(G) attached to it which plays an important role in the theory of harmonic
functions on the symmetric space associated with the group G. B(G) is a boundary
component of one of the Satake compactifications of the symmetric space ([8]),
but it can be characterized directly in terms of its behavior as a G-space (see § 3).In
[4] the space B(G) is shown to play an important role in the theory of spherical
functions on G which means that it also has significance for the theory of irre-
ducible unitary representations of G. More recently this space has appeared as a
tool in proving “rigidity”” theorems. If G is a locally compact topological group ,
a subgroup I' is called a lattice subgroup if T' is discrete and G/T" has finite left-
invariant (Haar) measure. Suppose I'; is a lattice in G, and I, is a lattice in G, , where
G, and G, are semi-simple Lie groups. One wants to know to what extent an asser-
tion of the following type is valid : an isomorphism of I'; with I', is induced by an iso-
morphism of G, with G,. The case where G, = G, and T', is obtained from I',
by a continuous deformation had been treated in work by Calabi, Vesentini,
Weil, Garland and Ragunathan. In some recent work the space B(G) has played a
major role in the arguments. For example, in [5] we considered the question of
whether ') = T, implied G, = G,, and we treated a fairly special case making use
of the notion of Poisson boundary which is closely related to that of the space
B(G). Mostow has given a rather conclusive treatment for the case that the I
are uniform (co-compact) subgroups showing that, in general, an isomorphism of
I, with ', induces a homeomorphism of B(G,) with B(G,), and this in turn im-
plies the isomorphism of G, with G, ([7]).

The latter results suggest the possibility that when I' is a lattice subgroup of
the semi-simple group G, the space B(G) may be attached directly to the group I' as
an abstract group. More precisely, one might expect to be able to define a functor
II on the category of locally compact groups to the category of compact spaces
satisfying the following conditions ;

@) II(G) is a G-space.

(i) If # : G, = G, is a epimorphism so that every G,-space can be viewed as a
G, -space, then there exists a G, -equivariant map #* : II(G,) = II(G,).

(iii)) If T' is a lattice subgroup of G, then there exists a I'-equivariant map
II(I") = II(G) which is an isomorphism.

(iv) If G is a semi-simple Lie group, then II(G) = B(G).
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Without further restriction one cannot expect to attain all of these conditions.
One can see this by considering the case of the free group F, on n generators which
is a lattice subgroup of SL(2,R). Since B(SL(2, R)) is P!, thé one-dimensional
projective space, and since free groups map readily into any group one would find
an abundance of maps of P! into every B (G). However there are even automorphisms
of F, which are not compatible with continuous maps of P! onto itself.

In what follows we shall discuss several candidates for thefunctor Il and show to
what extent the conditions above are met. While in none of these do we achieve the
identity of II(I") with II(G) for T" a lattice subgroup, we nonetheless find in one
case that these two spaces are sufficiently close to have some implications for
rigidity type theorems. In particular we obtain in this way an alternative proof of
the result announced in [5] to the effect that it G, has R-rank 1 and G, is one of the
groups SL(m ,R) ,m = 3, then G, and G, have no isomorphic lattice subgroups.
The same method also seems to show that for m #n SL (m , R) and SL (n , R) cannot
have isomorphic lattice subgroups. Because of the more precise results of Mostow
we haven’t pursued this matter to its conclusion. Qur interest in the functor II stems
from our expectation that the spaces II(G) will play a role in other problems. De-
tailed proofs will appear else where.

2. Proximal Minimal G-spaces.

This notion is borrowed from topological dynamics ([2]). Let M be a compact
G-space. We say M is minimal if M does not contain a non-trivial, closed, G-invariant
subset. Equivalently, M is minimal it every G-orbit in M s dense. These spaces are
plentiful since every compact G-space must contain a minimal G-space. M is called
proximal if for every pair x ,y € M there exists a net {g,} in G with

limg,x = limg,y

When G is abelian, or more generally, when G is nilpotent, every proximal G-space
contains a fixed point for the group, so that the only proximal, minimal G-space is
the trivial space. However, when G is semi-simple there exist interesting proximal
minimal spaces. Namely one has

THEOREM 2.1. — If G is semi-simple then B(G) is a proximal G-space.

Since G is transitive on B(G), the latter is obviously a minimal G-space.

Now products of proximal spaces are proximal, and if M, and M, are proximal
minimal, then a minimal subspace of M, x M, will be both proximal and minimal
and will have M, and M, as equivariant images. In this way one may prove

THEOREM 2.2. — For an arbitrary group G, there exists a universal proximal
minimal G-space 11,(G) such that if M is any proximal minimal G-space, then
exists an equivariant map p : I'I,,(G) - M.

Note that p is onto inasmuch as M is minimal. Moreover, p is unique. For
suppose that p and ¢ were two such maps. Let x € l'Ip(G) and choose a net with
lim g, p(x) = limg, o(x). If y is a limit of a subnet of g, x, then p(y) = 0(y),
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whence p(gy) = o(gy), and since the orbit of y is dense, p = 0. This implies in
particular that IT,(G) is unique.

It is easily shown that conditions (i) and (ii) are met for II,,. The following con-
dition related to (iii) can also be established :

THEOREM 2.3, — If T, is a subgroup of finite index in T", , then II,, T) =1L,(T,)

It is an open question whether (iv) is valid in this case. (iv) would be valid if it
were true that Hp (S) is trivial for all solvable S. This is also open. In any case, if
(iv) is true so that Hp (S) is a manifold when G is semi-simple, then (iii) will cer-
tanly not be true since one can prove that for I' a lattice subgroup of a semi-simple
Lie group, ﬂp (I') will not be a manifold.

3. Strong proximality.

We will denote by % (M) the space of regular probability measures on the compact
space M. If M is a G-space, then (M) is a G-space. Moreover we endow% (M)
with the usual weak topology so that it becomes a compact convex set. The extre-
mals of this set are the point measures and these are in correspondance with the
points of M. Now suppose that M is a proximal G-space. One sees easily that
for any finite set of points x,,x,,...,x, €M, there exists a net g, in G with
lim g,x, = limg,x, = - -+ = limg,x,. From this it follows that if v is any dis-
crete measure in (M) we can find a net with g, » = point measure. We shall say
that a G-space M is strongly proximal if this holds for an arbitrary v € ®(M). Again
one shows :

THEOREM 3.1. — For an arbitrary group G there exists a universal strongly pro-
ximal minimal G-space Ilg;(G) with the property that it M is any strongly proximal
minimal G-space there exists a unique equivariant map p of Il (G) onto M.

Moreover one has

THEOREM 3.2. — If G is a connected Lie group and R its (not necessarily connec-
ted) radical, then Ilg,(G) = B(G/R).

This is an easy consequence of [3].

We will see in the next section that if I" is a lattice subgroup of the semi-simple
group G, then the space Ilg; (G) is a strongly proximal minimal I'-space. Hence there
is a map of Il (I") onto Ilg(G). However, in general it will not be one-one. For
we can construct a strongly proximal I'-space M which is a non-trivial extension of
Ilgp(G). Namely we form a I'-space M which is minimal and of which Il (G) is
an equivariant image such that for some point x € Ilg;(G), the inverse image in
M consists of a single point. It is easy to see that this implies that M is strongly
proximal.

As with I'Ip one has

THEOREM 3.3. — If T, is of finite index in T, then
[gp(T)) = Hgp(T,)



304 H. FURSTENBERG c5

Finally we mention another characterization of the space Ilg,(G).

THEOREM 3.4. — If G acts by affine transformations on a compact Eonvex set
Q leaving no proper compact convex subset invariant, then there exists a unique
affine equivariant map of % (Il (G)) onto Q.

4. Mean Proximal G-spaces.

We now introduce a further strengthening of proximality which enables us to
say something more about the relation between II(T') and II(G). Let M be a
G-space and let u be a probability measure on G. Form the sequence of measures

n
e N —

_ptprptectpxccsyp
n

We shall say that M is p-proximal if for every neighborhood U of the diagonal
AM) CM x M we have

u, {gl(gx ,gy) €U >0
as n > o for each x ,y € M. Finally we say that M is mean proximal if it is p-
proximal for any u whose support generates G.
Once again we have

THEOREM 4.1. — There exists a universal mean proximal minimal G-space Il;,(G)
such that if M is any mean proximal minimal G-space then there exists a unique equi-
variant map of Iy, (G) onto M.

The following theorem implies that mean proximality is in fact stronger than
strong proximality.

THEOREM 4.2. — The following conditions on a metric G-space M are equiva-
lent :

(@) M is p-proximal
(b) A measure v on M x M satisfying p = v = v is supported by the diagonal .

©If X,,X,,...,X,,... is a sequence of G-valued independent random va-
riables each having distribution p, and if v is a measure on M with p « v = v, then
with probability one, X,,X,,..., X,V converges to a point measure.

(A If 6 €ERM) and u is an open subset of % (M) containing all point measu-
res then pu,{glgd € u} > 0 as n > oo,

The relationship between the various notions of proximality imply
II,(G) = Tgp(G) ~ Myp(G)

As we saw in Theorem 2.2, all equivariant maps between proximal spaces are
unique.
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In the remainder of the paper we shall sketch a proof of the following result :

THEOREM 4.3. — If G is a semi-simple Lie group then I1,,,(G)=B(G).IfTisa
lattice subgroup of G then there is an equivariant map p : I, (T') = 11 o (G). The
map p is a measurable isomorphism in the sense that there exists a map

0 : Ip(G) = Iy (I)

which is measurable as a map from the manifold B (G) to Ily,(I"), and such that
p o G = identity.

A map on a C”-manifold is said to be measurable if when composed with a real-
valued function, the resulting function is a lebesgue measurable function of the local
coordinates.

For the first assertion of the theorem, inasmuch as B (G) is strongly proximal so
that there exists a map B (G) onto Il (G), it would suffice to show that B (G) is
mean proximal. For the second assertion we must show that B (G) is mean proximal
as a I"-space. Both of these follow from the next theorem.

THEOREM 4.4. — Let G be a subgroup of GL(n ,R) which together with all
its subgroups of finite index acts irreducibly on R". Assume moreover that G acts
proximally on the projective space P"™'. Then P"~! is a mean proximal space.

The proof of the theorem depends upon an analysis of the behavior of random
products of matrices. The type of argument is similar to that of [6, § 8].

To apply the foregoing theorem to give a proof of Theorem 4.3, we use the fact
that the space B (G) occurs as a component of one of the Satake compactifications
of the symmetric space G/K. In these compactifications the symmetric space is
identified with a subset of the projective space associated with the space of sym-
metric matrices of a certain dimension. Moreover, the group G acts linearly on this
space. It is not hard to show that the action is irreducible and proximal. According
to Theorem 4.4, it will therefore be mean proximal.

Now let I be a lattice subgroup of G. By [1], if G acts irreducibly on a space so
does I' and so does every subgroup of finite index. Moreover, it is easily seen that
if G acts mean proximally on a space, then I' at least acts proximally. Therefore
Theorem 4.4 applies to I' as well, and this yields the second statement of the
theorem.

We now turn to the last assertion of the theorem. Let II = Il (I") so that II
is a I'-space. We construct a G-space by dividing the product G x II by the relation
(g,x) ~ (gy', vx) and setting g,(g,x) = (g,8,x). We denote this space G x,IL
Clearly G xpII has G/T" as equivariant image. Both of these spaces are locally com-
pact and it follows that the set of probability measures on G xII which map onto
the Haar measure on G/T" form a compact convex space. Now recall that B (G) can
be expressed as G/H where H is a subgroup of G with the fixed point property
([3]). So there exists a measure 8 on G xII which maps onto Haar measure on
G/T" and which is invariant under H. If we lift 6 to G x II, we obtain a measure
A on G x II invariant under the action of both I' and H. Here I' acts by sending
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(g,x) into (gv ', yx), and H acts by sending (g, x) into (hg , x).Since § maps
into Haar measure on G/I', A maps into Haar measure on G. We may therefore
decompose A :

A= [ 8, xde

with 53 the Dirac measure and 7\3 a Haar-measurable function on G with values in
RD).

We now have
= [ o xndg= [ 8,x\_, dg
whence }\h_lg = }\g, so we can define w, for §€ G/H by Wey = }\g_l. Moreover
= ‘/G. 6”_1 X YA dg = ‘/;Gg X YAy dg

= A1 = = = =
whence A,, = 77" A,. Therefore yw,, = 'y)\g_l = }\3_17_1 = Wy and YW, = W, .

We thus find a Iequivariant map w of B (G) into R (II). w need not be continuous,
but it is measurable.

We now make use of (the easy part of) Theorem 3 in [5]. According to this
theorem, there exists a measure 4 on I' and an absolutely continuous measure » on
B(G) with u * v = p, The map w takes v into a measure 7 on € (II) and by the equi-
variance of the map I it follows that u * ¥ = . By Theorem 4.2, 7 must be concen-
trated on point measures of II. In other words, w defines a measurable I'-equivariant
map from B(G) into II. This is the ¢ of our theorem.
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SEMISIMPLE GROUP SCHEMES
OVER CURVES AND AUTOMORPHIC FUNCTIONS

by G. HARDER

Let k denote a field and let K/k denote a fun_(_:tion field of one variable over k.
We assume K/k is a regular extension, i.e. K ® kisa field (k = algebraic closure
of k). Let Y/k denote a projective, smooth model of K/k.

I want to study semisimple affine groupschemes G/Y ; a satisfactory theory
of such groupschemes over Y has implications for the arithmetic of semisimple
algebraic groups which are defined over the function field K/k. A semisimple
groupscheme G/Y i§ called rationally trivial if its generic fiber G 5 K=Ggis a

Chevalley group ; then G/Y is locally split for the Zariski topology on Y. By
X/Y I denote the scheme of Borel subgroups of G/Y, this is a smooth projective
scheme over Y (Compare [2], Exp. XXII). From the projectivity of this scheme
follows that a Borel subgroup By C G, can be extended in a unique way to
a Borel subgroup of G/Y :

I'(X/Y) = Homy (Y, X) = I'(X/Spec(K)) .

If BCG is a Borel subgroup of G/Y we denote its unipotent radical by B,,.
The quotient B/B, = T is a split torus.

Let A(resp. A*) be the set of roots (res. positive roots) in the charactermodule
X(T)=Hom(T, G,). By m={o; ...} I denote the set of simple roots in
A*. There is a natural filtration of the unipotent radical

B,=U,DU...U,, ... U, = {e}

by smooth subschemes which are normal in B such that the quotients U,/U,,,
are line bundles, i.e. they are locally isomorphic to G,/Y. The action of T on
U,/U,,, is given by multiplication with a root o € A*. This yields a one-to-one
correspondence between the roots @ € A* and the quotients U,/U,,,. If a corres-
ponds to U,/U,,, we put W, = U,/U,,,, and call W, the line bundle associated
to the root a € A*. If W, y -+ W, are the line bundles associated to the simple

roots {a, ...a.}=m we put
ny(B) = degree (W,,') = c(W,,i)

Thus we assigned to any Borel subgroup B of G/Y a vector
n(B) = (n,(B)...n,B)EL .

This makes sense because we can canonically identify the set of simple roots
of two different Borel subgroups. If %, € 7 is a simple root and B C G/Y a Borel
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subgroup then PY© DB is the maximal parabolic subgroup of type 7 — {oc, }

containing B ([1], § 4). The root system of the semisimple part of P g of
type 7 — {0 } The unipotent radical R (P“o)) is contained in B,. The inter-

section of the filtration above with R (P( ©)y yields a filtration of R (P('°))

R, P> uUuioui>...D U‘,',‘o = {e}.
The quotients are line bundles which correspond to the roots in
r
A:o=§a€A+ z oy 5 omy >0

Now we assign a second vector p(B) == (p,(B)...p,(B)) to our Borel subgroup
B C G/Y by putting

pB) = X cW,)

aeAi
The elements X; = 2 a form a basis of X(T')®Q, in fact the X, are multiples

aeA}
of the fundamental weights x;, so we get x; = f; X, where the f; are positive inte-
gers. We express the characters X, in terms of the simple roots :

X =Za; 0 a;E€EN
and vice versa o
o, =2b; % b;€Q .

From this we get the following relations for the vectors n(B) and p(B) :

p,-(B) = ]Z a; n](B)
=1
()
n(B) = ,2 b, p;(B)
=1

It is an easy but important observation that for a given group scheme G/Y the
numbers p,(B) are bounded from above as B is running over the set of Borel
subgroups of G/Y. We call a vector p(8) = (p,(B) . . . p,(B)) maximal for a given
G/Y, if there is no Borel subgroup B' of G/Y such that p,(B) < p(B') forall,Ex
and p, (B) <p,, (B') for some o €.

Let g denote the genus of Y/k, let A > 0 denote the g.c.d. of all degrees of
positive divisors on Y. Then we have ([5], Satz 2.2.6 und Kor. 2.2.14).

THEOREM 1. — If G/Y is a semisimple rationally trivial groupscheme and if
B CG/Y is a Borel subgroup such that p(B) is maximal, then

n(B)y=—2g—-2(h—-1) forall o€Emw
We call a Borel subgroup B C G reduced if n(B) =2 — 2g — 2(h — 1) for all o;.

THEOREM 2. — There exists a constant M which only depends on g, h and
on the Dynkin diagram of G|Y such that the following statement holds : [fB C G
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is reduced and if for oy, we have n; O(B) > M then the maximal parabolic subgroup
P 5p of type m — {a,o} contains all reduced Borel subgroups of G|Y.

To any vector n = (n, ...n,) we may associate a quasiprojective scheme
I, (X/Y) = Spec(k)

the points of which are the Borel subgroups of G satisfying n(B) = n. To be
more precise we put for any scheme S = Spec(k)

LX/Y)(S) = {BCG;((Y%(S)In,(B;k(s))=n, for any point s €E S} .

The functor S = I, (X/Y) (S) is representable by a quasiprojective scheme over k
(Comp. [3]). This functor can be defined for all groupschemes of inner type.
Analagously we define for any vector p = (p, ...p,) the scheme I'?(X/Y)/k of
Borel subgroups B satisfying p,(B) = p,. Of course we have I',(X/Y) = rPx/Y)
if the relation (*) holds between n and p. If n = (n, . .. n,) is a vector whose com-
ponents satisfy n, <—2g + 1 and if I (X/Y) is not empty then the scheme
[,(X/Y) is smooth over k. Moreover we can calculate the dimension of this
scheme. For this purpose we consider the corresponding vector p < n. Then
the dimension of I, (X/Y) = I'?(X/Y) is given by

14
dm P/ =—2% PLrq_g.#a
=1 X
The following theorem 3 seems to be deeper than the preceding ones. It is only
formulated in the case of a finite ground field k = Fq, but I believe it can derived
from this special case by general theorems in algebraic geometry.

THEOREM 3. — Let k = Fq be a finite field and Y [k a smooth projective curve.
Let G/Y be a semisimple group scheme of inner type. If the components of the
vector p = (p, . ..p,) are sufficiently small and if T?(X/Y) is not empty then
we have

dim I'P’(X/Y) = — Zr 2 +(1 —g)#4A"

i=1 fl
and there is exactly one irreducible component of this ‘dimension.

I want to give an idea of the proof. Before doing this I introduce some notation.
I put
p;(B)

fi

These numbers are not necessarily integers. This is due to the fact that in general
the roots do not generate the lattice spanned by the fundamental characters. But
under a certain assumplion on the isomorphism type of G/Y they are integers,
and I will explain the idea only in this special case. For any vector 1= (I, .. .1, )
I put

l(B) =

n(G,l...1)=#T"X/Y) (F)

where p; = — f;I;. Then I consider the Laurent series
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EG,)=2nG 1 ...1).qg 7" £ ¢
1

r

It will be shown in [6] that E(G, t) is a rational function, and can be written in
the following form

PG, 1)

E@G,t)= -
a)- le 1 —qt)

Here P(G, t) is a polynomial in the variables ¢;, #; !and Q(t) is a polynomial in
the variables #; depending only on the Dynkin diagram of G /Y. Moreover the poly-

nomial Q(#) has no zeroes in the disc D(—ﬁ) = {(tl AR A <% . We

also know the residue of E(G, t) at the point (g7!... g~'). Here the residue is
defined by
r

110 -at) EG, 0,

Res,
v=1

EG,t)=
(ty...2)=(q ".ccq )

—1 1...:,)=(q_l...q

It can be expressed in terms of values the {-function of our field K/F, and we
obtain +
Res , EG, )= G €D # A +0(g-E-D#a -1

(ty.--t)=(@ " ...q” )

(Here the Riemannian hypothesis comes in!). This yields an estimate

r r
2~§1 3+ —g). A 2121 L+(1-g).#A" —1)2

|# TE(X/Y) () —q !
if the vector 1 = (I, .. .1) has sufficiently large components, say [; > ny(G) = n,.
[t can be shown that this estimate also holds with the same constant C and under
the same conditions ; > n, on 1 if we extend our ground field F, to Fq,,. of
course we have to substitute ¢” for q. Then our theorem 3 is a consequence of
a theorem of Lang and Weil [10].

Of course the properties of E(G, t) I need are not at all abvious. This function
depends on the isomorphism type [G] of G/Y and for the investigation of
E(G,t,...t) one has to consider this function as a function of [G]. Let G, /Fq
be a Chevalley group of the same type as G/Y, let Ty (resp. B, O T,) be a maximal
torus (resp. a Borel subgroup containing T;). Then G, = G, x Y is a Chevalley

scheme over Y. Let Gy(A4) be the adele group of G, x and R = q G, (og) the

I<Cgq

canonical maximal compact subgroup. Then we may identify
H' (Y , G)™> R\Gy(4)/Go(K)

From the Iwasawa decomposition we get Gy(4) = R.By(4) so for x € Gy(4)
we can write x = k, . b, (not unique).

If (s;,...,5,)=s5 is a vector whose components are complex numberswe

put 7,() = [T 1%(be)| ™" ~%. Then the following series
i=1
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Ex,s)= X nxy)
veGo(K)/Bo(K)

converges for Re(s;) > 1. It is analogous to the Eisenstein series considered by
Langlands in the number field case (Compare [7], [8]), and I will show in [6]
that Langland’s theory can be carried over to the function field case.

To x € Gy(A) corresponds a cohomology class in H\(Y, G,) and this cohomo-
logy class defines an isomorphism class of twisted semisimple group schemes
over Y and I assume that my given group scheme G/Y is in this class. Then it is
clear that

Ex,s)=E@G,q...q7)

and all desired properties of E(G, #; ...t,) can be derived from the theory of
Eisenstein series. For the estimations of the Eisenstein series which are needed
in the proof the theorem 3 the theorems 1 and 2 are important. The theorem
3 has nice consequences :

THEOREM 4. — Let G/K be a simply connected semisimple algebraic group over
the function field K/F,. Then H' (K, G) = 0.

This theorem follows from theorem 3 in the case where G/K is a Chevalley
group with out any case by case discussion (Comp. [6]). For the general case
one has to use the methods in [4].

Finally I want to mention that the calculation of the residue of E(x, s) at
(1,...1) yields.

THEOREM 5. — The Tamagawa number of a semisimple simply connected
Chevalley group G/K is one.

This is proved by the same method as Langland’s in the numberfield case
(Comp. [9].
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GROUP REPRESENTATIONS
AND SYMMETRIC SPACES

by Sigurdur HELGASON

1. Introduction.

In this lecture I shall discuss some special instances of the following three
general problems concerning a homogeneous space G /H, H being a closed subgroup
of a Lie group G.

(A) Determine the algebra D(G/H) of all differential operators on G /H which
are invariant under G.

(B) Determine the functions on G/H which are eigenfunctions of each
D €D(G/H).

(C) For each joint eigenspace for the operators in D(G/H) study the natural
representation of G on this eigenspace ; in particular, when is it irreducible and
what representations of G are so obtained ?

Here we shall deal with the case of a symmetric space X of the noncompact
type and with the case of the space = of horocycles in X. We refer to [6] for
proofs of most of the results reported here.

2. The eigenfunctions of the Laplacian on the non-Euclidean disk.

Let X denote the open unit disk in the plane equipped with the Riemannian

metric
dx? + dy?
ds* = 2 < 2312
[1—(* + y*)]
The corresponding Laplace-Beltrami operator is given by
a2 82
= 2 212 ( ).
A=11-62 4y (57 + ay,)
We shall begin by stating some recent results about the eigenfunctions of A.
Let B denote the boundary of X and P(z, b) the Poisson kernel
1 — |z
lz - b

It is then easily verified that if 4 €C then A,(P(z, b)) = 4uu — 1) P(z, b)* so
for any measure m on B the function z » f P(z, b)* dm(b) is an eigenfunction
B

P(z,b) = z€eX, bEB .

of A. If p€R and m > 0 this gives all the positive eigenfunctions of A (cf. [1],
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[7]). More generally one can take m to be a distribution on B and even more
generally, an analytic functional on B, that is a continuous linear functional
on the space of analytic functions on the boundary B with the customary topology.

THEOREM 1. — The -eigenfunctions of the Laplace-Beltrami operator on the
non-Euclidean disk are precisely the functions

) fz) = £ Pz, b)* dT(b)

where pn€C and T is an analytic functional on B.

The functional T is related to the boundary behaviour of f. Assuming, as
we can, that p in (1) satisfies Re p = 1/2 we have as |z] > 1

) e, (1 — 1z f&) T ¢, =T@TQu— 1)

in the sense that the Fourier series of the left hand side converge formally for
lz] = 1 to the Fourier series of T. (For Re # = 1/2 a minor modification of (2)
is necessary).

The case u =1 in Theorem 1 is closely related to Kothe’s Cauchy kernel
representation of holomorphic functions by analytic functionals, [9]. For Eisenstein
series a result analogous to (2) was proved by John Lewis in his thesis.

It is well known that the eigenspaces of the Laplacian on a sphere are irreducible
under the action of the rotation group. The analogous statement for X is in general
false : The largest connected group G of isometries of X does not act irreducibly
on the space of harmonic functions (u = 1). In fact, the constants form an inva-
riant subspace. However we have the following result.

THEOREM 2. — For n€C let V, denote the space of eigenfunctions of A for
the eigenvalue 4u(u — 1) with the topology induced by that of C™(X). Then G
acts irreducibly on V, if and only if p is not an integer.

3. The Fourier transform on a symmetric space X. Spherical functions.

In order to motivate the definition I restate the Fourier inversion formula
for R” in a suggestive form. IL fELY(R™ and ( , ) denotes the inner product
on R” the Fourier transform f is defined by

fow) = -/.;" f(x) e M9 gy A>0,|lwl=1,

and if for example f€ C, (R") we have

3) fey=2m™" jf FOw) *& 9 N1 gade
R*xs"—!
where R* denotes the set of nonnegative reals and dew is the surface element
on §"1,
Now consider a symmetric space X of the noncompact type, that is a coset

space X = G/K where G is a connected semisimple Lie group with finite center
and K a maximal compact subgroup. We fix an Iwasawa decomposition G = KAN
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of G, A and N being abelian and nilpotent, respectively. The horocycles in X
are the orbits in X of the subgroups of G conjugate to N ; the group G permutes
the horocycles transitively and the set = of all horocycles is naturally identified
with the coset space G/MN where M is the centralizer of 4 in K, Let g, £, a,
n, m denote the respective Lie algebras of the groups introduced and log the
inverse of the map exp : a = A. It is clear from the above that each § €E can
be written & = kaMN, where kM € K/M and a € A are unique. Here the coset
kM is called the normal to & and a the complex distance from the origin o in X
to £ If x €X, b € B(= K/M) there exists exactly one horocycle, denoted £(x , b),
through x with normal 4. Let a(x, b)) €A denote the complex distance from o
to £(x, b) and put A(x, b) = loga(x, b). This element of o« is the symmetric
space analog of the inner product (x, w) in R", Denoting by «* the dual space
of o and defining p € a* by p(H) = % Tr(ad H| n), where ad is adjoint repre-
sentation and | restriction, we can define the Fourier transform 7 of a function
fEC(X) by

@ Tob= [rweMnuEm g \ear, bep,

dx denoting the volume element on X, suitably normalized. The inversion formula
for this Fourier transtorm is

) e =wtf /; FOn, by eMPYAED) [0y "2 dNdb
a*

where w is the order of the Weyl group W of X, db the normalized K-invariant
measure on B and c¢(\) Harish-Chandra’s function which can be expressed explicitly
in terms of I’-functions as we shall explain later in more detail.

A spherical function on X is by definition a K-invariant eigenfunction ¢ of
each G-invariant differential operator on X, normalized by p(0) = 1. By a simple
reformulation of a theorem of Harish-Chandra the spherical functions are just
the functions

6) 0, (x) = f £MP) (AGB)) gp
B

\ being arbitrary in the complex dual o ; also ¢, = ¢, if and only if XA = su for
some s € W. The c-function arises in Harish-Chandra’s work from a study of
the behaviour of ¢, (x) for large x ; roughly speaking, ¢, (a) behaves for large
a in the Weyl chamber A* as ., c(s)) edsr—P) (o @) if \ € %,

If fin (4) is K-invariant, then 7 is independent of b and by use of (6) for-
mula (5) reduces to Harish-Chandra’s inversion formula for the spherical Fourier
transform. On the other hand the general formula (5) can be derived quite easily
from this special case, [5].

It is of course of interest to characterize the images of various function spaces
on X under the Fourier transform f— f. In this regard we have the f