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Organization of the Congress 

The 1974 International Congress of Mathematicians was held in Vancouver, 
Canada, at the invitation of the Canadian Mathematical Congress, representing the 
Canadian mathematical community, and with the approval of the International 
Mathematical Union, representing the international mathematical community. 
As official hosts the Canadian Mathematical Congress assumed the responsibility 
for all the arrangements and appointed the Organizing Committee whose members 
were A. H. Cayford, Aubert Daigneault, T. E. Hull, R. D. James (Chairman), 
Maurice Sion (Deputy Chairman). The International Mathematical Union main­
tained control over the scientific program and appointed, in consultation with the 
Canadian Mathematical Congress, the Consultative Committee whose members 
were G. A. Gratzer, H. A. Heilbronn, F. E. P. Hirzebruch, L. Hörmander (Chair­
man), T. E. Hull, T. Husain, S. V. Jablonskiï, N. Jacobson, L. Schwartz. 

The main organizer of the Congress at the practical level was Maurice Sion who, 
as Chairman of the Local Arrangements Committee, took direct responsibility for 
all aspects of the Congress with the exception of the list of invited speakers. The 
other members of the Local Arrangements Committee were G. W. Bluman, A. H. 
Cayford, Armin Frei, S. S. Page, J. V. Zidek. Nominally the Local Arrangements 
Committee was under the supervision of the Organizing Committee. In fact the 
composition and the responsibilities of the two committees overlapped to a con­
siderable extent. Special subcommittees were established as the time of the opening 
of the Congress approached. Notable assistance on these subcommittees was given 
by G. W. Bluman, James Carrell, A. H. Cayford, John Coury, T, E. Cramer, Armin 
Frei, Virginia Green, Lome Halabisky, Ronald Harrop, Rene Held, Erhard Luft, 
George Maxwell, L. A. Mysak, S. S. Page, L. G. Roberts, Dennis Sjerve, Keith 
Wales, J. V. Zidek, and the graduate students in the Department of Mathematics, 
University of British Columbia. 

The publication of the Proceedings of the Congress is the responsibility of the 
Publications Committee whose members are Aubert Daigneault, G. A. Gratzer, 
H. A. Heilbronn, R. D. James (Chairman), Erhard Luft, W. O. J. Moser. The 
committee gratefully acknowledges the advice and assistance given by A. H. 
Cayford, who acted as Managing Editor, and Gordon L. Walker (Executive Direc­
tor) and Margaret Reynolds (Editorial Assistant) of the American Mathematical 
Society. 
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Opening Ceremonies 

The inaugural session of the Vancouver Congress took place in the Queen 
Elizabeth Theatre on the morning of August 21, 1974, Professor K. Chandrasek-
haran opened the proceedings by proposing that Professor H. S. M. Coxeter be 
elected President of the Congress by acclamation. Following his election, Professor 
Coxeter announced that a telegram would be sent to His Excellency, the Right 
Honourable Jules Leger, C. C, C.M.M., Governor General of Canada, Patron of 
the Congress. The text of the telegram is as follows: 

We much appreciate your agreeing to serve as Patron of the first meeting in Vancouver 
of the International Congress of Mathematicians. We regret your inability to be present 
and we convey our warmest wishes for a complete recovery. 

Professor Coxeter then called on His Honour, the Honourable Walter S, Owen, 
Lieutenant Governor of British Columbia who welcomed members of the Congress 
to Canada and to British Columbia. 

Professor Coxeter then gave his presidential address to the Congress. 

The last congress meeting in Canada was in August 1924, almost exactly fifty years 
ago. That was when the Fields Medals were established. Professor Fields was the pres­
ident, and gave a long address on A foundation for the theory of ideals. He was editor of 
the PROCEEDINGS, which contained a nice photograph of La Vallée Poisson presenting a 
commemorative wreath to the University of Toronto. There was also a map of Canada 
showing the route of the Transcontinental Excursion, which included a stop in Van­
couver, Perhaps one or two of you can still remember that occasion. 

In opening the 1954 congress in Amsterdam, Professor Schouten declared that "The 
place of mathematics in the world has changed entirely after the second war." What he 
meant was that, whereas formerly mathematics was studied by exceptional people, in 
ivory towers, the subject had become immensely popular. Even sport was affected: 
footballs (for soccer) began to be made to look like truncated icosahedra, electronic 
computers were springing up everywhere, and departments of mathematics in all uni­
versities were expanding to accommodate crowds of eager students. As soon as they 
graduated, the best students were urged to write original papers. The slogan was "pub­
lish or perish." Although some of the resulting work was second-rate, much of it was 
excellent. In fact, the accumulation of mathematical knowledge has been so rapid that, as 
Professor Nevanlinna remarked at Stockholm in 1962, no one of us can appreciate all 
its branches. 

Why, then, do we now come together from all the countries on earth? What do we 
have in common? Perhaps it is our appreciation of patterns of abstract ideas, our striv-

XV 



XVI OPENING CEREMONIES 

ing for order and truth and beauty in a world full of confusion and deceit and pollution. 
We understand, with William Wordsworth, that mathematics is "An independent 
world created out of pure intelligence" or, as Alfred North Whitehead put it, "The 
science of Pure Mathematics, in its modern developments, may claim to be the most 
original creation of the human spirit." 

To see the extent of the feverish activity mentioned by Schouten and Nevanlinna, 
we merely have to measure the volumes of Mathematical Reviews on our shelves. 
(This is reasonable because it is usually the most important books and papers that de­
serve the longest reviews.) The volumes from 1941 to '51 measure 21 inches, 1952 to '62 
45 inches, and 1963 to '73, 87 inches. Thus each period of eleven years produces twice 
as much as the preceding period. Such a proliferation of mathematical research, if 
continued in the future, would make the number of writers surpass the number of 
readers, the same discoveries would be made over and over again, and all the libraries 
in the world would not suffice to accommodate the mass of material. 

However, such a calamity may now have been averted in an unexpected manner. The 
present generation has been engulfed by a wave of anti-intellectualism, with the result 
that most universities are short of students. Young people find that the problem of look­
ing for a job is not facilitated by a university education, The idea of "art for art's sake" is 
less prevalent than it used to be, and pure mathematics is abandoned in favour of ap­
plied mathematics, statistics, or computing. Thus the editors of pure mathematical 
journals may soon be able to relax and get rid of their terrifying backlog of papers wait­
ing to be assessed for possible publication. 

What, then, should be our advice to a student who is wondering whether to specialize 
in mathematics? In view of the present scarcity of suitable jobs, I would advise him to 
take up some other subject, unless his love for mathematics is so intense that he finds 
himself doing it in almost all his spare time, even thinking about it while sleeping, or 
between dreams. For such a person, as Hermann Minkowski declared, "The purpose 
of life is to behold the truth, to understand it well, and to expound it perfectly." 

Some of the mathematicians who attended the Congress in Nice are no longer with us. 
I think especially of Abraham Robinson, who died so tragically a few months ago, at 
the height of his powers..He made contributions to applied mathematics as well as to 
algebra and logic, on which he spoke at Nice, Since that time, his nonstandard analysis 
has opened up new vistas in both research and pedagogy. When I was a boy, I was in­
troduced to calculus the "easy" way, using infinitesimals. At college I was told to put 
away childish things and become rigorous. How wonderful it is that the name "infini­
tesimal calculus" has been restored to respectability! 

Before sitting down, I wish to propose a vote of thanks to the Consultative Com­
mittee, appointed by IMU to plan the academic program, namely Professors L. Hör-
mander, F. Hirzebruch, S. V. Jablonskï, N, Jacobson, L. Schwarz, G. A. Gratzer, T, 
Husain, T. E. Hull, H. Heilbronn. 

And now it is my pleasure to call upon Professor Chandrasekharan, the president of 
IMU to make an important announcement. 

Professor Chandrasekharan, chairman of the Fields Medals Committee, then 
presented the following report: 

The proposal to institute two gold medals, to be awarded "for outstanding discoveries 
in mathematics," at successive International Congresses of Mathematicians, was first 
mooted by Professor J. C. Fields, President of the International Congress of Mathema­
ticians held in Toronto in 1924. The fund for the founding of the medals was constituted 
by a balance left over after financing the Toronto Congress. That proposal was accepted 
with thanks, after the death of Professor Fields, by the International Congress of 
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Mathematicians which met in Zürich in 1932, The first two such medals were presented at 
the Oslo Congress in 1936. After an interruption, caused by the war, two medals were 
presented at each of the following Congresses: at Harvard in 1950, Amsterdam 1954, 
Edinburgh 1958, and Stockholm 1962; while four medals were presented at the Moscow 
Congress in 1966, and at the Nice Congress in 1970, Each medal carries with it a cash 
prize of 1500 Canadian dollars. The medals are struck at the Royal Canadian Mint. It is 
expressly provided that there should not be attached to them, in any way, the name of 
any country or institution. Although, in common parlance, they are known as the 
Fields medals, the name of Fields does not appear on them. 

Following established practice, the Executive Committee of the International Mathe­
matical Union appointed, about two years ago, an international committee to adjudicate 
the award of the medals at this congress, The Committee consists of Professors J, F, 
Adams, K. Kodaira, L, S. Pontrjagin, B. Malgrange, A, Mostowski, J. Tate, A, Zyg« 
mund, and myself, as Chairman, May I take this opportunity to convey to all the 
members of the Committee the appreciation and thanks of the Union for the service 
they have rendered. The Committee, in turn, is indebted to many individual mathema­
ticians whose expert knowledge provided valuable assistance, 

The Committee decided, at the outset, and not without discussion, to confine the 
award to mathematicians under forty, as in the past, The names of some who have done 
brilliant work in recent years, but who are now on the wrong side of forty, have had 
regrettably to be omitted. Even so, more than a score of names figured on our first list. 
The task of reducing that number was by no means easy. There was a great deal of con­
sultation, deliberation, and reflection. The Committee elected finally to select two names 
for the award. That decision was reached as unanimously as one could reasonably 
expect. We are aware of the very strong claims of many of those not selected, some of 
them so young that many Congresses will meet before they are forty. Nevertheless, we 
are convinced that the two selected are mathematicians of exceptional merit, whose work 
has advanced the development of important branches of our science. May I offer them 
our warmest congratulations, and invite them to come forward to receive the medals 
from the hands of His Honour, the Lieutenant Governor of British Columbia. They 
are, in alphabetical order, ENRICO BOMBIERI and DAVID MUMFORD. 

His Worship, Mayor Art Phillips of Vancouver gave a short address in which he 
welcomed members of the Congress to the City of Vancouver. 

Professor Coxeter announced that reports of the work of the Fields medalists 
would be given in the evening. Professor Chandrasekharan would report on the 
work of Enrico Bombieri and Professor J. Tate on the work of David Mumford. 

The inaugural session was then declared closed. 



Closing Ceremonies 

The closing session of the Vancouver Congress took place in the Frederick Wood 
Theatre, University of British Columbia, on the afternoon of August 29, 1974. 
Professor H. S. M. Coxeter, President of the Congress, was in the chair. 

Professor Coxeter read a message from His Excellency the Governor General of 
Canada expressing his thanks for the telegram sent on behalf of the Congress at the 
inaugural session. He then called on Professor K. Chandrasekharan, President of 
the International Mathematical Union, to present the following report: 

It is my pleasant duty to announce that the Seventh General Assembly of the Inter­
national Mathematical Union, which met at Harrison Hot Springs, from August 17 to 
19,1974, elected the following Executive Committee for a term of four years beginning 

January 1, 1975. 
President : Professor Deane Montgomery (Princeton, NX, U.S.A.) 
Vice Presidents : Professor J.W.S. Cassels (Cambridge, U.K.) 

Academician M. Nicolescu (Bucharest) 
Secretary : Professor J.-L. Lions (Paris) 
Members : Professor E. Bombieri (Pisa) 

Professor M. Kneser (Göttingen) 
Professor O. Lehto (Helsinki) 
Professor M. Nagata (Kyoto) 
Academician L.S. Pontrjagin (Moscow) 

I am sure you will join me in wishing the new Committee every success in the work 
ahead, 

The main object of the International Mathematical Union is "to promote internation­
al co-operation in mathematics," and, in particular, "to support and assist the Interna­
tional Congress of Mathematicians." May I, on behalf of the Union, express our grati­
tude to the Canadian Mathematical Congress for having played host to this International 
Congress in such a beautiful place as Vancouver. Our warmest thanks go to the mem­
bers and staff of the Organizing Committee headed by Professor R.D. James, and to the 
members and staff of the Local Arrangements Committee headed by Professor M. Sion, 
for having ministered to our needs unobtrusively and efficiently, both at Harrison Hot 
Springs and at Vancouver. 

The Congress has brought together mathematicians from many lands, united in a 
friendship which stems from a common devotion to mathematics, transcending the 
stresses of politics, and happily free from the strains of competitive sport. We trust 
that the next Congress in 1978 will be a worthy successor. May I, as Chairman of the 

xviii 



CLOSING CEREMONIES XIX 

Committee to select a site for the next Congress, request you, Mr. President, to invite 
Professor Rolf Nevanlinna to speak on behalf of the National Committee for mathematics 
in Finland. 

Professor Coxeter called on Professor Nevanlinna who spoke as follows : 

On behalf of the Finnish National Committee of Mathematics, I have the honor to 
invite you to the next International Congress of Mathematicians in Helsinki. 

Finland is a small country and it may seem risky to undertake the organization of such 
big meeting, the more so as many previous congresses have been so splendidly run like 
this fine meeting in Vancouver. But we know that the International Mathematical Union 
will help us, and support has also been promised to us by the Finnish Government and by 
the University of Helsinki, Therefore we feel confident that we shall be able to organize 
the Congress in a satisfactory manner, 

Ladies and Gentlemen: Hoping that you will accept our invitation, I welcome you all 
to the next International Congress of Mathematicians to be held in August 1978 in 
Helsinki. 

The invitation was accepted by acclamation. 
Speaking on behalf of the members of the Congress, Professors J, Tits and B. 

Szökefalvi-Nagy expressed their thanks to those who had participated in the ar­
rangements for the Congress. Professors R. D. James and Maurice Sion replied for 
all concerned. 

Professor Coxeter then declared the Vancouver Congress closed. 



Invited Speakers 

Note: An asterisk indicates that no manuscript has been received from the author for publication, 

Expository Addresses 4. Algebraic Geometry 

V. I. Arnold, 
H. Bauer ' . 
E. Bombieri 
G. Debreu 
P. Deligne 
G. F. D. Duff 
C. Feffermah 
J. G. Glimm . 
H.-O. Kreiss 

J. L. Lions 
E. C. Milner 
D. G. Quillen 
W. Schmidt 
I. M. Singer 
D. P. Sullivan 
J. Tits 
A, G. Vitushkin 

1. Mathematical Logic and the 
Foundations of Mathematics 

K. J. Barwise ' 
H. Friedman . ' 
A. V. Kuzriebov 
Y. N. Moschôvakis 

S. Shelah 
J. H. Silver 
C. E. M. Yates 

N. A'Campo 
S. J. Arakelov 
W, Barth 
C. H. Clemens 

M. Inoue 
W. Schmid* 
A. N. Varchenko 

5. Algebraic Groups and Discrete Subgroups 

A. Borei 
E. Freitag 
H. Garland 
R. Howe 

W. J. Firey 
V. L. Klee 
P. McMullen 

H. M. Jacquet 
D. A. Kazdan* 
G. Lusztig 
V. P. Platonov 

6. Geometry 

C. A. Rogers 
S. S, Ryskov 

2. Algebra 7. Algebraic and Differential Topology 

H. Bass 
G. M» Bergman 
A. H. Clifford 
D. Eisenbud 
P. Gabriel* ' 
S. M. Gersten 
G. Higniàn* 

B. Jónsson 
V» Mazurov 
K, M. McCrimmon 
W. Scharlau 
M. Sweedler 
V. E. Voskresenskii 

3» Number Theory 

A. Fröhlich , 
C. Hoolêy 
A. A. Karatsûba 
A. F, Lavrik* 

B. Mazur 
H. L. Montgomery 
S. A. Stepanov 

V. M. Bukhstaber* 
T, A. Chapman 
A. T. Fomenko 
W. Hsiang 

R. J. Milgram 
T. Pétrie 
P. Schweitzer 
W. Thurston 

8. Differential Geometry and Analysis on 
Manifolds 

J. Cheeger 
B, Lawson 
J, Lelong-Ferrand 
G. A. Margulis 

J. N. Mather 
V. K. Patodi 
J. Simons* 

XX 



INVITED SPEAKERS XXI 

9. General Topology, Real and Functional 
Analysis 

Z, Ciesielski 
P. Enfio 
V, V, Filippov 
A. Hajnal 

H. Herrlich 
N. P, Korneichuk 
B. Maurey 
M. E. Rudin 

15, Control Theory and Related Optimization 
Problems 

A. Bensoussan 
V. F. Demyanov 
A. Friedman 
H. G, Hermes 

H, J. Kushner 
L, Markus 
A. F. Subbotin 

10. Operator Algebras, Harmonic Analysis 
and Representation of Groups 

A. Connes 
M. Duflo 
K. Knapp 
J. R-, Ringrose 

E, St0rmer 
J. L. Taylor 
V. S. Varadarajan 
D, Zelobenko 

16. Mathematical Physics and Mechanics 

J. M, Combes 
R, L. Dobrushin* 
O. Lanford 
E, H, Lieb 
A, Martin 

C, W. Misner* 
E, Nelson 
B. Simon 
A, A. Slavnov* 
V. E. Zakharov* 

11. Probability and Mathematical 
Statistics, Potential, Measure and 

Integration 

R. V. Ambartzumian C. R, Rao 
R. M. Dudley F. L. Spitzer 
J. Faraut V. Statulevicius 
P. J. Huber J. B. Walsh 
J. Neveu B. Walsh 

17. Numerical Mathematics 

J. Bramble 
E. W. Cheney 
A, A, Samarskii 
H. J. Stetter 

G. Strang 
A. G. Sveshnikov 
J. H. Wilkinson 
P. Wolfe 

18. Discrete Mathematics and Theory of 
Computation 

12. Complex Analysis 

M. M. Dzrbasjan 
F. Gehring 
A. F. Leontiev 

B, Maskit 
H. L. Royden 
K. Strebel 

J. M. Barzdin 
A. J. Hoffman 
D. J. Kleitman 
R. Lindner 
A. R. Meyer 

M. S. Paterson 
R. Rado 
V. Strassen 
E. Szemeredi 
J. L. Vasiljev* 

13. Partial Differential Equations 

W. K. Allard 
C. Baiocchi 
M. S, Baouendi 
M. S. Birman* 
H. Brezis 

M. G. Crandall 
J. J. Duistermaat 
D. Kinderlehrer 
L. Nirenberg 
M. I. Visik 

19. Applied Statistics, Mathematics in the 
Social and Biological Sciences 

K. J. Arrow* 
N. Buslenko* 
E. B. Dynkin 
S. Karlin* 

P. A. P. Moran 
J. W. Tukey 
E. C. Zeeman 

14. Ordinary Differential Equations and 
Dynamic Systems 

D. V. Anosov 
R. Bowen 
W. Krieger 
M, N. Nehoroshev 

M. M. Peixoto 
A. M. Vershik* 
B. Weiss 

20. History and Education 

B. V. Gnedenko 
Th, Hawkins 

G. Matthews 
C. Truesdell 



Members of the Congress51 

*Not all members attended the Congress in person, 

A'CAMPO, Norbert (France) 
AARNES, Johan (Norway) 
AARTS, Johannes (Nether­

lands) 
ABBOTT, Harvey (Canada) 
ABDELMALEK, Nabih 

(Canada) 
ABDI, Wazir (Australia) 
ABE,Kinetsu(U.S.A.) 
ABE, Micino (Japan) 
ABE, Shingo (Japan) 
ABELES, Francine (U, S, A,) 
ABIKOFF, William (U. S, A.) 
ABIODUN, Rufus (Nigeria) 
ABOFF,Neil(U.S.A.) 
ABRHAM, Jaromir (Canada) 
ABSAR, Uyas (Canada) 
ABUBAKAR, Iya (Nigeria) 
ACHACHE, A. (France) 
ACKERMANS, Stan 

(Netherlands) 
ACZEL, Janos (Canada) 
ADAMS, J. Frank (England) 
ADAMS, Michael (Canada) 
ADAMS, Robert (Canada) 
ADAMSON, Alan (Canada) 
ADAMSON, Iain (Scotland) 
ADLER, Roy (U.S. A.) 
ADYAN, Sergey (U. S. S. R.) 
AFGHAHI, Mohammad 

(Iran) 
AGOSTON,Max(U.S.A.) 
AHSAN, Javed (Pakistan) 
AIRAULT, Helene (France) 
AISSEN, Michael (U. S. A,) 
AITCHISON, Peter 

(Canada) 
AKEMANN, Charles 

(U. S. A.) 
AKUTOWICZ, Edwin 

(France) 

AL-DHAHIR, M. Wassel 
(Kuwait) 

AL-DHAHIR, Nawar (Eng­
land) 

AL-GWAIZ, Mohammed 
(Saudi Arabia) 

AL-HUSSAINI,AtaN 
(Canada) 

ALAMIRI, Hassoon 
(U. S. A.) 

ALAOGLU, Leonidas 
(U. S. A.) 

ALBERS, Donald (U. S, A.) 
ALBERT, Jeffrey (U. S, A.) 
ALBRIGHT, Hugh (U. S. A.) 
ALCORN, David (New 

Zealand) 
ALDER, Henry (U.S. A.) 
ALEXANDER, David 

(Canada) 
ALEXANDERSON, Gerald 

(U. S. A.) 
ALFRED, Auslender (France) 
ALLARD, William (U. S.A.) 
ALLAWAY, William 

(Canada) 
ALLEGRETTO, Walter 

(Canada) 
ALLENBY, Reginald 

(England) 
ALLING, Norman (U. S. A.) 
ALLISON, Bruce (Canada) 
ALMGREN, Frederick 

(U. S. A.) 
ALMGREN, Jean Taylor 

(U. S. A.) 
ALPERIN, Jonathan 

(U. S. A.) 
ALPERIN, Roger (U. S, A.) 
ALPERT,Seth(U.S.A,) 
ALSPACH, Brian (Canada) 

ALTMAN, Allen (U. S. A.) 
ALVAREZ-SHERER, Ma De 

La Paz (Mexico) 
AMANO V, Tuleobai 

(U. S. S. R.) 
AMARA, Mohamed (Tunisia) 
AMBARTZUMIAN, Rouben 

(U. S. S. R.) 
AMELIN, Charles (U. S. A.) 
AMICE, Yvette (France) 
AMIDI, Ali (France) 
AMIYA, Masanobu (Japan) 
ANDERSEN, Kenneth 

(Canada) 
ANDERSON, Barbara 

(U. S. A.) 
ANDERSON, Bernard 

(U. S. A.) 
ANDERSON, Claude 

(U. S. A.) 
ANDERSON, Donald 

(U. S. A.) 
ANDERSON, Joel (U. S. A.) 
ANDERSON, Karl (Sweden) 
ANDERSON, Michael 

(U. S. A.) 
ANDERSON, Norman 

(England) 
ANDERSON, Richard 

(U. S. A.) 
ANDERSON, Robert 

(Canada) 
ANDERSON, Tim (Canada) 
ANDLER, Daniel (France) 
ANDLER, Martin (France) 
ANDRUSHKIW, Joseph 

(U. S. A.) 
ANDRUSHKIW, Roman 

(U. S. A.) 
ANOSOV,Dmitriy 

(U. S. S. R.) 

xxn 



MEMBERS OF THE CONGRESS XX111 

ANSELONE, Philip (U, S. A.) 
ANSORGE, Rainer (Fed. 

Rep, Germany) 
ANTIBI, Andre (France) 
ANTONIUS, Rachad (Egypt) 
ANVARI, Morteza (Iran) 
ANYANWU,Donatus 

(Nigeria) 
AOKI, Norihiro (Japan) 
ARAKELOV, Suren 

(U. S. S. R.) 
ARAKI, Huzihiro (Japan) 
ARANAKE, Ramkrishna 

(India) 
ARCHER, David (U. S, A.) 
ARENS, Richard (U. S. A.) 
AREZMENDI,Hugo 

(Mexico) 
ARGYRAKOS,John 

(Greece) 
ARKIN, Joseph (U.S. A.) 
ARMENDARIZ, Armando 

(U. S. A.) 
ARMINJON, Paul (Canada) 
ARNOLD, V. I. (U.S.S.R.) 
AROCA, Jose (Spain) 
ARON, Richard (U.S. A.) 
ARROW, K.J. (U.S. A.) 
ARSCOTT, Felix (Canada) 
ARTZNER, Philippe (France) 
ARYA, Shashi (England) 
ASCHE, David (England) 
ASH, J. Marshall (U.S. A.) 
ASSMUS, Edward (U. S. A.) 
ASTIE, Annie (France) 
ATIYAH, Michael (England) 
ATKINSON, Graham (Eng­

land) 
ATKINSON, Harold 

(Canada) 
AU-YEUNG,Yik-Hoi 

(Hong Kong) 
AUGE, Juan (Spain) 
AULL, Charles (U.S. A.) 
AULT, John (England) 
AUSLANDER, Bernice 

(U. S. A.) 
AUSLANDER, Maurice 

(U. S. A.) 
AVILA-MURILLO 

Fernando (Mexico) 
AXLER, Sheldon (U. S. A.) 
AYALAZ, Ignacio (Mexico) 

AYOUB, Raymond (U. S. A.) 
BA, Boubakar (Niger) 
BAAS, Nils Andreas (Norway) 
BAAYEN, P. C. (Netherlands) 
BACLAWSKI, Kenneth 

(U. S. A.) 
BACOPOULOS, Alexis 

(Canada) 
BADJI, Cherif (Senegal) 
BAGGS, Ivan (Canada) 
BAILEY, G. H. (England) 
BAILEY, Paul (U.S. A.) 
BAILLETTE, Aimee (France) 
BAIOCCHI, Claudio (Italy) 
BAKER, Alan (England) 
BAKER, John (U.S. A.) 
BAKER,Kirby(U.S,A.) 
BAKTAVATSALOU, 

(Ivory Coast) 
BALASKO, Yves (France) 
BALDWIN, John (U. S. A.) 
BAMBAH,R.P, (India) 
BANDLE, Catherine 

(Switzerland) 
BANKS, Dallas (U.S. A.) 
BAOUENDI, Mohamed 

Salah(U.S.A.) 
BAREISS, Erwin (U. S. A.) 
BARGE, Jean (France) 
BARKER, William (U. S. A,) 
BARLOTTI, Adriano (Italy) 
BARNER, Martin (Fed, Rep. 

Germany) 
BARNES, Earl (U.S. A.) 
BARNES, Frank (England) 
BARNHART, Richard 

(U. S. A.) 
BARR, Dennis (Puerto Rico) 
BARRAR, Richard (U. S. A.) 
BARRAT, Pierre (France) 
BARRUCAND, Pierre 

(France) 
BARSHAY, Jacob (U, S. A.) 
BART, Harm (Netherlands) 
BARTH, Karl (U. S. A.) 
BARTH, Wolf (Netherlands) 
BARTLOW, Thomas 

(U. S. A.) 
BARTON, Norman (Canada) 
BARWISE, K. Jon (U, S. A.) 
BARZDIN, Jan (U. S. S. R.) 
BASKERVILLE, Jon (Cana­

da) 

BASS, Hyman (U. S. A.) 
BASSOTTI, Lucilla (Italy) 
BASU, Sudhamay (Canada) 
BATES, Susan (Canada) 
BAUER, Heinz (Fed. Rep, 

Germany) 
BAUM, Leonard (U. S. A.) 
BAUR, Walter (U. S, A.) 
BAUSSET, Max (France) 
BAVINCK, Herman (Nether­

lands) 
BAXTER, Kathleen 

(U. S, A.) 
BEALS, Richard (U. S, A.) 
BEAMER, James (Canada) 
BEAN, Donald (Canada) 
BEAUVILLE, Arnaud 

(France) 
BEAUZAMY, Bernard 

(France) 
BECK, Anatole (England) 
BECK, Robert (U. S. A.) 
BECKENBACH, Edwin 

(U. S. A,) 
BECKER, Alexander 

(U. S. A.) 
BECKER, Gerhard (Fed. 

Rep. Germany) 
BECKER, Ilse (Fed. Rep. 

Germany) 
BECKER, Ronald (South 

Africa) 
BECKMANN, Philip 

(Canada) 
BECUKER, Helmut (Fed. 

Rep. Germany) 
BEEKMAN, John (U. S. A.) 
BEEKMANN, Wolfgang 

(Fed. Rep. Germany) 
BEESACK, Paul (Canada) 
BEGUERI, Lucile (France) 
BEHBOODIAN, Javad (Iran) 
BEHNCKE, Horst (Fed. 

Rep. Germany) 
BEITER, Marion (U. S. A.) 
BELAGE, Abel (France) 
BELENOT, Steven (U. S. A.) 
BELINSKI, Pavel 

(U. S. S. R.) 
BELL, Howard (Canada) 
BELL, Raymond (U. S. A) 
BELLAICHE Andre 

(France) 



XXIV MEMBERS OF THE CONGRESS 

BELLOT-ROSADO Fran­
cisco (Spain) 

BELOUSOR, Nicolay 
(U. S. S. R.) 

BEN-GHANDOUR, Addi 
(Israel) 

BENES, Vaclav (U. S. A,) 
BENILAN, Philippe (France) 
BENKOSKI, Stanley 

(U. S. A.) 
BENNEWITZ, Christer 

(Sweden) 
BENSOUSSAN, Alain 

(France) 
BENTLEY, Herschel 

(U. S. A,) 
BERARD-BERGERY, 

Lionel (France) 
BERCOV, Ronald (Canada) 
BERENSTEIN, Carlos 

(U. S. A.) 
BERESTYCKI, Henri 

(France) 
BERG, Christian (Denmark) 
BERGER, Thomas (U. S. A.) 
BERGGREN, John (Cana­

da) 
BERGMAN, George 

(U. S. A.) 
BERGMAN, Stefan 

(U. S. A.) 
BERLING, Chantal (France) 
BERM AN, Elizabeth 

(U. S. A.) 
BERMAN, Joel (U. S. A.) 
BERMAN, Stephen (Canada) 
BERQUIER, Françoise 

(France) 
BERRICK, Jon (England) 
BERRY, John (Canada) 
BERS, Lipman (U. S, A,) 
BERTHIAUME, Pierre 

(Canada) 
BERTOLINI, Fernando 

(Italy) 
BERTRAND, Daniel 

(France) 
BESCHLER, Edwin 

(U. S. A.) 
BEYER, William (U. S. A.) 
BEZUSZKA, Stanley 

(U. S. A.) 
BHATNAGAR, P. (India) 

BICHTELER, Klaus 
(U. S. A.) 

BIERI, Robert (Switzer­
land) 

BIERSTEDT, Klaus (Fed, 
Rep. Germany) 

BIERSTONE, Edward 
(Canada) 

BIGARD, Alain (France) 
BIGGS, Richard (Canada) 
BILLERA, Louis (U, S. A.) 
BIRD, Carol (Canada) 
BIRKHOFF, Garrett 

(U. S. A.) 
BIRMAN, M, S. (U. S. S. R.) 
BIRNBAUM, Z. William 

(U. S. A.) 
BJORK, Jan-Erik (Sweden) 
BLACKMORE, Denis 

(U. S. A.) 
BLAIR, David (U. S. A.) 
BLAKLEY, G. (U. S. A.) 
BLANKE, Ulrich (Fed. Rep. 

Germany) 
BLANTON, John (U. S. A.) 
BLASS, Andreas (U. S. A) 
BLOCK, Richard (U. S. A,) 
BLOOM, Thomas (Canada) 
BLUM, Lenore (U. S. A) 
BLUM, Peter (U. S. A.) 
BLUM, Richard (Canada) 
BLUMAN, G. W. 

(Canada) 
BLUMENTHAL, Leonard 

(U. S. A.) 
BOBROWSKI, Dobiestaw 

(Poland) 
BODY, Richard (Canada) 
BOEHME, Reinhold (Fed. 

Rep. Germany) 
BOEHMER, Klaus (Fed. 

Rep. Germany) 
BOENECKE, Ernst (Fed. 

Rep. Germany) 
BOERS, Arie (Netherlands) 
BOFFI, Vinicio (Italy) 
BOGO, Jacki (Belgium) 
BOGUE, Neil (U, S. A) 
BOHUN-CHUDYNIV, 

Boris (U. S. A.) 
BOHUN-CHUDYNIV, 

Volodymyr (U. S. A) 
BOILEAU, Andre (Canada) 

BO JADZIEV, George 
(Canada) 

BOKOWSKI, Jürgen (Fed, 
Rep. Germany) 

BOLKER, Ethan (U. S. A) 
BOLLOBAS, Bela (England) 
BOLTON, John (England) 
BOMBIERI, Enrico (Italy) 
BONAR, Daniel (U. S. A.) 
BONY, Jean-Michel (France) 
BOONE, William (U. S. A.) 
BOORMAN, Evelyn 

(U. S. A.) 
BOOSS, Bernhelm (Fed. 

Rep. Germany) 
BOOTHBY, William 

(U. S. A.) 
BORDEN, Stephen (Canada) 
BOREL, Armand (U. S. A,) 
BORON, Leo (U. S. A.) 
BORRELLI, Robert 

(U. S. A.) 
BORWEIN, David (Canada) 
BOTTO-MURA, Roberta 

(Canada) 
BOTTS, Truman (U. S. A.) 
BOUCHET, Andre (France) 
BOURGIN, David (U. S. A,) 
BOUTOT, Jean-Francois 

(France) 
BOUVIER, Alain (France) 
BOWDEN, Leon (Canada) 
BOWEN, Rufus (U. S. A.) 
BOWERS, John (England) 
BOWTELL, Graham (Eng­

land) 
BOYD, David (Canada) 
BOYDRON, Yves (France) 
BOZOVIC, Ivan (Yugoslavia) 
BOZOVIC, Natasa (Yugo­

slavia) 
BRADSHAW, Jack (Canada) 
BRAKKE, Kenneth 

(U. S. A.) 
BRAMBLE, James (U. S. A.) 
BRANDENBURG, Willem 

(Netherlands) 
BRANNAN, David 

(England) 
BRAUER, Alfred (U. S, A.) 
BRAUER, George (U. S. A.) 
BRAUN, Hel (Fed. Rep. 

Germany) 



MEMBERS OF THE CONGRESS XXV 

BRAUN, Robert (Fed. Rep. 
Germany) 

BREEN, Lawrence (France) 
BRELOT, Marcel (France) 
BREMNER, Andrew (Eng­

land) 
BRENNER, David (Canada) 
BRENNER, Sheila (England) 
BREWSTER, Douglas (Eng­

land) 
BREZINSKI, Claude 

(France) 
BREZIS, Haim (France) 
BRIESKORN, Egbert (Fed. 

Rep. Germany) 
BRILLHART,John 

(U. S. A.) 
BRISCHLE, Till (Fed. 

Rep, Germany) 
BRITTEN, Daniel (Canada) 
BRITTON, John (England) 
BROERE, Izak (Rep. South 

Africa) 
BROMAN, Arne (Sweden) 
BROOKS, Foster (U. S. A.) 
BROUE, Michel (France) 
BROVERMAN, Samuel 

(Canada) 
BROWDER, Felix (U. S. A) 
BROWDER, William 

(U. S. A.) 
BROWN, Edgar (U. S. A.) 
BROWN, Gavin (England) 
BROWN, Gordon (U. S. A.) 
BROWN, James (U. S. A.) 
BROWN, Julia (Canada) 
BROWN, Lawrence 

(U. S. A.) 
BROWN, Leon (U. S. A.) 
BROWN, Margaret (England) 
BROWN, Richard (Canada) 
BROWN, Robert (U. S. A.) 
BROWN, Tom (Canada) 
BROWNELL, Frank 

(U. S. A.) 
BRUEHLMANN, Heinz 

(German Dem, Rep.) 
BRUENING, Jochen (Fed. 

Rep. Germany) 
BRUMFIEL, Gregory 

(U. S. A.) 
BRUNK, Hugh (U, S. A.) 
BRUNO, Vincent (U. S. A.) 

BRUNSWICK, Natascha 
(U. S. A.) 

BRYAN, Robert (Canada) 
BRYANT, John (U, S. A.) 
BRYLINSKI, Jean-Luc 

(France) 
BÜCHNER, Michael (Rep. 

South Africa) 
BUCK,R.Creighton 

(U. S. A.) 
BUCY, Richard (U. S. A) 
BUDACH, Lothar (German 

Dem. Rep.) 
BUI, An-Ton (Canada) 
BUKHSTABER,V.M. 

(U. S. S. R.) 
BULL, Everett (U. S. A.) 
BULLEN, Peter (Canada) 
BUNGE, Marta (Canada) 
BUNTINAS, Martin 

(U. S. A.) 
BÜRDE, Gerhard (Fed. 

Rep. Germany) 
BÜRDE, Klaus (Fed. Rep. 

Germany) 
BURDEN, Charles (New 

Zealand) 
BUREAU, Florent (Belgium) 
BURES, Donald (Canada) 
BURGESS, C. E. (U. S. A.) 
BURGHELEA Dan (Ruma­

nia) 
BURKHOLDER, Donald 

(U. S. A.) 
BURLAK J. (U. S. A.) 
BURNS, Robert (Canada) 
BURR, Stefan (U. S. A.) 
BURRIS, Stanley (Canada) 
BURRY, John (Canada) 
BUSHAW, D, (U. S. A.) 
BUSLENKO, N. (U. S. S. R.) 
BUTLER, Geoffrey (Canada) 
BUTLER, Jean (Canada) 
BUTLER, Michael (England) 
BUTTON, Lilian (England) 
BUYUKYENEREL, Gul-

tekin (Turkey) 
BYATT-SMITH, John 

Graham (Scotland) 
BYERS, Victor (Canada) 

CALLAHAN, Thomas 
(Canada) 

CALLOWAY, Jean 
(U. S. A.) 

CALVO, Adina (France) 
CALVO, Bernard (France) 
CAMBERN, Michael 

(U. S. A.) 
CAMERON, Norman 

(Canada) 
CAMPBELL, Colin (Scot­

land) 
CAMPOS, Alberto (Colum­

bia) " 
CANDIOTTI,Alan 

(U. S. A.) 
CANFELL, Michael (Au­

stralia) 
CANNON, John (U. S. A.) 
CANTOR, David (U. S. A) 
CANTOR, Murray (U. S. A.) 
CARADUS, Selwyn (Cana­

da) 
CAREY, Richard (U. S. A) 
CARLSSON, Renate (Fed. 

Rep. Germany) 
CARLTON, Eloise (U, S, A.) 
CARR, Donna (England) 
CARRELL, James (Canada) 
CARSON, Andrew (Canada) 
CARSWELL, James (Cana­

da) 
CARTAN, Henri (France) 
CARTER, David (U. S. A.) 
CARTER, Roger (England) 
CASS, Frank (Canada) 
CASSELS, J. W. S. (England) 
CASSIDY, Phyllis (U. S. A.) 
CASTI, John (U. S. A.) 
CATES, Marshall (U. S. A.) 
CATHELINEAU, Jean 

Louis (France) 
CATTANEO, Carlo (Italy) 
CATTANEO, Ida (Italy) 
CAUBET, Jean-Pierre 

(France) 
CAYFORD, Afton (Canada) 
CECIL, Thomas (U. S. A.) 
CEDER, Jack (U. S. A.) 
CEJALVO, Flor (Philippines) 
CENKL, Bohumil (U. S. A.) 
CERQUEIRA, L.P. de Maria 

Helena (Brazil) 
CHADEMAN, Arsalan 

(Iran) 



XXVI MEMBERS OF THE CONGRESS 

CHAKRAVARTTY, Iswar 
(Canada) 

CHAMBERS, Graham (Can­
ada) 

CHAN, Gin-Hor (Singapore) 
CHAN, Nai Ng (Hong Kong) 
CHANDNA,C.M, (Canada) 
CHANDRA, Jagdish 

(U.S.A.) 
CHANDRASEKHARAN, 

Komaravolu (Switzerland) 
CHANG, John (U. S. A.) 
CHANG, Pang-Liang (Rep. 

China) 
CHANG, Shao-Chien (Cana­

da) 
CHAPMAN, Gerald (Cana­

da) 
CHAPMAN, Thomas 

(U. S. A.) 
CHAPTAL, Nicole (France) 
CHASE, Stephen (U. S. A.) 
CHASTENET-DEGERY, 

Jerome (France) 
CHATELET, Gilles (France) 
CHATTERJI, Srishti (Switz­

erland) 
CHAVES, Manuel (Portugal) 
CHAYE, Jacques (France) 
CHEBLI, Houcine (France) 
CHEEGER, Jeff (U.S.A.) 
CHEHIL, Dalip (Canada) 
CHELLEVOLD, John 

(U. S. A.) 
CHEN, Bang-Yen (U. S. A.) 
CHEN, Kuang-Ho (U, S. A.) 
CHEN, Yi (Canada) 
CHEN,Yu-Why(U.S.A.) 
CHENEY, Ward (U. S. A.) 
CHENON, Rene (France) 
CHERLIN, Gregory 

(U. S. A.) 
CHERN, Shiing (U. S, A.) 
CHERNOFF, William (Can-

CHETIVAUX, Françoise 
(France) 

CHEUNG, Alan (Canada) 
CHEVALIER, Michel 

(France) 
CHING, Wai-Mee (U. S. A.) 
CHOI, Chang (U. S. A.) 
CHOI, Man-Duen (U. S. A.) 

CHOLLET, Anne Marie 
(France) 

CHOU, Chin-Cheng (France) 
CHRESTENSON, Hubert 

(U. S. A.) 
CHRISTIAN, Robert (Can­

ada) 
CHRISTIANSEN, Bent 

(Denmark) 
CHUNG, Kai-Lai (U. S. A.) 
CHURCH, Alonzo (U. S. A.) 
CHVATAL, Vaclav (Canada) 
CIESIELSKI, Zbigniew 

(Poland) 
CIGNETTI, Alberto (Italy) 
CLAPP, Robert (U, S. A.) 
CLARK, Colin (Canada) 
CLARK, Douglas (Scotland) 
CLARK, Ronald (England) 
CLARKE, A. Bruce 

(U. S. A.) 
CLAUS, Heinz Jorg (Fed. 

Rep, Germany) 
CLAUSING, Achim (Fed. 

Rep, Germany) 
CLEMENS, Herbert 

(U. S. A.) 
CLEMENTS, John (Canada) 
CLEMONS, Arthur 

(U. S. A.) 
CLIFFORD, Alfred (U, S.A.) 
COGHLAN, Francis (Eng­

land) 
COHEN, Alexandra (France) 
COHEN, Arjeh (Nether­

lands) 
COHEN, Daniel (England) 
COHEN, Elie (Canada) 
COHEN, Fred (U.S. A.) 
COHEN, Joel (U. S. A.) 
COHEN, Maurice (Canada) 
COHN, Harvey (U. S. A.) 
COHN, J. H. E. (England) 
COHN, Paul (England) 
COLE, Nancy (U. S. A.) 
COLEBROOK, Merle (Can­

ada) 
COLEMAN, A. John (Cana­

da) 
COLEMAN, Courtney 

(U. S. A.) 
COLLATZ, Lothar (Ger­

many) 

COLLINO, Alberto (Italy) 
COLLINS, Donald (Eng­

land) 
COLLINS, Michael (Eng­

land) 
COLLINS, Peter (England) 
COLVIN, Burton (U. S. A,) 
COLWELL, Peter (U. S. A,) 
COMBES, Jean (France) 
COMBES, Jean Michel 

(France) 
COMERFORD, Jonell 

(U. S. A.) 
COMERFORD, Leo 

(U. S. A.) 
COMFORT, W.Wistar 

(U. S. A.) 
COMPOS, Ramon 

(Mexico) 
COMSTOCK, Craig 

(U. S. A.) 
CONÇUS, Paul (U. S. A.) 
CONDE, Antonio (Brazil) 
CONDUCHE, Daniel 

(France) 
CONLAN, James (Canada) 
CONLON, Lawrence 

(U. S. A.) 
CONLON, Samuel (Austra­

lia) 
CONNELL, Ian (Canada) 
CONNES, Alain (France) 
CONNETT, William 

(U. S. A.) 
CONNOLLY, Dennis (Can­

ada) 
CONTI, Roberto (Italy) 
COOK, Lyle (U. S. A.) 
COOKE, Kenneth (U. S. A.) 
COOPER, J. Lionel (Eng­

land) 
COPPEL, Andrew (Austra­

lia) 
COPPINI, Mario (Italy) 
CORAY, Daniel (Switzer­

land) 
CORMACK, Sheila (Scot­

land) 
COT, Norbert (France) 
COUDRAIS, Jacques 

(France) 
COUGHLIN, Mary 

(U, S. A.) 



MEMBERS OF THE CONGRESS XXV11 

COULOMB, Genevieve 
(France) 

COURY, John (Canada) 
COWEN,Carl(U.S,A.) 
COWLES, John (U. S. A.) 
COWLES, Mary Jane 

(U. S. A.) 
COX, David (U.S. A.) 
COX, Samuel (U. S. A.) 
COXETER, H. S. Mac 

Donald (Canada) 
CRAGGS, Robert (U. S, A.) 
CRAMER, T. E. (Canada) 
CRANDALL, Michael 

(U. S. A.) 
CRAPO, Henry (Canada) 
CRAVEN, Bruce (Australia) 
CRAWFORTH, Denis (Eng­

land) 
CREE, George (Canada) 
CREPEL, Pierre (France) 
CRITTENDEN, Richard 

(U. S, A.) 
CROFT, Hallard (England) 
CROOM, Frederick 

(U. S. A,) 
CROSS, George (Canada) 
CROSS, James (Australia) 
CROWE, David (England) 
CROWELL, Richard 

(U. S. A.) 
CROWNOVER, Richard 

(U. S. A.) 
CRUMEYROLLE, Albert 

(France) 
CSASZAR, Akos (Hungary) 
CULL, Paul (U.S. A.) 
CULLEN, Helen (U. S. A.) 
CUMMINGS, Larry (Canada) 
CUNNINGHAM, Barry 

(Canada) 
CUPONA, Gorgi (Yugosla­

via) 
CURRAN, Peter (U. S. A.) 
CURRY, Haskell (U. S. A.) 
CURTIS, Edward (U. S. A.) 
CUSICK, Thomas (U. S. A.) 
CUTTLE, Yvonne (Canada) 
CZERNIAKIEWICZ, 

Anastasia (U, S. A.) 

D'AMBROSIO, Ubiratan 
(Brazil) 

D'HOMBRES, Jean Guy 
(France) 

DACUNHA-CASTELLE, 
Didier (France) 

DAI,Taen-Yu(U.S.A.) 
DAIGNEAULT, Aubert 

(Canada) 
DALES, H. Garth (England) 
DALLA, Ronald (U. S. A,) 
DALSIN, Gordon (Canada) 
DAMLAMIAN, Alain 

(France) 
DAMUOHLER, Wilhelm 

(Argentina) 
DANCIS, Jerome (U. S. A.) 
DANG-NGOC, Nghiem 

(France) 
DANKERT, Gabriele (Can-

DARCHEN, Jean Claude 
(France) 

DARST, Richard (U. S. A.) 
DASHIELL, Fred (U, S. A.) 
DAUBISSE, Jean-Claude 

(France) 
DAUNS, John (U. S. A.) 
DAVEY, Brian (Canada) 
DAVIES, Roy (England) 
DAVIS, Anthony (England) 
DAVIS, Chandler (Canada) 
DAVIS, Gary (Australia) 
PAVIS, Martin (U. S. A.) 
DAVIS, Michael (U. S. A.) 
DAVISON, John (Canada) 
DAWES, Alexander (Cana­

da) 
DAWSON, Donald (Canada) 
DAWSON, John (U.S. A.) 
DAY, Alan (Canada) 
DAZORD, Jean (U. S. A.) 
DE CARVALHO, Carlos 

(Brazil) 
DE GUZMAN, Miguel 

(Spain) 
DE HOYOS, Arnoldo 

(Mexico) 
DE ROBERT, Etienne 

(France) 
DE SOCIO, Luciano (Italy) 
DEAKIN, Michael (Austra­

lia) 
DEAN, David (U. S. A.) 
DEB, Susanta (Canada) 

DEBNATH, Lokenath 
(U. S, A.) 

DEBREU, Gerard (U, S. A.) 
DEDECKER, Paul (Belgium) 
DELANEY, Matthew 

(U. S. A.) 
DELANGE, Hubert (France) 
DELEON, M. J. (U. S. A.) 
DELIGNE, Pierre (Belgium) 
DELKIN, Jay (Canada) 
DELURY, Daniel (Canada) 
DEMARR, Ralph (U. S. A.) 
DEMPSTER M. A. H. (Eng­

land) , 
DEMYANOV, V. F. 

(U. S. S. R.) 
DENNIS, Keith (U. S. A.) 
DENZEL, Gene (Canada) 
DEPAIX, Michel (France) 
DESOLNEUX-MOULIS, 

Nicole (France) 
DESQ, Roger (France) 
DETTMAN, John (U. S, A.) 
DETWILER, Bettie (U. S. A.) 
DEYO, Roderic (U. S, A.) 
DI LIBERTO, Francesco 

(France) 
DIANTONIO, G. (U. S, A.) 
DIAS-AGUDO, Fernando 

(Portugal) 
DIAZ, Joaquin (U. S. A.) 
DICKEY, Leroy (Canada) 
DIERKER, Egbert (Ger­

many) 
DIERKER, Hildegard (Ger­

many) 
DINOLT, George (U. S, A.) 
DION, Jean-Pierre (Canada) 
DIONNE, Philippe (New 

Zealand) 
DIPERNA, Ronald (U. S. A.) 
DIXMIER, Suzanne (France) 
DIXON, John (Canada) 
DJEDOUR, Mohamed 

(Algeria) 
DJOKOVIC, Dragomir 

(Canada) 
DJRBACHIAN, Mkhitar 

(U. S. S. R.) 
DLAB, Vlastimil (Canada) 
DO, Claude (France) 
DOBBER, Eelkje (Nether­

lands) 



xxvin MEMBERS OF THE CONGRESS 

DOBBS, David (U, S, A.) 
DOBRUSHIN, R. L. 

(U. S. S. R.) 
DOLBEAULT, Pierre 

(France) 
DOLBEAULT-LEMOIN, 

Simone (France) 
DOLD, Albrecht (Fed, Rep, 

Germany) 
DOLD-SAMPLONIUS, 

Yvonne (Germany) 
DOLECKI, Szymon 

(Poland) 
DONALDSON, James 

(U. S. A.) 
DONIG, Joerg (Fed, Rep. 

Germany) 
DONOGHUE, William, Jr, 

(U. S. A.) 
DOOB, Joseph (U. S. A,) 
DOOB, Michael (Canada) 
DORS, George (U. S, A,) 
DOSTAL, Milos (France) 
DOU, Alberto (Spain) 
DOU, Jordi (Spain) 
DOUDOU-SAKIR, Thiam 

(France) 
DOUGLAS, Allan (Canada) 
DOUGLAS, Roy Rene 

(Canada) 
DOWKER, Clifford (Eng­

land) 
DOWLING, Ivan (Canada) 
DOWLING, Thomas 

(U. S. A.) 
DRAPER, James (U. S, A.) 
DROBOT, Stefan (U. S, A.) 
DROBOT, Vladimir 

(U. S, A.) 
DRUCKER, Daniel 

(U. S. A.) 
DU PLESSIS, Andrew (Eng­

land) 
DUBIEL, Makgorzata (Po­

land) 
DUBINS, Lester (U.S. A.) 
DUBINSKY, Ed (U. S. A.) 
DUBISCH, Roy (U. S. A.) 
DUBOIS, Eugene (France) 
DUBOIS, Jacques (Canada) 
DUBROVSKY, Diana (Can­

ada) ^ 
DUBUC, Eduardo (Canada) 

DUDLEY, Richard 
(U. S. A.) 

DUFF, George (Canada) 
DUFFIN, Richard 

(U. S. A,) 
DUFLO, Michel (France) 
DUGGAL, Krishan (Cana­

da) 
DUISTERMAAT, Johannes 

(Netherlands) 
DUKE, Richard (U. S. A,) 
DULMAGE, A. Lloyd (Can­

ada) 
DUNHAM, Charles (Cana­

da) 
DUNWOODY, Martin (Eng­

land) 
DURFEE, Alan (U. S. A.) 
DUVAUT, Georges (France) 
DWIVEDI, Tryambkeshwar 

(Canada) 
DWORIC, Bernard (U. S. A.) 
DWYER, Thomas (U. S. A.) 
DWYER, William (U, S. A.) 
DYE, Henry (U. S. A.) 
DYNKIN, E. B. (U. S, S. R.) 

EAGLE, Ruth (England) 
EAMES, William (Canada) 
EARLE, Clifford (U, S. A.) 
EBERLEIN, Ernst (Fed. 

Rep, Germany) 
EBERLEIN, Patrick 

(U. S. A.) 
EBERLEIN, William 

(U. S. A.) 
ECKHOFF, Jürgen (Fed. 

Rep. Germany) 
ECKLUND, Earl (U. S. A,) 
ECKMANN, Beno (Switzer­

land) 
EDELSTEIN, Michael (Can-

EDMUNDS, Charles (Canada) 
EDWARDS, Harold 

(U. S. A.) 
EDWARDS, Martin (Eng­

land) 
EDWARDS, Robert 

(U. S. A.) 
EELLS, James (England) 
EFROYMSON, Gus 

(U. S. A.) 

EGGAN, Lawrence (U. S. A,) 
EGGLETON, Roger 

(Israel) 
EGUCHI, Kazuo (Japan) 
EHLE, Byron (Canada) 
EICHHORN, Wolfgang 

(Fed. Rep. Germany) 
EILENBERG, Samuel 

(U. S. A.) 
EINSELE, Charles (Switzer­

land) 
EISENBUD, David (U. S, A,) 
EKLOF, Paul (U. S. A.) 
ELGOT, Calvin (U. S, A.) 
ELIE, Laure (France) 
ELIE, Richard (France) 
ELJOSEPH, Nathan (Israel) 
ELLERS, Eric (Canada) 
ELLIOTT, George (Den­

mark) 
ELLIOTT, Peter (England) 
ELLIS, Alan (Wales) 
ELLIS, Hubert (Canada) 
ELLIS, Richard (U. S. A,) 
ELWORTHY, Kenneth 

(England) 
ELZEIN, Fouad (France) 
EMA, Emmanuel (Nigeria) 
EMAMI-RAD, Hassan Ali 

(Iran) 
EMBRY, Mary (U. S. A.) 
EMERSON, John (U. S. A.) 
EMSALEM, Jacques 

(France) 
ENDERTON, Herbert 

(U. S. A.) 
ENFLO, Per (U. S. A.) 
ENGBER, Michael (U. S. A.) 
ENGQUIST, Michael 

(U. S. A.) 
ENGUEHARD, Michel 

(France) 
ENRIGHT, T. J, (U. S. A,) 
EPHRAIM, Robert 

(U. S. A.) 
ERBACH, David (England) 
ERDAHL, Robert (Canada,) 
ERDOS, John (England) 
ERDOS, Paul (Hungary) 
ERIKSSON, Folke (Sweden) 
ERKAMA, Timo (Finland) 
ERNEST, John (U. S. A.) 
ERSHOV, Youri (U. S. S. R.) 



MEMBERS OF THE CONGRESS XXIX 

ESPELIE, Solveig (U, S. A.) 
ESTRADA, Mario (Cuba) 
EVANS, Arwel (Canada) 
EVANS, Buell (U. S. A,) 
EVANS, Edward (U, S, A.) 
EVERITT, William (Scot­

land) 
EWELL, John (U. S. A.) 
EYMARD, Gerald (France) 
EYMARD, Pierre (France) 
EZEILO, James (Nigeria) 

FADELL, Edward (U. S, A.) 
FAIRCHILD, William 

(U. S. A.) 
FAIRES, Douglas (U, S. A.) 
FAIRWEATHER, Graeme 

(U. S. A,) 
FAKIR, Sabah (France) 
FALBO, Clement (U. S. A.) 
FARAHAT, Hanafi (Canada) 
FARAUT, Jacques (France) 
FARKAS, Miklos (Hungary) 
FARY, Istvan (U. S. A.) 
FASANO, Antonio (Italy) 
FEFFERMAN, Charles 

(U. S. A.) 
FEICHTINGER, Oskar 

(U. S, A.) 
FEIN, Burton (U.S. A.) 
FEJES-TOTH, Laszlo 

(Hungary) 
FELDMAN, Chester 

(U. S. A.) 
FELDMAN, Jacob (U. S. A.) 
FENCHEL, Werner (Den­

mark) 
FENN, Roger (England) 
FERGUSON, Le Baron 

(U. S. A.) 
FERNANDEZ, Delvis 

(U. S. A.) 
FERNANDEZ, Patricia 

(U. S. A.) 
FERRIER, Jean-Pierre 

(France) 
FERRIS, Ian (U. S. A.) 
FIGIEL, Tadeusz (Poland) 
FILIPPOV, Vladimir 

(U. S. S. R,) 
FILLMORE, Peter (Canada) 
FINKELSTEIN, Leib 

(Israel) 

FINLAYSON, Henry (Can­
ada) 

FINN, Robert (U. S. A.) 
FIREY, William (U, S. A.) 
FISCHER, Wolfgang (Fed. 

Rep, Germany) 
FISCHER, Herbert (Fed. 

Rep. Germany) 
FISHBACK, William 

(U. S. A.) 
FISHER-PALMQUIST, 

Janet (U. S. A.) 
FISK, Donald (U.S.A.) 
FLAHERTY, Frank 

(U. S. A.) 
FLANCHEC, Annick 

(France) 
FLATH, Daniel (U, S. A.) 
FLEISHMAN, Bernard 

(U. S. A.) 
FLETCHER, Beryl (Eng­

land) 
FLETCHER, Trevor (Eng­

land) 
FLEURY, Patrick (U, S. A.) 
FLORES-ESPINOZA, 

Ruben (Mexico) 
FLYNN, Thomas (U. S. A.) 
FOGLIO, Susana (Argen­

tina) 
FOLLAND, Gerald (U. S. A.) 
FOLLMER, Hans (Germany) 
FOMENKO,A. 

(U. S. S. R.) 
FONG, Jeffrey (U. S. A.) 
FONTAINE, Jean Marc 

(France) 
FORBES, Douglas (Canada) 
FORD, James (England) 
FORMAN, William 

(U.S.A.) 
FORNAESS, John (Norway) 
FORRESTER, Herbert 

(U. S. A.) 
FORSEY, Hal (U. S. A.) 
FORSTER, Otto (Fed. Rep. 

Germany) 
FOURNIER, John (Canada) 
FOX, Charles (Canada) 
FOX, Leslie (England) 
FOX, Ralph (New Zealand) 
FRAGA, Robert (Lebanon) 
FRAKER, Ross (U. S. A.) 

FRAMp, J. Sutherland 
(U. & A.) 

FRANCO, Ernesto (Puerto 
Rico) 

FRANK, Evelyn (U, S. A.) 
FRANK, keonid (Israel) 
FRANKEN, Robert (U. S. A,) 
FRANKENS, fan (Nether­

lands) , ; , 
FRANKS, John (U, S. A.) 
FRÄSER, P,av4d (U.S.A.) 
FRASER, Gr^nt (U.S. A.) 
FRASER, Wallace 

(Canada) " 
FREDMAN/Michael 

(U,S,A.) . 
FREEDMAN, Michael 

(U.S.A.) 
FREI, Armjrç (Canada) 
FREITAG, Eberhard (Fed. 

Rep. Çermany) 
FREMLIN, David (England) 
FRIED, ftryin (Hungary) 
FRIEI?LAN[I?ER,Eric 

(U.S .A.)" 
FRIEDLANDER, John 

(Canada) '• 
FRIEDLANPER, Susan 

(U. S..A) . 
FRIEDMAN, Avner 

(U.S.AÓ ' * 
FRIEDMAN,. Harvey 

(U. S. A) 
FRIEDMAN", Nathaniel 

(U.S.A.)-
FRIEDMAN, Sy (U. S. A.) 
FRIEpRiqHS,Kurt 

(U. S. A,) 
FRIEL, Jumps (U. S. A.) 
FRISTEDT, Bert (U. S. A.) 
FRITSCH, Rudptf (Fed. Rep. 

Germany) 
FRQHLIOft Albrecht (Eng­

land) , *\ i 
FRpMM, ;J<iis (Fed. Rep. 

Germany) , < 

FROSTMÀH ° t t ° (Sweden) 
FUCH, Gerard (France) 
FUCFfS, L^zÌò(U, S.A.) 
FUCHS, Wolfgang ,(U. S. A.) 
FUCHSÇTEINflR, Benno 

(Fed. Rep*. Germany) 
FUENT0, Maria (Mexico) 



XXX MEMBERS OF THE CONGRESS 

FUJIWARA, Masahiko (Ja­
pan) 

GAAL, Lisi (U.S.A.) 
GAAL, Steven (U. S. A.) 
GABRIEL, Peter (Switzer­

land) 
GAETA, Federico (U, S. A.) 
GAFFNEY, Matthew 

(U. S. A.) 
GALAMBOS, Janos 

(U. S. A,) 
GALAYE, Dia (Senegal) 
GALBRAITH, Alan (U. S, A.) 
GALE, Deborah (U, S. A.) 
GALLETTO, Dionigi (Italy) 
GAL'PERIN, E. A, (Israel) 
GAMLEN, John (New 

Zealand) 
GANDHI, J. M. (U.S. A,) 
GANELIUS, Tord (Sweden) 
GAPAILLARD, Christiane 

(France) 
GAPAILLARD, Jacques 

(France) 
GARANCON, Maurice t 

(Canada) 
GARCIA, O. C, (Mexico) 
GARDNER, Barry (Au­

stralia) 
GARDNER, L, Terrell (Can­

ada) 
GARDNER, Robert 

(U. S. A.) 
GARG, Krishna (Canada) 
GARLAND, Howard 

(U. S. A.) 
GARLAND, Roy (U. S. A.) 
GARNER, Cyril (Canada) 
GARNETT, John (U. S. A.) 
GAROLA, Claudio (Italy) 
GARRISON, Betty (U, S. A.) 
GARWIN, Charles (U, S. A.) 
GASPER, George (U. S. A.) 
GASYMOV, Mirrubbus 

(U. S. S. R.) 
GATTESCHI, Luigi (Italy) 
GAUDRY, Garth (Australia) 
GAUGER, Michael (U. S. A,) 
GAUTHERON, Véronique 

(France) 
GAVURIN, Lester (U. S. A.) 
GEHRING, Frederick 

(U. S. A.) 

GEIVAERTS, Marcel (Bel­
gium) 

GENOT, Marie-Luce (Can­
ada) 

GEORGE, Keith (England) 
GERAMITA, Anthony (Can-

GERAMITA, Joan (Canada) 
GERARD, Dubois (France) 
GERBER, Porter (U, S. A,) 
GERHARD, Arthur (Cana­

da) 
GERHARDS, Leonhard 

(Fed. Rep. Germany) 
GERLACH, Eberhard (Can­

ada) 
GERMAY, Noel (Belgium) 
GERSTEIN, Larry (U. S. A.) 
GERSTEN, Stephen 

(U. S. A.) 
GHAFFARI, Abolghassem 

(U, S. A.) 
GHALIB, Mudhafar (Iraq) 
GHISLAIN, Morin (Canada) 
GIBB, Glenadine (U, S, A.) 
GIFFEN, Charles (U. S. A.) 
GILANI, Muntaz Shah (Can­

ada) 
GILBARG, David (U. S, A,) 
GILBERT, William (Canada) 
GILES, John (Australia) 
GILLAM,Basil(U.S.A.) 
GILLESPIE, T. Alastair 

(Scotland) 
GILLIGAN, Bruce (Canada) 
GILLIS, Joseph (Israel) 
GILLMAN, Leonard 

(U, S. A.) 
GILMAN,Jane(U.S.A.) 
GILMAN, Robert (U. S. A.) 
GILMORE, Lynnette (New 

Zealand) 
GINE, Evarist (Venezuela) 
GINSBURG, John (Canada) 
GIRARD, Jean Yves (France) 
GIRI, Narayan (Canada) 
GITLER, Samuel (Mexico) 
GITTLEMAN, Arthur 

(U. S. A,) 
GIUSTI, Marc (France) 
GLASNER, Moses (U. S. A.) 
GLAUBERMAN, George 

(U. S. A.) 

GLICKSBERG, Irving 
(U. S. A.) 

GLIMM, James (U, S. A,) 
GNEDENKO, Boris 

(U. S. S. R.) 
GOBLOT, Remi (France) 
GODBILLON, Claude 

(France) 
GODDARD, Laurence (Eng­

land) 
GODET-THOBIE, Christiane 

(France) 
GODFREY, Colin (U. S, A,) 
GOELMAN, Don (U, S. A.) 
GOETZE, Ernst (Canada) 
GOLDBERG, Donald 

(U. S. A.) 
GOLDBERG, Michael 

(U. S. A.) 
GOLUBITSKY, Martin 

(U. S. A.) 
GOND ARD, Danielle 

(France) 
GOOD, Anton (Switzerland) 
GOODAIRE, Edgar (Can­

ada) 
GOODMAN, Adolph 

(U. S. A.) 
GOODMAN, Gerald (Italy) 
GOODMAN, Jacob Eli 

(U. S. A.) 
GOODRICK, Richard 

(U. S. A.) 
GORDON, Cameron (Eng­

land) 
GOTO, Morikuni (U, S. A.) 
GOULD, Sydney (Rep, China) 
GOULLETDERUGY, 

Alain (France) 
GOURSAUD, Jean-Marie 

(France) 
GOW, Roderick (Canada) 
GRABINER, Sandy 

(U. S. A,) 
GRAHAM, Ian (Canada) 
GRAHAM, R. L. (U. S. A,) 
GRANGER, Jean-Michel 

(France) 
GRANT, Douglass (Canada) 
GRANT, John (England) 
GRATZER, George (Canada) 
GRAY, Alfred (U.S. A.) 
GRAY, Ayton (U.S.A.) 



MEMBERS OF THE CONGRESS XXXI 

GRAY, Jack (Australia) 
GRAY, Mary (U, S, A.) 
GREEN, Judy (U.S.A.) 
GREEN, Leon (U.S. A.) 
GREENE, Curtis, (U, S, A.) 
GREENLEAF, Frederick 

(U, S. A,) 
GREEVER, John (U, S. A.) 
GREGORY, David (Canada) 
GREGORY, John (U. S. A.) 
GREIG, Margaret (England) 
GREIG, William (England) 
GREINER, Peter (Canada) 
GRELAUD, Gerard (France) 
GREVILLE, Thomas 

(U. S, A.) 
GRIFFIN, Ernest (U. S. A,) 
GRIFFIN, Malcolm (Canada) 
GRIGELIONIS, Bronius 

(U. S. S. R.) 
GRIOLI, Guiseppe (Italy) 
GROEMER, Helmut 

(U. S. A.) 
GROSSMAN, Edna 

(U. S. A.) 
GROSSMAN, Edward 

(U. S. A.) 
GROSSWALD, Emil 

(U. S. A.) 
GROVE, Karsten (Denmark) 
GRUBB, Anthea (England) 
GRUENBERG, Karl (Eng­

land) 
GRUNBAUM, A. Alberto 

(U. S. A.) 
GRUNBAUM, Branka 

(U. S. A.) 
GUCKENHEIMER, John 

(U. S. A.) 
GUERASIMOV, Ivan 

(U. S. S. R.) 
GUERINDON, Jean (France) 
GUICHARDET, Alain 

(France) 
GUILLOTTE, Guy (Canada) 
GUINAND, Andrew (Cana­

da) 
GUIRO, Abdoulaye (Senegal) 
GULLIVER, Robert 

(U. S, A.) 
GUNDLACH, Karl-Bern-

hard (Fed. Rep. Germany) 
GUNSON, J. M. (Canada) 

GÜNTHER, Claus (Fed. 
Rep. Germany) 

GÜNTHER, Georg (Canada) 
GUPTA, Hansraj (India) 
GUPTA, Kanta (Canada) 
GUPTA, Narain (Canada) 
GUSTAFSON, Karl 

(U. S. A.) 
GUY, Roland (Canada) 
GYIRES, Bela (Hungary) 

HAFF, Charles (Canada) 
HAG, Kari (Norway) 
HAG, Per (Norway) 
HAGEDORN, Peter (Fed. 

Rep. Germany) 
HAHN, Alexander 

(U. S. A.) 
HAHN, Marjorie (U. S. A.) 
HAHN, Peter (U.S. A.) 
HAIMO, Deborah (U. S. A.) 
HAIMO, Franklin (U. S. A.) 
HAJNAL, Andrâs (Hungary) 

JIALABISKY, Lome (Cana­
da) 

HALBERG, Charles 
(U. S. A.) 

HALE, Victor (England) 
HALES, Alfred (U.S. A.) 
HALES, Stanton (U. S. A.) 
HALL, Gaineford (U. S. A.) 
HALL, William (U.S. A.) 
HALLETT, Richard (Canada) 
HALMOS,P.R.(U.S.A.) 
HALPERIN, Israel (Canada) 
HALPERIN, Miriam 

(U. S, A.) 
HALPERN, Herbert 

(U. S. A.) 
HAMAD A, Noboru (Japan) 
HAMBLETON, Ian (Canada) 
HAMEL,Ray(U.S.A.) 
HAMERNIK, Wolfgang ' 

(Fed. Rep. Germany) 
HAMET, Seydi (Senegal) 
HAMMOND, William 

(U. S. A.) 
HAMMOND-SMITH, David 

(England) 
HANDELMAN, David 

(Canada) 
HANES,Kit(U.S.A.) 
HANSEN, Idar (Norway) 

HANSEN, Vagn (Denmark) 
HANSON, Denis (Canada) 
HARARI, Sami (France) 
HARARY, Frank (U, S. A,) 
HARASE, Takashi (Japan) 
HARBORTH, Heiko (Fed. 

Rep. Germany) 
HARDIE, K. (Rep. South 

Africa) 
HARDT, Robert (U, S, A.) 
HARGRAVE, Barry (Scot­

land) 
HARIS, Stephen (U. S, A.) 
HARLOW, Donald (England) 
HARPER, John (New 

Zealand) 
HARRINGTON, Leo 

(U. S. A.) 
HARRIS, Bruno (U. S. A.) 
HARRIS, L. Frank (Canada) 
HARRIS, Michael (U. S. A). 
HARRISON, David (U. S.A.) 
HARRISON, Jenny (U. S. A.) 
HARRISON, Kenneth 

(Australia) 
HARRISON, Wei-Jen 

(U. S. A.) 
HARROLD, Orville 

(U. S. A.) 
HARROP, Ronald (Canada) 
HART,Neal(U.S.A.) 
HARTSHORNE, Robin 

(U. S. A.) 
HARUKI, Hiroshi (Canada) 
HARZALLAH, Khelifa 

(Tunisia) 
HARZHEIM, Egbert (Fed. 

Rep. Germany) 
HASSANI,Nouredine 

(Algeria) 
HASUMI, Moris Uke (Japan) 
HATCHER, Allen (U. S. A.) 
HATCHER, Theodore 

(U. S. A.) 
HATORI, Tsukasa (Japan) 
HATTORI, Akio (Japan) 
HAUPTMANN, Wolfgang 

(Fed. Rep, Germany) 
HAUSMANN, Jean-Claude 

(Switzerland) 
HAUSRATH, Alan (U. S. A.) 
HAUSSMANN, Ulrich (Can-



XXXll MEMBERS OF THE CONGRESS 

HAUSSMANN, Werner 
(Fed. Rep. Germany) 

HAVNEN, Johan (Norway) 
HAWKINS, Thomas 

(U. S. A.) 
HAYASHI, Hiroshi (Japan) 
HAYDEN, T. (U, S. A.) 
HAYES, Lois (U.S. A.) 
HAYMAN, Walter (England) 
HAZELL, John (Canada) 
HAZEWINKEL, Michiel 

(Netherlands) 
HEADLEY, Velmer (Canada) 
HEARD, Melvin (U.S.A.) 
HEBLE, Madhav (Canada) 
HECHLER, Stephen 

(U. S. A.) 
HEDBERG, Lars Inge 

(Sweden) 
HEIDEMA, Clare (U. S. A,) 
HEIL, Erhard (Fed, Rep, 

Germany) 
HEILBRONN, Hans (Cana­

da) 
HEINEKEN, Hermann 

(Fed. Rep. Germany) 
HEINICKE, Allan (Canada) 
HEINIG, Hans (Canada) 
HELD, Rene (Canada) 
HELFFER, Bernard (France) 
HELLING, Heinz (Fed, Rep, 

Germany) 
HEMERNIK, Wolfgang 

(Fed. Rep. Germany) 
HEMSTEAD, Polly (U. S. A.) 
HEMSTEAD, Robert 

(U. S. A.) 
HENDERSON, James (Can­

ada) 
HENGARTNER, Walter 

(Canada) 
HENRICH, Christopher 

(U. S. A.) 
HENRIKSEN, Melvin 

(U. S. A.) 
HENRY, Jean-Pierre (France) 
HENTZEL, Irvin (U. S. A.) 
HERING, Franz (Fed. Rep. 

Germany) 
HERING, Heinrich (Fed. 

Rep. Germany) 
HERMAN, Michael (France) 
HERMES, Henry (U. S. A.) 

HERN, Thomas (U.S. A.) 
HERRIOT, John (U. S, A.) 
HERRIOT, Sarah (U. S. A.) 
HERRLICH, Horst (Fed. 

Rep. Germany) 
HERSH, Reuben, (U. S. A.) 
HERSZBERG, Jerzy 

(England) 
HERZBERGER, Jürgen 

(Fed. Rep. Germany) 
HESPEL, Christiane (France) 
HEUZE, Daniele (France) 
HEWER, Gary (U.S. A.) 
HEYWOOD, John (Canada) 
HEYWOOD, Philip (Scot­

land) 
HICKERSON,Dean 

(U. S. A.) 
HIGASHIYAMA, Teiko 

(Japan) 
HIGGINSON, William 

(Canada) 
HIGGS, Denis (Canada) 
HIGMAN, Graham (Eng­

land) 
HILBERT, Stephen (U. S. A.) 
HILL, Joe (U.S. A.) 
HILL, Lee (U.S. A,) 
HINDMAN, Neil (U. S. A.) 
HIRSCHFELD, James (Eng­

land) 
HIRZEBRUCH, Friedrich 

(Fed. Rep. Germany) 
HISCOCKS, Jack (Canada) 
HITOTSUMATSU, Shin 

(Japan) 
HO, Shung-pun (Canada) 
HOANG, Xuan (Dem. Rep, 

Viet-Nam) 
HOBBS, Arthur (U.S. A.) 
HOCQUENGHEM, Alexis 

(France) 
HOCQUENGHEM, Serge 

(France) 
HODGES, Wilfrid (England) 
HODGKIN, Luke (England) 
HOEHN, Erwin (Canada) 
HOFFMAN, Alan (U. S, A.) 
HOFFMAN, Frederick 

(U. S. A,) 
HOFFMAN, Peter (Canada) 
HOFFMAN, William 

(U. S. A.) 

HOGARTH, Pauline 
(Australia) 

HOGARTH, William 
(Australia) 

HOGBE-NLEND, Henri 
(France) 

HOHN, Franz (U.S.A.) 
HOITSMA, David (U. S. A.) 
HOLLAND, Anthony (Can­

ada) 
HOLMAN, Derek (U, S. A,) 
HOLME, A. Berit (Norway) 
HOLME, Audun (Norway) 
HOLMES, Charles (U. S. A,) 
HOLROYD, Frederick (Eng­

land) 
HONG, Im-Sik (Japan) 
HONG, Sung Sa (Canada) 
HOO, Cheong (Canada) 
HOOBLER, Raymond 

(U. S, A.) 
HOOLEY, C. (England) 
HOOPER, R. (U. S. A.) 
HORIKAWA, Eiji (Japan) 
HORMANDER,Lars 

(Sweden) 
HORN, Andreas (Fed. Rep. 

Germany) 
HORVATH, John (U. S. A,) 
HOSCHEK, Josef (Fed. Rep. 

Germany) 
HOSKINS, William (Canada) 
HOSTINSKY, Aileen 

(U. S. A.) 
HOUH, Chorng Shi (U. S. A.) 
HOUSEHAM, Keith (Rep. 

South Africa) 
HOWE, Algy (Australia) 
HOWE, Roger (U.S. A.) 
HOWROYD, Terry (Canada) 
HRYCAY, Rudolph 

(Canada) 
HSIA, John (U. S. A.) 
HSIANG, Wu-Yi (U. S. A,) 
HSIEH,Po-Fang(U.S.A.) 
HSIEH, Tsu-Teh (Canada) 
HSIUNG, Chuan-Chih 

(U. S. A.) 
HUBBARD, John (U, S. A,) 
HUBER, Catherine (France) 
HUBER, Peter (Switzerland) 
HUET, Denise (France) 
HUET, Patrick (France) 



MEMBERS OF THE CONGRESS XXXU1 

HUFF,Melvyn(U.S.A.) 
HUFF, Robert (U.S.A.) 
HUGELSHOFER, Rene 

(Switzerland) 
HUGHART, Stanley 

(U. S. A.) 
HUGHES, Edward (Canada) 
HUGHES, Ian (Canada) 
HUGHES, Kenneth (Rep. 

South Africa) 
HUIGE, Gustavos (Canada) 
HUMKE,PauI(U,S.A.) 
HUMPHREYS, Gweneth 

(U, S. A.) 
HUNT, Alice (U.S.A.) 
HUNT, Burrowes 

(U, S. A.) 
HUNT, Fern (U. S, A,) 
HUNT, John (Mexico) 
HUNT, Louis (U.S. A.) 
HUNTER, David (England) 
HURD, Albert (Canada) 
HURLEY, James (U. S. A.) 
HURRELBRINK, Jürgen 

(Fed, Rep. Germany) 
HURTEVENT, Jacques 

(France) 
HUSAIN, Taqdir (Canada) 
HUSSAIN, Mansour 

(Kuwait) 
HUTCHINSON, Joan 

(U. S. A.) 
HYERS, Donald (U.S. A.) 

IARROBINO, Anthony 
(U. S. A.) 

IBISCH, Horst (France) 
ICHIJO, Yoshihiro (Japan) 
IGLEHART, Donald 

(U. S. A.) 
ILLMAN, Soren (Finland) 
ILLUSIE, Luc (France) 
IMAI, Chuichi (Japan) 
IMRICH, Wilfried (Austria) 
INDELLI,Paola(U.S.A.) 
INFANTOZZI, Carlos 

(Uruguay) 
INOUE, Atsushi (Japan) 
INOUE, Masahisa (Japan) 
INSLEY, Robin (Canada) 
ION, Patrick (England) 
ISHAQ, Mohammad (Cana­

da) 

ISHIHARA, Shigeru (Japan) 
ISMAIL, Mourad (Canada) 
ISOBE, Kiro (Japan) 
ISRAEL, Robert (Canada) 
ITANO, Mitsuyuki (Japan) 
ITO,Nozono(U.S.A.) 
ITO, Takashi (Japan) 
ITO,Takashi(U,S.A.) 
ITO, Yoshihiko (Japan) 
IVANOFF, Vladimir 

(U, S. A.) 
IVANOV, George (Australia) 
IVERSEN, Birger (Denmark) 
IWANAGA, Yasuo (Japan) 
IWANOWSKI, Peter (Fed, 

'Rep, Germany) 
IYAHEN, Sunday (Nigeria) 
IYANAGA, Shokichi (Japan) 

JABLONSKII, Sergei 
(U. S, S. R.) 

JACKSON, Howard (Cana­
da) 

JACKSON, Lynn (U. S. A,) 
JACKSON, Terence (Eng­

land) 
JACOB, Genevieve (France) 
JACOB, Gerard (France) 
JACOBSON, David (Canada) 
JACOBSON, Florence 

(U. S, A.) 
JACOBSON, Nathan 

(U, S. A.) 
JACQUET, Hervé (U. S. A.) 
JAFFE, Arthur (U .S .A . ) 
JAFFE, Norman (Canada) 
JAIN, Darshan Lai (U. S. A.) 
JAIN,Naresh(U,S. A.) 
JAIN, Rajendra (India) 
JAIN, S.K. (U, S. A.) 
JAMBU, Michel (France) 
JAMES, Donald (U .S .A . ) 
JAMES, loan (England) 
JAMES, R.D. (Canada) 
JAMES, Robert (U. S. A.) 
JAVANSHIR, Mohamad-

gholi (Iran) 
JEANQUARTIER, Pierre 

(Switzerland) 
JECH, Thomas (U. S. A.) 
JEFFERIES, Clark (Canada) 
JEFFERY, Ralph (Canada) 
JENNER, W.E. (U. S. A.) 

JERISON, Meyer (U .S .A . ) 
JEWETT, Robert (U. S. A.) 
JIMOURIAN, James 

(Canada) 
JOFFE, Anatole (Canada) 
JOHANNSON, Klaus (Fed, 

Rep. Germany) 
JOHANSON, Arnold 

(U. S. A.) 
JOHNSEN, Eugene (U. S. A.) 
JOHNSON, Charles (U. S. A.) 
JOHNSON, David (Eng­

land) 
JOHNSON, David (U. S. A.) 
JOHNSON, Emma (U. S, A.) 
JOHNSON, James (U, S. A.) 
JOHNSON, Jerry (U, S, A.) 
JOHNSON, Joseph (U, S. A.)' 
JOHNSON, Ronald 

(Canada) 
JOHNSON, Roy (U.S.A.) 
JOHNSON, Wells (U. S. A.) 
JOHNSTON, Laurence 

(Canada) 
JOHNSTONE, Peter 

(England) 
JOLLENSTEN, Ralph 

(U. S. A.) 
JONES, Burton (U.S. A.) 
JONES, F.B. (U. S. A.) 
JONES, James (Canada) 
JONES, Phillip (U, S.A.) 
JONES, Wayne (U.S .A. ) 
JONKER, Leo (Canada) 
JONSSON, Bjarni (U. S, A.) 
JORGENSEN, Palle (Den­

mark) 
JOSEPH, Gerard (Australia) 
JOSEPHY, Michael (Canada) 
JUCOVIC, Ernest (Czecho­

slovakia) 
JUDGE, David (Ireland) 
JUHASZ, Istvan (Hungary) 
JUSTICE, James (U, S. A.) 

KAAPKE, Juergen (Fed.Rep. 
Germany) 

KAASHOEK, Marinus 
(Netherlands) 

KABIR.AbmLutful 
(Canada) 

KADISON, Richard 
(U. S. A.) 



xxxiv MEMBERS OF THE CONGRESS 

KAHANE, Jean-Pierre 
(France) 

KAKEHASHI, Tetsujiro 
(Japan) 

KAKUTANI, Shizuo 
(U. S. A.) 

KALFAIAN, Jean-Paul 
(France) 

KALLAHER, Michael 
(U. S. A.) 

KALLSTROM, Anders 
(Sweden) 

KALMAN, John (New 
Zealand) 

KALNINS, Ernest (Canada) 
KALONI, Purna (Canada) 
KAMBAYASHI, Tatsuji 

(U. S. A.) 
KAMBER, Franz (U, S. A.) 
KAMOWITZ, Herbert 

(U. S. A.) 
KAMPE DE FERIET, 

Joseph (France) 
KANEYUKI, Soji (Japan) 
KANNAPPAN, P. (Canada) 
KAPER, Hans (U, S. A.) 
KAPPOS, Demetrios (Greece) 
KARATSUBA, A. A. 

(U. S. S. R.) 
KAREL, Martin (U.S.A.) 
KARGAPOLOV, Mikhail 

(U. S. S. R.) 
KARLIN, Samuel (U. S, A.) 
KAROUBI, Max (France) 
KARRASS, Abe (Canada) 
KARREMAN, Herman 

(U. S. A.) 
KARUSH, William (U. S. A.) 
KATZ, Jerome (U. S. A.) 
KATZ,Leo(U. S. A.) 
KATZ, Nicholas (U.S. A.) 
KATZ, Richard (U. S. A.) 
KAUP, Ludger (Fed, Rep. 

Germany) 
KAUTSKY, Jaroslav 

(Australia) 
KAWADA,Yukiyoshi 

(Japan) 
KAWAI, Takahiro (Japan) 
KAWASAKI, Tetsuro (Ja­

pan) 
KAWAZU, Kiyoshi (Japan) 
KAZDAN,Jerry(U.S.A.) 

KAZI, Asifali (Pakistan) 
KEARSLEY, Elliot (U, S. A,) 
KEARSLEY, Mary (Eng­

land) 
KEARTON, Cherry (Eng­

land) 
KEEN,Linda(U. S.A.) 
KEENER, Lee (Canada) 
KEEPING, Anthony (Eng­

land) 
KEGEL, Otto (England) 
KELLER, Heinrich (Switzer­

land) 
KELLOGG, Frank (U, S. A,) 
KELLY, David (Canada) 
KELLY, David (U. S. A.) 
KELLY, John (U, S. A,) 
KEMPERMAN, Johan 

(U, S. A.) 
KENNEY, Margaret 

(U. S. A.) 
KENT, Clement (Canada) 
KEOGH, Frank (U, S. A.) 
KERBY, William (Fed. Rep. 

Germany) 
KERKYACHARIAN, 

Gerard (France) 
KERR, Charles (U. S. A.) 
KERR-LAWSON, Angus 

(Canada) 
KERWIN, Carolyn (U. S. A.) 
KERZMAN, Norberto 

(U. S. A.) 
KEYFITZ, Barbara (U. S. A,) 
KHOSROSHAHI, Golam-

reza (Iran) 
KIBBEY, Donald (U. S. A.) 
KIBBLEWHITE, Kenneth 

(Canada) 
KIBLER, Robert (U. S. A.) 
KIELY, John (England) 
KIJIMA, Yoichi (Japan) 
KILLGROVE, Raymond 

(U. S. A.) 
KILTINEN, John (U, S. A.) 
KIM, C.W. (Canada) 
KIM, Churl (U. S. A.) 
KIM, Hong (U. S. A.) 
KIMENYEMBO, Mafinge 

(France) 
KINDERLEHRER, David 

(U. S. A.) 
KINDRED, Jerold (U. S. A.) 

KING, Henry (U. S.A.) 
KING. James (U, S. A.) 
KING, Paul (U. S. A.) 
KIPNIS, Claude (France) 
KIRBY,Robion(U, S. A,) 
KIREMIDJIAN, Garo 

(U. S, A.) 
KIRK, Ronald (U. S. A.) 
KIRWAN, William (U. S. A.) 
KISILEVSKY,Hershy 

(U. S. A.) 
KITAMURA, Taiichi (Ja­

pan) 
KITT, Larry (Canada) 
KLASA, Stan (Canada) 
KLEE, Victor (U.S. A.) 
KLEIMAN, Steven L. (U.S.A.) 
KLEIN, Abel (U. S. A.) 
KLEIN,Larisse(U.S,A.) 
KLEINFELD, Erwin 

(U. S. A.) 
KLEISLI, Heinrich (Switzer­

land) 
KLEITMAN, Daniel 

(U. S. A.) 
KLEMOLA, Tapio (Canada) 
KLEPPNER, Adam (U. S. A.) 
KLOESGEN, Willy (Fed. 

Rep. Germany) 
KLUGE, Reinhard (German 

Dem. Rep.) 
KLUVANEK, Igor (Austra­

lia) 
KNAPP, Anthony (U. S. A.) 
KNAUER, Ulrich (Fed. Rep. 

Germany) 
KNIGHT, Dorothy (U. S. A.) 
KNIGHT, Julia (U.S. A.) 
KNIGHT, Lyman (U. S. A.) 
KNIGHT, William (U. S. A.) 
KNILL, Ronald (U. S, A.) 
KNOEBEL, R. Arthur 

(U. S. A.) 
KNOPFMACHER, John 

(Rep. South Africa) 
KNOWLES, Robert 

(U. S. A.) 
KOBAYASHI, Shoshichi 

(U. S. A.) 
KOBLITZ,Neal (U.S.A.) 
KOCAK, Cevdet (Turkey) 
KOCH, Helmut (German 

Dem. Rep.) 



MEMBERS OF THE CONGRESS XXXV 

KOCHER, Frank (U, S. A.) 
KOEHLER, Don (U ,S. A.) 
KOGISO,Yukio (Japan) 
KOHN, Joseph (U.S.A.) 
KOIZUMI, Shoji (Japan) 
KOLCHIN, Ellis (U.S.A.) 
KOLMAN, Bernard 

(U, S. A.) 
KOLMER, Shirley (U. S, A.) 
KOLODNER, Ignace 

(U, S. A.) 
KOMATSU, Gen (Japan) 
KOMATSU, Yusaku (Japan) 
KOMHOFF, Magelone (Fed. 

Rep. Germany) 
KOMLOS, Janos (Hungary) 
KOMORNICKI, Wojciech 

(U. S, A,) 
KORENBLUM, Boris (Israel) 
KORNEICHUK, Nikolai 

(U. S. S. R.) 
KORTRAM, Ronald 

(Netherlands) 
KOSACHEVSKAYA, Helen 

(U. S. S. R.) 
KOSCHORKE, Ulrich 

(U. S. A.) 
KOSMAN, Yvette (France) 
KOSTINSKY,Alan 

(U, S. A.) 
KOTA, Osamu (Japan) 
KOTTWITZ, Robert 

(U. S. A.) 
KOTZIG, Anton (Canada) 
KOUTROUFIOTIS, Dimitri 

(U. S. A.) 
KOVACS, Laszlo (Australia) 
KOVARI, Thomas (England) 
KOVHCIC, Jerald (U. S. A.) 
KOZMA, Han (Israel) 
KRAEMER, Helmut (Ger­

many) 
KRAFT, Hanspeter (Switzer­

land) 
KRAFT, Richard (U. S. A.) 
KRAMER, Thomas 

(U. S. A.) 
KRANTZ, Steven (U.S. A.) 
KRASNER, Marc (France) 
KREISS, Heinz (Sweden) 
KRENER, Arthur (U. S. A.) 
KREYSZIG, Erwin 

(Canada) 

KRIEGER, Wolfgang (Fed, 
Rep, Germany) 

KRISHNAMURTHY, 
Visvanatha (India) 

KRISTENSEN, Leif (Den­
mark) 

KRIZANCIC, Ignace (Can­
ada) 

KRNANOVA-PROULX, 
Viera (U, S. A.) 

KRONSTADT, Eric 
(U. S. A.) 

KRONSTEIN, Karl 
(U. S. A.) 

KROONENBERG, Nelly 
(U. S. A,) 

KRUGMAN, Edward 
(U.S.A.) 

KRUSE,Arthur(U, S.A.) 
KRUSE, Robert (U. S. A.) 
KRUSEMEYER, Mark (Ne­

therlands) 
KRUSKAL, Martin 

(U. S. A,) 
KUDRYAVTSEV,Lev 

(U. S. S. R.) 
KUEKER, David (U. S. A.) 
KUIPER, Nicolaas (France) 
KUIPERS,Jack(U. S. A.) 
KUIPERS, Lauwerens 

(U. S. A.) 
KUMAR, Arunod(U. S. A.) 
KUMMER, Hans (Canada) 
KUNUGI, Kinjiro (Japan) 
KUNZE, Ray (U.S. A.) 
KURAN, Ulku (England) 
KUREPA, Djuro (Yugosla­

via) 
KURSS, Herbert (U, S. A.) 
KURTZ, Thomas (U.S. A.) 
KUSHNER, Harold 

(U. S. A.) 
KUYK, Willem (Belgium) 
KUZNETSOV, A, V. 

(U. S. S, R.) 
KYNCH, George (England) 

L'ABBE, Marcel (Canada) 
LABELLE, Gilbert (Canada) 
LACHER, R. Christopher 

(U. S. A.) 
LACHLAN, Alistair (Can­

ada) 
LACOMBA, Ernesto (Mexico) 

LACROIX, Norbert (Canada) 
LADDE, Gangaram 

(U. S, A.) 
LADY, Lee (U, S.A.) 
LAFON, Jean-Pierre (France) 
LAFON, Monique (France) 
LAHA,Radha (U.S.A.) 
LAI, Hang-Chin (Rep. China) 
LAI,Hon-Fei(U. S. A.) 
LAINE, lipo (Finland) 
LAKSHMIKANTHAM, 

Vangipuram (U. S. A.) 
LALLI, Bikkar (Canada) 
LAM, Kee (Canada) 
LAMBERT, Jack (Scotland) 
LAMBERT, Joseph (U. S. A.) 
LAMOUREUX, Claude 

(France) 
LAMPE, William (U.S. A.) 
LANCASTER, G. Maurice 

(Canada) 
LANCE, Christopher (Eng­

land) 
LANCHON, Helene (France) 
LANDMAN, Alan (U. S. A.) 
LANDROCK, Peter (Den­

mark) 
LANDSTAD, Magnus (Nor­

way) 
LANFORD, Oscar (U.S.A.) 
LANG, George (U.S. A.) 
LAPRESTE, Jean-Thierry 

(France) 
LARA, Miguel (Mexico) 
LARMORE, Lawrence 

(U. S. A.) 
LASCARIDES, Constantine 

(Greece) 
LASHOF, Richard (U. S. A,) 
LASRY, Jean-Michel (France) 
LASSEZ, Jean-Louis (Can­

ada) 
LATORRE, Donald (U, S. A.) 
LAU, Anthony (Canada) 
LAUGWITZ, Detlef (Fed. 

Rep. Germany) 
LAUMON, Gerard (France) 
LAURENT, Pierre (France) 
LAURSEN, Kjeld (Denmark) 
LAVINE, Richard (U. S. A.) 
LAVOIE, Jean L. (Canada) 
LAVRENTEV, Mikhaie 

(U. S. S. R.) 



XXXVI MEMBERS OF THE CONGRESS 

LAVRIENTIEV, Mikail 
(U. S. S. R.) 

LAVRIK,A.F.(U. S.S.R.) 
LAW, Alan (Canada) 
LAWRENCE, John (Canada) 
LAWRUK, Bohdan (Canada) 
LAWSON, H. Blaine (U. S. A.) 
LAWSON, Terry (U. S. A.) 
LAX, Peter (U.S. A.) 
LAX, Robert (U.S.A.) 
LAXTON, Ronald (England) 
LAY, David (U.S. A.) 
LAZARUS, Michel (France) 
LE, Dung Trang (Dem. Rep. 

Vietnam) 
LE DIMET, Jean-Yves 

(France) 
LE VAN, Thiem (Dem, Rep. 

Vietnam) 
LEADER, Solomon (U. S. A.) 
LEAHEY, William (Ù. S, A.) 
LEARY, Kevin (U.S. A.) 
LEAVITT, William (U, S, A.) 
LEBAUD, Colette (France) 
LEBAUD, Georges (France) 
LEBORGNE, Daniel 

(France) 
LEDRAPPIER, Francois 

(France) 
LEE, Seng-Luan (Malaysia) 
LEE, Shing-Meng (Rep. 

China) 
LEE, Sung (Canada) 
LEEB, Klaus (Germany) 
LEECH, Jonathan (U. S. A.) 
LEEDHAM-GREEN, 

Charles (England) 
LEELA, Srinivasa (U. S. A.) 
LEES, Paul (England) 
LEESE, Stephen (England) 
LEGGETT, Anne (U. S. A.) 
LEGRAND, Denise (France) 
LEGRAND, Solange (France) 
LEHMAN, Alfred (Canada) 
LEHMAN, Eugene (Canada) 
LEHMAN, R.Sherman 

(U. S. A.) 
LEHMER, Derrick (U. S. A.) 
LEHNER, Guydo (U. S, A.) 
LEHTO, Olli (Finland) 
LEICHT, Johann (German 

Dem. Rep,) 
LEIMANIS, Eugene (Canada) 

LEINDLER, Laszlo (Hun­
gary) 

LEIPNIK, Roy (U.S.A.) 
LEISENRING, Albert 

(U. S. A.) 
LEKKERKERKER, Corne-

lis (Netherlands) 
LELONG, Pierre (France) 
LELONG-FERRAND, 

Jacqueline (France) 
LEMAIRE, Claude (Canada) 
LEMIRE, Francis (Canada) 
LEONARD, I. Edward 

(U. S. A.) 
LEONOR, Concepcion 

(Phillipines) 
LEONTIEV, Aleyei 

(U. S. S. R.) 
LEPOWSKY, James (U. S. A.) 
LERMAN, Manuel (U, S. A,) 
LERUSTE, Christian (France) 
LESLIE, Robert (U.S.A.) 
LEUNG, Dominic (U. S. A.) 
LEVEQUE, William (U. S. A.) 
LEVINSON, Henry (U. S. A,) 
LEVKO, John (U.S. A.) 
LEWAND, Robert (U, S. A.) 
LEWIS, Clayton (Canada) 
LEWIS, D. (U.S.A.) 
LEWIS,Harly(U.S. A.) 
LICKORISH, W.B. Ray­

mond (England) 
LIDDELL, Gerrard (Canada) 
LIEB, Elliott (U.S. A.) 
LIEBECK, Hans (England) 
LIGGETT, Thomas (U. S. A.) 
LIGHTHILL, James (Eng­

land) 
LIGOZAT, Gerard (France) 
LIM, Chong-Keang (Malaysia) 
LIM, Rudolf (U.S. A.) 
LIN, Tsad-Young (U.S.A.) 
LIND, Douglas (U.S.A.) 
LINDENBERG, Wolfgang 

(Fed, Rep. Germany) 
LINDNER, Rolf (German 

Dem. Rep.) 
LING, William (U. S. A.) 
LINIS, Viktors (Canada) 
LIONS, Jacques (France) 
LIPINSKI, Jan (Poland) 
LIPSCHUTZ-YEVICK, 

Miriam (U. S. A.) 

LIPSICH, H. David (U, S. A.) 
LIPSMAN, Ronald (U. S. A.) 
LIU, Chamond (U. S. A.) 
LIULEVICIUS, Arunas 

(U. S. A.) 
LIVERPOOL, Lennox 

(Sierra Leone) 
LLUIS, Emilio (Mexico) 
LODAY, Jean-Louis (France) 
LOEB,Henry(U.S.A.) 
LOEB, Peter (U.S.A.) 
LOEBL, Richard (U.S. A.) 
LOESCH, Friedrich (Fed. 

Rep. Germany) 
LOFQUIST, George (U. S. A,) 
LOJASIEWICZ, Stanislaw 

(Poland) 
LONGYEAR, Judith 

(U. S. A.) 
LOPEZ DE MEDRANO, 

Santiago (Mexico) 
LORCH, Lee (Canada) 
LORD, Graham (New Zea­

land) 
LORD, Harriet (U.S.A.) 
LOSEY, Gerald (Canada) 
LOUHIVAARA, Ilppo Simo 

(Finland) 
LOVASZ, Laszlo (Hungary) 
LUCHINS, Edith (U. S, A.) 
LUEHR, Charles (U. S. A.) 
LUFT, Erhard (Canada) 
LUHAHI, Lahi (Rep. of 

Zaire) 
LUKACS, Eugene (U. S. A.) 
LUNA, George (U.S.A.) 
LUNBECK, Rudolf 

(Netherlands) 
LUND, Bruce (Canada) 
LUNDELL, Albert 

(U. S. A.) 
LUSZTIG, George (England) 
LUTHAR,Indar (India) 
LUTZ, Elisabeth (France) 
LUXEMBURG, Wilhelmus 

(U. S. A.) 

MAC DONNELL, John 
(U. S. A.) 

MACK, John (Australia) 
MACKEY, George (U. S. A.) 
MAC LANE, Saunders 

(U. S. A.) 



MEMBERS OF THE CONGRESS XXX VII 

MAC PHAIL, Moray 
(Canada) 

MADAN, Manohar (U. S. A.) 
MADDEROM, Peter (Can­

ada) 
MADDUX, Roger (U, S. A.) 
MADLENER, Klaus (Fed. 

Rep. Germany) 
MADSEN, I. B, Henning 

(Denmark) 
MAGATTE, Thiam (Senegal) 
MAGENES, Enrico (Italy) 
MAGID,Andy(U. S.A.) 
MAGLIO, Rodolfo (U. S. A.) 
MAGNUS, Wilhelm 

(U. S, A.) 
MAH, Peter (Canada) 
MAHJOUB, Bechir (Tunisia) 
MAHONY, Lowis (U. S. A,) 
MAHROUS, Mohamed 

(U.S.A.) 
MAILHOS, Line (France) 
MAJEED, Abdul (Pakistan) 
MAJUMDAR, Samir (Cana­

da) 
MAKAR, Boshra (U. S. A.) 
MAKINEN, Jukka (Finland) 
MAKKAI, Michael (Canada) 
MAKKY,SadiaMurad 

(Iraq) 
MAKOWSKI, Gary 

(U. S. A.) 
MAKOWSKY, Johann 

(Switzerland) 
MALIK, M. A. (Canada) 
MALLIAVIN, Marie 

(France) 
MALLIAVIN, Paul (France) 
MALM, Donald (U. S. A.) 
MANASTER, Alfred 

(U. S. A,) 
MANN, Larry (U. S, A,) 
MANNING, Anthony (Eng­

land) 
MANSFIELD, Lois 

(U. S. A,) 
MANWELL, Alfred (Rhode­

sia) 
MARATHE, Kishore 

(U. S. A.) 
MARCEL, Bassene (Senegal) 
MARCHIONNA, Cesarina 

(Italy) 

MARCHIONNA, Ermanno 
(Italy) 

MARCHUK, Guriy 
(U. S. S, R.) 

MARCJA, Annalisa (Italy) 
MARCUARD, Jean Claude 

(France) 
MARCUS, Brian (U, S, A.) 
MARCUS, Robert (U. S. A.) 
MARDEN, Morris (U. S, A.) 
MARDESIC, Sibe (Yugo­

slavia) 
MARECHAL, Odile (France) 
MARGULIS, G. A. 

(U. S. S. R.) 
MARINO, Ricardo (Spain) 
MARKEL, Frank (Canada) 
MARKUS, Lawrence 

(U. S. A.) 
MAROWITZ, Michael 

(U. S. A.) 
MARQUETTY, Antoine 

(France) 
MARRY, Pierre (France) 
MARSDEN, Jerrold (Cana­

da) 
MARSHALL, Charles (Fed. 

Rep. Germany) 
MARSHALL, Donald 

(U. S. A.) 
MARSHALL, Murray (Can­

ada) 
MARTENS, Henrik (Nor­

way) 
MARTENS, Phillip 

(U. S. A,) 
MARTIN, André (France) 
MARTIN, Donald (U. S. A.) 
MARTIN, George (U. S, A.) 
MARTIN, John (Canada) 
MARTINEAU, Patrick (Eng­

land) 
MARTIO, Olli (Finland) 
MARUYAMA, Gishiro 

(Japan) 
MARVILLE, Jean Pierre 

(Switzerland) 
MASANI, Pesi (U. S. A.) 
MASCART, Henri (France) 
MASIH, SamueL(U. S. A.) 
MASKIT, Bernard (U. S. A.) 
MASLEY, John (U. S, A.) 
MASON, David (England) 

MASON, Gordon (Canada) 
MASSER, David (England) 
MASSEY, William (U, S. A.) 
MATE, Attila (Hungary) 
MATHER, Bertha (U, S. A.) 
MATHER, John (U, S. A.) 
MATHIAS, Adrian (Eng­

land) 
MATSUMOTO, Kozi 

(Japan) 
MATSUMOTO, Makoto 

(Japan) 
MATSUMOTO, Shigenori 

(Japan) 
MATSUMOTO, Yukio 

(Japan) 
MATTHES, Klaus (German 

Dem. Rep.) 
MATTHEWS, Geoffrey 

(England) 
MAU QUAN, Pham (France) 
MAULDIN, Daniel 

(U. S. A.) 
MAUREY, Bernard 

(France) 
MAUS, Eckart (Fed. Rep. 

Germany) 
MAXFIELD, John 

(U. S. A.) 
MAXWELL, Edwin (Eng­

land) 
MAXWELL, George (Cana­

da) 
MAY, Everette (U. S. A.) 
MAY, Robert (U. S. A.) 
MAYER, Meinhard 

(U. S. A.) 
MAYLAND, Edward (Can­

ada) 
MAZEN, Henrietta (U, S. A.) 
MAZUR, Barry (U. S. A.) 
MAZUROW, Victor 

(U. S. S. R.) 
MC ALISTER, Donald 

(U. S. A.) 
MC ARTHUR, Charles 

(U. S. A.) 
MC AULEY, Louis (U. S. A.) 
MC BRIEN, Vincent 

(U. S. A,) 
MC CABE, John (Scotland) 
MC CARTNEY, James 

(Scotland) 



xxxvni MEMBERS OF THE CONGRESS 

MC COLLUM, Gerald 
(U. S. A.) 

MC CONNELL, James (Ire­
land) 

MC COOL, James (Canada) 
MC COY, Peter (U. S. A,) 
MC COY, Robert 

(U, S, A,) 
MC CREA, Michael 

(U. S. A.) 
MC CRIMMON, K. M. 

(U. ,S, A.) 
MC CRORY, Clint (U. S. A,) 
MC CULLOH, Leon 

(U. S, A.) 
MC DONALD, Ian (Canada) 
MC DONALD, John 

(U. S. A.) 
MC DONOUGH, Thomas 

(Wales) 
MC ELWAIN, Sean (Austra­

lia) 
MC GEHEE, Richard 

(U. S. A.) 
MC GREGOR, James 

(U. S. A.) 
MC GREGOR, Malcolm 

(England) 
MC INTOSH, Alan (Austra­

lia) 
MC KAY, John (Canada) 
MC KEEHAN, James 

(U. S. A.) 
MC KENNA, James 

(U. S. A.) 
MC KEVEY, Robert 

(U. S. A.) 
MC LEOD, Bryce (England) 
MC LEOD, Edward 

(U. S. A.) 
MC LEOD, John (England) 
MC MULLEN, Peter (Eng­

land) 
MC NULTY, George 

(U. S. A.) 
MC PEEK, L. Joseph (Cana­

da) 
MC PHAIL, Gerard (Cana­

da) 
MC QUEEN, Paul (Canada) 
MC RAE, George (U. S. A.) 
MC SHANE, Edward 

(U. S. A.) 

MEACHAM, Robert 
(U. S. A.) 

MEAD, Ernest (Canada) 
MEAKIN, John (Australia) 
MEEK, Dereck (Canada) 
MEIR, Amram (Canada) 
MELAMED, Samuel (Cana­

da) 
MELCHIOR, Ulrich (Fed. 

Rep, Germany) 
MELDRUM, John (Scot­

land) 
MELZAK, Zdzislaw (Can­

ada) 
MENDELSOHN, Eric (Can­

ada) 
MENDELSOHN, Nathan 

(Canada) 
MENY, Georges (France) 
MERLE, Michel (France) 
MERUCCI, Claude (France) 
MESSING, William 

(U. S. A.) 
METAKIDES, George 

(U. S. A.) 
MEYER, Albert (U. S. A.) 
MEYER, Burnett (U. S. A.) 
MEYER, Christian (U. S, A.)' 
MEYERS, Leroy (U.S. A.) 
MIAMEE, Abolghassen 

(Iran) 
MICHAEL, David (England) 
MICHAEL, Ernest (U. S. A.) 
MICHAELIS, Walter 

(U. S. A.) 
MICHEL, Emsalem (France) 
MICHEL, Philippe (France) 
MICHELETTÏ, Anwa Maria 

(Italy) 
MICHELOW, Jaime (Chile) 
MIERS, Bob (Canada) 
MIKOLAS, Miklos (Hun­

gary) 
MIKUSINSKI, Jan (Poland) 
MILES, E. P., Jr. (U. S. A.) 
MILGRAM, Richard 

(U. S. A.) 
MILLER, B. Arthur (Cana­

da) 
MILLER, C. Brandt (Cana­

da) 
MILLER, Carman (Canada) 
MILLER, D. D. (U. S. A.) 

MILLER, Donald (U. S. A.) 
MILLER, Edward (U. S. A.) 
MILLER, Hugh (Canada) 
MILLER, Sanford (U. S. A.) 
MILLER, Victor (U. S, A.) 
MILLETT, Kenneth 

(U. S. A,) 
MILLMAN, Richard 

(U. S, A.) 
MILLSON, John (Canada) 
MILMAN, Pier (Israel) 
MILNER, Eric (Canada) 
MILNES, Paul (Canada) 
MILOSLAVSKY, George 

(U, S. A.) 
MILTON, E. (U, S. A,) 
MIMURA, Yukio (Japan) 
MINDA, Carl (U. S. A,) 
MING, Ronald (U. S. A.) 
MINSKER, Steven (U. S, A.) 
MIRANDA, Edward 

(U. S. A.) 
MISHRA, Ratan Shanker 

(India) 
MISNER, Charles (U. S. A.) 
MITCHELL, Andrew (Scot­

land) 
MITCHELL, Josephine 

(U. S, A.) 
MITCHELL, Rae (England) 
MITCHELL, Theodore 

(U. S. A.) 
MITCHELL, William 

(U. S. A.) 
MITROPOLSKIJouri 

(U. S. S. R.) 
MITSUI, Takayoshi (Japan) 
MIURA, Robert (U. S. A.) 
MIYAKE, Toshi-Tsune 

(Japan) 
MIYATAKE, Osamu 

(Japan) 
MIYAZAKI, Toshi-Hiro 

(Japan) 
MIZUMURA, Hideo (Japan) 
MIZUTANI, Tadayoshi 

(Japan) 
MOELLER, Regina (Fed. 

Rep. Germany) 
MOH, Tzuong-Tsieng 

(U. S. A.) 
MOKOBODZKI, Gabriel 

(France) 



MEMBERS OF THE CONGRESS XXXIX 

MOLINARO, Annick 
(France) 

MOLLIN, Richard (Canada) 
MONG, Shaw (U, S. A.) 
MONTGOMERY, Deane 

(U. S. A.) 
MONTGOMERY, Hugh 

(U. S. A.) 
MONTGOMERY, Peter 

(U. S. A,) 
MONTGOMERY, Richard 

(U. S. A.) 
MONTZINGO, Lloyd 

(U. S. A.) 
MOODY, Robert 

(Canada) 
MOORE, Berrien (U. S. A.) 
MOORE, John (U. S. A.) 
MOORE, Michael (Canada) 
MOORE, Robert (U. S. A.) 
MOORE LEE, Carolyn 

(Canada) 
MORALES, Bernardo 

(Guatemala) 
MORALES-CASTRO, 

Jorge A. (Mexico) 
MORALES-MARTINEZ, 

Rodolfo, (Mexico) 
MORAN, Patrick (Australia) 
MOREAU, Jean-Jacques 

(France) 
MOREL, Anne (U. S. A,) 
MORGAN, Christopher 

(U. S. A.) 
MORGAN, J. W. (U. S. A.) 
MORGAN, Kathryn 

(U. S. A.) 
MORREY, Charles (U. S. A.) 
MORRIS, Alun (Wales) 
MORRIS, Grainger (Austra­

lia) 
MORRIS, Peter (U. S. A.) 
MORRIS, Robert (U. S. A.) 
MORRIS, Rosa (England) 
MORRISON, Barbara 

(U. S. A.) 
MORRISON, John (U. S. A.) 
MORROW, James (U. S. A.) 
MORTELL, Michael (Ire­

land) 
MOSAK, Richard (U. S. A.) 
MOSCHOVAKIS, Joan 

Rand (U. S. A.) 

MOSCHOVAKIS, Yiannis 
(U. S, A.) 

MOSER, Jürgen (U. S. A.) 
MOSER, Louise (U. S. A.) 
MOSER, William (Canada) 
MOSEVICH, Jack 

(Canada) 
MOSTO W, George (U. S. A.) 
MOSTOWSKI, Tadeusz 

(Poland) 
MOYER, Robert (U. S. A.) 
MOYLS, Ben (Canada) 
MUELLER, Helmut (Fed. 

Rep. Germany) 
MUELLER, Thomas 

(U. S. A,) 
MUKHERJEE, Some (India) 
MULDOON, Martin (Cana­

da) 
MULDOWNEY, James 

(Canada) 
MULLA, Fuad (Kuwait) 
MULLIKIN, Harry 

(U. S. A.) 
MULLIS, Robert (Canada) 
MULVEY, Christopher 

(England) 
MUMFORD, David 

(U. S. A.) 
MUNKHOLM, Hans (Den­

mark) 
MUNN, Douglas (Scotland) 
MUNOZ, Edgar (Guatemala) 
MURASE, Ichiro (Japan) 
MURASUGI, Kunio (Can­

ada) 
MURDOCH, David (Cana­

da) 
MURPHY, Noel (Canada) 
MURRE, Jacob (Nether­

lands) 
MURTY, U. S. R. (Canada) 
MUTO, Yoshio (Japan) 
MYCIELSKI, Jan (U. S. A.) 
MYUNG, Hyo (U. S. A.) 
MYSAK, L. A. (Canada) 

NAATANEN, Marjatta 
(Finland) 

NADUM, Adii (Iraq) 
NAGANO, Tadashi 

(U. S. A.) 
NAHOUM, Albert (France) 

NAIMPALLY, Som (Canada) 
NAKAMURA, Michiko 

(Japan) 
NAKAMURA, Yatsuka 

(Japan) 
NAKANISHI, Kazuhiro 

(Japan) 
NAKANO,Kazumi 

(U. S. A.) 
NAKAZAWA, Hideaki 

(Japan) 
NAKKI, Raimo (Finland) 
NAMIOKA, Isaac (U. S. A,) 
NARASIMHAN, M. S. 

(India) 
NARASIMHAN, Mysore 

(U. S. A.) 
NARAYANASWAMI, 

Pallasena (Canada) 
NARCOWICH, Francis 

(U. S. A.) 
NARUSHIMA, Hiroshi 

(Japan) 
NASH-WILLIAMS, Crispin 

(Scotland) 
NASSIF, Maher (Nigeria) 
NATHANSON, Melvyn 

(U. S. A.) 
NEFTIDJI, Phèdre (Greece) 
NEGREPONTIS, Stylianos 

(Canada) 
NEHOROSHEV, Nicolai 

(U. S. S. R.) 
NEL, Louis (Canada) 
NELIUS, Christian (Fed. 

Rep. Germany) 
NELSEN, Roger (U. S. A.) 
NELSON, Edward (U. S. A.) 
NERON, Andre (France) 
NESBITT, Cecil (U. S. A.) 
NESS, Linda (U. S. A.) 
NESTELL, Merlynd (U. S. A.) 
NEUBERGER, John 

(U. S. A.) 
NEUMANN, Bernhard 

(Australia) 
NEVANLINNA, Rolf (Fin­

land) 
NEVEU, Jacques (France) 
NEWBERGER, Edward 

(U. S. A.) 
NEWBERGER, Stuart 

(U. S. A.) 



xl MEMBERS OF THE CONGRESS 

NEWMAN, Michael (Austra­
lia) 

NEWMAN, Morris (U. S. A.) 
NEYMAN, Jerzy (U. S. A,) 
NI CHUIV, Nora (Canada) 
NICHOLS, Nancy (England) 
NICHOLSON, William 

(Canada) 
NICKEL, Karl (Fed. Rep, 

Germany) 
NICO, William (U, S. A,) 
NICOLACOPOULOU 

Ioanna (Greece) 
NICOLAS, Jean-Louis 

(France) 
NICOLESCU, Miron (Ro­

mania) 
NIELSEN, Ole (Canada) 
NIETO, Jose (Canada) 
NIIRO, Fumio (Japan) 
NIJENHUIS, Albert 

(U. S. A.) 
NIKOLSKII, Serguei 

(U. S. S. R.) 
NILSSON, Nils (Sweden) 
NIMAN, John (U. S. A.) 
NINOMIYA, Nobuyuki (Ja­

pan) 
NIRENBERG, Louis 

(U. S. A.) 
NISHIMIYA, Han (Japan) 
NISHIURA,Togo(U. S. A.) 
NITSCHE, Johannes 

(U. S. A.) 
NIVEN,Ivan(U. S. A.) 
NORI,Madhav (India) 
NORIYUKI, Hirose (Japan) 
NORMAND, Gerard (Can­

ada) 
NORTON, Karl (U, S. A.) 
NOSAL, Miloslav (Canada) 
NOTTROT, Roelof (Nether­

lands) 
NOVAK, Josef (Czechoslo­

vakia) 
NOZAKI, Yasuo (Japan) 

OBA, Sachio (Japan) 
OBERAI, Kirti (Canada) 
OBI, Chike (Nigeria) 
O'BRIAN, Nigel (England) 
O'BRIEN, Richard (Canada) 
O'BRIEN, Thomas (U. S. A.) 

O'CALLAGHAN, Liam 
(U.S.A.) 

O'CONNOR, Thomas 
(U. S. A.) 

ODA, Tadao (Japan) 
O'DONO VAN, Donai 

(Ireland) 
OEHMKE, Robert (U. S, A.) 
O'FARRELL, Anthony 

(Ireland) 
OGIUE,Koichi(U.S,A.) 
OHKUMA, Tadashi (Japan) 
OHWAKI, Shin-Ichi (Japan) 
OKAWA, Sachiko (Japan) 
OKEE, Jeker (Uganda) 
OKOH, Frank (Canada) 
OKUBO, Tanjiro (Canada) 
OLAOFE, G. Oluremi 

(Nigeria) 
OLECH, Czeslaw (Poland) 
OLEINIK, Olga (U. S, S. R.) 
OLIN, Philip (Canada) 
OLIVER, Robert (U. S. A.) 
OLSEN, Catherine (U. S. A.) 
OLSON, Andrew (Chile) 
OLSSON, Jörn (Denmark) 
OLVER, Peter (U. S. A.) 
O'MALLEY, Sister Mary 

(U. S. A.) 
O'NEIL, Richard (U.S. A.) 
O'NEILL, Anne (U. S. A.) 
O'NEILL, Michael (Canada) 
ONG, Boon (Canada) 
ONO, Tamio (Japan) 
OORT, Frans (Netherlands) 
OPFER, Gerhard (Fed. Rep, 

Germany) 
ORIHARA, Masae (Japan) 
ORLIK, Peter (U. S. A,) 
ORMELL, Christopher (Eng­

land) 
ORNSTEIN, Avraham 

(Israel) 
OSBORN, J. Marshall 

(U. S. A,) 
OSBORNE, Mason (U, S. A.) 
OSGOOD, Charles (U. S. A.) 
OSHIO, Shigeru (Japan) 
OSHOBI, Emmanuel (Nige­

ria) 
OSNER,Henry(U.S.A.) 
OSOFSKY, Barbara 

(U. S. A.) 

OSSERMAN, Robert 
(Uf S. A.) 

OSTIANU, Natalia 
(U. S. S. R.) 

OTSUKA, Kayo (Japan) 
OTSUKI, Tominosuke (Ja­

pan) 
OZOLS, Vilnis (U, S. A.) 

PAALMAN-DEMIRAND, 
Aida (Netherlands) 

PABST, Günther (Canada) 
PACIOREK, Joseph 

(U. S. A.) 
PACKEL, Edward (U. S. A.) 
PADMANABHAN, Ran-

ganathan (Canada) 
PAGANI, Carlo (Italy) 
PAGE, S, S. (Canada) 
PAHLINGS, Herbert (Fed. 

Rep. Germany) 
PAINE, Christine (Australia) 
PAL, Edward (Canada) 
PAL, Laszlo (Nigeria) 
PALAIS, Richard (U. S. A.) 
PALMER, John (U. S. A.) 
PAN, Ting (U. S. A.) 
PANDEY, Nagendra 

(U. S. A.) 
PAPADOPOULOS, M. 

(U. S. A.) 
PAPAKYRIAKOPOULOS, 

Christos (U. S. A.) 
PAPP, F. J. (Canada) 
PAREEK, Chandra Mohan 

(Kuwait) 
PARKER, Phil (U. S. A.) 
PARKS, Harold (U. S. A.) 
PARMENTER, Michael 

(Canada) 
PARSHALL, Brian (U. S. A.) 
PARTIS, Michael (Scotland) 
PASCAUD, Jean-Louis 

(France) 
PASSI, Inder (India) 
PASSOW, Eli (U. S. A,) 
PASTIJN, Francis 

(Belgium) 
PATERA, Jiri (Canada) 
PATERSON, Michael (Eng­

land) 
PATODI, Vijay (India) 
PATTON, Ralph (U. S. A.) 



MEMBERS OF THE CONGRESS Xli 

PAULSON, Edward 
(U. S.A.) 

PAYSANT-LE ROUX, 
Roger (France) 

PEARSON, Lennart (U. S, A.) 
PEDERSEN, Erik (Den­

mark) 
PEDERSEN, Gert (Denmark) 
PEDOE, Daniel (U.S.A.) 
PEEL, Michael (England) 
PEETRE, Jaak (Sweden) 
PEIXOTO, Mauricio (Brazil) 
PELCZYNSKI, Aleksander 

(Poland) 
PELL, William (U.S. A.) 
PELLES, Donald (U, S, A.) 
PELLETIER, Donald (Can­

ada) 
PELLETIER, Joan (Canada) 
PENICO, Anthony, (U. S. A.) 
PENOT,J,P.(France) 
PERSSON, Jan (Norway) 
PERSSON, Ulf (Sweden) 
PESCHL, Ernst (Fed. Rep. 

Germany) 
PETERSEN, Bent (U. S, A.) 
PETERSEN, Gordon (New 

Zealand) 
PETERSON, Dale (U. S. A.) 
PETERSON, Franklin 

(U. S. A.) 
PETERSON, Leroy 

(U. S. A.) 
PETRICH, Mario (U. S. A.) 
PETRIDIS, Nicholas 

(U. S. A.) 
PETRIE, Ted (U.S. A.) 
PETTET, Martin (Canada) 
PETTY, Clinton (U.S. A.) 
PEYRIERE, Jacques (France) 
PFEFFER, Washek (U. S. A.) 
PHELPS, Robert (U.S. A.) 
PHILLIPS, John (Canada) 
PHILLIPS, Ralph (U. S, A.) 
PHYTHIAN, John (England) 
PICARD, Colette (France) 
PICARDELLO, Angelo 

(Italy) 
PICCARD, Sophie (Switzer­

land) 
PICCININI, Livio (Italy) 
PICKEL, Paul (U.S. A,) 
PIERART, Philippe (France) 

PIERCE, Stephen (Canada) 
PIETROWSKI, Alfred 

(Canada) 
PIETSCH, Albrecht (German 

Dem, Rep.) 
PIGER, Jean (Chile) 
PIGOZZI,Don(U,S.A.) 
PILAR, Martin (Spain) 
PINCUS, Joel (U. S. A.) 
PINKHAM, Henry (U. S, A.) 
PIRANIAN, George 

(U. S. A.) 
PISIER, Gilles (France) 
PITCHER, Everett (U. S. A.) 
PITMAN, Jane (Australia) 
PITT, David (England) 
PITT, Loren (U.S.A.) 
PITTENGER, Arthur 

(U. S. A,) 
PIZER, Arnold (U.S. A.) 
PLACENTINI, Giuliamaria 

(Italy) 
PLATONOV, Vladimir 

(U, S. S. R.) 
PLATT, Craig (Canada) 
PLEASANTS, Peter 

(England) 
PLEUEL, Ake (Sweden) 
PLESKEN, Wilhelm (Fed. 

Rep. Germany) 
POGUNTKE, Detlev (Fed. 

Rep. Germany) 
POLLAR, Barth (U.S. A.) 
POLLAR, Henry (U. S. A.) 
POMAREDA, Rolando 

Jorge (Chile) 
PONNAPALL, R. (Canada) 
PONTRJAGIN, Lev 

(U. S. S. R.) 
POPOV, Blagoj (Yugoslavia) 
PORRU, Giovanni (Italy) 
PORST, Hans (Fed. Rep. 

Germany) 
PORTE, Daniel (France) 
PORTEOUS, Hugh (England) 
PORTEOUS, Ian (England) 
POSTMAN, Robert (U, S. A.) 
POTOCZNY, Henry 

(U. S. A.) 
POTTER, Anthony (Scotland) 
POTTER, Ronda (Australia) 
POZNIAK, Edoupo 

(U. S. S. R.) 

PRAKASH, Ninnala (India) 
PRESSMAN, Irwin (Canada) 
PRESTON, Christopher 

(England) 
PRETZEL, Oliver (England) 
PRICE, David (U.S. A.) 
PRICE, Kenneth (U. S. A.) 
PRIKRY,Karel (U.S.A.) 
PRILEPKO,Alexei 

(U. S. S. R.) 
PRIMROSE, Eric (England) 
PRINDLE,Paul(U.S.A.) 
PRINTIS,R.(U.S.A.) 
PROMISLOW, David 

(Canada) 
PROPPE, Harold (Canada) 
PROTOMASTRO, Gerard 

(U. S. A.) 
PROULX, Ronald (U. S. A.) 
PUCCI, Carlo (Italy) 
PURI,Pratap(U.S.A.) 
PURZITSKY, Norman 

(Canada) 
PUTERMAN, Martin 

(U. S. A,) 
PUTNAM, Alfred (U. S, A.) 
PUTTASWAMAIAH, 

Bannikuppe (Canada) 
PUTTASWAMY, Tumkur 

(U. S. A.) 

QUILLEN, Daniel (U. S. A.) 

RACINE, Ly(Sengal) 
RACINE, Michel (Canada) 
RADER,Cary(U.S.A.) 
RADO, Richard (England) 
RAGGETT, Graham 

(England) 
RAGOZIN, David (U, S. A.) 
RAIMI,Ralph(U.S,A.) 
RAJAGOPALAN, Minak-

shisundar (India) 
RAMALHO, Roberto (Brazil) 
RAMSAY, Arlan (U. S. A.) 
RANICKI, Andrew 

(England) 
RANKIN, Robert (Scotland) 
RANKIN, Stuart (Canada) 
RAO, C. R. (India) 
RAO, D. Ramakrishna (Iran) 
RAO, Kulkarni Kish (India) 
RAO, Veldanda (Canada) 



xlii MEMBERS OF THE CONGRESS 

RATNER, Lawrence 
(U, S. A,) 

RAUZY, Gerard (France) 
RAY, Ajit (Canada) 
RAY-CHAUDHURI, 

Diljen (U. S. A.) 
RAZZAGHI, Mohsen (Iran) 
REA, Claudio (Italy) 
READE, Maxwell (U, S. A.) 
RECILLAS-JUAREX, Felix 

(Mexico) 
REDHEFFER, Raymond 

(U. S. A,) 
REE, Rimhak (Canada) 
REED, Michael (U. S. A.) 
REES, David (England) 
REICHERT, Marianne (Fed. 

Rep, Germany) 
REID, Aenea (Scotland) 
REID, Brooks (U.S. A,) 
REID, Miles (England) 
REID, Stephen (Canada) 
REILLY, Ivan (New Zealand) 
REILLY, Norman (Canada) 
REILLY, Robert (U. S. A.) 
REINGOLD, Haim (U. S. A.) 
REINHART, Bruce (U. S. A.) 
REISSIG, Gisela (Fed. Rep. 

Germany) 
REISSIG, Rolf (Fed, Rep, 

Germany) 
REITEN, Idun (Norway) 
REJTO,Peter(U.S.A,) 
REMPFER, Robert (U. S. A.) 
RENZ, Peter (Canada) 
REYNOLDS, Robert (Fed, 

Rep. Germany) 
RHEMTULLA, Akbar 

(Canada) 
RHIN, Georges (France) 
RIBENBOIM, Paulo 

(Canada) 
RIBES, Luis (Canada) 
RIBET, Kenneth (U. S, A.) 
RICE, Thelma, (U.S. A.) 
RICHARDSON, Roger 

(England) 
RICHERT, Arthur (U. S. A.) 
RICHMOND, Bruce (Cana­

da) 
RICHTER, Guenther (Fed. 

Rep. Germany) 
RICKARD, John (Australia) 

RICHART, Charles 
(U. S. A,) 

RICKEY, V. Frederick 
(U. S. A.) 

RIDDELL, James (Canada) 
RIDEOUT, Donald (Canada) 
RIEGER, Georg (Germany) 
RIEHM, Carl (Canada) 
RIEMANSCHNEIDER, 

Sherman (Canada) 
RIEMER, Rolf-Ingraban 

(Fed. Rep, Germany) 
RIGBY, John (Wales) 
RILES, James (U.S. A.) 
RILEY, Geoffrey (Australia) 
RINGEL, Claus (Fed. Rep, 

Germany) 
RINGROSE, John (England) 
RISCH, Robert (U.S. A.) 
RIVAL, Ivan (Canada) 
RIVET, Roger (France) 
RIVLIN, Theodore (U. S. A.) 
RIZV, S. Jawaid (Pakistan) 
RIZZA, Giovanni Batt. (Italy) 
RIZZI, Alfredo (Italy) 
ROBERT, Didier (France) 
ROBERTS, Joel (U. S. A.) 
ROBERTS, L. G. (Canada) 
ROBERTS, Leslie (Canada) 
ROBERTSON, Alexander 

(Australia) 
ROBERTSON, Malcolm 

(Canada) 
ROBERTSON, Mark 

(England) 
ROBERTSON, Neil (Canada) 
ROBINSON, Donald 

(U. S, A.) 
ROBINSON, Gilbert 

(Canada) 
ROBINSON, Raphael 

(U. S. A.) 
ROBINSON, Stanley 

(U. S. A.) 
ROCKAFELLAR, Tyrrell 

(U. S. A.) 
RODGERS, Richard 

(U. S. A.) 
RODIER, Francois (France) 
RODRIGUEZ SANCHEZ, 

Oscar-Mario (Mexico) 
ROEDER, David (U. S. A.) 
ROGER, Claude (France) 

ROGERS, Claude Ambrose 
(England) 

ROGGENKAMP, Klaus 
(Fed. Rep. Germany) 

ROGOSINSKI, Peter (Wales) 
ROHRL, Helmut (U, S. A.) 
ROITMAN, Judith (U. S. A.) 
RONVEAUX, Andre 

(Belgium) 
ROONEY, Paul (Canada) 
ROSA, Alexander (Canada) 
ROSATI, Mario (Italy) 
ROSEN, Kenneth (U. S. A.) 
ROSENBERG, Harold 

(France) 
ROSENBERG, Ivo (Canada) 
ROSENBERGER, Gerhard 

(Fed, Rep. Germany) 
ROSENBLATT-ROTH, 

Millu(U.S.A.) 
ROSENBLOOM, Paul 

(U.S.A.) 
ROSENBLUM, Marvin 

(U.S.A.) 
ROSENLICHT, Maxwell 

(U.S.A.) 
ROSENSTEIN, Joseph G. 

(U, S. A.) 
ROSENTHAL, John 

(U.S.A.) 
ROSENTHAL, Peter 

(Canada) 
ROSKES, Gerald (U, S. A.) 
ROSS, Roderick (Canada) 
ROTHAUS, Oscar (U. S. A.) 
ROTHSCHILD, Linda 

(U.S.A.) 
ROW, Don (Australia) 
ROWLEY, Christopher 

(England) 
ROWLEY, Rosemary 

(England) 
ROWLINSON, Peter (Scot­

land) 
ROY, Ashoke (India) 
ROYDEN, Halsey (U. S. A.) 
ROYSTER, Wimberly 

(U. S. A.) 
RUBIN, Joel (U.S. A.) 
RUBINSTEIN, Joachim 

(Australia) 
RUBIO, Jose Luis (Spain) 
RUCHTI, Rene (Switzerland) 



MEMBERS OF THE CONGRESS xliii 

RUCKLE, William (U. S. A,) 
RUDIN, Mary Ellen 

(U.S.A.) 
RUDIN, Walter (U.S.A.) 
RUSKAI, Mary Beth 

(U. S. A.) 
RUSSELL, Dennis (Canada) 
RUSTON, Anthony (Wales) 
RUTTER, John (England) 
RYCHKOV, Serzgei 

(U, S. S. R.) 
RYEBURN, David (Canada) 

SAAVEDRA, Neantro 
(Chile) 

SABBAGH, Gabriel (France) 
SABININ, Larissa (Nigeria) 
SABININ, Leo (Nigeria) 
SACERDOTE, George 

(U.S.A.) 
SADOWSKY, John (U. S. A.) 
SAEKI, Sadahiro (Japan) 
SAGEEV, Gershon (U. S. A.) 
SAHNEY,Badri (Canada) 
SAINT-DONAT, Bernard 

(France) 
SAITOTI, George (Kenya) 
SAKAI, Yoshiko (Japan) 
SAKS, Victor (Costa Rjca) 
SAKUMA, Motohoshi 

(Japan) 
SALLES, Danielle (France) 
SALZBERG, Pablo (Chile) 
SALZER, Herbert (U. S. A.) 
SALZMANN, Helmut 

(Fed. Rep. Germany) 
SAMARSKII, A. A. 

(U. S. S. R.) 
SAMELSON, Hans (U. S. A.) 
SANCHO, Neville (Canada) 
SANDS, Arthur (Scotland) 
SANDS, Bill (Canada) 
SANKARAN, Subramanian 

(England) 
SAPKAREV, Ilija (Yugo­

slavia) 
SARASON, Leonard 

(U. S. A.) 
SARASWATHI, Kalpakam 

(India) 
SARD, Arthur (U.S. A.) 
SARIO, Leo (U. S. A.) 
SASAKI, Usa (Japan) 

SATAKE, Ichiro (U. S, A.) 
SATO, Daihachiro (Canada) 
SATO, Isuke (Japan) 
SATYANARAYANA, 

Upadhyayula (India) 
SAUER, Norbert (Canada) 
SAVOLAINEN, Onerva 

(Finland) 
SAWAKI, Sumio (Japan) 
SAWASHIMA, Ikuko (Japan) 
SAWYER, Stanley (U. S. A.) 
SAYEKI, Hidemitsu (Canada) 
SCHÄFER, Alice (U.S. A.) 
SCHÄFER, James (U. S. A.) 
SCHAFFER, Juan (U, S, A,) 
SCHARLAU, Winfried 

(Fed. Rep, Germany) 
SCHARLEMANN, Martin 

(U.S.A.) 
SCHATZ, Alfred (U. S. A,) 
SCHAUFELE, Ronald 

(Canada) 
SCHEFFER, Card 

(Netherlands) 
SCHEFFER, Vladimir 

(U.S.A.) 
SCHEIBLICH, Herman 

(U.S.A.) 
SCHIFF, Joel (New Zealand) 
SCHIFFER, Menahem 

(U.S.A.) 
SCHIRMER, Helga (Canada) 
SCHLIPF, John (U. S, A.) 
SCHMERL, James (U. S. A,) 
SCHMID, Wilfried (U, S.A.) 
SCHMIDT, Asmus (Den­

mark) 
SCHMIDT, Wolfgang 

(U. S. A,) 
SCHNEIDER, Joel (U. S. A.) 
SCHNEIDER, Manfred 

(Fed. Rep. Germany) 
SCHNEIDER, Rolf (Fed. 

Rep. Germany) 
SCHNITZPAN, Daniel 

(France) 
SCHOBER, Glenn (U. S, A,) 
SCHOCHETMAN, Irwin 

(U. S. A.) 
SCHOENEBERG, Bruno 

(Fed. Rep. Germany) 
SCHOENFELD, Lowell 

(U. S. A.) 

SCHONBEK, Tomas 
(U.S.A.) 

SCHORI, Richard (U, S. A.) 
SCHRAMM, Ruben (Israel) 
SCHREIBER, Bertram 

(U. S. A.) 
SCHREIBER, Michel 

(France) 
SCHROECK, Franklin 

(U,S.A.) 
SCHUBERT, Cedric 

(Canada) 
SCHULTZ, Reinhard 

(U. S. A.) 
SCHUMACHER, Barbara 

(Fed. Rep. Germany) 
SCHUPP,'Paul (U, S, A.) 
SCHUTTE, Hendrik (Rep. 

South Africa) 
SCHWARTZ, Alan (U. S. A.) 
SCHWARTZ, Harley 

(Canada) 
SCHWARTZ, Jean-Marie 

(France) 
SCHWARZ, Gerald (U, S. A.) 
SCHWARZ, Stefan 

(Czechoslovakia) 
SCHWEIGERT, Dietmar 

(Fed. Rep, Germany) 
SCHWEITZER, Paul 

(Brazil) 
SCOTT, Elizabeth (U. S. A.) 
SCOTT, Ridgway (U. S. A,) 
SCOTT, William (U.S. A.) 
SCOTT-THOMAS, John 

(Canada) 
SCRIBA, Christoph (Fed. 

Rep. Germany). 
SEALY, Robert (Canada) 
SEAMAN, Donna (U. S. A.) 
SEELEY, Robert (U. S. A.) 
SEGAL, Jack (U.S. A.) 
SEIBERT, Peter (Chile) 
SEIDEL, J. J. (Netherlands) 
SEIDEN, Esther (U. S. A.) 
SELIGMAN, George 

(U.S.A.) 
SEMANDENI, Zbigniew 

(Poland) ' 
SEMMENS, Edmund (Can-

SENEZ, John (Canada) 
SEREWO, Edgel (U. S. A.) 



xliv MEMBERS OF THE CONGRESS 

SERRIN,James(U.S.A.) 
SERVIEN, Claude (France) 
SETH, Bhojraj (India) 
SEYDI, Hamet (Senegal) 
SHAFFER, Dorothy 

(U.S.A.) 
SHAH, Swarupchand 

(U.S.A.) 
SHANHOLT, Gerald 

(U.S.A.) 
SHAPIRO, Harold (U. S. A.) 
SHAPIRO, Victor L. 

(U.S.A.) 
SHARMA, Ambikeshwar 

(Canada) 
SHARPE, Richard (U, S, A,) 
SHATZ, Stephen (U.S. A.) 
SHEIL-SMALL, Terence 

(England) 
SHEKOURY, Raymond 

(Iraq) 
SHELAH, Saharon (Israel) 
SHEPHARD, Geoffrey 

(England) 
SHERMAN, Malcolm 

(U.S.A.) 
SHIBAGAKI, Wasao 

(Japan) 
SHIFFMAN, Bernard 

(U.S.A.) 
SHIFFMAN, Max (U. S. A.) 
SHIFRIN, David (U, S. A.) 
SHIH,Kung-Sing(Rep. 

China) 
SHIH,Weishu (France) 
SHIMA, Kazuhisa (Japan) 
SHIMRAT, Moshe (Canada) 
SHINBROT, Marvin 

(Canada) 
SHIODA, Tetsuji (Japan) 
SHIU, Sai-Wan (Rep. China) 
SHIUE, Jau-Shyong (Rep. 

China) 
SHORE, Richard (U.S. A.) 
SHORROCK, Richard 

(Canada) 
SHUARD, Hilary (England) 
SHUCK, John (U.S. A.) 
SHULMAN, Herbert 

(U. S. A.) 
SHULTZ, Frederic (U. S. A.) 
SHUM,Kar-Ping(Rep. 

China) 

SIBIRSKI, Constantin 
(U.S.S.R.) 

SIBONY, Nessim (France) 
SICHLER, Jiri (Canada) 
SIDDIQI, Jamil (Canada) 
SIEBENMANN, Laurence 

(France) 
SIGRIST, Francois (Switzer­

land) 
SIKORSKI, Roman (Poland) 
SILK, Jean-Marie (U. S. A.) 
SILVER, Jack (U.S.A.) 
SILVERMAN, Ruth 

(U. S. A.) 
SILVIA, Evelyn (U. S. A.) 
SIMMONS, Gustavus 

(U.S.A.) 
SIMON, Arthur (U.S. A.) 
SIMON, Barry (U.S. A.) 
SIMON, Leon (U.S. A.) 
SIMON, Martha (U, S. A.) 
SIMON, Udo (Fed. Rep. 

Germany) 
SIMONS, J. (U.S. A.) 
SIMONS, Stephen (U. S. A.) 
SIMPSON, R. Justin (Canada) 
SIMS, Benjamin (U. S. A.) 
SINCLAIR, Roy (Canada) 
SINE, Robert (U.S. A.) 
SINGAL, Mahendra (India) 
SINGER, I. M. (U. S. A.) 
SINGER, Ivan (Romania) 
SINGH, Kuldip (Canada) 
SINGH, Vijendra (U. S. A.) 
SINGLEY, Donald (U. S. A.) 
SINGMASTER, David 

(England) 
SION, Maurice (Canada) 
SIRAJDINOV, Sagdy 

(U. S. S. R.) 
SIU,Yum-Tong(U.S.A.) 
SJERVE, Denis (Canada) 
SJOLIN, Per (Sweden) 
SKARDA, Vencil (U. S. A.) 
SKLAR,Abe(U.S.A.) 
SKOF, Fulvia (Italy) 
SKOVGAARD, Helge 

(Denmark) 
SLATER, Morton (U. S. A.) 
SLAVNOV,A.A. 

(U. S. S. R.) 
SLEATOR, Frederick 

(U.S.A.) 

SLEFMAN, Brian (Scotland) 
SLOAN, Alan (U, S. A.) 
SLOYAN, Stephanie 

(U. S. A.) 
SMALE, Stephen (U.S. A,) 
SMALL, Charles (Canada) 
SMALL, Ken (Canada) 
SMART, Peter (Canada) 
SMELKIN, Alfred 

(U, S. S. R.) 
SMILEY, Malcolm (U. S. A.) 
SMILEY, Patrick (U. S. A.) 
SMITH, Arthur (Canada) 
SMITH, David (New 

Zealand) 
SMITH, Edwin (England) 
SMITH,Frank(U. S.A.) 
SMITH, Harry (U.S.A.) 
SMITH, James (U. S. A.) 
SMITH,Martha(U. S.A.) 
SMITH, Robert (Canada) 
SMITH, Stephen (U.S. A.) 
SMITH,Stoddart(U.S.A.) 
SMOKE, William (U. S. A.) 
SMOLOWITZ, Lawrence 

(U. S, A.) 
SMORODINSKY, Meir 

(Israel) 
SMYTHE, Neville 

(Australia) 
SNAITH, Victor (England) 
SNAPPER, Ernst (U. S. A.) 
SNEDDON, Ian (Scotland) 
SNELL, Laurie (U.S.A.) 
SNELL, Roy C. (Canada) 
SNIATYCKI, Jedrzej 

(Canada) 
SNIDER, Robert (Canada) 
SNOW, Donald (U.S. A.) 
SOARES, Rui (Portugal) 
SOCOLESCU, Dan (Fed. 

Rep. Germany) 
SOCOLESCU, Rodica 

(Fed. Rep. Germany) 
SOETENS, Edward 

(Belgium) 
SOLITAR, Donald 

(Canada) 
SOLOMON, Ronald 

(U. S. A.) 
SOMMESE, Andrew 

(U. S. A.) 
SONIS, Michael (Israel) 



MEMBERS OF THE CONGRESS xlv 

SORNBERGER, G, Clinton 
(U. S, A.) 

SOTO-ANDRADE, Jorge 
(Chile) 

SOULE, Christophe 
(France) 

SOUNDALGEKAR, 
Vyenkatesh (India) 

SOUROUR, Ahmed 
(Egypt) 

SPANIER, Edwin (U, S. A,) 
SPANIER, Jerome (U. S, A.) 
SPECHT, Edward (U, S. A.) 
SPENCER, Donald 

(U. S. A.) 
SPERNER, Emanuel 

(Fed, Rep. Germany) 
SPIEGEL, Wolfgang 

(Fed. Rep. Germany) 
SPIELBERG, Stephen 

(U. S. A.) 
SPINELLI, Giancarlo 

(Italy) 
SPISELMAN, Toby 

(U. S. A.) 
SPITZER, Frank (U. S. A.) 
SPRECHER, David 

(U. S. A.) 
SPRINDZUK, Vladimir 

(U. S. S. R.) 
SPRINGER, George 

(U. S. A.) 
SPRINGER, Tonny 

(Netherlands) 
SPRUCK, Joel (U. S. A.) 
SRINIVASACHARYULU, 

Kilambi (Canada) 
SRINIVASAN,Bhama 

(U.S.A.) 
ST.-JEAN PAULIN, 

Jeannine (France) 
STAAL, Ralph (Canada) 
STALLMANN, Friedemann 

(U. S. A.) 
STANLEY, Richard (U. S. A.) 
STANOJEVIQCaslav 

(U. S. A.) 
STANTON, Ralph (Canada) 
STARBIRD, Mike (U. S. A.) 
STARBIRD, Thomas 

(U.S.A.) 
STARK, David (U.S.A.) 
STARK, Harold (U. S. A.) 

STARR, Norton (U.S.A.) 
STASHEFF, James (U, S, A.) 
STATE, Emile (Canada) 
STATULEVICIUS, Vytautas 

(U, S. S. R.) 
STECHER, Michael (U, S. A.) 
STEEN,Lunn(U. S. A.) 
STEFFEN, Klaus (Fed, 

Rep. Germany) 
STEGEMAN, Jan 

(Netherlands) 
STEGER, William (U, S, A.) 
STEHNEY,Ann(U.S.A.) 
STEIN, Charles (U. S. A.) 
STEIN, Elias (U. S. A.) 
STEIN, Elise (England) 
STEIN, Junior (U, S, A.) 
STEIN, Michael (U. S.A.) 
STEIN, Sherman (U. S. A.) 
STEINBERG, Robert 

(U. S. A.) 
STEINLAGE, Ralph 

(U. S. A.) 
STELLMACHER, Bernd 

(Fed. Rep. Germany) 
STEPANOV, Serguei 

(U. S. S. R.) 
STERN, Jacques (France) 
STERN, Ronald (U.S.A.) 
STETTER, Hans (Austria) 
STEWART, Cameron 

(Canada) 
STEWART, Ian (England) 
STEWART, James (Canada) 
STIEGLITZ, Andreas 

(Fed. Rep. Germany) 
STILL, Harold (Canada) 
STOCKS, Douglas (U. S. A.) 
STOLTENBERG, Ronald 

(U. S. A.) 
STOLTZEUS,Neal 

(U. S. A.) 
STONE, Arthur (Canada) 
STONE, Marshall (U. S. A.) 
STONE, Michael (Canada) 
STONE, Norman (U. S. A,) 
STONE, Wesley (U.S. A.) 
STONE, William (U.S.A.) 
ST0RMER, Erling (Norway) 
STOUT, Edgar (U.S. A.) 
STOY, Gabrielle (England) 
STRADE, Helmut (Fed. 

Rep. Germany) 

STRAFFIN, Philip (U. S. A,) 
STRALEY, William (U. S, A.) 
STRALKA, Albert (U. S. A,) 
STRANG, Gilbert (U. S. A.) 
STRASSEN, Volker 

(Switzerland) 
STRASSER, Elvira (U, S. A,) 
STRATTON, Anthony 

(England) 
STRAUS, Ernst (U.S. A.) 
STRAUS, Sandor (U, S. A.) 
STRAUSS, Monty (U, S. A.) 
STRAY, Arne (Norway) 
STREAT, Janet (Canada) 
STREBEL, Kurt 

(Switzerland) 
STREDDER, Peter 

(England) 
STRELITZ, Shlomo 

(Israel) 
STROMBECK, Peter 

(Sweden) 
STROOKER, Jan 

(Netherlands) 
STRUIK, Rebekka (U. S. A,) 
SU, Jin-Chen (U.S. A.) 
SU, Li Pi (U. S. A.) 
SUBBARAO, Dore (Canada) 
SUBBARAO, Mathukumalli 

(Canada) 
SUBBOTIN, A. F. 

(U. S. S. R.) 
SUCCI, Francesco (Italy) 
SUCHESTON, Louis 

(U. S. A.) 
SUDA, Hiroshi (Japan) 
SULLIVAN, Dennis 

(U. S. A.) 
SULLIVAN, John (U, S. A.) 
SUMMERS, W. H. (Brazil) 
SUN, Hugo (U. S. A,) 
SUNDARESAM, 

Kondagunta(U.S.A.) 
SUNDAY, Dan (Canada) 
SUNDAY, J. G. (Canada) 
SUNG, Chen-Han 

(Rep. China) 
SUNOUCHI, Haruo (Japan) 
SURANYI, Janos (Hungary) 
SUSSMANN, Hector 

(U. S. A.) 
SUTHERLAND, Colin 

(Canada) 



xlvi MEMBERS OF THE CONGRESS 

SUTHERLAND, William 
(Canada) 

SUTTI NODARI, Carla 
(Italy) 

SUVAK, John (Canada) 
SUWA, Tatsuo (U, S. A.) 
SUZUKI, Haruo (Japan) 
SUZUKI, Komei (Japan) 
SUZUKI, Noboru 

(U.S.A.) 
SUZUKI, Tosio (Japan) 
SVANES, Torgny (Denmark) 
SWAMINATHAN, 

Srinivasa (Canada) 
SWARTZ, Charles (U.S.A.) 
SWEEDLER, Moss 

(U. S. A.) 
SWEENEY, William 

(U. S. A.) 
SWEET, Lowell (Canada) 
SWETT, Allan (Canada) 
SWIATAK, Halina 

(Canada) 
SWITZER, Robert (Fed. 

Rep. Germany) 
SYNOWIEC, John (U. S. A.) 
SZABADOS, Jozsef 

(Hungary) 
SZABO, Manfred (Canada) 
SZEKERES, George 

(Australia) 
SZEMEKEPI, Endre 

(Hungary) 
SZENDREI, Janos 

(Hungary) 
SZENTHE, Janos 

(Hungary) 
SZIGÊTI, Ferenc (Hungary) 
SZOKEFALVI-NAGY, 

Bela (Hungary) 

TAAM,Choy-Tak(U. S. A.) 
TACHIKAWA, Hiroyuki 

(Japan) 
TAFARIAN,AliAkbar 

(Iran) 
TAFT, Earl (U. S, A.) 
TAKAHASHI, Masayuki 

(Japan) 
TAKAHASHI, Motoo 

(Japan) 
TAKAHASHI, Reiji 

(France) 

TAKAHASHI, Shuichi 
(Canada) 

TAKENOUCHI, Osamu 
(Japan) 

TAKESAK, Masamichi 
(U. S. A.) 

TAKUSHIRO, Ochiai 
(Japan) 

TALL, Franklin (Canada) 
TAMASCHKE, Rosalie 

(U. S. A.) 
TAMURA, Ichiro (Japan) 
TAMURA,Takayuki 

(U. S. A.) 
TAN, Henry (U. S. A.) 
TAN, Sie-Keng (Rep. 

Singapore) 
TANG, C. (Canada) 
TANG, Victor (U.S.A.) 
TANGORA, Martin 

(U. S. A.) 
TANIMOTO, Taffee 

(U. S. A.) 
TAPE, Walter (U. S. A.) 
TARTAR, Luc (France) 
TATE, John (U.S.A.) 
TAUSSKY-TODD, Olga 

(U. S. A.) 
TAYLOR, Clare (U. S. A.) 
TAYLOR, Donald 

(Australia) 
TAYLOR, Gerald (U, S, A,) 
TAYLOR, Joseph (U. S. A.) 
TAYLOR, Laurence 

(U. S. A.) 
TAYLOR, Peter (Canada) 
TAYLOR, Samuel 

(England) 
TEISSIER, B. (France) 
TERRAS, Audrey (U. S. A.) 
THALER, Alvin(U, S. A.) 
THEDY, Armin (Fed. Rep. 

Germany) 
THICKSTUN, Thomas 

(U. S. A.) 
THIELE, Ernst (Fed. Rep. 

Germany) 
THIELE, Helmut (German 

Dem, Rep,) 
THIELEKER, Ernest 

(U. S. A.) 
THIERAUF, Georg (Fed. 

Rep. Germany) 

THIERRIN, Gabriel 
(Canada) 

THOM, Rene (France) 
THOMAS, Charles 

(England) 
THOMAS, Emery (U. S. A.) 
THOMAS, Garth (Canada) 
THOMAS, Robert (Canada) 
THOMASON, Steven 

(Canada) 
THOMEIER, Siegfried 

(Canada) 
THOMPSON, Anthony 

(Canada) 
THOMPSON, Robert 

(U, S. A.) 
THOMSON, Brian 

(Canada) 
THORP, Edward (U. S. A.) 
THORPE, Brian (England) 
THOUVENOT, Jean-Paul 

(France) 
THURSTON, William 

(U. S. A.) 
TILLIER, André (France) 
TILSON, Bret (U.S.A.) 
TIMM, Juergen (Fed, Rep. 

Germany) 
TIMMESFELD, Franz-

Georg (Fed. Rep. Germany) 
TIMOURIAN, James 

(Canada) 
TINGLEY, Arnold 

(Canada) 
TITS, Jacques (Belgium) 
TITUS, Charles (U. S. A.) 
TOBIN, Sean (Ireland) 
TODA, Hiroshi (Japan) 
TODD,John(U. S.A.) 
TOERNIG, Willi (Fed. Rep. 

Germany) 
TOFFIN, Philippe (France) 
TOGNOLI, Alberto (Italy) 
TOMIDA, Masamichi 

(Japan) 
TOMIYAMA, Jun (Japan) 
TOMTER, Per (Norway) 
TONDRA, Richard (U. S, A.) 
TONTI, Enzo (Italy) 
TORALBALLA, Leopoldo 

(U. S. A.) 
TORUNCZYK, Henryk 

(Poland) 



MEMBERS OF THE CONGRESS xlvii 

TOTTEN, Jim (Canada) 
TOURE, Saliou (Ivory Coast) 
TRANSUE, William 

(U. S. A.) 
TRAORE, Sekou (Congo) 
TRAUBER, Philip (U, S. A.) 
TRAYNOR, Tim (Canada) 
TRETKOFF, Marvin 

(U. S. A.) 
TROJAN, Allan (Canada) 
TRONEL, Gerard (France) 
TROTMAN, David 

(England) 
TRUDINGER,Neil 

(Australia) 
TRUESDELL, Clifford 

(U. S, A.) 
TRUFFAULT, Bernard 

(France) 
TRUMAN, Aubrey 

(Scotland) 
TSAGAS, Grigorios (Greece) 
TSUBOTA, Etsuko (Japan) 
TUCHINSKY, Philip 

(U. S. A,) 
TUKEY, John W. (U. S, A.) 
TULCEA, C. (U. S. A.) 
TULLY, Edward (U, S. A.) 
TUNNELL, Jerrold (U. S. A.) 
TURQUETTE,Atwell 

(U. S. A.) 
TWEDDLE, Ian (Scotland) 
TYMCHATYN, Edward 

(Canada) 

UAVANTAGGIATI, 
Antonio (Italy) 

UCHIYAMA, Saburo 
(Japan) 

UENO, Kenji (Japan) 
UETAKE, Tsuneo (Japan) 
UHL, Jerry (U. S. A.) 
UHLENBECK, Karen 

(U. S. A.) 
UHLENBROCK, Dietrich 

(Fed. Rep. Germany) 
ULLMAN, Joseph (U. S. A.) 
ULMER, Friedrich 

(Switzerland) 
UMMEL,Brian(U.S.A.) 
UNGAR, Gerald (U. S. A.) 
URBANIK, Kazimierz 

(Poland) 

URWIN, Ross (New 
Zealand) 

USTINA, Fred (Canada) 
UTZ,W,R.(U.S.A.) 

VAILLANCOURT, Remi 
(Canada) 

VAILLANT, Jean (France) 
VALLE-FLORES, Enrique 

(Mexico) 
VALLEE, Robert (France) 
VAN ASCH, Abraham 

(Netherlands) 
VAN DELM, Denise 

(Belgium) 
VAN DER HOUT, Reinier 

(Netherlands) 
VAN DER KALLEN, 

Wilberd (Netherlands) 
VAN DER MARK, Johannes 

(Rep. South Africa) 
VAN DER PUT, Marius 

(Netherlands) 
VANDULST,Dick 

(Netherlands) 
VAN DYK, Gerrit 

(Netherlands) 
VAN LINT, Jacobus 

(Netherlands) 
VAN METER, Robert 

(U. S. A.) 
VAN OYSTAEYEN, 

Freddy (Belgium) 
VAN PRAAG, Paul 

(Belgium) 
VAN ROSSUM, Herman 

(Netherlands) 
VANSTONE, James 

(Canada) 
VAN ZWALENBERG 

George (U. S. A.) 
VARADARAJAN, 

Verravalli (U. S. A.) 
VARADHAN, Srinivasa 

(U. S. A.) 
VARAH, James (Canada) 
VARCHENKO, A. N, 

(U. S. S. R.) 
VASIC, Petar (Yugoslavia) 
VASILACH, Serge (Canada) 
VASILAKY, Walter 

(U. S. A.) 
VASILJEV,Yuri(U.S.S.R.) 

VAUGHAN, Jerry (U. S. A.) 
VAUGHAN, Robert 

(England) 
VAUGHAN, Theresa 

(U. S. A.) 
VAUTHIER, Jacques 

(France) 
VELU, Jacque (France) 
VENKATARAMAN, 

Rangachari (Canada) 
VENZKE, Paul (U. S. A.) 
VERDIER, Jean-Louis 

(France) 
VERGNE, Michele (France) 
VERKHOVSKY, Boris 

(U. S. A.) 
VERMA, B.G. (India) 
VERNER, Robert (Canada) 
VERNON, Ralph (Canada) 
VERON, Laurent (France) 
VERSHIK, A.M. (U. S. S. R.) 
VIENNOT, Gerard (France) 
VIJAYAN, Kulakkatt (Ger­

many) 
VILOIAUSKAS,AlR. 

(Canada) 
VINCENT, Georges (Switzer­

land) 
VINCENT-SMITH, Graham 

(England) 
VINUESA, Jaime (Spain) 
VISIK, MX (U. S. S. R.) 
VITTER, Albert (U. S. A.) 
VITUSHKIN, Anatoli 

(U. S. S. R.) 
VIVIENTE, Jose (Spain) 
VLADIMIROV, Vasilii 

(U. S. S. R.) 
VOGEL, Pierre (France) 
VON LIENEN, Horst (Fed. 

Rep. Germany) 
VON RENTELN, Michael 

(Fed. Rep. Germany) 
VOSKRESENSKII, V. E. 

(U. S. S. R.) 
VOUGHT,Eldon(U. S. A.) 
VRANCH, John (Canada) 

WADE,William(U. S.A.) 
WAGNER, Diane (U, S. A.) 
WAGON, Stanley (Canada) 
WAGONER, J. (Switzer­

land) 



Xlviii MEMBERS OF THE CONGRESS 

WALES, David (U.S.A.) 
WALKER, Andrew (Eng­

land) 
WALKER, Gordon (U. S. A,) 
WALLACH, Nolan (U. S. A,) 
WALLEN, Lawrence 

(U. S. A.) 
WALLIS, Walter (Australia) 
WALSH, Bertram (U. S. A.) 
WALSH, John (Canada) 
WALTERS, Peter (England) 
WANG,E.S.C.(U.S. A,) 
WANG,Hsien-Chung 

(U, S. A.) 
WANG, Shu-Ping (U. S, A,) 
WARD, Augustus (England) 
WARD, Martin (Australia) 
WARFIELD, Robert 

(U. S. A.) 
WARGA,Jack(U.S.A.) 
WARNER, Frank (U. S. A.) 
WARREN, Richard 

(U.S.A.) 
WASHINGTON, Lawrence 

(U. S. A.) 
WASOW, Wolfgang (U. S. A.) 
WASSERMANN Robert 

(U. S. A.) 
WASSERMANN, Simon 

(England) 
WATANABE, Junzo (Japan) 
WATANABE, Michiaki 

(Japan) 
WATANABE, Toitsu (Japan) 
WATKINS, Murray (Canada) 
WATSON, Martha (U. S. A.) 
WATTERS, John (England) 
WATTON, Mary E. (Canada) 
WEBER, William (U. S. A.) 
WEFELSCHEID, Heinrich 

(Fed. Rep. Germany) 
WEGNER, Gerd (Fed. Rep. 

Germany) 
WEHRHAHN, Karl (Canada) 
WEIL, Wolfgang (Fed. Rep. 

Germany) 
WEINBERGER, Hans 

(U. S. A. ) 
WEINERT, Hanns (Fed. Rep. 

Germany) 
WEINSTEIN, Alan (U. S. A.) 
WEINSTEIN, Joseph 

(U. S. A.) 

WEINTRAUB, Steven 
(U. S. A.) 

WEINZWEIG, Avrum Israel 
(Canada) 

WEISFELD, Morris (U, S. A,) 
WEISS, Benjamin (Israel) 
WELLAND, Grant (U, S, A.) 
WELLS, John (U,S, A,) 
WELLS, R.O. (U.S. A.) 
WELSH, Wayne (Canada) 
WENDEL, James (U. S. A.) 
WERMER, John (U, S. A.) 
WERTHEIM, Douglas 

(Canada) 
WESSFLIUS, Willem 

(Netherlands) 
WEST, Trevor (Ireland) 
WESTBROOK, David 

(Canada) 
WESTMAN, Joel (U. S. A,) 
WESTON, Kenneth (U. S. A.) 
WESTWICK, Roy (Canada) 
WETS, Roger (U.S. A.) 
WEYL, F. Joachim (U. S. A.) 
WHITE,Alvin(U.S.A.) 
WHITE, David (England) 
WHITE, James (U.S. A.) 
WHITE, Robert (U.S. A.) 
WHITFIELD, John (Canada) 
WHITMAN, Andrew 

(U. S. A.) 
WHITNEY, Stephen (Canada) 
WHITTAKER, James (Can­

ada) 
WICK, Brian (U.S. A.) 
WICKE, Howard (U. S. A.) 
WICKER, Fletcher (U. S. A.) 
WIDLUND, Olof (U. S. A.) 
WIDOM, Harold (U.S.A.) 
WIGLEY, Neil (Canada) 
WILANSKY, Albert (U, S. A.) 
WILCOX, Calvin (U.S.A.) 
WILKENS, David (England) 
WILKER, John (Canada) 
WILKERSON, Clarence 

(Canada) 
WILKINSON, James 

(England) 
WILLANS, Joseph (Canada) 
WILLIAMS, Beryl (U. S, A.) 
WILLIAMS, Bruce (U, S. A.) 
WILLIAMS, Hugh (Canada) 
WILLIAMS, James (U. S. A.) 

WILLIAMS, Kenneth 
(Canada) 

WILLIAMS, Robert (U. S. A.) 
WILLIAMS, Scott (U. S, A.) 
WILLIAMS, Vincent 

(U. S. A.) 
WILLIAMSON, John 

(England) 
WILLIAMSON, Robert 

(U. S. A.) 
WILLIS, Patricia (U, S, A.) 
WILLIS, Paul (U.S. A.) 
WILLS, Goerg (Fed. Rep. 

Germany) 
WILMUT, Michael (Canada) 
WILSON, Douglas (Canada) 
WILSON, Edward (U. S. A.) 
WILSON, John (England) 
WILSON, Leslie (U.S. A,) 
WILSON, Richard (U. S. A.) 
WILSON, Robert (U. S. A.) 
WILSON, Robin (England) 
WILSON, Stephen (U. S. A.) 
WIMMER, Harald (Austria) 
WINKELNKEMPER, Horst 

Eimar (Fed. Rep. Germany) 
WINKLER, Wolfgang 

(German Dem. Rep.) 
WINNINK, Marinus 

(Netherlands) 
WINTER, Paul (England) 
WINTHROP, Joel (U. S. A.) 
WIRTH, Andrew (Australia) 
WISCHNEWSKY, Manfred 

(Fed. Rep. Germany) 
WITHALM, Claudio (Austria) 
WITTER, George (U. S. A.) 
WLODARSKI, Lech (Poland) 
WLOKA, Joseph (Fed. Rep. 

Germany) 
WOLF, Joseph (U.S. A.) 
WOLFE, John (Canada) 
WOLFE, Philip (U.S. A.) 
WOLFE, Warren (Canada) 
WOLFF, Karl (Fed. Rep. 

Germany) 
WONENBURGER, Maria 

(U. S. A.) 
WONG, Chi Song (Canada) 
WONG, James (Canada) 
WONG, Pui-Kei (U.S.A.) 
WONG, Raymond (U. S. A.) 
WONG, Roderick (Canada) 



MEMBERS OF THE CONGRESS xlix 

WONG, Shau-King (Canada) 
WONG, Ship-Fah (Canada) 
WONG, Yung-Chow (Hong 

Kong) 
WOO, Joseph (Rep, China) 
WOO, Kai Yuen (Canada) 
WOOD, Alastair (England) 
WOOD, Geoffrey (England) 
WOODROW, Robert 

(Canada) 
WOODS, E. James (Canada) 
WOODS, R, Grant (Canada) 
WOODS, Sheila (Canada) 
WOODSIDE, William 

(Canada) 
WOOLFSON, Richard (Eng­

land) 
WORTMAN, Dennis 

(U. S. A.) 
WOUK, Arthur (Canada) 
WRAY, Thomas (Canada) 
WRIGHT, Christopher 

(Northern Ireland) 
WRONA, Wloozimierz 

(U.S.A.) 
WULBERT, Daniel (U. S. A.) 
WULFSOHN, Aubrey 

(Israel) 
WURSTER, Marie (U. S. A.) 
WYMAN, Bostwick (U, S. A.) 

WYNN, Peter (Canada) 
YAGI, Akiko (Japan) 
YAHYA, Syed Mohammad 

(Pakistan) 
YAJIMA, Takeshi (Japan) 
YAMABI, Masakatsu (Japan) 
YAMASHITA, Michinori 

(Japan) 
YANG, Chung-Chun 

(U, S. A.) 
YANO, Kentaro (Japan) 
YAQUB,Adil(U,S.A.) 
YAQZAN, Matin (Canada) 
YATES, C, E, M. (England) 
YAZAKI, Keiko (Japan) 
YOOD, Bertram (U.S. A.) 
YOSHII, Tensho (Japan) 
YOSHIZAWA, Taro (Japan) 
YOUNGER, Daniel (Canada) 
YUI,Noriko(U,S.A.) 
YUNG-CHEN, Lu (Rep, 

China) 
YUS, Nicolas (Chile) 

ZAGIER,Don(U.S.A,) 
ZAHAR, Ray (England) 
ZAJTA, Aurei (Kenya) 
ZAKHAROV,V.E. 

(U. S. S. R.) 
ZALC, Anne (U. S, A.) 

ZALCMAN, Lawrence 
(U. S. A.) 

ZALCSTEIN, Yechezkel 
(U. S. A,) 

ZAME, William (U.S.A.) 
ZEDEK, Mishael (U, S. A,) 
ZEEMAN, Erik (England) 
ZEHNDER, Edward 

(Switzerland) 
ZELAZKO, Wieslaw (Poland) 
ZELOBENKO,D. 

(U. S. S, R.) 
ZENOR, Phillip (U.S.A.) 
ZIDEK, James (Canada) 
ZIELEZNY,Zbigniew 

(U. S. A.) 
ZIEMBA, William (Canada) 
ZIESCHANG, Heiner (Fed. 

Rep. Germany) 
ZIRILLI, Francesco (Italy) 
ZISKIND, Steven 

(U, S. A.) 
ZIZCENKO,Alexei 

(U. S. S. R.) 
ZOUGDANI, Hassan (Libya) 
ZULAUF, Achim (New 

Zealand) 
ZWAHLEN, Bruno 

(Switzerland) 
ZWIER,Paul(U,S.A.) 



Membership by Countries 

Algeria 
Argentina 
Australia 
Austria 
Belgium 
Brazil 
Bulgaria 
Canada 
Chile 
China, Republic of 
Columbia 
Congo 
Costa Rica 
Cuba 
Czechoslovakia 
Denmark 
Egypt 
England 
Finland 
France 
Germany, Democratic 

Republic of 
Germany, Federal Republic of 
Greece 
Guatemala 
Hong Kong 
Hungary 
India 
Iran 
Iraq 
Ireland, Northern 
Ireland, Republic of 
Israel 
Italy 
Ivory Coast 
Japan 
Kenya 

2 
3 

44 
4 

14 
8 
5 

514 
9 

11 
1 
1 
1 
1 
4 

19 
2 

181 
11 

245 

11 
146 

7 
2 
3 

24 
26 
11 
4 
1 
7 

20 
45 
2 

114 
3 

Kuwait 
Lebanon 
Libya 
Malaysia 
Mexico 
Netherlands 
New Zealand 
Niger 
Nigeria 
Norway 
Pakistan 
Philippines 
Poland 
Portugal 
Puerto Rico 
Rhodesia 
Romania 
Saudi Arabia 
Scotland 
Senegal 
Sierra Leone 
Singapore 
.South Africa, Republic of 
Spain 
Sweden 
Switzerland 
Tunisia 
Turkey 
Uganda 
Uruguay 
U. S. A. 
U. S. S. R. 
Venezuela 
Vietnam, Democratic Republic 
Wales 
Yugoslavia 
Zaire, Republic of 

4 
1 
1 
2 

20 
39 
15 
1 

16 
16 
7 
2 

18 
3 
2 
1 
5 
1 

27 
10 
1 
2 
9 

11 
17 
28 
3 
2 
1 
1 

1274 
50 
2 
4 
6 

10 
3 



Professor 

J, L. Lions 

lecturing 

SOME 
VIEWS 

Photo by John Coury 

of the Congress 



AERIAL VIEW OF THE SITE 



A *'*• 
w I 

Hfr« «I 

Photo courtesy UBCInformation Services 



CLOSE-UPS 

BOOK 

EXHIBIT 

Photo by John Coury 

Photo by John Coury 

CLOSED-CIRCUIT TELEVISION 



PORTRAITS OF MATHEMATICIANS 

Photo by John Coury 

r» 

~mm**+ 

D 

! - % 
Dave Roels photo 

Professor Enrico Bombieri Professor David Mumford 





Fields Medalists 





Proceedings of the International Congress of Mathematicians 
Vancouver, 1974 

The Work of Enrico Bombieri 

K. Chandrasekharan 

Bombieri's work ranges over many fields: number theory, univalent functions, 
several complex variables, partial differential equations, algebraic geometry. I do 
not seek to describe it all. I shall not touch upon hijs work in algebraic geometry, 
nor shall I anticipate his article in these PROCEEDINGS on partial differential 
equations. I shall speak only about three of his contributions. They should give 
some idea of the variety and depth of his work. 

1. The distribution of primes. First among Bombieri's achievements is his re­
markable theorem on the distribution of primes in arithmetical progressions, which 
he obtained by an application of the method of the large sieve (Mathematika 12 
(1965), 201—225). 

The prime number theorem for the arithmetical progression a + mq9 where a 
and q are integers, q > 0, (a9 q) — 1, 0 ^ a < q9 arid m = 1,2, •••, is equivalent to 
the assertion that 

(J)(x\ q, a) ~ xj(p(q)9 

as x -• 00, where tp stands for Euler's function, and 

(J)(x; q,a)= S A(n)9 
n^x\n=a (mod q) 

where A(n) = log/? if is n a power of a prime/?, and Airi) «= 0 otherwise. 
Bombieri's theorem is concerned with an estimate of the error term E(x; q, a) = 

<f>(x; q, a) - x/<p(q)9 not for an individual q9 but on the average over q9 up to a 
certain bound. It states that given a positive constant A9 there exists a positive 
constant B = B(A)9 such that 

(1) S max max \E(y; q9a)\ ^ x(log^)^, 
q£Q y£X a,(a,q)=l 

© 1975, Canadian Mathematical Congress 
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if ß = x1/2(logx)-B. 
A slightly weaker result, which is less widely applicable, was obtained inde­

pendently by A. I. Vinogradov (also in 1965) by a different method. 
The significance of Bombieri's theorem becomes clear, if we note that, for any 

fixed q (that is, fixed relative to x)9 the best result so far known is that 

E(x; q, a) = 0(x exp (— c(log x)6))9 

with c > 0, \ ^ d < 1. If q is a function of x9 the main term x/<p(q) in the asympto­
tic formula for <]) decreases as q increases. Therefore estimates uniform in q are 
required. But an estimate which is uniform in q requires a strong restriction on the 
range of q (in the present state of knowledge). Such an estimate was first deduced 
by Arnold Walfisz (1936) from a theorem of C. L. Siegel (1935) on the location of 
the real zeros of Dirichlet's L-functions with real, nonprincipal, characters. It is as 
follows : 

E(x; q, a) = 0(xexp (-c0(log x)1/2)) 

where c0 is a positive constant, uniformly for q ^ logax, where a is a given positive 
number however large. 

If, on the other hand, one assumes the "extended Riemann hypothesis", that not 
only the Riemann zeta-function but all the L-functions, modulo q, of Dirichlet, 
have all their zeros in the critical strip on the critical line, one would get the much 
stronger estimate: E(x; q9 a) = 0(xl/2 log2*), uniformly for q ^ x. This would, if 
used on the left-hand side of (1), give a result comparable to Bombieri's, with 
B = A + 2, but even this, it is to be noted, is not significant if q exceeds x1/2. 

Bombieri's theorem may therefore, and does sometimes, serve as a substitute for 
the assumption of the extended Riemann hypothesis, which has far-reaching 
implications in number theory. His proof is as remarkable as his result. To explain 
it one might perhaps cast a glance backwards. 

A sieve, in simple terms, is a combination of (i) a finite sequence Jf of integers, 
(ii) a finite set of distinct primes &, and (iii) corresponding to each prime p e 0>, a 
subset up of residue classes modulo p. If one sieves out, or deletes, from the given 
sequence Jr

9 all those integers whose residue class modulo p belongs to Qp for some 
p e ^ , the problem is to estimate, from above and from below, the number of 
integers left over in Jf after the sieving (or deletion). 

A sieve is called large or small9 according as \Qp\, the number of residue classes 
in Op, is, on the average, large or small. 

If we take Jf to be the sequence of consecutive integers 1,2, • • •, N; 0> to be the set 
of all primes p ^ Nl/2; and Qp to consist of the single residue class 0 (mod p) for 
each p ^ N1/2

9 we get the (ancient) sieve of Eratosthenes, which is obviously a 
small sieve. The elements left over in Jf after the sieving are the integer 1, together 
with all primes/?, such that Nl/2 < p ^ N. 

Viggo Brun was the first to introduce, in 1920, an ingenious sieve method to 
prove that every sufficiently large even integer is a sum of two integers, each of 
which has not more than nine prime factors. Improvements of Brun's method were 
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made in later years by H. Rademacher, T. Estermann, G. Ricci, and A, A, Buch-
stab; until Atle Selberg, during the years 1946—1951, developed a sieve method 
more general and more powerful than Brun's and its improved versions, 

We are here concerned, however, with the method of the large sieve, which is 
different from the small sieves of Brun and of Selberg, and which, when combined 
with analytical arguments, yields results that are beyond the reach of the other 
sieves. 

The idea of the large sieve originated with Yu. V. Linnik in 1941, in his attempt 
to tackle I. M, Vinogradov's hypothesis (which is yet to be proved or disproved) on 
h<i(p)9 the least quadratic nonresidue modulo p. The hypothesis is that given 
e > 0, there exists a constant c ?= c(e) such that h2(p) < cpe, Linnik sought to 
estimate the number of primes /? g x, say, for which /72(/?) > pB

9 for any given 
e> 0. 

Let nh n%, •••, nz be Z integers, such that M + 1 'è n% < n% < ••• < nz S M + 
N. Let the prime /? be called exceptional, if the number of residue classes not re­
presented by the numbers (n/)9j = 1, 2, >~,Z, is greater than zp, where z is a fixed 
number such that 0 < z < 1. Linnik proved that for any such sequence (nj), the 
number of exceptional primes p S Nin does not exceed ciN/z2Z9 where c\ is an 
absolute constant. As an application, he proved the striking theorem that the' 
number of primes p S N for which the least quadratic nonresidue is greater than 
Ne

9 for a fixed number e > 0, is bounded. It follows that the number of primes 
p $: Xfor which the least quadratic nonresidue is greater than/?* is <̂  log log X. 

In the context of the definition of a sieve, the sequence (nj), j= 1,2, • • •, Z, may be 
looked upon as the sequence of elements left over in the interval [M + 1, M + N], 
after a sieving has been effected (on the sequence of all integers in that interval, for 
example), with a sieving set {Qp} of residue classes modulo/?, p ^ N1/2

9 which has 
the property that for each exceptional p ^ N1/2, the corresponding Qp has more 
than zp elements. Hence the name large sieve. 

The next important step was taken by A. Rényi. If Z(/?, a) denotes the number of 
elements in the given sequence (n/) such that iij *= a (mod /?), Linnik's result takes 
the form: The number of primes p ^ N1/2 such that Z(/?, a) = 0 for at least zp 
values of a, where 0 < z < 1, does not exceed 

cxNlz2Z. 

Rényi considered instead the sum 

sx= ïlPPi(z(p,a)-z/py, 

and proved in 1950 that 

(2) Sx è 2NZ9 for X = (A^/12)1/s. 

Again, in the context of the definition of a sieve, we have Z(/?, a) = 0 if a e Op, 
so that 
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which, when combined with (2), gives an upper bound for Z—and also Linnik's 
result provided that X = Nl/2. 

As an application of his inequality, Rényi proved the striking theorem that every 
sufficiently large even integer is the sum of a prime and an almost prime (that is, 
an integer which is the product of a bounded number of prime factors). 

Though Rényi's inequality yields more precise information than Linnik's result 
for the range of primes p <t N1/3,it does not work for the wider range p < Nl/2 

of Linnik, which is more appropriate in the context of arithmetical applications. 
This defect was sought to be repaired by many mathematicians. It was not until 
1965, however, that important further progress was made by K. F. Roth (Mathema-
tika 12 (1965), 1-9) and, independently, by Bombieri (Mathematika 12 (1965), 
201-225). Roth proved that Rényi's inequality (2) holds for X = (N/log N)U2, 
and Bombieri that it holds for X = N1/2 (with < in place of ^ ) . 

Bombieri proceeded to place Rényi's inequality in a more general setting and 
proved, by a simple and ingenious argument, an inequality for trigonometrical 
double sums, which is as follows: Let x\, x2, •••, xR be real numbers which are 
ö-well-spaced, in the sense that \\xk - Xi\\ à 8 > 0 for k ^ I (where ||0||, for 
any real d, denotes the distance of d from the nearest integer). Let T(x) = 
Hrf=M+ian e2%t'nx, where the (an) are complex numbers. Then 

i? , . / 9 \ M+N 

(3) s^Npl s 
(ActaArith. 18(1971), 401-404; Proc. Internat. Conf. Number Theory, Moscow, 
1971). This corresponds, as Bombieri has shown, to something like Bessel's ine­
quality in a Hilbert space. 

If we take xk to be rational, xk = ajq, say, where (a, q) — 1, q ^ Q, with an = 1 
for n = nj and an = 0 for n ^ nj9 we get (more than) Rényi's inequality (2) in case 
q is a prime, and something similar to the inequality given by Selberg's upper-bound 
sieve, in case q is composite. 

Thus many results previously obtained by Selberg's method can now be proved 
by using (3). 

Bombieri then considered the analogue of his large-sieve inequality (3) for sums 
of Dirichlet characters % modulo q instead of trigonometrical sums. The connecting 
link is the Gaussian sum 

G{%) = t %(d) exp(2xia/q)9 
a=l 

since 

where 

Ç I G(X) I2 %('%(") = 9(<l) Sm-nt v if (mn, q) = 0, 

= 0, if (mn, q) > 1, 

q 
Sm>q = S cxp(27ciam/q) 

a=ï,(a,q)=l 
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is the well-known Ramanujan sum (not to be confused with Sx in (2)). 
Vital for Bombieri's proof of his theorem on arithmetical progressions is the 

following inequality: Let Q be any finite set of positive integers, (a„) any complex 
numbers. Then 

(4) \G(X)\ 2, *£***)** 2£72>max(7~ JT,M2) 2 d(n)\an\
2. 

Here £ % denotes summation over all characters % modulo q, d(n) denotes the divisor 
function, D - D(q) = max^o d(q)9 M - M(Q) » msLXgeQ q. 

By skilful and repeated application of this inequality, with different choices of 
X9 Y9 and an9 Bombieri deduced a new type of density theorem for the zeros of 
L-functions. The theorem gives an estimate for the sum 

1 
S ?>(?) Z\G(x)\2N(a9T;%\ 

which is uniform with respect to g, for £ < a S 1> T è 2. Here JV(a, 7"; #) denotes 
the number of zeros of Dirichlet's function L(s9 y) in the rectangle a £ Re s ^ 1, 
| ^ a S 1, | Im J | ^ r, in the complex j-plane, 

From his density theorem Bombieri deduced his theorem on primes in arith­
metical progressions, by an appeal to classical arguments in the theory of .L-func­
tions, combined with an application of the Siegel-Walfisz theorem (stated at the 
beginning). 

Bombieri's work has given rise to a general method for treating problems that 
were previously solved either on the assumption of the extended Riemann hypo­
thesis, or by Linnik's 'dispersion method', or by highly complicated, ad hoc 
methods. It thus furnishes a new approach to such important results as I. M. 
Vinogradov's theorem (1937) that every sufficiently large odd integer is a sum of three 
primes, or Linnik's theorem (1961) that every sufficiently large integer is a sum of a 
prime and two squares, or Chen's result (1967) that every sufficiently large even 
integer is a sum of a prime and an integer with at most two prime factors. Bom­
bieri's theorem represents a deep synthesis of the most important modern methods 
in prime number theory. It has not put an end to any one question; rather it has led 
to many new ones. 

His inequality for sums of Dirichlet characters has been extended to general 
multiplicative characters of the form %(/?)wrt which are "5-well-spaced". In con­
sequence, the best bounds so far known have been obtained for N(a9 T; #), yielding 
as special cases such results as the following : The difference between the consecutive 
primes /?M+1, pn has the estimate /?M+1 - pn <0,7/12+e, f° r every e > 0. (It is 
known that the Riemann hypothesis implies this with the exponent 1/2 in place 
of 7/12.) The "density hypothesis" N(a, T; #o) < T2^"a)^ holds for a > 13/16. 
(Here £0 is the principal character, so that the zeros are those of Riemann's 
zeta-function.) Bombieri's method has also been generalized to algebraic 
number fields. Many mathematicians have played a part in the development of his 
method—H. Davenport, H. Halberstam, P. X. Gallagher, H. L. Montgomery, 
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G. Halâsz, M. N. Huxley, M. Jutila and, more recently, M. Forti and C. Viola, to 
mention but a few. There is little doubt that Bombieri's theorems have inspired that 
development. 

2. Univalent functions and the local Bieberbach conjecture. Bombieri's work on 
the local validity of the Bieberbach conjecture is an impressive achievement in an 
altogether different branch of mathematics. It shows his power and ingenuity in 
attacking problems of 'hard analysis'. 

Let 5* denote the family of functions f(z) = z + a2z
2 + ß3z

3 + ••• which are 
(normalized) holomorphic and univalent in the unit disc \z\ < 1. Bieberbach's 
conjecture is that if/(z) e Sf, then Re an S n, with the equality holding only if/(z) = 
z/(l — pz)2, and pn~l = 1. The conjecture has so far been proved for 2 g n g 6 
on the one hand, and for a large number of subfamilies of 5* on the other. 

In 1965 P. R. Garabedian and M. Schiffer raised the question of the local validity 
of that conjecture, that is : If 2 — Re a2 is small enough, is it true that n — Re an is non-
negative? They answered it in the affirmative if n is even. They proved the existence 
of a positive constant e2m, say, such that if 12 — a2 \ < e2m, then Re a2m ^ 2m, with 
the equality holding if and only if/(z) = z(l — z)~2 = 2£Li nzn> the Koebe function. 

Bombieri proved this in 1967 for alln, odd as well as even, the case ofn odd being 
the more difficult (Invent. Math. 4 (1967), 26-67). To be precise, he proved that 

lim inf -TX p " > 0, if n is even, 
a^2 2 - Re a2 > 

and 
lim inf ^ P Q

 n > 0, if n is odd, 
Cs-3 •* - K e f l 3 

where the 'lim inf is taken over all functions of the family Sf. 
An independent, though less direct, proof of this has since been published by 

Garabedian and Schiffer (Arch. Rational Mech. Anal. 26 (1967), 1-32). 
Bombieri's proof is based on an ingenious combination of K. Löwner's 'para­

metric method' with the theory of the 'second variation' developed by P. L. Düren 
and M. Schiffer. He uses the results of A. C. Schaefer and D. C. Spencer on Löwner 
curves, as well as an earlier result of his own concerning a set of quadratic forms 
(Qn), in an infinite number of variables, which had been encountered by Düren 
and Schiffer in their theory of the second variation. These quadratic forms Qn have 
the property that: (a) if Qn is an indefinite form, then Bieberbach's conjecture is 
false for that n; (b) if Qn is positive definite, then every analytic variation of the 
Koebe function decreases Re an. Düren and Schiffer proved (1962/63) that Qn 

is positive definite for n = 2,3, • • •, 9, and the same was checked with a computer for 
all n ^ 100. Bombieri proved that Qn is positive definite for all n (Boll. Un. Mat. 
Ital. (3) 22 (1967), 25-32). 

3. Several complex variables. Bombieri's theorem concerning algebraic values of 
meromorphic maps (Invent. Math. 10 (1970), 267-287; 11 (1970), 163-166), moti-



THE WORK OF ENRICO BOMBIERI 9 

vated though it is by the theory of transcendental numbers, is an incursion of 
geometric integration theory in the analysis of functions of several complex vari­
ables. The theorem is as follows : 

THEOREM, Let K be an algebraic number field. Let f9 fz,"-, fa be meromorphic 
functions of finite order in Cn. Suppose that at least « + 1 of them are algebraically 
independent over K, and that for any j with 1 Sj < N and v with 1 è v S w, the 
partial derivative df}-jdzy is a polynomial inf, f%9 •••,/# w/fA coefficients in K. Then, 
the set of points in Cn at which all thefj are defined, and have values in K, is contained 
in an algebraic hyper surface in Cn, (If the given functions are of order ^ p9 then the 
degree of the hyper surf ace S w(w + l)p[K: Q] + /;.) 

The case n = 1 was proved by S. Lang after previous work by Th. Schneider; It 
unifies divers results due to A. O. Gelfond and to Schneider, and contains, in parti­
cular, the transcendency of ett for a ^ 0, a algebraic, and of o$ for a ^ 0,1, a and ß 
algebraic and ß irrational. While Bombieri's extension does not seem immediately 
to lead to new theorems on transcendency, variants of it are applicable to the study 
of w-parameter subgroups of algebraic groups (Invent. Math. 11 (1970), 1-14). 

But the real interest of the paper, once again, arises from the proof which con­
tains an existence theorem and a structure theorem. The existence theorem, which 
generalizes previous work of L. Hörmander and of A, Martineau, states that for 
any pluri-subharmonic function/? on Cn,/? ^ — oo, there exists a nonzero entire 
function/on O , with 

J \f(z)\2e~p™ (1 + |z|2)~3» dz < + oo. 
c 

The structure theorem, on the other hand, gives a sufficient condition for a current 
of degree (1,1) to be integration on an analytic set of codimension 1. Several authors 
had previously attempted, without success, to produce workable conditions ofthat 
type. Bombieri's result has since been used by F. Reese Harvey and James King 
(Invent. Math. 15 (1972), 47-52) to characterize those currents of degree (k9k)9 k ^ 
1, on a complex manifold that correspond to integration over (linear combinations 
of) complex subvarieties, thus settling a conjecture of P. Lelong which had been 
open for several years that those are precisely the positive currents that are d'-closed 
and whose densities (or Lelong numbers) are locally bounded away from zero. For 
his proof, Bombieri makes use of Hörmander's work on L2-estimates and existence 
theorems for solutions of the 3-Neumann problem, besides ideas from H. 
Federer's work in geometric measure theory. It bears the hallmark of a highly 
original analyst. 

4. I have not spoken about Bombieri's contributions to the theory of partial 
differential equations and minimal surfaces—in particular, to the solution of 
Bernstein's problem in higher dimensions. Nor have I spoken about the fact that 
he was among the first to give effective applications of Dwork's method in the p-
adic approach to André Weil's zeta-function. But I hope I have said enough to show 
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that Bombieri's versatility and strength have combined to create many original 
patterns of ideas which are both rich and inspiring. It is in recognition of these 
qualities that he has been awarded a Fields Medal. To him mathematics is a private 
garden; may it bring forth many new blooms, 

E I D G . T E C H N I S C H E H O C H S C H U L E 

Z ü R I C H , S W I T Z E R L A N D 
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The Work of David Mumford 

J. Tate 

It is a great pleasure for me to report on Mumford's work. However I feel there 
are many people more qualified than I to do this. I have consulted with some of 
them and would like to thank them all for their help, especially Oscar Zariski. 

Mumford's major work has been a tremendously successful multi-pronged 
attack on problems of the existence and structure of varieties of moduli, that is, 
varieties whose points parametrize isomorphism classes of some type of geometric 
object. Besides this he has made several important contributions to the theory of 
algebraic surfaces, I shall begin by mentioning briefly some of the latter and then 
will devote most of this talk to a discussion of his work on moduli. 

Mumford has carried forward, after Zariski, the project of making algebraic 
and rigorous the work of the Italian school on algebraic surfaces. He has done 
much to extend Enriques' theory of classification to characteristic p > 0, where 
many new difficulties appear. This work is impossible to describe in a few words 
and I shall say no more about it except to remark that our other Field's Medalist, 
Bombieri, has also made important contributions in this area, and that he and 
Mumford have recently been continuing their work in collaboration. 

We have a good understanding of divisors on an algebraic variety, but our 
knowledge about algebraic cycles of codimension > 1 is still very meager, The 
first case is that of 0-cycles on an algebraic surface. In particular, what is the struc­
ture of the group of 0-cycles of degree 0 modulo the subgroup of cycles rationally 
equivalent to zero, i.e., which can be deformed to 0 by a deformation which is 
parametrized by a line, This group maps onto the Albanese variety of the surface, 
but what about the kernel of this map? Is it "finite-dimensional"? Severi thought 
so; but Mumford proved it is not, if the geometric genus of the surface is ^ 1. 
Mumford's proof uses methods of Severi, and he remarks that in this case the tech-

© 1975, Canadian Mathematical Congress 
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niques of the classical Italian algebraic geometers seem superior to their vaunted 
intuition. However, in other cases Mumford has used modern techniques to justify 
Italian intuition, as in the construction by him and M. Artin of examples of uni-
rational varieties X which are not rational, based on 2-torsion in H\X, Z). 

Probably Mumford's most famous result on surfaces is his topological charac­
terization of nonsingularity. Let P be a normal point on an algebraic surface V 
in a complex projective space. Mumford showed that if Fis topologically a mani­
fold at P, then it is algebraically nonsingular there. Indeed, consider the intersec­
tion Kof F with a small sphere about P. This intersection K is 3-dimensional and if 
Fis a manifold at P9 then ^ is a sphere and its fundamental group is trivial. Mum­
ford showed how to compute this fundamental group %\(K) in terms of the diagram 
of the resolution of the singularity of V at P, and then he showed that Tü\(K) is not 
trivial unless the diagram is, i.e., unless Fis nonsingular at P. A by-product of this 
proof is the fact that the Poincaré conjecture holds for the 3-manifolds which occur 
as K's. Mumford's paper was a critical step between the early work on singularities 
of branches of plane curves (where Kis a torus knot) and fascinating later develop­
ments. Brieskorn showed that the analogs of Mumford's results are false in general 
for F of higher dimension. Consideration of the corresponding problem there led 
to the discovery of some beautiful relations between algebraic geometry and differ­
ential topology, including simple explicit equations for exotic spheres. 

Let me now turn to Mumford's main interest, the theory of varieties of moduli. 
This is a central topic in algebraic geometry having its origins in the theory of 
elliptic integrals. The development of the algebraic and global aspects of this subject 
in recent years is due mainly to Mumford, who attacked it with a brilliant combina­
tion of classical, almost computational, methods and Grothendieck's new scheme-
theoretic techniques. 

Mumford's first approach was by the 19th century theory of invariants. In fact, 
he revived this moribund theory by considering its geometric significance. In pur­
suing an idea of Hilbert, Mumford was led to the crucial notion of "stable" objects 
in a moduli problem. The abstract setting behind this notion is the following: 
Suppose G is a reductive algebraic group acting on a variety F in projective space 
PN by projective transformations. Then the action of G is induced by a linear and 
unimodular representation of some finite covering G* of G on the affine cone 
AN+i o v e r the ambient PN. Mumford defines a point x e F to be stable for the 
action of G on F, relative to the embedding F cz PN, if for one (and hence every) 
point x* e A1**1 over x, the orbit of x* under G* is closed in AN+l

9 and the stabilizer 
of x* is a finite subgroup of G*. His fundamental theorem is then that the set of 
stable points is an open set V5 in F, and Vs/G is a quasi-projective variety. 

For example, suppose F = (Pw)wis the variety of ordered m-tuples of points in pro­
jective «-space and G is PGLW acting diagonally on F via the Segre embedding. Then 
a point x = (xi, x2, • • •, xm) e F is stable if and only if for each proper linear subspace 
L cz Pn, the number of points x{ G L is strictly less than ra(dim L + \)j(n + 1). 
In case n = 1, for example, this means that an m-tuple of points on the 
projective line is unstable if more than half the points coalesce. The reason such 
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w-tuples must be excluded is the following: Let Pt = (txh tx29>~9 txn xr+i9---9 xm) 
and Qt = (xi,~-9 xn r^+j , - - - , t~lxm)9 where the xf are pairwise distinct. Then 
Pt is in the same orbit as Qt, for t ^ 0, oo, but P0 ~ (0,'-, 0, x r+1, '-, xm) is not in 
the same orbit as go = (pCh'"> xr9 oo,---, oo) unless m = 2r, and even then is not in 
general, Thus if we want a separated orbit space in which lim^0 (Orbit Pt) is 
unique, we must exclude P0 or QQ; and it is natural to exclude the one with more 
than half its components equal. 

Using the existence of the orbit spaces Vs/G9 Mumford was able to construct a 
moduli scheme over the ring of integers for polarized abelian varieties, relative 
Picard schemes (following a suggestion of Grothendieck), and also moduli varieties 
for "stable" vector bundles on a curve in characteristic 0. The meaning of stability 
for a vector bundle is that all proper subbundles are less ample than the bundle 
itself, if we measure the ampleness of a bundle by the ratio of its degree to its rank, 
In the special example F ~ (P„)m mentioned above, the results can be proved by 
explicit computations which work in any characteristic and even over the ring of 
integers, But in its general abstract form Mumford's theory was limited to charac­
teristic 0 because his proofs used the semisimplicity of linear representations. He 
conjectures that in characteristic/?, linear representations of the classical semisimple 
groups have the property that complementary to a stable line in such a representa­
tion there is always a stable hypersurface (though not necessarily a stable hyper-
plane which would exist if the representation were semisimple). If this conjecture is 
true1 then Mumford's treatment of geometric invariant theory would work in char­
acteristic/?. Seshadri has proved the conjecture in case of SL2. He has also shown 
recently that the conjecture can be circumvented, by giving different more compli­
cated proofs for the main results of the theory which work in any characteristic. 

For moduli of abelian varieties and curves, Mumford has given more refined 
constructions than those furnished by geometric invariant theory. In three long 
papers in Inventiones Mathematicae he has developed an algebraic theory of theta 
functions, Classically, over the complex numbers, a theta function for an abelian 
variety A can be thought of as a complex function on the universal covering space 
Hi(A9 R) which transforms in a certain way under the action of H\(A9 Z). For 
Mumford, over any algebraically closed field k9 a theta function is a it-valued func­
tion on ri/eg H\(A9 Qt) (étale homology) which transforms in a certain way under 
Il/es Hi(A, Zi). Here S is any finite set of primes / ¥= char (k), though in treating 
some of the deeper aspects of the theory Mumford assumed 2 G S. In order to get 
an idea of what these theta functions accomplish let us consider a classical special 
case, Let A be an elliptic curve over C with its points of order 4 marked. Then 
we get a canonical embedding A q: P 3 via the theta functions 0[g]; a, b = 0, 1, 
Let Ô  be the origin on A9 whose coordinates in P 3 are the "theta Nullwerte". 
Then A is the intersection of all quadric surfaces in P 3 which pass through the orbit 
of 0A under a certain action of (Z/4Z) x (ZjAZ) on P3. Thus 0^ determines A and 

*( ADDED DURING CORRECTION OF PROOFS). The conjecture is true; shortly after the Congress, it 
was proved by W. Haboush in general and by E. Formanek and C. Procesi for GL(») and SL(/i). 
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can be viewed as a "modulus". Moreover, 0^ lies on the quartic curve 0[§]4 = 
0[?]4 + 0[i]4 m the plane 6[{] = 0, and that curve minus a finite set of points is a 
variety of moduli for elliptic curves with their points of order 4 marked. Mumford's 
theory generalizes this construction to abelian varieties of any dimension, with 
points of any order ^ 3 marked, in any characteristic / 2. The moduli varieties so 
obtained have a natural projective embedding, and their closure in that embedding 
is, essentially, an algebraic version of Satake's topological compactification of 
Siegel's moduli spaces. Besides these applications to moduli, the theory gives new 
tools for the study of a single abelian variety by furnishing canonical bases for all 
linear systems on it. 

Next I want to mention briefly/?-adic uniformization. Motivated by the study of 
the boundary of moduli varieties for curves, i.e., of how nonsingular curves can 
degenerate, Mumford was led to introduce /?-adic Schottky groups, and to show 
how one can obtain certain /?-adic curves of genus ^ 2 transcendentally as the 
quotient by such groups of the /?-adic projective line minus a Cantor set. The 
corresponding theory for genus 1 was discovered by the author, but the generali­
zation to higher genus was far from obvious. Besides its significance for moduli, 
Mumford's construction is of interest in itself as a highly nontrivial example of 
"rigid"/?-adic analysis. 

The theta functions and /?-adic uniformization give some insight into what hap­
pens on the boundary of the varieties of moduli of curves and abelian varieties, 
but a much more detailed picture can now be obtained by Mumford's theory of 
toroidal embeddings. This theory, which unifies ideas that had appeared earlier 
in the works of several investigators, reduces the study of certain types of varieties 
and singularities to combinatorial problems in a space of "exponents". The local 
model for a toroidal embedding is called a torus embedding. This is a compacti­
fication F of a torus F such that the action of F on itself by translation extends to 
an action of Fon V. The coordinate ring of Fis linearly spanned by the monomials 
xa = xf xf ••• x%\ n = dim V, with positive or negative integer exponents a{. 
Viewing the exponent vectors a as integral points in Euclidean «-space, define a 
rational cone in that space to be a set consisting of r 's such that (r, a) ^ 0 for a e S9 

where S is some finite set of exponent vectors. For each rational cone a, the mo­
nomials xa such that (r, a) ^ 0 for all rea span the coordinate ring of an affine 
variety V(o) which contains Fas an open dense subvariety, if a contains no nonzero 
linear subspace of Rn. Now if we decompose Rn into the union of a finite number 
of rational cones aa in such a way that each intersection aa f] 0ß is a face of aa and 
aß, then the union of the V(aa) is a compactification of F of the type desired. All 
such compactifications V of F can be obtained in this way and the invariant sheaves 
of ideals on them can be described in terms of the decomposition into cones. One 
can also read off whether V is nonsingular, and if it is not one can desingularize it 
by suitably subdividing the decomposition. In short, there is a whole dictionary for 
translating questions about the algebraic geometry of F and V into combinatorial 
questions about decompositions of Rn into rational cones. 

Mumford with the help of his coworkers has used these techniques to prove 
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the following semistable reduction theorem. If a family of varieties Xt over C9 

in general nonsingular, is parametrized by a parameter Zona curve C, and if Xu 

is singular, then one can pull back the famjly to a ramified covering of C in a neigh­
borhood of f0 and blow it up over to in such a way that the new singular fiber is of 
the stablest possible kind, i.e., is a divisor whose components have multiplicities 1 
and cross transversally. The corresponding problem in characteristic p is open. 
For curves in characteristic/? the result was proved by Mumford and Deligne and 
was a crucial step in their proof of the irreducibility of the moduli variety for curves 
of given genus. 

Toroidal embeddings can also be used to construct explicit resolutions of the 
singularities of the projective varieties D/T, where D is a bounded symmetric do­
main, r is an arithmetic group, and the bar denotes the "minimal" compactifiòa-
tion of Baily and Borei. The construction of these resolutions is a big step forward. 
With them one has a powerful tool to analyse the behavior of functions at the 
"boundary", compute numerical invariants, and, generally, study the finer struc­
ture of these varieties. 

I hope this report, incomplete as it is, gives some idea of Mumford's achieve­
ments and their importance. I heartily congratulate him on them and wish him 
well for the future! 

HARVARD UNIVERSITY 

CAMBRIDGE, MASSACHUSETTS 02138, U.S.A. 
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Critical Points of Smooth Functions* 

V. I. Arnold 

The critical points of a smooth function are the points where the differential 
vanishes. A critical point is nondegenerate if the second differential is a nondegener­
ate quadratic form. In some neighbourhood of a nondegenerate critical point the 
function can be represented in the Morse normal form 

/ = ± x\ ± '•• ± x\ + const 
using suitable local coordinates. 

Every degenerate critical point bifurcates into some nondegenerate points after 
an arbitrarily small deformation ("morsification"). So generically, functions have 
no degenerate critical points. 

Degenerate critical points appear naturally when the function depends upon 
parameters. For example, the function f(x) = x3 — tx has a degenerate critical 
point for the value t = 0 of the parameter. Every family of functions close enough 
to this one-parameter family has a similar degenerate critical point for some small 
value of the parameter, 

When the parameters are few, only the simplest degeneracies appear generically, 
and one can explicitly list them, giving normal forms for functions and families. 
When the number of parameters increases, more complicated degeneracies appear, 
and their classification seems hopeless. In recent years it has been found, however, 
that at least the initial part of the hierarchy of singularities is remarkably simple, 
as is described below, 

Families of functions appear in all branches of analysis and mathematical 
physics. In this report three applications will be discussed: Lagrange singularities 
(or caustics), Legendre singularities (or wavefronts), and oscillating integrals (or 
stationary phase method). 

*Delivered by E. Brieskorn. 
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Unexpectedly enough, the classification of the simplest singularities in all these 
problems turns out to be related to the Lie, Coxeter, and Weyl groups Ak, Dk, Eh 

to Artin's and Brieskorn's braid groups, and to the classification of the platonics 
in Euclidean three space. 

The occurrence of the diagrams A,D,E and of Coxeter groups in such different 
situations as the simple Lie algebra theory, the classification of simple categories of 
linear spaces (Gabriel, Gel'fand-Ponomarev, Roiter-Nasarova), the Kodaira 
classification of elliptic curves degenerations, the theory of platonics, and the theory 
of simple singularities gives an impression of a wonderful chain of coincidences of 
the results of independent classifications (certain relations between some of them 
being known, others suspected). As we will now see, the classification of more com­
plex singularities provides new wonderful coincidences, where Lobatchevski triangles 
and automorphic functions take part. 

1. Classification of critical points. Let/be a germ of a holomorphic function at a 
critical point O. The multiplicity (or the Milnor number) /LL of the critical point is 
defined as the number of nondegenerate critical points to which O bifurcates after 
a modification. 

Two germs of functions are equivalent if one of them can be transformed into the 
other by a local diffeomorphism of the domain space. The jet (the Taylor polyno­
mial) of a function at O is sufficient if it determines the germ up to equivalence. 

Every germ of a smooth function at a critical point of finite multiplicity is 
equivalent to a germ of a polynomial (namely, of its Taylor polynomial), and its 
jet of sufficiently high order is sufficient (see Tougeron [76], M. Artin [14], Mather 
[53], and also [3], for four different proofs). 

So, the classification problem for critical points with finite /x is reduced to a 
sequence of algebraic problems dealing with linear actions of Lie groups on finite 
dimensional spaces of jets. The first steps in solving these algebraic problems were 
taken by Thorn [70], Mather [53], and Siersma [66], 

The classification of the first degeneracies is discrete, but the further types of 
critical points depend upon parameters (moduli). One finds that it is the classi­
fication of singularities with a small number of moduli that is nice while the classi­
fication of classes with small fj, or small codimension is not. 

Let us call modality (or number of moduli) of a point xe X under the action of a 
Lie group G on X the minimum number m such that some neighbourhood of x is 
covered by a finite number of m-parameter families of orbits of the group G. The 
point x is called simple if its modality is 0, that is, if some neighbourhood of x 
intersects only a finite number of orbits. 

The modality of the germ of a function at a critical point is the modality of its 
sufficient jet in the space of jets of functions with critical point O and critical value 0. 

Two germs of holomorphic functions with different numbers of arguments are 
called stably equivalent if they become equivalent after the direct addition of a 
nondegenerate quadratic form of the suitable number of variables. 
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THEOREM 1 (SEE [6]). Up to stable equivalence, simple germs of holomorphic func­
tions are exactly the following germs \ 

Ak ;f(x) •= x*+\ Dk :f(x9 y) = x2y + y*-i, 
EQ \f(x9 y) 5= x3 + y\ E7 :f(x9 y) «= *3 + xy*9 

Es:f(x9y) = x* + y\ 
(See Figure 1.) 

A,~A2-A3-A4-A5-A6-AT-Ae-.. 

%3,3 12,4,4 '2,3,6 

FIGURE 1. All the adhérences of simple and parabolic singularities. 

THEOREM 2 (SEE [7]). Unimodular germs (that is, germs of modality m «= 1) of 
holomorphic functions belong (up to stable equivalence) either to the following series 
of one-parameter families of functions : 

Tp,q,r'f(x>y> *) = axyz + x* + y* + &, ~- + -1 + -y < 1, a * 0, 

or to one of the following three families: 

TS,3,B -f(x,y, z) = x3 + y* + z* + axyz9 a* + 27 * 0, 
2̂,4,4 '-Ax, y, z) = x4 + y* + z2 + ax2y\ a2 * 4, 
2̂,3,6 -Ax,y,z) = x3 + y* + z2 + ax2y\ 4a* + 27 ^ 0, 

or to one of the fourteen "exceptional" one-parameter families9 given by the table 
below (whose columns 3—7 will be explained later). 

There also exist tables of normal forms for all functions of two variables with 
nontrivial 3-jets [9] or nontrivial 4-jets, and tables of real normal forms. 

THEOREM 3 (SEE [6], [7]). The set of all nonsimple germs of functions ofn^3 
variables has codimension 6, and the set of germs with modality m > 1 has codimen-
sion 10 in the space of all germs of functions with critical value 0. 

Therefore every ^-parameter family of functions can be made generic by a small 
variation, so that all germs of functions for all values of parameters will be stably 
equivalent to the germs of Theorem 1 (+ const ) if s < 6, or to the germs of The­
orems 1 and 2, if s < 10. 

2. Factor singularities. The group 517(2) acts linearly on C2. Discrete subgroups 
of SU(2) are known as binary groups of a polygon, a dihedron, a tetrahedron, a 
cube, or of an icosahedron (because they define the corresponding subgroups of the 
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rotation group of the sphere CPl after factoring SU(2) by its center ± E). 
The quotient space C2/T9 for a binary group 71, is an algebraic surface with one 

singular point, 
The algebra of polynomials in two variables invariant under T possesses three 

generators. The relation (syzygy) between these generators is exactly the equation of 
the quotient variety C2/r9 embedded in C3, The following theorem has been known 
since the time of H, A. Schwarz, 

THEOREM 4 (SEE [43], [41], [56], [18]). All the surfaces C2\F for binary groups T 
have simple singularities of types Ak (for polygons), Dk (for dihedrons), EG (for the 
tetrahedron)9 Ey (for the cube)9 or Es (for the icosahedron). 

Now let us consider the group S77(l,l) of 2 x 2 matrices with determinant one 
preserving the quadratic form |Zi|2— |Z2|2. This group acts on the set P of 
vectors in C2 with positive value on this form. A discrete group of motions of the 
Lobatchevski plane with compact fundamental domain defines a "binary subgroup" 
r <= SU(\9 1) and an algebraic surfaced = (PjT) U O with singular point 0, The 
coordinate ring of Mis isomorphic to the ring of integer /Vautomorphic forms. 

Let A be a Lobatchevski triangle with angles %\p, %jq, %jr. The reflections in its 
sides define a discrete group, and motions form a subgroup of index two in it, Thus 
for every such triangle A there is a binary group of the triangle in £17(1,1). 

The study of the 14 exceptional singularities led I. V. Dolgatchev to the following 
result. 

THEOREM 5 (SEE DOLGATCHEV [27]). There exist exactly 14 Lobatchevski triangles 
for which the surfaces M = (P/T) U O, T the binary group of the triangle, allow 
embeddings in C3 (in other words, for exactly 14 triangles the algebra of integer 
automorphic forms allows three generators). These 14 quotient surfaces have at O 
exactly (the 14) exceptional quasi-homogeneous unimodular singularities (see Theo­
rem 2 above). The values ofp9 q9 r are given in the column under "Dolgatchev numbers" 
in the table, 

The binary group for E% is PSL(2,F5); and for Kn it is PSL(2,^7) (Klein [43]). 
This example was the starting point of Dolgatchev's work. 

3. Quadratic forms of singularities. To each isolated critical point of a holomor­
phic function/in n variables one can associate a manifold F with boundary dV. Fis 
the local nonsingular level manifold of real dimension 2n — 2. Let us consider 
a small ball with its centre at the critical point. Then Fis the part of a level set 
f~l(z) inside the ball (for a z sufficiently close to the critical value) (Figure 2). 

FIGURE 2. The local nonsingular level manifold. 
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[The boundary 3 V provides standard examples in differential topology, e.g., for 
the simple critical point E% in five variables, 3 F is one of the exotic 7-dimensional 
spheres of Milnor, which is homeomorphic but not diffemorphic to S7. By attaching 
a disc to 3 V for E% in seven variables, one obtains a nonsmoothable 12-manifold 
(see Hirzebruch [42], Brieskorn [19], Milnor [56], Kuiper [44]).] 

Milnor has proved that the local level manifold V2n~2 is homotopically equiva­
lent to a bouquet of ft spheres Sn~\ so Hn^(V, Z) = Zf1 (Milnor [56], Brieskorn 
[24]). The intersection index defines on Hn_i an integral bilinear form. 

The quadratic form of a singularity is the self-intersection form on the homology 
of the nonsingular level manifold of a function in n = 3 mod 4 variables, stably 
equivalent to the given function. [It is convenient to add squares to the function to 
obtain a symmetric intersection form. The effect of adding squares (or other direct 
summands) is described by the Sebastiani-Thom theorem [64]; see also [32].] 

A singularity of a hypersurface is called elliptic (resp. parabolic or hyperbolic), 
if its quadratic form is negative definite (resp. nonpositive, or has 1 positive 
square). 

Elliptic singularities have been classified by Tjurina [73]. 

THEOREM 6 (SEE [73], [6], [71]). Elliptic singularities of hypersurfaces are exactly 
the simple singularities A, D, E of Theorem 1. The parabolic singularities are exactly 
3̂,3,35 T2,1,1 and T2(3>6 of Theorem 2. The hyperbolic singularities are exactly 

Tp>çtr9 withl/p + l}q+ 1/r < 1. 

The assertion on parabolic singularities has been formulated as a conjecture by 
Milnor, inspired by Wagreich's work [80], 

It is convenient to describe quadratic forms of singularities using Dynkin (or 
Coxeter) diagrams. Such a diagram is a graph, whose points correspond to "vanish­
ing cycles" (basis vectors with square — 2 in i/„_i). Two points are connected by k 
lines if the scalar product of corresponding vectors is equal to k, e.g. — is a diagram 
for - 2x\ + 2x\Xi — 2x1. 

Very effective methods for determining diagrams of singularities have been 
elaborated by A. M. Gabrielov [32], [33] and S. M. Guseïn-Zade [37], [38]. The 
method of the latter gives the diagrams for all functions in two variables directly 
from the picture of level curves of a convenient real morsification. Recently 
A'Campo has independently rediscovered the Guseïn-Zade method. 

The quadratic forms of simple singularities A, D, E are given by standard 
diagrams (Hirzebruch [42]) : 

Dk 

En : . . » » » », Es 

- C *6--< 

Gabrielov [32], [33] has found the quadratic forms for all unimodular singulari­
ties. Let Tpitpltps denote the quadratic form, defined by a diagram having the shape 
of a letter T, mthph p2, p$9 points on its three closed segments (e.g., E7 = r2,3,4). 



CRITICAL POINTS OF SMOOTH FUNCTIONS 25 

THEOREM 7 (SEE [7], [32], [33]). The quadratic form of every hyperbolic (parabolic) 
singularity Tp>gtr is a direct sum zptQir © 0 (where 0 is a 0-form in one variable). The 
quadratic forms of the 14 exceptional singularities are of the form vp,q,r © (J J), 
where the 14 triples (p,q9r) are given by the column "Gabrielov numbers'* of the 
table above. 

4, The strange duality. The comparison of Dolgatchev and Gabrielov numbers 
of the 14 exceptional singularities leads to the following, 

THEOREM 8. Gabrielov numbers of every exceptional singularity are Dolgatchev 
numbers of another one; the Gabrielov numbers of the latter are the Dolgatchev 
numbers of the former. 

So there is an involution which transposes the eight singularities Q\o <-> Ku, 
on <-> Zi3, Z n <-> K\3, Sn <-> Wis and leaves invariant all the six other (having 
multiplicity /j, = 12) (Figure 3). 

FIGURE 3. The pyramid of the 14 exceptional singularities. 

There is no evident relation between singularities dual to each other (or between 
their Lobatchevski triangles, or quadratic forms), nor between Gabrielov and 
Dolgatchev numbers of the same singularity. 

When Dolgatchev first reported his theorem, D. B. Fuks remarked that the sum 
of the multiplicity ft with the three Dolgatchev numbers is 24 for all the exceptional 
singularities but one (where Dolgatchev made some mistake). 

This remark of Fuks joined to Theorem 8 implies that the sum of all the six 
Dolgatchev and Gabrielov numbers is 24 for any of the 14 exceptional singularities. 
One can also see that dual singularities are exactly the singularities with the same 
Coxeter number (defined below). There is no explanation for all these empirical 
facts. Singularity theory is, in its present state, an experimental science. 

5. Versal deformation and the level bifurcation set. The deformations of a 
function/are the germs at O of smooth mappings from finite-dimensional "base 
spaces" to the function space which map Otof.A deformation is called versai if 
this mapping is transversal (in an understandable sense) to the orbit of/under the 
action of the pseudo-group of diffeomorphisms of the argument space. If the 
dimension of the base space has the minimal possible value (equal to the codimen» 
sion of the orbit), the deformation is called miniversal. 
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One can define versai deformations for germs of functions. A germ of a function 
at a critical point of finite multiplicity ft allows a ^-parameter miniversal deforma­
tion; all other deformations are equivalent to deformations induced from this one 
by mappings of base spaces (for the proof see Tjurina [74], Mather [53], Latour 
[46], Zakaljukin [84]). 

The local algebra of the germ of a function/at a point O is the factor algebra of 
the algebra of (formal or convergent) series at O by the ideal generated by the partial 
derivatives of/. The dimension of this algebra as a module over the constant func­
tions (C or R) is exactly the multiplicity ft off (see Palamodov [59]). 

One can choose as a miniversal deformation of the germ of/at O the deformation 
/I - > / + Aî i + •••+• l^e^ where the functions e{ define the generators of the 
local algebra as a module over the constants. 

Let us fix some miniversal deformation of the germ o f / a t the origin. The level 
bifurcation set for/is the germ at O of the hypersurface in the base space, formed by 
all the values of the parameter X such that 0 is a critical value for the corresponding 
function near the origin. 

The complement to this bifurcation set is the base space of the fibration, whose 
typical fibre is a nonsingular level set of/. The action of the fundamental group of 
this complement on the homology of the fibre is called the monodromy of the sin­
gularity, and its image is called monodromy group. 

THEOREM 9 (SEE [6]). The complement of the level bifurcation set of a simple 
singularity is a K(%, 1) space, where % is the corresponding braid group (defined by E. 
Artin for the case A, and by E. Brieskorn in the general case; see [21], [22], [23]). 
This complement is the space of regular orbits of the action of the corresponding 
Coxeter group on the complexification of the Euclidean space RM. The monodromy 
group of a simple singularity is the natural representation of the braid group on the 
Coxeter group. 

In case E the proof uses one theorem of Deligne [26] and one of Brieskorn [20]. 
The topology of the complement to the bifurcation subsets seems to be very 

interesting, and might bring some algebraic structure to the amorphous set of 
singularity classes. The few results known on the homology (see [4], [22]) show 
promising relations to loop spaces of the sphere (G. Segal [65], Fuks [30], [31]) ; 
there exist also some relations to pseudo-isotopies (Cerf [25], Thorn [71]) and to the 
algebraic ^-theory (Volodin [79], Wagoner [81], Hatcher [39]). 

Returning to the level bifurcation set for a function at a critical point of multi­
plicity ft, let us consider a straight line Cl near the origin of the base space O of 
the miniversal deformation. A generic C1 intersects the bifurcation set at ft dif­
ferent points near O. Let us fix such a C1 and call these ft points distinguished points. 

Fix a base point in C1 (different from the ft distinguished points), and let V be 
the fibre of our fibration over the base point (Fis the nonsingular local level mani­
fold). Let us choose ft distinguished paths, coming from the base point to the ft 
distinguished points and having no intersections outside the base point. The fibre 
over a point near the distinguished one has a vanishing cycle of Picard-Lefshetz 
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(that is, an embedded sphere Sn"1 which generates the homology of the local level 
manifold at the distinguished point) (Figure 4). 

n-
FIGURE 4, A distinguisted vanishing cycle. 

Returning to the base point along the distinguished path, one defines a distin­
guished vanishing cycle in Hn^.\(V). The ft distinguished cycles thus obtained form 
the distinguished basis of Hn^\ (Lamotke [45], Gabrielov [32]). The fundamental 
group of the complement to the level bifurcation set is generated by the ft distin­
guished loops on Cl ; one obtains these loops from the distinguished paths, turning 
around the distinguished points (the fundamental group theorem of Zariski [85], 
see also [77], [48]). 

Now let us suppose that n is odd (n is the number of variables). In this case the 
action of every distinguished generator of the fundamental group on the homology 
of F is the reflection in the orthogonal complement to the distinguished vanishing 
cycle (the Picard-Lefshetz theorem). 

So, to calculate the monodromy group of a singularity it is sufficient to find the 
Dynkin diagram for the base formed by the ft distinguished vanished cycles. The 
first important examples of this were given by Pham (see Pham [60], Brieskorn 
[19]): The Pham basis is in fact a distinguished one. Articles of Gabrielov [32], [33] 
and of Guseïn-Zade [37], [38] include many examples of such diagrams (e.g., [33] 
includes all the unimodular singularities and [38] all the singularities stably equiv­
alent to functions of two variables). 

The Dynkin diagram for a distinguished basis is always connected (Lazzeri [47], 
see also [34]). It follows that the critical point cannot bifurcate if the critical value 
does not. 

The classical monodromy of a function germ/is the action on Hn^i(V) of the 
product of all distinguished generators. This operator is related to the asymptotics 
of different integrals containing / , and it is important to calculate it (see, e.g., 
Milnor and Orlik [57], Brieskorn [24], A'Campo [1], Malgrange [51]). If the diagram 
for a distinguished basis is known, the calculation of the classical monodromy is 
reduced to a multiplication of matrices. 

For simple singularities, the classical monodromy operator is the Coxeter ele­
ment of the Coxeter group. Its order N is the Coxeter number N(Ak) = k + 1, 
N(Dk) = 2k - 2, N(EQ) *= 12, N(E7) = 18, N(ES) *= 30. 

A'Campo [2] has proved that the classical monodromy operator for degenerate 
singularities is never the identity. 

6. The function bifurcation set. Let mz be the space of germs of functions with 
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critical value 0 of the critical point OeCn. The group of germs of diffeomorphisms 
of Cn preserving O acts on m2. A germ T of a manifold of minimal dimension, 
transversal to the orbit of / in m2, has dimension ft — I. One can consider the em­
bedding of Tas a (ft — l)-parameter deformation of the germ / . This deforma­
tion, as any other deformation, is induced from the miniversal deformation by some 
mapping of the base spaces z : T -> Cf. 

The level bifurcation set 2 is the image of T under T. 2 is irreducible and has a 
nonsingular normalisation T(see Teissier [68], Gabrielov [34]). 

Let m be the space of germs at O of functions with value 0 at O (O not necessarily 
being a critical point). The deformation inside this class will be called restricted 
deformations. A miniversal restricted deformation has ft — 1 parameters. We 
obtain an extended miniversal deformation with ft parameters from the restricted 
one by adding an arbitrary constant at the ̂ th parameter. 

Let us fix the representative of a miniversal restricted deformation of a germ / . 
One calls the points in the base space O - 1 for which the associated function has 
less than ft different critical values near O the function bifurcation points. The set 
of all such points is the function bifuracation subset for / ; this is a hypersurface A 
in O " 1 (more precisely, we will consider the germ of A at O) (Figure 5). 

FIGURE 5. The level bifurcation set I and the function bifurcation set A for A3. 

THEOREM 10 (SEE [67], [34]). The restriction to the level bifurcation set I of the 
natural mapping p'.C^ -> C^_1 from the base space of the extended miniversal de­
formation to that of the restricted one defines a ft-fold covering over the complement 
to A in C^1 (in some neighbourhood of O). The group of this covering is the whole 
symmetric group, Sr 

THEOREM 11 (LOOIJENGA [50], LIASCHKO [9]). For simple germs of functions the 
complement of the function bifurcation set (in some neighbourhood of O in Cf"1) is a 
K(TC,V) space, where % is a subgroup of finite index v = ftlN^W'1 (N = Coxeter 
number, W = order of the Weyl group) in the Artin braid group with ft strings. 

The function bifurcation set A is the union of two hypersurfaces A\ and Ai\A\ 
corresponds to functions having degenerate critical points, and A<L to functions 
having coincident critical values. 

The smooth mapping p o T'.T^1 -> O " 1 from the transversal space to the base 
space of the restricted deformation has A\ as the critical value set and defines a 
/4-fold covering over the complement to A\. 
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The hypersurface A\ is called the caustic, and A% the cut locus (or the Maxwell 
stratum). 

7. Lagrange singularities and caustic classification. One can see caustics on a wall 
lit up by sun rays reflected by some curved surface (e,g., by the inside surface of a 
cup). Moving the cup, one can see that generic caustics allow only standard singu­
larities, while more complicated singularities bifurcate into standard ones under 
small perturbation. 

The study of caustics is a part of the theory of Lagrange singularities (see [6] and 
articles of J. Guckenheimer [36], A. Weinstein [82], Hörmander [40]) similar to the 
usual theory of singularities of smooth mappings of Whitney, Thorn, and Mather 
([83], [69], [53]). 

The symplectic structure on a manifold M2n is a closed 2-form a), nondegenerate 
at every point of M. 

A Lagrange submanifold of a symplectic manifold (M2n, co) is a submanifold of 
the greatest possible dimension where œ vanishes (that is, of dimension n). The 
fibration p: M2n -+ Bn is a Lagrange fibration if all its fibres are Lagrange sub-
manifolds. A typical example is the cotangent fibration T*B -> B (the "phase 
space" of classical mechanics). 

Let / : L -> M be the embedding from a Largrange submanifold to the total 
space of a Lagrange fibration p : M -+ B. Then poi ; L -> B is called a Lagrange 
mapping, and one calls its set of critical value caustics. 

A Lagrange equivalence is a mapping between two Lagrange fibrations respecting 
the symplectic structure. Two Lagrange mappings are equivalent iff" there 
exists a Lagrange equivalence which maps the first of the corresponding 
Lagrange submanifolds on the second, Caustics of equivalent mappings are diffeo-
morphic. 

A Lagrange mapping is stable at a point O iff every Lagrange mapping, close 
enough to the given one, has, at some point near O, SL germ equivalent to the given 
germ at O. 

The germ of a Lagrange mapping is simple iff all nearby germs belong to a finite 
number of equivalence classes. A simple germ can be nonstable and a stable germ 
can be nonsimple. 

THEOREM 12 (SEE [6]). Simple stable germs of Lagrange mappings are classified 
by the A9 D, and E singularities. Iff n S 5 every Lagrange mapping of Ln can be 
approximated by a mapping whose germ at every point is stable and simple, 

We give below an explicit description of Lagrange germs of the types A, D9 and 
E, listing coordinate normal forms. It follows from the list, for example, that gen­
eric caustics in three-space have besides normal crossings only Lagrange singulari­
ties A3 (cuspidal edges), discrete point singularities A^ (swallow tails) and Dj 
(points of contact of three cuspidal edges, two of which may be complex) (Figure 6). 

8. Legendre singularities and classification of wavefronts. To obtain an example 
of a wavefront one can start from an ellipse, construct inside normals, and choose 
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FIGURE 6. Generic singularities of the caustics in the 3-space. 

points at the distance t from the ellipse points on the normals (Figure 7). The curve 
so obtained may have singularities which cannot be removed by a small variation of 
the initial ellipse. The study of front singularities is a part of the theory of Legendre 
singularities (see [10], [11]; the name comes from classical "Legendre transfor­
mation", which provides typical examples of Legendre singularities). 

FIGURE 7. The singularities of a wavefront. 

The theory of Legendre singularities is parallel to the theory of Lagrange singu­
larities, with the following differences : One has to replace the symplectic structure 
with the contact one, the affine structure with the projective one, gradients with 
Legendre transformations, functions with hypersurfaces, and so on. 

The parallelism between the two theories is the real origin of the Hamilton 
"optical-mechanical analogy". 

The contact structure on a manifold M2n+1 is a field of tangent hyperplanes 
(called contact planes), verifying the "maximum nonintegrability" condition (if 
a is the 1-form defining contact planes, a A (da)n is nondegenerate). Standard ex­
amples of contact manifolds are the total space of the projective cotangent bundle 
PT* yn+i a n d the manifold of 1-jets of functions Jl(Wn, R) with their natural con­
tact structures (defined by the integrability conditions). 

The Legendre submanifold of a contact manifold M2n+l is an integral submani­
fold of maximal dimension (that is, of dimension n). The fibration p : M2n+1 -* 
i?w+1 is a Legendre fibration if all its fibres are Legendre submanifolds. 

A typical example is the projective cotangent fibration p: PT*B -> B. All 
Legendre fibrations of the same dimension are locally equivalent (locally = near 
every point of the total space). Fibres of a Legendre fibration locally have the 
structure of a projective space defined intrinsically by the Legendre fibration. 

Let / : Ln -> M2n+l be an embedding of a Legendre submanifold in the total 
space of a Legendre fibrationp : Af2w+1 -> Bn+1. The mapping poi : Ln -> Bn+1 is 
then the Legendre mapping, and its image the front. 
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Legendre equivalence, stability, and simplicity of germs are defined in the same 
way as in the Lagrange case. 

THEOREM 13 (SEE [10], [11]). Simple stable germs of Legendre mappings are class­
ified by the A, D, and E singularities. Iff n S 5, every Legendre mapping ofLn can 
be approximated by a mapping whose germs at all points are stable and simple, 

We give the list of explicit normal forms for simple stable Legendre germs in the 
next section. It follows from the list, e.g., that generic fronts in three-space have 
(besides normal crossings) only Legendre singularities A2 (cuspidal edges) and A3 
(swallow tails). The singularity of the moving front slips along the caustic, and at 
some discrete moment may change its shape under some standard "catastrophe" 
of the types A^ or DJ (compare the pictures in the book of Thorn [70]) (Figure 8). 

FIGURE 8. The modifications of the wavefronts near the catastrophes A4 and Z>f. 

There exists a symplectisation functor associating to a contact M2n+1 a sym­
plectic E2n+2. However, the symplectisations of generic Legendre singularities are 
very special (conical) Lagrange singularities. The right way to deal with the Le­
gendre case is rather the contactisation functor, associating to a symplectic M2n 

a contact E2n+1 (defined, in fact, either for germs or for symplectic structures 
defining an integer class in H2(M

2n)). 

9. Normal forms for caustics and fronts. I shall use here the old-fashioned co-
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ordinate notations : Let F(x, X) be a deformation of a function f(x) in k variables, 
x e Rk and one parameter, X G /P. Let n — k -\- I, and let us consider a symplectic 
space J?2" with coordinates x e Rk, y e Rk*, X e R1, K G R1*, with a symplectic structure 
CD = dx A dy + dtc A fifó and with a Lagrange fibration structure (x, y, X9 K) *-* 
(y, X). The equations 

(1) y = 3F/3X, A: = - dF/dX 

define a Lagrange submanifold, and we denote by j£? the Lagrange mapping so 
obtained. 

Let us construct two more families of functions in the variable x 

0(x; X, y, z) *= F(x, X) - z - xy 

(parameters are X e R1, y e Rk\ zeR); 

G(x; a, X) = F(a + x, X) - F(a, X) - xF'a(a, X) 

(parameters are a e Rk, X G Rl). Let G(x, 09 O) be g(x). 

THEOREM 14. The following conditions are equivalent'. 
(i) The germ of ^ at the point x = 0, X = 0 is Lagrange stable. 
(ii) The deformation G is transversal to the orbit of g in m2. 
Iffe m2, each of the conditions (i), (ii) is equivalent to: 
(iii) The deformation 0 is a versai deformation off at O. 

THEOREM 15 (SEE [6]). Simple stable germs of Lagrange mappings are equivalent to 
the germs ££ defined by (1), where F is a deformation of a simple germ of f such that 
the deformation 0 is versai. 

For example, if/ = x* (the A3 case), one can choose F = x* + Xx2 (the complete 
list of jFfor all the cases A,D,E can be found in [6]). 

Turning now to the Legendre case, let us extend R2n to JB2w+1 = R2n x R1 and 
let z be the coordinate in jR1. Let us define the contact structure of jR2w+1 by the 
form a = xdy + ndX + dz and the Legendre fibration by (x, y, X,K\Z) H-> (y,X; z). 

The equations 

(2) y = dF/dx, tc = - dF/dX, z = F- xdF/dx 

define a Legendre submanifold, and we denote by if' the Legendre mapping so 
obtained, 

[Every Lagrange (resp. Legendre) submanifold or mapping in the standard co­
ordinate symplectic (contact) manifold is locally defined by at least one of the 2n 

formulae (1) (resp. (2)), corresponding to the 2n choices of a coordinate "^-sub-
space" Rk c Ä».] 

THEOREM 16 (SEE [10], [11]). Simple stable germs of Legendre mappings are equiva­
lent to the germs J?, defined by (2), F being the same as in the previous theorem, 

Besides the argument change group, there are the multiplications by the group of 
nonvanishing functions acting on the function space. The direct product of those 
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two groups acts on the function space too. One calls the deformation of a function/ 
versai for levels, if it is transversal to the orbit of this group. 

As a versai for level deformation of a germ of/at O one can choose the deforma­
tion X »->/ + X\ei + "• + Xrer9 the es defining generators over R of the factor 
algebra of power series at O by the ideal (/, bf/dx). 

The product of the group of multiplications by nonvanishing germs at O with 
the group of diffeomorphisms leaving O fixed acts on m2. 

THEOREM 17. The following conditions are equivalent; 
(i') The germ of <£' at the point x - 0, X = 0 is Legendre stable. 
(ii') The deformation G is transversal to the orbit of g under the action of the 

product group on m2. 
Iff e m2, each of the conditions (\')9 (ii') is equivalent to: 
(iii') The deformation 0 is versa! for levels. 

Comparing these results with those of previous sections, we can formulate 

THEOREM 18, The mapping t from the transversal space Tf*"1 to the base space of 
the miniversal deformation is a Legendre mapping, the level bifurcation set being its 
front. The mapping p°T from the transversal space T to the restricted miniversal 
deformation space is a Lagrange mapping, the function bifurcation set being its 
caustic. 

[The above theorems may become more clear if we introduce the germ of the 
restricted critical set C of the deformation F(x9 •) defined as C = {(x9 X): dF/dX *= 
09F(x9X) = 0}. 

If the deformation F is miniversal, C is a germ of a smooth (ft - l)-manifold, 
The canonical projection (x9 X) «-> X defines a mapping %\C -> 2. The coordinate 
system defines a diffeomorphismy :C -* Tto the transversal to the orbit (j is defined 
by the translations of the critical points to the origin). The diagram 

z\2/% 

commutes; therefore % as T, normalizes 2\p°% has the properties of p°T and so on.] 

10. Oscillating integrals. The study of the intensity of light near the caustic leads 
to the problem of asymptotics for an "oscillating integral" 

I(h9 X) = Jef*<**'*<j> dx, xeRk,XeB, 

depending on a parameter X9 for h -• 0. Here the parameter X represents the point 
of observation, <j> has compact supportais a real smooth "phase function", and h 
defines the wave length. 

Of course, one meets such integrals in all branches of mathematics and physics 
—e.g., in number theory and P.D.E. theory (see [78], [54], [40]). 

If the light is intense enough to destroy the medium, the destruction will begin 
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at the singular points of the caustics, where / i s maximal. Thus arises the problem 
of defining asymptotics for h -• 0 of the maximum of / in X, which can be met for 
generic F. The classification of simple singularities was found as a byproduct when 
this problem, communicated to me by Maslov [55], was being solved for / = 3 
(see [5]). 

The stationary phase principle is the assertion that the main part of the oscil­
lating integral is given by the integration over the neighbourhoods of the critical 
points of F (for fixed X). For a generic function all these points are nondegenerate, 
and the integral decreases for h -> 0 as hk/2 (Fresnel [29]). However, degenerate 
critical points appear for some "caustic value" of the parameter X even for a 
generic F(x, X). So at some points X the integral decreases more slowly (as h^k/2)"ß). 

The number ß so defined is called the degree of singularity [5] of the corresponding 
critical point. 

To be more precise, let us consider a critical point of finite multiplicity//. The 
integral /allows then an asymptotic expansion 

/ - T,CaiKh^2^Wh, 
a,/c 

where 0 g te S k — 1 and a belongs to the union of a finite number of rational 
arithmetical progressions (see I. Bernstein and S. Gel'fand [16], Atiyah [15], I. 
Bernstein [17], B. Malgrange [51] and [52]). Now ß is the minimum of a such that 
there exists Cttt A. ^ 0 for some <j> with arbitrarily small support containing the 
critical point. 

THEOREM 19 (SEE [5], [6], [7]). For simple critical points, ß = 1/2 - 1/7V, where N 
is the Coxeter number. For parabolic and hyperbolic singularities ß = 1/2. 

Probably, for all other critical points, ß > 1/2. We define the Coxeter number 
N of any singularity by the formula ß = 1/2 - 1/iV, where ß is the degree of 
singularity. 

THEOREM 20 (SEE [7]). The maximum of the degrees of singularities inevitable in 
generic families of functions in k ^ 3 variables depending on l S 10 parameters is 
ß= 1/2 — Ì/N, where N is given by the table 

I \ 0 1 2 3 4 5 6 7 8 9 10,/t=3 ll,k=3 10,&>3 

N\ +2 +3 +4 +6 +8 +12 œ oo -24 -16 ^12 ^8 ^6 

All the numbers ßt(k) are rational, and do not depend on k when k is large 
enough; ßh the limit for k -> oo, increases probably as */2l/6 with /. 

Probably, |8 is semicontinuous and even more, for every X near Xo, 

\l(h9 X)\ g C(e, 0)/7(*/2)-0Uo)-* for all e > 0. 

Such an "uniform estimation" has been proved by I. M. Vinogradov [78] for the 
singularities of the type A and by Duistermaat [28] for all simple and parabolic 
singularities. 

11. Semi-quasi-homogeneous functions and the Newton diagram. The first proofs of 
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the classification theorems [6], [7] need long calculations, which can be replaced 
with some geometrical arguments, based upon the Newton diagrams, 

A function/^, • • -, xn) is quasi-homogeneous of degree (/with weights (au • • -, an), 
if f(ta>xh •", t«*xn) = t*f(xh -'9xn) identically in te C*. Here 0 % a( g \ are 
rational numbers (see Saito [62], Milnor and Orlik [57], Orlik and Wagreich [58], 
Saito [63]). 

The function / is semi-quasi-homogeneous, if / = /0 + ff
9 where / 0 is quasi-

homogeneous of degree 1, and has an isolated critical point at o9 while the degrees 
of all the monomials of/' are higher than 1. 

THEOREM 21 (SEE [8]). Every semUquasi-homogeneous function is equivalent to a 
"normalform"f ~ fa + c\e\ + ••• + crer where cs are numbers and the monomials 
es are the elements of a monomial basis of the local algebra offo at O, whose degrees 
are more than 1. 

The Newton diagram off(xx, •••, xn) is a convex polyhedron in Rn constructed 
from the exponents of the monomials having nonzero coefficients in the Taylor 
series; it contains a lot of information on the singularity, but I shall formulate 
here only one result of A. G. Kushnirenko. 

Let us suppose the the Newton diagram contains points on all coordinate axes 
(that is not a restriction, see the theorem of Tougeron [76]). 

THEOREM 22 (KUSHNIRENKO). Let us denote by V the volume of the positive 
orthant of Rn under the Newton diagram, by Vi the (n — \)-dimensional volume 
under the diagram on the ith coordinate hyperplane, by V^ the (n — 2)-dimensional 
volume on the coordinate plane orthogonal to the ith and the jth coordinate lines, 
and so on. 

Then for all functions f having a given Newton diagram 

ft(f) ^ n\V~(n - 1)! S Vi + (n - 2)! S ViS - - ± 1, 

and for almost all functions f having this diagram, the equality holds. 

For instance, for almost all functions in two variables with a given Newton 
diagram, we have ft ~ 2S - a — b + 1, where S is the area under the diagram, a 
and b the coordinates of the diagram points on the axis (Figure 9). 

/x = 2S~a-b+i = 
= 24-5-7 + 1 = 13 

b 
FIGURE 9. The calculation of the Milnor number, 

12. Concluding remarks. It is not known' whether the ft = const stratum (that 
is, the subvariety of the versai deformation base space, formed by points correspond­
ing to functions with a critical point of multiplicity ft) is smooth. It was proved by 
Le Dung Trang and Ramanujan [49] that, for n ^ 3, neither the topology of the 
singular level set nor the topology of the Milnor fibration change along ft — const 
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stratum. Probably, neither the topology of the function nor the ß changes (for n = 
3, as for other n). 

The topology of bifurcation sets may change (Pham [60]). The dimension of the 
ft = const stratum is semicontinuous and so equal to the modality m of the critical 
point (Gabrielov [34]). Using some results of Teissier [68], Kushnirenko and 
Gabrielov [35] were able to prove that the modality of semihomogeneuos singulari­
ties is equal to the number of generators of a monomial basis of the local algebra 
above and on the Newton diagram. 

The same is probably true for all semi-quasi-homogeneous singularities. The 
modality m of functions of two variables is probably equal to the number of integer 
points between the coordinate rays passing through the point (2, 2) and the Newton 
diagram (for almost all functions with a given diagram, see [8]). 

In this article I did not even mention many important sides of the theory of critical 
points of functions, especially the algebraic ones (see, e.g., [65]). I like to stress the 
importance and power of transcendental, topological methods, based upon the 
study of the hierarchy of singularities (first for the cases of small codimension), of 
the adherence of different classes of singularities to others, upon semicontinuity 
and general position arguments, arguments which go back to the bifurcation theory 
of Poincaré (see [12]) and were formalised by Thorn's transversality theorems. G. M. 
Tjurina was the first to apply these ideas to the study of singular points of hyper-
surfaces (see [13], [73], [74], [75].) 
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Aspects of Modern Potential Theory 
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In 1964 Pierre Jacquinol opened a colloquium on potential theory in Orsay, 
France, by comparing potential theory with a road intersection in mathematics.1 

This was ten years ago. Meanwhile traffic has increased, and crossroads had to be 
converted into interchanges of highways—also in potential theory. 

This article should be considered as an attempt to describe the interchange 
'Potential Theory' not by a precise map revealing the structure of the interchange in 
all its complications but by a sketch making evident at least some major aspects of 
the construction. 

We shall start by describing three classical approaches to the former intersection. 
Then the interchange will be roughly sketched. Finally, and this will be the main 
part of the article, we shall drive along a recently constructed new highway which 
had to be inserted in the system of flyovers. 

1. Three aspects of classical potential theory. In the following we restrict the 
discussion to Euclidean w-space Rn of dimension n ^ 3. Results without particular 
reference can be found in [5], [19], [24], [29]. 

1.1. Superharmonic functions. For every open ball B a Rn and every point 
x e B we denote by y* the harmonic measure of x with respect to B. This is the 
measure 

(1.1) A : = P(*> > * 
(concentrated on the boundary i?* of B) where aB denotes the normalized Lebesgue 
measure on 5* and where P : B x 2?* -» JB+ is the Poisson kernel 

14La théorie du potentiel est un véritable carrefour de la Mathématique'. Cf. du Plessis [29, 
p. vii]. 
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(1.2) P(x,z): = r»-2 
2 - | * - * o l l 2 

\\x-zV 

(XQ = center of B, r = radius of B, || || = Euclidean norm). 
A function u: £/->] — oo, + oo ] on an open set U c R» is called hyperharmonic 

if it is lower semicontinuous and if, for all open balls B a B a U and all x e B, 

(1.3) \udyPxS u(x) 

holds. Since the Dirichlet problem for a continuous boundary function/ : B*-+ R 
is solved by the harmonic function 

x»Hf(x): = \f(z)tf(dz) 

on B, formula (1.3) amounts to saying: For every continuous real boundary func­
t ion/sat isfying/^ u on 5* the corresponding Dirichlet solution Hf is majorized 
by u on B. In this sense hyperharmonic functions generalize harmonic functions, 
the solutions of the Laplace equat ion^ = 0. 

A hyperharmonic function on a domain in Rn is either the constant -f oo or 
finite on a dense subset. Hyperharmonic functions on an open set U satisfying this 
latter condition are called superharmonic. We denote by .9%, resp. £f%, the set of all 
nonnegative, resp. nonnegative, real-valued, continuous, superharmonic functions 
defined on Rn. 

One of the basic potential theoretic constructions is based on the richness of the 
cone «9%. It leads to the heart of the theory, namely to balayage theory. Given an 
arbitrary set E c Rn and a function u G ̂ + one tries to find the smallest function 
v £ ^ + satisfying v = u on E. The obvious candidate is the presweep (or réduite 
function) 

(1.4) Rft : = inf{v G ̂ + | v = u on E). 

Since RE is not lower semicontinuous in general, one replaces R% by the greatest 
lower semicontinuous function ^ R%. This is the sweep (or balayée function) of u 
relative to E: 

(1.5) R*(x): = lim inf Rft{y) (x G Ä"). 

We have jRf G #% and obviously 

(1.6) 0^R$ ^R$ £u. 

The initial interest leads then to the study of the base ofE: 

(1.7) b(E): = Ç] {xeR»\R?t(x) = u(x)}. 

It has the following fundamental properties : 

(1.8) È c b(E) c Ë; 

(1.9) b(E) = {x G Ä» | Rg(x) = u0(x)} for some w0 G 9% 

consequently b(E) is a G8-$Qt; 

(1.10) E\b(E) is polar, 
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i.e., a subset of u^l(+ oo) for some u e y+. For nice closed sets E one has b(E) = E, 
What 'nice' means will become clear in §3. 

Up to now we were sweeping, i,e,, minimizing superharmonic functions. But this 
is intimately connected with sweeping masses, hence with the original ideas of H. 
Poincaré [30], In fact (at least) for every Radon measure^ ^ 0 on Rn with compact 
support we have 

THEOREM 1. There exists a unique Radon measure ftE ^ 0 on Rn satisfying 

(1.11) \udfjtE^ \REdfx forallue^. 

The measure ftE is called the swept-out of ft on E. It is carried by the base b(E), 
By choosing for ft unit masses ex at points x G Rn, it follows that 

(1.12) b(E)={xeR»\eE = ex}. 

For open balls B c R» and points x G B the harmonic measure y% is an important 
example of a swept-out measure ; 

(1.13) Atf-ag*. 

This is due to the fact that in this case the two functions Rf and R°B coincide with 

\u(x), xeCB, 
x H> 

(u(x) xeCB, 
\)udft^ xeB, v +' 

1.2, Newtonian kernel and potentials. In the preceding paragraph functions were 
predominant; measures appeared only at the end. The situation is quite different 
if we introduce potentials with respect to the Newtonian kernel function G : Rn 

-» ]0, + oo] defined by 
(1.14) G(*):-l/ | |x| |«-2. 

For every Radon measure^ ^ 0 on Rn, 

(1.15) GP(X): = \G(x - y)fi(dy) = G * ft(x) 

defines a hyperharmonic function ^ 0 since x »-+ G(x—y) is superharmonic for all 
yeRn, GP is called a potential (generated by ft) if G^ is superharmonic. ft will 
then be called a potential generating measure. All measures ft ^ 0 with compact 
support are of this type. 

From potentials the set of nonnegative hyperharmonic functions can be re­
covered by a simple limit procedure: A function u ; Rn -> [0, 4- oo] is hyperhar­
monic if and only if it is the supremum of an increasing sequence of potentials. 
Conversely, a function p G ^ + is a potential if and only if h = 0 is the only har­
monic function satisfying 0 ^ /? < p. 

Balayage of measures appears now in a much more direct way by means of 

THEOREM 2. For every Radon measure ft ^ 0 on Rn with compact support and 
every set E <=• Rn the swept-out ftE is the only potential generating measure with the 
following two properties. 

(1.16) ftE is carried by b(E); 
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(1.17) G? = Gt* quasi-everywhere on E, 

i.e., everywhere on E with the exception of a polar set P c E. 

The connection with the approach of 1.1 is given by the formula 

(1.18) R& = Gv\ 

valid for (at least) all measures pt ^ 0 with compact support. 
The predominance of measures in the kernel approach becomes even more evident 

by the appearance of energy, that is by the introduction of 

(1.19) </*,v>: = $GKdv= \G»dpt 

for positive measures pt, v on Rn. If we denote by é?+ the set of all measures ft è 0 
on Rn of finite energy (ft,ft}l/2 < + oo, the map (ft, v) H+ {ft, v) extends in a 
unique way to a positive symmetric form < -, • > on the linear space ê\ = é>

+ — ê+ 
generated by (^+. Then g becomes a (Hausdorif) pre-Hilbert space with norm 
(pt, pt}1/z. In this space <f + is complete. Hence for every closed convex set J5" c <̂ + 

and every ft e ê the projection p r o j ^ of pt onto 3F is defined. 
For compact K <=. Rn the set $K of all measures 1 G <̂ + carried by K is such a 

set 8F. A classical result of H. Cartan then states 

(1.20) • ^ = proj^/ / 

for every fteé?+ with compact support. 
1.3. Brownian motion. Brownian motion is the probabilistic version of a simple 

analytic object, namely the Gaussian semigroup (ftt)t>0 on Rn : ptt is the measure 
gtX

n with the function 

(1.21) &(*)•' = (2TT/)-W/2 exp( - | |JC|P/20 (xe Ä", t > 0) 

as density with respect to n-dimensional Lebesgue measure Xn. All ftt are probability 
measures, t v-+ ptt is vaguely continuous, and ftHt = fts*ptt holds for all s,t > 0. 

Each ptt can be viewed as a kernel Pt on Rn, i.e., as a function Pt defined on the 
product Rn x <% of Rn with the ^-algebra ^ of its Borei sets such that x i-+ 
Pt(x, B) is ^-measurable for all B G (% and such that B H> P^(X, 5) is a positive 
measure on ^ for all x G ä W . We just have to define 

(1.22) Pt(x,B): = (ptt*lB)(x) 

or, equivalently, 

(1.23) Ptf(x): = (ptt */)(*) = JYOO^C*, dy) 

for ^-measurable functions/ ^ 0 on Rn. Then P, appears as an operator and 
(Pt)t>o is a semigroup of such operators. 

Brownian motion can be considered as a quadruple 

X=(Q,^,(P*)xeER,,(Xt)m) 

where (Q, so) is a measurable space, (P*)x e Ä , a family of probability measures on #/ 
and where (Xt)m0 is a stochastic process of random variables Xt ;Q -> Ä* with 
continuous paths t *-+ Xt(œ), û) G Q, X can be chosen in such a way that 
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(1.24) P*{XteB} =Pt(x,B) 

holds for all x G Rn
91 ^ 0 and Begiï and that the so-called Markov property is 

present. P0 is by definition the unit kernel PQ(X, B) ; - lB(x). 
The Gaussian semigroup (ftt)t>o is connected with potential theory, namely with 

the Newtonian kernel function G> by a simple analytic fact: A change of variables 
yields 

(1.25) G = cn f ft dt 
o 

with some real constant c„ > 0.2 We thus have Gft* = cn jo° ptt dt or, equivalently, 
oo 

(1.26) Gf*=cnjPtfdt 
0 

for all ^-measurable functions / ^ 0 on Rn. 
Since G governs potential theory as we have seen in 1.2 it is natural to ask which 

potential theoretic facts can be expressed in terms of the Gaussian semigroup or 
of Brownian motion. It is well known now (cf. [23]) that all important potential 
theoretic notions and results have a probabilistic interpretation by means of Brown i-
an motion, The key to all this is due to Doob [11] and Hunt [21] : 

THEOREM 3. A Borei measurable function u: Rn -> [0, + oo] is hyperharmonic if 
and only if it is excessive with respect to the semigroup (P*)/>o, i^.t 
(1.27) supP,w = u. 

t>o 

As an example of the many consequences we mention the probabilistic inter­
pretation of balayage. The./?™? hitting time of a Borei set E c R» is TE(co): = 
inf {t > 0 : Xt(œ)G E} (eoeû) with the convention inf 0 = + oo. Then co ^ 
XTBì^Ì^) (after a suitable completion of so) is a random variable on { TE < + oo}. 
Its distribution is the kernel 

(1.28) PE(x,B): *= P*({XTBeB} f] {TB < + o>}). 

A famous result of Hunt [21] states that 

(1.29) PEu = RE for all u e &>+. 

In particular, we obtain the swept-out of ex on E\ 

(1.30) PE{x, •) - e*. 

2. Aspects of present-day potential theory. We have seen that the notion of a non-
negative hyperharmonic function and the central results of balayage can be ap­
proached from different initial objects : from harmonic functions, from the Newton­
ian kernel function, from the Gaussian semigroup or from Brownian motion. It 
is typical for the present situation of potential theory that each of these objects 
appears suitably generalized in applications and that each of these generalized 

nicn - mn - 2)I2)I2W. 
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objects leads to a branch of potential theory of its own importance. Let us try to 
make this statement more evident by a few examples without making the attempt of 
being systematic.3 

2.1. Harmonic spaces. The fundamental properties of harmonic functions like 
the sheaf property, the existence of a base of open relatively compact sets for which 
the Dirichlet problem has a unique solution for each continuous real boundary 
function, and weakened versions of Harnack's convergence theorem are available 
for extended classes of second order elliptic and also parabolic differential equa­
tions—like the heat equation. These properties suitably formulated for a complete 
presheaf of linear spaces of real-valued continuous functions on a locally compact 
space with countable base lead to the notion of a harmonic space. For example, 
each Riemann surface is such a space. The potential theory on these spaces has been 
developed quite extensively in recent years. The theory is particularly rich on strong 
harmonic spaces. These are harmonic spaces on which the nonnegative superhar­
monic functions separate points linearly. For example, a Riemann surface, viewed 
as a harmonic space, has this property if and only if it is hyperbolic. The main 
reference is the book of Constantinescu and Cornea [7]. 

2.2. Markov processes. Brownian motion is just one example of a large class of 
Markov processes for which potential theoretic notions can be studied success­
fully in order to investigate the structure of the process. For example, the probabil­
istic balayage operator PE of (1.28) can be introduced for the important classes of 
standard and Hunt processes on locally compact spaces with countable base. The 
main refences are Blumenthal and Getoor [4] and Meyer [26]. 

2.3. Excessive functions. Theorem 3 suggests considering a semigroup (Pt)t>0 

of kernels on a locally compact space as initial object. The corresponding potential 
theory concerns the study of the excessive function of such a semigroup. Closely 
related is the corresponding problem for resolvents (^)A>0 of kernels which often 
appear as the Laplace transform Vx = Jo5 e~XiPt dt of such a semigroup. In particu­
lar, (1.26) leads to the problem of deciding whether a given kernel Fis the zero 
element VQ of such a resolvent. Problems of this type connect potential theory with 
functional analysis. The main reference is Meyer [25] and the recent work of 
Mokobodzki on cones of potentials (cf. [27]). 

There are many other aspects which we must leave aside. For example : All the 
above theories neglect the group structure of Rn and translation invariance of clas­
sical potential theory. For locally compact (mainly abelian) groups compatibility 
of the above sketched theories with the group structure leads to important branches 
of potential theory, such as harmonic groups [3], transient convolution semigroups 
of measures [2] and the theory of infinitely divisible processes [31]. We also leave 
aside the role of martingale theory [11], [25] and the theory of Dirichlet spaces [10]; 
the latter is in closest connection with the classical Dirichlet integral and the notion 
of energy. 

However, one important phenomenon should be underlined, It is the unifying role 

3A more systematic and more complete survey on potential theory has been given by Brelot [6]. 
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of probability theory. An illuminating result in this direction is a theorem of Meyer-
Constantinescu-Cornea-Hansen [1]. According to it there exists a Markov process 
with continuous paths on any strong harmonic space E on which the constant 
function 1 is superharmonic such that the interplay between the process and the 
potential theory on E is formally the same as the one between Brownian motion 
and classical potential theory on Rn, More precisely, if one takes (1.24) as defini­
tion for (Pt)t>o Theorem 3 and the subsequent results on balayage remain valid. 

The importance of probabilistic arguments will become clear also from the 
third part of the article. There we shall see that even potential theory on Rn is 
still full of surprises. 

3. Fine potential theory. Again Rn is considered for dimensions n ^ 3, at least 
at the beginning. In (1.12) we have characterized the base b(E) of a set E c Rn. 
E is called thin at a point x G Rn if x $ b(E), that is if eE ^ ex. A set G <= R» is 
called finely open if CG is thin at all points x e G. In particular, every open set G 
is finely open since ex

G is carried by b(CG) <= CG. The system F f of all finely open 
sets is a topology on Rn ; the preceding example shows that ^f is finer than the 
Euclidean topology. &~f is called the fine topology on Rn. The prefix/in connection 
with a topological notion (closed, boundary, etc.) will always refer to this topology. 

<F f is the coarsest topology on Rn making all functions in ^ + continuous. Even 
every hyperharmonic function defined on an open set U a Rn is /-continuous. 
This is due to the fact that thinness of a set E at x $ E is a local property; it is in 
fact equivalent to the existence of a superharmonic function u defined in a neigh­
borhood of x such that 

(3.1) lim inf u(y) > u{xV 

Fine topology was introduced in 1940 by H. Cartan as an interpretation of 
Brelot's notion of thinness. It is an extremely useful tool. But as a topology it has 
been considered pathological. There are good reasons for this opinion, e.g., the 
only/-compact sets are the finite subsets and there is no countable base of/-open 
sets. Doob [12] pointed out the first positive and interesting result about this 
topology, the quasi-Lindelöf property. But Fuglede [14] did the essential step by 
showing that &~f not only has remarkable topological properties but that &~f leads 
to an extension of classical potential theory, namely to fine potential theory. Its 
fundamental notion is that of a finely hyperharmonic function. The definition is 
suggested by the fact that the harmonic measures ptx for balls B are the swept-out 
measures ex

B and that for every/-open set F the measure 

(3.2) /£: = ef 
is carried by the/-boundary df V of V. 

A function w: t / - > ] - oo, + oo] defined on an/-open set U <= Rn is called/-
hyperharmonic if it is/-lower semicontinuous and if there exists a base S3 of/-open 
subsets V of U such that, for all KG S3, 

4According to the convention inf 0 = + oo wehaveliminf^x|y(=£ uiy) = + oo if x ^ Ë. 
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(3.3) Vf = (/-closure of V) a U, 
(3.4) J*w dpi ^ u(x) for all xeV. 

u is called f harmonic if it is/-continuous, real-valued, ^Jf-integrable for all F G S3 
and x G V, and if equality holds in (3.4). 

This extends the notion of a hyperharmonic function. On every/-open, nonopen 
set U there are /-harmonic functions which are not restrictions of harmonic func­
tions on a larger open set. A potential Gt> is/-harmonic on an/-open set U provided 
that pt*(U) = 0 and GP is finite on U. 

/-hyperharmonic functions are the origin of a rich theory. Many properties of 
hyperharmonic functions remain valid; but even the very first results are far from 
being trivial :/-hyperharmonicity is a local notion, /-harmonic functions are those 
functions w for which ± u are /-hyperharmonic, for every increasingly directed 
family of/-harmonic functions the upper envelope is /-harmonic provided that it 
is finite. 

Of particular interest is the comparison between classical and fine hyperhar-
monicity. 

THEOREM 4. A numerical function u defined on an qpen set U c R» is hyperhar­
monic (resp. harmonic) if and only if it is fihyperharmonic and locally bounded from 
below (resp. fiharmonic and locally bounded from one side). 

Before we discuss an important consequence of this we consider the case n = 2 
of the plane, so far excluded. On R2 all functions in Sf+ are constant. Therefore, the 
original definition of the fine topology is not appropriate. But thinness of a set at 
a point as well as hyperharmonicity are local notions. Furthermore, on bounded 
open sets of R2 nonnegative superharmonic functions separate points as they do 
on Rn for n ^ 3. Consequently, by using the preceding definitions of thinness and 
swept-out measures only with respect to open bounded subsets of R2, one can de­
fine the fine topology and the fine potential theoretic notions also for the plane. 
ET f is then the coarsest topology making all superharmonic functions (defined on 
arbitrary open sets) continuous. With these definitions the preceding properties of 
^f and of/-hyperharmonic functions remain valid. However, because of the peculi­
arities of the plane, there is one result without analogue in higher dimensions 
[15]: 

THEOREM 5. On every open set U c R2 all fihyperharmonic (resp. f-harmonic) 
functions are hyperharmonic (resp. harmonic). 

For the further discussion we assume n ^ 2. We have seen above that for in­
creasingly directed families of/-harmonic functions with finite supremum this 
supremum is again/-harmonic. This property leads directly to a result which his­
torically was at the beginning of the fine theory [13] : 

THEOREM 6. The fine topology STj is locally connected. 

Together with Theorem 4 this leads (via indicator functions) to the fact that an 
open set U c R» is connected if and only if it is finely connected. Hence every/-
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connected open set is arcwise connected, It is highly remarkable that this remains 
valid for all/-domains : 

THEOREM 7. Every fidomain ispathwise (even arcwise) connected (with respect to 
Euclidean topology). 

The proof of this is given by means of a probabilistic interpretation of /-domains 
due to Nguyen Xuan-Loc and Watanabe [28] : An /-open set U is /-connected if 
and only if for every x G U and every/-open set V c= U, V ^ 0 , the probability 
that Brownian motion starting at preaches F before leaving C/is strictly positive. 
Hence every pair of points in U can be connected by a path in U which is obtained 
by gluing together a sequence of pieces of Brownian paths, A classical topological 
result allows then the reduction of such a path to an arc. 

The method of using Brownian paths in order to connect points in/-domains as 
well as fine potential theory finds illuminating applications in the field of access 
theorems [17], The classical representative of such a theorem is a result of Iversen 
[22] ; Given an entire nonconstant holomorphic function / then there exists a 
(continuous) path Ï in C tending to infinity such that |/(z)| tends to infinity along 
T. Since | / | is a subharmonic function, it is natural to ask whether corresponding 
results hold for general subharmonic functions on Rn with a certain behavior at 
infinity. Partial results for continuous subharmonic functions and extensions to 
discontinuous ones for the case of the plane (obtained by deep analytical results) 
are known [18], The instruments of fine potential theory and of Brownian paths 
lead to far-reaching general results of which we mention two typical ones : 

THEOREM 8. Let s > 0 be a superharmonic and u a subharmonic function on Rn
9 

n ^ 2, satisfying 

v u(x) 

hmsup-f-f = -f oo. 
iisiH+oo s\X) 

Then there exists a path Ï in Rn converging to the point at infinity such that ujs tends 
Jo + oo along T.5 

For s = 1 andw - | / | this yields Iversen's theorem.6 

THEOREM 9. Let u be subharmonic and let h >Obe harmonic in an open set U c Rn
9 

n è 2. For any xQeU and any number a < u(xo)/h(xo) there exists a path T in C/,5 

starting at Xo and approaching the boundary of U (in the one-point compactification 
ofRn) such that a < u/h on T and u/h has a limit (in R) along T. 

For n = 2 this generalizes a recent result of Hornblower and Thomas [20]. 
The crucial step of the proofs is the analysis of the/-components of the/-open sets 
{ujs > X) or {u/h > À} together with Theorem 7 or the idea of its proof. We leave 
aside several other results of this type and refer the reader to [17], 

Y may be chosen to be even injective. 
6For s = 1 a nonprobabilistic proof of Theorem 8 has been given recently by L, Carleson 

(Institut Mittag-Leffler, Report 1,1974) ; f can then be chosen even as a polygonal path. 
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We also leave aside the interesting application of fine potential theory to function 
algebras and to finely holomorphic functions due to Debiard and Gaveau [8], [9]. 

We close with the remark that the tool of fine potential theory is available also 
for certain strong harmonic spaces, namely those satisfying the 'domination axiom'. 
The power of the new tool is above all due to the fact that the set of/-hyperhar­
monic functions and the underlying fine topology are connected in a natural way. 
The connection is so natural that/-continuous numerical functions turn out to be 
of the first (Euclidean) Baire class and that/-hyperharmonic functions zxzf-conti-
nuous [16], [14]. Consequently, there is no fine-fine topology. 
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Variational Problems and Elliptic Equations 

Enrico Bombieri 

I. Variational problems. In this expository article I will be concerned with second-
order, nonlinear, elliptic equations arising from variational problems. Perhaps the 
simplest example is the 

Dirichlet problem. Find a function u(x) harmonic in a given bounded open set 
Q and taking given boundary values on dû. 

The variational formulation of Dirichlet's problem is expressed through the 
Dirichlet principle. The function u(x) is the unique solution of the variational 

problem 

J iDwl2 dx = min, u = / o n dû, 
o 

where Du denotes the gradient of w. 
The approach to the Dirichlet problem through the Dirichlet principle was soon 

criticized because the existence of a minimum for the Dirichlet integral was not 
obvious ; in particular, some conditions are needed in order to have a finite Dirichlet 
integral. This is not unnatural to assume a priori, since, for example, in physical 
models the Dirichlet integral represents the energy of a system, which should be 
finite to start with. Once these limitations of the variational approach were under­
stood, its usefulness became clear and the Dirichlet principle became again a re­
spectable tool in mathematics. 

More generally, one may ask to minimize the functional 

J[u] = \f(x,u,Du)dx 
o 

under appropriate boundary conditions for the competing functions u. Actually 
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u(x) may be a vector-valued function. If J[u] = min, then J[u] ^ J[u + ev] for every 
v with compact support in Q and, expanding J[u + ev] in a Taylor series in e, 

J[u + ev] = J[u] + edJ[u] + eWJ[u] + •>•, 

we see that we need dJ[u] = 0 and dzJ[u] ^ 0 for all such v, i.e, (writing/? ?= 
(PbÉ",Pn)for/)t / ) , 

and we obtain the well-known Euler equation 

y _!_/JA = M. 
i ~b%\ dpi ) du ' 

A simple condition, which implies 52J ^ 0, is 

t; opßPj 

which expresses a kind of convexity condition for the functional J[u], If this 
condition is satisfied, one says that the integrand/^, w, p) is regular elliptic. In case 
one considers vector-valued solutions u = (u1, •••, ul, •••, uN), the regularity condi­
tion imposed o n / = /(x, w*, ^ )̂ is 

at every point (x, u*9 px) and all ̂  G RN, f G äW , TJ, £ ^ 0. 
In his 19th problem of his address at the International Congress of Mathema­

ticians in 1900, Hilbert raised the question whether solutions of regular elliptic, 
analytic variational problems are necessarily analytic. This problem of regularity, 
together with the problem of existence of solutions, form two central questions in 
the theory of variational problems. 

II. Elliptic equations: the early work. In his celebrated thesis of 1904, S. Bernstein 
proved the remarkable result that C3 solutions of a single elliptic, nonlinear, 
analytic equation in two variables are necessarily analytic; this was considered at 
the time a solution to Hubert's 19th problem. Having thus attacked the problem of 
regularity, he went on with the existence problem in an important series of papers, 
between 1906 and 1912. We owe to him the basic idea (and the name) of an "a 
priori estimate", which still has a central role in the theory: If we have the right 
majorizations for all solutions (and their derivatives) of an elliptic equation, then 
existence and regularity of solutions of the Dirichlet problem will follow. Since in 
obtaining these estimates we assume "a priori" that we are dealing with smooth 
solutions, we have the name "a priori estimates". Bernstein himself showed how to 
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prove such estimates in some important cases, using the maximum principle and 
what is known today as the method of barriers. 

Bernstein's work was rather involved and relied heavily on analyticity, and was 
later improved and generalized to several variables and elliptic systems by the work 
of several authors, among which are Gevrey, Giraud, Lichtenstein, H. Lewy, E. 
Hopf, T. Rado, I. Petrowsky and Bernstein himself, However, one had to wait 
until the years between 1932 and 1937 before the basic reasons for the importance 
of the "a priori estimates" in the existence problem were fully understood and 
clarified through the work of Schauder, Leray and Caccioppoli and in particular 
the classical paper of Leray and Schauder of 1934. 

Consider for example a quasi-linear equation 

S #,;(#, w, Du)D{DjU = 0 in ß, 
w - / on 30. 

We denote by Tthe operator which to a function u associates the unique solution 
v of the linear Dirichlet problem 

S ajj(x9 u, Du)DjDjV = 0 in Q, 
v = / on dû. 

Since the latter problem is linear, it is much easier to solve, and the question is 
reduced to finding a fixed point u = Tu for the operator T. The main point is that 
very general fixed point theorems are available if we have the right "a priori 
estimates" for the solutions of the original equation and of the linearized equation. 
The advantage of this procedure over an iteration scheme ww+1 = Tun (used by 
Bernstein) is obvious: If uniqueness is not satisfied, the iteration need not converge. 

The fundamental "a priori estimates" for the linearized equation were found by 
Schauder; the search for such estimates in the nonlinear case is still today more of 
an art than of a method. 

III. Direct methods and weak solutions. Another approach to the existence prob­
lem in the variational case is provided by the so-called "direct methods in the 
calculus of variations". Roughly speaking, one wants to show 

(A) the integrand /[w]is lower semicontinuous and bounded below, with respect to 
a suitable notion of convergence in some admissible class of competing functions u; 

(B) a minimizing sequence {un}, i.e., J[un] ~> Inf J[u] converges to an admissible 
w; hence J[u] = min by (A). 

This idea was used perhaps for the first time by Zaremba and also by Hilbert in 
his investigations on the Dirichlet principle. It became a standard approach to 
variational problems in the hands of Lebesgue, Courant, Fréchet and especially 
Tonelli, If the integrand J[u] satisfies an inequality/(x, w, p) ^ mi \p\r — w2, m\ > 
0, with 1 ̂  r < + oo, then Tonelli's method, using absolutely continuous func­
tions and uniform convergence, works provided r ^ n = dim 0, which is a too 
strong condition if n ^ 3. A notable success of this method was however Haar's 
work of 1927 on functional of the type J[u] = \af(Du) dx, for the case of n = 2 
variables. Here one assumes that Q is a smooth convex domain, and the boundary 
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values are also smooth, satisfying a certain "three-point condition". The class of 
competing functions used by Haar is a class of functions satisfying a uniformly 
bounded Lipschitz condition. 

The deep reason for the limitation of Tonelli's approach was found only later, 
through the fundamental work of Sobolev and Morrey in 1938. The Sobolev spaces 
Hk,p(Q) are the Banach spaces of functions on Q whose derivatives of order ^ k 
are in ZA Sobolev discovered the fundamental embedding theorems for these 
spaces, the simplest being (one assumes Q bounded and dQ smooth) : 

(i) if/e Hl>P(Q), 1 S P < n, then/G D(Q) with s = np/(n - p), and 

\\f\\L.^C(Q)\\f\\ff>y, 

(ii) if/G Hhp(Q), p > n, then/satisfies a Holder condition in Q. 
The new approach to the existence problem could now be summarized as follows : 
(A) the integrand J[u] determines naturally a function space <F (usually a Sobolev 

space), in which the lower semicontinuity becomes a natural statement; 
(B) by means of "a priori estimates" one shows that there exists a convergent 

minimizing sequence (here the Sobolev embedding theorems are often crucial). 
From (A) and (B) one deduces the existence of a solution in the function space 

<F. However, one expects the solution so obtained to be very smooth. In some 
cases, e.g., those in which Tonelli's method works, the smoothness of solutions is 
automatic (compare (ii) of Sobolev's embedding theorem); in general, there 
remains the difficult problem of "regularization" : 

(C) the "weak solutions" so obtained are in fact differentiable solutions. 
The necessary results about lower semicontinuity have been obtained by Serrin; 

stages (B) and (C) require an extensive use of "a priori estimates", the regulariza­
tion part being often difficult if not intractable, 

This approach led to remarkable results especially in two cases : nonlinear second-
order equations in n = 2 variables, where one could also use tools from quasi-
conformal mapping (Morrey, Bers, Nirenberg), and linear equations and systems 
with smooth coefficients (we may mention the work of Ladyzenskaya and Cac-
cioppoli of 1951 for second-order equations, and the general theory of Friedrichs, 
F. John, Agmon-Douglis-Nirenberg of 1959, who also considered higher-order 
systems and the problem of boundary regularity). 

The first breakthrough in the nonlinear case came in 1957—1958 when De Giorgi 
and independently Nash for parabolic equations succeeded in proving Holder 
continuity of weak solutions of uniformly elliptic equations 

with measurable coefficients a{j and with the ellipticity condition 

wleML^/W&eyg^lel8, 
where m, M are positive constants independent of x. 

This result has some striking applications to nonlinear problems. De Giorgi 
himself showed how his theorem implied that weak extremals of uniformly elliptic 
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analytic integrands of the type \Qf(Du) dx ~ min are indeed analytic in Q. Stam­
pacela and Gilbarg found another application, namely the extension of Haar's 
theorem to the case of n > 2 variables ; further important applications and generali­
zations have been given by Morrey, Ladyzenskaya and Uraltseva, Oleinik and 
many others, in particular to the study of second-order quasi-linear equations which 
are quadratic in the first-order derivatives. 

Of great importance was also a new proof of De Giorgi's theorem, found by 
Moser in 1960, using the Sobolev inequalities rather than the isoperimetric ine­
qualities of De Giorgi. This also led to a proof of the Harnack inequality; If Q' <g 
Q and if u is a positive solution in û of a uniformly elliptic equation 
S D^j(x)Djü) = 0, then max^ u ^ C minß, u, where C depends only on Qf, Q 
and the ellipticity constant L = Mjm. Hence one obtains a Liouville theorem: A 
bounded solution over Rn of such an equation is necessarily a constant. 

IV. Weak solutions of elliptic systems. The problem of the extension of De 
Giorgi's regularization to systems of equations or to higher-order equations 
remained outstanding for awhile, until in 1968 De Giorgi found an example of a 
uniformly elliptic linear system of variational type with bounded measurable coef­
ficients, with the discontinuous solution xj\x\. By adapting De Giorgi's example, 
in 1969 Giusti and Miranda showed that if n > 2 the integrand 

with u ?= (u1, •••, un) is a regular uniformly elliptic analytic integrand, while u — 
x/\ x | is an extremal which is not real analytic at x = 0. These examples pointed out 
the great importance of the results obtained by Morrey in 1968 on the regularity 
problem for systems in n > 2 variables. 

Here the breakthrough came with the introduction of new powerful compactness 
methods, originally introduced by De Giorgi and especially Almgren in 1960— 
1966, in the study of minimal surfaces. 

In rather crude terms, the idea behind the use of compactness methods may be 
described as follows. Suppose we want to prove an "a priori estimate" of local 
nature for solutions of a class of variational problems which is invariant by linear 
changes of the coordinates. If the estimate we want fails in every neighborhood of a 
point XQ, this means that we can find a sequence of elliptic equations or systems over 
a fixed domain Q, and a sequence of solutions, for which the desired estimate fails 
in smaller and smaller neighborhoods of XQ. By performing a linear change of 
coordinates, we can expand these neighborhoods to a fixed neighborhood of xQ, 
and in doing so we have to replace our equations by new equations still in the same 
class and defined over larger and larger domains. Using the appropriate compact­
ness theorems then one shows that this sequence of equations and solutions con­
verges in some sense to a limiting equation, now defined over Rn, and to a limiting 
solution for which the desired "a priori estimate" still fails. The main point however 
is that, in doing so, we have replaced an elliptic operator by its "tangent operator" 
at XQ, and thus the limiting equation is often of a very simple type, for example 

dx 
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linear with constant coefficients, and, for it, it may be easy to check that the "a 
priori estimate" we want does in fact hold. This gives a contradiction and estab­
lishes the local estimate we were looking for. In the nonlinear case, convergence to 
a limiting equation is usually obtained by assuming certain mild conditions about 
the local behaviour of solutions at a point. If these conditions are valid almost 
everywhere, which is often the case because of measure theoretic arguments, one 
ends up with estimates which are valid only near almost every point, and in turn 
one establishes only regularity almost everywhere. 

In this way it was proved by Morrey in 1968 that weak solutions of a large class 
of nonuniformly elliptic analytic variational problems of the type 

\f(x, Du) dx = min, 

and also of uniformly elliptic analytic variational problems of the type 

\f(x, u, Du) dx = min 

are in fact analytic almost everywhere. Giusti and Miranda, in 1970—1972, 
extended and substantially simplified this work, and they have also been able to 
obtain good estimates for the Hausdorff dimension of the exceptional set in which 
the solutions are not analytic. 

The outstanding problem here is to determine the structure of the singular set; 
for example, is it semi-analytic? In special cases, one can even prove that solutions 
are everywhere analytic, and it is an interesting open question to find good condi­
tions which imply regularity everywhere. 

V. The minimal surface equation. A well-known variational problem is the 
Problem of Plateau. Find a surface of least area among all surfaces having a 

prescribed boundary. 
This is not a regular variational problem, if taken in this generality, and it is not 

possible for me to explain in this article all the new fundamental results obtained 
between 1960 and 1974 by Fédérer, Fleming, Reifenberg, De Giorgi, Almgren, 
Allard and many others. I will restrict my attention instead to the case of minimal 
graphs (the nonparametric Plateau problem) and to some special questions about 
the parametric Plateau problem in codimension one. 

If the graph y = u(x) of a function u(x), x G Q C Rn, is a solution of Plateau's 
problem, then it minimizes the area functional Jfl (1 + |Z)w|2)1/2 dx, and the as­
sociated Euler equation is 

S DAP<u/W) = 0, W=(l + |Z)w|2)1/2, 

which expresses the fact that the graph has mean curvature 0 at every point. 
The strong nonlinearity of this equation gives rise to unexpected phenomena, 

which have no counterpart in the theory of linear equations. For n — 2 variables : 
(i) the Dirichlet boundary value problem is soluble for arbitrary continuous data 

if and only if û is convex (Bernstein, Finn); 
(ii) a solution defined over a disk minus the centre extends to a solution over the 

disk, i.e., isolated singularities are removable (Bers); 
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(iii) if u > 0 is a solution over | x \ < R then 

(1 + |Z>w(0)|2)i/2 g exp(7Tw(0)/2#) 

and this estimate is sharp (Finn, Serrin) ; 
(iv) a solution defined over R2 is linear (Bernstein), 
The solution of the analogous problems for n > 2 variables has been obtained 

only recently. We have : 
(i) the Dirichlet boundary value problem is soluble for arbitrary continuous data 

if and only if dû has positive mean curvature at every point (Serrin, Bombieri, De 
Giorgi and Miranda, 1968); 

(ii) a solution defined over û minus K, where K is a compact subset of Û with 
(n - l)-dimensional Hausdorff measure 0, extends to the whole of Q (De Giorgi 
and Stampacchia, 1965); 

(iii) if w > 0 is a solution over | x \ < Athen 

|Dw(0)| < cj oxp(c2u(0)/R) 

(Bombieri, De Giorgi and Miranda, 1968); 
(iv) if n S 7, a solution defined over Rn is linear (Fleming's new proof in 1962 

for the case n = 2, De Giorgi for n ~ 3 in 1964, Almgren for n=4 in 1966, Simons for 
n ^ 7 in 1968); on the other hand, if n ^ 8, there are solutions defined over Rn 

which are not linear (Bombieri, De Giorgi and Giusti, 1969). 
What about the methods of proof? In his talk at the International Congress of 

Mathematicians in 1962, L. Nirenberg made the statement that "most results for 
nonlinear problems are still obtained via linear ones, i.e. despite the fact that the 
problems are nonlinear not because of it". The minimal surface equation is no 
exception to this statement; but since the linearization procedure is rather unusual, 
it is worthwhile to describe it. 

Let us define a vector u with components 

Vi= -(DrìlW, i= 1,- ,«, 
vw+i = i/w, 

and differential operators 

n+l 

ôj = A - ^ Ç VjDj9 i = 1, •••, n + 1, 

in jR»+1. 
If we denote by S the graph of xn+\ = u(x) in Rn+l, then the vector p is the nor­

mal unit vector to S at the point P = (x,u(x)) and the operators are dt- the projec­
tions of the operators Dt- on the tangent space to S at the point P. The "Laplacian" 
@ = S BîSi is actually the Laplace-Beltrami operator on S, and the fact that S has 
mean curvature 0 at every point is nicely expressed by the fact that the coordinate 
functions xf are harmonic on S for the Laplace-Beltrami operator. Moreover it 
can be shown that the normal vector p satisfies the nonlinear elliptic system Çèp + 
c2(x)p = 0 on 5* where c2(x) = 2r-;- (ßjVj)2 is the sum of the squares of the principal 
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curvatures of S at P. In particular since yn+1 > 0 it follows that 0vw+i S 0, i.e., 
vn+\ is superharmonic on S. 

Now we have two main facts (Miranda, 1967) : 
(a) if/has compact support and S is minimal, then 

R/4S| |=0, all/, 
or in other words the operators 5/ can be integrated by parts on the surface 5*; 

(b) if/has compact support, S is minimal and 1 S p < n then 

(J \f\npnn-p) d\S\)W è C(p, n) J \of\P d\\S\\, 

or in other words we have a uniform Sobolev inequality on S for the differential 
operators dj. 

We can use (a) and (b) together with De Giorgi's regularization technique (which 
is highly nonlinear) to investigate the differential inequality ^vw+i ^ 0, and 
eventually one arrives at the "a priori estimate" (iii). The solubility of the Dirichlet 
problem, and also the analyticity of weak solutions, depends on this "a priori 
estimate". 

More generally, one may investigate uniformly elliptic equations of the type 
H ài(aij(x)5ju) = 0 on an absolutely minimizing surface S of codimension one 
(Bombieri and Giusti, 1972). Thus one obtains the extension of the Moser-Harnack 
theorem to these equations, and as an application one gets that if « is a positive 
harmonic function on a minimal surface in Rn+1 without boundary, then u is 
constant. Since the coordinate functions x{ are harmonic on S, one gets as a corol­
lary a theorem of Miranda that a minimal surface without boundary contained in a 
half-space is a hyperplane. Also, a minimal surface without boundary is connected 
(Bombieri and Giusti, 1972). 

The extension of Bernstein's theorem up to dimension 7, and the construction 
of a counterexample in dimension n ^ 8, depends on different ideas. It was 
Fleming in 1962 who used compactness techniques to show that the failure of 
Bernstein's theorem in dimension n implied the existence of a singular minimal cone 
in Rn+Ì. De Giorgi later proved that in fact one would get the existence of such a 
cone in Rn, and in this way extended Bernstein's theorem through dimension n = 3. 
Then the question centered about the existence of minimal cones, and eventually 
Simons succeeded in proving the nonexistence of singular minimal cones in Rn

> 

n ^ 7. Moreover, Simons proved that the cone in A8 given by x\ + x\ + x\ + 
x\ = x\ + x\ -f xf + x\ was at least a locally minimal cone, i.e., area would 
increase with every sufficiently small deformation. Making use of the invariance of 
this cone by SO(3) x SO(3), Bombieri, De Giorgi and Giusti proved that this cone 
was in fact minimal in the large, by reducing the problem to a question about a 
system of first-order ordinary differential equations. It was natural to see whether 
this cone was associated with the failure of Bernstein's theorem in dimension 8, 
and this was obtained by constructing explicitly a subsolution u~, and a supersolu­
tion w+, of the minimal surface equation in 128, with the property that u~ ^ «+ 
everywhere and that no function between u~ and u+ could be linear. Now an 

file:///f/npnn-p
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application of the maximum principle and also of the "a priori estimate" for the 
gradient obtained before showed the existence of a solution w defined everywhere 
comprised between ur and w+. It should be noted that the choice of u~ and w+ was 
in fact suggested by the results obtained in the investigation of Simons' cone. 

VI. Further results. I will end this article by mentioning some results and direc­
tions of research which I could not treat more explicitly, but which seem to me of 
great importance. 

First of all, the facts which I have stated about the minimal surface equation are 
not limited to that special case. A whole class of elliptic equations can be treated 
with similar methods, among which are the equations of surfaces with prescribed 
mean curvature, the equation of capillarity phenomena, and many others. Here 
much recent work has been done by Ladyzenskaya and Uraltseva, Bombieri and 
Giusti, Trudinger, Finn, Serrin and many others. 

Second, and more importantly, I have limited myself in this article to variational 
problems of a nonparametric nature. The parametric point of view, in which one 
considers functionals on geometrical objects rather than on functions, has led to the 
modern geometric measure theory, the theory of integral currents and varifolds 
and of parametric elliptic integrands. Here the work of Fédérer, Fleming and 
especially Almgren is outstanding. Also, among more recent developments, I may 
mention the work of Allard on the first variation of a varifold and that of Jean 
Taylor on the structure of the singular set of soap films and soap bubbles. 

Another fruitful idea which I could not treat in this article is that of variational 
problems in which the solutions have to satisfy additional constraints. Here one 
may ask for solutions satisfying inequalities, thus obtaining classical problems with 
obstacles, or asking for solutions with gradient not exceeding certain bounds (an 
example is the potential equation for a subsonic gas flow), or one may impose 
convexity, as for the Monge-Ampère equations, and so on. Here the theory of 
variational inequalities begins to give a general foundation for many problems of 
this type. Fortunately many of these questions will receive special attention in 
these PROCEEDINGS, and I have to refer to the more specialized articles for further 
illustrations of the directions in which the theory of variational problems and of 
elliptic equations is moving. 
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Four Aspects of the Mathematical Theory of 
Economic Equilibrium 

Gerard Debreu* 

The observed state of an economy can be viewed as an equilibrium resulting from 
the interaction of a large number of agents with partially conflicting interests. 
Taking this viewpoint, exactly one hundred years ago, Léon Walras presented in 
his Elements d'Economie Politique Pure the first general mathematical analysis of 
this equilibrium problem. During the last four decades, Walrasian theory has given 
rise to several developments that required the use of basic concepts and results 
borrowed from diverse branches of mathematics. In this article, I propose to re­
view four of them. 

1. The existence of economic equilibria. As soon as an equilibrium state is defined 
for a model of an economy, the fundamental question of its existence is raised. The 
first solution of this problem was provided by A. Wald [1933-1935], and after a 
twenty-year interruption, research by a large number of authors has steadily ex­
tended the framework in which the existence of an equilibrium can be established. 
Although no work was done on the problem of existence of a Walrasian equilib­
rium from the early thirties to the early fifties, several contributions, which, later 
on, were to play a major role in the study of that problem, were made in related 
areas during that period. One of them was a lemma proved by J. von Neumann 
[1937] in connection with his model of economic growth. This lemma was refor­
mulated by S. Kakutani [1941] as a fixed-point theorem which became the most 
powerful tool for proofs of existence in economics. Another contribution, due to 
J. Nash [1950], was the first use of that tool in the solution of a problem of socia 
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equilibrium. For later reference we state Kakutani's theorem. Given two sets U 
and Vy a correspondence p from U to V associates with every element ue U, a 
nonempty subset p(u) of V. 

THEOREM. If D is a nonempty, compact, convex subset of a Euclidean space, and p 
is a convex-valued, closed-graph correspondence from D to D, then there is d* such 
that d* G p(d*). 

As a simple prototype of a Walrasian equilibrium problem, we now consider an 
exchange economy with / commodities, and a finite set A of consumers. The con­
sumption of consumer a G A is described by a point xa in R{; the ith coordinate 
x'a of xa being the quantity of the /th commodity that he consumes. A price system 
p is an Mist of strictly positive numbers, i.e., a point in P = Int Rl+; the rth co­
ordinate of/? being the amount to be paid for one unit of the rth commodity. Thus 
the value of xa relative to p is the inner product p • xa. Given the price vector peP, 
and his wealth w G L, the set of strictly positive numbers, consumer a is constrain­
ed to satisfy the budget inequality p-xa ^ w. Since multiplication of p and w by a 
strictly positive number has no effect on the behavior of consumers, we can nor­
malize/?, restricting it to the strictly positive part of the unit sphere S = {pe P\ 
|| ̂ | = 1}. We postulate that, presented with the pair (p, w)e S x L, consumer a 
demands the consumption vector fa(p, w) in R^, and that the demand function fa 

is continuous. If that consumer is insatiable, fa also satisfies 

(1) for every (p, w)eS x L, p-fa(p, w) = w. 

To complete the description of the economy ê, we specify for consumer a an 
initial endowment vector ea G P. Thus the characteristics of consumer a are the 
pair (fa, ea), and ê is the list ((fa, ea))a<=A of those pairs for a e A. Consider now a 
price vector/? G S. The corresponding wealth of consumer a isp-ea; his demand is 
fa(p, P'ea). Therefore the excess demand of the economy is 

F(P) = Ha^A [fa(P,P-ea) - ea]. 

And p is an equilibrium price vector if and only if F(p) = 0. Because of (1), the 
function F from Sto Rl satisfies 

Walras'law.p-F(p) = 0. 
Consequently, F is a continuous vector field on S, all of whose coordinates are 

bounded below. Finally, we make an assumption about the behavior of F near dS. 
Boundary condition. lfpn in £ tends to/?0 in 35, then {F(pn)} is unbounded. 
This condition expresses that every commodity is collectively desired. Here and 

below I freely make unnecessarily strong assumptions when they facilitate the ex­
position. Of the many variants of the existence theorem that have been proposed, 
I select the following statement by E. Dierker [1974, §8], some of whose antecedents 
were L. McKenzie [1954], D. Gale [1955], H. Nikaido [1956], and K. Arrow and 
F. Hahn [1971]. 

THEOREM. If F is continuous, bounded below, and satisfies Wal ras' law and the 
boundary condition, then there is an equilibrium. 
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We indicate the main ideas of a proof because they will recur in this section and 
in the next. Here it is most convenient to normalize the price vector so that it be­
longs to the simplex II = {/? G R{ | S{=X pir = 1} • 

Consider a price vector p $ 377 yielding an excess demand F(p) ^ 0. According 
to a commonly held view of the role of prices, a natural reaction of a price-setting 
agency to this disequilibrium situation would be to select a new price vector so as 
to make the excess demand F(p) as expensive as possible, i.e., to select (K. Arrow 
and G. Debreu [1954]) a price vector in the set 

fi(p) = LeJl\ Tt-F(p) = Max q-F(p)\. 

When p G 9/7, the excess demand is not defined. In this case, we let ft(p) ?= 
{%zll\%*p = fy. 

By Kakutani's theorem, the correspondence^ from /Tto ZThas a fixed point/?*. 
Obviously, p* $ du. But then/?* G fi(p*) implies F(p*) = 0. 

From the fact that fi(p) is always a face of II one suspects (rightly as we will see 
in the next section) that Kakutani's theorem is too powerful a tool for this result. 
But such is not the case in the general situation to which we will turn after having 
pointed out the broad interpretation that the concept of commodity must be given. 
In contemporary Walrasian theory, a commodity is defined as a good or a service 
with specified physical characteristics, to be delivered at a specified date, at a 
specified location, if (K. Arrow [1953]) a specified event occurs. Aside from this 
mere question of interpretation of a concept, the model can be expanded so as to 
include a finite set B of producers. Producer b G B chooses a production vector yb 

(whose positive coordinates correspond to outputs, and negative coordinates to 
inputs) in his production set Yb, a nonempty subset of Rf, interpreted as the set of 
feasible production vectors. When the price vector p is given, producer b actually 
chooses his production vector in a nonempty subset (pb(p) of Yb. It is essential here, 
as it was not in the case of consumers, to provide for situations in which/? does not 
uniquely determine the reaction of every producer, which may arise for instance if 
producer b maximizes his profit/?-^ in a cone Yb with vertex 0 (constant returns 
to scale technology). In an economy with production, consumer a not only demands 
goods and services, but also supplies certain quantities of certain types of labor, 
which will appear as negative coordinates of his consumption vector xa; this vector 
xa is constrained to belong to his consumption set Xa, a given nonempty subset 
of RK A suitable extension of the concept of demand function covers this case. 
However, the wealth of a consumer is now the sum of the value of his endowment 
vector and of his shares of the profits of producers. In this manner, an integrated 
model of consumption and production is obtained, in which a state of the economy 
is a list ((xa)as=A, (yb)b<=B>P) °f vectors of Rl, where, for every a e A, xaeXa; for 
every beB,ybe Yb; and/? G II. The problem of existence of an equilibrium for 
such an economy has often been reduced to a situation similar to that of the 
last theorem, the continuous excess demand function being replaced by an excess 
demand correspondence with a closed graph. Alternatively, it can be formulated in 
the following general terms, in the spirit of J. Nash [1950]. The social system is 
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composed of a finite set C of agents. For each c G C, a set Dc of possible actions 
is given. Consequently, a state of the system is an element d of the product D = 
Xc^c Dc. We denote by dcv the list of actions obtained by deleting dc from d. 
Given dC\c, i.e., the actions chosen by all the other agents, agent c reacts by choosing 
his own action in the set pc(dC\ò- The state d* is an equilibrium if and only if, for 
every ceC, d* G pc(d$Sc). Thus, the reaction correspondence p from D to D 
being defined by p(d) = Xceci°c(̂ c/<?)> the state rf* is an equilibrium if and only if it 
is a fixed point of p. In the integrated economic model of consumption and produc­
tion that we discussed, one of the agents is the impersonal market to which we as­
sign the reaction correspondence y, introduced in the proof of the existence theorem. 

Pi(dC\2) 
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£>i 

\d 
1 
l 
1 

Pid) 
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Dr> 

di Pi(dc\i) 
FIGURE 1 

Still broader interpretations and further extensions of the preceding model have 
been proposed. They include negative or zero prices, preference relations with 
weak properties instead of demand functions for consumers, measure spaces of 
agents, infinite-dimensional commodity spaces, monopolistic competition, public 
goods, redistribution of income, indivisible commodities, transaction costs, money, 
the use of nonstandard analysis,.... Since this extensive, and still rapidly growing, 
literature cannot be surveyed in detail here, I refer to the excellent account by K. 
Arrow and F. Hahn [1971], to the books mentioned in the next sections, and to 
recent volumes of Econometrica, Journal of Economic Theory, and Journal of 
Mathematical Economics. 

2. The computation of economic equilibria. While the first proof of existence is 
forty years old, decisive steps towards an efficient algorithm for the computation 
of Walras equilibria were taken only during the last decade. In 1964, C. Lemke 
and J. Howson gave an effective procedure for the computation of an equilibrium 
of a non-zero-sum two-person game. H. Scarf [1967], [1973] then showed how a 
technique similar to that of C. Lemke and J. Howson could be used to compute an 
approximate Walras equilibrium, and proposed a general algorithm for the 
calculation of an approximate fixed point of a correspondence. This algorithm, 
which has revealed itself to be surprisingly efficient, had the drawback of not per-
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mitting a gradual improvement of the degree of approximation of the solution. An 
essential extension due to C. Eaves [1972], [1974], stimulated by a fixed-point 
theorem of F. Browder [1960], overcame this difficulty. 

Before presenting a version of the algorithm based on H. Scarf [1973], and C. 
Eaves [1974], we note that in the preceding proof of existence, we have actually 
associated with every point/? G II a set A(p) of integers in / = {1, ••• , /} , as follows, 

A(p) = {/1 F*(p) = MaxyF/(/?)} if/? £ 9/7, 

*= {/ | /^-o} ifpedn. 

The point /?* is an equilibrium if and only if A(p*) = /, in other words, if and 
only if it is in the intersection of the closed sets Et- - {/?| i G yl(/?)}. Showing that 
this intersection is not empty would yield an existence proof in the manner of D, 
Gale [1955]. 

We specify our terminology. By a simplex, we always mean a closed simplex, and, 
of course, similarly for a face of a simplex. A facet of an w-simplex is an (n — 1)-
face. For each/? G 77, select now a label /((/?) in A(p). A set M of points is said to 
be completely labeled, abbreviated to cl., if the set l(M) of its labels is /. The label­
ing X is chosen so as to satisfy the following restrictions on dû: 

(a) the set of vertices of II is cl., 
(ß) no facet of /7is cl.1 

The algorithm will yield a cl. set of / points of E whose diameter can be made 
arbitrarily small, and consequently a point of II at which the value of F can be 
made arbitrarily small. 

Let Tbe the part of R{ that is above II, and^" be a standard regular triangulation 

FIGURE 2 

*Here is a simple example of a labeling of dll satisfying those restrictions. Given p e dïï, select 
any l(p) in A(p) such that X(p) - 1 (mod /) is not in A(p). 
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of J1 having for vertices the points of Twith integral coordinates, used by H. Kuhn 
[1960], [1968], T. Hansen [1968], and C. Eaves [1972], and illustrated by the figure. 
(Other considerably more efficient triangulations of, or more appropriately pseudo-
manifold structures on, Thave been used, C. Eaves [1972], [1974].) Give any point 
in 7" the same label as its projection from 0 into If; and say that two (/ — l)-sim-
plexes of <F are adjacent if there is an /-simplex of F of which they are facets. 
Consider now an (/ — l)-simplex s of & with cl . vertices. 

(i) If s — H, s is a facet of exactly one /-simplex of F ; hence there is exactly one 
(/ - l)-simplex of F with cl . vertices adjacent to s. 

(ii) If s T£ JI, because of (ß), s is not in the boundary of T; therefore s is a facet 
of exactly two /-simplexes of F ; hence there are exactly two (/ — l)-simplexes of 3T 
with cl . vertices adjacent to s. 

The algorithm starts from s° = II. Take s1 to be the unique (/ - l)-simplex of 
3T with cl. vertices adjacent to s°. For k > 0, take sk+1 to be the unique (/ - 1)-
simplex of F with cl . vertices adjacent to sh, and other than sk~l. Clearly this al­
gorithm never returns to a previously used (/ — l)-simplex and never terminates, 
Given any integer n, after a finite number of steps, one obtains an (/ — l)-simplex 
with cl . vertices above the hyperplane {peRl\ Til=i Pi = #}• Projecting from 0 
into 77, one obtains a sequence of cl. sets of / points of II whose diameter tends to 
0 as «tends to + oo. 

An approximate fixed point (i.e., a point close to its image) of a continuous 
function from a finite-dimensional, nonempty, compact, convex set to itself can 
be obtained by a direct application of this algorithm. But in order to solve the 
analogous problem for a fixed point of a correspondence, and consequently, for a 
Walras equilibrium of an economy with production, H. Scarf and C. Eaves have 
used vector labels rather than the preceding integer labels. With every point /? of 
II, one now associates a suitably chosen vector l(p) in Rf~l, and one says that a set 
M of points of II is c l . if the origin of R!"1 belongs to the convex hull of X(M). 
As before, the labeling X of II is restricted to satify (a) and (ß), The last two para­
graphs can then be repeated word for word with the following single exception. Let 
a be an /-simplex of F, and s be a facet of a with cl . vertices. Denote by Va (resp. 
Vs) the set of vertices of a (resp. of s). If X(Vff) is in general position in JR /_1, then 0 
is interior to the convex hull of À(VS), and there is exactly one other facet of G with 
cl . vertices. However, if X(Vff) is not in general position, a degenerate case where 
there are several other facets of a with cl . vertices may arise. An appropriate use of 
the lexic refinement of linear programming resolves this degeneracy. In this general 
form, the algorithm can indeed be directly applied to the computation of approxi­
mate Kakutani fixed points. 

The simplicity of this algorithm is very appealing, but its most remarkable feature 
is its efficiency. Experience with several thousand examples has been reported, in 
particular in H. Scarf [1973] and R. Wilmuth [1973]. As a typical case of the version 
of the integer-labeling algorithm presented above (which uses an inefficient triangu­
lation of T), let / = 10. To reach an elevation n = 100 in T, i.e., a triangulation of 
UTor which every edge is divided into 100 equal intervals, the number of iterations 
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required rarely exceeds 2,000, and the computing time on an IBM 370 is usually 
less than 15 seconds. The number of vertices that are examined in the computation 
is therefore a small fraction of the number of vertices of the triangulation of 77 at 
elevation 100. 

The best general reference on the problem discussed in this section is H. Scarf 
[1973], Mathematical Programming is a good bibliographical source for more re­
cent developments, 

3. Regular differentiable economies. The model <f = ((/a, ca))aeA of an exchange 
economy presented at the beginning of § 1 would provide a complete explanation 
of the observed state ofthat economy in the Walrasian framework if the set E(S) of 
its equilibrium price vectors had exactly one element. However, this global unique­
ness requirement has revealed itself to be excessively strong, and was replaced, 
in the last five years, by that of local uniqueness. Not only does one wish E($) to 
be discrete, one would also like the correspondence E to be continuous. Otherwise, 
the slightest error of observation on the data of the economy might lead to an en­
tirely different set of predicted equilibria. This consideration, which is common in 
the study of physical systems, applies with even greater force to the study of social 
systems. Basic differential topology has provided simple and satisfactory answers to 
the two questions of discreteness of E($), and of continuity of E. 

At first, we keep the l is t /= (fa)a<=A of demand functions fixed, and we assume 
that each one of them is of class Cr (r ^ 1). Thus an economy is identified with the 
point e = (ea)a*=A i n PA- We denote by E the set of (e, p)ePA x S such that /? is 
an equilibrium price vector for the economy e, and by E(e) the set of equilibrium 
price vectors associated with a given e. The central importance of the manifold E, 
or of a related manifold of S. Smale [1974], has been recognized by S. Smale [1974] 
and Y. Balasko [1974a]. Recently, Y. Balasko [1974b] has noticed the property of 
Cr-isomorphism to PA. 

THEOREM. E is a O-submanifold of PA x S of the same dimension as PA. If for 
every aeA the range offa is contained in Pt then E is Cr>-isomorphic to PA, 

Now let % be the projection PA x S -+ PA, and * be its restriction to the mani­
fold E. 
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DEFINITION. The economy & = (/, e) is regular if e is a regular value of jt. It is 
critical if it is not regular. 

By Sard's theorem, the set of critical e has Lebesgue measure zero. Suppose in 
addition we assume that every demand function fa satisfies the 

Strong boundary condition. If (/?„, wn) in S x L tends to (pQ, WQ) in dS x L, then 
{fa(Pn> w*)} i s unbounded. 

Then we readily obtain that jt is proper (Y. Balasko [1974b]). In this case the 
critical set is closed (relative to PA). It is therefore negligible in a strong sense. As 
for economies in the regular set (%, the complement of the critical set, they are well 
behaved in the following sense. At e G <%, the compact set E(e) = %~l(e) is discrete, 
therefore finite, and %~l is locally a Cr-diflfeomorphism. 

In order to prepare for the discussion of regular economies in the context of the 
next section, we note an equivalent definition (E. and H. Dierker [1972]) of a critical 
point of the manifold E for %. Given e, let F(p) be the excess demand associated 
with/?, and denote by F(p) the projection of F(p) into some fixed (/ — ^-dimension­
al coordinate subspace of Rl. Because of Walras' law, and because /? is strictly 
positive, F(p) = 0 is equivalent to F(p) = 0. Let then J[F(p)] be the Jacobian deter­
minant of F at /?. As Y. Balasko [1974b] shows, (e, p) is a critical point of % if and 
only if/[F(/?)] = 0. 

Since it is desirable to let demand functions vary as well as initial endowments 
(F. Delbaen [1971], E. and H. Dierker [1972]), we endow the set D of C demand 
functions (/* ^ 1) satisfying the strong boundary condition with the topology of 
uniform Cr-convergence. 

An economy ê is now defined as an element of (D x P)A, a regular element of 
the latter space being a pair (/, e) for which the Jacobian determinant introduced 
in the last paragraph is different from zero for every equilibrium price vector as­
sociated with (/, e). The regular set is then shown to be open and dense in (D x P)A. 
Another extension, by S. Smale [1974], established the same two properties of the 
regular set in the context of utility functions with weak properties, rather than in the 
context of demand functions. 

Still further generalizations, for instance, to cases where production is possible, 
have been obtained. E. Dierker [1974] surveys a large part of the area covered in 
this section more leisurely than I did. Recent volumes of the three journals listed 
at the end of §1 are also relevant here. 

4. The core of a large economy. So far the discussion of consumer behavior has 
been in terms of demand functions. We now introduce for consumer a the more 
basic concept of a binary preference relation rèa on Rl

+, for which we read "x ^ s 

y" as "for agent a, commodity vector y is at least as desired as commodity 
vector x." The relation of strict preference "x <ay" is defined by "x ^ ß y and not 
y 7èa x" and of indifference "x ~a y" by "x -£a y and y ^ ß x." Similary, 
for two vectors x, y in R! we denote by "x ^ y" the relation "y — x G Rl

+" 
by "x < y" the relation "x ^ y and not y ^ x" and by "x < y" the relation 
"y- xeP." 
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We assume that ^ f l is a complete preorder with a closed graph, and that it 
satisfies the monotony condition, x < y implies x <ay, expressing the desirability 
of all commodities for consumer a. The set of preference relations satisfying these 
assumptions is denoted by &, and viewing an element of 0> as a closed subset of 
R2i, we endow & with Hausdorff's [1957] topology of closed convergence (Y. 
Kannai [1970]), 

The characteristics of consumer a e A are now a pair (^ff, ea) of a preference 
relation in 0>, and an endowment vector in Rl+. Thus an exchange economy $ is 
a function from A to & x Rl+, The result of any exchange process in this economy 
is an allocation, i.e., a function x from A to R{, that is attainable in the sense 
that JjaeA Xa = Ha^A ea* 

A proposed allocation x is blocked by EL coalition E of consumers if 
(0 E * 0 , 

and the members of E can reallocate their own endowments among themselves so 
as to make every member of E better off, i.e., if 

(ii) there is an allocation y such that S ß e ^j f l = Tia^E ea and, for every aeE, 
xa <aya. 

From this viewpoint, first taken by F. Edgeworth [1881], only the unblocked 
attainable allocations are viable. The set of those allocations is the core C(g) of 
the economy. The goal of this section is to relate the core to the equilibrium con­
cept that underlies the analysis of the first three sections. Formally, we define a 
Walras allocation as an attainable allocation x for which there is a price system 
/? G U such that, for every a G A, xa is a greatest element for ^ f l of the budget set 
{zeRl+\p<z<>p'ea}. 

The set of Walras allocations of ê is denoted by W(S). It satisfies the mathe­
matically trivial but economically important relation W(ê) c C(S). 

Simple examples show that for small economies the second set is much larger 
than the first. However, F. Edgeworth [1881] perceived that as the number of agents 
tends to + oo in such a way that each one of them becomes insignificant relative to 
their totality, the two sets tend to coincide. The conditions under which F. 
Edgeworth proved his limit theorem were very special. The first generalization 
was obtained by H. Scarf [1962], after M. Shubik [1959] had called attention to 
the connection between F. Edgeworth's "contract curve'' and the game-theoretical 
concept of the core. The problem was then placed in its natural setting by R. Au-
mann [1964], The agents now form a positive measure space (A,stf,v) such that 
v(Ä) = 1. The elements of sé are the coalitions, and for E e sé, v(E) is interpreted 
as the fraction of the totality of agents in coalition E. Since the characteristics of an 
agent a G A are the pair (-£a, ea), an economy ê is defined (W. Hildenbrand [1974]), 
as a measurable function from A to ^ x R{ such that e is integrable. The defini­
tions of an unblocked attainable allocation and of a Walras allocation are extended 
in an obvious fashion. As trivially as before W(S) c C($). But in the case in 
which the space of agents is atomless, i.e., in which every agent is negligible, R. 
Aumann [1964] has proved the 
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THEOREM. If the economy $ is atomless and \Aedv> 0, then W(£) = C($). 

This remarkable result reconciles two fundamental and a priori very different 
equilibrium concepts. Its proof can be based (K. Vind [1964]) on Lyapunov's 
theorem on the convexity of the range of an atomless finite-dimensional vector 
measure. 

There remains to determine the extent to which the equality of the core and of 
the set of Walras allocations holds approximately for a finite economy with a 
large number of nearly insignificant agents. This program is the object of W. 
Hildenbrand [1974], one of whose main results we now present. 

Letting K = & x R | be the set of agents' characteristics, we introduce the 
basic concepts associated with the economy ê that we need. The image measure 
H = » o <f-i of v via ê is a probability on K called the characteristic distribution 
of ê. Given an allocation x for ê (i.e., an integrable function from A to Rf+)9 

consider the function yx from A to K x R{ defined by yx(a) = (ê(a), x(a)). The 
image measure v ° y~x of y via yx is a probability on K x Rl+ called the charac­
teristic-consumption distribution of x. We denote by @w($) the set of characteris­
tic-consumption distributions of the Walras allocations of ê, and similarly by 
^c(<f) the set of characteristic-consumption distributions of the core allocations 
of ê. Finally, we formalize the idea of a competitive sequence of finite economies. 
#An will denote the number of agents of in, jun the characteristic distribution 
of ên, and pr2 the projection from K into Rl

+. The sequence (é?n) is competitive if 
(i) #An -> + oo, 
(ii) ftn converges weakly to a limit pt,, 

(iii) lpr2d(jLn-+ \pr2dfi> 0. 
We denote by ëf the economy defined as the identity map from K, endowed 

with its Borei ^-field 8$(K), and the measure fi, to K. Then, endowing the set of 
probability measures on K x Rl

+ with the topology of weak convergence, we 
obtain the theorem of W. Hildenbrand [1974, Chapter 3]. 

THEOREM. If the sequence (<gn) is competitive, and U is a neighborhood of Bw(iy), 
then, for n large enough, @c($n) c ^ 

To go further, and to obtain full continuity results, as well as results on the rate 
of convergence of the core of $n, we need an extension (F. Delbaen [1971], K. 
Hildenbrand [1974], and H. Dierker [1974]) of the concepts and of the propositions 
of § 3 to the present context of a measure space of agents. Specifically, we place 
ourselves in the framework of H. Dierker [1974]. In addition to being in ^ , the 
preference relations of consumers are now assumed to satisfy the following condi­
tions. For every point x G P, the preference-or-indifference set {y G P | X ^ y) is 
convex, and the indifference set I(x) — {y G p | y ~ x] is a C2-hypersurface of 
P whose Gaussian curvature is everywhere nonzero, and whose closure relative 
to Rl is contained in P. Finally denoting by g(x) the positive unit normal 
of I(x) at the point x, we assume that g is Cl on P. These conditions make it 
possible to identify the preference relation ^ with the C1 vector field g on P. 
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The set G of these vector fields is endowed with the topology of uniform C1 con­
vergence on compact subsets. M then denotes the set of characteristic distributions 
on G x P with compact support. The assumptions that we have made imply 
that every agent has a C1 demand function. Therefore it is possible to define 
a regular element JU of M as a characteristic distribution fj, in M such that the 
Jacobian determinant introduced in §3 is different from zero for every equilibrium 
price vector associated with ft. Having suitably topologized the set Jt> one can 
give, in the manner of H. Dierker [1974], general conditions under which the 
regular set is open and dense in M. 

In this framework, the following result on the rate of convergence of the core of 
an economy has recently been obtained (B. Grodal [1974]) for the case in which the 
agents' characteristics belong to a compact subset Q of G x P. For a finite set A, 
dA denotes the metric defined on the set of functions from A to Rf by dA(x, y) = 
MaXßÊ H X(ö) - y(a) ||, and öA(X, Y) denotes the associated Hausdorff dis­
tance of two compact sets X, Y of functions from A to RK In the statement of the 
theorem, MQ denotes the set of characteristic distributions on Q with the topology 
of weak convergence. 

THEOREM. If Q is a compact subset of G x P, and ft is a regular characteristic 
distribution on Q, then there are a neighborhood V of ft in MQ, and a real number 
k such that for every economy $ with a finite set A of agents, and whose characteristic 
distribution belongs to V, 

ÒA[C(£\W(£)} gklU. 
Thus if (Sn) is a competitive sequence of economies on g, and if the limit 

characteristic distribution is regular, then öA* [C((fM), W(&n)] tends to 0 at least 
as fast as the inverse of the number of agents. 

The basic reference for this section is W. Hildenbrand [1974]. 
The analysis of Walras equilibria, of the core, and of their relationship has 

yielded valuable insights into the role of prices in an economy. But possibly of 
greater importance has been the recognition that the techniques used in that analysis 
are indispensable for the mathematical study of social systems : algebraic topology 
for the test of existence that mathematical models of social equilibrium must pass; 
differential topology for the more demanding tests of discreteness, and of conti­
nuity for the set of equilibria; combinatorial techniques for the computation of 
equilibria; and measure theory for the study of large sets of small agents. 
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Poids dans la Cohomologie des Variétés Algébriques 

Pierre Deligne 

1. Soit Zune variété algébrique complexe (i.e., un schéma séparé de type fini sur 
C). On note encore X l'espace topologique usuel X(C) sous-jacent à X. Dans cet 
exposé, nous décrivons une filtration remarquable des groupes de cohomologie 
rationnelle de X, la filtration par le poids, et nous donnons un fascicule de résultats 
de ses propriétés. Sa définition sera donnée au §12. Pour les démonstrations, nous 
renvoyons aux travaux cités dans la bibliographie où les théorèmes sont souvent 
prouvés dans des cadres plus généraux; travailler sur C nous permet de disposer 
simultanément de la théorie de Hodge, d'action de groupes de Galois, et de la 
résolution des singularités. 

La filtration par le poids est une filtration finie croissante. Nous la noterons W. 
Elle est également définie dans des situations relatives (ou en cohomologie à sup­
port propres). Elle dépend non seulement de l'espace topologique X, mais encore 
de la façon dont il est réalisé comme variété algébrique. Elle est compatible aux 
isomorphismes de Künneth (i.e., via l'isomorphisme H*(X x Y) = H*(X) ® 
H*(Y), on a 

Wj(H*(X x Y))= S Wj,(H*(X)) (g) Wr(H*(Y)) 

et est fonctorielle pour les morphismes algébriques. Plus précisément, si / ; X-> Y 
est algébrique, alors f*:H*(Y) -• H*(X) est strictement compatible aux filtrations 
par le poids de H*(Y) et H*(X): Si la classe x e H'(X) est dans l'image de/*, elle 
est de filtration g i si et seulement si elle est l'image d'une classe de filtration ^ /. 
Plus généralement, toute application naturelle est strictement compatible aux 
filtrations par le poids. 

La filtration par le poids est un invariant discret; elle est invariante par dé-
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formation de la structure algébrique de X. Plus précisément, on a le théorème 
suivant. 

2. THéORèME. Soit f:X -> S un morphisme. Pour t G S, soit Xt = f~l(t). Si le 
faisceau R*fQ* est localement constant (un système local), il existe une filtration par 
le poids W de R%Qpar des sous-systèmes locaux, telles que les flèches rt : (R%Q)t -* 
H'XXf) soient strictement compatibles aux filtrations par le poids, et qu'en particulier 
là où rt est un isomorphisme, W induise la filtration par le poids de H{(X^. 

3. En gros, la filtration par le poids exprime comment la cohomologie de Zpeut 
se bâtir en terme de la cohomologie de variétés projectives non singulières. Voici 
quelques exemples. 

EXEMPLE 3.1. Si X est propre ( «= compacte, par exemple projective) et lisse (=non 
singulière), alors H*(X) = dfn H\X, Q) est purement de poids /: GrJfâ^X)) = 0 
pour / * j . En d'autres termes, W^H^X)) = 0 et W{(W(X)) = H'(X). 

EXEMPLE 3.2. Soient Xpropre, lisse, connexe, de dimension d et P un point de X. 
Des groupes de cohomologie à support H\P) (X) = Hi{XmoA(X — {P})), seul celui 
d'indice 2d est non nul, et 

(3.2.1) Hfa(X)~>H**(X) = Q. 

D'après nos principes, H\^(X) est donc purement de poids 2d. L'inverse de 
risomorphisme (3.2.1) peut être vu comme un isomorphisme de Thom-Gysin 

Q = H\P)^HYP)(X)\ 

on constate qu'il ne respecte pas les poids. La situation générale est la suivante: 
pour Y une sous-variété lisse purement de codimension d dans une variété lisse X, 
l'isomorphisme de Thom-Gysin H*(Y) ^ Hp2d(X) transforme Wk en Wk+2d. 
Notant (n) un décalage de 2n pour W {W(n)k = W^2.r)> cec* s'écrit comme un 
isomorphisme filtré 

# ' ( 7 ) ( - d)~>Hp**(X). 

EXEMPLE 3.3. Soient Z propre et lisse, et Y une sous-variété lisse (fermée) pure­
ment de codimension d. On dispose d'une suite exacte 

- . -• W(X) -> H*(X - Y) i> Hp-^X) -> ..-. 

D'après 3.1 et 3.2, on a donc GrJ(Ht(X - Y)) = 0 pour j ï i, i + 1; Wt est 
l'image de H<(X). 

EXEMPLE 3.4. Soit X propre, et lisse sauf pour un point singulier isolé P. Suppo­
sons que la variété X déduite de X en éclatant P soit lisse, et que le diviseur excep­
tionnel D image inverse de P soit lisse: X se déduit de X (propre et lisse) en con­
tractant en un point D (propre et lisse). L'espace X a le type d'homotopie de 
[X U (un cône de base D)], dont la cohomologie se calcule par Mayer-Vietoris; 
on trouve une suite exacte 

. - -> H*~\D) i Hi(X) -> H\X) 0 W(P) -+ - . 

qui montre que GrY(H*(X)) — 0 pour j + i - 1, /; W^i est l'image de d. Pour 
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/ ï 0, c'est encore le noyau de H*(X) ^ H*(X), et Grf(W(X)) est l'image de H*(X) 
dans H<(X). 

EXEMPLE 3.5. Les variétés de drapeaux sont des variétés propres et lisses. La 
filtration par le poids de leur cohomologie est donc donnée par 3.1. Si G est un 
groupe réductif connexe, le même résultat vaut pour la cohomologie de BG [1, III]. 
Ceci permet de calculer la filtration par le poids de la cohomologie de G, liée à 
celle de BG par transgression. On trouve que WjH'(G) *= 0, et que W^xH^G), nul 
pour / pair, est égal à la partie primitive de la cohomologie de degré i de G [1, III], 
Si f'.G -> H est une application algébrique entre variétés de groupes réductifs, 
l'image réciproque d'une classe de cohomologie rationnelle primitive de /fest donc 
encore primitive, Pour d'autres corollaires, voir [1, III]. 

4. La filtration par le poids est graduable en un sens très fort. Il existe des gradua­
tions W des Hf(X), qui décomposent W: 

(4.1) Wn{W(X)) = 0 Wf{Hi(X)) 

et qui soient compatibles au cup-produit et aux opérations supérieures dérivées du 
cup-produit (produits de Massey «••). Ces dernières n'étant pas partout définies, le 
sens de "compatible à une graduation" doit être précisé. Le plus simple est de voir 
une graduation comme une action du groupe Gm, i.e., une action de Q* donnée 
par des formules algébriques : à une graduation W on associe l'action où X G Q* 
agit sur Wj par multiplication par V. La "compatibilité" est que Q* agit par des 
automorphismes de H*(X) muni de sa graduation par le degré, du cup-produit, 
et des opérations supérieures dérivées du cup-produit. 

5. Supposons pour simplifier X connexe, et soit M le modèle minimal du type 
d'homotopie rationnel de X, au sens de Sullivan [7]. C'est une algèbre différentielle 
graduée à degrés ^ 0, connexe (Jf° = Q), (anti) commutative libre en tant qu'al­
gèbre graduée, et engendrée par ses éléments indécomposables (i.e., dM c (^>0)2). 
On a H*(J() = H*(X), et si Zest simplement connexe, J?>°/(J/>0)2 *= 
(%*(X) ® Q)v-

Un énoncé plus précis, et plus commode, que celui donné en § 4 est qu'il existe 
une graduation W vérifiant (4.1) déduite d'une graduation {F de M (à degrés ^ 0, 
somme de graduations des M\ telle que d et le produit soient homogènes de degré 
0; en d'autres termes, Q* agit jpar automorphismes de Jt)> 

6. La seule existence de J^et W n'impose aucune restriction au type d'homotopie 
de X: On peut toujours prétendre que M est tout entière de poids 0. N'importe 
quel polyèdre fini a d'ailleurs le même type d'homotopie qu'une variété algébrique, 
Soit en effet S un ensemble fini, muni d'un ensemble £f de parties (les simplexes). 
On suppose que toute partie d'un élément de ¥ est encore dans ^ . Identifions S 
à l'ensemble des vecteurs de base de Rs, et pour a ci S, soit | a \ le simplexe tendu 
par les se a. Montrons que j*S*| = []„<=#> \a\ a le type d'homotopie d'une variété 
algébrique X. Si on pose | G \C = espace affine complexe tendu par G C CS, il suffit 
de prendre X — \ja^^\ff\Cy dont 15*1 est un rétracte par déformation. On peut véri-
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fier que dans cet exemple H*(X) est purement de filtration par le poids 0, 
Toutefois, dès que les poids sont non nuls, des contraintes apparaissent sur le 

type d'homotopie de X(d, §10.). Les règles suivantes aident à localiser les poids. 

7. Pour un groupe de cohomologie H de type donné, chaque règle consistera à 
décrire une partie ê de Z x Z. Les poids seront contrôlés par g au sens suivant: 
Si GxJ%(lï) ^ 0, il existe (p, q) G $, avec;? + q = n. Cette façon de s'exprimer, qui 
ici parait artificielle, ne l'est pas : D'autres informations que les poids possibles 
sont contrôlées par la même région S, cf. §15. 

(7.1) H»(X) est contrôlé par le carré [0, n] x [0, n]. 
(7.2) Si X est propre, Hn(X) est contrôlé par la partie de ce carré en-dessous de la 

seconde diagonale, soit {(p, q) e [0, n] x [0, n]\ p + q S «}• Si Xest lisse, Hn(X) 
est contrôlé par la partie de ce carré au-dessus de cette diagonale, soit {(p, q) G 
[0,/î] x [0,n]\p -f q'èn}. 

(7.3) Si N - dim X S n> le carré [0, n] x [0, n] peut être remplacé par le carré 
[n ~ N,N]x[n- N, N]. 

(n>tf) 

n N n 

8. Variantes. (8.1) Le groupe de cohomologie à support propre H%(X) est con­
trôlé par la partie du carré [0, n] x [0, n] en-dessous de la seconde diagonale. Pour 
N p= dim X ^ n, on peut encore remplacer ce carré par [n — N,N] x [n — N, N]. 
En particulier, H2

C
N(X) est purement de poids 2N. 

(8.2) La "dualité" entre les cas propres et lisses peut se déduire de la dualité de 
Poincaré: pour Xlisse purement de dimension N, 

H»(X) *= Hom(#2tf-*(x), H2N(X)) = (#^«(Z)dua l)(~ N). 

Cet argument permet d'étendre les résultats donnés pour X lisse au cas où X est 
une "rational homology manifold". Pour un tel X, l'image de H*(X) dans Hn(X) 
est purement de poids n. 

(8.3) Pour X seulement supposé normal, il reste vrai que Hl(X) est contrôlé par 
{(0,1), (1,0), (1,1)}. 

9. Soient X une variété connexe, x G X, et II(n) le plus grand quotient nilpotent 
de longueur n et sans torsion de %\(X, x). On sait que les groupes H d'indice fini 
dans JI{n) et assez petits ont la propriété suivante. 

(*) Il existe une algèbre de Lie nilpotente de longueur n9 (ffl, [ ]), avec jf un 
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Z-module libre, telle que la formule de Campbell-Hausdorff 

x o y = x + y + [x, y]/2 + [x, [x, jfl/12 + U l>, *D/12 + -

fasse de ^f un groupe, isomorphe à i/. 
De plus, l'algèbre de Lie JSP<»> = 34? ® Q ne dépend que de J700, non de H. 

10. THéORèME (MORGAN). Si X est normale, ££(w) arf/we* wwe graduation W, à 
degrés < 0, telle que £fin) soit engendrée par des éléments de degré — 1 et — 2, cewx 
ci n'étant soumis qu'à des relations de degré —2, — 3 et — 4, /?/w,y fa «w///té flfos cow-
mutateurs n fois itérés. 

Il est plus commode de travailler avec le système projectif jSfCoo) des j£?(w). Définis­
sant &(&"») = inj lim W(£e™), on a 

#1(^(00)) = # i ( Z ) ? H2(^°°) <=> # 2 ( Z ) . 

De plus, une graduation fJFde ̂ # comme au §5 définit des graduations compatibles 
de Seioo\ de sa cohomologie, et de celle de X. D'après (8.3), (resp. (7.1)), H^X) est 
de poids 1 et 2 et H2(X) de poids g 4. Dès lors, H\£Ç™) (le dual du groupe 
Se^WSZ™, Se°°\ des générateurs de se°°) est de poids 1 et 2, et i72(j£?Coo) ), le dual du 
groupe des relations entre générateurs, est de poids ^ 4. Ceci vérifie le théorème. 

11. Pour une variété propre et lisse la filtration par le poids se réduit à peu de 
chose (3.1). Le fait qu'elle soit graduable au sens §4 implique la nullité de tous les 
produits de Massey. Qu'elle le soit au sens §5 implique même que le type d'homo­
topie rationnel de Zpeut se lire sur son algèbre de cohomologie—voir [3]. 

12. Théorie de Hodge. Le groupe de cohomologie H{(X) de toute variété al­
gébrique complexe est munie d'une structure de Hodge mixte (W, F) (HP est une 
filtration de W(X), et Fune filtration de H<(X) ® C = H'(X, C), IT et F vérifiant 
des axiomes convenables—voir [1]). La filtration par le poids est par définition la 
filtration W. 

13. Théorie /-adique. Une variété algébrique X se définit en terme d'un nombre 
fini d'équations polynômes. Les coefficients de ces équations engendrent un sous-
anneau de type fini R de C, de corps des fractions K, et X se déduit par extension 
des scalaires à C d'un schéma sur K, voire sur R. Les énoncés qui suivent deviennent 
vrai lorsqu'on remplace R par R[l/f] avec/G R assez divisible. 

(13.1) Soit / un nombre premier. Le groupe H*(X) ® Qt s'identifie au groupe de 
cohomologie /-adique ffl(X> QÌ). Ce dernier est défini de façon purement algé­
brique, donc est muni par transport de structure d'une action de Aut(C/K). 

(13.2) Soit K la clôture algébrique de K dans C. L'action se factorise par 
GEL\(K/K). Elle est non ramifiée sur R[l/l]9 i.e., se factorise par le groupe de Galois 
de la plus grande extension K™ c Kàz K non ramifiée sur R[l/l]. 

(13.3) Soit m un idéal maximal de JR[1//], et N(m) = ÜR/m (R/m est un corps 
fini). A m correspond une classe de conjugaison de substitutions de Frobenius 
§m G Gal(ÜTnr/£), d'inverses les Frobenius géométriques Fm = <j>~1. 

14. THéORèME. Pour/assez divisible, on a 
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(i) Pour tout l et m, les valeurs propres a de Fm (dans une extension finie conve­
nable de Qi) sont des entiers algébriques. Pour chaque ay il existe un entier w(a) 
tels que'tous les conjugués complexes de a soient de valeur absolue N(m)wia)/2. 

(ii) Choisissons un Frobenius géométrique Fm> et soit m Wj. la somme des sous-
espaces propres généralisés correspondant aux valeurs propres a de Fm telles que 
w(a) = j . La filtration par les 0 ,•<=,• wJ^y est indépendante de m et du choix de Fm; 
elle est rationnelle et sa trace sur H*(X) est indépendante de l; c'est la filtration par 
le poids. 

PRINCIPE DE DéMONSTRATION. On exprime (via une suite spectrale) la cohomo­
logie de X en terme de la cohomologie de variétés propres et lisses, comme en [1], 
La suite spectrale aboutit à une filtration W de H*(X), qui est par définition la 
filtration par le poids de la théorie de Hodge. Cette suite spectrale a un analogue 
/-adique; le /-adifié Wf de JFest donc stable par un groupe de Galois. On déduit de 
la conjecture de Weil que les valeurs propres de Fm sur GrJT' sont des entiers al­
gébriques de valeurs absolues complexes N(m)i/2, et le théorème en résulte. 

15. Dans les cas considérés en (7.1), (7.2) et (7.3), la région ê décrite contrôle 
non seulement les poids, mais encore les nombres de Hodge et la divisibilitié des 
valeurs propres des Fm: dans (7.1), (7,2) et (7.3), une région g a été assignée à un 
groupe H, et 

(a) Les nombres de Hodge h** non nuls des structure de Hodge GrJ(H) vérifient 
(p,q)e£. 

(b) (Utile seulement dans le cas (7.3).) Si les (p, #) G <f avec/? -f q = j vérifient 
p, q ^ k, alors (toujours pour / assez divisible), les valeurs propres de Fm de 
valeurs absolues complexes N(myn sont divisibles par N(m)k. 

On espère que ceci est un cas particulier d'un principe général, cf. [4]. 

16. Le résultat suivant est clair du point de vue de la théorie de Hodge. 
(16.1) Pour j impair dim GrJ H*(X) est pair. 
Par contre, je ne sais démontrer jusqu'ici §§ 2 et 5 que par voie 1-adique, Pour 

§ 5, la méthode de § 14 permet d'obtenir une graduation 1-adique; une astuce de 
Sullivan permet d'en déduire l'existence de graduations rationnelles du type voulu. 

Les propriétés de fonctorialité de la filtration par le poids sont évidentes du point 
de vue /-adique (car Galois commute à tout ce qui se peut définir). Il est toutefois 
utile de les prouver du point de vue de la théorie de Hodge, pour obtenir des pro­
priétés analogues pour la filtration F. Morgan a obtenu de nombreux résultats 
dans cette direction—assez pour prouver un résultat un peu plus faible que §10 par 
théorie de Hodge. 

17. Ainsi que § 5 le suggère, une filtration par le poids existe aussi sur les groupes 
d'homotopie (tensorisés par Q) sous des hypothèses de simple connexité. 

Elle existe aussi sur les groupes de cycles évanescents (cf. [6]), et j'espère qu'elles 
nous aideront à mieux comprendre ces derniers. 
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Mathematical Problems of Tidal Energy 

G. F. D. Duff 

1. Tidal energy. Recent studies of alternative energy sources have embraced a 
number of "exotic" forms such as solar, wind, geothermal or tidal energy. Here 
we shall examine recent developments in the mathematical understanding of tides 
and tidal power, with particular reference to the Bay of Fundy in eastern Canada 
which has the highest tides and may be the test site for further development of this 
mode of electrical energy production. 

From the observed increase in length of the day [21] and the observed lunar 
acceleration, the total rate of all tidal energy dissipation is known to be about 
3 x 1019 ergs per second—a rate comparable to mankind's present consumption of 
energy. Much of this energy is dissipated in certain oceanic high tide regions where 
shallow continental shelf areas create large amplitudes by resonance, shallowing 
and convergence, Thus the English Channel and Irish Sea absorb perhaps 4% 
of the overall total while the Bay of Fundy and Gulf of Maine account for about 
1 %, an energy flow equal to the present capacity of the Canadian electricity net­
work. 

Recent engineering studies have shown [2] that recommended sites at Economy 
Point, Nova Scotia, and Cape Maringouin, New Brunswick, would be feasible 
but probably not yet economical. Tidal energy is renewable, but not conservable, 
predictable but intermittent, and large yet limited (at these sites perhaps 8,000 
megawatts capacity could be installed). An interesting recent suggestion for excess 
power at peak generating periods is compressed air storage in salt caverns, with 
subsequent coal burning. 

The applied mathematical problems discussed here are of two types. First is the 
description and calculation of oceanic and estuarial tidal wave motion and the 
modifications that would be induced by the construction of a tidal barrier with 
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sluice gates and turbines. The second problem is the optimal control of sluice and 
turbine operations in which the tidal wave motions and energy generation processes 
interact. 

2. Equations of motion. Let (6, <j>) be latitude and longitude, and (w, v) components 
of fluid velocity to the east and north, respectively. Let z denote sea level above 
equilibrium, and z the formal "equilibrium tide". The equations of motion in­
troduced by Laplace in 1775 [15] are, with vertical acceleration neglected, 

-!£- - (20 sin d)v = — = ^ J l ( z - z), ot ' a cos 0 o<p 

(2.1) | f + (20 sin 0)u = ^f ^(z - z), 

dt acos0V 30 

where also g denotes gravity, a earth's radius, 0 angular velocity of earth's daily 
rotation and H = D + z where D = Z>(0, 0) is the ocean depth. In the late nine­
teenth century, these océanographie equations were studied by Poincaré, Darwin, 
and others, and various particular solutions and special cases were solved. Many 
recent theoretical and numerical studies of these equations in various geometries 
and geographies have now been made, including Hendershott [14], Longuet-
Higgins [17], Pekeris [23]. 

It is apparent that accuracy of numerical solutions is difficult to achieve because 
of the sensitivity of nearly resonant motions to erorrs of discretization. 

For smaller basins or gulfs the earth's curvature can be neglected, and in Car­
tesian coordinates (x, y) the equations become, with quadratic friction terms 
([29], [30]), 

lu- fv „ d(z - g) + r»l»l 

3z d(Hu) + d(Hv) _ 0 
dt dx dy 

This is a symmetric hyperbolic system with monotone nonlinearity, of a type 
treated generally by Lions [16]. Boundary conditions at a coastline with normal 
n are u • n = 0 and at a sea boundary may take the form of given values for z, 
or w n or of a radiation condition on z, 

The tide raising forces, represented by the z terms in (2.2), are almost periodic in 
time because of the various combinations (Godin [12]) of the several astronomical 
constants of the moon and sun. For convenience in finding analytic or numerical 
solutions it is customary to model the harmonic constituents separately, and thus 
to neglect certain nonlinear convective and frictional interactions which however 
are almost always very small, 

When depth H and Coriolis parameter / are assumed constant, various plane 
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wave solutions of the Poincaré or Kelvin types are easily derived and have been 
extensively used in the qualitative discussion of real problems (Hendershott and 
Munk [14], Platzman [24], [25]). Along the western shore of Nova Scotia and the 
southern flank of the Bay of Fundy, the Af2 and other semidiurnal tidal compo­
nents take the form of a Kelvin wave following a right-handed coastline. 

3. The wave equation. If the Coriolis and frictional forces are neglected, the 
system (2.2) becomes equivalent to the classical wave equation 

<™ * * - - ! ? - UgHw) - i ( ^ f )=° fo»p°*»*i •-«*.*'> 
where 0X — u, 0y = v, 0t = z. The local wave propogation velocity is c, where 
c2 = gH(x,y), and its variability plays a significant role in the refractive generation 
of topographical waves (Meyer [19]). 

Actual problems will involve a nonhomogeneous boundary condition of the 
first or second kind, or a forcing term, which is almost periodic with respect to the 
time variable because of the incommensurability of the various orbital constants of 
the sun and moon. Thus the theory of almost periodic solutions of the wave 
equation of Amerio and Prouse [1], Lions and Strauss [16], Zaidman [32], and 
others applies directly to this model of tidal motions. The nonlinear wave equation 
with friction term r0t | 0t | treated by Amerio and Prouse is of the same type but is 
not directly equivalent. 

At a vertical coastline the position of the boundary does not depend on sea level 
z. At sloping beaches in high tidal areas, the boundary position may vary as much 
as several kilometres depending on sea level. This is expressible as a "unilateral" 
condition (Brezis [4]) d0/dt = z > — D(x, y), and an existence theorem covering 
this case has been established by Brezis for the wave equation although the more 
general case of the Eulerian equations (2.2) remains to be treated. 

4. Resonant alteration of amplitudes. Tidal power plants would be sited in bays 
where high amplitudes occur in part because of resonant amplification due to a near 
coincidence of the imposed period (usually lunar semidiurnal M2) and the natural 
period of the bay or gulf. As major construction changes the geometry and dy­
namics of the tidal motion, the amplitude will change in response. Calculations 
made for barrier sites at the tip of Cape Chignecto have suggested that a substantial 
decrease may occur, with the new natural period well removed from the \2h2Sm 

forcing period (Duff [5]). To make such calculations, however, it is necessary to 
fix an outer sea boundary beyond which no change is assumed, and here a succes­
sion of complexities has emerged. In early work for the Bay of Fundy region the sea 
boundary was taken at the geographic limits of the bay, but this did not even 
permit an explanation of the existing resonant amplification (Yuen [30]). Subse­
quent extension of the sea boundary to the continental shelf edge gave an indica­
tion of resonant natural periods (Duff [5], Garrett [9]), but still did not include in 
the model the interaction or impedance relationship between the deep outer ocean 
and the shallow high tide area of energy dissipation. 
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Significant grounds for supposing that inclusion of extensive deep ocean areas 
would be necessary in a realistic tidal model arise from recent work of Garrett [8], 
who applied the theory of harbour resonance (Miles and Munk [20]) to the Bay of 
Fundy and Gulf of Maine and showed that their response to harmonic forcing at 
three semidiurnal frequencies indicated a fundamental natural period of approxi­
mately 13.3 hours, This suggests that tidal barrier construction at the head of the 
Bay of Fundy would actually increase amplitudes rather than reducing them as had 
earlier been supposed. A similar calculation using twelve stations at the head of the 
Bay of Fundy gave a period of 12.85 hours (Duff [7]). 

Following a method adapted by Platzman [25], Garrett [9] has also calculated 
the first three natural periods (eigenvalues) and normal modes (vector eigenfunc-
tions) of the océanographie equations for the Bay of Fundy and Gulf of Maine, 
The natural period of the lowest mode is calculated in the range of 12.5 to 13 hours 
depending on the precise location of the lateral sea boundaries and the open or 
closed boundary conditions assumed at certain places. The second and third modes 
have periods of 9.5 and 5.7 hours, and it is apparent that the first mode carries 
nearly all the observed tidal oscillations in the Bay of Fundy. 

The first three natural periods and modes for the North Atlantic have been 
calculated by Platzman [26]; the periods turn out to be 21.2, 14.0 and 11.5 hours, 
with some uncertainty about the third of these values. Thus it appears that the 
semidiurnal tidal periods M2 of 12.42 hours, 5*2 of 12.0 hours, JV2 of 12.66 hours, 
and others, lie between closely spaced second and third natural periods. This may 
help explain the unusually high semidiurnal amplitudes in the North Atlantic, but 
many detailed aspects of the resonant response to this array of semidiurnal fre­
quencies remain unexplained. 

The magnitude of Fundy tides may be seen as having been reached by a balance 
between a dissipative mechanism, with assumed quadratic frictional forces, and an 
energy imparting mechanism in the deep ocean where work done by the tide raising 
force is proportional to distance travelled and hence to the first power of amplitude. 
Further, it now appears that the Second and third North Atlantic modes are those 
primarily stimulated by the Fundian resonance. To represent these processes within 
one model both the continental shelf shallows and oceanic areas must be included, 
as well as their zone of interaction across the continental shelf, 

5. Numerical models of oceanic tides. Large-scale numerical calculations of 
global oceanic Af2 tides have been undertaken by Bogdanov and Magarik [3], 
Pekeris and Accad [23], Zahel [31] and Hendershott [14], the continental shelf 
shallows being omitted and treated as coastlines with various assumptions of 
permeability or impedance. Fairly good qualitative agreement for the North 
Atlantic has been obtained. However the substantial energy flows into the Gulf of 
Maine, Baffin Bay, or the English Channel-Irish Sea region suggest that accurate 
representation of these resonant sea motions will require detailed modelling of the 
dissipative regions. As deep sea tidal observations have been possible only recently 
and at limited numbers of stations, a detailed reconciliation of theory and observa-
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tion will take many years, but it is now regarded as feasible two hundred years 
after Laplace [15] and nearly three hundred after Newton [22]. 

Such oceanic tidal models involve large-scale numerical computation (Heaps 
[13]), as thousands of grid points and depth measurements are needed to begin to 
represent the far from smooth topography of coastlines and ocean depths. To 
represent one harmonic tidal constituent such as M2 a periodic solution is required, 
and this is found by calculating a sufficient number of tidal cycles to obtain con­
vergence to a periodic solution for large times. Whereas in shallow waters with 
comparatively strong bottom friction a few cycles may suffice, a hundred cycles may 
be required for a deep ocean model, even with devices for acceleration of conver­
gence. For problems of this scale the older explicit methods of numerical solution 
of partial differential equations are giving way to the more stable implicit and 
alternating direction methods that permit much longer time steps [18]. 

A brief description will now be given of an attempt made by the author to model 
the combined shallow dissipative region, in this case the Bay of Fundy and Gulf of 
Maine, and the deep sea region, in this case the North Atlantic. To obtain a detailed 
representation of the Bay of Fundy and at the same time a uniform coordinate grid 
suitable for implicit methods, a transformed system of spherical coordinates with 
pole about 3° inland from the New Brunswick coast was adopted. The system can 
thus be plotted on a Mercator projection with this point as North Pole. The oceanic 
region comprises the North Atlantic from Newfoundland to the Azores, thence to 
the African and South American coasts and then on a line through the West 
Indies to the coast of North America. The local conformai condition for a 
first-order square grid leads to the use of equal intervals of the longitude <j> and of 
y = log tan[0/2 + TT/4], where 0 represents latitude in the transformed system. Of 
2,000 grid points in total, 32 lie in the Bay of Fundy and 200 in the Gulf of Maine. 

The finite difference equations in this model are formulated with a splitting of z 
into two components z = zi + z% where the time rates of change of z\ and z2 are 
obtained as the x and y terms of the continuity equation. In each momentum 
equation, the corresponding z term is treated implicitly while the other term is 
included explicitly and the time steps for the two implicit systems are staggered to 
avoid extrapolation of explicit terms. In effect, the model treats two implicit sys-
terms of one-dimensional channels, each with explicit crossover terms. Tide raising 
forcing terms based on zero lunar declination and boundary data based on the 
oceanic tidal models described above are used, 

Preliminary results from this model indicate that tidal barrier construction at 
the three preferred sites will increase the M2 amplitude at Economy Point, Nova 
Scotia, and decrease the amplitude at the New Brunswick sites. 

Further refinement of such models will be necessary if reliable forecasts for large-
scale projects are ultimately required. Features such as self-gravitation, crustal 
reaction, and the effect of solid earth tides present themselves for consideration, 
and for the latter two more observational studies are needed. 

6. The control problem for tidal energy generation. Let a one-dimensional channel 
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have headwater at a, barrier position b and open sea boundary c on the #-axis; let 
Z(x, t) denote sea level above equilibrium at point x, Q(x, t) the flow at x, Q = 
A(x, t)u(x, t) where A(x,t) is cross section and u(x, t) current. Let b(x,t) denote 
surface breadth of the channel, and k = 0.003 the dimensionless quadratic friction 
constant. The equations of motion in this channel take the form (Proudman [29], 
Yuen [30]) 

(6.1) * . - -T^&. a = - * z . - - ^ 
where H = D + Z again denotes total depth and g gravity, 

Boundary conditions are Q(a, t) = Oand Z(c, t) = Z0(c) cos (cot — 7), while at the 
barrier position b, Z is in general discontinuous, and Q(b,t) is regulated by sluice 
and turbine controls (Duff [6]). Thus Qb = Q(b,t) = Iq -f yV where I ( - 1 g A ^ 1) 
is the "double effect" two-way turbine control with maximum flow q, and // 
(0 = /j, g 1) is the sluice control with maximum permitted flow V which for sim­
plicity may be assumed to have the Torricellian form 

V = g1/2 A \Z+ - Z_|i/2 s g n ( Z + - ZS) 

in terms of the limiting values Z+, Z_ of sea level on either side of the barrier, 
Let N(q, h) denote the power derived from turbines operating at head h = 

\Z+ — Z-\ and flow q, and let p(t) denote the unit value of power at time t. Assuming 
the conservation of total water mass rather than (6.1), Gibrat formulated the problem 
of maximizing returns from a tidal power plant as a problem in the calculus of 
variations (Gibrat [10], Godin [11]), and these results are effectively in use at the 240 
megawatt Ranee tidal power station at St. Malo. Integration by parts of the first 
variation of J yields initial terminal and boundary conditions for 0, 0, a barrier 
condition for 0, as well as conditions for the variations of X and /u, namely for X 

Pit) (dN/dqi)(q, h) - [<i>/b]± > 0, * = + 1, 
(6.2) = 0 , - 1 < X < + 1, 

< 0, X = - 1, 
and for /u, 

(6.3) [cf>/b]± V>0, [i = 0, 
< 0, 0 = 1 . 

The dual partial differential equations for $, 0 take the following forms (with 
certain additional minor simplifications) 

(6.4) * + £(*«)-«, ^ ( D - ^ J Ä . o . 

The combined Hamiltonian system (6.1), (6.2), (6.3), (6.4) gives optimal (or at 
least, extremal) solutions to the control problem (Pontryagin [28]). Because 
terminal conditions for 0, <f> are required, the usual complexities of a time horizon 
appear. However for periodic solutions these difficulties can be avoided and 
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numerical solutions obtained for single semidiurnal periods or fortnightly or 
monthly cycles involving two or more frequencies and corresponding to spring and 
neap tidal cycles (Duff [7]). 

Such a system in operation can be regarded as having limited artificial intel­
ligence directed toward the extraction of energy from the tidal sea motions. The 
apparent strategy such a system will follow involves the maximizing at certain 
times of operating head h by the timing of internal surges in the enclosed basin, 
and the operation of sluice gates to maximize the extraction of energy from the sea 
in accordance with the change of resonance created by the barrier itself. A com­
plete synthesis of these considerations will require a combination of the most 
extensive tidal models with such a control system. 
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Recent Progress in Classical Fourier Analysis 

Charles Fefferman* 

In what sense does JÄ„ eix'*f(g) d£ converge to a given function/ on Rnl How do 
properties such as the size and smoothness of/influence the behavior of its Fourier 
transform/? These simple questions lie at the heart of much of classical analysis. 
Their deeper study leads naturally to certain basic auxiliary operators defined on 
functions on Rn ; and Fourier analysts seek to understand these operators and their 
generalizations, and to apply them to various branches of analysis. In this paper I 
shall describe some basic results and applications of Fourier analysis and speculate 
briefly on the future. I have left out many topics of great importance, and empha­
sized merely those subjects I know something about. 

Let me begin by sketching the state of the art as of about 1950. At that time, the 
field was well developed only in the one-dimensional case. Since it had long been 
known that the Fourier series of a continuous function on[0, 2%\ need not converge 
at every point, Lebesgue measure (and in particular U) was clearly recognized as 
a basic tool. The Plancherel theorem ffi\f(x)\2 dx = 2% 2 ^ \ak\

2 with/(x) ~ 
J^ooCikeihx 8ave a complete characterization of L2 functions in terms of their 
Fourier coefficients and established norm convergence of Fourier series. However, 
the study oïU(p ^ 2) was known to be much harder. As an indication of the 
difficulty of the problems of Intake a function f(x) ~ J^^ ahe

ih* belonging to U 
(p < 2) but not to L2, and modify its Fourier series by writing g(;c) ~ 2-<x> ± ak&

k* 
with each ± sign picked independently by flipping a coin. Then with probability 
one, g does not belong to U (or even to V) but is merely a distribution with 
nasty singularities. Consequently, the assertion / ~ Ti-ooCt^ikx e Lp depends not 
only on the sizes \ak\ of the Fourier coefficients, but also on subtle relationships 
among the phases arg(aÄ). 

*I could not have prepared this article without very generous help by Mrs. Yit-Sin Choo and 
Dr. K. G. Choo. 
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Despite the difficulty of the problem, a fair amount was known by 1940 about 
the relationship between the size of a function and the nature of its Fourier 
series, thanks to pioneering efforts by Hardy and Littlewood, M. Riesz, Paley, 
Zygmund, Marcinkiewicz and others. A result typical of the deepest work is as 
follows (see [95]) : 

THEOREM 1 (LITTLEWOOD-PALEY). Let {Sk}^-oobe a sequence of ± signs which 
stays constant on each dyadic block. (A dyadic block is an interval of the form 
[2N9 2^+1) or ( - 2^+1, - 2N]; the collection of all dyadic blocks will be denoted by A) 
Then iff(x) ~ T^° ake^x belongs to U (I < p < oo), it follows that S ^ x Ä ^ * * 
also belongs to ZA 

Thus, although the phases arg(a^) play a decisive role in determining the size of 
S-oo a^e'**, only the relationship of arg(aA) to relatively "nearby" arg(ffÄ,) really 
matters. 

Although the original techniques used to prove this and related theorems are 
very complicated, the underlying strategy is simple. The starting point is to rewrite 
Dirichlet's formula for the Nth partial sum of a Fourier series as 

iti - etNx r . .*-wu-v>/v- IAJy 

*= e~w*H(eWyf(y)) - e+>'N*H(e-™yf(y)) 

SNf(x) = e-'"* J , *"<*->> /{x - y ) ^ ~ *m* J* erw<*-y>(x - y) 

with Hf(x) s= JÄi (f(x - y)/y) dy, the integral being interpreted in the principal-value 
sense. (Hf is called the Hilbert transform of/.) This is a bold step, since for 
CQXJR1) (say), the integral in Dirichlet's formula converges absolutely, while that 
defining the Hilbert transform does not. 

Now the Hilbert transform also arises in complex analysis, for if F = u + iv 
is a well-behaved analytic function on the upper half-plane R\, then on the bound­
ary R1, v is the Hilbert transform of w. Therefore we may hope to prove theorems 
on the Hilbert transform and related operators via complex analysis (e.g., Cauchy's 
theorem, Jensen's formula and Blaschke products, conformai mapping) and then 
translate the results into information on Fourier series. To illustrate the "complex 
method", let us prove a simple case of M. Riesz's famous theorem that the Fourier 
series of an LP function on [0, 2%\ converges in norm (1 < p < oo). This comes down 
to proving that the Hilbert transform is bounded on &>(Rl), and we give the argu­
ment for the easiest nontrivial case p = 4. Given a well-behaved analytic function 
F ;= u + iv on R%, we have to show that j"#. v4 dx ^ C JÄ. w4 dx with C independent 
of F. However, Cauchy's theorem for JF4 = w4 + 4/«3v — 6w2v2 - 4/wv3 + v4 

yields JÄ, F* dx = 0 so that 0 = J*, Re(F4) dx = JÄ. (M4 - 6w2 v2 + v4) dx. Hence 
JJP v 4 à ^ 6 Jjpu2v2dx£6(fjp w4dx)l/2(j*. v4dx)1/2by Cauchy-Schwarz. Dividing 
both sides by (J^i vidx)in and squaring gives the desired inequality j"Äi vAdx S 
36 JÄi u*dx. The general case (p ^ 4) is similar, though not so easy.1 

^ e e the ingenious paper of S. Pichorides [72] for the exact norm of the Hilbert transform on Lp 

and other related constants. 
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Now I can give a vague idea of the proof of the Littlewood-Paley theorem. The 
idea is to relate an auxiliary operator S arising from complex analysis with an op­
erator G arising from Fourier series. Specifically, given / <~ Tkkakeikx o n IP? 2TC] 
(say aQ = 0), we break up the Fourier series into dyadic blocks 

/ - S ahe"* = S ( S arf**) = E/7(x) 

and define G(f) as G(f)(x) = (£ / G„ |//(x)|2)1/2. The function S(f) is defined in 
terms of the Poisson integral u(r, 0) off by the equation 

S(f)(x) = ( Jf | Vw(r, 6)|* r dr doT 

where r(x) is the Stoltz domain {(r, 6)\ \x - 0\ < 1 - r < •£} in the unit disc. £2(/) 
has a natural interpretation as the area of the image of r(x) under the analytic 
function u + iv whose real part is u. For our purposes, the basic facts concerning 
S and G are: 

(a) \\S(f)\\p~\\f\\p(l <p < oo). Inotherwords, ||*»C/)||V||/||^ « bounded above 
and below. This can be proved by complex methods. Note that already (a) contains 
the Z>-boundedness of the Hilbert transform, since for F = w + iv analytic we 
have | Vu | = |Vv| by the Cauchy-Riemann equations, and hence S(u) = S(v). 

(b) || S(f) | | j ~ || G(f)\\p (1 < p < oo). Limitations of space prevent even a vague 
description of the proof, but the basic tool here is the ZAboundedness of the 
Hilbert transform acting on functions which take their values in a Hilbert space. 

Once we know (a) and (b), the Littlewood-Paley theorem follows at once, since 
evidently/= E /G^ / / and g = S/ej ±fj always have the same G-function. An 
extensive discussion of the Littlewood-Paley theorem and of complex methods in 
general may be found in Zygmund [95]. It must be admitted that the ingenious 
complex-variable proofs of classical Fourier analysis leave the researcher in the 
unhappy position of accepting the main theorems of the subject without any real 
intuitive explanation of why they are true. 

Now I want to speak of the profound changes which took place in classical 
Fourier analysis, starting with the fundamental paper of Calderón and Zygmund 
[17] in 1952.2 We shall be concerned here with efforts to generalize the basic oper­
ators, especially the Hilbert transform, from Rl to Rn. These generalizations are 
anything but routine, because Blaschke products do not generalize to functions of 
several complex variables, and consequently (for this and other reasons) the whole 
complex method has to be abandoned and the results reproved by real-variable 
techniques. Moreover, the real-variable methods and the «-variable analogues of 
the Hilbert transform, ^-function, etc., play an important role in partial differential 
equations, several complex variables, probability and potential theory, and will 
probably continue to find further applications as time goes on. 

The operators. Let us begin with the Laplace equation au — f in Rn (n > 2) 
aIn retrospect we can see many of the ideas anticipated in the work of Titchmarsh, Besicovitch, 

and Marcinkiewicz. (See [95].) 
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which one solves with the standard Newtonian potential 

(1) 
f(y)dy 

w W - c» J*" \x-y\»~* ' 

If/belongs to some function space (LP, Lip(a), C(Rn), etc) does it follow that the 
second derivatives of w all belong to the same function space? Differentiating the 
right-hand side of (1) (carefully) under the integral sign, we obtain for the second 
derivatives of w the formula 

<2> w" <*> = I § f = '*•><*>+ J* fê^f-w * • 

where Qß is homogeneous of degree zero, and smooth away from the origin. Note 
that the integral in (2) diverges absolutely, but at least for "nice" functions /we 
may define that integral as 

lim J M^ZJlf(y)dy, 
e-o+ I*4I>* \*-y\n 

and the limit exists by virtue of the essential cancellation ĵ «-« Qjk(y) dy = 0. In 
general, a singular integral operator is defined on functions on Rn by 

(3) Tf(x) = lim J F?~*imdy, 
£-0 \x-y\>* \x ~ y\ 

where Q is reasonably smooth and homogeneous of degree zero, and Js.-i Q(y)dy 
= 0. For example, if we set Q(y) = sgn(j>) on R1, then (3) becomes Tf(x) — 
IR1 (/OO *?K/(* ~ J0)> i-e-j Tis the Hilbert transform. Thus regularity properties of 
solutions to the Laplace equation come down to boundedness on various function 
spaces of a few specific singular integral operators ; that is, certain w-variable gener­
alizations of the Hilbert transform, 

More generally, the theory of singular integral operators plays an essential role 
in a host of problems of partial differential equations. To see why, start with a pure 
wth order differential operator 

and write 

where Rj = (d/dxj) (— A)~l/2. Now Rj is called the jfth Riesz transform, and is given 
as a singular integral operator by the formula 

x*m = CJ*- , *' ~ yi f(y) dy-" 
\x- y\n+l 

(Note that in one dimension, the single Riesz transform is just the Hilbert trans-
3See Horvâth [52] and Stein [85]. 



RECENT PROGRESS IN CLASSICAL FOURIER ANALYSIS 99 

form.) Therefore, L factors as L = T(— A)m/2> where Tis a variable-coefficient 
singular integral operator, i.e., an operator of the form 

(4) TAX) = c(x)f(x) + j * ^x-y)i\x-y\lf(y) dy, 
\x-y\ 

with c(-)e C°°(R»), Qe C(Rn x 5*"1), and Ĵ -i Q (x, œ) dœ *= 0 for all x. In other 
words, modulo the factor (— A)m/2 a partial differential operator is merely a special 
type of singular integral operator. 

As a substitute for the Fourier transform, we associate to the operator T of (4) 
its symbol a( T) defined by 

(5) a{x, 0 ~ e(x) + J* Qforc/M) e*" do>. 

hi" 
Clearly, a(x, £) is homogeneous of degree zero in £ and smooth on Rn x (Rn\0). 
In the special case T = (H\a\=m ^a(x)(d/dx)a)(- A)~m/2 the symbol is just a(x, £) 
= H\a\=maa W(?f)a/|£|w. Moreover, 

(6) Every smooth homogeneous a(x, £) on R2n arises as the symbol of a unique 
singular integral operator, which we denote by a(x, D). 

(7) The class of all symbols forms an algebra of functions. The mapping a(x, £) 
-> a(x, D) is an approximate homomorphism from functions to operators. That is, 
a\(x,D) oa2(x, D) = (o\'(T2)(x, D) + a "negligible" error. 

(8) The adjoint of a(x, D) is given approximately by the complex-conjugate sym­
bol: (o(x,D))* p= a(x,D) + a "negligible" error. 

By virtue of (6)—(8) we may construct useful operators merely by making ele­
mentary manipulations with symbols. For instance, an elliptic singular integral 
operator a(x, D) (i.e., an operator with nonvanishing symbol) evidently has an 
approximate inverse—we simply take (\ja)(x, D)—and the standard interior 
regularity results on elliptic partial differential equations follow easily from these 
observations. 

So far we have described the theory as it first appeared in the pioneering work of 
Calderón [12] on uniqueness of solutions to Cauchy problems. (Calderón used 
singular integrals to diagonalize a matrix of differential operators. See also earlier 
work of Giraud [43] and Mihlin [66].) Nowadays it is more common to work with 
the closely related theory of pseudodifferential operators, invented by Kohn and 
Nirenberg [60] and developed by Seeley [75], Hörmander [48], [49], Calderón and 
Vaillancourt [16] and others. To arrive at the notion of pseudodifferential oper­
ators4 one uses (5) and the Fourier inversion formula in (4) to obtain 
(9) r/(*) = J* «*•**(*, 0 / ( 8 </f. 

Now we take (9) as the definition of a(x, D), broaden the class of symbols to 
include all functions satisfying suitable estimates, say 

(10) | (8/8*)« (8/8É)» a\ g Caß\ g |- W for all a, ß, 
4Actually Kohn and Nirenberg were led to pseudodifferential operators by their work on the 

3-Neumann problem of several complex variables. 
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and prove refinements of (7) and (8) directly from (9). Pseudodifferential operators 
have the advantage of making it relatively easy to refine (7) and (8) to "Leibniz' 
rules" 

(11) a(x,D)°b(x,D) = (aob)(x,D) with (a°è)(x, £) ~ E (l/a)[9/9£J« a-[i-ldßx}«b 
a 

and 

(12) (a(x, D)f *= a% (x, D) with a% ~ £ — J- JL 
i dx L'se. a. 

Later on, we shall see problems in which singular integrals have advantages over 
pseudodifferential operators. However, for many purposes the two theories are 
equivalent. 

The applications of pseudodifferential operators to index problems in topology 
and geometry are so well known that it is enough for me to pay them lip service. 
But I would like to take a few paragraphs to explain two recent developments in 
partial differential equations in which pseudodifferential operators and singular 
integrals played a crucial rôle. Both developments have their roots in a basic 
phenomenon of several complex variables, namely that the restriction of an an­
alytic function F to a hypersurface V £ Cn satisfies a system of partial differential 
equations. To see this, we start with the n Cauchy-Riemann equations dF/dzj = 0 
in Cn. From the restriction of F to the hypersurface V, we know only the 2n — 1 
tangential derivatives of F, and thus we must solve one of the Cauchy-Riemann 
equations for the remaining (normal) derivative. Consequently, the restriction of 
F to V must satisfy n - 1 first-order partial differential equations, called the 
tangential Cauchy-Riemann equations on V. 

Our first topic in partial differential equations arises from the case V = the unit 
sphere in C2, where are we dealing with one equation in one unknown. In a suitable 
coordinate system on the sphere, that equation takes the form 

[9/9* + i(d/dx + td/dy)]F = 0. 

Therefore it is natural to try to "correct" functions which are "close to to analytic" 
by solving 

(13) [9/3/ + i(d/dx .+ td/dy)]u = f 

with/e C°°(say). Such "correction" procedures are common practice in complex 
variables. Thus, the discovery, by H. Lewy in 1957 [63] that equation (13) cannot be 
solved, even if we require/e C°° and demand only that u be a distribution defined in 
some neighborhood of a point, came as a great shock to researchers in partial 
differential equations. Prior to Lewy's discovery, it was universally assumed that 
all nondegenerate linear partial differential equations (and certainly those arising 
from "real life") could be solved. After Lewy's paper, intensive research began on 
the problem of deciding which equations admit local solutions. At the moment, 
systematic results are available only for equations of principal type, i.e., roughly 
equations in which all lower-order terms may be regarded as trivial perturbations of 
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the highest-order terms. These include the Laplace and wave equations, but not the 
heat equation or the Schrödinger equation. For equations £ \ct\=m

 aa(x) O""19/9*)*« 
= / of principal type, Nirenberg and Treves [70], [71] formulated the following 
condition and amassed overwhelming evidence to show that it is necessary and 
sufficient for existence of local solutions : 

(P) Let a(x, £) and b(x, £) be the real and imaginary parts of £ \a\~maa(x)£a-
Then for any point (xQ, £0) e R» x (R»\0) with a(x0, Ç0) = K#o, £o) = 0, the 
function b has constant sign when restricted to the "bicharacteristic curve" 
(x(t)9 £(t)) obtained by solving the ordinary differential equations Xj *= 9tf/9£;-, 
éy - - da/dxj, WO), £(0)) - (x0, £0). 

In fact condition (P) is now known to imply local solvability (see Beals and 
Fefferman [4], [5] as well as Hörmander [50], Egorov [26], [27], and Treves [92], 
[93]), There is no space here to discuss the ideas in any detail, Let me just 
mention two of the main techniques, namely the use of canonical transformations 
in (X, £)-spaçe to "straighten out" the zero sets of symbols of pseudodifferential 
operators via conjugation with Fourier integral operators (discussion of which 
would take us too far afield), and "microlocalization", i.e., the use of suitable 
partitions of unity 1 =%j<j>j(x, £) in (x, £)-space to define approximate projec­
tion operators <j)j(x, D) and thus split L2(Rn) into a big direct sum of subspaces 
Hj— image of (f>j(x, D), By microlocalizing, we hope to split up one hard problem 
into many easy ones, and then patch the easy results together. In patching together, 
one has to use a calculus of pseudodifferential operators with "exotic" symbols 
Q satisfying merely 

|(9/9*)*(3/30*71 S Caß\C IM'2~m 

instead of the usual estimates (10). We shall say more about exotic symbols later on. 
Now let us return to the tangential Cauchy-Riemann equations on the sphere 

$2»-i c Cn, and this time suppose n > 2. A linear fractional transformation maps 
the sphere to the hypersurface H = {(zl, z») e Cn~l x C1 |Re(z") = \z' |2}, which 
has the structure of a nilpotent Lie group under the multiplication law (zf, zn)-
(w\ wn) — (zf + w', zn + wn + 2z' ' w'). By analogy with the Rn theory sketched above, 
one expects that very sharp results on existence and regularity of solutions of the 
tangential Cauchy-Riemann equations on H can be proved by using "singular 
integrals" of the form Tf(x) = ]# K(xy~l)f(y) dy, where K has appropriate pro­
perties of cancellation and homogeneity with respect to the natural "dilations" 
ö°(zf, zn) = (dz', ö2zn) on H. Moreover, once the results are known for H, one can 
build a "variable-coefficient" theory of "singular integrals" on (say) the boundary 
of a strongly pseudoconvex domain in Cn, by osculating the domain with biholo-
morphic images of H. Thus, a natural analogue of singular integrals provides a 
powerful machine to study the tangential Cauchy-Riemann equations. (Note that 
we cannot use the pseudodifferential operators viewpoint here, because the non-
abelian Fourier transform on H is [so far] too cumbersome even to deal with the 
constant-coefficient case.) The ideas explained here come from Folland and Stein 
[41], although singular integrals on nilpotent Lie groups have already appeared in 
Knapp and Stein [59] in connection with irreducibility of the principal series. See 
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also Folland and Kohn [40] for the initial work of Kohn on tangential Cauchy-
Riemann equations, as well as Folland [39] and Stein [87].5 

I have attempted to show by a few examples how w-dimensional analogues of the 
Hilbert transform enter naturally into various branches of analysis. Let us now 
review some techniques which have been used to study such operators, and then see 
what insights we can gain into the Fourier transform in Rn. 

The techniques. The first step in analyzing operators that generalize the Hilbert 
transform is to prove L2-boundedness. Fortunately, this is often an easy conse­
quence of the Plancherel theorem, as in the case of a constant-coefficient singular 
integral operator 

Q(x - y) Tfw = i*^-y\;W)4y 
where one has (f/)(£) = a(£)f(£) with a e L°°. The S-function falls into this category 
—it is not hard to show that U ^ / ) ^ = (const) ||/||2-However, when an operator 
cannot be diagonalized by the Fourier transform or its variants, there are remark­
ably few L2-techniques available to deal with it. Sometimes in a lucky case we may 
be able to reduce matters back to constant-coefficient questions. For instance, let 

Tf(x) = j , tK*t*-y)l\*-y\) f(y)dy 
\x- y\2 

be a variable-coefficient singular integral operator on R2. For each fixed x 
we expand Q(x, •) in a Fourier series on the unit circle, obtaining Q(x, co) = 
HT=-ooCk(x)Ûk(cû) mthük(co) = etkd for co — (r, d), andc0(;x;) = 0. Now our operator 
T may be expanded in a series of constant-coefficient operators Tf(x) = 
ZT=-^k(x)Tkf(x), with 

TJ(x) = \R>Q
{fj$f(y)dy. 

Since Q(x, û ) ) ëC°° , it follows that \ck(x)\ ^ C/(k2 + 1) (say); moreover, the Tk 

(fc#0) are uniformly bounded on L2, as one sees from Plancherel. Therefore, 

iT/i^s^^-Hn/i^cfl/^ 
and our L2-result is proved. In Rn (n > 2) the same trick works, with Fourier 
series replaced by spherical harmonics. 

A promising idea which has begun to find applications recently is Cotlar's lemma 
on "almost orthogonal operators". 

LEMMA. Suppose that the operators 7\, r2 , -" , TN on a Hilbert space H satisfy the 
"orthogonality conditions" 

6Compare with the theory of "parabolic" singular integrals devised by Jones [58], Fabes and 
Rivière [28], Lizorkin [64], Krée [62] and others; and in connection with parabolic singular inte­
grals, see the recent striking results of Negel, Rivière and Wainger [69]. 
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(H) | | 7 ? 7 } | | ^ C ( / - / ) , 
(15) \\TiTfWSCd~j), 

where ||< || denotes the operator norm, and 2£=-op (C(k))W ^ A, Then || 2 ^ Tk\^A. 

The simplest special case says merely that a direct sum E* © Zi- : 2,- © Hi -> 
Ut® Hf of operators 7} : Hi "-> //,• has norm sup,-1 Ti ||. The lemma was first 
given by Cotlar [24] in the case of commuting operators, and then extended by 
Knapp and Stein [59] to the general case. See also Calderón and Vaillancourt [16]. 

The proof of Cottar's lemma is so simple that I can give it here. We start with the 
formulas 

N 

S TV (a11) (fi") 1/2 

which imply 
N 

tu Ù •••» t»=l 
TT*T- ••• T- 7,.*ll. 

1/2* 

Hypotheses (14) and (15) show that each summand on the right is dominated both 
by 

A-WT.lWTrM \\Ttt,Tin.A-\\Tfn\\ 
£ Ci'2(0)C(/2 - i3)C(h - i5) - C(/2i_2 - i»_i)CWK0) 

and by 

* = II W I. || TunII II 7>„3TÄ II è c(ix - /2)C(*3 - / < ) . . . c ( * 2 ^ - w 
and hence also by the geometric mean AwPyz < C1/2(0)Ci/2(ix - h)C1/2(i2 - /3) 
••• C1/2(/2*--i - ig*). Consequently, 

Er, 2 Ä ^ S CW(P)C^/i - *2)C^(*2 ~ /3) - C^ /gw - i2k) 
ÎU "'I **M=1 

so that J S & 3T> || ^ (C^OJJV)^«*-»/**. Now just let k tend to infinity, and 
Cotlar's lemma is proved. 

To see how Cotlar's lemma applies to the operators we have been discussing, 
let us reprove the £2-boundedness of the Hilbert transform without using the 
Plancherel theorem. The idea is simply to write 

Hf(x) = S/(x-y)dy - E U„Kr- f{x-y)dy - S H,A*)-
y y=—oo y J—_«~ / = - o o y /=-oo 

Each H j is a convolution operator whose convolution kernel 

Kfiy)**rx \fV^\y\<2^\ 
= 0 if not, 

has L1 norm dominated by a constant independent of/. Moreover, # ? # , = HtHf 
is the convolution operator with kernel — Kt- * Kj, and elementary estimates using 

file:////TiTfWSCd~j
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fjp K{(y) dy = fa Kj(y) dy = 0 show that I* , * #y | |i ^ C-2-"-». Thus, ||#,* Jï>|| 
^ C-2H^> and ||ÄV/r/1| g C"1^1 , and the L2-boundedness of H = E£_oo#, is 
immediate from Cotlar's lemma. 

Of course the L2-boundedness of the Hilbert transform is nothing new. However, 
the proof sketched above applies also to the Knapp-Stein singular integrals on 
nilpotent groups—in fact it is the only method known to handle those operators, 
since as we pointed out earlier, the nonabelian Fourier transform does not help. 
Details are in [59]. 

A second application of Cotlar's lemma is the theorem of Calderón and Vail-
lancourt [16] on Z,2-boundedness of pseudodifferential operators with exotic 
symbols. (See also Hörmander [49] for earlier work on the subject, and Beals [2], 
[3] for extensions and applications.) The basic special case of their result which one 
uses in microlocalization arguments for equations of principal type is the following. 

THEOREM 2. Assume that a(x, Ç) satisfies the estimates 

\(didxy(dmya(x,a)\ ^ caß(i + \^\y^2-w2 

for all multi-indices a, ß. Then the corresponding pseduodifferential operator a(x, D) 
is bounded on L2. 

The main idea in the proof of the Calderón-Vaillancourt theorem is to 
apply Cotlar's lemma to the decomposition o(x, D) = Tij=i(^}^)(x, D), where 
Sy^y (x, £) = 1 is a smooth partition of unity in (x, £)-space, constructed so that each 
(j)j is supported in a region of the form {(*,£) | \x- x0 |^|£o|~1/2, |f ~ fo | ^ |£o|+1/2}-

When neither the Plancherel theorem nor Cotlar's lemma applies, L2-bounded-
ness of singular operators presents very hard problems, each of which must (so 
far) be dealt with on its own terms. I shall mention two outstanding L2-results of 
the last decade, and say a few words about their proofs and implications. 

Commutator integrals. Let D £ Cl be a domain bounded by a C1 curve T. Just 
as in the case of the unit disc, there is a "Hilbert transform" T defined on functions 
on r which sends the real part u\r of an analytic function F = w + iv to its imagin­
ary part v\r, and it is natural to ask whether Tis bounded on L2(T) with respect to 
the arclenglh measure on T. This question is closely connected to the problem of 
understanding harmonic measure on T, i.e., the probability distribution of the place 
where a particle undergoing Brownian motion starting at a fixed point P0

 G T> first 
hits r. 

In effect, Tis an integral operator on functions on Rl, given by the formula 

J (* - y) + i(A(x) - A(y)) 
with A G C^R1). Expanding the denominator of the integrand in a geometric series, 
we obtain Tas an infinite sum of operators 

TUIA-p.**»: «p™*. 
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Tk is called the fcth commutator integral corresponding to A(x). 
Commutator integrals also arise naturally when one tries to construct a calculus 

of singular integral operators to handle differential equations with nonsmooth coef­
ficients, To is just the Hilbert transform, but already the following two results are 
deep. 

THEOREM 3. Let A be a Cl function on the line. Then 
(A) (Calderón [14], 1965) Tx is bounded on L2. 
(B) (Coifman and Y. Meyer 1974, still unpublished) T% is bounded on L2. 

See also Calixto Calderón [18]. To prove (A), Calderón used special contour 
integration arguments which unforunately do not apply to higher TVs. Coifman 
and Meyer modified and built on Calderóne ideas to produce a far more flexible 
proof, which can probably be pushed further in the near future to cover all the 
7ys and possibly /"itself, We shall return to commutators in a moment. 

Pointwise convergence of Fourier series. No discussion of Fourier analysis can be 
complete without mentioning the fundamental theorem of Carleson [19] to the 
effect that the Fourier series of an L2 function on [0, 2%] converges almost every­
where. Carleson's theorem provides the sharpest and most satisfactory answer to 
the historic problem of representation of an "arbitrary" function as the sum of a 
Fourier series. The result came as a surprise for several reasons. First of all, most 
specialists thought that pointwise convergence would turn out to be false even for 
continuous functions, the supporting evidence being an old example of Kolmo-
goroff (see [95]) of an Ll function with everywhere divergent Fourier series, and the 
fact that for thirty years no one had succeeded in improving the classical result of 
Kolmogoroff-Seliverstoff-Plessner which said that the rçth partial sum of an L? 
Fourier series is o ((log n)l/2) almost everywhere. Moreover, it was widely assumed 
that some radical new techniques would be needed to crack the pointwise conver­
gence problem, while Carleson succeeded by pushing the known techniques very 
far and very hard. 

Unfortunately, Carleson's proof is so technical that it is impossible in so little 
space to give even the vaguest idea of its inner workings. I will only point out that 
the problem reduces immediately to showing that 

/̂ M/(^) = SupB|f..g'w;y 

is bounded on L2, so that pointwise convergence is really a problem about the 
Hilbert transform. R. Hunt extended Carleson's result to LP (p > 1) in [54], and 
his paper also gives the best presentation of Carleson's proof. P. Sjölin [76] 
proved the sharpest known result near L1 (the Fourier series of / converges a.e. 
i f / log + | / | log+log+l/JGL1), and Sjölin [77], Tevzadze [90], and Fefferman [30], 
[31] discovered some extensions to functions of n variables. See also the alternate 
proof of Carleson's theorem [33] (based partly on Cotlar's lemma) whose relation­
ship with Carleson's proof is not well understood. 

Both Carleson's convergence theorem and the Calderón-Coifman-Meyer results 
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are stated purely in terms of L2, but, at least as far as we know today, purely L2 

methods are not strong enough for the proofs. In fact, the known proofs of the 
pointwise convergence and commutator theorems in one form or another involve 
the full force of the "Calderón-Zygmund" machinery described below, whose usual 
purpose is to pass from L2 to LP. I am not the only analyst who suspects a strong 
hidden connection between commutators and pointwise convergence. In any event, 
our understanding of L2 boundedness of variable-coefficient operators is still 
rudimentary. 

The "Calderón-Zygmund" techniques used to prove U boundedness of singular 
integrals contain the deepest ideas of the theory. In the next two sections, I hope to 
convey more than a superficial notion of how the proofs go, even though this 
necessitates a more technical discussion than is customary in a survey article.6 

We begin with a seeming digression on a topic in real variables. 

The maximal function. As preparation for the LMheory of singular integrals, we 
shall discuss the following basic result of Hardy and Littlewood [44] and Wiener 
[94]. 

THEOREM 4 (THE MAXIMAL THEOREM). Define the maximal function Mfofa locally 
integrable function f on Rn by the equation 

M/W = s u p | ß | - i | Q | / ( j ) | ^ . 

(Here Q denotes a cube in Rn with sides parallel to the coordinate axes.) Then we 
have the inequalities 

(A) \Mf\p£Cp\f\p{\<p£az)9 

(B) \{Mf>a}\^C\\flla. 

The technical-looking result (B) is the heart of the matter—it is the natural 
conjecture that comes to mind upon staring at the simple example/ = d~l

 XL-ö,öI
 o n 

the line. (In that case, Mf(x) ~ (d + x)"1.) 
The maximal theorem is really a sharp form of Lebesgue's theorem on differenti­

ability of the integral. For, one knows trivially that \Q\~1\Q f(y)dy -+f(x) as Q 
shrinks to x, whenever/belongs to the dense subspace Cg0 £ Ll. To pass from the 
dense subspace to all of Ll one needs an a priori inequality, and part (B) of the 
maximal theorem exactly does the job. 

One set of applications of the maximal theorem concerns stronger theorems than 
Lebesgue's on differentiation of multiple integrals. In the plane R2, for example, let 
R0, RI, R2 be respectively the family of all squares, the family of all rectangles with 
sides parallel to the coordinate axes, and the family of all rectangles with arbitrary 
direction. The standard Lebesgue theorem in R2 says that | R \~l §R f(yh y2) dy\ dy2 

-• f(x\, Xi) a. e. for/G Ll(R2), when ReRQ shrinks to (xÌ9 x2). What happens if 
we allow R to belong to the larger familes J?i and Rfl The answer is contained in 
the following list of results : 

6Much has been deleted from an original version of this article. 
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(16) \R\~l fafiyuy^dyi dy2-+f(xx, x2)a,e, as ReRx shrinks to (xx, #2), provided 
f e LP(R2) with p> 1, 

(17) The result (16) may be sharpened—instead offe LP (p > 1), it is enough to 
assume that/ log+|/| is integrable on R2, 

(18) However, there exist Ll functions/for which \R\"1 faf&u y%) dyx ^2does 
not tend to a finite limit as R e Ri shrinks to any point (xx, x^) e R2. 

(19) The family R2 is even worse, Even for bounded functions/it may happen 
that l^l"1 fafiyu y%) dyx dy2 tends to/(x l5 xz) almost nowhere, as R e R2 shrinks 
to (xh X2). 

The positive results (16) and (17) cannot be established by the usual textbook 
proof of Lebesgue's theorem, because the Vitali covering lemma is false if we use Rx 

in place of JB0. However, with the aid of the maximal theorem (16) is a triviality. 
Since \R\"1

 J/?/0 ;I> J'S) dyx dy2 ->f(xi, x2) for / in the dense subspace Cg° £ LP 
(I < p < oo), it is enough to prove the maximal inequality 

\\MV\\pè Cp\\f \\p (l<p<n) with 
(A+) 

M+f(xh x2) = supÄBUbÄ)!ÄeA l^l"1 J* \f(yh y2)\ dyx dy2, 

just as in the familiar case of Lebesgue's theorem. Now set 

Mxf(xx, *ù = suPoBwosÄ» | öl"1 fa \f(y\> *ù\ ày\ 
and 

M2f(xu x2) = 8upgBjwgEÄ. Ißl"1 fa \f(xh y2)\ dy2. 

The ordinary one-dimensional maximal theorem shows that Mx and M2 are 
bounded operators on LP. On the other hand, it is trivial to show that M+/ ^ 
Mx(M2f) pointwise, so that || Af+/||, S \\Mx(M2f)\\p ^ Cp\\M2f\\p ^ C|| |/ | | ,and 
(A+) is proved. Thus, the maximal theorem implies statement (16), the "strong 
differentiability" of the integral. The refined positive result (17) again follows from 
M+f ^ Mx(M2f), using a more detailed version of the maximal theorem. Limita­
tions of space prevent adequate discussion of the negative results (18) and (19), 
but I want to point out that they are intimately connected with the failure of the 
conjectures 

(B+) \{M+f>cc}\<C\\f\\xla, and 
(A++) hPABto.souM.lAl-1 fa\f(yhy2)\dyxdy2\\p fg Cp\\f\\p. 

In particular (19) and (A++) are strongly related to the Kakeya needle problem. 
(See Busemann and Feller [10].) 

Let us now try to understand why the maximal theorem is true. To simplify the 
discussion, I shall weaken the result slightly by restricting attention from all cubes 
to the special family of dyadic cubes. We start with the unit cube g0 £ Rn, "bisect" 
go into 2n subcubes of side \, "bisect" each of these cubes into 2n subcubes with 
side {, "bisect" each of these cubes, etc., etc., and continue forever. The family 
<& of all cubes so obtained is called the family of dyadic cubes. From now on, we 
shall look only at dyadic cubes—in particular we change the definition of the maxi-

http://hPABto.souM.lAl-1
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mal function so that the "sup" is taken only over dyadic cubes. This restriction is 
not severe, for given any cube ß £ ßo we can find a dyadic cube ß of about the 
same size, at about the same place; so dyadic cubes are almost as "general" as 
arbitrary cubes. However, for dyadic cubes we have the very convenient observa­
tion 

(20) Two dyadic cubes are always disjoint, unless one is contained in the other. 
The easiest way to become convinced of the dyadic inequality (B) is to vent one's 

probabilistic intuition on the following game of chance, constructed from the set-up 
for the maximal theorem. Let / ^ 0 be a fixed Ll function on the unit cube ß0. 
Our fortune at time / = 0 is |ßo|_1 faj(y) dy, and we can either rest content or take 
a chance. If we decide to gamble, the dealer picks a cube Qx at random from 
among the 2n dyadic subcubes of ß0 of side ^ (all possible gj's have equal probabil­
ity), and our fortune at time / = 1 is |ßi|_1 falf(y) dy. Again we may rest content or 
take a chance. If we again decide to gamble, the dealer picks a cube ß2 at random 
from among the 2n dyadic subcubes of Qx of side \ (all possible ß2's have equal 
probability), and our fortune at time / = 2 is | g21_1 fatf(y) dy. The game continues 
in this way, either forever or until we decide to quit. 

The most important feature of our game of chance is that it is absolutely fair 
(i.e., it is a "martingale"). More precisely, suppose we find ourselves at time t = k 
at the cube Qk so that our fortune is | Qk |

_1 fakf(y) dy. If we gamble once more, we 
may win or lose money, but our average fortune at time t = k + 1 will be 

sidePÄ- T> • T ô b kJ(y) dy = lk\ ^J{y) ^ 
i.e., exactly the same as our present fortune. Thus, the game is fair. 

Now consider the strategy "quit while you're ahead". We pick in advance a large 
number a > fa0 f(y) dy, and we stop playing the first time our fortune exceeds 
a—if our fortune never exceeds a, we keep playing forever. In the lucky case (one 
of our fortunes exceeds a), we shall have fortune at least a at the end of the game; 
and even in the unlucky case we shall have at least zero, since/ ^ 0. Therefore our 
average (or expected) fortune at the end of the game is at least a x Probability of 
the lucky case = a x Probability {supÄ |ß*| -1 fatf(y) dy > a}, and a few moments' 
thought shows that this is the same as a • \ {Mf > a) |. On the other hand, since the 
game is fair, our average fortune at the end of the game is merely our initial fortune 
faaf(y)dy, no matter which clever strategy we use. Therefore, a-\{Mf> a}\ g 
faj(y) dy, which is exactly the estimate (B). Part (A) of the maximal theorem 
follows from part (B) by a useful "interpolation" theorem which we state only in 
a basic special case. (For more general results, see Zygmund [95] and Hunt [53].) 

THEOREM 5 (MARCINKIEWICZ INTERPOLATION THEOREM). Let T be a linear or 
sublinear operator defined on functions on some measure space, and suppose that 
Po < P < Pi ^ °°. V T is bounded on U\ and if the "weak-type (p0, p0) inequality'9 

\{\Tf\ > a}\ ^ CWfWfta* holds, then it follows that Tis bounded on LP. 

To deduce the maximal theorem, we takepQ = \,px = oo. 
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ZAestimates for singular integrals. The techniques we have just discussed for the 
maximal function apply also to a wide class of singular integral operators. For 
simplicity, we will start with a constant-coefficient operator T : /-+ K*f on Rn

9 

where A'is a distribution locally integrable away from the origin, Thus, K might be 
X"1 on the line, or 0(#)/|x|" in Rn. 

Our assumptions on K are 
(21) Tis bounded on L2(Rn), and 
(22) j „ M | „ | K(x) -K(x-y)\dxSC<œ for all y e Rn. 

Condition (22) is always satisfied if |grad K(x)\ $ C/\x\nH, so (a) and (b) hold for 
all the usual singular integral operators. 

THEOREM 6 (CALDERóN-ZYGMUND INEQUALITY). Let T be a convolution operator 
satisfying hypotheses (21) and (22). Then 

(A) T is bounded on Lp(l < p < oo), 
(B) |{|7y| > «}| ^ CH/ld/a. 

The proof of Theorem 6 is based on further careful study of the game of chance 
used to prove the maximal theorem. See Stein [85]. 

Although for simplicity we stated the Calderón-Zygmund inequality only for 
convolution operators, its proof applies to virtually all the variable-coefficient 
singular integral operators mentioned above. In particular, the following operators 
are bounded on LP (1 < p < oo) : 

(A) A singular integral 

Tf(x) = c(x)f(x) + J* fl*»(*-jO/l*-J'l) / W d y 

\x- y\n 

with c and û as described above. (Actually, one can weaken considerably the as­
sumptions on Q.) 

(B) A "classical" pseudodifferential operator 

TAx) = fa**Mx9&f(fìdSt 

where |(3/9x)«(9/9£)M*> £)|^ Cai3|£|H/91 for all multi-indices a, ß. 
(C) The commutator integrals 

Trfix) = fa^f ~ y Ay) dy, T2f(x) - J , W - Ay))2
 f(y) dy 

(x - y)2 (x - .y)3 

on^jWith^'eZ,00. 
(D) The Knapp-Stein singular integrals on nilpotent Lie groups. (See Korânyi 

and Vagi [61].) 
Moreover, the Calderón-Zygmund inequality turns out to be exactly the right 

tool to prove the classical results of Fourier analysis on the ^-function and the 
G-function, which we discussed briefly at the beginning of this paper in connection 
with complex methods. (See Stein [81], [83], J. Schwartz [74], Hörmander [47], 
Benedek, Calderón and Panzone [6].) Typical results are 
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(E) I SC/) ||, ~ | / | | , ( ! < / » < oo). 
(F) Let ^(Ç) = ^o(2_*l) on 7?1, with ^0

 a fixe(J smooth function supported 
in {]r^ |f | ^ 2}, chosen so that E^-oo | çA*(f)|z = 1- Define ^(/)(x) = 
(Er=-°oK/(*)|2)1 /2> where (^ / (£))A = &(£)/(£)• Then |(7(/) | | , ~ | / | | , 
(1 < p < oo ). 

(G) || G(/) !, ~ 1/1,(1 < / > < oo). Recall that (in effect) G(f)(x) = 
GEE~. 1**/M |2)1/2, where (£*/(£))A = Xa*w<*«>G) " /(*)• 

The main idea in proving (E), (F), (G) is to regard S, <& and G as convolution 
operators mapping ordinary scalar-valued functions to functions with values in a 
Hilbert space, and then apply the Calderón-Zygmund inequality. 

Actually, the connections between the maximal function, the Hilbert transform, 
and the ^-function are now known to be far closer even than had been suggested 
by the Calderón-Zygmund inequality and its applications (A)—(G). The main ideas 
here were developed by Burkholder, Gundy and Silverstein [8], [9] and Fefferman 
and Stein [38] in the context of the HP spaces. The key to the new results is the game 
of chance introduced above in connection with the maximal function. We consider 
a fair game of chance (e.g., matching pennies) in which the gambler is allowed to 
vary the size of his bets depending on past history. (For example: Bet $1.00 the 
first time. If you win, bet 2"k dollars at time k (k ^ 2) ; if you lose, bet 2+k dollars 
at time k(k ^ 2).) Then the following three events are equivalent, except on a set 
with probability zero. (See Burkholder and Gundy [8].) 

(a) The gambler's fortune remainds bounded as time tends to oo. 
(b) The gambler's fortune approaches a finite limit as time tends to oo. 
(c) The sum of the squares of the bets is finite. 

The simplest special case is the old "three series" theorem, which says that a series 
2 « ± cn with random ± signs converges with probability one if 2 W | cn |

2 < oo and 
diverges with probability one if 2W | cn |

2 = oo. 
By analogy, one hopes that for an arbitrary harmonic function won the upper half-

plane (not necessarily a Poisson integral), the following conditions on a boundary 
point x are equivalent outside a set of measure zero : 

(a') u is nontangentially bounded at x, i.e., supze/r(^ \u(z)\ < oo. 
(b') w has a nontangential limit at x, i.e., limz_r gŒPMu(z) exists. 
(c') S(u)(x) = (ttr(x)\ V«0012 dz dz)™ < oo. 

See Privalov [73], Marcinkiewicz and Zygmund [65], and Spencer [79] for the case 
of the upper half-plane, and Calderón [11] and Stein [82] for extensions to harmonic 
functions of several variables. Note that since S(u) = S(v) for conjugate harmonic 
functions, the equivalence of (b;) and (c;) shows that u and v have nontangential 
limits at essentially the same set of boundary points. Thus, we obtain a "local" 
analogue of M. Riesz's theorem on the Hilbert transform. 

So far, the analogy with gambling had done nothing but clarify the known re­
sults (a;) o (b;) o (c') and the maximal theorem. However, further work of Burk­
holder, Gundy and Silverstein [9] and Fefferman and Stein [38] uses probabilistic 
methods in recasting the theory of ^-spaces into a "Calderón-Zygmund" real-
variable framework. Unfortunately, I have not the space here to say anything 
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about HP, and I must simply refer the interested reader to a relevant survey paper 

tu. 
Up to now we have seen how singular integrals act on Lp (1 < p < oo) and on 

Ll. I want to close this section with a brief discussion of L°°, Surprisingly, one can 
write down explicitly the essential characterizing property of the Hilbert transform 
of a bounded function. The basic example to keep in mind is H(sgn(x)) — 
(2/*) log 1*1-1. 

THEOREM 7 (SPANNE [78], STEIN [84]). Let g e L°° and let Kbea convolution kernel 
satisfying the hypotheses of the Calderón-Zygmund inequality. Then K * g is a func­
tion of bounded mean oscillation. 

A function fe L}0C(Rn) is said to be of bounded mean oscillation (BMO) if it 
satisfies the condition 

(23) supG | ß | - i JQ \f(x) - / 0 | dx < oo, wi th / 0 « | ß | - i faf(y) dy. 

Thus on A1,!,00 £ BMO, | x | ' ^BMO, log |*|'-1GBMO,butsgn(*)log|*|'-1^BMO. 
Functions of bounded mean oscillation were introduced by John and Nirenberg 
[57], who proved the following result in connection with partial differential equa­
tions. 

THEOREM 8. The condition (23) is equivalent to the seemingly far stronger statement 

(24) sup0 | ö l " 1 Jo exp(/l|/(x) - fQ\) dx < oo for some X > 0. 

In particular, functions of bounded mean oscillation are (locally) exponentially 
integrable, 

The claim that (23) and (24) are the basic properties of K * g with g e L°° is sup­
ported by the following converse result in the case of Riesz transforms : 

THEOREM 9. Every function f of bounded mean oscillation may be written in the 
formf = g0 + E£=i Rjgj W/ft go, gu • • •, gn

 e L°°-

This is equivalent to the duality of Hl and BMO [38]. In the one-dimensional case 
of the Hilbert transform H, we can say even more. 

THEOREM 10, A function f e L\QC(Rl) may be written in the form / = g0 + Hg\ 
with go e L°° and | gx \\œ < 1 if and only if (24) holds with A *= %\2. 

The proof of Theorem 10 is truly remarkable. One starts with the following 
question, which seemingly has nothing to do with bounded mean oscillation: 
Given a positive measure d/j, = ct)(x)dx on Rl, is the Hilbert transform H a bounded 
operator on LP(dpi)fi Clearly, various partial results could be proved without much 
trouble, but a complete solution seems too much to expect. However, at least for 
L2, one has not merely one necessary and sufficient condition, but two. 

THEOREM 11 (HELSON AND SZEGö [45]). H is bounded on L2(d/J) if and only if 
log co(x) may be written in the form go + Hg\, with go e L°° and || gi ||oo < %\2. 



112 CHARLES FEFFERMAN 

THEOREM 12 (HUNT, MUCKENHOUPT AND WHEEDEN [55]). H is bounded on LP(dfJ) 
if and only if 

(A,) sup0 (| ß |-i \Q a>(x) dx) (| Q |-i J0 arUW dx^ < oo 

holds. 

The Helson-Szegö theorem is proved by a simple but ingenious application of 
the Hahn-Banach theorem, while the proof of the Hunt-Muckenhoupt-Wheeden 
theorem uses Calderón-Zygmund methods, and builds on Muckenhoupt's solution 
of the corresponding problem for the maximal function [68]. (See also Coifman and 
Fefferman [22].) Since the Helson-Szegö condition and (A2) are necessary and suf­
ficient conditions for the same thing, they must be equivalent. That is the proof of 
Theorem 10. 

Various applications of BMO are presented in John [56], Moser [67], Fefferman 
and Stein [38], and [34]. 

Multiple Fourier transforms. After all the progress of Fourier analysis in the last 
twenty years, we still know almost nothing about the Fourier transform in Rn. We 
can use the techniques of singular integrals to prove theorems like the following 
(see [85]). 

THEOREM 13 (LITTLEWOOD-PALEY THEOREM IN Rn). Let f ~ E*ez" ake
ikx be the 

multiple Fourier series of a function f e LP([Q, 2%]n) (1 < p < oo), and let {Sk}keZ, 
be a sequence of ± signs. Suppose that {Sk} is constant on each parallelopiped of the 
form Ii x J2

 x "• * h> where each Ij is a dyadic block (see Theorem 1). Then 
Tf~?lk Shake

ik'* also belongs to LP, and \Tf\p ^ Cp \\f\\p. 

But in many respects, Rn is fundamentally different from R1, so that merely 
provingRn analogues of l^-theorems misses a great deal. For example, given/G 
U(Rn) with 1 < p < 2, what can we say about the size of the Fourier transform/? 
The familiar Hausdorff-Young theorem | |/ | | , , ^ | | / | | , (1/p' + l/p = 1) is virtually 
all we can say in JR1.7 (There are further results, but they are in the nature of 
refinements.) Already in R2, however, we can go much further. Here is an ele­
mentary "restriction theorem" to drive home the point. 

THEOREM 14 [29]. For fe LP(R2) f| L\R2) (1 S P < 4/3) we have a priori 
inequality 

(25) 1/fwso û Cp\\f\\„m 

where Sl denotes the unit circle. 

It follows t h a t / | s , is well defined for fe LP (p < 4/3) even though in principle 
the Fourier transform is defined only up to sets of measure zero.8 The correspond-

7However, recent work of Babenko and Beckner shows that the norm of the Fourier transform 
as an operator from Lp to Ü" is strictly less than one and can be computed. See Stein's lecture in 
PI. 

8Actually, the sharp estimate is ||/||L«'«CSO ^ Cp J|/||LW for/? < 4/3. The example/ = %B with J5= 
unit disc (feLp forp > 4/3) shows that we cannot expect to define/|s» for/ e Lp(p > 4/3). 
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ing statement for a straight line (replacing Sl) is utter nonsense. The first theorem of 
this kind is due to Stein (see [29]). 

The proof of the restriction theorem takes only a paragraph. We have to show 
that the operator T ;/-> / \s> is bounded from U(R2) to Ll(Sl)\ to do so, we prove 
that the adjoint J1* maps L°°(Sl) to LP' (R2) foxp' > 4. This comes down to showing 
that 

la^iVüwe^i/ii^OT, 
where dO denotes uniform measure on the circle. Now we write 

ICWIW) = |(CWA)2|k« 
= WdO)*(fdQ))%„wS \\<JdO)*(JdO)\\L,m 

with \jr + l/(p'/2) s= 1 (the last step follows from Hausdorff-Young, since 1 ^ r 
< 2for p' > 4), and the obvious pointwise inequality \(fdO) * (fdO)\ S ||/||~' 
(dO*dO) yields ||/</0||£,w) S \\f\\l-m • | | ( ^ *dd)\LrW. Thus, our restriction 
theorem comes down to checking that dd * do e Lr(R2) for r < 2. We omit the 
details, but we note that it is here that the difference between circles and straight 
lines shows up in the proof. A closely related idea appears in Zygmund [97]. 

In some ways, the Fourier transform is more intractable in Rn than in Rl. For 
instance, for many problems on partial sums of multiple Fourier series, the natural 
analogue of the Hilbert transform is an operator T0 defined on L2(Rn) by (7o/)A(£) 
~ XB(£)/(0> where %B is the characteristic function of the unit ball, To behaves far 
worse than the usual singular integrals, for its convolution kernel looks like 
ei\x\jx{n+D/2 at infinity, compared to which Q(x)/\x\n is very tame, As a "Hilbert 
transform", T0 is intimately connected to a certain maximal functiçn, but it is not 
the usual maximal function. Rather (in R2, say) the right maximal function is 
M2f(x) = supÄ3A. I^l"1 fa \f(y)\ dy, where R is a rectangle of arbitrary size, shape, 
and direction. We have already noted that M^ is not bounded on LP (p < oo), by 
virtue of the Besicovitch-Perron constructions for the Kakeya needle problem, and 
consequently TQ is unbounded on LP (p ^ 2). (See [32], [46].) Thus, a basic an­
alogue of the Hilbert transform is a "bad" operator, and so, in dealing with 
multiple Fourier series, we expect trouble. 

This is not to imply that nothing positive can be said about TV We define the 
Bochner-Riesz operators T§ (d > 0) on L2 by 

(Tsf)
A(0 = (i-\^xB(Of(0; 

T$ is related to T0 just as Cesaró summation of Fourier series on [0, 2%\ is related 
to ordinary convergence (see Bochner [7]). By analogy between the Bochner-Riesz 
operators and restriction theorems on Fourier transforms, Carleson and Sjölin 
[21] proved the following result in the two-dimensional case, (See also [35] and 
Hörmander [51].) 

THEOREM 15. T5 (5 > 0) is bounded on LP(R2)for 4/3 <; p S 4. 

The result is essentially sharp (Herz [46]). 
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A. Cordoba [23] has recently shown that the Carleson-Sjölin theorem can be 
related to a positive result for a maximal function closely connected to M2. In fact, 
setting MN f(x) = supÄE3Ä l^l"1 fa \f(y)\ dy where R is a rectangle of arbitrary 
direction with (Longer side of J?)/(Shorter side of R) < N, we have : 

THEOREM 16 (CORDOBA MAXIMAL THEOREM). ||A/^/||2 ^ C(log N)* | | / | 2 . 

The three basic Theorems 14, 15 and 16 suggest a program to force us to come to 
grips with some genuinely «-dimensional Fourier analysis. First of all, the known 
results should be extended from the two-dimensional case (where they are really 
too easy) to Rn. The natural conjectures are 

(26) l l / j l ^ u ^ ^ C , | | / | | L W if 1 gp < 2n/(n + 1). 
(27) Ts is bounded on LP(Rn) if | \jp - 1/21 < (Ô + \)jn and Ö > 0. 
(28) Ltt MNf(x) = supÄ3a. | i? |_ 1 fa \f(y)\ dy where JR is any rectangular paral-

lelopiped of arbitrary direction, and sides d\ x 5\ x ••• x d\ x 52 with 1 ^ 52/^i 
^ N. Then 

| M ^ / | | L W ^ C ( l o g ^ | | / | | L W . 

So far, the best partial result known is a clever theorem of P. Tomas [91] : 

THEOREM 17. The following inequalities hold. 

(29) H/IIMS--1) è C||/||z,[^+^«-^]-(i?-)> 

and 

(30) | T , / | L W ^ C | / | | L W 

for | \\p - 1/21 < (Ô + \)jn and Ö > (n- l)/(2n + 2) + e (cf. [29] and [35]). 

See Carleson and Sjölin [21] for the three-dimensional case.9 

It seems that we are still far from complete solutions. Even after our conjectures 
have been settled, we shall only have barely started to grasp the real situation. It 
is as if we had just proved Cesaró summability of Fourier series on [0, 2%\ but 
still knew nothing about the Hilbert transform. One natural problem is to relate 
the geometry of the maximal function M2 to the behavior of the "Hilbert trans­
form" TQ in Rn.10 The only result known in this direction is Cordoba's Theorem 16. 
We still know so little that we cannot answer intelligently the question "How big 
is the Fourier transform of a function in LP(R2)1" Perhaps {|/| > a} for large a 
can be covered efficiently by rectangles (of no fixed direction). If true, this would 
explain why / can be restricted to circles but not to straight lines, for a circle is 
harder to cover by thin rectangles than a straight line. Coverings by rectangles play 
a major role in the study of To, where the "Kakeya" set of Besicovitch exerts an 
influence all out of proportion to its small area. A recent counterexample of 
Carleson [20] to various conjectures on the polydisc related to Theorems 9 and 10 
has a similar flavor. Perhaps in dealing with the Fourier transform in Rn, we must 
abandon our fixation on Lebesgue measure, and search for new quantities (defined 

9E. M. Stein has modified Tomas' argument to handle e = 0 in (29) and (30). 
10There is also an analogue of the S-function for TQ, which we have not mentioned. 



RECENT PROGRESS IN CLASSICAL FOURIER ANALYSIS 115 

possibly in terms of coverings by thin rectangles) to express the size or importance 
of a set of points. This is easier said than done, but we have seen evidence sug­
gesting that it is forced on us by the phenomena we seek to understand, I do not 
know where—if anywhere—these ideas lead. 
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Analysis over Infinite-Dimensional Spaces 
and Applications to Quantum Field Theory 

James Glimm 

Analysis is the study of functions and operators. The functions / customarily 
depend on a finite-dimensional variable x, in a Euclidean space Rn

9 or a finite-
dimensional manifold Jfn. However, there are examples where it is natural, and 
even necessary, to analyze functions of an infinite-dimensional variable. Thus x 
belongs to a Banach space X, or to some more general space. Typically x is itself 
a function defined on Rn and/is a function of a function. 

To demonstrate that analysis over infinite-dimensional spaces is not an exercise 
in abstraction, we show that it is required in five examples drawn from mathema­
tical physics. Before doing this, we consider separately the two simple components 
of these examples : first, functions as labels of position (continuum mechanics) and 
second, functions as probability densities of position (statistical and quantum 
mechanics). In quantum field theory and continuum (or infinite volume) statistical 
mechanics, both components occur. We are forced to consider functions of func­
tions, that is, analysis over infinite-dimensional spaces. 

Continuum mechanics. A fluid, governed for example by the Navier-Stokes equa­
tion 

(1) yt + (V'V)v + Vp = Av, V-v = 0, 

is described at fixed time t = 0 by its velocity field v, 

(V) v(x, 0) = v(x) = (vx(x), v2(x), vs(x))9 

namely a function v :R? -> R?> The state of an elastic solid or vibrating string is 
also given by a function. The dynamics is then specified by some linear or nonlinear 
equation, for example, 
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(2 ) <j)tt - <l>xx + ml(j> + h<f>* = 0 , 

with time zero Cauchy data 

(3) (f>(x, 0), (j)t(x, 0) = given functions. 

The same statement applies to discrete but infinite systems, such as an infinite gas 
or crystal; the initial state is a function {rh v,-},^ specifying the initial positions 
and velocities of the gas molecules. 

Statistical and quantum mechanics. In statistical and quantum mechanics, the 
positions and velocities no longer assume definite values. Rather, probability 
densities are the fundamental objects. For a gas of N particles, a statistical mechan­
ics state is a function (probability density) p of the impositions rt- and N velocities 
v,-. p satisfies 

(4) p(r9v)^0, $pdrdv = l. 

In quantum mechanics, the state is a function 

(5) / = fa, - , rN) e LÄRM), \f\\Ll = 1, 

of the particle positions, and 

(6) p{r) = |/(r)|2 

is a probability density as in (4) above, 
Combining the ideas in the two paragraphs above, we find that the quantum or 

statical mechanics of continuum or infinite discrete systems leads to analysis over 
infinite-dimensional spaces. In these problems, the analysis occurs for example in 
L<i(X, dx), where X is some Banach space. 

Five examples. The simplest and best known problem of this nature is Brownian 
motion: the motion of a small particle suspended in a fluid, caused by random 
collisions with the fluid molecules. The random nature of the collisions makes 
the problem statistical, while the absence of a deterministic equation of motion, as 
in (2), (3), makes the time evolution a continuum problem. The mathematical 
framework for this problem is given by the Wiener integral, an integral on the 
space C(R) of continuous functions (= Wiener paths = Brownian trajectories) on 
the real line R. Turbulence may also be a problem of this nature. When turbulence 
is treated statistically, it involves an integral over a Banach space X of velocity 
vector fields v; see (1'). 

The quantum statistical mechanics of an infinite gas or crystal falls into the 
framework we are considering, as does the quantum mechanics of a relativistic 
field. The simplest relativisitic field is a solution 0 of the Klein-Gordon equation 
(2)—(3). The coupled Maxwell-Dirac equations arise in the interaction of electrons 
with light (quantum electrodynamics). 

The heat equation solves quantum field theory. The linear Klein-Gordon equation, 
with Ao = 0 in (2), is called a free field. The substitution t -> it transforms this 
hyperbolic equation into an elliptic equation 
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(7) ( - A + ml)<j> - 0. 

The substition / *-* it also transforms the quantum mechanical Schrödinger equa­
tion into an associated heat equation, Skipping over some details, we jump to a 
probabilistic or Wiener integral solution of the heat equation (see [6] for a survey 
of the central ideas). The Wiener integral we are interested in is a Gaussian measure 
dW on S'(Rd). Here d is the space-time dimension, <j> e S', and for each/e S(Ra), 
we consider the linear coordinate function 

(8) STB $*<&/> = #/) 

defined on 5". dW is then characterized by the formula 

(9) J exp (i<j>(f)) dW(<j>) - exp (~ </, C/>/2), 

where 

(10) C - ( - A + m$Tl 

and < •, • > denotes the L2 inner product, 

(11) </. Cf) = lf(x)-C(x - y)f(y) dx dy. 

C is the covariance of this measure, so that 

(i2) S&fWg)dm) = <f,cgy. 
The case d = 1, mo = 0, is the conventional Wiener integral. 

For the interacting field, ̂ 0 ^ 0 in (2), the Feynman-Kac formula for solutions 
of heat equations with potential leads us to replace dW by a measure 

(13) d<j> = exp(- -14o {<j>(xY dx\ dW. 

THEOREM 1 ([16] FOR d % 3 ; [18], [19] FOR d ^ 4). Assuming existence and certain 
properties ("axioms") of the measure d<f>, analytic continuation it -• t back to real 
time is possible and yields a quantum field theory satisfying Wightman's axioms. 

For d = 2, quantum fields were first constructed in [7], [20] using different meth­
ods. Various constructions based on the function space measure (13) are found in 
[1], [2], [4], [5], [13], [14], [16]. In addition to the work of Jafle and the author on the 
problem of constructing quantum fields, Nelson, Segal, Rosen, Guerra, Simon, 
Osterwalder, Schrader, Spencer and many others have made important contribu­
tions, as surveyed for example in [6], [8], [9], [12]. 

Structure of quantum fields I. Particles. A typical reaction time for elementary 
particles is ~ 10~17 sec. Thus one observes primarily the t -> ± oo asymptotes of 
any interaction process. In the t ~+ ± oo asymptotes, the particles separate and 
move independently. 

In any quantum mechanical problem, the time evolution is given by a unitary 
group U(t) = e~m\ H is by definition the Hamiltonian or energy operator. By 
elementary spectral theory, the t -• ± oo asymptotes are described by the eigen-
functions and eigenvalues of H. Thus particles provide a set of labels for the energy 
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eigenfunctions and eigenvalues. This idea lies at the heart of the Haag-Ruelle 
scattering theory [15], which we reformulate loosely as follows: 

The joint spectrum of the energy and momentum operators is a Lorentz in­
variant semigroup contained in the interior of the dual light cone H = P0 ^ 0, 
Pi — P2 ^ 0 in (Rd)A, The generators of this semigroup lie on Lorentz invariant 
orbits and, excluding the trivial orbit at the origin, these orbits describe the 
elementary particles and bound states of the theory. 

From the point of view of the measure (13), a particle of mass m is associated 
with an exponential decay rate 

(14) <#*),#>0>= "m <#*#G0> + 0(e-^-y^) 

in the two-point correlation function. In general, the leading (slowest) decay rate is 
associated with the lightest particle, and for a P(<j>) interaction, as in (2), any higher 
decay rates remaining after this leading decay rate is subtracted are expected to be 
due to : 

(a) bound states of mass mh, formed from pairs or triples of elementary particles, 
and moving as a single particle as t -*• ± oo, 

(b) pairs, triples, "-of elementary particles, moving independently with large 
space separation as / -> ± oo. The associated decay rate is at least 2m. 

THEOREM 2 ([12], [13]). The P(<f>)z quantum field theory, for weak coupling fa/ml <^ 
1, has particles of mass m. m = Wo + o(\) as fa/ml -* 0. There is no mass spectrum 
in the intervals (0, m) and(m, 2m — o(l)). 

THEOREM 3 [12]. The ((jfi — 04)2 quantum field model for weak coupling has mass 
spectrum in the bound state interval mb e (2m — o(\), 2m). 

THEOREM 4 ([13], [21]). The <j>\ quantum field theory, in the single phase region, has 
no even bound states. 

The last two results express the idea that ^4 leads to repulsive forces while - 04 

leads to attractive forces. A more complete analysis of the particle structure for 
weak coupling is based on a study of the decay rate of the Bethe-Salpeter equation 
by T. Spencer. 

High temperature expansions. The proof of these weak coupling results is based 
on a convergent perturbation expansion similar to the high temperature expansions 
of statistical mechanics. Let L be the set of lattice line segments joining nearest 
neighbor lattice points /, /' e Z2. Let AL be the Laplacian with Dirichlet data on all 
line segments leL. Let 

(15) CL « ( - AL + ml)-\ 

let dWL be the Gaussian measure with covariance CL, and let 

(16) <% « exp( - J ^(x) dx) dWL, 

as in (13). Then 
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(17) <^0')>i - J WW) dfa = o, 
if x and y belong to disjoint lattice squares, Thus d$h has an exponential decay 
rate ŵ , = oo, We take d<j>L as the zeroth order or unperturbed measure in the 
cluster expansion, and remove the Dirichlet data on line segments / e L as a pertur­
bation, to obtain d</>. 

The main idea behind the expansion can be formulated roughly as follows. 
We are not interested in removing the nonlinear coupling between distinct normal 
modes of the free field (a nonconvergent expansion in powers of /l0). Rather we 
group the degrees of freedom into blocks (associated with (j>(x), x in a singel lattice 
square) and then remove as a perturbation the (linear) coupling between these 
distinct blocks. The success of this method rests on the fact that the coupling 
between distinct lattice squares is sufficiently small. 

Structure of quantum fields II. Critical points and phase transitions. The critical 
points of quantum field theory are related to the critical points of Morse theory. 
We start with an interaction potential V(<j>(x))in the exponent in (13). For V(Ç) = 
£4 + o%2, V has a critical point at a = 0, a single minimum for o > 0 and double 
minima for a < 0; see Figure 1, 

a > 0 o < 0 
FIGURE 1. V(Z) *= £4 + a£\ 

In the case of two minima, the quantum field is expected to decompose into the 
direct sum of exactly two distinct (pure phase) quantum field theories; see [1], [5]. 
For a > 1, it is known that no such decomposition is possible [13]. Heuristically, 
this picture is based on the idea that most of the measure dq = exp(— JT) dW is 
concentrated near minima of V. A further analysis (linearizing the equations of 
motion about this minimum or, equivalently, replacing V by its Taylor's expansion 
up to second order) leads to the idea that the mass (exponential decay rate) should 
be identified with Vnn, evaluated at the minimum. In case ç5 >= (0i, •", <j>n) is a 
vector-valued field, there are n masses identified with the square roots of the 
eigenvalues of the Hessian 32K/3fz. References including the older literature are 
given in [12], [22]. 

At the transition between the one- and two-phase regions in Figure 1, there is 
a critical point of F where the Jacobian vanishes : 

(18) D e t 3 2 W | , = 0 = 0. 

We expect the following critical phenomena for some critical value o = ac in quan­
tum field theory: 
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(i) No exponential decay of correlations. 
(ii) No particles, at least for d = 2, 3. 

(iii) Critical singularities, as a -* oc, for example, 

(19) | <#*)fly)> dx~(o- ac)-r, a j ac. 

The 7* above is an example of what is known as a critical exponent. There are several 
simple ("classical") theories (van der Waals, mean field, Landau) in which one can 
calculate these exponents [22]. For example Fciassicai = 1. 

For a 04 quantum field theory, the inequality mean field ^ quantum field has 
been proved in the sense of the following theorem. 

THEOREM [11]. Assume the existence of critical behavior for a <f>\ quantum field. 
Then 

1 == ^classical = Y* 2 = ^classical = V, 0 = ^ciassical ^ 7). 
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Initial Boundary Value Problems for Hyperbolic 
Partial Differential Equations 

Heinz-Otto Kreiss 

1, Differential equations in one space dimension. The simplest hyperbolic differen­
tial equation is given by 

(1.1) du/dt = cdu/dx, 

where c is a constant, Its general solution is u(x, t) — F(x + ci), i.e., it is constant 
along the "characteristic lines" x + ct = const (see Figure 1). Therefore, if we 

u( l , t ) = g ( t ) 

u(0, t )*g( t 

K = 0 U < * . ° , S f < » > K ' . I 

FIGURE 1 

want to determine the solution of (1.1) in the region 0 ^ x ^ 1, t ja 0, we have 
to describe initial conditions 

(1.2) u(x,0)=f(x), 

for t = 0 and boundary conditions 

u(l,t) = g(t) i f c > 0 , 
(1.3) <0,t) = g(t) i f c < 0 , 

© 1975, Canadian Mathematical Congress 
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for x = 1,0 respectively. 
There is no difficulty in generalizing the above results to systems 

(1.4) du/dt = Adu/dx. 

Here u(x9t) = (ua)(x, t), •••, w(w) (x, t))' denotes a vector function and A a constant 
n x n matrix. Hyperbolicity implies that A can be transformed to real diagonal 
form, i.e., there is a nonsingular transformation S such that 

(1.5) SAS-i = (£' 2„) = 

where 

«1 
0 a2 • 

o 

0 
0 

• 0 ar 

Ai**\ u "2 w < 0 , ,4" = » « H * » > 0 

/£ir+i 0 '• 

j0 flr+2„" 

lo 

. . . . o 
— o 

• 0 an 

are definite diagonal matrices. We can thus introduce new variables 

(1.6) v = Su 

and get 

(1.7) dv/dt = Ädvßx. 

The last equation can also be written in partitioned form 

(1.8) dvljdt = AW/dx, dvll/dt = iiWV&c, 

where v1 = (v(1), •••, v(r))', v11 = (v(r+1), •••, v(w))'. (1.5) represents n scalar equa­
tions. Therefore we can write down its general solution 

(1.9) v<»(x, 0 = v<»(* -I- a,t)9 j = 1, 2, ..., n, 

which are constant along the characteristic lines x + a-t = const. The solution is 
uniquely determined in the domain 0 <Z x £ 19 t t£ 0, and can be computed ex­
plicitly if we specify initial conditions 

(1.10) v(x,0) = / (*) , O ^ x ^ l , 

and boundary conditions 

(1.11) v»(0, 0 = 2*0v
n(0, 0 + gQ(t), v"(l, 0 = R^(l, t) + gl(t). 

Here R0, Ri are rectangular matrices and g0, gx are given vector functions. If we 
consider wave propagation, then the boundary conditions describe how the waves 
are reflected at the boundary. 

Nothing essentially is changed if A = A(x, t) and Rj = Rj(t) are functions of 
x, t. Now the characteristics are not straight lines but the solutions of the ordinary 
differential equations dx/dt = aj(x, t). More general systems 

(1.12) dv/dt = A(x, t)dv/dx + B(x, t)v + F(x, t) 

can be solved by the iteration 
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(1.13) dp+n/dt = Afa t)dv^/dx + F™ 

where Flf0 «= Bfa t)vm + F, Furthermore, it is no restriction to assume that Â 
has diagonal form, If not, we can, by a change of dependent variables, achieve the 
form (LIO). 

We can therefore develop a rather complete theory for initial boundary value 
problems by using characteristics. This has of course been known for a long time. 
The only trouble is that this theory cannot be easily generalized to problems in 
more than one space dimension, For difference approximations it is already inade­
quate in one space dimension, 

2. The energy method. The main tool for proving the existence of solutions in 
more than one space dimension consists of "a priori estimates", Once these esti­
mates have been established the existence and uniqueness of solutions follow by 
standard functional analytic arguments. The estimates are of the following type, 

Consider a system of partial differential equations 

(2.1) du/dt *= Pfat,d/dx)u 

in a domain Q with initial conditions 

(2.2) ufah) =f(x) 

at some time t = th and boundary condition 

(2.3) Rfa t)u « 0 on dQ. 

FIGURE 2 

The problem is called weakly well posed if 

(2.4) ||K(X, *2)||0 g Kexp(a(h-tx))\\ufa t2)\\0,p. 

Here || • \\0 denotes the usual L2-norm over Q and || • \QiP thç i2-norm which also 
contains all space derivatives up to order p. If p = 0 then we call the problem 
strongly well posed. 

There is a large class of problems for which the estimate (2.4) is immediate. This 
is the class of problems for which P is semibounded, i.e., for every fixed t and all 
sufficiently smooth w which fulfill the boundary conditions we have 

(2.5) (w, Pw) + (Pw9 w)a è 2a\\w\\l 
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Here a is some constant independent of w. (2.5) implies for all sufficiently smooth 
solutions 

3|M|o ßt = (du/dt, u)0 + (u-du/dt)0 = (Pu, u)Q + (u, Pu)0 ^ 2oc\\u\\2
0. 

Therefore 

h fa h)\\o ^ ^pHt2-h))\\ufa t£\\0. 

For symmetric hyperbolic systems this theory has been developed by K.O. 
Friedrichs [3]. As an example consider a first-order system 

m 

(2.6) du/dt = Adu/dxi + £ Bjdu/dxj = P(d/dx)u 
j—2 

with constant coefficients for / ^ 0 and x e Q. Here fl denotes the half-space 
0 ^ xi < oo, — oo < Xj < 00,7 = 2, •••, w. Furthermore >4 has the diagonal form 
(1.5) and the Bj are symmetric matrices. 

FIGURE 3 

For t = 0 initial values 

(2.7) u(x,0)=f(x), | | / | 0 < o o , 

and for x\ = 0 boundary conditions 

(2.8) w*(0, x_, 0 = jR0w
n(0, x_, 0, * - = (x2, —, x j , 

are given. 
Partial integration gives for all sufficiently smooth w e L2(Q) which fulfill the 

boundary conditions 

fa Pw)0 + (Pw, w)Q = - J w*Aw\x^o dx-
do 

Therefore the operator P is semibounded if R0 is such that A11 + R^A^Q ^ 0. 
This is for example the case if \RQ\ is sufficiently small. The disadvantage of the 
energy method is that it is a trick. When it works it is the most simple method to 
derive existence theorems. But it does not give necessary and sufficient conditions. 
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We shall now discuss another technique based on the Laplace transform which 
gives necessary and sufficient conditions, 

3. Laplace transform. We consider again the problem (2.6)—(2.8) and assume 
now that the system is either symmetric or strictly hyperbolic, i.e., the matrices A 
and Bj are symmetric or the eigenvalues of the symbol 

P(iœ) ;= ì(Aù)I + S CüJBX O)V real, S |û)v|
2 ^ 0, 

are all distinct and purely imaginary. Furthermore the matrix A has the form (1.5) 
which is obviously no restriction. 

In one space dimension the initial boundary value problem is always well posed. 
This is not true in higher dimensions. Already S. Agmon [2] has observed 

LEMMA 3,1 Assume that the problem (2,6)—(2.8) has a solution of the form 

(3.1) wfa t) = (j>(x) exj>(st + i(co-, x^)), <ûJ_, X_> - 2 a)jXj9 <0j real9 
j=2 

where real s > 0 and \\<j>(xi)\\2 = Jo°|^|2 dxx < oo. 
Then the problem is ill posed. 

PROOF, If wfa t) is a solution then the same is true for 

wTfa t) = exp (r(st + i(co-9 * - » ) <f>(zxx) 

for all real numbers % > 0. Thus there are solutions which grow arbitrarily fast 
with time. 

We shall now derive algebraic conditions such that there are solutions of the 
above form, Introducing (3,1) into (2.6) gives us 

LEMMA 3,2. There is a solution of type (3.1) if and only if the eigenvalue problem 

(3.2) s(j> = Ad(j>jdxx + iB(coJ)(/>9 B(œJ) *= S Bjù>j9 \\<f>\\ < oo, (j>\0) = *o0ir(O), 

has an eigenvalue with real s > 0. 

(3.2) is a system of ordinary differential equations which can also be written in 
the form 

(3.3) d<j>ldxx = M<j>9 M = A-Ks - iB(o>-)). 

For M we have 

LEMMA 3.3. For real s > 0 the matrix M has no eigenvalues K with real K = 0. 
The number of eigenvalues with real K < 0 is equal to r, the number of boundary 
conditions. 

Therefore the general solutions of (3.2) belonging to £2 can be written as 

(3.4) jj*y#/*). 

Introducing (3.4) into the boundary conditions gives us a system of linear equations 
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C(S)X = 0, l^&u-tW. 
Thus we can express our results also in the following form : 

LEMMA 3.4. The problem (2.6)—(2.8) is not well posed if Det | C(s) | = Ofor some 
s with real s > 0. 

The main result of this section is (see [7], [14], [13]): 

THEOREM 3.1. Assume that Det|C(^)| ^ 0 for real s ^ 0. Then the problem is 
strongly well posed. 

There is still the boundary case that Det | C(s) | = 0 for some s = ?'£, £ real. As R. 
Hersh [5] has shown these are weakly well-posed problems. The main trouble is 
that the generalization of these boundary cases to variable coefficients is very 
difficult. 

4. Problems with variable coefficients in general domains. Now we consider sys­
tems (2.6)—(2.8) with variable coefficients in a general domain Q x (0 g / ^ 7"), 

FIGURE 4 

Here we assume that the coefficients and the boundary dû are sufficiently smooth. 
Connected with this problem there is a set of half-plane problems which we get in 
the following way: Let P0 = (x0ï to), dû x (0 ^ t ^ T), be a boundary point and 
let x = S(x), i = t — to with S(xo) = 0 be a smooth transformation which locally 
transforms the boundary into the half-plane xx = 0. Apply this transformation to 
the differential equations and the boundary conditions, freeze the coefficients at 
x = t = 0 and consider the half-plane problem with constant coefficients. Then 
we have 

THEOREM 4.1. Assume that for all the half-plane problems the conditions of%2 
hold, i.e., that all the operators connected with the half-plane problems are semi-
bounded. Then the original problem is strongly well posed (see [3]). 

THEOREM 4.2. If the system (2.6) is strictly hyperbolic and if for all the half-plane 
problems with frozen coefficients the determinant condition of Theorem 3.1 is fulfilled 
then the original problem is strongly well posed (see [7], [14], [13]). 

REMARKS. (1) It is not known whether the determinant condition guarantees 
well-posedness for symmetric systems which are not strictly hyperbolic. This is a 
rather disturbing gap in the theory. 

(2) Quite a lot of progress has been made for the boundary case that Det | C(s) | 
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= 0 for some s = iÇ, £ real, The key is to consider not only the half-plane problem 
for du/dt = Pu but also all perturbed problems du/dt « Pu + Bu where J? is a 
constant matrix. 

(3) It is assumed that A is nonsingular. However, progress has been made also 
for the singular case (see [12]), 

(4) If the boundary is not smooth then new serious problems arise. See for 
example [10], [11]. 

5. Difference approximations in one space dimension. We start with an example 
which explains most of our difficulties. Consider the differential equation 

(5.1) du/dt = du/dx 

in the quarter-plane x ^ 0, t ^ 0, with initial values 

(5.2) u(x90)*=f(x). 

From § 1 we know that no boundary conditions need to be specified for x = 0, 
t ^ 0. We want to solve the above problem using the leap-frog scheme. For that 
reason we introduce a time step At > 0 and a mesh with âx > 0 and divide the 
#-axis into intervals of length Ax, Using the notation vy(t) <= v(xV9 t)9 xy = vAx9 

t = tfi - [xAt9 we approximate (5.1), (5.2) by 

(5.3) vv(t + At) = vv(t - At) + 2AtD0vv(t)9 v = 1, 2, - , 

with initial values 

(5.4) v„(0) = ffa), vv(At) = ffa) + Atffa)/dx. 

Here D0vv = (vv+x - vv-X)/2Ax denotes the usual centered difference operator. 
We assume that (5,3) is stable for the Cauchy problem, i,e,, 0 < At/Ax ^ 1. 

It is obvious that the solution of (5.3), (5,4) is not yet uniquely determined. 
We must give an additional equation for v0. For example 

(5.5) Vo = 0. 

This relation is obviously not consistent. In general it will destroy the convergence. 
Let/fa) ss 1. Then ufa t) = 0 and v„(0 = 1 + ( - 1 )*%(*)> where yv(t) is the solu­
tion of 

^ ~ yv(t + At) *= yjj - At) - 2AtD0y,(t)9 v = 1, 2, •••, 
K } yM = yJLàt) = o, 

with boundary conditions 

(5.7) yo(t) = - 1. 

(5.6) and (5.7) is an approximation to the problem dwjdt = - dw/dx, wfa 0) - 0, 
w(0, 0 = - 1 , i.e., 

wfa t) = 0 for t < x9 

= - 1 for t ^ x, 
Therefore 
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v„(0 ~ 1 for t < X, 
~ 1 - ( - 1)' for t ^ x. 

This behaviour is typical for all nondissipati ve centered schemes. Therefore one 
needs to be very careful when overspecifying boundary conditions. The oscillation 
decays if the approximation is dissipative. However, near the boundary the error is 
as bad and, for systems, it can be propagated into the interior via the ingoing char­
acteristics. 

Now we replace (5.5) by an extrapolation rule 

(5.8) Vo(0 - 2vx(t) + v2(t) = 0, 

which is the same as using for v = 1 the one-sided difference formula 

(5.9) vx(t + At) = vx(t - At) + (2At/Ax)(v2(t) - vx(t)). 

The approximation is only useful if it is stable. If we choose 

v„(0) = 1 for v = 0, , , . A f „ 
n f ^ A vv(dt) = ° f o r a11 v> = 0 for v > 0, vx ' 

as initial values then an easy calculation shows that 

|| v(0 \Ax = c o n s t a ) , I v I Ax = S | vy |
2 Ax. 

This growth rate is the worst possible and one might consider the approximation 
to be useful. However, if we consider (5.1) in a finite interval 0 ^ x ^ 1 and add 
the boundary condition 

(5.10) M(1, 0 = vN(t) = 0, NAx = 1, 

for both the differential equation and the difference approximation, then there are 
solutions which grow like 

(5.11) | K 0 U = conrt(f/J0<, 
which is not tolerable. This behaviour can be explained as follows : At the boundary 
x = 0 a wave is created which grows like t/At. This wave is reflected at the bound­
ary x = 1 and is increased by another factor t/At when it hits the boundary x = 0 
again, and so on. 

All these difficulties can be avoided by using, instead of (5.9), the one-sided ap­
proximation vi(f + At) = vx(t) + (At/Ax)(v2(t) - vx(t)) or 

vx(t + At) = vx(t - At) + (At/Ax)(v2(t) - \(vx(t + At) + vx(t - At))). 

One can also keep (5.8) if one replaces the leap-frog scheme by the Lax-Wendroff 
approximation or any other dissipative approximation. 

Let us discuss the general theory. (For details see [4], [7], [8].) We consider 
general difference approximations 

(5.12) vy+x(t + At) = Qvv(t) 

with boundary conditions 
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(5.13) BVo = 0 

such that the solution is uniquely determined by the initial values vy(0) = /,,, 
The approximation is useful only if it is 
(1) consistent, i.e., it converges formally to the continuous problem, 
(2) stable (weakly or strongly) which is the difference analog of well-posedness. 
There is never any problem in deriving consistent approximations. It is the 

stability which causes the problem. Corresponding to the continuous problem there 
are two methods to decide whether a given method is stable : Laplace transform 
and energy method. 

The theory based on Laplace transform is analogous to the theory for the con­
tinuous case. The stability is determined by the properties of the eigenvalue 
problem 

(5.14) (z-Q)<j>y = 09 i t yo -0 , \\<f>\\% = S |& |Mx<oo. 

Corresponding to Lemma 3,2 we have, under reasonable assumptions for Q: 

LEMMA 5.1. Assume that (5,14) has an eigenvalue z = <z0 wiVA \zQ\ > 1. Then the 
approximation is not stable, 

This condition can also be expressed as a determinant condition Det | C(z0) | = 0 
for some z = z0 with \zQ | > 1. Then, corresponding to Theorem 3,1, we have 

THEOREM 5.1. The approximation is strongly stable if 'Det | C(z) | ^ Ofor | z | ^ 1, 

Now we turn to the energy method. Consider again the differential equation 
(5.1), (5.2). The problem is well posed because there is an energy equality 

(5.15) (u, du/dx) + (du/dx9 u) = - |w(0)|2. 

Therefore we want to construct approximations to d/dx which have the correspond­
ing property. 

We define a discrete norm 
oo 

(5.16) (M, V)A = 0*AvAx + S u*Vy/lx. 
v—r 

Here ü = (w0, •••, wr-i)', v *= (v0, •••, vr„x)' denote the first r components of w, v and 
A = A* is a positive definite r x r matrix. In [9] we have shown that one can con­
struct accurate approximations Q for which (5,16) holds. The main trouble is that 
the norm and the approximation near the boundary are very complicated. This 
makes its generalisation to approximations in more than one space dimension on 
general domains difficult. Furthermore, it is not known how to include dissipation 
in the construction. However, it should be pointed out that this construction also 
works in more than one space dimension provided the net follows the boundary. 

6. Difference approximations in more than one space dimension. Nothing essentially 
new needs to be added to derive the theory of difference approximations for half-
planes because Fourier transforms of the tangential variables x„ give us a set of one-
dimensional problems. The situation becomes much more complicated if we con-
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sider general domains with smooth boundaries. Observe that this is not the case 
for the differential equations because we can always introduce a local coordinate 
system, thus reducing the problem to a set of half-plane problems. This is not 
possible for difference approximations, Once we have picked the net everything is 
fixed. D. Schaeffer [15] has tried to handle this situation and has developed a beauti­
ful theory. However, its practical importance is somewhat doubtful. Let us consider 
a very simple example. We want to solve the differential equation 

(6.1) du/dt = - du/dx 

in the two-dimensional domains 2y — x ^ 0. The initial values are 

(6.2) ufa y9 0) = ffa y) for 2y - x ^ 0, t = 0, 

and the boundary conditions are given by 

(6.3) ufa y, t) = gfa y, t) for 2y - x = 0, t ^ 0. 

We introduce gridpoints by x3- = jAx, yt- = iAy9 Ax = Ay. 

FIGURE 5 

Thus, there is a gridpoint on the boundary only on every second row. Now we 
approximate (6.1) by the leap-frog scheme and the boundary conditions by 

v,-.; = &•,; if 2j= i, 
?u + VM.J = 2Si+i/2j if y = i + 1. 

Here v,-,y = v(iAx, jAy9 t). Therefore we get two different solutions on two dif­
ferent meshes. As long as the solution of the differential equation is smooth the 
solutions of the difference equation on these different meshes fit together. However, 
if for example/ = 0 and g = 1 then the solution of the differential equation is a 
discontinuous wave propagating into the interior. Now the solutions of the dif­
ference approximation on the different nets do not fit together, 

We get oscillations in the tangential direction of the wave. There are two possible 
methods for remedying the situation: (1) Add dissipation to smooth out the tan­
gential oscillations. (2) Introduce curved meshes which follow the boundary. The 
second procedure is much more accurate and should be preferred if possible. A 
lot of progress has been made in this direction. See for example [1]. 
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Sur la Théorie du Contrôle 

J. L. Lions 

1. Introduction. Soit un système dont l'état y(s) = y(s; v) à l'instant s9 lorsqu'on 
applique le contrôle v, est un vecteur de Rn donné par la solution de l'équation dif­
férentielle : 

(1.1) dy/ds = g(y; v)9 s > t, y(t) = x9 x e Ä», 

où g est une fonction continue Lipschitzienne donnée pour y e Rn et où v est une 
fonction à valeurs dans <%x a Rm. 

Admettant que l'on est dans une situation où(1.1) définit^ de manière unique, 
on considère la fonction coût J(v) donnée par: 

(1.2) J(v) = \Jf(y(s; v), s, v(s))ds9 T donné fini ou non, 

où / est donnée; on cherche 

(1.3) inf J(v)9 v e ensemble ^ad des contrôles admissibles, 

des fonctions à valeurs dans %x. 
Une famille classique de problèmes de contrôle consiste en (1.3) avec t — to, 

x s= xQ fixés et en la recherche de Vo (s'il existe) réalisant le minimum dans (1.3) 
(le contrôle optimal), 

Dans le cas "sans contrainte" où qix = Rm, des conditions suflisantes ou néces­
saires et suffisantes, sont données par le système d'optimalité dfEuler9 étendu au cas 
avec contraintes par L, S. Pontryagin et son école (cf. Pontryagin, Boltjanskiï, 
Gamkrelidze et Mishenko [1]), dans le Principe du maximum (cf. aussi Hestenes [1]). 

Une autre approche, en quelque sorte duale, consiste à considérer dans (1.3) x 
et t comme variables et donc à introduire 

(1.4) u(x9t) = mfJ(v)9 ve<%aà, 

et à essayer: 
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(i) de caractériser directement u, 
(ii) d'en déduire, si possible, le contrôle optimal, s'il existe. C'est la méthode de 

Hamilton-Jacobi, étendue, de façon généralement formelle, par Bellman [1] aux 
cas stochastiques en particulier, et par Isaacs [1] au cas des jeux. 

La fonction u satisfait formellement à une équation aux dérivées partielles non 
linéaire hyperbolique 

(1.5) - If- - inf 
01 ; e?/, 

£gi(x,X)^+f(x,t,X) = 0, 

avec la condition "initiale" (on intègre en / dans le sens rétrograde): 

(1.6) u(x, T) = 0. 

On doit rajouter des conditions aux limites lorsqu'on l'on introduit des con­
traintes sur l'état. 

Lorsque l'on remplace (1.1) par une équation différentielle stochastique, 

(1.7) dy = g(y; v)ds H- a dw(s) 

où a > 0, w = processus de Wiener standard dans Rn, la fonction coût devient: 

(1.8) J(v) = E[\Jf(y(s, v)9s, v(s)) ds], E = espérance mathématique; 

la fonction w, encore définie par (1.4), satisfait alors à l'équation non linéaire para­
bolique 

EgÀx,X)^-+f(x,t,X) = 0 (1.9) - * - * au-M 
Ol L teWi 

avec (1.6) et d'éventuelles conditions aux limites en cas de contraintes sur l'état. 
S'appuyant alors, soit sur des méthodes probabilistes, soit sur des méthodes 

d'équations aux dérivées partielles et d'analyse fonctionnelle, on peut étudier— 
sous des hypothèses convenables—les problèmes (1.5), (1.9); nous renvoyons au 
livre de W. Fleming et R. Rishel [1] et à la bibliographie de cet ouvrage. 

Notre objet est de donner quelques indications sur les situations suivantes : 
(i) étude des cas où le contrôle dans (1.1) n'est plus une varabile continue, mais 

un temps d'arrêt ou un contrôle impulsionnel; 
(ii) étude des cas où l'équation d'état (1.1) ou (1.7) n'est plus une équation dif­

férentielle, mais une équation aux dérivées partielles déterministe ou stochastique. 
REMARQUE 1.1. Ces extensions sont motivées par dc nombreuses applications, 

dont nous mentionnons quelques-unes (consulter aussi la bibliographie des travaux 
ci-après) : 

pour (i), problèmes d'économie et de gestion, cf. Bensoussan et Lions [7]; 
pour (ii), problèmes de contrôle de processus physiques, cf. Butkowski [1], 

P.K.C.Wang [1], Boujot, Mercier et Temam [1], Kuroda [1], Yvon [1]; 
problèmes chimiques ou biochimiques, cf. Kernevez et Thomas [1], 
usage de l'énergie des marées, cf. G. Duff [1], 
problèmes de mécanique (optimum design), cf. Pironneau [1], 
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problème de pollution, cf. W. Hullett [1], etc. 

2. Temps d'arrêt et inéquations variationnelles. 
2.1, Le cas stationnaire. Soit G un ouvert de Rn

9 de frontière T7; Vètat est donné 
par l'équation de Ito : 

(2.1) dy = g(y)ds + adw(s)9 y(0) = x, x e 0, 

dont la solution est notée y% (s). La fonction coût est: 

(2.2) J(T) = E(lle~«*f(yx(s))ds), cc> 09 

où T = variable de contrôle = temps d'arrêt, 0 g T S 0(x)9 où d(x) est le temps 
d'atteinte (aléatoire) de 0. 

Le problème de temps d'arrêt optimal consiste en la recherche de 

(2.3) i#(*) «= inf J(T), O^TS d(x)9 

et de la fonction % (si elle existe) réalisant le minimum dans (2.3). 
On démontre que la fonction upeut être caractérisée par l'ensemble des inégalités 

suivantes (Bensoussan et Lions [1], Fleming [1]) ; 

- ~- Au - t g fa) TST + au - / S 0, u £ 0, 
(2.4) ,=1 '" 

[- >^-âu- gi(x) - | ^ + au - / W 0 dans 0, 

avec la condition aux limites 

(2.5) u = 0 sur T7. 

2.2. Inéquations variat\onnelles (en abrégé I.V.). La résolution directe du système 
(2.4), (2.5) repose sur la technique des I.V. (Lions et Stampacchia [1]); on suppose 
pour simplifier que 0 est borné (sinon, cf. Bensoussan et Lions [1]). 

Soit Hl((9) l'espace de Sobolev d'ordre 1 des fonctions v à valeurs réelles telles 
que v, dv/dxx, •••, dv/dxn e L?(@)\ pour w, y e Hl((9)9 on pose 

Q 

afa v) = ^r- fflgrad wgrsidvdx 
(2.6) 2 

- S Jo g fa) ^ v dx + alo uv dx; 

soit K l'ensemble convexe fermé non vide de H\0) formé des fonctions v telles que 

(2.7) v = 0 sur T7, v ^ 0 p.p. dans 0. 

Alors (2.4), (2.5) peut être formulé sous la forme de 1' I.V. : trouver u e K telle 
que 

(2.8) a(u9 V-II) ^ (/, v-w) V veK9 oix(f9 v) = \Qfvdx. 

Si l'on suppose que:1 

hypothèse non indispensable. 
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(2.9) a + -1 S - ^ ^ 0 dans 0 

alors la forme a(u, v) est coercive au sens : 

(2.10) a(v9 v) ^ c I v 1^0), c>0,VveJP, 

et, d'après Lions et Stampacchia, loc. cit., (2.8) admet une solution unique. 
On obtient ainsi une solution "faible" de (2.4); mais on peut passer de là à des 

solutions 'fortes"', c'est le problème de la régularité des solutions des I.V., cf. H. 
Brezis et Stampacchia [1], H. Brezis [1]. 

2.3. Cas d'évolution. L'état est maintenant donné par: 

(2.11) dy = g(y)ds + adw(s)9 y(t) = x9xe(99s> t9 

dont la solution est yXtt(s) ; la fonction coût est donnée par : 

(2.12) J(z) = E(\\e-«^f(yXti(s\ s) ds) 

et l'on cherche 

(2.13) ufa t) = inf/(v), 

T temps d'arrêt inférieur au temps d'atteinte de O.. 
On démontre (Bensoussan et Lions [1]) que u est caractérisée par l'ensemble des 

inégalités 

(2 14) '' 

„s„, (r»-*+-t«-& + —fy-o 
dans Ö x ] tQ, + oo [ (to choisi quelconque), avec la condition aux limites analogue 
à (2.5) et une condition "initiale" de type (cf. Bensoussan et Lions, loc.cit, pour 
des énoncés précis) "w ne croît pas trop vite lorsque t -> + oo". 

Par les techniques des I. V. d'évolution, on démontre l'existence et l'unicité de 
u solution de (2.14) satisfaisant aux conditions aux limites et initiales. 

2.4. REMARQUES. (1) Pour l'extension de ce qui précède au cas des jeux, cf. 
Bensoussan et Friedman [1], 

(2) Dans le cas "a = 0", on aboutit à des I.V. pour des opérateurs du 1er ordre et 
en faisant o -• 0, on obtient des résultats sur les perturbations singulières dans les 
L V. (Bensoussan et Lions [2]). 

(3) Pour des résultats supplémentaires, en particulier de régularité, cf. Friedman 
fi] et la bibliographie de ce travail. 

3. Surfaces libres. 
3.1. Problème de Stefan. Considérons un cas très particulier de (2.14): n — 1, 

o — <\/2, gì = 0, a = 0, et inversons le sens du temps (ce qui est losible); le 
problème devient: 
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avec les conditions aux limites et initiales. 
Soit (formellement) x = s(t) la courbe séparant la région u < 0 de continuation 

de la région u ;= 0 de saturation ; dans la région ^ où u < 0, on a : 

(3.2) du/dt - d2u/dx* *= f9 

et sur la surface libre x ?= s(t), on a: 

(3.3) u(s(t), t) = 0, 

(3.4) du(s(t)9 t)ldx p= 0.2 

Si l'on introduit alors la fonction 

(3.5) w = 9w/3f 

on voit que, dans #; 

(3.6) dw/dt - 32 /̂3*2 ^ df/dt 

avec sur la surface libre x — ,s(f) : 
(3.7) w(s(t), t) = 0, 

(3.8) dw(s(t)9t)/dx=fs'.3 

La recherche de w solution de (3.6), (3.7), (3.8) est un cas particulier du problème 
classique de Stefan. 

La démarche suivie par, en particulier, McKean [1], Grigelionis et Shiryaev [1], 
van Moerbeke [1], [2] est de ramener les problèmes des inégalités aux dérivées partiel­
les du type (2.14) au problème de Stefan. 

La technique des I.V. rend cette transformation inutile et l'idée précédente peut 
au contraire être utilisée dans la direction inverse: Si l'on a à résoudre le problème de 
Stefan (3.6), (3.7), (3.8) (et avec une condition initiale), on introduit u par (3.5), 
(3.3) et on vérifie alors que u est caractérisé par une I.V. ; cf. G. Duvaut [1] pour une 
situation plus générale. 

3.2. Réduction de problèmes de surfaces libres à des I.V. L'idée précédente de 
réduction, par changement de fonction inconnue, de problèmes de surfaces libres 
à des I.V. a été introduite (dans une situation plus délicate) par C. Baiocchi [1], [2] 
à propos de problèmes d'infiltration. Par des adaptations convenables, cette méthode 
a été appliquée par H. Brezis et G, Stampacchia [2], H. Brezis et G. Duvaut [1], 
J. F. Bourgat et G. Duvaut [1], à des problèmes d'hydrodynamique. Une question 
générale est alors : 

Problème 1. Quels sont les problèmes de frontière libre que l'on peut réduire a 
des I.V.? 

4. Contrôle impulsionnel et inéquations quasi-variationnelles, 
4.1. Cas stationnaire. L'état est donné dans Rn par 

2Cela utilise la "régularité99 de u. 
3wx = utx\ d'après (3.4) uix + uxx s' - 0 et utilisant (3.2) utx p= ( / - ut)s

f *= fs' sur la courbe 
x = s(t) d'où (3.8). 
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(4.1) dy = g(y)ds + adw(s) + S Ço(s - 6<)ds, y(0) = x, 
1=1 

où dans (4.1) les 0> (instants d'impulsion) sont à notre disposition, ainsi que les Zf 
assujettis à 

(4.2) Ç 'e^cJR" ; 

le nombre N est également à notre disposition; le contrôle v est donc 

. v={dKO;d29t:
2;-;0N,?:»;N}9 

( ' ' 0 ^ ô1 < 02< ••• < 0N ^ r (donné fini ou non), Ç<" e W9 N=N(v). 

L'état est désigné par yx(v) = yx(s, v) et la fonction coût est donnée par: 

(4.4) J(y) = E {lT
0e-«°f(yx(s; v)) ds + kN(v)}9 

où/est une fonction donnée ^ 0 et k un nombre > O.4 

On démontre alors (Bensoussan et Lions [1], Bensoussan, Goursat et Lions [1]) 
que la fonction 
(4.5) u(x) = inf/(v), 

V 

est caractérisée par l'ensemble d'inégalités dans Rn : 

(4.6) 
u - M(u) 5£ 0, (--Çàu- Lit-^7 + au - / ) ( « - M{u)) = 0, 

où 

(4.7) M(u)(x) <= Mu(x + Q + k. 
Ce« 

Dans le cas de contraintes sur l'état, traduites par x, yx(s) e&,& ouvert de R", 
M(u) est défini par (4.7) avec x et x + Z, e (S et l'on ajoute à (4.6) les conditions aux 
limites 

(4.8) u-M(u)£0, J^O, (u-M(u))^ = 0smr, 

où d/dv = dérivée normale dirigée vers l'extérieur de O. 
4.2. Inequations quasi-variationnelles (en abrégé (I.Q.V.)). Avec la notation (2.6) 

le problème (4.6), (4.8) peut se formuler: Trouver w G Hl(Q) telle que, 

(4.9) u ^ M(u)9 

(4.10) a(u, v -u)^(f9v-u) V v e H\0) avec v ^ M(u). 

C'est une I.Q.V. elliptique, qui diffère des I.V. par le fait que les contraintes sur 
les fonctions v dépendent de la fonction inconnue u. 

On démontre l'existence et l'unicité d'une solution de (4.10) (cf. Bensoussan et 
4Cf. la conférence de A. Bensoussan [1] à ce Congrès sur l'interprétation de ce type de problème. 



LA THÉORIE DU CONTROLE 145 

Lions, loc.cit., L. Tartar [1], une démonstration directe de l'unicité étant due à 
Th. Laetsch [1]; cf. également Joly et Mosco [1]). Nous renvoyons en particulier à 
l'exposé A, Bensoussan à ce Congrès. 

4.3.1.Q. V. d'évolution. Si l'état est donné par (4.1) avec y(t) — x et si dans (4.4), 
on intègre de t à T, on a: 
(4.11) inf/(v) = ufat)9 

u étant alors caractérisée par une I.Q.V. d'évolution, 
Voir Bensoussan et Lions [4] où l'on verra également comment l'on peut obtenir 

un contrôle optimal à partir de la connaissance de u. 
4.4. I.Q.V, et surfaces libres. La solution u de (4.6) vérifie u < M(u) dans une 

région de continuation séparée de la région de saturation u = M(u) par une surface 
libre qui satisfait à des conditions de transmission non locales à cause du caractère 
non locai de M, 

Pour une transformation adéquate, C. Baiocchi [3] a réduit des problèmes de 
surface libre de l'hydrodynamique à certaines I.Q.V., d'où la question générale: 

Problème 2. Quels sont les problèmes de surfaces libres qui peuvent se réduire à 
des I.Q.V.? 

4.5. REMARQUES. (l)On peut étudier des problèmes où le contrôle comprend une 
partie impulsionnelle et une partie continue. Cf. Bensoussan et Lions [5]. 

(2) De nombreuses questions restent ouvertes dans ces directions. Citons : 
Problème 3. Etude de la régularité des solutions des I.Q.V.5 

Problème 4. Quelles sont les I.V. ou les I.Q.V. dont la solution peut s'exprimer 
par un problème d'optimisation sur des trajectoires caractéristiques convenables? 
Par exemple, est-ce possible pour certains problèmes d'élasto-plasticité (cf. Du­
vaut et Lions [1])? 

5. Equations d'état de dimension infinie. 
5.1. REMARQUES GéNéRALES. L'état est de dimension infinie dans les cas princi­

paux suivants : 
(i) l'équation d'état est une équation différentielle avec retard; cf. Banks et 

Jacobs [1], Delfour et Mitter [1] et la bibliographie de ces travaux; 
(ii) l'équation d'état est une équation aux dérivées partielles déterministe ou 

stochastique. La donnée initiale, notée h au lieu de x (réservé aux variables géo­
métriques), est alors un élément d'un espace H de dimension infinie; la fonction 
u(h91) définie sur H x] — oo, T] par l'analogue de (1.4) satisfait formellement à 
une équation aux dérivées partielles et fonctionnelles (S)—cela, lorsque le contrôle 
v est une fonction distribuée dans le domaine ou sur la frontière ou ponctuelle. Si 
le contrôle est un temps d'arrêt ou de nature impulsionnelle, on aboutit à l'étude 
(qui est en cours) des I.V. et des I.Q.V. en dimension infinie. 

Nous allons examiner un cas très particulier où ((f) se réduit à une équation aux 
dérivées partielles. 

REMARQUE. Les équations aux dérivées partielles et fonctionelles apparaissent 
BDes résultats très partiels sont donnés dans Bensoussan et Lions et Joly, Mosco et Troianniello, 

à paraître. 
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également, dans un contexte différent mais pas indépendant, dans l'étude des 
solutions statistiques des équations aux dérivées partielles', cf. Visik et Furcikov [1], 
C. Foias, [1], C. Foias et G. Prodi [1], M. Viot [1]. 

5.2. Le cas linéaire quadratique. Soit Q un ouvert de Rn de frontière T7; dans û on 
se donne un opérateur elliptique du 2ème ordre A 

<5,) * - - s &(*»-£> 
ay e L°°(Q), E <tifaK&j èaEQ9a>09xeQ. 

On suppose que Y état est donné par 

(5.2) dy/ds + Ay = v dans Q = O x ] /, T[9 v e i 2 ( 0 , 

avec la donnée initiale 

(5.3) y(x, t) = h(x) dans Q,heL* (Û) = H, 

et les conditions aux limites 

(5.4) j> = 0 sur Tx]t,T[. 

Soit la fonction coût donnée par 
(5.5) J(v) = ff \y(s) |2 ds + Nff | v(s)|« ds, 

Trini donné, N >0 donné, où | | = norme dans LZ(Q), où dans (5.5) y(s) = y(s; v) 
désigne la solution de (5.2), (5.3), (5.4). Soit alors 

(5.6) u(h, t) = inf /(v), v e L2 (Q). 

On vérifie, formellement, que 

(5.7) - du{h, t)ldt + (MA(A, 0, Ah) - inf [^|^|2 + (A, u„(h, t))] = \h\™ 

avec la condition "initiale" 

(5.8) u(h9 T) = 0. 

Dans (5.7), on a posé (uh(h9t)9k) = (d/d£)uh(h + £fc, 0|e=o- Explicitant le 
inf qui apparaît dans (5.7), on en déduit: 

(5.9) - (du/dt)(h, t) + (uh(h, t)9 Ah) + \uh(h, 0|2/4# = |A|2 y he D(A). 

Mais l'homogénéité de (5.9) montre que u(h, t) est une forme quadratique en A; 
on peut écrire 

(5.10) u(h9t) = (P(t)h9 h) (produit scalaire dans H), P(t)* = P(i)9 

et, utilisant (5.10) dans (5.9), on en déduit que P(t) considéré comme opérateur 
linéaire continu de Zfdans H vérifie (dans un sens convenable; cf. Lions [1]) : 

(5.11) -dP/dt +PA +A*P +PP/N = I (identité dans H) 

avec la condition initiale (correspondante à (5.8)) : 
6Cela, pour tout h dans le domaine D(A) de l'opérateur non borné A. 
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(5.12) P(T) = 0. 

Mais, d'après le théorème des noyaux de L. Schwartz, l'opérateur P(t) s'exprime 
par un noyau Pfa Ç, /) ; 

(5.13) P(t)<p(x) = ïQPfa^t)9(QK> 

et (5.11) correspond à Véquation aux dérivées partielles (non linéaire) 

(5.14) -.*£- + (At + AI) Pfa ft 0 + jfS/fa ft 0 *(C, ft 0 *C - ô(x - 0,7 

à quoi on ajoute les conditions aux limites (correspondant au fait que P(t) applique 
H dans D(A)): 

(5.15) PfaZ, 0 - 0 s i x e ^ Ç e f i o u s i x e ^ Ç e / 7 , 

et évidemment P(#, Ç, T1) — 0. 
Tout cela peut être justifié, dans des conditions plus générales. Cf. Lions [1], [2]. 
En résumé, dans le cas particulier présent, Véquation aux dérivées partielles et 

fonctionnelles (5,9) se réduit à l'équation aux dérivées partielles non linéaire (5.14). 
5.3. REMARQUES. (1) Dans Lions, loc. cit., on a utilisé la théorie du contrôle pour 

résoudre (5.14), (5.15), (5.12). Une étude directe (sans usage de la théorie du con­
trôle) d'équations non linéaires à inconnus opérateurs—contenant en particulier 
(5.14)—est due à R. Temam [1], Da Prato [1], L. Tartar [2]. 

Pour l'étude numérique de ces équations, cf. Nedelec [1] qui adapte les méthodes 
des pas fractionnaires, Marchouk [1], Yanenko [1]. 

(2) Pour les cas stochastiques, cf. Bensoussan [2], Balakrishnan [1], Bismut [1], 

6. Système d'optimalité. 
6.1. Cas linéaire quadratique. Reprenons la situation du N° 5.2., avec des 

contrain tes v: 

(6.1) v e %ad = ensemble convexe fermé non vide de L2(Q). 

Alors les considérations du N° 5.2. conduisent à une équation du type (5.7) où 
le inf est pris pour X G °U\ si r̂ad consiste en les fonctions à valeurs dans ^ . Mais 
une étude directe du problème est plus simple. On prend t = 0 et h. fixé (donné). 
Le problème 

(6.2) inf/(v), v e t d 

admet une solution Vo unique, qui est donnée par les systèmes d'équations et d'inéqua­
tions aux dérivées partielles suivant: 

(6.3) 
-^~ + Ay = Vo, y(x, 0) = h(x), y = 0 sur r x ] 0, T[, 

$L + A*p =y, p{x, T) = 0,p = 0 sur rx] 0, 7T, 

Jo <J> + Mo) (v - Vo) dx dt ^ 0 V v e ^ad, v0 e ^>d. 

d(x—£) est le noyau de /. 
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C'est le système d'optimalité, qui est d'usage essentiel pour l'obtention d'algori-
themes numériques. Donnons quelques indications sur l'extension (éventuelle) 
du système d'optimalité à des situations plus compliquées.8 

6.2. Contrôle de surfaces libres. Supposons l'état donné par la solution de 1T.V.9 

(6.4) a(y9<p - y) ^ \Qf(<p -y)dx+ \rv(<p - y)dr V<peK9yeK, 

où a est donné par (2.6), # = {<p\ <p e Hl(0), <p ^ 0 sur T7 = dO}9 fe L2 (Û), et où le 
contrôle v parcourt % = L2(r). 

Soit y = y(v) la solution de (6.4) et soit la fonction coût 

(6.5) J(v) = J r (y(v) + g)2 dr+N\r v2 dr, g donnée ^ 0. 

Alors le problème 

(6.6) Inf/(v), veL\r)9 

admet une solution unique v0 qui est caractérisée par le système suivant (cf. F. 
Mignot[l]): 

(67) a^99 ~~ ^ - ^ ^ " ^ d x " ir ^ ^ "y^dr v<PeK>yeK> 

a*(p><P) = ïr(y + g)</>dr 

V <]) tel que $ = 0 sur l'ensemble Z(y) do T où y s'annule, p = 0 sur Z(y)9 puis, 

(6.8) v0 = - p/N. 
L'ensemble (6.7) est une I.Q.V. 
Notons que dans (6.4) l'application v -> y(v) de L2(r) ->• Hl(Û) est Lipschitzien-

ne, donc (Aronszajn [1]) derivable "presque partout". Par des raisonnements 
ad hoc, Mignot [1] a pu expliciter une dérivée et en déduire, dans le cas présent, le 
système d'optimalité (6.7). Une question générale est: 

Problème 5. Comment obtenir des systèmes d'optimalité dans les problèmes où 
l'état est Lipschitzien, non partout différentiable, en le contrôle?10 

6.3. Le contrôle est le domaine géométrique. Dans de nombreux problèmes des 
mécanique ou de physique, la variable de contrôle est un domaine géométrique. 
Par exemple, l'état est donné par l'équation de Stokes11 

(6.9) - va y = - grad •/?, div y = 0, dans Q, 

y donné sur le bord de û, l'ouvert û étant à choisir (avec certaines contraintes 
géométriques et par exemple un volume donné) de manière à minimiser la trainee 

8Cf. d'autres situations dans Barbu [1], Brauner et Penel [1], Kernevez [1], Slemrod [1], Yvon 
[1], etc. Pour le cas, essentiel, des contrôles frontières, on utilise la méthode de Lions et Magenes 
[1]. 

Correspondant à un problème de mécanique unilatérale. 
10Cette question est liée aux recherches de L. Neustadt, Halkin et Neustadt [1], Rockafellar, 

Clarke. 
nCf. Pironneau, dont on ne considère ici qu'un cas particulier. 
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(6.10) JW-ïiaLof,*, ,v-£(!£ + |&) 

Cela conduit à l'étude de la "dérivée en Ö"12 de la fonction Q -• y(Q). Il s'agit là 
d'un problème classique (Hadamard [1], P. Levy [l])13 donnant lieu à des dévelop­
pements récents: Pironneau, loc. cit., J. Cea et son groupe [1], Murât et Simon 
[1]. Pour un théorème d'existence, par usage du théorème des fonctions implicites, 
cf. D. G, S. Schaeffer [1]. 

Des questions de conception optimale de matériaux élasto-plastiques conduisent 
au: 

Problème 6. Comment étendre les formules de Hadamard sur la dérivée de y(Q) 
en Q aux solutions d'LV.? 

Une question liée à la précédente est: 
Problème 7. Comment dépendent les surfaces libres de "variations" du domaine 

géométrique? 
6.4. REMARQUES. (1) Par des changements de variables (possibles avec des hypo­

thèses ad hoc sur la classe des ouverts Q considérés), on peut ramener les problèmes 
de 6.3. à des problèmes de contrôle dans les coefficients de l'opérateur différentiel 
(ou encore "fe contrôle est l'opérateur"); pour ce type de problèmes, cf. Spagnolo 
[1], Murât et Tartar [1], Zolezzi [1]. 

(2) La nature du système d'optimalité peut être quelque peu modifiée par usage de 
la théorie de la dualité au sens de Rockafellar [1], Ekeland et Temam [1]. C'est, 
entre autres, le cas (Mossino [1]) où l'on a des contraintes sur l'état. Cf. aussi Lions 
[4]. La théorie de la dualité permet aussi d'obtenir des solutions relaxées (ou gén­
éralisées); cf. Ekeland et Temam, loc.cit. 

(3) Le système d'optimalité pour les problèmes de temps optimal SL été étudié par 
Fattorini [1], [2] en vue de l'obtention de résultats du type "Bang-Bang". 

(4) Les questions de temps optimal sont, comme dans la théorie classique des 
systèmes gouvernés par des équations différentielles (cf. R. Conti [1] et la biblio­
graphie de ce livre), liées à la question de la structure de l'ensemble E des états à 
un instant donné lorsque le contrôle v varie, question étudiée par Fattorini et Rus­
sell [1], Russell [1], Fattorini [3]. 

(5) Les problèmes de (4) sont eux-mêmes liés à la question des multiplicateurs de 
Lagrange en dimension infinie. Dans cet ordre d'idées, notons que p dans (6.9) 
peut être considéré comme un multiplicateur de Lagrange. Peut-on généraliser ce 
résultat au problème suivant:14 on cherche à minimiser: 

(6.11) J(<p) = i - E=i io ( ! | ) 2 dx - h \ofi 9i àx, 

sur l'ensemble non linéaire des vecteurs cp e Hl(<p) x Hl(Q)9 nuls au bord et tels que 

laPour 0 dans une classe convenable. Une tentative pour travailler "sans restrictions" sur O 
est faite dans Bensoussan et Lions [6]. 

13Qui introduit à ce sujet des équations aux dérivées fonctionnelles. 
14Rencontré avec G. Duvaut dans un travail non publié. 
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(6.12) divp + | £ L | ^ - | 2 L ! & . = 0 dans O. 
3#i 3X2 3x2 3*i 

Ce problème admet-il une solution y et existe-t-il un multiplicateur de Lagrange? 
(6) L'écriture du système (ou d'un système) d'optimalité conduit également à 

des problèmes intéressants lorsque l'état est donné par une valeur propre ou une 
fonction propre (cf. F. Mignot [2]), lorsque l'on veut contrôler la stabilité de phéno­
mènes pouvant devenir instables, (cf. J. Puel [1]). 

(7) La simplification du système d'optimalité en présence de petits paramètres 
conduit à de nouveaux problèmes de perturbations singulières. (Cf. Lions [5], 
Jameson et O'Malley [1]). 

(8) Pour les méthodes numériques correspondantes, nous renvoyons à Yvon [1], 
Lions et Yvon [1] et à la bibliographie de ces travaux. 
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Transversal Theory 

E. C. Milner 

1. Introduction. Transversal theory is a branch of combinatorial mathematics 
which is only just beginning to emerge as a reasonably connected and coherent 
subject. Whether this is yet rich enough or mature enough to be called a 'theory' 
may be a matter for debate; indeed, it is by no means certain that this part of 
mathematics may not finally be classified under some broader, more comprehen­
sive title. However, what is beyond dispute is the fact that during the last two 
decades a large number of papers have been published which include some refer­
ence to the so-called marriage theorem (Theorem 2.1), which is the starting point 
for transversal theory. These papers deal with surprisingly diverse problems and 
their only connecting link seems to be this common reference to the marriage the­
orem. The arguments employed have generally had an ad hoc flavour although 
some of these have been highly original. Transversal theory is a depository for 
developing those mathematical ideas of the marriage theorem type which frequently 
recur and which seem to belong to some more general framework. 

Two books on the subject have been published recently by Crapo and Rota [11] 
and Mirsky [44] although these were written from rather differing viewpoints. 
The first part of this article will be expository and cover ground which is familiar 
to most combinatorial mathematicians. In the second part I shall describe some 
more recent work done on infinite transversals. The earlier bibliography, detailed 
proofs and a historical commentary can be found in Mirsky's book. Apart from the 
new result in set theory mentioned in § 6,1 shall not dwell upon the applications of 
transversal theory to other branches of mathematics, but refer the reader interested 
in this aspect to the article by Harper and Rota [31]. Instead I shall try to give 
emphasis to those results which are either new or which have influenced the 
development of the subject. 
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2. Early results. The letter F will always denote the system <F,-1 i e 1} of subsets 
of a set S having index set J. The sets Fj (i E I) are the members of the system but 
these are not necessarily different subsets of S. We write |F | = | / | to denote the 
cardinality öf F. If F = <F,|/ e 1} and G = (Gj\jejy are two systems, then we 
define F = G and F + G as follows :F = G means that there is a bijection / : / -• J 
such that F{ = GfU) (V / e /) ; F + G denotes the system H = <#, | e e JQ, where 
K=(Ix {0}) U (/ x {1}) and HM) = F, (V / e /) , tf (;. 1} = Gy (V; e J). 

A transversal function of .Fis an injective choice function for F, that is a function 
<p;I-+S such that <p(i) ^ p(y) (i # y) and p(/) e Ft- (i e /). The element ç(ï) is the 
representative of Fj in p and (<p(i) | / e /> is a system of distinct representatives for F. 
A transversal òf JF is the range 71 = {<p(i)\ie 1} of a transversal function and a 
partial transversal is a transversal of some subsystem F\K = <Ff-| / e #> (Ä' c /), 
We denote by TR(F) the set of all transversals of F and by PTR(/0 the set of all 
partial transversals. 

A system F has the transversal property, Fe F, if and only if F has a transversal. 
Many problems in combinatorial mathematics reduce to the question of whether or 
not a certain system jFhas the transversal, or some similar type of property. Here I 
mention just two such related properties which will be considered in § 5 in the 
discussion of infinite systems. A system F has property $l,Fe<%, if and only if there 
is a set B such that B f| Ft- # 0 # Ft\B (V / e / ) . This property was first considered 
by Miller [40] (the letter & standing for Bernstein). F has property 0&i (the selector 
property) if there is a set B such that |F{ f| B\ = 1 (V i e / ) . For other generaliza­
tions of these see [19]. The most primitive statement about transversals is the 
axiom of choice (which we assume): If Fis a system ofnonempty pairwise disjoint 
sets, then F e F. 

An obvious necessary condition for F to have a transversal is that 

(2.1) ' \F(K)\^\K\ (VKczI) 

where F(K) = \Jiek Fi9 and the marriage theorem states that this condition is also 
sufficient in the case of finite systems. 

THEOREM 2.1. If\ F\ < Ko then Fe^r if and only if (2.1) holds. 

This was proved by P. Hall [27] and condition (2.1) is usually referred to as Hall's 
condition. König had earlier proved an equivalent result [36], [37], [38] which he 
expressed in the language of bipartite graphs. There is a natural representation for a 
set system F as a bipartite graph. We can assume without loss of generality that 
/ fl S = 0 and then F defines a bipartite graph GF = (V, E) with vertex set V = / 
U S and edge Set E — {{/*, x] | i e /, x e Ft). A matching in a graph G = (V,E) is a set 
of pairwise disjoint edges W <=. E; and, for X a V9 an X-matching is a matching 
J^such that every vertex of Zis incident with some edge of W, It is easy to see that 
the set system F has a transversal if and only if the corresponding bipartite graph 
GF has an /-matching. König showed that if n < Xo and G is any bipartite graph, 
then G has a matching of size n if and only if | C | ^ n whenever C is a covering set 
(i.e., a set of vertices incident with every edge of G). Since (I\K) U F(K)is a covering 



TRANSVERSAL THEORY 157 

set of GF (K c / ) , it follows from (2.1) that, if | / | < Xo> then GF has a matching 
of size | / | and hence an /-matching. 

This formulation of the transversal property in terms of matchings in bipartite 
graphs is frequently useful and gives proper emphasis to the dual roles played by the 
index set /and the ground set S. The terminology also suggests why Theorem 2.1 is 
sometimes called the marriage theorem. If / is a set of boys and Fj is the set of /'s 
girl friends (/ e / ) , then a transversal of F (or a matching of GF) corresponds to a 
marriage arrangement in which each boy marries one of his girl friends. While this 
might be considered satisfactory for the boys (/), it is most unlikely that it would be 
considered so by the girls in S left without husbands. Perhaps, therefore, we should 
instead seek criteria for the existence of a more socially satisfying perfect matching, 
that is a matching which is simultaneously an /-matching and an 5-matching in 
GF. But it is easily seen that a necessary and sufficient condition for this is that 
there should exist some /-matching (W) and some S-matching (W) (consider the 
graph with edge set W U W). Therefore this reduces immediately to the one-sided 
problem of deciding which system F e <F. 

For those with more ambitious appetities, there is another natural generalization 
of Thereom 2.1 in which the ith boy demands a harem of size h{ [30]. 

THEOREM 2,2. If \F\ < Xo ond hj is a nonnegative integer (i e / ) , then there are 
disjoint sets X{ a Fj (ie I) such that \Xj\ = hj if and only if \F(K)\ ^ £,•<=# hj 
(V K c / ) . 

This follows immediately from Theorem 2.1 by considering an augmented system 
having hj copies of Fj (iel), This is the simplest of a number of modifications that 
can be effected on a set system in order to exploit a self-strengthening characteristic 
of Theorem 2.1 (see [44, Chapter 3]). 

A more important early extension of Theorem 2.1 was obtained by Marshall Hall 
[28] who showed that the condition (2.1) is also sufficient in the case when \F\is 
arbitrary but each Fj (ie I) is finite. The 2 m — 1 conditions of (2.1) are mutually 
independent for a finite system of sets, but for an infinite system of finite sets (2.1) 
is equivalent to the smaller set of conditions 

(2.1') \F(K)\Z\K\ (VATe/), 

where K<^ I means that K is a finite subset of /. In view of this, Marshall Hall's 
theorem can be stated in the following way. 

THEOREM 2.3. Let F be a system of finite sets. Then Fegr if and only ifF0egr 
(V F, m F). 

There are almost as many published proofs of this result as there are for Theorem 
2.1. Algebraists use a variant of Zorn's lemma, topologists recognize it as a corol­
lary of Tychonoff's theorem on the product of compact spaces, logicians employ 
Gödel's compactness theorem for the first order predicate calculus (see §5), while 
combinatorialists use Rado's selection lemma ([23], [28], [30], [32], [44]). 

We do not know of any criteria analogous to Hall's condition (2.1) for the prop-
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erties ^ or ^ Indeed we are extremely ignorant about these properties for finite 
system. For example, if m(n) is the smallest number of sets of size n which do not 
have property <%, then m(\) = 1, m(2) = 3, m(3) = 7 and m(4) is unknown. How­
ever, standard compactness arguments yield results for properties & and <%i similar 
to Theorem 2.3. 

THEOREM 2.4. If F is a system of finite sets and <€ e {&, ^x), then Fe<g if and only 
ifF0eV(VFQ(£:F). 

3. Abstract independence. Whitney was the first to study the abstract properties of 
linear independence and in his pioneering paper [68] he established the equivalence 
to different sets of axioms for this notion. The ones which most clearly reveal the 
underlying motivation of vectors in a vector space are the following. A pre-inde-
pendence structure (Whitney used the term matroid) on a set S is a nonempty set 
JK c &>(S) = {X\X œ S} satisfying the conditions: 

/ l . AaBeJf=>AeJ/ (hereditary). 
12. A, B e Jf, |B\ = \A | + 1 < Ko *=» (3 b e B\A)(A [} {b} e Jf) (exchange). 
A set X a S is independent or dependent according as Xe Jf o r l e @(S)\Jf. 

Since Whitney's paper, quite a lot of work has been done on the notion of abstract 
independence and other axiom schemes have been given ; in particular, the theory 
was greatly extended by Tutte ([61], [62]) who exploited various analogies and ap­
plications to graph theory. 

Whitney only considered the case of finite M, but many basic results can be 
extended to infinite structures if one assumes some additional finiteness type of 
condition. The most common of these is 

13. Jf has finite character. 
If Jf satisfies IX—/3 we call it an independence structure on S; it is determined by 

its finite members. One of the first deductions to be made from /1,2 is that if Jf is 
a finite pre-independence structure, then the maximal independent sets (bases) all 
have the same (finite) cardinality. If Jf is infinite there need not be any maximal 
independent sets, and even when there are they need not have the same cardinality 
[13]. However, if /3 is assumed then it is easy to see that any independent set is 
contained in a basis and moreover the bases all have the same cardinality [57]. 

It follows from the above that if Jf is a pre-independence structure on S, then 
there is an associated rank function 

(3.1) p:&(S)-+{0, 1,2, - . ,00} 

which is defined by 

p(A) = sup{|Z| | Xejf p P(A)} (A c S). 

The basic property of p, which follows easily from the definition, is that it satisfies 

(3.2) p(A) ^ p(B) (AczBcz S), 
(3.3) p(A [)B) + p(A (]B)^ p(A) + p(B) (A, B <= S). 

There is an intimate connection between increasing submodular functions and 
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matroids ([55], [18]): If p satisfies (3.1)—(3.3), then Jtp *= {X c S\p(X) ^ \X\} 
satisfies I\912 (although the rank function of Jtp is not necessarily p). 

It is natural to ask under what conditions a set system /"should have a transversal 
which is independent in some independence structure on S. Rado ([56], [57]) was the 
first to consider this problem and he obtained the following extension of Theorems 
2.1 and 2.3. 

THEOREM 3.1. Let F be a system of finite subsets of S and let Jf be an independence 
structure on S with rank function p. Then Jf f\ TR(F) ^ 0if and only if p(F(K)) 
^ \K\(yKmi). 

This theorem admits the same kind of extensions as Theorem 2.1 and has 
numerous applications (e.g., [2], [3], [65]). 

We deduce immediately from Theorem 3.1 the following analogue of Marshall 
Hall's theorem (Theorem 2.3): If F is a system of finite subsets of S and Jf is an 
independence structure on E, then the statements 

(3.4) Jt p TR(F) * 0 

and 

(3.5) Jt fi TR(F0) ± 0 (VF0<mF) 

are equivalent, Rado [57] proved that this equivalence is actually a characterization 
of independence structures. 

THEOREM 3.2. The nonempty set Jf c 0>(S) is an independence structure on E if and 
only if the statements (3.4) and (3.5) are equivalent for every system F of finite subsets 
ofS. 

As we have already hinted, (pre-) independence structures abound in combina­
torial mathematics apart from the more obvious algebraic ones, but for transversal 
theory the most important example is the following observation of Edmonds and 
Fulkerson [17]. 

THEOREM 3.3. The set of partial transversals ofF, PTR(/% is a pre-independence 
structure. 

This result is not difficult to prove, but it was important for the development of 
the subject since it initiated a new approach for subsequent research. In general, 
PTR(F) does not satisfy 13, but it does if F satisfies the local finiteness condition 
I^OO | < Ko (V x e S), where F~l(x) = {/ e l\ x e Fj} [46]. Theorem 3.3 (and the 
fact that the bases of a finite matroid have equicardinality) immediately gives the 
following result for finite set systems ([33], [39]). 

THEOREM 3.4. IfFe^r and P e PTR(F), then there is Te TR(F) such that P c T. 

For infinite systems this simple argument fails and the proof [51] depends upon 
an extension of the Banach mapping theorem due to 0re. There is an important 
practical consequence of Theorem 3.4. To check (2.1) for a large finite system would 
be both expensive and uninformative, but Theorem 3.4 shows that there is an 
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efficient procedure for actually finding a maximal partial transversal of F which 
does not involve backtracking [29]. 

We call a (pre-) independence structure Jf transversal if Jf = PTR(Z') for some 
F. Not all (pre-) independence structures are transversal, but the problem of de­
ciding whether one is or not is not always easy (see [6]). However, transversal struc­
tures do arise in natural ways. For example, if G — (V, E) is a graph, then the 
matching matroid of G9 JfG = {X c F | 3 an X-matching in G}9 is transversal [17]. 
While it is easily seen that JfG is a pre-independence structure, it is by no means 
obvious that it is transversal. 

The sum 

J4 = 2 Jfj = ( (J X* XjeMf) 

of a system (Jtj\i e /> of pre-independence structures on S is also a pre-independ­
ence structure (and if | / | < Ko and each Jfj satisfies 13 then so does Jf). The 
rank function for Jf is given by 

(3.6) p(A) = m m ( 2 p , W + \A\X\) (A c « , 

where pf is the rank function of Jfj. This important formula was first stated, for 
finite /, by Nash-Williams [48] (it is also implicit in Edmonds [15]); the infinite 
case is proved in [3], [55]. While this result is not difficult to establish (e.g., see [66] 
for an elegant deduction of (3.6) from Theorem 3.1), it provides a useful general 
technique for solving a variety of problems (e.g., [45]). 

As an illustration of the use of (3.6) we give an example due to Nash-Williams 
[48]. Consider the cycle matroid Jfc = {X c E\ X is acyclic} on the edge set of a 
graph G = (V,E). If G is finite, then the rank of a set X <= Eis \ V\ - t(X), where 
t(X) is the number of connected components of the graph (V9 X). The graph G 
contains k edge-disjoint spanning trees provided that E has rank k( | V\ — 1) in the 
matroid sum 2]?=i Jti9 where Jtj = Jfc 0 è i $ k). Thus, by (3.6), we see that a 
necessary and sufficient condition for this is that k(\ V\ — 1) ^ /c(| V\ — t(X)) + 
\E\X\(V X a E). Expressed differently, this condition states that 

(3.7) e(P) Z k(\P\ - 1), 

where P = {V\, •••, Vt} is any partition of Finto disjoint, nonempty sets and e(P) 
is the number of edges of G joining distinct V/s. This result had earlier been proved 
by Tutte [63] and Nash-Williams [47] by more direct but very involved methods and 
this use of the rank formula is a good example of the elegance and insight which is 
sometimes gained through generalization. The argument just used fails for infinite 
graphs, although Nash-Williams [50] has conjectured that (3.7) is sufficient for the 
general case. A more general problem would be to find necessary and sufficient 
conditions for the existence of pairwise disjoint bases Bj of Jfj (i e / ) , when the Jfj 
are matroids on an infinite set 5*. 

In this context it should be mentioned that Edmonds (see [15]) has suggested a 
more general setting for transversal theory by defining a 'transversal' for a system 
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of independence structures (Jf.j | / e /> to be a set T which is the disjoint union of 
bases B{ of Jfj (i e I). The original situation is regained when Jfj is taken to be the 
discretematroid{X c Fj\\X\ S l}on Fj (iel). Many of the basic results of transver­
sal theory extend to this more general setting provided the Jfj are rank finite. For 
example, a generalization of Theorem 3.4 is that any partial transversal of a rank-
finite system (Jtj\ìe/> can be extended to a complete transversal provided one 
exists. For a fuller discussion of this see Brualdi [5]. 

So far we have only considered the existence of transversals of a single set system, 
but it is useful to consider the analogous problem when there are two or more 
systems. For example, Theorems 3.1 and 3.3 together immediately give the 
following extension of the marriage theorem (first proved in [25] in the context 
of flows in networks). 

THEOREM 3.5. The finite systems F = (Fh •••, Fn}9 G = (Gh ••-, Gn) have a 
common transversal if and only if 

\F(K) R G(L)\ £ |tf| + \L\-n (K9L c= {1, 2, ...,/i})f 

A transfinite analogue for Theorem 3.5 of the Schroeder-Bernstein type is the 
following theorem proved by Pym [54] and Brualdi [4]. 

THEOREM 3.6. The systems F = <F, | /e/> and G — <G l | /e/> have a common 
transversal if F has a common transversal with some subsystem of G and G has a 
common transversal with some subsystem ofF. 

It would be useful to have a more quantitative type of condition for the existence 
of a common transversal of two infinite systems. More generally, when do two in­
finite matroids have a common basis? This is not known even for independence 
structures (for a partial solution see [5]). 

Unfortunately, there is no result like Theorem 3.5 known which guarantees the 
existence of a common transversal for three or more systems. A more general 
problem is to find conditions for three pre-independence structures to have a com­
mon independent set of a given size. A solution to these problems would have 
several important consequences. For example, it would enable us to characterize 
those directed graphs having a Hamiltonian path [67]. 

4. Systems with infinite members. The problem of extending Theorem 2.1 to 
arbitrary sytems remains as the central problem of transversal theory and is a 
prototype for similar questions in combinatorial set theory. 

It is easily seen that Hall's condition (2.1) is not sufficient for F e ST even for sys­
tems having a single infinite member, e.g., consider F = <û),{0}, {1}, •<•>. Actually 
Rado and Jung [58] gave an extension of Theorem 2,1 to cover this case. Call a 
subsystem F \ K of F critical if TR(/Ï#) = {F(K)} ; for finite K this is equivalent 
to F\Ke F and |F(Jf)| = \K\. Suppose Fis a system of finite sets and A is an 
infinite set. Then the result of [58] is that F + (A} e F if and only if F e F and 

(4.1) Ac£ U TO-
F ÌK critical 
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Extensions of this have been obtained by several authors ([17], [24], [69], [12], [60]) 
providing necessary and sufficient conditions for F e F in the case when G has 
arbitrarily many finite sets and a finite number of infinite sets. 

Recently, Damerell and I [12] settled a conjecture of Nash-Williams [49] giving 
necessary and sufficient conditions for any denumerable system of sets to have a 
transversal. For X c S, let I(X) = {/ e l\Fj C X} and put 

mQ(X) = \X\ - \I(X)\ if |JT| < GO, 
K ' } = 0 0 if \X\ = oo. 

An obvious necessary condition (essentially (2.1)) for F e ST is that m0(X) ^ 0 
(V X c S). In fact, for a finite set X a S, m^(X) measures the number of 'spare' 
elements in X which would be left over after choosing representatives for the sets 
Fj c X. For infinite X, mQ(X) is simply a first approximation to this number of 
'spare' elements in the sense that in this case there could possibly be infinitely many 
elements left over after choosing representatives for the sets Fj c X, Nash-Williams' 
idea was to find successively better and better estimates for the number of 'spare' 
elements in the following way. If T =(Tn\n < œ} is an increasing sequence of 
subsets of X such that 

(4.3) TQ czT.cz ... c j = [)Tn9 
n<ü) 

then put D(T) = I(X)\ [jn<0) I(Tn). A function/ :0>(S) -+ {0, ± 1, ±2 , . - , ± oo} 
will be called a valuation on S. If fis a valuation on S, denote by A(f X) the set of 
all sequences T = (Tn\n < œ} satisfying (4.3) and such thatf(Tn) =f(T0) < oo 
(n < o)). For Te A(f X) writef(T) = /(To). Now we define a transfinite sequence 
of valuations ma (a = 0) by induction on a as follows. Suppose a > 0 and that mß 

has been defined for ß < a. For X c S we put ma(X) - i n f ^ m$(X) if a is a 
limit ordinal, and for a = ß + 1 put 

ma(X) = inf (mß(T) - \D(T)\) if A(mß9 X) * 0 , 

= oo if A(niß9 X) = 0 . 

Then we have the following result [12]. 

THEOREM 4.1. If\F\ = Ko, then F e ST if and only if 

(4.4) mm{X) = 0 (VXczS). 

Steffens [60] considered the following more qualitative type of condition which is 
somewhat similar to (4.1) and very easy to state : 

(4.5) Fj <£ F(K) whenever i eI\KandF\Kis critical. 

Clearly (4.5) is necessary for F e F and Podewsky and Steffens have recently proved 
the following theorem [52]. 

THEOREM 4.2. If\F\ = Ko, then Fe^r if and only if (4.5) holds. 

Theorem 4.1 and 4.2 both fail for nondenumerable systems. A good test case is 
the system F' = <a| co ^ a < ù)\) which has no transversal by an elementary theo-
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rem on regressive functions, However, both (4.4) and (4.5) are satisfied for this 
system. 

On the other hand, both Theorems 4.1 and 4.2 can be extended to give necessary 
and sufficient conditions for the existence of transversals of denumerable systems in 
some independence structure Jf on S. For Theorem 4.1 the only change needed is 
to replace | X | by p(X) in (4.2), where p is the rank function, The proof of [12] carries 
over with only minor modifications. In order to state the appropriate generalization 
of Theorem 4.2, call a subsystem F \K Jf-critical if Jf. (] TR(F \K) ^ 0 and if B is 
a maximal independent subset of F(K) whenever Be Jf [\ TR(JF \ K). Then it is 
easily shown [42] that, if \F\ = Ko, then Jf f| TR(F) ^ 0 if and only if 
(4.5') Fj does not depend upon F(K) whenever ie I\K and F\ Kis Jf-critical. 

5. Compactness theorems. Let K, X, ß denote infinite cardinals. The cofinality 
cardinal of K is cf K and the succesor of K is K+. We write F e S(K9 X) if\F\ = K and 
\Fj\ - 2, (Viel). Expressions like S(tc9 ̂  /I), S(K, < X) have natural interpretations. 
We say F has property ^r(ft) if F' e ST (V F' c F, \F' \ S /*)• Let T(tc9 À9 fi) be an 
abbreviation for the assertion : 

Fe S(tc, X) & Fe 3T([x) => Fe jr. 

Then Marshall Hall's theorem (Theorem 2.3) asserts that T(tc, < Ko, < Ko) is true 
for every tt. It is natural to investigate if T(tc, X, [/) holds for other triples and W. 
Gustin (see [19], [20]) in the 1950's asked if 

(5.1) -n7TN*Ko,Ki) 
is true. Erdös and Hajnal [21] noted that (5.1) holds in L. More generally, an easy 
consequence of a result of Jensen [34] is the following theorem [43]. 

THEOREM 5.1. If K is regular and not weakly compact and ifX<K, then V = L => 
—iT(tc, I, < K)9 

The hypothesis V = L is not needed to prove (5.1). For example, the system 
F = (Faß\a> Sa<a)iz%ß< ü)2>, where Faß = a x {a, ß} = [jv<a{(v9a)9 (v9 ß)}9 

satisfies Fe S(tf2> Ko) D TTXi) and F$ ST. More generally, Shelah and I proved 
the following theorem [43]. 

THEOREM 5.2, If K is regular, then 

-I/XA;, l9 < K) => - i T(K+9 I, < A;+). 

Since —\T(K+
9 K9 K) holds (consider tc+ identical sets of size K) we deduce from this 

that —ijT(Ka+»> K«, < Ka+w) (a ^ 09 I z% n < a)). However, this leaves several 
questions unanswered. For example, we cannot deduce from Theorem 5.2 whether 
~^T(/c9 Ko, < tò holds for K ^ Kw Theorem 5.1 shows that we cannot prove the 
falsity of this for K = /LL+

9 but (rather surprisingly) it is false for singular tc. Very 
recently Shelah (unpublished) has proved the following result, 

THEOREM 5.3, Ifcf K < K andl < K9 then T(K9 A, < /c). 

It is easily seen that this theorem of Shelah is best possible in the sense that X 
cannot be replaced by < tc. More precisely, we have that cf K < K=> —ïT(K9 <K9 <tc). 
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To see this consider the system 

F*= <{a}\aeK\cy + ([KP,KP+1)\P < fx) + <C>, 

where /LL = cf tc < K9 C = {A:̂  | p < fx} is a closed, cofinal subset of K and [A:̂ , tcp+\) 
= {al/Cp ^ a < Kp+i}. It is easily seen that F $ ST whereas F' e &~ for every 
proper subsystem F' §i F. 

Theorem 5.3 shows that the regularity of tc is an essential hypothesis in Theorem 
5,1. So also is the condition that K not be weakly compact. We have the following 
very simple theorem. 

THEOREM 5.4. If K is weakly compact then T(K, < tc, < K). 

This can be proved in the same manner that Henkin [32] proved Marshall Hall's 
theorem. One of the several equivalent characterizations for K to be weakly compact 
is that the infinitary propositional calculus which permits the conjunction of < K 
formulae is /^-compact. Suppose F e £/>(&, < K) fi ST(< te). We can assume that F = 
<JF,.| i < K) and that Fj a tc. Consider the set of A; sentences 

S = { V pXj\ i < A;} U {-^(Pxi A pxJ)|x < K9 i 7* j < fc}9 

where pxi is a propositional variable (with intended meaning "xeFj"). The 
hypothesis ensures that any subcollection of <tc sentences of S has a model, and 
hence S has a model if tc is weakly compact, i.e., F e &~. In a similar way, as Jech re­
marked, one can prove a more exact analogue of Theorem 2.3 for large cardinals : If 
X is supercompact and tc = X, then T(tc, < X, < X). It should be possible to prove 

(5.2) T(K, <tc9 < tc) => K weakly compact, 

but at present this is still open. 
Theorems 5.1 and 5.2 show that one cannot, in general, decide if F e &~ by ex­

amining all small subsystems of F. However, we do have the following compactness 
type of result [43]. 

THEOREM 5.5. IfFQ e y>(tc, < Ko), ^ i e &tt, = X) and F = F0 + Fu then 

(5.3) Fe3ToFezr(X). 

For example, this enables us to extend Theorems 4.1 and 4.3 to the case where F 
contains countably many denumerable sets and an arbitrary number of finite sets. 
Cudnovskiï [9] has obtained the following more general theorem: If frX^v^o) 
and the infinitary language Lv+i(t} is (/j,, X)-compact, then (5.3) holds if FQ e <y(tc9 < Ko) 
andFxeSf(tJ,9 ^ v). 

I conclude this section by mentioning some related results about the properties 
@ and 0&\ introduced in § 2. First I state one of Miller's original results since there 
remains an interesting unsolved problem, Miller [40] proved that if F e £/>(K, ^ X) 
and n < Ko, then 

( V F cF)(\F'\ > X=>\Ç)F'\ <n)=>Fe<%. 
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This result is easily seen to be best possible in the sense that n cannot be replaced 
by Ko- F ° r example, let A = (Aj | / < co} be a system of Ko disjoint denumerable 
sets, let {Tp\p < 2Ko} be all the transversals of A and let {Cp\p < 2Ko} be any set 
of 2Ht almost disjoint (i.e., \Cp f| Cff\ < \Cp\ for p ^ a) infinite subsets of co. 
Then the system F *= A + (Tp\Cp\p < 2*°) e &>(2*\ Ko) and 

(5.4) | ^ n ^ | < K o O V / ) , 

but F $$, One of the problems stated in [19] which still remains unsolved is 
whether (under the assumption that 2Ko > Ki) there is FeSfâu Ko) s u c h that 
(5.4) holds and F$&. 

We say ^has property ®({JL) if F' e m (V F1 c F9 \ F' \ S /*)• Let ffl(tc9 X9 y) denote 
the assertion: Fe £P(tc, X) Sc Fe^(fJ) => Fe ffl. Similarly, we define ^\([x) and 
(%\(K9 X9 fi). Essentially the same proof used to establish Theorem 5,4 above also 
gives that B(tc9 < tc, < tc) and Bi(tc9 <K,<K) are true if A; is weakly compact. Similar 
to Gustin's problem (5.1), Erdös and Hajnal [19] asked if the statements 

(5.5) ^2?(K2, Ko, Ki), 

(5.6) -T*i(K»Ko,Ki) 

are true. Wçglorz [64] proved (5.6) assuming 2*° = K2 G-e., (5.6) is consistent) 
and recently Cudnovskiï [8] proved this without any additional assumption. The 
same authors also proved (Wçglorz assumed GCH, Cudnovskiï without GCH) 
the following theorem. 

THEOREM 5.6. BI(K9 < K9 < tc)o tc is weakly compact. 

The corresponding problems for property @, like (5.2), remain open. In this con­
nection, I should like to mention one additional new result due to Komjath and 
Hoffman [35] which gives a connection between the transversal property and 
property ^ . 

THEOREM 5.7. If Fis a system of infinite sets, then Fe^ => Feffi. 

6. Almost disjoint transversals. In this final section I shall discuss some recent 
results in set theory which relate to questions of the form : "how many almost disjoint 
transversals does a set system have?" Such questions were first considered in [22] 
and [41], and recently K. Prikry and J. Baumgartner used results of this kind to give 
elementary proofs of a remarkable new result (Theorem 6.1) of J. Silver [59]. 

Let A; be a singular cardinal not cofinal with co, i.e., co < X = cf tc < tc9 and let 
C = {tcp\p < X} be any closed cofinal set of cardinals in tc. In [22] Erdös, Hajnal 
and I proved the following result: If /LL* < tc (ju < tc) and S is a stationary subset 
ofX, and if T is a set of almost disjoint transversals of the system F = (tcp | p e 5>, 
then I r | = K. The elementary proofs given by Prikry and Baumgartner of Silver's 
theorem can be described in terms of the following extension of «this result. 

LEMMA 6.1. If jil < K((â < tc) and S is stationary in X9 and if T is a set of almost 
disjoint transversals of the system F = <A;+ | p e S} then \ T\ z% A:+P 

After Cohn [10] proved the independence of the continuum hypothesis, it was 
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natural to investigate what possible values 2H« could assume. Easton [14] proved 
that if h is any ordinal valued function satisfying (i) a ^ ß => h(a) S Kß) and 
(ii)cf(KÄ(a)) > K«, then it is consistent (with ZFC) that 2*« = KA<«) (Ka r e g u ' a r ) -
In view of this arbitrariness for the possible values of 2^ for regular /x, it was 
therefore very surprising when Silver [59] recently announced the following theorem. 

THEOREM 6.2. If co < cf tc < tc and A = {a < tc\ a cardinal and 2a = a+} is sta­
tionary in tc, then 2K — tc+. 

In particular, this shows that if GCH holds below Kw, (i.e.,2K« = Ka+i (<* < ^i)), 
then 2««, = Kan+l. 

Silver's original proof uses sophisticated model theory but Prikry and Baum­
gartner gave an elementary combinatorial proof based upon Lemma 6.1. To obtain 
Silver's theorem from the lemma we argue as follows. If A is stationary in tc, then 
[i1 < K (fj, < tc) and A f| Cis stationary, i.e., S = {p < X\2*' = KJ} is stationary 
in X. Since \0>(KP)\ = A:+ for peS, we can write 0>(tcp) = {x$\ v < tcj} (p^S). 
Then, for each X a tc, there is a transversal function cpx of F = <A:+ | p e S) defined 
by (Px(p) = voX {) tcp = x?. Clearly <pX9 <py have almost disjoint ranges if X # 
Y a tc and therefore, by the lemma, | &>(tc) | ^ tc+. 

PROOF OF LEMMA 6.1. We will assume that Tis a set of tc++ almost disjoint trans­
versal functions and deduce a contradiction. 

Note that S0 = {p e S\p a limit ordinal} is also stationary in X. For cjj, tp e Tput 
S(<j), <p) = {pe SQ\<J)(P) < (p(p)}, and let G(<p) = {0e T\ S((J>, (p) is stationary in X}. 
Gissi set mapping on /'(i.e., tp $ G(tp)) and 

(V(J>,<peT)(<J)ï<p=>(/>e G(<p) or epe G((j))) 

since S(<j), <p) U S(<p9 <J>) is a final section of So- Therefore, by a well-known theorem 
on set mappings (e.g., [26]), it follows that | G(<p0) | ^ tc+ for some <pQ e T. 

Since <pG(p) < tc^ (V peSG)9 there is an injective map hp:<pQ(p) -> A;P. Also, if 
<J) e G(<po) and p e S((p, <po)9 then there is o^p) < p such that h(<p(p)) < tca^p) 
(since {tcp\p < X) is closed and p is a limit ordinal). Now a^ is regressive on the 
stationary set S(<p, <po) and hence there are A$ c S and p<j, < X such that l ^ l = ^ 
and <7̂ (|o) < p0 (V peA^). There are only 2*->l < A:+ different pairs (.4,0 with 
A c X, C < /I, and hence there is G' c (j(po) such that | (7 | = A;+ and (A$9 p$) = 
(>4, Q (V (]) e G'). Since n{^ tc it follows that there are <J)\9(p2e &' s u c h that ^(p) = 
02(|o) (V pe A) and this is a contradiction since | >41 = X and the members of T are 
pairwise disjoint. 

It should be mentioned that Prikry has since obtained more general results than 
Lemma 6.1 and Theorem 6.2 by using refinements of the above argument. He also 
proved the following interesting companion result. 

THEOREM 6.3. Suppose that Tis a set of almost disjoint transversals of the system 
F= (Fp\p < tc)9 where \Fp\ < 2«« (p < tc) and o) < cf K = tc < 2*\ If 2^ is real-
valued measurable, then | T\ < 2Ns. 

Obviously, the condition that cf tc > œ is essential. 
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Finally, I conclude by mentioning a strong result of the Silver type which was 
obtained (independently) by Hajnal and Galvin by using an extension of these 
ideas on almost disjoint transversals. 

THEOREM 6.4. If œ < cf tc < tc ?= tfa and 2P < tc (V p < tc), then 2K < K(2-
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One of the problems discussed in Swan's talk on algebraic J£-theory at the Nice 
Congress was to find the "good" generalization of the groups K0A and K\A of Bass 
to a sequence of groups KnA9 n e Z. This problem has since been solved, and 
considerable progress has been made toward understanding these higher Z-groups. 
In this article I want to describe these developments and to discuss some of the 
problems in the theory awaiting solution. 

1. KQ and K\. Let A be a ring (supposed always to be associative with identity) 
and let 0>A be the category of finitely generated projective (left) A -modules. The 
group KQA is defined to be the Grothendieck group of &>A. It is the abelian group 
with one generator [P] for each P in 0>A and one relation [P] = [Pf] + [P"J for 
each short exact sequence 0 - > P ' - + P - > P " - + 0 . 

Following Bass, one defines K\A to be the group GL(A)jE(A) appearing in 
Whitehead's theory of simple homotopy types. Here GL(A) = [j GhnA is the 
group of invertible infinite matrices over A equal to the identity matrix except for 
finitely many entries, and E(A) is the subgroup generated by elementary matrices 
efj = 1 + aeih i ï j . 

The book of Bass on algebraic X-theory demonstrates how rich the theory of the 
functors KQ and K\ is. The problem of higher ICs consists in extending these func­
tors to a sequence of functors Kn9 n e Z, in such a way that the known results about 
KQ and # i can be generalized insofar as possible. Examples due to Swan show that 
the excision property does not extend, but many results do, such as the following 
which shows that the functor KQ is determined by K\. Let A[z9 z~l] be the ring of 
Laurent polynomials 2 Qn

zn *n the indeterminate z over A. 

{ © 1975, Canadian Mathematical Congress 
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THEOREM 1. There is a functorially-split exact sequence 

0^KxA^ KxA[z] ® KiA[z-*\ -+ Kx[z9 z"i] -+ KQA -+ 0. 

2. Kn for n < 0. Because of Theorem 1 it is natural to define Kn for n < 0 
recursively using the formula 

KnA = Cokcr {KnA[z] 0 KnA[z~l] -> KnA[z, z"1]}. 

Bass showed this definition leads to a good theory of negative if-groups, and, in 
particular, that Theorem 1 continues to hold with KQ and K\ replaced by Kn and 
Kn+i for n < 0. 

A simpler formula for these negative AT-groups was found by Karoubi. Let CA 
be the ring of matrices (aij)9 1 :g /, j < co, over A which are finite A -linear com­
binations of matrices having entries 0 and 1, and at most a single 1 in each row and 
column. Karoubi defines the suspension of A9 denoted SA, to be the quotient of 
CA by the ideal of matrices with finitely many nonzero entries. SA is a discrete 
analogue of the Calkin algebra of bounded operators modulo compact operators 
on Hilbert space. He has proved 

THEOREM 2. K_nA = K0(S
nA) = K^S^A) for n g 0. 

Moreover he has characterized the negative X-groups axiomatically as derived 
functors of KQ in a suitable sense. 

For the simplest commutative rings such as fields and Dedekind domains, the 
negative X-groups are not very interesting, for Bass has proved quite generally 
that KnA = 0 for « < 0 if A is regular noetherian. 

3. Milnor's K2. The group E(A) is generated by elementary matrices efj9 among 
which hold certain obvious relations. Milnor defines the Steinberg group St(A) to 
be the abstract group with generators x%j subject to these obvious relations, and he 
defines K2A to be the kernel of the canonical epimorphism St(A) -> E(A). Since 
St(^) turns out to be the universal central extension of E(A), K2A can also be 
described as the Schur multiplier of the perfect group E(A). 

When F is a field, a theorem of Matsumoto gives a presentation of K2F which 
has been used by Tate and Bass to describe fairly completely the behavior of K2 

for fields, especially number fields. Matsumoto's theorem has been generalized to 
other classes of rings by Dennis, Stein, van der Kallen and others, giving one a 
hold on the K2 of these rings. 

4. Kn for n ^ 1 as homotopy groups. To go beyond K2 it seems necessary to use 
homotopy theory and define Kn as the nth homotopy group of a suitable space (or 
something essentially equivalent such as a semisimplicial group). Definitions of this 
type have been given by Swan, Gersten, Volodin, Wagoner, and myself. One of the 
achievements of the past four years has been the demonstration that these def­
initions are equivalent. The definition best suited to my purposes here is based on 
the following easy result of homotopy theory. 

PROPOSITION. Let X be a connected CW complex with basepoint, and let N be a 
normal subgroup of %\X which is perfect, i.e., equal to its commutator subgroup. 
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Then there exist a CW complex Y and a mapf.X -> Y such that 
(i) %\(f) induces an isomorphism itiXjN cn %x Y. 
(ii) For any %\ Y-module L and integer q the map f induces an isomorphism 

Hq(X9f^L)*Hq(Y9L). 
Furthermore, the pair (Y9 f) is determined up to homotopy equivalence by these 

two properties. 
Applying this result to X = BGL(A), the classifying space of GL(A), and to 

N = E(A) a GL(A) — 7C\X9 we obtain a space which will be denoted BGL(y4)+. 
We set KnA = 7CnBGL(A)+. It is easy to prove this agrees with the Bass Ki and the 
Milnor K2. 

The space BGL(̂ 4)+ is an //-space, and, moreover, the canonical map BGL(>4) -> 
BGL(,4)+ is universal among maps from BGL(A) to an //-space. Thus BGL(A)+ is 
obtained by altering BGL(A) in the least possible way so as to make it an //-space. 
One can think of BGL(>4)+ as analogous to the infinite Grassmannian of the 
topological ^-theory of Atiyah and Hirzebruch. 

5. Some computations. Because BGL(A)+ is an //-space with the same homology 
as BGL(̂ 4)5 one approach to the computation of KnA for n ^ 1 would be to com­
pute the homology of BGL(^t), and then try to use the known relations between 
homology and homotopy for //-spaces. For example, one has that KnA ® Q is 
isomorphic to the subspace of primitive elements of Hn(BGL(A)9 Q). Borei, com­
pleting earlier work by Garland, has computed these homology groups by means of 
differential forms and Hodge theory on quotients of symmetric spaces by arith­
metic groups. He obtains the following: 

THEOREM 3. Let A be the ring of integers in a number field having r± real and r2 

complex places. Then the dimension of KnA ® Q is 1 for n = 0, rj + r2 — 1 for 
n = 1, and for n ^ 2 it is 0, r\ + r2i 0, r2 ifn = 0, 1, 2, 3 (mod 4), respectively. 

In the case of the finite field Fq9 I showed by homology computations that 
BGL(jF9)

+ is homotopy equivalent to the fibre of the map Wq — 1 from BU to 
itself, where Wq is the map corresponding to the #th Adams operation. From 
Bott's determination of %*BU9 one concludes: 

THEOREM 4. K0Fq = ZandK2iFq = Ofor i ^ 1. K2i_iFq is cyclic of order q* - 1 
for / ^ 1. 

6. The ÄT-spectrum of a ring. Gersten and Wagoner have independently proved 
the following extension of Theorem 2. 

THEOREM 5. The space û BGL(SA)+ is canonically homotopy equivalent to K0A x 
BGL(^)+. Consequently Kn+1(SA) *= K„A for all n. 

It follows that the sequence of spaces KQ(SnA) x BGL(SnA)+ is an ß-spectrum, 
whose wth homotopy group is KnA. For A commutative, Loday has shown that the 
tensor product operation on &A induces products in the generalized homology 
theory associated to this spectrum. In particular, there are products K(A ® KjA -> 
Ki+jA in this case. 
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The generalization of Theorem 1 to positive ^-groups has been established by 
Waldhausen and myself. Thus the exact sequence holds with K0, Ki replaced by 
K„, Kn+i for all n. 

7. Ä-groups of exact categories. Even if one is primarily interested in the ^-theory 
of projective modules, it is necessary for technical reasons to work with the K-
theory of other categories of modules. Hence one is led to define higher X-groups 
for additive categories equipped with a suitable notion of exact sequence which I 
call exact categories. 

Let stf be an abelian category, e.g., the category of modules over some ring. Let 
Jt be a full subcategory of j / containing zero, which is closed under extensions in 
srf in the sense that if 0 -> M' -> M -> M" -> 0 is a short exact sequence and if M' 
and M" are in M9 then so is M. Call a sequence in M exact if it is exact in j / . Then 
J// equipped with this notion of exact sequence is an example of an exact category, 
and every exact category is equivalent to such an M. 

To define the i^-groups of M, we introduce a new category Q(J4) having Ihe 
same objects as M but with morphisms defined in the following manner. By an 
admissible layer in an object M of M, we will mean a pair of subobjects M\, M2 of 
M such that M\9 M2\M\, MjM2 are objects in Jt. A ß(^)-morphism from M' to 
Mis defined to be an isomorphism M' ~ M2\M\ where (MÌ9 M2) is an admissible 
layer of M. 

Assuming M is a small category, Q(J4) has a classifying space BQ(Ji)\ it is the 
geometric realization of the semisimplicial set whose /?-simplices are chains MQ -> 
Mi -» ••• -+Mp of arrows in a small category equivalent to Q(Jf). We put Kn(J{) 
= xnH(BQ(J0), n^O. 

It can be easily shown that this definition gives the usual Grothendieck of M 
when n = 0. Somewhat less trivial is the fact that Kn(0>A) coincides with KnA 
for n ^ 0. At the moment a theory of negative ÄT-groups for exact categories has not 
been developed. 

8. Localization. I shall illustrate some of the points of the higher ^-theory of 
exact categories by outlining the proof of the following localization exact sequence. 
The overall form of the argument, incidentally, goes back to Grothendieck's work 
on Riemann-Roch. 

THEOREM 6. Let A be a Dedekind domain with field of fractions F. One has an exact 
sequence 

-> KfMF -> 0 Kn(A/m) -> KnA -+ KnF -+ 
tn 

where m runs over the nonzero maximal ideals of A. 

To simplify, we suppose A has a single maximal ideal m ^ 0. Let J£A be the 
category of finitely generated ,4-modules, and let F'A be the full subcategory of 
torsion modules. 

The first step of the proof consists in showing that the inclusion of 0PA in MA 
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induces isomorphisms: K*A = K*(&A) c± K*(MA). This follows from the fact 
that every M in Jf A has a finite resolution by objects of &>A, using a general 
theorem about resolution which affirms that the map BQ(&>A) -> BQ(JfA) is a 
homotopy equivalence under these circumstances. 

We identify &A /m with the full subcategory of &' A containing the modules killed 
by m. The second step is to show K+(Am) = K%(0>A/m) is isomorphic to K^fJ?A), 
This follows from the fact that every object of ST'A has a finite filtration whose quo­
tients are in &A/m9 using a general result on dévissage. 

The theorem now results from the exact sequence 

-+ Kn+\i?F) ~> Kn(3TA) -+ Kn(JfA) -+ Kn(&F) -* 

which follows from the homotopy exact sequence of a fibration, once it is proved 
that BQ(ZTA) -> BQ(JtA) -> BQ(&>F) has the homotopy type of a fibration. This 
point is established by applying suitably the Dold-Thom theory of quasi-fibrations 
to the classifying spaces involved. 

9. Problems. First, let me point out that many of the results known about KQ9 

KI, K2 can be formulated for all the Kn. In this way one can generate a huge list of 
interesting unsolved problems in higher algebraic Ä-theory. 

Narrowing the field somewhat, I shall suppose A to be a regular noetherian com­
mutative ring, because such rings have simpler ÄT-theory, e.g., the negative groups 
are zero. The localization sequence (Theorem 6) can be generalized to a spectral 
sequence relating K*A to the ^-groups of the residue fields of the different prime 
ideals of A. Unfortunately, almost nothing is known about Kn of a field for n > 2, 

Suppose in addition that A is finitely generated as an algebra over Z. Bass has 
posed the question of whether KnA is a finitely generated abelian group for all n. 
I showed this to be true if the Krull dimension of A is ^ 1, but the general case is 
still open. At the moment the computation of Kn for rings of integers in number 
fields is stuck at K^Z; one knows this group is finite, and Karoubi has shown it 
has at least 48 elements, but it is not known whether there are any others. 

The work of Tate on K2 of global fields suggests that KnA might be related to 
the étale cohomology of Spec(̂ (). To be more precise, one might hope to have a 
spectral sequence, analogous to the Atiyah-Hirzebruch spectral sequence of 
topological X-theory, starting with the étale cohomology groups 

Ef = //'(Spec 4[/-i]) = 0, q odd, 
= Zi(i), q=~ 2/, 

whose abutment would coincide with K^p_qA ® Z\ at least in degrees —p — q > 
1 + d, where d is the Krull dimension of A. lì A is the ring of integers in a 
number field, and either / is odd or A is totally imaginary, this spectral sequence 
would degenerate, yielding cohomological formulas for the Z-groups conjectured 
by Lichtenbaum. 

Before one could expect to derive such a spectral sequence, it would be necessary 
to understand what happens for algebraically closed fields, which are points for 
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the étale topology. In this case we have the following conjecture due to Lichten-
baum, which I like to think of as an analogue of Bott periodicity. 

CONJECTURE. Let F be an algebraically closed field of characteristic exponent p. 
Then for i ^ 1, K2iFis a divisible torsion-free abelian group, and K2i^\Fis a divisible 
group whose torsion subgroup is isomorphic to QIZ[p~1]. 

This conjecture is true for Kx and K2, the case of K2 being a theorem of Tate. 
It is true if F is the algebraic closure of a finite field by passage to the limit in 
Theorem 4. One can also prove that when p > 1, the group KtF is uniquely p-
divisible for / ^ 1, this being a general result about perfect rings. The conjecture 
is equivalent to the assertion that for each prime number / ^ p, the cohomology 
ring //*(BGL(F), Z/IZ) is a polynomial ring with generators of degrees 2, 4, 6, etc. 

10. References. The basic reference for higher algebraic ^-theory is Volume I 
of the Proceedings of the Conference on Algebraic ^-theory held at Battelle, 
Springer Lecture Notes in Mathematics, No. 341. Nearly everthing treated in this 
article is covered in this book. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

CAMBRIDGE, MASSACHUSETTS 02139, U.S.A. 



Proceedings of the International Congress of Mathematicians 
Vancouver, 1974 

Applications of Time's Method in Various 
Branches of Number Theory 

Wolfgang M. Schmidt* 

1. Hermite's [1873]1 proof of the transcendency of e is roughly as follows. Con­
struct polynomials PQ(X)9 •••, Pd(x) such that 

R(x) = P0(*) + Px(x)e*+ — + Pd(x)edx 

has a zero of high order at x = 0. Suppose each polynomial P{(x) is of degree ^ m. 
Then each Pf(x) has m + 1 coefficients at our disposal, and altogether there are 
(d + \)(m + 1) coefficients at our disposal. Now in R(x) = cQ + c\X + •••, each 
coefficient c;- is a linear combination of the coefficients of the polynomials Pj(x). If 
we set Nz= (d + l)(m + 1) — 1, then c0 = c\ = ••• = cN„\ = 0 are Nlinear homo­
geneous equations in the coefficients of the Pt(x)9 and since N < (d + \)(m + 1), 
we have fewer equations than unknown coefficients. Thus we can find nonzero 
polynomials PQ(X), •••, Pd(x) such that R(x) has a zero of order ^ N. 

Now Hermite did not rely on this existence argument. He actually constructed 
polynomials with the desired properties. In our present setting there is a unique 
function R(x) with the desired properties such that the first nonvanishing coef­
ficient is cN = 1. It turns out that R(l) is positive but quite small. The polynomials 
Pi(x) have rational coefficients, the size of whose numerators and denominators 
can be estimated. Now if e were algebraic of degree d9 then R(l) would be algebraic 
of degree d and quite small. One could estimate the size of the conjugates of R(\)9 

with the result that for large m (which is still at our disposal) the norm of R(l)9 i.e., 
the product of R(l) and its conjugates, is quite small. But the norm of a nonzero 
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algebraic integer is at least 1 in absolute value, and JR(1) is in a sense not too far 
from being an algebraic integer, so that its norm should not be too small. Thus a 
contradiction is obtained. 

2. Thue [1909] proved the famous theorem that if a is a real algebraic irrational, 
then there are only finitely many rationals pjq with 

G) W-(p/q)\ <q~ï9 

provided that JJ, > | d + 1 where d is the degree of a. For d > 2 this is an im­
provement over a theorem of Liouville [1844] which asserts that | a — (p/q) | ^ 
c(a)q~d. 

Before discussing Thue's proof, let us remark that the denominators of two 
distinct good approximants p/q and p'/q' cannot be close together. For if, say, 
| a - (p/q)\ < 9^9 \<* - (p'lq')\ < q'~v> and if qp S q'», then 

Thus q' ^ | qf~l
9 i.e., q' is rather larger than q. 

Thue's first step was to construct, for each n> polynomials P(x)9 Q(x), PQ(X), •••, 
Pd-\(x) with rational coefficients, such that 

(2) P(x) - aQ(x) = (x- <XY(PQ(X) + P,(x)a + - + Pd-i(x)ad^) 

identically in x. This identity means that if we write the right-hand side as RQ(x) + 
R\(x)a H- ••• + Rd-i(x)ad~i with polynomials R{(x) with rational coefficients, then 
J?2(x)5 '"9Rd-\(x) are identically zero. The coefficients of R2(x)9 '-9Rd-i(x) are 
linear combinations of the coefficients of PQ(X)9

 m~9Pd-\(x). If we specify that 
deg Pj(x) ^ m (j = 0, 1, •••, d — 1), then we have d(m + 1) coefficients at our 
disposal, and it may be seen that if, say, m^\dn9 then we have more unknown 
coefficients than linear conditions imposed on them. Thus there is a nontrivial 
solution of (2). 

Now if pjq is a very good approximation to a, then with x = p/q both sides of 
(2) become small, so that P(p/q)/Q(p/q) = PJQn>

 s ay (after all it depends on n)9 

is again a good approximation to a. One thus obtains a sequence of good approxi­
mations with denominators ß i < Q2 < ••• which do not grow too fast. Now if 
p'/q' were another very good approximation to a with large denominator qf

9 the 
construction could be rigged so that the PJQ„ differ from p'/q'. The denominator 
qf would lie between some Qn, gM+1. Thus we would have a very good approxima­
tion p'/q1 and a good approximation (either PJQn or Pn+i/Qn+i) whose deno­
minators are close together, thus violating the principle stated above. 

Thue's argument is ineffective. We need two very good approximants p/q and 
p'/q'9 where q is large and where q' is much larger than q. Thus a single good ap­
proximation gives no contradiction, and we cannot get a bound on the size of the 
denominator of a very good approximation. This noneffectiveness does not come 
from the fact that we have no explicit construction of the polynomials above. 

This idea of asserting the existence of certain polynomials rather than explicitly 
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constructing them is the essential new idea in Thue's work. As Siegel [1970] points 
out, a study of Thue's papers reveals that Thue at first tried hard to construct the 
polynomials explicitly, and he actually could do so when a is a rfth root, i.e., when 
ad is rational. 

3. The two approximants p/q and p'/q' which occur in Thue's argument were 
put on a more equal footing by Siegel [1921], who constructed a polynomial P(x9 y) 
in two variables with a zero of high order at (a9 a). Now itpi/qi &ndp2/q2yvere two 
very good approximants, then P would also have a zero of high order at the rational 
point (p\/q\9 p2/q2). The idea now is to show that this cannot happen for such a 
rational point. Here serious difficulties arise, and one can push the argument 
through only if qx is large and q2 is much larger than q\. In this way Siegel weakened 
Thue's condition /*>•£•*/+ 1 to / /> 2\/TL 

Finally Roth [1955] improved the condition to fj, > 2 by using a large number of 
approximants, say k approximants. He constructed a polynomial P(xÌ9 •••, ;eÄ) in fc 
variables with a zero of high order at (a9 •••, a). If Pi/q\9 --^Pk/qu w e r e very good 
approximants to a, then P would also have a zero of high order at (p\/q\9 -"9Pk/qk)-
The great difficulty now is to show that P cannot have a zero of high order at such a 
rational point. Roth surmounted this difficulty in a very ingenious way by proving 
a certain lemma, which is now called Roth's lemma. 

The Siegel-Roth results use Thue's idea of constructing polynomials with 
certain properties by setting them up with undetermined coefficients, and by 
noting that the desired properties amount to linear conditions on the coefficients, 
which are fewer than the number of available coefficients. Thus the polynomials 
are not constructed explicitly. The transcendence results of Siegel [1929], Gelfond 
[1934], and Schneider [1934] also make use of this principle. Auxiliary functions 
are constructed which have certain zeros of high orders, and this is achieved by 
setting up polynomials with undetermined coefficients. The same is true of the 
transcendence results of Baker [1966], which also imply an effective but weaker 
version of Thue's theorem. 

4. A few years ago (Schmidt [1970] ; see also the survey paper [1971]) I generalized 
Roth's theorem to simultaneous approximation. It is becoming increasingly clear 
that the central theorem on simultaneous approximation is the following 

SUBSPACE THEOREM (SCHMIDT [1972]). Let Li(x)9 •••, Lm(x) be m linearly indepen­
dent linear forms with real or complex algebraic coefficients in vectors x «= (x\9 •••, 
xm). Write |[ jc || = max(|x!|, ••-, \xm\), Given e > 0, there are finitely many proper 
rational subspaces S\9"-9Sh of m-dimensional space, such that every solution X ^ 0 
with rational integer components of\Li(x) ••• Lm(x)\ < \\x\\~e lies in one of these 
subspaces. 

To deduce Roth's theorem, set 

L\(x\9 x^) = ax\ — x2, L2(x\9 x^) = X\. 

Now if |a - (p/q)\ < q~z~£, then x = (q9 p) has q ^ ||x|| ^ cq9 whence 
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\Li(x)Idx)\ = \(aq-p)q\ < q'° < | |x| |-"a 

if q is large. All the solutions lie in finitely many proper subspaces, i.e., 1-dimen-
sional subspaces. In such a subspace p/q is fixed, and hence we get only finitely 
many rationals p/q. 

A similar situation pertains with respect to simultaneous approximation. Sup­
pose 1, a\9 •••, an are real, algebraic, and linearly independent over the rationals. Set 
m = n -f- 1 andx = (XQ, X\, ••',x„)and LQ(x) = XQ,L{(X) = OùìXQ — xt-(i = 1, •••,»). 
Then ifp\/q9 •••, pjq is a simultaneous rational approximation to oc\9 •••, a„ with 

(3) |«i - (pi/«)| - \ccn - (ft/?)! < tf-»-1"*, 

the w-tuple x = (q,pÌ9 -"9pn) has | L0(JC) • • • Ln(x) \ < || x \\ ~~£ / 2. The solutions of this 
inequality lie in some proper subspaces. If such a subspace is given by an equation 
cQq + cj/?i+ ••• + cnp„ = 0 with rational coefficients c0, •••, cn9 then 

c\(ai - Q>i/?)) + ••• + cn(an - (pjq)) = c0 + cxai + ••• + cwa„ ^ 0 

by the linear independence of 1, a\9 •••, aM over the rationals. Hence there is some 
\cci — (Pi/q)\ which is not very small; say 
product |ai - (Pi/q)\ ••• |a„_i - (/Vi/?) 

aw - (/>„/#) | is not very small. Then the 
is small. Using induction on n, one sees 

in this way that (3) has only finitely many solutions. 

5. Let K be a number field, let | |„ be the valuations of K and let Nv be the usual 
exponents such that the product formula fl v | £ | ^ = 1 holds for £ =£ 0 in K. Define 
the height of an «-tuple £ = (£b ••-,£„) in 7£w by 

//(?)= nmaxo,!^!^...,!^!^). 
V 

It can be shown that if 1, oc\9 •••, an are algebraic and linearly independent over X, 
then there are only finitely many ÇeKn with 

h - £ i | " - | a w - £ w | <//(£)-»-*-'. 
Since in the rational field 

H(pi/q9 '~,Pnlq) = max(|gr|,|pi|, •••, \pn\) » \q\, 

this is a generalization of (3). The case n = 1 is due to LeVeque [1955]. 
In fact, if K is of degree d9 if the conjugates of an element £ of K are £(1>, • • •, £{d), 

if the conjugate fields of KeLreKa), •••, Ä"(rf), then the following holds (Schmidt, 
[1975]). Suppose that, for 1 ^ i ^ d, the numbers 1, art> •••, a,„ are algebraic and 
linearly independent over Ku). Then there are only finitely many l*eKn with 

n fi min(l, {a» - £f |) < H(g)~*-i-: 

The case « = 1 was done by Mahler ([1961], [1963]). A/?-adic version was given by 
Schlickewei (to appear). 

One can show that if a is algebraic of degree > d9 then there are only finitely 
many algebraic numbers £ of degree d (in any field) with \a - £| < H(^Yd~l~£. 
Similarly, if P(x) is a polynomial with rational integer coefficients of degree > d9 
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there are few polynomials Q(x) with rational integer coefficients of degree d such 
that the resultant of P and Q is small. 

6. Siegel [1929] used his results on approximation to algebraic numbers to 
classify all polynomial equations F(x, y) = 0 which have infinitely many solutions 
in rational integers x9 y. Already Thue [1909] had observed that if F(x9 y) is an 
irreducible form of degree > 2 with integer coefficients, then an equation 

(4) F(x9y) = c 

has only finitely many solutions. Now if F(x, 1) has the root a, then F(x9 y) is, 
except for a constant factor, equal to (x — aa)y) ••• (x — a^y), i.e., the norm of 
x — ay. Thus Thue's equation is a special case of a norm form equation 

^(«1*1 + ••• + anxn) = c9 

where a\9 •••, an are linearly independent (over the rationals) elements of a number 
field K, and where 9? denotes the norm. For a wide class of norm form equations, 
there are only finitely many solutions. But there are exceptions. For example, in 
3l(x + */2y + VJz) = c with the field K = Q(</29 </3)9 it is clear that if x + */2y 
is a particular solution, i.e., if $l(x + \/2y) = c, then if we multiply x + ^/2y by a 
unit of Q(A/2 )9 we obtain again a solution. Thus we obtain certain well-defined 
"families of solutions". It can be shown (Schmidt [1972]) that there are only finitely 
many families of solutions. Baker's [1968] famous work gives an effective method 
to decide whether a Thue equation (4) has a solution. We have at present no such 
method for norm form equations in more than two variables. But by combining 
Baker's results with the theory of families of solutions one gets an effective method 
to decide if there are infinitely many solutions, provided the number of variables 
is at most five. 

As a special application, Fujiwara [1972] showed that if K = Q(a) is a number 
field of degree d > 2n9 then the norm form equation 

31(XQ + axi + ••• + anxn) = c 

has only finitely many solutions. 
Let K be a number field of degree d. It may or it may not have an integral basis 

of the type 1, a9 •••, a
d~l

9 i.e., a so-called power base. If a has this property, then so 
does |8 if a = ß (mod 1), i.e., if a — ß is a rational integer. Dade and Taussky [1964] 
noted that such bases are connected with certain Thue equations if d = 3, and 
hence that in view of Thue's theorem, up to congruence modulo 1 there are only 
finitely many such elements a. Recently Knight (to appear) accomplished the same 
for d s= 4 by using the general norm form results. But Györy [1973] had used 
Baker's method to prove this result in general. 

7. Let ® be the field of formal power series a = akt
k + ••• + aQ + a^t"1 + ••• 

with complex coefficients. Let | | be the valuation with | a \ = 2h if the leading coef­
ficient of a is ak ^ 0, Almost all the results mentioned above have an analog in ®. 
For example, Roth's theorem has such an analog, proved by Uchiyama [1961] : 
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If a G S is algebraic over the subfield C(t) of rational functions p(t)/q(t) with 
complex coefficients, then for e > 0 there are only finitely many rational functions 
p(t)/q(t) with 

\a~(p(t)/q(t))\<\q(t)\-2-*. 

In ® we may also study differential equations. If the formal derivatives of a 
are a(ò) = a9 a

(1), a(2), •••, define the denomination of a "differential monomial" 
(am)cicca))Ci ••• (a<*>)* to be cn + 2cj + — + (jfc + \)ck. The denomination of 
a polynomial P in a and its derivatives is the maximum of the denominations of 
the monomials occurring in it. It was shown by Kolchin [1959] that if a satisfies a 
differential equation P(a, a(V

9 •••,a(Ä)) — 0 of denomination d with coefficients 
which lie in C(t), then 

\oc-(p(t)/g(t))\^c(a)\q(t)\-ä. 

This generalizes Liouville's theorem. But Osgood ([1973], to appear) made the very 
interesting observation that an algebraic function a of degree d satisfies a differential 
equation of a denomination much smaller than d. He thus obtained for power 
series an effective improvement of Liouville's theorem stronger than the one 
obtained by Baker's method. 

Suppose a satisfies a linear differential equation 

<*(w> + ßm-\^m~l) + ••" + ]8i<2(1) + j80a = 7* 

with coefficients ßm-\, •••,/3o, T which are algebraic over C(t). Then there are 
(Schmidt (to appear)) only finitely many rational functions p(t)/q(t) with 

\a-(p(t)lq(t))\<\g(t)\-»-^-'. 

This is a consequence of a power series version of the subspace theorem. For m = 0 
we get Uchiyama's result. It is likely that the exponent should really be — 2 — e 
for any m. The first step in this direction probably would be to show that the 
analog of Roth's theorem holds for integrals of algebraic functions. 

8. We now turn to a rather different application of Thue's method. It was a great 
surprise when Stepanov ([1969], [1970], [1971], [1972a], [1972b], [1974]) succeeded 
in proving in a new way special cases of Weil's [1948] celebrated theorem on the 
Riemann hypothesis for curves over finite fields. Let F(x9 y) be a polynomial with 
coefficients in the finite field wjth q elements which is absolutely irreducible, i.e., 
irreducible not only over thp'neld with q elements but also over every algebraic 
extension of it. Then Weil's theorem says that the number N of solutions of the 
equation F(x9 y) *= 0 with x9 y in the given field with q elements satisfies | TV - q \ 
< cql / z, where c is a constant which depends only on the degree of F. 

Stepanov was at the 1974 International Congress and talked about his work. He 
first settled in a very simple way equations of the type yd = F(x)9 which include 
elliptic equations studied by Hasse [1936a], [1936b]. He then dealt with equations 
yp — y = F(x) where p is the characteristic, and finally with more general equa­
tions yd + G\(x)yd~l + ••• + Gd(x) = 0. He imposed certain conditions on the 
degrees of the polynomials G{(x)9 which guarantee the absolute irreducibility of the 
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equation. Then Bombieri [1973] and Schmidt [1973] independently extended 
Stepanov's results to the general absolutely irreducible equation. 

The method of Stepanov consists in the construction of certain polynomials P(x) 
with prescribed zeros of high order. These polynomials are set up with undeter­
mined coefficients. Their having the prescribed zeros imposes linear conditions on 
the coefficients. It is then shown that the number of the linear conditions is smaller 
than the number of available coefficients, so that there exist the desired nonzero 
polynomials. Thus this is a new application of the method which was so successfully 
introduced by Thue to diophantine approximation and transcendental numbers. 
In fact before his work on equations over finite fields, Stepanov worked on dio­
phantine approximation. 

Stepanov's method is simplest for equations yd = F(x). We may suppose that d 
divides q — 1. The interesting solutions are those with F(x) ^ 0. Now F(x) must 
be a dth power, and if this is the case, we obtain d solutions y. Thus if N' is the num­
ber of solutions with F(x) =£ 0, we have N' = dL9 where L is the number of x for 
which F(x) is a nonzero dth power, i.e., for which F(x)^~i)/d = 1. 

Stepanov's idea was to construct a polynomial P(x) which has a zero of order 
A for each x with F(x)^~l) /d = 1, and which is of a degree B which is not too large. 
This can be done such that B/A ^ (q/d) + C\qxn. The total number of zeros of P(x) 
counted with their multiplicities cannot exceed its degree, so that LA ^ B9 whence 

N' = dLS dB/A S q + dctf1'* *= q + c2q
1/2. 

A lower bound is derived in a similar way. 
This is not the occasion to go into the details of the construction of the poly* 

nomial P(x). But I would like to point out some features which show that the present 
argument is not only a Thue-type argument, but that it has other similarities with the 
proof of the Thue-Siegel-Roth theorem. The polynomial P(x) is set up in the form 

P(x) = P(x)Adji h PJx)F(xyWdx*J. 

Here the PtJ(x) are polynomials of degrees g (q/d) - m with undetermined coef­
ficients. In order to get the desired zeros one has to impose linear conditions on the 
coefficients of the / \ / s . In other words, Thue's method. 

It can be shown that one can choose the polynomials Pij9 not all zero, such that 
P has the desired zeros. But this does not quite finish the job! Even though the 
Pt/s are not all zero, conceivably P(x) could be zero ! Now one can show that P(x) 
is not zero. Here one either has to suppose, as Stepanov does, that d9 deg F are 
relatively prime, or, more generally, that the equation yd = F(x) is absolutely ir­
reducible. The showing of the nonvanishing of P(x) is one of the more difficult 
parts of the proof. This situation is similar to the one of the Thue-Siegel-Roth 
theorem, where first a polynomial P(x\9 •--, xk) is constructed, and afterwards it is 
shown that P cannot have a zero of high order at certain rational points, which is 
achieved by the difficult Roth lemma. 

The second similarity is perhaps more superficial, but is rather striking. To get 
zeros of high orders the natural thing to do would be to study the derivatives of 
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P(x). Butin the characteristic/? case, always P{^(x) = P{P+1)(x) = ••• = 0, so that 
the higher derivatives are useless. Instead of the wth derivative with Dmxf = 
m\^n)x

i"m, one has to use the operator ("Hasse derivative") E{m) with E{m)x* p= 
dn)xt~m- Now in Roth's theorem the characteristic is zero and the higher derivatives 
do not vanish identically. But one needs polynomials whose coefficients are not too 
large, and hence one also needs to replace mth derivatives by E(m). The reasons are 
different, but who knows if there is a deeper connection? 

For general equations F(x9 y) = 0 the argument is a little more complicated. 
Bombieri was able to avoid derivatives altogether, but had to use the zeta-function 
of the curve associated with the equation. Stark [1973] made a detailed study of 
hyperelliptic equations and obtained estimates for the number of solutions which 
sometimes go beyond those following from the Riemann hypothesis for curves 
over finite fields. 

Not everybody would agree if I would say that the method of Thue-Stepanov is 
simpler or more elementary than Weil's proof which uses algebraic geometry. 
But the method is certainly different. It is simple and natural to mathematicians 
who are familiar with Thue's method. Thus it provides a bridge between diophantine 
approximation and transcendental numbers on the one hand, and equations over 
finite fields on the other hand. It is to be hoped that this new bridge will lead to new 
discoveries both in diophantine approximation and in equations over finite fields. 
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Eigenvalues of the Laplacian and Invariants of Manifolds 

I. M. Singer 

I. Introduction. Let M be a smooth oriented compact differentiable manifold and 
let d denote the exterior differential acting on the algebra of smooth differential 
forms. If a Riemannian metric is chosen on M, then d has a formal adjoint d* and 
one can form the Laplacian Ap = dd* + rf*rfonJp-forms. These are but some of the 
natural elliptic operators we can associate to the Riemannian manifold M. These 
operators have pure point spectrum and one can ask to what extent the spectrum of 
these operators determines the geometric, topological, or differential structure of M. 

The celebrated antecedent of results of this type is due to H. Weyl who showed 
(for Q a plane domain and the Dirichlet problem) that the spectrum of AQ deter­
mines the volume as follows : Let N(X) denote the number of eigenvalues g X. Then 
lim^«, N(X)/2. = area(jO)/27r. In his Gibbs lecture [48], after reviewing progress up 
to 1950, H. Weyl stated: 

I feel that these informations about the proper oscillations of a membrane, valuable as they are, 
are still very incomplete. I have certain conjectures of what a complete analysis of their asymptotic 
behavior should aim at; but since for more than 35 years I have made no serious effort to prove 
them, I think I had better keep them to myself. 

There have been some interesting recent results on what the spectrum determines; 
the purpose of this article is to review some of them. 

It is difficult to study the spectrum directly; instead one studies certain functions 
of the spectrum. The most useful to date come from the heat equation and the wave 
equation. Accordingly, let e~tA denote the heat operator (our Laplacians are 
positive semidefinite), the solution to the heat equation (9/9* + A)u = 0 with 
w|*=o = wo being given by éT^(W0). And let e~iiAxn be the wave operator cor­
responding to one factor of the wave equation 

92/9*2 + A = (9/9* + iA1/z) (9/9* - iA1'*) = 0. 
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188 I. M. SINGER 

If 0 £ /Ij ^ À2è ••• is the spectrum of A9 we study tr(e~f/1) — 2y ë~th which 
converges for * > 0 and tv(e~itAUl) which can be shown to be a tempered 
distribution on jR1. Following Riemann, we can also form the zeta function ^(s) = 
tr(A~s) = E Ij* which by the Mellon transform equals (1/7X0) Jo° *s-1tr(e~'J) dt. 
For this, we must assume that there is no zero eigenvalue. 

In [36], Minakshisundaram and Pleijel showed that if pQ(t9 x9 y) denotes the 
kernel of the integral operator e~tA\ then pQ(t, x, x) has an asymptotic expansion 
as * -> 0 of the form (%*)""/2 (£ Uj(x)P')9 where dim(M) = n. Integration over 
the manifold gives tr(e~tA>) ~ (AittYn/2 ( 2 c}P). Weyl's theorem amounts to cQ = 
vol(Af) plus a Hardy-Littlewood Tauberian theorem. The Minakshisundaram-
Pleijel technique can be extended to Ap (see [9], [38] for example) and in fact to any 
elliptic self adjoint differential operator with scalar symbol. Using the Mellon trans­
form, the asymptotic expansion implies that ^À(s) is holomorphic for Real s > n/m 
and has a meromorphic extension with simple poles at (n — j)/m; here m = order 
of A which for the moment is 2. The residues at (n — j)/2, j < n9 are the c/s; Z>J(s) 
has no pole at s = 0 because of the pole of r(s) and ^(0) = cn/2. For a direct 
treatment of A~~s and the extension to pseudodifferential operators, see Seeley [43]. 

"How the spectrum determines Af" was put most succinctly by M. Kac in his 
paper [29] entitled, Can you hear the shape of a druml For the plane domain Q9 

because of dQ, the asymptotic expansion of tr(e~tAo) involves *1/2 and appears as 
c0/4%t + ax/t

1/2 + a2 + 0(t1/2). Pleijel showed in [39] that al = - L/4(2TT)1/2 where 
L = length of dû. Based on polygonal approximation of dQ, Kac conjectured that 
a2 = e(Q)/6 where e(Q) denotes the Euler characteristic of 0. He concludes his 
article with : 

As our study of the polygonal drum shows, the structure of the constant term is quite complex 
since it combines metric and topological features. Whether these can be properly disentangled 
remains to be seen. 

The past few years have seen considerable disentanglement. The Ujffîs are 
metric invariants. They turn out to be polynomials in the curvature and their 
covariant derivatives and are locally determined by the metric. Certain combina­
tions are manifold invariants and via index theory give characteristic numbers. 
These are all local invariants, i.e., determined locally by the metric. This shows 
itself, for example, in the fact that the characteristic numbers of a fc-fold covering 
of M are given by k times the corresponding characteristic numbers of M. 

We shall first discuss the new local index theorem proved by heat equation meth­
ods. Then we shall discuss manifold invariants determined by the heat operator 
that are not local invariants, but have some interesting applications. And finally 
we shall turn to the wave operator and discuss what geometric information is con­
tained in the distribution tv(e~itAUl). 

n. The local index theorem. (See Atiyah, Bott, and Patodi [5]). The index of an 
elliptic operator A can be obtained from the asymptotic behavior of associated 
Laplacians (Atiyah and Bott [2]) as follows: Note that the nonzero eigenvalues of 
A*A and AA* (with multiplicities) are equal, for if A*Au = Xu9 then AA*(Au) = 
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XAu, and conversely. Suppose, then,/is a continuous function such that f(A* A) and 
f(AA*) are of trace class and/(0) = 1. Then index A = dim ker A — dim ker A* 
= dim ker A*A - dim ker AA* = tr(f(A*A) - f(AA*)). Choose f(X) = er'* 
so that index A = tr(e'~iA*A-ertAAV)9 for any *; in particular as * -> 0. Let 5+ = 
A* A and B~ — A A* and let /?*(*, x, y) be the kernels for the integral operators 
e~tB±. Then /?±(*, x, x)~ (4TT*)"W/2 (Z3*7y(*>0 when ^ are Laplacians. Assume 
77 is even, so that index A = c$/2 — c~/2 where c±/2= JMt/J/2 (x) fifc. 

For a general operator ,4, one cannot say much about U^/2(x); but for operators 
coming from the geometry of M, it turns out that the t/;(x)'s are determined by the 
curvature. Particular geometric operators are the Euler operator E = d + d*\ 
Aeven -v AoM, where ,/leven (̂ fodd) are the even (odd) forms, and the signature 
operator S — d + d* : A^ -> ./f", where yl* are the forms which at each point of M 
are the ± 1 eigenvalues for T with z — (v^Zrf)*c*~1)+w/z* on /?-forms. Using the 
Hodge theorem and the fact that E*E, EE*9 S*S9 and SS* are Laplacians on 
appropriate subspaces of forms, it is easy to verify that index E = e(M) and 
index S — sign(M), the signature of M. (There are two other basic geometric 
operators when M has additional structure : If M s a complex manifold, one has 
9* + 9; if M has a spin structure there is the Dirac operator D from &>+-+£f~9 

where Sf~ are the smooth sections of vector bundles of ± spinors. See [3].) 
The new, improved index theorem depends on a deeper understanding of the 

coefficient U+/2(x) - U~/2(x). Following up Minakshisundaram and Pleijel, 
McKean and Singer [32] noted that the coefficients Uj(x) were contractions of 
curvature tensors and their covariant derivatives. Yet the index theorem involves 
characteristic classes which depend only on the curvature tensor, not covariant 
derivatives. In particular, the Chern-Gauss-Bonnet theorem gives index E as an 
integral of the Euler form, a special polynomial in curvature, which implies that this 
polynomial equals (U+/2(x) - U~/2(x))dx + du, We asked whether dfi = 0 and 
whether this could be shown directly to give a new proof of Chern-Gauss-Bonnet. 
Patodi [38] gave an affirmative answer by direct computation. (See his [37] for the 
Riemann-Roch case A = 9* + 9.) Gilkey in his thesis [21] showed directly how the 
cancellation of the covariant derivatives of curvature takes place for all geometric 
operators so that (UfJ/2(x) — U~/2(x))dx depends only on the curvature; in fact it is 
a characteristic polynomial in the curvature. This can be viewed as a generalization 
of Carleman's improvement of Weyl's theorem, i.e., UQ(x) = 1 [11]. 

The case A = S gives Hirzebruch's signature theorem, sign M = \ML where L 
is the L-polynomial in the curvature [23]. Extending these ideas to the case with 
coefficients in an arbitrary vector bundle leads to a new proof of the index the­
orem, as carried out by Atiyah, Bott, and Patodi. See their beautiful exposition 
[5]. One expects these methods will be extended to give the G-index theorem for a 
compact Lie group G. 

We emphasize again that the invariants discussed so far are local, obtained by 
integrating polynomials in the curvature over M. But because one knows the inte­
grands U ft/2(x) — U~/2(x) explicitly without an extra exact factor d/i, the local index 
theorem has applications to nonlocal invariants, as we show in the next section. 
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Without taking differences, one may ask what the coefficients Cj determine. It 
depends on which Laplacians are allowed. Using the Laplacian on forms one can 
tell when M has constant curvature, when it is Einstein [38], when it is Einstein 
symmetric [16], when it is Kahler and when it is complex projective space [22]. 
But it is still unknown whether the spectrum of AQ determines whether M is a 
sphere [10]. 

We end this discussion by observing that the spectrum directly gives nonlocal 
invariants. That is, the Hodge theorem states that the pth betti number is the mul­
tiplicity of the 0th eigenvalue of Ap, and betti numbers are not local invariants. 

III. The 7] invariant. (See Atiyah, Patodi, Singer [6], [7] for details.) There are 
geometric selfadjoint elliptic operators A which are not positive semidefinite; their 
spectrum may have an infinite number of negative eigenvalues. An example is the 
special geometric operator AQ on even forms given by ( - l)k+P+1 (*d — d*) on 2p-
forms where dim M = n — Ak — 1. To take into account the negative spectrum, 
we pass from the zeta function to the analogue of the Dirichlet L-series and define 

VA(S)= S(sign^)|^-|^ 

where {A,-} is the spectrum of A. It is easy to verify that 
1 oo 

VA(s) = tr(A*)-(°+MA) = r({s I 1)/2) j t^'HT{e-^A) dt 

for Re s > 0. This implies that 7}A(s) is homolorphic in a half-plane and has a mero-
morphic extension to the entire j-plane with simple poles. It turns out that s = 0 
is not a pole for operators on odd-dimensional manifolds and for odd order opera­
tors on even-dimensional manifolds. The other cases remain an open problem. In 
fact, it would be interesting to find a direct analytic proof that s = 0 is not a pole. 
We now assume n is odd, and for simplicity, A is of order 1. 

The map A -> 7jA(0) is not continuous on elliptic selfadjoint operators, ß"\ be­
cause we have ignored the 0 eigenvalue. This can contribute only an integer jump; 
it turns out that the map &l -+ S1 given by A -» yA(0) mod Z is smooth, and 
gives a 1-form on !Fl in the usual way; TJA(B) = (d7]AHB(0)/dt) |<==0- A computation 
shows 7)A(B) equals the residue at s = 0 of tr((^2)~(s+1)/2 B). 

For the special geometric operator AQ cited above, one can check that TJAD(0) is 
not local by looking at lens spaces. But because rj is given by a residue, the deriva­
tive of 7jAo is local and leads to some interesting applications. 

We now list some reasons for studying ^(0). First, Atiyah and Singer in [4] 
showed that Hl(!Fl

9 Z) ^ Z where J*"1 denotes the set of selfadjoint Fredholm 
operators. The 1-form i]A is the generator of this cohomology on what is a natural 
subset # ! , once the order of the operators is accounted for. The generator of H1 

can be interpreted (Atiyah and Lusztig, unpublished) as the function which assigns 
to a family, Ö -> A0 of selfadjoint operators parameterized by Sl> the net flow 
of the spectrum through the origin. This flow is j " ^ d(9. 

For AQ9 3^(0) can be viewed as defining the signature or inertial index of an 
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infinite quadratic form: If a e A2k~l
9 let Q(a) = - jMa A da. The radical of the 

quadratic form Q is ker d9 so that Q is really defined on dA2k~l. A direct com­
putation gives Q(a) = (da9 A~xda). So the signature of Q should be the number of 
positive eigenvalues of AQ minus the number of negative eigenvalues of AQ. But in 
fact 7]Ao(s)\s=0 is a convergence scheme for measuring this spectral asymmetry. 
(Note that the eigenvalues on the remaining even forms, aside from dA2k~l

9 occur 
in opposite pairs so contribute nothing to 7)Al(s).) The three-dimensional case is 
enlightening. There 

*° = (gra 
div\ 

grad curl/ 

on .4even = A0 ® A2
9 with yAt(0) measuring the spectral asymmetry of curl. 

The ^-invariant 7jAt(0) allows an extension of the Hirzebruch signature theorem 
to compact 4fc-manifolds X with smooth boundary dX = M. First consider the 
Chern-Gauss-Bonnet theorem for manifolds with boundary : e(X) — \XK = \Ma 
where Kis the Euler class in terms of curvature and a is a polynomial in the curva­
ture and the second fundamental form of M in X. For simplicity, we now assume 
the metric on Xis a product near the boundary so that o = 0 and e(X) — \XK = 0. 

The Hirzebruch theorem for a 4fc-manifold X without boundary says sign X -
\XL = 0. What happens when Xhas a boundary Ml Using the Novikov additivity 
theorem for the signature it is easy to see that sign X — \XL depends only on the 
Riemannian manifold M. We proved 

(I) sign X - $ L = - VA.(0)-
X 

It is in the proof of this result that the local index theorem enters in a crucial way. 
Just as in the case without boundary where sign X = index S, one now sets up a 
boundary value problem § whose index involves sign X. However, this boundary 
value problem [25], though elliptic, is not of a classical type involving local bound­
ary conditions. One can nevertheless proceed in the usual way and compute index 
§ in terms of tr(e~t§*s — e~tè§*). There are two contributions to this trace, one at the 
boundary which is given by 77,4/0) and one from the interior given by U£k(x) — 
U2k(x) = L\x coming from the L-polynomial of the doubled manifold. It is im­
portant that there be no additional unidentified term d/j,9 since \x dfj, = §M(x9 which 
would have given an additional unidentified contribution. 

The proof works for other first-order operators besides A0. But the operator must 
be geometric in order to identify the interior integration with characteristic classes 
in terms of curvature. And in general the index of the boundary value problem will 
not have a topological interpretation. So for example, for the Dirac operator D9 

one finds that the index of the appropriate boundary value problem equals 

(II) f j _ h + ijM 
x 2 

where A is the Hirzebruch ^-polynomial in terms of curvature and h is the dimen­
sion of harmonic spinors on M. 
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This still turns out to be useful and gives a relation between the Adams e-
invariant, the 97-invariant TJD(0)9 and Chern-Simons invariants, as follows. First, 
we note that we deal only with the special case of the Chern-Simons theory involv­
ing the top cohomology [13], [14]. And for simplicity, we assume M is a boundary 
dX of dimension n = %k - 1. Chern and Simons assign to each connection & and 
each invariant integral polynomial /"an element a(09f) of R/Z: Extend Q to a con­
nection 6 on X which is a product connection near the boundary, and set a(09f) = 
\xf(Q&) mod Z, where ö# is the curvature of the connection. It is easy to see by 
gluing that this is independent of X. Iff were a rational polynomial (as in L and Â)9 

one gets an invariant in R/Q. Formulas (I) and (II) show that a(0, L) = ^„(0) 
mod Q and a((99 A) s 7jD(0)/2 mod Q when (9 is the Riemannian connection. 

The Adams ^-invariant e(M9f) is defined when M has a given framing/and gives 
a cyclic element of 7rJÄ_x which can be identified with an element of Q/Z [1]. Geo­
metrically, it is Jx A(Q 0^) where 0\ is the flat connection given by the framing. The 
framing also gives a Riemannian metric and comparing the Riemannian connection 
0 with the flat one (9\ gives 

(III) e(M,f) = i(VD(0) -h)- (a(09 Â) - a(0l9 A)) mod Z. 

The term a(0, A) — a(0\9 A) equals an integral \M°>> f°r the difference is exact on 
Zand one uses Stokes. The 8k — 1 form œ is a Chern-Simons form associated to A. 

H. Donnelly has used these ideas to show that the spectrum of AQ and D classifies 
seven and eleven spheres (unpublished). He uses the Eels-Kuiper invariant [19] 
which classifies these exotic spheres. This invariant is obtained by solving for the 
top Pontrjagin class as it occurs in L and in Â and taking the difference. Thus the 
Eels-Kuiper invariant can be expressed in terms of TJD(0), yAo(0), and corresponding 
Chern-Simons invariants. Because these spheres can be immersed in Euclidean 
space so that the induced normal connection is trivial, the associated Chern-Simons 
invariants turn out to be zero and the Eels-Kuiper invariant depends only on 
VD(0) and TJAO(0). 

Some interesting differential invariants stem from the fact that 37 is local. Let %i 
be the fundamental group of M and suppose % : TTI -» U(m) is a unitary represen­
tation of %\ on Cm. Let Ex denote the associated flat unitary bundle and let A% be 
the associated selfadjoint first-order operator on even forms with values in E%. 
Then fjt = 97 (̂0) - m7jAo(0) is independent of the Riemannian metric because the 
difference of derivatives with respect to a metric is local, and locally E% is indis­
tinguishable from the product bundle. When %\ is finite, the differential invariant T)% 

is the Fourier transform of the invariant ag(ß) of [3] where M is the simply con­
nected covering of M on which %\ acts freely as deck transformations. When %\ 
is infinite, it would be interesting to find a nonspectral definition of this R-valued 
invariant. 

For other geometric operators like the Dirac operator D9 one gets similar 
invariants. But now one must work mod Z because the 0 eigenvalue has no topo­
logical meaning and can vary. These R/Z invariants, 7]DK(0) - my)D(0)9 are cobord-
ism invariants which for finite %\ are the Q/Z invariants of [3]. More generally, for 
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any selfadjoint elliptic operator B: C°°(F) -• C°°(F),Fa. smooth vector bundle over 
M, one can define B%\ C°°(F ® Ex) -> C°°(F ® Ex) with symbol B% = symbol B ® 
JE. Because y is local, it turns out that 3^(0) — W^B(0) mod Z depends only on 
the homotopy type of the symbol of B. As a result, the character % gives a homo-
morphism Kl(TM) -> JÎ/Z which assigns to symbol 2* in Kl(TM) the spectral 
invariant ^ ( 0 ) - nvr)B(G) s R/Z. On the topological side, there is a natural map 
indz: K

l(TM) -> R/Z. The equality of these maps gives a refined index theorem 
which we will not go into here. 

Is 7jAo(0) computable? If M has an orientation reversing isometry, then ^„(O) = 
0, This is the case, for example, if M = Sik~l. When M is given explicitly as a 
boundary, formula (I) is effective. If %x is finite, rj is computable via ag(M) as ex­
plained above. So, for a lens space M = SZn~l/G with G cyclic of order p and 
generator acting on J] C by multiplication by ei0* on the yth factor, 

m\ i~* Ç? rr cot 70/ 

This formula can also be obtained by direct computation because the eigenvalues 
and their multiplicities are known [34], [40]. 

For M of constant negative curvature, J. Millson [34] has obtained a formula for 
97, by group representation methods, as the value at 0 of a new Selberg type zeta 
function. Here M = r\G/K with G = SO(4« - 1, 1), K = SO(An - 1) and T7 a 
uniformizing discrete subgroup of G. (See §V for a discussion of Selberg trace 
formulas.) 

Another case of interest is related to number theory. Suppose Te Sl(2, Z) is 
hyperbolic. Let G be the three-dimensional solvable group with multiplication 

(Ô) ')<&)• ") - (CD+O ' + " ) w i t h <*• * *e * 
Let Tbe the subgroup of integer entries, and let M = G/T be the solvmanifold with 
left invariant metric which is the standard R3 metric at the identity coset. Then 
*7A(0) turns out to be the value at 0 of a Hecke L-series for the real quadratic 
field which T defines. Explicitly, let % denote the nonzero orbits of T on Z © Z; 
then the Hecke L-series is 2 £ße«(sign Na) \Na\~

s where Na is the norm of the orbit, 
i.e., of the ideal the orbit determines. This computation can be done analytically 
(Atiyah-Singer, unpublished). It can also be obtained using (I) and Hirzebruch's 
work on the Hilbert modular group [24]. The connection occurs because G//7 is the 
boundary of a cusp in the action of Sl(2, (S) on ^f x ffl where 0 is the ring of in­
tegers of the real quadratic extension of the rationals. It will be interesting to see 
whether this formula holds for all totally real extensions. 

IV. Torsion invariants [41], [42]. In the previous section we discussed the y in­
variant which is related to the signature and which, in a sense, is the inertial index 
of an infinite quadratic form. Now we discuss an invariant associated to the Euler 
characteristic and involving infinite determinants. Here, however, we have a known 
combinatorial invariant, Reidemeister-Franz torsion to guide us. 
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Briefly put, iMorsion z can be defined as follows. Let M be a finite cell complex 
with fundamental group %i and let x : %i ~> 0(M)9 the orthogonal group. Consider 
the chain complex C(y) = C(M) ®^ Rm where J5f is the group algebra of 7C\. 
It acts on C(M) via the linearization of the deck transformations and it acts on 
Rm via #, The chains of C(x) have an inner product stemming from the cells of M 
as an orthonormal base, so the boundary operator 9 has an adjoint 9*. Suppose 
C(y) is acyclic. Then define 

log z(M, x) = ZX- l)pP log det (9*9 + 99*)|^.chain, 

9*9 + 99* is called the combinatorial Laplacian. This torsion turns out to be a 
combinatorial invariant, i.e., invariant under subdivisions. It was originally used to 
distinguish lens spaces of the same homotopy type which were combinatorially 
different. 

When M is a smooth manifold the torsion for a smooth triangulation gives a 
manifold invariant. How can one obtain this analytically? Our candidate involves 
the notion of log det A, which we define as follows. Note that 

Formally, at s = 0, this would be £ log Xj = log det Û. Hence, we define 

log d e t / ( = - ! - U * ) 
s=0> 

and we define the analytic torsion T(M, %) by 

log T(M9 x) - 2 ( - iyp log det A* 

where A\ is the Laplacian on/?-forms with values in the flat bundle Ev 

Here is what we know about analytic torsion. First, it is independent of the Rie­
mannian metric on M used to define A\, so it gives a manifold invariant. Secondly, 
the differential of log Tis a local invariant. Thirdly, z = Tin all known cases, i.e., 
lens spaces, where the zeta functions are computable [40]. Also T and z satisfy the 
same functorial properties : 

(i) multiplicative rule: If N is simply connected, then log T(M x N, z) *= 
e(N)log T(M9z); and 

(ii) induced representation rule: If Mi is a covering of M with %\(M\) c> 7ü\(M) 

and if %i is an orthogonal representation of 7ü\(MI), then log T(M\9 xù = 
log T(M9 Ux) where UXl is the representation of %\(M) induced by xi* 

Whether z = T remains an open question. Some progress on this problem has 
been made by J. Dodziuk [15] and V. Patodi (see his report in these PROCEEDINGS). 

If one puts an inner product on the cochains of a smooth triangulation of M coming 
from the Whitney map of cochains into L2 forms on M, then Dodziuk shows that 
for appropriate subdivisions of the triangulation the eigenvalues of the combina­
torial Laplacian on 0-cochains converge to the eigenvalues of AQ. And Patodi can 
extend this result to/7-cochains and Ap. 
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One can proceed analogously for a compact complex manifold using 9 and the 9 
Laplacians. One obtains an invariant independent of the metric called holomorphic 
torsion which is a function of x a n d the complex structure. We will not describe the 
details here, but wish to make several comments. First, this invariant distinguishes 
different complex structures when the period mapping is not available [41], [45]. 
Certainly more work along these lines is in order. Secondly, this invariant has been 
calculated for Riemann surfaces. For g = 1, not surprisingly, it involves elliptic 
theta functions. For g > 1, it can be expressed as the value at s = 0 of an appro­
priate Selberg zeta function. Whether it can be expressed in terms of generalized 
theta functions of the Siegel upper half-plane, after viewing the moduli space of M 
as imbedded there via the period map, remains to be seen. 

We close this section with a few remarks about the similarities of fjx for the 
signature operator, y)x for the Dirac operator, analytic torsion, and holomorphic 
torsion. They are associated in turn with signature, y|-genus, Euler characteristic, 
and arithmetic genus. They satisfy the multiplicative property relative to each of 
these classical invariants, respectively. They satisfy the inducedr epresentation rule. 
Their derivatives are local, but they are not. When appropriate, their values are 
given by Selberg-like, or number theoretic, zeta functions. Despite these similarities, 
we do not have a unified treatment of these nonlocal invariants. We have one for 
each geometric elliptic complex. Are there others? 

V. The wave equation. We return to NP(X)9 the number of eigenvalues less than 
or equal to 1, for P an elliptic positive semidefinite pseudodifferential operator of 
order m, acting on functions. Even when P = AQ, the known Tauberian arguments 
are not strong enough to get much more than Weyl-Carleman from the knowledge 
of the asymptotic behavior of tv(e~tA). 

But wave equation methods have given very strong results, the definitive one 
that of L. Hörmander [26]. He showed, among other things, that 

(A) NPQ) = ^ f X*"* + 0(A<"-i> '*) 

where BP = [£ e T*(M)9 p(x9 £) = !]• This generalizes the second-order case of 
Levi tan [30] and Avakumovic [8]. Hörmander studied the distribution tx(e~itp) 
near t — 0 for P first order using the propagation of singularities of hyperbolic 
equations, and the integral representation of e~iiP by what is now called a Fourier 
integral operator. Then a simple Tauberian argument gives formula (A) above 
from the behavior of tr(e~itP) = £ e~iili — pit) where p is the spectral measure of 
P. 

We do not give an exposition of the development here. However, the case P — 
Ay2 is of geometric interest and the techniques developed by Hörmander, Egorov, 
and Maslov [20], [33] have been used by Duistermaat and Guillemin [17] to show, 
for example, that for a generic Riemannian metric the. eigenvalues determine 
the lengths of closed geodesies. Some of their results have been obtained earlier by 
other methods (Colin de Verdiere [46] and Chazarain [12], but the use of Fourier 
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integral operators and wave front sets can be expected to go deeper. In particular, 
there appear to be connections with the Selberg trace formula that will no doubt 
be vigorously pursued. We close then with a brief discussion of these matters. 

For M an «-torus Rn/L, L SL lattice subgroup of Rn
9 the eigenfunctions of AQ 

are e2™<x'r>, V e l / , the dual lattice. So the eigenvalues are 47r2||//||2, and tr(e~Mo) 
= L<ue£' e~4nHMl\ The Jacobi identity (use the Poisson summation formula) 
states that this equals 

v o l W y e~mmt 

On the other hand, the closed geodesies on M lift to the line segments from 0 to /, 
/ e L on Rn. So the length spectrum, i.e., the lengths of closed geodesies, is {|| /1| } /eL. 
It is easy to see from the Jacobi identity that the eigenvalues of AQ determine the 
length spectrum and vice versa. (Note that the Jacobi identity also shows that 
tr(e~tA*) = vol(M)/(4nt)d/2 + an exponentially small term.) Milnor's example 
[35] showing that the spectrum does not determine the Riemannian metric is given 
by two sixteen-dimensional tori with nonconjugate lattices but the same spectrum. 
If one allows the spectrum of Laplacians on flat bundles, then in these examples 
the geometry is determined by the spectrum. 

The Selberg trace formula [44] can be viewed as a noncommutative generaliza­
tion of the Poisson summation formula to the case where M is a Riemann surface 
of genus g > 1. Here M = T\H, T = %\(M) a uniformizing discrete subgroup 
of Sl(2, R) and M with constant negative curvature inherited from its simply 
connected covering H = Sl(2, R)/SO(2), the upper half-plane. On H9 the kernel 
p(t, x, y) of e~iAo is given by an explicit function p(t, cosh r(x9 y)) where r is the 
Poincaré distance. Averaging over the action of T on H eventually gives 

tr<* 'A> = W^VWtT i^nh^j2du + g/W g 2sinh|/(f)> 
Here the sum fep means sum over conjugacy classes of primitive elements of 
R Also, 1(f) is the length of a closed geodesic determined by f. Explicitly, if 
T eT c Sl(2, R), then it is hyperbolic and is similar in Sl(2, R) to a diagonal 
matrix 

feP 0 \ 
\0 e-pf 

Then l(T) = 2p. The term 2 sinh \ l(T) = eP — e~P can be interpreted as follows: 
On S(M)9 we have geodesic flow (pt. If (x9 £) e S(M) is the origin and tangent vector 
of a closed geodesic T starting at x with tangent £ and of length L9 then (x9 £) is a 
fixed point of <pL. So dq>h : T(S(M)9 (x9 £)) -> T(S(M)9 (x, £)). It preserves the geode­
sic flow vector field and hence induces a transformation, the Poincaré map, Pr 

normal to that direction; i.e., Pr is a linear transformation on a vector space of 
dimension 2 in the present case and of dimension In — 2 if dim M = n. For sym­
metric spaces Pr can be computed using the Jacobi equation : For Pr there is the 
map: (F(0), V'(0)) -+ (V(L)9 V'(L)) where Fis any Jacobi field along T9 normal to 
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£. It is easy to see that in the case above, eP — e~P = 211 — det Pr |
1/2. So we can 

write 

tr(e-".) = vol(M)/4„t-f(t) + e-^/(Azt)^g/if) S |det ( T - X ) 11/2 

where f(t) is independent of T7. 
From the right-hand side, one can read off the length spectrum. In fact, Selberg 

defines a zeta function ZM(s) = II fef IT* (1 ~~ e~(s+*)/(f)) whose nonreal zeros are 
j ± (Ay + | ) 1 / 2 so that the length spectrum also determines the spectrum of/lo­

in computing the ^-invariant for hyperbolic spaces in terms of a Selberg-like 
zeta function, Millson found the intermediate formula 

tr(^0 er*A) = 22«-i/2«(27r)«+1f 2 log \af\
2 

^ f s i n ^ - s i n A : ^ - ! g-iog(^74< n 
' r t l ^ - ^ P - l ^ - i - ^ - ! ! 2 (4TT/)3/2 logi^i /> 

ï e T c: SO (4« — 1, 1) has a normal form over the complexes as the diagonal 
matrix with entries $ = p2 e2%Wi. It turns out that this formula can be rewritten as 

tr(A^AD = (- 1W27TK1. T h T W > * ~ {tT((pf)k) e~lh/4t h~ xxKAQe o} _ K i) Ki%) ^ir 2_, | d e t / __ p ^ | 1 / 2 (4jr /)3/2 '*r-

Here p̂= is parallel translation around T on A± = ± i eigenspace of A0(t). 
We come now to the Duistermaat-Guillemin results. The distribution ß = 

tr(e~iiAti/1) has its singular support in the length spectrum. When the metric is 
generic, i.e., when det(7 — Pr) ^ 0 for all closed geodesies T9 then the length 
spectrum is the singular support. Moreover, 

(B) fi = £ 2nlfgo|detl_Af|1/2 7 3 ^ + /( ') 

where f is a primitive geodesic and where f(t) is locally integrable, \f(t)\ ^ 
log 11 — I f | near If, and 0-f is the Morse index of f. 

That the singular support of ß is contained in the length spectrum is an easy 
consequence of the propagation of singularities. Suppose the Schwartz kernel 
distribution of Ut = e~HAT is kt(x, y). We want the singular support of \Mkt(x9x) dx. 
Since l/0 = /, the wave front set of kQ(x9 y) is the normal to the tangent bundle 
of the diagonal in T*(X x X). Propagation of singularities states that the wave 
front set of kt(x9 y) is obtained from that of kQ(x9 y) by the Hamiltonian flow 
of the vector field dual to the symbol of A}j2. In this simple case, it is geodesic 
flow. Now set y = x and integrate; one can easily keep track of the wave front sets 
and determine the singular support of ß. 

The deeper result on the nature of the singularities does not come so easily. One 
must use the integral representation of Ut as a Fourier integral operator with a 
precise form for the phase function, as Hörmander did in analyzing the singularity 
at / = 0. We cannot go into these matters here. But by such methods Duistermaat 
and Guillemin show that, though (A) is best possible (for spheres), if one assumes 
a generic metric one obtains 
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(C) NP(X) = ^ ^ - X*<» + OU»-""). 

In fact, they show that one can characterize Riemannian manifolds all of whose 
geodesies are closed of length L and of Morse index a by the property that the 
spectrum of AQ clusters asymptotically about (2%/L)(k — a/4)2 for large k. In [47], 
Weinstein proves a finer clustering theorem when the symbol of AQ is equivalent 
under the group of contact transformations to the symbol of the Laplacian on a 
sphere, Clustering occurs for all eigenvalues not just asymptotically. 

What happens when AQ is replaced by Ap on />-forms, and more generally for a 
Laplacian A on a vector bundle E over Ml These operators have scalar symbol so 
that conjugation by e~itAU% leaves the algebra of pseudodifferential operators 
invariant. Hence, e~itAm not only induces geodesic flow tpt on T(M) but also linear 
transformations <f>t from n*(E)(m9 £) to 7c*(E)(<pt(m9 £)), covering <pt9 i.e., <]jt\%*(E) 
-• <pt*(n*(E)). For Ap, <pt will be the map on/?-forms induced by parallel translation. 
For a closed geodesic T of length l7 = L, (m9 £) will be fixed under tpL so that 
<J>L:7C*(E)(m, £) -* %*(E)(m9 £). One now can expect the factor tr(0L) to appear in 
the singular support, by analogy with fixed point formulae. 

We note that torsion and the ^-invariant for constant negative curvature spaces 
are given by Selberg zeta functions determined by the length spectrum. There, 
explicit formulas for tr(e~tA*) and tr(/40e

_Mo) are given in terms of the length 
spectrum. The Duistermaat-Guillemin results show that generically ß determines 
the length spectrum via the singular support of ß. Now 

tr(e-".) = Ar") = fifì) = f{0^). 
Similarly if pi is the spectral measure of AQ, then 

tr(Ae-'*) = Ml(xe-"-) = fi^) = fi{-^n) 

If fi is replaced by the first term in (B), and assuming a similar formula for fiÌ9 one 
obtains for constant negative curvature manifolds the results described above ex­
pressing torsion and rj in terms of Selberg zeta functions. See [42, p. 170]. 

Do similar results hold for general compact spaces M of negative curvature? 
There M = Rn/T9 and the Poincaré maps Pr are hyperbolic. In analogy with the 
Selberg zeta function, one can define 

Z±(s) = JL Ff. det(l - y,±(f)x(f)e-(^^(«/+i/2)iogr/(f))> 
T^F W/î nonnegative integers 

Here x: r = n\(M) -*• 0(M) is a representation of T7. f is a primitive conjugacy 
class of T7; and {zj(f)} is the set of absolute values > 1 of eigenvalues of Pr It is 
perhaps not too farfetched to hazard a guess that fj can be expressed as the value 
at s = 0 of ratios of such zeta functions. Such would be the case if only the first 
term in (B) were used.1 We conjecture that the remainder terms cancel when 

1This amounts to treating a primitive geodesic and its iteratives as the circle case {/*(£)} = 
(1 + é?W£)/(i - gwe/i) with factors due to the action of A0 on forms (tr(^+(r^L) - (jr\f/l))) 
and the normal to the closed geodesic r [ | det 1 - P\/L\ ~VZ). 
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taking ratios. Similarly, for torsion invariants. 
In any case, the formula tr(<r< )̂ = fi(e-?ml(4%t)l/2) shows that the heat 

asymptotic expansion and the residues of tj(s) are obtainable from fi9 i.e., by wave 
equation methods. This program is being carried out by Duistermaat and Guil-
lemin. 
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Inside and Outside Manifolds 

D. Sullivan 

Introduction. The classification theory of manifolds has evolved quite far. One 
theory fixes the homeomorphism or diffeomorphism type of a manifold in terms 
of the homotopy type and certain geometric invariants related to characteristic 
classes and the fundamental group (dimensions three and four excluded). In the 
simply connected case there is a further discussion which produces a purely al­
gebraic invariant (the "homological configuration") determining the isomorphism 
class of the manifold and the group of automorphisms (isotopy classes) up to a 
finite ambiguity. 

Further developments in this external theory of manifolds seems more and more 
algebraic. On the other hand, the study of geometrical objects inside one manifold 
is experiencing a resurgence which focuses attention on the classical goals and 
problems of "analysis situs". One organizing center for this activity is the qualita­
tive study of dynamical systems which produces inside one manifold interesting 
compact subsets, families of intertwined noncompact submanifolds, geometrically 
defined measures and currents, with homological interpretations and relationships. 

There are many problems concerning the structural stability, and a geometric 
description of the possible phenomena. These problems for flows generalize to 
higher dimensional foliations which are now known to exist abundantly. 

For foliations of dimension greater than one there is a new ingredient, the 
Riemannian geometry of the leaves. The asymptotic properties of this geometry 
can be regarded as a topological invariant of the foliation, 

Now we go into more detail. First we describe two classification theories for 
manifolds and then some topological problems concerning geometrical objects 
inside manifolds. 

I. The two classification theorems. The invariants of manifolds we describe are 
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202 D. SULLIVAN 

interesting for all manifolds and classify completely for simply connected manifolds 
or other suitably restricted cases. Also the dimension of the manifolds must be 
larger than four. 

The first theorem classifies the manifolds in a given homotopy type. The identi­
fication of the manifold homotopy type to a model homotopy type is part of the 
structure. We can picture all of our closed «-dimensional manifolds in one homo­
topy type as embedded in a nice domain of Euclidean space jR2»+2 with smooth 
boundary. The domain will be isomorphic to a tubular neighborhood of each of 
these submanifolds (Figure 1). Two of these submanifolds will be considered 
equivalent if there is an isotopy of the domain carrying one onto another. For the 
first theorem we assume %i — e and n > 4. 

FIGURE 1. The manifolds in a homotopy type—pictured as a domain in Euclidean space. 

THEOREM A. The closed n-dimensional manifolds in a homotopy type X can be 
classified up to homeomorphism by the elements in a certain finitely generated abelian 
group h(X). h(X) is isomorphic modulo odd torsion to 

© (H*'+2(X9 Z/2) e H**(X9 Z))9 0 < Ai, Ai + 2 < n. 
i 

The odd torsion in h(X) is the same as that in the real K-theory ofX. 
For more details see [SI] and [S2, Chapter 6]. 
We remark that the elements of h(X) can be detected geometrically by spanning 

certain submanifolds or membranes across the domain representing X. 
Each manifold in X is made transversal to these membranes, and numerical 

invariants are directly calculated from the intersections. The brunt of the informa­
tion is carried by signatures of quadratic forms. Most of the theory for this is 
described in [M-S]. 

A nice example of this theorem is provided by complex projective «-space 
(n ^ 2). Here the homeomorphism types of manifolds having the same cohomo­
logy ring as CPn are in one-to-one correspondence with 
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z/2 © z © z/20.» © z, « odd, 
Z/2 e Z © Z/2© ••• © Z/2, « even, 

where there are (n — 1) summands. For any such manifold M the invariants can 
be read off from the sequence of submanifolds obtained by intersecting a homolo-
gically generating codimension 2 submanifold of M with itself. 

To promote Theorem A to a classification up to diffeomorphism many more 
finite obstructions come in. For this most of the tools of algebraic topology can 
be utilized—^-theory, étale cohomology, localization, and specific calculations 
like the work of Milgram; see also [S2, Chapter 6], The proof of Theorem A uses 
triangulations, transversality, and surgery, It depends heavily on the important 
work of Kirby and Siebenmann for topological manifolds. It was first proved in 
the piecewise linear context, 

The next classification theorem will give one algebraic invariant which classifies 
the homeomorphism (or diffeomorphism) type up to a finite ambiguity. The new 
point here over Theorem A is homotopy theoretical and the homotopy problem is 
solved using differential forms. We will describe the "homological configuration" 
of a manifold. The idea is to build up a homological picture by starting with a basis 
of cycles in the extreme dimension (highest) and using intersections as much as 
possible as we work our way down through the homology, It is necessary to include 

Surface of genus two 

Complement of Whitehead Link 

FIGURE 2. Examples of homology configurations with levels indicated. 
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chains or membranes to realize the homology relations among the pieces of the 
inductive configuration. (See Figure 2). 

This construction is done rigorously using differential forms—starting in the 
extreme lowest dimension to build up a picture of the cohomology. One obtains a 
polynomial algebra tensor an exterior algebra with a differential (over Q) which 
determines the rational homotopy type. 

The theory behind this is described in [S3] and [DGMS]. 
We can add to this g-data 
(a) the rational Pontryagin classes p\9p2> ••• with/?,- e HAt'(Mn, Q), 
(h) a certain lattice in the above algebra reflecting the integral structure, 
(c) some information on the torsion in homology, for example, the order of the 

torsion subgroup. 
If we refer to all this as the "integral homology configuration" of a manifold we 

have (TCI = e, n > A) 

THEOREM B. A manifold is determined up to a finite number of possibilities by its 
"integral homology configuration". 

A key step in the proof of Theorem B is the introduction of the arithmetic sub­
groups of g-algebraic groups. A second part of the theorem says that the isotopy 
classes of automorphisms of the manifold are described up to a finite ambiguity 
(commensurability of groups) by automorphisms of the configuration. This shows 
these geometric automorphism groups are arithmetic groups [S4]. One can con­
struct manifolds which realize any g-homological configuration and characteristic 
classes subject to Poincaré duality and the Hirzebruch index theorem. Also, es­
sentially all arithmetic groups occur as the group of components of Difï M, M 
simply connected. 

An interesting sidelight is that the maximal normal nilpotent subgroup of all 
automorphisms contains those which are the identity on the spherical homology. 

This theory of algebraic topology over Q based on differential forms can be used 
in more analytical questions, e.g., the topology of Kaehler manifolds, the study of 
closed geodesies, and Gel'fand-Fuks cohomology. See [S3], [DGMS], [H] and [S5]. 

II. Problems. Now we turn to more geometrical problems. The first question is 
the qualitative study of difloomorphisms of manifolds under repeated iteration. 
One wants to describe as far as possible the orbit structure. Much has been done 
here but much is also unknown. 

To illustrate these points consider a famous example (Figure 3) of Smale first on 
the solid torus and then on the 2-sphere. The solid torus is mapped into itself with 
degree 2, with half of it contracting into itself. 

The nonwandering set {x: for allnghds Uthere exists n such that fnU f| U ^ 0} 
here is a structurally stable Cantor set plus one sink. The stable manifolds con­
sisting of those points asymptotic (as n -• + oo) to the Cantor set form a partial 
foliation of 2-manifolds coming out of the solid torus. The unstable manifolds of 
the Cantor set (77 -> - 00) form a dyadic solenoid running around the solid torus. 
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FIGURE 3, Smale's Axiom A of diffeomorphisms on the solid torus. 

This picture is helpful for understanding Smale's general Axiom A diffeomor­
phisms. It is also not hard to see that handle preserving diffeomorphisms like these 
(always with zero-dimensional nonwandering set) form a C°-dense set of all dif­
feomorphisms; see [Sm] and [SS]. 

Problem 1. Try to understand the deformations between the various Axiom A 
structurally stable systems. See [PN]. 

Problem 2, Try to construct and analyze the basic pieces of the nonwandering 
set having positive dimension. See [B] and [W] for the zero-dimensional and gener­
alized solenoid cases respectively. 

Now Smale originally studied this example on S2. There are however many 
regions of Diff S2 which are uncharted and do not contain Axiom A systems (see 
[N]). To begin to solve this problem one needs new notions of structurally stable 
descriptions. It is perhaps amusing to note that the counterexamples in this subject 
to the C1 density of structurally stable can be described9 so that their narrative 
description is at least structurally stable ([Sm2] and [W2]). 

Problem 3, Describe more of the regions of Diff S2 or Diff M outside the trans­
versal Axiom A systems. 

Problem A. How much of Diff M can be described by perturbing transversal 
Axiom A systems to destroy carefully the transversality of stable and unstable 
manifolds? See [Sm2], [W], [RW]. 
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In another direction, we might recall Arnold's theorem [A] in Diff S1 which 
states that for almost all irrational rotations the probability that a smooth per­
turbation is C° equivalent to an irrational rotation approaches 1 as the size of the 
perturbation approaches zero. This is a kind of structural stability which is of prac­
tical importance [BK] but is not included in the topological conjugacy idea. 

Problem 5. Formulate a useful mixed notion of structural stability combining 
continuity and probability. 

For practical application, attractors—closed invariant sets with invariant neigh­
borhoods—are important (see [T]). 

According to [BR] a measure one set of points in a no cycle Axiom A system goes 
to attractors. Thorn asks the following: 

Problem 6. Is it true, for a generic set (a countable intersection of dense opens) 
of Diff M9 that almost all points in the manifold are asymptotic to attractors? 

The questions of qualitative study are similar for flows. Here one uses especially 
the closed orbits, the Poincaré maps around them, and invariant measures. All 
the questions and concepts for nonsingular flows generalize to the qualitative study 
of foliations on a compact manifold. This generalization is quite challenging 
geometrically. Also understanding the qualitative behavior of foliations helps one 
understand the more classical problems for flows. 

If we assume the ambient manifold has a Riemannian metric, each leaf of the 
foliation inherits a complete metric which is in a rough asymptotic sense indepen­
dent of the ambient metric. For example, certain growth properties of volume 
{x G leaf: distance^, xQ) ^ R} are topological invariants of the foliation. It is easy 
to see this growth rate is at most exponential, and if it is subexponential, interesting 
homological arguments are possible [P]. One can form a limiting cycle using the 
chains 1/volume times {x e leaf: distance^, xQ) ^ ^} and arrive at a "geometric 
current", roughly speaking a locally laminar submanifold with a transversal 
measure [RS]. 

More generally, we can ask what do leaves of foliations look like geometrically 
and topologically. See Figure 4 for examples of leaves in S3. 

A leaf in S3 of cubic growth Part of a leaf in S3
y of exponential growth 

FIGURE 4 

Problem 7. Describe the nature of the equivalence relation on leaves induced by 
ambient diffeomorphisms. 

Problem 8. What do 2-dimensional leaves in S3 look like? 
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On Buildings and their Applications 

J. Tits 

The buildings considered in this talk1 are some particular simplicial complexes 
naturally associated to algebraic simple groups, The "real estate" terminology, due 
to N. Bourbaki [8], originated in the fact that the maximal simplices of these com­
plexes are called "chambers" (in French, "chambre", that is, "room"), because of 
their close connection with the "Weyl chamber" in the theory of root systems. 

1. A construction procedure. Let us first describe in rough terms a trivial but 
fruitful procedure to build up complicated geometrical objects from simpler ones. 
Take an object C, for instance a space of some kind or a simplicial complex, and a 
group G. To each "component" x of C (point of the space, simplex of the complex), 
attach a subgroup Gx of G. Then, there exists a unique minimal object extending 
C, on which G acts in such a way that no two components of G are equivalent under 
G and that Gx is the stability group of x in G9 namely the quotient of the product 
G x C by the equivalence relation (g9 x) ~ (g'9 x') o x = xf and g^gr e Gx. To 
make this description precise, one has of course to specify in which category, say, 
the product and the quotient are taken. In the sequel, C will most of the time be 
just a simplex, to each face a of which a subgroup Ga of G is attached; furthermore, 
the relation Gaya, — Ga f| Ga> will always hold. Then, it is clear how G x C/ ~9 

"defined" as above, is endowed with a structure of simplicial complex. Notice that, 
in view of the above equality, all Ga are known as soon as the groups attached to 
the vertices of C are given. 

xWhen preparing this report, I made much use of information received form A. Borei and J, B, 
Wagoner, and, most of all, from J.-P. Serre, who kindly took the trouble of reviewing for me the 
main applications of the theory of buildings known to him. To these acknowledgements, I wish to 
associate the Deutsche Forschungsgemeinschaft whose generous support made it possible for me 
to attend the Congress. 

© 1975, Canadian Mathematical Congress 

209 



210 J. TITS 

EXAMPLES. (1) Let the vertices of the simplex C be numbered from 1 to n. To each 
edge ((/), associate an integer mi} ^ 2 or the symbol oo. Set 

G = <rb -., rn\rl = (r,r,)""' = 1 for ma * oo> 
and attach to the face a of C the group Gff = <rf|z $ a). The resulting complex A 
is called a Coxeter complex (cf. [43, §2]). For instance, if C is a one-simplex (w = 2), 
J is a closed chain of length 2/w12 or a doubly infinite chain according as mì2 ^ or 
= oo ; if C is a triangle and if the three /w,/s are 3

2
5 (resp. 3

3
3; resp. 3

2
6), A is the 

barycentric subdivision of an icosahedron (resp. the paving of the plane by equi­
lateral triangles; resp. the barycentric subdivision of the paving of the plane by 
hexagonal honeycombs). When G is finite, A can be realized as a simplicial decom­
position of a Euclidean (n - l)-sphere on which G acts as a group of isometries: 
A is then called spherical. It is called Euclidean if it can be realized as a simplicial 
decomposition of a Euclidean space on which G operates by Euclidean isometries. 
The matrices ((m^)) giving rise to spherical and Euclidean Coxeter complexes have 
been determined by H.S.M. Coxeter [17] and E. Witt [48]. 

(2) Let G = SL3(JF2)
 a nd let ^i (resp. G2) be the subgroup of all matrices ((gtj)) 

with #21 = £31 = 0 (resp. g31 = g32 = 0). If C is a one-simplex to the vertices of 
which we attach G\ and G2, the resulting complex is the graph of Figure 1, which 
is also obtained as follows : Its vertices are the points and lines of the projective 
plane over F2 and its edges join the pairs forming a flag (point + line through it). 

FIGURE 1 

(3) More generally, let A: be a division ring and G = SL„(fc). If we take for C an 
(n - l)-simplex to the kth vertex of which we attach the group {((gtj)) G G\g(j = 0 
for / > k ^ j], we get the "flag complex" of the (n — l)-dimensional projective 
space II over k9 i.e., the complex whose vertices are the proper linear subspaces of 
/Zand whose simplices are the flags of II. 

(A) Let k be a field with a discrete valuation whose residue field is F2, o the ring of 

FIGURE 2 
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integers and % & uniformizing. Let G = SL2(fc). If we attach to the two vertices of 
a one-simplex C the subgroups SLg(o) and 

G n(° ^°) 
1 • \7T0 0 / 

we obtain a "homogeneous tree" whose vertices have order 3 (Figure 2). 
(5) With k9 o, % as above, let now G - SL3(&) and let C be a two-simplex, to the 

vertices of which we attach the following subgroups: 

/ 0 iTh 7C^X0\ / 0 0 7C~l0\ 
SL3(o), G fi Uo o o L G fi o o IC~1Q . 

Vo 0 0 / \7C0 7C0 0 J 

Then the resulting complex A is a kind of two-dimensional analogue of the tree of 
Figure 2 : Every edge belongs to three two-simplices, the link of every vertex is the 
graph of Figure 1 and, in the same way as the tree contains "many" doubly infinite 
chains, so does A contain "many" subcomplexes isomorphic to the paving of a 
plane by equilateral triangles (cf. §3). 

REMARKS, (a) In all examples given above, C was a simplex, but it may also be 
useful to start from other geometric objects. For instance, let G be the dihedral 
group of order 8, let us denote by U2 its center, and by UÌ9 C/3 two other 
subgroups of order 2 such that G = Ui U2U3. Then, if one takes for C a hexagon to 
the vertices of which one attaches the groups G, i71C/2, Uh C/3, C/3C/2, G, the result­
ing complex is again the graph of Figure 1. Another instructive example is the 
following alternative construction of the tree of Figure 2: k9 o and % being defined 
as in Example (4), take for G the additive group of k9 for C the "doubly infinite 
chain" 

- 2 - 1 0 1 2 
... | 1 1 1 1... 

and attach to the vertex i the subgroup TT'D of G (this construction has an advan­
tage over that of Example (4) in that it extends immediately to fields with non-
discrete valuations; cf. [11, §7]). 

(b) In this article, we are essentially interested in buildings, but the general pro­
cedure described above can also be used to construct other interesting complexes, 
for instance graphs related to some sporadic simple groups. 

2. Buildings. Let G be a semisimple algebraic group defined over some field k. 
(By a common abuse of language, we shall often make no distinction between an 
algebraic group and the "abstract" group of its rational points over some ground 
field; thus, G will also denote the group of ^-rational points of the algebraic group 
G.) There are two types of buildings which one associates to such pairs (G, k) and 
which we want to describe: 

for arbitrary k9 the spherical building constructed by means of the /^-parabolic 
subgroups of G; 

when k is local (i.e., endowed with a complete discrete valuation, whose residue 
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field we assume to be perfect, for safety) the Euclidean building constructed by 
means of the parahoric subgroups of G. 

To avoid technical complications, we shall assume that G is absolutely almost 
simple2 (i.e., has over no field extension of A: a proper normal subgroup of strictly 
positive dimension) and, when talking about the local case, that G is simply con­
nected (this is a technical condition, satisfied for instance by the groups SL„, 
Spinw, SpM and their "twisted forms"). 

We recall that the parabolic subgroups of G are the algebraic subgroups P such 
that GIP is a complete (in fact, projective) variety (cf., e.g., [2], [5]). There is no such 
simple characterization of the parahoric subgroups, a notion introduced by N. 
Iwahori and H. Matsumoto [23] in the case of Chevalley groups and successively 
extended by H. Hijikata [21] and by F. Bruhat and the author [10] ; for a general 
definition, we refer the reader to [10] and [11]. Examples of parabolic and parahoric 
subgroups will be given in a moment, but we must first state a property of those 
subgroups which is essential for our purpose: There is a natural number /, called 
the relative rank of G, such that the following assertion holds : 

(*) All minimal /^-parabolic (resp. parahoric) subgroups of G are conjugate; if 
B is one of them and if Pj, • • •, Pr denote the maximal proper subgroups of G contain­
ing B, one has r = / (resp. r = / + 1), the 2 r subgroups Pix f| ••• f| Pin are all 
distinct, they are the only proper subgroups of G containing B and they form a 
complete system of representatives of the conjugacy classes of proper fc-parabolic 
(resp. of parahoric) subgroups of G. 

Thus, if we want to describe the parabolic or the parahoric subgroups of G, it 
suffices to exhibit one minimal such subgroup B. We start with some examples of 
parabolic subgroups: 

If G = SLW(&), one can take for B the group of all upper triangular matrices. 
If k is algebraically closed, B is any Borei subgroup, that is, any maximal con­

nected (for the Zariski topology) solvable subgroup of G. 
If k is perfect and if G is thought of as a group of matrices, one calls "unipotent 

subgroup" of G a subgroup consisting only of matrices all of whose eigenvalues are 
1, and B is then the normalizer of any maximal unipotent subgroup (for instance, 
if char k = p ^ 0, B is the normalizer of any maximal /?-subgroup of G: the 
"Sylow theorem" holds for such subgroups). 

We now go over to the local case and denote by B a minimal parahoric subgroup 
of G. When k (and hence G) is locally compact, there is a characterization of B 
(essentially due to H. Matsumoto) similar to the characterization of minimal 
parabolic subgroups over perfect fields given above: B is the normalizer of any 
maximal pro-/?-subgroup (projective limit of finite /?-groups) of G, where p is the 
characteristic of the residue field. As a further example, let G = SLn(k) over any 
local field k whose ring of integers we again denote by o ; then, one can take for B 
the group of all elements of SL„(o) whose reduction modulo the prime ideal is 
upper triangular. 

2In the sequel, the word "almost" will often be omitted when no confusion can arise. 
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The property (*) makes the parabolic and parahoric subgroups well suited for 
applying the construction described in §1; one takes a simplex of dimension 
r - 1 = / — 1 (resp. /) whose vertices are numbered from 1 to r and one attaches 
to the face (iu •••, ig) the parabolic (resp. parahoric) subgroup Pix f| ••• fi Pi, 
of G, The resulting complex is called the spherical (resp. Euclidean, or affine) 
building associated to G and k; simple examples are Examples (2) and (3) (resp, (4) 
and (5)) of §1. The first virtue of the geometric object thus attached to such pairs 
(G, k) is expressed by the 

THEOREM. If I ^ 2, the building associated to (G, k) determines (tcanonicallyff the 
algebraic group G up to isogeny, the field k and, in the local case, the valuation ofk, 

(For a more precise statement in the spherical case, cf. [43, 5.8].) In view of 
Example (3) of §1, that theorem can be regarded as a generalization of the "funda­
mental theorem of projective geometry"; it also includes the theorem of W. L. 
Chow and J. Dieudonné [18, III, §3] on the permutations of linear subspaces of 
quadrics which preserve the adjacency (at least for division rings which are finite 
dimensional over their center, but this restriction is not essential; cf. [43, §8]). 

If / = 0 ("anisotropic group") the theory of buildings is of course empty (al­
though, in the local case, buildings can also be used in the study of anisotropic 
groups; cf., e.g., [10, Proposition 6]). When / = 1, the Euclidean buildings are 
trees; they are quite useful (cf. for instance [22], [32], [35], [36], [37]) but do not have 
enough structure to give back G and k. The above theorem also suggests the fol­
lowing comment on Examples (4) and (5) of § 1 : If k and k' are two nonisomorphic 
totally ramified extensions of the field of dyadic numbers, the Euclidean buildings 
of SL2(k) and SL2(fc') are isomorphic whereas those of SL3(fc) and SL3(&') are not, 
though they look much alike "locally". 

3. Apartments. The axiomatic approach. An important property of the buildings 
is that they contain "many" Coxeter subcomplexes. Indeed, every building A has 
a system sé of Coxeter subcomplexes, called the apartments oîA9 suchthat: 

(i) Every two simplices of A belong to an apartment. 
(ii) If 21, 2" e sé, there exists an isomorphism of 2 onto 2' which fixes 2 f] 2' 

(elementwise). 
More precisely, A being associated to a group G (cf. §2) : 
(ii') If 29 2' £sé9 there exists an element of G which maps 2 onto 2' and fixes 

2{]2'. 
For instance, in Examples (2), (3), (4), (5) of §1, the apartments are respectively 

hexagons (i.e., barycentric subdivisions of triangles), barycentric subdivisions of 
(n — l)-simplices (the "coordinate frames" of the projective space in question), 
doubly infinite chains, and complexes isomorphic to the paving of a Euclidean 
plane by equilateral triangles. The terminology "spherical" and "Euclidean" in­
troduced in §2 can now be motivated; the apartments of the buildings constructed 
by means of parabolic (resp. parahoric) subgroups are spherical (resp. Euclidean) 
Coxeter complexes. 
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Properties (i) and (ii) are responsible for many useful properties of the buildings. 
This suggests an axiomatic approach to the theory, in which these properties are 
taken as axioms. To avoid degeneracies, it is convenient to add the condition: 

(iii) Every nonmaximal simplex of A is a face of at least three distinct simplices 
of A. 

Thus, let us call "abstract building" a simplicial complex satisfying (iii) and 
having a system sé of Coxeter subcomplexes such that (i) and (ii) hold. It can be 
shown that, if we require sé to be maximal with these properties, it is unique. The 
question naturally arises to know how much more general this "abstract" notion 
is, compared to the "concrete" one introduced in §2. If the apartments are spherical 
of dimension ^ 2 and "irreducible" (a Coxeter complex is irreducible if it is not 
the join of two nonempty Coxeter subcomplexes), or Euclidean of dimension ^ 3, 
the answer is given by a classification theorem (for the spherical case, cf. [43]) 
which shows that the construction of §2 provides all such buildings if one extends 
the class of groups G considered so as to include the "classical groups" over arbi­
trary division rings and also some further "more exotic" groups. Thus, the notion 
of abstract building provides an elementary, "combinatorial", simultaneous ap­
proach to the algebraic semisimple groups and the classical groups of relative rank 
^ 3. For spherical abstract buildings of dimension one, a complete classification 
is out of the question but it is conjectured that a certain quite simple additional 
condition, the "Moufang property" (cf. [43, p. 274], and [44]), is sufficient to 
characterize among them the buildings associated to the classical groups, the 
algebraic simple groups and, again, some related "exotic" groups (e.g., the Ree 
groups of type 2F4) of relative rank 2. Let us add here that the study of abstract 
buildings whose apartments are neither spherical nor Euclidean may be promising, 
as is suggested by the work of R. Moody and K. L. Teo [29] and R. Marcuson 
[27]. 

4. Metric. Topology. So far, we have only been interested in the "combinatorial" 
structure of the simplicial complexes we have considered. Now, it will be necessary 
to imagine the simplices "concretely" realized as spherical or Euclidean simplices. 
If A is the spherical (resp. Euclidean) building associated to a group G (cf. §2), its 
apartments are Euclidean spheres (resp. Euclidean spaces) endowed with a natural 
metric, well defined up to a scalar multiplication. It is easily seen that the distance 
functions in the various apartments can be chosen in such a way that for every 
g e G and every apartment 2, g induces an isometry of 2 onto g2. Then, by pro­
perty (ii') of §2, the metrics on any two apartments agree on their intersection. 
Since, by (i), any two points belong to an apartment, A itself is endowed with a 
distance function d which can be shown to satisfy the triangular inequality. Thus, A 
is a metric space on which G acts as a group of isometries (N.B. : the metrics of 
Figures 1 and 2 are not induced by the natural metric of the underlying sheet of 
paper!). If A is spherical, its diameter is the common diameter of its apartments. 
We say that two points p, qofA are opposite if Ais spherical, of diameter d(p, q). 

Let p, q be two nonopposite points of the building A. In any apartment 2 con-
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taining them, which is a Euclidean space or a sphere, they can be joined by a 
unique shortest geodesic, which turns out to be independent of 2 (cf. [11, 2.5.4] for 
the Euclidean case). From this, one deduces in the usual way that: 

(i) Euclidean buildings are contraetele; 
(ii) a spherical building minus the set of all points opposite to a given point is con-

tractible. 
This last property readily implies that 
(ii') a spherical building has the homotopy type of a bouquet of spheres. 
Furthermore, the number N of these spheres is easily determined; for instance, if 

the ground field k is finite of characteristic/?, Wis thep-contribution to the order of 
G. 

The above properties are useful facts, as was first recognized by L. Solomon 
[40] who observed that, since G acts on A9 it also operates on H^i(A) = ZN (I 
being, as before, the relative rank of G). One thus obtains a special G-module 
whose rank—in the finite case—is the order of the /?-Sylow subgroups of G ; as one 
may expect, this is nothing else but the Steinberg module of G. A similar idea was 
used by A. Borei and J.-P. Serre (unpublished, cf. however [6]) to define the "Stein­
berg module" of an algebraic simple group over a p-adic field: Here, one lets G 
operate on H[ (cohomology with compact support) of the Euclidean building of 
G, which is shown to be isomorphic with the Cech cohomology group Hl~l of the 
spherical building of G endowed with a nonstandard topology. 

Further applications of the spherical buildings to the representation theory of 
finite simple groups "of Lie type" have been made by T. A. Springer (unpublished, 
except for some indications in [41]) and by G. Lusztig ([25], [42]) who considers 
moreover other complexes (e.g., the complex of "affine flags away from 0" in 
affine spaces) closely related to the buildings. 

Properties (i) and (ii) are also used by D. Quillen in his proofs of various finite-
ness theorems in algebraic ^-theory (cf. [9], [34] and other, unpublished results 
concerning the function field case). For further applications of buildings or "build­
ing-type constructions" to algebraic ^-theory, we refer to [1], [45], [46] [47], 

5. Euclidean buildings and symmetric spaces. In many respects, the Euclidean 
buildings are the "ultrametric analogues" of the Riemannian symmetric spaces. In 
other words, they play, in the study of p-adic simple groups, a role similar to that 
of the symmetric spaces in the theory of simple Lie groups. We shall illustrate this 
assertion by a few examples. 

E. Cartan has shown that, in an irreducible, noncompact, simply connected sym­
metric space, every compact group of isometries has a fixed point (cf. [12, p. 19]). 
The same is true of a compact (and even a bounded) group of isometries of a 
Euclidean building [11, 3.2]. In fact, G. Prasad has observed that Cartan's proof 
itself can be carried over to Euclidean buildings : One just has to prove for the 
latter a certain metric inequality [33, 5.12] which, in the case of Riemannian 
spaces, characterizes the spaces with negative curvature. That the Euclidean 
buildings behave like spaces with negative curvature is further illustrated by other 
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inequalities (e.g., [11, 3.2.1]) and by the unicity of the geodesic joining two points 
(cf §4). 

The fixed-point theorem mentioned above was used by Cartan to show the 
conjugacy of all maximal compact subgroups of a real simple Lie group. Its an­
alogue for buildings enabled F. Bruhat and the author [11, §3] to show that, in a 
p-adic simple group (assumed to be simply connected, as previously agreed), the 
maximal compact subgroups are the maximal parahoric subgroups, and thus form 
/ + 1 conjugacy classes (/ = the relative rank). The fixed-point theorem is also an 
essential tool in the process of extending the theory of Iwahori and Matsumoto to 
arbitrary p-adic simple groups (cf. [10, §6]): This is done by "Galois descent", 
and the compact group to which the theorem is applied is the Galois group of a 
"splitting field" of the p-adic group in question. 

Another domain where Euclidean buildings are used as substitutes for the sym­
metric spaces is the cohomology of discrete subgroups. Let G be a real noncompact 
simple Lie group and 71 a discrete subgroup which, for simplicity, we shall assume 
without torsion. Then, r operates freely on the symmetric space X oî G and, since 
X is contractible, H*(r) = H^XJD for arbitrary coefficients. In particular, cd 71 

is g dim X. Furthermore, using some differential operators on X related to the 
Riemannian curvature, Y. Matsushima was able to obtain more precise informa­
tion on the groups H^r.R)', his results show, for instance, that for cocompact 
jTand / "sufficiently small" H'(r9 R) depends only on G and not on T7. As J.-P. Serre 
pointed out, the Euclidean building X of a p-adic simple group G can be used simi­
larly to investigate the cohomology of discrete subgroups T7 of G : The most obvious 
observation is that, since Xis contractible (cf. §4), the above argument shows that 
if ris torsion-free, cd T7 ^ dim X = I (relative rank of G); in [38] similar but more 
elaborate techniques are used to estimate—among other things—the cohomological 
dimension of ^-arithmetic groups. (This dimension is determined in [6].) As for the 
result of Matsushima mentioned above, it can be compared with a conjecture of 
Serre proved by H. Garland [19] for "sufficiently large residue fields" (a restriction 
lifted by W. Casselman later on; cf. [15], [20]): If jTis a torsion-free cocompact 
discrete subgroup of a p-adic simple group, then W(r, R) = 0 for 0 < / < /. The 
method of Garland bears striking formal similarities with that of Matsushima; the 
differential operators considered by the latter are here replaced by some "local 
combinatorial operators", regarded by Garland as the "p-adic curvature" of the 
building X (cf. also [3]). 

Mentioning those operators naturally leads us to another formal analogy 
between symmetric spaces and Euclidean buildings, namely the possibility of doing 
"harmonic analysis" on the latter as well as on the former. The simplest case is that 
of a locally finite tree J1 (remember Figure 2). If/is a complex-valued function on 
the set of vertices of J1 and if, for every vertex s, we denote by A(f)(s) the average 
of the values of/ in the vertices neighbouring s9 it is well known that the operator 
A = A — 1 is the "analogue" for T of the Laplace-Beltrami operator on a Riemann­
ian manifold. The harmonic analysis on trees has been extensively studied by 
P. Cartier ([13], [14]). Instead of considering functions on vertices, i.e., 0-cochains, 
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one may consider 1-cochains or, more generally, /-cochains on a locally finite 
Euclidean building X of dimension /, that is, functions defined on the set of all /-
simplices, Such a function/is called harmonic if for every simplex a of dimension 
/ - 1, the sum of the values of/on all maximal simplices whose closure contains 
G is zero, Taking for Zthe building of a p-adic simple group G and letting G operate 
on the Hilbert space of L2 harmonic /-cochains on X, one obtains the so-called 
special representation of G which contains the Steinberg module (cf. §4) tensorized 
with C as a dense submodule, and which plays an important role in the theory of 
unitary representations of G, This representation was introduced by H. Matsumoto 
[28] and J. A. Shalika [39] (by I. M. Gelfand and M. I, Graev for GL2); its 
interpretation as a representation on L2 forms is due to A. Borei who also showed 
that the space of admissible vectors is the Steinberg module [4] and who con­
structed other, similar representations, using the Euclidean building [4]. (For related 
questions, cf. also [26] and its bibliography.) 

6. Spherical buildings and symmetric spaces. We shall again introduce this section 
with a metamathematical statement, which will however be considerably vaguer 
than that of §5, Let G be a real or a p-adic simple group and let X be its symmetric 
space or Euclidean building. When studying various questions, one is sometimes 
led to add to G or X "points at infinity" ; it turns out that 

the ''most natural choice" for the "space at infinity" of G or X is "often" closely 
related to the spherical building of G. 

Restriction of space and competence forces me to be very brief in commenting 
on that sentence. With some good will however, the reader will grant that it is 
illustrated by the results enumerated below, and whose interconnections have 
perhaps not yet been fully investigated. 

In [6], A. Borei and J.-P. Serre compactify the Euclidean building of a p-adic 
simple group G by adding to it the spherical building of G suitably retopologized 
(cf. also [11, 5.1.33]). In [7], considering an algebraic semisimple group G defined 
over a field k c R they enlarge the symmetric space X of the real Lie group G(R) 
in a "manifold with corners" X and, if k is countable, X — X has the homotopy 
type of the spherical building of G over k. Both papers are primarily aimed at the 
study of arithmetic and S-arithmetic groups and, in particular, of their cohomology. 

Let now G be an algebraic simple group over any field k. In [31, Chapter 2, §2], 
for the purpose of studying the "stability" in G-spaces, D. Mumford interprets the 
points of a certain dense subset XQ of the spherical building of G over k as the 
equivalence classes of "one-parameter subgroups" Cone-dimensional split tori) of 
G for a suitable equivalence relation. Intuitively, that relation describes a certain 
"asymptotic" behavior of the one-parameter subgroups, so that XQ can be regarded 
as "lying at infinity" of G. A similar viewpoint is developed further in [24, IV, §2] 
(and in forthcoming continuations), where G is effectively enlarged into a scheme G 
by adding "at infinity" a scheme related with the spherical building of G on k 
(roughly speaking, G — G has a stratification whose "/^-rational nerve" is the 
building). 

Finally, it is appropriate to mention under the same heading the work of G.D. 
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Mostow [30] and G. Prasad [33] on the strong rigidity of cocompact discrete 
subgroups of real and p-adic simple groups, and perhaps also some aspects of the 
spectacular result of G. A. Margulis on the arithmeticity of lattices, which became 
known during this Congress. To conclude the article at a somewhat more "concrete" 
level, I shall try to give in a few words an extremely oversimplified idea of Mos-
tow's proof of the following special but significant case of his result : 

Let G, G' be two absolutely simple noncompact Lie groups of relative rank ^ 2 
and let 71 c G, V <= G' be torsion-free, cocompact discrete subgroups; then, every 
isomorphism a'. T7 -> V extends to an isomorphism of G onto G'. 

Let X, X' be the symmetric spaces of G and G' and admit that the real spherical 
buildings Y and Y' of G and G' "lie at infinity" of X and X'. Because X, X' are 
topological cells, the manifolds JJf//7 and X'/T' are K(r, 1) and K(r, 1), so that there 
exists a homotopy equivalence X/T -+ X'/T' which lifts to a mapping ß: X - • X' 
"compatible with a". Because X/T and X'/f are compact, ß "does not disturb 
much" the distance function in the large, from which one infers that it induces an 
isomorphism ßf: Y-*> Y' of the buildings at infinity. Finally, it follows from the 
canonicity assertion of the Theorem of §2 that ß' is induced by an isomorphism of 
G onto G'. 
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Coding of Signals with Finite Spectrum and Sound 
Recording Problems 

A. G. Vitushkin 

We will discuss one well-known problem of information theory, the problem 
which at present arises in various branches of radio engineering. We mean the 
problem of coding signals with finite spectrum. By way of an example, we consider 
how such problems arise, what comprises their mathematical content, and what 
conclusions can be drawn from results obtained. We will present an estimate of the 
length of codes for signals with finite spectrum and discuss it in connection with 
the problems of sound recording. 

1. Raising of the question. Of the sound recording techniques the most widely 
used method is the so-called analogue method. When using this method a signal to 
be retained is recorded in its natural form without any preceding transformations. 
This system of recording is remarkable for its simplicity. The system's disadvantage 
is the impossibility of defending signals from interference. All defects of recording 
and reproducing devices, the inhomogeneity and aging of materials and the like 
lead to distortions in reproducing. 

Another method of recording in which we are interested, the digital one, consists 
of the following: The signal is transformed into a discrete code, the code of the 
signal is recorded and, in order to be reproduced, it is again transformed into its 
natural continuous form. As far as this system is concerned, there are many ways 
of protecting signals from various sorts of noises. But in sound reproduction this 
system is not used because the existing schemes of coding still remain unacceptably 
complex. 

Successful development of a digital recording system requires the construction of 
a handy mathematical model of sound signals and the discovery of simple schemes 
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of coding. The first question arising is : How long must the codes be for the signals 
to be reproduced with a desirable accuracy? The qualitative estimate obtained 
seems encouraging. 

2. The choice of the class of functions. The concept of signals with finite spectrum 
is usually associated with the Bernstein class of entire functions. We shall denote by 
Ba the class of entire functions, real-valued on the real axis bounded in modulus 
by the constant 1 on the whole axis, and such that their Fourier transforms vanish 
outside the segment [ - o, er]. We will call the functions of this class signals with 
spectrum a. 

By Kotelnikov's theorem [1] the informational content of a signal with spectrum 
G is proportional to a. Really, representing a function/E Ba in the form 

f(A - V AK
 % \ sin (T'(t - K%/&) 

m " khJ \K~o^) o'(t - K%/&) 

(this representation is valid with any o' > a), we see that the number of parameters 
(per unit time) defining the function is proportional to a. 

Shannon [2] and Kolmogorov [3] have given more concrete forms of this as­
sertion. 

By the Kolmogorov-Tichomirov theorem [3] the entropy He(Ba, T) of the class 
Ba (the norm being the maximum of a function on the segment [— T, T] satisfies 
the following inequality : 

it e % e 

where cx and c2 are absolute constants. 
It should be noted that this kind of theorem, formulated in terms of the uniform 

metric, has rather limited applications because in practice one has as a rule to deal 
with more complex forms of measurements. 

3. The complexity of apparatus. Now we define the notion of an apparatus and 
the parameters characterizing its quality and complexity. An apparatus P is a pair 
of transformations P^ and P2 possessing the following properties. 

A real-valued function f(t) defined on the whole real axis is transformed by the 
operator Px into a function cp = cp(Kz,f) defined for all integers K. Here z is a posi­
tive number constant for all input functions f(t). The function tp may take only one 
of two values : either 1 or 0. In other words, the operator Pi puts, in correspon­
dence to the input function f(t), the sequence of binary numbers tp(Kz,f) (K = 
— oo,---, 0, •••, oo) uniformly distributed in time with the density z"1 per unit time. 
This sequence is called a binary code of the function/(/). 

The second operator P2 transforms the sequence <p(Kz,f) into a real-valued func­
tion / * = P(f) defined on the whole real axis and bounded in modulus by the 
constant 1. 

It is assumed, moreover, that there exists a positive constant / such that for any 
function f(t) and every integer K the value (p(Kz,f) depends only on the values of 
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the function/(0 at the segment [Kz - /, Kz + /] and for every t the value f*(t) 
depends only on the values P\(Kz) at the segment t — l g Kz ^ / + /. 

The constant lis called a delay of the apparatus and the number h = z~l is called 
a code density of the apparatus. If the condition of the boundedness of the appara­
tus delay were omitted from the definition, the notion of code density would not be 
strict, Really, by stretching the code sequence we can turn the code density into 
any desirable number. 

The parameters h and / characterize, in a sense, the complexity of the apparatus. 

4. The quality of apparatus. To describe the quality of reproduction we shall use 
three parameters : <r, e and d. But first of all we must say a few words about para­
meters used for the same purpose in engineering. The most essential of such para­
meters are the following. The first is a. It is the maximal frequency which can be 
reproduced by the apparatus. The second is e. This parameter characterises relative 
error of reproduction. The third is ̂  = 20 log10(M/<5). It is called the dynamic 
range of the apparatus. Here M is the maximum of the norm of output signals and 
<5 is the norm of apparatus noise. The norm of a signal is defined as 

. . . . / 1 *ir \1 /2 

\\f(t)\\ = max[^p(x) dx) 
where z is a positive constant comparable to 5"1. 

DEFINITION. We fix positive constants a, e, ö and r *t o~l. Let/(?) and/*(/) be two 
functions defined on the whole real axis. We will say that the function/*(/) is close 
to/(0 if for any real t the following inequality is valid: 

\f(t)-f*(t)\^e max \f(x)\ + d. 

We will say that the parameters of an apparatus are not worse than a, e, 5 if for 
every function/e Ba the corresponding function/* = P(f) is close to f(t). To put 
it otherwise, the apparatus has parameters a, e and ö if it records and reproduces 
signals so precisely that for any signal with spectrum a the corresponding output 
signal is close to the input one. 

For an apparatus with parameters a, e, ö the number 0 = 20 log10 <?_1 is called 
the dynamic range of the apparatus. If an apparatus has a wide dynamic range, it 
means that both large and small signals can be reproduced with the same accuracy. 

Thus all necessary definitions have been given and we can formulate the result. 

5. Estimate of code density. For any positive numbers a, e and d it is possible to 
construct an apparatus the parameters of which are not worse than a, e, d, while 
the complexity of the apparatus is characterized by the following inequalities: 
h S (oin) log (c/e) and / ^ max {c/e, c/S], where c is an absolute constant. 

It should be pointed out that the right-hand side of the first inequality does not 
contain the parameter d. It means that it is possible to construct an apparatus with 
any desirable dynamic range, using codes with the density which is independent 
of dynamic range. 

This is rather unexpected because in engineering another point of view prevails : 
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A sufficiently wide dynamic range is the most difficult thing to obtain when one 
constructs an apparatus with the analogue system of recording. 

But we need not think that wide dynamic range can be obtained without any 
difficulties at all. In the digital system, obtaining wide dynamic range requires either 
long codes or complex schemes of coding. 

It should be noted as well that it is impossible to construct an apparatus with 
infinite dynamic range using codes of finite density. 

6. Entropy of the class Ba. The estimate of code density consists, as usual, in 
counting the entropy of the corresponding functional class. 

Let the numbers a, e, 5 and r introduced above be fixed. Let JB* be a set of func­
tions defined on a segment [— T,T\. This set is called a net of the class Ba on the 
segment [— T, T], if for any function/e Ba there exists a function/* e B* close to 

/ o n the segment [ — T, T],i.e., such that for any t e[— T,T]the following inequality 
is valid : 

| / W - / * ( 0 | £ « max \f(x)\ + 5. 

Denote by N(T) the number of elements of the minimal net of the set Ba on the 
segment [ - T, T]. The number H(T) = log N(T) is called an (e, <5)-entropy of the 
set Ba on the segment [ - T, T]. 

THEOREM. Let a, e ^ 1, ö ^ 1 and r g: a"1 be positive numbers. Then for any 
sufficiently large T the entropy is 

where c is a positive function of a, e, <5, r which satisfies the inequality c\ ^ c ^ c2, 
where c1 ana c2 are absolute positive constants [4], 

Denote by H = H(a, e, ô) the minimum of code density h = h(P) taken for all 
apparatuses with parameters a, e and ô. It can be easily shown that 

r-
because for any T, on the one hand, any apparatus with parameters a, e and 5 
generates a net of the class Bff on the segment [ - T, T] (this net is the set of all 
output signals when the input ones are all functions from the class Ba) and, on the 
other hand, any net can be looked upon as an apparatus which puts, in correspon­
dence to every function from Ba, one of the nearest elements of the net. 

So the theorem just formulated implies that 

H = £- log 

H = \im-^ H(T), 

% max{e, 5} ' 

i.e., the code density of the most economical apparatus with parameters a, e, ö is 
equal to (G/TC) log (c/max{e, 5}). 

7. Estimate of polynomial derivatives. Now we present a result obtained while 
proving the above theorem. It seems to be interesting by itself. 
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Let P(t) be a polynomial of degree K. Put M - max_1^^11 P(t) |. By the Markov-
Bernstein theorem the derivative P'(0) at the point 0 satisfies the inequality | P'(0) | 
_ MK. It is well known that this estimate is the least upper bound. Buslayev 
has found another form of estimating derivatives. 

If the polynomial P(t) has real coefficients, then 

\n0)\èW(l+q + ISì^)> 

A is an absolute constant, q is the number of the roots of the polynomial located in 
the disk 11 | ^ 1 and {r,-} are the roots of the polynomial located outside the disk. 

Polynomials which arise as approximations of entire functions have widely 
scattered roots. For this kind of polynomial this estimate turns out to be much 
more effective than the Markov-Bernstein theorem. For polynomials with complex 
coefficients this estimate, generally speaking, is not valid. A counterexample is 
P(t) = (1 + ,7/#i/2)tf 

8. Some remarks. Returning to our main subject, the estimate of code density, 
we would like to make some remarks. 

If we put 5 = 0 and take e sufficiently small, then the constants 1/2* (# running 
over all positive integers) are pairwise distant, i.e., none of these constants is close to 
another. Hence the entropy H(T) = oo and consequently H = oo. It means that 
there is no apparatus with an infinite dynamic range. 

It will be recalled that the definition of the closeness of signals includes the 
parameter r. We have been assuming all the time that r ^ a"1. If we put r = 0, 
then the corresponding value H turns out to be equal to (a/%) log (c/min{e, d}). 
The symbol c is again understood as a positive function of all parameters separated 
from zero and infinity. We see that in the estimate of H the symbol min{e, 5} is 
substituted for max {e, 5}, i.e., in the case when r *= 0, d < s, the code density H 
of the most economical apparatus turns out to be equal to (a/%) log (c/S). We see 
that H turns out to be essentially dependent on the parameter d. 

This circumstance shows that the conclusion, that there exists an apparatus with 
a wide dynamic range and relatively small code density, is correct as much as the 
choice of metric is reasonable. 

The notion of the closeness of signals has been defined to correspond to the sys­
tem of measurements which at present is used in engineering. The condition r _ a"1 

seems to be natural as well because errors of reproduction are usually related to the 
energy of the signal per some period of time and not to the momentary value of the 
signal. For sinusoidal signals, for example, the error is usually related to the energy 
per one period of the oscillation. So there is hope that our choice of metric is rea­
sonable and our conclusion is correct. 

Now, in conclusion, it should be noted that our article about coding has been 
centred around the sound recording problems only to make the discussion more 
concrete. The estimate presented relates to arbitrary signals with finite spectrum 
and therefore can be used in other applications. For .example, the result may be 
looked upon as the estimate of the capacity of a communication channel. 
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Any radio communication channel uses signals with finite spectrum and hence 
can be interpreted as an apparatus. In this case we may use the parameters a, e 
and 5 to characterise the frequency range of the channel, nonlinear distortions of 
the channel and the level of channel noise. The entropy H(T) of the corresponding 
class Bff characterises the information content of signals and the number H{a, e, d) 
turns out to be equal to the channel capacity. 

The fact that H does not essentially depend on the parameter d when d is suffi­
ciently small with respect to e means that the channel capacity does not depend in 
fact on the level of channel noise as soon as the noise is sufficiently small with 
respect to distortions. 
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Admissible Sets and the Interaction of Model Theory, 
Recursion Theory and Set Theory 

K. Jon Barwise 

1. Introduction. The study of definability theory is usually considered the prerog­
ative of the model theorist. This view tends to identify definability theory with 
generalizations of Beth's theorem and ignores the obvious relevance of set theoretic 
and recursion theoretic ideas (constructible sets, hyperarithmetic sets and inductive 
definability, to name three). It is time to abandon this restrictive outlook and search 
for a unified approach to the study of the way sets get defined, one which can take 
full advantage of the tools developed in all parts of mathematical logic. 

I have no idea what the "ultimate" treatment of definability will contain. I do feel 
certain, though, that the study of admissible sets with urelements has an important 
role to play in developing a definitive theory. Here I would like to share with you 
some of the reasons for this belief. 

This paper will contain no proofs or historical references. For these the reader is 
referred to my book Admissible Sets and Structures (to appear shortly in the 
Springer-Verlag series "Perspectives in Mathematical Logic"). I would like to 
mention some of the mathematicians who have made significant contributions to 
the theory described below. The order has, at most, psychological significance; 
Kripke, Platek, Kreisel, Moschovakis, Gandy, Ville, Aczel, Grilliot, Gordon, 
Makkai and Schlipf, Some of the most fundamental ideas of the subject go back to 
work of Godei and Kleene. 

2. Basic notions. Let L be a first order language with equality and a finite number 
of relation and function symbols. We use variables p9q,Pi,"- for the variables of L. 
Let SDl = <M, •••> be a structure for L. To study definability over SDÌ we want to 
work within the framework of admissible sets A^ having SDÌ as a collection of ur-
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elements. Such admissible sets are transitive initial pieces of the universe \M defined 
by 

VM(a) = (J Power(M U VM(ß)), 

VM = U V Mid). 
a 

We use eM to denote the membership relation on VM, dropping the subscript if no 
confusion can arise. A set A £ V^ is transitive (in the sense of eM) if x sM y e A 
implies x e A. A transitive set A containing M is admissible over SDÌ if A is closed 
under pairs, union, /^-separation and 4rCollection. To express the last two prin­
ciples, we augment L with a e-symbol and two new sorts of variables: a, b, ••• (to 
range over sets e YM); x, y, z, ••• to range over M U VM. Let L* denote this new 
language. The 4)-formulas of L* are those in which all quantifiers are bounded. In 
particular, every atomic formula of the original language L is J0. J0-separation 
consists of all universal closures of formulas of the form 

lbVx[xeb<r+ xea A <p(x)] 

where cp is âQ and b is not free in <p. ^-collection consists of all universal closures of 
formulas of the form 

Vx e aly<p(x, y) -» 3èV# e ö3 y e bç(x, y), 

with the same conditions on <p. 
We use Agn, B^ to denote admissible sets over SDÌ. We use A, B to denote admis­

sible sets with arbitrary urelement base SDÌ. The smallest admissible set over SDÌ is 
Am = HFm, where a e HFm iff TC(a), the transitive closure of a, is finite. This 
admissible set is too simple to be of much interest for definability theory. 

An admissible set A^ is admissible above SDÌ if M e AM. Most of this paper is 
devoted to a discussion of the smallest admissible set above SDÌ, HYP^. 

All results from infinitary logic carry over to admissible sets with urelements 
more or less without change. In particular, the completeness, compactness and in­
terpolation theorems hold for arbitrary countable admissible (in the extended 
sense used here) fragments LA of L ^ . (The interpolation theorem itself could be 
the subject of an entire paper. It is especially relevant to the remarks made in §7. 
We will ignore it here, along with much related material.) 

Our definition of admissible set is not (and cannot be) by means of a first-order 
theory. The closest we can come to axiomatizing admissible sets is by means of the 
theory KPU of L* whose axioms are: extensionality, pair, union, 4r s e P a r a t i ° n > 
^-collection and the scheme of foundation. KPU+ is KPU plus the axiom 
ldix[x ea<r+ lp(x = p)] which asserts that the collection of urelements forms a 
proper set. 

The following simple fact is important for many results about admissible sets. 

2.1. TRUNCATION LEMMA. Let SŜ  = (SDÌ; B, E) be any model of KPU and let 
IV/Cjòw) be the well-founded part of$5m. There is an admissible set A^ isomorphic to 
iV/^ò^ The isomorphism c: W/(^&^) = A^ is given by c(p) = p,forpe^R; c(a) = 
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{c(x) | xEa), for a e ^ / ( B . ) . 

It is only the word "admissible" that keeps the truncation lemma from degenerat­
ing into the collapsing lemma. 

3. Elementary properties of HYPm. Here I am going to discuss one special kind 
of admissible set almost exclusively. It shows how the simple addition of urelements 
greatly enriches the role of admissible set theory in definability theory, 

3.1. DEFINITION. Let SDÌ be a structure for L. HYPm is the intersection of all 
admissible sets A^ above SDÌ. O(SDÌ) is, by definition, the least ordinal not in HYPm. 

HYPm is admissible above SDÌ, but this is by no means obvious. The following, 
however, is obvious (by the truncation lemma). 

3.2. COROLLARY. HYPm is the intersection of all models of KPU + of the form W^-
More precisely, every model of KPU+ of the form 81^ is (isomorphic to) an (end) 
extension of HYPm. 

As an immediate consequence of 3.2 and the ordinary compactness theorem, 
we see that every structure has an elementary extension SDÌ with O(SSÌ) = co. For 
such SDÌ, HYPm will contain infinite sets (say M itself) but no infinite ordinals. This 
possibility gives rise to some interesting applications of the theory, but it also 
demands that we take some care in developing the theory. 

For example, in developing the theory of the constructible sets over SDÌ, we must 
not use the axiom of infinity, as we would if we thoughtlessly adapted the iterated 
first order definability approach. Let J*"l5 •••, J*8, •••, &N be Gödel's basic opera­
tions with a few extra thrown in to handle the atomic relations of L (including =). 
Define 

@(b) = b U {^(x9y)\x,yeb, 1 g i g N). 

Using Q) as a slow approximation to defining sets in V^ (slow compared to iterated 
first-order definability), we can define the universe L^ of constructible sets above 
SDÌ as follows : 

L(0)w = Mi 
L(a + l)an = ®(L(a)w U {L(a)m})\ 

L(X)m = {Ja<iL(<x)m> f°r limit A; and 
Lm — \Ja Mtf)an-

By defining this notion of constructibility within KPU+ one can prove the following 
results. 

3.3. THEOREM. Let Wbea structure for L and let a = O(SDi). 
(ï)HYPm = L(a)m. 
(ii) HYPm is admissible; hence it is the smallest admissible set above SDÌ. 
(iii) Every a e HYPW has a "good" 2\ definitoli in HYPm with parameters from 

M U {M}, good in the sense that it works in every model of KPU* of the form %n. 
(iv) HYPm is projectible into HFw In other words, there is a HYPm-recursive 

function TC such that, for every x,ye HYPn, ifx^y then n(x) and %(y) are disjoint 
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nonempty subsets ofHFm. TjfSDï has a HYPm-recursive pairing function, then HYPm 

is projectible into SDÌ itself. 

If we take some care in defining J^ , •••, &N we can make sure that they are all 
(what Gandy calls) substitutable, that is, that the Jo-formulas are closed under 
substitutions by them. This gives us, for example, the following corollary. 

3.4. COROLLARY. IfO(W) = œ, then Se HYPm iff S is first-order definable over 
M (with parameters from M), where S is a relation on SDÌ. 

Exploiting the substitutability of the «F,-, John Schlipf has proved the following 
result relating fundamental notions from model theory, recursion theory and set 
theory. The structure SDÌ is recursively saturated if for every recursive set 0(x, y\ • • -yn) 
of formulas of Laai9 SDÌ is a model of: 

vyi — yn A ix/\$o(xJ)-+ix/\$(x,y) 

where 5^(0) is the set of finite subsets of 0. 

3.5. THEOREM. A structure SDÌ is recursively saturated if and only ifL(a))m is admis­
sible, i.e„iffO(m) = œ. 

It is easy to see that every nonstandard model of Peano arithmetic which can be 
expanded to a model of analysis (JJ-comprehension) is recursively saturated. 

In the next sections we discuss the relationship of HYPm with some other forms 
of definability. 

4. On set existence. A set a e \% is ^-secured by a set theory T if for every model 
STSCT of T, a is internal (in the usual sense of nonstandard analysis) to 81^. Corollary 
3.2 shows that every a e HYPW is SDi-secured by KPU*. One would suspect that 
some stronger theory like ZFU+ (ZF with M as a set of urelements) would SDÌ-
secure a lot more sets. For countable structures SDÌ, this is just not the case. To us 
this suggests that HYPm is here to stay. 

4.1. THEOREM. Let SDÌ be countable and let The a recursive (or even 2\ on HYPm) 
set theory true in some structure of the form tym. Every set a e V^, ffl-secured by T, 
is in HYPm. 

5. A generalization of Kleene's theorem. Kleene's theorem (to the effect that a 
relation on the natural numbers is A\ iff it is hyperarithmetic), and the analysis of 
II\ relations that goes into it, is probably the first real breakthrough into (applied) 
second-order logic. The following provides a similar analysis for any countable 
structure whatsoever. 

5.1. THEOREM. Let S be a relation on a countable structure SDÌ. 
(i) S is n\ on m if and only if S is 2\ on HYPm. 
(ii) S is â\onWiffSe HYPm. 

(Part (ii) is immediate from (i). Part (i =>) is proved by using the completeness 
theorem for the admissible fragment based on HYPm. Part (i <=) follows from 
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Corollary 3.2 and some rather tedious coding arguments.) 
It came as a surprise (to me) that this theorem requires no coding assumption on 

SDÌ. For SDÌ with a definable pairing function the proof is much like that given in 
Barwise-Gandy-Moschovakis for SDÌ = (A, e>, a countable transitive set closed 
under pairs, 

5.2. COROLLARY. A relation S on a countable structure SDÌ is A\ iff SeL(a)mfor 
some a < O(SDÎ). 

5.3. COROLLARY. A relation S on a countable recursively saturated structure SDÌ is 
â\ iff it is first-order definable. 

The following generalization of an old result of Harrison for the natural numbers 
shows another direction for applications to definability theory. 

5.4. THEOREM. Let SDÌ be countable and let S bea 21 second-order relation over SDÌ: 

SeS iff (SDÌ, S) N 3ßp(ß,S). 

Exactly one of the following holds: 
(i) There is an S' e HYPm such that S ^ S' (in which case S is countable and a 

subset of HYPm). 
(ii) S contains a perfect subset (in which case Card(S) = 2**»). 

5.5. COROLLARY. If SDÌ is countable and recursively saturated and if S is a 2\ 
second-order relation over SDÌ with Card(S) < 2Ko then every Se S is first-order 
definable over SDÌ. 

For example, if SDÌ is a countable recursively saturated elementary extension of 
<ûJ, + , • > then there are 2Ka distinct SDÏo with SDÌo < SDÌ (for otherwise co would be 
definable in SDÌ, by 5.5). 

Actually, 5.4 is a special case of (a slight generalization of) a very powerful 
theorem of Makkai, a result which is especially useful in the present framework 
but too complicated to be stated here. 

6. Inductive definitions. At about the same time that Kripke and Platek were 
developing the theory of (pure) admissible sets, Moschovakis was developing his 
notions of search computability and hyperelementary (née hyperprojective) rela­
tions over an arbitary structure SDÌ. We can incorporate these notions within admis­
sible set theory by using the framework which admits urelements, 

6.1. THEOREM. Let SDÌ fo a structure for L and let S be a relation on M. 
(i) £ is semisearch computable on SDÌ iff S is I\ on HFm. 
(ii) S is search computable on SDÌ iff S is A\ on HFm. 

6.2. THEOREM. Let S be a relation on a structure SDÌ, where SDÌ has an inductive 
pairing function. 

(i) S is inductive on SDÌ iff S is 2\ on HYPm. 
(ii) S is hyperelementary on SDÌ iff Se HYPm. 

(iii) O(SDi) is the closure ordinal of first-order positive inductive definitions over SDÌ. 
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We can also use admissible sets to give an alternate characterization of the in­
ductive and hyperelementary relations on M. 

6.3. THEOREM. Let S be a relation on a structure SDÌ, where SDÌ has an inductive 
pairing function, and let a = O(SDi). 

(i) S is inductive on SDÌ iff there is an a-r.e. set 0(v, w) of a-finite formulas such that, 
for some parameters y= y± ••• yh S is defined by 

S(x) if and only if m\=V0(X,y). 

(ii) S is hyperelementary on SDÌ iff there is an a-finite formula <p(v, w) such that, for 
some parameters y = yi ••• yk, S is defined by S(x) if and only if$R |= <p(%, y). 

This theorem does not mention HYPm, but HYPm plays an important role in its 
proof. 

If we allow extended inductive definitions (inductive definitions which permit 
existential quantification over HFm, arbitrary bounded quantifiers and arbitrary 
quantifiers over SDÌ), then the pairing function assumption may be dropped from 
6.2 and 6.3. 

7. Concluding remarks. At the 1960 International Congress for Logic, Metho­
dology and Philosophy of Science, held at Stanford, John Addison predicted the 
existence of a theory of hierarchies which would unify mathematical logic and ex­
plain existing analogies from model theory, recursion theory and descriptive set 
theory. I hope that in the limited time and space available, I have been able to 
convey some of my reasons for believing that the theory of admissible sets with 
urelements is the realization of Addison's prediction. 

UNIVERSITY OF WISCONSIN 
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Some Systems of Second Order Arithmetic and Their Use 

Harvey Friedman 

The questions underlying the work presented here on subsystems of second order 
arithmetic are the following. What are the proper axioms to use in carrying out 
proofs of particular theorems, or bodies of theorems, in mathematics? What are 
those formal systems which isolate the essential principles needed to prove them? 

Ultimately, answers to these questions will require use of systems that are not 
subsystems of second order arithmetic, but have variables ranging over objects such 
as sets of sets of natural numbers. Such systems would be needed in order to 
formalize directly theorems about continuous functions on the reals, or measurable 
sets of reals. But the language of second order arithmetic is sufficient to formalize 
directly several fundamental theorems, and is basic among the possible languages 
relevant to the formalization of mathematics. Furthermore, our preliminary investi­
gations reveal that the most important systems not formalized in the language of 
second order arithmetic are conservative extensions of those that are. In this way, 
the systematic study reported here of subsystems of second order arithmetic is a 
necessary and important step in answering the underlying questions. 

In our work, two principal themes emerge. The first is as follows. 
I. When the theorem is proved from the right axioms, the axioms can be proved 

from the theorem. 
When this theme applies, we have a unique formalization of the theorem, up to 

provable equivalence. I occurs surprisingly often, but not always. 
The second is more technical. 
II. Much more is needed to define explicitly a hard-to-define set of integers than 

merely to prove their existence. 
An example of this theme which we consider is that the natural axioms needed 
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to define explicitly nonrecursive sets of natural numbers prove the consistency of 
the natural axioms needed to prove the existence of nonrecursive sets of natural 
numbers. 

The language if of second order arithmetic has numerical variables nt- and set 
variables x(, 0 ^ /, the constant 0, the unary successor function symbol N, the 
binary function symbols + , •, and the binary relation symbols < , = , e. 

The terms of 3? are given by (a) 0, and each numerical variable is a term, and 
(b) s -f t, s-1, and N(s) are terms if s, t are terms. 

The atomic formulae of j£? are of the form s = t, s < t, or s e x, for terms s, t, 
and set variables x. 

The formulae of J£ are given by (a) atomic formulae are formulae, (b) if A, B 
are formulae, so are (~ A), (A & B), (A v B), (A -> B), and (A <-> B), and (c) if A 
is a formula, a a variable of if, then (Va)(A), (ia)(A) are formulae. 

The language if has the following interpretation. An if-structure is a system 
(D, n, a, m,Q, •<, K), where D ^ 0,n,a, m are unary, binary, and binary functions 
on D interpreting N, + , •, 0 e D interpreting 0, •< is a binary relation on D inter­
preting < , and K c 0>(D) is nonempty. We often write sé = (M, K). 

sé |= A[f, g] is defined in the usual way, with sé \= s = /[/ , g] iff Va\(sé, s, t) = 
Val(^, t, f), sé |= s < t[f, g] iff Vn\(sé, s,f) < Val(^, t,/), sé |= se x{[f g] iff 
Ya}(sé, s, f) e g(i). Here f(i) e D is the interpretation of ni9 and g(i) e K is the 
interpretation of x(. 

We say that sé = (M, K) is an ^-structure just in case M is the standard model of 
arithmetic. In this case, we identify sé with K c 0>(a)). 

A formula is called arithmetic if it has no bound set variables, and a sentence is a 
formula with no free variables. 

The AQ formulae are given by (i) atomic formulae are AQ, (ii) propositional com­
binations of AQ formulae are AQ, and (iii) if A is AQ, « is a numerical variable, t a 
term, then (3«)(w < t & A), (Vn)(n < t -> A) are AQ. 

A formula is regular if it is of the form (Qa\) • • • (Qan)(B), where B is a AQ formula 
not beginning with a quantifier, 0 ^ n. The quantifiers (Qa{), •••, (Qan) are called 
the leading quantifiers. 

The Z°k (J7?) formulae are the regular arithmetic formulae with at most k leading 
quantifiers, beginning with an existential (universal) quantifier. 

The 2k (IIk) formulae are those regular formulae whose leading quantifiers 
begin with a block of at most k set quantifiers beginning with an existential (uni­
versal) one, followed by only arithmetic quantifiers. 

The 2 (II) formulae are the regular formulae with no universal (existential) set 
quantifiers. 

I. Axioms for arithmetic sets. RCA (recursive comprehension axiom system) 
consists of 

1. (successor axioms) N(n) ^= 0, N(n) = N(m) -• n = m. 
2. (recursion axioms) n + 0 = n, n + N(m) = N(n + m), n-0 = 0, n• N(m) = 

(n-m) -f n, n < m <-* (3r)(r ^ 0 & n -f r = m). 
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3. (induction axioms) (,4(0) & (Vn)(A(n) -* A(N(n)))) -> (Vn)(A(n)), where A is 
arbitrary. 

4. (recursive comprehension) (Vn)(A(n) «-• B(n)) -• (3x)(Vn)(n e x<r+A(n)), where 
A is I\, B is tf?, x not free in >4. 

Note that the ûj-models of RCA are just the collections of sets closed under join 
and relative recursivity. In RCA, we can define and prove the basic facts about 
coding. These include codes for finite sequences of natural numbers, for functions 
as sets, for finite and infinite sequences of sets and functions, for if-structures, and 
for partial recursive functions and recursively enumerable sets (although not every 
index will provably define a p.r. function or an r.e. set, because of the weakness of 
the recursive comprehension axiom). In addition, the satisfaction relation for pro-
positional calculus can be defined. 

ACA (arithmetic comprehension axiom system) consists of RCA together with 
arithmetic comprehension : (lx)(yrì)(n e x<-+ A(n)), for arithmetic A in which x is 
not free. In ACA, we can define and prove the inductive clauses for the satisfaction 
relation for predicate calculus, which cannot be done in RCA. Note that the co-
models of ACA are just the collections of sets closed under join and relative 
arithmeticity. 

In formalizing model theory in RCA, we use the following conventions. Given a 
structure sé, and a sentence A, we let AW be the formula that asserts that A holds in 
sé, obtained by relativizing the symbols in A to sé. Thus AW and A have the same 
complexity. For structures sé, set variables yÌ9 •••, yn, set constants q,---, cn, we write 
Rep(j3f,cl5 •••, cn,yh •••, yn) for the formula which asserts "sé is a structure in the 
language ^ augmented with the set constants cl5 •••, cn, and n e ct- holds in sé if and 
only if n e y{." 

We now consider two important combinatorial principles. König's lemma asserts 
that every infinite finitely branching tree of finite sequences of natural numbers has 
an infinite path. Weak König's lemma asserts that every infinite tree of finite se­
quences of 0's and l's has an infinite path. 

Take KL (WKL) to be the system consisting of RCA together with König's 
lemma (weak König's lemma). 

Let SHB (sequential Heine-Borei system) be the system consisting of RCA to­
gether with the axiom which asserts that every sequence of open intervals which 
covers [0, 1] has a finite initial segment which covers [0, 1]. In the formulation of 
SHB, reals are identified with the set of rationals less than them, and open intervals 
are identified with appropriate pairs of reals. 

Let SLUB (sequential least upper bound system) be the system consisting of RCA 
together with the axiom which asserts that every bounded infinite sequence of reals 
has a least upper bound. 

Let MLUB (monotone least upper bound system) be the system consisting of 
RCA together with the axiom which asserts that every bounded monotone increas­
ing sequence has a least upper bound. 

Let SBW (sequential Bolzano-Weierstrass system) consist of RCA together with 
the axiom which asserts that to every bounded sequence of distinct real numbers, 
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there is a real number every neighborhood of which contains at least two terms. 
By formalizing familar recursion theoretic constructions, we have 

THEOREM 1.1. ACA is equivalent to (a) KL, (b) SLUB, (c) MLUB, and (d) SBW. 

Theorem 1.1 is an illustration of our theme I. The following theorem is another 
illustration of theme I. 

THEOREM 1.2. WKL is equivalent to (a) the compactness theorem for propositional 
calculus, (b) the completeness theorem for sets of sentences in propositional calculus, 
(c) SHB, and (d) 

A(xu —, xk) -» (3j3*0 (Rep(j^, ch ••*> Ch *u —> xk) & A^u •> ck)W)9 

where A has the free variables X\, •••, xk. Other equivalents are (e) every consistent 
theory in predicate calculus has a complete consistent extension in the same language, 
and (f) every consistent theory in predicate calculus has a Henkin complete extension 
(with new Henkin constants added). 

Observe that (d) above is a reflection principle, asserting that if a statement is 
true, there is a structure in which it holds. 

The co-models of WKL have special significance. Let PA denote Peano arith­
metic. A set x c a) is called binumerable in a complete consistent extension K 
of PA just in case x — {n :A(n) e K), for some formula A with one free variable. A 
set x c o) is called representable in a model sé of PA just in case x = {n \sé \= 
A(n)}, for some formula A with one free variable. The first half of the following 
theorem is due to Scott [7]. Our proof of the second half uses the continuum 
hypothesis, but it most likely is eliminable. 

THEOREM 1.3. The countable œ-models of WKL are precisely those collections of 
sets which, for some complete consistent extension Kof PA, are the sets binumerable 
in K. The œ-models of WKL are precisely those collections of sets which, for some 
model sé of PA, are the sets representable in sé. 

By taking a A\ complete consistent extension of PA, we have an <a-model of WKL 
which is not an ûj-model of ACA. It is also clear that the recursive sets do not form 
an û)-model of WKL. 

Using formalized cut elimination, formalized recursion theory, and forcing, 
we obtain 

THEOREM 1.4. RCA and WKL prove the same II formulae. However, they do not 
prove the same 2\ sentences. 

We now consider what recursion theory can be proved in WKL. WKL proves 
the existence of a plethora of incomparable Turing degrees. The best theorem we 
know along these lines is 

THEOREM 1.5. WKL proves that for any xQ there is a sequence {xn}, 0 ^ n, such that 
each xn is nonrecursive, and the only sets recursive in more than one term are recursive. 

ACA would suffice to prove the existence of a perfect tree every two paths of 
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which are of incomparable Turing degree, and we do not know if WKL is sufficient. 
ACA suffices to prove the existence of a set of minimal Turing degree, and again 
we do not know if WKL is sufficient. 

ACA is obviously sufficient to explicitly define a nonrecursive set (e.g., the jump), 
WKL is not sufficient, and so the following theorem provides us with an illustra­
tion of our theme II. The proof uses forcing, symmetry arguments, and recursion 
theoretic diagonal arguments. 

THEOREM 1.6. There is an œ-model of WKL + (l\x)(A(x)) -> (lx)(A(x) & x is 
recursive), where A(x) is an arbitrary formula with x as the only free set variable. 

The following concerns the corresponding rule. 

THEOREM 1.7. If WKL proves (3x)(A(x) & x is not recursive) then WKL proves 
(Vx) (ly)(A(y) Se y is not recursive and (Vn)((x)„ ^ y))> where A is a 2 formula with 
x as the only free set variable. 

II. Axioms for hyperarithmetic sets. HCA (hyperarithmetic comprehension axiom 
system) consists of RCA together with (Vn)(A(n) «-* B(n)) -> (3x)(Vn)(n e x<-+A(n)), 
where A is 2Ì9 B is J71} and x is not free in A. 

HAC (hyperarithmetic axiom of choice system) consists of RCA together with 
(Vn)(3x)(A(n, x)) -> (3y)(Vn)(3x)(x = (y)n & A(n, x)), where A is arithmetic, y 
not free in A. 

HDC (hyperarithmetic axiom of dependent choice system) consists of RCA 
together with 

(Vx)(ly)(A(x,y)) -> (Vw)(lz)(Vn)(lx)(iy) 
(x = (z)n &y = (z)n+l & A(x, y)&w = (z)0), 

where A is arithmetic, n, z, w not free in A. 
ABW (arithmetic Bolzano-Weierstrass) consists of RCA together with the 

axioms which assert that to every bounded arithmetic predicate of reals there 
is either a finite sequence of reals which includes all solutions, or a real, every 
neighborhood of which contains at least two solutions. 

It is easy to see that HAC implies ABW, but we know very little about the 
consequences of ABW. 

SL (sequential limit system) consists of RCA together with the axioms which 
assert that, whenever every neighborhood of x contains at least two solutions to 
an arithmetic predicate, x is the limit of some sequence of solutions from that 
predicate. 

The following is an illustration of theme I. 

THEOREM 2.1. HAC is equivalent to SL. 

The first half of the following is due to Kreisel [5], and the second half is due to 
Feferman. 

THEOREM 2.2. The œ-models of HCA are closed under join and relative hyper-
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arithmeticity. Not every collection closed under join and relative hyperarithmeticity 
obeys HCA. 

It is easy to see that HDC |— HAC \- HCA. The following is due to Friedman 
[1] and [3]. 

THEOREM 2.3. HCA and HDC prove the same 772 formulae. There is a 22 sentence 
provable in HDC but false in some œ-model of HAC. 

J. Steel has recently proved that HCA and HAC are not equivalent (in fact, there 
is an co-model of HCA not satisfying HAC), solving a long outstanding problem. 
It is still open whether HCA proves each instance of HAC without parameters. 
Steel has also proved the independence of the relativized Kleene-Souslin theorem 
(every set A\ in x is hyperarithmetic in x) from HDC. It is still open whether HDC 
(or HCA) proves the Kleene-Souslin theorem. 

III. Axioms for arithmetic recursion. ATR (arithmetic transfinite recursion) 
consists of ACA together with axioms that assert that arithmetic recursion can be 
performed on any well ordering of natural numbers. (The //-sets on recursive well 
orderings are examples of the result of such transfinite recursions.) 

The weak IIi-AC consists of RCA together with (yrì)Qm)(A(n, m)) -> 
(ïf)(Vn)(A(n,f(n)))9 where A is J7 b /not free in A. 

CWO (comparability of well orderings system) consists of RCA together with 
the axiom which asserts that to each pair of well orderings of natural numbers, 
there is an isomorphism of one onto an initial segment of the other. 

PST (perfect subtree theorem system) consists of RCA together with the axiom 
that asserts that every tree of finite sequences such that no infinite sequence of 
functions includes all infinite paths has a perfect subtree. 

CDS (countability of discrete sets system) consists of ACA together with axioms 
which assert that to every arithmetic predicate of reals, every two distinct solutions 
of which are at least one unit apart, there is a sequence which includes all its solu­
tions. 

The following is an illustration of theme I. 

THEOREM 3.1. ATR is equivalent to (a) weak ürAC, (b) PST, (c) CWO, (d) 
CDS, and (e) ACA + "to each pair of well orderings there is an isomorphism from one 
into the other. " 

As far as comparisons with the axioms for hyperarithmetic sets, we have 

THEOREM 3.2. ATR proves HAC, but not HDC. ATR proves the existence of an 
œ-model of HDC. ATR + HDC proves the existence of an œ-model of ATR. 

The first part of the following theorem is due to Kreisel [6], and the second es­
sentially due to Simpson [8]. 

THEOREM 3.3. ATR proves the relativized Kleene-Souslin theorem. ATR proves 
the existence of a perfect tree, the paths of which are of distinct nonzero minimal 
hyperdegree. 
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In the next section we will state that TI, a system which proves ATR, does not 
suffice to define explicitly a nonhyperarithmetic set. The next theorem concerns the 
corresponding rule. 

THEOREM 3.4. If ATR proves (lx)(A(x) & x not hyperarithmetic), then ATR 
proves (Vx)(3y)(A(y) & y is not hyperarithmetic & (yri)((x)n ^ y))> where A is a 
22 formula with x as the only free set variable. 

IV. Axioms for transfinite induction. TI (transfinite induction system) consists of 
RCA together with axioms which assert that transfinite induction can be applied to 
any well ordering of natural numbers with respect to any formula. 

RFN (reflection system) consists of ACA together with the axioms 

A(xh •••, xk) -> (lsé)(Rep(sé9 ch •••, ch, xu •••, xk) 
& A(ch •••, ck)W & sé is soi œ structure), 

where A has only the free variables xÌ9 •••, xk. 
By formalizing the proof of the completeness of cut free rules for co-logic, we 

obtain the following. 

THEOREM 4.1. TI and RFN are equivalent. 

Many questions arise in connection with systems obtained by restricting the com­
plexity of the formulae to which the transfinite inductions are applied in TI. In the 
following theorem, which answers a few of the questions that arise, all systems are 
understood to include RCA. 

THEOREM 4.2. TI for 21 formulae is equivalent to ATR. ATR does not prove TI for 
JIi formulae, but HDC does. TI for IIformulae proves HAC. TI for III formulae 
proves HCA. TI for 22 formulae proves HDC. 

A /3-structure is a K c 0>(œ) such that if P(x\, •••, xk) is true then P(x\, *-',xk) 
holds in K, where x\, •••, xk e K, and P is 2\ with only x\9 ~',xk free. Observe that 
any /3-structure forms an co-model of TI. 

We now state the theorem mentioned previously about the failure of TI in ex­
plicitly defining a nonhyperarithmetic set. This is an illustration of theme II. 

THEOREM 4.3. There is an œ-model of TI (in fact, a ^-structure) which satisfies 
(3 \x)(A(x)) -> (lx)(A(x) & x is hyperarithmetic), for arbitrary A whose only set 
variable is x. 

There is the corresponding rule: 

THEOREM 4.4. If TI proves (lx)(A(x) & x is not hyperarithmetic), then TI proves 
(Vx)(ly)(A(y) & y is not hyperarithmetic & (Vn)((x)n ^ y)), for 2Z formulae A with 
x as its only free set variable. 

V. Axioms for the hyperjump. HrCA consists of RCA together with 
(lx)(Vn)(n e x <-» A(n)), for III formulae A without x free. 

PKT (perfect kernel theorem system) consists of RCA together with the axiom 
which asserts that to every tree T of finite sequences with no infinite sequence of 
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functions including all infinite paths, there is a perfect subtree S and a sequence of 
functions such that every infinite path through T is a path through S or a term in 
the sequence. 

ALUB (arithmetic least upper bound system) consists of RCA together with 
the axioms which assert that if the solutions to a nonempty arithmetic predicate 
of real numbers have an upper bound, they have a least upper bound. 

The following is an illustration of theme I. 

THEOREM 5.1. UyCA, PKT, and ALUB are equivalent. 

The last part of the following theorem is proved in Friedman [2]. 

THEOREM 5.2. IIi-CA proves ATR + HDC. There is an œ-model of UX-CA that 
does not satisfy TI. IIi-CA proves the existence of an œ-model of TI (in fact, the 
existence of a ^-structure). 

The second clause in Theorem 5.2 can be generalized. Let T be any finite ex­
tension of RCA. Clearly RFN + T proves the existence of an co-model of T. By 
the incompleteness theorem for co-logic, not every co-model of T satisfies RFN, 
or equivalently TI. 

We have considered stronger systems of second order arithmetic, but our results 
to date do not provide significant illustrations of our themes. We have also con­
sidered systems with restricted induction (see Friedman [4]). 
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On Superintuitionistic Logics* 

A. V. Kuznetsov 

Since Brouwer has proclaimed in 1908 the untrustworthiness of classical logic by 
rejecting the law of the excluded middle, intuitionistic logic, managing without this 
law, began little by little to develop. As a calculus, it has been presented in a well-
known paper of Heyting (1930), preceded by the interesting papers of A. N. 
Kolmogorov (1925) and V. I. Glivenko (1929). Soon after that, Kolmogorov 
(1932) proposed an interpretation of the intuitionistic logic as the logic of problems, 
which showed that it is valuable not only for intuitionists. This became quite clear 
after the appearance of the theory of algorithms and the constructive tendency in 
mathematics. Just the connection of the truth of the mathematical proposition with 
the problem of its demonstration, its falsity with the problem of its refutation, and 
the law of the excluded middle with the problem of construction of the algorithm 
allowing to prove or refute any proposition has generated ineradicable doubt in 
the validity of this law. 

The papers of Tarski, Rasiowa, Curry and other mathematicians give the precise 
algebraic and topological interpretations of intuitionistic logic and its easy immer­
sion into a modal logic £4 detected by Godei. However in 1932 Godei [3] proved 
that it is impossible to give exactly the intuitionistic logic by any finite truth matrix; 
though, as Jaskowski [22] showed later on, it may be approximated by a sequence 
of such matrices. The attempts to give the exact pithy-semantical (meaningful) 
construction of the intuitionistic logic by means of, for example, precisely stating 
Kolmogorov's logic of problems have unexpectedly led to logics, slightly different 
from the intuitionistic—to the logic of recursive readability of S. Kleene and G. 
Rose (see [5], [14]) and to the logic of finite problems of Ju. T. Medvedev [10] (as 
V. E. Plisko [11] has shown recently, these two logics are incomparable). The 
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complexity of the investigation of these logics has brought about an idea of 
approximatizing them by more simple logics, nearer to the classical. All these 
circumstances aroused interest in different logics, intermediate between the classical 
and intuitionistic, predetermining in such a way the idea of the general study of all 
such logics. 

One might also criticize the laws of intuitionistic logic—either from the stand­
point of refusing from the so-called "paradoxes of implication", which lead to 
different logics of rigorous implication; or from the point of view of accounting for 
the peculiarities of quantum-mechanical problems (in this case one axiom is doubt­
ful, for the calculus without it see [15]) ; or in the light of immersion not in 54, but 
in weaker modal logic. Moreover, I am keeping to the view that none of fixed 
logic may be suitable in all the situations, for all cases of life; therefore a general 
investigation of different large classes of nonclassical logics is useful. However, 
being unable to embrace the nonembraceable, I shall here restrict myself only to the 
consideration of propositional logics, and from them only the superintuitionistic 
logics, i.e., classical, intuitionistic, intermediate (between them) and absolutely 
contradictory. 

Systematic investigations of superintuitionistic (intermediate) logics started in 
1955-1959 with papers of Umezawa (for example, [17]), are performed in the 
U.S.S.R., Japan (see the survey [20b]), Holland, Canada and U.S.A., and during 
the last years become active in Poland. In Kishinev (U.S.S.R.) my disciples and I 
have been studying these logics since 1963. 

We proceed from the common concept of (propositional) formula—on the basis 
of the alphabet consisting of symbols of operations &, v, => and —i, variables p, q, 
r, s and t, perhaps with indices, and brackets. Every set of (such) formulae, contain­
ing all the axioms of the intuitionistic propositional calculus / and closed under 
rules of substitution and modus ponens, we call superintuitionistic (propositional) 
logic (SL). By each set of formulae {A, B, •••} a logic [A, B, •••] is generated—the 
smallest SL, containing this set. 

Relative to £, the SL's form a lattice with zero (intuitionistic logic LI = 
[(p => p)]) and unity (absolutely contradictory logic [/?]), without atoms, but with a 
single co-atom (classical logic [(p v —î ?)]). This lattice S£ is distributive and even im­
plicative; hence it may be considered [19] as a pseudoboolean algebra. On the other 
hand to each pseudoboolean algebra 31 = (fi\ &, v, 3 , —1> (i.e., [12] to the lattice 
(fi\ &, v > having pseudocomplement —i and relative pseudocomplement =), i.e., 
to implicative lattice with zero [4]), corresponds its logic LSI—the set of all the for­
mulae, valid on SK, i.e., identically equal to its unity 1 ; we have L8t e jÇf. Considering 
the varieties of pseudoboolean algebras (i.e., classes of these algebras, given by the 
identities), take for each of them its free algebra % with the countable number of 
generators and map this variety into LSI; we get a dual isomorphism between the 
lattice of all these varieties (by c ) and the lattice S£ ([2a] ; the inverse mapping is the 
transition from logic le 3? to the variety Ml of all such pseudoboolean algebras, 
on which an identity A = 1 holds for each A e I). This generates numerous con­
nections with algebra. 
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The central place in the study of SL concerns the problems of its decidability 
(i.e., possibility of algorithmic recognition, for each formula, whether it belongs to 
the given SL). The hope that all the finitely axiomatizable SL (i.e., generated by a 
finite set of formulae) are decidable has been connected with the hypothesis about 
their finite approximability [6a]. In this, a logic / is called finitely approximable 
(f.a.) if it, say (for example, [18]), possesses the finite model property, i.e. it is ap­
proximable by finite (pseudoboolean) algebras in the following sense. We say that 
the logic / is approximable by algebras of class K if, for each formula A not con­
tained in /, there exists an algebra St in K separating A from /, i.e., such that on SÏ 
all the formulae of / are valid, whereas A is not valid. Every SL, for example, is 
approximable by finitely generated algebras (i.e., with a finite number of genera­
tors). The fact that logic / is f.a. is equivalent to the representation of / in the form 
'i fi h fi '"> where each ln (n = 1, 2, •••) is tabular, i.e., is a logic of some finite 
algebra; this is equivalent to the fact that the free algebras of variety Ml are f.a. 
(an algebra is called finitely approximable [9], if for any different elements a and ß 
of it there exists a homomorphism <p of it onto some finite algebra, such that 
a<p ¥" ß<p); and also to the fact that Ml is generated by its finite algebras, i.e., it 
is the smallest variety containing all of them. 

Troelstra [16], it seemed, had proved that all the SL are f.a. But his erroneous 
Theorem 3.4 was refuted in 1967 by V. A. Jankov [21], who constructed an example 
of an SL which is not f.a., and proved at the same time, that the cardinality of J5? is 
continual. The SL constructed by him is not finitely axiomatizable, though, but it is 
recursively enumerable (and it can be proved that every recursively enumerable SL 
is recursively axiomatizable, i.e., is generated by some recursive set of formulae). 
Later on the family of analogous examples was given by me in [7]. Also in [7] is 
indicated the refutation of the hypotheses from [6a] obtained by me in January of 
1970 with the participation of V. Ja. Gerchiu—an example of a finitely axioma­
tizable SL which is not f.a.; this SL is generated by the formulae: 

(1) ((P^ q) v (q =3 r) v ((q ZD r) => r) v (r 3 (p V q))), 
(2) ( ^ p ( r v ( r D ^ ) ) ) 5 

(3) {P1^(qy(q^p% 

(here A*B ^ (A & B), A^B ±=P(A=> B), A*B ^ A, A*»+*B ^ (A*»^B 3 A*»B), 
A*»+*B t=p (A2n+1B v A^+2B)9 A» ±=? An(p & -np), where n = 0, 1, 2, •••). 

Then, V. Ja. Gerchiu in [1] simplified this example by discarding formula (3), and 
also constructed other examples; in particular, a segment (i.e., closed interval) in 
the lattice ü? which has the cardinality of continuum but does not contain f.a. 
logics—"the ends" of this segment are the logics [(1), (s v (s => (2)))] and [(1), 
(s v (s => (2))), (—i/? v —i—i/?)]. He also has proved there that among the SL con­
taining (1) there exists a single logic possessing the property that it is not f.a., but 
every logic which is greater in i? is f.a.—the logic of algebra Z2 + Z^ -j- Z7 4- Z2 

(here Zn is a pseudoboolean algebra with one generator, and the index shows its 
cardinality; S( + S3 denotes an algebra consisting of two sublattices, isomorphic 



246 A. V. KUZNETSOV 

to S( and S3 respectively, having unique common element—the image of the unity 
from S( and of zero from S3; see [16]). 

It has been proved in [16] that, for any tabular SL, all greater SL are also tabular, 
and the number of them is finite. It has been stated there Theorem 3.5 which re­
sulted in [16] from the erroneous Theorem 3.4, saying that every SL immediately 
smaller than the tabular is also tabular. I have succeeded in proving it (announced 
in [6c]). The proof is based upon the consideration of, first of all, pretabular SL's, 
i.e., such that they themselves are not tabular, but all the greater SL's are already 
tabular (every nontabular SL is included in some pretabular), and, secondly, the 
properties of finitely generated pseudoboolean algebras. L. L. Maximova [8] has 
proved (by using [6c]), that there exist just three pretabular SL's : 

OO OO CO 

Lc = n^u«, Le = n ^ + m + uà. L e = n (̂U"2 + U2)> 
where U[M is the chain of cardinality n as the pseudoboolean algebra (LJ[2 = Z2), 
and the powers are Cartesian; in this LC = [((p ZD q) v (q •=> p))] (the logic of 
Dummett), L C = [ (n / j v -i-ip),(p v (p => (q v (q ZD (r v - i r)))))] and LC" 
= [(p v (P ^ (q V —i#)))] (these logics, defined otherwise, are studied in [19], [20a], 
whereas the latter was considered earlier by Jankov). A corollary is the existence of 
an algorithm for knowing for each formula A whether the logic [A] is tabular. 

The unpublished proof of my lemma, which was used in [8], stated that every 
pretabular SL is f.a. By using simplification and improving it, I have succeeded in 
proving a stronger proposition: Every SL which is not included in LC is f.a. (an­
nounced in [6e]). This is a part of my answer to the fifth and sixth problems from 
[20b] ; another part of it shows that the cardinality of the set of SL, not included in 
LC, is continual. These problems are connected with the attempt of Hosoi [19] to 
survey the SL by means of partition of the lattice if into slices, at which the logic / 
belongs to one slice or the other depending on what logic is generated by / U LC. 
The first slice contains only LLJ,2, i.e., classical logic; the second slice contains LC", 
the logics of the form L(l\% + LJ2), where n = 1, 2, 3, •••, and only them [20a]. 
I succeeded in proving that the cardinality of the third slice (and all the following) 
is already continual, as well as that it contains SL, which is recursive enumerable 
and f.a., but not decidable. The proof is based upon the construction of an example 
of a sequence of algebras S[l5 S(2, •••, 9f„, •••, such that its subsequences generate 
pairwise different varieties, and the logic of each of these algebras belongs to the 
third slice. In this example 8f„ (n = 1, 2, •••) is constructed by the help of defining 
its frame, i.e., the set of all its v -indecomposable elements ; it is given as a (partially 
ordered) subset of the lattice m + 2 , consisting of its zero, unit, atoms and co-atoms. 
The most complicated is the limit (the coth) slice consisting of logics which are in­
cluded in LC. 

In order to look better into the easily surveyed SL, as well as probably more com­
plicated, we introduce the consideration of the following classes of logics : 

(a) Kt—class of tabular SL; 
(b) Kfs—class of finitely sliced SL, i.e., SL which are not included in LC; 
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(c) Ktfs—class of twice finitely sliced SL, i.e., such that they are not included 
either in LC or in LC ; 

(d) Kn—°lass °f locally tabular SL, i.e., / e £g such that in the variety Ml all the 
finitely generated algebras are finite (compare [2b], [6d]); 

(e) Kfa—class of f.a. logics; 
(f) Khfa—class of hereditarily f.a. logics, i.e., le ££ for which all /' e if, / c /'5 are 

f.a.; 
(g) KtQ?—class of topologizable SL, i.e., leg such that / is the logic of some to­

pological space, i.e., the logic of the pseudoboolean algebra of all its open sets 
[12]; 

(h) Km—class of modelable SL(in connection with Kripke's models), i.e., leg 
such that / = L*3!K for some partially ordered set SIR (see [20b]), where L*2Jl is the 
logic of the topological space obtained from 3D?, when open sets are defined as sub­
sets closed under increasing; 

(i) Ki—class of SL which are approximable by the algebras of the form %x + 
%2 + *•• + 2fm> where all terms are finite or isomorphic to ZTO; 

(j) K2—class of SL which are approximable by algebras for each of which there 
exists a natural n such that it has no n pairwise incomparable elements ; 

(k) K$—class of SL which are approximable by the algebras with the descending 
chain condition. 

It may be proved that 

Kt <= Ktfs c Kfs c Ku
 c Khfa Œ Kfa 

c ^ c l 2 c l 3 c l w c Ktop £ g. 

There remain open the questions of coincidence of the last four classes of this 
chain. For the first nine classes of it the examples of their difference are respec­
tively the logics LC", LC', LC, LZTO (see [1], [7]), LI, L(ZOQ + Z7 + Z2) (see [7]), 
(̂(Zoo x Z2) + Z2) ( x denotes the Cartesian product) and L(Z£, + Z7 + Z2). 

The class Ktfs is interesting for the fact that it is countable (unlike Kfs); and Kx 

for the fact that all its finitely axiomatizable logics are decidable. 
We say that the given logic is elementarily decidable if there exists for it a de­

cision algorithm, such that the period of its operation is upper estimated by some 
function of the length of tested formula which is a superposition of the exponential 
functions (elementarity by Kalmâr) ; the elementary solvability of the algorithmic 
problem is defined similarly. In the case when the algorithm is not decided (solved), 
but reduced to another logic / and admits the mentioned estimation, at the pos­
sibility of sufficiently quick answers about the belonging of the formulae to it, we 
say that the given logic (problem) is elementarily reducible to logic /. And if the 
estimation is a polynom, we talk about polynomial reducibility. The logic / e g is 
called elementarily (polynomially) f.a. if, for each formula not contained in /, 
there exists an algebra separating it from /, the cardinality of the frame of which is 
respectively estimated by the length of the formula. If the finitely axiomatizable 
logic is elementarily f.a. (polynomially f.a.), then it is elementarily decidable 
(respectively, polynomially reducible to classical). All the tabular logics and LC are 
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polynomially f.a., but about the L C , L C and LI the question is open. All the 

finitely sliced logics are elementarily f.a. Also every logic [A] is elementarily f.a., 

where A can have negative occurrences of the variables only under the symbol —i, 

About the formula A and the list of formulae 2 we say that A is (functionally) 

expressible through 2 in logic / if A is equivalent in / to some formula, obtained 

from the formulae, belonging to 2, and variables by superpositions (i.e., substitu­

tion of one into others). The list 2 is called functionally complete in / if all the for­

mulae are expressible in / through 2. Different questions of functional expressibility 

and completeness were considered by me in papers [6b, d]. Using them, as well as 

his own results from [13a, b], relative to LZ3 ( = Ll[3), M. F. Ratsa solved in June 

of 1970 the algorithmic problem of (recognizing) the functional completeness (f.c.) 

in the intuitionistic logic (later on he generalized it for an arbitrary SL; see [13c]). 

He proved that f.c. of the list 2 in L Z 5 and in L(Z2 + Z5) is necessary and 

sufficient for it in LI and got also the more detailed criterion. Being guided by 

the latter, one can show that I is f.c. in LI if and only if every subset of the algebra 

Z\ + Z2 , closed under the operations which are expressed by the formulae from 

2, is its subalgebra. As a corollary we get that the problem of f.c. in LI is polyno­

mially reducible to classical logic. 
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New Methods and Results in Descriptive Set Theory 

Yiannis N. Moschovakis* 

For our purposes here, we define descriptive set theory as the study of the con­
tinuum and its subsets, particularly the definable sets of real numbers. Most of the 
significant classical results in this subject were obtained in the first third of the 
century and they were rightfully counted among the best contributions of the 
newly invented set theory to analysis and topology. The subject then went into 
decline and relatively little progress was made between 1940 and 1960. 

There was good reason for this decline, as it turned out, since most of the central 
problems of the field were subsequently shown to be independent of the axioms of 
classical set theory. This realization prompted an attack on these old questions 
using powerful new set-theoretic hypotheses and techniques. 

My aim in this article is to describe briefly some of the significant results that 
have been obtained in this direction. For the sake of brevity and clarity I will 
concentrate on just a few theorems and state these in their simplest and most con­
crete versions. A thorough study of recent developments in descriptive set theory 
will be given in Moschovakis (4). 

1. Basic notions. Let ffl be the set of real numbers and for each n = 1, 2, 3, • • • let 
0tn be real w-space. By definition, a pointset is any subset of some 0tn, i.e., any 
rt-ary relation on 0t. 

A pointset P ç 0tn is Borei if it belongs to the smallest collection of subsets of 
0tn which contains all open sets and is closed under complementation and countable 
unions. We say that P £ 0tn is S\ (or analytic) if there is a Borei set Q ç t%n+l 

whose projection in the last coordinate is P, 

"'During the preparation of this paper the author was partially supported by NSF grant GP-
43906. 
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(*) P(xu ~> xn) o(iy)Q(xi> •••> xn9 y); 

equivalently, P is 2\ if P is the continuous image of some Borei S £ ^» . A pointset 
P £ £%n is 77"} (or co-analytic) if its complement 0tn — Pis 2\. Proceeding induc­
tively, P is E\+x if it satisfies (*) with some n\ pointset Q and P is i7^+1 if &

n — P 
is J7jJ+1. Finally, P is JJ if it is both S\ and 77] and P is projective if it is 27! for 
some k. 

Thus the projective pointsets form the smallest collection of sets which contains 
the Borei sets and is closed under complementation and projection. These are also 
the relations on <% which are first-order definable in the natural structure (ßt, Z, -f-, •, 
^ > of the reals as an ordered field, where we take the integers Z as a distin­
guished subset and we allow parameters from 0t in the formulas. 

The following diagram of proper inclusions holds for the classes S\, II\, A\ : 

2\ Si 

<* * <* 

A\ A\ 

^ <* * 

In particular, 

£} g £i £ 2Ì £ - , 
so the classes S\ impose a hierarchy on the projective sets. 

2. Three important classical theorems. Godei [1939] and Cohen [1963] showed 
that the continuum hypothesis (2Ko = Xi) cannot be settled in the classical Zermelo-
Fraenkel set theory with the axiom of choice (ZFC). On the other hand we would 
expect that the cardinality of simple, definable sets can be computed. 

THEOREM Al. Every uncountable U\ set has a perfect subset and hence is equinu-
merous with <% (Suslin, see Kuratowski [1966, §39,1]). 

In the same vein it can be shown that S\ sets are Lebesgue measurable and have 
the property of Baire (see Kuratowski [1966, §11, VII]). Choquet [1955] shows 
that S\ sets are also Newtonian capacitable. An optimist would hope that all 
projective sets are similarly "nice". 

The next theorem gives a representation of E\ sets in terms of (the much simpler) 
Borei sets. 

THEOREM Bl. Every E\ set is the union of Xi Borei sets (Sierpinski, see Kura­
towski [1966, §39, II]). 

Of course, the result is trivial if the continuum hypothesis holds. On the other 
hand, if we think of 2Ko as a very large cardinal, then Theorem Bl can be viewed 
as a construction principle for S\ sets. 
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Suppose P ç i x ^ , where X = @n and <W = @m. A subset P* £ P uniformizes 
P if P* is the graph of a function with domain {*: (aj/)P(.x;, >>)}• Intuitively, P* 
chooses one point from each nonempty fiber Px = {y: P(x, y)}. 

P 

x X 
Every P £ $" x ^ c a n be uniformized by some P* ç P, using the axiom of 

choice. The hope is that simple, definable sets can be uniformized definably. 

THEOREM Cl. Every H\ set can be uniformized by a JI\ set and every HI set can be 
uniformized by a S\ set (Kondo [1938]). 

3. Independence results. The powerful metamathematical methods of Godei 
[1939] and Cohen [1963] can be used to show that Theorems Al , Bl and Cl are 
best possible within ZFC. The next three results are proved on the hypothesis that 
ZFC is consistent. 

THEOREM A2. We cannot prove in ZFC that all uncountable H\ sets have cardinal­
ity 2Ko (implicit in Cohen [1963]). 

THEOREM B2. We cannot prove in ZFC that every H\ set is the union of fewer than 
2Ko Borei sets (Solovay, unpublished). 

THEOREM C2. We cannot prove in ZFC that every S\ set can be uniformized by 
some projective set (Levy [1964]). 

4. Large cardinal hypotheses. Godei [1947] suggested that the solution of natural 
and important questions about the continuum may depend on new set-theoretic 
hypotheses, specifically on axioms implying the existence of very large sets. The 
first significant applications of this idea to questions of descriptive set theory ap­
peared in the fundamental paper of Solovay [1969]. 

A measurable cardinal is the cardinal A; of a set X whose power set admits a K-
additive, two-valued measure fj, such that p,(X) = 1 and, for every singleton {x}, 
fi({x}) = 0.1 It is known that if a measurable cardinal exists then it must be huge— 
bigger than the first strongly inaccessible cardinal, bigger than the first Mahlo 
cardinal, etc. 

THEOREM A3. If there exists a measurable cardinal, then every uncountable HI 
set has a perfect subset and hence is equinumerous with 0t (Solovay [1969]). 

Similarly, if there exists a measurable cardinal, then H\ sets are Lebesgue mea­
surable and have the property ofBaire (Solovay, unpublished) and they are Newtonian 
capacitable (Busch [1972], Shochat [1972]). 

*We call fi ^-additive if for every À < K and every sequence {A^^i of disjoint sets, //(Ue<^e) 
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THEOREM B3. If there exists a measurable cardinal, then every H\ set is the union 
of fa Borei sets (Martin (3)). 

THEOREM C3. If there exists a measurable cardinal, then every H\ set can be uni­
formized by a H\ set (Martin-Solovay [1969]). 

Unfortunately, these results are best possible in the theory ZFC + (there exists 
a measurable cardinal)—for example we cannot prove from these hypotheses that 
every H\ set can be projectively uniformized. It is still possible that stronger large 
cardinal hypotheses may settle these questions for all projective sets. 

5. The hypothesis of projective determinacy. A new approach was suggested by 
Blackwell [1967] which gave a new proof of a basic fact about H\ sets (the separa­
tion property) using a game-theoretic technique. Soon an almost complete struc­
ture theory for the projective sets was developed on the basis of the hypothesis of 
projective determinacy (PD); see Addison and Moschovakis [1968], Busch [1972], 
Kechris [1973], [1974], [1975], Kechris and Moschovakis [1971], [1972], Martin 
[1968], [1970], (3), Moschovakis [1970], [1971], [1973], Shochat [1972]. 

A brief summary of the key new results from PD is given in Moschovakis [1973]. 
One can also find in that paper a concise statement of the hypothesis PD—roughly 
speaking, this assumes that in every infinite, two-person game of perfect informa­
tion which is projective, one of the two players has a winning strategy. Here 
we only put down the generalizations of Theorems Al, Bl, Cl that follow 
from PD. 

THEOREM A4. If PD holds, then every uncountable projective set has a perfect 
subset and hence is equinumerous with 0t. 

Actually, this is a simple consequence of older work in determinacy which also 
establishes (under PD) that all projective sets are Lebesgue measurable and have the 
property of Baire; see Gale and Stewart [1953], Davis [1964], Mycielski [1964] and 
Mycielski and Swierczkowski [1964]. Busch [1972] and Shochat [1972] prove that 
under PD projective sets are also Newtonian capacitable. 

THEOREM B4. If PD holds, then every H\ set is the union offa Borei sets (Martin 
(3))-

Martin has conjectured that the natural generalization of Theorem B4 also holds, 
i.e., under PD every JFj|+1 is the union of fa Borei sets. This would surely be a 
beautiful structure result. 

THEOREM C4. If PD holds, then every projective set can be uniformized by a pro­
jective set; in fact every II\ set (k odd) can be uniformized by a HI set and every H}t 

set (n even) can be uniformized by a H\ set (Moschovakis [1971]). 

The precise statement in Theorem C4 is best possible, i.e., we can show under PD 
that, for even k, II\ sets cannot be uniformized by II\ sets. This reveals a very in­
teresting periodicity phenomenon in the projective classes which we do not pursue 
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here; see Addison and Moschovakis [1968], Martin [1968] and Moschovakis 
[1971], [1973]. 

6. Scales. Many of the results above depend on a structure theorem for pro­
jective sets which was established under PD in Moschovakis [1971]. We describe 
this briefly, as it gives some of the flavor of the subject. 

A semiscale on a pointset P is a sequence (p = {<pn}n=o °f functions <pn: P -> 
ordinals from P into the ordinals (norms), such that if X\, x%, ••• is a sequence of 
points in P, if lim^oo x( = x and if for each n the sequence of ordinals (pn(xi)9 

<Pn(x2)> <Pn(xs)> •" *s ultimately constant, then x e P. If all the norms <pn are into an 
ordinal K, we call ip a A>semiscale. 

It is easy to check that a pointset P admits a yc-semiscale if and only if P is K-
Suslin, i.e., P is the continuous image of some closed set in the space <*& of all in­
finite sequences in K. Suslin's discovery that the H\ sets are precisely the co-Suslin 
sets is the key to most of the classical results in descriptive set theory. More recently 
topologists have studied ye-Suslin sets for arbitrary tc; see Stone [1962]. 

For the uniformization property we need a finer notion. A scale on P is a se­
quence of norms ip = {<pn}™=o such that if x\, x2, ••• is a sequence in P, if lim^c»*,-
= x and if, for each n and all large /, <pn(xj) = Xn> then xeP and, for all n, 
(pn(x) ^ Xn. We say that p is H\ (or III) *f the following two relations are H\ (or 

my-
Q(n, x,y)oxeP&[y$P v pM(x) ^ pw(j;)], 
P(>7,*,.y)*>*eP<£b;çtP v p„(;c) < <pn(y)]. 

THEOREM. If PD holds, then every II\ set (k odd) admits a Ill-scale and every 
HI set (n even) admits a H\-scale (Moschovakis [1971]). 

7. Generalizations. The results in this note extend easily from the reals to all 
separable, complete metric spaces. 

8. Foundational questions. The work on which we are reporting here obviously 
poses some deep foundational problems. We are assuming hypotheses like the 
existence of measurable cardinals and PD which are by no means obvious on the 
basis of our present understanding of the notion of set. We may be able to replace 
them later with more plausible assumptions, but at present we have no inkling 
where to look for these. What are reasonable philosophical criteria forjudging the 
credibility of interesting and fruitful hypotheses which are known to be independent 
of the currently accepted axioms of set theory? 

It may be valuable to quote here directly from Godei [1947] who anticipated 
precisely this problem. "There might exist axioms so abundant in their verifiable 
consequences, shedding so much light upon a whole discipline, and furnishing such 
powerful methods for solving given problems (and even solving them, as far as that 
is possible, in a constructivistic way) that quite irrespective of their intrinsic neces­
sity they would have to be assumed at least in the same sense as any well established 
physical theory." 
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Why There Are Many Nonisomorphic Models for 
Unsuperstable Theories 

Saharon Shelah* 

We review here some theorems from [S6], and try to show they are applicable 
in other contexts too. 

1. Unsuperstable theories, in regular cardinalities. Let PC(TÌ9 T) be the class of 
L(T)-reducts of models of TV 

THEOREM l.l.IfTis not superstable, T c T\ (T complete), X> \ Tx |, X regular, 
then in PC(Th T) there are 2l models of cardinality X, no one elementarily embed-
dable in another. 

This was mentioned in [S4], and in fact in [S2]. We shall first sketch the proof 
and then point out some applications of the theorem and the method. 

We generalize the notion of indiscernibility used in Ehrenfeucht-Mostowski 
models (from [EM]). Let I be an (index) model, M EL model and, for each sel,äs is 
a (finite) sequence from M. For s = <s(0), •••, s(n — 1)>, s(l) e 7,let ä-s = äs{Q) A ••• 
Aäs0t_v. The indexed set {äs: sel} is called indiscernible if whenever s, t are 
finite sequences from I realizing the same quantifier-free type, ä-s and ä-t realize the 
same type in M. 

Now as T is not superstable, by [S2], T has formulas <p„(x, yn), a model M, and 
sequences äv, y e °^X such that, for 7] e <°A9 % e '% M \= <p[äv, äT] iff* % is an initial 
segment of rj. Clearly M has an elementary extension to a model Mi of TV By using 
a generalization of Ramsey's theorem [Rm] to trees (a proof was in [S3]) and by 
compactness, we can assume {av: TJ G7} is indiscernible; where lis a model with 
universe W-A, one place relations PJ

a =
 aX (a ^ œ), the lexicographical order < j , 

and the function / , f(y], z) = the lengthiest common initial segment. 

*The author thanks NSF grant 43901 by which he was supported. 
© 1975, Canadian Mathematical Congress 
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For each d < X, cf ö = œ, choose an increasing sequence rjs of ordinals converg­
ing to d. For every set w £ {d < X: cf ö = œ} let Ml, be the Skolem hull of {äv: 
y e ^X or y = 7)d> dew}, and let Mw be the Z,(T)-reduct of Ml

w. Now we can 
prove that if Mwa) can be elementarily embedded into Mw{2) then w(l) — w(2) 
is not stationary (using Fodor [Fd]). As every stationary subset of X can be split 
to X disjoint ones (see Solovay [So]), it is easy to finish. 

We can apply this construction, e.g., to the theory of dense linear order. This 
was independently done by Baumgartner [Ba], (Note that every unstable theory is 
un superstable, and Tis unstable iff it has the order property, i.e., there is a formula 
<p(x, y) and sequences an is some model M of Tsuch that M |= (p[än, äm]on < m.) 

Fuchs [Fu] asked how many separable reduced p-groups of cardinality X > Ko 
there are. The class of such groups is not elementary (we should omit the type 
{x ^ 0} U {(3y)(pny = x): 77 < œ}). However, we can find suitable äv, fn. Hence 
there are 2l nonisomorphic ones of cardinality X (> Ko)- For let G be a group 
generated freely by xv (TJ E ^X) subject only to the conditions : If 7] e nX, pn+1 xv = 0 ; 
xv = Tm<(oPnx

v\?r (F° r ^ singular, see §2; this solution appears in [S5].) 
The first-order theory of any infinite Boolean algebra has the order property, 

hence is unstable and unsuperstable, so we can apply 1.1. Notice that, e.g., the 
theory of atomless Boolean algebras has elimination of quantifiers; hence "ele­
mentary embedding" can be replaced by embedding (the existence of 2l noniso­
morphic Boolean algebras of cardinality X was proved in [SI], [XI], [X2]). 

The existence of a rigid model is somewhat more complex. Monk and McKenzie 
ask about the existence of rigid Boolean algebras of cardinality Xi> when 2KD > Ki 
(in [MM], see there for references and results). Stepanek and Balcan [SB] show the 
consistency with ZFC of 2Ko > Ki + there is a rigid Boolean algebra of cardinality 
Ki with rigid completion. 

THEOREM 1.2. For every X > Xo fnere Is a rigid Boolean algebra of power X with 
a rigid completion. IfX is regular, the algebra satisfies the countable chain condition. 

PROOF. We prove it for regular X (from that it is easy to prove for singular cardi­
nalities). Let Sa {a < X} be disjoint stationary subsets of W* = {5 < X: cf ö = co, 
ö divisible by \d\}. For each ô e W* choose an increasing sequence {£(<5, n):n < 
œ} which converges to it, so that ö e Sa => a < £(<?, 0), and £(<5, n) is odd. 

Let B' be the free Boolean algebra generated by {xa :a < X} U {^ :5e W*}, and 
let h be a function from X onto B' which maps ö onto the subalgebra generated by 
{xh yf. i, j < d} for ô e W*. Let B = B'jJ where / is the ideal generated by y8 — 
xtton) (P e W*) and yô - h(a) (for Ö s Sa). 

Let Ba be the subalgebra generated by {XJ : i < a) U { )>ô '• S < a}. For any a e B, 
B* a subalgebra of B, let F(a, 5*) be the filter {beB*:b^a}. Let Ta = {a e W* : 
there is b ^ a such that F(b, Ba) is not principal}. Clearly Ta is not uniquely de­
termined by the isomorphism type of (B, a), but it is uniquely determined modulo 
Di.A\so,Sa Ç Ta,iîa = h(a)/J, and if/3 = h(ß)/Jis disjoint to a, then Sß fi Ta = 
0 . Now for any automorphism F of B, Ta = TF{a) mod Dh and, for some a, a, 
F(a) are disjoint, except when F is the identity. Hence B is rigid. As B^ is dense in 
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its completion, it is not hard to prove that the completion is rigid. Also the proof 
of the e c c . is clear. Similarly we can prove 

THEOREM 1.3. For every X > Ko there is a rigid order with a rigid completion of 
cardinality ^ 2Kc -j- X. This was well known for X^2*\ 

2.1(X, Th T) for other cardinals. Let I(X, TV T) be the number of nonisomorphic 
models in PC(Th T) of cardinality X. 

THEOREM 2.1. Let X^\TI\ + tfh Tx ^ T (T complete) and T unsuperstable. 
Then I(X, T\,T) - 2l except possibly when all the following conditions hold. 

(l)X = \Tx\; 
(2) Tx ï T; 
(3) Tis stable; 
(4) for some p < X, p"* = 2x. 

We sketch the proof of the main cases. Of course for regular X > | Tj |, the result 
follows by 1.1. 

Case I. There is p < X ^ pH\ 2? < 2*. 
Let Mi, av (ye0*-/*), (pn be as in the proof of 1.1. For any w £ ap let Ml(w) 

be the Skolem hull of {a^ye m>p or TJ e w}, and M(w) is the L(T)-reduct. Clearly 
| iv | = X => ||M(iv)|| = X, and M(w\) ^ M(w%) define an equivalence relation on 
{w: w e mp, \w\ = X). Each equivalence class has ^ 2^ members; hence there are 
2l equivalence classes. 

Case II. For some regular p < X, 2P = 2l, and X > \T\\. 
PROOF. Similar to 1.1. 
Case III. X > \T\ |, X singular but not strong limit, and pi < X => p*° < X, 2^ < 2*. 
Choose regular p < X with 2t* ^ X; and let MÌ9 äv (rj e ^-X), <pn be as in 1.1. For 

each sequence iv = <iv,-: / < ^> of subsets of {d < p: cf ö = p], let Ml(w) be the 
Skolem hull of 

{äv:ve*»X,(Vn>0)y(n)> f*} 
U {jje«X: (yn)rj(n + 1) < yj(n + 2), and 97's limit e wv(Q)}. 

Let M(w) be the L(T)-reduct of Ml(w). Now we prove that if M(wl), M(w2) are 
isomorphic, where wl = <ivj: / < ^> then for every 7 < X there are n < œ,ju •••, 

j n < X and closed unbounded S ^ X such that wj Ç S fi H t i ^ v (Again, 
variants of the Fodor theorem and downward Lowenheim-Skolem theorems are 
used.) The conclusion is now easy. 

Case IV. X > | T\ |, X is a strong limit singular cardinal. 
As the construction is somewhat complex, we describe a similar construction. 
Let <pn(x, yn) be as in 1.1, let M, N be models of T, and we describe a game 

G(M, N). In the wth move Player I chose a sequence än from M of the length of yn, 
and then Player II chose a sequence bn from JV of the length of yn. Player II wins if 
{<pn(x; än) : n < œ} is realized in M iff {cpn(x, bn):n < CD} is realized in N. Clearly if 
M, N are isomorphic, Player II has a winning strategy; hence if Player I has a 
winning strategy they are not isomorphic. Let M,- (i < a) be models of T, and let 
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{bj'j < K} be an enumeration of the set of all sequences from some of the M/s 
(so A: = E,< a |M, | ) . Let Mi, ^(ye^tc),^ be as in 1.1, andlet Ml be the Skolem 
hull of {a^.tje °>K} (J {äv:7)E <% and there is an /, such that bvin) E M,- has length of 
yn and M,- omits {<pn(x, bvin)): n < œ}}. Let Ma be the L(T)-reduct of M\. Now in 
the game G(Ma, Mt) Player I has a winning strategy : He will choose äQ = ä< >, and 
if in the wth move he has chosen äv and Player II has chosen bh he will choose in 
the (n + l)th move äv^p. 

In this we can construct Ma, a < X, which are pairwise nonisomorphic, and \\Ma || 
< X. With inessential changes we can have | |M a | = X. Now we can change the 
rules of the game so that each player chooses ^ sequences each time; and then just 
as above we built one tower, we can build % towers, and the place of each model in 
each of them is independent. 

Case V. T unstable, X = | Tx \. 
The problem is more difficult for X = | T\ |, because then it is harder to control 

the properties of the model. We can assume Tis countable, and that L(T{) contains, 
except individual constants, only countably many nonlogical symbols. As T is 
unstable, there is a model M1 of Th and an indiscernible sequence {äf. i < p) in it 
(p — a strong limit cardinal > | Ti |), such that Mi |= <p[ai9 aj\ o i < j',<pe L(T). 
We expand Mi by the one place predicate PMl = the set of individual constants in 
Mi, and Skolem functions, and we get M2. So, by the Erdös-Rado theorem [EHR] 
and compactness we can have, for any ordered set I, a model N2(I) elementarily 
equivalent to M2, and ät e M2(I) for t e I, and for t,se I, 

M2(I) |= <p[äs, ät]os < t, 

and {äs: sel} is indiscernible over Pj = {a: M2(I) \= P[a]}, and together they 
generate the model. 

Let D be a good ultrafilter over p (exists by Kunen [Ku]), M'2(I) be the elementary 
submodel of M2(iyjD with universe {fjD\ there are n < œ, s(l), -",s(n) e / , such 
that, for every i,f(i) belongs to the Skolem hull of Pf U U?=i äs(D}- Now M'2(I) 
will be an elementary submodel of M2(I) of cardinality A; in a strong sense. (We 
chose K so that M2(I), T, Tx X e H(K) = the family of sets of hereditary power 
< tc and takes an elementary submodel of H(K) to which / (/ ^ X), T, TV M2(I) 
belong and the cofinality of the ordinals in it is œ. We take the intersection of this 
submodel with M2(I) as our model.) Let M(I) be the L(T)-reduct of M2(I)9 and 
the rest is in the line of [SI]. 
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On the Singular Cardinals Problem* 

Jack Silver 

In this paper we show, for example, that if the GCH holds for every cardinal less 
than tc, a singular cardinal of uncountable cofinality, then the GCH holds at tc 
itself. This result is contrary to the previous expectations of nearly all set-theorists, 
including myself. Another consequence of Theorem 1.1 is that if the GCH holds 
for every singular cardinal cofinal with œ9 then it holds for every singular cardinal. 

The immediate stimulus for this result was some work of Kanamori and Magidor1 

concerning nonregular uniform ultrafilters over œ\. The other principal influences 
were a result of Scott concerning the GCH at measurable cardinals, some work of 
Keisler on ultrapowers of the sort defined in 1.3, the two-cardinal theory developed 
by several model-theorists, some work of Prikry and Silver on indecomposable 
ultrafilters [3], [4], as well as Cohen's methods and work on nonstandard models of 
set theory [2]. 

Our terminology is mostly standard. If £ is a cardinal, S is called a stationary 
subset of tc if it intersects every closed cofinal subset of tc. A function h : X -> tc is 
continuous if, for every limit ordinal a e X9 h(a) is the least upper bound of {h(ß) : 
ß e a}. If tc is a cardinal, /c+ is the least cardinal greater than tc. Also, KW is the ßth 
cardinal greater than tc. Thus tc{0) = tc, tc(1) = tc+

9 etc. The cofinality of tc is X iff 
X is the least cardinal such that tc can be written as a union of X sets, each of car­
dinality < tc. tc is singular iff its cofinality is < tc. 

1. Model-theoretic preliminaries. Suppose (A, E} is a model of ZFC, i.e., A is the 
universe of sets and E the membership relation for the model. If a e E9 let aE be the 

This research was partially supported by NSF GP-24352 and a Sloan Foundation grant. 
lThe result of Magidor states, in particular: If there is a regular, nonuniform ultrafilter over 

(ûX and 2K« = Nff+1 for all a<a), then 2«^=^ . 
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^-extension of a, i.e., {be A: b E a}. We sketch the proofs of two well-known 
lemmas, the first of which establishes a relation between the cardinalities of aE 

and bE where A is a cardinal in the sense of <>4, E}9 and b is the successor cardinal 
in the sense of (A9 E}. Note that only Lemma 1.1 is needed for the GCH form of 
the main result. 

LEMMA 1.1. Suppose {A, E} is a model of ZFC, and a, be A are such that (A9 E} \= 
a is a cardinal, and (A9 E)\=b = a+ (i.e., (A9 E} (= b is the successor cardinal of 
a). Then card bE g (card aE)+. 

PROOF. Let p = card aE. We claim that E totally orders bE in such a way that 
every member of bE has at most p predecessors. This will be sufficient since any 
ordered set whose every element has at most p predecessors must itself have car­
dinality at most /z+. 

Clearly E totally orders bE since (A9 E) \= b is an ordinal, and E is the member­
ship relation. It only remains to see that if e e bE9 then c has at most p E predeces­
sors. Since <yi, E} |= b = a+ A e e b9 we have <v4, E} \= card c ^ b9 so there 
exists an element g e A such that (A9 E} \= g is a 1-1 mapping of c into a. One 
easily verifies that {<w, v>:<y4, E} \= g(u) = v} is really a 1-1 mapping of cE into 
aE9 whence card cE ^ card aE = p. But cE is just the set of E predecessors of c. 

LEMMA 1.2. Suppose <̂ 4, E} is a model of ZFC, and a, b9 de A are such that 
(A9 E}\= a is a cardinal, {A, E}\=b = a{d)

9 and dE has order type 5, an ordinal, 
under E. Then card bE S (card aE){8). 

PROOF. Lemma 1.1 enables one to carry out an easy induction on ô. 
We now sketch some methods used by Keisler in his first proof of the two-

cardinal transfer theorems for û)-logic. 
DEFINITION 1.3. Suppose M is a transitive model of ZFC and, for some ordinal 

T9 D is an ultrafilter in Pï f| M. We define Ult(M, D) and the canonical injection. 
Let S = {fe M'.f.T-* M}. Define an equivalence relation ~D on S by f~Dg 

if {/ G T : f(i) = g(i)} e D. If fe S9 let 

f/D = the equivalence class off with respect to ~D 

= {ge S'.g ~Df and nothing in £ of rank smaller than that of g is ~Df). 

Finally, Ult(M, D) is that structure (A9 E} where A = {f/D:feS} and 
(f/D)E(g/D) iff {ieT:f(i)eg(i)}eD. The canonical injection j of M into 
\J\t(M9D) is defined by j(x) = cxlD where cx: T -» {x} is the constant function x. 

LEMMA 1.4. IfM,D, and S are as in Definition 1.3, andf9 *-'9fn e S9 then 

Ult(M, D) |= tp(fxlD9 -JJD) iff {ier: <M, e} N p(/i(0> -,/.(0)} G A 

(p any first-order formula. Hence the canonical injection] is an elementary monomor-
phism. 
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PROOF. One proceeds as usual by induction on formulas. In handling the existen­
tial quantifier step (the only nontrivial step), one uses the fact that the axiom of 
choice holds in M. 

To avoid metamathematical complications, we systematically ignore the fact that 
satisfaction cannot be defined for the structure M and Ult(M, D) we will be using. 
There are well-known devices for handling this technical difficulty. 

2. The main theorems. 

THEOREM 2.1. If tc is a singular cardinal of uncountable cofinality and {v < tc\2v = 
v+} is a stationary subset of tc, then 2K = tc+. 

PROOF. Let T = {v < tc: 2U = v+} and let X be the cofinality of tc. Suppose that h 
is a continuous, strictly-increasing map of X onto a cofinal subset of tc. One easily 
shows that {a < X: h(a) e T}9 which we call X9 is a stationary subset of X. Thus Zis 
a stationary subset of X such that, for all aeX9 2h{a) = /?(a)+. 

Let p = 2*. Using either the method of Cohen or the method of Boolean-valued 
models, we can form an extension of the original universe in which p is countable, 
but such that all cardinals greater than p are preserved. Henceforth we work in that 
extension and call the original universe M. Thus, if y is a cardinal of M and v 
exceeds p9 then v is really a cardinal. Moreover, if U = *X (1 M = set of functions 
from X into X which are members of M9 then U is countable since it is in 1-1 cor­
respondence with p. It is our objective to show that, in M, 2K = tc+ holds. 

A function/: X -> X is called regressive if, for all a ^ 09f(a) < a. Since Uis count­
able, there is an ultrafilter D in PX [\ M such that XeD and every regressive 
member of U = *X fl M is constant on some member of D. To see this, let {f: 
i e cû9 i > 0} be the set of regressive members of U. Form a sequence J 0 2 J j 2 
X% 2 ••• of subsets of X9 each in M and stationary subsets of X in the sense of M, 
such that X0 — Zand/J- is constant on X{. This is possible by a theorem of Fodor 
[1], which says that if X{ is stationary andyj+i regressive, then there is a stationary 
subset of Xi on which/,-+1 is constant (the regularity of X is also used). Finally, let 
D = {B e M: B s X9 B includes some Xt). 

Form Ult(M, D) = (A9 E} and let j be the canonical injection of M into 
Ult(Af, D). Let e be the element of A represented by the identity function from X 
into X. The basic property of D implies that the set of E predecessors of e is 
precisely {j(cc): a < X}. Since h is continuous, j(h) is continuous in the sense of 
{A, E}. Therefore, if d = j(li)(e)9 then every predecessor of d is a predecessor of 
some j(h)(j(a)) = j(h(a))9 a < X. But j(h(cc)) has fewer than tc predecessors, for each 
such predecessor is represented by some member of M which maps X into h(cc), 
and, tc being a strong limit cardinal in M9 there are fewer than tc such functions. 
Hence d has exactly te E predecessors. 

Since {a < X: 2*<«> = h(aY) eD9 Lemma 1.4 assures us that in Ult(M, D)9 

2/<»w =j(h)(e)+9 i.e., Ult(M, D) |= 2* = rf+. Let b be such that Ult(M, D) \= 
d+ = b. Let Q = {Z: Ult(M, D) |= Z s rf}. Since Ult(Af, D) |= 2* = 6, there is 
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a 1-1 map of Q into bE. By Lemma 1.1, there is a 1-1 map of bE into tc+. Hence there 
is a 1-1 map of Q into tc+. 

We complete the argument by showing that, if 2K = tc+ fails in M, then there is a 
1-1 map of A;++ into ß , contradicting the preceding paragraph. By preservation of 
cardinals > p, (tc++)M = tc++. Hence, if 2K = tc+ fails in M, there is a 1-1 sequence 
<Ca: a < A;++> of subsets of tc9 each CaeM. Set k(a) = that B such that 
Ult(M, D) \= B = d fi J(Ca), k is 1-1, for if ï e Ca - Cß, then j(T)Ek(a) while 
noi j(T)Ek(ß). 

THEOREM 2.2. / / tc is a singular cardinal of uncountable cofinality X and ß is an 
ordinal < X such that {v < tc'. 2V ^ y (^} is a stationary subset of tc9 then 2K S A:(^. 

PROOF. One proceeds much as in the proof of Theorem 2.1, using Lemma 1.2 
instead of 1.1. 
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A General Framework for Simple A\ and 2? 
Priority Arguments 

C. E. M. Yates 

In this paper an abstraction of simple priority arguments is presented in terms of 
what are called priorcomeager sets. To illustrate the versatility of the method, a 
number of different applications are described in §§ 4 and 5. Among them, for ex­
ample, are the existence of minimal J§ degrees and the nonexistence of minimal 
2"? degrees. 

Priorcomeager sets first appeared in our unpublished lecture notes [11], where 
separate but similar frameworks for â\ and 2^ arguments were presented. Sub­
sequently, in [12], we have described a framework for the â\ theory in terms of what 
are called priorie games, connecting these with priorcomeager sets and deducing 
some additional corollaries. The present common framework for the â\ and 2\ 
theories is a considerable improvement on these earlier rather inelegant versions. 
It possesses the additional merit of dealing with some simple priority arguments in 
the 21 theory below a fixed nonzero IJ degree; these previously needed separate 
treatment. 

Finally, it should be mentioned that Lachlan [2] has presented some elegant ideas 
for a framework which is restricted to the i"? theory but deals with two harder 
theorems in that theory: the existence of minimal pairs of I\ degrees and the 
density of the 2\ degrees. 

1. Preliminaries. The reader is referred to the bibliography, in particular to the 
earlier papers of the author, for most standard notation and terminology. However, 
the following are sufficiently nonstandard but basic to our presentation that they 
merit repetition. If Tis a tree then 

T A T = {a: aeT&T g <?}, 
© 1975, Canadian Mathematical Congress 
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jr(T) = {B.B G 2" & B = lim X for some branch X of T}. 

If T is a basic tree of the form SAT then oV(z) will be used instead ; in fact % will 
then replace T throughout. A tree system is, for our purposes here, a set of I\ trees 
containing Sand closed under basic subtrees, i.e., if T e C a n d r e Tthen T A TeC. 
We follow [13] in writing 0 for the system of all basic trees and 1 for the system 
of all 2\ trees; note that 0 £ C £ 1 for all systems C as used here. (Different 
notation was used in [12].) It will help to motivate the present paper if we recall the 
definition of a (C, d)-comeager set, introduced and used in [13] for perfect systems 
C. A C-probe is an operator Q: C -* C such that T 2 Q(T) for all TeC. A se­
quence (stfe) of subsets of 2N is (C, d)-dense if there is a sequence (Qe) of C-probes 
which is uniformly of degree ^ d and such that, for all e and TeC, J^(Qe(T)) c ^e% 

2N is (C9 d)-comeager if sé ^. D ^ ^or s o m e (P» df)-dense sequence (sée). The 
(C9 d)-comeager sets are easily seen to be closed under supersets and finite inter­
sections (even some infinite intersections). The existence theorem for (C, d)-co-
meager sets is trivial and just a generalised form of Baire's theorem. It asserts that if 
sé is (C, d)-comeager then sé contains an element of degree ^ d. This abstracts the 
usual genericity and diagonal arguments. Our purpose below is to present a suitable 
generalisation which abstracts priority arguments of the simplest kind. 

2. Some triples (C, ^ , d). Here C is a tree system (not necessarily perfect). ^ is a 
recursive binary relation over S (most conveniently assumed to extend the relation 
<^ defined below) and d is some degree. The relations used in the most obvious 
applications are ^ , rgj, ^ ° , ^? , ^a and ^f all defined below. Although some 
results apply to all C we shall only specifically refer to 1 and 0- Also the usual 
values for d are 0 and 0(1> : 

a ^ 7 <=> T is an extension of a. 
G ^ I T O G ^ Z " & | Z - | ^ | ö - | + 1. 

G^ToVx(a(x) = 0=>T(X) = 0 )& |o - | g | r | . 

G^TOG ^T&\T\^\G\ + 1. 

G ^az<>G ^ ° 7 & ( G \ T => 0(1^1) S n(o* T))9 

where n(G9 T) = min x (G(X) ^ T(X)) and û is a 1-1 recursive function: N -> N. 
a ^Iroa ^az&\z\^\a\ + 1. 
2.1. DEFINITION. A (C, ^9d)-sequence is a sequence TQ, TÌ9 ••• of elements of C 

which is of degree ^ d (in the sense that the sequence of indices of T09 T\9 • • • can be 
enumerated by a function of degree ^ d) and such that /z(Tb) ^ M^i) ^ "•• 

If d is irrelevant we shall just refer to (C9 ^-sequences. Our interest lies in the 
elements of 2N to which ^(TQ) ^ ß(T\) ^ ••• may converge, where a sequence TQ9 

T\ , • • • is said to converge to B e 2N if for all G < B there is SLK such that G ^Tk for 
all k 'è K. The purpose of the binary relations listed above will be clearer once we 
have noted that 

(i) if a (C9 ^ , 0(1))-sequence converges to B e 2N then B e A\9 i.e., B represents 
a A\ set, 

(ii) if a (C, ^ ° , 0)-sequence converges to B e 2N then B e I\9 

(iii) if a (C, Sa, 0)-sequence converges to B e 2N then Be 21? anrfi? is of degree 
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:g a where a is the degree of the range of a. 
(i) is obvious. To see (ii) just observe that if Tk = fi(Tk) for all k9 where T09 Th 

•••is the sequence, then, for all x9 

B(x) = 0o lk(Tk(x) = 0). 

To see (iii) for a similar sequence just observe that, for all x9 

B(x) = 0 <=> ik(Tk(x) = 0 & | Tk | û M(x))9 

where M(x) — max m (a(m) ^ x)9 then remember that | Tk | is monotonie. 
Finally, the following definitions are important in the sequel. Let C<0) be the set of 

all nonempty finite sequences of elements of C. 
2.2. DEFINITION. For any operator Q: C<û) -+ C we define its trace 0 by setting 

ß(T°, ..., T«) = fl(T°, •••, 7>') for the largest m < n for 
which this is defined if such an m exists, 

= T"0 otherwise. 

2.3. DEFINITION. A (C9 ^)-probe is an operator Q: C<a) -+ C satisfying 
O: fi(T»)?$ fx(Q(T»9 - , r * ) ) , 
P : T« 2 0(7* - , T«), 
R: if ß( r° , •••, !T») A [i(Tn) is trivial (i.e., a singleton) but T° A [x(Tn) is not 

trivial then Q(T°, •••, T") is defined. 
Note. The third condition R (for remedial) is redundant for perfect systems C 

such as 0. The purpose of O in producing (C9 ̂ -sequences should be obvious 
enough. The purpose of P is more subtle, but it may be regarded simply as the 
appropriate generalisation of the definition of C-probe. 

3. (C9 ̂ , dO-priorcomeager sets. We begin with the most crucial concept in our 
framework. 

3.1. DEFINITION. Let Q be a (C, ^)-probe. A (C, ^-sequence T°9 T1,--- is Q-
prioric if, for all w, 

(a) if Ö(T°, •••, T») is defined then it is = T«+1, 
(b)O(ro, ••., T") 2 T». 
Note. It is immediate that T° 2 3T» for all n9 using 2.3P. 
3.2. DEFINITION. A sequence (sée) of subsets of 2^ is (C9 ^ , d)-dense if there is a 

sequence (Qe) of (C, ^)-probes which is uniformly of degree g d and such that, 
for each e and £?e-prioric (C, ^-sequence T°9 T

1, •••, 
(I) lim, Qe(T\ •••, r») exists (= T* say), 

(II) ^ ( ^ ) £ j * . . 
3.3. DEFINITION. A set sé £ 2^ is (C9 ^ , d)-priorcomeager if sé ^ f) sée for 

some (C, ^ , d)-dense sequence (sée). 
Note. By 3.1 (b) we have T* 2 r» for all n ^ JV in 3.2, so that if ^(T0), //(T1),. • -

converges to Be 2N then Besée. This suggests two weaker notions described simul­
taneously below and of importance in the applications. 

3.4. DEFINTION. A sequence (sée) of subsets of 2N is weakly (C9 ̂ , d)~dense {under 
d) if there is a sequence (Qe) as in 3.2 such that, for each e and ûe-prioric (C9 ^ ) -
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sequence T°, T\ ••• ((C, ^ , df)-sequence T°, T\ ...), 
(I) as in 3.2, 

(II) if ft(T% fj,(Tl)9 ••• converges to B e 2" then B e sée. 
3.5. DEFINITION. A set sé £ 2N is weakly (C9 ^ , d)-priorcomeager (under d) if 

sé ^ f] sée for some (sée) which is weakly (C, ^ , d)-dense (under d). Each type 
of (C9 ^ , d)-priorcomeager set is easily seen to be closed under supersets and 
finite intersections (even some infinite intersections). 

An existence theorem for these concepts is not so trivial to prove. Nevertheless, it 
is not difficult and is the only point in the development at which a priority con­
struction is needed. 

3.6. EXISTENCE THEOREM. If sé is weakly (C9 ^ , d)-priorcomeager under d then 
there is a (C9 ^ , d)-sequence which converges to an element of sé. 

The direct proof of this theorem proceeds by defining a (C9 ̂ , d)-sequence which 
converges and is (ßg)-prioric, where (Qe)is as provided in 3.2. A (C9 ^ , d)-sequence 
TQ, T\, ••• is (Qe)-prioric if for each e there is a number K(e) such that (Tk)k^K^ is 
ße-prioric. 

4. Applications to the A\ theory. The principal classifications concerning the A\ 
theory are of the sets M9 J and # where Jt — {B: B is minimal}, > = {B: B is 
incomparable with all nonzero, incomplete 2% degrees} and # = {B: 2?(1) > 
B U 0 (1 )}. Namely, Jt is (1 , ^ , O(1))-priorcomeager, J is (C, rgj, 0C1)^priorco­
meager for any system C and # is weakly (1 , ^ , 0(1))-priQrcomeager. It follows 
from the existence theorem that M and # both contain A\ elements results first 
obtained by Sacks ([4] and [5]) and Yates [10] respectively. 

By involving closure under finite intersections, we can deduce some further re­
sults. Using the theorem that every (C, ^ , 0(1))-priorcomeager set is (C, ^ i , 
0(1))-priorcomeager, it follows that Jt [\ *? is (1 , rgl9 0

(1))-priorcomeager and so 
contains a A\ element, a result first obtained by Sasso [6] and strengthening 
Shoenfield [9]. Also Jt [\ # is weakly (1 , ^ , 0(1))-priorcomeager and so con­
tains a Al element, a result first obtained by Sasso in collaboration with Cooper 
and Epstein and announced by Sasso [7]. 

The classification of Jt was first obtained in our unpublished lecture notes [11] 
and has since appeared in [12] along with the classification of cf. A classification of 
J was obtained in [11], but this involved an awkward modification of the notion 
of priorcomeager set and so was inferior to the result announced here. Another 
result obtained in [11] was Shoenfield's theorem [8] that if 0(1) ^ c ^ 0C2) and c 
is 2% in 0(1) then there is a b ^ 0(1) such that 6(1) = c. This was the original ap­
plication of the priority method to the Al theory (subsequently superseded by Sacks 
[5] where 6 was made 2%) and requires a notion of a ((Ce)9 ^ , 0(1))-priorcomeager 
set for a sequence of systems (Ce) rather than a single system C. 

5. Applications to the 2\ theory. The principal classifications concerning the 2\ 
theory are of the sets & and &>(<£) where &> = {B\ (B) 0 | ( JB) I}

 a n d ^ ( « ) = {B-
0 < B&a£B}. (Here, (B)0(n) = B(2n) and (B\(n) = B(2n + 1) for all n; also a 
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is a nonzero 2% degree.) Namely, & is (0, ^° , 0)-priorcomeager and £f(d) is 
weakly (0, ^°, 0)-priorcomeager under 0. Either of these results in combination 
with the existence theorem provides a 2\ set of degree strictly between 0 and 0(1) ; 
the first of course provides incomparable 2\ degrees. Of these, the first result ab­
stracts the original solution to Post's problem (Friedberg [1] and Mucnic [3]); the 
second abstracts a technique first introduced by Sacks [4] (this was also abstracted 
by Lachlan in §2 of [2]). 

Finally, it can be shown that both gP and Sf(a) are weakly (0, %a
9 (^-prior­

comeager under 0, where a is a 1-1 recursive function ranging over a 2\ set of 
degree a. This shows that there are no minimal 21 degrees, a result first announced 
by Mucnic. 
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Algebraic ^-Theory: A Historical Survey 

Hyman Bass 

Algebraic ^-theory has been metamorphosed and given new focus by the recent 
work of Quillen (cf. [30], [31], [32]), discussed in his article in these PROCEEDINGS. 
I shall survey here some of the research themes with which the subject was in­
augurated, and report on their current status. 

1. In the beginning. Like the topological Z-theory of Atiyah and Hirzebruch 
[2], algebraic ^-theory started from Grothendieck's proof of his generalized 
Riemann-Roch theorem in 1957 [12]. There first appears the Grothendieck group 
K(X) of vector bundles on a scheme X, which Grothendieck intended as a vehicle 
for the global intersection theory later developed in S.G.A. 6 [21]. Atiyah and 
Hirzebruch meanwhile took X to be a finite CW complex and defined K~n(X) = 
K(SnX) for n ^ 1, where S denotes suspension. If, in Grothendieck's case, X ?= 
spec (A) is affine, or, in the case of Atiyah-Hirzebruch, A is the ring C(X) of con­
tinuous functions on X, then the category of vector bundles on Zis equivalent to the 
category 0>(A) of finitely generated projective ^-modules (cf. [37] and [43]). Whence 
a definition of K(A) (or K0(A))9 as the Grothendieck group of &(A), which makes 
sense for an arbitrary ring A. 

This K0(A) is, if nothing more, a useful tool for investigating the structure of 
projective ^-modules P. Consider, for example, a problem that has greatly in­
fluenced our subject, posed by Serre in 1955 [37]: Is P free if A = F[t\9 •••, t„]9 a 
polynomial ring over a field Fl Seshadri affirmed the first nontrivial case, n = 2 
[39]. In 1958 Serre proved the following fundamental results [38] : 

(1) K0(A) -» K0(A[t]) is an isomorphism for regular rings A.1 

*In my book [5, Chapter 12], and elsewhere, I mistakenly attributed this theorem to Grothen­
dieck, because of its appearance in [12]. 
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(2) P = (a free module) © (a module of rank ^ d) if A is Noetherian and 
m-dim (A) — d, 

Here m-dim (A) ( g dim(A)) denotes dimension of the maximal ideal spectrum, 
and "regular" means all local rings Ap are regular. Hubert's syzygy theorem, in 
modern form, tells us that A[t] is regular when A is. We thus conclude from (1), 
when A = F[th •••, t„]9 that P is "stably free," i.e., that P © As ^ Ar+S for some s9 

and r = rank(P). Assertion (2), coupled with the following "cancellation the­
orem" (see [5, Chapter IV]): 

.(3) P®AçéP' ®A=>P^P' if rank P > m-dim A9 

then further implies that projective F[tÌ9 • • -, /„]-modules P of rank > n are free (cf. 
[4]). This result has recently been significantly improved by Murthy and Towber 
[28], Swan [46], and Suslin and Vaser§tein [42] (see [7] for a report on their work). 
We now know that P is free if rank P > 1 + (nj2)9 if n = 3, if n = 4 and char(F) 
^ 2, and if n — 5 and Fis finite, char(F) ^ 2. 

The theorems (1), (2), and (3) above can be viewed as algebraic analogues of 
homotopy invariance and stability properties of the functor K(X) in topology. 
They suggested that a more systematic exploitation of the ideas and methods of 
topological ^-theory might be profitable. A first step was to define relative groups 
K(A, J), J an ideal; this was straightforward. The difficulty lay in finding a good 
analogue Kn(A) for the topological K~n(X)9 lacking an obvious algebraic analogue 
of the suspension. This program, only recently consummated, is the subject of 
Quillen's address; it is also discussed in Swan's address [45] at the Nice Congress. 
At the outset however only a definition of K^(A), as the commutator quotient, 
Gh(A)/E(A)9 of GL(A)9 was proposed, this definition being modeled on the descrip­
tion of bundles on SX by clutching functions. What made this definition also es­
pecially commendable was that, in case A = Z%9 the integral group ring of a group 
%9 a natural quotient of Ki(Z%) had been introduced already in 1939 in J.H.C. 
Whitehead's theory of simple homotopy types [54]. The computation of such 
"Whitehead groups" Ki(Z%) was thus a problem of interest to topologists, and for 
which algebraic techniques beyond those in the 1939 thesis [22] of Whitehead's 
student, G. Higman, seemed lacking. 

The point of view of algebraic X-theory naturally suggested the first general 
theorems concerning Whitehead groups K\(A) : stability theorems for Noetherian 
A and homotopy invariance for regular A. The stability theorems, proved by L. 
VaserStein [49] and the author [5], yielded the finite generation of K\(Z%) and 
finiteness of SKi(Z%) when % is finite [4]. Examples with SKi(Z%) =/= 0 were first 
exhibited only recently by Alperin, Dennis and Stein [1], applying the refined 
results of Dennis and Stein on K2 of discrete valuation rings [15]. The stability 
theorems for K\ were also a key step in the solution, by Milnor, Serre and the au­
thor [9], of the congruence subgroup problem for SLn(A), A the ring of integers in a 
number field F. This revealed a striking and unexpected connection between the 
relative groups SK\(A9 J) and the explicit power reciprocity laws in F. Here was the 
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origin of a persistent arithmetic theme in algebraic Ä-theory which has now be­
come one of its most interesting aspects. 

The homotopy invariance theorem for K\ also had unexpected ramifications, 
Denoting the cokernel of KX(A) -+ Ki(A[t]) by N(A)9 it was shown by Heller, Swan 
and the author ([8], see also [5, Chapter 12]) how to give explicit generators for 
N(A), which vanish when A is regular, and that Kx(A[t, t'1]) = K±(A) © N(A) © 
N(A) © K0(A). When A = Z% this formula yields a description of KX(Z\% x T]) 
with T an infinite cyclic group, a formula generalized by Farrelland Hsiang 
[17] to semidirect products % x\a T. Their interest arose from an obstruction in 
Ki(Z[% x T]) constructed by Farrell [16] in connection with fiberings over a circle. 

The above formula also showed that KQ is an essential ingredient in the study of 
Whitehead groups. However geometric problems leading directly to obstructions in 
KQ(Z%) had meanwhile been encountered, for example Wall's obstruction to finite-
ness of a CW complex [53], and Siebenmann's to capping an end of an open mani­
fold [41]. 

2. Growing higher. Various approaches to constructing higher functors Kn(A)9 

n = 0,1,2,3, •••, were developed independently by Milnor [27], Gersten [18], Swan 
[44], Karoubi and Villamayor [24], Anderson and Segal [36], Keune [25], Volodin 
[51], Wagoner [52], and Quillen [30] and [31]. But for the Karoubi-Villamayor 
theory, which satisfies an unrestricted homotopy axiom at the cost of discarding 
some interesting information, it is now known that the other theories give the same 
answer in the cases where they can be compared. These comparison theorems are 
described in [29, I, Part A]. They permit one to say with conviction, and without 
ambiguity, that higher X-theory "exists," a fact that was less apparent at the time 
of Swan's address [45] at the Nice Congress. 

Quillen ([30], [31], [33], and unpublished lectures) has furnished the first effective 
tools for computing higher AT-groups. He has proved homotopy invariance of 
Kn(A) for regular A, and Waldhausen has derived the expected description of 
Kn(A[t9 r1]). Quillen has given an approach to stability questions for Kn9 giving so 
far only partial results. He has exactly calculated the groups K*(Fq) and shown 
that there is a natural map from the stable homotopy of spheres into K#(Z) which is 
injective on the image of the /-homomorphism'. 

Much interest has been attached to the groups Kn(A) when A is a ring of S-integers 
in a global field F. This was largely inspired by the work of Tate and others (see 
Tate's Nice Congress address [47]) on Milnor's K2(A) and K2(F)9 which were seen 
to be related to norm residue symbols and power reciprocity laws. Conjectures of 
Birch and Tate relating K2(A) to properties of the zeta function ^F(s) were one 
source of some spectacular conjectures of S. Lichtenbaum [26] relating all the 
groups Kn(A) to ZF(S). Lichtenbaum's vision of the situation presupposes the 
groups Kn(A) to be finitely generated. This was proved by Quillen in [33] when F 
is a number field, and very recently also in the function field case. Suppose now 
that F is a number field, A its ring of integers. Then, apart from KQ(A) £ Z © 
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Pic(i4) and K\(A) = A* (units), which has rank r± + r2- 1, where R ®QF s 
jRn x Cr\ Lichtenbaum predicted that, for m ^ 1, A^mC )̂ should be finite and 
K2m+i(A) should have rank r2 for m odd and r\ + r2 for m even, the latter rank 
being in the respective cases, the order of the zero of Z,F(s) at s = - m. This predic­
tion was confirmed by Borei in [10], without any knowledge of Lichtenbaum's ideas. 
Lichtenbaum further suggested the possibility of a formula of the type 

(*) Hm (s + mr- CM = ± ,J**ffi , ' W 
s~-m |^2m+l(^)torS | 

where tm is the order of the zero of ÇF at s = — m9 | G\ denotes the order of the 
finite group G9 and Rm(F) denotes a conjectural "regulator" whose relation to 
K2mn(A) is analogous to that of the classical regulator to Ki(A) = A*. Borei in 
his article in these PROCEEDINGS [11] has described reasonable candidates for these 
higher regulators for which he can verify the necessary rationality properties. The 
Lichtenbaum conjectures have been proved by Coates and Lichtenbaum [14] in 
special cases for some totally real fields and odd m (where the higher regulator 
question does not intervene because K2m+i(A) is then finite). 

It now seems that Lichtenbaum's conjecture (*) is not quite correct as stated. 
What might be called the most immediate problem in higher i^-theory is the 
computation of the finite group K$(Z). Lichtenbaum predicted it has order 24, 
and Quillen's results give it a cyclic subgroup J of that order. However Karoubi, 
using results from his hermitian A>theory [23, pp. 381-383], has shown that J has 
even index in K$(Z). Very recently R. Lee and R. Sczarba have announced further 
unpublished results, including the first known upper bound on the order of K3(Z). 

The construction of the higher 7^-groups by Volodin and Wagoner [52] has two 
features that deserve comment. First it employs a generalization to rings of the 
"buildings" which have recently appeared in the theory of linear algebraic groups 
(see Tits' article in these PROCEEDINGS [48]) and which intervene also in Quillen's 
proof in [33] that the groups Kn(A) are finitely generated in the arithmetic case. 
The other feature is that their groups Kn(Zn) come equipped with a geometric in­
terpretation, and hence potential application, in the theory of pseudo-isotopies. 

Some possibly very interesting applications of algebraic /^-theory to the theory of 
algebraic cycles in algebraic geometry are suggested by recent work of Quillen, 
Gersten, Bloch, and others. The main result in this direction is Quillen's proof in 
[31] of a beautiful conjecture of Gersten, made in [19], which he discusses in these 
PROCEEDINGS. 

3. Growing orthogonally. There is a so-called "hermitian Z-theory" attached to 
each of the families of classical groups (orthogonal, symplectic, unitary), just as 
that above is to the general linear group. The main impulse behind hermitian K-
theory came from surgery theory, and much of the subject has been developed by 
topologists, such as C. T. C. Wall, S. Novikov, W. C. Hsiang, S. Cappell, J. 
Shaneson, A. Ranicki, R. Sharpe, and many others. 

Here the ring A is equipped with an involution A H A relative to which one can 
define s-hermitian forms (e = ± 1) on an >4-module P, h(x9 y) = eh(y, x). Such 
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(P9 A)'s with P projective and h nonsingular, together with a related "quadratic 
form," constitute a category Qe(A)9 whose study E. Artin might have called "geo­
metric algebra over a ring." There is a "hyperbolic functor" H: 0>(A) -> Qe(A), 
and we can define "Witt groups" e Wt(A) as the cokernels of the induced homomor-
phisms on K, (i = 0, 1). The cases (e, i) = (1, 0), (1,1), (~ 1, 0), ( - 1, 1) yield 
essentially the groups L„(A)9 n — 0,1, 2, 3 respectively, of surgery theory. 

Stability theorems for the associated unitary groups, and hence for Ln with n 
odd, have been proved by Bak [3], VaserStein [50], and the author [6]. Fairly precise 
calculations of Ln(Z%) with % a finite group, and especially finite abelian, have been 
made by Wall, R. Lee, T. Pétrie, Bak-Scharlau, the author, and others. The general 
theory is now well enough developed so that such calculations, at least for % finite 
abelian, can be made with any desired degree of precision. 

A general homotopy invariance theorem for the groups Ln(A) was proved by 
Karoubi [23], without assuming regularity of A, but requiring instead that \ e A. 
This theorem, in the symplectic case, figures essentially in the work of Suslin 
and Vaser§tein on Serre's problem (see §1 above), and explains the restrictions 
"char F ^ 2" which appear there. 

A Laurent polynomial formula of the type Ln(A[t9 r
1]) = Ln(A) © Ln_i(A) 

was proved by Shaneson [40] for A = Z%9 using geometric methods. Algebraic 
proofs of this and various generalizations have been given by Ranicki (cf. [35]). 
In case % = %\ *ffD %2, a free product with amalgamation, Cappell [13] has estab­
lished the desired kind of Mayer-Vietoris sequence for the L-groups, provided that 
7ÜQ is "square root closed" in %. 

Karoubi has recently applied Quillen's methods to the construction of higher 
hermitian 7 -̂groups. He conjectures that these groups enjoy certain periodicity 
properties analogous to real Bott periodicity. Some of these conjectures have been 
verified in special cases, and modulo 2-torsion. 
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Some Category-Theoretic Ideas in Algebra 
(A Too-Brief Tour of Algebraic Structure, 

Monads, and the Adjoint Tower) 

George M. Bergman 

In recent years, categorists have come up with some very interesting ways of 
looking at algebraic constructions and algebraic objects. But most of what they 
write on this is technical and aimed at other categorists. I shall sketch some of these 
ideas here, emphasizing concrete examples, for the algebraist with a reasonable 
foundation in category theory (familiarity with adjoint functors and colimits). 
The unifying thread of the article will be the problem : What algebraic structure 
can be put on the values of a given set-valued functor? 

1. Coalgebras, and representable functors [1]—review. Let sé and ^ be varieties 
of algebras, (sé may be, more generally, any category with colimits.) It is known 
that a functor V: sé -+ ^ has a left adjoint if and only if at the set level it is repre­
sentable; that is, if and only if, letting U: @l -• $»* denote the underlying-set 
functor of @j9 one has U<> V £ Horn (R9 —) for some object Rof&: 

s 
Hom(R,—) 

In this situation, the structures of algebra V(A) e Ob(^) on the sets Horn (R9 A) 
arise from a <%-coalgebra structure on the representing object R in sé. 

EXAMPLE. The functor GLW : 0t*'*f -> &**«/ has a left adjoint, because U<>GLn is 
represented by the ring R presented by 2n2 generators xij9 y(j (i9j ^ n) and the 2n2 

relations comprising the matrix equations ((xfy))((jty)) = ((tt/))((**•;)) = /«, i.e., 
© 1975, Canadian Mathematical Congress 
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the ring with a universal invertible n x n matrix, x = ((xtj)). To study the mul­
tiplication of GL„ take the ring with two universal invertible n x n matrices, 
namely the coproduct of two copies of i?, R' U R"9 and call these two matrices 
xf

9 x" e GLn(R' ]J R")l they correspond to the two coprojection maps, R -> R'UR". 
Form their product x'x" e GLn(R' ]} R")9 and represent it by a homomorph-
ism rn: R -> R' ]} R". The homomorphism m now "encodes" the multiplication 
of GLW, just as the object R "encodes" the construction of GLM as a set: Given 
any elements a, be GLn(A) = Horn (R9 A) (any ring A) one gets their product 
in GLn(A) = Hom(R9 A) as the composition: 

In the same way, the matrix-inverse operation of GL„ corresponds to a map 
i: R -+ R (namely, x{j H> yij9 y^ H> x^); and the 0-ary operation giving the identity 
matrix In e GLM(>4) corresponds to a map of R into its 0-fold coproduct with itself, 
H 0 R9 which is simply the initial object Z of0t*nf (namely, xij9 yi} •-> 5,-y e Z). 
These maps, called comultiplication, coinverse and counit, comprise a structure of 
cogroup on the object R of 0t^. 

For a very interesting exposition of coalgebras and related constructions, see 
P. Freyd [1]. Cf. also [2, §111.6] and [4]. 

(Warning to the ring-theorist: Do not confuse this use of the term "cogroup," 
and, more generally, of "coalgebra" with the deceptively similar meaning of the 
latter term in the theory of Hopf algebras ! The relation between these concepts is 
discussed in [4, §8].) 

2. Turnabout is fair play. Let us now reverse our viewpoint. Let sé be a category 
with coproducts, and R be an object of sé. Suppose we form the representable func­
tor Horn (R,—) : sé -> $**, and ask : What algebraic structure can we put on this 
functor? That is, what is the richest category of algebras ffi such that we can 
factor Hom(jR,—) through the forgetful functor U\<% -* $»* as in (1)? 

The remarks of the preceding section contain the answer : The /7-ary operations 
we can put on 3ft correspond precisely to the /7-ary cooperations possessed by R 
in sé, i.e., to the set of all maps R -> R JJ ••• U R̂. In general this will give a very 
big and unwieldy set of operations, but there may be some convenient subset 
which generates the rest. 

The identities of ^ will come from "coidentities" of these co-operations of R. 
EXAMPLE. What algebraic structure can we put, in a functorial manner, on the 

set of elements of exponent 2 in a group G? 
The functor G H> {XE \G\ \X2 = e] is represented by the object Z2 of ^ ^ « / . 

A description of all maps Z2 ->• Z211 ••• 11 Z2, i.e., of all elements of exponent 2 in 
the group with presentation <xl5 •••, xn \x\ = ••• = x\ = e}, may be obtained from 
classical results on the structure of coproducts of groups. (N.B. Not by "general 
nonsense" !) They are (as elements) precisely e9 and all conjugates of the generators 
X\9 •••, xn. From this it is not hard to deduce that the operations we get on 
Hom(Z2,—) are generated by the 0-ary operation e (induced by the trivial map 
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2̂ 2 -* LU ^2 = M ) a n d the binary operation of conjugation, (x9 y) ^ xy — 
y~lxy (induced by the map Z2 = <?|/2 = e) -> Z2 11 Z2 = <#, >>|;K:2 = j>2 = e> 
taking / to xy). 

A group-theoretic analysis of when iterated conjugates of generators in groups 
%2 11 •'• LI 2̂ 2 coincide leads to the result that all identities satisfied by these 
two operations follow from the following five : 

e* = e9 x* = x, x ( / ) = - z ) y v 
Xe = x9 (xv)y = x9 w / y 

Hence let us call an algebra of type (0, 2) (i.e., a set with one zero-ary and 
one binary operation) satisfying these five identities an "involution algebra". 
Then the variety </»» of all involution algebras is the richest variety " ^ " through 
which Hom(Z2, —) : &***/• -> ê** can be factored as in (1). This factorization corre­
sponds to a structure of involution coalgebra on the representing object Z2 in <^w/. 

For other examples see [20]. 

3. Interpretation in terms of Lawvere's algebraic theories and algebraic structure. 
W. Lawvere introduced in his thesis [3] the idea of describing any variety sé of 
algebras as the category ênJ of all finite-direct-product preserving functors from 
a certain category 0, called the "theory" of sé, into the category £>** of sets. The 
category 0 consists of an object 1, and finite products 1 x ••• x 1, and has for mor-
phisms, in addition to maps constructible from projections, certain other maps 
corresponding to the operations of sé, with relations among their compositions 
corresponding to the identities of sé. 

Actually, Lawvere defines the theory to be the opposite category, T, to the cate­
gory 6 I have described, so that he writes sé = ê**T°\ This Tis a little less natural 
to picture than 6, but has a formal advantage : The category freely generated by 
one object 1 under finite coproducts is (up to equivalence) the full subcategory of 
ê** with object-set co = {0, 1, 2,---}; so Lawvere's algebraic theories Tare precisely 
the coproduct-preserving and object-set-preserving extensions ofthat category. 

The "theory" 0 (respectively T) of a variety sé can be looked at as the category 
with a universal sé-sdgehm object (respectively co-j/-algebra object) 1. Thus, in the 
category of all categories-with-finite-(co)products, and functors respecting these, 
6 (resp. T) represents the construction associating to a category W the category of 
all j3^-(co)algebras in <%: 

j^-alg(^) s <jf», respectively j^-coalg(^) ^ cêT. 

One can also show that T is isomorphic to the full subcategory of sé having for 
object-set the set of free algebras {^(0), F(\)9 •••}. 

One may now check that the variety @i we associated to any representable functor 
Hom(R9—) : sé -» in* in the preceding section is described in Lawvere's terms as 
£n*T°* where Tis the full subcategory of sé with objects UM1? (/? = 0, 1, 2, •••) ! 

Lawvere looked, too, at the question of what algebraic structure can be put on a 
functor V: sé -> ë»*9 or more generally, sé -> ^ where <€ is any category with finite 
direct products. He observes that a functorial /7-ary operation on the V(A)'s just 



288 GEORGE M. BERGMAN 

means a morphism (natural transformation) of functors, Vn -• V. The full sub­
category of the functor-category #•*, with object-set {V°9 V1, V2, •••}, will form an 
algebraic theory 0V (unless Kis trivial), which defines as above a variety <% such that 
the values of V can be regarded as ^-objects in <£\ Lawvere calls the theory 6V, or 
rather its opposite, TV9 the "algebraic structure" of V. 

If V: sé -> ê»* is a representable functor, say V = HomOR,—), we see from the 
Yoneda lemma that this category Tv will be isomorphic to the subcategory of sé 
with objects {]}„ R\n = 09 1, •••} which we used to define the & of the preceding 
section, Thus, & = $»*Tv

9 so the algebraic structure on V that we determined in 
the preceding section is indeed the algebraic structure of Kin Lawvere's sense. 

However, we shall see in §5 that there are in general also "higher" types of 
algebraic structure to be found in a functor V\ 

If T is an algebraic theory, Lawvere calls the associated variety $»*T the "se­
mantics" of T. Thinking of S»*T as a category given with a (forgetful) functor U 
to $n*9 i.e., an object of (féW/ <^) , the universality of ^ = S>^Tv as a variety of 
algebras through which to factor V: sé -> $»* (an arbitrary member of (<£W/<£W)) 
is expressed by Lawvere's celebrated result, "Structure is adjoint to semantics"; 

semantics 
Sé Specie**0 £T /eott'eà * (fâaffS'ttj) 

structure 

4. Monads. (For more details see [2, Chapter VI], [6, Introduction], [14, Chapter 
21].) We consider again a pair of adjoint functors, 

V 
sé^l # , with unit 7)\ \<g -> VF9 counit e\FV-* 1^. 

F 
If we forget the category sé9 how much information about this adjunction can 

we "remember" in terms of the category ^ ? 
The composite VF is an endofunctor M : <€ -» ^, and the unit TJ is a morphism 

1^ -• M so these are already expressible in terms of # . 
The counit e: FV -> 1^ cannot itself be described in # , but FeF will be a mor­

phism ^ : MM -> M of endofunctors of fé\ 
Writing this "^-data" on our adjunction as a 3-tuple M — (M9 TJ9 /J)9 one finds 

that M will satisfy the identities indicated by the commuting diagrams : 

M=1«M > MM MMM > MM 

M M'pt 
(2) Ml« 

MM - >M MM — > M 
An endofunctor M of a category ^ given with morphisms y and (j, satisfying these 

identities is called a monad (because of the parallel with operations e: 1 -> X9 

m: X x X -+ X9 and the corresponding identities, defining a monoid (X9 e9 m)\ 
Another common term for monad is triple.) 
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As an example, consider the underlying-set functor V: &**«/i -> $»*, its left 
adjoint F9 and the resulting monad Jt — (M9 7j9/u). The functor M= VF\ $*>* -+ 
$»* takes a set S to the set of elements of the free group on S, which can be thought 
of as the set of all "abstract group-theoretic combinations of the elements of 5". 
The description of yj is clear. The morphism y, corresponds to the observation that 
an "abstract group-theoretic combination of abstract group-theoretic combinations 
of elements of S" can be "reduced", by composition of operations, to a single 
abstract combination of elements of S. 

From this monad Jt on <0W, can we reconstruct the original adjunction 0V**/ ?± 
ina and in particular recover the category <&***/] The answer is both a resounding 
"Yes!" and a definitive "No!" 

To see the "yes", note that a group can be described as a set S9 with "a way of 
evaluating within S all abstract group-theoretic combinations of its elements", 
i.e., a map a: M(S) -• S. One finds that the conditions a must satisfy for such 
a formal evaluation procedure really to be a group structure are the commutativity 
of the diagrams : 

y(S) 1M-a 
S >M(S) M(M(S)) >M(S) 

(3) t*(S) I a 

M(S) >S 

To see the "no," let /. /&s. denote the category of torsion-free groups, and note 
that the forgetful functor s./.<3/i. -> $na also has the free group construction as left 
adjoint. This adjunction clearly yields the same monad on $»* that we have just 
considered ; so the monad Jt does not uniquely determine the adjoint pair, and in 
particular, the other category of that pair. 

The general situation is this : Given a monad Jt = (M9 y/9 //) on a category #, 
we may form a category whose objects are pairs (S, a), S an object of cê, a a mor­
phism M(S) -> S satisfying (3), and whose morphisms are object-maps making the 
obvious square commute. This is called the category of "algebras with respect to 
Jf" and denoted #•*, and we get an adjunction 

(S, a)^S 
(4) V*-

(M(S),n(S))«S 

which is in an appropriate sense (§7 below) universal among adjoint pairs inducing 
J4 on #". It is not the unique pair inducing J(\ nonetheless many of the most im­
portant adjoint pairs are related to their monads in this manner. 

In particular, any variety sé of algebras is equivalent to ê»*M, where Jl is the 
monad on <f »à induced by the underlying/free adjunction sé ^1 &***. In fact, there is 
a 1-1 correspondence between monads Jt on S** and varieties of algebras ! Given a 
monad Jt9 $»*-* can be made a variety whose n-ary operations are the elements of 
M(n), for each n. (Again, of course, in particular cases one may have much smaller 
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generating sets of operations.) The identities, i.e., the rules for composing opera­
tions, are given by /u. 

Actually, some set-theoretic qualifications are needed here. A precise statement is 
that monads on in* correspond to varieties of algebras which may have infinitary 
operations (/? must range through all cardinals, in the preceding statement) and 
whose operations may even form a proper class; but such that there are only a set 
of distinct derived operations of each arity. Varieties of "finitary" algebras cor­
respond to those monads J/t such that for all S e <£«*, M(S) ̂  coIimSo finîteiçS M(SQ). 

We can now give yet another view of our construction of the "structure" on a 
representable functor V = Hom(jR, — ): sé -> £n* (sé a category with coprod­
ucts). The auxiliary variety @l through which we factored F was precisely ê^J4, 
where J<t is the monad on $>** induced by Fand its left adjoint F. 

V, 
V 

.té\ -*&»* 

F 
(This is imprecise because we only considered algebraic structure based on finitary 
operations in preceding sections. We may correct this by (a) allowing infinitary 
operations in our earlier discussions; or (b) replacing Jt by the submonad Jt^, 
where Mîin(S) = colim M(SQ), thus discarding infinitary operations ; or (c) if sé 
is a variety, and the object R representing V is finitely generated, as was true for 
Z2 in groups, by noting that then Jt = ^fin, so in this case there is no problem.) 

5. Higher structure. We have seen that the categories of algebras with respect to 
monads on <f ** are varieties of algebras in the traditional sense. What, then, will 
we get if we start with a variety ^ of algebras and a monad Jt on <€, and form the 
category of algebras %>Jffl 

It turns out that the objects of <€** can be described as sets endowed with, in 
addition to the operations of #, certain partial operations, and subject, in addition 
to the identities of <ß, to certain "partial identities". Explicitly, if A e Ob(^) is an 
object definable by generators Xh..., Xn and a system of relations r(X), then each 
element of M(A) induces a partial operation on the objects B e <£•*, whose do­
main is the set of all «-tuples^,..., x„) e \B\n satisfying r(x).(Thus the domains of 
these "second-stage" operations are defined with the help of the "first-stage" 
operations, those of #.) Likewise, the map // : M(M(A)) -> A gives identities in these 
partial (and total) operations which must be satisfied by all «-tuples satisfying r. 

Again, for illustration consider the functor V\ = Hom(Z2,—) : <^«/ -> ê»**, 
and its lifting F2: ^*«/ -• «/«* (<?**» — the variety of involution algebras). Vi 
has a left adjoint F2, so this adjoint pair will induce a monad Jti on <?*** 

What does this mean concretely? An involution algebra A gives in a natural 
manner generators and relations for a certain group F2(A)—exponent 2-generators, 
and conjugacy relations among these. This group can be characterized as having a 
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universal map of involution algebras A^K V2F2(A). Now if our definition of "in­
volution algebra" were a really complete picture of the structure of the sets of 
elements of exponent 2 in groups, we would expect the maps 7]2(A) to be isomor­
phisms. (Or if you don't buy that, let us just say it is natural, in studying elements 
of exponent 2 in groups, to ask whether this map will be an isomorphism.) 

But f]2 is in general neither injective nor surjective, For example, let A be the 
involution algebra defined by two generators X, Y and one relation XY — X. One 
finds that A has underlying set {e, X, Y, Yx}. jP2(y4)will be the group on generators 
X, Y and relations X2 = Y2 = e, Y^XY = X. 

The latter relation says that Xand 7commute, so F2(A) is the fours-group, with 
underlying set {e, X, Y, XY}, and all its elements have exponent 2. Hence the map 
7)2(A) takes the form 

A i V2F2(A) = M2(A) 

which is neither surjective nor injective. The "new" element XYin M2(A) leads to a 
partial binary operation on elements of exponent 2 in a group, associating to every 
pair (x, y) such that xy = x the element xy (which will have exponent 2 precisely 
because x and y commute). This operation is not definable in terms of conjugation. 

The collapse of 7 and Yx in M2(A) likewise yields the "partial identity" (Horn 
sentence) holding in the involution algebra of any group, but not following from the 
full identities of involution algebras : 

(Vx, y) xy = x => yx = y. 

If we gather together the partial operations and partial identities arising from the 
maps 7)2(A) for all A e Oh(Jnt), and add these to our earlier list of operations and 
identities, we get axioms for what we may call a "second order involution algebra." 
In fact, the category *?nt>2 of second order involution algebras is precisely JnVl

Jh 

— (Ë**Juy{\ (lam now using the subscript 1 for "first order" involution algebras, 
i.e., what I previously just called involution algebras.) Since we get this additional 
structure on the objects V2(G) for any group G, we get a second factorization : 

(5) 

All this applies, mutatis mutandis to any representable set-valued functor F on a 
cocomplete category sé, in particular, on any variety sé of algebras. 
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One can continue to iterate this process. At each step one obtains operations and 
identities whose domains are given by systems of equations in the previously con­
structed operations. The resulting diagram ((5) extended) is called the adjoint tower 
induced by the original functor V. The construction is due to Appelgate and 
Tierney; cf. [12]. 

Note that the problem of explicitly studying these classes of algebras is not one 
of general nonsense but, for instance, in the case V] = Hom(Z2, —), real group 
theory. I do not know, for example, whether jr*t>2 can be presented by finitely many 
partial operations and identities. I do not know whether at the next step one would 
find 773 : A -> V$Fz(A) always to be an isomorphism—in which case the tower would 
become constant after that point, and £™2 would be equivalent to a full coreflective 
subcategory of 0 W / , via F3 and K3—or not. Something positive that one can 
say in this case, because Z2 is finitely presented as a group, is that on the category 
•P-Va =def lim/) ("• i^Mx)"-)Mi (the natural "<wth step of the adjoint tower")—sets 
with all the structure one gets at the finite steps, •/«*,), the maps TJJ(A) will 
indeed be isomorphisms, and so •/»*,>, is equivalent to a full coreflective subcategory 
of <gt»*/K On the other hand, there are examples of adjoint towers of arbitrary 
transfinite height. 

Let us note how Lawvere's approach to algebraic theories can be extended to 
these higher sorts of algebras. Given a category sé with colimits, and an object 
R in sé, let ^f- denote the category^---^«^1)---)^' arising at the ?th level of the 
adjoint tower induced by Hom(i?, —). We recall that <%Ì9 a variety, may be iden­
tified with the category of all product-respecting functors Tiop -> S***9 where T\ is 
the full subcategory of sé having for object-set the coproducts of copies of R 
(in other words, the object-image of the adjoint F\ : ê«* -• sé. Again, if as in §2 we 
are interested only in finitary operations, we just use {F\(n) \n <o)}'9 and in fact 
if we make no such restriction at all there are set-theoretic worries ; but we shall 
skip over these here). Likewise, to describe J*2 let T2 denote the full subcategory of 
all colimits in sé of objects of T\ ; then we find that <%2 is equivalent to the category 
"^»* r ,op", where by this we mean all functors T$P -> i*>* respecting these 
(co)products and (co)limits. The object-set of T2 e sé can also be described as 
the image of F2: ffi\ -> sé. 

For instance, in our Z2 example, T2 contains not only the groups Z2]\... 
11Z2 but also the difference-cokernel H : 

t *-> x 
Z2=tZ211 Z2 >H (the fours-group). 

t H» xy 

Hence T2 contains the map 

/»-• xy 
Z2 — # 

which induces in @}2 the partial operation we discovered. 
Note that given the "theory" of «/«*2, either in the classical sense of a list of 

partial operations and identities, or in this Lawverian form, we can speak of ^Jnv1 
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-objects" in a general category. In particular, Z2 is now a co-</«*2-object in the 
category ^ ^ « / . (And in our general context, with V\ = Hom(i?, —), R will be a 
co-^-object of sé for all n.) 

Lawvere's concept of the structure of a functor likewise generalizes naturally to 
this higher structure : In the formulation of that concept, where Lawvere took the 
full subcategory of the functor-category <£* with object-set {Vn \n = 0, l,---} , one 
merely considers instead the full closure under (finite) limits of { V} in #•*. For 
instance, our partial multiplication operation on Hom(Z2, —) now assumes the 
form of a morphism of functors W -* V, where We $»* **»' is the difference-
kernel functor 

(x9 y)v-+ x 
W- -» V2 z=jV. 

(x9 y) v->xy 

6. Various examples and observations. The reader will find it instructive (and not 
too difficult) to describe completely the adjoint towers associated with the following 
functors : the underlying set functor of an arbitrary variety of algebras ; the underly­
ing set functor of the category (quasi-variety) of torsion-free groups; (example of 
A. Stone); the functor Hom(2, —): &>»*** -* gn*9 where 2 G Ob(^*w) is the chain 
of length 1, the same example with <£W, the category of small categories, in place 
of ^ * w . (For 2 is also a category. Cf. [13, Q13].) 

(From the torsion-free groups example one can generalize to get a characteriza­
tion of quasi-varieties and semivarieties as certain categories of the form (<f *^>)-*\) 

Suppose A9 B9 C are associative rings with 1, given with maps A -> B9 A -> C. 
Then for any right 5-module M and right C-module N9 we can form Hom^M, N)9 

getting a functor V: (Jt*<S B)op x (Jt*<s C) ~> $»* (not representable in the sense 
we have been considering). Through universal tricks, one can determine the struc­
ture of V in the sense of Lawvere : It is that of a B QA C-module, where B QA C 
= {xeB ®AC\ VaeA, ax = xa}9 made a ring in a certain natural manner 
discovered by M. Sweedler. There can also be higher structure. 

If we start with a, family of objects (Rì)t<=i in a category sé, they induce a functor 
(HomCfy, —))iei- sé -> ê***I

9 which we can examine for structure of many-
sorted algebra. In the category ffîSTo^ of pointed topological spaces with 
homotopy classes of maps, the family of spheres, (S')ieN induces the functor TT* : 
j^^^A' -té?»*1*. The structure of this functor includes not only the group structures 
of each homotopy group %n9 but also operations between different degrees, e.g., 
the "Whitehead products" %m x %n -» %m+n-\9 induced by maps Sm+n~l -> Sm\\Sn. 

For applications of ideas related to those of this article to the foundations of 
algebraic geometry and differential geometry, see [6, pp. 146-244], [9], [10], [11]; 
for applications to measure theory, see [17]. 

By duality, one can apply the ideas we have discussed to representable contra-
variant functors. For instance, the (finitary) structure on the functor Hom(—, 2): 
0>***s -• g*** turns out to be precisely that of distributive lattices. (Exercise. 
Examine similarly Hom(—, 2) : £»* -• $»* and Hom(—, 2) : ffloo/séfr -> <£W.) 
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If one is interested in relational structure as well as operations on the values of a 
functor V9 one should look not only at the morphisms among the Vn but also at 
their subfunctors. If V is the covariant (contravariant) representable functor 
determined by an object R9 an important class of subfunctors of Vn are those in­
duced by epimorphisms i?ll . . . LI^ ~* S (resp. by subobjects S £ R x ... x JR). 

EXAMPLES. If 0 i ? is the category of distributive lattices, the functor Hom(—, 2) : 
<&££ -* ina has trivial finitary algebraic structure in the sense of Lawvere, but its 
finitary representable relational structure is precisely that of partially ordered 
sets, with " g " induced by its graph, 3 ^ 2 x 2 . The underlying set functor 
Hom(l, —): g?**** -> $*** likewise has no operations (so the adjoint tower 
construction will not get anywhere with it, in contrast to Hom(2, —)), but the 
relation "< | " is induced by the epimorphism l ] j l -> 2. 

Exercise. The functor Hom(Z2, —) : ^ ^ « / -*ê*t* also has representable relational 
structure not induced by its operations. What does this say in elementary group-
theoretic terms? If you are a group-theorist, find an example. 

I mentioned that a monad on ê»* could correspond to a variety of algebras 
with a proper class of operations, not generated by any set of them. An example, 
noted by Linton [15, p. 90], and studied by Manes [6, pp. 91-118], is the monad 
Jt arising from the adjunction 

underlying set 

Stone-Cech 

(<ig/offPa»s = compact Hausdorff spaces). As Manes shows, the lifting functor 
V2\ qt/ïoffflauà -> gn** is an equivalence of categories, so compact Hausdorff 
spaces may be regarded as a variety of (very infinitary) algebras. 

A variety of infinitary algebras which does not correspond to a monad on £»* is 
that of complete Boolean algebras. For it has been shown [5], [19] that there is no 
free complete Boolean algebra on countably many generators. This is equivalent to 
saying that the Xtra ry complete Boolean operations cannot be indexed by any set. 

7. Mirror, mirror-•-. Let sé<S/ denote the category of adjunctions ^ = (sé, <€\ V9 

F; 7), e). Then the question with which we began §4, "Given an adjunction &9 if we 
forget the category sé what can we 'remember' about & in terms of # ? " is 
really of the same nature as the question considered in §2. For it asks what "struc­
ture" can be put on the values of the forgetful functor: 

Sé*/ t f&af. 

The answer turned out to be: a structure of monad, giving a factorization: 

(6) 
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Of course, the definition of "algebraic structure" must be adjusted to the fact that 
we are working here with 2-categories, i.e., categories with morphisms between 
morphisms (e.g., natural transformations between functors, in féW ). Cf. Lawvere 
[6, pp. 141-155]. 

Let us think of the objects of M*» as 4-tuples, Jt = (^; M, TJ, e). The con­
struction from a monad Jt of the category of algebras <€M

9 and thence of the 
adjunction (4), is actually a right adjoint to the functor nT2 of (6). One would 
expect, rather, a left adjoint here. This also exists; it is called the Kleisli con­
struction; the new category involved is written ^ [2, §VI.5], e.g., if Jt is a monad 
on é?,**9 so that ê»*J< is a variety of algebras, i^j( turns out to be equivalent to the 
full subcategory of free algebras in $>t*J(

9 that is, to the theory of this variety. 
Both of these adjoints to nT2 are left inverses to it as well; so it does not appear 

that (6) will also show higher structure. 

8. Acknowledgements. I am in particular debt to Peter Freyd and Saunders Mac 
Lane, as authors of [1] and [2], for introducing me to coalgebra-representable func­
tors and monads respectively; to Arthur Stone for his great assistance in bringing 
me up to date on the state of the art; to the audience and chairperson at my lecture 
for their patience with a poorly prepared talk, and finally, to Sammy Eilenberg for 
his colorful criticism afterwards: 

"You sounded like a neophyte who at the age of 30 has just discovered sex, 
and is so enthusiastic he doesn't know where to begin! You should have made 
that example at the end [structure on Hom(Z2,—)] the whole talk---." 

which I have followed to a large extent in this write-up. 
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Orthodox Semigroups Which Are Unions of Groups 

A. H. Clifford 

A semigroup S is called orthodox if it is regular (a e aSa for all a in S) and if the 
set Es of idempotents of S is a subsemigroup of S. A semigroup S which is a union 
of groups is evidently regular, and hence is orthodox if and only if Es is a sub-
semigroup; such a semigroup will be called an orthogroup. The purpose of this 
article is to present a structure theorem for orthogroups which I believe is an 
improvement over those of P.H.H. Fantham [4] and G. B. Preston (1961, un­
published). A full account of these two theorems was given in [1], 

1. Introduction. For the theory (prior to 1960) of semigroups which are unions of 
groups, we refer to [3, §4.2]. Any such is a semilattice of completely simple semi­
groups, and, by the Rees theorem [3, §3.2], any completely simple semigroup is a 
rectangular band of groups. 

As a first corollary, we have McLean's theorem [7] that any band ( = idempotent 
semigroup) is a semilattice of rectangular bands. 

As a second corollary, every inverse semigroup which is a union of groups is a 
semilattice of groups, and conversely. Any such can be constructed as follows. Let 
y be a semilattice, and to each element a of y assign a group Ga such that Ga and 
Gß are disjoint if a # 0. To each pair of elements a9 ß of Y such that a ^ /3, assign 
a homomorphism 0apj9: Ga -> Gß such that: 

(1.1) a ^ ß è T implies $tttß far = <j>ay9 

(1.2) <j>a>a is the identity automorphism of Ga. 
Let S = (J {Ga\ a e Y}9 and define the product ab of two elements a9 b of S as 

follows : if a e Ga and b e Gß9 then 

(2) ab = (a<j>a,aß)(b<f>ßtaß). 
Here aß is the product (= meet) of a and ß in Y. We call {<j>a,ß\ a ^ ß} the set 
of connecting homomorphisms of 5. 

© 1975, Canadian Mathematical Congress 
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Using the Rees theorem, it is easily seen that any orthodox completely simple 
semigroup is the direct product G x E of a group G and a rectangular band E; 
such will be called a rectangular group. Consequently as a third corollary, we have 
(M. Yamada [12], [13]): Any orthogroup S is a semilattice Y of rectangular groups 
Sa = Ga x Ea (a e Y). Conversely (Petrich [9, Lemma 1]), any semilattice of rec­
tangular groups is an orthogroup. 

2. Preston's theorem. Let S = (J {Sa: a^Y}9 Sa = GaxEa9 bean orthogroup. 
Es = {(1 a, e) : a e Y9 e e Ea}, where 1 a is the identity element of Ga. We can evidently 
define a product on the set E = (J {Ea: a e 7} such that (la9 ea)(\ß9 fß) = 
(laß, eafß), and hence making E into a band isomorphic with Es. We may identify 
ea with ( l a , ea)9 and thus E with Es. 

If a > ß in 7, then Sa U Sp is evidently a two-component suborthogroup of 5. 
Its structure is described as follows. 

LEMMA. Let Sa — Gax Ea and Sß = Gß x Eß = Gß x Iß x Aß be disjoint 
rectangular groups. Assume that there exist: 

(a) a representation t = taß ofSa by left transformations of Iß (i.e., acting on the 
left), 

(b) a representation z = Tatß of Sa by right transformations of Aß9 and 
(c) a homomorphism 0 = <j>atß ofGa into Gß. 
For A in Sa andB = (b; ?, X) in Sß9 define 

(3.1) AB = (a<f>-b;(tA)i9X)9 

(3.2) BA = (b-acj>;i9À(AT)). 

With products so defined, and keeping the given ones in Sa and Sß9 Sa U Sß becomes 
an orthogroup having Sß as ideal. Conversely, this procedure gives every possible way 
of making Sa (J Sß into an orthogroup with Sß as ideal. 

If we know how products are formed in E and in each "vertical pair" Sa U Sß 
(a > ß)9 then we know all products in S. For suppose a9 ß e Y9 A == (a9 e) e Sa and 
B = (b,f) 6 Sß.Identifying e with (la , e)9 etc., Ae = A and/B = B. Since (eff = 
ef, 

(4) AB = Aefb = A(efy(ef)B. 

Since at: aß and ß ^ aß, and efeEaß9 the products A(ef) and (ef)B are vertical, 
and both belong to Saß. 

Preston's theorem [1, p. 288] essentially asserts that every orthogroup can be con­
structed in the following way. Let E = \J {Ea: a e Y} be a band, expressed as a 
semilattice Y of rectangular bands Ea. To each a in 7 assign a group Ga9 and let 
Sa = G a x Ea. Assume that for each pair a > ß in 7 there exist the items tatß9 

Ta,ß> <j>a, ß of the lemma, so that "vertical products" AB and BA can be defined by 
(3.1) and (3.2). Assume furthermore that, for all a9 ß9 T in 7 such that a > ß > T9 

( 5 ) ^ a , r = <j>a,ß <f>ß.T> 
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(6.1) tß,r(AB) = (tairA)(tß,rB)9 

(6.2) tß,r(BA) = (tßirB)(ta,rA)9 

(6.3) (AB)Tß>r =(ATa,ß)(BTß,r)9 

(6.4) (BA)zß%r = (BTß,r) (Azatr). 

If we then define product for any two elements A9 B of S by (4), S = [j {Sa : a e 7} 
becomes an orthogroup. 

On letting fa, a denote the identity automorphism of Ga9 we see from (1.1), (1.2), 
and (5) that Q = (J {Ga: a e 7} is a semilattice of groups if product is defined by 
(2). Clearly the mapping (a, e) \-+ a defines a surjective homomorphism of S onto 
Q. Moreover, Q ^ S\c&9 where, for any orthodox semigroup T9 <$/ is the finest con­
gruence on T such that T/<& is an inverse semigroup. It is convenient to regard 
S as an "orthodox extension" of the band is by the inverse orthogroup Q. 

If we think of E and Q as given, they must have the same structure semilattice, 
but are otherwise arbitrary. M. Yamada [12], [13] defined the spined product 
Sp(ß, E) of Q and E to be the set (J {Ga x Ea: a e 7} with product defined by 
(aa> ea)(bß> fß) = (°abß, eafß)> a n d showed that a semigroup is an orthodox band of 
groups if and only if it is the spined product of a semilattice of groups and a band. 

In general, if fa : S\ -> T and fa: S2-+ T are homomorphisms, the spined pro­
duct of Si and S2 relative to fa and fa is defined to be the subsemigroup of their 
direct product Si x S2 consisting of all pairs (sÌ9 s2) such that sxfa = s2fa. Sp(ß, E) 
is the spined product of Q and E relative to the natural homomorphisms Q -+ 7 
and E -> 7. 

If we regard Q, and hence the connecting homomorphisms <f>at ß9 as given a 
priori, as well as E9 then, by Preston's theorem all that remains is to find represen­
tations tat ß and Tttt ß satisfying (6). It is unfortunate that all vertical products 
AB must be defined before the conditions can be applied. Fantham's theorem 
[4], [1, p. 310] does not have this disadvantage, but it has others; for example, it 
does not bring out the semilattice of groups Q. (For further discussion, see [1, 
p. 336].) 

3. The new theorem. Thanks to a remarkable structure theorem for orthodox 
semigroups due to T. E. Hall [6], I was able to find a structure theorem for otho-
groups which keeps the general form of Preston's theorem, reduces the four con­
ditions (6) to a single condition (9), and expresses this condition on the basic 
materials before product is defined. Details will be given in [2]. The proof there, 
however, does not use Hall's theorem, but is based on the "theorem of vertical 
associativity" [1, p. 302]. A variant of the theorem is also given in [2] which has 
the general form of Fantham's theorem. 

Let E = (J {Ea: a £ 7} be any band. Generalizing a well-known construction 
due to W. D. Munn [8], Hall [6] constructs a fundamental orthodox semigroup 
W(E) such that EW(E) £ E. We may identify 7 with the semilattice of idempo-
tents of W(E) = W(E) j <&. Let Q he any inverse semigroup with EQ £ 7. Let 
<l)\Q-> W(E)he any homomorphism that induces an isomorphism of EQ onto 
7. Then Hall's theorem asserts that the spined product Sp((?, W(E), </>) of Q and 
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W(E) relative to fa Q -> W(E) and &*: W(E) -> W(E) is an orthodox semigroup; 
and, conversely, every orthodox semigroup S can be obtained in this way for some 
fa taking E = Es and Q = S/W. 

Applied to orthogroups, W(E) can be replaced by the greatest full suborthogroup 
K(E) of W(E)9 the existence of which was communicated to me by Dr. Hall. Q is 
now a semilattice of groups, and likewise K(E) = K(E)/<&. 

Thanks to a reformulation of Hall's W(E) due to P. A. Grillet [5], I was able to 
calculate explicitly the structure of K(E) and K(E). For each e in E, let Ke be the 
group of all automorphisms of the band eEe which leave invariant the sets Ea 

H eEe. For each a in 7, select and fix a representative element ua of Ea9 and write 
Ka for 7TWB. Then K(E) is isomorphic with the semilattice 7 of groups Ka (a e 7) 
with set {%a,ß'- cc^ ß} of connecting homomorphisms defined as follows. For each 
a in Ka and each x in wpifyg, define 

(7) x(axa,ß) = Uß-(uaxua)o-Uß. 

Let ß = (J {Ga: Ä e y } be any semilattice of groups based on 7. By a remark 
made by Fantham [4], every homomorphism fa. Q -> #(£) which respects 7 is 
obtained from a set {fa: a e 7} of homomorphisms fa: Ga -+ Ka such that 

(8) 0aZcrij8 = fatßfa for all a ^ j8 in 7. 

(As Fantham observes, we may regard 7 as a small category with a single mor­
phism a -• ß if a: ^ j8, and the systems {Ga, 0Ä(i3} and {Ka9 ^tti/3} as functors from 
7 to the category of groups. Then (8) asserts that the system {fa} is a natural 
transformation from the (j-functor to the Ä-functor.) 

We can combine (7) and (8) into the condition that 

(9) x(afatßfa) = uf(uaxua)(afa)-Uß 

for all a ^ ß in 7, all a in Ga9 and all x in w^Zsî . 

THEOREM. With E and Q given as above, let fa: Ga -> i£a 6e a homomorphism, 
for each a in Y, and assume that (9) holds. Let Sa = Gax Ea and S = (J {£a : a e 7 } . 
For a9 ß in 7, (a, e) in Sa and (b9f) in Sß9 define (a, e)(b9f) = (ab9 ëf) where ab is 
the product (2) of a and b in Q9 

e = e(uaefeua)(a-ifa)e9 f = f(ußfefuß)(bfa)f9 

and ëf is the product ofë andf in Eaß. Then S is an orthogroup which is an orthodox 
extension of E by Q, and every such can be obtained in this way. 

Structure theorems for orthogroups have also been given recently by M. Yamada 
[14], R. J. Warne [15, Theorem 3.1] and M. Petrich [11, Theorem 5]. These are quite 
different from the foregoing, and from each other. 
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A Survey of Some Results on Free Resolutions* 

David Eisenbud** 

Consider the task of solving a system of linear homogeneous equations of rank r 
in n variables over a field Kox9 equivalently, of finding the kernel of a homomorph­
ism of rank r of vector spaces: Kn -> Km. As everyone knows, three facts make this 
process simple: 

(0) There are n - r linearly independent solutions which span the space of solu­
tions. 

(1) It is easy to tell whether a given set of solutions spans all the solutions : It does 
if and only if it spans a space of dimension n — r. Equivalently, if (j) : KP -> Kn is 
a map such that <pcj) — 0, then 

KP jL>(J)Kn 2\Km 

is exact if and only if rank <J) = n — r, 
(2) There is a "formula," in terms of the minors of <p9 for a map <p making the 

above sequence exact: For example, cj) can be taken as the map 

induced by cp. (Here * denotes Hom#(—, K).) 
In this note we will sketch some results from the theory of finite free resolutions 

which are analogues of (0), (1), (2) for rings more general than fields, We will also 
outline a technique for dealing with finite free resolutions that does not seem to have 
an interesting vector space analogue, and exhibit one of the interesting phenomena 
that arise when one works with infinite instead of with finite resolutions. 

Throughout this paper, R will be a local Noetherian ring (the restrictions could 

This paper was prepared in collaboration with David A, Buchsbaum who was partially sup­
ported by the NSF. 
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be largely relaxed) and all modules will be finitely generated i?-modules. 

I. Some analogues. A map Ei J*> F0 of free i£-modules (which may be consi­
dered as a system of homogeneous linear equations over R) will not in general have 
any of the nice properties (0), (1), (2). Because (0) may fail, a study of the solutions 
to the equations ^ must include a study of the dependence relations between the 
elements of a minimal set of solutions which spans all the solutions; that is, 
"solving" the equations must be taken to mean finding a whole free resolution 

of coker <pi. Once this has been said, there is an analogue of (0) holding for "nice" 
local rings. 

THEOREM (AUSLANDER-BUCHSBAUM-SERRE). If Ris a regular local ring of dimen­
sion d, and F is a free resolution as above, with rank tpi = ri9 then for all i ^ d — 1, 
ker Çi is spanned by (rank Ft) — r( linearly independent solutions; in other words 
ker (pi is free. (Here as always the rank of(p{ is the largest integer r with Ar (p{ ^ 0.) 

Since "solving a system of equations" means finding a free resolution, it is clear 
that the analogue of property (1) of the introduction should be a criterion for ex­
actness of a complex of free modules: 

G: ...J^GZ-^Gì-^GQ. 

In general, no such criterion is known, but there is such a criterion if G is finite— 
that is, if Gì = 0 for / > 0. We need one more definition before we can state it: 
If (p : F -> G is a map of free modules with rank <p = r, we define I(tp) to be the ideal 
generated by the r x r minors of (p. Intrinsically put, I(<p) is the image of the map 

A ' G * ® A ' F - > A°G = R 

induced by cp. 
To state the theorem we must also recall that the grade of a proper ideal / of R 

is by definition the length of a maximal i?-sequence in /. If / = R9 we make the 
convention grade / = oo . Or, simply define 

grade / = M{g\Exts(RjI9 R) ^ 0}. 

THEOREM [B-E 1]. With the above notations, suppose that Gt- = Ofor i > 0. Then 
G is exact if and only if for each k ^ 1 

(1) rank <pk+i + rank tpk = rank Gk9 

(2) grade I(<pk) ^ k. 

The situation with regard to an analogue of property (2) of the introduction is 
both more complicated and less satisfactory. Given a map <p: F -+ G of rank r, 
we may still construct the map fa: A r G* ® A r + 1 F -> F, and we will still have 
<pfa = 0. It is easy to see, however, that 

A'G* ® Ar+iF-^F-^G 
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need not be exact. (If rank G P= r9 this sequence is exact if and only if grade I(<p) e= 
(rank F) - r + 1, the largest possible value; see [B-R].) It is even easy to give ex­
amples of maps (pi such that if F2 J^ Fx J*> Fo is exact, then the ideal generated by 
the entries of a matrix for (p2 is not contained in the ideal generated by the entries of 
a matrix for (p9 so that (p% cannot be derived from (p\ by a "formula" in any ordinary 
sense, To get an idea of what sort of thing might be true about the relation of (py 

to (p%9 consider the following very useful theorem, which was proved in a special 
case by Hilbert, and extended to the general case by Burch [Bur]. This theorem has 
been a model for much of the work on finite free resolutions ; it gives a sort of para-
metrization of ideals of projective dimension 1 which has been applied, for instance, 
to the study of deformations, residual complete intersections, factoriality, and the 
Zariski-Lipman conjecture. 

THEOREM (HILBERT-BURCH), Let 

F:0^R»-i^R»JiR 
be a complex. F is exact if and only if F is isomorphic to a complex of the form 

0 _> Rn-l ^Rnî\R 
where (p[ is the composite map 

<Pi 

^ " A""W cm <T> 
R» £ A »~l Rn* ™ A n~l i*""1* s R > R, 

whereaisanon-zero-divisor9rsLnk(p2 = n - 1, and grade 7(p2) = 2. 

The essential point of this theorem is that if F is exact, there is a factorization of 
(pi through An~l (p$. Noting that rank (px = 1, we see that the following theorem 
extends this result to a result for all finite free resolutions : 

THEOREM ([B-E 2], [E-N]). Let F: 0 -+ Fn J% ••• J ^ F0 be a finite free resolu­
tion, and set rk = rank (pk. Then there are unique maps ak:R-+ An Fk_x such that the 
diagrams 

A"F 4 ^ * • A*JVl 
can l\\ 

Ar"Ff 

commute. (The canonical isomorphisms exist because rk + rÄ+1 = rank Fk.) More­
over, an is the composite 

R*L A»Fn
 A ^ A ^ V i > 

and 

Rad I(ak) = Rad I((pk). 
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This extension of the Hilbert-Burch theorem is useful in several contexts; for 
example, it gives another proof of MacRae's strengthening of the theorem that a 
regular local ring is a unique factorization domain : 

COROLLARY. Let Rbea local ring, Ian ideal generated by 2 elements. Ifp.d. R/I < 
oo, then p.d. R/I ^ 2, and I is isomorphic to an ideal J generated by an R-sequence. 

PROOF [B-E 2]. Apply Theorem 2 to a finite free resolution 

>R»^>R*^R->R/I->0, 

obtaining a factorization 

R* 

since a2 also enters into a factorization of Art (p2, /(«*) = J W*H ^ e a n ideal 
generated by an JR-sequence x9 y of length 2, and R/I will have a resolution of the 
form 

0->R^R2^R->R/I->0. • 

This theorem has recently been applied by Höchster [Hoc] to the construction of 
the "generic" free resolutions of length 2, which indicates that in a sense this the­
orem is a "complete" result for resolutions of length 2. However, for longer re­
solutions, or to achieve a direct generalization of the Hilbert-Burch theorem for 
ideals /with p.d. / > 1, more is needed. Since the "right" theorem of this type has 
not been found as yet, we content ourselves with an illustration of what may be 
done. See [B-E 2] for more results of this type. 

THEOREM. Let 0-^>Fn^> Fn_x ^+Fn_2 -> >FQ be a free resolution, and set 
rk = rank (pk. Then the map Ar- lH (pn-\ C(JM be factored through the dual of the 
map 

A ' * ; . ! ® Ar*Fn ™ A ' F ^ i ® Ar'Fn_l9 

for i ^ n - 2. 

II. Some new directions. 
(A) Algebra structures on free resolutions. Let F: > Fx —• R be a free resolu­

tion of a cyclic module. The symmetric square S2(F) is a complex of free iÊ-modules, 
and it agrees with F in degrees 0 and 1. There is thus a comparison map, unique up 
to homotopy, S2(F) ^U F9 which may be regarded as equipping F with the structure 
of a (strictly skew-) commutative, homotopy-associative, differential graded alge­
bra. We do not know whether v may be chosen to make F associative as well, except 
in a few cases such as that of the minimal free resolution of the residue class field of 
R. 
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Using this idea, it is possible to obtain results like the Hilbert-Burch theorem for 
certain classes of resolutions of length 3. For example, suppose that 

F: 0 -> R -> JR* A R» ^ R 
II II II II 

^3 F% F\ FQ 

is a minimal free resolution such that the complex F* ?= Hom(.F, R) is exact. (If 
R is a regular ring, and <px : R» —> R, then coker (px will have a minimal free resolu­
tion of this form if and only if coker (px is a Gorenstein factor ring of R of codi­
mension 3.) The algebra structure on F induces isomorphisms Ft- —> F*-i9 and the 
commutativity of this algebra structure ensures that the composite map 

— -^ 
FÎ-+F2QêF1 

is alternating, It turns out that n is odd and that im <px is generated by the "principal 
77 — 1 x n — 1 pfaffians" of ç>9 from which one obtains a theorem parallel to the 
Hilbert-Burch theorem [B-E 3]. 

It seems possible that this "multiplicative" technique, together, perhaps, with the 
idea of Liason of Peskine-Szpiro [P-S], may eventually give structure theorems 
along the lines of the Hilbert-Burch theorem for all free resolutions of the form 
F: 0 —> F3 —* F2 —• Fx —> R with F* exact—that is, for all perfect ideals of grade 3. 
The first step in this program beyond the Gorenstein case is worked out in [B-E 3]. 

(B) A glimpse of the infinite case. The only infinite free resolutions that have re­
ceived much attention so far are the free resolutions of the residue class fields of 
(nonregular) local rings. As already remarked, these have the structure of associa­
tive algebras, and in fact they are free algebras, on generators of various degrees, 
about which much may be said (see [G-L] for an exposition). For our purposes we 
single out the following result: 

THEOREM (BRAUER, GULLIKSEN). Let Rbea local ring, and let F: >Fx-> R-> 
k —> 0 be a minimal free resolution of the residue class fieldk ofR. Then the numbers 
bk = rank F are bounded if and only if the maximal ideal ofR is generated by at most 
1 -f dim R elements. If this is so then bk — b9 a constant, for all k ^ 1 H- dim R9 

and there are isomorphisms 

Fk^FM (k* 1+dimÄ) 
such that 

<Pk+2 = a*-i <pk afl (k > 1 + dim R). 
In fact, something similar holds not only for the residue class field, but also for 

every module, and a little more is true. For the purpose of this theory we may 
harmlessly pass to the completion of R9 after which, assuming that the maximal 
ideal of R can be generated by 1 -I- dim R elements, we may write R = S/(s)9 where 
S is a regular local ring and SE S. We now have 

THEOREM. Let S be a regular local ring of dimension d, and let se S be an element» 
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Set R = S/(s). Let F: > Fx J ^ F0 be a minimal free resolution over R. Then 
rank Fk = rank Fk+Ì for all k ^ d, and there exist isomorphisms ak \Fk —> Fk+2 

(k ^ d) such that ^ + 2 = ak-X <pka^1 (k > d). Moreover there are liftings of the maps 

td\l * *d+l > A/+2 

to maps of free S-modules 

*d+2 > *d+l > *d+2 

such that <pd+i (pd+2 = s • / = jpd+2 (pd+x, where I is the identity map. 

This theorem may in fact be pushed a little farther to yield a one-to-one corres­
pondence between Cohen-Macaulay ^-modules of dimension d — 1, and factori­
zations in the matrix ring over S of the scalar matrix s • /. 

It seems reasonable to conjecture that some result of this type should hold for 
rings JR which can be written as a quotient of a regular local ring S by an »S-sequence : 
If 

F: ^FI-^FQ 

is a free resolution over such a ring R9 then for k > 0, there should be a formula for 
(pk in terms of p l s ••-, (pk-X as is the case for resolutions of the residue class fields. 
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j£-Theory and Algebraic Cycles 

S. M. Gersten 

This is an expository lecture of work done in the past two years, much of which 
has appeared in the Proceedings of the Battelle Conference [2]. I refer the reader 
who desires further details to that volume, in particular to the papers of Quillen, 
Bloch, and myself. 

1. Quillen X-theory. Quillen has associated functors Kn(0>)9 n §: 0, to a small 
category &> with a notion of short exact sequence. In particular, this applies to a 
small (or skeletally small) abelian category. An important property of this theory is 
Quillen's localization theorem [2] : If SP <= sé is the inclusion of a thick subcategory 
SP in the abelian category sé (so SP is closed under taking subobjects, quotient 
objects, and extensions in sé), then there is a long exact sequence 

... -> Knn(séjSP) -> Kn(SP) -> Kn(sé) -+ Kn(sé\SP) -+ - , 

where séjSP is the quotient abelian category. 
In general, if A" is a scheme, one defines Kn(X) = Kn(0>(X))9 where &>(X) is the 

category of vector bundles on X. If X is a Noetherian scheme, one sets K'n(X) = 
Kn(Ji(X))9 where Jt(X) is the abelian category of coherent sheaves of %-modules. 
Kn(X) is a contra variant functor whereas K'n(X) is contravariant for maps of finite 
Tor-dimension. 

If X is Noetherian and regular (so &XtX is a regular local ring for all xeX) 
then the inclusion @>(X) c Jt(X) induces isomorphisms Kn(X) c* K'n(X). Also if 
R is a ring, one writes Kn(R) for Kn(Spec R). 

2. Filtration by codimension of supports. If X is a Noetherian scheme, then there is 
a filtration Jt(X) = Jt* s Jt1 => ••• ^ Mp ^ •••, where Jtp is the full subcategory 
of M(X) consisting of sheaves SF such that the codimension in X of the support of 
$F is at least p. The category JKp+1 is a thick subcategory of Mp

9 and the quotient 
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category Jtp/J?p+l is entirely ring theoretic in character; by a theorem of Gabriel, 
it is the sum of abelian categories, 

U Mod f.l.(%,„), 

where Xp = {^e^dim 0XiX = p}9 and "Mod f. 1." denotes the category of 
modules of finite (Jordan-Holder) length. From this description one deduces, via 
the localization theorem and further more elementary properties of ̂ -groups, exact 
sequences : 

... - Kq(Jtp^) -> Kq(Jip) - 11 Kq(k(x)) -> Kq_x(M
p^) -> -

x^Xf 

where k(x) = ®x,xlmx> the residue class field at the point xeX. These exact se­
quences fit together to form an exact couple, and hence a spectral sequence {Ep*(X)9 

r^ 1}, 

Ep(X) = II K^q(k(x)) => KLp_q(X). 
x^X> * 

The convention is that Kn = 0 if n < 0, so this spectral sequence is of cohomologi-
cal type and concentrated in the fourth quadrant. Let me sketch a picture of it, 
including the row y = — q9 for the Ex term : 

• > P 

v 

II KMx))^U Kq_x(Kx))-> > I I *0(*(*)) 
xŒX° x<=Xl XEX** 

Since the qth row is functorial in X9 one may sheafify it in the Zariski topology to 
get a complex of sheaves of abelian groups : 

(2.1) <>- •* ; - U ixKq(k(x)) 
x^X0 

• II itKiiKx)) -+ Ü ixKo(Kx)) -+ 0. 

If Ax is an abelian group (x e X)9 one has denoted here ixAx the sheaf obtained 
from the simple sheaf Ax on {x} by extension by zero. Also, the sheaf ®'q is the 
sheaf associated to the presheaf U -* Kq(U)9 while the map $t'q -> IIÄ<=x» ixKq(Kx)) 
selects the stalks at the generic points of irreducible components of X. 

I should like to work an example of the first nontrivial case of (2.1). From now 
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on in this section Xwill be assumed regular, so ft9 — ft^. If q = 1, there is a can­
onical map 0$ -» ftx and a computation shows that this map is an isomorphism 
on stalks, so &% c% ftj. If I assume in addition that X is connected, then (using 
Kx(k) = k*> K0(k) = Zfor k a field) (2.1) becomes 

(2.2) 0 ~> 0\ ^ k(X)* ^ LI iDZ -> 0 
D 

where k(X)* is the constant sheaf of rational functions on X and the sum is taken 
over all irreducible positive divisors D on X. The map dl assigns to a rational func­
tion/its divisor div/, and the sequence (2.2) is exact by the theorem of Auslander-
Buchsbaum that regular local rings are factorial. From the exactness of (2.2) follow 
two consequences : 

(a) a vanishing theorem, Hp(X, fti) = 0 if p > 1, and 
(b) Cl(X)/Clat(X) •= H\X9 Rj), where C\X) denotes the group of codimension 

one cycles and Clat(X) denotes those cycles rationally equivalent to zero. 
It was to generalize (a) and (b) that I proposed two years ago at Battelle. 
CONJECTURE 2.3. The complex (2,1) is exact for regular schemes X. 
At that time, I could establish exactness only when dim X = 1 and k(x) is finite 

for xe X1 (for example, for Spec (9F9 the ring of integers in a number field F). 
However six months later Quillen settled the conjecture for schemes of geometric 
type. 

THEOREM (QUILLEN [2]). If X is a regular algebraic k-scheme where k is any field, 
then (2.1) is exact. 

I should point out that Conjecture 2.3 is still open for X = Spec (Z [x]). 
Since the schemes in (2.1) are all flabby except for ft^, there follows the vanishing 

theorem : 

COROLLARY. IfXis a regular algebraic k-scheme, then Hp(X9 ft9) = Oforp > q. 

One also has the analog of the relationship with algebraic cycles. To see this, 
observe that the flabby resolution of ft9 enables one to write 

Hp(X9 ft,) *= Cp(X)/lm rfi : IJ k(x)* -> Cp(X). 

Thus one must compute the map d1. 
Roughly, the answer is as follows. Let y e Xp~l and le t /e k(y)*. Let Y = {y}9 

so/may be viewed as a function Y^ Pl. One may form, with some care, the 
divisor off, div/, a codimension one cycle on Y9 and hence a codimension j? cycle 
on X. This cycle represents an element of Im d1. However, this is precisely the 
description given by Samuel [3] for cycles rationally equivalent to zero. Hence there 
follows 

COROLLARY. IfXis a smooth quasi-projective variety over afield kf then 

ChowKX) = def Cp(X)ICp
mï(X) s Hp(X9 ft,). 

Problem. There are pairings ft, ® ft,, -» ft^+,, defined by the multiplicative 
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structure on higher ^-groups. Thus IJ, Hp(X9 ft,) is a graded ring with unit. It is 
natural to enquire whether the identification as the Chow group ChowCY) = 
H, Chow^^) is a ring isomorphism. 

A third consequence of Quillen's theorem is the computation of the Eptf term of 
the spectral sequence of codimension of supports. 

COROLLARY. If X is a regular algebraic k scheme, k a field, then Epf~i = 
Hp(X, ft-). Thus the picture of the E2-terms is: 

^ k 
^ 

mystery 
N"p(ffP) 

>• p 

0 

^ 

In general, the part of the E2-term beneath the diagonal is a mystery. In addition 
a geometric interpretation for the global higher ̂ -groups K„(X) is lacking. However 
in one case there is an interpretation. 

3. Reciprocity laws. In this section X is a smooth connected curve over a field k. 
DEFINITION. A reciprocity law (for Gm) on X is a homomorphism 

II k(x)*^A9 

A an abelian group, such that ci«/, g » = 0, /, g e k(X)*. Here </, g> = U ,</, g}X9 

where 

</, g\ = (-!)««»»«*> (£S£) w e *(*> 
r 

It follows that there is a universal reciprocity law, namely the canonical map 

II k(x)*-> II *00*/subgroup </,*>. 
Now the localization sequence for Mx c Jf° contains the exact sequence 

and computation of the map d shows that ]JÄ e Xi k(x)* -• coker rf is the universal 
reciprocity law. Since the spectral sequence {Ep*(X)} is degenerate at E2 for a 
curve, it follows that 



^-THEORY AND ALGEBARIC CYCLES 313 

HKKRÙ = U ^)*/subgroup </,&>, 

so the projection Uae.x^OO* -* ^ ( ^ ^2) *s the universal reciprocity law on X 
To show that these concepts are nonvacuous, let me exhibit a nontrivial re­

ciprocity law. Suppose from now on that the curve X is complete. Define a map 
\lx<=x*k(x)* ^ k* whose x factor is the norm map Nk{x)n. 

THEOREM (WEIL). The map N is a reciprocity law (see Bass [l]for a proof). 

One may enquire then when the Weil law N is universal. That is, when is the in­
duced map N: Hl(X9 ft2) -> k* an isomorphism? The following cases are known, 

(a) If k = Fq or Fq9 then N is an isomorphism. This is a restatement of a the­
orem of Bass, Milnor, and Serre. 

(b) If A: is arbitrary and X = P\ then N is an isomorphism. This follows from the 
computation of K(Pl)f 

(c) If k = C and genus X — 1, then N is never an isomorphism, This follows 
from arguments in the Harvard thesis of L. Roberts (unpublished). 

Problem. Give a geometric interpretation for reciprocity laws. Since K\(X) = 
H1(X9 ft2) © k* for a complete curve X over k9 this .amounts to giving an inter­
pretation for K\(X). 

There is a situation analogous to that of reciprocity laws for Gm which has an 
adequate geometric interpretation. Recall that the universal reciprocity law is the 
same as the composition of two maps 

K2(k(X))^ U *(*)*-> W ) 
x&X1 

in a J£-theory exact sequence being zero. 
We may pass from the curve X to the infinitesimal extension X[e] of X, e2 = 0, 

X[e] = **0pec* Specie]). 

There is an analogous diagram 

K2(k(X)[e]) ~+ U (k(x)[e))* -> K^e]) 
x&X1 

in which the two arrows compose to zero [4]. (At the moment I have been unable to 
establish exactness in this diagram.) By a theorem of van der Kallen, there is a 
canonical surjection K2(k(X)[e]) -» Q\{x)/k an(* ^ s m a P m ay b e embedded in the 
commutative diagram 

K2(k(X)[e]) -> II (k(x)[e])* -> Kx(X[e]) 
xeXl 

afa* URes* . II *(*)• 
Here the map Res* is the residue of a differential form co at x9 and the map j may be 
interpreted as summing the residues. The statement thaty (U ResJ = 0 is precisely 
the residue theorem for the curve X. 
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Varieties of Algebras and their Congruence Varieties 

Bjarni Jónsson 

1. Congruence lattices. G. Birkhoff and O. Frink noted that the congruence 
lattice Con04) of an algebra A (with operations of finite rank) is algebraic or 
compactly generated. The celebrated Grätzer-Schmidt theorem states that, con­
versely, every algebraic lattice is isomorphic to Con(A) for some algebra A. The 
importance of this is obvious, for it shows that unless something more is known 
about the algebra A9 nothing can be said about Con(A) that does not follow from 
the fact that it is algebraic. This, however, leaves open the question of what happens 
when additional conditions are imposed on A. The most obvious question is for 
what similarity types %9 if any, it is true that every algebraic lattice is isomorphic to 
Con(>4) for some T-algebra A. It is easy to see that no preassigned number of unary 
operations will suffice, but other than that the problem is completely open. In par­
ticular, as several people have observed, it is not even known whether every alge­
braic lattice is isomorphic to the congruence lattice of some groupoid, 

Little progress has also been made on the problem of characterizing the congru­
ence lattices of the members of various familiar varieties, or equational classes, of 
algebras, e.g., it seems unlikely that every algebraic lattice is isomorphic to the con­
gruence lattice of some semigroup, but no counterexample is known. (However, 
an unpublished example by R. N. McKenzie shows commutative semigroups will 
not suffice.) The congruence lattices of groups or, equivalently, the lattices of 
normal subgroups, are known to be modular and to satisfy certain even stronger 
identities, but there is little hope of characterizing these lattices. The congruence 
lattices of lattices are distributive (N. Funayama and T. Nakayama), but it is an 
open question whether every distributive algebraic lattice is isomorphic to the con­
gruence lattice of some lattice, The situation is no better concerning most other 
varieties, e.g., various subvarieties of the above three. Among the exceptions are 
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the variety of all Boolean algebras and the variety of all distributive lattices, for 
their congruence lattices are completely known. 

2. Congruence varieties. It may well be that in many cases the problem of charac­
terizing the congruence lattices of the members of a variety ir is not just difficult, 
but that actually no useful characterization exists. A simpler problem might be to 
find a basis for the identities that hold in the congruence lattices, i.e., to find an 
equational basis for the variety Con(y) generated by the lattices Con(A) with 
A e y/\ For some varieties this is trivial, e.g., if "K is a nontrivial variety of lattices, 
then Con(y/*) = Q}9 the variety of all distributive lattices. A big step toward the 
solution of this problem for varieties of semigroups was taken in Freese and Na­
tion [8], where it is shown that Con(y) = S£, the variety of all lattices, except when 
"T is a subvariety of the variety of all groups of some fixed exponent. 

It is not hard to show that varieties of groups give rise to infinitely many different 
congruence varieties. In fact, let <&m (jém) be the variety of all groups (abelian 
groups) of exponent m9 and in particular let ^ = ^ 0 (sé — séo) be the variety of 
all groups (abelian groups). Then m ^ n implies that Con(^w) ^ Con(^w) and 
Con(jém) 7* Con(ja^w). On the other hand it is not known whether, for varieties of 
groups, ir ± ir' always implies Con(y) ^ Con(-^")- In fact, it is not even known 
whether Con(^w) ^ Con(j/m). It follows from a theorem in Herrmann and Po-
guntke [10] that if sé E *V E ^, then Con(f) is not finitely based, but for <&m 

and sém with m ^ 0 the situation is not known. So far there is not a single non-
trivial variety V of groups for which a basis for Con(^) is known, and in general 
the problem of finding such bases appears to be difficult. 

3. Mal'cev conditions. Since the properties of the congruence lattice of an al­
gebra are not first order properties of that algebra, the compactness theorem does 
not apply to such properties. One might call a property (P) compact if every variety 
whose members have this property is contained in a finitely based variety all of 
whose members have this property. Alternatively, (P) is compact just in case it is 
equivalent to a, possibly infinite, disjunction of finite conjunctions of identities. 
For congruence identities the nature of this disjunction can be further specified, 
for it follows from Taylor [23, Theorem 4.1] that a congruence identity is compact 
iff it is equivalent to a Mal'cev condition. It is not known whether every congruence 
identity is compact, but two important ones, congruence distributivity and con­
gruence modularity, are. In fact, equivalent Mal'cev conditions are explicitly given 
in Jónsson [12] and Day [6]. 

4. Excluded varieties. We know that there are infinitely many congruence vari­
eties, but we do not know infinitely many congruence varieties—not in the sense of 
being able to write down bases for their identities. In fact, apart from the trivial 
variety, the only known congruence varieties are S£ and @9 the variety of all lattices 
and the variety of all distributive lattices. It would be particularly interesting to 
know whether the variety M of all modular lattices is a congruence variety. On the 
other hand, many lattice varieties are known not to be congruence varieties. The 
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first, and therefore the most important, result of this kind, in Nation [21], shows 
that if Con(y) satisfies a nontrivial inclusion of the form 

0oW ^ HOw» 1 è i è k) 

where w is a lattice polynomial, GQ9 0i> - j ^ are joins of variables, and the inclusion 
w ^ ero does not hold in every lattice, then y is congruence modular, and that if, 
further, a0 and w have no variable in common, then ir is congruence distributive. 
This clearly excludes many varieties from being congruence varieties, e.g., a variety 
generated by a finite dimensional nondistributive lattice cannot be a congruence 
variety, because it satisfies the inclusion 

*20>i, i è rn) ^ E(xJl(yhj ^ iS m)J S m) 

for m sufficiently large. Also, if y is generated by a finite nonmodular lattice, then 
the lattice join M + ir is not a congruence variety because, for m large enough, it 
satisfies the inclusion 

xU(xyi + yh i <j èm) S Z(xyi9 i è m). 

The question has been raised by R. N. McKenzie whether, for any variety ir of 
algebras, either Con(y) = f̂ or Con(y) £ My and J. B. Nation formulated the 
more conservative conjecture that if ir satisfies a nontrivial compact congruence 
identity, then Con(y) c jt% There is some further evidence in suppport of this 
conjecture, e.g., if Con(y) satisfies a nontrivial inclusion % ^ G with % a meet of 
joins of variables and G a join of meets of variables, then ir is congruence distribu­
tive. Other examples of lattice inclusions that imply congruence modularity have 
been discovered by Nation and by A. Day and P. Mederly. 

5. Applications. With three important exceptions, congruence identities have 
been investigated primarily for their intrinsic interest, and have not played a role 
in the study of other properties of the varieties and their members. These three 
exceptions are distributivity, modularity and the Arguesian identity, each of which 
has profound implications. The consequences of modularity and distributivity 
relating to direct and subdirect decompositions are classical and need not be stated. 
We also recall without going into details that the Arguesian identity has played a 
role in connection with certain imbedding problems. Congruence distributivity is 
particularly useful in the study of subvarieties of a given variety. The basic lemma 
here is the result in Jónsson [12] that if JT is a subclass of a congruence distributive 
variety, then the variety Xv generated by jf consists of algebras isomorphic to 
subdirect products of homomorphic images of subalgebras of ultraproducts of 
algebras in jf—in symbols Xv = PSHSPU(X'), The advantage of this over Birk-
hoff's classical formula W = HSP(tf)9 which holds for every class ct of algebras, is 
that it shows that every subdirectly irreducible member of Xv belongs to HSPtt(cf). 
For an easy but important application take X to be a finite set of finite algebras 
(in a congruence distributive variety). Then ESPu(ct) = HS(ct) has only finitely 
many nonisomorphic members, and the number of subvarieties of tfv is therefore 
finite. In fact, if the members of X are explicitly known, the subvarieties of Xv 
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can be listed, and the subdirectly irreducible members of each given. A very diffi­
cult related result is K. Baker's elegant theorem that if, in addition, the similarity 
type of X is finite, then Xv is finitely based. (For the special case of finite lattices 
this was proved earlier in McKenzie [17].) This calls to mind Oates' and Powell's 
finite basis theorem for finite groups. It is tempting to ask for a common generali­
zation of the two results, and the obvious common feature is congruence modular­
ity. However, Baker's proof of his theorem in [3] and a shorter nonconstructive 
proof in Makkai [16] both make essential use of congruence distributivity, and it is 
hard to see how they could be modified to yield such a generalization. 

Baker's finite basis theorem is part of a deep study in [3] and [4] of bases for 
varieties of the form Xv where X is a strictly elementary positive universal subclass 
of a congruence distributive variety. Most other studies, however, deal with some 
particular variety and its subvarieties, and naturally the variety «£? of all lattices 
has received the greatest attention. Many of the results can be formulated as the­
orems about the lattice A of all subvarieties of 3? or the lattice Am of all sub-
varieties of Jt. By Baker [2], Am has an infinite, complete atomic Boolean algebra 
as a sublattice, and therefore has cardinality 2Ko. (In McKenzie [17] the same result 
was proved for A.) It is an open question of long standing whether M is generated 
by its finite members, but in [2] it is shown that the variety generated by the rational 
projective plane is not generated by its finite members. Another example, the variety 
generated by all Fano planes, is given in Wille [24], Considerable attention has been 
paid to covering relations in A and in Am9 and to small lattice varieties. Trivially, 
3> is the only atom of A, and it is covered by just two members, Jt3 and Jf9 the 
varieties generated by the diamond and the pentagon. In Jónsson [13] an equational 
basis for Jtz is given, and M3 is shown to be covered by just three members of A. 
The arguments make essential use of ideas from Gratzer [9]. The study of small 
lattice varieties is carried further in Hong [11], and McKenzie [18] is in part con­
cerned with such problems. In [18] equational bases are found for several varieties, 
including Jf9 and sixteen varieties are listed that cover Jf. It is not known whether 
that list is complete. It is easy to see that every member of A other than its unit if 
is covered by some member of A, but the corresponding problerm for Am is open. 

In [18], McKenzie resurrects P. M. Whitman's notion of a splitting of a lattice 
and applies it to A. (Actually he works with the dually isomorphic lattice of equa­
tional theories of lattices.) A splitting pair in A is an ordered pair (ßl, °U'} of lattice 
varieties such that for every lattice variety nT9 either y ç °U or °U' ç y9 but not 
both. Motivated by the familiar example <^#, Jfs)9 he shows that every splitting 
pair (ßt9 %'} is induced by a finite, subdirectly irreducible lattice S9 in the sense 
that V' = {S}v and °U is the class of all lattices L with S $ {L}v. Lattices S that 
induce splitting pairs, i.e., such that the class of all lattices L with S $ {L}v is a 
variety, are called splitting lattices. Infinitely many splitting lattices are found, 
and an effective procedure is given for determining whether or not a given lattice is 
a splitting lattice. A noteworthy aspect of these investigations is that they yield new 
results about free lattices, e.g., procedures for determining whether a quotient in a 
free lattice is a prime quotient and whether a finite lattice is embeddable in a free 
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lattice, and a theorem credited to A. Kostinsky to the effect that every finitely 
generated sublattice of a free lattice is projective. 

Of other varieties, pseudocomplemented distributive lattices are best known; 
cf. Lakser [14] and Lee [15]. The subvarieties form a chain of type o) + 1, and an 
explicit equational basis can be given for each. Others include Heyting algebras 
(Baker [1], Day [7]), polyadic algebras (Monk [20]), orthomodular lattices (Bruns 
and Kalmbach [5]), implicative semilattices (Nemitz and Whaley [11]), and impli­
cation algebras (Mitschke [19]). 

This brief summary is obviously highly incomplete, and it does grave injustice to 
many of those who have contributed to these investigations. However, it does give 
some idea of the type of questions under consideration, and points out some of the 
numerous open problems. In conclusion I wish to thank Professors Alan Day, 
George Gratzer and J. B. Nation for valuable assistance in preparing this report. 

Bibliography 

I. K. A. Baker, Equational bases for Heyting algebras (preprint), 
2. , Equational classes of modular lattices, Pacific J. Math. 28 (1969),9-15. MR 39 # 5435. 
3. , Finite equational bases for finite algebras in congruence-distributive varieties (preprint). 
4. , Primitive satisfaction and equational problems for lattices and other algebras, Trans, 

Amer. Math. Soc. 190 (1974), 125-150. 
5. G. Bruns and G. Kalmbach, Varieties of orthomodular lattices. I, Canad. J. Math. 23 (1971), 

802-810;II,ibid. 24(1972), 328-337. MR44 #6565;45 #3267. 
6. A. Day, A characterization of modularity for congruence lattices of algebras, Canad. Math. 

Bull. 12 (1969), 167-173. MR 40 #1317. 
7. , Varieties of Heyting algebras. I, II (preprints). 
8. R. S. Freese and J. B. Nation, Congruence lattices of semilattices, Pacific J. Math. 49 (1973), 

51-58. 
9. G. A. Gratzer, Equational classes of lattices, Duke Math. J. 33 (1966), 613-622. MR 33 # 7278. 
10. C. Herrmann and W. Poguntke, The quasi-variety of normal subgroup lattices is not elemen­

tary, Algebra Universalis 4 (1974), 280-286. 
I I . D. X. Hong, Covering relations among lattice varieties, Pacific J, Math. 40 (1972), 575-603. 

MR 46 #5195. 
12. B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 

110-121. MR 38 #5689. 
13. ; Equational classes of lattices, Math. Scand. 22 (1968), 187-196. MR 40 # 66. 
14. H. Lakser, The structure of pseudocomplemented distributive lattices. I : Subdirect decomposi­

tion, Trans. Amer. Math. Soc. 156 (1971), 335-342. MR 43 #123. 
15. K. B. Lee, Equational classes of distributive pseudo-complemented lattices, Canad. J. Math. 

22 (1970), 881-891. MR 42 #151. 
16. M. Makkai, A proof of Baker's finite basis theorem on equational classes generated by finite 

elements of congruence distributive classes, Algebra Universalis 3 (1973), 174-181. 
17. R. N. McKenzie, Equational bases for lattice theories, Math, Scand. 27 (1970), 24-38. MR 

43 #118. 
18. , Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 

(1972), 1-43. MR 47 #1696. 
19. A. Mitschke, Implication algebras are ^-permutable and ^-distributive, Algebra Universalis 

1 (1971/72), 182-186. MR 46 #8933. 
20. J. D, Monk, On equational classes of algebraic versions of logic, I, Math. Scand. 27 (1970), 

53-71. MR 43 #6065. 



320 BJARNI JÓNSSON 

21. J. B. Nation, Varieties whose congruences satisfy certain lattice identities, Algebra Universalis 
4(1974),78-88, 

22. W. Nemitz and T. Whaley, Varieties of implicative semilattices, Pacific J. Math. 37 (1971), 
759-769; II, ibid. 45 (1973), 303-311. MR 47 #84. 

23. W. Taylor, Characterizing Mal'cev conditions, Algebra Universalis 3 (1973), 351-397. 
24. R. Wille, Primitive Länge und primitive Weite bei modularen Verbänden, Math. Z. 108 (1969), 

129-136. MR 39 #2672. 

VANDERBILT UNIVERSITY 
NASHVILLE, TENNESSEE 37235, U.S.A. 



TpyAH Me>KAyHapoAHoro KoHrpecca M^TCMUTHKOB 
BaHKyBep, 1974 

O Pa3peuiHMbix no^rpynnax KoHemibix IIpocTbix rpynn 

B. Jl. Ma3ypOB 

Uejib Moero cooömeHHH—paccKa3aTb o HeKoropbix pe3yjibTaTax, nojiyqembix 
B HoBOCHÔHpcKe B nocneßHue 2 nyja. OHH KacaioTca KOHCHHUX npocTbix rpynn. 

1. Hacbiu;eHHbie/7-rpynnbi. riycTb G—Komnmn rpynna, p—npocToe WCJIO. 

rio^rpynna D Ha3biBaeTCH HacbimeHHofi B G, ecjiH D—cHJiOBCKaa /?-no^rpynna B 
OP'.P(NG(D)) H NG(D) /MTKOBaHHaa (p-constrained) rpynna. 

HacbiuuieHHbiMH HBJIHIOTCH, HanpHMep, CHJIOBCKHC p-noArpynnbi H3 G. ECJIH B G 
ner Apyrux Hacbimeraux no/jrpynn, TO B G Bee pa3peuiHMbie no^rpynnbi uueior 
eRmimnyio /?-AJiHHy. OpoeHHe TSKHX rpynn npH p = 2 xopouio myneno [3], no 
TeopeMe AjinepHHa-rojiAiiiMHATa [13] B HOpMajiH3aTOpax HacbimeHHbix npaBHJib-
Hbix nepeceneHHft CHJIOBCKHX p-noßjrpynn HPOHCXOAHT cjiHHHue p-sjieMemoB 
rpynnbi. 

B HCCjiê OBaHHH /?-jioKajibHbix no^rpynn nojie3HMM 0Ka3biBaeTcn cJie^yioiUHH 
(J>aKT: 

JIEMMA. Bepno odm U3 CAedytoucax deyxymeepMdemii: 
(a) p-dAtiua moicdoü pa3peiutiMoii nodzpynnu U3 G ne npeeocxodam eduuai^bi, 
X6) 6 G ecrm mamn pa3pemtiMan nodzpynna R p-dAumi 2, òAH Komopoü 

Op(R)—mcuwfiHHan e G nodzpynna. 

C noMotubio 9T0ft jieMMbi MOHceT 6biTb nojiyneH TaKoS pe3yjibTaT [7], 

TEOPEMA. Tlycmb G—Kouennan npocman zpynna, e Komopoü moicdoe uacu-
wfiHHoe nepeceneuue deyx pa3AWimix ctiAoecmx 2-nodzpynn tiMeem panz ^ 2. 
Tozda G moMoptfina odmH ti3 CAedyioiujux zpynn: 

L<i(q), L$(q)9 Us(q) q nenemm, Al9 Mn, 

L2(2»), C/3(2>0, Sz(2*"-i), n è 2, 

zpynne mtma %HKO-PU. 
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3TOT pe3yjibTaT o6o6inaeT TeopeMbi CyA3yi<H [18], Ma3ypoBa [2], Tepuora 
[15], Tepuora-llIyjibTa [16]. 

H3 onHcaHHH [3] H JieMMbi jierKO nojiynaeTCH cjiej\yiou\iw pe3yjibTaT [5], [6], 
nycTb T—CHJiOBCKan 2-noArpynna KOHCHHOH npocTofi rpynnbi G. ECJIH T 

H30MOp(J)Ha S/Z, r&e S—CHjiOBCKan 2-noArpynna OAHOH H3 rpynn U3(2
n), Sz(2n)} 

L3(2"), n > 1, a Z <Z(5), TO Z = 1 H G H30MOp(J)Ha J73(2»), Sz(2w), L3(2"). 
Orynafi, Korßa Z = 1, paccMaTpHBajicn CMCKHHWM [10], KOJIJIHH30M [11], [12]. 

2. CHjiOBCKHe 2-noArpynnw H i;eHTpajiH3aT0pbi MHBOJHOUHö. nepBbifl 
pe3yjibTaT 3Toro naparpa<})a CBH3aH c TaKHM BonpocoM: 

riycTb Rm HHBOJIIOUHH t npocTofi rpynnu G CG(t) = <*> x L, iyje L—H3BecT-
Han npocTan rpynna. KaKOBa G? 

nycTb L = L2(q). ECJIH t—ijeHTpajibHan HHBOJIIOIJHH, TO pe3yjibTaTbi Xapa/jbi 
[14], Yop^a [19], ToMncoHa-5ÎHKO [17] noKa3bmaK)T, HTO q = 5 HJIH q = 32»+1 H 
G—rpynna rana HHKO-PH. 9TOT pe3yjibTaT cnpaBe ĵiHB H 6e3 ycjiOBHH ijenTpajib-
HOCTH HHBOJIIOUHH t. OH nojiyqaeTCH 6e3 Tpy^a H3 cjieAyioiHHX AByx O6U;HX 

npeAJioHceHHH: 
nycTb G—npocTan rpynna, t—HHBOJHOUHH H3 G. 

riPEAJio>KEHHE 1 [4]. IJycmb e NC(C2), zde C = CG(t)9 a C2—cuAoecKan 2-nod-
zpynna m C, ecmb ufiKAWiecKaH nodzpynna, mpaH3amueno nepecmaeAHtouçax 
npa conpnotcenmi needuuuHHbie dAeMenmu C2/<*>. 

Tozda G—zpynna muna %HKO-PU. 

nPEAJio>KEHHE 2 [4], [8]. ECAVL e C = Q(/)/</>0(CG(0) ecmb nopMaAbnan 
nodzpynna L manan, nmo Q(L) = 1, L ^ L2(q)9 q—nenemno, mo G moMopcfina 
zpynne M ambe Mì2 UAU zpynne muna %HKO-PU. 

B TeopHH KOHeHHbix rpynn Ba>KHoe MecTO 3aHHMaeT Bonpoc xapaKTepH3aijHH 
npocTbix rpynn HX CHJIOBCKHMH 2-no^rpynnaMH. B cjieAyiomeft TeopeMe #aHO 
onHcaHHe npocTbix rpynn, CHJIOBCKHC 2-noArpynnbi KOTOpbix C0Aep>KaT 9KCTpa-
cneunajibHyio noArpynny HH êKca 2. 

3KCTpacneuHajibH0H Ha3biBaeTcn p-rpynna H9 y KOTopofl \Z(H)\ = \<j)(H)\ = p. 

TEOpEMA [1]. IJycmb G—npocman zpynna c WAoecKoü 2-nodzpynnoä T. ECAVL 

e T ecmb dKcmpacneufiaAbnan nodzpynna undeuca 2, mo G u30Mopcßna 

A%9 A99 Mìì9 Mì29 

L2(q\ L3(q)9 U3(q)9 G2(q)9 D\(q) VLAU PSpA(q) 

dAH nodxodnwjezo nenemnozo q. 

3Aecb Bce CBOAHTCH K Haxo>i<AeHHio B03M0KHbix THnoB CHJIOBCKHX 2-noArpynn 
rpynnbi G, nocjie nero H3BecTHbie xapaKTepH3aijH0HHbie TeopeMbi AaioT STOT 

cnHCOK npocTbix rpynn. Peiuaiomyio pojib nrpaeT H3yqeHHe CTpoeHHH HacbimeH-
Hbix nepeceneHHft CHJIOBCKHX 2-noArpynn. 
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ripoAOJiMOH CBOH HccjieAOBaHHH npocTbix rpynn 2-panra 3 [9], CHCKHH nojiynnji 
TaKOH pe3yjibTaT: 

TEOPEMA, KouennaH npocman zpynna 2-panza 3 c neu^KAUHecKUMa i^enmpa-
Mu CUA06CHUX 2-nodzpynn u30Mop$Ha L2(8), £/3(8), Sz(8) UAU zpynne truina 
flHKO-Pu, 
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Quadratic Methods in Nonassociative Algebras 

Kevin McCrimmon 

I want to convince you of the naturalness and utility of certain quadratic methods 
in nonassociative algebra. The prototype of the sort of quadratic product I have in 
mind is the composition xyx9 where (say) x and y belong to some associative 
algebra. We can consider this as a "product" of x and y9 linear in y but quadratic in 
x. Before abandoning the familiar bilinear products for the more complicated and 
unfamiliar quadratic products, I must convince you that the quadratic approach 
offers us important insights and perspectives. 

1. Right Moufang planes. I begin with an example from geometry [19]. A right 
Moufang plane (relative to a line L) is a projective plane in which all translations 
(elations) with center on L (but arbitrary axis) exist. Dually, a left Moufang plane 
(relative to a point P) is one for which all possible translations exist having axis on 
P (but arbitrary centers). A Moufang (or little Desarguian) plane is one for which 
all possible translations exist. 

* X X X > ' . < : ^y^ 
Right Moufang Left Moufang Moufang 

Marshall Hall [2] showed how to introduce coordinates into an arbitrary projec­
tive plane once a coordinate system is chosen. Geometric properties of the plane are 
reflected in algebraic properties of the coordinate ring. In particular, a projective 
plane is 

(1) right Moufang (rei. L) o all coordinate rings (rei. coordinate systems with 
L = Loo) are nonassociative division rings (in which case they must in addition 
have the right inverse property RIP:(yx)x~l = y); 
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(2) left Moufang (rei. P) o all coordinate rings (rei. systems with P = Y«,) are 
nonassociative division rings (with left inverse property LIP: x~l(xy) = y); 

(3) Moufang o all coordinate rings are nonassociative division rings (with 
inverse property IP : x~l(xy) = y = (yx)x~x). 

Now the inverse properties correspond to algebraic identities : 
(1) RIP o right Moufang law R{xy)x = RxRyRx: 
(2) LIP o left Moufang law Lx{yx) = LxLyLx: 
(3) IP o alternative laws Lxi = Ll, Rxi = R2

X. 
The reason for this is that the composition Uxy = (xy)x in a RIP algebra can be 
built out of negatives and inverses : 

(Hua's identity) Uxy = x - {x~l - (x - j r1)"1}"1-

Since the map x -• Rx preserves negatives and inverses, Rx_y = Rx — Ry (linearity) 
and Rxi = Rx* (RIP), it must also preserve Uxy and we have the right Moufang 
lwR(xy)x = (RxRy)Rx. 

Thus RIP arises naturally out of geometry, and the right Moufang law out of the 
RIP. If we call an algebra satisfying the right Moufang law a right Moufang algebra, 
then a plane is right Moufang iff its coordinate rings are right Moufang. Dually for 
left Moufang. 

In characteristic ^ 2 right Moufang equals right alternative, but in characteristic 
2 Brück [13] has constructed right alternative division rings which are not right 
Moufang (and so not RIP). Consequently it is the Moufang law involving the 
product (xy)x which arises naturally, not the right alternative law. 

2. Jordan algebras. The {/-operator can be derived from the inverse not only via 
Hua's identity, but also via differentiation: Ux = — {dx~l \x}~1. T. A. Springer [18] 
has based an entire theory of Jordan algebras directly on the inversion operation. 

The more usual theory [3], [6] of quadratic Jordan algebras is based on the com­
position Uxy9 where the CZ-operator satisfies the axioms 

Ux = Id, UU{x)y = UxUyUX9 UxVyiX = VXiyUx. 

In contrast, linear Jordan algebras are based on a bilinear product x-y where the 
left multiplication operator satisfies L\ = Id, Lx = RX9 LxLxi = LxxLx. Just as 
right Moufang equals right alternative in characteristic ^ 2, so quadratic Jordan 
equals linear Jordan in characteristic ^ 2. 

Even though the two theories are equivalent most of the time, the quadratic 
operator Ux is more natural than the linear multiplication operator Lx. 

First, // clarifies old concepts: 
(1) Inverses : 

(a) xinvertible o Ux invertible; 
(b) Lx not invertible—may have zero divisors x-y = 0 in a division algebra. 

(2) Isotopes: 
(a) U<à = UXUU9 {/<«>}<•> = /(*->; 
(b)Ly = Lx.u + LxLu-LuLx. 
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(3) Norms: 
(a)N(Uxy) = N(x)2N(y); 
(b) N(x-y) ï N(x)N(y), 

(4) Peirce decompositions: 
(a) e idempotent o U0 idempotent, E\ =?= Ue9 £1 / 2 = Uetl^e9 Eo = C/i_e; 
(b) Le not idempotent, £x *= 2L^ - £„ j ^ /2 = 4L, - 4Z£ EQ=l-3Le + 2L2. 

(5) Ideals; 
(a) J?, C < / => £/BC < J, Penico derived ideal is UBJ; 
(b) B-C <QJ9 Penico derived ideal is B2 + B2J (not B2). 

(6) Associative algebras : 
(a) A simple or division ring <=> A+ simple or division as a quadratic Jordan 

algebra; 
(b) A+ need not be simple or division as linear Jordan algebra. 

Second, it leads to new concepts: 
(1) Inner ideals: subspaces B c /with £/#/ c= J5. 
(2) Trivial elements (absolute zero divisors) : elements z with Uz — 0. 
(3) Structure group: transformations Twith UTx = TUXT*. 
(4) Inner structure group generated by Uxst inner structure algebra generated 

by Vx,;s. 
(5) Jordan triple systems: Uu{x)y= Ux Uy UXi Ux Vy,x= VXty UX9 Vu(x)yiy= Vx>u{y)x. 

There is no right or left in a quadratic product xyx; instead, there is an inside 
and an outside. Just as a left ideal is a subspace invariant under left multiplication 
by the ambient algebra, so an inner ideal is a subspace invariant under inner multi­
plication by the ambient algebra. These inner ideals play the role that one-sided 
ideals do in the associative theory; in particular, the dec on inner ideals is the an­
alogue of the Artinian condition. Note that from the point of view of linear theory 
there can be no one-sided ideals, since by commutativity all one-sided ideals are 
two-sided. 

A trivial ideal (one with all products zero) gives rise to a trivial element Uz = 0, 
though there is no reason why there should be an element with Lz = 0. Conversely, 
trivial elements almost generate trivial ideals, so the nonexistence of trivial elements 
(strong semiprimeness) is almost equivalent to nonexistence of trivial ideals (semi" 
primeness) ; since ideals are very hard to construct, describe, and relate to elements 
in nonassociative algebras, the strong semiprimeness condition on elements is very 
useful. 

The structure group too involves the {/-operators ; the L's play no role. 
Jordan algebras without regard to unit elements lead to Jordan triple systems and 

Jordan pairs studied recently by Meyberg [12] and Loos [5]. In many applications 
these are more natural than Jordan algebras because it is artificial to single out a 
distinguished element as unit. 

In addition to clarifying old concepts and suggesting new ones, another advan­
tage of the quadratic theory (and the main reason for its creation) is that it handles 
all characteristics equally. The standard kinds of Jordan algebras do not qualify as 
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linear Jordan algebras unless there is a scalar \9 and in characteristic 2 the simple 
linear Jordan algebras are pathological nodal algebras. On the other hand, the 
simple quadratic Jordan algebras are essentially the same in all characteristics : 

STRUCTURE THEOREM. A simple quadratic Jordan algebra with dec on inner ideals 
is either 

(1) a Jordan division algebra, 
(2) a Jordan algebra of a nondegenerate quadratic form, 
(3) the symmetric elements in a *-simp1e Artinian associative algebra with involu­

tion, 
(A) an exceptional algebra of symmetric 3 x 3 matrices with entries in a Cay ley 

algebra. 

In characteristic 2 there are also certain ample outer ideals in cases (2) and (3), 
so there is a slight variation on the basic theme. 

The above theorem tacitly assumes a unit element; it is an open question whether 
a simple Jordan algebra with dec has a unit, equivalently is semisimple. For finite 
dimensional algebras the Jacobson radical is nilpotent [7], but we would like this for 
all algebras with dec : 

Open Question. Is the radical nilpotent when the algebra has dec? 
Recently Slin'ko [17] has shown the absolute zero divisors in a special Jordan 

algebra generate a locally nilpotent ideal : 
Open Question. Do absolute zero divisors generate locally nilpotent ideals? 
Let me mention two other gaps where the Jordan theory is not as complete as the 

associative theory : 
Open Problem. Develop a theory of Jordan rings of quotients and Jordan al­

gebras with ace. 
Open Problem. Develop a theory of Jordan rings with polynomial identities. 
But the real reason the quadratic theory is the "right" one compared to the linear 

theory is not that the linear theory fails in characteristic 2, but that because it de­
mands a scalar \ it fails to provide a theory of Jordan rings. The quadratic approach 
is a ring-theoretic approach; the scalars play almost no role. 

3. Quadratic Jordan methods in nonassociative algebras. 
(a) Noncommutative Jordan algebras. The passage from A to A+ is a standard 

technique in nonassociative algebra; once the notion of Jordan algebra is freed 
from the necessity of \9 this passage makes sense in general. If A is a noncommuta­
tive Jordan algebra then the algebra A+ with [/-operator 

U xy — x(xy + yx) — x2y = (xy + yx)x — yx2 

is a quadratic Jordan algebra [8] ; in the case of left or right alternative algebras this 
reduces to the previously considered operators Uxy = x(yx) or Uxy = (xy)x. 
With these operators we can carry the quadratic theory over to obtain a theory of 
noncommutative Jordan rings with dec analogous to the theory for quadratic 
Jordan rings [9], [10]. 

(b) Alternative rings. In general the Jordan products x2 and Uxy are better 



QUADRATIC METHODS IN NONASSOCIATIVE ALGEBRAS 329 

behaved and easier to handle in an alternative ring than the product xy. For 
example, we have the Moufang identities LU{x)y = LxLyLX9 Ru(X)y

 = RxRyRx a nd 
the identities Uxy = LxUyRx = RyUxLy. 

By reducing an arbitrary polynomial identity to a Jordan polynomial identity 
and making use of these convenient relations for Jordan products, Shirshov [14] 
showed that a nil PI alternative algebra is locally nilpotent. Using just the essential 
parts of Shirshov's deep combinatorial methods, Slin'ko [17] showed the absolute 
zero divisors generate a locally nilpotent ideal. In characteristic ^ 3 w e can do 
much better, for Kleinfeld [4] showed that an absolute zero divisor determines a 
nilpotent ideal, and this was used to show that a prime alternative ring of character­
istic 9E 3 is associative or a Cayley order. By using Jordan methods and Slin'ko's 
result, Slater [16] has given a self-contained proof that a strongly prime (prime + 
no absolute zero divisors) alternative ring is associative or Cayley. This still leaves 
the general 

Open Question. Are all prime alternative rings either associative or Cayley? 
(c) Right Moufang algebras. Skornyakov [15] showed that a right Moufang divi­

sion ring was alternative; this was extended by Albert [1] to simple right Moufang 
rings, under the assumption of finite-dimensionality and characteristic ^ 2. Using 
absolute zero divisors and {/-operators, Thedy [20] has made progress on this classi­
fication problem : He showed that a strongly prime right Moufang ring with proper 
idempotent e ^ 0, 1 is alternative. But once again the general case is unsolved: 

Open Question. Are all simple right Moufang rings alternative? 
(d) Associative rings with involution. The archetypal Jordan algebra is the set of 

symmetric elements in an associative ring with involution. Indeed, Jordan algebras 
originated in an attempt to capture the "algebraic essence" of the Hermitian opera­
tors on Hilbert space. Thus it is not surprising that Jordan methods have played a 
role in rings with involution. 

The property which makes the (Jordan) algebra of symmetric elements more 
tractable than the (Lie) algebra of skew elements is that while the latter is closed 
only under xy — yx, the former is closed both under xy + yx and xyx. The addi­
tional operation Uxy = xyx is the decisive factor. 

4. Summary. In closing, let me summarize the advantages and insights to be 
gained from Jordan methods and emphasis upon the [/-operators : 

(1) these provide a ring-theoretic approach which avoids any restriction on the 
characteristic or a demand for \\ 

(2) they focus attention on inner ideals, which play the role in nonassociative al­
gebras that one-sided ideals do in the associative case; in particular, they provide 
useful chain conditions; 

(3) they focus attention on absolute zero divisors, giving a useful radical and semi-
simplicity criterion in terms of elements rather than elusive ideals; 

(4) in the associative case they emphasize the basic symmetric product xyx in 
rings with involution; 

(5) they play an important role in applications to analysis, as explained by Pro­
fessor Koecher in his address to the 1970 International Congress. 
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Each nonassociative algebraist carries a bag of tricks, notions, and methods 
which he can apply to the variety of problems he meets. One example is lineariza­
tion—faced with an identity one can linearize, substitute, interpret as operator 
relations, thus extracting much more information from the original identity. 
Another is Peirce decompositions—one can use an idempotent to break the algebra 
into pieces and recover much information from the way these pieces fit together. 
Yet another example involves multiplication algebras—translating problems from 
a nonassociative algebra to its associative algebra of multiplications. What I am 
urging is that nonassociative algebraists should add quadratic methods to their bag 
of tricks, as a powerful technique applicable in a wide variety of situations. 
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On Subspaces of Inner Product Spaces 

Winfried Scharlau 

1. Introduction. Let K be a field and / a partially ordered finite set. An I-space 
(V, V{9 i e / ) over K will be a finite-dimensional K-vector space V together with a 
family of subspaces Vt- such that i ^ j implies K,- c Vj. Morphisms, direct sums, 
decomposable and indecomposable objects are defined in the obvious way in the 
category of /-spaces. / is of finite representation type if there exist up to isomor­
phisms only finitely many indecomposable /-spaces over any K. 

1.1. THEOREM (NAZAROVA-ROITER, KLEINER). lis of finite representation type if 
and only if I does not contain a subset which, with the induced ordering, looks like one 
of the following ; 

(A) 

(B) 

(C) 

w w w 

: : ! 

•ii 

(D) 

(E) 

• I 

For the proof and related problems see [6], [5], [2], [3], [1]. 
In this note we are interested in subspaces of inner product spaces (V9 b) where b 

is a nonsingular symmetric bilinear form. (An analogous theory can be developed 
for b skew-symmetric.) Since every subspace W defines the orthogonal space WL 

we are led to the following definition. 
1.2. DEFINITION. Let .AT be a field of characteristic ^ 2 and let / be a partially 
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ordered finite set with an involution x : I -> /, i.e., a map such that / SL j implies 
j x ^ ix

9 and ixx = / for all i9j e I. An (/, x)-space (F, b; Vi9 ì e / ) (over K) will be 
a nonsingular symmetric bilinear space (V, b) together with a family of subspaces 
Vi such that i ^ j implies V( c Vj and Kfa = V-. 

Morphisms, orthogonal sums, decomposable and indecomposable objects are 
defined in the obvious way in the category of (/, -^-spaces. The following questions 
arise naturally : 

Problems. (1) For which (/,x) do there exist over every field only finitely many 
indecomposable (/, x)-spaces (up to isometry and multiplication of ô by a scalar)? 
In this case, we say that (/,x) is offinite representation type. 

(2) For which (I9
 x) can one classify the (/, x)-spaces? 

(3) What can be said about the forgetful functor from (/, x)-spaces to /-spaces? 
(4) For which (/,x) does the cancellation law hold? 
CONJECTURE. (/,x) is affinité representation type if and only iff is of finite repre­

sentation type. 
This conjecture is proved in the following sections for some (/ , x) . We shall also 

present some examples concerning the classification problem. We shall see that 
there are interesting relations to other classification problems of linear algebra. 

2. Examples of finite representation type. When we describe a partially ordered 
set with involution (/,x) graphically we use a dot • for every i ^ ix and a circle O 
for every / = ix. If it is necessary to say which dots correspond under the involu­
tion we index them by the same number, e.g., 

,1 'I » ;i i 
2.1. THEOREM. The following partially ordered sets with involution are of finite 

representation type: 

(al) t t (a2) J J (a3) J 

: : • o o 

i I : i I 
PROOF, (al) We have to consider a bilinear space (V, b) with a chain V\ a K2 <= 

... c Vr c Vr+i — V of subspaces. (The other chain is given by the orthogonal 
spaces.) Assume our space is indecomposable. We may assume without loss of 
generality V\ ^ 0. Then, V\ must be totally isotropic, since an anisotropic vector 
ei would yield an orthogonal decomposition V — (eiK)L(eiK)x. Let / be the 
smallest number such that V\ 1 V{ but V\ )C Vi+i. Then there exist ex e Vi and 
e\ e Vi+i such that b(eÌ9 ef) = 1. The nonsingular (hyperbolic) plane (eiK + efK) 
yields a splitting V = (e\K + efK)l(eiK + efK)x which is compatible with the 
chain Ki c »• c K r 

(a2) This case is more complicated. Therefore we consider briefly only one special 
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case, namely spaces of the following type: (V9 b; 0 < W\ < ••• < Wr = W9 

0 < U\ < ••• < Us = U) where V = W ® £/with W9 Utotally isotropic, and hence 
in duality under b. (Note that the complete chains are W\ <= ••• c Wr <= Wx_! c: 
... c J^ , and similarly for U.) We choose bases wÌ9 •••, w„ and uÌ9 •••, w„ of W 
and U9 compatible with the given filtrations. Let wf, •••, w% e C/be the base dual to 
w>i, •••, wn and let yi = (ai3) be the matrix of the base change u{ = Ea^-wj. If we 
choose different bases w'{ and ui9 A will be replaced by BAC with 

'17/ 

C E 

m! w2 m, 
* i * 

^ ^ "J: 
77! /72 

= :JT2, *, = d i m ( ^ / ^ w ) . 

Since 71! \GL(w, k)j T2 contains only finitely many elements, the assertion is proved 
in the particular case under consideration. 

(a3) Again, we want to consider only one special case, namely (V9 b\ V = V\® 
K2, 0 < W\ < ••• < Wh = W) where V\9 V2, Ware totally isotropic and pairwise 
in duality under b. If %i'.V -> Kf- are the projections corresponding to the direct 
sum V = Vi © V2, then /3: JP x W -• K9 ß(x9y): = b(%\x9 %2y) is a nonsingular 
skew-symmetric form, which describes(V9 b\V\9 V2, ^completely. Therefore, we 
have to investigate a skew-symmetric space (W9 ß) with a chain of subspaces, a 
problem which is similar to (al). 

Since nonsingular skew-symmetric forms are even dimensional and classified by 
their dimension, one gets the following well-known result. 

2.2. COROLLARY. Jf (V, b) is a nonsingular symmetric bilinear space with three 
totally isotropic subspaces VÌ9 V29 V% such that V = V{ © Vjfor i ^ j , then dim(F) 
is a multiple of 4. The orthogonal group 0(V9 b) operates transitively on the set of 
triples of subspaces as above. 

3. Relations to other classification problems. This section contains some informa­
tion concerning the classification problem for the partially ordered sets (A)—(E) 
of Theorem 1.1 with arbitrary involutions. As a corollary one obtains: 

3.1. THEOREM. The partially ordered sets (A)—(E) o/l.l with any involution are of 
infinite representation type. 

We shall discuss only some typical cases: 

(Al) • • • • 

One has to investigate a bilinear space (V, b) with two subspaces V\ and V2. 
(The other two subspaces are the orthogonal spaces.) Assume in addition V = 
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V\ © V2 and VÌ9 V2 in duality. We choose an arbitrary basis of Vi and the dual 
basis in V2. The matrix of b is of the following form 

U B) A9 B symmetric. 

After a basis change X in Vi and the dual basis change X~l in V2 one gets the 
matrix 

(X*AX E \ 
\ E X-iBX-')' 

Hence one has to classify the pair (A, A~~lB) consisting of the bilinear form A and 
the selfadjoint transformation A~lB. This problem is considered, e.g., in [4]. 

(A2) M O O 

As a special case we consider the following situation: (V9 b; VÌ9 V2, W)9 Vi = 
Vx

i9 V = Vi © V2 = Vi © W = V2 © W. This leads to the classification pro­
blem for the not necessarily symmetric bilinear form ß : W x W -+ K defined in 
2.1(a3). There is much literature concerning this problem; see, e.g., [7]. 

(A3) O O O O 

We have seen in 2.1(a3) that O O O leads to the classification of skew-sym­
metric bilinear forms. Hence, OOOO leads to the classification of a vector space 
with two skew-symmetric forms. This problem is solved in [8, §3], 

(A3) O O O O (Bl) j j 2 J 3 j 

As a special case we consider the following situation (V, b; VÌ9 V2, F3) with 
V = V\ © V2 © F3, Vi totally isotropic and pairwise in duality. Choosing an 
arbitrary basis in Vi and dual bases in V2 and F3 we obtain for b the matrix 

and are led to the classification of the bilinear form given by A. 
The other cases are handled in a similar fashion. 

4. The forgetful functor. It is natural and interesting to study the forgetful functor 
(V9 b; V{) »-• (V9 Vi) from (/,x )-spaces to /-spaces. Again, we shall consider only 
one typical example. 

Let F be a vector space and V\9 •••, Vi four subspaces such that V = V{ © Vj 
for i # j . 

Questions. (1) When does there exist a symmetric bilinear form b such that 
y3 = Vi, VA = F2

X with respect to bl 
(2) When does there exist a symmetric bilinear form b such that V\9 •••, K4 are 

totally isotropic? 
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The answer to Question (1) is "always". Recall that every (V9 V\9 •••, V4) as above 
can be obtained in the following way: Let Wbc a vector space and a an automor­
phism of W. Let V = W © W9 Vi = W © 0, V2 = 0 © W9 F3 = the diagonal, 
F4 = the graph of a. Describe b as in (Al) by the matrix 

G 3 
It turns out that the matrix of a is A~lB. Hence we get the following question: Is 
it possible to write an arbitrary invertible matrix as a product of two symmetric 
matrices? It is left to the reader to show that this is always possible. 

Similarly, Question (2) leads to the following problem : Given an arbitrary in­
vertible matrix A, when does there exist a skew-symmetric matrix X such that 
X~lAX = - AH It is left to the reader to find necessary and sufficient conditions. 
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Something Like the Brauer Group 

Moss Eisenberg Sweedler 

Here is a series of ideas and constructions related to the Brauer group and 
Amilsur cohomology. In alternate sections we indicate what changes to make to 
achieve a unified generalization of the theory. 

. I—OLD. The classical theory begins with the matrix ring. We begin a little dif­
ferently. Let A be a commutative algebra over a ring k. Instead of the general 
matrix ring focus on EndkA. The fc-algebra map A-U EndkA, a-+al (where a1 is 
"A" acting as a left translation operator) is important. Identifying A with A1 leads 
to the picture EndhA ZD A = A1. 

REMARKS. At times additional restrictions are put on A or k. Typical additional 
restrictions are : 

(i) A is a finitely generated projective fc-module. 
(ii) A: is a field. 
(iii) A is a field. 

I—NEW. Let {La} with each La c A ® A satisfy: 
(i) {La} is an inductive set; i.e., given La and Lß there is Lr with La 3 Lr c Lß. 
(ii) Each La is an ideal in A ® A. 
(iii) ei and mult denote the maps 

ei\A®A-*A®A®A9 a®b-+a®l®b, 
mult: A ® A -» A9 a ® b -> ab. 

Then given La and Lß there is Lr with ei(Lr) c La ® A + A ® Z^, and there 
is an La with L^ a ker mult. 

End*/4 is an A ® ,4-module where (a®b)- F = 0'Fe', for F e EndÄ>4. Let Ea 

= {Fe EndkA | La • F = 0} - Let E = [j Ea. Conditions (i)? (ii) and (iii) insure 
that E is a subalgebra of EndkA. For example the ei condition in (iii) implies 
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EaEß c EY and the mult condition in (iii) implies A1 a E^. So there is the k-
algebra map A-U E9 a -> a1. 

The E replaces EndkA. 
REMARKS. It will be seen in III—NEW that condition (iii) amounts to certain 

continuity conditions. 
As in I—OLD we may wish to impose some additional restrictions. One of these 

is that (A ® A)/La be a finitely generated projective left ^-module for each La. 
(The left action of A on A ® A and (A ® A)/La arises from the action of A on 
the underlined tensorands.) This condition corresponds to the condition of "A 
being a finitely generated projective fc-module" in I—OLD. 

Another assumption which is sometimes needed, especially in considering ques­
tions about simplicity of E as an algebra, is that given La there is Lß with twist(L/3) 
<= La ; where twist: A ® A -+ A ® A9 a ® b -> b ® a. 

If {La} consists of only the zero ideal then E = EndkA and all the NEW theory 
reduces to the OLD. (Note that the "twist" condition just above is automatically 
satisfied in this case.) Other interesting NEW theories arise when {La} = 
{(ker mult)1} or if {Aa} is a suitable collection of subalgebras of A and one takes 
{La} = {ker (A ® A -* A ®Aa A)}. In the former case the NEW theory is related 
to the theory of algebras of differential operators and the cohomology which arises 
in III—NEW is related to de Rham cohomology when the characteristic is zero. 

II—OLD. Consider pairs (£/, /) where U is a fc-algebra, i\A -* U is an algebra 
map (giving U an ^4-bimodule structure), and U £ EndkA as an A-bimodule. Call 
two pairs (U9 i) and (V9j) equivalent—and write U ~ V—if there is an algebra 
isomorphism p:U -> V9 where pi = j . Let [U] denote the equivalence class of 
(U9 i) and let êA denote the set of equivalence classes. 

O—NEW. The same as II—OLD except replace EndÄ/4 by E throughout. 

in—OLD. 

A® A = f A® A® A \ A® A® A® A, 
e2 es 

where e{ inserts " 1 " in the (i + Imposition. For xeA ® A ® A9 call x & weak 
2-cocycle if eQ(x)e2(x) = e\(x)e$(x) and both (mult ® I)(x) and (I ® mult)(x) 
are invertible. Call x a 2-cocycle if in addition x itself is invertible (in which 
case x is an Amitsur 2-cocycle). For x9 yeA®A®A call x cohomologous to 
y if there is an invertible z e A ® A with (e0 (z)ei(z~1)e2(z))x = y. If x is cohom­
ologous to y then x is a (weak) 2-cocycle if and only if y is a (weak) 2-cocycle. 
Lef IF & denote the set of cohomology classes of weak 2-cocycles and let H2(A/k) 
denote the subset of cohomology classes of 2-cocycles. IFA has a monoid struc­
ture induced by product in A ® A ® A ; the unit is the cohomology class of 1 ® 
1 ® 1. H2(A/k) is the subgroup of IFA consisting of elements which are invertible. 
(Hz(A/k) is the degree two Amitsur cohomology of A over k.) 

TU—NEW. A ® ••• ® A has a topology induced by declaring Lai ® A ® --® 
A + A® Lai® A® ••• ® A + ••• H- A ® ••• ® A ® Lttu to be open. (A itself 
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has the discrete topology.) The et- maps and the maps I ® ••• ® / ® mult ® / ® 
• • • ® / are continuous by virtue of condition (iii) in I — NEW. Therefore we can 
complete and have 

e0 Jo_^ 
(A®AYEEü (A®A®Ayz=l(A®A®A®A)\ 

* •—I * e2 h 
Now proceed as in III — OLD except with the (")'s added. 

IV—OLD. If A is a finite projective ^-module there is a bijective correspondence 
&A <-* 8*A> given as follows: Suppose x = 2 a{ ® bt- ® c{ e A ® A ® A is a weak 
2-cocycle. Give EndkA a new multiplication using x. For F9 G e EndkA the new 
product is given by 

(*) F*G = Zal
tFbliGcli. 

This will be an associative product and the unit will be ( ( 2 a{ bt- c,-)-1)'. Let (EndkA)x 

denote EndkA with the new product. Ir.A -• (EndkA)x
9 a -+ ((a ( 2 fy b{ ct)~

iy)x 

is an algebra map making (EndkA)x s EndkA as an ,4-bimodule. Under the 
bijective correspondence the cohomology class of x corresponds to [(End^^)*]. 

IV—NEW. This is almost the same as IV—OLD. We must have that (A®A)/La 

is a finitely generated projective left ^(-module for each La. Of course EndkA 
is replaced by E and the cohomology in IV—OLD is replaced by the completed 
cohomology of III—NEW. The only difficulty comes in defining the multiplication 
alteration. With a little care the formula (=t=) in IV—OLD will still make sense. 
Suppose F9 G e E. Then for some a and ß we have F e Ea, G e Eß. Since the 
completion (A ® A ® A) * is the inverse limit 

A® A® A 
proj lim L7i ® A + A ® Lrt 

we may read x modulo La ® A + A ® Lv i.e., 

x - S ai ® k ® q mod (La ® A + A ® Lß)\ 

for S üi ® b{ ® Ci e A ® A ® A . With this choice of S fy ® b{ ® c{ the formula 
(=)=) in IV—OLD makes sense and only depends upon x9 F a n d G. 

V—OLD. Given the pairs (U9 / )and (V9 j) form U ®A V9 the tensor product 
with respect to the left action of A on both t /and V. U ®A F i s a right U ® V-
module where for S w,- ® vf- e U ®A Kand S Xj ® )>j e U ® V the module action 
is given by ( S ut- ® vi) • ( S Xj ® y}) = S i , ; U{ *j ® v^yj. With respect to this 
right module action form End^®7 (U ®A V). This is the classical description of 
the product of the pair (U9 i) by the pair (V9 j). The map A -+ End^g^ (U ®AV)9 

a -» (u ® v H> au ® v = u® av) makes the product again a pair. For some pur­
poses, particularly in the NEW theory, another description of the product is use­
ful. Wilhin U ®A Klet 

U x A V = { £ w,' ® Vi e U ®A V| S u{a ® v4 = 2 u{ ® vfa9 a e A). 

U xAV has a well-defined product determined by ( 2 w,-® v,-)(2>V/® zy) = 
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2» j UiWj ® Vi zh for 2 w,- ® v,-, ' 2 Wy ® Zj E U x AV. The unit is 1 ® 1, and 
ix j:A -> UxAV9a->i(a) ® 1 = 1 ® j(a), is an algebra map. The product pair 
(U x AV9 i x j) is naturally isomorphic to the product pair given in terms of 
Endtf®^ (U ®AV). If A is a finitely generated projective fc-module and U £ EndhA 
£ V as v4-bimodules then U xAV £ EndkA as ^4-bimodules. êA becomes a 
commutative monoid with unit [Endft/4], the product given by [U] [V] = [Ux AV]. 
Moreover the bijective correspondence given in IV—OLD is an isomorphism 
of monoids. Thus H2(A/lc) corresponds to &A, the subgroup of invertible elements 
of êA. If A is a finite degree field extension of k then <&A consists precisely of 
equivalence classes of central simple /c-algebras which contain A as a maximal 
commutative subring. This leads to the isomorphisms 

H\A\k) ^&Açê Br(A/k) 

where Br(A/k) is the subgroup of the Brauer group of k consisting of classes split 
by ,4. 

V—NEW. The product pair (U x AV9 i x j) is the same as in V—OLD. If 
(A®A)/La is a finitely generated projective left ,4-module for each La then 
iA is a commutative monoid with unit [E]. Moreover the correspondence in IV— 
NEW is a monoid isomorphism. The group &A is not in general a relative Brauer 
group even when A and k are fields. (A and k may be fields and (A ® A)/La may 
be a finite dimensional left ^4-module for each La and yet A need not be a finite 
degree extension of k.) However if A and k are both fields and for each La there is 
an Lß with (twist) (Lß) <= La9 then the group <&A consists of classes of algebras [£/], 
where U is a simple /^-algebra. 

VI—OLD. For each pair (U, i) with [U] e gA9 the image i(A) is a maximal 
commutative subring of U and the center of U is i(C) where C is the subalgebra 
of A with Cl the center of EndkA. Often C = k. 

VI—NEW. This is the same as VI—OLD but with EndkA replaced by E. A fur­
ther characterization of C can be given as {a e ,4|l ® a — a® \eÇ\ La}. 

Vu—OLD. Suppose A is a finitely generated projective fc-module. If (U9 i) is a 
pair let U ° denote the "opposite algebra" to U and i° : A -* U°9 a -+ i (a) °. If A is 
a Frobenius fc-algebra then EndkA £ (EndkA)° as an v4-bimodule(and if k is a field 
the converse holds). So when A is Frobenius if [17] e ßA then [U°] e $A\ more­
over if [U] e &A then [t/]"1 = [t/°]. This covers the most classical case when A is a 
finite degree field extension of k, since then A is a Frobenius fc-algebra. Without 
assuming that A is a Frobenius /c-algebra if [U] E &A then 

[U]-i = [(EndkAyxAUy]. 

This automatically reduces to U° when [(EndA>4) °] = [EndÄ>4], which also happens 
when A is a Frobenius fc-algebra. 

VII—NEW. Assume (A ® A)jLa is a finitely generated left ^4-module for each 
La9 and given La there is Z^ with (twist) (L^) c La. Then for [U] E &A, the inverse 
is given by [U]'1 = [(E° xAU)0]. 
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Vili—OLD. If k is a field and A a finite dimensional Ä>algebra then all algebras 
U with [U]E&A are simple. 

Vm—NEW. Assume that (A ® A)/La is a finitely generated projective left A-
module for each La, and given La there is Lß with (twist) (Lß) c La. The follow­
ing conditions are equivalent: 

(1) A is a simple is-module, recall E <= EndkA. 
(2) E is a simple algebra. 
(3) Each algebra U with [U]E&A is simple. 

Of course it all depends on properties of {La} and in terms of {La} one may add 
the fourth equivalent condition: 

(4) For each ideal 0 ^ J §i A there is an La with A®J(£J®A+La. 

IX—OLD. For a pair (£/, /) form EndAU with respect to U as a fe/if >4-module, 
The map 0:/4 ® U° -> End^C/, 0 ® w° -> ( V K avw) is an algebra map. If A is a 
finitely generated projective /c-module and [U] E &A then Q is an isomorphism. 
Using E\\dkA in place of U gives the third isomorphism and using the fact that 
U ^ EndkA as an y4-bimodule (and hence a left ,4-module) gives the second iso­
morphism in the series of algebra isomorphisms : 

A ® U° s EndAU s End^ (EndkA) ^ A ® (End^)° . 

This is one aspect of classical "splitting" theory. 

IX—NEW. Assume that (A ® A)/La is a finitely generated projective left A-
module for each La9 and given La there is Lß with (twist) (Lß) c= La. The Û map 
in IX—OLD is well defined but not in general an isomorphism, not even when [U] 
E &A. Consider U as an A ® >4-module where (a ® b) • u = aub ( = i(a)ui(b)). 
Let' Utt = {u E U\La-u = 0}. U = f] Ua since U s j£ as an >4-bimodule. To-
pologize End^t/ = Hornet/, f/)by declaring Homi4(C/a, t/) to be open. EndAU 
is complete since 

HomA(U9U) = Hom^inj lim C/a, U) = proj lim Hom^C/«, 17). 

Topologize A ® U° by declaring the left ideals generated by the (I ® i°)(La) to 
be open. Let A ® U° denote the completion, which has a natural algebra structure 
extending that of A ® U°. The map û is continuous and induces an algebra map 
Q: A ® U° -> EndAU which is an isomorphism if [U] e &A. As in IX—OLD this 
leads to the series of algebra isomorphisms : 

A ® U° s EndAU s E n d ^ s yl ® £° . 

This NEW splitting may be used to show that E and U and End^i? have the same 
weak global dimension. And if some additional restrictions hold, this common 
weak global dimension is equal to the homological dimension of A. 

Some of the material in this article will appear in a forthcoming issue of the Inst. 
Hautes Études Sci. Pubi. Math, under the title of Groups of simple algebras. Un­
fortunately the author ofthat paper only had a glimmer of what was going on. 
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TpyAbi Me>KAyHapoAHoro Konrpecca MaTeMaraKOB 
BaHKyBep, 1974 

HeKOTOpbie Bonpocu EnpanHOHajibHott TeoMeTpHH 
AjireopawnecKHx Topoe* 

B. E. BocKpeceHCKHft 

PHA pe3yjibTaTOB apHcJMeraKH jmneftHbix aJireöpawqecKHx rpynn aBTOp uojiy-
wjif H3ynan ÖHpaî HOHajibHbie xapaKTepncraKH MHoroo6pa3nß yKa3aHHbix rpynn 
[1]. Cpa3y M<e 6buio 3aMeneH0, HTO STH nccjieAOBaHHH TecHO cBH3aHM c pe3yjib-
TaTaMH CyoHa o nojinx HHBapHaHTOB aßejießbix rpynn npeo6pa30BaHHfi [2], [3] H 
9Ta CBH3b 0Ka3ajiacb Hpe3BbinaHH0 nojie3Hofi. JXaJimeviuim nccjieAOBaHHH npHBejin 
K nocTaHOBKe pHAa HOBHX HHTepecHbix 3aAan B TeopHH i^ejioqncjieHHbix npeA-
cTaBJieHHH KOHe^Hbix rpynn, BO3HHKIIIHX B CBA3H C BonpocoM ÖHpaqnoHajibHoö 
KJiaCCH(J)HKaUHH HeKOTOpblX MH0r006pa3HH. H3JIO>KeHHIO HMefOIIJHXCH 3Aecb 
pe3y^bTaT0B H npoôjieM H nocBHineH MOH AOKJiaA. 

nycTb L\k KOHenHoe HOpMajibHoe pacniHpeHHe c rpynnofl Tajiya U9 C(L\k) 
KaTeropHH ajireopannecKHx Topos, onpeAejieHHbix HaA k H pa3Jio>KHMbix HaA L, 
C(JI)—ABOHCTBeHHan KaTeropHH 77-MOAy.neft 6e3 KpyneHHH KOHe^Horo paHra. 
TlBOHCTBeHHOCTb onpeAejineTCH OTo6pa>KeHHeM T -> f, rAe T = H o m ( r , Gm) 
II-Mopyjib pauHOHaJibHbix xapaKTepoB Topa T. Il-MOAyjib S, oo^aAaioinnft Z-6a30ft, 
Ha KOTOpoft II AeflcTByeT nepecTanoBKOft, Ha30BeM nepMyTaunoHHbiM /7-MOAyjieM. 
MoAyJiH A H B Ha30BeM noAOÔHbiMH, ecjm OHH oTJinnaioTCH TOjibKo npHMbiMH 
nepMyTaijHOHHbiMH cjiaraeMbiMH. Hepes [A] o6o3HaHHM Kjiacç noAoÔHH MOAyjin A. 
nycTb k nojie xapaKTepHCTHKH nyjib, TorAa cymecTByeT neocoßoe npoeKTHBHoe 
MHoroo6pa3ne V HaA K coAepaomee T B KanecTBe OTKpbiToro noAMHOM<ecTBa 
(npoeKTHBHan MOAejib Topa T). OCHOBOH RJIH. AaJibHefiuiHX pacneTOB cjiy>KHT 

TEOPEMA 1 [1]. KAüCC [Pic(K ®k L)] = [Pic VL] ecmb ötipaufwnaAbHbiü anea-
puaum mopa T. 

•Not presented in person. 
* © 1975, Canadian Mathematical Congress 
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BnepBbie STOT ÔHpaijHOHajibHbiH HHBapnaHT o6Hapy>KHJiH K3.H. MannH H H . P . 
LIIa4)apeBHH B CBOHX HcaneAOBaHHHX no TeopHH noBepXHOCTeö [4], 

Top T BnojiHe onpeAejineTCH CBOHM u-MopyjieM xapaKTepOB f, nojieM onpeAe-
jieHHH k H nojieM pa3Jio>KeHHH L, Gal(L/fc) s II. 3annnieM STO B BHAe T = (L\k9 f). 
M O H œ O AOKa3aTb, HTO KJiacc [Pic VL(T)] 3aBHCHT razibKO OT II-MOjiym f, HO He 
OT Bbiôopa napbi L\k. MoAyJiH Pic VL oôJiaAaioT cjieAyioiHHM xapaKTepHCTHnecKHM 
CBOHCTBOM. 

TEOPEMA 2. V/T c /?, H-\n\ Pic VL) = 0. 

nycTb P(ïï) = {[AT], NE C(II)9 H-\ïï'9 N) = 0 VZT c II}. HeTpyAHO noKa33Tb, 
HTO Ka>KAt>iH 9JieMeHT H3 P(II) npeACTaBJieH MOAyJieM B I W Pic VL(T)9 T E C(Lfk). 

B CTaTbe [5] noKa3biBaeTCH, HTO o a c c [Pic VL(T)] HBJineTCH SnpaijHOHajibHbiM 
HHBapHaHTOM Topa T H B cjiynae, KorAa nojie onpeAejieHHH HMeeT xapaKTepHCTHKy 
p > 0. 3Aecb yyiie Hejib3H npnMO ncnojib30BaTb TeopeMy XnpOHaKa o pa3peuieHHH 
ocoßeHHOCTeß, B AOKa3aTejibCTBe ncnojib3yeTCH MCTOA noA'beMa B xapaKTepnc-
THKy Hyjib. 06o3HaHHM KJiacc [Pic VL(T)] nepe3 [p(T)] HJIH [p(f)]9 OH 3aBHCHT 
TOJibKO OT 7/-MOAyJiH f. OnepaTOp [p(f)] nepecTaHOBoneH c oneparjHen B3HTHH 

npHMOH CyMMbl. JIBS TOpa Ti H T2 Ha30BeM CTaÔHJIbHO 3KBHBajieHTHbIMH HaA k, 
ecjiH cymecTByeT ÔHpauHOHajibHan sKBHBajieHraocTb MHoroo6pa3Hft HaA nojieM k 

TxxGPm^T2x G%. 

nycTb [T] KJiacc CTa6HJibHOH 9KBHBajieHTHOCTH, C0Aep>KamHH TOp T 6 C(L/k)9 

Z(Ljk) nojiyrpynna Bcex TaKHx KJiaccoB c onepautnefi npnMoro npOH3BeAeHHH. 

TEOPEMA 3 [5]. Ornoôpaotcenae [T] -• [p(T)] onpedeAnem u30Mopcßu,3M nojty-
zpynnu Z(L\k) m noAyzpynny P(II). 

BßeAeM B nojiyrpynne P(II) cjieAyiomyio (JwjibTpaijHK) 

P(II) 3 P\ïï) 3 G(II) 3 7(Z0, 
rAe 

P°(77) = {[N] G P(ïï\ H\ïï\ N) = 0 V/7' c tf}, 
G(ïï) = {[NI N+N' = S9 [S] = [0]}, 
7(/7) = {[N]9 [N] = [8t], W—npoeKTHBHbifl HAeaji KOJibija Z[II]}. 

G[II] MaKCHMajibHan noArpynna nojiyrpynnu P(II) [5], OTMCTHM cjieAyiomHe 
pe3yjibTaTbi 

TEOPEMA 4 [5], [6], Cjiedyiouiue ycAoean smusaAenmwbL 
(1) Bcwan caAoecKan nodzpynna zpynnu ïl i^uKAmna; 
(2) P(ïï) = G(ïï). 

TEOPEMA 5 [6]. Flycmb Ilp-zpynna. Tozda G(II)=I(II). 

Ka>KeTCH BecbMa BepoHTHbiM, HTO P°(II) = G(1I) M% JHOöOVI KOHCHHOH rpynnbi 
II. ^ocTaTOHHO 9T0 AOKa3aTb A ™ P-rpynu. FIoKa Hen3BecTHO, HMeeT JIH nojiy-
rpynna Z(L\k) KOHenHoe HHCJIO o6pa3yK)LUHX, H3Becrao TOJibKO, HTO ee noArpynna 
G(ïï) KOHenHO nopo^AeHa. 
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OAHOH H3 HaHÖojiee HHTepecHbix 3aAan AanHofi TeopHH HBJineTCH BbincHeHne 
Bonpoca o paunoHajibHOcra TopoB T9 AJIH KOTopbix [p(T)] = [0]. H3 SToro Tpeßo-
BaHHH cpa3y >Ke cjieAyeT CTaÖHJibHan pauHOHajibHocTb Topa r HaA k. HMCIOTCH 
m CTaÔHJibHo paqHOHajibHbie Topbi, He HBjraiomHecH paijHOHajibHbiMH, AO CHX 
nop HeH3BecTHO. 3Ty 3aAany MH Ha3bmaeM npoßjieMoft 3apnccKoro AJIH TopoB. 
OneHb oöcTOHTejibHoe HCCjieAOBaHHe MOAyjien f, AJIH Koropux [p(f)] = [0] 
npoBOAHT 3HAO H MHHTa [6]—[9], OHH BbmcHHJiH, B nacTHOCTH, HTO npoôjieMa 
3apHCCicoro HMeeT nojio>KHTejibHoe peiueHne AJIH TopoB cjieAyioiunx BHAOB: 

(1) Topu c UHKjiHHecKHM nojieM pa3Jio>KeHHH CTeneHH pm
9 p npocToe HHCJIO; 

(2) Topbi c uHKJiHHecKHM nojieM pa3JioHceHHH, MOAyjiH paunoHajibHbix xapaK-
TepOB KOTOpblX npoeKTHBHbi; 

(3) Topbi, HBJiHromnecH MOACJIHMH nojieft HHBapnaHTOB KOHeHHbix aßejießbix 
rpynn c peryjinpHbiM AeScTBHeM Ha o6pa3yiomHx. 

KpOMe BToro HMeeTcn pHA ôojiee nacTHbix pe3yjibTaT0B. OneHb HHTepecHbiM c 
3TOH TOHKH 3peHHH HBJIHCTCH BOnpOC 0 paiJHOHaJIbHOCTH TOpOB T C MOAyJieM 
xapaKTepOB f = Z[Ç„], Bee STH TOpbi cTa6HjibHO paijHOHajibHbi, HO, HacKOjibKO 
MHe H3BecTHO, paijHOHajibHocTb Hx npoBepeHa TOJibKO B cjiynanx n = pa H n = 
2a-30. KOHeHHO, AOCTaTOHHO paCCMaTpHBaTb TOJibKO MOAyJIH C n CBOÖOAHblMH OT 
KBaApaTOB. 

B neKOTOpbix cjiynanx 3HaHHe noAxoAnmefi npoeKTHBHoft MOAejin AaHHoro 
Topa no3BOjineT peuiHTb Bonpoc o e ro paunoHajibHOcra. MOM<HO npeAJio>KHTb 
cjieAyiomHH enocoö nocTpoeHHH nojiHbix Heocoôbix MOAejiefi ajireôpaHnecKHx 
TOpOB, CBOAHIUHH 9Ty 3aAaHy K HeKOTOpbIM BOnpOCaM reOMeTpHH UejIOHHCJieHHblX 
npeACTaBjieHHH KOHCHHUX rpynn. 

nycTb W KOHennaa noArpynna rpynnbi GL(n9 Z ) , / uejiOHHCJieHHan nojio>KH-
TejibHO onpeAejieHHan W-HHBapHaHTHan KBaAparanHan $opMa, M p e m e m a n 
eBKjiHAOBOM npocTpaHCTBe, cooTBeTCTByK)ii;aH (j)opMe / . OpoH3BeAeM pa36neHHe 
npocTpaHCTBa Rn Ha CHMnjiHunajibHbie yrjibi c BepiiiHHofi B Hanajie KoopAHHaT, 
HHBapnaHTHoe oraocHTejibHo rpynnu W H TaKoe, HTO Ka>i<Abift cHMnjiHunajibHbiH 
yroji HaTHHyT Ha OCHOBHOH penep pemeran M. Tanoe pa36neHHe MO>KHO nojiyHHTb, 
HCXOAH H3 3Be3Abi flejioHe pemeTKH M. flycTb {B} MHOH<ecTBO OCHOBHHX penepoB 
AaHHoro pa3ÔHeHHH. PaccMaTpHBan c Ka>i<AbiM MHOMCCCTBOM B H Bee ero nacra, 
nojiyHHM HeKOTopbift CHMnjiHUHajibHbifi KOMnjieKC, KOTopbiH, corjiacHO ^eMa3iopy 
[10] onpeAejineT Z-cxeMy X KOHeHHoro THna, co6cTBeHHyio H neocöyio. 
rpynna W AeficTByeT na X ÖHperyjinpHO H TOHHO. X coAepMŒT TpHBHajibHbift Top 
G% B KanecTBe OTKpbiToro noAMHOH<ecTBa H AeöcTBHe WHa ^HHAyUHpyeT aBTO-
M0p(j)H3M Topa G?n. npeAnojioKHM cHanaJia, HTO X npoeKTHBHan cxeMa, TorAa 
AJIH Jiioßoro nojm k MHoroo6pa3He X ®k HBJineTCH Heoco6biM npoeKTHBHbiM. 
ECJIH L/k HopMajibHoe pacuiHpeHHe c rpynnofi Tajiya 77 H A :J7-> WnpeACTaBJieHne, 
TO h onpeAejineT Top T H Heocoôyio npoeKTHBHyio MOAeJib V BTOTO Topa Kai< k-
(})0pMbi G% H X ® k. HencHO, BcerAa JIH MO>KHO BbißpaTb W-uoflßjih ,ZJeMa3iopa 
Topa G% npoeKTHBHoft HaA Z . B cjiynae nojioncHTejibHoro OTBeTa MH nojiyHHM 
MeTOA nocTpoeHHH npoeKTHBHbix Heocoßbix MOAeJieft ajireopannecKHX TOpOB HaA 
nojiHMH xapaKTepHCTHKH p > 0. ECJIH X coôcTBeHHan, HO He npoeKTHBHan, TO B 
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xapaKTepncTHKe Hyjib MO>KHO CHanajia nepeftTH K nojiHOMy MHoroo6pa3Hio X ® Q, 
a 3aTeM nocpeACTBOM KOHenHoro HHCjia MOHOHAHHX npeo6pa30BaHHft nepeftTH K 
npoeKTHBHOMy MHoroo6pa3Hio Y HaA O. Ba>KHO, HTO Kjiaccbi WK-MOAyJieft [Pic X] 
H [Pic Y] coBnaAaioT. B pa3MepHOcra 2 ABe MOAejiH #eMa3iopa: P 1 x P 1 H 
noBepxHocTb AeJib-Ileimo CTeneHH 6. ^ByMepHbie Topbi paijHOHajibHbi. B pa3Mep-
HOCTH 3 MO>KHO OrpaHHHHTbCH 4 MOAeJIHMH ^eMa3K)pa COOTBeTCTByiOÎ HMH 
MaKCHMajibHbiM HeconpH^eHHbiM noArpynnaM rpynnbi GL(39 Z). 3Aecb ne Bce 
TOpbi pau,HOHajibHbi HaA nojieM onpeAejieHHH. 

B 3aKjiK)HeHHe ocTanoBHMCH Ha npHMeHeHHH AaHHOft TeopHH K npoôjieMe paijHO-
HajibHOCTH nojieß HHBapnaHTOB KOHenHbix aöejießbix rpynn, o neM y>i<e ynoMH-
najiocb Buanajie. FlycTb M = k(xh -",xn) nojie paunoHajibHbix fyyuKuym OT n 
nepeMeHHbix. G KOHenHan rpynna, jiHHeftHO AeficTByioman Ha BeKTOpHOM npoc-
TpaHCTBe, HaTHHyTOM Ha (j)yHKijHH xi9 •••, x„. B 1969r. CyoHOM [2] ôHJIH nojiyneHbi 
nepBbie npHMepbi nojieft HHBapnaHTOB KOHenHbix rpynn, He HBJIHIOIHHXCH paijno-
HajibHbiMH. CyoH paccMaTpHBaji rpynnbi, UHKJIHHCCKH nepecTaBjiniomne sjieMeHTbi 
6a3Hca xi9 ••-, xn. nepBbift e ro KOHTpnpHMep nocTpoeH AJIH n = 47. 3 T H M öMJIO 

AaHO OTpHLuaTejibHoe peiueHHe cTapoft npoßjieMbi 3 . HeTep. B TO yae BpeMH, 
3aHHMancb npoßjieMoft paijHOHajibHOcra ajireopannecKHX TOpOB, aBTOpy yAajiocb 

nOCTpOHTb npHMepbl TOpOB C RHKJIHHeCKHM nOJieM pa3JI0>KeHHH, KOTOpbie He 
HBJiHJiHCb pauHOHajibHbiMH HaA nojieM onpeAejieHHH. OKa3ajiocb, HTO STH Topbi 
oneHb TecHO CBH3aHbi c nojiHMH, KOTOpbie paccMaTpHBaji CyoH. Bojiee TOHHO nojie 
MG c aöejießoft rpynnoft G MO>KHO peajiH30BaTb KaK nojie paijHOHajibHbix (JDyHKunft 
Ha HeKOTOpoM ajire6paHnecKOM Tope [11], [12]. Hcnojib30BaHHe TopoB no3BOjinjio 
aBTOpy noKa3aTb, HTO Heo6xoAHMoe ycjiOBHe paijHOHajibHOCTH, nojiyneHHoe 
CyoHOM, HBJineTCH H AOCTaTOHHbiM. HeAaBHO 3HAO H MHHTa nojiynnjiH ôojiee 
oéiJUHH pe3yjibTaT, OTHoenmnftcH K cjiynaio aôejieBoft rpynnbi, AeftcTByioineft 
peryjiHpHO [7]. HecKOJibKO no3>Ke aHajiorHHHbie pe3yjibTaTbi nojiynnji JleHCTpa 
[13]. npHBeAeM OAHH H3 Hanôojiee HpKHX pe3yjibTaTOB. 

TEOPEMA 6. IJycmb (Q, n) noAe iineaptianmoe zpynnu, ufiKAmecKU, nepecmae-
AHiomeä dAeMenmbi 6a3uca xi9 •••, xn noAH Q(x\9 •••,*„). JJAH mozo, nmoóu 
(Q9 n) 6UAO paUfUonaAbHbiM neoôxoduMO a docmamoHHo, Hmo6u eunoAHHAucb 
yCAOBUH 

(1) n # 0 (mod 8), 
(2) ôAH ecHKozo q = pm

9 q\n KOAbup Z\L>^q)\ codepoictim ZAaeuuit udeaA p, Np 

= P. 

H3BecTHO, HTO nojie (Q, p) ne paunoHajibHO AJIH 6ecKOHenHoro MHOH<ecTBa 
npocTbix HHceji [12], [13]. BO3MO>KHO, HTO nojieft (Q, p) c ycjiOBHeM paijHOHajib-
HOCTH TOJibKO KOHeHHOe HHCJIO. 
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Galois Module Structure and Artin L-Functions 

A. Fröhlich 

1. Normal integral bases. Throughout L and K are number fields of finite degree 
over the rational field Q, with rings of integers D, and o, respectively. L is normal 
over K with Galois group Gal (L/K) = 71. We shall be interested in the structure 
of D as a Galois module, i.e., as a module over the group ring 0(F). Specifically 
one can ask whether there exists a NIB ("normal integral basis"), i.e., whether D 
has an o-basis of form {aï} (T e 71), or equivalently whether D = o(r) as Galois 
module. The local problem was settled by E. Noether (cf. [N]). Namely, Qp ^ op(7

7) 
if and only if the maximal ideal p of o is at most tamely ramified in L. Here 
the subscript p denotes localisation. Thus tame ramification of L/K is necessary 
for the existence of a NIB. For K = Q, i. e., o = Zthis condition is also known 
to be sufficient in the following cases: (i) T7 Abelian (cf. [H]), (ii)p is an odd prime 
and r is dihedral of order 2p (cf. [Ml]), or more generally is a subgroup of the 
group of linear transformation x \-+ ax + b over the field of p elements, (iii) 71 

is dihedral of order 2n. The first examples for tame extensions L/Q without NIB 
were given by Martinet (cf. [M2]) for T7 = 778, and in fact there are infinitely 
many of these (cf. [F2]). Here and in the sequel we shall write 

(1.1) Him = gp [a, z\(Tm = T\T* = 19 zaz~l = a'1] 

for the quaternion group of order 4m9 as given by generators and relations. 

2. The locally free classgroup (cf. [J], [SE], [RU], [Wa], [F5]). The class group 
Cl(o(77)) is a finite abelian group, whose elements (M) are classes of locally free 
rank one o(77)-modules M (i.e., finitely generated o(71)-modules, with Mp £ op(7

7) 
for all p). Here (M) = (N)9 precisely when M and N are stably isomorphic, i.e., 
M e rXT7) £ N e o(7T). 
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We shall throughout view L as embedded in the complex field C. Let (J) run 
through the "irreducible ^-characters", i.e., the characters of T7 corresponding to 
the simple 7T(71)-modules, Then 

(2.1) K(D = T\A<I> 

where A$ is the simple 7£-algebra corresponding to <f>. Let 

(2.2) Fj = centre (A$. 

FQ is a number field. Denote by 7^ the group of fractional ideals in F$ prime to 
card(71). Then the reduced norm induces an isomorphism 

(2.3) CIO*/1)) S (Il I^JH 

for a certain subgroup 77, which in turn contains a product n^ H\, with H J an 
admissible subgroup of 7 ,̂ in the sense of classfield theory. If under this isomor­
phism (M) maps onto the class of {cty} (cty e 7 )̂, we shall call {ct̂ } a family 
of invariants of M. 

One knows that 77 c fj^ 7^, where P^ is the subgroup of principal ideals (a) 
in 7 ,̂ with a positive at all real primes ramified in A^. Accordingly we have a sur-
jection 

(2.4) ci(o(r)) - n ( W 

onto a product of classical ideal classgroups. The group on the right may be identi­
fied with Cl(30ï), 9J? a maximal order in K(D containing o(77), and the map (2.4) 
is then given by extension of scalars. We denote its kernel by £>(o(71)). 

3. Galois module structure and resolvents. We shall generalise the Lagrange 
resolvent. Let % be a character of T7. Choose a matrix representation Tof T, cor­
responding to x with algebraic coefficients. Let a be an element of L generating a 
normal basis, i.e., so that aK(D = L. We define the resolvent by 

(3-D («|Z) = de t ( i : «^ ( r ) - 1 ) 

This is a nonzero algebraic number, clearly independent of the particular choice 
of T. The properties of these resolvents (Galois action, reduction mod/?, signature 
in case of real characters) are important for what there is to follow, but we shall not 
go into these here (cf. [Fl], [F7]). We only note that (a\%) e L (%)9 where we shall 
always write F(^) for the extension of a number field by F adjoining the values of 

We now impose the condition 

(T) L/K is at most tamely ramified. 

By (T) the o(71)-module D is locally free, hence defines an element (D) e Cl(o(77)). 
To describe it, let (D|%) be the module over the ring oK(x) of integers in K(%)9 gen­
erated by the (a\%) with a e D. This is finitely generated, rank one over oK(X). 
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Choose now i e l s o that bK(r) = L and in addition èop(7
7) = Dp, for all p 

dividing card(77). Then 

(3.2) S = (D\x)(b\xYl 

is a fractional ideal in K(%)9 prime to card (T7), and for all a e Gal(7£ (#)/#), 

(3.3) 62 = 6,.. 

Let (j) be an irreducible 7£-character, % an absolutely irreducible character con­
tained in (j). Then, with 7^ as in (2.2), there is a unique isomorphism g%\F$ £ 
AT(̂ ) over #, so that % = gx o (reduced trace y4̂  -+ 7^). It follows from (3.3) 
that the fractional ideal cty = gx

 x(bx) solely depends on <]). Clearly cty e 7̂ . With 
the fixed choice of b e L, as above, we now have (cf. [F8]) 

THEOREM 1. {cty} is a family of invariants ofD. 

4. Resolvents, conductors and L-functions. Let X be the complex conjugate of #. 
Let (D|Jö(D|Z) be the module of sums 2 a4bi9 a{ e (D|%), b{ e (D|%). Write f(z) for 
the Artin conductor of %. This is an ideal of K. Then we have (cf. [F8]) 

THEOREM 2. (D|Z)(D|Z) = oKix)\(x). 

Next let W(x) be the Artin root number, i.e., the constant in the functional 
equation of the Artin L-function. For every real prime p ofK, denote by n(x, p) the 
number of eigenvalues - 1 , under %9 of a Frobenius element for p in T7. Write 
Woo(%) = i~En(x,p) (sum over p). Then the "Galois Gauss sum" r(%) of Hasse is 
defined by 

(4.1) <u(x) = W(x)W00(x)-1N\(x)i/2, 

where we take the positive square root of the absolute norm N\(x) of the conductor. 
There is a natural extension of the norm map K -> Q to resolvents. Let G run 

through the embeddings K -> C. Then J\ff (a\xa~x)a, with each G extended to L(x)9 

depends on the choice of these extended embeddings only to within a root of unity 
in 0(%). Therefore the oQC2)-module generated by the n^lz*7 )*» with a e D, will 
not depend on any arbitrary choice. We denote it by N((D|%)) (the norm of (D|%)). 
We have (cf. [F8]) 

THEOREM 3. N((D\x)) = OQ(X)T(X). 

COROLLARY. In the case K = Q9we have (D\x) = O0(X)T(%). 

The proofs of Theorems 2 and 3 are based on the theory of "module resolvents" 
and "module conductors" (cf. [F6]). This theory is itself not restricted to the tame 
case. The procedure is to prove the results for abelian characters #, and then to 
establish and to use the functorial properties of the various character functions, in 
particular under induction of characters. 

5. Applications. Let K = Q. By the corollary to Theorem 3, the cty as defined in 
§ 3 are principal ideals. Using, moreover, the appropriate properties of the T(X) and 
the (a\x) at infinity one can show that cty e P^. Hence 
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THEOREM 4. In the case K = Qwe have (D) e 7)(Z(77)). 

Thus on extension of operators to a maximal order 9JÎ, the module D becomes 
stably free (Martinet's conjecture). The same result was proved by Cougnard (cf. 
[C]) for 71a/?-group or T7 = 774/>, without assuming tame ramification. 

If r is dihedral of order 2n then D(Z(r)) = 1 (cf. [FKW]). Hence there exists a 
NIB as asserted in § l(iii), 

Analogous methods, using congruence properties of the T(X) and the (a\x), yield 
result §1 (ii). Moreover these methods, based on the corollary to Theorem 3, also 
give a better insight into the relation between root numbers and Galois module 
structure (see next section). 

Another consequence of Theorem 2 : If there exists a NIB for L/K then J(^) 
becomes a principal ideal in K(x). 

6. Rootnumbers. Here condition (T) is not required. Let now x ^ e real valued. 
Then W(x) = ± 1. 

THEOREM 5. If'x is the character of a real representation then W(x) = 1 (cf. [FQ]). 

This was conjectured by Serre. 
In view of the last theorem the problem of the value of W(x) for real x essentially 

reduces to quaternion characters, i.e., characters ^ of a representation of some 
quaternion group 774w (cf. (1,1)) given by 

(.? î) *~(o 14 
with 7j a primitive 2<7th root of unity. We shall write d = d(x). Note for future ref­
erence that two such characters x and xl are conjugate over Q precisely when 
d(x) = d(xl). For any given basefield K there then exist infinitely many pairs 
(L/K, x), X a quaternion character of G&\(L/K), with W(x) of prescribed sign— 
even with additional arithmetic "boundary conditions" prescribed (cf. [F3]). 

The possibility of an arithmetic interpretation of W(x) arises in the tame case, 
in view of 

THEOREM 6. Let L/K be at most tamely ramified and let x and x1 be real valued 
characters ofGdMJL/K), which are conjugate over Q. Then W(x) = W(xx) (cf. [F3]). 

From now on we shall again impose condition (T), and assume that K = Q. 
The first Galois module interpretation was found for 778 (cf. [F2]). Here we describe 
one for 774/r, / an odd prime, r = 1. (See [F4]; the original impetus for this came 
from [Q], where the case 4/ r = 12 was dealt with, although in different language.) 
With each 7 = 1, •••, r9 one can associate a surjective homomorphism Oj : 
D(Z(H4lr)) -» ± 1. These 6j are independent, and as S. Wilson has recently 
shown (cf. [Wi]) they generate the dual of the 2-primary part of D(Z(H4r)). If 
Gai(L/Q) = 774/rwe shall write Uj(L) = 0/D). On the other hand there are exactly 
r conjugacy classes of quaternion characters ^, according to the value of d(x), 
and accordingly we get r root numbers W(x) = Wj(L)9 where V = d(y). Then 
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THEOREM 7. (i) If I = - 1 (mod 4), then Uj(L) = Wj(L). 
(ii) If I EE 1 (mod 4), then Uj(L) = 1. 

As we see, there is no interpretation of Wj(L) in the case / = 1 (mod 4). A similar 
phenomenon occurs for 772-, n > 3. One is thus led to consider more structure on 
D. 

7. The Hermitian classgroup. We now consider triplets (M, V9 h)9 where, as be­
fore, M is a. locally free rank one o(77)-module, V = M ® „ K9 and h : V x V-> K(r) 
is a nonsingular Hermitian form, with respect to the involution of K(r) over 
K, given by y H* y*1. In this situation (and more generally for orders with involution) 
one can define a Hermitian classgroup HCl(o(71)), again an abelian group. The 
language of Hermitian forms over K(r) is equivalent to that of quadratic forms 
over K, which are 77-invariant. In particular we now obtain a triplet CL = (D, L9 A), 
where 

h(a,b) = Et(a-(br))r-\ 
7 

with / : L -> K the trace. One can then derive interpretations of (i) the Artin con­
ductor j"(̂ ), (ii) the conductor exponents n(x, p) mentioned in §4 (cf. [F7]) and (iii) 
the root numbers W(x) for T7 = 774w and for K = Q all in terms of this element 
CL of HC1(Z(77)). We describe briefly the last of these. 

Firstly to each divisor d of m9 d > 1, there corresponds a Q-conjugacy class of 
quaternion characters x with d = d(x). We shall denote the associated root 
number by W(d9 L)9 indicating also the field L. For convenience we shall write 
W(l9 L) = 1. 

On the other hand, using properties both of the T(X) and the (a\x) one can show 
that CL belongs to a certain subgroup F of HCl(Z(774w)). Corresponding to each 
pair d, s of positive divisors of m, with d = slr

9 /a prime and (s9 /) = 1 one obtains 
a homomorphism pdtS : HCl(Z(774w)) -> (20/Srf)*, where 3fd is the ring of integers 
in the maximal real subfield of the field of dth roots of unity and Sd the product 
of prime ideal divisors of / in %9 and * denotes the group of units. Then one has 

THEOREM 8. p,dtS (CL) = W(d, L)/W(s9 L) mod S. 

A more detailed examination of these maps can explain the difference between 
the primes 1=1 and / = — 1 (mod 4), appearing in Theorem 7. One then gets a 
commutative diagram 

PVA wo* = (z/izr 
I - 1 

I 2 

D(Z(H4l,))—^ ± 1 

(REMARKS ADDED MAY 1975. (i) There are now general theorems, with Q replaced 
by any number field K and with 774/, by any Galois groups, of which Theorems 
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7 and 8 are special cases, (ii) Cougnard's results now extend to certain other 
metacyclic groups.) 
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The Distribution of Sequences in Arithmetic Progressions 

C. Hooley 

1. Introduction. The subject of prime numbers in arithmetic progressions has 
certainly been of interest since Legendre enunciated his celebrated theorem on 
ternary quadratic forms in 1785, his demonstration having assumed that there 
exist primes in any arithmetic progression whose terms are coprirne to the common 
difference. Although Gauss subsequently established Legendre's theorem uncondi­
tionally by other means, Legendre's method was vindicated by Dirichlet when the 
latter proved in 1837 the famous theorem to the effect that admissible arithmetical 
progressions—that is to say, those whose terms are coprirne to the common dif­
ference—contained infinitely many primes. Subsequently it has been realized that 
Legendre's theorem is but one of many interesting arithmetical theorems that are 
related to the theory of primes in arithmetic progressions, there being several im­
portant unproved conjectures for whose solution we await further developments in 
the latter theory. In like manner there are important applications to the theory of 
numbers of results about the distribution in arithmetic progressions of sequences 
other than that of the primes. 

After briefly summarizing the more important earlier work in the subject in order 
to put the main substance of our survey in historical perspective, we propose to 
discuss some recent developments which not only have already had some applica­
tion but which also seem to be of interest when viewed purely as part of the theory 
of sequences in arithmetic progressions. To this end it is appropriate to introduce 
at once the customary notation 

% (x; a9 k) = 2 1, 0 (x; a9k) = E log p9 
p&x\p=a mod k p^x\p=a mod k 

where the summations are over positive primes/?, it being familiar that it is normal-
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ly immaterial whether results are expressed in terms of it(x\ a9 k) or 0(x; a9 k).1 

We also always assume that (a, k) = 1, and define E(x; a, k) by 
E(x; a9 k) = 0(x\ a9 k) — xj<j>(k). 

Dirichlet's result, which may be expressed in our notation as 6(x; a9 k) -» oo as 
x -> oo, was followed by the asymptotic formula 
(1) 0(x',a9k)~x/<j>(k) 
obtained by de Vallée Poussin in 1896. Later work centred round the two questions 
of the degree of accuracy with which (1) represented 0(x; a, k) and of the uniformity 
of (1) with respect to k. The Siegel-Walfisz theorem, for example, gave 
(2) E(x \a9k) = 0(x exp( - c Vïôgx)) 

for k < log'4*, while a result due to Titchmarsh gave 
E(x;a9k) = 0(xl/z log2*) 

on the supposition of the extended Riemann hypothesis (to which, for brevity, we 
hereafter refer as E.R.H.). Here we should remark in passing that it never seems to 
have been subsequently noticed that Titchmarsh's result can be easily improved to 

E(x; a9 k) = 0(xU2 logxlog {2x1/2/0(*O}) (^ < *1/2)> 
in which form it leads to the validity of (1) for large values of x whenever k is 
less than about x1/2/log x. These results were augmented and complemented in the 
middle of the past decade by the important Bombieri-Vinogradov theorem, which 
asserted that, for any assigned positive constant A9 there exists a positive constant 
B such that2 

S bd \E(y; a,k)\ <x log-^4* 
mQ 0<a£k;y£x ' ' 

for Q < x1/2log~Bx. It would be superfluous for us to dwell here on the importance 
of this theorem in view of Professor Chandrasekharan's comments on Professor 
Bombieri's work in his article in these PROCEEDINGS. Suffice it then to mention that 
the theorem asserts, roughly speaking, that (1) holds almost always for values of 
k nearly up to xin

9 the consequence being that it has often proved to be an effective 
unconditional substitute for Titchmarsh's result in applications. 

The results so far described lose all significance when k > x1/2. If, however, we 
waive the requirement of asymptotic equality and are content with meaningful 
upper bounds, then we have the useful Brun-Titchmarsh theorem, which can be 
proved in the form 

(3) % (x\ a9 k) < (2 + e)x/{<f>(k) log (2x/k)} 
by an easy application of Selberg's sieve method. Thus, for values of k as large as 
xl~v9 the sum %(x\ a, k) is of the expected order of magnitude x/{<f>(k)log x}9 

although the constant implicit in the statement becomes large as t] becomes small. 
The result does not, however, reflect the anticipated size of %(x\ a, k) for larger 
values of k such as x log~rx. 

*0r the associated </>(x; a, k) whose use here we avoid. 
zThe condition (a, k) = 1 remains implicit in all summations involving k. 
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2. The Brun-Titchmarsh theorem for the larger values of k. We conclude from the 
above summary that the extension of Bombieri's theorem to cover values of Q as 
large as x1"5 is a desideratum in the theory. In the absence of such a generalization, 
it is therefore of interest to investigate whether (3) can be substantially improved for 
nearly all values of A: up to a limit almost as large as x. Recently, in this direction, 
the author [2] proved the following 

THEOREM 1. Let a be a fixed nonzero integer. Then almost all numbers k have the 
property that 

% (x; a, k) < (4 + e)x/{<f>(k) log k] 

for all values ofx exceeding k log34/:. 

If the exponent 34 in log k is replaced by a larger number B9 then the method used 
also leads to sharp estimates for the measure of the exceptional set of k in which 
the inequality fails. 

To interpret the result, we should note in particular that when x is large we obtain 
TC(X; a, k) < (8 + e)x /{<j)(k) log x} for nearly all k between xl/2 and x log-34*, an 
inequality in which 8 can be replaced by 5 by the method given in [2] and an earlier 
paper [1]. Thus, in a suitable sense, we have achieved an inequality for %(x\a9 k) 
of the required order of magnitude for values of A: as large as x log-34*. 

A few comments on the method are in place. In Selberg's upper bound method 
we use a nonnegative function of n which is equal to 1 when 77 is a prime number 
exceeding £ and which is of the form ]£d\npd9 where pd = 0 if d > £2. Thus, by the 
usual reasoning, 

(4) * ( * ;« , * ) S - Ì + s £p« = -f + i r £ •*£ + <*&, 
K> n^x; n=amodk din K K> (d,k)=l a 

in which we are constrained to limit £ to (x/k)in~e in order to obtain a meaningful 
result, there being a consequent diminution in the efficacy of the ensuing inequality 
when k is large. Yet we would suspect that a better result is true because the 
estimate 0(£2) for the remainder term in (4) is probably too large. We therefore 
consider, along the lines of Linnik's dispersion method, an expression of the type 

Jt^2Q \n^x; n=amod k d\n K (d,k)=l « / Q<k^2Q 

in order to show that the remainder term is usually smaller and that therefore 
larger values of £ can usually be chosen. We should notice here that pd must be 
independent of k so that the minimal property inherent in Selberg's method cannot 
be retained. This, however, is not important, and we have here an example of the 
enveloping sieve—a term due to Linnik to express a similar application of the idea 
by the author to the Hardy-Littlewood problem about numbers as the sum of 
two squares and a prime. 

3. Theorems of the Barban-Davenport-Halberstam type. Results about larger 
moduli k are also supplied by theorems of the Barban-Davenport-Halberstam type, 
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which are concerned with the adjusted variance 

and the sum 

G(x9k) = S E2(x\a,k) 
0<<zêk 

H(x, Q) = S G(x9 k). 

The fundamental result in this theory is the following theorem, due essentially 
to the independent work of Barban and of Davenport and Halberstam. This is 
stated here in the improved form given by Gallagher. 

THEOREM 2. For Q ^ x and for any positive constant A, we have 

H(x, Q) = 0(Qx log x) + 0(x2 log^x). 

The main importance of the theorem of course lies in its assertion that almost 
all moduli k between x log~^ and x are such that (1) holds for almost all residue 
classes a, modulo k. 

Previously, apart from earlier large sieve results to prime moduli which were the 
harbingers of this theorem, the only other known theorem of this type was the con­
ditional estimate 

(5) E E2(x; a9 k) = 0(x log4*) 

that was obtained by Turân on E.R.H. Although the latter is weaker in some re­
spects than Theorem 1, the author [3] has noted that it can be utilized in combina­
tion with Gallagher's method in order to obtain 

THEOREM 3. For Q ^ x9 we have 

H(x9 Q) = 0(Qx log x) + 0(x*<2 log3 x) 
on E.R.H. 

Thus (5) can certainly be improved on average for k > x1/2. Later, however, we 
shall see that such improvements can be effected in a more precise sense over certain 
ranges of k. 

In 1970 Montgomery [10] obtained a striking improvement in Theorem 2 in which 
the upper bound was replaced by an asymptotic equality. This work had, however, 
been partially anticipated by Barban, who had enunciated the result for the special 
case Q = x. Montgomery's results, as improved and augmented by his later work, 
are given by 

THEOREM 4. For Q ^ x9 we have 
(i) H(x9 Q) = Qx log Q + 0(Qx) + 0(x2 log"**), 
(ii) H(x9 Q) = Qx log ß + 0(Qx) + 0(xi<*+*) 
on E. R. H. 

The proof depends intrinsically on the equation 

X' •2 G(x9 k) = S 62(x; a9 k) - - f ^ + 0(x2 log-^x), 
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in which the first sum on the right-hand side is equal to 

(6) 2 log2/?+ 2 2 2 log/? log/?' 
p^x OKa^k p'<p^x\p=p'^a mod k 

(1) = x log x + 0(x) + 2 2 log/? log//, 
p-p'-ik^x 

the summation in the final sum being over /?, p'9 and positive integers /. Mont­
gomery then writes this final sum as 
(8) 2 {J(x,lk) + K(x,lk)}9 

mx/k 

where J (x, m) is the usual heuristic estimate for the sum 

2 log/? log/?'. 

The contribution of J(x9 Ik) to the problem through (7) and subsequent summa­
tion over k is then in principle easy to assess, whereas the effect of K(x9 Ik) is 
handled by Lavrik's theorem on the mean-square value of K(x9 m). 

Montgomery's treatment lies deep because Lavrik's theorem is of the same order 
of sophistication as Vinogradov's theorem. The author [3], however, has developed 
an alternative proof that depends only on the comparatively simple large sieve 
inequality and theSiegel-Walfisz theorem (2). In sketching the ideas behind this 
proof, we note first that Theorem 2 implies that it suffices to estimate the contribu­
tion to H(x9 Q) due to values of k exceeding a number Qt that is not much smaller 
than Q. Summation of (7) over these values of A: then gives rise to a sum of the form 

2 log/? log/?' 
p-p'=lkêx 

in which the variables of summation are /?, p'9 l9 k and in which / in particular is 
subject to the condition / < x/Q\. Since this sum possesses a certain symmetry in 
terms of /, k9 it is then possible to utilize in reverse the transformation that took (6) 
into (7) save that / and k exchange rôles. The modulus / in the counterpart of the 
final sum in (6) being small, the estimations can then be completed by appealing 
to (2). 

Theorem 4 by no means exhausts the potentialities of either method, there being 
several applications to which we shall presently refer. Since, however, the two 
methods differ in character, it frequently happens in any given situation that the 
balance of advantage lies decisively with one of the methods. 

The author's method, for example, leads to the following improved version of the 
second part of Theorem 4 [4]. 

THEOREM 5. On E. R. H. we have 

H(x9 Q) = Qxlog Q + 0(Qx) + 0(x3/2+*) 
for Q^x. 

It also leads to 
THEOREM 6. We have 

2 £ 2 E\x\ a9 Jfc)' = o(Q*'2x*/2 log3/2x) + 0(x* log-^jc) 



362 C. HOOLEY 

provided that Q/x -> 0 as x -» oo. 

These results when considered together are tantalizing in that they suggest that 

(9) G (x9 k) ~ x log k 

and that 

E(x; a, k) 
{(* log kW (*)}I'« 

may have a distribution function, subject to any obvious qualifications that may 
have to be made. Yet the evidence supplied is weakened because in the theorems 
quoted so far the value of x remains constant with respect to the variables of 
summation. It is, therefore, of interest that further supporting evidence for such 
conjectures is supplied by the following theorem, which can be derived by a de­
velopment of Montgomery's method [6]. This is quoted in conditional form for 
effect, although the same method leads to a much weaker unconditional version. 

THEOREM 7. On E.R.H. we have 

(i) 2 bd G(y9k)~Qx\ogQ 

provided that x4/5+e < Q <L x; 
(ii) almost all numbers k have the property that 

G(x9 k) = xlogk + 0(xlogi/2k) 

for all x such that k ^ x g k*n+£. 

This theorem should be compared with Uchiyama's interesting bound [11] 
2 2 bd E2(y;a9k) = 0(ß*log3*) + 0(x2 log-**), 

k^Q 0<a^k l^yûx 

an improved form of which is given by the following 
THEOREM 8. We have 

2 2 bd E2(y; a, k) = 0(Qx log x)9 ifx log-i* g Q ^ x9 
k-Q 0<a-k a-y-* = 0(Qx log x (log log x))\ ifx log"^< Q < x log-**. 

Here it would be desirable to discover whether we could dispense with the factor 
(log log x)2 in the second estimate. 

Before quitting the subject of the Barban-Davenport-Halberstam theorem, we 
remark on the apparent anomaly whereby theorems of this type have so far only 
been obtained for values of k larger than x1/2 while the asymptotic formulae de­
scribed in §1 are only significant for values of k less than x1/2. Modest progress for 
the smaller values of k can, however, be made with theorems of the type considered 
in this section. We can prove [7], for example, the following theorem, which is con­
sistent with the conjecture (9). 

THEOREM 9. On E.R.H. we have 

j fl';*> dt = 0Gog*logifc). 



DISTRIBUTION OF SEQUENCES IN PROGRESSIONS 363 

We can also obtain an extension of Turân's estimate (5) that is related to The­
orem 8 [8]. 

THEOREM 10. On E.R.H. we have 

2 bd E2 (y; a9 k) = 0(x log4*) 

for k g x. 

4. Other sequences. We end with a brief discussion on the application of these 
ideas to other sequences. 

In considering possible generalizations of the Barban-Davenport-Halberstam 
theorem to other sequences, we should observe that the original form of the 
theorem implies a weakish form of the prime number theorem for arithmetic pro­
gressions. Likewise a sequence cannot possess a Barban-Davenport-Halberstam 
property unless it is well distributed among arithmetic progressions with small 
moduli. However, it can be shown that an analogue of the theorem always holds 
provided that this obvious necessary condition obtains [5]. 

The Bombieri-Vinogradov theorem, on the other hand, is not susceptible to an 
analogous generalization unless additional stringent hypotheses about the sequence 
are made. Here we confine our remarks to the square-free numbers, which perhaps 
constitute the case next in interest after the primes. 

Let S(x; a9 k) be the number of square-free numbers not exceeding x that 
are congruent to a mod k. Then Prachar has obtained an asymptotic formula for 
S(x; a, k) that is significant forfc ^ x2/3~e

9 while Orr has subsequently derived a 
Bombieri-Vinogradov type theorem for S(x; a, k) in which, however, the range of 
significance is still limited to values of k not exceeding about x2n. Although 
Prachar's formula is almost certainly true for k ^ *1_e, the problem of extending 
the range of validity beyond k = x2n seems to present considerable difficulty. 
Partial progress, however, has been made by the author [9] by means of 

THEOREM 11. Let Q ^ x*n~B. Then, for a positive proportion of moduli k satisfying 
Q < k < 2g, we have 

for all residue classes a mod k coprirne to k, 
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TpyAH Me>KAyHapOAHoro KoHrpecca MaTeMaTHKOB 
BaKHyBep, 1974 

TpHroHOMeTpHHecKHe CyMMbi H HX npHMeHewiH* 

A. A. Kapau,y6a 

MHorHe npoôjieMbi aHajiHTHnecKoft Teopnn Huceji npHBO^HT K KOHCHHUM 
cyMMaM BH^a 

(1) S = S(N\ F)= E e2«w»\ 

r ^ e F(n)—AeftcTBHTe^ibHaH ^yHKUHH HaTypajibHoro apryMeHTa n. K TaKHM npo6-
jieMaM OTHOCHTCH npoöJieMbi noBeAeHHH ApoÔHbix AOJICH pa3JiHHHoro BH/œ 
4)yHKUHH, aAAHTHBHbie npoßjieMbi, npoôjieMbi acHMiTTOTHHecKoro noße^eHH« 
Cpe^HHX 3HaHeHHH apH^MeTHHeCKHX 4>yHKUHH H £p. 

0#HHM H3 CaMblX Ba>KHbIX BOnpOCOB OTHOCHTeJIbHO CyMM (1) HBJIHCTCH Bonpoc 

o BepxHefi rpaHH Mo^yjiH 5 . TpHBHajibHo 

\S\ £N. 
O^HaKO pjm iiiHpoKoro Macca ^ynKixm F(n) y^aeTCH nojiyHHTb onemcy 

\S\ ^AN9 

Tflß 0 < A < 1, â—IIOHH>KaK)mHH MHOMCHTeJIb. 
K nacToameMy BpeMem cymecTByeT ABa OôIIJHX no^xo^a K oueHKe \S\: OAHH 

H3 HHX COCTOHT B TOM, HTO S 3aMeHHeTCH HHTerpajIOM, KOTOpblH BO MHOrHX 
cjiynanx y^aeTCH AocTaTOHHO TOHHO oijeHHTb; oAHaKO STOT IIOAXOA npHMeHHM K 
oneiib y3KOMy Kjiaccy cyMM S; Apyroft IIOAXOA COCTOHT B TOM, HTO S npHÔJiHMca-
eTCH HeKOTOpofi cyMMofi T Toro >ae BUM (1), HO B KOTOpoft F—MuoroHjien. 
T a m e cyMMbi TcTajw Ha3biBaTbcn nojiHHOMHajibHbiMH HJIH cyMMaMH I \ Beftjin, 
KOTOpbift nepBbiH Aaji oßmyio oijeHKy MOAynH STHX cyMM. 

•Delivered by S.A. Stepanov. 

© 1975, Canadian Mathematical Congress 
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B 1934 r. H.M. BwHorpaAOB co3Aaji HOBHH HCKjiïOHHTejibHO TOHHHH MCTOA 

oueHOK cyMM T. BefijiH. 3 T O T MCTOA COCTOHT B TOM, HTO oijeHKa cyMMbi T, 

T = S e27cifM
9 

rAe/*(") = can + •'• + akn
k
9 CBOAHTCH K oijeHKe HHTerpajia / , 

i i 

o o 

N 
J . . . j" 2>2*"* ( w ) 

n=l 

2m 
da\ '" daky 

xki + • 
x\ + • 

• + x% = y\' + • 
• + *fc = rt + • 

•• + y& 
• + y"m> 

KOTOpblH HBJIHeTCH CpeAHHM 3HaHeHHeM 2m-H CTeneHH MOAyJIH CyMM T. ÖUßHKSL 

HHTerpajia /HBJIHCTCH OCHOBHOH B MeTOAe H.M. BHHorpaAOBa H cooTBeTCTByio-
man TeopeMa Ha3biBaeTcn TeopeMoft o cpeAHeM. 

B 1961, 1962 r r . MHOH 6HJI npeAJioxeH />-aAHHecKHH MCTOA oijeHKH BejiHHHHbi 

/ . B 9TOM MeTOAe oijeHKa / CBOAHTCH K oueHKe nncjia pemeHHH HeKOTOpofi 
CHCTeMbi cpaBHeHHH, B KOTOpoö HeH3BecTHbie npo6eraioT nojiHyio CHCTeMy Bbine-
TOB. CjieAOBaTejibHO, oijeHKH cyMM r . Beftjin, KOTOpbie, Boo6u;e roBOpn, HBJIH-
IOTCH HenojiHbiMH TpnroHOMeTpHHecKHMH cyMMaMH, nepe3 TeopeMy o cpeAHeM 

CBOAHTCH K nOJIHbIM TpHrOHOMeTpHHeCKHM cyMMaM (CM. [1]—[3]). 
/>-aAHHeCKHH MeTOA AaeT B03MO)KHOCTb nOJiyHHTb pHA HOBblX pe3yjIbTaTOB B 

Tex Bonpocax, TAG MO>KHO no-cymecTBy ncnojib30BaTb apH(j)MeTHHecKyio npnpOAy 
H3ynaeMbix Oô^CKTOB; STO, B nacTHOcra, OTHOCHTCH K AHO^aHTOBbiM ypaBHeHHHM 
BapHHroBCKoro THna [4], HanpHMep, A ™ nncjia pemeHHH CHCTeMbi HeonpeAejieH-
Hbix ypaBHeHHft BHAa 

1 û xi9 y{ ^ N9i = I ,—, m9 

B HHCJiax xi9 yi9 HMeioiHHX "Majibie" npocTbie AeJiHTejiH, yAaeTCH nojiyHHTb 
acHMiTTOTHHecKyK) (})opMyjiy npH HHCJie cjiaraeMbix m nopHAKa (kx + ••• + kr) 
• ln(ki + ... + kr). OTCK)Aa cJieAyeT TaKH<e acHMnTOTHnecKan (f)opMyjia AJIH 
HHCJia pemeHHH ypaBHenHH BapHHra 

x{ + ... + xi = N 

B HHCJiax xi9"'9xm c MajibiMH npocTbiMH AeJiHTejiHMH H HHCJiOM cjiaraeMbix m 
nopHAKa k ln k. 

npHMeHeiiHH oueHOK cyMM T. BeftjiH B npo6jieMax nopHAKa pocTa A3eTa-(J)yHK-
UHH PnMaHa H TeopHH npocTbix HHceji, a TaKme B pHAe npoßjieM acHMirroTHne-
CKOrO nOBeAeHHH CpeAHHX 3HaHeHHH apH(})MeTHHeCKHX (jtyHKLJHH H3BeCTHbI AaBHO. 
Ha 3T0M nyra nojiyneHbi caMbie TOHHbie pe3yjibTaTbi B Ha3BaHHbix npoôjieMax. 
HeAaBHO MHe yAajiocb naft™ HOBbie npHMeHeHHH oijeHOK, nojiynaeMbix MCTOAOM 
TpHroHOMeTpHnecKHx cyMM, K pHAy npoöjieM acHMnTOTHnecKoro noBeAeHHH 
cpeAHHx 3HaneHHH apH(})MeTHHecKHx (^HKIJHH H nojiynHTb npHHUHnHajibHO HOBbie 
pe3yjibTaTbi B STHX npo6jieMax [5], [6]. OcTaHOB-mocb Ha OAHOH H3 HHX—npo6jieMe 
AejiHTejieft JI. ^Hpnxjie. 
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n y c T b rk(n)—HHCJIO npeACTaBJieHHH n B BHAe npOH3BeAeHHH k HaTypajibHbix 
COMHO>KHTejieft 

n = n\ ••• nk. 

PaccMOTpHM cyMMy 

Tk(X) = S rk(n)9 

KOTOpan paBHneTCH HHCJiy HaTypajibHbix ni9 •••,«* TaKHX, HTO ni~- nk ^ X9 

ApyrHMH cjiOBaMH, HHCJiy uejibix nojio>KHTejibHbix ToneK noA fc-MepHoft ranep6o-
jiHHecKofl noBepxHOCTbio x\"'Xk- X. 3aAany 06 acHMirroraHecKoft (j)opMyjie 
AJIH Tk(X) B 1849 r . paccMOTpeji Jl. flnpHXJie, KOTopbifi AOi<a3aji, HTO 

Tk(X) = XP*_i(ln X) + 0(X<*> ln* X)9 

rAe Pk-i(u)—MHoroHJieH k - 1-H CTenenn H 

a* ^ 1 - 1/fc, A; ^ 2. 

npoöjieMa Haxo>KAeHHH HanJiynmero 3HaneHHH ak B STOH (J)opMyjie cTajia Ha3bi-
BaTbCH npo6jieMOH AejiHTejiefi ^HpHXJie. B 1903 r. V. BopOHOft AOKa3aji, HTO 

ak^\ - 2 / ( f c + l ) , kï:2; 

B 1912 r . 9TOT pe3yjibTaT noBTOpHJi aHajiHTHHecKHM MeTOAOM 3 . JlaHAay, a B 
1922 r . npH k ^ 4 ero yTOHHHJiH f\ XapAH H JX. JIHTTJIBYA-

ak ^ 1 - 3/(k + 2), fc ^ 4. 

npH ßojibiiiHX k Bee npHBeAeHHbie oijeHKH ak npHHUHnnajibHO He OTJinnaioTCH OT 
oueHKH JI. ^HpHXJie H xy>Ke, neM, HanpHMep, TaKan: 

ak g 1 - 3/fe. 

B 1971 r . H [5] AOKa3aji, HTO 

(2) ak è 1 - clW\ 

c > 0—aöcojiioTHaH nocTOHHHan. 
Cym,ecTBO Aejia COCTOHT B cjieAyiomeM. KaK H3Becrao, 

1 2 + ; ° ° ^ s X 
2~7°° 5 

<fc. 

B nocjieAHeM HHTerpajie KOHTyp HHTerpHpOBaHHH nepeHOCHT JieBee npHMOH 
Re s = 1, nojiynaioT rJiaBHbift HJieH Tk(X) H oijeHHBaioT ocTaTOK. Panbme KOHTyp 
HHTerpHpOBaHHH nepeHocHjiCH Ha "KpHTHHeci<yio" npHMyio Re s = 1/2 HJIH JieBee 
ee H Hcnojib30BajiHCb OIJCHKH £(s) m npHMOH Re s = 1/2. H 3aMeTHji, HTO B STOH 

npoôjieMe MO>KHO nojiyHHTb npHffljHnnajibHO HOBbie pe3yjibTaTbi, ecjin KOHTyp 
HHTerpHpOBaHHH nepeHecTH Ha npHMyio, AOCTaTOHHO 6jiH3Kyio K Re s = 1, H 
BOcnojib30BaTbCH oueHKOH A3eTa-(})yHKi;HH BHAa 

(3) «<7 + it) = 0(|/ |«<i-*)' M * | ) , lß£tr£ 1, \t\ ^ 2. 

OJJ^HKH (3), TAG A > 1, a > 0, T > 0-—nocTOHHHbie, nojiynaioTCH e noMoinbio 
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OIjeHOK TpHrOHOMeTpHHeCKHX CyMM MeTOAOM H.M. BHHOrpaAOBa H H3BeCTHbI c 

1937 r. Ceftnac (3) Aoi<a3aHO c X = 3/2, a ^ 20, T = 2/3, 3 T O H AaJio BO3MO>K-

HOCTb nojiyHHTb (2). 

K HacTOHineMy BpeMeHH noHBHJicn pnA paôoT, B KOTOpbix, c OAHOH CTOpOHbi, 

BbiHHCJineTCH nocTOHHHan c B (2); HanpHMep, AOKa3aHO, HTO c g 1/14, H, c Apyroft 

CTopoHbi, o6o6u;aeTCH oijeHKa (2) Ha 6ojiee LUHPOKHH KJiacc apH(J)MeTHHecKHX 

(J)yHKUHH, HanpHMep, Ha cjiynafi MyjibTHnjiHKaTHBHbix (j)yHKijHH f(n)9 f(p) = k 

AJIH npocTbixp, H \f(n)\ ^ zk(n). 
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p-Aàic Analytic Number Theory of Elliptic Curves 
and Abelian Varieties over Q 

B. Mazur 

The "/?-adic analytic number theory" alluded to in the title of my article is in a 
very beginning state: [4], [6], [2]. In different contexts, and from different points of 
view, p-adic analytic number theory has been the subject of much recent work : "the 
/7-adic analytic number theory of totally real number fields" has been developed by 
Serre [10], using work of Siegel, and more recently by Katz, and Deligne-Ribet; 
"of quadratic imaginary number fields" : by Katz, and Manin; "of modular forms 
of weight k ^ 2 for the full modular group" : by Manin [3]; "of Eichler cohomo­
logy classes associated to certain arithmetic groups" : being presently worked on by 
V. Miller. 

One exciting aspect of this emerging theory is its sheer difficulty : for example, 
no matter which elliptic curve E/Q you choose (e.g., y2 + y = x3 + x2)9 its /?-adic 
analytic number theory is hard to get to know intimately for most primes p9 either 
conceptually or computationally. 

Nevertheless, for the jacobian of the modular curve XQ(N)/Q, there are certain 
special primes1 where things are under better control, and for which a more precise 
picture is beginning to come into view. 

One obtains a number of by-products of this picture which are of independent dio­
phantine interest. Notably, as we shall discuss below, one can prove Mordell's con­
jecture for the curves XQ(N) for prime N over Q. For general prime numbers N the 
"Mordell conjecture" is proven in a bleakly indeterminate form; Ogg and I have 
been working with (and sharpening) the result, however, and have obtained an actu-

1These special primes are not rational primes, but rather certain prime ideals in the Hecke 
algebra, called Eisenstein primes. 
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al determination of the Q-rational points of XQ(N) in a great number of cases (see 
§5). 

In this article I shall try to describe some results and (terribly briefly) some 
methods in the theory of these special (Eisenstein) primes, emphasizing questions 
of diophantine interest. Full results and details will be given in [5]. 

1. Arthmetic of elliptic curves over Q. Let E be an elliptic curve defined over Q. 
The following extremely conjectural formula has been a focal point for research 
concerning the arithmetic of E/Q for about ten years, and will probably continue to 
be so for some years to come. We shall state this conjectural formula baldly and 
then we shall recall, rather than define, the terms which intervene : 

CONJECTURE OF BIRCH AND SWINNERTON-DYER. 

L*(E si 
| LU | • R = | M t o r s 1

2 • Lim , _ \J • fi cf1, I : primes of bad reduction for E9 

where M is the Mordell-Weil group of E: the group EQ of points of E rational 
over Q. This group is a finitely generated abelian group, as proved by Mordell. 
The finite subgroup Aftors of torsion elements in M is easily computed in any given 
case. The rank r of the torsion-free quotient of M is not at all easily computable, 
even in special cases. One may obtain upper bounds for r by a difficult, but mechani­
cal, procedure. 

R is the regulator of E/Q : It is the real number (probably transcendental) which 
is the discriminant of image(M) <= M ® R computed by means of the inner pro­
duct structure on M ® R coming from the 'canonical height' [12]. Intuitively, it 
is a measure of the size of the rational coordinates of a basis of the torsion-free 
part of M. 

Ci is the number of components of multiplicity one, rational over Ft on the special 
fiber of Néron's minimal model for E at /. 

IJU, is the Shafarevitch-Tate group of EjQ: It is often "yoked" to the Mordell-
Weil group in the sense that when one tries to obtain information about M, it is 
sometimes the case that one must first deal with LU,, or at least some /?-primary 
component of III,. The group UX is known to be a torsion group, and is conjectured 
to be finite. In no case, however, is III, known to be finite. 

L*(E9 s) is the Hasse-Weil L series of EjQ. See [12] for its appropriate normaliza­
tion.2 It is defined as an infinite (Euler) product, and is a Dirichlet series which 
may be seen to be convergent in the half-plane Re(s) > 3/2. This domain of con­
vergence is totally inadequate for the role played by L*(E9 s) in our above formula. 
It is conjectured that L*(E9 s) extends to an entire function. This conjecture has been 
proved in the important (and possibly general) case where E/Q is parametrized by 
modular forms. We shall make precis ewhat is meant by "parametrized by modular 
forms", below. 

2We have allowed our normalization to absorb the "real period of the Néron differential", a 
factor about which we have little to say in this article. Compare our formula with the formula of 
Conjecture 4(b) of [12]. 
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Note that the conjectured formula implies : 
Weak version of the conjecture. The rank of (the torsion-free part of) M is the 

order of zero of L*(E9 s)&ts = 1. 

2. /7-adic analytic analogues. In a recent paper [6] Swinnerton-Dyer and I have 
defined a /?-adic analytic power series LP(E9 s) e Zp[[s]] for any E/Q which is, 
again, parametrized by modular functions, and any prime p of good, nonsuper-
singular reduction for E.3 We regard Lp(E9 s) as something in the spirit of an analytic 
continuation of L*(E9 s), suitably normalized, onto the p-adic disc. In many respects 
it behaves just like the Hasse-Weil L-series of E/Q9 and we have computational 
and some theoretical reasons to expect that 

CONJECTURE. LP(E9 S) and L*(E9 s) have the same order of zero at s — 1. 
All one can show at present [6] is that LP(E9 s) (when defined) vanishes at s = 1 

if and only if L*(E9 s) vanishes at s = 1. In fact one has a precise formula relating 
their values. 

The /?-adic L-series extends to an analytic function on a disc somewhat larger 
than the unit disc (call it the extended disc) and it is interesting to consider: 

(a) the precise power of p which divides Lp(E9 s) in Z^[[s]], 
(b) the zeroes (counted with multiplicity) of Lp(E9 s) in the extended disc. 
Evidence is accumulating which suggests that one may hope for a certain arith­

metical interpretation of the information contained in (a), (b) which is analogous 
to the theory of Iwasawa and Kubota-Leopoldt. See [4], [6]. 

At the moment, nothing is known about/>-adic analogues of the regulator R. At 
first it might be reasonable to try to set up such a theory in the case where E/Q has 
complex multiplication (especially in the light of some recent results of Katz [1]). 

3. The modular curves. For any integer N ^ 1, there is a smooth projective curve 
defined over Q and usually denoted XQ(N) [11]. As a Riemann surface, one has 
XQ(N)c = U/r0(N) U cusps where U is the upper half-plane, rQ(N) a S12(Z) is 
the subgroup of matrices (° J) where c = 0 mod N9 and XQ(N)C is the compact 
Riemann surface obtained by adjoining to the quotient U/T^N) = YQ(N) the finite 
set of cusps. 

The structure of ^0(A0 over Q is related to an important diophantine problem 
in the theory of elliptic curves over number fields. Namely, if K is a number field 
in C, to any pair [CN c E] consisting in an elliptic curve E defined over K and a 
cyclic subgroup CN of order N9 rationally defined over K one may associate a 
noncuspidal point of XQ(N)9 defined over K9 

[CNczE]»eeY0(N)K. 

Moreover, any point of Y0(N)K may be obtained in this way,4 and two pairs 
[CN a E]9 [C'Ncz Ef] correspond to the same point of Y0(N)K if and only if they 
are isomorphic over C. 

3At this Congress I learned that Amice and Velu have a generalization of this theory for the 
supersingular primes/? as well. 

4See [13] and a forthcoming book of A. Ogg which will treat these issues thoroughly. 
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We may now explain the requirement that E/Q be parametrized by modular 
forms, made twice before, namely: For some TV we require that there be a surjective 
map XQ(N) -> E defined over Q. 

For the rest of our constructions, we shall be (implicitly and explicitly) study­
ing quotients of the jacobian ofX$(N). Fix N a prime number. We make this restric­
tion since our nontrivial results have only been proved for N prime, and it enables 
us to avoid discussing the technical matter of primitive (or new) forms. Let J be 
the jacobian of XQ(N)9 regarded as abelian variety over Q. 

By the Hecke algebra T <= End J we shall mean the ring of endomorphisms of / 
generated by the Hecke operators T{ for prime numbers I ^ N, and by the canoni­
cal involution w (which, on C/is z »-> — l/Nz). The Hecke algebra T is a free mo­
dule over Zof rank equal to dim / , and is a subalgebra of finite index in a finite 
product of Dedekind domains, each factor being the ring of integers in some to­
tally real number field. 

If P <= J"is a maximal ideal, let TP denote the completion of T at P. Let a c T 
denote the kernel of T -> TP. Let a-J a J denote the subabelian variety generated 
by the images of J under elements in a. 

Form J/aJ = J{p) which may again be regarded as an abelian variety defined 
over Q, and which we call the factor associated to P. The construction of p-adic 
L-series alluded to above is not restricted to the case of elliptic curves parametrized 
by modular forms but rather, with a certain twist, makes sense for arbitrary factors 
of/. For example, let P c Tbe any maximal ideal lying over the rational prime/?. 
Suppose that the Hecke operator Tp does not lie in P. Then the construction of [6] 
provides a (/?-adic) analytic power series LP(J, s). The "twist" consists in that this 
power series does not naturally lie in ZpflXI], but rather in Tp[[s]] ®r Hp where Hp~ 
is the following Tp-module. Let H = H\(JC, Z), the classical 1-dimensional sin­
gular homology group of the complex torus Jc. Let © denote complex conjugation, 
and H -> H+ the quotient by the minus-eigenspace of©. Set H% = H+ ® r TP. 

In good cases, Hp~ is a free Zp-module of rank one. 

4. Eisenstein primes. We are now ready to describe prime ideals in the Hecke 
algebra which seem to play an effective part in the study of certain arithmetic 
questions. 

We repeat that N is assumed to be prime. By the Eisenstein ideal / c fwe mean 
the ideal generated by the elements 1 + / - Tx for all primes / ^ N, and by 1 + w. 

Let v denote the numerator of (N - 1)/12. Let/? be a prime number dividing v9 

and le tp a denote the precise power of p which divides v. By the Eisenstein prime 
P a T overp we mean the ideal P = (I9 p). Using the fact that p divides v one can 
prove that T/P = Z/p9 and in particular that P ^ T. 

We can now state our results. The first main result may be loosely paraphrased 
as follows: "The Birch Swinnerton-Dyer conjecture is valid locally at an Eisenstein 
prime"". We actually have something stronger in mind: "locally with respect to an 
Eisenstein prime" each of the relevant factors of the conjectural (P-adic) Birch 
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Swinnerton-Dyer formula may be evaluated. Explicitly, we describe the evaluation 
of the arithmetically interesting factors : 

THEOREM A. Let Nbe a prime, and suppose p is an odd prime dividing v. Let P he 
the Eisenstein prime over p. 

1. (Nonvanishing of the L-series) H^ is free of rank 1 over Tp and LP(J9 \)*Tp is 
of finite index in / /£.5 

2. (Finiteness of Mordell-Weil) Jip) has only a finite number of rational points over 
Q. (This result remains valid ifp = 2, at least in the case where N = 1 mod 16.) 

3. (Torsion part of Mordell-Weil) The P-primary component of the Mor del-Weil 
group ofJ{p) is cyclic of order pa. 

4. (Shafarevitch-Tate) The P-primary component of the Shafarevitch-Tate group 
ofJ{p)/Q is zero. 

REMARKS. 1. fahat is the dimension ofJ{p) ? By part 3 of the above theorem, J{p) 

has a point of order/?". Using the Riemann hypothesis applied to J(p) over F2 one 
may conclude that dim Jip) ^ log6/?

a. Actual computation (N < 250) finds the 
J(p),s to be of significantly larger dimension than this. Indeed, factors associated to 
Eisenstein primes usually account for all or almost all of the minus-eigenspace 
of the involution w on / . 

A consequence of some of the theory developed in [5] is the following: If a = 1, 
then J(p) is an absolutely irreducible abelian variety. By appropriate choice of N 
and p, using the Dirichlet theorem on primes in arithmetic progressions, one may 
then deduce (using part 2 of Theorem A) : 

THEOREM B. There are absolutely irreducible abelian varieties of arbitrarily high 
dimensions defined over Q9 with finite Mordell-Weil group. 

We state this theorem explicitly because at present we know of no other means 
of obtaining such examples. 

2. Torsion in the Mordell-Weil group of J. If JVis a prime, then the divisor class of 
the difference (0) - (/oo) of the two cusps on XQ(N) is a point of J9 rational over 
Q, and of order precisely v = numerator (N - 1)/12, as has been shown by Ogg. 
Ogg conjectured that this point generates all the torsion in the Mordell-Weil group 
of/over Q. In the course of proving part 3 of Theorem A, we have shown the fol­
lowing: 

THEOREM C. The torsion subgroup of the Mordell- Weil group of J is generated by 
(0) - (/oo) if N = - 1 (4) or N = 1 (16). In all cases, the quotient of MiQrs by the 
subgroup generated by (0) - (/oo) is a 2-group. 

3. Finiteness of Mordell-Weil ofJ{p) over larger fields? From the explicit calcula­
tion of the P-adic L-series given in part 1 of Theorem A and from general conjec-

5A more precise formula, which depends, of course, on the normalization chosen for LP(J, I), 
will be given in [5]. Curiously, the size of this index seems to depend on whether/? is a/rth power 
modulo N. 
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tures (relating the so-called analytically defined characteristic polynomials to the 
algebraically defined ones; cf. [6]), one is led to ask a question, which may be at­
tackable, and may have an affirmative answer, at least when p is not a />th power 
mod N. 

Question. Let QW/Q be the unique Galois extension with Galois group isomor­
phic to Zp. Does J(p) have only a finite number of rational points over QiP) ?6 

4. The proper context of Eisenstein primes. Wherever there are Eisenstein series 
in the theory of modular forms, there seems to be the analogue of Eisenstein primes 
in the relevant Hecke algebra. The next task of our theory should be to make a 
systematic connection between these two notions. Among other things, this should 
encompass a study of the jacobian of XQ(N) where Nis no longer necessarily prime.7 

Especially intriguing, however, is the prospect of studying other quotient curves of 
the modular curve X(N), and modular forms of weight higher than 2. 

5. The Mordell conjecture for XQ(N) over Q. Here N remains a prime number. 

THEOREM D. Let XQ(N) have genus greater than zero. Then XQ(N) has no more 
than a finite number of rational points over Q.8 

One is after something much finer than this, though. 
PROOF BASED ON THE RESULTS OF §4. One checks, with no trouble, that the genus 

of X0(N) is greater than zero if and only if y > 1. Also, either there is an odd prime 
p dividing y, or p = 2 divides v and N = 1 mod 16. Thus, by part 2 of Theorem A 
applied to such a/7, there is always some Eisenstein prime P such that J{p) has a 
finite number of rational points over Q. Now consider 

X0(N) >J 

(*) 
j(p) 

and since XQ(N) generates J as a group and the factor Jip) is of positive dimension, 
it follows that ß must be nonconstant, and therefore a finite map of the curve XQ(N) 
onto its image. Theorem D then follows. 

In actually determining the rational points of XQ(N) for some value of N, the fun 
only begins with diagram (*). For example, if N ^ 9 mod 16 or if p ^ 2 one can 
produce a certain set A of points in Jip) which is of cardinality 2,3,4, or 5 depending 
on the congruence class of N modulo 12 (N s 1, 5, 7, or 11 mod 12 resp.) such that 
if x is a rational point of XQ(N), then ß(x) e â. 

Using this, geometric analysis of ß (cf. [8], [9]), and work of Brumer and Kramer 
on certain elliptic curve factors of/which are not associated to Eisenstein primes, 
Ogg and I have calculated the set of rational points of XQ(N) for all primes N < 250 
except for N = 53, 113, 137, 151, 227 (in the first three of these unresolved cases 
the method gives that there are either two noncuspidal rational points on XQ(N) 

flCf. [4] where the first nontrivial case iV = 11 is worked out. 
'There seem to be conceptual as well as technical barriers to this, at present. 
8We give no upper bound for the number of these rational points in general. 



ELLIPTIC CURVES AND ABELIAN VARIETIES OVER Q 375 

or there are none). Based on this numerical work, Ogg has made a conjecture, which 
we describe below. 

Suppose that N is any positive integer, no longer necessarily prime. The cases 
where the genus of X0(N) is zero are well known; so are the 12 cases where XQ(N) 
is of genus one, and in these cases, all rational points of X0(N) are known. There­
fore let us suppose that the genus of XQ(N) is greater than one. The following curi­
ous list of noncuspidal rational points is also known: 

N = 43, 67, 163: XQ(N) has a (single) noncuspidal rational point "coming from 
a quadratic imaginary field of class number one". 

N = 37: Z0(37) has two noncuspidal rational points interchanged by the canon­
ical involution w. 

CONJECTURE. The above list gives all noncuspidal rational points on all XQ(N) 
of genus greater than one. 

The case N = 37 was studied at great length by Swinnerton-Dyer and myself 
[6]. The extra lever one has in this case is the following: ^(37) is a hyperelliptic 
curve whose hyperelliptic involution w is different from w. Ogg has recently proved 
that among the XQ(N)9S9 XQ(37) is the only curve with the above property. Note that 
the image under u of the two cusps (0) and (/oo) are rational points of Z0(37). 
Swinnerton-Dyer and I were able to show (from general principles) that these two 
rational points are different from the cusps, thereby establishing these points as 
candidates for the above list. 

6. Indications of the method of proof. There are three main stages in the proof of 
Theorem A. 

1. Proof that H£ is free of rank 1 over TP. This uses the theory of modular forms 
in characteristic p. 

2. Proof that IP (the ideal generated by the Eisenstein ideal I in Tp) is a, principal 
ideal in TP. One does this by defining a rF-homomorphism IP -> H£ and shows, 
using the theory of the modular symbol, that this homomorphism is an isomor­
phism. 

3. The "geometric" descent. One takes an element a in /which is a local genera­
tor of IP, and uses the endomorphism a of / to perform a "descent" as explained 
in [4] and [7]. 

By far the longest and most involved stage is the first. I shall try, in a few brief 
paragraphs, to convey the flavor of the arguments that enter into it. We keep to 
p / 2, as hypothesized in Theorem A. At one point (which" we shall gloss over) 
in the argument, one must do some extra work when p = 3. 

To prove that H£ is free of rank one over TP, it suffices to prove that HP is free 
of rank two over TP. We identify the !Tp-module HP with the Q-rational points of 
the "P-primary" factor of Tate^/. By Tate^/ we mean the pro-/? Barsotti-Tate 
group associated to the abelian scheme / over Spec Z[l/N]. Refer to this "P-pri­
mary" factor as TateP/. Let TateP/[l] denote the cokernel of "multiplication by 
/?". That is, it is the "first truncation" of the pro-/? Barsotti-Tate group, and we 
regard TateP/[l] as a finite flat group scheme killed by/? over Spec Z[l/N]9 which is 
self-dual under Cartier duality. Let V denote the group of Q-rational points of this 
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finite flat group scheme. We regard V as a Gal(Q/Q)-module and as Tp-module. 
Consider the P-adic filtration on V and form the associated graded Gal(Q/Q)-
module grPV. Any element x of gr^Kis killed by P, and therefore 

(**) Trx = (1 + I)<x, I ^ N, w-x=-x. 

By the Eichler-Shimura relations, and Cartier self-duality of V, one obtains from 
(**) that the eigenvalues of /-Frobenius (/ ^ N) acting on grPKare 1 and / with the 
same multiplicity m. By the Cebotarev density theorem and standard representa­
tion theory, one obtains that the semisimplification of the representation of 
Gal(Q/Q) on V is isomorphic to (Z/p)m®(fip)

m, where Z/p means the Gal(Q/Q)-
module with trivial action, and ptp means the Gal(Q/Q)-module of/?th roots of unity. 

Using standard techniques in the theory of finite flat group schemes, and using 
the Oort-Tate classification theorem of finite flat group schemes of order /?, one 
then learns that there is a filtration of the finite flat group scheme TateP/[l] by 
subgroup schemes, finite and flat over Spec Z[l/N] whose associated graded finite 
flat group scheme over Z[l/N] is (Z/p)m@(pip)

m where Z/p and pp now refer to the 
group schemes over Spec Z[l/N]. We are now ready to reduce the Barsotti-Tate 
group Tate^/ to characteristic p. 

One thing we discover from our group scheme filtration of TateP7[l] is that TateP / 
is an "ordinary" Barsotti-Tate group. Over Fp we may write it as 

T&tePJ/Fp = multiplicative part x étale part 

where each part is a Tp-module and is dual to the other part. To establish the as­
sertion of stage 1, it suffices to show that the /^-rational points of the étale part 
form a free Tp-module of rank one. After much difficult work,9 one finds that 
the key to this is to show that the étale part of the kernel of P in J/Fp is a group 
scheme of order precisely p. Let this étale group scheme be denoted C. There is a 
general geometric construction which gives us an imbedding 

C(k) ®Ff k _ J U H°(X0(N)/k9 Q^y,) 

for any extension field k/Fp. Moreover, by naturality, c maps the domain to the 
kernel of P in the range. Consider an element/in the kernel of P in the range of the 
above map. We regard/as a modular form, parabolic, of weight 2 under To(N), 
which is an eigenvector for the Hecke operators Tx with eigenvalue (1 + / ) , / # N9 

and an eigenvector for w with eigenvalue — 1. With some work, one discovers that 
mod /?, up to scalar multiplication, / has the same ^-expansion as the Eisenstein 
series of weight 2 for To(N). By the ^-expansion principle/must be (mod/?) a scalar 
multiple of the Eisenstein series. In other words C(k) is an F^-vector space of di­
mension ^ 1 ; it is seen to be of dimension precisely one by explicit construction. 

9ADDED IN PROOF. It was only after the Congress that I realized how difficult this point is. In 
working it out, however, some new things emerge. Firstly, Theorem D may now be proved in a 
more elementary way. Secondly, some of the results may be significantly sharpened. Cf. [5] and 
the Bourbaki seminar report (Points rationnels des modulaires X0(N), n° 469, Juin 1975) by J.-P. 
Serre and myself. 
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Distribution of the Zeros of the Riemann Zeta Function 

Hugh L. Montgomery 

One of the most tantalizing problems of number theory is that of determining 
effectively all imaginary quadratic fields Q(^/ — d) possessing a given class number 
h. For h = 1 this was settled independently by Heegner, Baker, and Stark, and the 
latter two also settled the question for h — 2. For h ^ 3 the problem remains open, 
although it is known that of all imaginary quadratic fields Q(*J — d) with class 
number h, we have d < Ch2 log2 h, except for at most one exceptional field, for 
which d may be larger. The Generalized Riemann Hypothesis implies that there is 
no such exceptional field, but the opposing assumption, that there is a field 
Q(\/ — d) with very large d and small h9 has many interesting consequences. For 
example, Mordell deduced that all nontrivial zeros of the Riemann zeta function lie 
on the critical line Re s = | , at least up to a height T(d) which increases with d. 
Weinberger and I [3] carried this analysis somewhat further by showing that up to 
T(d) the zeros of the Riemann zeta function are well spaced on the critical line. Let 
0 < Vi g ï2 ^ ••• be the ordinates of the nontrivial zeros of ^(s). The average of 
?n+i — Tn is 2rc/log T„. For Tn nearly as large as T(d)9 we found that 

rw+1 - rn > a - e)27r/iog rn. 

Results of this sort, with specifically known close pairs of zeros, enable one to show, 
for example, that there are no fields Qi^d) with h = 3 and 1012 g d ^ 102500. 
To effect a complete solution of these problems by this approach, it would suffice to 
show that there is a constant c < \ such that, for all large T9 

(1) min (rw+i - r„)log T £ 2%c. 

From this one can deduce that h(— d) tends to infinity effectively. 
In attempting to demonstrate (1), one may seek an estimate for the expression 
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(2) D(a,ß) = 2 lì 
2xa/logTer-r'k27cß/logT 

here 7 and 7' run independently over ordinates of nontrivial zeros of Q(s). Taking 
Fourier transforms, we see that estimating the density D(a9 ß) is essentially a matter 
of evaluating the form function 

F(a) = (-£- log rV1 2 T^r-f) w(r - V) 

for real a, where w(u) = 4/(4 -f w2). Since Fis symmetric in 7 and 7*', we see that F 
is real and even. Recently I showed [2] that if the Riemann Hypothesis is true then 
Fis nearly nonnegative, F(a) ^ — e uniformly in a9 for T > TQ(e)9 and that 

(3) F{a) = (1 + o(\))T-i« log T + a + o(l) 

for 0 ^ a ^ 1. For a > 1 the behavior changes, and we conjecture that 

(4) F(a) = 1 + o(l) 

for a ^ 1. This conjecture is based on number-theoretic heuristics ; it implies that 

(5) D(a9 ß) ~ (J (l - ( ^ J ) du + ö(a,ß)) ~ log T 

for each fixed a < ß. Here d(a, jS) = 1 if 0 e [a9 ß], and 5(a, ß) = 0 otherwise. The 
occurrence of the Dirac 5-function here is to be expected, for if a ^ 0 ^ ß then the 
sum (2) includes terms with 7 = 7'. We note that our conjecture (5) implies (1) for 
all c> 0. 

It is interesting to note that the pair correlation function 1 — ((sin %u)/%uf9 which 
occurs in (5), also arises as the limiting pair correlation of eigenvalues of random 
Hermitian matrices of large order [1]. This is in accord with the view, originally 
propounded by Pólya, that the Riemann Hypothesis might be proved by exhibiting 
a Hermitian operator whose eigenvalues are related to the zeros of the zeta func­
tion. Indeed, it would probably be difficult to interpret (5) in a different framework. 

Since (5) remains unproved, it is useful to note that, subject to the Riemann 
Hypothesis, the estimate (3) enables one to evaluate asymptotically the sum 

E r{(7 - 7')^T-)w(7 - 7') 

provided that the spectrum of r is sufficiently small. For example, we find that 

o<r*T7i<r>£T\ \(7 - 7")log T ) 3 2TT ë 

From this we can show, still assuming RH, that at least 2/3 of the zeros of lj(s) 
are simple, as follows. Let mp be the multiplicity of the zero p = \ -f- i7. In the 
above sum there are m2

p paris 7, 7' for which 7 = 7' = Im p, so that 

S * * * ( • £ + « i ) ) £ i o g r . 
o<r^T 
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On the other hand, we know classically that 

S Mp~J-logT. 

Thus, combining these estimates, 

£ 1£ £ mp{2-mp)^(\+o{\))^-\ogT. 
0<r^T\p simple (Kj-êT r r \J / 1% 

Upon examination it will be seen that the above argument is not as efficient as it 
might be. To obtain a sharp result, one is led to an extremal problem in which we 
seek r e Ll(R) with r(u) ^ 0. We want 

-foo 

f(a) = J r(u)e-Zmaudu 
—OO 

to have support contained in [— 1, 1], and we want 

(^m + 2\ar(a)da)/]r(a)da 

to be minimal. M. E. Taylor and I have recently addressed ourselves to this problem, 
and under the reasonable assumption that r(a) is of the form f(a) = h(a)*h(—a)9 

we found that 

h(a) = cos 2i/2(a - \) for |a| g 1, 
= 0 otherwise, 

yields the extremal function r. This leads to the result that, subject to the Riemann 
Hypothesis, at least 3/2 - 2~1/2 cot 2"1/2 = 0.6725--- of the zeros of the zeta 
function are simple. 
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TpyAbi MoKAyHapoßHoro KoHrpecca MaTeMaraKOB 
BaHKyBep, 1974 

9jieMeHTapHbiM M C T O A B TeopHH ypaBHeHMfl 

HaA KOHeHHbIMM IÌOJIHMH 

C. A. OrenaHOB 

1. nycTb p—npocToe HHCJIO H F(X9 y)—MHoroHJieH OT nepeMeHHbix x9 y c 
utejibiMH pauHOHajibHbiMH K09(f)(j)Hi;HeHTaMH He paBHbifi TOÄ êcTBeHHO Hyjiro no 
mod p. 06o3HaHHM nepe3 Np KOJIHHCCTBO pemeHHH cpaBHeHHH 

(1) F(x9y) = 0(modp). 

y>Ke AHBHO 6bijiH nojiyneHbi OTAejibHbie pe3yjibTaTbi, Kacaiomnecn KOJinnecTBa 
Np peuieHHH cpaBHeHHH (1) B Bbipo>KÄeHHbix cjiyqanx. HTOOH #0Ka3aTb TeopeMy 
o TOM, HTO KaMĉ oe HaTypajibHoe HHCJIO npe^cTaBJineTCH cyMMoft nerapex 
KBâ paTOB, JIarpamKy [1] noTpeôoBaJiocb yTBepH<£eHHe o TOM, HTO cpaBHeHHe 

x2 + y2 + 1 = 0 (mod p) 

pa3peiiiHMO. OSpaTHM BHHMaHne Ha #OKa3aTejibCTBO 9Toro yTBepÄ^eHHH, npe^-
jio^eHHoe JIarpaH>KeM. npe^nojioKHM, HTO yKa3aHHoe cpaBHeHHe He pa3peuiHMO. 
Tor^a, no KpHTepHio Sfljiepa, cpaBHeHHe 

1 + ( - 1 - x2yp~1)/2 = 0(mod/?) 

JXOJIïKHO HMeTb p pemeHHH. Ho cTeneHb nocJie^Hero cpaBHeHHH paBHa p - 1 H -
OHO He MO>KeT HMeTb (no TeopeMe JIarpaH>i<a) ôojiee, neM p - 1 pemeHHH. 
nojiyneHHoe nporaBOpenne noi<:a3biBaeT, HTO cpaBHeHHe 

x2 + y2 +• 1 = 0 (mod p) 

HMeeT no Kpafinefl Mepe OAHO pemeHHe. 
3a/jaHa o HHCJie pemeHHH cpaBHeHHH 

(2) y2^f(x)(moàp) 
© 197S, Canadian Mathematical Congress 

383 



384 C. A. CTEnAHOB 

oneBHAHbiM o6pa30M CBOAHTCH K oijeHKe cyMM CHMBOJIOB JIe>KaHApa 

(3) $(£&-). 
x=0\ P / 

ECJIH f(x)—MHoroHJieH BTOpoft CTeneHH, TO A^H cyMMbi (3) H3BecTHa TOHHan 
({)opMyjia. HeTpHBHajibHan CHTyaunn B03HHicaeT B cjiynae, Kor^a CTeneHb f(x) 
ëojibme AByx. ApTHH [2] B 1924 roAy Bbicica3aji rnnoTe3y, HTO RJIH KOJinnecTBa 
Np pemeHHH cpaBHeHHH (2), rAe /(*)—MHoroHJieH CTeneHH n, ne HBJIHIOIUHHCH 
KBa^paTOM Apyroro MHoroHJiena no mod p , cnpaBeAJiHBa oijeHKa 

- 1 
\Np-p\£2 p 1 / 2 . 

THnoTe3a ApTHHa MO>KeT 6biTb Bbipa^eHa TaiOKe B BHAe 

n- 1 
» ) 

<L2 / ? 1 / 2 . 

T. Xoncf)OM [3] AJIH oueHKH cyMM BHAS (3) 6HJI Hcnojib30BaH MCTOA KpaTHbix 
cyMM. B 9TOM MeTOAe oueHHBaeMan cyMMa npeACTaBJineTcn KaK cpeAHee no 
HCKOTOpOMy KOjiHHecTBy TaKHx yae cyMM, HO c ApyrHMH napaMeTpaMH, 3aTeM 
ocpeAHeHHe pacnpocTpaHneTCH Ha Bce MHoroHJieHbi ASHHOH CTeneHH. B AaJibHeft-
meM 3T0T MeTOA ßbiji pa3BHT B paôoTax j^aBeHnopTa [4] H MopAejuia [5], OAHaKO 
MeTOAOM KpaTHbix cyMM ranoTe3a ApTHHa He TOJibKO He ôbijia AOKa3aHa, HO Aa>Ke 
He Ôbiji nojiyneH HCTHHHbift nopHAOK OLJCHKH no p . n o cy ra Aejia, MCTOA KpaTHbix 
cyMM B 3aAanax o cpaBHeHHnx no npocTOMy MOAyJiio—STO jinmb npOHBJieHHe 
oômero MeTOAa aHajiHTHHecKoft TeopHH HHceji, 6e3 yneTa cneun^HKH KOHenHoro 
nojiH, a HMeHHO, HajiHHHH 9HAOMOp(J)H3Ma Opo6eHHyca. 3 T H M , nO-BHAHMOMy, 
oß-bHCHneTCH TOT 4>aKT, HTO MCTOAOM KpaTHbix cyMM He 6biJiH nojiyneHbi pe3yjib-
TaTbl OnTHMaJIbHOH CHJIbl. 

B 1934 roAy T. Xacce [6], ocHOBbraancb Ha (j)opMyjie cJio>KeHHH ToneK HKo6neBa 
MHoroo6pa3HH KpHBOH y2 = A;3 +• ax + b AOKa3aji, HTO A ™ KOJinnecTBa Np peme­
HHH sjMHnTHHecKoro cpaBHeHHH 

y2 = x3 + ax + b (mod p) 

cnpaBeAJiHBa oueHKa 

\Np-p\ < 2/71/2. 

3jieMeHTapHoe AOKa3aTe;ibCTBO TeopeMbi Xacce ôMJIO AaHO B 1956 roAy K) .H. 
MaHHHbiM [7], OAHaKO, ero AOKa3aTejibCTBO jinmb MOAejiHpyeT AOKa3aTejibCTBO 
T. Xacce H nosTOMy He MOM^T 6biTb pacnpocTpaneHO Ha cpaBHeHHH ôojiee 
oômero BHAa. 

CpaBHeHHe (1) MOJKHO TpaKTOBaTb KaK ypaBHerae HaA npocTbiM KOHeHHbiM 
nojieM kpy COCTOHLUHM H3 p sJieMeHTOB, a KOjiHHecTBO Np pemeHHH 9TOrO CpaBHe­
HHH KaK HHCJIO kp—pauyiomjïbiibix ToneK KpHBOH, onpeAejineMOH 9THM ypaBHe-
HneM. BßHAy 9Toro, K H3yneHHrO ajireöpaHnecKHx cpaBHeHHH (1) no npocroMy 
MOAyJIK), HapHAy C TeOpeTHKO-HHCJIOBblMH MeTOAaMH MOryT npHMeHHTbCH MeTOAbI 
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TeopHH ajire6paHHeci<Hx (})yHKijHH H ajireôpanHecKoft reoMeTpHH. 
A. BeftJib [8] pacnpocTpaHHJi MCTOA I \ Xacce Ha mnpoKHH KJiacc ajireöpaHne-

CKHX ypaBHeHHH C AByMH HeH3BeCTHbIMH, OnpeAeJieHHblX HaA npOH3BOJIbHbIMH 
KOHeHHbiMH nojiHMH kgf COCTOHIUHMH H3 q = pr 9jieMeHT0B. HMemio, B cjiynae 
a6cojiK)THO HenpHBOAHMoro MHoronjieHa F(x9 y), AJIH HHCJœ Nq pemeHHfi ypaBHeHHH 

(4) F(x9y) = 0 

B KOHeHHOM nojie kg HM 6biJia nojiyneHa oijenKa 

(5) \Nq-q\<2gq"\ 

TAe g—pOA KpHBOH (4). 

,fl,OKa3aTejibCTBO A. Beftjin oueHKH (5) Tpe6yeT npHBJienenHH coBpeMenHoro 
annapaTa ajireopannecKOH reoMeTpHH H AOBOjibHO CJIOKHO. B1968 roAy MHOIO [9], 
B cjiynae MHoroHJieHa f(x) HeneTHoft CTeneHH n9 AJIH KOJinnecTBa Np pemeHHH 
rnnepgjiJiHnTHHecKoro cpaBHeHHH (2) c noMoinbio npocTbix apH^MeranecKHX 
coo6pa>KeHHH 6biJia nojiyneHa oijeHKa 

(6) \NP-p\ g (3«) 1 / 2 «p 1 / 2 . 

B AaJibHeftmeM MCTOA paßoTbi [9] ßbiji pacnpocTpaHeH MHOIO [10], [11], [12] Ha 
CpaBHeHHH 

r =f(x)(moàp) 

H ypaBHeHHH 

^ = / ( * ) , yP-y = R(x) 

HaA nojiHMH Tajiya kq9 COCTOHUUHMH H3 q 9JieMeHTOB. nojiyneHHan npn 9TOM 

9JieMeHTapHbiMH cpeACTBaMH acHMnTOTHHecKan (})opMyjia AJIH nncjia pemeHHH 
nocJieAHero ypaBHeHHH no3BOjiHJia AaTb Bnojme apH^MeranecKoe AOKa3aTejibCTBO 
oueHOK A. BefijiH paijHOHajibHbix TpnroHOMeTpHHecKHX cyMM e npocTbiM 3HaMeHa-
TejieM 

S ^ r (Sp*(*)/̂ ) ^ (r _ 2 + f; rf.U/25 

«e*,; Q 00*0 

rp£ r—HHCJio pa3JiHHHbix nojiiocoB fyynKuym R = P(x)/Q(x) B ajireôpaHnecKOM 
3aMbiKaHHH nojiH kp H di—KpaTHOCTb nojiioca xi9 B nacTHOCTH, cyMM T. BeftjiH 

pyße2ici(f(x)/p) 
* = 0 

£ ( » - X)pv\ n = deg/(x), 

H KjiocTepMaHa 
I A - 1 I 

g 2p1/2. 
P2JeZnH(x+a/x)/p) 
x=l 

KpOMe Toro, nocjie paôoT aBTOpa [9] H A.A. Kapauyôbi [13] Bnojme 9JieMeHTap-
HbiM CTaji BbiBOA oueHKH BepA>i<eca 

* m i n è C(ö)pWl+s 
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AJIH HaHMeHbiuero KBaApaTHHHoro HeBbineTa Nmin no npocTOMy MOAyjiio p. 
PaccMOTpeHne ypaBHeHHH y2 = f(x) BO Bcex KOHCHHUX pacmHpenHHx kq nojin 

kp no3BOJiHJio yjiynmHTb pe3yjibTaT (6). HMCHHO, B paôoTe aBTopa [11] AJIH HHCJia 
A^ pemeHHH ypaBHeHHH y2 = f(x) B 9JieMeHTax nojin kq9 B cjiynae MHoronjieHa 

f(x) HeneTHoft CTeneHH n c K09(})(j)HUHeHTaMH H3 npocToro noAnojin kp nojin kq 

6biJia nojiyneHa oijeHKa 

(7) \Nq-q\^(n-l)q"2
9 

KOTOpan 9KBHBajieHTHa rnnoTe3e PnMaHa AJIH Z-§ynwym ApTHHa KBaApaTHHHbix 
pacmHpeHHH nojin paijHOHajibHbix c{)yHKi;HH kp(x) c K09(}x})HijHeHTaMH H3 kp. 

HeKOTOpbie yTOHHeHHH MeTOAa Moefi paßoTbi [9] no3BOjiHJiH X. GrapKy [14] H 
H.M. KopoßoBy [15] nojiyHHTb AJIH KOJinnecTBa Np pemeHHH cpaBHeHHH (2) 
oueHKy, KOTOpan He TOJibKO He ycTynaeT oijeHKe (7), HO npn pacTymnx BMecTe 
c p 3HaneHHHX n9 n = dcgf(x)9 0Ka3biBaeTcn Aa>Ke CHJibHee nocjieAHeft. 

B paßoTe [16] MHOIO 6biJia AOKa3aHa cjieAyioman TeopeMa: 

TEOPEMA 1. Flycnw m9 « ^ 2—63CIUMHO npocrmie namypajibuue HUCACI, P > 

196 m3n (n - \)2—npocmoe HUCAO9F(X9y) = yn + ai(x)yn~l + ••• + an(x)—Henpa-
BodiiMUü MHozoHAen omx9y c K09cßcßuu;ueH/riaMU U3 kP9 nwKou nmo 

(8) deg a„(x) = m9 n deg a((x) < im9 i = 1, 2, •••, n — 1. 

Tozda òAH KOAWiecnwa Np petuenaa cpaeneuaH 

F(x9 y) = 0 (mod p) 

cnpaeedAwa oupnKa 

(9) |JV, - p\ ^ 14 (mny/2 m(n - \)p^2. 

3aMeTHM, HTO B nocjieAHeM HepaBeHCTBe KOHCTaHTa npH/?1/2HecKOjibKoxy>Ke, 
He>i<ejiH KOHCTaHTa B HepaBeHCTBa A. Befijin. nojiyneHHe B TeopeMe TaKOH H<e 
KOHCTaHTbi, KaK y Befijin He cocTaBJineT öojibmoro TpyAa. ,D[JIH 9Toro AOCTaTOHHO 
nepeHecTH AOKa3aTejibCTBO Ha npOH3BOJibHbie KOHenHbie nojin kq H 3aTeM npHMe-
HHTb TeopHio Z-^ynKixm ajireepannecKHX KpHBbix. OAHaKO npn 9TOM Hy>KHO 
AonojiHHTejibHO noTpeßoBaTb, HToßbi MHoroHJieH F(x9 y) 6biJi aôcojiioTHO HenpHBO-
AHM. C Apyrofl cTOpoHbi, yjiynmeHHe KOHCTaHTbi B HepaBeHCTBe (9) BO3MOH<HO 
H 6e3 BbixoAa 3a paMKH npeAJio>i<eHHoro B paöoTe [16] AOi<a3aTejibCTBa, a TOJibKO 
3a cneT neKOTOporo e ro yTOHHeHHH. 

^0Ka3aTejibCTB0 TeopeMbi 1, TaK >Ke KaK H AOi<a3aTejibCTBO pe3yjibTaTOB paôoT 
aBTopa [9]—[12] ocHOBbmaeTCH Ha nocTpoeHHH MHoronjieHa RQ(x) ne CJIHIIIKOM 
BbicoKOH CTeneHH, HMeiomero KOPHHMH AOCTaTOHHO BHCOKOH KpaTHoeTH Bce Te 
3HaneHHH nepeMeHHoft x (3a HCKJiioHeHHeM 0(1) 3HaneHHH), KOTOpbie HBJIHIOTCH 
pemeHHHMH cpaBHeHHH F(x9 y) = 0 (modp). CpaBHeHHe HHCJia KopHefi MHoronjieHa 
RQ(X)9 B3HTHX C HX KpaTHOCTHMH, CO CTeneHbK) RQ(X) AaeT OII.eHKy BeJIHHHHbl Np 
cuepxy. AHajiorHHHbiM cnocoôoM nojiynaeTCH H oijeHKa BejiHHHHbi Np cHH3y. 
ÜCHOBHMM MOMeHTOM BO BCeX 9THX nOCTpOeHHHX HBJIHCTCH HaJIHHHe 9HADMOp(})H3-
Ma 4>po6eHHyca xP »-• x9 ocTaBJinioinero HenoABH>KHbiMH 9JieMeHTbi nojin kp. 
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ßonOJIHHTeJIbHOe yCJIOBHe (8) CBH3aH0 C TpyAHOCTHMH, KOTOpbie B03HHKaiOT 
npn AOKa3aTejibCTBe Toro (j)aKTa, HTO nocTpoeHHbift MHoroHJieH RQ(X) C Heoöxo-
AHMblMH CBOHCTBaMH He HBJIHCTCH TO>KAeCTBeHHbIM HyjieM. 

He3aBHCHMO OT paßoTbi [16] B. UJMHAT [17] aHajiorHHHbiM MCTOAOM nojiyHHJi 
061HHH pe3yjibTaT 

\Nq- q\^2 mm(m2n9 mn2)q^2 

AJIH HHCJia Nq pemeHHH ypaBHeHHH F(x9 y) = 0 B nojinx Tajiya kq9 COCTOHIHHX H3 q 
9jieMeHT0B, noTpeÖOBaß OT MHoronjieHa F(x9 y) TOJibKO ero aocojuorayio HenpHBO-
AHMOCTb. 

B paöoTe E. BoMÖbepH [18] MCTOA paöoT [9]—-[12], [14]—[17] 6HJI 3HaHHTejibH0 
ynpomeH 3a cneT OTKa3a OT HBHOH KOHCTpyKijHH MHoroHJieHOB Ro(x) H Bbißopa 
Hx KaK 9JieMeHT0B neKOTOporo HenycToro MHO>KecTBa MHoroHJieHOB c TpeöyeMbiMH 
CBOHCTBaMH. CjieAyeT OAHaKO OTMeTHTb, HTO HBHbie KOHCTpyKRHH oßjiaAaioT TeM 
npeHMymecTBOM, HTO C HX noMombio B HeKOTOpbix cjiynanx yAaeTcn nojiynaTb 
öojiee cHJibHbie ouemcH (CM. [14], [15]), neM Te, KOTOpbie cjieAyioT H3 OöIHHX 
TeopHH. 

2. fl,0Ka3aTejibCTB0 Teopeiww 1. CpaBHeHHe F(x9 y) = 0 (mod p) 6yAeM 
TpaKTOBaTb KaK ypaBHeHHe F(x9 y) = 0 HaA npocTbiM KOHCHHUM nojieM kP9 COCTOH-
LUHM H3 p 9JieMeHTOB, a BeJIHHHHy Np KaK HHCJIO ̂ -paUHOHajIbHblX TOHeK KpHBOH 
C, onpeAejineMoft ypaBHeHHeM 

(10) F(x9y) = 0. 

BßeAeM cjieAyiomne o6o3HaneHHH: kp [x]—KOJibijo MHoroHJieHOB OT X C KO9(J)4)H-
UHeHTaMH H3 kp> kp(x)—uojie nacTHbix KOJibija kp[x], üycTb ys(x)9 s = 1, 2, ••-, w, 
—KopHH MHoronjieHa F(x9 y). Mepe3 kp(x9 ys) o6o3HaHHM nojie ajireôpannecKHX 
(j)yHKE[HH, nojiyneHHoe H3 kp(x) npncoeAHHeHHeM y5(x) H nepe3 kp [x9 ys]—Kojibuo 
uejibix 9JieMeHT0B nojin kp(x9 ys). nycTb D(x) AHCKpHMHHaHT MHoronjieHa F(x9 y). 
Pa3AejiHM 9jieMeHTbi nojin kp Ha HenepeceKaiomnecH KJiaccbi J / T , z = 0, 1, •••, n9 

cjieAyioiUHM o6pa30M: B KJiacc stfx OTHeceM Te 9jieMeHTbi x e kp9 AJIH KOTOpbix 
an(x) ^ 0, D(x) 7̂  0 H ypaBHeHHe (10) HMeeT no y B TOHHOCTH T pemeHHH, a B 
KJiacc & OTHeceM Te 9JieMeHTbi x G kp, AJIH KOTOpbix HJIH a„(x) = 0 HJIH D(X) = 0. 

nycTb ys(x)—KaKofi-JiHÔo KOpeHb MHoronjieHa F(x9 y)n xe kp. HeoôxoAHMbiM 
H AOCTaTOHHbiM ycjiOBHeM Toro, HTo6bi ys(x) G kp HBJineTCH BbinojiHHMOCTb paBeH-
cTBa yp

s(x) = ys(x). ßajiee, jierKo noKa3aTb, HTO ys(x) $ kp TorAa H TOJibKO TorAa, 
KorAa 

XbSii(x)y«P-»(x) = 09 
»=0 

rAe 

b - y"'*'1 + ^ r 1 ' " 2 + ••• + an-i-i 
us,i yi-i-l 

BßeAeM B nojie kp(x9 ys) onepaTOp AH(|)(})epeHijHpOBaHHH D = d/dx H paccMOTpHM 
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Bbipa>KeHHe 

M*ys) = S a - ^- l}) s ^ (** - xy-1 + £ *#(* - *y, 

rAe N < JP/II—HaTypajibHoe HHCJIO H r$tP t®) G fcjx, y]—HeonpeAejieHHbie K09(})-
(j)HUHeHTbi. JICHO, HTO RQ(x9 ys) = 0 npH Tex 3HaneHHHX x e kP9 AJIH KOTOpbix 0 ^ 
J>s(;c) G fcj. riOJIO>KHM 

#*(*, A ) = D*Rdx9 ys), k = 1, 2, "., 

H noAÔepeM /$?,• H * $ TaKHM o6pa30M, HTOÔbi Rk(x9 ys)9 k = 0, 1, ••• nN - 1, 
HMejiH TaKOH >Ke BHA, KaK H Bbipa^ceHHe RQ(X9 ys), 

nycTb rjflp t%) 3aAaioTCH peKyppeHTHbiMH cooTHomeHHHMH 

«CAO _ n«(/r-i) _ 7>c*-i) _ ; A V J rQ-v 
's,i, j — u r s,i, j J's,i,y+l * ^ 's,i, j J 

ss 

/nv i = 1.2, •••,«;;'= 1,2, •-,N;k = 1,2, •••; 

*<*} = J>#7» - (; + 1) / ? # + - ^ 2fr£f^. 
/ s »—1 

; = 1,2, ..., N;k= 1 , 2 , - , 

c HanaJibHbiMH 3HaneHHHMH r^ ( / , t®} TaKHMH, HTO r$%J = 0, *<?} = 0 npH j > N. 
Mbi cKan<eM, HTO BbipanceHHe Rk(x9 ys) HMeeT "Hy>KHbiH"BHA, ecjin OHO npeACTaB-
jineTCH B cj)opMe 

Ux, ys) = n£(ï - y^-v)E rftj(XP - xy-i + s #}(XP - x)/, 

rAe /•$,/, *[*} onpeAejieHbi peKyppeHTHbiMH cooTHomeHHHMH (11). 
BbiôepeM Tenepb K09(})(})HijHeHTbi r®}tP t®) ekp[x9 ys] TaKHM o6pa30M, HTO6H 

Bce BbipaHceHHH Rk(x, ys), k = 0,1, •-, nN - 1, HMCJIH "Hy>KHbiH"BHA. Z(JIH 9Toro 
AOCTaTOHHO, HTOÔbl BbinOJIHHJIHCb COOTHOmeHHH 

(12) j\t«) = S h Jfffi, r^ j - U 2, - , N9 
i — l A = l 

(13) 0 = £ S #<£, r«?.„ j = N+l, -, nN - 1, 
1=1 ^=1 

rAe #$ ,* onpeAejiHioTCH cjieAyioiHHM o6pa30M: 

H ^ l ^ i ^ f = l , 2 , . . . , « - l , 

(14) jr<ft, = Dflr^p + (* - i) HM-i + ' ^ JïSA-ft 

i = 1,2, •••, w - \\j = 2,3, •••;£ = 1,2, •••,; - 1, 

H&. = (j-VHVr^ + U- 1)1 H«i19 

i = 1,2, •••,« - l ; j = 2, 3, .... 

H3 (14) cjieAyeT, HTO ajireßpannecKHe (j)yHKijHH H^lk npeACTaBJinioTCH B BHAG 
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rAe CTeneHH MHoroHJieHOB h(/]ik ne npeßocxoAHT cooTBeTCTBeHHO BCJIHHHH ô^ik 

= $m(j - k) + 2m. nojio>KHM 

H 6yAeM HCKaTb rStitk B BHAe 

rs, itk = t K,,, k yra> K i, k e kp[x]. 

TorAa cHCTeMa (13) 3annmeTCH cjieAyiomHM o6pa30M: 

S S tA<JtfhR,tilk = 0, p = l92,-,n;j = N+ l9~.9nN- 1, 
1=1 k=\ o=i 

rjxe CTeneHH MHOTOHJICHOB Afyft ne npeßocxoAHT cooTBeTCTBeHHO BCJIHHHH V#V/A 

= 5m(j - i - f 1). nocjieAHHH >Ke CHCTeMa HeTpHBHajibHbiM o6pa30M pa3pemHMa 
B MHoroHJieHax Ra,i,k> TaKHX HTO deg R0titk ^ 5m((n - l)2N2 - N + k). 

nycTb Aajiee t®) onpeAejinioTCH cooraomeHHHMH (12). OOJIO>KHM 

(1 _ ycp-v) rcolk(xp _ xy-i = fj Bfâ yrPi Bfâ G kp[xl 
P=I 

i = 1,2, ••-,« - l;k = 1,2, •••, N9 

t<?}(xP - x)i = t Cf yr> Cf G kp[x\ j = 1, 2, - , N. 
v=l 

nycTb N ^ l/(« - 1) (p/6mn)1/2
 H nycTb /o» #o» 7o TaKHe H3 nnceji /, 7, fc COOTBCT-

CTBeHHO, A^H KOTOpblX r<$Ä ^ 0, fj?} ^ 0 H 3HaHeHHH BeJIHHHH (fc - l)/7 + ZW/?//*, 
;/? MaKCHMajibHbi. H3 (8), ycJiOBHH (m9n) = l, p > I96m3n(n - l ) 2 H H3 Bbiôopa 
ri°̂ Ä> ' £ / cjieAyeT, HTO HJIH npH HeKOTOpOM po 

deg Bfft > deg B}& deg 2%£ > deg C f 

npH Bcex i = 1, 2, •••, n - l; k9j = 1, 2, •••, N\ p9v = 1, 2, •••, w; (/, k9 p) ^ 0'0> 
fco» Po)» HJIH npH HeKOTOpOM Vo 

deg C<£> > deg C f , deg Cf> > deg B $ 

npn Bcex i = 1, 2, —, n - 1 ; fc, j = 1, 2, •••, N\p9v= 1, 2, • • • ,« ; (; , v) ^ O'0, v0). 
B TaKOM cjiynae B Bbipa>KeHHH R0(x9ys) HJieHbi (1 - j>jc/r_D) r$tk (xP - x)k~l H 
t®)(xP - x)i He cMoryT npoHHTep(})epHpoBaTb H, cjieAOBaTejibHO, RQ (x9 ys) ^ 0. 

3aMeTHM Aajiee, HTO RQ(X9 J>S), s = 1, 2, •••, w, conpnaceHbi MeM<Ay coôoft HaA 
nojieM kp(x)9 TaK HTO BbipanœHHe Ro(x) = n?=i Ro(x,ys) ecTb MHoroHJieH H3 
KOJibua kp[x\ npHHeM 

deg Rfa) ^ nNp + mnp + 5mn(n - l)2 N2 + Wmn. 

H3 KOHCTpyKu,HH MHoronjieHa RQ(x) HCHO, HTO Bce 9JieMeHTbi KJiacca jtfT, z = 1, 
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2, •••, n9 HBJIHIOTCH ero KOPHHMH KparaocTH no MeHbmeft Mepe z(nN - 1). CpaB-
HHBan HHCJio KOpHeft MHoronjieHa RQ(X) c ero cTeneHbio, MM nojiynaeM 

(nN - 1) 2 z I j / J ^ nNp + mnp -f 5mn(n - 1)2N2 + llmn. 
T = l ' ' 

rioJioKHB Tenepb N = [l/(n - 1) (pj6mny/2]} MM nojiynaeM OTcioAa, HTO 

Np= £z\jtfT\ + r£p + 14(w«)1/2 m(n - l ) p 1 / 2 , 
T = l 

TAe O ^ r ^ 2m«2. 
AHajiorHHHbiM o6pa30M npn N < (pj\\mny/2 cTpOHTCH He paBHbifi Hyjjio B 

KOjibue kp[x] MHoroHJieH R$(x) = Iï?=i R*(x9ys)9 rm 

R$(x, ys) = S1 bSti y**-» S ripj (XP - *y-i + E%J^» 2 t«lj (xp - *)>» 

CTeneHH He Bbime nNp + mrçp + lOmnN2 + 12m« TaKoft, HTO Bce 9JieMeHTbi 
Kjiacca J / T , T = 0, 1, • • • , « - 1, HBJIHIOTCH ero KOPHHMH Kparaoc™ no MeHbmeft 
Mepe (w - z)(N + [(N - \)j(n - 1)]). CpaBHeHHe nncjia KOpHeft MHoronjieHa R$(x) 
c ero CTeneHbio AaeT 

[N + 
N - 1 \ « - i . . 

) Z! (» - *)|j*r| ^ «#/> + "™P + lOmnN2 + 12/OT. « - 1 

OTCioAa npn N = [(p/llw«)] Mbi HMeeM 

)S(n - T)\J*V\ %(n- l)p + I2(mny/2 m(n - l)p1/2 n-l 

S 
T=0 

H nocKOJibKy 

T=0 

TO 

S | J / T | + \Of\ =p, \a\ ^2mn\ 

Np = S T | J ^ | + r ^ /? - 14(w«)1/2w(« - I)/?"2. 
T=0 

TeopeMa AOKa3aHa. 
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Le Groupe de Monodromie du Déploiement des 
Singularités Isolées de Courbes Planes. II 

Norbert A'Campo 

Introduction. Soit / : (Cw+1, 0) -• (C, 0) un polynôme ayant une singularité 
isolée [26] en 0 e CM+1. Le déploiement au sens de R. Thom [27] de cette 
singularité est un polynôme g(x9 X): Cn+1 x C? -+ C tel quef(x) = g(x9 0) et que 
les dérivées partielles (dg/dÀi)(x9 0), 1 ^ / ^ p,9 forment une base vectorielle de 
C{xQ, •••, xn}/(df/dx0, •••, dfjdxn). 

Soient BE a Cn+1 une boule de Milnor pour la singularité, et @ c C^ une boule 
centrée en 0, assez petite pour que les hypersurfaces {x e Cn+1 \g(x9 X) = 0}, X e 3)9 

rencontrent transversalement le bord de BË. On pose X = {(x9 À)eBe x $)\ 
g(x9 X) = 0} et soit <p: X -» ® la projection, qui est une application fibrée au dessus 
du complémentaire du discriminant â <= Q). La fibre <p~l(Ào), ÀQ e @ — A9 est 
difféomorphe à la fibre de Milnor d e / e n 0; Hn((p~l(l^)9 Z) = Z^. On a donc un 
homomorphisme de monodromie %i(<3 — A9 XQ) -• GL(Z^), dont l'image est le 
groupe de monodromie r d e / e n 0. 

Au §2 nous donnons un système de générateurs du groupe r pour le cas o ù / 
est un polynôme à deux variables [2], [18], [19]. Les singularités simples sont 
caractérisées au §3 par une propriété de confluence. 

Les résultats du §2 ont aussi été obtenus par S. M. Gusein-Zade [18], [19], et 
ont été conjecturés par V. I. Arnol'd [4]. Nos démonstrations détaillées sont dans 
[2]. 

1. Rappels, définitions. (1) Soient/, B£ et p, comme ci-dessus. Une déformation de 
/ est un polynôme f(x9 t)9 (x9 t) e Cn+1 x C, tel que f(x9 0) = f(x). Soit TJ > 0, 
assez petit pour que les hypersurfaces Ht = {x e Cn+1\f(x9 t) = 0}, |*| ^ rj9 ren­
contrent transversalement le bord de Be. Une confluence de Morse pour / est un 

© 1975, Canadian Mathematical Congress 
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polynôme/(x) =f(x9 tQ)9 \to\ti 27, tel que/possède^ points critiques dans B£ (qui 
sont donc quadratiques non dégénérés). On dit que la confluence de Morse est 
réelle si fest réel et si/possède ̂  points critiques dans De = Rn+l f| B£. 

EXEMPLE 1. Soit / : CBX -* xazC9 a ^ 2, /LL = a — 1. Alors le polynôme 
f(x) = f(x, tQ)9 tQ 6 R et to > 0 (oùf(x9 tQ) est le polynôme de Tchebycheff de degré 
a pour l'intervalle [-/0> 0̂]) e s t une confluence de Morse réelle pour / . Si a ^ 3, 
cette confluence a 2 valeurs critiques. (Voir [28].) 

Etant donné que tout germe non nul de fonction (C, 0) -> (C, 0) est équivalent 
à xa

9 a ^ 1, on obtient: 
"Tout germe non nul /de fonction (C9 0) -+ (C, 0) tel que/'(0) = 0 possède une 

confluence de Morse à k valeurs critiques, 1 ^ k ^ 2. (k = 1 si # = 2, sinon 
Jt = 2.)" 

REMARQUE. Toute singularité isolée admet une confluence de Morse. Alain 
Chenciner et René Thom posent la question: Quelles sont les singularités isolées, 
qui admettent une confluence de Morse réelle? 

(2) Une confluence de Morse équipée est une donnée (/, v0, T\9 • • •, Tk) où 
(i) / es t une confluence de Morse pour /à k valeurs critiques ( v / ) ^ ^ , 
(ii) v0 est une valeur régulière de / 1 B£9 

(iii) Th •••, Tk forment un système distingué de chemins [17]; Tt\ [0, 1] -+ f(B£) 
c C tel que r,(0) = v0, r,(l) = vh 1 £ l £ k. 

Lorsque / est une confluence de Morse réelle, son équipement standard est la 
donnée v0 = — ia, a e R9 a > 0 assez petit, et 7*/ ([0, 1]) est le segment [v0, v,], 1 g 
l£k. 

Soient (cf-)ig,-^ les ß points critiques de/|i?fi, ordonnés de telle sorte que c( ^f(ct) 
= V/, soit croissante sur les indices. Une base distinguée de Hn(f~

l(vo)9 Z) est une 
base (di, •••, 5 )̂ telle que le cycle 5,- corresponde via le chemin Tlt au cycle evanescent 
du point critique c(. Lorsque (d\, •••, ö^) est une base distinguée (e\3i9 

est encore une base distinguée, e,- = ± 1 . 
EXEMPLE 1 (SUITE). Ix graphe de la fonction/^) = f(x91) (aveca = 5) est 

A) 

o •*—à » o 
V2 >2 V0 n ^ valeurs f ( x ) 

On choisit v0 = 0, Vi = f(ci) = /(c2) et v2 = /(c3) - f(cA). Dans ce cas 5i = 
Pi — Pz> S2 = Pz — Ph 53 = P2 - i?3, et 4̂ = /?4 - /J5 forment une base distinguée 

file:///to/ti
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de H0(f~
l(v0), Z). La matrice de la forme quadratique des intersections sur la base 

(Su ô3, ô2, ôi) est 

2 - 1 
-1 2 - 1 

- 1 2 - 1 
- 1 2/ 

C'est la forme A±. En général pour la fonction xa
9 a ^ 2, on trouve la forme Ap 

p = a — 1. 
(3) En utilisant un théorème de Le Düng Trâng et Hamm [16], et la formule de 

Picard-Lefschetz [12], [13], on peut calculer un système de générateurs pour le 
groupe de monodromie de/ , si l'on dispose d'une base distinguée pour une con­
fluence de Morse équipée: Soit (5i, •••, d^) une base distinguée, alors le groupe de 
monodromie / ' de /es t engendré par les transformations 

Tf. Hn(f-Kvo\ Z) - Hn(f~Kvo\ Z) 
xy-*x-(- l)"<»-i>'* (*,*,) a,. 

Etant donné que les self-intersections (ôi9 ôt) valent ( — \y^-i)/2. 2 si n est pair, et 
0 si n est impair, les transformations T{ sont des réflexions ou des transvections 
selon la parité de n. 

EXEMPLE 1 (SUITE). Le groupe de monodromie de la singularité xa
9 a ^ 2, est 

le groupe de Coxeter A^ p, — a — 1. Plus précisément, le groupe r st les généra­
teurs Ti, •••, TM sont le système de Coxeter A^. 

2. Confluences de Morse pour les courbes planes [2], [18], [19]. Soient/: Cn+l -* C, 
B£ et p comme dans l'introduction. Dans tout ce paragraphe n = 1 et on suppose 
que/vérifie l'hypothèse B. R. : "Le polynôme/admet une décomposition en produit 
f — f\ fr de facteurs analytiquement irréductibles en 0 et à coefficients réels. 
Donc les r branches de / sont réelles." 

La confluence de Morse/du théorème suivant est en quelque sorte un polynôme 
de Tchebycheff associé à/ . 

THéORèME 1. Soit f comme ci-dessus. Alors f possède une confluence de Morse réelle 
f à k valeurs critiques, 1 ^ k ^ 3. De plus, Vindice d'un point critique cs D£ = 
R2 [] B£ de f\D£\D£-+ R est 0 sif(c) < 0, 1 sif(c) = 09et2 sif(c) > 0. 

EXEMPLE 2. Soit f(x9 y) = xy(x2 - y2). Alors pour t e R, t ^ 0, f(x9 y) = 
(x — t) (y + 2t) (x2 - y2) est une confluence de Morse réelle pour/ayant les prop­
riétés du théorème. 

Soit / une confluence de Morse réelle pour / satisfaisant au théorème. On pose 
C = / - i (0) H D£; C est une courbe qui n'a que des points doubles ordinaires. On 
appelle region de D£ — C les composantes connexes de D£ — C disjointes du bord 
de D£. Dans chaque région la fonction/atteint une valeur extrême (un maximum 
dans une région o ù / > 0, un minimum dans une région o ù / < 0). 

EXEMPLE 2 (SUITE). La courbe C, les régions © et 0 , les points doubles • sont 
indiqués sur la figure. 
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Le Théorème 1 reste encore vrai lorsque l'on exige que deux régions A et B de 
C = / - i ( 0 ) fi D* vérifient: 

(1) Ä fi B = 0 ou Ä fi B = un segment de C. 

Nous supposons désormais que la confluence de Morse / d u théorème vérifie cette 
propriété. 

Soit (di, •••, dp) une base distinguée pour la confluence/équipée de façon stand­
ard. Alors la configuration de la courbe C détermine les nombres d'intersections 
(5i9 dj) ([2], voir [18] pour le cas o u / n e vérifie pas la propriété (1)); Soient ôf, •••, ô~j; 
les cycles correspondants aux régions 0 PÌ9 •••, Pp, dp+i, •--, 5* les cycles corre­
spondants aux points doubles Dp+Ì9 ••-, Dq de C, et 5~+1, •••, d~ les cycles cor­
respondants aux régions © Ng+i, •••, NM; les nombres d'intersections (<?,-, 5y), 
1 ^ / < j ^ p9 sont donnés (pour une orientation convenable) par 

(ôi9 ôj) = 1 si (1) 5,- = ôf, dj = ô'j et Dj E pi9 

(2)5, = 5î, ôj^djetDteN,, 
(3) 5,- = <ï+, 5y = ôj et jPr- fl Nj est un segment de C; 

= 0 dans les autres cas 

Donc(<5,, <5;), 1 g z,7 ^/*, ne prend que les valeurs - 1,0,1 et (5/, dj) ^ Osi/ ^ 7 . 
EXEMPLE 2 (SUITE). Le diagramme de Dynkin des intersections est 

• -
4 

•e. 5 - — 

3 

1 

*3 

1 ^ ( 

5 y 

1 

.© 

Notations. • ,• = 5*5 ©,• = ôf9 ©,• = 5,, un traite—représente une intersection 

La démonstration du Théorème 1 utilise la résolution partielle des singularités 
des courbes planes [2] ; elle contient une méthode constructive et très efficace pour 
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obtenir la configuration de la courbe C. Nous traitons ici deux exemples. 
EXEMPLE 3. Soitf(x9y) = x3 + y5. Par éclatements de points on peut transformer 

la courbe plane H = {(x9 y) e C2 \f(x9 y) — 0} de la manière suivante : 

Un éclatement supplémentaire aurait transformé H en un diviseur à croisements 
normaux. La dernière configuration se déforme par une translation de la com­
posante non exceptionelle en 

après contraction du brin de multiplicité 9 

après une déformation 

après une contraction du brin de multiplicité 5 

^ 

après une déformation 
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après une contraction du brin de multiplicité 3 

finalement après une mise en position générale vient la courbe C 

(à 

^6> 

Le diagramme de Dynkin est l'arbre E%. 

-®- -® 

Il existe une déformation réelle f(x9 y) de f(x9 y) telle que C ;= {(x9 y) e D£ \ 
f(x9 y) = 0}. Les points critiques de / sont les 4 points doubles de C et les 4 
points extrémaux (tous des maxima) des régions. Donc on peut encore modifier / 
pour mettre les maxima sur un même niveau. On voit qu'il existe une confluence de 
Morse réelle pour f(x9 y) ayant 2 valeurs critiques. 

EXEMPLE 4.f(x9 y) = yi - 2y2x3 - 4yx* + x6 - x7
9 p = 16. La résolution est 

\L= 
12 

\JL 

Après les opérations de déformation, contraction, et mise en position générale vient 
la courbe C 

"7* 12 U 
4 
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W^ 

Le diagramme est 

Il existe une confluence de Morse réelle/pour/ayant 3 valeurs critiques a < 0 < b; 
au-dessus de a il y a 2 minima, au-dessus de 0 il y a 8 points selle, au-dessus de b il 
y a 6 maxima. 

3. Une caractérisation des singularités isolées simples d'hypersurfaces. Les singula­
rités isolées simples d'hypersurfaces complexes sont 

An:0e{x»+i + z\ + ••• + zf « 0} c tfr+i, p~n^\9
 K 

Dn:0e {*«-i H- xy2 + z\ + ••• + z2 = 0} c C'+2, ^ = n è 4, 
£ 6 : 0 e {x3 + ^ + z? + •» + z2 = 0} c C+2, ^ ,= 6 j 

£ 7 : 0 e {*8j, + / + Z2 + ... + Z2 = 0} cz &+*, p = 79 

Es:0e {x3 + ^ + zf + ... + z2 - 0} c C"*2, ^ = 8. 

Ces équations ont de nombreuses propriétés (F. Klein [25], du Val [31], Herz-
berg [15], Artin [5], Grothendieck [20], Lipman [23], Brieskorn [7], [8], Kas [32], 
Arnord[3],[4]?Tjurina[30],...). 

Une singularité isolée d'hyperstirface complexe est simple si le déploiement de 
cette singularité ne contient qu'un nombre fini de singularités isolées analytique-
ment non isomorphes. Le théorème d* Arnol'd [3] dit que la liste ci-dessus est la liste 
complète des singularités isolées simples d'hypersurfaces complexes. 

Le théorème suivant est une autre caractérisation des singularités de la liste ci-
dessus. 
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THéORèME 2. Soit f:(Cn+l
9 0) -> (C9 0) un polynôme ayant une singularité isolée 

en 0. Alors les propriétés suivantes sont équivalentes: 
(i)/possède une confluence de Morse f à k niveaux critiques 9 1 ^ k ^ 2. 

(ii) 7/ existe une confluence de Morse équipée pour f telle que le diagramme de 
Dynkin est un arbre. 

(iii) La singularité de f est simple. 

PREUVE (i) => (ii). Si k - 1, la singularité est la singularité Ai [21] donc on a (ii). 
Soit (/, VQ, 7*1, ?*2) u n équipement pour la confluence de Morse/. Soient (5\9 ~-,dp) 
les cycles de Hn(f~

l(vo), Z) correspondant aux points critiques de la fibre/-1(vi), 
vt = 7^(1), et (dp+i9 •••, dp) ceux correspondants aux points critiques de la fibre 
f~l(v2)> v2 — ̂ 2(1)- Alors on va montrer que le diagramme de Dynkin est un arbre 
pour la base distinguée (<5b •••, dp, dpn9 •••, 5^. 

Soit A la matrice p x p, donnée par 

A(ij) = 09 i^j, 
= (di9 dj)9 i > j . 

On a A2 = 0. Soit S la matrice p x p 

5' = (-l)«(«-D/2id + A9 

qui est la matrice de Seifert du noeud algébrique / _ 1(0) f| dB£ c; dB£ [13], [14]. 
Donc T — (— l)w+1 lS~l S est la monodromie locale de la singularité de / en 0. 
On a d'après [1] que Tr (T) = (-1)*+1 , donc 1 = ( - 1)M+1 Tr (T) = TvQS^S) = 
p - Tr (*AA). 

Soit bi le nombre de traits du diagramme de Dynkin, donc le nombre de couples 
(U j), 1 S i < j S p, avec (di9 dj) ^ 0. On a bx ^ p - 1 car le diagramme est 
connexe [21] et on a 

biû S (di9dj)2 = Tr(<AA) = p - 1. 
i^i<jê/x 

Donc bi = p — 1 et le diagramme est un arbre. De plus on a démontré que 
(di9 dj)2 = 1, ou = 0 pour 1 £i<j ûp-

PREUVE (ii) => (iii). Quitte à rajouter à / quelques carrés f(x) + z\ -f ••• -f z2 

on peut supposer que le nombre de variables de/es t An + 1. Soit D le diagramme 
de Dynkin des intersections (di9 dj) ou (5\9 •••, 5 )̂ est une base distinguée. Par 
hypothèse D est un arbre. Les nombres d'intersections (di9 dj) valent ± 1 ou 0 car 
d'après [1] on a que 

- 1 = Tr (T) = Tr (TXT2 ••• T,) = 2 (5,, *,)» - p. 

Donc en changeant quelques signes ± di9 on peut obtenir que (di9 dj) = — 1 ou 0. 
On a asussi (di9 dt) = 2. Dans ce cas d'après un théorème de J. Tits [6] les réflexions 
T{ e GL(/4, Z) engendrent un sous-groupe T7 de Coxeter présenté par {7^; 7"? = Id, 
(T-Tj)m" = Id, mij = 2 - (5,-, <?,•)}. Le graphe de Coxeter [6] de ce système de 
Coxeter (T7, TV" , T^) est le diagramme de Dynkin D9 qui est donc un arbre d'après 
l'hypothèse. 

L'élément de Coxeter C = T{T2 ••• 7^ est encore la monodromie locale d e / e n 0. 
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Donc les valeurs propres de C sont des racines de l'unité d'après le théorème de la 
monodromie [10], [25], [13]. Ceci entraîne d'après [2 bis] que le groupe de Coxeter 
est sphérique ou affine. Etant donné le graphe de Coxeter est un arbre et que 
les nombres mt-j valent 2 ou 3, les seules possibilités sont les groupes de Coxeter 
[10] An9 Dn9 Dn9 EQ9 ËQ, Ey9 Ël9 E%9 Ë&. Un raisonnement d'Arnol'd [4] permet de 
conclure que les seules singularités qui conviennent sont les singularités An9 Dn9 EQ9 

Ef9 E%9 ce qui prouve (ii) ^=> (iii). 
PREUVE (iii) => (i). Dans [2] tous les cas sont traités (voir ici Exemple 1 pour la 

série An et Exemple 3 pour E&). 
L'Exemple 1, les Théorèmes 1 et 2 suggèrent les questions: 
Question 1. Une singularité isolée / : Cw+1 -> C admet-elle une confluence de 

Morse à/c valeurs critiques, 1 ^k S n + 27 
Question 2, Les singularités f(x9 y, z) — g(x, y) + z«\ C3 -> C9 où g; C2 -> C est 

une singularité simple, admettent une confluence de Morse à k valeurs critiques 1 g 
k ^ 3, La question est de caractériser les singularités isolées/: C3 -> C qui admet­
tent une confluence de Morse à k valeurs critiques, 1 ^ fc < 3. 

REMARQUE, Lorsque le diagramme de Dynkin d'une confluence de Morse 
équipée pour une singularité isolée / : CAn±l -> C est un arbre, le groupe de 
monodromie T7 et les reflexions Z\, •••, 7^ forment un système de Coxeter. Ceci 
découle du théorème de J. Tits, voir ci-dessus. 

, Le groupe de monodromie T7 de/(x, y, z) — xy(x2 — y2) + z2: C3 -+ C et les 
réflexions T\9 "•, T$ de la confluence de Morse réelle de l'Exemple 2 équipée de 
facon standard ne forment pas un système de Coxeter. En effet pour chaque 
triangle (a, ß, T) du diagramme de Dynkin on a les relations 

(TaTßTry = (TaTßT7)
2 Tß(TaTßTr)

2 Tß = 1. 
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Theory of Intersections on the Arithmetic Surface 

S. J. Arakelov* 

1. Let K be an algebraic number field, A <= K be the ring of integers in K9 Xht 
a curve of genus g over K and/: V -> Spec A be its nonsingular model. Here we 
shall describe a method which yields a very close analogy between a two-dimen­
sional scheme Fand compact algebraic surface. 

For the sake of simplicity we shall supopse that the fibration family/: V-* Spechi 
has no degenerate fibres. We shall denote an inclusion of our field K in the com­
plex number field by the symbol oo. We choose one inclusion from each pair of 
complex conjugated inclusions. From now on the symbol 2Joo means that every real 
inclusion and one of every pair of complex conjugated inclusions is present in 
our sum. Let us denote the Riemann surface of an algebraic curve X (g)«, C by JST*,. 
First of all, we shall define a notion which is analogous to the notion of a divisor on 
the compact algebraic surface. 

DEFINITION. A compactified divisor or c-divisor is a formal linear combination 

D = 2 kfii + E ^o*«,, 
i oo 

Here C, is an irreducible closed subset in V of codimension 1, fye Z9 A>oe i2. 
To avoid confusion we shall call a usual divisor on our scheme Fa finite divisor, 
or /-divisor, and write accordingly a letter "c" or " /" near the corresponding 
symbol. We shall often consider a finite divisor as a c-divisor with Aoo == 0. All 
c-divisors form a group which we denote by Divc (V). 

To define a principal divisor, it is necessary to fix on each surface JST«, a hermitian 
metric dsg,. We shall assume the corresponding volume element to satisfy the 
following condition: jV-^°o = 1. 

Let (p e K(X) be a rational function. The divisor of the function <p is defined by 
the formula 

*Not presented in person. 
© 1975, Canadian Mathematical Congress 
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(P) = z>c(?>)-c+ EvJipy^c, 

Here £ vc(p) • C = (<p)f is a usual divisor of the function cp and 

Voo(p) = - j lOgUlû^oo. 

All c-divisors modulo principal divisors form a group which we denote by Picc (V). 

2. There exists a theory of intersections for c-divisors. For two c-divisors Z>i, D2 

their real intersection index (Du D2) e R can be defined. It is bilinear, symmetrical 
and is invariant under c-equivalence : For <p e K(X)9 ((<p)C9 D) = 0. When written 
in terms of the finite divisors the invariance property has the following form : 

(Df + (fp)f9 D'f) = (Df9 D'f) + deg D' • £ J log | tp \ d^. 

Here and below deg D means the degree of D on the general fibre. It follows from 
this relation that when restricted on the divisors of degree 0 our index is an invari­
ant under usual linear equivalence. In this case such an index is equal to Neron's 
index. 

The intersection index depends on the choice of the metrics ds2,. However, there 
exists one metric on the curve X^ which is the most convenient for the theory of 
intersections. To define it, let us consider the Jacobian J^ of the curve ZM and let 
dsjt0O be the invariant metric on /oo defined by its 0-polarisation. 

DEFINITION. The canonical metric ds2, is a restriction of the metric ds }|0O, under 
the canonical inclusion X^ -• Too-

From this moment we shall consider every metric dslo to be a canonical one. It 
is interesting to note that there exists a c-divisor class j f e Picc(^) which is an 
analogue of the canonical divisor class on the algebraic surface and which has the 
following property : If C <= V is an irreducible horizontal curve on V and öc is an 
absolute discriminant of its ring of regular functions, then 

(*) (C, C) + (C, j f ) = log13C|. 

3. Now we shall formulate an analogue of the Riemann-Roch theorem. First of 
all we shall describe an interpretation of c-divisor classes which is analogous to the 
interpretation of usual divisor classes as linear bundles. Let j£? be an invertible sheaf 
on V. Then 3? defines for each oo a complex linear bundle L^ over the surface Xm. 
If every bundle L«, is provided with a hermitian metric || ||oo on it, whose curvature 
form is proportional to the form d/j,^ we shall call j£? a c-bundle. The group of 
obundles is isomorphic to the group Picc (V). 

Let us denote by VJÌ3?) the complex linear space of sections of the bundle Loo 
for the complex oo and the corresponding real space for the real oo. The metric | I«, 
defines a positive function F^ on the Vuj^ß?) by the following formula : 

log .FooCy) = | log II j | L rf/^oo for s e VJÌ&). 
x« 

Let us define on the space V(S£) = 0oo Val&) a "norm" function F = W^F^. Here 
a«) equals 1 for a real oo and 2 for a complex oo. If deg i f > 2g — 2, then the A 
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module Q& = r(V9 3?) is a projective module of rank m + 1 — g and has a natural 
inclusion as a lattice into the space V(<£), We can define the density of Q# with 
respect to the norm function F by the formula 

sow - (n KAJ)/Kö*). 

Here 5oo is a unit ball of the norm function F*,, v(#oo)is its volume measured by any 
euclidean metric Eœ on the space P^ and v(Q#) is a volume of the fundamental cube 
of the lattice Q# measured by the metric E = © E*> on the F(j£f). 

CONJECTURE 1. 

log stffe) - i (^?, if - Jf) + i deg &-\o%\d| + rf. 

Here 3 is the discriminant of the field # and d *= G?(X) is some invariant of the 
curve X. 

CONJECTURE 2. Invariant rf^) has an interpretation as the height of the point 
which corresponds to Xv& the moduli variety of curves of genus g. 

Let us put ä(se) *= log i(Q#) - \(S?9 Se - Jf) - ideg Se-log|3|. Conjecture 
1 asserts that d(3?) does not depend on if. 

It is possible to prove that ci(£f) is absolutely bounded if deg if is fixed. For an 
elliptic curve X\i is possible to prove that 3(Sf) = const if deg S£ is fixed. 

4. In the last section we shall consider two questions. For the first one let 
£ G Pic (X/K) be a divisor class of degree m > 2g, - 2 on A". Suppose, for the sake 
of simplicity, that the class number of it equals 1. Then £ corresponds to the single 
invertible sheaf if ç on V9 and all effective divisors on V of class £ are interpreted as 
classes of equivalent elements of the lattice Q^ = r(V9 3?£) under the action of the 
group of units of K. 

Let us consider those vectors of the lattice Of which correspond to irreducible 
divisors on V. The discriminant 5 of a prime divisor is a function which is defined 
only on such vectors, but it can be extended on the whole lattice Of by the formula 
(*). In this way we get a function 5 on the lattice Q^ which is proportional to the 
(m -I- 2g — 2)th power of the norm function. Using Conjecture 1 we can compute 
the density iô(Ç) of the lattice Q^ with respect to the function S^n-Hg-zy\ fjere is 
the asymptotic behavior of this density when deg £ = m is fixed ; 

log»(Ö = - cons ta - 1).S(£, £) + o(B(£9 £)). 

Here const is positive and B(£9 £) is the quadratic part of the height of the point on 
the Jacobian of the curve X with respect to 0-polarisation. So we can see that if 
g > 1 than is(^) -> 0 when £ -• oo. 

The second question is about the distribution of the divisors of degree 
m > 2g - 2 with regard to height. 

Let H be any odivisor of degree 1 and D be an /-divisor. We shall call the 
magnitude NH(D) = exp(D -H) SL height of a divisor D with regard to H. It is pos­
sible to prove that the series 
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converges if s > m + 1 - g and that the limit 

T = lim (s-(m + ì -g))<<ff\s) 

exists and does not equal zero. Using Conjecture 1 we can compute that 

T = comt(rn)-R^Aö\>»'2exva(H)txpd(X)- 2 e x p ( - F(£)). 

Here a ( # ) = i m(m + 2 - 2g)(//, # ) + { m(#, Jf), h is the class number of K9 

R is its regulator and ß is the number of roots of unity of K. At last F(£) is the sum 
of the quadratic and linear parts of the height on the Jacobian of X in regard to 
0-polarisation. 
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Submanifolds of Low Codimension in Projective Space 

Wolf Barth 

0. Let A be a nonsingular, connected, algebraic subvariety of some projective 
space Pn over C. Let a be the dimension of A and g its degree. To the author's 
knowledge, Hartshorne was the first to observe that A is a complete intersection if 
a is much larger than g. To be precise, he shows in [5] : There exists a function 
Jf(g)> such that A is a complete intersection, if a ^ J^(g), 

His proof, however, gives no estimate for the function Jf. At the same time, Van 
de Ven and the author gave in [1] an effective estimate for Jf in the case that A has 
codimension two. In fact, one can choose Jf(g) = 4g — 7 in this case [2, Theorem 
5.3]. Here I want to give a short report on joint work with Van de Ven, where we 
generalize the methods from [1] to the case of arbitrary codimension to obtain 
jf(g) = 5g(g — i)/2. The precise function Jf is not known at the moment. 
However the simple examples A = Pg~\ x PÌ9 embedded by the Segre map, show 
that necessarily Jr(g) ^ g + 1. 

The main idea of our proof is to use the lines contained in A, All other methods 
are either classical or very formal and will probably be very similar to those used 
by Hartshorne, as far as the author can judge from [5]. Full details will appear 
elsewhere. 

» 
1. Let >4cp w bea closed connected algebraic submanifold of dimension a and 

degree g. We may assume g ^ 3. We need the following facts : 
(1) There is a linear subspace of dimension at most a + g — 1 containing A. 
This is classical and easy to see. It implies that we may assume n = a + g — 1 

without loss of generality. 
(2) Assume a ^ 3(g - 1). Then restriction H«(Pn9 Z) -> H*(A9Z) is bijective 

for 0 S q û 2(g - 1). 
© 1975, Canadian Mathematical Congress 
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This follows from Larsen's version of the generalized Lefschetz theorem [7]. 
It implies that we may view the Chern classes c((N) of the normal bundle N = NA/P 

as integers since they are contained in H2i(A9Z) at Z, 0 ^ / ^ 2(g — 1). Another 
consequence is that Hl(A9 (9$) ^ Z and that this group is generated by (9A(\). 
Consequently det N = 0A(k) f° r some keZ. 

(3) For this integer k9 k g 2(g - 1) holds. 
PROOF. The intersection of A with a general Pg c Pa+g-i is a nonsingular curve 

C of degree g-. By a classical formula the genus % of this curve is at most \(g — 1) • 
(g - 2). Since Nc/P, *= JV|C, we find Tc = 0C(# + 1 - k). Thusg(g + 1 - k) = 
2 — 2TT, which implies the estimate. 

(4) The canonical bundle of A is QA(k - (a H- #)). 
This follows from the exact sequence 0 -* 7^ -» 7>|>4 -> N -» 0. 

2. The variety Cx of lines in A through a point xe A, Let x e A be a fixed point 
and 7^ c Pn the tangent fl-plane of A at x. The lines through x in 7^ form a pro­
jective space PÄ of dimension a — 1. If a: Tx -> 7"* is the a-transform with center 
x, there is a natural Pi -bundle T: TX-+PX9 the fibres of which are just the 
proper transforms of the lines through x. If M c Px is a subset, denote z~l M c tx 

by 71? and av~lM c= Tx by M'. Let Cx c Px be the sub variety corresponding to 
lines L through x9 which are completely contained in A. 

(5) In each of its points, codim^C* ^ g — 1. 
PROOF. This is well known for the case of a hypersurface A. To prove it in our 

case, choose a general Pg-3 <= Pw and let p: Pn -> Pfl+i be the projection with 
center Pg-3. Thsn p(A) will be a hypersurface in P f l+1 of degree g. The point p(x) e 
p(A) will be nonsingular andp\A: A -• p(A) will be injective near x. If L is a line 
in p(A) through p(x)9 then A f| P~l(L) contains a curve C through A:. C is contained 
in p~\L) ^ Pg-i and the intersections of C with hyperplanes in P^_i of the form 
P~Ky)> y 6 E near to /?(JC), consist of one point. This shows that C is a line. So Cx 

is projected isomorphically onto the cone of lines inp(A) through/?(;*:). 
Let us denote (g — l)-tuples (kÌ9 •••, kg-i) of integers lq by k. We identify two 

such (g — l)-tuples if they differ only by a permutation. So we can assume ki ^ 
/c2^ ••• ^ kg-i. Put 0(k) := (9(kY) ® ••• © ®(kg-i). By Grothendieck's theorem, 
every rank (g — 1) bundle Kover P ! is of the form 0Pl(k)9 with & uniquely deter­
mined by V. 

(6) Let L be a line in >4. Then N|L ^ 0L(Ä) with A:,- ^ 1 for i = 1, •••, g - 1 and 

*i + - + V i ^ 2 ( * - !)• 
PROOF. Since N\L is a quotient of r P |L ^ 0L(2, 1, •••, 1), none of the integers 

ki can be smaller than 1. On the other hand, ki -f ••• 4- A^-i = Ä with ^ ( A ) ä detN. 
So the second statement follows from (3). 

Using (6), we can easily estimate the dimension of Hl(L, End N\L) io obtain, 
for example, 
(7) hKEnd N\L) ^ (g - 1)2. 

We put next TV: = a*N\Cx. The projection % puts on N the structure of a family 
of (g — l)-bundles over P x with Cx as base space. Each bundle 6Pl(k) is the 
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distinguished element in a complete family, the base of which has dimension 
hl(End @Px(k)). Compare [3, Satz 6.2]. From deformation theory follows that each 
element L0 e Cx is contained in a (local analytic) subvariety S <= CX9 such that all 
bundles N\T~1L are isomorphic for .LeS. Furthermore, in all of its points, S 
has codimension at most (g - l)2 in Cx because of (7). Now we use the lexicographic 
order on the (g - l)-tuples k. Let k(x) - (WJC/^ times), -••, mj(^ times)) be 
the maximal one with respect to this ordering among the (g — l)-tuples k ap­
pearing with all the bundles N\L - &i(k)9 L e Cx. If we apply the semicontinuity 
theorem to the proper morphism z | Cx and the 0a-flat sheaf N9 we find 

(8) There is a closed algebraic subvariety Mx a Cx such that, for all L e MX9 

the bundle N\L is isomorphic to (P^kty)), In all of its points, Mx has codimension 
at most g(g - l)inPx. 

(9) There is a chain of subbundles 

0 = VQcz Vi e ... c Vj = ti\Mx 

defined by the following property: For each LeMX9 V^v^ÇL) a N\z~l(L) & 
0L(k(x)) is just the uniquely determined subbundle fjLiOL(mi) © •-• © /*/0L(/K,-)-

In fact, one obtains Vt- as the subbundle (T*Z*N( — ml)\Xfx) (ml). From this con­
struction follows 

(10) If a £ 5g(g - l)/2, then K,+1/K, » ^.+1<7*0P,(mw) | #„. 
PROOF. We show by induction that Vi+i jVi\Mx f| a"1^ is the trivial bundle of 

rank ^+1 , Since Vt-+i/Vj c JV/K,- and N\a~lx is trivial, it is enough to show the 
following. Each subbundle V of a trivial bundle Mx x Cr

9 r <̂  g — 1, is of the 
form Mx x £", where £ c Cr is a linear subspace. But V is determined by a 
morphism/of M, into some Grassmann variety of linear subspaces of Cr. The 
dimension of this Grassmannian cannot exceed \r2. Then each fibre of / is a 
subvariety of Px of codimension at most g(g — 1) + \(g - l)2. By assumption, 
two such subspaces must always intersect. This implies that/is constant and V = 
Mx x E with E the subspace corresponding to f(Mx). 

3. The normal bundle of A* Assume from now on a J> Sg(g — l)/2, From (9) and 
(10) it follows that the total Chern class of Sf\$tx equals the total Chern class of 
0*(f*i®A(wù H- ••• + HJ@A(MJ)) restricted to ßx. This implies that both the rank 
(g - 1) bundles N and @A(k(x)) have the same total Chern classes because of 

(11) lìaì(g+ l)(g - 1), then (a\Mx)*: H'(A9 Z) -* H>(MX9 Z) is injective 
for 0 S i è 2(g - 1). 

PROOF. In view of (2), it is enough to show that H((Pn9 Z)^^L,H{(A9 Z) -+ 
H'(MX9 Z) is injective. But this follows as in [1, Proposition 2.3], since dim M'x ^ 
a _ g(g _ i) ^ g _ it s j n c e the construction above was done using an arbitrary 
point xeA9 we deduce from (11), in particular, that k(x) is independent of 
x e A. Let us denote this k(x) by k from now on. 
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(12) For all / = - mu we have/*o(TV(/)) = h\®A(k)(l)). 
PROOF. Since the total Chern class of both the bundles in question is the same, 

this will follow from the Riemann-Roch formula, if we can prove for all these / 
and all / = 1 : 

h<(N(I)) = h*(6>A(KM) = o. 

Since TV is generated by global sections, the statement for this bundle follows from 
[4, Theorem G], provided that the line bundle KA ® det TV ® ®A(— I) is negative. 
But because of (3) and (4), this bundle equals 0A(2k — (a -f- g — 1) — /) with 
k = 2(g — 1) and it will be negative if a > 5(g — 1). The other statement follows 
from Kodaira's vanishing theorem for line bundles, since QA(1) ® K\ is positive 
if a > g — Ì — 1. Next we define a chain of subsheaves 0 c S?i <= ••• c £fj a TV 
by defining 5*V(- ml) c N(— ml), i = 1, •••,./: Let 5p

l-(— ml) be the sheaf gener­
ated by global sections in TV( — ml). We show by induction on i: The sheaf «9̂  
corresponds to a subbundle Vt- a TV of rank pti + ••• -f ^ and VrfVj-i ^ jutOA(mD. 
We shall only describe the first step (/ = 1), the induction step being very similar: 
By (12), the sheaf &*i(— m{) is generated by jui global sections sÌ9 •••, s^. We claim 
that these sections must be linearly independent in each point x e A. In fact, assume 
that there is a linear relation between the values of these sections in some point 
x G A. Since for each line L c A the restriction TV( — m{) \L cannot contain a non-
trivial section with a zero, the same relation must hold in each point x' G CX. 
Since by (5) any two sets CXi and CXt9 x\9 x2 G A, intersect, we may apply the same 
argument once more to find that this linear relation holds in each point of A, 
i.e., in the vector space r(A9 (TV — m{)), which is impossible. 

Using Kodaira's vanishing theorem again for Hl(0A(mt) ® 0A(— mj))9 7 = 1, 
•••, / — 1, we see by induction on i that all extensions 0 -• Vt-i -> Vt- -• Vt-/Vt--i -» 0 
split. Then we finally get 

(13) If a = 5g(g — l)/2, the normal bundle TV is isomorphic to a direct sum 
fii®A(mi) © . - e fjijOjJLmj), 1 ^ mt ^ 2(g - 1). 

Therefore TV is the restriction to A of a rank (g — 1) bundle TV on Pw , which is the 
direct sum of line bundles. 

(14) For all v = 1 we have H\Iv
AjI^1 ® 0PN) = 0. 

PROOF. 

I \ m x ® * N a S»(IAII\)\A ®QA TV « W ) ®0A TV 

is a direct sum of line bundles. 

4. The equations defining A. The isomorphism IA/IA ^ TV* corresponds to a 
section 2̂ 6 r(IA/IA ®0pN) without zeroes on A. Using the exact sequences 

o -> (/x//?1) ®» * - /̂ //jf1 ® *, # -> M i ®0„ # -> 0 
and (14), we get sections sv+i eTCfJIff1 ®0P TV), which modulo IA restrict to sV9 

i.e., a section seT(N)9 contained in IA ®0pN but without zeroes modulo IA. 
(Here TV is the formal completion of TV along A.) Since A is connected and has 
positive dimension, by [6, Theorem 3.3] this section extends to a section s in N over 
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all of P. The zero set of this section has codimension at most g - 1 and therefore 
is connected. So it has to coincide with A. Since TV is a direct sum of line bundles, 
this shows that A is a complete intersection of g — 1 hypersurfaces. 
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Applications of the Theory of Prym Varieties 

C. H. Clemens 

1. Let C be a complete nonsingular algebraic curve over the complex numbers 
(i.e., a compact Riemann surface) of genus g. If Hl,0(C) denotes the holomorphic 
one-forms on C and B e C is a basepoint, there is a multivalued map 

C -> &>\C)* 
p 

B 

which becomes a well-defined immersion 

j c r w\cy _J(a 

into the Jacobian variety J(C) of C for g ^ 1. k induces a canonical identification 
of Hi(C; Z) with Hi(J(C); Z) and therefore transforms the intersection pairing 
on C to an element 

0c e (A*Hi(J(C); Z))* - #2(/(C); Z). 

0C is the Poincaré dual of the divisor 8C = k(C^{c)r~l)) in J(C)9 and 0C is uniquely 
determined up to translation in J(C) by its homology class. This "rigidity" of 0C 

leads to the recovery of C from the data (J(C)9 &c). (See, for example, Andreotti's 
beautiful proof of the Torelli theorem using the Gauss map on 0C [1].) 

2. More generally, one defines a principally polarized abelian variety by giving 
a complex vector space V of dimension n9 a lattice E in V9 and a positive definite 
Hermitian form H on V such that the imaginary part of His integral-valued and 
unimodular on E [8]. Then again (im H) e H2(V/E; Z) is dual to a rigid ample 
divisor 6 on V/E, To see that Jacobians are in fact principally polarized abelian 
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varieties, one identifies (Hh0(C))* = H0,l(C) and defines 

H(T}I,7)2) = - (-1)1 / 2 \c Vi A V2-

The set of (principally polarized) abelian varieties of dimension n depends on 
\n{n + 1) parameters whereas the Jacobians depend only on (3n — 3) parameters 
(if n > 1) so that for n > 3 the general abelian variety is not a Jacobian. This 
leads to the 

Schottky Problem. Give explicit algebraic criteria on (V9 E9 H) to determine 
whether or not it is a Jacobian. 

To make this problem more precise: Classically the divisor 0 on V/Eis given as 
the set of zeros of an entire holomorphic function (called a "theta function") 0(u) 
on Cn (œ V) with certain periodicity properties. In fact if we choose a standard 
basis for E with respect to (im H) we can denote the points of order two in V/E by 

_e 

and there is an entire function 

_S\9 •••, e„ 
oi9eje{09 1}, 

ôl(u) = £ exp(n; ( - l)i/2 (/w + 5ß)Qt(m + 5/2) + 2(m + 5/2)<(w + e/2)) 
m^Z' 

associated to each [f] such that: 
(i)the zero set of 0[f] (u) is invariant under translation by elements of E and 

maps onto 0 -f- [?] in V/E; 
(ii) 0 [?](«) is an even or odd function according to whether 2 5,«,- is even or odd. 
The coefficients of fixed degree in the power series expansions for the 0[f] (u) give 

natural algebraic coordinates for the moduli space of abelian varieties of dimension 
n. In particular, Schottky [12] gave a necessary algebraic condition in the coef­
ficients of degree 0 (the "theta-nulls") such that (V, E9 H) is the Jacobian variety of 
a curve in the case n = 4. Farkas and Rauch [4], [5] and Andreotti and Mayer [2] have 
given necessary algebraic conditions in terms of the theta coefficients when n ^ 5. 

I would like to propose another possible way to attack the Schottky problem in 
the cases n = 4 and n = 5. For this we will need a geometric interpretation of a 
generic principally polarized abelian variety of dimension n ^ 5. This is provided 
by the notion of the Prym variety developed classically by Wirtinger [14] and 
deepened in modern times by Farkas and Rauch [4], [5] and Mumford [9]. 

3. A Prym variety will be a principally polarized abelian variety of a somewhat 
more "general" type than a Jacobian. To see what it is, we give ourselves a Riemann 
surface C of genus g(C) and an unramified two-sheeted covering %\ C -> C. (Such 
coverings are parametrized by elements of Hi(C; Z2) or, what is the same thing, by 
points of order two on J(C).) 

The natural involution i: C -+ C induces an involution i* on (HL0 (C))* and on 
Hi(C\ Z). If we let V~ and E~ denote the minus-one eigenspaces of these last two 
involutions then we can define the Prym variety by P(C a) = V~/E~. The theta 
divisor E% arises on P(C9 a) via |(restrition of intersection pairing co E~) 



APPLICATIONS OF THE THEORY OF PRYM VARIETIES 417 

c 

ÏÏ 

c 

cè­
co-

C e -

- o d 

--o CS 

... o ex 

FIGURE 3.1 

^ \ "cross-paste 
1 handles 

^ 

ly ae/f,(C;Z) 

in a manner completely analogous to the case of Jacobians. Thus P(C9 a) becomes 
a principally polarized abelian variety of dimension (g(C)— 1). It is a classical 
theorem of Wirtinger [14] that the moduli of the set of Prym varieties of dimension 
n depend on 3n parameters rather than (3n — 3), the number of parameters for the 
moduli space of algebraic curves of genus n. Since principally polarized abelian 
varieties of dimension n depend on \n{n + 1) parameters, this shows that 
through n = 5 the general abelian variety is a Prym variety. 

At this point we should mention a trivial lemma which shows that the Prym 
varieties "include the Jacobians" as special cases: Suppose we are given a flat 
family of curves Ct such that if t ^ 0, Ct is nonsingular, and Co has one ordinary 
double point. Suppose that dt e Hi(Ct) is the cycle vanishing at t = 0. 

Let %t\Ct-+ Ct be the two-sheeted covering associated to ot as in Figure 3.1, and 
assume öt = at mod 2. Then 

LEMMA 3.2. The abelian varieties P(Ct9 al) form a smooth family with fibre above 
t — 0 given by J(CQ)9 where C0 is the desingularization ofC0. 

Finally, let us consider what other things can happen to P(Ct9 at) if we eliminate 
the requirement that öt9 the vanishing cycle, be equal modulo 2 to the cycle at e 
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Hi(Ct; Z2) used to build the two-sheeted covering Ct -* Ct. As Mumford has noted, 
there are two possible events that occur (besides the one considered in Lemma 3.2). 

(3.3) If ot ^ 5t mod 2 but (jt -dt) = 0 mod 2 then P(Ct9 ot) becomes a generalized 
abelian variety (a C*-extension of an abelian variety of dimension (n — 1)). 

(3.4) If (fft- dt) = 1 mod 2, then the P(Ct9 ot) form a flat family with fibre above 
t = 0 equal to the Prym variety associated to a two-sheeted cover of C0 ramified 
at its two-marked points. 

(In [9], Mumford extended the theory of principally polarized Prym varieties to 
the case (3.4) and in his Columbia thesis Masiewicki has further extended the theory 
to cover the case where C0 has more than one double point.) 

4. Now for 77 = 4 and n = 5 one can hope to rephrase the Schottky problem 
in terms of the theory of Prym varieties. Further evidence in this direction is 
provided by two theorems, the first of which is due to Tjurin : 

THEOREM 4.1. A principally polarized abelian variety V/E of dimension 5 is a Jacob­
ian if and only if there is a (possibly singular) plane curve C of degree 5 and point 
a of order 2 in J(C) such that 

(i) dim H°(C, D (1) ® a) is even; 
(ii) V/E = P(C9 a) as principally polarized abelian varieties. 

Roughly speaking, V/E is always a Prym variety coming from a curve C of 
genus 6. V/E becomes a Jacobian when the curve C of genus 6 becomes a plane 
quintic, that is, when C has a gl (a linear series of degree 5 and projective dimension 
2). 

THEOREM 4.2. A principally polarized abelian variety V/E of dimension 4 is a 
Jacobian if and only if there exists a curve C of genus 5 with a gl (or equivalently, with 
a gl) and G e Hi(C; Z2) such that V/E = P(C9 a). 

Roughly V/E is always a Prym variety coming from a curve C of genus 5. V/E 
becomes a Jacobian when C becomes trigonal. 

In the case n = 5, at least, there is a straightforward way to translate the state­
ment "C has a g|" to a statement about theta-coefficients on J(C). Namely, by the 
Riemann singularities theorem [7], C has a gl if and only if there is one odd theta-
function all of whose coefficients of degree 1 vanish. One could make progress on 
the Schottky problem for n = 5, therefore, by translating this information about 
the theta-coefficients on J(C) to information about the theta-coefficients of P(C9 o). 
Identities relating degree-one theta-coefficients of J(C) and P(C9 a) were classically 
stated by Schottky and Jung [13]. 

5. There is another setting in which principally polarized abelian varieties arise 
and which is very closely related, it seems, to the study of Prym varieties. To see 
what this is let us fix the following class of nonsingular projective varieties over the 
complex numbers : 

We call V of first Hodge type if: 
(i) dime V = d9 an odd number; 
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(ii) the odd Betti numbers of Fare all zero, except possibly the dth Betti number; 
(iii) if p + q — d9 then the Hodge components Hp,q(V) of Hd(V; C) are all zero 

unless \p — q\ — 1. 
Examples of such varieties are hypersurfaces of degree ^ 4 in P4 and the inter­

section of three quadrics in an even dimensional projective space. 
Associated to V is its (intermediate) Jacobian 

_ (ff(<m)/2' <*-!>"(]/))» 
J(n " Hd(V; Z) 

Just as in the case of curves, the intersection pairing on V induces a principal 
polarization on J(V). Also, analogous to the case of curves, given an algebraic 
family {Zs}seS of algebraic ((d— l)/2)-cycles on V9 we can pick a basepoint sQ e S 
and define: 

g, >J(V) 
z, 

ZSo 

The generalized Hodge conjecture applied to this setting says that there always exists 
an algebraic family S whose image in J(V) spans J(V), 

For example, in the case of the cubic threefold V, the analogy with the theory of 
algebraic curves is particularly striking. If we take for S the family of lines on V9 

then S embeds in J(V) and its image carries the homology class of 0£/2 where 6V 

is the theta-divisor of J(V) [3]. If we take for S the family of twisted cubics on V 
then the image of 5* is precisely a translate of 0 itself and the fibers of S -+ 0 are the 
rational equivalence classes of twisted cubics. 

A necessary condition that a threefold of first Hodge type be rational is that its 
principally polarized intermediate Jacobian be the Jacobian of a curve [3]. In all 
examples studied so far, this condition has also been sufficient. In higher dimen­
sional examples that have been studied, V being rational corresponds to the fact 
that J(V) - J(W) where W is of first Hodge type and of dimension less than the 
dimension of V. 

Since the Prym varieties are in some sense "closest" to the Jacobians, one might 
guess that they often occur as intermediate Jacobians of varieties that are close to 
being rational. This indeed does happen. Tjurin and Reid, and independently 
Beauville, have shown that if V is the intersection of three quadrics in P2M+2 
then J(V) = P(C9 0) where C is a plane curve of degree 2n + 3 and 
dim/f°(C, D (n) ® o) is even. If V is a cubic hypersurface of P^n+2 containing a 
linear space of codimension 2 in V9 then, if V is the desingularization of K, J(V) = 
P(C, cr) where C is a plane curve of degree 2n H- 3 and dim H°(C9 D(n) ® a) is odd. 

6. Thus, for example if F is a nonsingular cubic threefold, then J(V) is a Prym 
variety associated to a plane quintic. Murre [11] shows this in all characteristics 
^ 2 and thus deduces the irrationality of V (except in characteristic 2) as follows : 

(i) It is a theorem of Mumford [9] that the codimension of the singular locus of 
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the theta-divisor in a Prym variety P(C9 G) is greater than or equal to five except in 
a finite explicit list of special cases. 

(ii) For the cubic threefold V9 J(V) = P(C, a) is never on the list. 
(iii) Thus P(C, G) is never the Jacobian of a curve. Therefore Kis never rational. 
In the same way it ijs shown that if V is a nonsingular intersection of three 

quadrics in P 6 , then (at least in characteristic 0) Kis never rational. 
At this point a natural question arises. If Ct is a family of plane curves of degree 

5 (or 7) and as t -> 0 we have the family of two-sheeted coverings described in 
Lemma 3.2, then P(Ct ,Gt) becomes the Jacobian of a curve, so should not we 
expect the corresponding cubics (or the corresponding intersections of three 
quadrics) to become rational? The answer, in fact, is no. What happens is that the 
family of two-sheeted coverings of plane curves of degree (2n -f 3) is a reducible 
set, broken up according to the parity of 

(6.1) q(G) = dim HQ(C9 D(n) ® G) + dim H*(C9 D(n)). 

q is a deformation-invariant quadric form on Hi(C; Z2) whose associated bilinear 
form is the intersection pairing on C (modulo 2) [10]. If Gt is a vanishing cycle as 
in Lemma 3.2 then as t goes once around 0, Hi(Ct; Z2) is transformed by the 
Picard-Lefschetz formula [6]: Tt *-+ Tt - (Trot)at. Thus q(Tt) = q(Tt) + (TrGt)q(Gt) 
+ (Trat)

2 for all Tt e Hx(Ct'9 Z2). Clearly this implies that q(at) = 1. 
What this means is that: 
(i) For cubic threefolds V, J(V) = P(C9 a) with q(a) = 0 so that G can never be 

a vanishing cycle in the sense of Lemma 3.2. 
(ii) For the intersection r of three quadrics in P 4 , J(r) = P(C9 G) with q(a) = 1 

and so a can be a vanishing cycle in Lefschetz pencil. In fact if Ct is a family of 
plane quintics with two-sheeted coverings given by ate Hi(C; Z2) and if P(Ct9 Gt) 
= J(rt) is the associated family of principally polarized abelian varieties, then the 
vanishing of at at t = 0 is equivalent to the fact that J(rt) becomes the Jacobian of 
a trigonal curve at / = 0. 

(iii) For the intersection of three quadrics in P 6 , again we are in the situation of 
coverings where q(a) = 0. 

We are thus led to look for a family of threefolds corresponding to the two-
sheeted coverings of seventh-degree plane curves for which q(a) = 1. Such a family 
does exist. It is given by the (2, 3)-intersections in P 5 such that the quadric and the 
cubic have a common linear space of dimension 2. (We are assuming that the seven 
double points of such a (2, 3)-intersection have been resolved.) We ask: What hap­
pens to the threefold when the cycle G vanishes? To be more precise: Let A be the 
unit disc and Ct91 e A9 a flat family of seventh-degree plane curves where: 

(i) Ct is nonsingular for t # 0; 
(ii) C0 has one ordinary double point; 

(iii) Gt e Hi(Ct) Vanishes at t = 0. 
Let Vt be a family of (2, 3)-intersections with P(Ct9 G I) = J(Vt) for each t ^ 0, 
where Vt is the nonsingular variety obtained from Vt by blowing up its seven double 
points. 
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Question. Is there a nonsingular rational threefold F0 such that: 
(i) VQ is difleomorphic to Vt for t ^ 0; 
(ii) after perhaps passing to a ramified covering Â of A we obtain a smooth 

family of threefolds such that the fibre over 0 is VQ and the fibres over other points 
of Â are the Vt, Since, for / ^ 0, P(Ci9 Gt) does not appear on Mumford's list of 
exceptional cases this would give a smooth family of threefolds in which one fibre 
is rational but the general fibre is not, 

ADDED IN PROOF. Recillas has recently proved a strong generalization of 
Theorem 4.2 relating the existence of a gl on C to the fact that the Prym variety 
is the Jacobian of a curve with a g*. 

Bibliography 

1. A. Andreotti, On a theorem of Torelli, Amer, J. Math. 80 (1958), 801-828, MR 21 #1309, 
2. A. Andreotti and A. Mayer, On period relations for abelian integrals on algebraic curves, 

Ann, Scuola Norm. Sup. Pisa (3) 21 (1967), 189-238. MR 36 #3792, 
3. C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of 

Math. (2) 95 (1972), 281-356. MR 46 #1796. 
4. H. Farkas, On the Schottky relation and its generalization to arbitrary genus, Ann. of Math, 

(2) 92 (1970), 56-81. MR 41 # 8654. 
5. H. M. Farkas and H. E. Rauch, Period relations of Schottky type on Riemann surfaces, Ann. 

of Math. (1)92 (1970), 434-461. MR 44 #426. 
6. S. Lefschetz, Selected papers (including L'analyses situs), Chelsea, New York, 1971, p. 311. 

MR 45 #8495. 
7. J. Lewittes, Riemann surfaces and the theta function, Acta Math. I l l (1964), 37-61. MR 28 

#206. 
8. D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Math., 

no. 5, Oxford Univ. Press, London, 1970, Chap. I. MR 44 #219. 
9. , Prym varieties, I, Contributions to Analysis, Academic Press, New York, 1974, 

pp. 325-350. 
10. , Theta characteristics of an algebraic curve, Ann. Sci, École Norm. Sup. (4) 4 (1971), 

181-192, MR 45 #1918. 
11. J. Murre, Reduction of the proof of non-rationality of a non-singular cubic threefold to a 

result of Mumford, Compositio Math. 27 (1973), 63-82. 
12. F. Schottky, Zur Theorie der abelschen Funktionen von vier Variabein, J. Reine Angew. Math. 

102(1888), 304-352. 
13. F. Schottky and H. Jung, Neue Sätze über symmetral Funktionen und die abeVsehen Funk­

tionen der Riemann'sehen Theorie, S.-B. Preuss. Adak. Wiss. Berlin Phys. Math. Kl. 1 (1909), 
282-297. 

14. W. Wirtinger, Untersuchungen über Thetafunctionen, Verlag Teubner, Leipzig, 1895. 

COLUMBIA UNIVERSITY 
NEW YORK, NEW YORK 10027, U.S.A. 





Proceedings of the International Congress of Mathematicians 
Vancouver, 1974 

New Surfaces with No Meromorphic Functions 

Masahisa Inoue 

0. Introduction. In his paper [1], Kodaira classified (compact complex) surfaces 
free from exceptional curves into seven classes. In this note, we consider the last 
class, Class VHo, which consists of surfaces S satisfying the following condition: 

(VII0) bi(S) = 1 and S is minimal. 

As examples of this class, we have Hopf surfaces and some elliptic surfaces, 
which satisfy moreover the condition: b2(S) = 0 and S contains at least one curve. 
Conversely, Kodaira obtained that ifbi(S) = l9b2(S) = 0 and if S contains at least 
one curve, then S is a Hopf surface or an elliptic surface (see [2, §10]). By this result, 
to determine all surfaces of Class VIIo, it suffices to consider the following two 
problems : 

Problem 1. Find all surfaces S satisfying 
(a) bi(S) = 1, b2(S) ï 0, and 
(ß) S is minimal. 

Problem 2. Find all surfaces S satisfying 
(A) bx(S) = 1, bz(S) = 0, and 
(B) S contains no curves. 

We note that if a surface satisfies the conditions of Problem 1 or Problem 2, then 
it has no meromorphic functions other than constants. 

In this note, we shall give some examples for these problems and study their 
properties. 

1. Problem 2. As to Problem 2, we have three kinds of examples, SV, S$p,q,rit 

and Sfclqir9 which are obtained as quotient surfaces of H x C by automorphism 
groups G where H is the upper half of the complex plane C and G consists of affine 
transformations (see [4, §§2-4]). For example, S M is constructed as follows: 

Let M be a 3 x 3 integral matrix with det M = 1 and with eigenvalues a9 ß9 ß 
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such that a > 1 and ß ^ ß. We choose a real eigenvector (aÌ9 a2, a%) and an eigen­
vector (bÌ9 b2, b$) of M corresponding to a and ß9 respectively. Let GM be the group 
of automorphisms of H x C generated by 

go : (w, z) • (aw, ßz)9 

g{ : (w9 z) > (w + ai9 z + bj) for / «= 1, 2, 3. 

Then GM acts on H x C a s a properly discontinuous group of analytic automor­
phisms free from fixed points and has a bounded fundamental domain. We define 
SM to be the quotient surface (H x C)/GM. The underlying differentiate manifold 
of S M is a 3-torus bundle over a circle. 

By definition, it is clear that SM satisfies the following condition : 
(C) There exists a line bundle F on S such that 

dim H%S9 Q
1 ® 0(F)) # 0. 

Other examples, S$Mir]t and £j^j,gir, also satisfy this condition. Conversely,- we 
have the following 

THEOREM. If a surface S satisfies (A), (B) and (C), then S is complex analytically 
homeomorphic to SM, S$)p>qtr.tt or S^}Piqtr. 

We find a proof of this theorem in [4], 
REMARK. AS yet, we have no examples satisfying (A), (B) but not satisfying (C). 

2. Problem 1. In this section, we construct an example for Problem 1 and study 
its properties. Our construction is similar to the construction of the singular fibres 
of type ilb in the theory of elliptic surfaces (see Kodaira [3, §14]). 

We take infinitely many copies W{, i e Z, of C2 — 0 with coordinates (ti9 wt)9 

and take infinitely many copies Vj9j e Z, of C2 with coordinates (uj9 Vj). We form 
their union 

» J 

by the following indentifications : 
Identify (ti9 wt) e W{ and (t^Ì9 w^-i) e JVt-i if and only if 

(1) W{ = ff-ilV,--!, /, = f,--i, t{ ^ 0, Wi-i ï 0. 

Identify (uj9 vj) e Vj and («y_ls Vj-{) e Fy_i if and only if 

(2) Vj = VJHLI/JF-I, UJ = 1/Vy_b Uj * 0, Vy_! ï 0. 

Identify {ti9 w>D e Wf- and (ui9 vj) E V{ if and only if 

(3) w{ = vf-, ff- = u{vi9 w{ ï 0, v,- ^ 0. 

^ is a Hausdorff space and, hence, an open complex surface with (ti9 wl) and 
(wy, Vy) as its local coordinates. We can easily prove that W is simply connected. Let 
t = ti on Wi and t = WyVy on Vj. Then f is a global holomorphic function on 
y//\ Let C = {PeiT\ t(P) = 0}. C consists of infinitely many irreducible com­
ponents Ci9 i e Z, where each Cf is a nonsingular rational curve defined locally by 
Vi+i = 0 on Vi+i and by t/f- = 0 on F,-. Cf- and Cl+1 intersect in the origin pi+i of 
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Vi+\ transversally, Cf- and Cj do not intersect when / — j =/= ± 1. The identifications 
(1), (2), (3) imply that W - C is analytically equivalent to {(t0, w0) G WQ \ to ̂  0} = 
C* x C. Let £ = {(t09 0) G FFo} = C*. # is a cfaserf submanifold of TT and does 
not intersect C, 

Now we introduce an analytic automorphism g of >F as follows : 

(4) g sends (ti9 wt) of W( to (ati9 a'^wD of Wi-h 

(5) g sends (uj9 vj) of Vj to (a2^'uj9 ai~lvj) of Vj-h 

where a is a fixed complex number such that 0 < | a \ < 1. By definition, it 
is clear that 

(6) g sends (ti9 wt) of W{ to (ati9 a^wl) of Wt-

where /,• ^ 0, and 

(7) g(Ct) - C M , g(Pt) = Pi-i. 

We infer from (6) and (7) that g generates a properly discontinuous group <g> 
of analytic automorphisms of W free from fixed points. We take subsets Z>' and 
D" of WQ and F0, respectively, where 

D' = {(h,w*)eW,\ | w o | £ l , N ^ | a | } 
-{(h,w*)zW,\ H < | * 0 | / | 4 W<M2}, 

and 

t>"= {("o,v0)eFo| |v0| £U\uQ\ £ | a | } . 
The union D' U D" of them in f is a compact subset of W. Let D = 
C0 U D' U #". Then ^ = U«ez £"(£)• We define S to be the quotient surface 
of W by <g>, Then S is a compact complex surface free from singularities. The 
fundamental group of S is clearly an infinite cyclic group. In particular bi(S) = 1. 

Since the subvarieties C and Ë are invariant by g9 S contains two curves, C — 
C/<g> a n d E = Ë/(g}. From (6) and (7) we infer that Cis a rational curve with an 
ordinary double point and E is an elliptic curve C*l(a). Evidently C- E=0. It follows 
from (6) that S — Cis analytically equivalent to (C* x C)/<g> whereg: (/, w) -> (a/, 
fw) for (t9 w) G C* x C. This implies that S — C is a line bundle over an elliptic 
curve with E as its zero section. We define R to be a ruled surface (C* x Pl)/(g} 
where #: (t9 w) -> (atf, /w) for (t9 w)eC* x P 1 . Let JSU = {(f, oo) | t e C*}/<£> and 
let L be a fibre of R, We identify £ - C and iî - E^. 

LEMMA (KODAIRA). E + L - E^is homologous to zero. 

PROOF. Let 
oo 

4(f) = 2 a**"»'8/*. 
A=—oo 

Then<j>(f)is a holomorphic function of f, 0 < |f | < oo , and ̂ («0 = (f>(t)/t. Hence 
0(/) • iv is invariant by g and is a meromorphic function on R. Since ^(— 1) = 0 and 

f rflog 0 ( 0 - f rflogçKO- 2*(-l)i'a, 
Ul=l 1*1=1«! 
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<f>(i) has exactly one zero in | a | < |f| <£ 1. Hence the divisor of <j)(t)-w is 
homologically equivalent to E + L — E^. Q.E.D. 

PROPOSITION 1. C2 = 0 and E2 = - 1 . 

PROOF. C consists of irreducible components C, where Ci9 Ci+i intersect trans-
versally and Ci9 Cy do not intersect when i — j ^ ±1- The formula (2) implies 
that Cf = - 2. Thus C2 = 0. By the above lemma, E is homologically equivalent 
to £TO - L. Since £ L = 1, we obtain that E2 = JS-J^ - E L = - 1 . Q.E.D. 

Let K be the canonical bundle of S. If follows from the definitions that 

co = dwi A dti/Witi = dvj A duj/VjUj 

is a meromorphic 2-form on ffî and is invariant by g. Hence K = [— C — E] and 
K2 — —1 by Proposition 1. 

PROPOSITION 2. b2(S) = 1. 

PROOF. Since bx(S) = 1, we know that pg = dim H\S9 0(K)) = 0 and 
q = dim Hl(S9 Ö) = 1 (see Kodaira [1]). By Noether's formula, we obtain that 
c2(S) + K2 = 0 where c2(5) is the Euler number of S. Hence fc2(S) = c2(S) = 
- J P = 1. Q.E.D. 

By Propositions 1 and 2, C is homologically equivalent to rE for some rational 
number r. Since is • C = 0 and E2 = — 1, we obtain that r = 0 and C is homolo­
gous to zero. 

PROPOSITION 3. S contains no irreducible curves other than C and E. In particular, 
S is minimal. 

PROOF. Suppose there exists on S an irreducible curve X other than C and E. 
Since Z-C = 0, A" is contained in S — C. Hence, X-E^ = 0 and X-L > 0 on 
R9 while XE + XL = X-E^ by the above lemma. Thus XE < 0. This contra­
dicts that X # E. Q.E.D. 

By Propositions 2 and 3, S satisfies the conditions (a) and (ß) of Problem 1. 
REMARK. By similar methods, we can construct some other examples. But, as yet, 

we have no general results on Problem 1. 
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Algebro-Geometrical Equisingularity and Local 
Topological Classification of Smooth Mappings 

A. N. Varchenko 

Two subjects are discussed in this report: The first is the relationship between 
topological and Zariski's algebro-geometrical approaches to classification of 
singular points of complex-analytic hypersurfaces and the second is local topolog­
ical classification of smooth mappings. The fundamental results of this report are 
formulated in Theorems 1, 2 and 3. 

1. Classification of singularities of hypersurfaces. Let P be a singular point of a 
hypersurface Vr: f(xi9---9xr+i) = 0 , Pe Vr c Cr+l

9 where Cr+l is a complex 
affine (r + l)-space,/is a convergent power series and P is the origin. Suppose we 
have another hypersurface V'r of the same dimension r, and a singular point Pf 

on it. The singularities Vr and V'r at P and Pf are called topologically equivalent if 
there exists a local homeomorphism h: Cr+1 -+ Cr+V

9 of the ambient affine spaces 
of Vr and V'r9 which sends P into P' and Vr into V'r. 

Now we shall consider analytic families of hypersurfaces Vr9 all having a singular 
point at the origin and depending on a parameter / = (th t2> ••-, ts). Thus a vari­
able member of this family will be a hypersurface V^\ defined by an equation 

(1) vy'.f(xi9:'9xr+i;ti9...9ts) = 0, 

where/is a convergent power series in (r + s + 1) variables (x)9 (t)9 in the neigh­
bourhood of (x) = 0, (0 = 0, and where /(0, •••, 0; tÌ9 •••, ts) = 0. Equation (1) 
can also be interpreted as an equation of the hypersurface Vn:f((x); (t)) = 0, 
n = r + s9 Vn c Cw+1. This hypersurface carries the nonsingular manifold W\ X\ 
= x2 — ••• — xr+i = 0; r = cod^JF. Our family of r-dimensional hypersurfaces 
Vfi now appears as a family of sections K<?> of Vn9 transversal to W\ V^p = 
Vn[\ (tj = tj9j = 1, 2, •••, r), the singular point of V® being the point P(f) -
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(0,0,---, 0; tÌ9 •••, ts). We are interested in the initial zero values of the parameter/ 
and therefore in the pair (Vf\ P (0)). 

DEFINITION. Vn is topological^ equisingular at P ( 0 ) along W if (V{/\ PCt)) and 
(V®\ P(0)) are topologically equivalent for all (t) sufficiently close to zero. 

Now we give the definition of the so-called algebro-geometrical equisingularity 
introduced by Zariski. The advantage of this definition over the topological one 
consists in the possibility of more easily establishing algebraic statements on 
equisingularities. 

Let the parameters tÌ9 •••, ts in (1) be now denoted by xr+2i •••, xn+Ì9 where n = 
r + s. Then Fis defined byf(xÌ9 • • •, xn+ì) = 0, and P still denotes the origin. Consider 
a set of« convergent power series in the x's — zh •••, zn : z%r = z{(xi9 •••, xn+j) = 
zu\ + zt,2 + ••• 0" = 1, 2, •••, w), where ziM is homogeneous of degree a. We shall 
say that the n power series zÌ9 - , z „ form a set of parameters if the following two 
conditions are satisfied : 

(a) (x) = 0 is an isolated solution of the « -f 1 equations zx(x) = z2(x) = ••• = 
zn(x)=f(x) = 0. 

(b) The n linear forms zf)1 are linearly independent. 
If condition (b) is satisfied, then the n linear equations ziti(x) = 0 (i = 1, •••,#?) 

define a line lz through P. If the zf- are parameters, then the n equations zt{x) = 0 
(i = I,---, n) define a regular curve T7 through P whose tangent line is lz. Let m be 
the intersection multiplicity of r and V at P. The « parameters z,- define a projec­
tion %z of a neighbourhood of P in 0 + 1 onto a neighbourhood of the origin of 
the affine w-space Cn of the n variables zf- — TTZ : C

w+1 -> O , #,(*!, •••, *w+i) = 
(zi(x)9 --9zn(x)). Let ^Z)F be the restriction of %z on V. The full inverse image 7C~y-(z) 
of any point z near zero consists of at most m points. The set of critical points z 
for which this full inverse image consists of less than m points is a hypersurface in 
O , which will be denoted by Az and called the discriminant set. 

Now let W be a singular subvariety of V9 of codimension r, having a simple 
point at P. We shall say that the projection %z is permissible if the line lz does not 
touch Wat P. 

Let %z be a permissible projection. Then nz(W) is a nonsingular variety PF, of 
the same dimension as W9 with a simple point at P = rcz(P). Since we assumed that 
Wis a singular subvariety of V9 we have Wa AZ9 cod^ W — r — 1, and we are 
dealing with a triple (AZ9 W9 P)9 in codimension r — 1. 

If r = 1, then codj, W = 0, i.e., Wis an irreducible component of Az. In that 
case equisingularity of Az at P along W means simply that P is a simple point of 

4-
DEFINITION. V is algebro-geometrically equisingular at P along W if there exists 

a permissible projection TTZ such that Az is algebro-geometrically equisingular at 
P along W. 

The following question was posed by Zariski in [1] : Does algebro-geometrical 
equisingularity imply topological equisingularity? The interest in this question 
has been heightened by the fact that in his article [2] in 1937 Zariski made use of 
the similar statement without proof. The affirmative answer to the question would 
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give an opportunity to consider the fundamental theorem of the above-mentioned 
article about the Poincaré group of complement of projective algebraic hyper­
surface as correct. 

The proof of the affirmative answer to Zariski's question was published by the 
author in [3], The other proofs of the Poincaré group theorem were published by 
H.H.Hamm and Le Dung Trang in [4] and by D. Cheniot in [5]. 

THEOREM 1. Let V9 W9 P be the same as considered above9 and V is algebro-geo­
metrically equisingular at P along W. Then there exists a family of sections of V9 

transversal to W9 naturally connected with the triple (V9 W9 P) and Vis topologically 
equisingular at P, along W9 relative to this family of sections. 

It should be noted that homeomorphisms existing by Theorem 1 can be chosen 
having the following special property: They keep the fibers of the projections 
defining transitions to the successive discriminant sets. This property of homeo­
morphisms can be used in proving the existence of local topological classification 
of smooth mappings. 

The theorem is proved by induction on cod7 W. The following lemma is the 
key to the proof. 

LEMMA. Let V cz Cn+1 be a hypersurface, P be a singular point on V9 (z) be a set 
of parameters, Az c Cn be a discriminant set. Suppose there exists an isotopy of 
couples <j>:(Cn x J, Az x / ) -> (Cn

9 Az) where I is the segment. Then for any point 
z eCn the number of different points in %~}f <f>(z x t)9 t e I, does not change with 
changing of t. 

The conclusion of the lemma means that in the ramified cover defined by the 
projection %ZiV of V on Cn with a ramification along Az the character of the rami­
fication is defined by the topology of the discriminant set. 

2. Local topological classification of smooth mappings. Two germs of mappings 
/,•: (Ni9 xt) -+ (Pi9 y I) (i - 1, 2) where Ni9 P{ are topological spaces are called 
topologically equivalent if there exist germs of homeomorphisms h:(Ni9 x{) -> 
(N29 x2)9 g: (Pi, yi) -> (P2, y2) such that/2A = gfv 

R. Thorn conjectured [6] that the relation of topological equivalence defines a 
partition of the space of all germs of smooth mappings in a countable set of semi-
algebraic sets and a set of an infinite codimension. 

The conjecture of Thorn was proved by the author in [7], [8]. To formulate the 
result the following notations are introduced. 

Let J(n9 p) be a space of all germs of C°°-smooth mappings from Rn into R* 
sending the origin in the origin, and Jr(n9 p) is the space of its r-jets. The spaces 
Jr have natural coordinates (values of derivatives in the origin). 

THEOREM 2. Let n andp be natural numbers. Then for any natural r there exists a 
partition of the space Jr (n9 p) in disjoint semi-algebraic sets VQ9 VÌ9 V29-- having the 
following properties. 
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1. Iffi9 f2eJ(n9p) are such thatf[r\fyr)e Vi9 i > 0, then the germs fi andf2 are 
topologically equivalent. 

2. Any germ feJ(n9p) such that f{r) e Vi9 i > 0, is a simplicial mapping for a 
suitable triangulation ofRn and RP. 

3. The codimension of VQ in Jr(n9 p) tends to infinity when r tends to infinity. 

Some words about the proof. The homeomorphisms defining topological 
equivalence of germs of mappings are constructed in the following way. The graphs 
of mappings are embedded into a certain hypersurface. Then it is proved that this 
hypersurface is algebro-geometrically equisingular along a certain special sub­
manifold. Then Theorem 1 is applied and the homeomorphisms sought for are 
constructed from the homeomorphisms of Theorem 1. 

Making use of similar ideas the author has proved the following results on 
topological versai deformations which are important objects connected with germs 
of mappings [9]. 

THEOREM 3. 1. Almost all germs ofJ(n9p)9 except a set of an infinite codimension, 
have finite-dimensional topological versai deformations. 

2. Sets of germs ofJ(n9 p) having the topologically equivalent versai deformations 
form a countable set of semi-algebraic subsets in J(n9 p). 

3. The set of all germs, the base of any versai deformation of which has the dimen­
sion of no less than r, has codimension no less than r. 

(See the discussion by Thorn on the existence of topological versai deformation 
in [10].) In conclusion it should be noted that J,N. Mather has announced [11] 
a theorem on the density of topologically stable mappings in the space of all 
smooth mappings from one compact manifold into another manifold (not neces­
sarily compact). The author does not know whether Theorem 2 implies Mather's 
density theorem and whether Theorem 2 can be proved by Mather's methods, 
as J. Mather said to me at this Congress that he did not have a proof of this 
theorem yet. 
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Cohomology of Arithmetic Groups 

Armand Borei 

This paper is concerned with the Eilenberg-MacLane cohomology groups 
H'(r ; E) of an arithmetic or S-arithmetic subgroup T of a reductive affine algebraic 
group G over a number field, with coefficients in a ^-module E. For the sake of 
brevity we shall, however, unless otherwise stated, assume G to be connected, 
semisimple and the groundfield to be Q. Then S is a finite set of rational primes. 
We recall that a subgroup T of the group G(Q) of Q-rational points of G is arith­
metic (resp. S-arithmetic) if, given a Q-embedding p : G -+ GLn9 the group p(T) is 
commensurable with p(G) f| GLn (Z) (resp. p(G) f| GLn(Zs), where Z$ is the ring 
of rational numbers whose denominator is a product of elements in S). 

I. GENERAL COEFFICIENTS 

1. In this section S is fixed, T is S-arithmetic, torsion-free. From G and S alone, 
one can construct a contractible locally compact (j(Q)-space X$9 whose z'th integral 
cohomology group with compact supports H*C(XS ; Z) is zero except in one dimen­
sion e = e(G9 S)9 where it is a free module Is, on which T operates properly and 
freely, so that the quotient Xs/T is compact, triangulable. It follows that Z admits 
a Z[r]-ftee finitely generated resolution (as was shown first by Raghunathan [27] 
when /Ms arithmetic (i.e., S is empty) and by J.-P. Serre [28] in general); hence 
H*(r ; E) is finitely generated if E is (as a Z-module), the cohottiological dimension 
cà(r) of r is finite, equal to e(G9 S), T is a duality group in the sense of Bieri-
Eckmann [1], and we have a canonical isomorphism 

(1) W(r ; E) - ^ H^iiT ;IS®E) (i e Z) 

[5], [7], Let / = rkQ G be the Q-rank of G (common dimension of its maximal 
Q-split algebraic tori) and lp the Q-rank of G9 viewed as a group over the field 
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Qp ofp-Sidic numbers (pe S). The space Xs is the product of the manifold with 
corners X with interior the symmetric space X of maximal compact subgroups of 
G(R)9 constructed in [6] (which is just X if / = 0), by the Bruhat-Tits buildings Tp 

of the groups G(QP). If S = 0 , then Xs/r = X/T is a compact manifold with 
corners, hence triangulable. In the general case, triangulability follows from pro­
perties of the projection Xs/ r -> Tsj T (where Ts = II ̂ s Tp) and from results of 
F. E. A. Johnson [18]. 

REMARK. Even if G is not semisimple, any torsion-free arithmetic subgroup of 
G is a duality group [5], [7]. For further examples of discrete subgroups of products 
of reductive groups over local fields (not necessarily of characteristic zero) which 
have a homological duality, see [5], [7]. 

2. In the general case, r possesses torsion-free subgroups of finite index. Their 
common cohomological dimension is, by definition, the virtual cohomological 
dimension vcd(/T) of r [28], which is then finite, equal to e(G, S). The groups 
H{(r ; E) are also finitely generated if .Cis. The group r also acts properly on Xs with 
a compact quotient (presumably triangulable, too, but the author is not aware of 
any proof outside the torsion-free case), which implies that the finite subgroups of 
r form finitely many conjugacy classes. Further cohomological information on r 
can be extracted from those subgroups; we mention some examples. 

2.1. The group r and its subgroups of finite index F satisfy the conditions under 
which an Euler characteristic yfT') e Q, in the sense of C. T. C. Wall, can be 
defined. It is equal to X(F) = S ( - 1)'" dim H<(F ; Q) if F is torsion-free and satis­
fies the condition %(F') = [F : F'] i(F) if F' c F c T7 and [Z7 : F'] < oo. This 
already implies that [T7:/7']- %(r) e Zif F is torsion-free. K. Brown [8], however, 
has given an expression for ^(T7) — X(r), involving the lattice of finite subgroups of 
T7, which implies in particular that m • %(r) e Z as soon as the order of any finite 
subgroup of r divides m. Now let k be a totally real number field, n its degree over 
Q9 oT the ring of elements in k which are integral outside a given finite set T of 
finite primes of k and P= SL2(oT). Let further £Ä>r be the function obtained from 
Dedekind's zeta-function Çft of k by omitting the local factors associated to the 
primes in T. Then, by a special case of a formula of G. Harder [14], if S ^ 0 , by 
[28, 3.7] in eneral, we have 

(1) x(SL2(oT)) = i:ktT(-l). 

The results mentioned above then allow one to get estimates of the denominator 
of the right-hand side using finite subgroups or subgroups of finite index of T7. 
(See [28, 3.7], [8, § 4], where products of values Ç*|7<1 — 2/) (1 ^ i ^ n) are also 
similarly related to the symplectic groups Sp2«(or)-) 

2.2. Given a prime p, there is an algebra Ap over Z/pZ constructed from the 
category of elementary commutative /^-subgroups of T7, and a homomorphism 
H*(r9 Z/pZ) -> Ap whose kernel and cokernel are annihilated by some power of 
the/?th power map [26, §§ 14, 15]. Thus, asymptotically, the cohomology mod p 
is to some extent determined by the commutative elementary /^-subgroups of T7. 
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2.3. Assume now G to be the algebraic group defined by the elements of norm 
one in a division algebra D over Q9 and T7 to be arithmetic. Then, via the regular 
representation, the finite subgroups of F (and even G(Q)) operate on Rn - 0 (n *= 
[D:Q]) freely since D is a division algebra; hence their cohomology is periodic, of 
period dividing n. From this, using the spectral sequences of equivariant coho­
mology theory, B.B. Venkov [29] has shown the same to hold for Z7, from a certain 
dimension on. This is also true if /Ms ^-arithmetic; the argument is the same, with 
X x Ts (notation of § 1) playing the role of X. 

2.4. We note finally that an easy spectral sequence argument shows that if d is a 
common multiple of the orders of the finite subgroups of T7, then it annihilates 
W(r ; E) for i > vcd(r). 

II. REAL OR COMPLEX COHOMOLOGY 

3. From now on, E is the space of a finite-dimensional real or complex represen­
tation of G(R)9 and, unless otherwise stated, T7 is arithmetic. (In fact, the results 
recalled in this section and their proofs are valid for any discrete subgroup of 
G(R).) The group G(R) operates in a natural way on the space QX(E) of smooth E-
valued differential forms on X9 and H*(r ; E) is canonically isomorphic to the 
cohomology of the complex Qx(E)r of Ainvariant elements in QX(E). Fix a 
maximal compact subgroup K of G(R). Using the canonical projection of G(R)/T 
onto X/F one identifies in a well-known way Qx(E)r with a space of smooth 
vector-valued functions on G(R)/r, and this yields in fact a natural isomorphism 
of Qx(E)r with the cochain complex C*(g, £ ; !F ® E) of relative Lie algebra 
cohomology, where, if E is real (resp. complex), J5" is the space of smooth real 
(resp. complex) valued functions on G(R)jT9 g and I are the Lie algebras (resp. the 
complexifications of the Lie algebras) of G(R) and K9 and fF ® E is viewed as a 
g-module in the obvious way. Thus we get a canonical isomorphism 

(1) i/*(g, ! ; & ® E) —> H*(r ; E). 

(For all this, see [23], [24]; the blanket assumption X/T compact made there is not 
used for these general remarks. Actually, (1) is correct as stated if G(R) is con­
nected, also a standing assumption in [23], [24], or if /Ms contained in the identity 
component of G(R). Otherwise, the left-hand side has to be replaced by the inva­
riants under a suitable finite group of automorphisms. We shall ignore this techni­
cality.) Let now "T be a subspace of !F stable under K and g. The inclusion "K ®E -> 
!F ® E then induces homomorphisms 

(2) p : #<g, I ; r ® E) -> H*(r ; E) fe=0, 1, 2 , - ) 

which we shall discuss in three cases (in §§ 4, 6, 7). 

4. Stable cohomology. Take E = f = JE, with the trivial action of G(R)9 where 
°T is the space of real constant functions on G(R)/r. We have then a natural homo­
morphism/?: HQ(Q9 Ï;R)-+ Hv(r;R). If /Ms cocompact (i.e., G(R)/Tis compact), 
then !F has a G(j?)-invariant supplement to T\ hence/« is injective for all q (as was 
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remarked first, I think, by W. T. van Est [9, Theorem 7], from a different point of 
view) but this is not so in the noncocompact case. Moreover, again in the cocom­
pact case, but without assuming Z7 to be arithmetic, Matsushima has shown j * to 
be surjective at least up to a constant m(G) computable from g [21]. Similarly, in 
the arithmetic case, we have the following: 

THEOREM 4.1. The homomorphism fi is an isomorphism for q < (rkQG)/4. 

(See [3], [4]; the surjectivity part had already been proved in substance by H. 
Garland [11, 3.5] or [4, 3.5], and used by him to show that K2o is a torsion group.) 

Let Gu be a maximal compact subgroup of G(C) containing K. Then Xu = 
K°\GU)9 where K° is the identity component of K9 is a compact symmetric space, 
the "dual" space to X. As is well known, and goes back to E. Cartan, 7/*(g, t ; R) is 
canonically isomorphic to H*(XU ; R)9 whence a homomorphism a* : H<i(Xu ; R) 
—> H*(T ; E)9 which is an isomorphism at least in degrees < (rkQG)j(p. 

Let now (Gni Tn9 Xn, Xn>u) be objects similar to (G, Z7, X, Xu) and /„ : (Gni r„) 
-> (Gn+Ì9 rn+i) an injective Q-morphism (n = 1, 2, •••)• Let Xu — inj lim X„tU. 
Assume that rkQ Gn -• oo. Then, for many classical sequences of this type, in 
particular the one of the next section, there exists, given q9 an integer n(q) such that 

(1) H*(XU\ R) S ff«(inj lim Tn ; R) = H*(XntH ; R) = H*(rn ; R) (n* n(q)). 

(See [3], [4] for more precise statements, also pertaining to S-arithmetic groups.) 

5. The cohomology of SL(o), higher regulators and values of ^-functions. We con­
sider the special case where Gn = Rk/QSLni Fn — SLno (where k is a number 
field, o its ring of integers, Rk/Q the restriction of scalars [30, Chapter 1]) and /„ 
comes from the natural inclusion SL„-> SLn+\. Passing to homology, we have then 
an isomorphism a* :H*(SL(o);R) -> H*(XU\R)9 where SZ(o) = inj lim SLn(o). 
For m — 1, 2, •••, let P2m+\ (resp. P2m+\) be the space of primitive elements in 
I^2m+ì(SL(ó) ; R) (resp. H2m+1(Xu; R)). Its dimension dm is equal to r2 (resp. 
r\ + ri) if W7 ^ 1 is odd (resp. even), where /^ (resp. r2) is the number of real (resp. 
complex) places of k; this also happens to be the order of the zero of Qk (s) at s = 
— 777. There is a natural map of 7C2m+i(Xu) (resp. of Quillen's group K2m+io) into 
Pzw+i (resp. i^w+i), whose image is a lattice I^m+1 (resp. £2w+i). The mth regulator 
of A: is then, by definition [20, § 4], the positive real number Rm such that the map 
AdmP2m+i -+ Ad"P'Zm+i defined by a* sends Ad"L2m+i onto Rm-(Ad- L'2m+l). 

Given two nonzero real numbers, write a ~ b if a/£ is rational. 

THEOREM 5.1. Let Dk be the discriminant ofk over Q. For m ^ 1, we /?ave 

i?w ~ J9p-7 r w ( w + 1 ) ^ A (m+ 1). 

According to the functional equation for ^(s), this is equivalent to 

Rm - 7ü-d^lims^m^k(s)/(s + W7)rf". 

This, however, says nothing about the actual quotient of these two numbers. 
According to the conjectures in [20, § 4], slightly modified to take into account the 
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factor 7c~dm, it should be closely related to the orders of K2mo and of the torsion 
subgroup of K2m+io. 

REMARK. Applied to other sequences of classical groups, the results of § 6 also 
yield the ranks of Karoubi's groups eL^o or eLtk (see [3], [4]). 

6. Cusp cohomology. We come back to the setting of § 3, assume E to be complex, 
endowed with a hermitian scalar product invariant under K (or more precisely 
admissible in the sense of [23]), and fix an invariant measure on G(R)/F This allows 
one to define a scalar product on compactly supported elements of C*(g, t ; 3F ® E) 
(and then on various bigger spaces), an adjoint 9 to d, and a Laplace operator 
dd + dd [23], [24]. Let QL2(G(R)/r) be the space of cusp forms in the space 
L2(G(R)/T) of complex-valued square-integrable functions on G(R) [17], [19]. By 
a well-known result of Gel'fand and Piateckii-Shapiro [13], [17], it is a direct sum of 
closed irreducible (under G(R)) subspaces, with finite multiplicities. Take now for 
y the space °J* of C°°-vectors (in the sense of infinite-dimensional representation 
theory) oî°L2(G(R)/r). Thus, *K consists of the elements fe & such that Xfvz 
square-integrable for every Xe C/(g) and 

Sum/mnfte'u) du==0 f o r a11 * e G(R)9 

where U is the unipotent radical of an arbitrary proper parabolic Q subgroup of G. 

THEOREM 6.1. The map °/* : #*(g, I ; °«T ® E) -> H*(r; E) is injective. 

Its image will be denoted H*usp(r; E). 
Let r be a finite-dimensional representation of K. For ce R9 let A(r9 c) be the 

space of elements in L2(G(R)jT) which transform according to /* with respect to 
left translations by K and are eigenfunctions of the Casimir operator with eigen­
value c. As is well known, these elements are in fact analytic. Let °A(r, c) = 
A{r, c) R °L%G(K)/r). 

THEOREM 6.2. The space QA(r9 c) is finite-dimensional, contained in the sum of 
finitely many closed irreducible subspaces of°L2(G(R)/r)'9 in particular, its elements 
are Z-finite (Z center of £/(g)), and are automorphic forms in the sense of [17], [19]. 
Given r, the set of c for which °A(r9 c) is ^ {0} is bounded from above and has no 
finite accumulation point. 

(6.2, the results below, and those of §7 are joint work of H. Garland and the 
author; they extend theorems proved by H. Garland for Q-rank one groups [10].) 

In view of Kuga's formula relating the Laplace operator and the Casimir opera­
tor [23], it follows immediately from 6.2 that //*(g, I ; °& ® E) may be identified 
with the space of harmonic forms in C*(g, t ; °^ ® E). Thus /^^(Z 7 ; E) is iso­
morphic to the space of harmonic cusp forms. Assume now E to be irreducible. Let 
c be such that the Casimir operator on E is c-ld. Write further °L2(G(R)ir) as a 
Hilbert direct sum of irreducible subspaces H; and let c,- be the eigenvalue of C in 
the space of differentiable vectors of Hi. Then we have 

(1) H^r \E)^@ Hom*(/«g/f) ® E9 Ht). 
iyCi—C 
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If is is the trivial representation, then c = 0. In the cocompact case (where ®@r=<F) 
the formula overlaps with one of Matsushima's [22]. More generally, 6.2 implies 
that a number of arguments in the cocompact case (such as the generalized Eichler-
Shimura isomorphism in [24, § 7]) or the vanishing theorems in [24, § 11] remain 
valid for cusp forms and cusp cohomology. 

7. Square-integrable cohomology. Take now for Y the space of C°°-vectors in 
L2(G(R)jr). The image of /* is then the space of cohomology classes which can be 
represented by square-integrable forms (hence also by square-integrable harmonic 
forms). It contains the image of the cohomology with compact supports, is equal 
to it if G = Rk/Q SL2 by [15], but is bigger in general. However, 6.2, induction and 
the results of § 7 in [19] allow one to prove that 6.2 remains true if °A(r, c) and °L2 

are replaced by A(r9 c) and U (this was shown to us by Langlands). In particular, 
a ^-finite eigenfunction of C in L2(G(R)/r) is Z-finite, contained in the sum of 
finitely many elements of the discrete spectrum. This is the analogue of a result of 
Okamoto for L2(G(R)) [25]. It also follows that the space of square-integrable E-
valued harmonic forms is finite-dimensional, isomorphic to Z/*(g, f ; y ® E) and 
given by a formula similar to (1), but where °L2 is replaced by the discrete spectrum 
in L2(G(R)/r)9 if E is irreducible. 

8. The Q-rank one case. Assume now rkQ G = 1. The manifold with corners 
V = X/r is then in fact a manifold with boundary, and the connected components 
of its boundary dV correspond bijectively to the /'-conjugacy classes of minimal 
parabolic Q-subgroups of G [2, § 17]. Letr :H*(V-9 E) -• H*(dV; E) be the restriction 
homomorphism. Using Langlands' theory of Eisenstein series [17], [19], G. Harder 
has shown the existence of a subspace H?n{ (r;E) of H*(T;E) s H*(V; E)9 which 
restricts isomorphically onto Im r, whose elements are obtained either by taking 
analytic continuation of suitable Eisenstein series, or residues of such at simple 
poles [16]. Thus, in this case, every element of H*(r; E) has a closed harmonic 
representative. If G = Rk/QSL29 and E = C9 G. Harder has given a complete 
description of Im r; moreover, //*(Z7 ; C) is in this case the direct sum of Hfn{, 
H*sp9 and the image of Z/*(g, f ; C) [15]. 

9. No such results have yet been obtained in the higher rank case. Still, they 
point to extremely interesting relations between H*(Z7 ; E) and the theory of 
automorphic forms, and lead one to wonder whether (a) all cohomology classes are 
represented by closed harmonic forms; (b) there is a sum decomposition of 
H*(T ; E)/H*usp(r ; E)9 where each summand is naturally associated to Eisenstein 
series built from a class [P] of associated proper parabolic Q-subgroups, starting 
from harmonic cusp forms on pieces of the boundary of the manifold with corners 
X/r corresponding to the elements of {P}. 

Finally, I would like to draw attention to two topics left out of this survey : vani­
shing theorems for subgroups of/?-adic groups and related questions, for which we 
refer to H. Garland's article [12], and the use of cohomology of arithmetic groups 
in the discussion of zeta-functions or L-functions of certain algebraic varieties 
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(Eichler, Shimura and, more recently, I, I. Piateckii-Shapiro and R. P. Langlands 
(in Modular functions of one variable. II, Springer Lecture Notes in Mathematics, 
vol. 349) for modular curves; Shimura, Kuga-Shimura and Langlands for other 
quotients of bounded symmetric domains), 
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Singularitäten von Modulmannigfaltigkeiten 
und Körper Automorpher Funktionen 

Eberhard Freitag 

Die analytische Theorie der Modulformen mehrerer Veränderlicher erhielt einen 
beträchtlichen Aufschwung durch die "Kompaktifizierungstheorien", welche von 
Satake begründet wurden. Entscheidend weiterentwickelt wurden sie von Baily 
und zur höchsten Allgemeinheit gebracht von Baily und Borei. 

Wir erinnern kurz an das Hauptresultat. Sei D ein beschränktes symmetrisches 
Gebiet im CN und Teine diskontinuierliche Gruppe analytischer Automorphismen 
von Z>, welche arithmetisch definiert ist. Dann ist D/T eine quasiprojektive al­
gebraische Mannigfaltigkeit (i.a. mit Singularitäten) mit einer natürlichen Kom-
paktifizierung D/f9 welche nichts anderes ist, als die projektive algebraische Man­
nigfaltigkeit, die dem graduierten Ring der Modulformen 

A(D= L[r9r] 

zugeordnet ist. Hierbei ist (Y7, r] der Raum der Modulformen in bezug auf den 
Automorphiefaktor 

MrYJ(*,r) = à^fr) 

Dass obige Algebra endlich erzeugt ist, gehört zu den Hauptresultaten der Kom-
paktifizierungstheorie. 

Die Mannigfaltigkeit D/T hat i.a. Singularitäten. Insbesondere die Punkte im 
Unendlichen D/T - D/P sind—von einigen Ausnahmen abgesehen—hochkompli­
zierte Singularitäten. Es ist ein wichtiges Problem, die Natur dieser Singularitäten 
aufzuklären. Aufgrund der Desingularisierungstheorie von Hironaka existiert 
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eine Auflösung % : X -> X9 X = D/T. Im Falle der Hilbertschen Modulflächen 
konstruierte Hirzebruch explizit die minimale Auflösung und benutzte sie, um den 
Typ von X im Sinne von Kodaira (rough classification) zu bestimmen. 

Einige der Resultate Hirzebruchs kann man auch ohne Benutzung einer expli­
ziten Desingularisierung beweisen und auf beliebige Dimensionen verallgemeinern. 
Es gibt in höheren Dimensionen auch interessante Phänomene, welche im Falle 
der Hilbertschen Modulflächen nicht auftreten. 

Wir wollen nun etwas mehr ins Detail gehen. Unter QV(Y) verstehen wir den 
Raum der holomorphen Differentialformen vom Grade y auf einer analytischen 
Mannigfaltigkeit Y. 

Im Folgenden machen wir die Voraussetzung 

dim(DjT - D/D + 2 g dim D/r = N. 

(Dadurch wird im wesentlichen nur der Fall N = 1 ausgeschlossen.) 

1. BEMERKUNG : Man hat einen natürlichen Isomorphismus 

oN(xieg) - ^ [r, i] 

(XTeg = regulärer Ort von X). 

(Durch Restriktion dieses Isomorphismus erhält man eine Einbettung QN(X) c; 
[r, i].) 

2. SATZ. Das Bild von QN(X) in [T7, 1] stimmt überein mit dem Raum der Spitzen-
formen [71, 1]0. 

Die Dimension gv(X) = dim QV(X) hängt nicht ab von der Wahl der Auflösung 
X und ist daher eine Invariante des Körpers der Modulfunktionen K(r) (= Körper 
der rationalen Funktionen auf X). 

Ist beispielsweise K(r) eine rein transzendente Erweiterung von C, so ist 
dim [.T, 1]0 = 0. 

Von einigen Spezialfällen abgesehen, konnten die Invarianten gv nur für Grup­
pen berechnet werden, die mit der Hilbertschen Modulgruppe kommensurabel 
sind. 

3. THEOREM [1]. Sei T eine Gruppe von simultan gebrochen linearen Substitutionen 

(7 ... 7 >> _.> / a\z\ + bi . . . GNZN + bN \ 
U b >ZN) \clz1 + d1

i >CNZN + dN)' 

welche mit der Hilbertschen Modulgruppe eines total reellen Zahlkörpers kommen­
surabel ist, Dann gilt: 

( a ) g o ( * r e g ) = S o W = l , 
(b) gv{Xree) = gv{X) = Oftir 0<V<N, 
(c) gdX«J = gstf) + h = (- l)N(Pr(0) -h-l). 

Dabei ist h die Anzahl der Spitzenklassen von r und gv{ — ) = dim ß"( — ) ; 
mit Pr wird das Hilbertpolynom von A(r) bezeichnet. 

Pr(r) = dim [f, r] für r s O mod r0 (geeignet), r > 0. 
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Das Polynom Pr wurde von Shimizu mit Hilfe der Selbergschen Spurformel 
berechnet. 

BEISPIEL. Sei r torsionsfrei und TV ungerade. Dann gilt 

dim [F9 r]0 = dim [T7, r] - h = v(DJD • (2r - 1)" für r > 1. 

Es folgt mit Hilfe des Theorems 3 dim [71, l]o > 0. Der Körper K(r) kann nicht 
rein tranzendent sein ! 

Bevor wir die Hilbertsche Modulgruppe weiter behandeln, wollen wir etwas die 
allgemeine Situation erläutern. 

(1) Es gibt eine Formel, welche das arithmetische Geschlecht g(K(r)) von K(D 
(d.h. eines singularitätenfreien Modells) durch die Werte von Hilbertpolynomen 
ausdrückt, welche im Prinzip mit Hilfe der Selbergschen Spurformel berechnet 
werden können. 

BEISPIEL. Sei Sn die Siegeische Halbebene und T7 eine Gruppe, welche mit der 
Siegeischen Modulgruppe kommensurabel ist, aber keine Torsion hat. Den ver­
schiedenen Randkomponenten (77 — l)-ten Grades entsprechen ebensolche Grup­
pen T7!,--, rh auf Sn-\. Bezeichnet man mit P bzw. PÌ9 • • •, Ph die Hilbertpolynome 
der entsprechenden Algebren von Modulformen, so gilt 

g(K(D) : = | (- iy gJLX) = P(l) - EPV ( ^ + 1) (N = ü & f i l ) 

Unglücklicherweise hat bis jetzt niemand im Falle der Siegeischen Modulgruppe 
rm n > 2, eine endliche Form der Selbergschen Spurformel für dim [rn9 r] ausgear­
beitet. Man darf aber hoffen, dass dies eines Tages geschieht. 

(2) Die Invarianten gv(Xo)> l < v < N9 verschwinden im allgemeinen nicht. 
Ist r kommensurabel mit der Siegeischen Modulgruppe, so gilt wohl 

gXXreg) = 0 für 0 < v < n (= Rang Sn). 

Aber mithilfe der Theorie der Theta-Nullwerte kann man holomorphe alternie­
rende Differentialformen vom Grad N — 1 zu gewissen von Igusa definierten Kon­
gruenzuntergruppen der Siegeischen Modulgruppe konstruieren. Es gilt also 
QN-\Xte^ 7e 0 im allgemeinen. 

(3) Im Falle der Hilbertschen Modulgruppe sind die Spitzen isolierte Punkte. 
Allgemein liegen jedoch auch höherdimensionale Randkomponenten vor. 

Ich möchte nun die Spitzen der Hilbertschen Modulgruppe genauer beschreiben. 
Sei t ein Gitter vom Rang N in einem total reellen Zahlkörper L vom Grad N 

und A eine Untergruppe von endlichem Index in der Gruppe aller total positiven 
Einheiten, welche auf t operiert, A * t <= t. Diesen beiden Daten ist eine iV-dimen-
sionale analytische Singularität, die Spitze, zugeordnet. 

Wir wollen uns hier damit begnügen, die Komplettierung des lokalen Ringes in 
dieser Spitze zu beschreiben. 

Der formale Gruppenring C[[t+]] über der Halbgruppe 

t+ = {x G t, x > 0 (total positiv) oder x = 0} 

besteht aus allen Abbildungen/: t+ -> C, wobei die Multiplikation durch 
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/ •*<*)= E f(x')g(x") 

erklärt ist. Diese Summe ist endlich! Die Gruppe A operiert auf diesem Ring. Der 
Fixring wird mit R = Cftt*]]'1 bezeichnet. 

4. THEOREM [2]. Der Ring R hat folgende Eigenschaften : 
(1) Er ist ein noetherscher lokaler vollständiger normaler Ring der Dimension N. 
(2) Die Tiefe von R (homologische Kodimension) ist zwei. 
(3) Der kanonische Modul von R ist isomorph zu R. 
(4) Die Divisorenklassengruppe von R ist Horn (t+ -yl, C*) (mit t+-A wird das 

semidirekte Produkt bezeichnet). 
(5) Im Falle N ^ 3 ist der Ring R starr. 

In Wirklichkeit wissen wir über den Ring R noch sehr viel genauer Bescheid. 
Der Raum Spec R — {m} ist singularitätenfrei ; die Elemente der lokalen Divisoren­
klassengruppe entsprechen also genau den Isomorphieklassen von Geradenbündeln 
auf diesem Raum. Die Kohomologie all dieser Geradenbündel ist explizit bestimmt. 

Obwohl obiges Theorem rein algebraisch formuliert werden konnte, erfordert 
sein Beweis die analytische Realisierung von R: 

R = ^x00,00\ X00 = H»/t+-A U {oo}. 

Wir nehmen nun an, dass der Körper L eine Galoissche Erweiterung von Q ist. Die 
Galoisgruppe G möge t und A in sich überführen. Sie operiert dann auch auf R 
und man kann den Ring RG betrachten. Auch dessen Tiefe kann berechnet werden. 

Im Falle N ^ 3 gilt 

Tiefe Jic = 4 falls G g Z/2 x ••• x Z/2, 
= 3 sonst. 

Die Divisorenklassengruppe von RG ist Hom(t • A • G9 C*). Dies ist eine endliche 
Gruppe! Der Ring RP ist also ein fastfaktorieller Ring. 

Immer dann, wenn die Gruppe G halbeinfach ist, kann man t und A so konstruie­
ren, dass RP ein ZPE-Ring ist. Mithilfe der klassischen Invariantentheorie können 
total reelle Zahlkörper zur alternierenden Gruppe fünften Grades AB konstruiert 
werden. Damit erhält man Beispiele 60-dimensionaler ZPE-Ringe der Tiefe drei. 

Wir wollen nun noch auf einige globale Eigenschaften der Hilbertschen Modul­
mannigfaltigkeiten eingehen. 

Ist Y ein komplexer Raum, so setzen wir hv(Y) = dim HV(Y9 @Y)- Sei wiederum 
T c= SL(2, R)N eine diskrete Untergruppe, welche mit der Hilbertschen Modul­
gruppe kommensurabel ist. 

5. THEOREM [1]. Es gilt 

= 1 für v = 0, 
H*/r9 

h"(X0) = 1 för v = 0, 
= oo für v = N — 
= 0 sonst; 

UXo 
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h»(X) = 1 für V = 0, 

= A-("lJ) fürl£v£N-l, 

= dim[r9 1] für v = N9 

— 0 sonst; 

h»(X) = 1 /"> v = 0, 
= dimoilo fürv = N9 

Die singulare Kohomologie von .Yo wurde von Harder bestimmt [4]. Der Unter­
raum aller Kohomologieklassen aus H'(XQ9 C), welche im de Rham-Komplex durch 
quadratintegrierbare Differentialformen repräsentiert werden können, wird mit 
ß-(X0, C) bezeichnet. Seine Kodimension kann man mithilfe der Theorie der 
Eisensteinreihen berechnen. 

6. THEOREM [4]. 

dim HV(XQ9 C) - dim H^(X^9 C) = 1 für v = 0, 
= 0 für l ^ ^ n - 1 , 
= /7'(v = ") fM'n^v<2n-29 

— h — \ für v — 2n — 1, 
= 0 für v ^ 2/7. 

Die Differentialformen ( ä V A dyv)/yl, 1 g v ̂  N, sind invariant und definieren 
Kohomologieklassen o)v aus //'(A'o, C). Sie erzeugen einen Unterring H^ÇX^ C). 
Definierende Relation ist CUI A ••• A coN = 0. Man hat eine Zerlegung 

H'(X0i C) = HunivC^O» C ) © ^cuspt^O» C)> 

wobei in Hènsp (X0> C) alle Kohomologieklassen zusammengefasst sind, welche sich 
durch Spitzenformen darstellen lassen. Diese werden wir nun genau beschreiben. 
Jeder Teilmenge I a {1, •••, iV} ordnen wir eine mit F kommensurable Gruppe 
F1 zu. Sie entsteht aus F durch Konjugation mit dem Automorphismus 

a(zh ••• , zN) = (vt>i, ••• , wN) ; wv = z„ /tfr v e / , 
= ,— z„ /tfr v$L 

Die Zuordnung /i-> o*(f(zh ••• , Ztf)cfei A ••• A flfe#) induziert eine Einbettung 
[ r / , l ] 0 c;^ u s p (Zo, C). 

7. THEOREM ([4], [5]). 

^usp(*0, C) = _ . . © „ [ / M b . 
Jc{l,...,JV} 

Die Dimensionen von [FJ
9 l]o können mithilfe Shimizus Formeln ausgedrückt 

werden (Theorem 3) Sie hängen i.a. von / ab ! Die Differenzen lassen sich durch 
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Werte von L-Reihen ausdrücken. Die Berechnung der Kohomologie von XQ hat 
folgende Anwendung. 

8. THEOREM [3]. Im Falle N ^ 3 gilt 
(a) Pic X0 s ZN~l 0 F/[F9 n 

Die Kommutatorgruppe [F9 F] hat endlichen Index in F (sogar für N ;> 2). 
(b) Pic X^Z. 
Die Aussage (a) kann man elementarer auch folgendermassen aussprechen. Ist 

3r(z9M)eZ(F9(!)*(H")) 

ein analytischer Automorphiefaktor von F, so existiert dine holomorphe nirgends 
verschwindende Funktion h : HN -> C mit der Eigenschaft 

^(z9M)^-^^\= Ü\c,zv + dv\^. 

Die Zahlen rv sind rational und ihre Nenner sind beschränkt. Studiert man die 
Kohomologie der Geradenbündel auf XQ so stösst man auf interessante Probleme. 
Aus den bisher bekannten Resultaten lässt sich u.a. folgern, dass die Hilbertschen 
Modulmannigfaltigkeiten im Falle N ^ 3 starr sind im Sinne der Deformations­
theorie komplexer Räume. 
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On the Cohomology of Discrete Subgroups 

of /?-adic Groups 

Howard Garland 

0. Introduction. In [1], Borei will give a survey of recent results on the coho­
mology of arithmetic groups in the real case. In this article we will emphasize the 
/?-adic case. Thus, let k0 be a nondiscrete, locally compact field which is totally 
disconnected. Let G be a semisimple, linear algebraic group defined over kV9 let / 
be the A -̂rank of G9 and let G be the /^-rational points of G. Let F <= G be a 
discrete subgroup, which for the moment we assume to be uniform and torsion-free 
(where "uniform" means that the quotient G/Fis compact). In this article we shall 

(discuss three related questions: 
(i) For i 7* /, what is the dimension of H*'(F9 R)9 the ith Eilenberg-MacLane 

group of F with respect to trivial action on jß? 
(ii) What is the Euler characteristic 

i 

(It is known that F has finite cohomological dimension equal to / and that each 
H'(F9 R) is finite dimensional.) 

(iii) What is the multiplicity of the special representation in L2(G/F)1 
Also, we shall consider generalizations and extensions of such matters. Thus, 

in § 2 we shall consider the case when G/F is not compact. Also, we shall see that 
our methods apply to certain (not necessarily discrete) subgroups of real Lie groups 
(see § 4). 

1. First statement of results. Let Kbe a finite-dimensional, complex vector space 
with a positive-definite Hermitian inner product, and let p ; F -+ Aut(K) be a 
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unitary representation of F. Let H{(r9 p) be the /th cohomology group of F with 
respect to p. With regard to (i), I proved in [6] : 

THEOREM 1.1. There exists an integer N = N(l)9 depending only on I, so that if G 
is simply connected, kv-simple ofkv-rank I, if the residue class field ofkv has at least 
N elements, and iff <=• G is a discrete, uniform subgroup, then 

(1.2) / / < ( / » = 0, 0 < / < / . 

REMARK. In [2], Borei observed that one could drop the restriction that G be 
simply connected. 

The proof of Theorem 1.1 in [6] depends on the geometry of the Bruhat-Tits 
building and a /?-adic analogue of Riemannian curvature, which I called u/?-adic 
curvature." It seems likely to me that curvature arguments could be used to eli­
minate the restriction on the residue class field. For certain i and G, I have been able 
to do this. Also, Borei and I proved (1.2) when G is semisimple and f c G i s irre­
ducible in the sense that F has a dense projection off of each factor of G (and again 
for large residue fields). Recently, using the Bruhat-Tits building, representation 
theory of /?-adic groups, and a different method from mine, W. Casselman has been 
able to eliminate the restriction on the residue class field, and thus prove (see [3]) : 

THEOREM 1.3. If G is semisimple of kv-rank I, if F a G is discrete, uniform and 
irreducible, then (1.2) holds. 

Later on I shall comment briefly on the two methods of proof, and shall indicate 
a relation between the two approaches which was discovered by Borei. Also, we 
mention that (1.2) was conjectured by Serre. 

With regard to problem (ii), we have Serre's result (see [8]) : 

THEOREM 1.4. Let G be semisimple of rank I over kv and let F be torsion-free; then 
X(F) has sign (- 1)'. 

The proof of Theorem 1.4 is based on the existence of what Serre calls an Euler-
Poincaré measure, where 

DEFINITION. A (necessarily bi-invariant) Haar measure ßG on G is called an Euler-
Poincaré measure, in case for every uniform, discrete, torsion-free subgroup F <= G, 
we have 

X(H = I (*& 
r\G 

Thus, to prove Theorem 1.4, it suffices to compute the sign of pLG. This is what 
Serre did in [8]. Also, he observed there that F has a free, simplicial action on an 
acyclic, /-dimensional complex, and hence Hi(F9 R) = 0, for / > /. Thus Theorem 
1.3 and the existence of an Euler-Poincaré measure imply 

(1.5) J^=l+(-l)<dim//<(/; /2), 
r\G 

and then from Theorem 1.4, one has 

(1.6) Replacing F by a suitable subgroup of finite index, one can 
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guarantee that Hl(F9 R) is arbitrarily large. If / is odd, then for all 
torsion-free, discrete, uniform F9 we have Hl(F9 R) # 0. 

The conclusion of Theorem 1.4 and an earlier vanishing theorem of D. A. Kazhdan 
led Serre to conjecture the vanishing Theorem 1.3 (see [5], [7]). Kazhdan's result 
states that if G is /c„-simple of fc^-rank at least two, and if F <= G is discrete and 
G/Thas finite volume, then Hl(F9 R) ~ 0. This of course leads one to ask about 
the case of noncompact quotients for higher cohomologies, and we shall discuss 
this matter in § 2. We also mention 

THEOREM 1.7. Let G be semisimple of rank 1 oyer kv and let F ^ G be a discrete, 
uniform subgroup ofG. Then dim H!(F, R) is equal to the multiplicity of the special 
representation in L2(F\G). 

Thus, from (1.6), we see that if F is torsion-free and / odd then the special rep­
resentation occurs in L2(F\G) and for all / we can, by passing to a suitable sub­
group of F of finite index, guarantee that the special representation occurs in 
L2(F\G) with arbitrarily high multiplicity. 

2. À description of methods; square-summable cohomology. To describe the ap­
proach in [6], we first consider a simplicial complex S? and assume that to every 
geometric simplex G of &* we have assigned a positive number X(G) (the function 
/I will be called a metric). If 0, W are two oriented /-cochains on ^ , with values in 
R, we let 

(2.1) (09w) = zmm)m, 
a 

where the right-hand side is summed over geometric /-simplices a9 and where for 
each G we choose some fixed, oriented /-simplex a" corresponding to o. We remark 
that the right side of (2.1) is independent of our choice of G9 and that of course 
(0, W) is defined only when the right side of (2.1) converges absolutely. We say 0 
is square-integrable, in case (0, 0) < oo. We let £?*(£?) be the Hilbert space of 
square-integrable /-cochains on £P9 and we assume 
(2.2) The simplicial coboundary d maps &($) into SPl+1(^)> and is 

a bounded operator. 

REMARK 2.3. For example, let G be a fcy-simple group over kv of kv-rank / and let 
$r be the Bruhat-Tits building associated with G. Then F is an acyclic simplicial 
complex, and if for a simplex a of 8T9 we let \(o) denote the number of simplices of 
ST of maximal dimension having G as a face, then (2.2) is satisfied. Also, G acts 
simplicially (to the left, say) on F and if F c G is torsion-free, then we can carry 
over our methods to F\S£ (even if F\£f is not simplicial). 

Now let &> and I be given and let d :&*(£?) -> jSf̂ CSO be the adjoint of dmd 
A = dd + dd be the Laplacian. Let Hi = (kernel A) f| SPiff^X then we have an 
orthogonal direct sum decomposition (Hodge decomposition) : / 

(2.4) &{&) = JET' 0 Im d 0 lin d9 

where "—" denotes closure. If y is finite then £?*(£?) is just the space G'(£f) of all 
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B-valued /-cochains and (2.4) is a decomposition of a finite-dimensional vector 
space. It follows that H* = H'XS?, R)9 the /th cohomology of y with coefficients 
in R. In [6], we proved : 

THEOREM 2.5. Let G be kv-simple of kv-rank 1 and let F <= G be discrete and tor­
sion-free. Let N(l) be as in § 1. Then, ifkv has at least N(l) elements in its residue 
field, & = Ofor 0 < / < / and d : y'(F\&~) -> ̂ M(F\ST) has closed range for i > 0. 

Clearly, in view of our above remarks, Theorem 1.1 is a corollary of Theorem 
2.5. On the other hand if F — {e} then G acts on Hl and Borei and Serre proved 
( f o r r = { e } ) : 

THEOREM 2.6. The action of G on Hl is irreducible and is the special representation 
ofG. 

We mention that though the proof of Theorem 2.5 depends on X9 the statement 
depends only on the space ^(F^). Thus (^{(F\T)9 d) is a complex and Theorem 
2.5 asserts that for 2 ^ / ^ / — 1, and sufficiently large residue fields, the /th 
cohomology group of this complex is zero. 

3. A description of methods (continued). The proof that ffl — 0 is analogous to 
Bochner's method, using curvature to prove that harmonic forms on Riemannian 
manifolds are zero. Thus, if £f9 7, are as in § 2, we can, for each simplex G of «£*, define 
a certain operator Ra (the curvature at G) on the cochain complex of the link of G. 
Thus let al be the metric on the link of G which assigns X(T • o) to each % (T • G 
denotes the join of T and G). Let ffdbe the simplicial coboundary on the link of G9 and 
let a5 denote the adjoint of ffd, with respect to aX. Then by definition Ra = aò ffd. 
We then prove Theorem 2.5 by showing the positive eigenvalues of the Ra are 
sufficiently large. 

The approach in [3] depends on the theory of admissible representations of p-
adic groups and takes as its starting point Shapiro's lemma (see [4]). For simplicity, 
take p to be the trivial representation and assume G to be simply connected. Let 
/ be the space of all C-valued, locally constant functions on F\G. The group G acts 
on I by right translation. The module / i s a unitary, admissible representation of G. 
By Shapiro's lemma as proved in [4] : 

H*(r,C)^HU(G,I), 

where H*ont, denotes the continuous cohomology of G (where lis given the discrete 
topology). But lis a direct sum of irreducible, unitary representations and thus we 
are led to study Himi. (G, / ' ) for an admissible, unitary representation of G on / ' . 
But Casselman proves : 

(3.1) IfO < / < /, theni/'ont, (G9F) = 0, unless/' = V&9 8 a subset of 
the simple roots of G of cardinality / — /. 

Here VQ is the following space : Let P^ be a minimal parabolic in G with A^-split 
torus Af. Let A be the corresponding set of simple roots of A$9 and for 6 ^ A9 let 
Fe 2 Ptf, be the corresponding standard parabolic subgroup. We let Ue = 
C°° (Pe\G) be the locally constant C-valued functions on Pe\G9 and 
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Ve = Usili UQ9 I oca 
where we note that for 0 £= ß, we may regard UQ as contained in Ue. Right 
translation then induces a G-module structure on Ve which is irreducible and 
admissible. Casselman then proves that unless 6 — <j> or A9 one has that Ve is not 
unitary. This is his central result. Clearly (1.2) follows from (3.1). 

Earlier, using a sheaf-theoretic version of the curvature argument sketched 
earlier, Borei was able to prove 7/̂ ont, (G, Ve) = 0 for 0 < / < /, provided Ve is 
unitary (and for large residue fields). Since Casselman had proved 

HU(G9Ve)mC9 i=\A-&\9 

this gave the nonunitarity result for large residue fields. 

4. An application to the real case. Let G now denote a linear algebraic group 
which is semisimple and defined over Q. Let G denote the Ä-rational points of G9 

and let GQ denote the Q-rational points; then Borei and I have proved : 

THEOREM 4,1. If G is Q-anisotropic, then the restriction homomorphism 
<p:Hiont(G9R)^H<(GQ9R) 

is an isomorphism (for all i\).1 

The proof is based on a sheaf-theoretic version of the curvature arguments 
mentioned earlier. The size of the residue field plays no role since "in the limit" one 
introduces arbitrarily large primes. In fact, if one only allows sets containing finitely 
many primes (e.g., one prime) one still gets an analogous result for sets containing 
a sufficiently large prime and for a certain range of /. 
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Casselman has informed me that Theorem 4.1 and other results alluded to in §4 also follow 
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Representations of jp-adic Division Algebras : An 
Example of the Change of Base Problem in 
Representation Theory of Algebraic Groups 

Roger Howe 

We discuss a very special case of the following general problem. Let G be a linear 
group scheme over a finite or local field F. Let F' be a finite Galois extension of F. 
Then we have an embedding G(F) —» G(F') of the groups of rational points, and 
the Galois group Gal (F'/F) acts on G(F') so that its fixed point subgroup is G(F). 
If G(F)A and G(G')A are the unitary dual spaces (spaces of equivalence classes of 
irreducible unitary representations) of G(F) and G(F')9 then Gd\(F'jF) also acts on 
G(F')A, and one may consider the problem: What relation is there between G(F)A 

and the Gal(F'/iO fixed points in G(F)A? 
Here is one example of the kind of relation that can obtain. Let D be a division 

algebra over the /?-adic F9 central of degree m. Let F' be a tamely ramified Galois 
extension of degree /. Assume / is prime to m and to p. Put D' = D ® F'. Under 
our assumptions D' is again a division algebra, central of degree m over F'. The 
multiplicative groups Dx and D'x are respectively the F and Ff rational points of a 
group scheme over F. 

Now let Di be a division algebra of degree /, and embed F' in D\. Then D2 = 
D\ ® D is a division algebra, central of degree Im over F9 and D' may be thought of 
as embedded in Z>2,

 a s ^ e centralizer of F'. Then N(F')9 the normalizer of F! in 
F>\, satisfies the exact sequence 

1 ^ jyx _ N(F') _+ GSL\(F'/F) -+ 1 

and the action of GZLI(F'/F) on D'x is what it should be. In this situation we have 
the following result. 
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THEOREM. There is a virtually canonical bijection between DXA and the set of re­
presentations ofN(F') which are irreducible on D'x. 

Let us explain "virtually" as used above. It means there are characters e and e' 
of Dx and of N(F')9 of order at most two, so that the pair {G9B ® G) ^ DXA is 
assigned unambiguously and canonically to some pair{r, e' ® z) £ N(F')9 but 
that it is unclear to me at this point how to match up individual elements inside 
these pairs. This ambiguity arises from the following phenomenon. Let i^(F'jF) 
be the relative Weil group of F' over F. Then local reciprocity gives a canonical map 
r : ifr(F,/F) —> Fx. On the other hand, Shafarevitch's theorem gives an embedding 
s:i//,(F,/F)-^ D\ for a suitable division algebra D\. Also we have the reduced 
norm, det :Df —> Fx. It happens that the triangle 

r 
ifr(F'\F) -> Fx 

does not always commute. Indeed if p = 3 (mod 4), and the ramified degree of F' 
over F is even, the long way around is not even surjective. However, when F' is 
tamely ramified anyway, the triangle commutes up to a character of order 2, 
which is what shows up in the theorem. 

One may of course ask what happens when one drops the conditions on /. Re­
lated results are still valid, and potentially useful, but the situation is more compli­
cated and technical, and especially if / and m are divisible by p9 not completely 
resolved. See [1] for a more detailed discussion. 

I now will indicate a potential application of such a result. To do so, we must 
recall the conjectural local reciprocity law for division algebras envisioned by R.P. 
Langlands. For a group G, let (G)n denote the subset of G which consists of repre­
sentations of degree n. Then one expects there to be a canonical bijection 

d/n 

where W(F) is the absolute Weil group of F9 D a division algebra over F of degree 
77, and d runs over the divisors of n. The map Xn should satisfy various properties, 
in particular, some properties related to IAunctions specified by Langlands. The 
existence of Xn is known when n = 1 (this is local class field theory) and when 
/7 = 2 and p > 2 (this is Jacquet-Langlands-Hecke theory). A candidate for Xn is 
known in other cases, but for 77 = 2, p — 2, no one to my knowledge has come up 
with any concrete proposals. One reason for this seems to be that the case n = 2, 
p = 2, is the first instance where some representations in (^(/0A)» a r e n o t mono­
mial. If a representation G G (W(F)A)n is monomial, then it may be associated by 
abelian class field theory to a character <J> e F'XA

9 for some extension F' of F with 
dim (F'jF) = 77. Then if D is a division algebra with deg (D/F) = 77, we may embed 
F' in D9 and this provides a physical link of G with Dx

9 facilitating the construction 
of à„(G). This is how most concrete reciprocity constructions have proceeded so far, 
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and this method clearly is useless if G is not monomial. 
In this light consider the case n = 29p = 2. There is an easy 

LEMMA. For a 2-adic field F, and G G (iT(F)A)29 there exists F', a tamely ramified 
Galois extension of degree 1, 3, or 6 over F, such that ^I^CFO is irreducible and 
monomial. Moreover, if the residue class field of F has 4 or more elements, F' may 
be taken of degree lor 3. 

Thus, assume the residue class field has 4 or more elements. Let F" be the com­
positum of the cubic extensions of F. Then, using the theorem to make a correspon­
dence of the sort 

GeiT(F) >G\nF0 

DXA > N(F')A • D'XA 

one may hope to form the broken arrow by pullback and establish a candidate for 
^2. Other similar applications can be envisaged. The details of these constructions 
however are somewhat involved and not completely worked out. Furthermore, 
the fact that even these simple cases cause problems does not lead to optimism 
concerning direct construction of the local reciprocity map. 
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Euler Products and Automorphic Forms 

Hervé Jacquet 

This article is largely based upon the ideas and results of Gel'fand, Kajdan, 
Piateckii-Shapiro, Shalika. Its purpose is to extend the classical correspondence 
between automorphic forms and Dirichlet series—formulated in terms of group 
representations—to all linear groups GL(T*). Although complete results are, at the 
present time, available only for r = 2 or 3, it is useful to formulate the problem in 
general terms, keeping in mind that many statements are still conjectural or par­
tially proved—except as noted for r = 2 or 3. 

1. Fourier expansion of a cusp form. Let F be a commutative field, G (resp. G') 
the group GL(r) (resp. GL(r — 1)) regarded as an algebraic group defined over F, 
We regard Gf as imbedded into G by the map 

g (§?)• 
A horicycle of G is the unipotent radical of a proper ^-parabolic subgroup of G. 

In this section we take F to be a global field whose ring of adeles we denote by 
A. An automorphic form <p on G is essentially a function on G(F)\G(A) and it is a 
cusp form if 

(1.1) J <p(vg)dv = 09 
V(F)\V(A) 

for all g G G(A) and all horicycles V of G, 
Let N be the group of upper triangular matrices with diagonal entries equal to 

one. Choose a basic character </) of A and define a character 6 of N(A) by 

(1.2) d(n)= II fl*,+i,,]. 
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For an automorphic form ç on G set 

(1.3) W(g)= J <p[ng]Ö(n) dn. 
MF)\N(A) 

If <p is a cusp form then 

rejv'(j?)\G'(jO 

where tf ' = iV fi G' ([5], [6]). 
We sketch a proof. Denote by P the group of matrices of the form 

(o !) gGG',aGGL(l), 

and by F1 the subgroup of those for which a = 1. In (1.4) the sum may be thought 
of as being on N(F)\Pi(F). Now it suffices to prove (1.4) for a function <p on 
Pt(F)\Pi(A) which satisfies (1.1) for all g G FI(A) and all horicycles F of G con­
tained in N. This is done by induction on r9 the case r = 1 being trivial. Let U 
be the unipotent radical of F and P[ £ G' the subgroup analogous to Pj. For 
£ G PJ[(i0\G'(i0, the characters u -* ô^wÇ"1), w G C/(^), are all the nontrivial 
characters of the compact abelian group U(A)/U(F). Therefore if we set 

w(g) = J <p{ug)6(u) du 
U(F)\UU) 

the numbers w(£g) are all the Fourier coefficients of the function u -> p(wg)—all but 
the constant Fourier coefficient which vanishes by (1.1) applied to U. Therefore 

(1.5) ?Gf) = , E *<&)• 
P^F)\G'(F) 

On the other hand applying the induction hypothesis to the function h -> w(hg) 
on P[(A) and noting that 

TO = J ^fg)ë(nf) dn1 

N'(F)\N'U) 

one arrives at 

(1.6) w(g) E JF(W). 

Combining (1.5) and (1.6) gives (1.4). 
Finally denote by gc the matrix Kg"1) a nd by <p the automorphic form g -* p(g'). 

Then the function fT associated to (p by (1.3) is given by 

(1.7) W(g) = W(wg<). 

where w is the permutation matrix defined by wf;- = 0 if / -f j ^ p 4- 1, vfy+i-,- ,• = 
( - iy - i . 

2. A Mellin transform. Let p be a cusp form on G and (p' an automorphic form 
on G'. The integral 

(2.1) J <p(g)<p'(g)\àtt g\*-V*dg 
G'(F)\G'U) 
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is always convergent.Replace <p by its expansion (1.4). Since <p' is invariant under 
G'(F), this gives an integration on N'(F)\G'(A) or, what amounts to the same, on 
N'(F)\N'(A) and N'(A)\G'(A): 

| W(g) |det g I -'/2 dg J <p'(n'g)6(ri) dn' 
N'(A)\G'U) WWWG4) 

or 

(2.2) W'(s9 W9 W) = J W(g) W'(eg) I det g V~^dg. 
NU)\G'(A) 

Here Wis given by (1.3), W also by (1.3) with <p replaced by <p'9 and e G G' is the 
diagonal matrix defined by et-j = 5,y(— 1)'. Replace <p and p' by p and $'. Then 
the integral 

(2.3) \(p(gW(g)\àttgY-^dg 

is equal to W(s9 W9 W') where JÎ̂ is given in terms of Why (1.7) and W' determined 
in terms of W' in a similar manner. 

Change g into g< in (2.1). Then we see that (2.1) is equal to (2.3) with s replaced 
by 1 - s. Therefore 

(2.4) W(s9W9W') = W(\ - s9 W9 W'). 

Actually and at least for r = 2 or 3 one finds that W(s9 W9 Wf) is given by a con­
vergent integral for large Re s9 can be analytically continued to the whole plane as 
an entire function of s9 and satisfies (2.4). 

3. Local functional equation. We let now F be a local field, nonarchimedean of 
module q to simplify and state some conjectures of Gel'fand and Kajdan. 

Fix a character (j) ^ 1 of Fand let 0 be the character of N(F) defined by (1.2). Let 
% be an admissible irreducible representation of G(F). We say that it is nondege­
nerate if there is a space W of functions W on G(F) satisfying 

W(ng) = d(n) W(g)9 

the space being invariant under right shifts and the representation of G(A) on ffî 
equivalent to %. The space UT is then unique and noted 1V(%9 (J>) ([1], [6]). 

If % is nondegenerate so is the representation % contragredient to %. More pre­
cisely % is equivalent to the representation g -> %(gl) (cf. [1]) and if Wis in W(ic9 (J)) 
then the function W defined by (1.7) is in #"(#, ([)). 

If % and %' are nondegenerate representations of G(F) and G'(F) we form for 
We W(%9 (j)) and W' e W(TC'9 (JJ) an integral W(s9 W9 W') analogous to (2.2) with 
N'(F)\G'(F) replacing N'(A)\G'(A). Then the integrals W(s9 W9 W') should 
converge for large Re s and be rational functions of q~s

9 with a common de­
nominator. Taking this for granted, the subvector space of C(q~s) they span is a 
fractional ideal iT of C[q~s

9 q
s] with a unique generator of the form 

L(s9 7CX7Cf)= 1/P(q-S), P G C[X]9 P(0) = 1. 

Replacing the pair (%9 %') by the pair (%9 ft'), similar properties are expected for 
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W(s9 W9 W') and there should be a functional equation 

¥(l - s9 W9 W')IL(l - s, ft x ft') = e(s9 % x %'9 <j))W(s9 W9 W')/L(s9 %9 %') 

where e is a monomial in q~\ 
All this is known if % is supercuspidal [1], or if r — 2, 3 ([1], [4]), 

4. Conclusion. Take F to be global, a function field to simplify. Let % be an ir­
reducible admissible representation of G(A). We assume TC preunitary and trivial 
on the center of G(F). There is, for each place v of F, an irreducible representation 
icv of G(FV)9 which contains the trivial representation ofKv = GL(r, Rv) for almost 
all v, such that TC = (x) %v. We assume each TCV to be nondegenerate and let ìT(TC> (p) 
be the space spanned by the functions W of the form W(g) = J\v Wv(gv)> where 
Wv is in W(icV9 <J)V) for all v and, for almost all v, is the element of that space in­
variant under Kv and equal to 1 on Kv. 

Suppose % is a space of automorphic forms invariant under G(A), the repre­
sentation of G(A) on °U being equivalent to TC. Then for <p G °U the function W of 
(1.3) is on W(TC9 (j)). In particular if % is a space of cusp forms it is completely 
determined by % as follows from (1.4) ([5], [6]). 

Let now %' be a representation of G'(A) satisfying the same assumptions as TU. 
Form the products 

L(S9 TC X %') = ft ^ f o TT« X x'v)9 L(S9 Tt X ft'), 
v 

e(s9 TC x TC') = U e(s9 TCV x TC'V9 <fiv). 
v 

The two first are convergent for large Re s; the third has almost all its factors equal 
to one. Combining global and local results one should arrive at the following 
statement : TU is a component of the space of cusp forms for G if and only if for any 
component TC' of the space of automorphic forms of G' the products L(s9 % x TU') 
and L(s9 % x %') are entire and satisfy 

L(s9 % x Tcf) = e(s9 TU x %')L(\ — s9 ft x ft'). 

Actually if %' is a component of the space of automorphic forms but not cusp 
forms, it may be taken as a component of a space of Eisenstein series and 
L(s9 it x it') should be a product of L-functions which remain to be defined. 
Namely, to each pair (it, Tt') of a representation of GL(T?, A) and a representation of 
GL(m9 A) with m < n satisfying the above conditions one would want to attach a 
function L(s9 TC x %'). Then the components % of the space of cusp forms for G 
would be characterized by the analytic properties of all the products L(s9 % x %') 
where %' is a component of the space of cusp forms of GL(m, A) and 1 ^ m < n. 

This program can be carried out for r = 2 [4] and also for r = 3. Note that for 
m = 1, the product L(s9 TC X TC') is the one in [2]. 
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On the Discrete Series Representations of 
the Classical Groups over Finite Fields 

G. Lusztig 

1. One of the main unsolved problems in the representation theory of the finite 
Chevalley groups is the determination of the discrete series representations; these 
are the most basic, but least accessible, representations of such groups. Let me recall 
that an (ordinary) representation D of a finite Chevalley group G is said to be in the 
discrete series, or cuspidal, if, for any proper parabolic subgroup P c G, the re­
striction of D to the "unipotent radical" of P does not contain the unit represen­
tation. 

The theme of this section is that we encounter discrete series representations in 
the process of decomposing the Brauer lifting of some very natural modular re­
presentations. The idea of the Brauer lifting was introduced by J. A. Green in 1955 
in his well-known work on the characters of GLn(Fq)9 and revived by Quillen in 
connection with his solution of the Adams conjecture. 

Part of the results presented here, namely the ones on GLW, are proved in my 
publication The discrete series of GLW over a finite field, Annals of Mathematics 
Studies, No. 81, Princeton University Press, 1974. 

Let F be a finite field with q elements, q = pe\ let WF be the ring of Witt vectors 
associated to F and QF its quotient field. The canonical homomorphism F* -• Qf 
will be denoted by À -> 1. 

Let V be a vector space of dimension n ^ 1 over F. Define S to be the set of all 
pairs (d9 P) where d = (V\ <= V% c — cz Vn-\) is a complete flag in K(dim V{ = 0 
and Pe V—Vn-\. The group Gh(V) acts transitively on S. Let V be a vector space 
of dimension 2n ^ 2 over F endowed with a nondegenerate symplectic form. 
Define S" to be the set of all pairs (d9 P) where d = (V\ <= V2 a ... c Vn) is a 
complete isotropic flag in V\ (dim Vt- = /) and P e V^-x- Vn. Let CSp(K') be the 
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group of all symplectic similitudes of V (a similitude must transform the given sym­
plectic form in a nonzero multiple of it). The group CSp(F') acts transitively on 
S'. 

Let <F (resp. <F') be the g^-vector space of all functions/:»? -> QF (resp. f:Sf -> 
QF) such that f(d, XP) = hlf(d9 P) for all X G F* and all (d9 P)eS (resp. (tf, P) G 
S'). Then GL(K) (resp. CSp(K')) acts linearly on & (resp.J*"')- Let °& (resp. 
°#"') be the cuspidal part of <F (resp. &'). It can be shown that °<F (resp. 0<F') is 
a multiplicity free representation of Gh(V) (resp. CSp(K')). 

Define TeQ[GL(V)] (resp. r G Q[CSp(V')]) as E(St(g)/St(l))g-i, where the 
sum is over all semisimple elements g e GL(F) (resp. g e CSp(Pr/)) such that the 
trace of g on F (resp. on V) equals 1. Here St is the character of the Steinberg 
representation of GL(F) (resp. CSp(K')). T(resp. T') acts on °J*" (resp. °&') and 
is diagonalizable; moreover it is easy to see that all eigenvalues lie in WF. 

THEOREM 1. There exists a unique X G WF (resp. X' G WF) such that X = I (mod/?) 
(resp. X = 1 (mod p)) and X (resp. Xf) is an eigenvalue of T on °&r (resp. of T' on 
°&'). If pi (resp. pr1) is an eigenvalue of Ton °& (resp. ofT on *&') such thatX ^ 
pi (resp. X' ^ (J!)9 then pt = 0 (mod p) (resp. p! == 0 (mod /?)). 

Let F' (resp. F") be an extension of F of degree n (resp. 2n). It can be proved that 

X = S x-\ 

where the summation is over x G F'9 trace^,^* = 1. It is very likely that X' is equal to 

S x-\ jçfo-iXïM-i) = i9 trace x = 1. 
X<=F» F"/F 

DEFINITION. D(V) = {/G °#"|7y= ^ / } , D'(K') = {/e ° j F ' | r / = A'/}. 

THEOREM 2. D(K) (resp. D'(V) is an absolutely irreducible cuspidal GL(V) (resp. 
CSp(K')) submodule of °^ (resp. °&'). As a QF-vector space, D(V) (resp. D'(V')) 
has dimension equal to (q — \)(q2 — 1) ••• (qn~l — 1) (resp. (q2 — 1) (#4 — 1) ••• 
(q2n-2 __ i)(qn _ 1 } ) . 

For example if dim V = 4, we have dim D'(V) = (q2 — l)2 (compare B. 
Srinivasan, The characters of the finite symplectic group Sp(4, q)9 Trans. Amer. 
Math. Soc. 131 (1968), 488-525). 

Next we observe that V (resp. V) can be regarded as a modular representation 
of GL(K)(resp. CSp(F')) and hence we can consider the Brauer lifting Br(K)G 
RQF(GL(V)) (resp. Br(K') G RQF(CSp(V')))9 where RQr denotes the appropriate 
Grothendieck group. 

THEOREM 3. Let X{ = © D(Vi) (sum over all i-dimensional subspaces Vt- of V). 
Then Br(K) = Xx - X2 + •- -I- ( - l)»"1 Xn. 

Note that X,- is a GL(F)-module in a natural way; in fact it is an absolutely ir­
reducible one, provided that q > 2 or i > 1. 

We have 
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d i m Xi = (g-'+1 - D -.Or;1 - Kg» - D 
9 qi — i 

and Xn = D(V). We now wish to find a symplectic analogue of Theorem 3. For 
any /, 1 ̂  i <j w, let X\ — 0 D(Vt) (sum over all /-dimensional isotropic subspaces 
Vi of F7). Xi is a CSp(F)-module in a natural way and as such it is absolutely 
irreducible provided that q > 2 or / > 2. 

We have 

dim j f , - ^ — 1 . 

For any /, 1 gj / <; w - 1, let Ei = ® D'(Vn±-i/Vn-i) (sum over all isotropic flags 
Fj C F2 CZ • •. cz Kw_fin K' (dim Ky = ,/')); n o t e ^a t Vn^/Vn-i has a natural 
symplectic form if V has one. 2?, is a CSp(F)-module in a natural way. Let ffi(Ei) 
be the algebra of endomorphisms of E{ commuting with the action of CSp( V). For 
any j , 1 % j z% n - i — 1, define Tj e 3^(Ei) by the formula 

(Tj(j>)(VX CZ .. . CZ Vj-X C Vj CZ VJ+1 C= .-. CZ Vn-%) 

= S ^Vl cz ... cz VM czV'jcz VJ+l cz ... cz Vn-d 

where the sum is over all V) such that Vj-\ cz Vj cz Vj+i, Vj ^ Vj (q terms). Here 
we regard ci G Eì as a function which associates to any V\ cz • •• cz Vn-i an element 
# K i c = - cz F ^ O G ^ ^ / K , - , ) . 

Define an element TV,- G Jf(£,-) by the formula 

(Tn-MV, cz ... cz Vm c Fw_,) = S £>'(") 9 ^ 1 c= . - cz P V , M cz F;. ,) 

where the sum is over all V'n-t- such that KM_,_i cz V'n-t- cz F^-L^, K„_,- fl ^ - / " 
KM-,_i (tf2<+1 terms); here D'(i/): D'(V^i/V'n-t) -> D'(V^IVnH) is the isomor­
phism induced by the isomorphism u = a ß~l in the diagram: 

^/cu (a9 ß are canonical isomorphisms). 

K'i-, n ^;vn-r n *v, 

It can be proved that Th •••, Tw_f- generate 2ff(Ei) as an algebra; they satisfy the 
relations (Tj + l)(Tj - q) = 0, 1 z% j z% n - 1, (Tn-{ - «<)(2V, + <7<+1) = 0, 
and the "braid group relations" corresponding to the Weyl group Cn^ (compare 
C.W. Curtis, N. Iwahori, R. Kilmoyer, Hecke algebras and characters of parabolic 
type •••, Inst. Hautes Études Sci. Pubi. Math. 40, p. 84, formula (1.6)). The only 
relation which does not admit a straightforward proof is the relation 

(TV,- - «79(7V,. + ?<+i) = 0. 

Its proof involves the following fact which was conjectured by B. Srinivasan : 
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LEMMA. Let gè CSp(F') be a transvection. Then 

trace (g\D'(V')) = - (q2 - 1)(?4 - 1) - (q2»~2 - 1). 

We now define a subspace Y{ cz E{ by Yt- = {0 G is^l r,ç£ = #0, 1 g y g 
n - i - 1, rw_,-0 = - tfm^}. Then Yt is an absolutely irreducible CSp(F')-
submodule of Et-, 

THEOREM 4. 

dim F - (q«<"- '+»- l ) . - ( g « » - i > - l ) (gfa- 1) a i m / , - ^ + 1 

If we put Yn = D'(V), we have 

THEOREM 5. Br(Y') = Xi - X'2 + ••. + ( - l)»~lx; + ( - i)»yll + ... + y 2 _ yx . 

All results mentioned so far for the symplectic hold with only minor modification 
for the orthogonal groups in odd characteristics and for the unitary groups. For 
example we have. 

THEOREM 6. For each of the following groups there exists an ordinary irreducible 
cuspidal representation of the indicated dimension: 

SOi„+l(Fq), 

SOUF,), q oda, 

SOî„{Ft),qoàù, 

Uzn+l(Fq')> 

U*.{Ff), 

n^l:(q2- l)fa* - 1) • 

n^2:(q2- l ) to 4 - 1)-
.(ç"-i + l)-i. 

n ^ 2: (q2 - l)(q* - 1) • 

n^l:(q+ l)(q2- 1) •• 

n i l : (q + l)(q2- I ) -
•(^»-i + l)-i. 

•• to2""2 - \){qn -
.. (?2»-2 _ i)(9» _ 

•• (?
2»-2 - 1). 

• to2»-1 + l)to2» -

• to2«"1 + l)to2» -

!)• 

• m + I)"1 

•I)-

- 1)(? + I)"1 

Here SO£n(Fq) (resp. SO£n(Fq)) denotes the split (resp. twisted) special orthogonal 
group. 

2. In this section I wish to describe briefly some joint work with Deligne in which 
we use étale cohomology to realize representations of finite Chevalley groups. 

Let G be a linear algebraic group (reductive, connected) defined over a finite 
field F, | F\ = q. We identify G with the set of its points over F. Let (j> : G -> G be 
the Frobenius endomorphism of G. Then Gt, the fixed point set of (f>, is a finite 
group, and we are interested in its representations. 

Let T cz G be a maximal torus in G such that cj>T = T. According to Macdonald, 
every character % G f t in general position should given rise to an irreducible Gt-
module MTt7C defined over some large field of characteristic zero, and such that 
dim MTt1t = | G$ |* • 1Tt I"1 (here | G* |# denotes the order of Gt divided by the order 
of a Sylow/^-subgroup). Macdonald also predicts the values of the character oîMTt% 

on regular elements in Gt. This conjecture of Macdonald is still unproved except for 
a few special cases, including GL„ (Green), Sp4 (Srinivasan) and G2 (Chang, Ree). 
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Let To cz G be a fixed maximal torus and BQ cz G a fixed Borei subgroup, TQ cz 
BQ; we assume (j>TQ = TQ, <j>B^ = BQ. Let w G N(TQ); we may write w = y~l$(y\ 
y G G. Then yTy1 is a ^-invariant maximal torus. If TQ)W = {fG TQ\ <j>t = TV^/TV}, 

the map t -> j'O'"1 induces an isomorphism of finite groups 

TQ,w-^(yTy-i)t. 

Hence we also get an isomorphism 

The correspondence w -> yTy~l defines a bijection between the 0-conjugacy classes 
in the Weyl group W = N(TQ)/TQ and the conjugacy classes of maximal tori 
T cz G, <j)T = T (conjugacy under Gt); we recall that two elements w, TV' G J^are 
said to be ^-conjugate if w' = WiW<j)(w\)~l for some vPj G W. Thus we may refor­
mulate Macdonald's conjecture by saying that each w eW should give rise to 
a series of representations parametrized by the characters 7üefQiW9 in general 
position. 

We now give the following definition: Two Borei subgroups Bh B2 in G are said 
to be in position w (w e W) if there exists g G G such that gB\g~l = Bo, gB2g~1 = 
WBQW"1 where w G N(T0) represents vP. Any ordered pair of Borei subgroups gives 
rise in this way to a well-defined w e W. For any weW, define Xw to be the set of 
all Borei subgroups B in G such that B, <j)B are in position w. Then X^ is a non-
singular and in general noncomplete algebraic variety of dimension /(TV). The 
varieties Xm (fv G W) cover the set of all Borei subgroups and X„ f] Xw = 0 for 
w / TV'. The group Gt acts on each Xm by conjugation. Thus we get a nonlinear 
representation of Gt on Xw. In order to get linear ones we must pass to the coho­
mology of Xm. For this purpose we define some sheaves on Xw. 

Let Sw = {g G G\g~l<j)(g) G WRQ} where w e N(TQ) and RQ is the unipotent 
radical of BQ. Let JRjf = RQ f| wRQw~l. Then Sw is stable under right multiplica­
tion by Rff and T^-Let Xw = Sw/R'g. Then TQIW still acts on Xw (without isotropy) 
and the orbit space is canonically equal to X&. Thus we have an étale (Galois) 
covering Xw -> Xm with group TQtW. Using this covering we see that each character 
%:Fo,w —• Qt gives rise to an /-adic, locally constant sheaf !F%, of rank 1 over X^. 
The group Ĝ  acts naturally on 8F%. Thus we may consider the alternating sum 
d(w,7c) = S,-(— 1)' # ' ( 1 ^ ; J%) as an element in the representation ring RQ,(Gt). 

CONJECTURE. T/?e objects (- \)nw)A(w9 n)9 TV G W, % G f0,w £'"ve A solution to 
Macdonald's conjecture. 

In particular, for rc in general position, (— \)nmA(w, %) should be irreducible. 
One may also conjecture that, in case iv has minimal length in its ^-conjugacy 
class, and % is in general position, we have H{(XW', <F^ - 0 for all /, i + /(tv). 
(This vanishing theorem has been verified for GL„.) 

Our conjecture states in particular that the Euler characteristic %(X^ equals 
( - l)'(i5)|G*|* -iTo,«!"1. We have proved that this is indeed the case for GL„ and 
Sp4- We have the following 
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THEOREM 7. (i) The character values of(- \)Uw)A(w, %) at any regular semisimple 
element of Gt agree with Macdonald*s conjecture. 

(ii) If TV, tv' G W are ^-conjugate then the two series {A(w9 %)9 % G TQ,W}9 

{A(w'9 %')9 %' G f0t w) coincide. 

We now give some examples. 
EXAMPLE 1. Let V be a vector space of dimension n over F with an F-structure 

and let ^ ; V -> F be the Frobenius map. We define a decomposition P(V) = Ci (1 
C2 U ••• U Cn by C, = {L\ L line in F, dim(L + <$>L -f ^2L + •••) = /} . It can be 
proved that Cf- has Euler characteristic equal to 

( ( 1 _ qn-i+l) ... (1 _ ^lXl-f l f - ) ) / ( l - «0. 

(This decomposition of P(F) is closely related to the decomposition of Br(F) 
described in Theorem 3.) Moreover Cn is isomorphic to Xw for a suitable Coxeter 
element tv. 

EXAMPLE 2. Let F be a 4-dimensional vector space over F with an F-structure 
and with a nondegenerate symplectic form < , > defined over F. Let <j> : V -> V be, as 
before, the Frobenius map. 

Consider the nonsingular surface S cz P(V) given by the set of lines Lcz V such 
that <L, ^L> = 0. Then <f>S = S; hence 0 acts on H2(S; Qi). It can be proved 
that the eigenvalues of ^ on H2(S; Qi) are equal to q or — q. It can be also proved 
that the (— q) eigenspace has dimension \q(q — l)2 and that, as an SpifiO-module, 
this is isomorphic to the famous Srinivasan module 01O. 

Finally, I would like to mention that in finding the above results we were in­
fluenced by the work of Drinfeld in Moscow, an account of which was given to us 
by Springer. Drinfeld has observed that one can find the discrete series represen­
tations of SL2(F) by decomposing Hl(X\ Qi) where X is the affine plane curve 
xy? — x^y = 1 on which SL2(F) acts. Note that X can be identified with our 
Xw (w the Coxeter element for SL2). 

UNIVERSITY OF WARWICK 

COVENTRY, ENGLAND CV4 7AL 



Tpyflbi MeiacflynapOAHoro KoHrpecca MaTeMaTHKOB 
BamcyBep, 1974 

ApH^MeTHHecKHe H CTpyKTypHbie IlpoÔjieMbi 

B JlHHeftHbix AjireOpaunecKHx Tpynnax 

B. IT. RjiaTOHOB 

Pa3BHTHe TeopHH ajireöpaHHecKHX rpynn B nocjie^HHe TOAM xapaKTepH3y-
eTCH HccjieAOBaHHeM TaKHX npoôjieM, B KOTOpbix apH(j)MeTHKa, ajireepannecKaH 
reoMeTpHH H ajireßpa rJiyßoKo H opraHHHHO cBH3aHbi Me>KAy CO6OH. B HCKOTO-

pbix, Hawöojiee yAHBHTejibHbix cjry^anx ^HCTO apHCJMeraHecKHe CBoficTBa 
ajireôpawqecKHx rpynn nojiHocTbio onpeAejiniOTCfl HX aôcTpaKTHO-rpynnoBoft 
CTpyKTypoö. OAHH H3 caMbix BnenaTJiniomHX H uinpoKO H3BecTHbix npHMepop 
AocTaBjineT npoô^eMa cnjibHOß annpOKCHMauHH. 

1. CwjibHaa annpOKCHMau,MH H rHnoîe3aKHe3epa-THTca. nycTb G—cBH3Han 
jiHHeHHan ajireÔpaHHecKan rpynna, onpeAejieHHaa HaA rJioßajibHbiM nojieM k. 
KaK oôbiHHO, GA—rpynna aAejieö G, S— KOHeraoe MHO>KecTBo HesKBHBajieHTHbix 
HOpMHpOBaHHfi k9 Gs—noArpynna GA9 y KOTOpoft Bce v-KOMnoHeHTbi (v $ S) 
paBHbi 1; 7cs: GA-*GS—KaHOHHHecKan npoeKi^Hn; GA—noArpynna fc-ToneK G. 
npofijieMa CHJibHOH annpOKCHMau,HH COCTOHT B cjieAyiomeM: KorAa GsGk «= GA9 

rAe nepTa 03HanaeT saMbiKanne B aAejibHoft TonojioraH? Tai< KaK OCHOBHHM 

MeTOAOM HccneAOBaHHH B apH(})MeTHHecKoö TeopHH ajireßpaHHecKHX rpynn 
HBJineTca MeTOA peAyKijHH K ajireöpan^ecKHM rpynnaM HaA JioKajibHbiMH 
nojiHMH, TO npoßjieMa CHJibHoö annpoKCHMaunn HrpaeT Ba>KHyio pojib B 6ojib-
IHHHCTBe apĤ MeTHHeCKHX BonpocoB (CM. [2], [4], t i l] , [12], [25]). 

riepBbiM Ba>KHbiM pe3yjibTaTOM o npoôjieMe CHJibHoö annpoKCHMaunn 6biJia 
KJiaccHHecKan TeopeMa Söxjiepa o rpynne SL(«, D)9 rAe D—Tejio KOHe^Horo 
fc-paHra [1]. FIo3AHee pa3jiHHHbie nacrabie cjiynaH STOH npoôjieMbi HaA ^HCJIOBHM 

nojieM k HccjieAOBajiH Sftxjiep, IllHMypa, Beftjib [2]. Hanßojiee cymecTBeHHbie 
pe3yjibTaTbi 6biJiH no^iy^enbt KHe3epoM [3], [4], KOTOpbiö peuiHJi npoßjieMy 
annpOKCHMauHH AJIH MaccHHecKHX rpynn HaA HHCJIOBHMH nojiHMH H yi<a3aji 
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HeoôxoAHMbie ycjioBHH AJIH ee nojio>KHTejibHoro pemeHHH: (a) Gs—HeKOMnaKraan 
rpynna; (6) G — 0AH0CBfl3Han. J\jin (j)yHKUHOHajibHoro nojin k HeoôxoAHMOCTb 
9THX ycnoBHH A0i<a3aHa B [5], 

HaKOHeu, B paôoTax aBTopa [6], [7] c noMombio HOBoro MeTOAa npoôJieMa 
CHJibHOH annpOKCHMauHH 6bijia nojinocTbio peuieHa He TOJibKO HaA HHCJIOBHMH, 
HO H HaA cj)yHKi;HOHaJibHbiMH noJiHMH. B ocHOBe MeTOAa [6], [7] jie>i<HT peAyKUHH 
apHcJ)MeTHHecKofi npoôJieMbi CHJibHOH annpoKCHMauHH K H3BecTHoft THnoTe3e 
KHe3epa-THTca [8] o cTpyKType ajireôpannecKHx rpynn HaA JioKajibHo KOMnaKT-
HbiMH noJiHMH, HMeiomefl a6cTpaKTHyio npnpoAy. A HMeuno, rnnoTe3a KHe3epa-
TnTca yTBepH<AaeT: ecjm G—npocTan 0AH0CBfl3Han &-H30TponHafl ajireôpaHnec-
Kan rpynna HaA npoH3BOJibHbiM nojieM k9 TO (j)aKTOp-rpynna GkjZ(Gk)9 rAe Z(Gk) 
—ueHTp Gk9 HBJineTCH a6cTpaKTHO npocTofi rpynnofl. B [6], [7] rnnoTe3a KHe3e-
pa-THTca A0Ka3aHa AJIH JiOKajibHO KOMnaKTHbix nojieft k H OTcioAa BHBOAHTCH 
peuieHHe npofijieMbi CHJibHOH annpoKCHMauHH HaA HHCJIOBHMH UOJIHMU. JXm 
^yHKUHOHajibHbix mviefi peAyKUHH oi<a3biBaeTCH 3aMeTHO cjio>KHee, TaK KaK 
Hcnojib3yeMaH B HHCJIOBOM cjiynae TexHHKa ajireôp J1H nenocpeACTBeHHo HenpH-

MeHHMa B 3TOH CHTyaUHH. OAHaKO B HaCTOHIUee BpeMH H B 4)yHKIJHOHaJIbHOM 
cjiynae MOKHO CTOJib M<e KOPOTKHM nyTeM BbiBecra pemeHHe npoôjieMbi CHJibHOH 
annpoKCHMauHH H3 AOKa3aTejibCTBa ranoTe3bi KHe3epa-ÏHTca, ecjin npHMeHHTb 
TeopeMy o TpHBHajibHOCTH OAHOMepHbix KoroMOJiorHH Tajiya Hl(k9G) AJIH 
OAHOCBH3HOH nojiynpocToft rpynnbi G HaA (J)yHKUHOHajibHbiM rjioöajibHbiM nojieM 
k, aHOHCHpOBaHHyio XapAepoM B [9].1 TaK KaK pHA cneijHajiHCTOB npOHBHJi ocoôbift 
HHTepec K (J)yHKUHOHajibHOMy cjiynaio, TO H npHBeAy HeoßxoAHMoe AonojiHHTejib-
Hoe K [6], [7] paccyn<AeHHe. npeAnojio>KHM BHanajie, HTO G He ecTb rpynna 
THna An. TorAa H3 Hl(k9 G) = 0 cjieAyeT, HTO rpynna G HBJIHCTCH fc-H30TponHOH, 
T.e. rank* G > 0. ECJIH T—KOHeHHoe MHOMœcTBo HeaKBHBajieHTHbix HopMHpOBaHHfl 
k u S (] T = 09 TO AOCTaTOHHO AOKa3aTb, HTO AJIH W = S u T rpynna W-
eAHHHU G0{W) njioTHa B GT. PaccMOTpHM B Gk HOpMajibHbin AeJiHTeJib JR, nopoac-
AeHHbifi ynHnoTeHTHbiMH OAHonapaMeTpHHecKHMH fc-noArpynnaMH. TaK KaK 
TaKHe noArpynnbi oôjiaAaioT CBOHCTBOM CHJibHOH annpoKCHMauHH, TO 3aMbiKaHne 
R e G0{W). Ranee, no TeopeMe o cjiaöofl annpoKCHMauHH, Aoi<a3aHHofl B [6], [7], 
Gk = GT9 3HaHHT, R—HopMajibHbifl AeJiHTejib GT. H3_rHnoTe3bi KHe3epa-TnTca 
Tenepb y>ice HeTpyAHO BbiBecra, HTO 3aMbiKaHne R = G0(W) = GT. Cjiynafl 
rpynnbi G rana A„ paccMaTpHBaeTCH c noMombio HeKOTOpofi MOAH(})HKai;HH 
paccyMCAeHHH H3 [7], 

HeAaBHo MHe yAaJiocb noKa3aTb, HTO aHajiornHHo [6], [7] H c yneTOM pe3yjib-
TaTOB [10] o rpynnax rana A„ MO>KHO AOi<a3aTb rnnoTe3y KHe3epa-THTca AJIH 
(j)yHKUHOHajibHbix nojieft. 

TEOPEMA 1. Flyctm G—npocman k-u3omponuaH oduocensuan aAzeôpau-
necKan zpynna nad zjioóa/ibHUM (pyHKUfionajibHUM nojieM k9 mozda GhjZ(Gk) 
HejinemcH aocmpaumno npocmoü zpynnou. 

HecoMHeHHo, HTO TeopeMa 1 cnpaBeAJiHBa H AJIH nojin k ajireopannecKHx HHceji, 

Wace noHBHJiocb noJiHoe £OKa3aTejibCTBo B npenpHHTHofi (j)opMe. 
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OAHaKO STO ne yAaeTCH noKa AOKa3ara AJIH HeKOTOpbix rpynn rana E6 H £>4. 

2. HecfopbeKTHBHOCTb HaKpbiTHft ajireöpaHwecKHX rpynn Ha fc-TOHKax. 
nycTb/ :G -^ G'—k-morenvin CBH3HHX fc-onpeAejieHHbix ajireOpannecKHx rpynn 
HaA npoH3BOJibHbiM nojieM k. KorAa f(Gk) ^G'k? RJIH HeKOTOpbix cneunajibHbix 
nojiefi 9Ta 3aAana HCCJieAOBa«7iacb B pHAe paöoT (HanpHMep, AJIH KOHenHoro nojin 
—JlenroM [13], AJIH nojin BemecTBeHHbix HHceji—BopejjeM H THTCOM [14]). 

ABTopa noÔyAHJia K HCCjieAOBaHHio 9TOH 3aAann cjieAyioman rnnoTe3a ZtbeA-
OHHe [15]. riycTb D/k—HeKOMMyTaraBHoe Tejio KOHeHHofi pa3MepnocTH m2 HaA 
ueHTpOM k (char k ^ 2) c HeTpHBHajibHOft HHBOJiK)i;Heft r, ST—noAnpocTpaHCTBO 
sjieMeHTOB D9 cHMMeTpHHHbix OTHOCHTejibHO T; 2—noArpynna MyjibranjiHKaraB-
HOH rpynnbi D*, nopoH<AeHHan HenyjieBbiMH CHMMeTpHHHbiMH sjieMeHTaMH. B 
AeftcTBHTejibHOCTH 2—HopMajibHbift AeJiHTejib /)* H H3yneHHe CTpoeHHH (j)aKTop-
rpynnbi D*/2 npeACTaBJineT HHTepec c pa3Hbix ToneK 3peHHH (CM. [10], [15], [16]). 
npeAnojioM<HM, HTO k çz sT9 T.e. HHBOJIIOIJHH nepBoro pOAa. TorAa dim ST = 
m(m+\)/2 HJIH m(m-l)/2. 3TO cooTBeTCTByeT cjiynaio CHMnjieKranecKHX HJIH 
opToroHajibHbix (j)opM. ECJIH dim Sv = m(m+1)/29 TO D* = 2 H3 pa3MepHOCTHbix 
coo6pa>KeHHH. B CBH3H c STHM ĵ beAOHHe B [15, cTp. 379], BbiCKa3aji, KaK BecbMa 
BepOHTHyio, THnoTe3y o coBnaAeHHH D* H 2 AJIH 6ojiee cymecTBeHHoro cjiynan, 
KorAa dim ST = m(m-\)l2u m > 2 (AJIH m = 2 OHCBHAHO, HTO 2 = k* H D* ^ 2). 
OKa3biBaeTCH, ranoTe3a ^beAOHHe HBJIHCTCH BecbMa nacrabiM cjiynaeM c(})opMy-
jiHpoBaHHOH Bbiiue oÖLueft 3aAann H noHTH BcerAa D* ^ 2. A HMCHHO, ecjin 0—n-
MepHan (n> 2) HeBbipo>KAeHHafl spMHTOBa (j)opMa HaA D nojioacHTejibHoro HHAeKca, 
U(0)—yHHTapnaa rpynna, cooTBeTCTByiomaa $, H TU(&)—noArpynna, nopoao 
AeHHan TpaHCBeKUHHMH, TO no TeopeMe Yojuia [16] D* = 2<>U(0) = TU(0), T.e. 
rnnoTe3a ßbeAOHHe BKBHBaJieHraa TpHBHaJibHocTH cnHHOpnofi HopMbi (CM. [16], 
[17]) AJIH yHHTapHofl rpynnbi U(0). Xopouio H3Becrao, HTO U(0) HBJineTCH 
rpynnofi fc-ToneK Gk HeKOTOpofi fc-(j)opMbi G OöHHHOH opToroHajibHoft rpynnbi. 
nycTb G—oAHOCBH3Han HaKpbiBaiomaa rpynna G, onpeAejieHHan HaA k9 (p:G -+ 
G—cooTBeTCTByioii;aH fc-H3oreHHH. HeTpyAHo AOKa3ara, HTO 

<p(ßu)¥= GkoD* ï 2. 

C(f>opMyjiHpyeM Tenepb OCHOBHOH pe3yjibTaT, noJiyneHHbiö B [18]. 

TEOPEMA 2. Flyctm k—oecKonenuoe KoneHUonopootcdennoe nojie, f: G-* G' 
—Hemptidaa/ibHan k-u3ozemH. Tozdaf(Gk)^G'k. 

3AMEHAHHE 1. YcJIOBHe KOHeHHOnOpO>KAeHHOCTH nojin k cymecTBeHHo H, 
HanpHMep, AJIH BemecTBeHHbix HJIH p-aAHHecKHx nojieft TeopeMa 2, Booöme 
roBopH, neBepHa. BMecTe c TeM cJieAyeT yKa3aTb, HTO ee Aoi<a3aTeJibCTBo 
npoxoAHT B HecKOJibKo 6ojiee o6men cnTyauHH, KorAa k—KOHennoe pacuinpenne 
npOH3BOJibHoro nojin cj)yHKi;HH HaA npocTbiM noAnoJieM. 

3AMEHAHHE 2. ECJIH k—KOHeHHoe nojie, TO H3 [13] CJieAyeT, HTO 

/ ( G Ä ) ^ G ; < ^ ( K e r / ) ^ ( l ) . 

ÄJIH AOKa3aTeJibCTBa TeopeMbi 2 aBTOpoM B [18] 6HJI pa3pa6oTaH HOBHH MCTOA» 
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HMeiomHH, KaK HaM KaHceTCH, npHHUHimajibHoe 3HaneHHe H oôjiaAaiouiHH 
IHHpOKHMH B03M0>KH0CTHMH AJIH npHMeHeHHH B pa3JIHHHbIX apH(J)MeTHHeCKHX H 
CTpyKTypHbix Bonpocax TeopHH ajireopannecKHx rpynn. 9 T O T MCTOA 6a3HpyeTCH 
Ha HeKOTOpOM aHajiore TeopeMbi njioraocra ApraHa-HeôoTapeBa AJIH HeapxHMeAo-
BblX JIOKaJIbHO-KOMnaKTHblX HOpMHpOBaHHH npOH3BOJIbHHX KOHeHHOnOpO>KAeHHbIX 
nojieft B coneTaHHH c annpoKCHMau,HOHHbiMH coo6pa>i<eHHHMH AJIH noAoÔHbix 
HOpMHpOBaHHH. B HacTHocTO, Ba>KHyio pojib HrpaeT cjieAyiomee yTBep>KAeHHe. 

TEOPEMA 3. Flycrrw A—Konennoe cenapaóeAbuoe paciutipemie IîOAH k. Tozda 
cywficmeyem ôecKonennoe Mnootcecmeo neapxtiMedoeux AOKaAbHo-KOMnaKm-
Hux HopMupoeanuü, v noAH k9 öAH Komopux nonoAueutiH K ZD A. 

3AMEHAHHE 3. ycjioBHe cenapaôejibHocra B TeopeMe 3 cymecTBeHHo H He 
MOH<eT 6biTb onymeHo, KaK noKa3bmaeT npHMep y>Ke npocTeftmero HHCTO 
HecenapaÔejibHoro pacuiHpeHHH. 

3. CTpoeHHe aHH30Tponnbix r p y n n . r iycra G—fc-onpeAeJieHHan ajireôpan-
necKan rpynna. HanoMHHM, HTO OHa Ha3biBaeTcn fc-aHH30TponHOH, ecjin B Hen HeT 
HeTpHBHa,7ibHbix fc-pa3Ji0KHMbix TopoB, T.e. rankA G = 0. B HacTonmee BpeMH ycH-
jiHHMH rjiaBHbiM o6pa30M BopejiH, THTca H CaTai<e KjiaccH^HKauHH nojiynpocTbix 
fc-onpeAeJieHHbix ajireöpannecKHX rpynn B cymecTBeHHoft CTeneHH peAyunpoBaHa 
K KJiaccH(J)HKai;HH A:-aHH30TponHbix rpynn (CM. [19], [20]). npoôjieMa KJiaccH({)H-
KauHH Ä-aHH30TponHbix rpynn HaA npoH3BOJibHbiM nojieM k npeACTaBJineTCH B 
HacTOHii;ee BpeMH HepeajibHOH. riosTOMy ecTecTBeHHo nonbiTaTbcn nojiyHHTb 
KJiaccH(J)HKauHK) xoTH 6bi AJIH Hanßojiee ynoTpeÖHTejibHbix nojien. rioKa Hanöojiee 
o6m,HH pe3yjibTaT npHHaAJie>KHT Bpioa H TnTcy [21], KOTOpbie AOKa3ajiH, HTO HaA 
nojiHbiM AHCKperao HopMHpOBaHHbiM nojieM k c coBepmeHHbiM nojieM BbineTOB k-
aHH30TponHan rpynna G HBJIHCTCH fc-c})opMOH rpynnbi rana An9 a ecjiH KoroMOJio-
rHHecKan pa3MepH0CTb nojin BbineTOB ìc, cd(k) ne npeßocxoAHT eAHHHijbi, TO G 
HBJineTCH BHyTpeHHeö fc-(})opMofi rana An9 T.e. Gk = SL(1, D)9 rm SL(1, D) 
o6o3HanaeT noArpynny sjieMeHTOB HeKOMMyTaTHBHoro KOHenHOMepHoro Tejia D c 
ueHTpOM fc, npHBeAeHHan HopMa KOTOpbix paBHa eAHHime: SL(1, D) = (de D | Nrd (d) 
= 1). 9 T O oôoÔLuaeT ôojiee paHHHH pe3yjibTaT KHe3epa AJIH p-aAHnecKoro 
HHCJioBoro nojin k. 

CjieAOBaTeJibHO, B npoôjieMe K,7iaccH(j)HKauHH ifc-aHH30TponHbix npocTbix rpynn 
HMeioTCH onpeAeJieHHbie ycnexn. 3HaHHTejibHo xy>Ke OôCTOHT AeJio c H3yneHHeM 
CTpyKTypbi fc-aHH30TponHbix rpynn. Mbi pacnojiaraeM BecbMa He3HaHHTejibHbiMH 
CBeAeHHHMH o cTpoenHH fc-aHH30TponHbix rpynn G, B ocoôeHHocra 06 a6cTpai<raoM 
CTpoeHHH rpynnbi Gk9 HTO Baamo KaK AJIH pa3Hoo6pa3Hbix npHMeHeHHfi, TaK H C 
TOHKH 3peHHH KJiaCCHHeCKHX TpaAHUHH B TeopHH rpynn. JXame AJIH fe-aHH30TpOnHOH 
rpynnbi G rana Ax Majio HTO H3BCCTHO O CTpoeHHH rpynnbi Gk. Bojiee Toro, AJIH 
nojin ajireopannecKHx HHceji k AO CHX nop ne AOKa3aHa ranoTe3a Kne3epa [22] o 
TOM, HTO AJIH OAHOCBH3HOH fc-aHH30TponHOH rpynnbi Grana Ax (T.e. Gk = SL(1, D), 
rAe D—rejio KBaTepHHOHOB HaA k) (})aKTOp-rpynna GkjZ(Gk) a6cTpaKrao 
npocTa TorAa H TOJibKO TorAa, KorAa G pa3Jion<HMa HaA BceMH p-aAHHecKHMH 
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nonojiHeHHHMH kp HOJIH k. B Towe BpeMH 3aocTpeHne BHHMaHHH Ha rpynnax 
Tnna Ai, no-BHAHMOMy, He CBH3aHO c cymecTBOM AeJia H uejiecoo6pa3HO ccj)opMy-
jiHpoBaTb cjieAyiomyio oôinyio zanome3y\ ecjin G—-OAHOCBH3H3H fc-aHH30Tpon-
Han npocTan ajireôpaHHecKan rpynna HaA nojieM ajireôpaHnecKHx nnceji k, TO 
rpynna GkjZ(Gk) aécTpaKTHO npocTa TorAa H TOJibKO TorAa, KorAa ona kru30-

TponHa HaA BCCMH p-aAHHeci<HMH nonojiHeHHHMH nojin k. 

HaHÔojiee ecTecTBeHHbiM KJiaccoM nojieft k9 AJIH KOTOpbix BbincneHHe CTpyKTypbi 
rpynnbi Gk HMeeT BaM<Hoe 3HaneHHe, HBJIHCTCH KJiacc nojiHbix AHCKperao j-iopMH-
pOBaHHbix nojiefl c coBepmeHHbiM nojieM BbineTOB k. ECJIH K TOMy we cd(k) $ 1, 
TO Gk = SL(1, D). ^ J I H TaKHX nojieft XapAepOM BbicKasaHa HHTepecHan THnoTe3a 
[23]: ecjiH F—HopMajibHbifl AeJiHTejib SL(1, D)9 coAep>KamHH MaKCHMaJibHbift 
Top, cooTBeTCTByioujHH Hepa3BeTBJieHH0My MaKCHMajibHOMy noAnojno D(r.e. AJIH 
Hepa3BeTBjieHHoro MaKCHMajibHoro noAnojin L zz> k B F coAep>KHTCH T = (x e L\ 

NL/M = 1)> rAe NL/k—CHMBOJI HOpMbi L HaA k)9 TorAa F = SL(1, £ ) . 3Ta 
rnnoTe3a HMeeT ne TOJibKO caMOCTOHTejibnoe 3HaneHHe—B KanecTBe CJICACTBHH H3 
Hee nojiynaioTCH neKOTOpbie pe3yjibTaTbi o cjiaôoft annpoKCHMauHH (CM. [23]). 

ABTOpy coBMecrao c JlHHeBCKHM yAaJiocb AOKa3aTb rnnoTe3y XapAepa H no-
nyTHO ycTanoBHTb, HTO AJIH paccMaTpHBaeMbix nojieft KaH<AbiH sjieMeHT rpynnbi 
SL(1, D) ecra npoH3BeAeHHe He öojiee AByx KOMMyTaTopoB MyjibTHnjiHKaraBHofi 
rpynnbi £>*, BHacraocra, SL(1, D) = [D*, £>*]. Rappu öojiee TOHHbie (})0pMyjiH-
POBKH. 

FIycTbOD—KOJibuo uejibix BJieMeHTOBD, p—npocToft HAeaji 0D. Xopomo H3BecT-
Ho (CM. [24, rji. 12, § 2]), HTO D oßjiaAaeT Hepa3BeTBJieHHbiMH MaKCHMajibHbiMH 
noAnojiHMH; nycra L—OAHO H3 HHX H T = (x e L\NL/k(x) = 1). 

TEOPEMA 4. ECAU meAo 0D\$ KOMMymamueno, mo ecHKtiü uopMaAbuuii 
deAumeAb F zpynnu SL(1, D)9 codepowaiu]uü T9 coenadaem c SL(1, D). 

CJIEACTBHE.ECAUcd(k) ^l9mo 0D\^—KOMMymarmißHOuzanome3aXapdepa 
cnpaeedAuea. 

TEOPEMA 5. B ycAoewx TeopeMbi 4 KaowdbiH sAeMeutn U3 SL(1, D) ecmb 
npou36edeme ue 6oAee deyx KOMMymamopoe zpynnu D*, e Hac/nnocmu, 
SL(1, D) = [£>*, £*]. 

3AMEHAHHE 4. HeTpyAHO nocTpOHTb npHMepbi, noKa3biBaioLUHe, HTO AJIH MaK-
CHMaJibHoro Topa, CBH3aHHoro c pa3BeTBJieHHbiM MaKCHMajibHbiM noAnojieM Tejia 
D9 TeopeMa 4 He Bepna. 

3AMEHAHHE 5. ECJIH Tejio 0D/p HeKOMMyTaTHBHo, TO TeopeMa 4 TaKH<e, Booßine 
roBOpH, He Bepna. Bonpoc o cnpaBeAJiHBOcra TeopeMbi 5 B STOM cjiynae ocTaeTCH 
OTKpblTblM. 

rio-BHAHMOMy, Mbi HaxoAHMCH cefinac B npeAABepHH npHHunnnajibHbix HAeö, 
HeoôxoAHMbix AJIH HccJieAOBaHHH CTpoeHHH &-aHH30TponHbix rpynn, HTO B CBOIO 
onepeAb AOJDKHO npHBecTH K HOBOMy nporpeccy B apHcjweraHecKoft TeopHH ajire-
ôpaHHecKHx rpynn. 
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Some Open Questions on Convex Surfaces* 

William J. Firey 

1. The questions I have in mind concern the determination of a convex surface 
from a certain amount of local data about the surface. By a convex surface I mean 
the whole boundary of a compact, convex set with interior points in Euclidean 
«-space. A convex surface is doubly simple : In the large it is topologically a sphere; 
in the small it cannot behave too badly near any of its points. The nature of the 
support function of such a surface 2 reflects these facts. For each point u on the 
unit sphere û there is a support hyperplane 

(1) <*. w> = H(u) 

with normal direction u which meets 2 and so that 2 lies in the nonpositive half-
space determined by (1). The sharp brackets signify inner product; I write ||x|| for 
<x, x}l/2 and o for the origin. Extend H by 

H(o) = 0, H(x) = |M|#(*/||*||), for* # o. 

The resulting support function of 2 is convex, continuous and differentiate almost 
everywhere. H determines 2 uniquely. 

If 2 is strictly convex and H smooth enough then, viewing 2 as the envelope of 
hyperplanes (1), we find 

(2) x(u) = (dH(u)/dxl9.~ , dH(u)/dxn) 

is that point of 2 with outer normal direction w. I call (2) the normal representation 
of 2. Next 

(3) dx(u) = du3/e(u)9 

"This work was supported in part by a grant from the U.S. National Science Foundation 
(NSF GP-28291). 
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where Jlf(u) is the Hessian matrix (d2H(u)/dXj dxj) of H. The homogeneity of H 
shows Jt?(u) is homogeneous of degree (—1) and has rank no more than n — 1. 
Indeed, by Euler's theorem 

(4) UJF(U) = o. 

The strict convexity of 2 implies ff(u) has n - 1 positive eigenvalues R\(u)9 •••, 
Rn-i(u) which, by the formulas of Olinde Rodrigues, are precisely the principal 
radii of curvature of 2 at x(u). I write {Rx ••• Rp}(u) for the elementary symmetric 
function of degree p in these radii at x(u) ; {R\ • • • Rp} (u) is the sum of the principal 
minors of order;? in J^(u). Finally, let us generate the measures 

S£2; co) = U* i - *,}(«) M«)/(" ~ *) 

over the Borei sets co of Q; dco is the area element on Q. Sp is called the /?th area 
function of 2. In particular Sn-\(29 co) is the area of the set a of points of 2 which 
lie in (1) for some w in co ;• a is the inverse spherical image of co on 2*. If 2(X) denotes 
the outer parallel of 2 in the amount X, that is the set of points x(u) + ht9 then the 
inverse spherical image a(X) of w on 2(A) has area 

(5) S,-iTO; û)) = g ( w ~ ^ W ; û>)*-*-i. 

where S ^ ; co) is just the area of œ. 
For a general convex surface 2 the description of Sn-i(2 ; ûJ) as the area of the 

inverse spherical image o is still valid and Sn-i(2(X); œ) is a polynomial in À of 
degree n — 1. We may take (5) as defining the measures Sp(2; œ) for p = 0, 1,-», 
n — 2. Details are in [3]. Here is a direct definition of Sp when 2" is a polytope. Let 
Qp be the set of outer normal directions to support hyperplanes which contain a 
^-dimensional face of 2; this is a union of (n — p — l)-dimensional closed spheri­
cal polytopes, one for eachp-iace of 2. Over each such spherical polytope distribute 
mass with constant density equal to the/7-dimensional volume of the corresponding 
/?-face. Then Sp(2 ; œ) is the mass in co fi Op divided by (w^) 

2. This prepares us for Minkowski-Christoffel problems. Given a measure p, over 
the Borei sets of Q, which is positive over open hemispheres, is there a convex 
surface 2 whose pth SLTGB, function is this measure? Minkowski treated the case 
p = n - 1 for polytopes and smooth figures. W. Fenchel and B. Jessen [3] and A. 
D. Aleksandrov [1] found the complete answer for/? = n — 1 : A solution exists if 
and only if 

(6) Jfl<w, v}p(dco(u)) = 0, for all v in Q. 

The solution is unique up to translations. Indeed this uniqueness result holds for 
each choice of/?. 

For 1 ^ /? < n — 1, (5) shows that (6) is still a necessary condition, but (6) 
suffices for no such/?, A. D. Aleksandrov [1] showed this for Christoffers problem, 
p = 1, by two counterexamples. One depended on the fact that Si(2 ; co) cannot 
have point concentrations. The other counterexample relates to the smooth form 
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of ChristoffePs problem: Find a support function H such that the sum of the 
eigenvalues of 3^(u) is a preassigned function f(u) over 0. Here the necessary 
condition (6) takes the form 

(7) j^w, v}f(u) dco(u) = 0, for all v in Q. 

Aleksandrov produced a nonconvex H for which the positive sum f(u) of the 
eigenvalues of j^(u) satisfied (7). 

Independently C. Berg [2] and I [4] found two further conditions on //, needed 
along with (6), to make up a set necessary and sufficient for the solvability of 
ChristoffePs problem. One is global to guarantee the convexity of H; the other 
limits the concentrations in the mass distribution on Q which generates pi. 

For all intermediate problems, 1 < p < n — 1, the existence question is open. 
There is a solution for smooth surfaces of revolution [5]. A. V. Pogorelov [11] has 
sufficient conditions in the smooth general case, but these are not necessary. W. 
Weil [13] has suggestive results about the support of the measure S\(2 ; co). Finally 
[6] gives necessary restrictions on mass concentrations in distributions generating 
Sp(2 ;co). I suspect that a single global condition for each/?, ensuring the convexity 
of H9 is all we lack for the complete solution of the intermediate Minkowski-
Christoffel problems. 

I add some related, possibly simpler, questions. Does the support of Sp(2 ; co) 
contain that of Sg(2 ;co)forq > /? ? W. Weil [13] showed this is so for /? = 1. Are 
the /?th area functions necessarily qth area functions for q > p (for different sur­
faces)? Yes, if q = n — 1 because (6) is always a necessary condition and is also 
sufficient for /LL to be an Sn-i. Lastly, is the sum of the two /?th area functions 
another one? Yes for/? = 1 and n — 1. 

The foregoing problems have normal data, that is data specified in terms of 
outer normal directions. Recently H. Gluck [7] solved a generalized Minkowski 
problem—what I call by contrast a problem with free data. The problem is to find 
an embedding of 0 onto a convex surface which has preassigned positive reciprocal 
Gauss curvature R\ ••• Rn-i overß, but not necessarily as a function of outer normal 
directions. The case n = 2 has interesting special features which, for brevity, I 
must omit; but for n ^ 3 the problem has a solution (generally not unique) based 
on a crucial deformation theorem. A normal vector field on a smooth convex 
surface 2 assigns a normal vector g(u)u to each point x(u) on 2; a deformation of 
this field is a normal field f(u)u with/ = g <> /?, h being a C°° diffeomorphism of 0 
onto Q, diffeotopic to the identity. Gluck showed that a continuous normal field 
over a smooth convex surface 2 can be deformed so that (7) holds. Now (7) re­
places (6) in the Minkowski problem for smooth surfaces, where/is the reciprocal 
Gauss curvature. Thus (7) ensures that the problem with normal data has a solu­
tion; hence so does the generalized Minkowski problem with free data. 

As further problems with free data, I ask: Is there an embedding of 0 onto a 
convex surface with {i?i • • • Rp} preassigned as free data on QI In particular, can we 
deform a normal vector field g(u)u over 2, g positive and continuous on 09 to the 
field (R^u) + ••• 4- R„-i(u))u over 21 
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3. Next some questions suggested by a problem of H. Weyl. Again I begin with 
some background. For each point y ^ o, let ê8(y) signify an n x n symmetric 
matrix-valued C1 function for which 

= l~m(y)9 I > 0; ySHy) = o. 

Let âp be the set of quadratic differential forms, one for each function ^ , 
(ßy$(y\ dy) — B(y, dy). The restriction of B to points uon Q and vectors du 
tangent to Q at u specifies a quadratic differential form B(u9 du) over Q. 1 write â(Q) 
for the class of such forms over 0. In turn, each quadratic differential form B(u9 du) 
in â(Q) has a unique extension in &p\ 

B(y, dy) = \\y\\-pB(u, dy - <i/, dy}u), u = y/\\y\\, 

What follows could all be put in terms of £(Q)9 but it is sometimes convenient to 
use an appropriate âp. In this discussion I assume n ^ 3. 

Let 2 be a smooth convex surface with normal representation u -> x(u). The 
forms <rfw, du)9 (ßu9 dx(u)}9 (dx(u), dx(u)} = ds2(u) in â(Q) are the three 
fundamental forms of 2 in the Gaussian theory of surfaces in 3-space. I use (3) 
and the symmetry of ^f(u) to write these forms as 

(8) (dutfP(u\ du} 

for p = 0, 1, 2. This suggests that, for a convex surface 2 in «-space, we allow 
p « 0,1, • • •, n — 1 so as to generate n — 1 fundamental forms (8). The/?th fundamen­
tal form may be viewed as one in âp because of (4) and the homogeneity of Jf ; 
in doing this, we must define ffl^ by 

(dy30>(y),dy> = ||«fy||* - <» «fy>*/W*. 

The forms (8) are not independent : the Cayley-Hamilton theorem and a small 
extra argument give 

E(- iy{Ri - Xn-r-iKuKdujrK«), du} = 0. 
p=0 

All this is classical for n = 3; for general n9 but by different methods, it is due to 
H. Rund [12]. 

A first question: What is the geometric significance of these forms when /?>2? 
Rund [12] has suggestive remarks to this, 

WeyPs problem is this: With n = 3, find a convex surface 2 whose squared line 
element ds2 is a prescribed form B in â(0). The first comprehensive result is H. 
Lewy's [9]. If B is analytic, positive definite and has positive Gauss curvature, 
computed from B by the usual formula, then B is realisable as the squared line 
element of an analytic convex surface 2 which is unique up to a rigid motion. For 
brevity I must pass over the extensive later work on WeyPs problem. 

WeyPs problem has free data: If the map: v -> z(v) over Q describes a solution 2 
with squared line element B(v9 dv) at z(v), then v is not necessarily normal to 2 at 
z(v). As a different question, we may alter WeyPs problem to one with normal data. 
In effect we ask: Given (du@t(u)9 du) in J2> can we find a support function H of a 
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convex surface 2 such that the squared Hessian matrix Jf 2(w) of H equals &(u)l 
As a more general problem with normal data, we seek a convex surface 2 with 
normal representation : u ~+ x(u) whose /?th fundamental form at x(u)9 1 ^ p :§ 
n — 1, is a preassigned form B(u9 du) in âp. 

When p — 1, a solution surface 2" exists if and only if the matrix & of the form B 
in â\ is nonnegative and dy $(y) is a closed differential form in the sense that this is 
so for each of its components. The necessity is immediate. For the sufficiency, con­
struct x(u) by line integration from dy ffl(y), define H by (1), with x(u) for x9 and 
verify that His the support function of a solution 2. For general/? a solution exists 
if and only if gß in âp is nonnegative and dy(@l(y))l/P is closed, where (&(y))l/p 

means the nonnegative/?th root. In all cases, 2 is unique to within a translation. 
This leaves us with the corresponding open questions with free data: For pre­

assigned 1 g /? ^ 77 — 1, find a convex surface 2 whose /?th fundamental form is 
a prescribed form B in J2(ö). See also [8] for related material. In the case of WeyPs 
problem, we have solutions to both the free data problem and the normal data 
problem. This should suggest data deformation theorems which might play the same 
connecting roles as Gluck's deformation theorem did in the study of the generalized 
Minkowski problem. 

4. My last questions are integral-geometric. Let 2, 2' be convex surfaces on 
which we choose subsets a, o' which are inverse spherical images of Borei sets 
co9 cof of Q; let g be a rigid motion of w-space. I say $o' supports 2 in a if g^' 
meets a and g2" and 2 bound disjoint open convex sets. The set m of all g such 
that g<j' supports 2 in G has a rigid motion invariant measure ß(m), This is derived 
from Haar measure in the rigid motion group in much the same way Cantor and 
Minkowski derived surface area measure from volume. As before, let a(X) be 
the inverse spherical image of co on the outer parallel 2(2); form the set m(e) of 
g such that $a' supports 2(2) in a(2) for some positive 2 < e. Then m(e) has positive 
Haar measure ß(m(e)) and 

(9) /i(m) = lim fi(m(e))/e = "£(n ~ l)sp{2; co)S„^1(2' ; co'), 

if we suitably normalize p. I call p the kinematic measure for the set of positions of 
& which support 2 in a ; it serves to calculate probabilities of collisions of preassigned 
type between convex bodies in relative random motion. Special cases of (9) were 
found by R. Schneider and independently by P. McMullen [10]. 

A number of properties of fl follow from (9) : p is defined for all choices of 2, 
2f and Borei sets co9 co' on 0; it is symmetric in the pairs 2, co and 2'9 co'; ß is a 
measure separately in each argument co, cof;fi depends continuously on 29 2' in the 
sense of convergence of set functions (see [3]). Finally, ß is rigid-motion invariant 
in the sense that, if we replace 2, a by %29 goo" for some fixed motion g0 in the 
definition of m, we do not change the value of ß. Do these properties characterize 
ß to within a normalization?2 

2Kecently R. Schneider has characterized p. by these and several additional properties. 
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Fix 2'9 take co' to be Q. Does the resulting measure ß, defined over the Borei 
sets co of Q, determine 2 up to a translation? Yes, if n = 3 and 2 is smooth. In this 
case p has a Radon-Nikodym derivative 

f(Rh R2) = a + ffÄ! + Jla) + r*i#2, 

where a, 0, y are the positive total area functions of 2;/is strictly increasing in 
JRJ, iÊ2. The asserted uniqueness follows from a theorem of A. D. Aleksandrov 
[11]: with such an/, if two convex surfaces in 3-space have equal values off(RÌ9 R%) 
at points with corresponding normals, then one surface is a translate of the other. 
All other cases of this question are open. 
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Convex Polyhedra and Mathematical Programming 

Victor Klee 

Introduction. This article surveys the status of certain questions about the combi­
natorial structure of (convex) polyhedra, with emphasis on four problems of 
special relevance to mathematical programming. For earlier discussions of these 
and related problems, see the book of Grünbaum [1967], the monograph of Mc-
Mullen and Shephard [1971], and the survey articles of Klee [1966a], Grünbaum 
and Shephard [1969], and Grünbaum [1970]. 

As the terms are used here, a polyhedron is the intersection of a finite number of 
closed half-spaces and a.polytope is a bounded polyhedron; equivalently, a poly-
tope is the convex hull of a finite set of points. A polyhedron of class (d9 n) is one 
that is ^-dimensional ^nd has exactly n facets ((d — l)-faces). Frqm the viewpoint 
of linear programming it is natural to focus on polyhedra of a given class, for even 
though the class of a feasible region may be computationally difficult to determine 
precisely, some useful information about it comes free of charge from the manner 
in which the region is defined. It is also natural to focus on a-polyhedra that are 
simple (each vertex incident to exactly hedges), for they are the ones that arise from 
nondegenerate linear programming problems. The family of all simple polytopes 
of class (d9 ii) is denoted here by S(d9 ri). 

Two of the special problems mentioned earlier are those of determining the 
minimum and the maximum of v(P) (number of vertices of P) as P ranges over 
S(d9 ri). These extrema are important in estimating the computational complexity 
of various problems related to polytopes. Not only does the problem of finding all 
vertices arise in many contexts, but v(P) is of interest in connection with optimiza­
tion because (a) each convex function on a polytope P attains its maximum at a 
vertex; (b) P admits a convex function for which each vertex provides a strict local 
maximum; (c) y(P) < v(P)9 where 7)(P) (the height of P) is the length (number of 
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edges) of the longest path in P's 1-skeleton along which some linear function is 
strictly monotone. 

Note that rj(P) is the maximum number of iterations encountered in applying the 
simplex algorithm, with a very relaxed pivot rule, to solve nondegenerate linear 
programs over P. Smaller "heights" are similarly defined using more restrictive 
pivot rules, the most important being the simplex height £(P) based on the pivot 
rule of Dantzig [1951]. The third special problem is that of determining the maxi­
mum B (d, ri) of f (P) over S(d9 ii). 

The diameter d(P) of a polyhedron P is the smallest k such that any pair of P's 
vertices can be joined by a path of length :g k. The fourth problem is that of deter­
mining the maximum A(d9 ii) of d(P) over S(d9 ii). The number A(d9 ri) is in a sense 
the number of iterations required to solve the "worst" (bounded) linear program in 
d variables and n inequality constraints, using the "best" edge-following algorithm. 

1. Minimum number of vertices. The first special problem has been solved. Indeed, 
1.1. The minimum of v(P) over S(d,n) is equal to (n — d)(d — 1) -j-2. 
That is immediate for d = 3, was proved for n ^ d -f 3 by Grünbaum [1967], 

for d g 5 by Walkup [1970], and in general by Barnette [1971]. Barnette [1973a] 
determined the minimum over S(d9 ri) of/Ä(P), the number of fc-faces of P. A dual 
formulation in terms of simplicial polytopes enabled Barnette [1973b] to extend 1.1 
to a wide class of simplicial manifolds. See § 3 below for a different extension of 
1.1. 

2. Maximum number of vertices. The second special problem has been solved. 
Indeed, 

2.1. The maximum y(d9 ri) ofv(P) over S(d9 ri) is equal to 

fn - \{d+ l)/2]\ + fn - [(rf + 2)/2]\ 

That is immediate for d ^ 3 and was conjectured in general by Motzkin [1957]. 
It was proved for d g 6 by Fieldhouse [1961], for n ^ d + 3 by Gale [1964], and 
for (roughly) n > [d/2]2 by Klee [1964a]. Grünbaum [1969] improved Klee's bound 
and the general problem was settled by McMullen [1970]. See Grünbaum [1967] 
and McMullen and Shephard [1971] for detailed discussions of 2.1 and analogous 
results on the maximum of/Â(P), and see § 3 for a different extension of 2.1. 

McMullen's proof of 2.1 uses much more of the structure of polytopes than does 
Klee's partial result. In particular, the former relies on shellability (Bruggesser and 
Mani [1972], Danaraj and Klee [1974]) while the latter applies in dual formulation 
to a wide class of not necessarily shellable simplicial complexes (the so-called 
Eulerian manifolds). A recently established generalization of 2.1 (Stanley [1975a, b]) 
is that each simplicial (d - l)-sphere with n vertices has at most y(d, ii) (d — 1)-
simplices. Such a sphere must be combinatorially equivalent to the boundary 
complex of a simplicial ^-polytope if d ^ 3 (Steinitz and Rademacher [1934]) 
or n ^ d 4- 3 (Mani [1972]) but not in general (Grünbaum and Sreedharan [1967], 
Barnette [1973c]). 
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3. Polytope pairs. Since the feasible region of a linear program is often un­
bounded, it is of interest to extend 1.1 and 2.1 to unbounded polyhedra. Motivated 
by the desire to do that and to analyze an algorithm of Mattheiss [1973] for finding 
all vertices of a polytope, Klee [1974] defined a polytope pair of class (d9 n9 u) as a 
pair (P, F) consisting of a simple polytope P of class (d, ri) and a facet F intersecting 
precisely u other facets of P. He studied the minimum and maximum of v(F)9 

v(P), v(P ~ F)9 and v(P ~ F)/v(F) as (P, F) ranges over all polytope pairs of a 
given class, and was able to determine those completely except for the maximum 
of v(P) and the minimum of v(P ~ F)/v(F); the exceptions were determined for the 
important case u = n — 1. A corollary of those results is the following extension 
of 1.1 and 2.1. 

3.1. As P ranges over all simple polyhedra of class (d, ii) having precisely u un­
bounded facet s 9 the minimum and maximum ofv(P) are respectively 

(u - n - 2)(d - 1) + 2 and y(d9 w - l ) + rf-w-l. 

4. Heights of polytopes. Since the inception of linear programming, it was widely 
believed that the simplex algorithm was a "good" algorithm in the sense that 
B(d, ii) is bounded by a polynomial in d and n. (See Gale [1969] for a general dis­
cussion, Dantzig [1963] and Kuhn and Quandt [1963] for reports of computational 
experience.) However, by combining 2.1, a method of Klee [1965a], and a study of 
"perturbed products" of polytopes, Klee and Minty [1972] were able to show: 

4.1. For each d there are positive constants ad and ßd such that 

adnWn<B(d9ri) < ßdrid/2\ 

In particular, B(d9 2d) ^ 2d — 1. The method was extended by Jeroslow [1973] 
to other pivot rules, and analogous examples were obtained by Zadeh [1973] for the 
simplex algorithm as applied to minimum cost flow problems. Presumably the final 
explanation (if there ever is one) of the contrast between these results and the 
practical good behavior of the simplex algorithm will come from the realm of geo­
metric probability. (See, for example, Schmidt [1968].) 

5. Diameters of polytopes. In my opinion the fourth special problem is from se­
veral viewpoints (intuitive appeal, interest for linear programming, potential sti­
mulation of new methods) the most important remaining unsolved problem on the 
combinatorial structure of high-dimensional polyhedra. There is particular interest 
in the numbers A(d9 2d) because A(d + k, 2d + k) = A(d9 2d). If A(d, 2d) could 
be shown to increase exponentially with d it would follow there is no "good" 
edge-following algorithm for linear programming. However, the well-known con­
jectures of W. Hirsch (in Dantzig [1963]) are that A(d9 2d) = d and A(d9 ii) <£ w - d; 
they have become known respectively as the d-step conjecture and the Hirsch 
conjecture. The sharpest proven bounds are the following, due respectively to 
Adler [1974] and Barnette [1975]: 

(5.1) <"-*> - - w 1 ] + ' = m n) = T 2 r f 1 * -d+4) 
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It is not even known whether the increase of A(d9 2d) is linear, polynomial or 
exponential in terms of d. 

Klee [1964b] showed Z/(3, ii) = [2n/3] - 1, and Klee and Walkup [1967] proved 

(5.2) A(d9 n)^n - d for n S d + 5. 
They also established the equivalence (though not on a dimension-for-dimension 
basis) of the rf-step conjecture, the Hirsch conjecture, and the Wv conjecture 
asserting that any two vertices of a polytope can be joined a by path not revisiting 
any facet. At present the rf-step conjecture has been proved for all d :g 5 but the 
other two only for d ^ 3. They all apply to unbounded polyhedra as well for d ^ 3 
(see Klee [1965b], [1966b], Barnette [1969]), but not for d = 5 for Klee and Walkup 
[1967] produced a polyhedron of class (4, 8) and diameter 5. Their methods were 
improved by Larman [1970] and Goodey [1972] to sharpen the bounds on A(d9 ri) 
for small d and n (in particular, A(69 12) ^ 7), and by Adler and Dantzig [1974] 
to extend (5.2) in dual form to a wide class of simplicial complexes, the so-called 
abstract polytopes. (They may be described as simplicial pseudomanifolds in which 
the link of each simplex is strongly connected,) 

For polytopes arising from certain sorts of linear programs, the Hirsch conjec­
ture or close relatives have been established by Saigal [1969], Grinold [1970], Balas 
and Padberg [1972], and Balinski and Russakoff [1972], [1974], Balinski [1974], 
and Padberg and Rao [1974]. 
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Metrical and Combinatorial Properties of 
Convex Polytopes 

P. McMullen 

This article takes as its theme the interaction between metrical and combinatorial 
properties of convex polytopes. To illustrate this theme, we begin with a few ex­
amples. The archetypal combinatorial property of polytopes is Euler's relation: 

F 

where the sum extends over all (nonempty) faces F of a polytope P. A result of a 
similar type, but involving metrical quantities, is Gram's relation : 

S ( - l)dim Fß(F9 P) = 0 (dim P > 0), 
F 

where ß(F9 P) is the internal (solid) angle of P at F9 measured intrinsically, and 
normalized so that the total angle is 1. (For results without specific references, see 
Bonnesen-Fenchel [1934], Hadwiger [1957] or Grünbaum [1967].) 

A general result of Shephard [1968] is the following. We write <p(P) = 
V(P9 •••, P9 Kr+i, ••-, Kd) for the mixed volume, with the polytope P taken r times, 
and Kr+i9<", Kd general convex bodies. If we define tp*(P) = 2JF( _ l)dimF<p(F)9 

then <p*(P) = ( - l)r<p(- P). In particular, if Kr+1 = ••• = Kd = B9 the unit ball 
in Ed

9 <p(P) = Wd-r(P) is the Quermassintegral which measures the (d — r)-flats 
of Ed which meet P. We prefer to normalize, and consider instead the intrinsic r-
volume Vr(P), which is such that 

(ûd-rVr(P) = (fr)wä-r(P), 

where œk is the volume of the unit fc-ball. Then it can be shown that 
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vr{P)= 23 r(F,p)nn 
r- fa ces F 

where ?(F9 P) is the (normalized) external angle of P at F9 and V denotes r-dimen-
sional volume. Shephard's relation then implies that V*(P) = ( - l)r Vr(P)\ since 
VQ(P) = 1, this generalizes (in a sense) Euler's relation. 

A result of a new type which we shall now present generalizes (in the same way) 
Gram's relation: 

S ( - iy[mF ß(F9 P)Vr(F) = ( - iyVr(P) if dim P = r, 
F = 0 otherwise. 

We shall prove this result as an application of a pair of inversion formulae. How­
ever, we may note that direct proofs of it, and the previous result, can be obtained 
by integrating Gram's or Euler's relation for the sections of P by (d — r)-flats. 

The inversion formulae are as follows. If S9 <p are two functions on polytopes, 
then the following are equivalent: 

<J>(P) = 2 ( - l)aimp-oimFß(F9P)$(F), 

W = Zr(F,P)m-
F 

Since V(P) = Vr(P) if dim P = r9 the application above is clear. 
We deduce the formulae from three angle-sum relations for polyhedral cones. 

These are 

2/3(P,/)r(/,G) = Ç(F,G), 

S ( - iy™J~*™Fß(F9 J)T(J9 G) = Ö(F9 G)9 

where F9 J9 G are faces of a polyhedral cone K9 £CF, G) = 1 if F £ G and 0 other­
wise, ô(F9 G) = 1 if F = G and 0 otherwise, and all functions £(F9 G) = 0ifF £ G. 
(These relations are connected with the Gauss-Bonnet and Steiner parallel formulae 
for spherical polytopes.) It is enough to prove these results for a pointed polyhedral 
cone K with apex o, with F = o and G = K. For the first, if J denotes the face of 
the polar cone K* of ̂ corresponding to /, then the cones J x J cover Ed and have 
disjoint interiors; the solid angle of / x / i s ß(o9 J)ß(o9 f) = ß(o9 J)y(J9 K). The 
second follows from the first, using a theorem of Sommerville : 

S ( - Vf"j ß(Ji K) = (_ i)di» J T ^ 7Q5 

and the third follows from the second by elementary linear algebra (the square 
matrices with entries ( - \y^G-A\mFßrp^ ß) and y(F9 G) are inverses of each 
other). 

Closely connected with Euler's relation is the idea of an Euler-type relation. If 
tp is a function defined on polytopes, we set <p*(P) = SF(— iyimF<p(F)9 as before. 
If, for all P, <p*(P) = ± <p(± P), we say that <p satisfies an Euler-type relation. 
(We have already met examples of such functions.) Now p** ( = (9*)*) = cp9 so of 
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course, if <p is any function and we set <p+ = \(<p + (p*)9 p_ = \(tp — <p*)9 then (p+ 
and <p- both satisfy Euler-type relations, and <p = <p+ + <p— This might seem to 
make the idea of an Euler-type relation less significant, were it not for the 
following fact. A function <p is called a valuation if (p(P U Ô) + <p(P fi G) ~ 
<p(P) -j- <p(Q)9 whenever P U Q is convex. Sallee [1968] has shown that if tp is 
continuous (in the Hausdorff metric) and satisfies an Euler-type relation p* = ± <p9 

then <p is a valuation. 
The mixed and intrinsic volumes introduced above are examples of valuations; 

as this may indicate, valuations are of great importance in this area. The second 
half of this article will be devoted to the question of valuations in general. We shall 
look at some very recent results (of the author), which relate properties of valua­
tions to those of Euler-type relations. 

Let A be an additive subgroup of Ed. We shall assume that aff A = Ed
9 and, to 

avoid certain technical difficulties, that A is either a discrete lattice or a rf-dimen-
sional vector space over some subfield of the real numbers. (Thus A = Ed is pos­
sible.) We denote by 0>(A) the class of all polytopes with vertices in A. We call a 
valuation <p on 0>(A) a A-valuation if <p(P + t) = tp(P) for all te A. We say cp is 
simple if <p(P) = 0 whenever dim P ^ d — 1. 

The main results concerning yl-valuations are the following. 
Firstly, if we set P = niPy + • • • + nkPk9 where P, G 0>(A)9 n( is a nonnegative 

integer, and the sum is in the sense of Minkowski, we obtain a polynomial expres­
sion in the ni of total degree at most d9 whose coefficients depend only upon the 
Pt-. In particular, we can write (p(nP) = Hr^Q<pr(P)nr

9 and, in general, the coef­
ficient of wj««--wj* in the general polynomial is a homogeneous valuation in 
Pi of degree r{ (/ = 1, •••, k). These coefficients may be called mixed valuations, 
in analogy to the mixed volumes or Quermassintegrals, whose behaviour is very 
similar. 

We note that ifA = Ed and <p is continuous (in the Hausdorff metric) or mono­
tone, we can replace the polytopes P,- by general convex bodies Ki9 and the integers 
ni by general nonnegative numbers A,-. 

Secondly, if <p is a homogeneous ^-valuation of degree r, it satisfies the Euler-
type relation (p*(P) = ( - l)r<p(- P). The mixed volume relation of Shephard 
(mentioned at the beginning) is a particular example of this result. 

We approach both these results by associating with each ^(-valuation a simple 
yl-valuation. Specifically, let <fi be defined by 

(/>(P) = E (-l)dimP^dimFiS(P,PMP). 
F 

Then cjj itself is not even a valuation, but if we set <])(P) = cj)(P) if dim P = d and 0 
otherwise, then $ is a simple ̂ -valuation. The inversion formulae introduced earlier 
show that 

<p(P) = Zr(F9P)<P(F). 
F 

Now, after we observe that <p(Pi + ••• + Pk) is a ^-valuation in each Pi9 it is 
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clear that the first result follows from the case of a simple ./[-valuation for a single 
polytope. This can be shown, in turn, by establishing it for simplices, which has 
been done by Hadwiger [1957]. 

For the second result, we prove that if <p is a homogeneous simple /1-valuation of 
degree /', then <p(- P) = (— l)d~r <p(P). We first show this in case r — 1, and prove 
it generally by observing that the behaviour of tp is determined by its behaviour on 
the r-cylinders in 0>(A)9 which are the sum of r polytopes of dimension at least one 
lying in independent linear subspaces of Ed. The technical difficulties we mentioned 
play their part here. 

Let us give some other applications of our results, this time to lattice polytopes, 
That is, we take A to consist of all the points of Ed with integer cartesian coordi­
nates. We denote by G(P) the number of lattice points in the lattice polytope P. 
Clearly, G is a valuation, so we have a polynomial expression 

G(nP) = 23 Gr(P)nr. 
rëO 

(We also have a polynomial expression for G(niP\ + ••• + nkP^).) The number 
of lattice points in the relative interior of P is 

G°(P) = £ ( - iy™P-dinFG(Fy 
F 

Thus G°(nP) = Sr^o G°(P)nr is also a polynomial in n9 and 

G°r(P) = ( - \)*™FG*(P) = ( - iy™p-rGr(- P) 
= (-iy™p-rGr(P), 

since G(- P) = G(P).Thatis, 

G°(nP) = ( - iy™F S Gr(P)(- ny. 

This result, due originally to Ehrhart [1967], is called the reciprocity law. (See also 
Macdonald [1971].) 

The function A considered by Macdonald [1971] associates with each lattice point 
in P that proportion of a sufficiently small ball centred at the point which lies in P. 
Thus A(P) = J]F ß(F9 P)G°(F). It is easily checked that A is a simple valuation, 
and A(— P) = A(P)9 and so we conclude that we have a polynomial expression 
A(nP) = 2 r^0 Ar(P)nr

9 where Ar(P) = 0 if r # dim P (mod 2). (Since A is simple, 
we also have AQ(P) = 0 for all P.) This result was first proved by Macdonald. 

We may observe in passing that the relationship between G and A is the same as 
that between the general valuations cp and cj). 

Hitherto, we have tacitly assumed our functions to be real valued. But they could 
be vector valued. Many of the results we have been discussing have vector valued 
analogues. For example, there are the Quermassvectors, corresponding to the 
Quermassintegrals (see Hadwiger and Schneider [1971]). In particular, to the con­
stant 1 (the Euler characteristic) corresponds the Steiner point s(P)9 defined by 
s(P) = JJV v(v9 P)v9 where the sum extends over the vertices v of P. Then we have 
the vector valued analogue of Gram's relation : 
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S ( -1 yìmF ß(F9 P)s(F) = o (dim P > 0). 
F 

We might also note the Euler-type relation (due to Shephard) s*(P) = s(P) 
( = — s( — P)) ; this should not surprise us, when we learn that Sallee has shown 
that s is a valuation. 

In fact, as might be expected, there is a theory of vector valued ./[-valuations. 
We must replace the condition of invariance under A by equivariance9 by which we 
mean that, for each vector ./[-valuation v, there is a scalar function cp9 such that 
v(P + t) = v(P) + (p(P)t. It is easy to show that cp must be a /[-valuation. The 
vector theory is more involved than the scalar theory we have been discussing, but 
we can prove that the results are completely analogous to those mentioned in our 
article. (See also Schneider [1972].) 

We have not had time here to consider the extension of the theory of the first 
half of our article to spherical polytopes. This whole area has been much less deeply 
explored, and we are, as yet, still uncertain as to which of the Euclidean results 
have analogues. 

The results discussed in this article are considered in much more detail in the 
two papers by the author listed in the references. 
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Probabilistic and Combinatorial Methods in the 
Study of the Geometry of Euclidean Spaces 

C. A. Rogers 

There are many problems in the geometry of Euclidean space that can be ap­
proached both by a probabilistic or measure theoretic method and also by a 
combinatorial or constructive method. Sometimes one method is more effective, 
sometimes the other. To fix ideas consider a very simple example : the covering of 
space with equal spheres. Consider a large cube C in En of volume V(C) and a 
sphere S of unit radius and of volume V(S). Place the centre of the sphere in the 
large cube by use of a "random" translation. Ignoring wastage near the faces of the 
large cube, the volume of the cube that is left uncovered is 

V(C)- V(S)= V(C){\ - v } , 

with v = V(S)/V(C). Translate a second sphere of radius 1 to a "random" position 
in the cube. The expected volume left uncovered is now V(C){\ — v}2; a fraction 
v of the space not previously covered being covered at this stage. After placing r 
spheres of radius 1 with their centres in the cube, the expected value for the volume 
V(E) of the region E of the cube left uncovered is 

$V(E) = V(C){\ -v}' = V(C) exp(rlog(l - v)) 
= K(C)exp(- rv - \rv2 •••) ^ V(C)exp(- rv); 

here we suppose that the spheres are placed so that the expectation is realized. 
Take r to be [v~ln log n] + 1. Then 

V(E) ^ F(C)exp(- «log«) = V(C)(ljny. 

This arrangement of spheres will not generally cover the whole cube. Place in the 
set E that remains uncovered a maximal nonoverlapping system of spheres of ra­
dius 1/n. Let the number of these small spheres be s. Then, comparing volumes, 
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sV(S)(l/ny^ V(E) S V(C)(l/ny9 

so that 57 ^ 1. Now place a sphere of radius 1 -j- (\jn) at each of the /* -f s centres. 
It is easy to check that these cover the cube. But the total volume of these spheres is 

(r + s)V(S)(\ + (1/w))" < (r + s)V(S)-e 
- (rv + sv)eV(C) ^ {;? log/? + v + l}cK(C). 

So for very large cubes the density of the covering can be made as close as we 
please to {n log n + 1 }e. A bit of extra care leads (see [1]) to a covering with density 
n log n -f- n log log n H- 5«. Thus we have a probabilistic method of obtaining a 
covering of space by equal spheres with density at most n log n + n log log n + 5n. 
Of course the method is not wholly probabilistic, in this case ; it has a combina­
torial aspect through the addition of the disjoint system of small spheres, but on 
examination this argument, if it is combinatorial, is certainly nonconstructive. 

How can combinatorial or constructive methods be applied to this problem? 
As far as I know, the best known construction (due to Davenport and Watson, see 
[2]) yields only a covering with density (1.017 •••)"• 

It would be very interesting to have an explicit construction for a good covering 
of space by spherical balls. Perhaps it would suffice to take the centres to be at 
the points of the lattice generated by the points yj(p9 0, • • •, 0,0), 97(0, p9 • • • , 0,0), • • • , 
57(0, 0, ••• ,/?, 0), 7}(gn~l

9 g
n~2

9 ••• , g91), for some suitable choice of the parameters 
y , P> g-

The corresponding problem for the packing of spheres in J5"w is even more inter­
esting and frustrating. There is a "trivial" existence proof. Place spheres of radius 
1 in a large cube without overlapping until no extra sphere can be put in. Replace 
each sphere of radius 1 by a concentric sphere of radius 2. These enlarged spheres 
cover the cube (with the possible exception of some points within distance 1 of the 
boundary). It follows that there will be a nonoverlapping packing of equal spheres 
of density at least 2~n. This trivial result has only been improved to a trivial extent. 
Probabilistic methods due to W. Schmidt and C. A. Rogers lead after considerable 
work to the existence of packings with densities about (n log 2)/2w; see [3]. By a 
result of Blichfeldt dating from 1914, densities of packings of spheres are necessarily 
less than ((11 -f 2)/2)(l/-v/2)w. In this problem our factor of ignorance remains 
close to (\/2)w, but see the contribution of S. S. Ryskoff to these PROCEEDINGS. 

Combinatorial methods seem to be of no help for large n9 but they have had 
spectacular success up to 24 dimensions. The success is due to the discovery of 
the Leech lattice which provides a very good packing in 24 dimensions. This is 
of course the same lattice that led to the discovery of Conway's group of order 
8,315,553,613,086,720,000, containing his new simple groups [4]. For large values 
of n9 despite ingenious work [5] by experts on coding theory, the constructions do 
not give good packings. 

Now consider a problem where combinatorial methods have been more 
successful. In 1944-1945 Hadwiger and Hopf discussed results of the following 
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form. Given a spherical surface Sn or a Euclidean space En covered by r closed sets, 
is it possible to assert that: 

(a) each distance (not exceeding the diameter in the case of Sn) is realized as the 
distance between two points of one of the sets ; or that 

(b) there is one of the sets within which each possible distance is realized. 
Hopf used topological methods (à la Borsuk) and proved the type (a) result for 

r = n -f 1. Hadwiger used measure theoretic methods and obtained type (b) results 
with r — n + 1 for En and also for Sn for distances rather less than the diameter. 
Larman and Rogers [6] returned to the problem for En

9 recently, and were able to 
show by a purely combinatorial argument that if En is partitioned into at most 
(n(n — l))/6 — 1 sets, then there is one of the sets within which all distances are 
realized. Better results are obtained for some small values of n; in particular 101 
sets may be used for the partition of Eu

9 a result obtained by considering a partic­
ular configuration of (4602)101 points constructed from the Leech-Conway lattice. 

There are many further instances where probabilistic and combinatorial methods 
are important. Dvoretzky has discussed the fc-dimensional central sections of a 
centrally symmetric convex body in N dimensions with N much larger than k, 
After some refinement (see a forthcoming paper by D. G. Larman and P. Mani) 
his result asserts that, if a suitable standardizing linear transformation is first 
applied to the body, then nearly all the central fc-dimensional sections are nearly 
spherical. This result has had considerable influence on Banach space theory. 
Other recent results in the geometry of Banach spaces seem to depend on even more 
sophisticated probabilistic techniques involving stochastic processes and martin­
gale theory. Although Enflo's counterexample to the existence of a basis in a 
Banach space is purely combinatorial, Davie's simplification [7] is probabilistic. 

Returning to Euclidean spaces of two and three dimensions, some remarkable 
constructions have been achieved recently by combinatorial means. Besicovitch's 
remarkable example of a plane set of Lebesgue measure zero containing a line in 
every direction was the basis for the construction by Ward [8] of a plane set of 
measure zero containing a congruent copy of every plane polygon. It was also the 
basis of Larman's construction of his "impossible" set [9], which is a compact 
set in E3

9 that is the union of disjoint line segments with the property that, while the 
set of the relative interior points of the line segments is of measure zero, the set of 
the endpoints of the line segments is a compact set of positive measure. 

Let me end with a problem that I have recently attempted, without success, using 
both constructive and probabilistic methods. The problem, suggested by Busemann, 
is to find two convex bodies K\9 K2 in some En, n ^ 3, both with the origin as centre 
of symmetry, both with the same volume, but with the (n — l)-dimensional area 
(or volume) of each central section of K\ strictly less than the area (or volume) of 
the corresponding section of K2. I believe that there should be such examples with 
K% a spherical ball. I have tried to construct them by examining the solutions of 
suitable integral equations. I have tried to prove their existence by taking K\ to be a 
"rough" sphere obtained by making "random" modifications to a spherical ball. 
Neither method has worked so far. 
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If my article has a moral, perhaps it is this, If one has a geometrical problem, one 
cannot tell a priori whether it is best tackled by probabilistic or combinatorial 
methods. Try both! One may work, both may work; if neither works, try them 
both again. 
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TeOMeTpHH riOJ10>KHTejlbHblX KßaApaTHHHblX 4>OpM 

C. C. PblUlKOB 

fipe nojio>KHTejibHbie, T.e. nojiowHTeJibHo onpeAe-neHHbie, KBaApaTHHHbie (})opMbi 
( n K $ ) / = / j (x i , x29 •••, xn) ufz = / 2 (# i , x2i •••, xn) 6y^eM CHHTaxb BKBHBajieHT-
HbiMH, ecjiH cymecTByeT TaKan uejiowcjieHHaH yHMMO^yjinpHan no^cxaHOBKa 
nepeMeHHbix xh x29 •••, xn9 KOTopan nepeBOAHT UKfyfx B nK3>/ 2 . 

Kaacfloft U K * BHAa/ = S ? , ^ i «y ** *y B rc-MepHOM eBKJMAOBOM npocTpaHCTBe 
E* cTaBHTCH B cooTBeTCTBHe «-MepHaa peiueTKa, T.e. coBOKynHoexb ToneK uejibix 
OTHOCHTejibHO penepa êl9 e29 >">ën yAOBJieTBopHfomero ycjiOBHio (ei9 gy) = a(j. 
SKBHBajieHTHbiM nK<ï> cooTBeTCTByioT KOHrpyeHTHbie peiueTKH. 

KaHCAofi nK<f> yKa3jaHHoro BHAa CTaBHTCH B cooTBeTCTBHe TOHKa (an, a22, •••, 
ann> ö12» •" 9 dn-hn) B N-MepHOM, Tfl£ N = n(n + l)/2npOCTpaHCTBe JE^. BTHTOHKH 

3anOJIHHK)T B npOCTpaHCTBe 2?^ HeKOTOpblft OTKpblTblft BbinyKJIHH Konyc K (KOHyC 
n0JI0>KHTeJIbH0CTH). 

H3yneHHe U K * c onpeAeJieHHoft Bbime sKBHBajienTHocTbio npOH3BOAHTcn nepe3 
reoMeTpHnecKHe o6pa3bi B npocTpaHCTBax En H EN

9 Tanoe H3yneHHe H HBJineTCH 
npe^MeTOM reoMeTpHH nK4>. 

OcHOBOnOJIOHCHHKaMH reoMeTpHH U K * CJieAyeT CHHTaTb MHHKOBCKOrO H 
ocoöeHHo BopoHoro; BnepBbie TepMHH "reoMeTpHH U K * " H BHAe-neHHe STOH 
oß^acra H3 reoMeTpHH ^Hceji BCTpe^aeTcn B ôojibiuoft CTaTbe B. H. ßejioHe 
'TeoMeTpHH n K $ " [1]. H3 Aa-flbHeftiiiHX paßoT HMeioinHX H o63opHbift xapaKTep 
OTMeTHM KHHra $eftem-ToTa [2] H PoAH<epca [3], CTaTbio BaH-Aep-BapAeHa [4], a 
TaKJKe HHCTo oÖ3opHbie cTaTbH E . n . BapaHOBCKoro [5] H BaM6bi [6], 

Mbi 3#ecb He npeTeHAyeM Ha nojiHbift 0630p paöoT nocjieAHero BpeMeHH npH-
Ha;yie>K:aiijHX reoMeTpHH n K $ , a yi<an<eM mwh paôoTbi naHÔojiee HaM 6m3Kvie m-
6o no MeTo^aM HccjieAOBaHHH, JIHôO no xapaKTepy pe3yjibTaT0B; öojiee noApbÔHo 
Mbi ocTaHOBHMCH Ha pa6oTax AOKJiaAMHKa H e ro KOjiJier. JXame npeAnoJiaraeTCH 
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3HaKOMCTBO HHTaTejin c ocHOBaMH reoMeTpHH I~IK<î>. 

1°. Bonpocbi npHBeAeHHR M ycTaHOBJieHHH sKBHBajieHTHOcra I1K*. Bonpoc 

yCTaHOBJieHHH SKBHBaJieHTHOCTH AByX n K $ , T.e. yCTaHOBJieHHH KOHrpyeHTHOCTH 
COOTBeTCTByiOLUHX 9THM I1K<Î> peilieTOK CBOAHTCH K BOIlpOCy O IjeJIOHHCJieHHOM 
npHBeAeHHH IIKO. 3Aecb nocjie KJiaccHHecKHX paôoT, B nacTHOCTH pa6oT 3pMHTa, 
MHHKOBCKoro H HecKOJibKO B ApyroM HanpaBJieHHH, paôoTbi KopKHna H 3ojioTa-
peßa, HaM KanœTCH HaHÖojiee 3HaHHTejibHoft paôoTa B.A. BeHKOBa [7], [8], B 
KOTopoö nocTpoeHbi KOHTHHyajibHbie cepHH KOHe^HorpaHHbix oßjiacTefi npHBe­
AeHHH (B KOHyce K) AJIH jnoôoro n > 2. 3 T O npHBeAeHHe MO>KHO [9] npOHHTepnpe-
THpOBaTb B npocTpaHCTBe En i<aK Bbiöop TaKoro ocHOBHoro penepa pemeTKH, HTO 
cyMMa KBaApaTOB AJIHH BeKTOpoB c 3aAaHHbiMH KoopAHHaTaMH MHHHMajibHa (paHr 
9T0H CHCTeMbi BeicropoB npeAnoJiaraeTCH paBHbiM n). 

B nocjieAHHe roAbi aBTOpy yAaJiocb nocTpOHTb [10],[11] ajiropH(})M npHBeAeHHH 
AJIH Ka>KAOH H3 oöjiacTeö BeHKOBa. YcTaHOBJieHo Tao<e, HTO npH n ^ 5, CM. [10], 
[11] H npn n = 6, CM. [12], [13], cHMMeTpH30BaHHan rpynnofi Ky6a oôjiacTb npHBe­
AeHHH MHHKOBCKOrO eCTb OÔJiaCTb npHBeAeHHH BeHKOBa OTHOCHTeJIbHO (})OpMbI <p = 
x\ + x\ + ••• + x\. npH n ^ 7 9TO yTBep>KAeHHe oKa3ajiocb HeBepHbiM [14]. B 
Tex >Ke paßoTax &m OTBCT Ha Bonpoc, nocTaBJiemibiH Ban-Aep-BapAeHOM [4], a 
HMeHHo, AOKa3aHo, HTO npH n ^ 6 otfjiacTb npHBeAeHHH no 3pMHTy nojiHocTbio 
coBnaAaeT c oöjiacTbio npHBeAeHHH no MHHKOBCKOMy, a npH n ^ 7 HeT. 

KpOMe Toro, B [10], [11] AJIH n = 5, a B [12], [13] AJIH n = 6 AOKa3aHa TecHO 
CBH3aHHan c STHMH BonpocaMH rnnoTe3a MHHKOBCKoro [4] o CTpoeHHH ero oßjiacra 
npHBeAeHHH B npocTpaHCTBe EN. 

HaKOHeu B paöoTax [9] H [15] nocTpoeHbi HOBbie KOHKpeTHbie oßjiacTH npHBe­
AeHHH npn n = 5, BTOpan H3 BTHX oßjiacTefl ecTb npnMoe oôoôuneHHe oôjiacTH 
3eJiJiHHra-LLIapBa. 

2°. r p y n n b i nejiOHHCjieHHbix aBT0M0p<J)H3M0B I1K4> ( r p y n n w BpameHHH 
pemeTOK, THITM Bpaos B KpHCTajiJiorpa^HH). Bonpoc o pa3bicKaHHH Bcex 
nonapHo HesKBHBajieHTHbix noJiHbix rpynn ueJioHHCJieHHbix aBTOMOp(J)H3MOB FIK4> 
ecTecTBeHHO BJiHBaeTcn B Bonpoc o nepenncjieHHH H KJiaccncJMKauHH Bcex nonapHo 
HesKBHBajieHTHbix KOHeHHbix rpynn uejioHHCJieHHbix noACTaHOBOK, T.e. uejioHHC-
jieHHbix n x n -MaTpHU, (KTUM)—STO CJieAyeT, B nacTHOCTH, H3 Toro, HTO Ka>KAaH 
K r U M cocTaBJineT HHBapHaHTHofl no Kpamefi Mepe oAHy I~1K<Ï>. 

OTHacTH B CBH3H c 3anpocaMH 3apo>KAaK)meHCH cefinac n-MepHofl KpHCTajijiorpa-
$ H H , B nocJieAHHe roAbi BO3HHK öojibmofi HHTepec K ynoMHHyTOMy nepeHHCjieHHio 
npn n > 3 (AJIH n ^ 3 STH 3aAann 6biJiH AaBHO pemeHbi KpHCTajiJiorpacj)aMH). Bce 
nonapHo HesKBHBajienTHbie KTUM AJIH AaHHoro n JXSHA [16] npeAJio>KHJi pa3bic-
KHBaTb i<aK noArpynnbi MaKCHMajibHbix KTUM H Hauieji Bce TaKHe MaKCHMajibHbie 
rpynnbi AJIH n = 4. OcTajibHyio nporpaMMy ,fl,9HAa BbinojiHHJiH c npHMeHeHHeM 
3 U B M Hefl6io3ep, BoHApaneK H BIOJIOB [17]. B Tex >i<e paôoTax [17] AaHbi HHTe-
pecHbie TeopeTHHecKHe coo6pan<eHHH o KJiaccHC^HKauHH KTUM. 

^OKJœAHHK npeAJicoKHJi [18], [19], [20] ajiropH^M pa3bicKaHHH MaKCHMajibHbix 
K r U M H nojiHbix rpynn uejiOHHCJieHHbix aBTOMOpc})H3MOB EIKO. 3 T H ajiropH(|)Mbi 
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TpeßyioT 3HaHHH, no Kpafinefl Mepe, oAHoro pa3ßneHHH KOHyca noJio>i<HTejibHocTH 
H3 AOBOJibHo niHpoKoro KJiacca TaKHX pa36neHHH, HanpHMep, coBepmeHHoro 
pa3ÖHeHHH HJIH pa3ÔHeHHH npHBeAeHHH no MHHKOBCKOMy. IlpHMeHHB 3TOTaJirOpH(J)M 
K coBepineHHOMy pa3ÔHeHHio (nojiHSApy) BopoHoro AOKJiaAHHK Hameji [18], [19] 
Bce MaKCHMajibHbie K r U M npH n - 5. 

3° , npHMHTHBHbie napajuiej iosApw (oöjiacTH BopOHoro-ßHpHXJie O6IH,HX 

pemeTOK). Ro HeAaBHero BpeMeHH H3-3a cymecTBOBaHHH ajiropH(j)Ma BopoHoro 
[21] 3aAana pa3bicKaHHH npHMHTHBHbix w-MepHbix napaJuiejio9ApoB CHHTajiocb 
nojiHocTbio pemeHHOH, OAHaKO, KorAa noTpeßoBajiocb peajibHoe nepenncjieHHe 
Bcex L-THnoB (THnoB BopoHoro) XOTH ßw oßujHX pemeTOK, BbincHHJiocb, HTO y>i<e 
HpH n e= 5 aJirOpH(j)M BopOHOrO npHBOAHT K CTOJIb ßOJIblUHM BblHHCJieHHHM, HTO 
npHXOAHTCH TOBOpHTb 0 e ro npaKTHHeCKOH HenpHMeHHMOCTH. OO 9TOMy noBOAy 
CM. [22], [23], KpoMe Toro AOKJiaAHHK, ycoBepmeHCTBOBaB ajiropH(j)M BopoHoro H, 
nOTpaTHB OKOJIO AByX JieT BbIHHCJIHTeJIbHOH paÔOTbl, HameJI 60 THnOB npHMHTHBHblX 
nHTHMepHbix napajijieJio9ApoB, HO ocTaJicn AajieK, I O K yBHAHM H3 AaJibHeftinero, 
OT 3aBepiueHHH paßoTbi. Bce 9TO 3acTaBHjio wcKaTb HOBbie n y r a nccjieAOBanHH «-
MepHbix napajiJiejio9ApOB. HHTepecHbin nyTb 6HJ I npeAJionceH E . n . BapaHOBCKHM 
B paßoTax [24] B HHX HCCJieAyioTcn ycJioBHH HeoßxoAHMbie AJIH Toro, HToßbi AaHHbift 
CHMimeKC pemeTKH 6biJi L-CHMnjieKcoM. Ha 9TOH ocHOBe HM noBTOpeH BHBOA 4-
MepHbix npHMHTHBHbix napajiJieJio9ApOB H HccJieAOBaHbi B03MO>KHbie oß^eMbi 5-
MepHbix L-cHMnJieKCOB. 

CoBceM HeAaBHO aBTop npeAJio>KHJi [25] KJiaccHcfwijHpoBaTb pemeTKH He no 
a(J)(})HHHOH cTpyKType L-pa3ßHeHHfl(£-THnbi), a no a(jxj)HHHOH CTpyKType oAHOMep-
HblX OCTOBOB L-pa3ÔHeHHH (C-THnbl). AjirOpH(J)M TaKOH KJiaCCH^HKaUiHH AOBOJIbHO 
npocT H ero npHMeHeHHe noKa3ajio [25], HTO npH n = 5 HMeeTCH pOBHO 76 C-
THnoB. CoBMecTHan paßoTa AOKJiaAHHKa H E . n . BapaHOBCKoro [26] nocBHineHa 
pa3AejieHHio C-ranoB Ha L - r a n u , B nacTHOCTH ßbiJio ycTaHOBJieHo, HTO npH n = 5 
HMeeTCH poBHo 221 THn BopoHoro. TaKoe HeoKHAaHHo ßojibiuoe HHCJIO L-ranoB 
npH n = 5 (npoTHB Tpex AJIH n «= 4) 3anyTaHH0CTb B3aHMHoro pacnojio>KeHHH 
cooTBeTCTByiomnx HM oßjiacTeft B KOHyce K H noBJieKJiH 3a coßon yKa3aHHbie 
paHee TpyAHocTH B npHMeHeHHH ajiropH(J)Ma BopoHoro. 

4° . PemeTHaTbie ynaKOBKH (paBHbix iiiapoB) B npocTpaHCTBe En. 3Aecb 
HaM B nepByio onepeAb xoTejiocb 6bi oßparaTb BHHMaHHe Ha npeAJioKeHHbift B. A. 
BeHKOBbIM BapHaHT TeopHH BopOHOrO, CBH3aHHbIH C nOJIH9ApOM II(ri) (CM. [27], [7], 
[8], [28]), 9TOT BapHaHT AeJiaeT BCIO TeopHio ropa3AO ßojiee HarJiHAHoft. C Apyrofl 
CTOpoHbi, BBeAeHHbiH B paccMOTpeHHe aBTOpoM [29], [30] nojiH9Ap M(m) no3BOJiHJi 
co3AaTb oßiuyio cxeMy pjin pemeHHH 9KCTpeMajibHbix 3aAan reoMeTpHH riK4>. 
PaccMOTpeHHeM nojiH9Apa M(l) yAajiocb noi<a3aTb, HTO He TOJibKO Bce npeAeJibHbie, 
HO H Bce coBepinenHbie ^opMbi naxoAHTcn cpeAH peßepHbix $opM oßjiacTH npHBe­
AeHHH MHHKOBCKOrO, T.e., HTO KJiaCC (})OpM npeAJio>KeHHbiH MHHKOBCKHM AJIH 

pemeHHH 3aAaHH OTbici<aHHH Bcex npeAeJibHbix (J)opM CTporo BKJiionaeT B ceßn 
KJiacc $opM, npeAJio>KeHHbiH AJIH Tex M<e ußjievi BopoHbiM [30]. 

Mbi He ßyAeM ocTaHaBJiHBaTbCH Ha MHornx H HHTepecHbix paßoTax nocBnmeHHbix 
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pa3biCKaHHio OTAejibHbix coBepmeHHbix (j)opM, CBH3H TeopHH ynaKOBOK c Teopneft 
HH^OpMaUHH H T.A«? TaK KaK 9TH BOnpOCbl AOBOJIbHO AaJieKH OT AOKJiaAHHKa. 
OTMeTHM TOJibKO, noBHAHMOMy, Majio H3BecTHbie paßoTbi H.K. HrHaTbeBa [31], a 
TaKHce 3aMenaTejibHyio paßoTy Jlnna H CjioHa [32]. HaKOHeu, oßpaTHM BHHMaHHe 
Ha yAHBHTejibHbiH pe3yjibTaT C M . CnAejibHHKOBa [33]. 

5° . PemeTHaTbie noKpbiTun (paBHWMH mapaMH) npocTpaHCTBa En. nocjie 
nojiHoro pemeHHH [34]—[38] 3aAann o noKpbiTHHX AJIH n = 4 KOTopoe AOKJiaAbi-
Bajiocb Ha KoHrpecce 1966 roAa, a TaK>Ke nocjie aciiMnTOTHHecKHX oijeHOK 
PoA>Kepca[3] HanßojibmHM coßbiraeM B 9TOH oßjiacra HBHJiacb TeopeMa Bapnca H 
^HKcoHa [39] o TOM, HTO B Ka>KAOM L-rane w-MepHbix pemeTOK ecTbHe ßojiee OAHO-
ro jioicajibHoro MHHHMyMa njiOTHOCTn noKpbiTHH. TeopeMa 9Ta nojiynnjia npocToe 
reoMeTpHHecKoe AOKa3aTejibCTBo [40] H ecTecTBeHHo Bomjia B oßmyio cxeMy 
pemeHHH 9KCTpeMajibHbix 3aAan reoMeTpHH nK<î> [30]. 

HaKOHei;, B caMoe nocjieAHee BpeMH AOKJiaAHHKy COBMCCTHO C E. n . BapaHOBCKHM 
yAajiocb Ha ocHOBe pe3yjibTaTOB oß L-ranax npn n = 5 noKa3aTb, HTO Hanjiynman 
nJioTHocTb pemeTHaToro noKpbiTHH npn n = 5 paBHa 

A_7T2-[35/72p/2.^/-6" = -yj-rc2-0, 403 . . . . 

6°. Bonpoc 0 6 w-iwepHOfl pemeTKe, Aaiomeö MHHHMajibHyio £~4)yHKHHK) 
3niJUTeflHa Ç,(s\f) npn AaHHOM s > n/2 ( s a t a n a Coöojießa-PaHKHHa). HanoMHHM, 
HTO 

tts\f) = as\n = z-±r=zjT> 

3Aecb nepe3 r oßo3HaneHO paccTOHHne OT Hanajia KoopAHHaT AO TOHKH pemeTKH, 
cyMMHpoßaHHe pacnpocTpaHeHo Ha Bce TOHKH pemeTKH T7, KpoMe HanaJia KoopAHHaT, 
T.e. BO BTOpOH cyMMe Ha Bce ijejioHHCJieHHbie CHCTeMbi (xi9 x29 •••, x„) KpoMe 
CHCTeMbi(0, 0, •-., 0). 

Bce paßoTbi, nocBHineHHbie 9TOH 3aAane, H3BecTHbie AOKJiaAHHKy OTpaaceHbi B 
CTaTbe [41], B 9TOH CTaTbe, B nacTHOCTH noKa3aHo, HTO npn n ^ 8 H Ka>KAOM 
AOCTaTOHHO ßojibmoM s MHHHMajibHoe 3HaneHHe Ç-(|)yHKUHH Ç>($\r) AocTHraeTCH Ha 
pemeTKe, Aaiomeft AJIH AaHHoro n Hanßojiee njioTHyio pemeTHaTyio ynaKOBKy 
paBHbix mapoB, AaHbi TaK>Ke npHMepbi npeAejibHbix (J)opM, He Aaiomnx npH 
ßojibmHx s jioKajibHoro MHHHMyMa 3aAaHH. 

7° . MO>KHO Ha3BaTb ernte AOCTaTOHHO MHoro 3aAan, oßiDeAHHHeMbix reoMeTpneft 
nK^>, HanpHMep, 3aAany o HHCJie npeACTaBJieHHH MHHHMyMa n K O [42], 3aAany o 
AeTepMHHaHTe H3 npeACTaBJieHHH MHHHMyMa TiK<i> [43]—[46], 3aAany oß (r9 R) 
nJiOTHocTH (pemeTHaToft) paBHOMepuo AHCKpeTHOH CHCTCMH [29], [47], 3aAany oß 
oueHKe paAHyca ijHJiHHApa BJio>KHMoro BO BCHKyio pemeTnaTyio ynaKOBKy paBHbix 
MepHbix mapOB [48] H T.A.? HO ocTaHaBJiHBaTbcn Ha pe3yjibTaTax B 9THX 3aAanax 
AOKJiaAHHK y>Ke He HMeeT BO3MO>KHOCTH. 
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Topological Classification of Simple Homotopy Equivalences 

T. A. Chapman* 

1. Introduction. We use Q to denote the Hilbert cube, which is the countable in­
finite product of closed intervals, and we use definitions and results from [6] con­
cerning the PL category and from [5] concerning simple homotopy theory. The 
following is the main result of [4]. 

CLASSIFICATION THEOREM. Iff:X ->Yisa homotopy equivalence (h. e.) of compact 
PL spaces, then f is a simple homotopy equivalence (s.h.e,) iff f x id: X x Q -> 
Y x Q is homotopic to a homeomorphism. 

This implies that every TOP homeomorphism of compact PL spaces is a s.h.e., 
thus giving an affirmative answer to the problem of the topological invariance of 
Whitehead torsion [9], 

The proof of the classification theorem relies heavily upon the handle straight­
ening theorem of [2], which uses results from ß-manifold theory along with a 
version of the main diagram of [8]. The purpose of this article is to outline a proof 
of the handle straightening theorem and then show how it implies the classifi­
cation theorem. This will not only collect together some results which are scattered 
throughout several papers, but will also serve as a quick introduction to the 
techniques of g-manifold theory. 

Because of limitations of space we will not have an opporutnity to discuss the 
important triangulation theorem of [3]. We have chosen to analyze the classifica­
tion theorem because of its wider appeal. 

2. Preliminaries. Rn denotes Euclidean w-space and for any r > 0 let 5* «= 
[-r, r]n c Ä». The boundary and interior of B» are dB? and B% respectively. Bd 

*The author is an A. P. Sloan Fellow and is supported in part by NSF grant GP-28374. 
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and Int will be used to denote topological boundary and interior. We use the 
representation g = [-1, 1] x [ - 1 , 1] x ••• and Ik = [ - 1 , 1]*, thus giving a 
factorization g = P x Qk, for all k ^ 0, All PL spaces are locally compact, 
separable, metric polyhedra. 

In A—F below we state six technical results which are needed in the proof of the 
handle straightening theorem. The results A—E are a part of g-manifold theory 
and their proofs require no apparatus from algebraic topology. In E we use infinite 
simple homotopy equivalences in the sense of [10] ; recall that proper means that 
pre-images of compacta are compact. F uses no g-manifold theory but instead 
relies on PL topology and Wall's obstruction to finiteness of homotopy types, 
along with the computation KQZ[TCIS"] = 0. 

A [1]. Let M be a Q-manifold, A cz M be a compactum, and let h: A-* M be an 
embedding such that h is homotopic (m) to the inclusion A cz M. If A and h(A) are 
collared in M9 then h can be extended to a homeomorphism h:M -> M such that 
h c- id. (By a Q-manifoldwe mean a separable metric manifold modeled on g.) 

B [1]. If M is a compact contractible Q-manifold, then M is homeomorphic to Q. 
C [1]. g is homeomorphic to its own cone. 
D [2]. If M is a Q-manifoldt X is a PL space, and a: M ->• X x Q is an immersion, 

then M is triangulated. (An immersion is a local open embedding and a triangulated 
g-manifòld is one which is homeomorphic to some PL space times g. It turns out 
that all g-manifolds are triangulated, but we do not use that result here.) 

REMARK. D is not exactly like the corresponding statement in [2], but it can be 
similarly proved. 

E [11]. If X and Y are PL spaces and f: X -• Y is a s.h.e., then f x id : X x Q -> 
Y x Q is proper homotopic to a homeomorphism. 

F [2], Let X be a PL space and let h: Sn x Q x R ->• X x Q be an open embed­
ding, for n ^ 1. Then there exist a k ^ 0 and a compact PL subspace S of X x P 
such that 

(1) S x Qk c h(Sn x Q x R) and S x Qk c+ h(Sn x Q x R) is a h. e., 
(2) S is PL bicollared, 
(3) S x Qk separates h(Sn x Q x [1, oo)) from h(Sn x Q ( - oo, - 1]). 

3. Handle straightening. We are now ready to prove the key ingredient in the 
proof of the classification theorem. 

HANDLE STRAIGHTENING THEOREM. Let X be a PL space and let lr. Rn x Q -» 

X X Q be an open embedding, for n ^ 1. Then there exist a k ^ 0 and a 
homeomorphism g: X x Q -• X x Q such that g is supported on h(B% x Q) and 
gh(Bl x Q) = Y x Qh where Y is a compact PL subspace of X x P such that 
Bd Y is PL bicollared. 

PROOF. We will work our way through the accompanying diagram of spaces 
and maps. / 5 will be a homeomorphism such that Ao/5o/ri extends via the identity 
to our requiredg-. For notation let e: R -> S1 be the covering projection defined by 
e(x) = exp (KìX/4), Tn = S1 x • • • x S1 be the «-torus, Tg be the punctured torus, 
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and lei a:Tg -> R" be an immersion such that a°en\B%:B$ -> 5g is the identity 
[7, p.48], where e" :Rn -> Tn is the product covering projection. 

5 g x ß -

I* 

Mx Q 

Ä" X g 
e»Xid 

r« x g 
it 

n x Q 
it 

AT 

It 

->W x Ô 
/9Xid 

-iÄ» X g 

e"Xid 

-*!T» x g 

It 
rg x g Ä #» x g -*-• J x ß 

It 
N 

I. Construction of Y. Consider the restriction of h to (B% - 5?) x g, which may 
be viewed as an open embedding of Sn~l x Q x R into X x Q. We can find 
a i ^ O and a compact PL subspace S of X x P such that S x Qk splits 
A((J?2W - 5?) x g) as in F. Then S bounds a compact contractible PL subspace Y 
of I x /* such that h(Bl x Q) c 7 x Qk c A(£g x g), 

II. Construction offx. Put Af = (Tg - é?w(iï)) x g and N = Tg x g - Int W, 
with 

W~{(ax id)|*"0Bg) x ß]-ioA-i (Y x g). 

Then M is clearly triangulated and h°(a x id) restricts to give an immersion of N 
into (X x P — Int Y) x Qk. It follows from D that N is also triangulated. Let 
Z = (Tg - e«(B$j) x g and let/i: M -• Nbt a proper h.e. which makes the fol­
lowing diagram proper homotopy commute : 

N-
It 

• M 
it 

To use E all we need to do is note that any proper h.e. of a PL space to 
Tg - en(Bf) is a s.h.e. This fact follows from [10] because the appropriate 
obstruction group «̂ (Tg - en(Bx

n)) vanishes. Involved in the proof of the vanishing 
of y(rg - en(êf)) are Wall's obstruction theory for finiteness of homotopy types 
along with KQZIKIS»*-1] = 0, and compact Whitehead theory along with the 
computations WhfoS«-1) = 0, Wh(Z*Z) = 0, and Wh(Z ® ••• 0 Z) = 0. Thus 
E implies that/^ is proper homotopic to a homeomorphism/i. Using A and E we 
can require that/x take en(dBf) x Q onto Bd W. 

III. Construction off%. en(Bf) x g is a Hilbert cube and it follows from E that 
Wis also a Hilbert cube. Then using A we can extend/\ to a homeomorphism/2. 

IV. Construction of f3. Write Tg = T» - {/0} and let D« be an «-ball in 
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Tn containing t0 in its interior such that Dn (] en(B%) = 0 . The closure of 
f2((D

n - tQ) x g) is a compact contractible g-manifold and by B it must be 
homeomorphic to g. Then using A we can find a homeomorphism/3: Tn x Q -» 
T» x Q which agrees with/2 on (Tn — D») x Q. Note tha t / 3 ~ id. 

V. Construction off3. We just let /3 : Rn x Q -> Rn x Q be the homeomorphism 
which covers/3 and which also satisfies f$(B\ x g) = h~l(Y x Qk). Note t h a t / 3 

is bounded, i.e., {\\xi — x2\\ |/3(^i, <7i) — (x2i q2)} is bounded above. This follows 
from the fact that /3 ~ id. 

VI. Construction offa. Choose /, 1 < / < 2, so that /3(j?; x Q) a Bt
n x g . 

Let ß:B2
n -¥ Rn be a radially-defined homeomorphism which is the identity on Bf. 

Then let/4 be defined to make the appropriate rectangle commute. 
VII. Construction off5. Let P be the disjoint union of B\ x Q and dB % with the 

identification topology determined by p : B% x g -> P9 where p = id on È% x Q 
and/?(x, q) = x9 for all (x9 q) e dB% x g. Regarding J5g x g as a subspace of P it 
follows from the boundedness of / 3 that / 4 extends to a homeomorphism f±\ 
P -> P which is the identity on 3i?g. Using C we can find a homeomorphism T: 
B\x Q-+P which is the identity on Bn

t x g . Then le t / 5 : B\ x g -> B\ x Q be 
defined by / 5 = 7~l° f±°T. To ge t / 5 = id on 'dB\ x g, and thereby arrive at our 
required / 5 , we just apply A to the collared compactum (3i?g x g) U (dB? x g) 
in the manifold (B% - Èf) x Q. 

4. The classification theorem. The "only if" part is given in E, so let X9 Y be com­
pact PL spaces and teif:X -» 7be a h.e. such tha t / x id is homotopic to a homeo­
morphism h: X x Q -> Y x Q. We want to prove that / i s a s.h.e. Without loss of 
generality assume Xto be connected. We argue inductively on dim Zand note that 
the assertion is trivially true for dim X = 0, since in that case both X and Y are 
contractible spaces. 

Passing to the inductive step assume the result to be true in all cases in which 
dim X ^ n — 1 and then consider a specific case in which dim X = n. Without 
loss of generality assume X = Xn~l \J (p(Rn)9 where Xn~xis the (n — l)-skeleton of 
Zand <p: Rn -> X is a PL open embedding such that <p(Rn) f] Xn~l = 0 . Using 
the handle straightening theorem there exist a ^ O and a homeomorphism g: 
Y x Q -> Y x g such that g°%(# ï ) x g ) = Z x Qk9 where Z c Y x P is a 
compact PL subspace such that Bd Z is PL bicollared. Note that g~ id because 
it is supported on h(<p(B%) x g). 

Write X = Xx U ̂ 2> where Jfi = <p(B$9 X2 = X - Int Z b and X0 = Xi fl *2Î 
also write y x /* = Yi U F* where 7i = Z, 72 = Y x P - Int Z, and r 0 = 
Yì fi 72. Then g°A(Z; x g) = 7, x g*, for each i. Let rf->7xP and a{\ 
Xi -> 7,- be defined to make the following rectangles commute: 

XxQ-^UYxQ X{x Q-^Yi x Qk 

Xo proj Xo proj 

X >YxP Xi > Yi 
ct l at * 
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(Define x o(x) *= (x9(09 0, •••))•) Then a\ is a s.h.e. becauseX\ is contractible and ao 
is a s.h.e. because Wh (%\Sn^x) = 0, To see that a2 is a s.h.e, we use the inductive 
hypothesis along with E and the fact that Xn"1 q X% is a s.h.e, By the sum 
theorem for s.h.e.'s a must also be a s,h,e, To see that/is a s.h.e, we just use the 
homotopy commuting diagram 

X-^Yx P 

proj 

Y 

along with the fact that proj ; Y x P ~> 7 is a s.h.e, 
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Multidimensional Plateau Problem on Riemannian Manifolds. 
On the Problem of the Algorithmical Recognizability 

of the Standard Three-Dimensional Sphere 

A. T. Fomenko 

1. The author's results concerning the multidimensional Plateau problem are 
stated in the first part of this report; the second part is devoted to the common 
work of I. A. Volodin, V. E. Kuznetzov, A. T. Fomenko on the problem of sphere 
recognition. 

A soap-film XQ which spans a fixed contour A in the three-dimensional Euclidean 
space R3 is a local minimal film. And it is the mathematical proof of the existence 
(and of the regularity almost everywhere) of such a film in more general situations 
which is the essence of the Plateau problem. 

This problem was solved in dimension two by Douglas, Rado, Courant (see 
[1]); namely, there is a mapping/0: D2 -> R3 (where D2 is a disk) ;/0(9Z>2) = A9 

minimizing the two-dimensional Dirichlet functional. A minimal film X0 = fo(D2) 
may not be homeomorphic to a disk D2

9 but it allows a parametrization by the disk 
D2. 

The multidimensional Plateau problem was outstanding in all dimensions greater 
than two ; Let A c Mn be a closed smooth (k — l)-dimensional submanifold in a 
Riemannian manifold Mn and let {X} be the class of all such films X9 having a 
boundary A9 each having a continuous parametrization; that is X = f(W)9 where 
H îs some ̂ -dimensional smooth manifold with a boundary dW = A, and a map­
ping/: W -» Mn is continuous and is a homeomorphism between A and dW; the 
question is ; Does there exist a film XQ in Mn which is a minimal film in a reasonable 
sense? 

If we reject the classical notion of the manifold-film Wwith the boundary dW £ 
A9 then the Plateau problem may be formulated in terms of the usual homology 

© 1975, Canadian Mathematical Congress 

515 



516 A. T. FOMENKO 

theory. The problem was solved in this way by Federer, Almgren, Fleming (see 
[2], [3]), Reifenberg, Morrey (see [1]). 

We consider and solve the Plateau problem in the class of the films with a para­
metric representation X — f(W). 

Some parts of the film A'may contract during the process of minimization of the 
volume (measure) on the subcomplexes of lesser dimensions, and these subcom­
plexes may not be removed because the remainder of the film (of a maximal dimen­
sion) may not have a continuous parametrization with a given boundary. (See 
Figure 1.) It is evident that the two-dimensional Plateau problem with a parametric 
representation does not meet this obstacle. (See Figure 2.) The parametrized 

FIGURE 1 FIGURE 2 

Plateau problem may be stated in terms of the singular bordism theory : It is re­
quired to find a minimal film XQ which annihilates (by embedding A -• XQ) a fixed 
bordism class a, where a = {A; 1A} is a class of the manifold A; \A is an identity 
mapping. Let 0(a) be the class of all such compacts X which annihilate a (the sing­
ular bordism theory may be transferred to the class of compacts by means of 
Cecil's process). Let the including manifold Mn be complete and %i(M) = %2(M) = 
0, where %{are the homotopic groups. Let 0(a) # 0 and let the embedding A-+ M 
be such that even at least one film Xe 0(a) has a finite Hausdorff measure Ak\ 
Ak(X) < oo ; the sequence of the following statements holds : 

THEOREM 1.1. (1) If {X}k is the class of all compacts X9 A <= X c Mn
9 such that 

Xe 0(a) and Ak(X) = dk = inf Ak(Y)9 where Ye 0(a), we assert that {X}kï 0 , 
dk > 0, and that each compact X E {X}k contains a uniquely defined k-dimensional, 
dimensionally-homogeneous (that is having the dimension k in each of its points) 
subset Sh c: X\A such that A U Sk is a compact in Mn; Sk contains a subset Zh9 
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where Ak(Zk) = 0 and Sk \Zk is a smooth global minimal k-dimensional submani'-
fold in Mn

9 dense everywhere in Sk; and Ak(Sk) = Ak(X) = dk > 0. 
(2) Further, if {X)k-\ is a class of all compacts X9 A c X c Mn, such that Xe 

0(a)9 Xe {X}k and Ak~\X\Sk) = dk^ *= inf Ak~KY\Sk)9 where Ye {X}k9 then we 
assert that {X}k^\ ^ 0 , and in the case when dk-\ > 0, each compact Xe {X}k^i 
contains a uniquely defined (k — 1)-dimensional, dimensionally-homogenous (that is 
having the dimension (k — I) in each of its points) subset Sk~l a X\A\Sk such that 
A U Sk U Sk~l is a compact in Mn ; Sk~l contains a subset Zk„h where Ak~l(Zk-i) = 0 
and Sk"l\Zk^i is a smooth global minimal (k - l)-dimensional submanifold in Mn

9 

dense everywhere in Sk~i; and Ak~l(Sk-1) = Ak~\X\A\Sk) = dk-X > 0. Ifdk^ = 0, 
then let Sk"1 = 0 . 

(3)"-, (4)"", (5)'", and so on, down over all dimensions. 

If we restrict ourselves to item (1) of Theorem 1.1 only, then we obtain the ex­
istence theorem of the minimal film XQ, which is minimal in its maximal dimension 
k(k = dim XQ); the description of the low dimensional zones (items (2), (3), (4),---) 
is additional information which is of a topological significance—namely, no 
zone of this kind Sa

9 a S k — 1, can be removed, because Sk has no parametric 
representation in the following case: Sa ^ 0 by some a ^ k — 1. Theorem 1.1 
is a very particular case of a general existence theorem of minimal films (see [4], 
[6]), proved for very wide classes of boundary conditions. 

It is shown in [4], [6] that the multidimensional Plateau problem is formulated 
most naturally in the classes of films which are defined by the requirement of the 
groups of extraordinary (co)homology theories. In our statement of the problem 
the set of all extraordinary (co)homology theories is exactly the set of all different 
types of the multidimensional Plateau problems. The existence theorem of a mini­
mal solution is proved in [4], [6] for all these classes. 

Let us demonstrate an example of the contravariant Plateau problem. Let £ be a 
stable nontrivial vector bundle on the compact Riemannian manifold Mn

9 let 0(f) 
be the class of all compacts X a Mn such that the restriction £ | x of the bundle £ 
over X is stable nontrivial. (See Figure 3.) Then there exists a compact XQ e 0(£) 
which is a globally minimal film (in all its dimensions) which is regular almost 
everywhere. The proof of the general existence theorem is really constructive; see 
examples below. 

Let e e Mn be a fixed point, Q(r) = exp(g(r)), where Q(r) c Te(Mu) is an 
open ball of the radius r. Let re be a maximal r such that Q(r) is diffeomorphic to 
Q(r). Let* e dQ(r) (r < re); then there exists a unique geodesic ï which connects 
the points e and x in Q(r). Let us consider a tangent vector t in Tx(M

n) and let 
/7*"1 be an arbitrary plane of dimension (k — 1), which is orthogonal to 
t (2 ^ k ^ n — 1). Let Bn(x9 e) be a ball of radius e with the point x as the centre 
and As = Bn(x9 e) {] expx(#*-1); let CA be a cone over AB with the point e as the 
vertex; this cone is constituted by all geodesies T9 which connect the point e with 
all the points of the ball A$. Let 

%k(e9 x9 if*-1) = «m {Ak[CA]/Ak-KAË)} \ 
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lk(e, r) = max ïk(e, x, T?*"1). 

where max is considered over all pairs (x, JI^"1) such that x e dQ(r). Further, let 

hk(r) = exp J l/£*(e, r) dr; 
0X*:) = a»-»»(O-lim[r*/»*(l)]; 

where a:Ä is the volume of the standard ball Bk(0, 1), and hk(re) = limr^r# hk(r). 

**o 

FIGURE 3 

THEOREM 1.2 (SEE [5]). Le£ XQ C MW 6e an arbitrary k-dimensional minimal com­
pact, which realizes an arbitrary nontrivial element (or a subgroup) a in H^k)(Mn)9 

where #(*} is a usual (co)homology theory, e e X§ is an arbitrary point on X0 and 
(J)k(P)9 P e X0i is the density function over XQ. Then Ak(XQ) ^ (/>k(e)-Qe(k) è Qj(k). 

If M — G/H is a homogeneous manifold, then Qe(k) = Q(k)9 that is, it does not 
depend on the point e. The universal function Qe(k) (which can be calculated quite 
easily) gives a general lower estimation of the volumes of all ^-dimensional (co)-
cycles in Mn. This estimation is nonimprovable in a general case, that is there exist 
important series of examples of (co)cyclès X09 for which we have Ak(X0) = Qe(k). 
From Theorem 1.2, there follows that (/)k(e) ^ Ak(XQ)/Qe(k) ; hence there ensues the 
solution of the Reifenberg problem (see [5]) on the structure of the singular points 
of minimal realizing films. If M = GjH9 then the function Q(k) may be calculated 
in an explicit way, which allows the description of all those minimal (co)cycles in 
HW(M) for which Ak(XQ) = Q(k). 

If M = GjH is a symmetric space, then all minimal compacts XQ for which 
Ak(Xo) — Qe(k)a,rGthG totally geodesic submanifolds of the range 1. For example, 
the standard filtration in the symmetric spaces of the range 1, the quaternion and 
complex projective spaces in the Grassmannian manifolds, are such submanifolds. 
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2. The following problem of the algorithmic topology is well known : Is there an 
algorithm which allows us to recognize the standard sphere Sn in the class of all 
manifolds? If« = 1,2, then the question has a trivial solution, Ifn ^ 5, then such 
an algorithm does not exist, which was proved by S. P. Novikov in 1962. The prob­
lem is quite vague if n = 4, An article (see [7]) has recently become available for 
n = 3 proving the algorithmic recognizability of the Heegaard diagrams of the 
three-dimensional sphere in some subclass of the Heegaard diagrams of manifolds; 
this subclass contains, in particular, all the diagrams of the genus two. This 
algorithm is, indeed, Haken's algorithm of the comparison of a knot with a 
trivial knot, and, hence, is not a real effective algorithm (having some numerical 
realization for example). 

The authors of the present work (I. A. Volodin, V. E, Kuznetzov, A. T. Fomen­
ko), which will be published in Uspehi Mat. Nauk 5 (1974), are absolutely con­
vinced that in the three-dimensional topology there exist not only the algorithms of 
the Haken type, but also real effective simple and elegant algorithms ; for example 
in the problem of the sphere-recognition. In our work we have found serious rea­
sons to assert our observation that the existence of a necessary and sufficient topo­
logical invariant of the standard three-dimensional sphere, which admits an ex­
ceedingly simple algorithmic description in the class of all Heegaard diagrams, is 
possible. We understand necessity and sufficiency in the sense that some (co)-
representation (that is, a code) of the manifold is a (co)representation of the sphere 
if and only if our invariant of this (co)representation is trivial. The sufficiency is 
proved by the authors. The necessity has not been proved yet. But the authors did 
prove the necessity for some infinite classes of (co)representations of the sphere. In 
other cases the necessity of this invariant is confirmed by the great computing ex­
periments which were carried on by the authors making use of E. C. M. B3CM-6. 
The authors hope to obtain the complete proof of necessity. 

Let us consider the Riemannian surface Vn of the genus n9 n ^ 1, and let a sys­
tem (a) of noncrossing and self-noncrossing smooth circles Su •••, Sn such that we 
obtain a two-dimensional manifold, which is diffeomorphic to the sphere S2 with 
2n holes, after cutting Vn in accordance with system (cc)9 be fixed on Vn. Let us 
consider a pair of systems : (a\9 a2) on Vn9 the circles of the systems ct\ and a2 being 
thought of as intersecting transversally only. We will call the circles Si e (ax) as 
having index 1 ; and circles Sj e (a2) as having index 2. We will call the two pairs 
(a'i, a2) and (a{9 ai) equivalent, if there exists a diffeomorphism Ï: Vn -» Vn such 
that 7(av) = ai9 i = 1, 2. 

DEFINITION 2.1, We call a class of equivalent pairs on Vn a net (ß). 
A cobordism of a two-dimensional sphere (and, consequently, a closed three-

dimensional manifold M(ß)) corresponds uniquely to each net (ß). For each closed 
smooth three-dimensional manifold M there exists a (co)representation M = M(ß) 
(for some n). The nets (ß) are the analogues of the Heegaard diagrams. There exists 
an algorithm which enumerates the set K of all oriented nets (the orientation of the 
circles and of the nets is a list of (co)representations of all manifolds). The sphere 
recognition problem is: How to recognize in an algorithmic way whether the 



520 A. T. FOMENKO 

manifold M(ß) of an arbitrary net (ß) is diffeomorphic to the sphere S31 
The circles {St-; Sj}9 1 ^ /,,/ S «> divide Vn into a system of regions Uß. 
DEFINITION 2.2. The region Ue Uß is called a marked one if among the edges 

forming its boundary there are two edges <pÌ9 (p2, belonging to one circle and having 
a coinciding orientation with any boundary circuit. (See Figure 4.) We shall call 
the wave v the segment with the marked region which connects two interior points 
Ah A2 of the edges <pÌ9 <p2ì respectively. 

FIGURE 4 

Let us consider the standard system (a{) of the parallels and (cc2) of the meridians 
on Vn. (See Figure 5.) It is clear that (ß) = (au a2) is a net and that M(ß) is diffeo-

FIGURE 5 

morphic to S3. Let us denote this standard spherical net as (ß)0. We will construct 
some algorithm (A), defined on K9 and processing this list into itself. Let us give 
some oriented net (/3), which is denoted by (ß{) on the INPUT of the algorithm (A); 
then we look over the regions Uß and search for the marked region. If such a region 
is absent, then the net (ß{) is given to the OUTPUT of the algorithm (A). If the 
marked region has been found, then we choose the edges <pÌ9 <p2, after which we 
connect them by the wave v and proceed to the next step. The net (ß) may have 
several waves; we choose an arbitrary wave. Let the edges <pÌ9 <p2 belong to the 
circle S\ of index 1, for example (if <pÌ9 <p2 e Sj, then all the following considerations 
are similar). Let us construct an abstract graph W(a\) using the net (ß{)9 where 
Si e (a{). We cut Vn along all the circles of index 1 ; then we obtain the sphere S2 

with 2/? holes '.Xf1, •••, X+l\Xì1
9 •••, X~x. The circles of index 2 (after this operation) 

either remain unchanged or tear to pieces—and become a collection of segments 
connecting (in some order) the holes on the sphere S2. Let us identify these holes 
with the vertices XfV*-> X+1; X^l

9...9 X~x of the graph and the segments of the 
circles with the edges of this graph. We obtain some graph W(a\) which is flatly 
realized on S2 (it may contain circles without vertices). The circle S{ (with the 
edges <pl9 p2) generates two vertices: Xf1, Xj1. The wave v turns into a segment 
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% on the sphere S2 which goes from the vertex X\ (where e = ± 1 depending on the 
orientation of Si) and returns again to this vertex ; T does not intersect the graph 
W(a\) in its other points, The graph W(a{) disintegrates into two nonintersecting 
components: gx and g2, after removing the vertex Xf from the graph W(a{). (See 
Figure 6.) The vertex Xj* belongs either to g\ or to gz. Let XjB e g2> for example, 

FIGURE 6 

The points Ay9 A2 on V„ (see Definition 2.2) break the circle Sf- into two segments 
Tu T2. The edges of the graph W(a{) which are incident with Xf ana belong to the 
component g\ define uniquely one of two segments T{ (i p= 1, 2) with which they 
intersect, for example T\. The segment T\ together with the segment T bounds a 
region not containing the vertex Xj* and containing the subgraph gi on the sphere 
with In holes. Let us replace the segment T\ of the circle Si in the net (ß) by the 
segment v; then St will be replaced by the circle §i consisting of the segments v and 
T2. The other circles of the net (ß) remain unchanged. 

THEOREM 2.1. The above operation of the stripping of the net (ß) *= (ß{) using the 
wave v generates some new net (ß2). 

Each step of this algorithm (A) (provided the wave exists) strictly decreases the 
number of the knots of the net (that is, the number of the intersections of the cir­
cles); consequently, if N is the number of the knots of the initial net, the algorithm 
(A) stops its work after the number s of the steps, where s ^ N9 and we obtain 
some net with no wave at the OUTPUT. 

DEFINITION 2.3. The net (ß) we call spherical if M(ß) is diffeomorphic to S3. 
Hypothesis X. The net (ß) is spherical if and only if it is presented to the INPUT 

of the algorithm (A), a standard spherical net (ß)Q is obtained at the OUTPUT. 
The sufficiency of this statement follows from Theorem 2.2, 

THEOREM 2.2 The algorithm (A) does not change the topological type of the mani­
fold; that is, M(ß) and M(A(ß)) are diffeomorphic. 

The necessity of hypothesis X has not been proved yet. The hypothesis X amounts 
to the following statement: 

Hypothesis X1. Every spherical net, different from (ß\9 contains at least one 
wave. 

Let us introduce the notion of the displacement to describe the cases when the 
truth of this hypothesis is proved by the authors. Let us consider Si9 Sj e (a{)9 
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i *£ j ; then let us choose two points on each of these circles: y{ e St
m

9 y2 e Sj and 
connect yx with y2 a smooth segment s on Vn9 intersecting with (a{) in the points 
yi9 y2 only. Let us replace (Si9 Sj) by (Si9 Sj)9 where St- = SisS^s"1; Sj = Sj; add 
to Si the doubled segment s and one copy of Sj (after it has been doubled). (See 
Figure 7.) We call these operations (with the operations of birth and destruction of 
the trivial loops otpp~l type) operations of index 1. The operations of index 2 are 
defined in a similar way. 

(«.) (°2) 

FIGURE 7 

THEOREM 2.3. The net (ß) is spherical if and only if it may be obtained from the net 
(/3)o by some sequence of operations of indices 1 and 2. 

Let us denote the set of all the spherical nets as R ; then Ri cz R is a subset of the 
nets which are obtained from (ß)0 by the operations of index 1. The set R2 c R is 
defined similarly. 

THEOREM 2.4. If(ß) e Rx [j R2 and(ß) ^ (/3)0, then (ß) contains one wave at least. 

Let (j8) e R and p(ß) be the number of the knots (points of intersection) in the 
net (ß). We shall call the set of all nets (ß) in R with/?(/3) ^ / as the ball of the ra­
dius /. The authors made a programme for E. C. M. B3CM-6 which verified the 
hypothesis X 1 on the set JR. Starting from the net (ß)Q e R the programme chanced 
to form the net (ß) e R making use of the operations of both indices (see Theorem 
2.3) and realized a random walk along a random trajectory in a ball of radius 16000 
in the space R. The genus n of the surface was also defined by chance from the in­
terval 2 g n g 32. If a net (ß) rises in the random walk process on the sphere 
p(ß) = 16000, the programme started a monotonie stripping by means of waves 
of the net obtained to the net (/3)0; that is, the programme employed the algorithm 
(A); and then again started forming a new random trajectory, and so on. (See 
Figure 8.) 

PROPOSITION 2.1. Each of (~106) the spherical nets (ß) which were formed in the 
process of this computational experiment by the random walk on the ball of the radius 
16000 in the space R contains at least one wave (if(ß) ^ (ß)o). 

The computational experiment confirms the truth of the hypothesis X1. If never­
theless instances of spherical nets with no waves do exist, then our experiment 
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FIGURE 8 

shows that these fluctuations will be very rare. The authors hope that there are 
enough grounds to believe that the problem of the sphere recognition algorithmi-
cally is solved positively by using the above constructed effective algorithm (A). 
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Global and Local Characteristic Class Theory in 
Topological Transformation Groups 

Wu-Yi Hsiang* 

1. Cohomology theory of topological transformation groups in the setting of global 
characteristic class. Historically, applications of algebraic topology to the study of 
transformation groups were originated in the work of L. E. J. Brouwer on periodic 
transformations and a little later the beautiful fixed point theorem of P. A. Smith 
for prime periodic maps on homology spheres. In comparison of the fixed point 
theorem of Smith with its predecessors, the fixed point theorems of Brouwer and 
Lefschetz, one finds that it is possible, at least for the case of homology spheres, to 
upgrade the conclusion of mere existence (or nonexistence) to the actual deter­
mination of the cohomology type of the fixed point set, if the map is assumed to be 
prime periodic. This pioneer result of Smith clearly suggests a fruitful general 
direction of studying transformation groups in the framework of algebraic 
topology. A far-reaching generalization of the Smith fixed point theorem can be 
formulated and proved in the setting of the following equivariant cohomology 
introduced by A. Borei [2] : 

Let G be a compact Lie group and X be a given G-space. Then the equivariant 
cohomology of X9 denoted by H%(X9 k)9 is defined to be the ordinary cohomology 
of the total space XG of the universal bundle X -• XG -+ BG with X as the typical 
fibre. Intuitively and heuristically, the complexity of the G-space X will be reflected 
in the complexity of the associated universal bundle; and the usual characteristic 
class theory (of vector bundles) demonstrates that cohomology theory can then be 
used to detect such complexity. Technically, the above equivariant cohomology 
naturally brings together the modern theory of fibre bundles, spectral sequences 
and sheaves in a nice convienent way. Hence, it not only possesses all convenient 
formal properties that one may expect, but also is effectively computable. Alge-
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bmicEL]\y9H%(X9 k) is an algebra over H%(pt9 k) = H*(BG9k) which has rich ideal 
theoretical structure. An ideal situation would be that such an algebraic structure 
can be neatly correlated to the cohomological aspect of the orbit structure of X. 
One of the most profound as well as fascinating facts in the cohomology theory of 
transformation groups is the sharp contrast of behaviors between elementary 
abelian groups, i.e., torus Tr and /?-torus Zr

p, and the rest of compact Lie groups, 
namely, there exists a definitive correlation between the algebraic structure of 
H%(X, k) and the cohomological orbit structure of X if G is an elementary abelian 
group, but otherwise, there are wild counterexamples to show the nonexistence 
of any such correlation for all other compact Lie groups. 

(A) Cohomological splitting theorems for actions of elementary p-groups. In this 
subsection, we shall always assume that G is an elementary /7-group (i.e., Zr

p or 
Tr if/? = 0) and the coefficient field k is Zp or Q ifp = 0. Recall that H*(BG9 k) s 
k[ti9m"> fr\ degfo) = 2 (resp. 1) when G = Tr (resp. Zg) and k = Q (resp. Z2); 
and H*(BG9 k) s k[tÌ9 ..., tr] ® A fa, •••, vr], ßpv{ = ti9 deg(/,)= 2 when G = Zr

p 

and k = Zp for odd prime. Let R be the polynomial part of H*(BG) and R0 be the 
quotient field of R, i.e., RQ = k(th •-., tr). Then H%(X)®H^pt) RQ carries the tor­
sion-free part of H%(X)9 which is an i?0-algebra with mod 2 gradation if p ^ 2. 
The following fundamental fixed point theorem [5] relates the torsion-free part of 
H%(X) to the cohomology of the fixed point set F. 

THEOREM 1. Suppose H% (X) ®HKpt) ^o 1S given by the following presentation: 

I = Ker (p) ç A 

= RQ[XU ...,*,] ®Ä0 A [vi,..., v j -^ H%(X) ®H*G{pt)R^ 

Then 
(i) the radical of I, y7 , decomposes into the intersection of s maximal ideals 

Mj = M(aj) whose varieties are respectively the rational points ay= (aj\9,.., a^eRf^, 
(ii) there is a 1-1 correspondence between {a,} and the connected components of 

the fixed point set {Fi} such that the restriction homomorphism of qj e F* ç Xmaps 
Xi e H%(X) to aß e R, 

(iii) H*(FJ; k) ®k RQ £ A/Ij where Ij = IMi [\ A and IMj is the localization of 
I at Mj9 

( i v ) / = / 1 fi - [\Is = h h ' I s . 

The above general theorem is valid for all conceivable finite-dimensional spaces 
and it provides the key step both in the formulation and in the proof of various 
fixed point theorems of Smith type. Let us mention a few of its simplest corollaries 
and refer to [7] for its many specific applications. 

COROLLARY 1. The fixed point set F is nonempty if and only ifH*(BG) • H%(X) 
is injective, i.e., the unit 1 e H%(X) is torsion-free. 

COROLLARY 2. For each connected component F>9 there exists a generator system 
of the k-algebra H*(FJ9 k) with at most I even generators and at most hi odd genera­
tors (cf. Theorem 1). 
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COROLLARY 3. Suppose G is a torus and F is nonempty. If TU2ì(X) ® Q = 0 for all 
i > 0, then F must be connected. 

COROLLARY 4. Suppose H*(X) e k[x0]/(x^l)9 deg(x0) = 2,p ^ 2. Then 

H%(X'9k) ^ H%(pt9k)[x\l(f(x))9 

where f(x) = (x - a{)m ... (x - as)
ftiiand correspondingly H*(Ff) = k[xj]/(xJJ), 

Roughly speaking, F carries the torsion-free part of H%(X) and (X — F) carries 
the torsion part of H%(X). Observe that subgroups (resp. connected subgroups for 
p — 0) of an elementary /?-group are again elementary p-groups. Moreover, there 
is a natural bijection between the set of subgroups (resp. connected subgroups) 
of a given elementary /?-group G and the set of linear prime ideals in H*(BG)9 

namely, 

G 2 H+->PH = Ker (H*(BG, k) >H*(BH k)) E H*(BG, k). 

Therefore, it is rather natural to try to correlate annihilating ideals of submodules 
of H%(X) to isotropy subgroups (resp. connected isotropy subgroups) of sub-G-
spaces of X. For simplicity, let us look at the case F = empty set, 

THEOREM 2. Let X be a G-space without fixed point, and J be the annihilating ideal 
of the whole module H%(X). Then 

(i) those prime ideals in the prime decomposition of the radical of J are all linear 
ideals, i.e., generated by linear polynomials, 

(ii) the set of prime ideals belonging to J9{Pj}, naturally corresponds to the set 
of maximal isotropy subgroups (resp, maximal connected isotropy subgroups) {Hj} 
such that the variety ofPj is exactly the Lie algebra ofHJ9 

(iii) let Y> = Fj(H9 X)9j = 1, ••., m. Then 

H%(X9 k)P, = H%(YJ9 k)P/ - H*(Yi/G9 k) ®k H*(BH]9 k)Pr 

REMARKS, (i) In case Zis compact, / i s simply the annihilator of the unit 1, which 
is also equal to the kernel oîH*(BG9 K) -> H%(X, k). 

(ii) If the fixed point set F is nonempty, then one simply applies the above 
theorem to (X — F) instead of X. 

(iii) Combining Theorem 2 with Theorem 1, one has a firm grip on the structure 
of H*(YìjG9 k). Moreover, one may further apply Theorem 2 to (X - (J Y*) to 
obtain the cohomological structure of less singular orbits. However, such an in­
ductive approach is in general too complicated to be practically feasible. 

COROLLARY 1. In the special case of homology sphere X9 the fixed point set F is 
again a homology sphere and it is easy to see that the annihilating ideal J of 
H%(X — F9 k) is a principal ideal. Therefore, it follows from Theorem 2 that the 
generator of J splits into the product of linear polynomials, i.e., J = 
(wf-Ht.-.wfc), Wiem(BG9 k). 

We refer to [7] for a systematic discussion of such relationships between the ideal 
theoretical invariants of H%(X) and the cohomological orbit structure of X. 
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(B) A general class of counterexamples. Let G be a compact Lie group such that 
either the identity component G° is nonabelian, or G/G° is non-p-primary. It is 
then always possible to find a suitable linear representation of G satisfying the 
following properties : 

(i) the restricted linear action on the unit sphere Sn has no fixed point, 
(ii) the G-space Sn admits an equivariant map into itself/: Sn -> Sn with degree 

of/equal to zero. 
Let 7 be the inverse limit of the system of iterated maps {/•*} generated by/. Then 

it is easy to verify that 7 is a compact, finite-dimensional G-space, without fixed 
points, and with acyclic cohomology. Let K be an arbitrary finite complex with 
trivial G-action, and X — Y o K be the join of 7 and K. Then J^ is again an acyclic 
G-space with F — K. Observe that the equivariant cohomology of JHs the same as 
that of a single point, but its fixed point set F = K can be any given finite complex. 
Therefore, there is absolutely no hope of generalizing Theorem 1 beyond ele­
mentary /?-groups. We refer to [3, Part I], [7] for the construction and significance 
of such examples. 

(C) F-varieties, geometric weight systems and splitting principle. To put recent 
developments in cohomology theory of transformation groups into historical 
perspective, let us first recall the following two basic theorems which constitute the 
foundation of linear representation theory of compact Lie groups: 

(i) STRUCTURAL SPLITTING THEOREM OF LINEAR ACTIONS OF ELEMENTARY p-

GROUPS. Every complex (resp. real) representation of an elementary p-group (resp. 
p — 2) always splits into the sum of one-dimensional representations. 

(ii) MAXIMAL TORI THEOREM (É. CARTAN). The set of maximal tori of a given 
compact connected Lie group G forms a single conjugacy class of subgroups, and any 
maximal torus TofG intersects every conjugacy class of G. 

The maximal tori theorem enables us to reduce the classification of linear G-
actions to that of the restricted T-actions, and the splitting theorem classifies linear 
actions of elementary /^-groups in terms of an extremely simple invariant called 
"p-weight system". In the setting of characteristic class theory of vector bundles, 
the splitting of linear actions of elementary ^-groups at the space level obviously 
implies the splitting at the characteristic class level, if the structural group of the 
given vector bundles is reducible to elementary /^-groups. And moreover, the 
maximal tori theorem again enables us to reduce the structural group G to one of 
its maximal tori T via suitable lifting, which is usually called the splitting principle 
in characteristic class theory of vector bundles. 

Methodologically, the recent approach to cohomology theory of transform­
ation groups can be characterized as the geometric characteristic class theory of 
general fibre bundles9 and one of the central themes in such an approach is that 
topological transformations of compact Lie groups can be studied along the same 
line as that of the classical linear representation theory of compact connected Lie 
groups. Then, the central results in the theory of topological transformation groups 
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are those cohomological splitting theorems which prove that the splittings at 
characteristic class level are still valid even for the vastly more general family of 
topological actions of elementary /?-groups. In case the space X is of a given type, 
such cohomological splitting theorems usually enable us to organize the "totality 
of cohomological orbit structure" of a given action of elementary /^-groups on X 
into a simple invariant that we shall call the "geometric weight system" of the given 
action. Geometrically, a G-space is quite analogous to an algebraic variety, and as 
an analogy of the Zariski closure, the F-variety spanned by a point x e Z i s defined 
to be the connected component of x in (J {F(H, X); H ~ Gx} (resp. (J {F(H9X); 
H ~ G$!} if G is connected). Then, the totality of cohomological orbit structure of 
X consists of the cohomological data of the whole network of F-varieties of X. 

Finally, as a generalization of the splitting principle in characteristic class theory 
of vector bundles, one may again study the geometric behavior of a given topo­
logical G-action via its restrictions to its maximal elementary p-subgroups. We 
refer to [7] for a systematic discussion of such an approach of cohomology theory 
of topological transformation groups. 

2. Characteristic class and local orbit structure. The characteristic class theory 
of equivariant bundles over homogeneous spaces provides a powerful tool in the 
study of local orbit structure, especially in the setting of differentiable compact 
transformation groups. Let G be a compact Lie group and M be a differentiable 
G-manifold. Then the equivariant normal bundle of a given orbit G(x) £ M i s 
completely determined by the slice representation <j)x of Gx on the space, R^9 of 
normal vectors of G(x) at x9 namely, v(G(x)) = a($x) — {Rn -+ G x Gx Rn -> 
GjGx}. Therefore, one has the following simple but rather rigid equation in 
(KOY(G(x)y. 

i*<ü(M) = z(G(x))+ v(G(x)) = a(AdG|G, - AdG, + </>x)= a((j>x- AdGx). 

In particular, if G(x) is a principal orbit, then i*z(M) = T(G(X)) = — a(AdG) in 
(KO)~(G(x)). For example, if the tangent bundle z(M) satisfies certain vanishing 
conditions such as P%{M) = 0 for 1 g / ^ b9 then the tangent bundle of the 
principal orbit type must also satisfy the same vanishing condition. Hence, it is 
rather natural to apply the usual splitting principle of characteristic class to study 
the above equation of vector bundles over homogeneous spaces of compact Lie 
groups. We refer to [3], [6] for systematic discussions of this topic. Let us mention 
some simple results of [6] to indicate what type of results one may expect in this 
direction : 

THEOREM 3. Suppose H is a connected subgroup of$p(m) such that P,(Sp (ni)jH) = 
Ofor i - 1,2,3. Then either His a torus subgroup, or H = Sp(l)* £ Sp(k) E Sp(m), 
or H is a simple Lie group of type Ch G2, FQ9 or E7 with (j) : H <= Sp(w) equal to the 
lowest dimensional irreducible symplectic representation of H modulo trivial ones, 
namely, AimHc]) — n9 7, 27, or 56 resp. 

COROLLARY 1. Let G be Sp(m) and M be a given connected differentiable G-mani­
fold. IfPi(M) *= Ofor i = 1, 2, 3 and the connected principal isotropy subgroup type 
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(H$) is nontrivial, then either H^ is a torus subgroup of Sp(w), or H$ — Sp(l)* S 
Sp(&) £ Sp(w), or H& is a simple Lie group of type Ck9 G2î E6i or F7 with $: H& c 
Sp(w) equal to the lowest dimensional irreducible symplectic representation modulo 
trivial ones. 

THEOREM 4. Let G be Sp(w) and M be a given connected differentiable G-manifold 
wi th nontrivial connected principal isotropy subgroup type (HQ). If P{(M) = Ofor i — 
1, 2, 3, then the (connected) local orbit structures of M are respectively as follows 
according to the type of its connected principal orbit type (H°) : 

(i) ifH° are subtori of rank at least 2, then rk(GJ = rk (HQ) for all x e M and 
<f>x = AdGï modulo trivial representations, 

(ii) / / 77° = Sp(l)*,fc ^ 2, then Gx = (vki 0 ... © vk) (Sp(^) x ... x Spfe)), 
k\ + ••• H- ka = k9 and<j)x = A2 vkl © ••• © A2 vka modulo trivial ones, 

(ii) if H° = v*(Sp(Zr)), /Äew a// connected isotropy sub roups GJJ are also of the 
type v(Sp(wx)), 

(iv) if 770 are of the type G2, or EG> or Z?7, //?e/? a// connected isotropy subgroups 
are of the same type, i.e., (GjJ) = (H°)for all xe M. 

3. Testing spaces and testing problems. The existence of abundant linear actions 
and the simplicity of topological structure form an ideal combination that makes 
Euclidean spaces, disks, spheres, and projective spaces the best testing spaces for 
the study of transformation groups. So far, most of the deep results in topological 
transformation groups are still largely concentrated in the case of such testing 
spaces. We refer to [3, Parts I, II, III], [4], [7] for some of the results in this area. 
Generally speaking, the ideal combination of topological simplicity and abundant 
linear actions of those testing spaces is certainly very helpful in obtaining some 
basic understanding to begin with. For example, it is exactly the classical linear 
representation theory and those specific results such as Corollary 4 of Theorem 1 
and Corollary 1 of Theorem 2 that leads us to the basic understanding of the central 
importance of elementary p-groups in the study of transformation groups, as well as 
to the formulation of those fundamental cohomological splitting theorems in the 
setting of equivariant cohomology theory. In view of the recent developments of 
global and local characteristic class theory in transformation groups, it is both 
natural and necessary that we should begin to broaden the domain of testing spaces 
to include such important spaces as homotopy spheres, homotopy projective spaces 
and compact homogeneous spaces. Due to the fact that compact homogeneous 
spaces cover a wide range of topological types but still accommodate a rich variety 
of natural actions, they are particularly suitable to serve as our testing spaces, at 
the present stage of transformation group theory. Let us conclude this article by 
formulating some natural testing problems in the realm of compact transformation 
groups on compact homogeneous spaces : 

(A) Transitive actions and classification of compact homogeneous spaces in terms 
of their diffeomorphic (resp. topological, homotopic or rational homotopic) types. 
Compact homogeneous spaces are by definition those manifolds with given transi­
tive actions of compact Lie groups. Hence, it is natural to classify such transitive 
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actions on them. A transitive action is called primitive if the restriction to any 
proper normal subgroup is no longer transitive. 

Problem 1. Suppose M = G/H is a coset space of a simple compact Lie group 
G. Classify all primitive transitive actions on M. For most cases, one would expect 
that the original G-action is the only primitive action on M. 

Classification of transitive actions on compact homogeneous spaces essentially 
amounts to the classification of compact homogeneous spaces in terms of diffeo­
morphic or topological types. For such a purpose, it is useful to find explicit 
relationships between the "infinitesimal data" of the pair (G, 77) and the topological 
or diffeomorphic invariants of GjH. 

Problem 2. Is it true that two homeomorphic compact homogeneous spaces are 
necessarily diffeomorphic? (In the special case of spheres, the well-known positive 
answer of the above problem means that only the standard spheres are homogene­
ous. Moreover, for most cases of classical homogeneous spaces such as Stiefel 
manifolds, Grassmann manifolds, it is in fact not difficult to show that their homo-
topic types already uniquely characterize them among homogeneous spaces.) 

Problem 3. In the study of compact transformation groups, it is rather natural 
and useful to define the torus rank of a space Jfto be the maximal rank of those tori 
that act almost freely on X. Is it true that the torus rank of GIH is equal to rk(G) — 
rk(77)? (The special case rk(77) = 0 was proved by C. Allday in his thesis [1].) 

(B( Actions of "large" groups and degree of symmetry. Roughly speaking, an 
effective transformation group K on a homogeneous space M = G/77 is considered 
to be large if dim Kk not too small as compared to dim G. 

Problem 4. Classify all G-actions on M = GjH. (For most cases, one of the natural 
conjectures would be that the given transitive G-action is the only nontrivial G-
action on G/77.) 

For example, in most cases of Stiefel manifolds SO(w)/SO(/;) (resp. SU(/?)/SU(A:), 
Sp(n)/Sp(k))9 it was proved in [6] that the only nontrivial SO(n) (resp. SU(«), Sp(n)) 
action on M is the originally given transitive one. However, in the extreme case of 
k = 0, the adjoint action suddenly becomes a new possibility. 

CONJECTURE. Let G be a simple compact Lie group. Then a nontrivial G-action 
on G itself is either transitive or is of the same cohomological orbit structure as that 
of the adjoint action. 

Problem 5. Let G be a simple compact Lie group, K be a closed subgroup with 
dim K ^ | • dim G and M = G/K. Is it true that any .ÀT-action on M must have 
a nonempty fixed point set? In the special case of compact irreducible symmetric 
spaces such as Grassmann manifolds, is it true that any nontrivial f ac t ion on M = 
G/K must have the same cohomological orbit structure as the isotropy Traction on 
G/Kl 

Problem 6. Suppose M = G/77 is a compact homogeneous space and G is one 
of the highest dimensional, effective, transitive transformation groups on M. Is it 
true that the degree of symmetry of M = dim G? (The degree of symmetry of M 
is defined to be the maximal dimension of all compact subgroups of Diff (M).) 
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The Structure of the Oriented Topological and 
Piecewise Linear Bordism Rings 

R. James Milgram 

In this article we describe the oriented cobordism rings for topological and piece-
wise linear manifolds Qlop(pt) and Q^h(pt). Full details and proofs will appear in 
[3], [4]. 

1. Perhaps the most interesting parts of these rings are the torsion-free pieces, 
i.e., the quotient rings Q?^(pt)jTor, ü%op(pt)/Tor. It is well known that there are 
rational isomorphisms induced by the natural inclusions 

QWKpt) ®Q* OlL(pt) ® Q s QZ°»(pt) ® Q 
and ûgiff (pt) ® Q s Q\CP\ ..., CP\ - , C P 2 V ] - Moreover Q%{«(pt)/Tor £ 
Z[CP2

9 ...], a polynomial algebra on generators x4/ where x4/ is either a CP2i or a 
certain hypersurface in a product of CPn's [6]. Now, for the PL and topological 
rings we have 

THEOREM 1. 1. The natural inclusion induces an isomorphism Q#L(pt)/Tor £ 
Q*op(pt)/Tor, Moreover either ring is generated by the differential generators 
above, together with the index 8 Milnor manifolds and the exotic complex projective 
spaces (i. e., those PL manifolds homotopy equivalent to CP2n). 

We indicate how to construct a sufficient number of these exotic CP2w's in §3. 
Here we make some more precise comments on the rings themselves. 

THEOREM 1.2 (BRUMFIEL-SULLIVAN). Let Z(p) be the integers localized at p; then 
Q*L (pt)/Tor ® Zw is a polynomial ring at each odd prime p. 

However the generators are different at different primes. In fact û^(pt)/Tox 
cannot be a polynomial ring since we have recently shown 

THEOREM 1.3 [2]. OlL(pt)/Tor ® Z(2) is not a polynomial ring. In fact 
© 1975, Canadian Mathematical Congress 

533 



534 R. JAMES MILGRAM 

OlL(pt)/ToT ® Z(2) SZ (2) [CP2«|a(«)-4 < K«)] ® r[M*»\a(n)- 4 ^ y(/i)]. 

Here a(rì)is the number of ones in the dyadic expansion of n9 v(n) is the exponent 
of the highest power of 2 dividing n and T is a divided power algebra. Specifically 
it has generators Af4w, Tl(M*«)9 V(M^\ ••• with relations Af2 = 27l(M)9 (PM))2 

= 2t\M), (P(M)f = 2P+1(M), etc. 
As corollaries we obtain integrality theorems for topological manifolds, For 

example 

THEOREM 1.4. Let <& be any multiplicative sequence in the rational Pontrjagin 
classes; then (&9 [M]} takes values in the 2-adic integers if and only if the & 
series for & 

S ( - îystiV' (sa = coefficient ofp{ in 04l) 

satisfies 
(1) su eZ (2 ) all i9 

(2) s2,uj = s2,v)(2i)alli^ 1, 
(3) if a(i) - 4 ^ y(/) then 2«^-3 divides sAi. 

Similarly taking into account the odd primes we have 

COROLLARY 1.5. If & is integral on all topological manifolds, then if 0>(L) = 
S (— lyUtt* is the 0> series for the Hirzebruch S£-genus L then s^ is an integral 
multiple of 'ìhi-

Unfortunately we do not know exaotly what integral multiples are required. 
REMARK 1.6. Sullivan's B0ii/2) orientation shows that away from 2 a basic set of 

polynomials integral on topological manifolds has the form L U ph (T) where ph 
is a Pontrjagin character. 

2. The torsion in Q*L(pt) arises in several distinct ways. Here we discuss a few of 
them. 

First there is the homomorphism 

(2.1) rj:Q¥H(G/?L)-+QK(pt) 

defined as follows. Let a e flgiff(G/PL) be represented by the map f:M -• (7/PL. 
Then, corresponding to (/, M) is a degree 1 normal map %f.M-+ M where M is a 
PL manifold, and we set y {f, M} = {M}.lt is easily verified that the result does 
not depend on the particular choices made. 

On G/O q: G/PL we may again give y as before. But here %f. M-+ M always can 
be chosen with M also differentiable so 7]\Q^l{{(GjO) factors through Q*lîî(pt)9 

and we have the commutative diagram 

(2.2) 
Qf«(G/0) *—» û£!«(G/PL) 

QmKpt) . tQPi{pt) 
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Now suppose a e Q^Î{(G\0) is in the kernel of both y and /# in (2.2). Then we 
can define the suspension of a9 a(a)9 in Q#L(pt) as follows. Let a be represented 
by (/, M)\ then M = dW with W differentiable and M -> M is (PL) normally 
bordant to 0. Let W be the normal bordism on M, Then 

(2,3) a{a)**{W\}MW) 

and o(a) is well defined up to im (/) © im (yj). 

LEMMA 2.4. a(a) is always torsion modulo its indeterminacy. 

Here is a third way of obtaining torsion generators, again using (2.2). 
Suppose i%(a) = m(ß) and yj(a) = s(T) and k > 1 = g.c.d.(w, s). Then m\k (7](ß)) 
- s\k (i (7)) represents k torsion in Q$L(pt). In particular 

A = {7M8 - 200(C7>2 x CP2) + 144CP4}, 
{31M*2 - 1620CP6 + 5292 (CP* x CP2) - 3920(CP2 x CP2 x CP2)} 

are obtained this way. They both have order 4 in ÖPL, but the first has order 2 in 
ßTop whiie the second is unchanged. It would be interesting to be able to study the 
topological bordism in some detail, 

There are two further constructions that give torsion generators at the prime 2 
but they are quite complex manifold Massey product constructions so we do not 
go into them here. 

At odd primes it would seem likely that only a form of the suspension is neces­
sary to describe the torsion generators though this is not yet verified. 

3. We now indicate briefly how to construct the Milnor manifolds and the exotic 
CPZw's needed in 1.1, The singularities which we thereby construct are in some sense 
generic, 

Let r%% be the algebraic hypersurface 

For fi^O but | e | sufficiently small M^ = PjJ; f| DinV2 is a nonsingular manifold 
with boundary 2'4w"1 homeomorphic to Sin~l ([1], [5]). Moreover M\n is paralleliz-
able and its index I(M\n) = %k. 

DEFINITION 3.1. The index 8fc Milnor manifold Mf is M\n U ^«-i Din. 
To construct the needed exotic projective spaces we modify the construction 

above. The Brieskorn knot 

(3.2) i f"1 c S4»+1 

is the intersection of rf*0 with S4w+1. It is easily seen that the normal bundle to 
2^l~l is trivial so we have an embedding R: Z>2 x SAk~l ̂  SAkn after identifying 
2^-1 with S^-K 

Now, let M4w+2 have the homotopy type of CP2n+1. On M there is the canonical 
line bundle H and let D(H) be its disk bundle and S(H) the associated sphere 
(circle) bundle. The total space of S(H) has the homotopy type of 5'4Â+3, hence is 
PL homeomorphic to it for k ^ 1. Now consider the diagram of embeddings 



536 R. JAMES MILGRAM 

D(H)crD(2H) 
(3.3) lt b-

S*»+*GrS(2H) 
f 

The normal bundle to j(SAn+3) is trivial so we have an embedding j : D2 x £4w+3 q-
S (2H) and we construct 

(3.4) W^ = D ^ U w>xs^)=KD>xs^) JH2JÏ)-

Wis a manifold with boundary having the homotopy type of CP2n+2
9 and one easily 

verifies 

LEMMA 3.5. dW * S4w+5. 

Hence we can cone off dW and obtain an M4w+6 £ CP2n+3. To obtain an even 
dimensional M4w from this we simply take D(HM) (J 5<„+T D4w+8 imitating the 
construction of CP2w+4 using CP2w+3. 

To construct all the necessary exotic CP2*'s we simply start with M = CP3 and 
proceed inductively as above. 

Bibliography 

1. E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966), 
1-14. MR 34 #6788. 

2. I. Madsen and R. J. Milgram, The oriented topological and YL-cobordism rings, Bull. Amer. 
Math. Soc. 80 (1974), 855-860. 

3. , The smooth surgery class, Comment, Math. Helv. (1975) (to appear). 
4. , The oriented bordism of topological manifolds and integrality relations, mimeo­

graphed, Aarhus University. 
5. J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, no, 61, Princeton 

Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1968. MR 39 #969. 
6. R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, 

N. J.; Univ. of Tokyo Press, Tokyo, 1968. MR 40 #2108. 

STANFORD UNIVERSITY 
STANFORD, CALIFORNIA 94305, U.S.A. 



Proceedings of the International Congress of Mathematicians 
Vancouver, 1974 

Equivariant Quasi-Equivalence, Transversality 
and Normal Cobordism 

Ted Pétrie* 

0. The setting. Let G be a compact Lie group and Fa (smooth closed) G manifold 
with underlying manifold | F|. The motivating problem we consider is this: 

Question 1. How can we construct all G manifolds X together with G maps / ; 
X -> F such that \f\ : | X\ -* | Y\ is a homotopy equivalence? Moreover, given such 
a map /, what restrictions are imposed on the local G invariants of X and F? 

The special case G = 1 has seen a vigorous and fruitful history for which there 
is a complete solution. There are three fundamental concepts involved: fiber-
homotopy equivalence of vector bundles, transversality and surgery (cobordism 
theory). Briefly one starts with a fiber homotopy equivalence co: £-> rj of vector 
bundles over F and via a proper homotopy converts cu to a proper map 0: £ -> TJ 
which is transverse to the zero section Y cz TJ (written 0 <f* Y). Then X = 0~l( Y) 
is a smooth manifold; 0 \X = f'- X -» Fis a degree one map (with some additional 
structure). The technique for converting/to a homotopy equivalence is surgery. 

The three concepts mentioned above have important generalizations for general 
G. The results and problems for each can only be briefly mentioned here. What I 
shall do is to restrict to a special situation where enough of the problems have been 
solved so that the full theory can be appreciated. The special situation is that of 
pseudofree Sl manifolds as introduced by Montgomery and Yang [1], Here G == S1 

and a pseudofree S1 manifold Fis an Sl manifold with Ysl = 0 and dim YH = 1 
if YH ^ 0 for 1 < H < S1, We require | Y\ to be oriented.The hypothesis implies 
that the orbit space F = Y/S1 is a manifold except at a finite number of points 
JV", ?n corresponding to exceptional orbits in F, i.e., points yx ••• yne Fwhose 

*The author is a Guggenheim Fellow, Research partially supported by Rutgers Research Coun­
cil, N.S.F. (U.S.), S.F.B. (Bonn) and S.R.C. (Oxford). 
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isotropy groups Gyt are not 1, This is useful from our point of view since the dif­
ficulties with equivariant transversality and surgery arise from the fixed point sets 
YH and it helps to have these as simple as possible. 

1. The three fundamental concepts. 
1.1. Quasi-equivalence. Let £ and TJ be two G vector bundles (complex) over F 

of the same dimension. A G map CD: £ -> TJ which is proper, fiber preserving and 
degree one on fibers is called a quasi-equivalence. Define £ ^ TJ to mean there 
exists a G bundle 0 and a quasi-equivalence œ: £ © 0 -* TJ © 0. 

Problem 1.2. Give necessary and sufficient conditions that £ ^ TJ. 
Even for the case F = point this is interesting and useful. Here the problem is 

completely solved. I confine discussion to two important cases. 
Let G denote the set of irreducible representations of G and R(G) its complex 

representation ring which is closed under the Adams operations <pp. Let P = 
{Ph m">Pk} b e a s e t °f relatively prime positive integers with k ^ 2. Set P — 
n ^ i (<pp' - 1). Then P operates on R(G). 

THEOREM (MEYERHOFF). Let T be a torus and N and M two T modules. Then 
N^Mijf 

M-N=Z Z„aPtXPX 
P X^T 

in R(T) where aPiX are nonnegative integers. 

THEOREM 1.3. Let G be arbitrary and % e G. Suppose either allp{ e P are prime to 
the order of the Weyl group of G or prime to n\9 n = dim j£. Then P% — M — N 
in R(G) and N ^ M. 

A trivial but important observation is that if N and M are G modules with 
N ^M then, for any G space F, £ = Y x N and TJ = F x M are G bundles over 
Fand £ ^ TJ. This has important consequences as seen in §3. 

1.4. G transversality.Given a quasi-equivalence o)\% -> TJ9 when is œ properly G 
homotopic to a map 0: £ -• TJ which is transverse to the zero section F <= 77? 

There is an obstruction theory hinted at in [2] (further results to appear) for 
solving this problem. Here is the essential point: Suppose G is abelian and that 0 
exists. Let X = 0~\Y) and / = 0]X. Let H c G and v(XH

9 X) be the G normal 
bundle of the fixed set XH in X. Define a G bundle rjH over YH by 

(1.5) TJ \Y- = 7JH ® 7JH-

Then in Kg (X*) 

(1. 6) u (X»9 X) = (/*)* {v (F" , F) - Tjn + fo}. 

1.7. G normal cobordism. Let Zand F be closed G manifolds of the same dimen­
sion and vx the G normal bundle of a G embedding of X in a large G module. A G 
normal map/: X -> F consists of a degree one G map/together with a G bundle £ 
over F with/*(£) = uy and a G bundle map F\ vx -> £ covering/. The definition of 
G normal cobordism is obvious. 
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Problem 1.8. Give necessary and sufficient conditions that a G normal map (X9f) 
be G normally cobordant to (X'9 / ' ) where | / ' | is a homotopy equivalence. 

Aside from free actions 1.8 is hardly touched. We restrict attention to the case 
G p* Sl and Fs* = 0 . Then for any H c S\ F * is an Sl manifold and YH/Sl 

is a rational homology manifold, 
Suppose / ; X -> F is an S1 normal map. If dim F = 4k + 3 and all isotropy 

groups have odd order, using S1 transversality, one can define an Arf invariant 
A(f) e Z2. If dim F = Ak + 1 one defines / ( / ) as /(F/S1) - I(X/Sl) where I(Z) is 
the index of the rational homology manifold Z. 

If dim YH = Ak + 3 and S1/!! acts with all isotropy groups of odd order, set 
oH(f) = A(P). If dim YH = Ak + 1 set ^ ( / ) = / ( / * ) . These invariants 
should be appropriately interpreted according to the components of YH. 

THEOREM 1.9, Ifl.% has an affirmative answer, ffH(f) = 0 for allp groups H c 
SK 

2. Applications to pseudofree S1 manifolds. Let X be a pseudofree Sl manifold. 
The orbit of x E X determines a point x in the orbit space X — X/Sl. Set G^ = Gx9 

the isotropy group of any point x in the orbit x. The slice representation at x9 

v (XG% X)x9 is abbreviated by ux. We can suppose it to be a complex Gx module. 
Since the complex representation ring of Gx is R(GX) = Z[t]/(l — tm)9 m = \GX\ 
(the order of Gx)9 vx = tai + ••• + ta* for integers at- prime to m and 2n -f 1 F= 
dim Z. Set |yÄ| = n?=i ^ e 2̂ w We say ox is a special Gx module if at most one 
a{ is different from 1 mod m. 

THEOREM 2.1. Suppose Y is a pseudofree Sl manifold andf: X~^ Y is an S1 normal 
map with \f\a homotopy equivalence. Then 

(i) G y is the direct product of all Gx with x tf~l(y) and 
(")Kc*>|/M = (mx/mf(x))modmx wheremx = \GX\. 

In the spirit of Question 1 this is a relation between the local G invariants of the 
action imposed by the hypothesis that | / | is a homotopy equivalence. It is a con­
sequence of the three concepts of the preceding section. In particular (1.6) implies 
that if F is a pseudofree Sl manifold and co : £ -> TJ is a quasi-equivalence which is 
properly S1 homotopic to 0, 0 rf\ F, then 

(2.2) ux - ufix) = £ / u ) - Tjfix) in R(GX) 

for x E X = 0"l(Y) and £yU) denotes £ restricted to/(x). This and quasi-equivalence 
imply the second part of 2.1. 

The thrust of 2.1 is that the nature of the isotropy groups {Gx9 x E X) implies a 
direct product splitting of the cyclic groups G$9 yEY9 and that the slice representa­
tions vy can only be exchanged in the relation (ii). 

Conversely we can fracture exceptional orbits. Set SY = {y E Y | G9 ^ I}. 

FRACTURING LEMMA 2.3, Suppose Y is a pseudofree Sl manifold with SY = 
U?=i JV Suppose | Gy\ is prime to\G9t\,i> 1. Given any splitting G${ £ Gn x G12 

and any one dimensional G^ module % which is a factor of oyi9 there is an S1 manifold 
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X with Sx — xn U #12 U Uf=2 *i and <m Sl normal mapf: X -> F such that 
(i) GXn = Gn, GXn = G12,/-i(j>!) = xn U *i* 

(H) GXi = Gy,9i> l , / - l ( j> , ) = ^ , 

(iii) L>,n = vyi + XQ - X> w*,. = »y, + X* - X w / 7 ^ P = \Gn\and q = \ Gl2 |, 
(iv) ^ = uytfori> 1. 

We can also exchange slice representations subject to 2.1(ii). 

EXCHANGE LEMMA 2.4. Let Y be a pseudofree Sl manifold with SY = U*=iJV an^ 
| Gy-t\ prime to | G9t \for / > 1. Le/ Vbe a special G$x module which factors uyi. For 
any Gyx module Wwith dim W = dim V and \w\ = \ V\9 there is an Sl manifold 
X and an S1 normal mapf: X -• F vW/A 

(ii) » « - » „ = W - VinR(Gx)9 

(iii) L^ - L^ = 0, / > 1. 

THEOREM 2.5. Let Y be a pseudofree S1 manifold and f: X -• Yan Sl normal map. 
If aim Y = Ak -f 3 assume all Gy9 yEY9 have odd order. Then (X,f) is Sl normally 
cobordant to(Xl

9f
l) where \fl\ is a homotopy equivalence iff oH(f) = Ofor every 

p group H in S1. 

Putting 2.3, 2.4 and 2.5 together gives a converse to 2.1, e.g., let V = nt + /* 
be the (n + l)-dimensional S1 module where R(Sl) = Z[t9 t~l] and q and n are 
odd integers. Compare [1]. 

THEOREM 2.6. Let Y = S (V) be the unit sphere of V. For any splitting of the 
unique isotropy group G y ^ l j e 7 , 

(i) G y = Zqi x ••• x Zqt = Zq9 Uqj = q and for any set of Zqi modules Vi9 i = 1, 
2, •••, k9 satisfying 

(") hl / l^ ' l = (9*14) mod?,, 
/Aere zs1 û pseudofree Sl manifold X with exactly k exceptional orbits (J*=1 xt- and 
isotropy groups ZQi; moreover, if GXi = Zgi9uXi = Vi and there is an Sl normal map 
f: X -> F1V/7A | / | ö homotopy equivalence. 

REMARKS ON PROOFS. Consider 2.3. Since the order of G9l - pq is prime to | G9l |, 
i > 1, there is an 5*1 module p of dimension 1 which restricts to ^ as a G^ module 
and to 1 as a G9{ module i > 1. Let N = pP + pi9 M = p -f pPv ; then JV g ^ M 
by 1.3. This implies there is an Sl quasi-equivalence CD:^=YXN->YXM = 

TJ. There are no obstructions to making œ equivariantly transverse to F x 0 
yielding an S1 manifold l e f with the relevant properties. 

The key facts are that (i) (Tjy)Gyi = % (see (1.5)) which factors uyi and (ii) £y, = Tjy(9 

i > 1. The obstructions to S1 transversality are concentrated at the k exceptional 
orbits y{ and vanish because of (i) and (ii). Since Tjyi = % + %& and £yi = %P + %q

9 

2.3 (iii) and (iv) follow from (2.2). 
The proof of 2.6 follows from 2.3,2.4,2.5 and a reduction to the case where q = 1 

so that Sl acts freely on S(V). In this case we can apply Sullivan's formula [3] to 
compute the Arf invariant obstruction o\(f) where / : X -> F is provided (2.3 
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and 2.4). We can arrange that <r\(f) = 0. 
In short all the theorems of this section depend on a judicious choice of S1 mo­

dules N and M depending on F with N g S i l , The Sl manifold X and map / : 
X -> Fappear as 0~1{Y x 0) where 0 :X x N -+ Y x M is properly S1 homotopic 
to a quasi-equivalence and 0 ̂  Y9f = 0{X. 
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Compact Leaves of Foliations 

Paul A. Schweitzer, S. J.* 

This paper is a survey of theorems and problems about the existence of com­
pact leaves in foliations of a manifold M with a countable base. 

Question 1. For which manifolds M does every Cr codimension q foliation of M 
have a compact leaf? (Here q and r are given integers, 0 < q < m = dim M and 
0 ^ r ^ oo.) 

As an example of a partial answer, Novikov's theorem states that every C2 co-
dimension one foliation of S3 has a compact leaf which is a torus [N, Theorem 7.1]. 
On the other hand, the Seifert conjecture that every codimension two foliation of 
S3 has a compact leaf (i.e., a circle) has been shown to be false in the C1 case [Sl], 
but remains open for Cr foliations when r ^ 2. It is unknown whether Novikov's 
theorem can be extended to sufficiently smooth codimension one foliations of any 
higher dimensional manifolds, but it does not extend to C° foliations on any 
manifold of dimension five or more (see Theorem 6, below). 

We explore what is known about the above question for codimensions greater 
than one in §1, and for codimension one in §2, 

1. Eliminating closed leaves in codimensions greater than one. A Cr (0 g r ^ oo) 
codimension q (0 < q ^ m) foliation F of the Cr m-dimensional manifold M is a 
maximal family of Cr submersions a\ Ua -> RQ such that { Ua}aeF is an open cover 
of M and for every x E Ua f| Uß there is a local diffeomorphism gaßX of jB? such 
that a — gaßX°ß in a neighborhood of x. The sets a~l(y) for all a E F and y E RQ 
form a base of the leaf topology on the underlying set of M9 and the components 
relative to this topology are Cr submanifolds of M called the leaves of F. A leaf is 
closed if it is a closed subset of M relative to the original topology. The Cr codi-

*Partially supported by CNPq T.C. 17.029, CAPES, and FINEP. 
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mension q foliations FQ and F\ are Cr homotopic if they are connected by a one 
parameter family of foliations Ft of M x {/}, / e R, whose leaves taken together 
are the leaves of a Cr codimension q + 1 foliation of M x R. 

THEOREM 1 [Sl], Let F be a Cr foliation of M of codimension q < m. If either 
(i) q = 2 and r = 0 or 1, or 

(ii) q < 2and0 g r <; oo, 
then F is Cr homotopic to a foliation with no closed leaf. 

When q = m — 1 > 2 this is a theorem of Wilson [W]. When q = 2, this 
theorem implies the falsity of the Seifert conjecture for C1 foliations. 

In order to elucidate the content of this theorem, we recall that a set S in a mani­
fold M with a foliation i^is saturate d (relative to F) if 5 is the union of a set of leaves 
of F. A closed nonempty saturated set C is minimal if it contains no other set with 
these properties. Thus every closed leaf is a minimal set, and every leaf contained in 
a minimal set C is dense in C. Since the property of being a compact nonempty sa­
turated set is inductive, the usual argument by Zorn's lemma shows that every 
such set contains a minimal set. In particular, every compact foliated manifold 
must contain a minimal set. As a consequence, when in proving Theorem 1 we 
modify the given foliation to eliminate the closed leaves from among the minimal 
sets, it will generally be necessary to introduce other minimal sets. 

The desired modifications can be made locally, as follows. A small transversal 
open (/-manifold N with a small tubular neighborhood diffeomorphic to N x Di 
is constructed, such that the induced foliation has leaves {n} x Z)?, n E N. We 
deform this foliation by pushing the leaves along the trajectories of a smooth flow 
Z on N with a compact saturated set C in such a way that all closed leaves which 
meet C are cut open. New minimal sets are created, but it is possible to avoid intro­
ducing any new closed leaves by choosing C to be an exceptional minimal set of the 
foliation induced by Z (i.e., a minimal set which is neither a single closed trajectory 
nor all of N). 

In the case q = 2, we may choose N to be the torus punctured by removing one 
point, and Z to be the restriction of Denjoy's toroidal flow with exceptional 
minimal set C [D]. The conclusion in this case is only C1 since Denjoy's flow is C1 

but not C2. (See [Sl] for the complete proof of Theorem 1.) 
It seems unlikely that S3 could be a minimal set of a codimension two foliation, 

but if it were, that would give a new type of foliation of S3 without compact leaves, 
This is a special case of an interesting open question, 

Question 2. Which manifolds can be minimal sets of Cr codimension q foliations? 

2. The compact leaf property in codimension one. The state of the question whether 
foliations of AT must have compact leaves is different in codimension one, as several 
affirmative results are known. The following definition will simplify their state­
ments. 

DEFINITION. A Cr manifold M has the Cr compact leaf property (CLP) if M has a 
Cr codimension one foliation and every such foliation has a compact leaf. 

If we replace "foliation" by "transversely oriented foliation" (i.e., a foliation for 
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which the bundle of vectors orthogonal to the leaves is trivial) in this definition 
we get the analogous property CLP+. 

REMARK. It is now known that a manifold M admits a C°° codimension one folia­
tion if and only if it admits a codimension one plane field (equivalently, if either 
M is open or has Euler characteristic zero). Phillips [P] proved this for open 
manifolds and Thurston [T2] recently extended it to closed manifolds. 

THEOREM 2 [K, P. 153]. The Klein bottle has the C° CLP. 

THEOREM 3 [N]. A closed 3-manifold M has the C2 CLP if either 
(i) n^M) is finite, or 

(ii) 7üZ(M) ï 0. 

CONJECTURE. In these cases, M has the C° CLP. 

THEOREM 4 [Tl]. If the closed 3-manifold M is the total space of an oriented circle 
bundle £ over an orientable surface N whose Euler numbers satisfy \x(0\ > 
| x(N)\ > 0, then M has the C2 CLP+. 

The above results are proved by detailed geometric arguments. For example, 
Thurston shows that if the given foliation has no toroidal leaf it must be isotopie 
to a foliation transversal to the fibers, and then applies a result of John Wood in­
volving the two Euler numbers. On the other hand, J. Plante [P] uses a homological 
argument involving invariant transversal measures (or currents or "asymptotic 
cycles") to establish the following interesting result. (I thank Dennis Sullivan for 
informing me of the strengthened version given here. For definitions and an 
earlier version, see [P]. For full details, see [P3, 6.4].) 

THEOREM 5. Let M be a smooth closed manifold with first Betti number less than 
two. IfaC1 transversely orientable foliation F of M has a leaf with nonexponential 
growth, then F has a compact leaf. 

COROLLARY. If the fundamental group %\(M) of a closed 3-manifold M has non-
exponential growth and the first Betti number of M is less than two, then M has the 
C2 CLP+. 

This corollary (Plante [P2, 7.4]) follows since a leaf L with exponential growth 
in a C2 transversely orientable codimension one foliation F of M will be covered by 
nonclosed leaves in the induced foliation on the universal cover of M which has 
nonexponential growth by the hypothesis on n\(M). This implies the existence of a 
closed null homotopic curve transversal to F9 which by Novikov's proof implies 
the existence of a compact leaf. The corollary gives a new proof of Rosenberg's 
result that the 3-manifold M has the C2 CLP+ if M is a torus bundle over Sl ob­
tained by suspending a linear automorphism A E SL(2, Z) of T% = R2/Z2 such that 
the eigenvalues of A are on the unit circle and both different from 1. 

In contrast to these affirmative results, the result is negative if the smoothness is 
relaxed and the dimension increased. 

THEOREM 6 [S2]. No manifold of dimension five or more has the C° CLP. 
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To understand this theorem, examine the Reeb foliation R. On one side of the 
torus leaf T2 the leaves spiral around one of the generators of %\(T2)9 but on the 
other side they spiral around the complementary generator. This phenomenon of 
leaves spiraling in toward a closed leaf L along distinct generators of z\(L) is re­
lated to the "vanishing cycles" in Novikov's proof, and also occurs in Thurston's 
general construction [T2] and earlier particular constructions of codimension one 
foliations of closed manifolds (Lawson, Durfee, etc.). 

The essence of the proof of Theorem 6 involves the insertion of an exceptional 
minimal set C which separates the manifold and toward which the leaves spiral in 
along different directions in distinct complementary components. The exceptional 
minimal set C is derived from Raymond's construction of a C°° codimension one 
foliation of S3 containing an exceptional minimal set [RA]. (For full details see 
[S2].) 

The question remains open when we impose a greater degree of smoothness. For 
example, does S5 have the C2 CLP? 
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On the Construction and Classification of Foliations 

William Thurston 

Given a large supply of some sort of fabric, wh^t kinds of manifolds can be made 
from it, in a way that the patterns match up along the seams? This is a very general 
question, which has been studied by diverse means in differential topology and dif­
ferential geometry. For open manifolds, Gromov's theorem gives a good answer 
for a wide variety of fabrics. The techniques needed to analyze such a question on 
a closed manifold are usually different, at least to a casual eye. 

A foliation is a manifold made out of a striped fabric—with infinitely thin stripes, 
having no space between them. The complete stripes, or "leaves"9 of the foliation 
are submanifolds ; if the leaves have codimension k9 the foliation is called a codi­
mension k foliation. * 

In order that a manifold admit a codimension k foliation, it must have a plane 
fipld of dimension (n — k). 

THEOREM 1. Let Mn be any manifold without boundary. IfMn has an (n — \)-plane 
field, then every (n — \)-plane fieldzn~~l on Mn is homotopic to the tangent-plane field 
of a C°° codimension one foliation. 

See [9]. 

COROLLARY. Every closed connected manifold with zero Euler characteristic has 
a C°° codimension one foliation. 

THEOREM 2. Every smooth plane field zn~h on a closed manifold is homotopic to the 
tangent plane field of a Lipschitz foliation, with C°° leaves. 

See [11]. 
The proof makes use of a slightly altered version of a result of John Mather 

[4] which states that the homology of the group of homeomorphisms of Rn with 
compact support, considered as a discrete group, is trivial, 
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Bott has shown this to be false if one demands C2 foliations, for all real charac­
teristic classes of the normal bundle of a C2 foliation of codimension k must vanish 
above dimension 2k [1]. The foliations of Theorem 2 can be found in a category 
where first derivatives of the transition functions make sense, but Bott's argument 
depends essentially on the use of second derivatives, 

General statements can be made about C°° foliations, and foliations on manifolds 
with boundary, but first some background is required. Reeb gave some counterex­
amples to the existence of codimension one foliations on manifolds with boundary 
in his thesis. These depend on the Reeb stability theorem, which I will state in a 
generalized form : 

GENERALIZED REEB STABILITY THEOREM (THEOREM 3). (a) Let fFbea codimension 

one C1, transversely oriented foliation on a compact manifold M. Suppose Ln~l is a 
compact leaf of J*" such that Hl(L\ R) « 0. Then, every leaf of IF is diffeomorphic 
with Ln~l

9 and Mn fibers over S1 or O1 with fiber Ln~l. 
(b) Let !F be a C1 codimension k foliation. If L is a compact leaf of #> such that 

the linear holonomy around L is trivial, and if Hl(L\ R) & 0, then the holonomy 
around L is trivial, and L has a tubular neighborhood which fibers over Dk with 
leaves as fibers. 

See Reeb [7] and Thurston [10]. 
Reeb proved this theorem under the hypothesis that %\(L) is finite, and he al­

lowed C° foliations. 
As a corollary, many manifolds with boundary do not have codimension one 

foliations tangent to the boundary. But these are the only counterexamples. 

THEOREM 4. Let Mn be a compact manifold such that each component ofdMn has 
a nontrivial first real cohomology group. Then every (n — \)-plane field tangent to 
dMn is homotopic, rei dMn

9 to a C°° foliation which is trivial in a neighborhood of 
dM». 

For more refined statements, the concept of a Haefliger structure is needed. A 
Haefliger structure is a foliated microbundle, i.e., a microbundle of dimension k 
with codimension k foliation transverse to the fiber. Haefliger showed that there is 
a classifying space BTl for codimension /c, C°°, Haefliger structures [3]. There is a 
canonical map Br$ -+ BOk. The following theorem is due to Haefliger in the case 
Mn is an open manifold : 

THEOREM 5. Let Mn be a manifold, %n~k a plane field on Mn
9 let vk = T(Mn)/Tn-k

9 

and let %\Mn -• BOk be the classifying map for vk. Then zn~k is homotopic to a Cr 

foliation iff % factors through a map to BTr
k9 and every such factorization is realized 

by a foliation with tangent bundle homotopic to zn~k. 

If k ^ 2, this theorem is true relative to a closed set Ksuch that zn~k is integrable 
in a neighborhood of K. If k = 1 and if zn~k is transverse to dMn and integrable 
in a neighborhood, this is true rei dMn [9], [11], [12], 
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COROLLARY 1. If Mn has a k-frame field, or a k-dimensional subbundle which 
admits a flat connection, then the complementary bundle is homotopic to a C°° 
foliation. 

This was proved by Phillips for open manifolds. 

COROLLARY 2. When k ^ n/29 S
n has a codimension k foliation provided it has a 

k-plane field, 

Direct, specific, constructions for foliation on spheres are by no means trivial. 
Reeb first discovered a codimension one foliation of S3 in his thesis in 1944. There 
was a long gap until Lawson found codimension one foliations for 55, S7

9 and all 
spheres of the form S2*"1"3 in 1970 [4], The next year, Durfee [2] and Tamura [8] 
independently generalized this to all odd-dimensional spheres. 

COROLLARY 3, Every 2-plane field is homotopic to a C°° foliation. 

This follows from a result on the connectedness of Bf™ [6], [13]. This has a close 
connection to the theorem that the group of C°° diffeomorphisms isotopie to the 
identity is simple, for any closed connected manifold—see the article of Mather in 
these PROCEEDINGS, or Mather [6] and Thurston [13]. 
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