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Organization of the Congress

The 1974 International Congress of Mathematicians was held in Vancouver,
Canada, at the invitation of the Canadian Mathematical Congress, representing the
Canadian mathematical community, and with the approval of the International
Mathematical Union, representing the international mathematical community.
As official hosts the Canadian Mathematical Congress assumed the responsibility
for all the arrangements and appointed the Organizing Committee whose members
were A. H. Cayford, Aubert Daigneault, T. E. Hull, R. D. James (Chairman),
Maurice Sion (Deputy Chairman). The International Mathematical Union main-
tained control over the scientific program and appointed, in consultation with the
Canadian Mathematical Congress, the Consultative Committee whose members
were G. A. Gratzer, H. A. Heilbronn, F. E. P. Hirzebruch, L. Hérmander (Chair-
man), T. E. Hull, T. Husain, S. V. Jablonskii, N. Jacobson, L. Schwartz.

The main organizer of the Congress at the practical level was Maurice Sion who,
as Chairman of the Local Arrangements Committee, took direct responsibility for
all aspects of the Congress with the exception of the list of invited speakers. The
other members of the Local Arrangements Committee were G. W. Bluman, A. H.
Cayford, Armin Frei, S. S. Page, J. V. Zidek. Nominally the Local Arrangements
Committee was under the supervision of the Organizing Committee. In fact the
composition and the responsibilities of the two committees overlapped to a con-
siderable extent. Special subcommitiees were established as the time of the opening
of the Congress approached. Notable assistance on these subcommittees was given
by G. W. Bluman, James Carrell, A. H. Cayford, John Coury, T. E. Cramer, Armin
Frei, Virginia Green, Lorne Halabisky, Ronald Harrop, Rene Held, Erhard Luft,
George Maxwell, L. A. Mysak, S. S. Page, L. G. Roberts, Dennis Sjerve, Keith
Wales, J. V. Zidek, and the graduate students in the Department of Mathematics,
University of British Columbia.

The publication of the Proceedings of the Congress is the responsibility of the
Publications Committee whose members are Aubert Daigneault, G. A. Gratzer,
H. A. Heilbronn, R. D. James (Chairman), Erhard Luft, W. O. J. Moser. The
committee gratefully acknowledges the advice and assistance given by A. H.
Cayford, who acted as Managing Editor, and Gordon L. Walker (Executive Direc-
tor) and Margaret Reynolds (Editorial Assistant) of the American Mathematical
Society.
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Opening Ceremonies

The inaugural session of the Vancouver Congress took place in the Queen
Elizabeth Theatre on the morning of August 21, 1974, Professor K. Chandrasek-
haran opened the proceedings by proposing that Professor H. S. M. Coxeter be
elected President of the Congress by acclamation. Following his election, Professor
Coxeter announced that a telegram would be sent to His Excellency, the Right
Honourable Jules Leger, C. C., C.M.M., Governor General of Canada, Patron of
the Congress. The text of the telegram is as follows:

We much appreciate your agreeing to serve as Patron of the first meeting in Vancouver
of the International Congress of Mathematicians. We regret your inability to be present
and we convey our warmest wishes for a complete recovery.

Professor Coxeter then called on His Honour, the Honourable Walter S, Owen,
-Lieutenant Governor of British Columbia who welcomed members of the Congress
to Canada and to British Columbia.

Professor Coxeter then gave his presidential address to the Congress.

The last congress meeting in Canada was in August 1924, almost exactly fifty years
ago. That was when the Fields Medals were established. Professor Fields was the pres-
ident, and gave a long address on A foundation for the theory of ideals. He was editor of
the PROCEEDINGS, which contained a nice photograph of La Vallée Poisson presenting a
commemorative wreath to the University of Toronto. There was also a map of Canada
showing the route of the Transcontinental Excursion, which included a stop in Van-
couver, Perhaps one or two of you can still remember that occasion.

In opening the 1954 congress in Amsterdam, Professor Schouten declared that ““The
place of mathematics in the world has changed entirely after the second war.” What he
meant was that, whereas formerly mathematics was studied by exceptional people, in
ivory towers, the subject had become immensely popular. Even sport was affected:
footballs (for soccer) began to be made to look like truncated icosahedra, electronic
computers were springing up everywhere, and departments of mathematics in all uni-
versities were expanding to accommodate crowds of eager students. As soon as they
graduated, the best students were urged to write original papers. The slogan was “pub-
lish or perish.” Although some of the resulting work was second-rate, much of it was
excellent, In fact, the accumulation of mathematical knowledge has been so rapid that, as
Professor Nevanlinna remarked at Stockholm in 1962, no one of us can appreciate all
its branches.

Why, then, do we now come together from all the countries on earth? What do we
have in common? Perhaps it is our appreciation of patterns of abstract ideas, our striv-

XV



xvi OPENING CEREMONIES

ing for order and truth and beauty in a world full of confusion and deceit and pollution.
We understand, with William Wordsworth, that mathematics is “An independent
world created out of pure intelligence” or, as Alfred North Whitehead put it, “The
science of Pure Mathematics, in its modern developments, may claim to be the most
original creation of the human spirit.”

To see the extent of the feverish activity mentioned by Schouten and Nevanlinna,
we merely have to measure the volumes of Mathematical Reviews on our shelves.
(This is reasonable because it is usually the most important books and papers that de-
serve the longest reviews.) The volumes from 1941 to *51 measure 21 inches, 1952 to *62
45 inches, and 1963 to *73, 87 inches. Thus each period of eleven years produces twice
as much as the preceding period. Such a proliferation of mathematical research, if
continued in the future, would make the number of writers surpass the number of
readers, the same discoveries would be made over and over again, and all the libraries
in the world would not suffice to accommodate the mass of material,

However, such a calamity may now have been averted in an unexpected manner. The
present generation has been engulfed by a wave of anti-intellectualism, with the result
that most universities are short of students. Young people find that the problem of look-
ing for a job is not facilitated by a university education, The idea of ‘“‘art for art’s sake” is
less prevalent than it used to be, and pure mathematics is abandoned in favour of ap-
plied mathematics, statistics, or computing. Thus the editors of pure mathematical
journals may soon be able to relax and get rid of their terrifying backlog of papers wait-
ing to be assessed for possible publication.

What, then, should be our advice to a student who is wondering whether to specialize
in mathematics? In view of the present scarcity of suitable jobs, I would advise him to
take up some other subject, unless his love for mathematics is so intense that he finds
himself doing it in almost all his spare time, even thinking about it while sleeping, or
between dreams. For such a person, as Hermann Minkowski declared, ““The purpose
of life is to behold the truth, to understand it well, and to expound it perfectly.”

Some of the mathematicians who attended the Congress in Nice are no longer with us.
I think especially of Abraham Robinson, who died so tragically a few months ago, at
the height of his powers.. He made contributions to applied mathematics as well as to
algebra and logic, on which he spoke at Nice, Since that time, his nonstandard analysis
has opened up new vistas in both research and pedagogy. When I was a boy, I was in-
troduced to calculus the “easy” way, using infinitesimals. At college I was told to put
away childish things and become rigorous. How wonderful it is that the name “infini-
tesimal calculus” has been restored to respectability !

Before sitting down, I wish to propose a vote of thanks to the Consultative Com-
mittee, appointed by IMU to plan the academic program, namely Professors L. Hor-
mander, F. Hirzebruch, S. V. Jablonski, N. Jacobson, L. Schwarz, G. A. Gratzer, T.
Husain, T. E. Hull, H. Heilbronn.

And now it is my pleasure to call upon Professor Chandrasekharan, the president of
IMU to make an important announcement.

Professor Chandrasekharan, chairman of the Fields Medals Committee, then
presented the following report:

The proposal to institute two gold medals, to be awarded *“for outstanding discoveries
in mathematics,” at successive International Congresses of Mathematicians, was first
mooted by Professor J. C. Fields, President of the International Congress of Mathema-
ticians held in Toronto in 1924. The fund for the founding of the medals was constituted
by a balance left over after financing the Toronto Congress. That proposal was accepted
with thanks, after the death of Professor Fields, by the International Congress of
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Mathematicians which met in Ziirich in 1932, The first two such medals were presented at
the Oslo Congress in 1936. After an interruption, caused by the war, two medals were
presented at each of the following Congresses: at Harvard in 1950, Amsterdam 1954,
Edinburgh 1958, and Stockholm 1962; while four medals were presented at the Moscow
Congress in 1966, and at the Nice Congress in 1970. Each medal carries with it a cash
prize of 1500 Canadian dollars. The medals are struck at the Royal Canadian Mint, It is
expressly provided that there should not be attached to them, in any way, the name of
any country or institution. Although, in common parlance, they are known as the
Fields medals, the name of Fields does not appear on them,

Following established practice, the Executive Committee of the International Mathe-
matical Union appointed, about two years ago, an international committee to adjudicate
the award of the medals at this congress, The Committee consists of Professors J. F,
Adams, K, Kodaira, L. S. Pontrjagin, B. Malgrange, A. Mostowski, J, Tate, A, Zyg-
mund, and myself, as Chairman, May I take this opportunity to convey to all the
members of the Committee the appreciation and thanks of the Union for the service
they have rendered. The Committee, in turn, is indebted to many individual mathema-
ticians whose expert knowledge provided valuable assistance,

The Committee decided, at the outset, and not without discussion, to confine the
award to mathematicians under forty, as in the past, The names of some who have done
brilliant work in recent years, but who are now on the wrong side of forty, have had
regrettably to be omitted. Even so, more than a score of names figured on our first list,
The task of reducing that number was by no means easy. There was a great deal of con-
sultation, deliberation, and reflection. The Committee elected finally to select two names
for the award. That decision was reached as unanimously as one could reasonably
expect. We are aware of the very strong claims of many of those not selected, some of
them so young that many Congresses will meet before they are forty. Nevertheless, we
are convinced that the two selected are mathematicians of exceptional merit, whose work
has advanced the development of imporiant branches of our science. May I offer them
our warmest congratulations, and -invite them to come forward to receive the medals
from the hands of His Honour, the Lieutenant Governor of British Columbia. They
are, in alphabetical order, ENRICO BoMBIERI and DAVID MUMFORD.

His Worship, Mayor Art Phillips of Vancouver gave a short address in which he
welcomed members of the Congress to the City of Vancouver.

Professor Coxeter announced that reports of the work of the Fields medalists
would be given in the evening. Professor Chandrasekharan would report on the
work of Enrico Bombieri and Professor J. Tate on the work of David Mumford.
The inaugural session was then declared closed.



Closing Ceremonies

The closing session of the Vancouver Congress took place in the Frederick Wood
Theatre, University of British Columbia, on the afternoon of August 29, 1974.
Professor H. S. M. Coxeter, President of the Congress, was in the chair.

Professor Coxeter read a message from His Excellency the Governor General of
Canada expressing his thanks for the telegram sent on behalf of the Congress at the
inaugural session. He then called on Professor K. Chandrasekharan, President of
the International Mathematical Union, to present the following report:

It is my pleasant duty to announce that the Seventh General Assembly of the Inter-
national Mathematical Union, which met at Harrison Hot Springs, from August 17 to
19, 1974, elected the following Executive Committee for a term of four years beginning

January 1, 1975,
President : Professor Deane Montgomery (Princeton, N,J., U.S.A.)
Vice Presidents: Professor J.W.S. Cassels (Cambridge, U.K.)
Academician M. Nicolescu (Bucharest)
Secretary: Professor J.-L. Lions (Paris)
Members: Professor E. Bombieri (Pisa)
Professor M. Kneser (Gottingen)
Professor O. Lehto (Helsinki)
Professor M. Nagata (Kyoto)
Academician L.S. Pontrjagin (Moscow)

I am sure you will join me in wishing the new Committee every success in the work
ahead,

The main object of the International Mathematical Union is “to promote internation-
al co-operation in mathematics,”” and, in particular, “‘to support and assist the Interna-
tional Congress of Mathematicians.” May I, on behalf of the Union, express our grati-
tude to the Canadian Mathematical Congress for having played host to this International
Congress in such a beautiful place as Vancouver. Our warmest thanks go to the mem-
bers and staff of the Organizing Committee headed by Professor R.D. James, and to the
members and staff of the Local Arrangements Committee headed by Professor M. Sion,
for having ministered to our needs unobtrusively and efficiently, both at Harrison Hot
Springs and at Vancouver.

The Congress has brought together mathematicians from many lands, united in a
friendship which stems from a common devotion to mathematics, transcending the
stresses of politics, and happily free from the strains of competitive sport. We trust
that the next Congress in 1978 will be a worthy successor. May I, as Chairman of the
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CLOSING CEREMONIES xix

Committee to select a site for the next Congress, request you, Mr, President, to invite
Professor Rolf Nevanlinna to speak on behalf of the National Committee for mathematics
in Finland,

Professor Coxeter called on Professor Nevanlinna who spoke as follows:

On behalf of the Finnish National Committee of Mathematics, I have the honor to
invite you to the next International Congress of Mathematicians in Helsinki,

Finland is a small country and it may seem risky to undertake the organization of such
big meeting, the more so as many previous congresses have been so splendidly run like
this fine meeting in Vancouver. But we know that the International Mathematical Union
will help us, and support has also been promised to us by the Finnish Government and by
the University of Helsinki, Therefore we feel confident that we shall be able to organize
the Congress in a satisfactory manner,

Ladies and Gentlemen: Hoping that you will accept our invitation, I welcome you all
to the next International Congress of Mathematicians to be held in August 1978 in
Helsinki.

The invitation was accepted by acclamation.

Speaking on behalf of the members of the Congress, Professors J, Tits and B.
Szokefalvi-Nagy expressed their thanks to those who had participated in the ar-
rangements for the Congress. Professors R. D, James and Maurice Sion replied for
all concerned,

Professor Coxeter then declared the Vancouver Congress closed.
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The Work of Enrico Bombieri

K. Chandrasekharan

Bombieri’s work ranges over many fields: number theory, univalent functions,
several complex variables, partial differential equations, algebraic geometry. I do
not seek to describe it all. I shall not touch upon his work in algebraic geometry,
nor shall I anticipate his article in these PROCEEDINGS on partial differential
equations. I shall speak only about three of his contributions. They should give
some idea of the variety and depth of his work.

1. The distribution of primes. First among Bombieri’s achievements is his re-
markable theorem on the distribution of primes in arithmetical progressions, which
he obtained by an application of the method of the Jarge sieve (Mathematika 12
(1965), 201—225).

The prime number theorem for the arithmetical progression a + mgq, where a
and q are integers, g > 0, (a, 9 =1,0=ZLa<gqg,andm=1,2,:-,is equivalent to
the assertion that

¢(x; g, a) ~ x[p(q),
as x — oo, where ¢ stands for Euler’s function, and

(x; g, a) = A(n),

n=xin=q (mod q)

where A(n) = log p if is n a power of a prime p, and A(n) = 0 otherwise.

Bombieri’s theorem is concerned with an estimate of the error term E(x; g, a) =
&(x; q,a) — x/p(g), not for an individual g, but on the average over g, up to a
certain bound. It states that given a positive constant A4, there exists a positive
constant B = B(A4), such that
6)) 2 max max |E(y;q,a)| < x(log x)~4,

7=Q y=x alag)=1
© 1975, Canadian Mathematical Congress
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if Q = x1/2(log x)5.

A slightly weaker result, which is less widely applicable, was obtained inde-
pendently by A. I. Vinogradov (also in 1965) by a different method.

The significance of Bombieri’s theorem becomes clear, if we note that, for any
fixed q (that is, fixed relative Lo x), the best result so far known is that

E(x; g, a) = O(x exp (— c(log x)?)),

with ¢ > 0, 1 = 0 < 1. If g is a function of x, the main term x/p(q) in the asympto-
tic formula for ¢ decreases as g increases. Therefore estimates uniform in g are
required. But an estimate which is uniform in g requires a strong restriction on the
range of g (in the present state of knowledge). Such an estimate was first deduced
by Arnold Walfisz (1936) from a theorem of C. L. Siegel (1935) on the location of
the real zeros of Dirichlet’s L-functions with real, nonprincipal, characters. It is as
follows:

E(x; g, a) = O(x exp (—colog x)!/2))

where ¢ is a positive constant, uniformly for ¢ < log®x, where « is a given positive
number however large.

If, on the other hand, one assumes the “‘extended Riemann hypothesis”, that not
only the Riemann zeta-function but all the L-functions, modulo g, of Dirichlet,
have all their zeros in the critical strip on the critical line, one would get the much
stronger estimate: E(x; g, a) = O(x!/2 log2x), uniformly for ¢ < x. This would, if
used on the left-hand side of (1), give a result comparable to Bombieri’s, with
B = A + 2, but even this, it is to be noted, is nof significant if g exceeds x!/2.

Bombieri’s theorem may therefore, and does sometimes, serve as a substitute for
the assumption of the extended Riemann hypothesis, which has far-reaching
implications in number theory. His proof is as remarkable as his result. To explain
it one might perhaps cast a glance backwards.

A sieve, in simple terms, is a combination of (i) a finite sequence 4" of integers,
(ii) a finite set of distinct primes £, and (iii) corresponding to each prime p € £, a
subset £, of residue classes modulo p. If one sieves out, or deletes, from the given
sequence ./, all those integers whose residue class modulo p belongs to Q, for some
p e 2, the problem is to estimate, from above and from below, the number of
integers left over in A~ after the sieving (or deletion).

A sieve is called Jarge or small, according as IQpL the number of residue classes
in £2,, is, on the average, large or small.

If we take 4" to be the sequence of consecutive integers 1, 2, ---, N; £ 1o be the set
of all primes p < N1/2; and Q, to consist of the single residue class 0 (mod p) for
each p < N1/2, we get the (ancient) sieve of Eratosthenes, which is obviously a
small sieve. The elements left over in 4 after the sieving are the integer 1, together
with all primes p, such that N1/2 < p < N.

Viggo Brun was the first to introduce, in 1920, an ingenious sieve method to
prove that every sufficiently large even integer is a sum of two integers, each of
which has not more than nine prime factors. Improvements of Brun’s method were
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made in later years by H. Rademacher, T. Estermann, G, Ricci, and A. A. Buch-
stab; until Atle Selberg, during the years 1946—1951, developed a sieve method
more general and more powerful than Brun’s and its improved versions,

We are here concerned, however, with the method of the large sieve, which is
different from the small sieves of Brun and of Selberg, and which, when combined
with analytical arguments, yields results that are beyond the reach of the other
sieves.

The idea of the Jarge sieve originated with Yu, V., Linnik in 1941, in his attempt
to tackle I. M, Vinogradov’s hypothesis (which is yet to be proved or disproved) on
ho(p), the least quadratic nonresidue modulo p. The hypothesis is that given
e > 0, there exists a constani ¢ = c(¢) such that hy(p) < c¢pe. Linnik sought to
estimate the number of primes p < x, say, for which Ay(p) > pe, for any given
e>0.

Let ny, ng, +++, 0z be Z integers, suchthat M + 1 S m <mp < v <nz S M +
N. Let the prime p be called exceptional, if the number of residue classes not re-
presented by the numbers (n;), j = 1, 2, -, Z, is greater than tp, where  is a fixed
number such that 0 < ¢ < 1. Linnik proved that for any such sequence (1), the
number of exceptional primes p £ N1/2 does not exceed ¢;N/72Z, where ¢; is an
absolute constant. As an application, he proved the striking theorem that the’
number of primes p < N for which the least quadratic nonresidue is greater than
Ne, for a fixed number ¢ > 0, is bounded. It follows that the number of primes
p < X for which the least quadratic nonresidue is greater than pe is < log log X.

In the context of the definition of a sieve, the sequence (1), j = 1, 2, ---, Z, may be
looked upon as the sequence of elements /eft over in the interval [M + 1, M + NJ,
after a sieving has been effected (on the sequence of all integers in that interval, for
example), with a sieving set {Q,} of residue classes modulo p, p < N1/2, which has
the property that for each exceptional p < N1/2, the corresponding 2, has more
than tp elements. Hence the name large sieve.

The next important step was taken by A. Rényi. If Z(p, a) denotes the number of
elements in the given sequence (77;) such that n; = a (mod p), Linnik’s result takes
the form: The number of primes p < N1/2 such that Z(p, a) = 0 for at least ©p
values of a, where 0 < ¢ < 1, does not exceed

e N[w2Z.
Rényi considered instead the sum
#=1
= - 2
Sx=Lr L (Z(p, @) — Z[p)?,
and proved in 1950 that
) Sy S 2NZ, for X = (N/12)1/3,

Again, in the context of the definition of a sieve, we have Z(p, a) = 0 if a € Q2,,
so that

se 2 5 1%l 7
=X D
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which, when combined with (2), gives an upper bound for Z—and also Linnik’s
result provided that X = N1/2,

As an application of his inequality, Rényi proved the striking theorem that every
sufficiently large even integer is the sum of a prime and an almost prime (that is,
an integer which is the product of a bounded number of prime factors).

Though Rényi’s inequality yields more precise information than Linnik’s result
for the range of primes p < N1/3, it does not work for the wider range p < N1/2
of Linnik, which is more appropriate in the context of arithmetical applications.
This defect was sought to be repaired by many mathematicians. It was not until
1965, however, that important further progress was made by K. F. Roth (Mathema-
tika 12 (1965), 1-9) and, independently, by Bombieri (Mathematika 12 (1965),
201-225). Roth proved that Rényi’s inequality (2) holds for X = (N/log N)!/2,
and Bombieri that it holds for X = N1/2 (with < in place of ).

Bombieri proceeded to place Rényi’s inequality in a more general setting and
proved, by a simple and ingenious argument, an inequality for trigonometrical
double sums, which is as follows: Let x;, x, ---, Xz be real numbers which are
d-well-spaced, in the sense that “xk - x,” = 0 > 0 for k # I (where ”0”, for
any real 0, denotes the distance of 6 from the nearest integer). Let T(x) =
DMAN.  a, erinz where the (a,) are complex numbers. Then

R 9\ MEN
® 2|7l s (V+ 2)75 |al

k=1 n=M+1
(Acta Arith. 18 (1971), 401-404; Proc. Internat. Conf. Number Theory, Moscow,
1971). This corresponds, as Bombieri has shown, to something like Bessel’s ine-
quality in a Hilbert space.

If we take x, to be rational, x, = a/g, say, where (a,q) = 1,9 < Q, witha, = 1
forn = n;and a, = O forn # n;, we get (more than) Rényi’s inequality (2) in case
q is a prime, and something similar to the inequality given by Selberg’s upper-bound
sieve, in case ¢ is composite.

Thus many results previously obtained by Selberg’s method can now be proved
by using (3).

Bombieri then considered the analogue of his /arge-sieve inequality (3) for sums
of Dirichlet characters y modulo g instead of trigonometrical sums. The connecting
link is the Gaussian sum

G = X 1(@) exp(@iala),

since
; |G(X)|Z X(’")X(") = (D(Q) Sm—n-qa if (mn, ) = 0,
=0, if (mn, @) > 1,
where
Spg = Zq} exp(2ziam/q)

2=1:(a,g)=1
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is the well-known Ramanujan sum (not to be confused with Sy in (2)).
Vital for Bombieri’s proof of his theorem on arithmetical progressions is the
following inequality: Let Q be any finite set of positive integers, (a,) any complex

numbers. Then
4 2. 1
@ Z q,(q) 3 60| L X0,
Here }.,denotes summation over all characters y modulo g, d(n) denotes the divisor
function, D = D(g) = max,cq d(g), M = M(Q) = max,cqg.

By skilful and repeated application of this inequality, with different choices of
X, Y, and a,, Bombieri deduced a new type of density theorem for the zeros of
L-functions. The theorem gives an estimate for the sum

2 < 7D max(Y — X, M?) Z} d(")lanl2

1
Lo 3|60 Nes T; ),

which is unjform with respect to Q,for } £ @ < 1, T' 2 2. Here N(a, T} x) denotes
the number of zeros of Dirichlet’s functlon L(s, y) in the rectangle « < Re s £ 1,
} £ @ £ 1,|Ims| £ T, in the complex s-plane.

From his density theorem Bombieri deduced his theorem on primes in arith-
metical progressions, by an appeal to classical arguments in the theory of L-func-
tions, combined with an application of the Siegel-Walfisz theorem (stated at the
beginning).

Bombieri’s work has given rise to a general method for treating problems that
were previously solved either on the assumption of the extended Riemann hypo-
thesis, or by Linnik’s ‘dispersion method’, or by highly complicated, ad hoc
methods. It thus furnishes a new approach to such important results as I. M.
Vinogradov’s theorem (1937) that every sufficiently large odd integer is a sum of three
primes, or Linnik’s theorem (1961) that every sufficiently large integer is a sum of a
prime and two squares, or Chen’s result (1967) that every sufficiently large even
integer is a sum of a prime and an integer with at most two prime factors. Bom-
bieri’s theorem represents a deep synthesis of the most important modern methods
in prime number theory. It has not put an end {0 any one question; rather it has led
1o many new ones.

His inequality for sums of Dirichlet characters has been extended to general
multiplicative characters of the form y(n)n#* which are “d-well-spaced”. In con-
sequence, the best bounds so far known have been obtained for N(a, T’ ¥), yielding
as special cases such results as the following: The difference between the consecutive
primes p,;, p, has the estimate p,.; — p, < pi/i2+e, for every e > 0. (It is
known that the Riemann hypothesis implies this with the exponent 1/2 in place
of 7/12.) The “density hypothesis” N(a, T; o) < T2¢1-®*s holds for a > 13/16.
(Here y, is the principal character, so that the zeros are those of Riemann’s
zeta-function.) Bombieri’s method has also been generalized to algebraic
number fields, Many mathematicians have played a part in the development of his
method—H. Davenport, H. Halberstam, P. X. Gallagher, H. L. Montgomery,
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G. Halasz, M. N. Huxley, M. Jutila and, more recently, M. Forti and C. Viola, to
mention but a few. There is little doubt that Bombieri’s theorems have inspired that
development.

2. Univalent functions and the local Bieberbach conjecture. Bombieri’s work on
the local validity of the Bieberbach conjecture is an impressive achievement in an
altogether different branch of mathematics. It shows his power and ingenuity in
attacking problems of ‘hard analysis’.

Let & denote the family of functions f(z) = z + a2% + a3z3 + --- which are
(normalized) holomorphic and univalent in the unit disc |z| < 1. Bieberbach’s
conjecture is that if /(z) € &, then Re a,, < n, with the equality holding only if f(z) =
z/(1 — pz)?, and p»~! = 1. The conjecture has so far been proved for2 < n < 6
on the one hand, and for a large number of subfamilies of & on the other.

In 1965 P. R. Garabedian and M. Schiffer raised the question of the local validity
of that conjecture, thatis: If 2— Re ay is small enough, is it true that n— Re a,, is non-
negative ? They answered it in the affirmative if n is even. They proved the existence
of a positive constant &, say, such that if [2 - a2| < &gy, then Re ay,, < 2m, with
the equality holding if and only if f(z) = z(1 — z)2 = X2, nz”, the Koebe function.

Bombieri proved this in 1967 for all n, odd as well as even, the case of #» odd being
the more difficult (Invent. Math. 4 (1967), 26-67). To be precise, he proved that

. . .n—Rea, R
lllg_glfm > 0, ifniseven,
and
lim inf 7 =RE% 0 if nis odd
w3 3 — Reas ’ ’

where the ‘lim inf” is taken over all functions of the family .#.

An independent, though less direct, proof of this has since been published by
Garabedian and Schiffer (Arch. Rational Mech. Anal. 26 (1967), 1-32).

Bombieri’s proof is based on an ingenious combination of K. Lowner’s ‘para-
metric method’ with the theory of the ‘second variation’ developed by P. L. Duren
and M. Schiffer. He uses the results of A. C. Schaefer and D. C. Spencer on Lowner
curves, as well as an earlier result of his own concerning a set of quadratic forms
(@,), in an infinite number of variables, which had been encountered by Duren
and Schiffer in their theory of the second variation. These quadratic forms Q, have
the property that: (a) if Q, is an indefinite form, then Bieberbach’s conjecture is
false for that n; (b) if Q, is positive definite, then every analytic variation of the
Koebe function decreases Re a,. Duren and Schiffer proved (1962/63) that Q,
is positive definite for n = 2, 3, .-+, 9, and the same was checked with a computer for
all n < 100. Bombieri proved that Q, is positive definite for all n (Boll. Un. Mat.
Ital. (3) 22 (1967), 25-32).

3. Several complex variables. Bombieri’s theorem concerning algebraic values of
meromorphic maps (Invent. Math. 10 (1970), 267-287; 11 (1970), 163-166), moti-
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vated though it is by the theory of transcendental numbers, is an incursion of
geometric integration theory in the analysis of functions of several complex vari-
ables, The theorem is as follows:

THEOREM, Let K be an algebraic number field, Let fi, f2, +++, Sy be meromorphic
JSunctions of finite order in C». Suppose that at least n + 1 of them are algebraically
independent over K, and that for any j with 1 < j < Nandy with 1 £ v < n, the
partial derivative 0f;[0z, is a polynomial in fi, fs, -, fiv with coefficients in K. Then,
the set of points in C* at which all the f; are defined, and have values in K, is contained
in an algebraic hypersurface in C*. (If the given functions are of order < p, then the
degree of the hypersurface £ n(n + 1)p[K: Q] + n.)

The case n = 1 was proved by S. Lang after previous work by Th, Schneider; It
unifies divers results due to A. O. Gelfond and to Schneider, and contains, in parti-
cular, the transcendency of e for & # 0, ¢ algebraic, and of af fora # 0, 1, ¢ and 8
algebraic and § irrational. While Bombieri’s extension does not seem immediately
to lead to new theorems on transcendency, variants of it are applicable to the study
of n-parameter subgroups of algebraic groups (Invent. Math, 11 (1970), 1-14).

But the real interest of the paper, once again, arises from the proof which con-
tains an existence theorem and a structure theorem. The existence theorem, which
generalizes previous work of L. Hormander and of A, Martineau, states that for
any pluri-subharmonic function p on C*, p # — oo, there exists a nonzero entire
function fon C*, with

[|/@[e»® (1 + |2y dz < + oo.
A,

The structure theorem, on the other hand, gives a sufficient condition for a current
of degree (1,1) to be integration on an analytic set of codimension 1. Several authors
had previously attempted, without success, to produce workable conditions of that
type. Bombieri’s result has since been used by F. Reese Harvey and James King
(Invent, Math. 15 (1972), 47-52) to characterize those currents of degree (k, k), k =
1, on a complex manifold that correspond to integration over (linear combinations
of) complex subvarieties, thus setiling a conjecture of P. Lelong which had been
open for several years that those are precisely the positive currents that are d-closed
and whose densities (or Lelong numbers) are locally bounded away from zero. For
his proof, Bombieri makes use of Hérmander’s work on L2-estimates and existence
theorems for solutions of the 0-Neumann problem, besides ideas from H.
Federer’s work in geometric measure theory. It bears the hallmark of a highly
original analyst.

4. I have not spoken about Bombieri’s contributions to the theory of partial
differential equations and minimal surfaces—in particular, to the solution of
Bernstein’s problem in higher dimensions. Nor have I spoken about the fact that
he was among the first to give effective applications of Dwork’s method in the p-
adic approach to André Weil’s zeta-function. But I hope I have said enough to show
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that Bombieri’s versatility and strength have combined to create many original
patterns of ideas which are both rich and inspiring. It is in recognition of these
qualities that he has been awarded a Fields Medal. To him mathematics is a private
garden; may it bring forth many new blooms,

EmnG. TECHNISCHE HOCHSCHULE
ZURICH, SWITZERLAND
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The Work of David Mumford

J. Tate

It is a great pleasure for me to report on Mumford’s work, However I feel there
are many people more qualified than I to do this. I have consulted with some of
them and would like to thank them all for their help, especijally Oscar Zariski.

Mumford’s major work has been a tremendously successful multi-pronged
attack on problems of the existence and structure of varieties of moduli, that is,
varieties whose points parametrize isomorphism classes of some type of geometric
object. Besides this he has made several important contributions to the theory of
algebraic surfaces, I shall begin by mentioning briefly some of the latter and then
will devote most of this talk to a discussion of his work on moduli.

Mumford has carried forward, after Zariski, the project of making algebraic
and rigorous the work of the Italian school on algebraic surfaces. He has done
much to extend Enriques’ theory of classification to characteristic p > 0, where
many new difficulties appear. This work is impossible to describe in a few words
and I shall say no more about it except to remark that our other Field’s Medalist,
Bombieri, has also made important contributions in this area, and that he and
Mumford have recently been continuing their work in collaboration.

We have a good understanding of divisors on an algebraic variety, but our
knowledge about algebraic cycles of codimension > 1 is still very meager. The
first case is that of 0-cycles on an algebraic surface. In particular, what is the struc-
ture of the group of O-cycles of degree 0 modulo the subgroup of cycles rationally
equivalent to zero, i.e., which can be deformed to 0 by a deformation which is
parametrized by a line, This group maps onto the Albanese variety of the surface,
but what about the kernel of this map? Is it “finite-dimensional”? Severi thought
s0; but Mumford proved it is not, if the geometric genus of the surface is = 1.
Mumford’s proof uses methods of Severi, and he remarks that in this case the tech-

© 1975, Canadian Mathematical Congress
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niques of the classical Italian algebraic geometers seem superior to their vaunted
intuition. However, in other cases Mumford has used modern techniques to justify
Italian intuition, as in the construction by him and M. Artin of examples of uni-
rational varieties X which are not rational, based on 2-torsion in H3(X, Z).

Probably Mumford’s most famous result on surfaces is his topological charac-
terization of nonsingularity. Let P be a normal point on an algebraic surface V
in a complex projective space. Mumford showed that if ¥ is topologically a mani-
fold at P, then it is algebraically nonsingular there. Indeed, consider the intersec-
tion K of ¥ with a small sphere about P. This intersection X is 3-dimensional and if
¥ is a manifold at P, then K is a sphere and its fundamental group is trivial. Mum-
ford showed how to compute this fundamental group z;(K) in terms of the diagram
of the resolution of the singularity of ¥ at P, and then he showed that z;(K) is not
trivial unless the diagram is, i.e., unless ¥ is nonsingular at P. A by-product of this
proof is the fact that the Poincaré conjecture holds for the 3-manifolds which occur
as K’s. Mumford’s paper was a critical step between the early work on singularities
of branches of plane curves (where K is a torus knot) and fascinating later develop-
ments. Brieskorn showed that the analogs of Mumford’s results are false in general
for ¥ of higher dimension. Consideration of the corresponding problem there led
to the discovery of some beautiful relations between algebraic geometry and differ-
ential topology, including simple explicit equations for exotic spheres.

Let me now turn to Mumford’s main interest, the theory of varieties of moduli.
This is a central topic in algebraic geometry having its origins in the theory of
elliptic integrals. The development of the algebraic and global aspects of this subject
in recent years is due mainly to Mumford, who attacked it with a brilliant combina-
tion of classical, almost computational, methods and Grothendieck’s new scheme-
theoretic techniques.

Mumford’s first approach was by the 19th century theory of invariants. In fact,
he revived this moribund theory by considering its geometric significance. In pur-
suing an idea of Hilbert, Mumford was led to the crucial notion of ‘“stable” objects
in a moduli problem. The abstract setting behind this notion is the following:
Suppose G is a reductive algebraic group acting on a variety V in projective space
Py by projective transformations. Then the action of G is induced by a linear and
unimodular representation of some finite covering G* of G on the affine cone
AN+l over the ambient Py. Mumford defines a point x € V to be stable for the
action of G on V, relative to the embedding ¥ = Py, if for one (and hence every)
point x* e AN*1 over x, the orbit of x* under G* is closed in AN*1, and the stabilizer
of x* is a finite subgroup of G*. His fundamental theorem is then that the set of
stable points is an open set Vin V, and V/G is a quasi-projective variety.

For example, suppose V = (P,)"is the variety of ordered m-tuples of points in pro-
jective n-space and G is PGL,, acting diagonally on ¥ via the Segre embedding. Then
a point x =(xy, Xp,"**, X,,) € ¥ is stable if and only if for each proper linear subspace
L < P,, the number of points x; € L is strictly less than m(dim L + 1)/(n + 1).
In case n = 1, for example, this means that an m-tuple of points on the
projective line is unstable if more than half the points coalesce. The reason such



THE WORK OF DAVID MUMFORD 13

m-tuples must be excluded is the following: Let P, = (£x1, txp, *+, Xy, Xpi1s "> X)
and Q; = (x3,*, X, " 2X,41,", £71x,,), Where the x; are pairwise distinct. Then
P, is in the same orbit as Q,, for # # 0, oo, but Py = (0,:*, 0, X,,1,*+, X,,) is nOt in
the same orbit as Qg = (x3,**+, X,, 00,-++, 00) unless m = 2r, and even then is not in
general, Thus if we want a separated orbit space in which lim,., (Orbit P,) is
unique, we must exclude Py or Qq; and it is natural to exclude the one with more
than half its components equal.

Using the existence of the orbit spaces ¥, /G, Mumford was able to construct a
moduli scheme over the ring of integers for polarized abelian varieties, relative
Picard schemes (following a suggestion of Grothendieck), and also moduli varieties
for “stable’ vector bundles on a curve in characteristic 0. The meaning of stability
for a vector bundle is that all proper subbundles are less ample than the bundle
itself, if we measure the ampleness of a bundle by the ratio of its degree to its rank,
In the special example V' = (P,)” mentioned above, the results can be proved by
explicit computations which work in any characteristic and even over the ring of
integers, But in its general abstract form Mumford’s theory was limited to charac-
teristic 0 because his proofs used the semisimplicity of linear representations. He
conjectures that in characteristic p, linear representations of the classical semisimple
groups have the property that complementary to a stable line in such a representa-
tion there is always a stable hypersurface (though not necessarily a stable hyper-
plane which would exist if the representation were semisimple). If this conjecture is
true! then Mumford’s treatment of geometric invariant theory would work in char-
acteristic p. Seshadri has proved the conjecture in case of SL,. He has also shown
recently that the conjecture can be circumvented, by giving different more compli-
cated proofs for the main results of the theory which work in any characteristic.

For moduli of abelian varieties and curves, Mumford has given more refined
constructions than those furnished by geometric invariant theory. In three long
papers in Inventiones Mathematicae he has developed an algebraic theory of theta
functions, Classically, over the complex numbers, a theta function for an abelian
variety A4 can be thought of as a complex function on the universal covering space
Hi(4, R) which transforms in a certain way under the action of H;(4, Z). For
Mumford, over any algebraically closed field %, a theta function is a k-valued func-
tion on IT,cs H1(4, Q,) (étale homology) which transforms in a certain way under
I,es Hi(4, Z)). Here S is any finite set of primes / # char (k), though in treating
some of the deeper aspects of the theory Mumford assumed 2 € S. In order to get
an idea of what these theta functions accomplish let us consider a classical special
case, Let 4 be an elliptic curve over C' with its points of order 4 marked. Then
we gel a canonical embedding 4 P32 via the theta functions 0[¢]; @, b = 0, 1,
Let 0, be the origin on 4, whose coordinates in P are the “theta Nullwerte”.
Then A is the intersection of all quadric surfaces in P3 which pass through the orbit
of 04 under a certain action of (Z/4Z) x (Z|4Z) on P,. Thus 0, determines 4 and

1(ADDED DURING CORRECTION OF PROOFS). The conjecture is true; shortly after the Congress, it
was proved by W. Haboush in general and by E. Formanek and C. Procesi for GL(») and SL(#n).
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can be viewed as a “modulus”. Moreover, 0, lies on the quartic curve 0[J¢ =
0[91* + O[3]* in the plane 6[}] = 0, and that curve minus a finite set of points is a
variety of moduli for elliptic curves with their points of order 4 marked. Mumford’s
theory generalizes this construction to abelian varieties of any dimension, with
points of any order =3 marked, in any characteristic # 2. The moduli varieties so
obtained have a natural projective embedding, and their closure in that embedding
is, essentially, an algebraic version of Satake’s topological compactification of
Siegel’s moduli spaces. Besides these applications to moduli, the theory gives new
tools for the study of a single abelian variety by furnishing canonical bases for all
linear systems on it.

Next I want to mention briefly p-adic uniformization. Motivated by the study of
the boundary of moduli varieties for curves, i.e., of how nonsingular curves can
degenerate, Mumford was led to introduce p-adic Schoitky groups, and to show
how one can obtain certain p-adic curves of genus =2 transcendentally as the
quotient by such groups of the p-adic projective line minus a Cantor set. The
corresponding theory for genus 1 was discovered by the author, but the generali-
zation to higher genus was far from obvious. Besides its significance for moduli,
Mumford’s construction is of interest in itself as a highly nontrivial example of
“rigid” p-adic analysis.

The theta functions and p-adic uniformization give some insight into what hap-
pens on the boundary of the varieties of moduli of curves and abelian varieties,
but a much more detailed picture can now be obtained by Mumford’s theory of
toroidal embeddings. This theory, which unifies ideas that had appeared earlier
in the works of several investigators, reduces the study of certain types of varieties
and singularities to combinatorial problems in a space of ‘“‘exponents”. The local
model for a toroidal embedding is called a torus embedding. This is a compacti-
fication ¥ of a torus ¥ such that the action of ¥ on itself by translation extends to
an action of ¥ on V. The coordinate ring of ¥ is linearly spanned by the monomials
xe = xp xg - x%, n = dim ¥V, with positive or negative integer exponents a;.
Viewing the exponent vectors a as integral points in Euclidean n-space, define a
rational cone in that space to be a set consisting of »’s such that (r, @) = O forae S,
where S is some finite set of exponent vectors. For each rational cone ¢, the mo-
nomials x2 such that (r, a) = 0 for all r € ¢ span the coordinate ring of an affine
variety ¥V(¢) which contains ¥ as an open dense subvariety, if ¢ contains no nonzero
linear subspace of R”. Now if we decompose R* into the union of a finite number
of rational cones o, in such a way that each intersection g, () o is a face of o, and
0, then the union of the ¥(g,) is a compactification of ¥ of the type desired. All
such compactifications ¥ of ¥ can be obtained in this way and the invariant sheaves
of ideals on them can be described in terms of the decomposition into cones. One
can also read off whether ¥ is nonsingular, and if it is not one can desingularize it
by suitably subdividing the decomposition. In short, there is a whole dictionary for
translating questions about the algebraic geometry of ¥ and ¥ into combinatorial
questions about decompositions of R” into rational cones.

Mumford with the help of his coworkers has used these techniques to prove
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the following semistable reduction theorem, If a family of varieties X; over C,
in general nonsingular, is parametrized by a parameter z on a curve C, and if X,
is singular, then one can pull back the family to a ramified covering of C in a neigh-
borhood of t; and blow it up over #, in such a way that the new singular fiber is of
the stablest possible kind, i.e., is a divisor whose components have multiplicities 1
and cross transversally., The corresponding problem in characteristic p is open.
For curves in characteristic p the result was proved by Mumford and Deligne and
was a crucial step in their proof of the irreducibility of the moduli variety for curves
of given genus,

Toroidal embeddings can also be used to construct explicit resolutions of the
singularities of the projective varieties D/I", where D is a bounded symmetric do-
main, /" is an arithmetic group, and the bar denotes the “minimal” compactifica-
tion of Baily and Borel. The construction of these resolutions is a big step forward.
With them one has a powerful tool to analyse the behavior of functions at the
“boundary”, compute numerical invariants, and, generally, study the finer struc-
ture of these varieties.

I hope this report, incomplete as it is, gives some idea of Mumford’s achieve-
ments and their importance. I heartily congratulate him on them and wish him
well for the future!

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS 02138, U.S.A.
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Critical Points of Smooth Functions*

V. 1. Arnold

The critical points of a smooth function are the points where the differential
vanishes. A critical point is nondegenerate if the second differential is a nondegener-
ate quadratic form. In some neighbourhood of a nondegenerate critical point the
function can be represented in the Morse normal form

f=+x}+ ~ + xZ + const

using suitable local coordinates.

Every degenerate critical point bifurcates into some nondegenerate points after
an arbitrarily small deformation (“‘morsification”). So generically, functions have
no degenerate critical points.

Degenerate critical points appear naturally when the function depends upon
parameters. For example, the function f(x) = x3 — #x has a degenerate critical
point for the value t = 0 of the parameter. Every family of functions close enough
to this one-parameter family has a similar degenerate critical point for some small
value of the parameter,

When the parameters are few, only the simplest degeneracies appear generically,
and one can explicitly list them, giving normal forms for functions and families.
When the number of parameters increases, more complicated degeneracies appear,
and their classification seems hopeless. In recent years it has been found, however,
that at least the initial part of the hierarchy of singularities is remarkably simple,
as is described below.

Families of functions appear in all branches of analysis and mathematical
physics. In this report three applications will be discussed: Lagrange singularities
(or caustics), Legendre singularities (or wavefronts), and oscillating integrals (or
stationary phase method).

*Delivered by E. Brieskorn,
© 1975, Canadian Mathematical Congress
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Unexpectedly enough, the classification of the simplest singularities in all these
problems turns out to be related to the Lie, Coxeter, and Weyl groups A4,, D,, E,,
to Artin’s and Brieskorn’s braid groups, and to the classification of the platonics
in Euclidean three space.

The occurrence of the diagrams 4, D, E and of Coxeter groups in such different
situations as the simple Lie algebra theory, the classification of simple categories of
linear spaces (Gabriel, Gel’fand-Ponomarev, Roiter-Nasarova), the Kodaira
classification of elliptic curves degenerations, the theory of platonics, and the theory
of simple singularities gives an impression of a wonderful chain of coincidences of
the results of independent classifications (certain relations between some of them
being known, others suspected). As we will now see, the classification of more com-
plex singularities provides newwonderful coincidences, where Lobatchevski triangles
and automorphic functions take part.

1. Classification of critical points. Let f be a germ of a holomorphic function at a
critical point O. The multiplicity (or the Milnor number) u of the critical point is
defined as the number of nondegenerate critical points to which O bifurcates after
amorsification.

Two germs of functions are equivalent if one of them can be transformed into the
other by a local diffeomorphism of the domain space. The jet (the Taylor polyno-
mial) of a function at O is sufficient if it determines the germ up to equivalence.

Every germ of a smooth function at a critical point of finite multiplicity is
equivalent to a germ of a polynomial (namely, of its Taylor polynomial), and its
jet of sufficiently high order is sufficient (see Tougeron [76], M. Artin [14], Mather
[53], and also [3], for four different proofs).

So, the classification problem for critical points with finite x is reduced to a
sequence of algebraic problems dealing with linear actions of Lie groups on finite
dimensional spaces of jets. The first steps in solving these algebraic problems were
taken by Thom [70], Mather [53], and Siersma [66].

The classification of the first degeneracies is discrete, but the further types of
critical points depend upon parameters (moduli). One finds that it is the classi-
fication of singularities with a small number of moduli that is nice while the classi-
fication of classes with small 4 or small codimension is not.

Let us call modality (or number of moduli) of a point x € X under the action of a
Lie group G on X the minimum number m such that some neighbourhood of x is
covered by a finite number of m-parameter families of orbits of the group G. The
point x is called simple if its modality is O, that is, if some neighbourhood of x
intersects only a finite number of orbits.

The modality of the germ of a function at a critical point is the modality of its
sufficient jet in the space of jets of functions with critical point O and critical value 0.

Two germs of holomorphic functions with different numbers of arguments are
called stably equivalent if they become equivalent after the direct addition of a
nondegenerate quadratic form of the suitable number of variables.
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THEOREM 1 (SEE [6]). Up to stable equivalence, simple germs of holomorphic func-
tions are exactly the following germs:

Ay f(x) = x+*, Dy f(x, y) = x%y + yF,
Eg:f(x,y) = x5+ y4,  Ep:f(x,») = x3 + x5,
Eg: f(x,y) = x3 + )5,

(See Figure 1.)

Ta ,3,3 Tz.4.4 T, ,3,6

FiGure 1. All the adherences of simple and parabolic singularities.

THEOREM 2 (SEE [7]). Unimodular germs (that is, germs of modality m = 1) of
holomorphic functions belong (up to stable equivalence) either to the following series
of one-parameter families of functions:

Tp o riS(x, 9, 2) = axyz 4+ x2 + y2 + 27, % + % + —} <l,a#0,
or to one of the following three families:
T3,5,5: (%, p,2) = x3 + y® + 28 + axyz, a + 27 #0,
T2.4,4:f(x=y,z)=x4+y4+22+ax2y2, a? ’7&4,

Ty 8,6: /(% p,2) = X3 + y5 + 22 + ax?y?, 4a8 + 27 # 0,

or to one of the fourteen “‘exceptional’’ one-parameter families, given by the table
below (whose columns 3—7 will be explained later).

There also exist tables of normal forms for all functions of two variables with
nontrivial 3-jets [9] or nontrivial 4-jets, and tables of real normal forms.

THEOREM 3 (SEE [6], [7]). The set of all nonsimple germs of functions of n Z 3
variables has codimension 6, and the set of germs with modality m > 1 has codimen-
sion 10 in the space of all germs of functions with critical value 0.

Therefore every s-parameter family of functions can be made generic by a small
variation, so that all germs of functions for all values of parameters will be stably
equivalent to the germs of Theorem 1 (+ const ) if s < 6, or to the germs of The-
orems 1 and 2, if s < 10,

2. Factor singularities. The group SU(2) acts linearly on C2. Discrete subgroups
of SU(2) are known as binary groups of a polygon, a dihedron, a tetrahedron, a
cube, or of an icosahedron (because they define the corresponding subgroups of the
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rotation group of the sphere CP! after factoring SU(2) by its center + E).

The quotient space C'2/I, for a binary group 7', is an algebraic surface with one
singular point,

The algebra of polynomials in two variables invariant under /" possesses three
generators, The relation (syzygy) between these generators is exactly the equation of
the quotient variety C?%/I", embedded in C3, The following theorem has been known
since the time of H, A, Schwarz,

THEOREM 4 (SEE [43], [41], [56], [18]). All the surfaces C?|I' for binary groups I
have simple singularities of types A, (for polygons), D, (for dihedrons), Eg (for the
tetrahedron), E; (for the cube), or Eg (for the icosahedron).

Now let us consider the group SU(1,1) of 2 x 2 matrices with determinant one
preserving the quadratic form |Z;|2—|Zp|%. This group acts on the set P of
vectors in C? with positive value on this form. A discrete group of motions of the
Lobatchevski plane with compact fundamental domain defines a “binary subgroup”
I' = SU(1, 1) and an algebrajc surface M = (P/I") U O with singular point O, The
coordinate ring of M is isomorphic to the ring of integer /';-automorphic forms.

Let 4 be a Lobatchevski triangle with angles z/p, z/q, =/r. The reflections in its
sides define a discrete group, and motions form a subgroup of index two in it, Thus
for every such triangle 4 there is a binary group of the triangle in SU(1,1).

The study of the 14 exceptional singularities led I. V. Dolgatchev to the following
result.

THEOREM 5 (SEE DOLGATCHEV [27]). There exist exactly 14 Lobatchevski triangles
Jor which the surfaces M = (P/I") U O, I' the binary group of the triangle, allow
embeddings in C3 (in other words, for exactly 14 triangles the algebra of integer
automorphic forms allows three generators). These 14 quotient surfaces have at O
exactly (the 14) exceptional quasi-homogeneous unimodular singularities (see Theo-
rem 2 above). The values of p, q, r are given in the column under *‘ Dolgatchey numbers”
in the table.

The binary group for Eg is PSL(2, F5); and for Kj, it is PSL(2, Fy) (Klein [43]).
This example was the starting point of Dolgatchev’s work.

3. Quadratic forms of singularities. To each isolated critical point of a holomor-
phic function fin n variables one can associate a manifold ¥ with boundary aV. Vis
the Jocal nonsingular level manifold of real dimension 2n — 2. Leil us consider
a small ball with its centre at the critical point. Then ¥ is the part of a level set
J~Y(2) inside the ball (for a z sufficiently close to the critical value) (Figure 2).

FIGURE 2. The local nonsingular level manifold.
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[The boundary 9¥ provides standard examples in differential topology, e.g., for
the simple critical point Ejy in five variables, 8V is one of the exotic 7-dimensional
spheres of Milnor, which is homeomorphic but not diffemorphic to S7. By attaching
a disc to @V for Ej in seven variables, one obtains a nonsmoothable 12-manifold
(see Hirzebruch [42], Brieskorn [19], Milnor [56], Kuiper [44]).]

Milnor has proved that the local level manifold ¥2#-2 js homotopically equiva-
lent to a bouquet of y spheres S*~1, so H, (¥, Z) = Z* (Milnor [56], Brieskorn
[24]). The intersection index defines on H,,_, an integral bilinear form.

The quadratic form of a singularity is the self-intersection form on the homology
of the nonsingular level manifold of a function in » = 3 mod 4 variables, stably
equivalent to the given function. [It is convenient to add squares to the function to
obtain a symmetric intersection form. The effect of adding squares (or other direct
summands) is described by the Sebastiani-Thom theorem [64]; see also [32].]

A singularity of a hypersurface is called elliptic (resp. parabolic or hyperbolic),
if its quadratic form is negative definite (resp. nonpositive, or has 1 positive
square).

Elliptic singularities have been classified by Tjurina [73].

THEOREM 6 (SEE [73], [6], [71]). Elliptic singularities of hypersurfaces are exactly
the simple singularities A, D, E of Theorem 1. The parabolic singularities are exactly
T3,3,3 To.44and Ty 3¢ of Theorem 2. The hyperbolic singularities are exactly
Tpg e Withlfp + 1/g + 1/r < 1.

The assertion on parabolic singularities has been formulated as a conjecture by
Milnor, inspired by Wagreich’s work [80].

It is convenient to describe quadratic forms of singularities using Dynkin (or
Coxeter) diagrams. Such a diagram is a graph, whose points correspond to “‘vanish-
ing cycles” (basis vectors with square — 2 in H,_;). Two points are connected by k
lines if the scalar product of corresponding vectors is equal to k, e.g. -—-is a diagram
for — 2x2 + 2x;x, — 2x3.

Very effective methods for determining diagrams of singularities have been
elaborated by A. M. Gabrielov [32], [33] and S. M. Gusein-Zade [37], [38]. The
method of the latter gives the diagrams for all functions in two variables directly
from the picture of level curves of a convenient real morsification. Recently
A’Campo has independently rediscovered the Gusein-Zade method.

The quadratic forms of simple singularities 4, D, E are given by standard
diagrams (Hirzebruch [42]):

Ak: —o—v::e o—0, Dk;o—o— see o—<, E6 {r——0—o—8

E7 . v—o——I—H—a s E 8-
Gabrielov [32], [33] has found the quadratic forms for all unimodular singulari-
ties. Let z,, ,, ,, denote the quadratic form, defined by a diagram having the shape

of a letter T, with py, ps, ps, points on its three closed segments (e.8., Ey = 73,3, 4).
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THEOREM 7 (SEE [7], [32], [33]). The quadratic form of every hyperbolic (parabolic)
singularity Ty,,,, is a direct sum t,,, . @ 0 (where 0 is a O-form in one variable). The
quadratic forms of the 14 exceptional singularities are of the form t,,, ® (1),
where the 14 triples (p,q,r) are given by the column “Gabrielov numbers” of the
table above,

4, The strange duality. The comparison of Dolgatchev and Gabrielov numbers
of the 14 exceptional singularities leads to the following,

THEOREM 8. Gabrielov numbers of every exceptional singularity are Dolgatchey
numbers of another one,; the Gabiijelov numbers of the latter are the Dolgatchey
numbers of the former.

So there is an involution which transposes the eight singularities Qo < Ky,
O <« Z13, Zy; < Ky3, S;3 > Wiz and leaves invariant all the six other (having
multiplicity & = 12) (Figure 3).

FiGuRe 3. The pyramid of the 14 exceptional singularities.

There is no evident relation between singularities dual to each other (or between
their Lobatchevski triangles, or quadratic forms), nor between Gabrielov and
Dolgatchev numbers of the same singularity.

When Dolgatchev first reported his theorem, D. B. Fuks remarked that the sum
of the multiplicity x4 with the three Dolgatchev numbers is 24 for all the exceptional
singularities but one (where Dolgaichev made some mistake).

This remark of Fuks joined to Theorem 8 implies that the sum of all the six
Dolgatchev and Gabrielov numbers is 24 for any of the 14 exceptional singularities.
One can also see that dual singularities are exactly the singularities with the same
Coxeter number (defined below). There is no explanation for all these empirical
facts. Singularity theory is, in its present state, an experimental science.

5. Versal deformation and the level bifurcation set. The deformations of a
function f are the germs at O of smooth mappings from finite-dimensional “base
spaces” to the function space which map O to f. A deformation is called versal if
this mapping is transversal (in an understandable sense) to the orbit of funder the
action of the pseudo-group of diffecomorphisms of the argument space. If' the
dimension of the base space has the minimal possible value (equal to the codimen-
sion of the orbit), the deformation is called miniversal.
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One can define versal deformations for germs of functions. A germ of a function
at a critical point of finite multiplicity x allows a y-parameter miniversal deforma-
tion; all other deformations are equivalent to deformations induced from this one
by mappings of base spaces (for the proof see Tjurina [74], Mather [53], Latour
[46], Zakaljukin [84]).

The local algebra of the germ of a function f at a point O is the factor algebra of
the algebra of (formal or convergent) series at O by the ideal generated by the partial
derivatives of /. The dimension of this algebra as a module over the constant func-
tions (C or R) is exactly the multiplicity 4 of f'(see Palamodov [59]).

One can choose as a miniversal deformation of the germ of fat O the deformation
A—f+ Aey + -+ + A.e, where the functions e; define the generators of the
local algebra as a module over the constants.

Let us fix some miniversal deformation of the germ of f at the origin. The level
bifurcation set for fis the germ at O of the hypersurface in the base space, formed by
all the values of the parameter A such that 0 is a critical value for the corresponding
function near the origin.

The complement to this bifurcation set is the base space of the fibration, whose
typical fibre is a nonsingular level set of f. The action of the fundamental group of
this complement on the homology of the fibre is called the monodromy of the sin-
gularity, and its image is called monodromy group.

THEOREM 9 (SEE [6]). The complement of the level bifurcation set of a simple
singularity is a K(z, 1) space, where = is the corresponding braid group (defined by E.
Artin for the case A, and by E. Brieskorn in the general case; see [21], [22], [23]).
This complement is the space of regular orbits of the action of the corresponding
Coxeter group on the complexification of the Euclidean space R'. The monodromy
group of a simple singularity is the natural representation of the braid group on the
Coxeter group.

In case E the proof uses one theorem of Deligne [26] and one of Brieskorn [20].

The topology of the complement to the bifurcation subsets seems to be very
interesting, and might bring some algebraic structure to the amorphous set of
singularity classes. The few results known on the homology (see [4], [22]) show
promising relations to loop spaces of the sphere (G. Segal [65], Fuks [30], [31]);
there exist also some relations to pseudo-isotopies (Cerf [25], Thom [71]) and to the
algebraic K-theory (Volodin [79], Wagoner [81], Hatcher [39]).

Returning to the level bifurcation set for a function at a critical point of multi-
plicity u, let us consider a straight line C! near the origin of the base space C¥ of
the miniversal deformation. A generic C! intersects the bifurcation set at p dif-
ferent points near O. Let us fix such a C! and call these y points distinguished points.

Fix a base point in C1 (different from the y distinguished points), and let ¥ be
the fibre of our fibration over the base point (¥ is the nonsingular local level mani-
fold). Let us choose u distinguished paths, coming from the base point to the u
distinguished points and having no intersections outside the base point. The fibre
over a point near the distinguished one has a vanishing cycle of Picard-Lefshetz
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(that is, an embedded sphere S#~! which generates the homology of the local level
manifold at the distinguished point) (Figure 4).

U
[ ==

FIGURE 4, A distinguisted vanishing cycle.

Returning to the base point along the distinguished path, one defines a distin-
guished vanishing cycle in H,_1(V'), The u distinguished cycles thus obtained form
the distinguished basis of H,_, (Lamotke [45], Gabrielov [32]). The fundamental
group of the complement to the level bifurcation set is generated by the y distin-
guished loops on C1; one obtains these loops from the distinguished paths, turning
around the distinguished points (the fundamental group theorem of Zariski [85],
see also [77], [48]).

Now let us suppose that # is odd (# is the number of variables). In this case the
action of every distinguished generator of the fundamental group on the homology
of V is the reflection in the orthogonal complement to the distinguished vanishing
cycle (the Picard-Lefshetz theorem).

So, to calculate the monodromy group of a singularity it is sufficient to find the
Dynkin diagram for the base formed by the u distinguished vanished cycles. The
first important examples of this were given by Pham (see Pham [60], Brieskorn
[19]): The Pham basis is in fact a distinguished one. Articles of Gabrielov [32], [33]
and of Gusein-Zade [37], [38] include many examples of such diagrams (e.g., [33]
includes all the unimodular singularities and [38] all the singularities stably equiv-
alent to functions of two variables).

The Dynkin diagram for a distinguished basis is always connected (Lazzeri [47],
see also [34]). It follows that the critical point cannot bifurcate if the critical value
does not.

The classical monodromy of a function germ f'is the action on H,_;(¥) of the
product of all distinguished generators. This operator is related to the asymptotics
of different integrals containing £, and it is important to calculate it (see, e.g.,
Milnor and Orlik [57], Brieskorn [24], A’Campo [1], Malgrange [51]). If the diagram
for a distinguished basis is known, the calculation of the classical monodromy is
reduced to a multiplication of matrices.

For simple singularities, the classical monodromy operator is the Coxeter ele-
ment of the Coxeter group. Its order N is the Coxeter number N(4,) = k + 1,
N(D,) = 2k — 2, N(Eg) = 12, N(E;) = 18, N(Eg) = 30.

A’Campo [2] has proved that the classical monodromy operator for degenerate
singularities is never the identity.

6. The function bifurcation set. Let m?2 be the space of germs of functions with
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critical value O of the critical point O € C”. The group of germs of diffcomorphisms
of C* preserving O acts on m?% A4 germ T of a manifold of minimal dimension,
transversal to the orbit of fin m?, has dimension  — 1. One can consider the em-
bedding of T as a (4 — 1)-parameter deformation of the germ f. This deforma-
tion, as any other deformation, is induced from the miniversal deformation by some
mapping of the base spaces 7: T' — C4.

The level bifurcation set 3 is the image of T under t. 2 is irreducible and has a
nonsingular normalisation T (see Teissier [68], Gabrielov [34]).

Let m be the space of germs at O of functions with value 0 at O (O not necessarily
being a critical point). The deformation inside this class will be called restricted
deformations. A miniversal restricted deformation has x4 — 1 parameters. We
obtain an extended miniversal deformation with y parameters from the restricted
one by adding an arbitrary constant at the yth parameter.

Let us fix the representative of a miniversal restricted deformation of a germ f.
One calls the points in the base space C#~! for which the associated function has
less than 4 different critical values near O the function bifurcation points. The set
of all such points is the function bifuracation subset for f; this is a hypersurface 4
in C#~1 (more precisely, we will consider the germ of 4 at O) (Figure 5).

FIGURE 5. The level bifurcation set 2 and the function bifurcation set 4 for A,.

THEOREM 10 (SEE [67], [34]). The restriction to the level bifurcation set 2 of the
natural mapping p: Ck — C#1 from the base space of the extended miniversal de-
Jformation to that of the restricted one defines a u-fold covering over the complement
to 4 in Cr~1(in some neighbourhood of O). The group of this covering is the whole
symmetric group, S,,.

THEOREM 11 (LOODENGA [50], L1AscHKO [9]). For simple germs of functions the
complement of the function bifurcation set (in some neighbourhood of O in C#Y)is a
K(z ,1) space, where = is a subgroup of finite index v = u!N*W~-1 (N = Coxeter
number, W = order of the Weyl group) in the Artin braid group with y strings.

The function bifurcation set 4 is the union of two hypersurfaces 4, and 4y; 4,
corresponds to functions having degenerate critical points, and 4, to functions
having coincident critical values.

The smooth mapping p o 7:T# 1 — C#~1 from the transversal space to the base
space of the restricted deformation has 4; as the critical value set and defines a
p-fold covering over the complement to 4.
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The hypersurface 4, is called the caustic, and 4, the cut locus (or the Maxwell
stratum).

7. Lagrange singularities and caustic classification. One can see caustics on a wall
lit up by sun rays reflected by some curved surface (e.g., by the inside surface of a
cup). Moving the cup, one can see that generic caustics allow only standard singu-
larities, while more complicated singularities bifurcate into standard ones under
small perturbation.

The study of caustics is a part of the theory of Lagrange singularities (see [6] and
articles of J. Guckenheimer [36], A. Weinstein [82]), Hormander [40]) similar to the
usual theory of singularities of smooth mappings of Whitney, Thom, and Mather
(183, [69), [53)).

The symplectic structure on a manifold M?2» is a closed 2-form w, nondegenerate
at every point of M.

A Lagrange submanifold of a symplectic manifold (M2, w) is a submanifold of
the greatest possible dimension where w vanishes (that is, of dimension n). The
fibration p: M2 — B is a Lagrange fibration if all its fibres are Lagrange sub-
manifolds. A typical example is the cotangent fibration 7%*B — B (the “phase
space” of classical mechanics).

Let i : L -+ M be the embedding from a Largrange submanifold to the total
space of a Lagrange fibration p : M — B. Then poi: L — B is called a Lagrange
mapping, and one calls its set of critical value caustics.

A Lagrange equivalence is a mapping between two Lagrange fibrations respecting
the symplectic structure. Two Lagrange mappings are equivalent iff there
exists a Lagrange equivalence which maps the first of the corresponding
Lagrange submanifolds on the second, Caustics of equivalent mappings are diffeo-
morphic.

A Lagrange mapping is stable at a point O iff every Lagrange mapping, close
enough to the given one, has, al some point near O, a germ equivalent to the given
germ at O.

The germ of a Lagrange mapping is simple iff all nearby germs belong to a finite
number of equivalence classes. A simple germ can be nonstable and a stable germ
can be nonsimple.

THEOREM 12 (SEE [6]). Simple stable germs of Lagrange mappings are classified
by the A, D, and E singularities. Iff n < 5 every Lagrange mapping of L" can be
approximated by a mapping whose germ at every point is stable and simple.

We give below an explicit description of Lagrange germs of the types A4, D, and
E, listing coordinate normal forms. It follows from the list, for example, that gen-
eric caustics in three-space have besides normal crossings only Lagrange singulari-
ties Az (cuspidal edges), discrete point singularities 4, (swallow tails) and D%
(points of contact of three cuspidal edges, two of which may be complex) (Figure 6).

8. Legendre singularities and classification of wavefronts. To obtain an example
of a wavefront one can starl from an ellipse, construct inside normals, and choose
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FIGURE 6. Generic singularities of the caustics in the 3-space.

points at the distance f from the ellipse points on the normals (Figure 7). The curve
so obtained may have singularities which cannot be removed by a small variation of
the initial ellipse. The study of front singularities is a part of the theory of Legendre
singularities (see [10], [11]; the name comes from classical “Legendre transfor-
mation”, which provides typical examples of Legendre singularities).

FIGURE 7. The singularities of a wavefront.

The theory of Legendre singularities is parallel to the theory of Lagrange singu-
larities, with the following differences: One has to replace the symplectic structure
with the contact one, the affine structure with the projective one, gradients with
Legendre transformations, functions with hypersurfaces, and so on.

The parallelism between the two theories is the real origin of the Hamilton
“optical-mechanical analogy”.

The contact structure on a manifold M27*1 is a field of tangent hyperplanes
(called contact planes), verifying the ‘“maximum nonintegrability” condition (if
a is the 1-form defining contact planes, @ A (da)” is nondegenerate). Standard ex-
amples of contact manifolds are the total space of the projective colangent bundle
PT*V»*1 and the manifold of 1-jets of functions J1(W#, R) with their natural con-
tact structures (defined by the integrability conditions).

The Legendre submanifold of a contact manifold M27t1 is an integral submani-
fold of maximal dimension (that is, of dimension n). The fibration p : M2*1 —
Brtlis a Legendre fibration if all its fibres are Legendre submanifolds.

A typical example is the projective cotangent fibration p: PT*B — B. All
Legendre fibrations of the same dimension are locally equivalent (locally = near
every point of the total space). Fibres of a Legendre fibration locally have the
structure of a projective space defined intrinsically by the Legendre fibration.

Let i : L* - M2+l be an embedding of a Legendre submanifold in the total
space of a Legendre fibration p : M2#*1 — Bn+1 The mapping poi : L* — B#*l js
then the Legendre mapping, and its image the firont.
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Legendre equivalence, stability, and simplicity of germs are defined in the same
way as in the Lagrange case.

THEOREM 13 (SEE [10], [11]). Simple stable germs of Legendre mappings are class-
ified by the A, D, and E singularities. Iff n < 5, every Legendre mapping of L" can
be approximated by a mapping whose germs at all points are stable and simple.

We give the list of explicit normal forms for simple stable Legendre germs in the
next section. It follows from the list, e.g., that generic fronts in three-space have
(besides normal crossings) only Legendre singularities 4, (cuspidal edges) and A3
(swallow tails). The singularity of the moving front slips along the caustic, and at
some discrete moment may change its shape under some standard “‘catastrophe”
of the types 4, or Df (compare the pictures in the book of Thom [70]) (Figure 8).

Ficure 8, The modifications of the wavefronts near the catastrophes 4, and Djf.

There exists a symplectisation functor associating to a contact M?#*1 a sym-
plectic E2#t2, However, the symplectisations of generic Legendre singularities are
very special (conical) Lagrange singularities. The right way to deal with the Le-
gendre case is rather the contactisation functor, associating to a symplectic M?#
a contact E**1 (defined, in fact, either for germs or for symplectic structures
defining an integer class in Hy(M?21)).

9. Normal forms for caustics and fronts. I shall use here the old-fashioned co-
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ordinate notations: Let F(x, 2) be a deformation of a function f(x) in k variables,
x € R* and one parameter, A€ R!. Let n = k + ], and let us consider a symplectic
space R?” with coordinates x € R¥, y e R*", A€ R!, k € R",with a symplectic structure
o = dx A dy + dk A d) and with a Lagrange fibration structure (x, y, A, £) —
(», A). The equations

) y=0Fox, k= — 0FJoA

define a Lagrange submanifold, and we denote by % the Lagrange mapping so
obtained.
Let us construct two more families of functions in the variable x

O(x; A, p,2) = F(x,)) —z — xp
(parameters are A € R!, y€ R¥, z€ R);
G(x;a,2) = Fla+ x,2) — F(a, ) — xFi(a, A)
(parameters are a € Rk, A € R). Let G(x, O, O) be g(x).

THEOREM 14. The following conditions are equivalent ;

(i) The germ of % at the point x = 0, A = 0 is Lagrange stable.
(ii) The deformation G is transversal to the orbit of g in m2.

If f e m2, each of the conditions (i), (ii) is equivalent to :

(iii) The deformation @ is a versal defo)rmation of fat O.

THEOREM 15 (SEE [6]). Simple stable germs of Lagrange mappings are equivalent to
the germs & defined by (1), where F is a deformation of a simple germ of f such that
the deformation @ is versal.

For example, if /' = x* (the 43 case), one can choose F = x* + Ax?(the complete
list of Ffor all the cases 4, D, E can be found in [6]).

Turning now to the Legendre case, let us extend R?” to R2"*1 = R?* x R! and
let z be the coordinate in Rl. Let us define the contact structure of R?#*! by the
form a = xdy + kdA + dz and the Legendre fibration by (x, y, 4, #; z) — (3, 4; 2).

The equations

) y = 0F/ox, k= — 0F[0A, z = F — x0F/ox

define a Legendre submanifold, and we denote by .#’ the Legendre mapping so
obtained.,

[Every Lagrange (resp. Legendre) submanifold or mapping in the standard co-
ordinate symplectic (contact) manifold is locally defined by at least one of the 27
formulae (1) (resp. (2)), corresponding to the 27 choices of a coordinate ‘“x-sub-
space” R* ¢ R*.]

THEOREM 16 (SEE [10], [11]). Simple stable germs of Legendre mappings are equiva-
lent to the germs &, defined by (2), F being the same as in the previous theorem,

Besides the argument change group, there are the multiplications by the group of
nonvanishing functions acting on the function space. The direct product of those
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two groups acts on the function space too. One calls the deformation of a function f
versal for levels, if it is transversal to the orbit of this group.

As a versal for level deformation of a germ of f'at O one can choose the deforma-
tion A = f+ Aey + ++- + A€, the e, defining generators over R of the factor
algebra of power series at O by the ideal (£, 9f]ox).

The product of the group of multiplications by nonvanishing germs at O with
the group of diffeomorphisms leaving O fixed acts on m?.

THEOREM 17. The following conditions are equivalent

(i") The germ of %' at the point x = 0, A = 0 is Legendre stable.

(ii') The deformation G is transversal to the orbit of g under the action of the
product group on m2,

If fe w2, each of the conditions (i), (ii") is equivalent to:

(ili") The deformation O is versal for levels.

Comparing these results with those of previous sections, we can formulate

THEOREM 18, The mapping © from the transversal space T#"1 to the base space of
the miniversal deformation is a Legendre mapping, the level bifurcation set being its
JSront. The mapping pov from the transversal space T to the restricted miniversal
deformation space is a Lagrange mapping, the function bifurcation set being its
caustic.

[The above theorems may become more clear if we introduce the germ of the
restricted critical set C of the deformation F(x, -) defined as C = {(x, A): 0F/0A =
0, F(x, A) = 0}.

If the deformation F is miniversal, C is a germ of a smooth (x4 — 1)-manifold.
The canonical projection (x, A) — A defines a mapping z:C — 2. The coordinate
system defines a diffeomorphism j:C — T'to the transversal to the orbit (jis defined
by the translations of the critical points to the origin). The diagram

J
T C

| N,/

commutes; therefore z as 7, normalizes J'; po 7 has the properties of por and so on.]

10. Oscillating integrals. The study of the intensity of light near the caustic leads
to the problem of asymptotics for an “oscillating integral”

I(h, 3) = [ eFt DIk g gx, xe Rt Ae R,

depending on a parameter A, for # — 0. Here the parameter A represents the point
of observation, ¢ has compact support, F is a real smooth “phase function”, and A
defines the wave length.

Of course, one meets such integrals in all branches of mathematics and physics
—e.g., in number theory and P.D.E. theory (see [78], [54], [40]).

If the light is intense enough to destroy the medium, the destruction will begin
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at the singular points of the caustics, where I is maximal. Thus arises the problem
of defining asymptotics for 2 — 0 of the maximum of I in A, which can be met for
generic F. The classification of simple singularities was found as a byproduct when
this problem, communicated to me by Maslov [55], was being solved for / = 3
(see [5]).

The stationary phase principle is the assertion that the main part of the oscil-
lating integral is given by the integration over the neighbourhoods of the critical
points of F (for fixed A). For a generic function all these points are nondegenerate,
and the integral decreases for # — 0 as h*/2 (Fresnel [29]). However, degenerate
critical points appear for some “caustic value” of the parameter A even for a
generic F(x, 2). So at some points A the integral decreases more slowly (as /2 ~),

The number 8 so defined is called the degree of singularity [5] of the corresponding
critical point.

To be more precise, let us consider a critical point of finite multiplicity u. The
integral I allows then an asymptotic expansion

I~ C“,” hk/2—a Ins h,
a

where 0 £ £ < k — 1 and o belongs to the union of a finite number of rational
arithmetical progressions (see I. Bernstein and S. Gel’fand [16], Atiyah [15], 1.
Bernstein [17], B. Malgrange [51] and [52]). Now 8 is the minimum of « such that
there exists C,, , # O for some ¢ with arbitrarily small support containing the
critical point.

THEOREM 19 (SEE [5], [6], [7]). For simple critical points, 8 = 1/2 — 1/N, where N
is the Coxeter number. For parabolic and hyperbolic singularities B = 1/2.

Probably, for all other critical points, 8 > 1/2. We define the Coxeter number
N of any singularity by the formula 8 = 1/2 — 1/N, where (3 is the degree of
singularity.

THEOREM 20 (SEE [7]). The maximum of the degrees of singularities inevitable in
generic families of functions in k = 3 variables depending on | < 10 parameters is
B = 1/2 — 1/N, where N is given by the table

/ | 0 1 2 3 4 5 6 7 8 9 10, k=3 11,k=3 10,k>3

N| +2 +3 +4 46 +8 +12 o oo —24 —16 -12 -8 -6

All the numbers §,(k) are rational, and do not depend on k& when k is large
enough; g, the limit for k¥ — oo, increases probably as 4/27/6 with 1.
Probably, 8 is semicontinuous and even more, for every A near Ay,

[1(h, )| < C(e, p)n*/2-8G—2  for all & > 0.

Such an “uniform estimation” has been proved by I. M. Vinogradov [78] for the
singularities of the type 4 and by Duistermaat [28] for all simple and parabolic
singularities.

11. Semi-quasi-homogeneous functions and the Newtondiagram. The first proofs of



CRITICAL POINTS OF SMOOTH FUNCTIONS 35

the classification theorems [6], [7] need long calculations, which can be replaced
with some geometrical arguments, based upon the Newton diagrams,

A function f(xy, -+, x,,) is quasi-homogeneous of degree 4 with weights (a3, -+, @),
if f(1oxy, ++=, t%x,) = 1%f(xy, ++-, Xx,) identically in fe C*, Here 0 < a; < % are
rational numbers (see Saito [62], Milnor and Orlik [57], Orlik and Wagreich [58],
Saito [63]).

The function f is semi-quasi-homogeneous, if f = fy + f', where f; is quasi-
homogeneous of degree 1, and has an isolated critical point at o, while the degrees
of all the monomials of f* are higher than 1.

THEOREM 21 (SEE [8]). Every semi-quasi-homogeneous function is equivalent to a
“normal form” f ~ fo + cie; + -+ + c,e, where c; are numbers and the monomials
es are the elements of a monomial basis of the local algebra of fy at O, whose degrees
are more than 1.

The Newton diagram of f(x;, +-+, x,) is a convex polyhedron in R” constructed
from the exponents of the monomials having nonzero coefficients in the Taylor
series; it contains a lot of information on the singularity, but I shall formulate
here only one result of A. G. Kushnirenko.

Let us suppose the the Newton diagram contains points on all coordinate axes
(that is not a restriction, see the theorem of Tougeron [76]).

THEOREM 22 (KUSHNIRENKO). Let us denote by V the volume of the positive
orthant of R" under the Newton diagram, by V; the (n — 1)-dimensional volume
under the diagram on the ith coordinate hyperplane, by V;; the (n — 2)-dimensional
volume on the coordinate plane orthogonal to the ith and the jth coordinate lines,
and so on.

Then for all functions f having a given Newton diagram

uyznlV—-m-DXVi+n=2)1 0 Vy;— %1,
and for almost all functions f having this diagram, the equality holds.
For instance, for almost all functions in two variables with a given Newton

diagram, we have y = 28 — a — b + 1, where S'is the area under the diagram, a
and b the coordinates of the diagram points on the axis (Figure 9).
|
a p=2S-a-b+1i=
=24-5-7+1=13

b
FIGURE 9. The calculation of the Milnor number,

12. Concluding remarks. Ii is not known’ whether the y = const stratum (that
is, the subvariety of the versal deformation base space, formed by points correspond-
ing to functions with a critical point of multiplicity ) is smooth. It was proved by
Le Dung Trang and Ramanujan [49] that, for n # 3, neither the topology of the
singular level set nor the topology of the Mllnor ﬁbratlon change along y = const



36 V. 1. ARNOLD

stratum. Probably, neither the topology of the function nor the 8 changes (for n =
3, as for other ).

The topology of bifurcation sets may change (Pham [60]). The dimension of the
w4 = const stratum is semicontinuous and so equal to the modality m of the critical
point (Gabrielov [34]). Using some results of Teissier [68], Kushnirenko and
Gabrielov [35] were able to prove that the modality of semihomogeneuos singulari-
ties is equal to the number of generators of a monomial basis of the local algebra
above and on the Newton diagram.

The same is probably true for all semi-quasi-homogeneous singularities. The
modality m of functions of two variables is probably equal to the number of integer
points between the coordinate rays passing through the point (2, 2) and the Newton
diagram (for almost all functions with a given diagram, see [8]).

In this article I did not even mention many important sides of the theory of critical
points of functions, especially the algebraic ones (see, e.g., [65]). I like to stress the
importance and power of transcendental, topological methods, based upon the
study of the hierarchy of singularities (first for the cases of small codimension), of
the adherence of different classes of singularities to others, upon semicontinuity
and general position arguments, arguments which go back to the bifurcation theory
of Poincaré(see [12]) and were formalised by Thom’s transversality theorems. G. M.
Tjurina was the first to apply these ideas to the study of singular points of hyper-
surfaces (see [13], [73], [74], [75].)
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In 1964 Pierre Jacquinot opened a colloquium on potential theory in Orsay,
France, by comparing potential theory with a road intersection in mathematics.!
This was ten years ago. Meanwhile traffic has increased, and crossroads had to be
converted into interchanges of highways—also in potential theory.

This article should be considered as an attempt to describe the interchange
‘Potential Theory’ not by a precise map revealing the structure of the interchange in
all its complications but by a sketch making evident at least some major aspects of
the construction.

We shall start by describing three classical approaches to the former intersection.
Then the interchange will be roughly sketched. Finally, and this will be the main
part of the article, we shall drive along a recently constructed new highway which
had to be inserted in the system of flyovers.

1. Three aspects of classical potential theory. In the following we restrict the
discussion to Euclidean n-space R* of dimension # = 3. Results without particular
reference can be found in [5], [19], [24], [29].

1.1. Superharmonic functions. For every open ball B = R* and every point
x € B we denote by uZ the harmonic measure of x with respect to B. This is the
measure

(1.1) (B ¢ = Px, Yoy
(concentrated on the boundary B* of B) where o denotes the normalized Lebesgue
measure on B* and where P: B x B* —+ R, is the Poisson kernel

1La théorie du potentiel est un véritable carrefour de la Mathématique’. Cf. du Plessis [29,
p. viil.
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1.2) P, z) : = pr2 T2 %= %o[*

Ix = =]

(xo = center of B, r = radius of B, || | = Euclidean norm).
A function u: U — ] — o0, + oo ] on an open set U = R is called hyperharmonic
if it is lower semicontinuous and if, for all open balls B =« B ¢ Uand all x€ B,

.3) [ du? < u(x)

holds. Since the Dirichlet problem for a continuous boundary function f : B*— R
is solved by the harmonic function

x - Hyx) : = [f(z) p2(d2)
on B, formula (1.3) amounts to saying: For every continuous real boundary func-
tion f'satisfying ' < v on B* the corresponding Dirichlet solution H ; is majorized
by u on B. In this sense hyperharmonic functions generalize harmonic functions,
the solutions of the Laplace equation 4k = 0.

A hyperharmonic function on a domain in R” is either the constant + oo or
finite on a dense subset. Hyperharmonic functions on an open set U satisfying this
latter condition are called superharmonic. We denote by &, resp. &%, the set of all
nonnegative, resp. nonnegative, real-valued, continuous, superharmonic functions
defined on R*.

One of the basic potential theoretic constructions is based on the richness of the
cone #,. It leads to the heart of the theory, namely to balayage theory. Given an
arbitrary set £ ¢ R* and a function u € &, one tries to find the smallest function
ve &, satisfying v = u on E. The obvious candidate is the presweep (or réduite
function)

1.4 RE: = inf{ve &, |v = uon E}.
Since RZ is not lower semicontinuous in general, one replaces RZ by the greatest

lower semicontinuous function < RE. This is the sweep (or balayée function) of u
relative to E:

(1.5) RE(x): = lim inf RE(y)  (xe R").
yx

We have RE € &, and obviously
(1.6) 0SRESRES W
The initial interest leads then to the study of the base of E:
1.7 b(E): = Q, {x e R*| RE(x) = u(x)}.

UES +
It has the following fundamental properties:
1.8) Ec b(E) c E;
(1.9 b(E) = {xe R"|R£(x) = uy(x)} for some upe &5,

consequently b(E) is a Gy-set;
(1.10) E\b(E) is polar,
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i.e., a subset of u~1(+ co) for some u € &, For nice closed sets E one has b(E) = E.
What ‘nice’ means will become clear in §3.

Up to now we were sweeping, i.e.,, minimizing superharmonic functions. But this
is intimately connected with sweeping masses, hence with the original ideas of H.
Poincaré [30]. In fact (at least) for every Radon measure 4 = 0 on R” with compact
support we have

THEOREM 1. There exists a unique Radon measure ¥ = 0 on R” satisfying
(1.11) fudue = [REdy forallue ..

The measure uF is called the swept-out of y on E. It is carried by the base b(E).
By choosing for y unit masses ¢, at points x € R, it follows that

(1.12) B(E) = {xe Rr|ef = ¢,}.

For open balls B = R” and points x € B the harmonic measure y2 is an important
example of a swept-out measure;

(1.13) pE = &P,
This is due to the fact that in this case the two functions RSZ and RS coincide with
u(x), xe€CB,
xH{judyf, xeB, e &,).

1.2. Newtonian kernel and potentigls. In the preceding paragraph functions were
predominant; measures appeared only at the end. The situation is quite different
if we introduce potentials with respect to the Newtonian kernel function G ; R*
— 10, + oo] defined by

(1.14) G(x) : = 1/|x|=
For every Radon measure 4 = 0 on R*,
1.15) GHx): = [G(x — Pu(dy) = G * u(x)

defines a hyperharmonic function = 0 since x — G(x— p) is superharmonic for all
ye€ Rr, Gt is called a potential (generated by y) if G* is superharmonic. y will
then be called a potential generating measure. All measures g = 0 with compact
support are of this type.

From potentials the set of nonnegative hyperharmonic functions can be re-
covered by a simple limit procedure: A function v ; R* — [0, + oo] is hyperhar-
monic if and only if it is the supremum of an increasing sequence of potentials.
Conversely, a function p e &, is a potential if and only if # = 0 is the only har-
monic function satisfying 0 < » < p.

Balayage of measures appears now in a much more direct way by means of

THEOREM 2. For every Radon measure y = 0 on R* with compabt support and
every set E = R the swept-out uF is the only potential generating measure with the
Jollowing two properties.

(1.16) UE is carried by b(E);
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(.17 G* = G* quasi-everywhere on E,
i.e., everywhere on E with the exception of a polar set P — E.

The connection with the approach of 1.1 is given by the formula
(1.18) RE, = G¥,

valid for (at least) all measures 4 = 0 with compact support.
The predominance of measures in the kernel approach becomes even more evident
by the appearance of energy, that is by the introduction of

(1.19) ()= [Grdy = [Gdu

for positive measures y, v on R#. If we denote by &, the set of all measures y = 0
on R» of finite energy {u,ud'/% < + oo, the map (g, v) — {u, v) extends in a
unique way to a positive symmetric form ¢ -, > on the linear space &: = &, — &,
generated by &,. Then & becomes a (Hausdorff) pre-Hilbert space with norm
{p, p172. In this space &, is complete. Hence for every closed convex set # < &
and every y € & the projection projg u of 4 onto & is defined.

For compact K = R* the set £k of all measures A € &, carried by X is such a
set #. A classical result of H. Cartan then states

(1.20) ’ p¥ = projs, p
for every 4 € &, with compact support.

1.3. Brownian motion. Brownian motion is the probabilistic version of a simple
analytic object, namely the Gaussian semigroup (y;);>, on R": y, is the measure
g,A" with the function

(1.21) gix): = 2ur)™/2 exp(— | x]|2/2¢) (xe R, t > 0)

as density with respect to n-dimensional Lebesgue measure A”. All y, are probability
measures, ¢ — u, is vaguely continuous, and y,; = y; * g, holds for all s,z > 0.

Each y, can be viewed as a kernel P, on R, i.e., as a function P, defined on the
product R* x # of R* with the g-algebra # of its Borel sets such that x —
P(x, B) is #-measurable for all Be # and such that B — P,(x, B) is a positive
measure on 4 for all x e R#. We just have to define

(1.22) Py(x, B): = (u; * 1p)(%)
or, equivalently,
(1.23) Pif(x): = (u +)x) = [f()Px, dy)

for #-measurable functions f = 0 on R”. Then P, appears as an operator and
(P)s>o is a semigroup of such operators.
Brownian motion can be considered as a quadruple

X = (Q, Jﬂ, (Px)xeﬂ"’ (Xt)t.éo)

where (2, o) is a measurable space, (P%), < . a family of probability measures on &/
and where (X,),»¢ is a stochastic process of random variables X,:Q — R* with
continuous paths ¢ — X(w), w € . X can be chosen in such a way that
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(1.24) PH{X,e B} = P(x, B)

holds for all xe R*, ¢t 2 0 and Be # and that the so-called Markov property is
present. Py is by definition the unit kernel Po(x, B): = 15(x).

The Gaussian semigroup ()0 is connected with potential theory, namely with
the Newtonian kernel function G, by a simple analytic fact: A change of variables
yields

(1.25) G=c,[gdt

0
with some real constant c, > 0.2 We thus have GA* = ¢, [§° y, dt or, equivalently,
(1.26) G/* =c, [P fdt

b

for all #-measurable functions f = 0 on R*.

Since G governs potential theory as we have seen in 1.2 it is natural to ask which
potential theoretic facts can be expressed in terms of the Gaussian semigroup or
of Brownian motion. It is well known now (cf. [23]) that all important potential
theoretic notions and results have a probabilistic interpretation by means of Browni-
an motion, The key to all this is due to Doob [11] and Hunt [21]:

THEOREM 3. A Borel measurable function u: R* — [0, + oo] is hyperharmonic if
and only if it is excessive with respect to the semigroup (P,);>, i.e.,

(1.27) sup Pu = u.
>0

As an example of the many consequences we mention the probabilistic inter-
pretation of balayage. The first hitting time of a Borel set E = R is Tx(w): =
inf {t > 0: X(w)e E} (we Q) with the convention inf @& = + co. Then w +
Xr, ) (w) (after a suitable completion of ) is a random variable on { Tz < + 0},
Its distribution is the kernel

(1.28) Pg(x, B): = P<({Xy,e B} N {Tg < + 0}).
A famous result of Hunt [21] states that

(1.29) Pgu = RE forallue &,.

In particular, we obtain the swept-out of ¢, on E:

(1.30) Py(x, -) = €&

2. Aspects of present-day potential theory. We have seen that the notion of a non-
negative hyperharmonic function and the central results of balayage can be ap-
proached from different initial objects: from harmonic functions, from the Newton-
ian kernel function, from the Gaussian semigroup or from Brownian motion. It
is typical for the present situation of potential theory that each of these objects
appears suitably generalized in applications and that each of these generalized

*1fey = I'((n — 2)[2)/2a"/%,
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objects leads to a branch of potential theory of its own importance. Let us try to
make this statement more evident by a few examples without making the attempt of
being systematic.3

2.1. Harmonic spaces. The fundamental properties of harmonic functions like
the sheaf property, the existence of a base of open relatively compact sets for which
the Dirichlet problem has a unique solution for each continuous real boundary
function, and weakened versions of Harnack’s convergence theorem are available
for extended classes of second order elliptic and also parabolic differential equa-
tions—Ilike the heat equation. These properties suitably formulated for a complete
presheaf of linear spaces of real-valued continuous functions on a locally compact
space with countable base lead to the notion of a harmonic space. For example,
each Riemann surface is such a space. The potential theory on these spaces has been
developed quite extensively in recent years. The theory is particularly rich on strong
harmonic spaces. These are harmonic spaces on which the nonnegative superhar-
monic functions separate points linearly. For example, a Riemann surface, viewed
as a harmonic space, has this property if and only if it is hyperbolic. The main
reference is the book of Constantinescu and Cornea [7].

2.2. Markov processes. Brownian motion is just one example of a large class of
Markov processes for which potential theoretic notions can be studied success-
fully in order to investigate the structure of the process. For example, the probabil-
istic balayage operator Py of (1.28) can be introduced for the important classes of
standard and Hunt processes on locally compact spaces with countable base. The
main refences are Blumenthal and Getoor [4] and Meyer [26].

2.3. Excessive functions. Theorem 3 suggests considering a semigroup (P,);
of kernels on a locally compact space as initial object. The corresponding potential
theory concerns the study of the excessive function of such a semigroup. Closely
related is the corresponding problem for resolvents (¥;);o of kernels which often
appear as the Laplace transform ¥ = [§ e"*P, dt of such a semigroup. In particu-
lar, (1.26) leads to the problem of deciding whether a given kernel V is the zero
element ¥V of such a resolvent. Problems of this type connect potential theory with
functional analysis. The main reference is Meyer [25] and the recent work of
Mokobodzki on cones of potentials (cf. [27]).

There are many other aspects which we must leave aside. For example: All the
above theories neglect the group structure of R” and translation invariance of clas-
sical potential theory. For locally compact (mainly abelian) groups compatibility
of the above sketched theories with the group structure leads to important branches
of potential theory, such as harmonic groups [3], transient convolution semigroups
of measures [2] and the theory of infinitely divisible processes [31]. We also leave
aside the role of martingale theory [11], [25] and the theory of Dirichlet spaces [10];
the latter is in closest connection with the classical Dirichlet integral and the notion
of energy.

However, one important phenomenon should be underlined. It is the unifying role

A more systematic and more complete survey on potential theory has been given by Brelot [6].
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of probability theory. An illuminating result in this direction is a theorem of Meyer-
Constantinescu-Cornea-Hansen [1]. According to it there exists a Markov process
with continuous paths on any strong harmonic space E on which the constant
function 1 is superharmonic such that the interplay between the process and the
potential theory on E is formally the same as the one between Brownian motion
and classical potential theory on R”, More precisely, if one takes (1.24) as defini-
tion for (P;),~o Theorem 3 and the subsequent results on balayage remain valid.

The importance of probabilistic arguments will become clear also from the
third part of the article. There we shall see that even potential theory on R” is
still full of surprises.

3. Fine potential theory. Again R is considered for dimensions # = 3, at least
at the beginning. In (1.12) we have characterized the base b(E) of a set E = R,
E is called thin at a point x € R" if x ¢ b(E), that is if ¥ # e,. A set G = R" is
called finely open if CG is thin at all points x € G. In particular, every open set G
is finely open since eS¢ is carried by b(CG) = CG. The system J , of all finely open
sets is a topology on R”; the preceding example shows that 7, is finer than the
Euclidean topology. 7  is called the fine topology on R*. The prefix f'in connection
with a topological notion (closed, boundary, etc.) will always refer to this topology.

7 ¢ is the coarsest topology on R* making all functions in &, continuous. Even
every hyperharmonic function defined on an open set U = R is f-continuous.
This is due to the fact that thinness of a set E at x ¢ E is a local property; it is in
fact equivalent to the existence of a superharmonic function  defined in a neigh-
borhood of x such that
@3.0) lim inf u(y) > u(x).4

y=% yEE

Fine topology was introduced in 1940 by H. Cartan as an interpretation of
Brelot’s notion of thinness. It is an extremely useful tool. Bul as a topology it has
been considered pathological. There are good reasons for this opinion, e.g., the
only f~compact sets are the finite subsets and there is no countable base of f~open
sets. Doob [12] pointed out the first positive and interesting result about this
topology, the quasi-Lindeldf property. But Fuglede [14] did the essential step by
showing that 7 ; not only has remarkable topological properties but that 7, leads
to an extension of classical potential theory, namely to fine potential theory. Its
fundamental notion is that of a finely hyperharmonic function. The definition is
suggested by the fact that the harmonic measures y2 for balls B are the swept-out
measures ¢S5 and that for every f~open set ¥ the measure

(3.2) py =y

is carried by the f~boundary 8,V of V.

A function u: U —»]— oo, + oo] defined on an f~open set U = R” is called f-
hyperharmonic if it is f~lower semicontinuous and if there exists a base B of f~open
subsets ¥ of U such that, for all Ve B,

“*According to the conventioninf @ = + oo we haveliminf, ., yex #(y) = + o ifx & E,
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(3.3) V! = (f-closure of V) < U,
(34 [*u du¥ < u(x) forallxe V.

u is called f~harmonic if it is f-continuous, real-valued, u¥-integrable for all Ve B
and x € V, and if equality holds in (3.4).

This extends the notion of a hyperharmonic function. On every f~open, nonopen
set U there are f~harmonic functions which are not restrictions of harmonic func-
tions on a larger open set. A potential G# is f~harmonic on an f~open set U provided
that 4*(U) = 0 and G* is finite on U.

J-hyperharmonic functions are the origin of a rich theory. Many properties of
hyperharmonic functions remain valid; but even the very first results are far from
being trivial: f~hyperharmonicity is a local notion, f~harmonic functions are those
functions u for which + u are f~hyperharmonic, for every increasingly directed
family of f~harmonic functions the upper envelope is f~harmonic provided that it
is finite.

Of particular interest is the comparison between classical and fine hyperhar-
monicity.

THEOREM 4. A numerical function u defined on an gpen set U < R" is hyperhar-
monic (resp. harmonic) if and only if it is f-hyperharmonic and locally bounded from
below (resp. f~harmonic and locally bounded from one side).

Before we discuss an important consequence of this we consider the case n = 2
of the plane, so far excluded. On R? all functions in &, are constant. Therefore, the
original definition of the fine topology is not appropriate. But thinness of a set at
a point as well as hyperharmonicity are local notions. Furthermore, on bounded
open sets of K2 nonnegative superharmonic functions separate points as they do
on R” for n = 3. Consequently, by using the preceding definitions of thinness and
swept-out measures only with respect to open bounded subsets of R?, one can de-
fine the fine topology and the fine potential theoretic notions also for the plane.
T s is then the coarsest topology making all superharmonic functions (defined on
arbitrary open sets) continuous. With these definitions the preceding properties of
7 ;and of f-hyperharmonic functions remain valid. However, because of the peculi-
arities of the plane, there is one result without analogue in higher dimensions
[15]:

THEOREM 5. On every open set U = R? all f~hyperharmonic (resp. f~harmonic)
Jfunctions are hyperharmonic (resp. harmonic).

For the further discussion we assume n = 2. We have seen above that for in-
creasingly directed families of f~harmonic functions with finite supremum this
supremum is again f~harmonic. This property leads directly to a result which his-
torically was at the beginning of the fine theory [13]:

THEOREM 6. The fine topology T ; is locally connected.

Together with Theorem 4 this leads (via indicator functions) to the fact that an
open set U = R" is connected if and only if it is finely connected. Hence every f-
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connected open set is arcwise connected, It is highly remarkable that this remains
valid for all /~domains:

THEOREM 7. Every f-domain is pathwise (even arcwise) connected (with respect to
Euclidean topology).

The proof of this is given by means of a probabilistic interpretation of f~domains
due to Nguyen Xuan-Loc and Watanabe [28]: An f~open set U is f-connected if
and only if for every x € U and every f~open set V' < U, ¥V # @, the probability
that Brownian motion starting at x reaches V before leaving U is strictly positive.
Hence every pair of points in U can be connected by a path in U which is obtained
by gluing together a sequence of pieces of Brownian paths, A classical topological
result allows then the reduction of such a path to an arc.

The method of using Brownian paths in order to connect points in f~domains as
well as fine potential theory finds illuminating applications in the field of access
theorems [17]. The classical representative of such a theorem is a result of Iversen
[22]: Given an entire nonconstant holomorphic function f, then there exists a
(continuous) path 7 in C tending to infinity such that | f(z)| tends to infinity along
7. Since | f | is a subharmonic function, it is natural to ask whether corresponding
results hold for general subharmonic functions on R” with a certain behavior at
infinity. Partial results for continuous subharmonic functions and extensions to
discontinuous ones for the case of the plane (obtained by deep analytical results)
are known [18]. The instruments of fine potential theory and of Brownian paths
lead to far-reaching general resulis of which we mention two typical ones:

THEOREM 8. Let s > 0 be a superharmonic and v a subharmonic function on R*,
n = 2, satisfying
u(x)

lim su = 0.
e ® S(x) +

Then there exists a path T in R" converging to the point at infinity such that ufs tends
to + oo along 7.5

Fors = 1and u = | f| this yields Iversen’s theorem.6

THEOREM 9. Let u be subharmonic and let h > 0 be harmonic in an open set U = R»,
n 2 2. For any xy€ U and any number o < u(xo)/h(xy) there exists a path T in U5
starting at xy and approaching the boundary of U (in the one-point compactification
of R*) such that o < ufh on'T and u/h has a limit (in R) along 7.

For n = 2 this generalizes a recent result of Hornblower and Thomas [20].
The crucial step of the proofs is the analysis of the f~components of the f~open sets
{uls > A} or {u/h > A} together with Theorem 7 or the idea of its proof. We leave
aside several other results of this type and refer the reader to [17].

'y may be chosen to be even injective.
fFor s = 1 a nonprobabilistic proof of Theo_rem 8 has been given recently by L. Carleson
(Institut Mittag-Leffler, Report 1, 1974); r can then be chosen even as a polygonal path.
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We also leave aside the interesting application of fine potential theory to function
algebras and to finely holomorphic functions due to Debiard and Gaveau [8], [9].

We close with the remark that the tool of fine potential theory is available also
for certain strong harmonic spaces, namely those satisfying the ‘domination axiom’.
The power of the new tool is above all due to the fact that the set of f~hyperhar-
monic functions and the underlying fine topology are connected in a natural way.
The connection is so natural that f~continuous numerical functions turn out to be
of the first (Euclidean) Baire class and that f~hyperharmonic functions are f-conti-
nuous [16], [14]. Consequently, there is no fine-fine topology.
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Variational Problems and Elliptic Equations

Enrico Bombieri

I. Variational problems. In this expository article I will be concerned with second-
order, nonlinear, elliptic equations arising from variational problems. Perhaps the
simplest example is the

Dirichlet problem. Find a function #(x) harmonic in a given bounded open set
2 and taking given boundary values on 9.

The variational formulation of Dirichlet’s problem is expressed through the

Dirichlet principle. The function u(x) is the unique solution of the variational
problem

”DulZ dx = min, u =fondQ,

where Du denotes the gradient of u.

The approach to the Dirichlet problem through the Dirichlet prmcxple was soon
criticized because the existence of a minimum for the Dirichlet integral was not
obvious; in particular, some conditions are needed in order to havea finite Dirichlet
integral. This is not unnatural to assume a priori, since, for example, in physical
models the Dirichlet integral represents the energy of a system, which should be
finite Lo start with. Once these limitations of the variational approach were under-
stood, its usefulness became clear and the Dirichlet principle became again a re-
spectable tool in mathematics.

More generally, one may ask to minimize the functional

Tlu] = [ 05,1, Du) d
under appropriate boundary conditions for the competing functions u. Actually

© 1975, Canadian Mathematical Congress

53



54 ENRICO BOMBIERI

u(x) may be a vector-valued function. If J[u] = min, then J[u] < J[u + ev] for every
v with compact support in Q and, expanding J[u + ev]in a Taylor series in ¢,

Ju + ev] = Ju] + edJ[u] + 202/ [u] +
we see that we need 0J[u] = 0 and §2J[u] = O for all such v, i.e. (writingp =

(p1s +++, py) for Du),
s - 5 2L 2+ )

op; Bx,
- of \ + oY\, gy =
= Jo(= B o (o) * Bu) =0
and we obtain the well-known Euler equation
of\_ o
2 ap,> ou’

A simple condition, which implies §2J = 0, is

o ,
5 i G670 EERLEAD,

which expresses a kind of convexity condition for the functional J[u]. If this
condition is satisfied, one says that the integrand f(x, u, p) is regular elliptic. In case
one considers vector-valued solutions u = (!, -, #A, ..+, u¥), the regularity condi-
tion imposed on f = f(x, u4, p*) is

E E apxaj;,p &k > 0

at every point (x, u3, p*) and allye RN, e R", 5, £ # 0.

In his 19th problem of his address at the International Congress of Mathema-
ticians in 1900, Hilbert raised the question whether solutions of regular elliptic,
analytic variational problems are necessarily analytic. This problem of regularlity,
together with the problem of existence of solutions, form two central questions in
the theory of variational problems.

II. Elliptic equations: the early work. In his celebrated thesis of 1904, S. Bernstein
proved the remarkable result that C3 solutions of a single elliptic, nonlinear,
analytic equation in two variables are necessarily analytic; this was considered at
the time a solution to Hilbert’s 19th problem. Having thus attacked the problem of
regularity, he went on with the existence problem in an important series of papers,
between 1906 and 1912. We owe to him the basic idea (and the name) of an “a
priori estimate”, which still has a central role in the theory: If we have the right
majorizations for all solutions (and their derivatives) of an elliptic equation, then
existence and regularity of solutions of the Dirichlet problem will follow. Since in
obtaining these estimates we assume “‘a priori”’ that we are dealing with smooth
solutions, we have the name ‘“‘a priori estimates’. Bernstein himself showed how to
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prove such estimates in some important cases, using the maximum principle and
what is known today as the method of barriers.

Bernstein’s work was rather involved and relied heavily on analyticity, and was
later improved and generalized to several variables and elliptic systems by the work
of several authors, among which are Gevrey, Giraud, Lichtenstein, H. Lewy, E.
Hopf, T. Rado, 1. Petrowsky and Bernstein himself, However, one had to wait
until the years between 1932 and 1937 before the basic reasons for the importance
of the “a priori estimates” in the existence problem were fully understood and
clarified through the work of Schauder, Leray and Caccioppoli and in particular
the classical paper of Leray and Schauder of 1934,

Consider for example a quasi-linear equation

E a,-,-(x, Uu, DU)D,'D]'H =0 in Q,
u=/f onof,

We denote by T'the operator which to a function  associates the unique solution
v of the linear Dirichlet problem

X &;(x, u, Du)D;Djy = 0 in Q,
y =f on BQ

Since the latter problem is linear, it is much easier to solve, and the question is
reduced to finding a fixed point # = Tu for the operator T. The main point is that
very general fixed point theorems are available if we have the right “a priori
estimates” for the solutions of the original equation and of the linearized equation.
The advantage of this procedure over an iteration scheme wu,.; = Tu, (used by
Bernstein) is obvious: If uniqueness is not satisfied, the iteration need not converge.

The fundamental “a priori estimates” for the linearized equation were found by
Schauder; the search for such estimates in the nonlinear case is still today more of
an art than of a method.

III. Direct methods and weak solutions. Another approach to the existence prob-
lem in the variational case is provided by the so-called “direct methods in the
calculus of variations”. Roughly speaking, one wants to show

(A) the integrand J[u]is lower semicontinuous and bounded below, with respect to
a suitable notion of convergence in some admissible class of competing functions u;

(B) a minimizing sequence {#,}, i.e., J[,] — Inf J[u] converges to an admissible
u; hence J[u] = min by (A).

This idea was used perhaps for the first time by Zaremba and also by Hilbert in
his investigations on the Dirichlet principle. It became a standard approach to
variational problems in the hands of Lebesgue, Courant, Fréchet and especially
Tonelli, If the integrand J|u] satisfies an inequality f(x, u, p) = my | p|’ — Mg, my >
0, with 1 < r < + oo, then Tonelli’s method, using absolutely continuous func-
tions and uniform convergence, works provided r = n = dim , which is a too
strong condition if » = 3. A notable success of this method was however Haar’s
work of 1927 on functionals of the type J[u] = [, f(Du) dx, for the case of n = 2
variables. Here one assumes that 2 is a smooth convex domain, and the boundary
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values are also smooth, satisfying a certain “three-point condition”. The class of
competing functions used by Haar is a class of functions satisfying a uniformly
bounded Lipschitz condition.

The deep reason for the limitation of Tonelli’s approach was found only later,
through the fundamental work of Sobolev and Morrey in 1938. The Sobolev spaces
H*® () are the Banach spaces of functions on 2 whose derivatives of order < k
are in L». Sobolev discovered the fundamental embedding theorems for these
spaces, the simplest being (one assumes 2 bounded and 92 smooth):

() if fe H #(Q), 1 £ p < n, then fe L(Q) with s = np/(n — p), and

[/ 1l = CD)S [0

(i) if fe H %), p > n, then fsatisfies a Holder condition in Q.

The new approach to the existence problem could now be summarized as follows:

(A) the integrand J[u] determines naturally a function space % (usually a Sobolev
space), in which the lower semicontinuity becomes a natural statement;

(B) by means of “a priori estimates” one shows that there exists a convergent
minimizing sequence (here the Sobolev embedding theorems are often crucial).

From (A) and (B) one deduces the existence of a solution in the function space
% . However, one expects the solution so obtained to be very smooth. In some
cases, e.g., those in which Tonelli’s method works, the smoothness of solutions is
automatic (compare (iij) of Sobolev’s embedding theorem); in general, there
remains the difficult problem of “regularization”:

(C) the “weak solutions” so obtained are in fact differentiable solutions.

The necessary results about lower semicontinuity have been obtained by Serrin;
stages (B) and (C) require an extensive use of “a priori estimates”, the regulariza-
tion part being often difficult if not intractable,

This approach led to remarkable results especially in two cases: nonlinear second-
order equations in n = 2 variables, where one could also use tools from quasi-
conformal mapping (Morrey, Bers, Nirenberg), and linear equations and systems
with smooth coefficients (we may mention the work of Ladyzenskaya and Cac-
cioppoli of 1951 for second-order equations, and the general theory of Friedrichs,
F. John, Agmon-Douglis-Nirenberg of 1959, who also considered higher-order
systems and the problem of boundary regularity).

The first breakthrough in the nonlinear case came in 1957—1958 when De Giorgi
and independently Nash for parabolic equations succeeded in proving Holder
continuity of weak solutions of uniformly elliptic equations

Z D,-(a,~,-(x)D,-u) =0
with measurable coefficients a;; and with the ellipticity condition
m|f.?|2 < XDa(0) &&= Mg,

where m, M are positive constants independent of x.
This result has some striking applications to nonlinear problems. De Giorgi
himself showed how his theorem implied that weak extremals of uniformly elliptic
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analytic integrands of the type [, f{Du) dx = min are indeed analytic in Q. Stam-
pacchia and Gilbarg found another application, namely the extension of Haar’s
theorem to the case of n > 2 variables; further important applications and generali-
zations have been given by Morrey, Ladyzenskaya and Uraltseva, Oleinik and
many others, in particular to the study of second-order quasi-linear equations which
are quadratic in the first-order derivatives.

Of great importance was also a new proof of De Giorgi’s theorem, found by
Moser in 1960, using the Sobolev inequalities rather than the isoperimetric ine-
qualities of De Giorgi. This also led to a proof of the Harnack inequality; If Q' €
2 and if » is a positive solution in £ of a uniformly elliptic equation
X Dfa;i(x)D;u) = 0, then max, u < C miny u, where C depends only on Q', Q
and the ellipticity constant L = M/m. Hence one obtains a Liouville theorem: A
bounded solution over R of such an equation is necessarily a constant.

IV. Weak solutions of elliptic systems. The problem of the extension of De
Giorgi’s regularization to systems of equations or to higher-order equations
remained outstanding for awhile, until in 1968 De Giorgi found an example of a
uniformly elliptic linear system of variational type with bounded measurable coef-
ficients, with the discontinuous solution x/|x|. By adapting De Giorgi’s example,
in 1969 Giusti and Miranda showed that if » > 2 the integrand

iy 2
F Dl + 5 (00 + 52 5 fTuF)D"w] “
with u = (4, -++, u") is a regular uniformly elliptic analytic integrand, while v =
x| | x| is an extremal which is not real analytic at x = 0. These examples pointed out
the great importance of the results obtained by Morrey in 1968 on the regularity
‘problem for systems in n > 2 variables.

Here the breakthrough came with the introduction of new powerful compactness
methods, originally introduced by De Giorgi and especially Almgren in 1960—
1966, in the study of minimal surfaces.

In rather crude terms, the idea behind the use of compactness methods may be
described as follows. Suppose we want to prove an ‘“‘a priori estimate” of local
nature for solutions of a class of variational problems which is invariant by linear
changes of the coordinates. If the estimate we want fails in every neighborhood of a
point x, this means that we can find a sequence of elliptic equations or systems over
a fixed domain £, and a sequence of solutions, for which the desired estimate fails
in smaller and smaller neighborhoods of x. By performing a linear change of
coordinates, we can expand these neighborhoods to a fixed neighborhood of x,,
and in doing so we have to replace our equations by new equations still in the same
class and defined over larger and larger domains. Using the appropriate compact-
ness theorems then one shows that this sequence of equations and solutions con-
verges in some sense to a limiting equation, now defined over R, and to a limiting
solution for which the desired “‘a priori estimate” still fails. The main point however
is that, in doing so, we have replaced an elliptic operator by its “‘tangent operator”
at xp, and thus the limiting equation is often of a very simple type, for example
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linear with constant coefficients, and, for it, it may be easy to check that the “a
priori estimate” we want does in fact hold. This gives a contradiction and estab-
lishes the local estimate we were looking for. In the nonlinear case, convergence to
a limiting equation is usually obtained by assuming certain mild conditions about
the local behaviour of solutions at a point. If these conditions are valid almost
everywhere, which is often the case because of measure theoretic arguments, one
ends up with estimates which are valid only near almost every point, and in turn
one establishes only regularity almost everywhere.

In this way it was proved by Morrey in 1968 that weak solutions of a large class
of nonuniformly elliptic analytic variational problems of the type

{ f(x, Du) dx = min,
and also of uniformly elliptic analytic variational problems of the type
[ f(x, u, Du) dx = min

are in fact analytic almost everywhere. Giusti and Miranda, in 1970—1972,
extended and substantially simplified this work, and they have also been able to
obtain good estimates for the Hausdorff dimension of the exceptional set in which
the solutions are not analytic.

The outstanding problem here is to determine the structure of the singular set;
for example, is it semi-analytic? In special cases, one can even prove that solutions
are everywhere analytic, and it is an interesting open question to find good condi-
tions which imply regularity everywhere.

V. The minimal surface equation. A well-known variational problem is the

Problem of Plateau. Find a surface of least area among all surfaces having a
prescribed boundary.

This is not a regular variational problem, if taken in this generality, and it is not
possible for me to explain in this article all the new fundamental results obtained
between 1960 and 1974 by Federer, Fleming, Reifenberg, De Giorgi, Almgren,
Allard and many others. I will restrict my attention instead to the case of minimal
graphs (the nonparametric Plateau problem) and to some special questions about
the parametric Plateau problem in codimension one.

If the graph y = u(x) of a function u(x), x€ Q = R, is a solution of Plateau’s
problem, then it minimizes the area functional [, (1 + ]Du|2)1/ 2 dx, and the as-
sociated Euler equation is

L D(Du/W) =0, W=+ |Dul)l’?
which expresses the fact that the graph has mean curvature 0 at every point.

The strong nonlinearity of this equation gives rise to unexpected phenomena,
which have no counterpart in the theory of linear equations. For n = 2 variables:

(i) the Dirichlet boundary value problem is soluble for arbitrary continuous data
if and only if (2 is convex (Bernstein, Finn);

(ii) a solution defined over a disk minus the centre extends to a solution over the
disk, i.e., isolated singularities are removable (Bers);
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(iii) if w > O1is a solution over |x| < R then
(1 + | Du(0) |12 < exp(wu(0)/2R)

and this estimate is sharp (Finn, Serrin);

(iv) a solution defined over R? is linear (Bernstein).

The solution of the analogous problems for » > 2 variables has been obtained
only recently. We have:

(i) the Dirichlet boundary value problem is soluble for arbitrary continuous data
if and only if 80 has positive mean curvature at every point (Serrin, Bombieri, De
Giorgi and Miranda, 1968);

(ii) a solution defined over Q minus K, where K is a compact subset of Q with
(n — 1)-dimensional Hausdorff measure 0, extends to the whole of Q (De Giorgi
and Stampacchia, 1965);

(iii) if > Ois a solution over | x| < R then

| Du(0)| < ¢; exp(czu(0)/R)

(Bombieri, De Giorgi and Miranda, 1968);

(iv) if n £ 7, a solution defined over R* is linear (Fleming’s new proof in 1962
for the case n=2, De Giorgi for n=3 in 1964, Almgren for n=4 in 1966, Simons for
n < 7 in 1968); on the other hand, if » = 8, there are solutions defined over R”
which are not linear (Bombieri, De Giorgi and Giusti, 1969).

What about the methods of proof? In his talk at the International Congress of
Mathematicians in 1962, L. Nirenberg made the statement that “most results for
nonlinear problems are still obtained via linear ones, i.e. despite the fact that the
problems are nonlinear not because of it”. The minimal surface equation is no
exception to this statement; but since the linearization procedure is rather unusual,
it is worthwhile to describe it.

Let us define a vector v with components

v; = — (D)W, i=1,.-,n,
Va1l = I/Wa

and differential operators

ntl ,
0 =Dy= % By, i=lnntl,
=

in Rl

If we denote by S the graph of x,,,; = u(x) in R#*1, then the vector y is the nor-
mal unit vector to S at the point P = (x,u(x)) and the operators are d; the projec-
tions of the operators D; on the tangent space to S at the point P. The “Laplacian”
9 = ), 0,0, is actually the Laplace-Beltrami operator on S, and the fact that § has
mean curvature 0 at every point is nicely expressed by the fact that the coordinate
functions x; are harmonic on S for the Laplace-Beltrami operator. Moreover it
can be shown that the normal vector y satisfies the nonlinear elliptic system Py +
c%(x)v = 0 on S where c%(x) = X},; (0,v;)? is the sum of the squares of the principal
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curvatures of S at P. In particular since y,,; > 0 it follows that 9y, £ 0, i.e.,
Vp41 18 superharmonic on S.

Now we have two main facts (Miranda, 1967):

(a) if fhas compact support and S'is minimal, then

[o.fd|S| =0, alli,

or in other words the operators d; can be integrated by parts on the surface S;
(b) if fhas compact support, S'is minimal and 1 < p < nthen

(| f|r2?n=» d||S|))w=»/n < e(p,n) [|of|? d|S|,

or in other words we have a uniform Sobolev inequality on S for the differential
operators 0;.

We can use (a) and (b) together with De Giorgi’s regularization technique (which
is highly nonlinear) to investigate the differential inequality 9v,,; £ 0, and
eventually one arrives at the “a priori estimate™ (iii). The solubility of the Dirichlet
problem, and also the analyticity of weak solutions, depends on this “a priori
estimate”.

More generally, one may investigate uniformly elliptic equations of the type
X 04(a;/(x)0;u) = 0 on an absolutely minimizing surface S of codimension one
(Bombieri and Giusti, 1972). Thus one obtains the extension of the Moser-Harnack
theorem to these equations, and as an application one gets that if u is a positive
harmonic function on a minimal surface in R**! without boundary, then u is
constant. Since the coordinate functions x; are harmonic on S, one gets as a corol-
lary a theorem of Miranda that a minimal surface without boundary contained in a
half-space is a hyperplane. Also, a minimal surface without boundary is connected
(Bombieri and Giusti, 1972).

The extension of Bernstein’s theorem up to dimension 7, and the construction
of a counterexample in dimension » = 8, depends on different ideas. It was
Fleming in 1962 who used compactness techniques to show that the failure of
Bernstein’s theorem in dimension » implied the existence of a singular minimal cone
in R»*1, De Giorgi later proved that in fact one would get the existence of such a
cone in R*, and in this way extended Bernstein’s theorem through dimension n=3.
Then the question centered about the existence of minimal cones, and eventually
Simons succeeded in proving the nonexistence of singular minimal cones in R,
n £ 7. Moreover, Simons proved that the cone in R8 given by x? + xZ + x§ +
x7 = x% 4+ x% + x% + x% was at least a locally minimal cone, i.e., area would
increase with every sufficiently small deformation. Making use of the invariance of
this cone by SO(3) x SO(3), Bombieri, De Giorgi and Giusti proved that this cone
was in fact minimal in the large, by reducing the problem to a question about a
system of first-order ordinary differential equations. It was natural to see whether
this cone was associated with the failure of Bernstein’s theorem in dimension 8,
and this was obtained by constructing explicitly a subsolution #~, and a supersolu-
tion »*, of the minimal surface equation in R8, with the property that u~ < u*
everywhere and that no function between »~ and u" could be linear. Now an
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application of the maximum principle and also of the ‘““a priori estimate” for the
gradient obtained before showed the existence of a solution u defined everywhere
comprised between »~ and ut. It should be noted that the choice of »~ and u* was
in fact suggested by the results obtained in the investigation of Simons’ cone.

VI. Further results. I will end this article by mentioning some results and direc-
tions of research which I could not treat more explicitly, but which seem to me of
great importance.

First of all, the facts which I have stated about the minimal surface equation are
not limited to that special case. A whole class of elliptic equations can be treated
with similar methods, among which are the equations of surfaces with prescribed
mean curvature, the equation of capillarity phenomena, and many others. Here
much recent work has been done by Ladyzenskaya and Uraltseva, Bombieri and
Giusti, Trudinger, Finn, Serrin and many others.

Second, and more importantly, I have limited myself in this article to variational
problems of a nonparametric nature. The parametric point of view, in which one
considers functionals on geometrical objects rather than on functions, has led to the
modern geometric measure theory, the theory of integral currents and varifolds
and of parametric elliptic integrands. Here the work of Federer, Fleming and
especially Almgren is outstanding. Also, among more recent developments, I may
mention the work of Allard on the first variation of a varifold and that of Jean
Taylor on the structure of the singular set of soap films and soap bubbles.

Another fruitful idea which I could not treat in this article is that of variational
problems in which the solutions have to satisfy additional constraints. Here one
may ask for solutions satisfying inequalities, thus obtaining classical problems with
obstacles, or asking for solutions with gradient not exceeding certain bounds (an
example is the potential equation for a subsonic gas flow), or one may impose
convexity, as for the Monge-Ampére equations, and so on. Here the theory of
variational inequalities begins to give a general foundation for many problems of
this type. Fortunately many of these questions will receive special attention in
these PROCEEDINGS, and I have to refer to the more specialized articles for further
illustrations of the directions in which the theory of variational problems and of
elliptic equations is moving.
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Four Aspects of the Mathematical Theory of
Economic Equilibrium
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The observed state of an economy can be viewed as an equilibrium resulting from
the interaction of a large number of agents with partially conflicting interests.
Taking this viewpoint, exactly one hundred years ago, Léon Walras presented in
his Eléments d'Economie Politique Pure the first general mathematical analysis of
this equilibrium problem. During the last four decades, Walrasian theory has given
rise to several developments that required the use .of basic concepts and results
borrowed from diverse branches of mathematics. In this article, I propose to re-
view four of them.

1. The existence of economic equilibria. As soon as an equilibrium state is defined
for a model of an economy, the fundamental question of its existence is raised. The
first solution of this problem was provided by A. Wald [1933-1935], and after a
twenty-year interruption, research by a large number of authors has steadily ex-
tended the framework in which the existence of an equilibrium can be established.
Although no work was done on the problem of existence of a Walrasian equilib-
rium from the early thirties to the early fifties, several contributions, which, later
on, were to play a major role in the study of that problem, were made in related
areas during that period. One of them was a lemma proved by J. von Neumann
[1937] in connection with his model of economic growth. This lemma was refor-
mulated by S. Kakutani [1941] as a fixed-point theorem which became the most
powerful tool for proofs of existence in economics. Another contribution, due to
J. Nash [1950], was the first use of that tool in the solution of a problem of socia
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equilibrium. For later reference we state Kakutani’s theorem. Given two sets U
and V, a correspondence p from U to V associates with every element ue U, a
nonempty subset p(u) of V.

THEOREM. If D is a nonempty, compact, convex subset of a Euclidean space, and p
is a convex-valued, closed-graph correspondence from D to D, then there is d* such
that d* e p(d*).

As a simple prototype of a Walrasian equilibrium problem, we now consider an
exchange economy with / commodities, and a finite set A of consumers. The con-
sumption of consumer a € 4 is described by a point x, in R’ ; the ith coordinate
x% of x, being the quantity of the ith commodity that he consumes. A price system
p is an st of strictly positive numbers, i.e., a point in P = Int R} ; the ith co-
ordinate of p being the amount to be paid for one unit of the ith commodity. Thus
the value of x, relative to p is the inner product p-x,. Given the price vector p € P,
and his wealth w e L, the set of strictly positive numbers, consumer a is constrain-
ed to satisfy the budget inequality p-x, < w. Since multiplication of p and w by a
strictly positive number has no effect on the behavior of consumers, we can nor-
malize p, restricting it to the strictly positive part of the unit sphere S = {p e P |
|| = 1}. We postulate that, presented with the pair (p,w) e S x L, consumer a
demands the consumption vector f,(p, w) in R}, and that the demand function f,
is continuous. If that consumer is insatiable, f, also satisfies

6)) for every (p,w)e S x L, p-fp, w) = w.

To complete the description of the economy &, we specify for consumer a an
initial endowment vector e, € P. Thus the characteristics of consumer a are the
pair (f;, e,), and & is the list ((f5, e,)),c4 of those pairs for a € 4. Consider now a
price vector p € S. The corresponding wealth of consumer a is p-e,; his demand is
Sfo(p, p-e,). Therefore the excess demand of the economy is

F(p) = ZaEA [fa(psp'ea) - ea]-

And pis an equilibrium price vector if and only if F(p) = 0. Because of (1), the
function F from S'to R/ satisfies

Walras’law. p- F(p) = 0.

Consequently, F is a continuous vector field on S, all of whose coordinates are
bounded below. Finally, we make an assumption about the behavior of F near 95S.

Boundary condition. If p, in S tends to pg in 95, then {F(p,)} is unbounded.

This condition expresses that every commodity is collectively desired. Here and
below I freely make unnecessarily strong assumptions when they facilitate the ex-
position. Of the many variants of the existence theorem that have been proposed,
I select the following statement by E. Dierker [1974, §8], some of whose antecedents
were L. McKenzie [1954], D. Gale [1955], H. Nikaido [1956], and K. Arrow and
F. Hahn [1971].

THEOREM. If F is continuous, bounded below, and satisfies Walras’ law and the
boundary condition, then there is an equilibrium.
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We indicate the main ideas of a proof because they will recur in this section and
in the next. Here it is most convenient to normalize the price vector so that it be-
longs to the simplex /T = {p € R,| T}, pf = 1}.

Consider a price vector p ¢ 9] yielding an excess demand F(p) # 0. According
to a commonly held view of the role of prices, a natural reaction of a price-setting
agency to this disequilibrium situation would be to select a new price vector so as
to make the excess demand F(p) as expensive as possible, i.e., to select (K. Arrow
and G. Debreu [1954]) a price vector in the set

u(p) = {7: ell|z F(p) = lq\ggx q-F(p)}-

When p e dll, the excess demand is not defined. In this case, we let u(p) =
{well|zp=0}.

By Kakutani’s theorem, the correspondence x4 from /7 to [T has a fixed point p*.
Obviously, p* ¢ oII. But then p* € u(p*) implies F(p*) = 0.

From the fact that u(p) is always a face of I one suspects (rightly as we will see
in the next section) that Kakutani’s theorem is too powerful a tool for this result.
But such is not the case in the general situation to which we will turn after having
pointed out the broad interpretation that the concept of commodity must be given.
In contemporary Walrasian theory, a commodity is defined as a good or a service
with specified physical characteristics, to be delivered at a specified date, at a
specified location, if (K. Arrow [1953]) a specified event occurs. Aside from this
mere question of interpretation of a concept, the model can be expanded so as to
include a finite set B of producers. Producer b € B chooses a production vector y,
(whose positive coordinates correspond to outputs, and negative coordinates to
inputs) in his production set Y}, a nonempty subset of R/, interpreted as the set of
feasible production vectors. When the price vector p is given, producer b actually
chooses his production vector in a nonempty subset ¢,(p) of Y,. It is essential here,
as it was not in the case of consumers, to provide for situations in which p does not
uniquely determine the reaction of every producer, which may arise for instance if
producer b maximizes his profit p-y, in a cone Y, with vertex 0 (constant returns
to scale technology). In an economy with production, consumer a not only demands
goods and services, but also supplies certain quantities of certain types of labor,
which will appear as negative coordinates of his consumption vector x,; this vector
X, is constrained to belong to his consumption set X,, a given nonempty subset
of R!. A suitable extension of the concept of demand function covers this case.
However, the wealth of a consumer is now the sum of the value of his endowment
vector and of his shares of the profits of producers. In this manner, an integrated
model of consumption and production is obtained, in which a state of the economy
is a list ((Xz)gens (Ps)sen, P) Of vectors of R, where, for every ae 4, x,eX,; for
every be B, y, € Y;; and p € II. The problem of existence of an equilibrium for
such an economy has often been reduced to a situation similar to that of the
last theorem, the continuous excess demand function being replaced by an excess
demand correspondence with a closed graph. Alternatively, it can be formulated in
the following general terms, in the spirit of J. Nash [1950]. The social system is
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composed of a finite set C of agents. For each ¢ e C, a set D, of possible actions
is given. Consequently, a state of the system is an element d of the product D =
X ec D, We denote by dg, the list of actions obtained by deleting d, from d.
Given dp, i.e., the actions chosen by all the other agents, agent c reacts by choosing
his own action in the set p,(dc\). The state d* is an equilibrium if and only if, for
every ce C, d}¥ep,(d§,). Thus, the reaction correspondence p from D to D
being defined by p(d) = X .<cp(dc/c), the state d* is an equilibrium if and only if it
is a fixed point of p. In the integrated economic model of consumption and produc-
tion that we discussed, one of the agents is the impersonal market to which we as-
sign the reaction correspondence y introduced in the proof of the existence theorem.
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FIGURE 1

Still broader interpretations and further extensions of the preceding model have
been proposed. They include negative or zero prices, preference relations with
weak properties instead of demand functions for consumers, measure spaces of
agents, infinite-dimensional commodity spaces, monopolistic competition, public
goods, redistribution of income, indivisible commodities, transaction costs, money,
the use of nonstandard analysis,.... Since this extensive, and still rapidly growing,
literature cannot be surveyed in detail here, I refer to the excellent account by K.
Arrow and F. Hahn [1971], to the books mentioned in the next sections, and to
recent volumes of Econometrica, Journal of Economic Theory, and Journal of
Mathematical Economics.

2. The computation of economic equilibria. While the first proof of existence is
forty years old, decisive steps towards an efficient algorithm for the computation
of Walras equilibria were taken only during the last decade. In 1964, C. Lemke
and J. Howson gave an effective procedure for the computation of an equilibrium
of a non-zero-sum {wo-person game. H. Scarf [1967], [1973] then showed how a
technique similar to that of C. Lemke and J. Howson could be used to compute an
approximate Walras equilibrium, and proposed a general algorithm for the
calculation of an approximate fixed point of a correspondence. This algorithm,
which has revealed itself to be surprisingly efficient, had the drawback of not per-
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mitting a gradual improvement of the degree of approximation of the solution. An
essential extension due to C. Eaves [1972], [1974], stimulated by a fixed-point
theorem of F. Browder [1960], overcame this difficulty.

Before presenting a version of the algorithm based on H. Scarf [1973], and C.
Eaves [1974], we note that in the preceding proof of existence, we have actually
associated with every point p € II a set A(p) of integers in I = {1, ---, [}, as follows.

A(p) = {i| Fi(p) = Max;Fi(p)} ifp ¢dll,
={i|pt‘=0} if peall.

The point p* is an equilibrium if and only if A(p*) = I, in other words, if and
only if it is in the intersection of the closed sets E; = { p| i€ A(p)}. Showing that
this intersection is not empty would yield an existence proof in the manner of D,
Gale [1955].

We specify our terminology. By a simplex, we always mean a closed simplex, and,
of course, similarly for a face of a simplex. 4 facet of an n-simplex is an (n — 1)-
face. For each p e I, select now a label A(p) in A(p). A set M of points is said to
be completely labeled, abbreviated to c.l., if the set A(M) of its labels is 1. The label-
ing A is chosen so as to satisfy the following restrictions on /I

(a) the set of vertices of [T is c.l.,

(B) no facet of II'is c.l.!

The algorithm will yield a c.]. set of / points of /T whose diameter can be made
arbitrarily small, and consequently a point of II at which the value of F can be
made arbitrarily small.

Let T be the part of R} that is above /T,and J~ be a standard regular triangulation

FIGURE 2

'Here is a simple example of a labeling of 9/ satisfying those restrictions. Given p € 9/I, select
any A(p) in A(p) such that A(p) — 1 (mod /) is not in A(p).
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of T having for vertices the points of T with integral coordinates, used by H. Kuhn
[1960], [1968], T. Hansen [1968], and C. Eaves [1972], and illustrated by the figure.
(Other considerably more efficient triangulations of, or more appropriately pseudo-
manifold structures on, T have been used, C. Eaves [1972], [1974].) Give any point
in T the same label as its projection from 0 into [7; and say that two (I — 1)-sim-
plexes of I are adjacent if there is an /~simplex of & of which they are facets.
Consider now an (/ — 1)-simplex s of 7~ with c.l. vertices.

() If s = II, s is a facet of exactly one /-simplex of 7 ; hence there is exactly one
(I — 1)-simplex of 7~ with c.l. vertices adjacent to s.

(ii) If s# I, because of (8), s is not in the boundary of T; therefore s is a facet
of exactly two I-simplexes of 7~ ; hence there are exactly two (/ — 1)-simplexes of 7
with c.]. vertices adjacent to s.

The algorithm starts from s0 = JI. Take s! to be the unique (/ — 1)-simplex of
g with c.l. vertices adjacent to 0. For k > 0, take s¥*! to be the unique (/ — 1)-
simplex of 7~ with c.l. vertices adjacent to s*, and other than s#~!, Clearly this al-
gorithm never returns to a previously used (/ — 1)-simplex and never terminates,
Given any integer n, after a finite number of steps, one obtains an (/ — 1)-simplex
with c.l. vertices above the hyperplane { peR’[ X}l-; p' = n}. Projecting from 0
into 11, one obtains a sequence of c.l. sets of / points of I/ whose diameter tends to
0 as ntends to + oo.

An approximate fixed point (i.e., a point close to its image) of a continuous
function from a finite-dimensional, nonempty, compact, convex set to itself can
be obtained by a direct application of this algorithm. But in order to solve the
analogous problem for a fixed point of a correspondence, and consequently, for a
Walras equilibrium of an economy with production, H. Scarf and C. Eaves have
used vector labels rather than the preceding integer labels. With every point p of
1T, one now associates a suitably chosen vector A(p) in R"1, and one says that a set
M of points of T is c.l. if the origin of RI~! belongs to the convex hull of A(M).
As before, the labeling A of [T is restricted to satify (&) and (8). The last two para-
graphs can then be repeated word for word with the following single exception. Let
o be an I-simplex of 7, and s be a facet of ¢ with c.l. vertices. Denote by V,, (resp.
V) the set of vertices of ¢ (resp. of s). If A(V,) is in general position in R/~1, then 0
is interior to the convex hull of A(V;), and there is exactly one other facet of o with
c.l. vertices. However, if A(V,) is not in general position, a degenerate case where
there are several other facets of ¢ with c.l. vertices may arise. An appropriate use of
the lexic refinement of linear programming resolves this degeneracy. In this general
form, the algorithm can indeed be directly applied to the computation of approxi-
mate Kakutani fixed points.

The simplicity of this algorithm is very appealing, but its most remarkable feature
is its efficiency. Experience with several thousand examples has been reported, in
particular in H. Scarf [1973] and R. Wilmuth [1973]. As a typical case of the version
of the integer-labeling algorithm presented above (which uses an inefficient triangu-
lation of T'), let I = 10. To reach an elevation n = 100 in T, i.e., a triangulation of
IT for which every edge is divided into 100 equal intervals, the number of iterations
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required rarely exceeds 2,000, and the computing time on an IBM 370 is usually
less than 15 seconds. The number of vertices that are examined in the computation
is therefore a small fraction of the number of vertices of the triangulation of I7 at
elevation 100,

The best general reference on the problem discussed in this section is H. Scarf
[1973]. Mathematical Programming is a good bibliographical source for more re-
cent developments,

3. Regular differentiable economies. The model & = (( /3, €,)),c4 Of an exchange
economy presented at the beginning of § 1 would provide a complete explanation
of the observed state of that economy in the Walrasian framework if the set E(&) of
its equilibrium price vectors had exactly one element. However, this global unique-
ness requirement has revealed itself to be excessively strong, and was replaced,
in the last five years, by that of local uniqueness. Not only does one wish E(&) to
be discrete, one would also like the correspondence E to be continuous. Otherwise,
the slightest error of observation on the data of the economy might lead to an en-
tirely different set of predicted equilibria. This consideration, which is common in
the study of physical systems, applies with even greater force to the study of social
systems. Basic differential topology has provided simple and satisfactory answers to
the two questions of discreteness of E(¢&), and of continuity of E.

At first, we keep the list f = (f,),e4 of demand functions fixed, and we assume
that each one of them is of class C7 (* = 1). Thus an economy is identified with the
point e = (e,),e4 in P4 We denote by E the set of (e, p) € PA x S such that p is
an equilibrium price vector for the economy e, and by E(e) the set of equilibrium
price vectors associated with a given e. The central imporiance of the manifold E,
or of a related manifold of S. Smale [1974], has been recognized by S. Smale [1974]
and Y. Balasko [1974a). Recently, Y. Balasko [1974b] has noticed the property of
Cr-isomorphism to P4,

THEOREM. E is a Cr-submanifold of P4 x S of the same dimension as PA. If for
every a € A the range of f, is contained in P, then E is Cr-isomorphic to P4,

PA

FIGURE 3

Now let z be the projection P4 x § — PA, and # be its restriction to the mani-
fold E.
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DEerINITION. The economy & = (f, e) is regular if e is a regular value of #. It is
critical if it is not regular.

By Sard’s theorem, the set of critical e has Lebesgue measure zero. Suppose in
addition we assume that every demand function f, satisfies the

Strong boundary condition. If (p,, w,) in §' x L tends to (po, wp) in 85 x L, then
{fupp, wy)} is unbounded.

Then we readily obtain that # is proper (Y. Balasko [1974b]). In this case the
critical set is closed (relative to P4). It is therefore negligible in a strong sense. As
for economies in the regular set £, the complement of the critical set, they are well
behaved in the following sense. At e € £, the compact set E(e) = #~1(e) is discrete,
therefore finite, and 7! is locally a C7-diffeomorphism.

In order to prepare for the discussion of regular economies in the context of the
next section, we note an equivalent definition (E. and H. Dierker [1972]) of a critical
point of the manifold E for 7. Given e, let F(p) be the excess demand associated
with p, and denote by F (p) the projection of F(p) into some fixed (/ — 1)-dimension-
al coordinate subspace of R'. Because of Walras® law, and because p is strictly
positive, F( p) 0 is equivalent to F( p) =0. Let then J [F (p)] be the Jacobian deter-
minant of F at p. As Y. Balasko [1974b] shows, (e, p) is a critical point of # if and
only if JIF(p)] = 0.

Since it is desirable to let demand functions vary as well as initial endowments
(F. Delbaen [1971], E. and H. Dierker [1972]), we endow the set D of Cr demand
functions (1 = 1) satisfying the strong boundary condition with the topology of
uniform Cr-convergence.

An economy & is now defined as an element of (D x P)4, a regular element of
the latter space being a pair ( f; €) for which the Jacobian determinant introduced
in the last paragraph is different from zero for every equilibrium price vector as-
sociated with (f; ). The regular set is then shown to be open and dense in (D x P)4.
Another extension, by S. Smale [1974], established the same two properties of the
regular set in the context of utility functions with weak properties, rather than in the
context of demand functions.

Still further generalizations, for instance, to cases where production is possible,
have been obtained. E. Dierker [1974] surveys a large part of the area covered in
this section more leisurely than I did. Recent volumes of the three journals listed
at the end of §1 are also relevant here.

4, The core of a large economy. So far the discussion of consumer behavior has
been in terms of demand functions. We now introduce for consumer g the more
basic concept of a binary preference relation <, on R, for which we read “x <,
y” as “for agent a, commodily vector yis at least as desired as commodity
vector x.”” The relation of strict preference “x <, y” is defined by “x <, y and not
Y Se X" and of indifference “x ~, y” by “x ;S,, y and y 5, x.” Similary,
for two vectors x, y in R' we denote by “x < y” the relation * y —-xe R
by “x < y” the relation “x < y and not y £ x,” and by “x < p” the relation
“y —xeP”
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We assume that 5, is a complete preorder with a closed graph, and that it
satisfies the monotony condition, x < y implies x <, y, expressing the desirability
of all commodities for consumer a. The set of preference relations satisfying these
assumptions is denoted by £, and viewing an element of £ as a closed subset of
R, we endow 22 with Hausdorff’s [1957] topology of closed convergence (Y.
Kannai [1970]).

The characteristics of consumer a € 4 are now a pair (:5,, e,) of a preference
relation in 22, and an endowment vector in R}. Thus an exchange economy & is
a function from 4 to 22 x R’.. The result of any exchange process in this economy
is an allocation, i.e., a function x from A4 to R, that is attainable in the sense
that 3 ca Xs = Xoea o

A proposed allocation x is blocked by a coalition E of consumers if

O E+ @,
and the members of E can reallocate their own endowments among themselves so
as to make every member of E better off, i.e., if

(ii) there is an allocation y such that )] ,cp v, = X, €, and, for every ae E,
Xg <4 Vo

From this viewpoint, first taken by F. Edgeworth [1881], only the unblocked
attainable allocations are viable. The set of those allocations is the core C(&) of
the economy. The goal of this section is to relate the core to the equilibrium con-
cept that underlies the analysis of the first three sections. Formally, we define a
Walras allocation as an attainable allocation x for which there is a price system
p € I such that, for every ae A4, x, is a greatest element for 5, of the budget set
{zeR\|p-z < p-e,}.

The set of Walras allocations of & is denoted by W(&). It satisfies the mathe-
matically trivial but economically important relation W(&) = C(&).

Simple examples show that for small economies the second set is much larger
than the first. However, F. Edgeworth [1881] perceived that as the number of agents
tends to + oo in such a way that each one of them becomes insignificant relative to
their totality, the two sets tend to coincide. The conditions under which F.
Edgeworth proved his limit theorem were very special. The first generalization
was obtained by H. Scarf [1962], after M. Shubik [1959] had called attention to
the connection between F. Edgeworth’s “contract curve” and the game-theoretical
concept of the core. The problem was then placed in its natural setting by R. Au-
mann [1964]. The agents now form a positive measure space (4, 7,) such that
v(4) = 1. The elements of o7 are the coalitions, and for E € &/, v(E) is interpreted
as the fraction of the totality of agents in coalition E. Since the characteristics of an
agent a € 4 are the pair (5, €,), an economy & is defined (W. Hildenbrand [1974]),
as a measurable function from 4 to £ x R/ such that e is integrable. The defini-
tions of an unblocked attainable allocation and of a Walras allocation are extended
in an obvious fashion. As trivially as before W(&) = C(¢). But in the case in
which the space of agents is atomless, i.e., in which every agent is negligible, R.
Aumann [1964] has proved the
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THEOREM. If the economy & is atomless and {, e dy > 0, then W(&) = C(&).

This remarkable result reconciles two fundamental and a priori very different
equilibrium concepts. Its proof can be based (K. Vind [1964]) on Lyapunov’s
theorem on the convexity of the range of an atomless finite-dimensional vector
measure.

There remains to determine the extent to which the equality of the core and of
the set of Walras allocations holds approximately for a finite economy with a
large number of nearly insignificant agents. This program is the object of W.
Hildenbrand [1974], one of whose main results we now present.

Letting K = & x R {1 be the set of agents’ characteristics, we introduce the
basic concepts associated with the economy & that we need. The image measure
u=ve& 1 of yvia &is a probability on K called the characteristic distribution
of &. Given an allocation x for & (i.e., an integrable function from 4 to R%),
consider the function 7, from 4 to K x R} defined by 7,(a) = (£(a), x(a)). The
image measure v o y;! of v via 7, is a probability on K x R called the charac-
teristic-consumption distribution of x. We denote by 9(&) the set of characteris-
tic-consumption distributions of the Walras allocations of &, and similarly by
9(€) the set of characteristic-consumption distributions of the core allocations
of &. Finally, we formalize the idea of a competitive sequence of finite economies.
#A, will denote the number of agents of &,, u, the characteristic distribution
of &,, and pr, the projection from K into R).. The sequence (&,) is competitive if

@) #4, - + oo,

(ii) p, converges weakly to a limit y,

(it)) | pro du, — [ pro du> 0.

We denote by &* the economy defined as the identity map from K, endowed
with its Borel o-field #(K), and the measure y, to K. Then, endowing the set of
probability measures on K x R} with the topology of weak convergence, we
obtain the theorem of W. Hildenbrand [1974, Chapter 3].

THEOREM. If the sequence (&,) is competitive, and U is a neighborhood of Dy (&#),
then, forn large enough, 2,(6,) < U.

To go further, and to obtain full continuity results, as well as results on the rate
of convergence of the core of &,, we need an extension (F. Delbaen [1971], K.
Hildenbrand [1974], and H. Dierker [1974]) of the concepts and of the propositions
of § 3 to the present context of a measure space of agents. Specifically, we place
ourselves in the framework of H. Dierker [1974]. In addition to being in £, the
preference relations of consumers are now assumed to satisfy the following condi-
tions. For every point x € P, the preference-or-indifference set {y € P ] xS y}is
convex, and the indifference set I(x) = {y € P [ y ~ x} is a C2-hypersurface of
P whose Gaussian curvature is everywhere nonzero, and whose closure relative
to R! is contained in P. Finally denoting by g(x) the positive unit normal
of I(x) at the point x, we assume that g is C! on P. These conditions make it
possible to identify the preference relation < with the C! vector field g on P.
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The set G of these vector fields is endowed with the topology of uniform C! con-
vergence on compact subsets. ./ then denotes the set of characteristic distributions
on G x P with compact support. The assumptions that we have made imply
that every agent has a C! demand function, Therefore it is possible to define
a regular element y of # as a characteristic distribution y in . such that the
Jacobian determinant introduced in §3 is different from zero for every equilibrium
price vector associated with y. Having suitably topologized the set .#, one can
give, in the manner of H, Dierker [1974], general conditions under which the
regular set is open and dense in ..

In this framework, the following result on the rate of convergence of the core of
an economy has recently been obtained (B. Grodal [1974]) for the case in which the
agents’ characteristics belong to a compact subset Q of G x P, For a finite set 4,
d4 denotes the metric defined on the set of functions from 4 to R/ by d4(x, y) =
Max,c4| x(@) — ¥(a) |, and 64(X, Y) denotes the associated Hausdorff dis-
tance of two compact sets X, Y of functions from 4 to R'. In the statement of the
theorem, .#¢ denotes the set of characteristic distributions on Q with the topology
of weak convergence.

THEOREM. If Q is a compact subset of G x P, and y is a regular characteristic
distribution on Q, then there are a neighborhood V of u in Mg, and a real number
k such that for every economy & with a finite set A of agents, and whose characteristic
distribution belongs to V,

04[C (&), W(&)] < k[#A.

Thus if (&,) is a competitive sequence of economies on Q, and if the limit
characteristic distribution is regular, then 64 [C (&,), W (&,)] tends to O at least
as fast as the inverse of the number of agents.

The basic reference for this section is W, Hildenbrand [1974].

The analysis of Walras equilibria, of the core, and of their relationship has
yielded valuable insights into the role of prices in an economy. But possibly of
greater importance has been the recognition that the techniques used in that analysis
are indispensable for the mathematical study of social systems: algebraic topology
for the test of existence that mathematical models of social equilibrium must pass;
differential topology for the more demanding tests of discreteness, and of conti-
nuity for the set of equilibria; combinatorial techniques for the computation of
equilibria; and measure theory for the study of large sets of small agents.
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Vancouver, 1974

Poids dans la Cohomologie des Variétés Algébriques

Pierre Deligne

1. Soit X une variété algébrique complexe (i.e., un schéma séparé de type fini sur
C). On note encore X l’espace topologique usuel X(C) sous-jacent & X. Dans cet
exposé, nous décrivons une filtration remarquable des groupes de cohomologie
rationnelle de X, la filtration par le poids, et nous donnons un fascicule de résultats
de ses propriétés. Sa définition sera donnée au §12. Pour les démonstrations, nous
renvoyons aux travaux cités dans la bibliographie ou les théorémes sont souvent
prouvés dans des cadres plus généraux; travailler sur C' nous permet de disposer
simultanément de la théorie de Hodge, d’action de groupes de Galois, et de la
résolution des singularités.

La filtration par le poids est une filtration finie croissante. Nous la noterons W.
Elle est également définie dans des situations relatives (ou en cohomologie a sup-
port propres). Elle dépend non seulement de P’espace topologique X, mais encore
de la fagon dont il est réalisé comme variété algébrique. Elle est compatible aux
isomorphismes de Kiinneth (i.e., via ’isomorphisme H*(X x Y) = H¥(X) ®
H*(Y),ona

W (H*X x Y)) = ,-/+§r—,- W (H*(X)) ® W, (H*(Y))
et est fonctorielle pour les morphismes algébriques. Plus précisément, si f/: X — Y
est algébrique, alors f*: H*(Y) — H*(X) est strictement compatible aux filtrations
par le poids de H*(Y) et H*(X): Si la classe x € Hi(X) est dans I'image de f*, elle
est de filtration < i si et seulement si elle est I'image d’une classe de filtration < i.
Plus généralement, toute application naturelle est strictement compatible aux
filtrations par le poids.

La filtration par le poids est un invariant discret; elle est invariante par dé-
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formation de la structure algébrique de X. Plus précisément, on a le théoréme
suivant.

2. THEOREME. Soit f:X — S un morphisme. Pour t€ S, soit X, = f~I(t). Si le
Saisceau RifQ, est localement constant (un systéme local), il existe une filtration par
le poids W de Rf,.Q par des sous-systémes locaux, telles que les fléches r,: (Rif,Q); —
Hi(X,) soient strictement compatibles aux filtrations par le poids, et qu’en particulier
la o r, est un isomorphisme, W induise la filtration par le poids de H(X,).

3. En gros, la filtration pat le poids exprime comment la cohomologie de X peut
se batir en terme de la cohomologie de variétés projectives non singuliéres. Voici
quelques exemples.

ExeMpLE 3.1. Si X est propre (=compacte, par exemple projective) et lisse (=non
singuliére), alors Hi(X) = 4, H/(X, Q) est purement de poids j: Gr‘}’(H (X)) =0
pour i # j. En d’autres termes, W;_j(H/(X)) = 0 et W{H/(X)) = Hi(X).

ExEMPLE 3.2. Soient X propre, lisse, connexe, de dimension d et P un point de X,
Des groupes de cohomologie & support H{p (X) = H(X mod(X — {P})), seul celui
d’indice 24 est non nul, et

(3.2.1) HA,(X) ~, H¥4(X) = Q.

D’aprés nos principes, H?%)(X) est donc purement de poids 2d4. L’inverse de
I’isomorphisme (3.2.1) peut étre vu comme un isomorphisme de Thom-Gysin

Q = HYP) ~ H(X);

on constate qu’il ne respecte pas les poids. La situation générale est la suivante:
pour Y une sous-variété lisse purement de codimension d dans une variété lisse X,
’isomorphisme de Thom-Gysin H#(Y) ~, H{?%(X) transforme Wk en Wkt2d,
Notant (r) un décalage de 2n pour W (W(n), = W;_s,), ceci s’écrit comme un
isomorphisme filtré

Hi(Y)(~ d) ~ H{?(X).

ExeMPLE 3.3. Soient X propre et lisse, et Y une sous-variété lisse (fermée) pure-
ment de codimension 4. On dispose d’une suite exacte

= Hi(X) = Hi(X — Y) % HF(X) - -,

D’aprés 3.1 et 3.2, on a donc Gr¥(Hi(X — Y)) = O pour j # i, i + 1; W; est
I’'image de H¥(X).

ExeMPLE 3.4. Soit X propre, et lisse sauf pour un point singulier isolé P. Suppo-
sons que la variété X déduite de X en éclatant P soit lisse, et que le diviseur excep-
tionnel D image inverse de P soit lisse: X se déduit de X (propre et lisse) en con-
tractant en un point D (propre et lisse). L'espace X a le type d’homotopie de
[X U (un coéne de base D)], dont la cohomologie se calcule par Mayer-Vietoris;
on trouve une suite exacte

v = HiZYD) L, Hi(X) - Hi(X) @ Hi(P) » -
qui montre que Gr¥(H#(X)) = 0 pour j # i — 1, i; W, est 'image de 0. Pour
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i # 0, c’est encore le noyau de Hi(X) — Hi(X), et Grl(Hi(X)) est 'image de H¥(X)
dans Hi(X).

ExeMPLE 3.5. Les variétés de drapeaux sont des variétés propres et lisses. La
filtration par le poids de leur cohomologie est donc donnée par 3.1. Si G est un
groupe réductif connexe, le méme resultat vaut pour la cohomologie de BG [1, I1I].
Ceci permet de calculer la filtration par le poids de la cohomologie de G, liée &
celle de BG par transgression. On trouve que W Hi(G) = 0, et que W, H(G), nul
pour i pair, est égal 4 la partie primitive de la cohomologie de degré i de G [1, III].
Si f:G — H est une application algébrique entre variétés de groupes réductifs,
Iimage réciproque d’une classe de cohomologie rationnelle primitive de H est donc
encore primitive, Pour d’autres corollaires, voir [1, II].

4. La filtration par le poids est graduable en un sens trés fort. Il existe des gradua-
tions W des H/(X), qui décomposent W:

(4.0 W(H(X)) = o W (H!(X))

et qui soient compatibles au cup-produit et aux opérations supérieures dérivées du
cup-produit (produits de Massey -:-). Ces derniéres n’étant pas partout définies, le
sens de “‘compatible & une graduation’ doit étre précisé. Le plus simple est de voir
une graduation comme une action du groupe @,,, i.e., une action de @* donnée
par des formules algébriques: A une graduation W on associe I’action ou 1e @*
agit sur W; par multiplication par A/. La “compatibilité” est que @* agit par des
automorphismes de H*(X) muni de sa graduation par le degré, du cup-produit,
et des opérations supérieures dérivées du cup-produit.

5. Supposons pour simplifier X connexe, et soit ./ le modéle minimal du type
d’homotopie rationnel de X, au sens de Sullivan [7]. C’est une algébre différentielle
graduée a degrés = 0, connexe (/#£° = @), (anti) commutative libre en tant qu’al-
gebre graduée, et engendrée par ses éléments indécomposables (i.e., d# = (#>0)?).
On a H*(#) = H*(X), et si X est simplement connexe, #>°/(#>0)2 =
(7+(X) ® Q)V.

Un énoncé plus précis, et plus commode, que celui donné en § 4 est qu’il existe
une graduation W vérifiant (4.1) déduite d’une graduation W de .# (a degrés = 0,
somme de graduations des .7, telle que d et le produit soient homogénes de degré
0; en d’autres termes, @* agit par automorphismes de .#).

6. La seule existence de W et W n’impose aucune restriction au type d’homotopie
de X: On peut toujours prétendre que . est tout entiére de poids 0. N’imporie
quel polyédre fini a d’ailleurs le méme type d’homotopie qu’une variété algébrique,
Soit en effet S un ensemble fini, muni d’un ensemble & de parties (les simplexes).
On suppose que toute partie d*un élément de & est encore dans &. Identifions S
a I'ensemble des vecteurs de base de RS, et pour ¢ = S, soit ]o"| le simplexe tendu
par les s € 0. Montrons que |S| = |J,¢ |o| a le type d’homotopie d’une variété
algébrique X. Si on pose |¢|o = espace affine complexe tendu par ¢ = C5, il suffit
de prendre X = ( ),y |0 |c, dont | S| est un rétracte par déformation. On peut véri-
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fier que dans cet exemple H*(X) est purement de filtration par le poids 0,
Toutefois, dés que les poids sont non nuls, des contraintes apparaissent sur le
type d’homotopie de X (cf, §10.). Les régles suivantes aident & localiser les poids.

7. Pour un groupe de cohomologie H de type donné, chaque régle consistera
décrire une partie & de Z x Z. Les poids seront contrélés par & au sens suivant:
Si Gr¥(H) # 0, il existe (p, g) € &, avec p + g = n. Cette fagon de s’exprimer, qui
ici parait artificielle, ne 1’est pas: D’autres informations que les poids possibles
sont contrdlées par la méme région &, cf. §15.

(7.1) H*(X) est contrdlé par le carré [0, n] x [0, nl.

(7.2) Si X est propre, H*(X) est contrdlé par la partie de ce carré en-dessous de la
seconde diagonale, soit {(p, ¢) € [0, n] x [0, n][ p+ g = n}. Si X est lisse, H"(X)
est contr6lé par la partie de ce carré au-dessus de cette diagonale, soit {(p, g) €
[0,7] x [0,n]| p + ¢ Z n}.

(7.3) Si N = dim X £ n, le carré [0, n] x [0, n] peut étre remplacé par le carré
[n — N, N] x [n — N, N].

lisse

lisse n>N

propre

propre

n N n

8. Variantes. (8.1) Le groupe de cohomologie & support propre H*(X) est con-
tr6lé par la partie du carré [0, n] x [0, n] en-dessous de la seconde diagonale. Pour
N = dim X < n, on peut encore remplacer ce carré par [n — N, N] x [n — N, N].
En particulier, H2V(X) est purement de poids 2N.

(8.2) La ““dualité” entre les cas propres et lisses peut se déduire de la dualité de
Poincaré: pour X lisse purement de dimension N,

Hn(X) = Hom(HZN="(X), HN(X)) = (HZN-"(X)®T)(— N).

Cet argument permet d’étendre les résultats donnés pour X lisse au cas oil X est
une “rational homology manifold”. Pour un tel X, 'image de H#*(X) dans H*(X)
est purement de poids n.

(8.3) Pour X seulement supposé normal, il reste vrai que H1(X) est contrdlé par

{©, 1), (1,0), (1, D}.

9. Soient X une variété connexe, x € X, et /I le plus grand quotient nilpotent
de longueur # et sans torsion de z;(X, x). On sait que les groupes H d’indice fini
dans II'» et assez petits ont la propriété suivante.

(%) 11 existe une algébre de Lie nilpotente de longueur n, (3, [ ]), avec # un
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Z-module libre, telle que la formule de Campbell-Hausdorff

xoy=2x+y+ [x 2 + [x,[x, y/12 + [y, [y, x]I/12 + ---

fasse de s# un groupe, isomorphe a H.
De plus, I’algébre de Lie " = # ® @Q ne dépend que de /I, non de H.

10, THEOREME (MORGAN). Si X est normale, ‘" admet une graduation W, &
degrés < 0, telle que £™ soit engendrée par des éléments de degré —1 et —2, ceux
ci n'étant soumis qu’a des relations de degré —2, —3 et —4, plus la nullité des com-
mutateurs n fois itérés.

Il est plus commode de travailler avec le systéme projectif £ des %, Définis-
sant Hi(#) = inj lim H(&), on a

HY(¥™) = H(X), HY%>) g HYX).

De plus, une graduation W de .# comme au §5 définit des graduations compatibles
de ¥, de sa cohomologie, et de celle de X. D’aprés (8.3), (resp. (7.1)), H1(X) est
de poids 1 et 2 et H%(X) de poids < 4. Dés lors, H(%#“) (le dual du groupe
L=[L>, £] des générateurs de .#>) est de poids 1 et 2, et H2(¥*), le dual du
groupe des relations entre générateurs, est de poids < 4. Ceci vérifie le théoréme.

11. Pour une variété propre et lisse la filtration par le poids se réduit a4 peu de
chose (3.1). Le fait qu’elle soit graduable au sens §4 implique la nullité de tous les
produits de Massey. Qu’elle le soit au sens §5 implique méme que le type d’homo-
topie rationnel de X peut se lire sur son algébre de cohomologie—voir [3].

12. Théorie de Hodge. Le groupe de cohomologie Hi(X) de toute variété al-
gébrique complexe est munie d’une structure de Hodge mixte (W, F) (W est une
filtration de H¥(X), et F une filtration de H{(X) ® C = Hi(X, C), W et F vérifiant
des axiomes convenables—voir [1]). La filtration par le poids est par définition la
filtration W. :

13. Théorie /-adique. Une variété algébrique X se définit en terme d’'un nombre
fini d’équations polyndmes. Les coefficients de ces équations engendrent un sous-
anneau de type fini R de C, de corps des fractions K, et X se déduit par extension
des scalaires & C d’un schéma sur K, voire sur R. Les énoncés qui suivent deviennent
vrai lorsqu’on remplace R par R[1/f] avec fe R assez divisible.

(13.1) Soit / un nombre premier, Le groupe H¥(X) ® @, s’identifie au groupe de
cohomologie /-adique H(X, @;). Ce dernier est défini de fagon purement algé-
brique, donc est muni par transport de structure d’une action de Aut(C/K).

(13.2) Soit K la clbture algébrique de K dans C. L’action se factorise par
Gal(K/K). Elle est non ramifiée sur R[1//], i.e., se factorise par le groupe de Galois
de la plus grande extension K% < K de K non ramifiée sur R[1//].

(13.3) Soit m un idéal maximal de R[1/I], et N(m) = #R/m (R/m est un corps
fini). A m correspond une classe de conjugaison de substitutions de Frobenius
&, € Gal(K,,/K), d’inverses les Frobenius géométriques F,, = ¢,'.

14. THEOREME. Pour f assez divisible, on a
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(i) Pour tout I et m, les valeurs propres o de F,, (dans une extension finie conve-
nable de Q) sont des entiers algébriques. Pour chaque a, il existe un entier w(c)
tels que tous les conjugués complexes de o soient de valeur absolue N(m)» @ (2,

(ii) Choisissons un Frobenius géométrique F,, et soit ,W ;. la somme des sous-
espaces propres généralisés correspondant aux valeurs propres o de F, telles que
w(e) = j. La filtration par les @ j<; W ; est indépendante de m et du choix de F,,;
elle est rationnelle et sa trace sur Hi(X) est indépendante de I, c’est la filtration par
le poids.

PrINCIPE DE DEMONSTRATION. On exprime (via une suite spectrale) la cohomo-
logie de X en terme de la cohomologie de variétés propres et lisses, comme en [1],
La suite spectrale aboutit & une filtration W de H*(X), qui est par définition la
filtration par le poids de la théorie de Hodge. Cette suite spectrale a un analogue
l-adique; le I-adifié W, de W est donc stable par un groupe de Galois. On déduit de
la conjecture de Weil que les valeurs propres de F,, sur Gr’" sont des entiers al-
gébriques de valeurs absolues complexes N(m)i/2, et le théoréme en résulte.

15. Dans les cas considérés en (7.1), (7.2) et (7.3), la région & décrite contrdle
non seulement les poids, mais encore les nombres de Hodge et la divisibilitié des
valeurs propres des F,,: dans (7.1), (7.2) et (7.3), une région & a été assignée a un
groupe H, et

(a) Les nombres de Hodge 42 non nuls des structure de Hodge Gr % (H) vérifient
(. 9)e 8. '

(b) (Utile seulement dans le cas (7.3).) Si les (p, g) € & avec p + g = j vérifient
D, q = k, alors (toujours pour f assez divisible), les valeurs propres de F,, de
valeurs absolues complexes N(m)7/% sont divisibles par N(m)*.

On espére que ceci est un cas particulier d’un principe général, cf. [4].

16. Le résultat suivant est clair du point de vue de la théorie de Hodge.

(16.1) Pour j impair dim Gr¥ H¥(X) est pair.

Par contre, je ne sais démontrer jusqu’ici §§ 2 et 5 que par voie 1-adique. Pour
§ 5, la méthode de § 14 permet d’obtenir une graduation 1-adique; une astuce de
Sullivan permet d’en déduire ’existence de graduations rationnelles du type voulu.

Les propriétés de fonctorialité de la filtration par le poids sont évidentes du point
de vue /-adique (car Galois commute & tout ce qui se peut définir). Il est toutefois
utile de les prouver du point de vue de la théorie de Hodge, pour obtenir des pro-
priétés analogues pour la filtration F. Morgan a obtenu de nombreux résultats
dans cette direction—assez pour prouver un résultat un peu plus faible que §10 par
théorie de Hodge.

17. Ainsi que § 5 le suggeére, une filtration par le poids existe aussi sur les groupes
d’homotopie (tensorisés par @) sous des hypothéses de simple connexité.

Elle existe aussi sur les groupes de cycles évanescents (cf. [6]), et j’espére qu’elles
nous aideront & mieux comprendre ces derniers.
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Mathematical Problems of Tidal Energy

G. F. D. Duff

1. Tidal energy. Recent studies of alternative energy sources have embraced a
number of “exotic” forms such as solar, wind, geothermal or tidal energy. Here
we shall examine recent developments in the mathematical understanding of tides
and tidal power, with particular reference to the Bay of Fundy in eastern Canada
which has the highest tides and may be the test site for further development of this
mode of electrical energy production.

From the observed increase in length of the day [21] and the observed lunar
acceleration, the total rate of all tidal energy dissipation is known to be about
3 x 109 ergs per second—a rate comparable to mankind’s present consumption of
energy. Much of this energy is dissipated in certain oceanic high tide regions where
shallow continental shelf areas create large amplitudes by resonance, shallowing
and convergence. Thus the English Channel and Irish Sea absorb perhaps 4%
of the overall total while the Bay of Fundy and Gulf of Maine account for about
1%, an energy flow equal to the present capacity of the Canadian electricity net-
work.

Recent engineering studies have shown [2] that recommended sites at Economy
Point, Nova Scotia, and Cape Maringouin, New Brunswick, would be feasible
but probably not yet economical. Tidal energy is renewable, but not conservable,
prediciable but intermittent, and large yet limited (at these sites perhaps 8,000
megawatts capacity could be installed). An interesting recent suggestion for excess
power at peak generating periods is compressed air storage in salt caverns, with
subsequent coal burning.

The applied mathematical problems discussed here are of two types. First is the
description and calculation of oceanic and estuarial tidal wave motion and the
modifications that would be induced by the construction of a tidal barrier with

© 1975, Canadian Mathematical Congress
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sluice gates and turbines. The second problem is the optimal control of sluice and
turbine operations in which the tidal wave motions and energy generation processes
interact.

2. Equations of motion. Let (0, ¢) be latitude and longitude, and (u, v) components
of fluid velocity to the east and north, respectively. Let z denote sea level above
equilibrium, and Z the formal “equilibrium tide”. The equations of motion in-
troduced by Laplace in 1775 [15] are, with vertical acceleration neglected,

— (0 sin O)y = —;ﬁ %(z _2),
@D O O sinu=—£ (z Z),
Qg n 1 /B(Hu) 8(Hv cos 0)) -0
ot ' ‘acosO\ 0¢ 00 -

where also g denotes gravity, a earth’s radius, 2 angular velocity of earth’s daily
rotation and H = D + z where D = D((, ¢) is the ocean depth. In the late nine-
teenth century, these oceanographic equations were studied by Poincaré, Darwin,
and others, and various particular solutions and special cases were solved. Many
recent theoretical and numerical studies of these equations in various geometries
and geographies have now been made, including Hendershott [14], Longuet-
Higgins [17], Pekeris [23].

It is apparent that accuracy of numerical solutions is difficult to achieve because
of the sensitivity of nearly resonant motions to erorrs of discretization.

For smaller basins or gulfs the earth’s curvature can be neglected, and in Car-
tesian coordinates (x, y) the equations become, with quadratic friction terms

({291, [30D),

33’ —fr=—g (za; z) +,.u|ul,

o - _ a(z — 2) v|u|
2.2) a L+ fu R

0z, O(Hu) , O(HY) _

ar t=ox T oy

This is a symmetric hyperbolic system with monotone nonlinearity, of a type
treated generally by Lions [16]. Boundary conditions at a coastline with normal
nare u-n = 0 and at a sea boundary may take the form of given values for z,
or u-n or of a radiation condition on z,

The tide raising forces, represented by the Z terms in (2.2), are almost periodic in
time because of the various combinations (Godin [12]) of the several astronomical
constants of the moon and sun. For convenience in finding analytic or numerical
solutions it is customary to model the harmonic constituents separately, and thus
to neglect certain nonlinear convective and frictional interactions which however
are almost always very small,

When depth H and Coriolis parameter f are assumed constant, various plane
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wave solutions of the Poincaré or Kelvin types are easily derived and have been
extensively used in the qualitative discussion of real problems (Hendershott and
Munk [14], Platzman [24], [25]). Along the western shore of Nova Scotia and the
southern flank of the Bay of Fundy, the M, and other semidiurnal tidal compo-
nents take the form of a Kelvin wave following a right-handed coastline.

3. The wave equation. If the Coriolis and frictional forces are neglected, the
system (2.2) becomes equivalent to the classical wave equation

2
@31 Lo = % - a%(gH%?) - -%(g g—f>=0 for a potential @=®(x,y,t)
where @, = u, @, = v, @, = z. The local wave propogation velocity is ¢, where
c? = gH(x, y), and its variability plays a significant role in the refractive generation
of topographical waves (Meyer [19]).

Actual problems will involve a nonhomogeneous boundary condition of the
first or second kind, or a forcing term, which is almost periodic with respect to the
time variable because of the incommensurability of the various orbital constants of
the sun and moon. Thus the theory of almost periodic solutions of the wave
equation of Amerio and Prouse [1], Lions and Strauss [16], Zaidman [32], and
others applies directly to this model of tidal motions. The nonlinear wave equation
with friction term r@, ] q),| treated by Amerio and Prouse is of the same type but is
not directly equivalent.

At a vertical coastline the position of the boundary does not depend on sea level
z. At sloping beaches in high tidal areas, the boundary position may vary as much
as several kilometres depending on sea level. This is expressible as a “unilateral”
condition (Brezis [4]) 99/df = z > — D(x, ), and an existence theorem covering
this case has been established by Brezis for the wave equation although the more
general case of the Eulerian equations (2.2) remains to be treated.

4. Resonant alteration of amplitudes. Tidal power plants would be sited in bays
where high amplitudes occur in part because of resonant amplification due to a near
coincidence of the imposed period (usuvally lunar semidiurnal M5) and the natural
period of the bay or gulf. As major construction changes the geometry and dy-
namics of the tidal motion, the amplitude will change in response. Calculations
made for barrier sites at the tip of Cape Chignecto have suggested that a substantial
decrease may occur, with the new natural period well removed from the 12#25m
forcing period (Dufl [5]). To make such calculations, however, it is necessary to
fix an outer sea boundary beyond which no change is assumed, and here a succes-
sion of complexities has emerged. In early work for the Bay of Fundy region the sea
boundary was taken at the geographic limits of the bay, but this did not even
permit an explanation of the existing resonant amplification (Yuen [30]). Subse-
quent extension of the sea boundary to the continental shelf edge gave an indica-
tion of resonant natural periods (Duff [5], Garrett [9]), but still did not include in
the model the interaction or impedance relationship between the deep outer ocean
and the shallow high tide area of energy dissipation.
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Significant grounds for supposing that inclusion of extensive deep ocean areas
would be necessary in a realistic tidal model arise from recent work of Garrett [8],
who applied the theory of harbour resonance (Miles and Munk [20]) to the Bay of
Fundy and Gulf of Maine and showed that their response to harmonic forcing at
three semidiurnal frequencies indicated a fundamental natural period of approxi-
mately 13.3 hours, This suggests that tidal barrier construction at the head of the
Bay of Fundy would actually increase amplitudes rather than reducing them as had
earlier been supposed. A similar calculation using twelve stations at the head of the
Bay of Fundy gave a period of 12.85 hours (Duff [7]).

Following a method adapted by Platzman [25], Garrett [9] has also calculated
the first three natural periods (eigenvalues) and normal modes (vector eigenfunc-
tions) of the oceanographic equations for the Bay of Fundy and Gulf of Maine.
The natural period of the lowest mode is calculated in the range of 12.5 to 13 hours
depending on the precise location of the lateral sea boundaries and the open or
closed boundary conditions assumed at certain places. The second and third modes
have periods of 9.5 and 5.7 hours, and it is apparent that the first mode carries
nearly all the observed tidal oscillations in the Bay of Fundy.

The first three natural periods and modes for the North Atlantic have been
calculated by Platzman [26]; the periods turn out to be 21.2, 14.0 and 11.5 hours,
with some uncertainty about the third of these values. Thus it appears that the
semidiurnal tidal periods My of 12.42 hours, S, of 12.0 hours, N, of 12.66 hours,
and others, lie between closely spaced second and third natural periods. This may
help explain the unusually high semidiurnal amplitudes in the North Atlantic, but
many detailed aspects of the resonant response to this array of semidiurnal fre-
quencies remain unexplained.

The magnitude of Fundy tides may be seen as having been reached by a balance
between a dissipative mechanism, with assumed quadratic frictional forces, and an
energy imparting mechanism in the deep ocean where work done by the tide raising
force is proportional to distance travelled and hence to the first power of amplitude.
Further, it now appears that the second and third North Atlantic modes are those
primarily stimulated by the Fundian resonance. To represent these processes within
one model both the continental shelf shallows and oceanic areas must be included,
as well as their zone of interaction across the continental shelf.

5. Numerical models of oceanic tides. Large-scale numerical calculations of
global oceanic M, tides have been undertaken by Bogdanov and Magarik [3],
Pekeris and Accad [23], Zahel [31] and Hendershott [14], the continental shelf
shallows being omitted and treated as coastlines with various assumptions of
permeability or impedance. Fairly good qualitative agreement for the North
Atlantic has been obtained. However the substantial energy flows into the Gulf of
Maine, Baffin Bay, or the English Channel-Irish Sea region suggest that accurate
representation of these resonant sea motions will require detailed modelling of the
dissipative regions. As deep sea tidal observations have been possible only recently
and at limited numbers of stations, a detailed reconciliation of theory and observa-
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tion will take many years, but it is now regarded as feasible two hundred years
after Laplace [15] and nearly three hundred after Newton [22].

Such oceanic tidal models involve large-scale numerical computation (Heaps
[13]), as thousands of grid points and depth measurements are needed to begin to
represent the far from smooth topography of coastlines and ocean depths. To
represent one harmonic tidal constituent such as M, a periodic solution is required,
and this is found by calculating a sufficient number of tidal cycles to obtain con-
vergence to a periodic solution for large times. Whereas in shallow waters with
comparatively strong bottom friction a few cycles may suffice, a hundred cycles may
be required for a deep ocean model, even with devices for acceleration of conver-
gence. For problems of this scale the older explicit methods of numerical solution
of partial differential equations are giving way to the more stable implicit and
alternating direction methods that permit much longer time steps [18].

A brief description will now be given of an attempt made by the author to model
the combined shallow dissipative region, in this case the Bay of Fundy and Gulf of
Maine, and the deep sea region, in this case the North Atlantic. To obtain a detailed
representation of the Bay of Fundy and at the same time a uniform coordinate grid
suitable for implicit methods, a transformed system of spherical coordinates with
pole about 3° inland from the New Brunswick coast was adopted. The system can
thus be plotted on a Mercator projection with this point as North Pole. The oceanic
region comprises the North Atlantic from Newfoundland to the Azores, thence to
the African and South American coasts and then on a line through the West
Indies to the coast of North America. The local conformal condition for a
first-order square grid leads to the use of equal intervals of the longitude ¢ and of
y = log tan[6/2 + /4], where 0 represents latitude in the transformed system. Of
2,000 grid points in total, 32 lie in the Bay of Fundy and 200 in the Gulf of Maine.

The finite difference equations in this model are formulated with a splitting of z
into two components z = z; + z where the time rates of change of z; and z, are
obtained as the x and y terms of the continuity equation. In each momentum
equation, the corresponding z term is treated implicitly while the other term is
included explicitly and the time steps for the two implicit systems are staggered to
avoid extrapolation of explicit terms. In effect, the model treats two implicit sys-
terms of one-dimensional channels, each with explicit crossover terms. Tide raising
forcing terms based on zero lunar declination and boundary data based on the
oceanic tidal models described above are used.

Preliminary results from this model indicate that tidal barrier construction at
the three preferred sites will increase the M, amplitude at Economy Point, Nova
Scotia, and decrease the amplitude at the New Brunswick sites.

Further refinement of such models will be necessary if reliable forecasts for large-
scale projects are ultimately required. Features such as self-gravitation, crustal
reaction, and the effect of solid earth tides present themselves for consideration,
and for the latter two more observational studies are needed.

6. The control problem for tidal energy generation. Let a one-dimensional channel
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have headwater at g, barrier position b and open sea boundary ¢ on the x-axis; let
Z(x, t) denote sea level above equilibrium at point x, Q(x, ¢) the flow at x, Q =
A(x, Hu(x, 1) where A(x,?) is cross section and u(x, #) current. Let b(x,#) denote
surface breadth of the channel, and k£ = 0.003 the dimensionless quadratic friction
constant. The equations of motion in this channel take the form (Proudman [29],
Yuen [30])

1 k
(6.1) Zy= — 6 O Q= — AgZ, - A%cl)%' >
where H = D + Z again denotes total depth and g gravity.

Boundary conditions are Q(a, ) = 0and Z(c, t) = Zy(c) cos (wt — T), while at the
barrier position b, Z is in general discontinuous, and Q(b,?) is regulated by sluice
and turbine controls (Duff [6]). Thus Q, = Q(b,f) = Ag + uV where A(— 1 S A £1)
is the “double effect” two-way turbine control with maximum flow g, and u
(0 = £ 1) is the sluice control with maximum permitted flow ¥ which for sim-
plicity may be assumed to have the Torricellian form

V=gl2A4|Z, - Z_|V2sgn(Z, — Z.)

in terms of the limiting values Z .., Z_ of sea level on either side of the barrier.

Let N(g, ) denote the power derived from turbines operating at head 4 =
|Z+ - Z_I and flow ¢, and let p(¢) denote the unit value of power at time 7. Assuming
the conservation of total water mass rather than (6.1), Gibrat formulated the problem
of maximizing returns from a tidal power plant as a problem in the calculus of
variations (Gibrat [10], Godin [11]), and these results are effectively in use at the 240
megawatt Rance tidal power station at St. Malo. Integration by parts of the first
variation of J yields initial terminal and boundary conditions for ¢, @, a barrier
condition for ¢, as well as conditions for the variations of 4 and u, namely for A

p(?) ON[og1)(g, h) — [¢/b]F >0, A= +1,
6.2) =0, —1<2< 41,
<0, A=—1,
and for u,

6.3) /61 ¥ g 8: p

0,
1.

The dual partial differential equations for ¢, @ take the following forms (with
certain additional minor simplifications)

9 = 0(9\_ 1010 _

(6.4) bt o (AgD) =0, O+ ax<‘b‘> %1212 _ g

The combined Hamiltonian system (6.1), (6.2), (6.3), (6.4) gives optimal (or at
least, extremal) solutions to the control problem (Pontryagin [28]). Because
terminal conditions for @, ¢ are required, the usual complexities of a time horizon
appear. However for periodic solutions these difficulties can be avoided and
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numerical solutions obtained for single semidiurnal periods or fortnightly or
monthly cycles involving two or more frequencies and corresponding to spring and
neap tidal cycles (Duff [7]).

Such a system in operation can be regarded as having limited artificial intel-
ligence directed toward the extraction of energy from the tidal sea motions. The
apparent strategy such a system will follow involves the maximizing at certain
times of operating head /4 by the timing of internal surges in the enclosed basin,
and the operation of sluice gates to maximize the extraction of energy from the sea
in accordance with the change of resonance created by the barrier itself. A com-
plete synthesis of these considerations will require a combination of the most
extensive tidal models with such a control system.
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Recent Progress in Classical Fourier Analysis

Charles Fefferman*

In what sense does [ e*€ f(€) d€ converge to a given function f on R”? How do
properties such as the size and smoothness of finfluence the behavior of its Fourier
transform f ? These simple questions lie at the heart of much of classical analysis.
Their deeper study leads naturally to certain basic auxiliary operators defined on
functions on R”; and Fourier analysts seek to understand these operators and their
generalizations, and to apply them to various branches of analysis. In this paper I
shall describe some basic results and applications of Fourier analysis and speculate
briefly on the future. I have left out many topics of great importance, and empha-
sized merely those subjects I know something about.

Let me begin by sketching the state of the art as of about 1950. At that time, the
field was well developed only in the one-dimensional case. Since it had long been
known that the Fourier series of a continuous function on[0, 27] need not converge
at every point, Lebesgue measure (and in particular L?) was clearly recognized as
a basic tool. The Plancherel theorem [§*|f(x)|2 dx = 27 1%, |a,|* with f(x) ~
2% apefti gave a complete characterization of L? functions in terms of their
Fourier coefficients and established norm convergence of Fourier series. However,
the study of L#(p # 2) was known to be much harder. As an indication of the
difficulty of the problems of L#,take a function f(x) ~ 3%, a,e'** belonging to L?
(p < 2)but not to L2, and modify its Fourier series by writing g(x) ~ 1%, + a,e’**
with each + sign picked independently by flipping a coin. Then with probability
one, g does not belong to L# (or even to L) but is merely a distribution with
nasty singularities. Consequently, the assertion f ~ Y %.a,e** € L? depends not
only on the sizes |a,,| of the Fourier coefficients, but also on subtle relationships
among the phases arg(a,).

*I could not have prepared this article without very generous help by Mrs. Yit-Sin Choo and
Dr. K. G. Choo.
© 1975, Canadian Mathematical Congress
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Despite the difficulty of the problem, a fair amount was known by 1940 about
the relationship between the size of a function and the nature of its Fourier
series, thanks to pioneering efforts by Hardy and Littlewood, M. Riesz, Paley,
Zygmund, Marcinkiewicz and others. A result typical of the deepest work is as
follows (see [95]):

THEOREM 1 (LITTLEWOOD-PALEY). Let {S}}{=o, be a sequence of + signs which
stays constant on each dyadic block. (A dyadic block is an interval of the form
[2N, 2N*Y) or (— 2N+1 — 2N]: the collection of all dyadic blocks will be denoted by A.)
Then if f(x) ~ 333 ape’®* belongs to Lt (1 < p < o), it follows that 1.%.Sa,e'**
also belongs to L?.

Thus, although the phases arg(a,) play a decisive role in determining the size of

*. aze*#, only the relationship of arg(e;) to relatively “nearby” arg(a,) really
matters.

Although the original techniques used to prove this and related theorems are
very complicated, the underlying strategy is simple. The starting point is to rewrite
Dirichlet’s formula for the Nth partial sum of a Fourier series as

Snf(x) = eiNx [ eiN =5 f(x — ) % — eiN% [ e NG (5 — y)_‘g’_
= e "NzH(e'Ny f(y)) — etiN=H(e=Ny f())

with Hf(x) = [ (f(x — y)/y) dy, the integral being interpreted in the principal-value
sense. (Hf is called the Hilbert transform of £) This is a bold step, since for
C{°(RY) (say), the integral in Dirichlet’s formula converges absolutely, while that
defining the Hilbert transform does not.

Now the Hilbert transform also arises in complex analysis, for if F = uy + iy
is a well-behaved analytic function on the upper half-plane RZ, then on the bound-
ary R, v is the Hilbert transform of u. Therefore we may hope to prove theorems
on the Hilbert transform and related operators via complex analysis (e.g., Cauchy’s
theorem, Jensen’s formula and Blaschke products, conformal mapping) and then
translate the results into information on Fourier series. To illustrate the ‘‘complex
method”, let us prove a simple case of M. Riesz’s famous theorem that the Fourier
series of an L? function on[0, 2z]converges in norm (1 < p < o0). This comes down
to proving that the Hilbert transform is bounded on L#(R!), and we give the argu-
ment for the easiest nontrivial case p = 4. Given a well-behaved analytic function
F = u + ivon R%, we have to show that [ v*dx < C [z u*dx with Cindependent
of F. However, Cauchy’s theorem for F!{ = ut + 4iudy — 6u2v2 — 4iuv3 + vt
yields [ F4 dx = 0 so that 0 = [ Re(F4) dx = [p (ut — 6u2 2 + v¥) dx. Hence
[ vt dx £ 6 [putv2dx < 6 ([ ut dx)!/2 ([ v* dx)!/2 by Cauchy-Schwarz. Dividing
both sides by (f v4dx)!/2 and squaring gives the desired inequality [p vdx <
36 [ u'dx. The general case (p # 4) is similar, though not so easy.!

1See the ingenious paper of S. Pichorides [72] for the exact norm of the Hilbert transform on L?
and other related constants.
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Now I can give a vague idea of the proof of the Littlewood-Paley theorem. The
idea is to relate an auxiliary operator S arising from complex analysis with an op-
erator G arising from Fourier series. Specifically, given f ~ X,ae** on [0, 2z]
(say ag = 0), we break up the Fourier series into dyadic blocks

f ~ % akeikx = ]é, (lp akef'kx> EIEZAfI(x)

el

and define G(f) as G(f)(x) = (Xes | f,(x)|2)1/ 2, The function S(f) is defined in
terms of the Poisson integral u(r, §) of f by the equation

SU)x) = ( {{ |VuG,0)l2rdr d@)m

(r:0) eT(x)

where J'(x) is the Stoltz domain {(r, )| |x — 0| < 1 — r < %} in the unit disc. S(f)
has a natural interpretation as the area of the image of /'(x) under the analytic
function v + iv whose real part is w. For our purposes, the basic facts concerning
S and G are:

@ SO~ [fll, @ < p < ). In other words, |S(f)],/[f]|,is bounded above
and below. This can be proved by complex methods. Note that already (a) contains
the Lt-boundedness of the Hilbert transform, since for F = u + iv analytic we
have IVul = |Vv| by the Cauchy-Riemann equations, and hence S(») = S(v).

®) | SO [|l,~[6(N|, @ < p < o). Limitations of space prevent even a vague
description of the proof, but the basic tool here is the L#-boundedness of the
Hilbert transform acting on functions which take their values in a Hilbert space.

Once we know (a) and (b), the Littlewood-Paley theorem follows at once, since
evidently f = Y ;c, f; and g = X1;c4 £ f; always have the same G-function. An
extensive discussion of the Littlewood-Paley theorem and of complex methods in
general may be found in Zygmund [95]. It must be admitted that the ingenious
complex-varjable proofs of classical Fourier analysis leave the researcher in the
unhappy position of accepting the main theorems of the subject without any real
intuitive explanation of why they are true.

Now I want to speak of the profound changes which took place in classical
Fourier analysis, starting with the fundamental paper of Calderén and Zygmund
[17]in 1952.2 We shall be concerned here with eflorts to generalize the basic oper-
ators, especially the Hilbert transform, from R! to R”. These generalizations are
anything but routine, because Blaschke products do not generalize to functions of
several complex variables, and consequently (for this and other reasons) the whole
complex method has to be abandoned and the results reproved by real-variable
techniques, Moreover, the real-variable methods and the n-variable analogues of
the Hilbert transform, S-function, etc., play an important role in partial differential
equations, several complex variables, probability and potential theory, and will
probably continue to find further applications as time goes on.

The operators. Let us begin with the Laplace equation du = fin R* (n > 2)

2In retrospect we can see many of the ideas anticipated in the work of Titchmarsh, Besicovitch,
and Marcinkiewicz. (See [95].)



98 CHARLES FEFFERMAN

which one solves with the standard Newtonian potential

) ue) = 6 Jp LAY

|x =]
If / belongs to some function space (L?, Lip(e), C(R"), etc.) does it follow that the
second derivatives of v all belong to the same function space? Differentiating the
right-hand side of (1) (carefully) under the integral sign, we obtain for the second
derijvatives of u the formula

@ () = G5 = S ) + fe G5 T 1) o,

where (2, is homogeneous of degree zero, and smooth away from the origin. Note
that the intlegral in (2) diverges absolutely, but at least for “nice’ functions f we
may define that integral as
Qi(x — ») dv
=0t 1x—yI>e | X — Y| TO) éy,
and the limit exists by virtue of the essential cancellation (g 2;(y) dy = 0. In
general, a singular integral operator is defined on functions on R” by

6) Tr) =lim | DE=9) g5y4,

o0 15—yi>s |X — Y[ "

where (2 is reasonably smooth and homogeneous of degree zero, and [g- Q(y)dy
= 0, For example, if we set Q(y) = sgn(y) on Rl, then (3) becomes Tf(x) =
[& (f&) dy/(x — »)), i.e., T is the Hilbert transform. Thus regularity properties of
solutions to the Laplace equation come down to boundedness on varjous function
spaces of a few specific singular integral operators;that is, certain n-variable gener-
alizations of the Hilbert transform,

More generally, the theory of singular integral operators plays an essential role
in a host of problems of partial differential equations. To see why, start with a pure
mth order differential operator

e B (A ()
and write
L=( 2 aliRs - Ry)-(= 4,

where R; =(9/0x;) (— 4)1/2. Now R; is called the jth Riesz transform, and is given
as a singular integral operator by the formula

R, (%) = c[pe ]____ f(y) dy3

|n+1
(Note that in one dimension, the single Riesz transform is just the Hilbert trans-

3See Horvath [52] and Stein [85].
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form.) Therefore, L factors as L = T(— A)*2, where T is a variable-coefficient
singular integral operator, i.e., an operator of the form

@ TFG) = d(f ) + [ 2 ("|; y”y'f =D 16,
with ¢(-) e C*(R"), Qe C(R" x S7~1), and (o Q (x, w) dw = O for all x. In other
words, modulo the factor(— 4)m/2 a partial differential operator is merely a special
type of singular integral operator.

As a substitute for the Fourier transform, we associate to the operator T of (4)
its symbol o(T) defined by

® o(x,6) = ¢(x) + [r —————Q(xi wl/”lwb e'to do.

w
Clearly, o(x, &) is homogeneous of degree zero in & and smooth on R? x (R”\0).
In the special case T' = (X 41=,n @a(x)(0/0x)%)(— 4)~m/2 the symbol is just o(x, &)
= i e (¥)E)/|€|m. Moreover,

(6) Every smooth homogeneous ¢(x, £) on R?" arises as the symbol of a unique
singular integral operator, which we denote by o(x, D).

(7) The class of all symbols forms an algebra of functions. The mapping a(x, &)
— ¢(x, D) is an approximate homomorphism from functions to operators. That is,
o1(x, D) e g9(x, D) = (01-09)(x, D) + a “‘negligible” error.

(8) The adjoint of o(x, D) is given approximately by the complex-conjugate sym-
bol: (o(x, D))* = &(x, D) + a “negligible” error.

By virtue of (6)—(8) we may construct useful operators merely by making ele-
mentary manipulations with symbols. For instance, an elliptic singular integral
operator g(x, D) (i.e., an operator with nonvanishing symbol) evidently has an
approximate inverse—we simply take (1/o)(x, D)—and the standard interior
regularity results on elliptic partial differential equations follow easily from these
observations.

So far we have described the theory as it first appeared in the pioneering work of
Calder6n [12] on uniqueness of solutions to Cauchy problems. (Calderén used
singular integrals to diagonalize a matrix of differential operators. See also earlier
work of Giraud [43] and Mihlin [66].) Nowadays it is more common to work with
the closely related theory of pseudodifferential operators, invented by Kohn and
Nirenberg [60] and developed by Seeley [75], Hormander [48], [49], Calder6n and
Vaillancourt [16] and others. To arrive at the notion of pseudodifferential oper-
ators? one uses (5) and the Fourier inversion formula in (4) to obtain

©) Tf(%) = [ € ta(x, &1 @) dE.

Now we take (9) as the definition of ¢(x, D), broaden the class of symbols 1o
include all functions satisfying suitable estimates, say

(10) | (3/0x)= (3/0€)F 0| < Col€[71! for all a, B,

4Actually Kohn and Nirenberg were led to pseudodifferential operators by their work on the
9-Neumann problem of several complex variables.
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and prove refinements of (7) and (8) directly from (9). Pseudodifferential operators
have the advantage of making it relatively easy to refine (7) and (8) to “Leibniz’
rules”

«

(1) a(x, D)ob(x, D) = (a-b)(x, D) with (acb)(, §) ~ X (1/a) [0/0€]* a-[i"d/0x]*b

and

12) (a(x, D))* = a# (x, D) with a¥ ~ 3} [l. l]”[i]a
« al L7 0x ]| 0§

Later on, we shall see problems in which singular integrals have advantages over
pseudodifferential operators. However, for many purposes the two theories are
equivalent,

The applications of pseudodifferential operators to index problems in topology
and geometry are so well known that it is enough for me to pay them lip service.
But I would like to take a few paragraphs to explain two recent developments in
partial differential equations in which pseudodifferential operators and singular
integrals played a crucial role. Both developments have their roots in a basic
phenomenon of several complex variables, namely that the restriction of an an-
alytic function F to a hypersurface ¥V = Cr satisfies a system of partial differential
equations. To see this, we start with the » Cauchy-Riemann equations 0F/0z; = 0
in C». From the restriction of F to the hypersurface ¥, we know only the 2n — 1
tangential derivatives of F, and thus we must solve one of the Cauchy-Riemann
equations for the remaining (normal) derivative. Consequently, the restriction of
F to V must satisfy n — 1 first-order partial differential equations, called the
tangential Cauchy-Riemann equations on V.

Our first topic in partial differential equations arises from the case ¥ = the unit
sphere in C2, where are we dealing with one equation in one unknown. In a suitable
coordinate system on the sphere, that equation takes the form

[0/t + i(0/ox + to/oy)]F = O.

Therefore it is natural to try to “‘correct” functions which are ““‘close to to analytic’
by solving

(13) [0/0t + i(@/ox + 18)6y)lu = f,

with f'e C* (say). Such “correction” procedures are common practice in complex
variables. Thus, the discovery, by H. Lewy in 1957 [63] that equation (13) cannot be
solved, even if we require fe C* and demand only that u be a distribution defined in
some neighborhood of a point, came as a greal shock to researchers in partial
differential equations. Prior to Lewy’s discovery, it was universally assumed that
all nondegenerate linear partial differential equations (and certainly those arising
from “real life’’) could be solved. After Lewy’s paper, intensive research began on
the problem of deciding which equations admit local solutions. At the moment,
systematic results are available only for equations of principal type, i.e., roughly
equations in which all lower-order terms may be regarded as trivial perturbations of
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the highest-order terms, These include the Laplace and wave equations, but not the
heat equation or the Schrédinger equation. For equations X 1= de(*) (i1 8/0x)%u
= f of principal type, Nirenberg and Tréves [70], [71] formulated the following
condition and amassed overwhelming evidence to show that it is necessary and
sufficient for existence of local solutions:

(P) Let a(x, &) and b(x, &) be the real and imaginary parts of X, 1—.@.(*)&%.
Then for any point (xg, &) € R x (R#\0) with a(xg, &) = b(xo, &) = O, the
function b has constant sign when restricted to the ‘‘bicharacteristic curve”
(_x(t), £()) obtained by solving the ordinary differential equations X; = 9a/0¢,,
€ = — 0afox;, (x(0), £(0)) = (xo, £0)-

In fact condition (P) is now known to imply local solvability (see Beals and
Fefferman [4], [5] as well as H6rmander [50], Egorov [26], [27], and Tréves [92],
[93]). There is no space here to discuss the ideas in any detail, Let me just
mention two of the main techniques, namely the use of canonical transformations
in (x, £)-space to “straighten out” the zero sets of symbols of pseudodifferential
operators via conjugation with Fourier integral operators (discussion of which
would take us too far afield), and “microlocalization”, i.e., the use of suitable
partitions of unity 1 =3 ¢,(x, £) in (x, §)-space to define approximate projec-
tion operators ¢,(x, D) and thus split L2(R") into a big direct sum of subspaces
H;= image of ¢(x, D). By microlocalizing, we hope to split up one hard problem
into many easy ones, and then patch the easy results together. In patching together,
one has to use a calculus of pseudodifferential operators with “‘exotic’ symbols
Q satisfying merely

|(8/0x)= (8/0£)fa | < Cqp|& |1aiv2—teV2

instead of the usual estimates (10). We shall say more about exotic symbols later on.

Now let us return to the tangential Cauchy-Riemann equations on the sphere
S2n-1 < Cn, and this time suppose n > 2. A linear fractional transformation maps
the sphere to the hypersurface H = {(z/, z") e C"~! x C! |Re(z") = |2’ |2}, which
has the structure of a nilpotent Lie group under the multiplication law (z’, z%)-
W, w) = (' +w,zr+wr+2z' - w'). By analogy with the R” theory sketched above,
one expects that very sharp results on existence and regularity of solutions of the
tangential Cauchy-Riemann equations on H can be proved by using “singular
integrals” of the form If(x) = [y K(xy~1) f(») dy, where K has appropriate pro-
perties of cancellation and homogeneity with respect to the natural ‘“‘dilations™
0o(z', z7) = (0z', 0%z") on H. Moreover, once the results are known for H, one can
build a “variable-coefficieni” theory of “singular integrals” on (say) the boundary
of a strongly pseudoconvex domain in C*, by osculating the domain with biholo-
morphic images of H. Thus, a natural analogue of singular integrals provides a
powerful machine to study the tangential Cauchy-Riemann equations. (Note that
we cannol use the pseudodifferential operators viewpoint here, because the non-
abelian Fourier transform on H is [so far] too cumbersome even to deal with the
constant-coefficient case.) The ideas explained here come from Folland and Stein
[41], although singular integrals on nilpotent Lie groups have already appeared in
Knapp and Stein [59] in connection with irreducibility of the principal series. See
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also Folland and Kohn [40] for the initial work of Kohn on tangential Cauchy-
Riemann equations, as well as Folland [39] and Stein [87].5

I have attempted to show by a few examples how n-dimensional analogues of the
Hilbert transform enter naturally into various branches of analysis. Let us now
review some techniques which have been used to study such operators, and then see
what insights we can gain into the Fourier transform in R”,

The techniques. The first step in analyzing operators that generalize the Hilbert
transform is to prove L2-boundedness. Fortunately, this is often an easy conse-
quence of the Plancherel theorem, as in the case of a constant-coefficient singular
integral operator

Tf() = Ji P 210 dy
where one has (71)(&) = o(£) f (£) with ¢ € L™. The S-function falls into this category
—itis not hard to show that |S(f)|; = (const)|f| .- However, when an operator
cannot be diagonalized by the Fourier transform or its variants, there are remark-
ably few L2-techniques available to deal with it. Sometimes in a lucky case we may
be able to reduce matters back to constant-coefficient questions. For instance, let

TF(x) = [ Q(x, (Tx— J’)/IIJZC »1) f(») dy
be a variable-coefficient singular integral operator on RZ?. For each fixed x
we expand Q(x,-) in a Fourier series on the unit circle, obtaining Q(x, w) =
D2 ooCi(X) i(w) With Q,(w) = e*f for w = (r, 0), and co(x) = 0. Now our operator
T may be expanded in a series of constant-coefficient operators Tf(x) =

L owCh(X) T f(x), with

Tof() = [ Qk(" 'y,yz) 1) dy.

Since Q(x, w) e C=, it follows that ]ck(x)| < C/(k% + 1) (say); moreover, the T,
(k #0) are uniformly bounded on L2, as one sees from Plancherel. Therefore,

C
1711z = 3 i 1T/l = €l
and our L’-result is proved. In R* (n > 2) the same trick works, with Fourier
series replaced by spherical harmonics.
A promising idea which has begun to find applications recently is Cotlar’s lemma
on “‘almost orthogonal operators”.

LEMMA. Suppose that the operators Ty, Ty,-+-, Ty on a Hilbert space H satisfy the
“orthogonality conditions”

5Compare with the theory of ‘“‘parabolic” singular integrals devised by Jones [58], Fabes and
Riviere [28], Lizorkin [64], Krée [62] and others; and in connection with parabolic singular inte-
grals, see the recent striking results of Negel, Riviére and Wainger [69].
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(14) | T#T; | < €G- ),
(15) |7yT% || = CG ~ j)
where || || denotes the operator norm, and Y13 _o (C(K))V% < A, Then | DI, Ty < A.

The simplest special case says merely that a direct sum X, @ T;: 2, @ H; -
%@ H; of operators T; : H; » H; has norm sup; | T;||. The lemma was first
given by Cotlar [24] in the case of commuting operators, and then extended by
Knapp and Stein [59] to the general case. See also Calderén and Vaillancourt [16].

The proof of Cotlar’s lemma is so simple that I can give it here. We start with the

T -l - [ YT

which imply
" TfuT":Tt's ' ln -1 m I

,1/2/3

£ 7" <

Hypotheses (14) and (15) show that each summand on the right is dominated both
by

fu m=1

A= T\ TET|- - | TAT |- T4
< CYA0)C(ip — i3)C(ig — i5) +++ Cligg-z — igp—1)CV%(0)
and by
P= || I'flTl* " “ fu-y ln ” = C(ll - IZ)C(IS 14) o ,C'(iZk'—l - iZk)

and hence also by the geometric mean AY2PV2 < CV20)CV2(i; — ip) CV2(iy — i3)
. CVZ(iZk 1— igk) Consequently,
m—

< CI/Z(O) NAZ1,

so that | BX, T;|| < (CVZ(0)N)V2k42~1/2 Now just let k tend to infinity, and
Cotlar’s lemma is proved.

To see how Cotlar’s lemma applies to the operators we have been discussing,
let us reprove the L2-boundedness of the Hilbert transform without using the
Plancherel theorem. The idea is simply to write

Hf(x) = IR'f—(x——?M = ,-:gm jZ’élyKZ’" &—%}M— = jngjf(x).

CBO)CVE(ly — i)CV2(ly — i) -+ CV¥ip1 — i)

Each H is a convolution operator whose convolution kernel
Kiy) =y if2 g |y| <27,
=0 ifnot,

has L! norm dominated by a constant independent of j. Moreover, H¥H; = H;H}
is the convolution operator with kernel — K; * K;, and elementary estimates using
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o Ki»)dy = [ K{(»)dy = Oshow that ||K; x K;||; £ C-27%/\, Thus, | H} H,|
< €27 and |H;H}| £ C%, and the L>boundedness of H = L2 . H; is
immediate from Cotlar’s lemma.

Of course the L2-boundedness of the Hilbert transform is nothing new. However,
the proof sketched above applies also to the Knapp-Stein singular integrals on
nilpotent groups—in fact it is the only method known to handle those operators,
since as we pointed out earlier, the nonabelian Fourier transform does not help.
Details are in [59].

A second application of Cotlar’s lemma is the theorem of Calderén and Vail-
lancourt [16] on L2-boundedness of pseudodifferential operators with exotic
symbols. (See also Hormander [49] for earlier work on the subject, and Beals [2],
[3] for extensions and applications.) The basic special case of their result which one
uses in microlocalization arguments for equations of principal type is the following.

THEOREM 2. Assume that o(x, £) satisfies the estimates
|(0/0x)= (0/08)° a(x, §)| £ Cog(1 + |E[)'el/2-161/2

Sfor all multi-indices a, 8. Then the corresponding pseduodifferential operator o(x, D)
is bounded on L2.

The main idea in the proof of the Calder6n-Vaillancourt theorem is to
apply Cotlar’s lemma to the decomposition o(x, D) = X3 ,(¢;0)(x, D), where
219, (x,&) = 1is a smooth partition of unity in (x, £)-space, constructed so that each
¢;1s supported in a region of the form {(x,&)| |x — xo| < |&o| V2, € — &o| < 60|72}

When neither the Plancherel theorem nor Cotlar’s lemma applies, L2-bounded-
ness of singular operators presents very hard problems, each of which must (so
far) be dealt with on its own terms. I shall mention two outstanding L?-results of
the last decade, and say a few words about their proofs and implications.

Commutator integrals. Let D = C! be a domain bounded by a C! curve /. Just
as in the case of the unit disc, there is a “Hilbert transform” T defined on functions
on [" which sends the real part u| r of an analytic function F = u + iv to its imagin-
ary part v| » and it is natural to ask whether T'is bounded on L2(J") with respect to
the arclength measure on I". This question is closely connected to the problem of
understanding harmonic measure on [, i.e., the probability distribution of the place
where a particle undergoing Brownian motion starting at a fixed point Py e D first
hits I,

In effect, T'is an integral operator on functions on R!, given by the formula

Tfx) = =, S) dy
(x — ) + i(A(x) — A7)
with 4 e C1(RY). Expanding the denominator of the integrand in a geometric series,
we obtain T as an infinite sum of operators

1) = [, YA

() dy.
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T, is called the kth commutator integral corresponding to A(x).

Commutator integrals also arise naturally when one tries to construct a calculus
of singular integral operators to handle differential equations with nonsmooth coef-
ficients, Ty is just the Hilbert transform, but already the following two results are
deep.

THEOREM 3. Let A be a C! function on the line. Then
(A) (Calderon [14], 1965) T is bounded on L2,
(B) (Coifinan and Y. Meyer 1974, still unpublished) Ty is bounded on L2,

See also Calixto Calderon [18]. To prove (A), Calderén used special contour
integration arguments which unforunately do not apply to higher 7’s. Coifman
and Meyer modified and built on Calderon’s ideas to produce a far more flexible
proof, which can probably be pushed further in the near future to cover all the
T,’s and possibly T'itself, We shall return to commutators in a moment,

Pointwise convergence of Fourier series. No discussion of Fourier analysis can be
complete without mentioning the fundamental theorem of Carleson [19] to the
effect that the Fourier series of an L2 function on [0, 2] converges almost every-
where. Carleson’s theorem provides the sharpest and most satisfactory answer to
the historic problem of representation of an “arbitrary” function as the sum of a
Fourier series. The result came as a surprise for several reasons. First of all, most
specialists thought that pointwjse convergence would turn out to be false even for
continuous functions, the supporting evidence being an old example of Kolmo-
goroff (see [95]) of an L! function with everywhere divergent Fourier series, and the
fact that for thirty years no one had succeeded in improving the classical result of
Kolmogoroff-Seliverstoff-Plessner which said that the nth partial sum of an L?
Fourier series is o ((log n)V/2) almost everywhere. Moreover, it was widely assumed
that some radical new techniques would be needed to crack the pointwise conver-
gence problem, while Carleson succeeded by pushing the known techniques very
far and very hard.

Unfortunately, Carleson’s proof is so technical that it is impossible in so little
space to give even the vaguest idea of its inner workings. I will only point out that
the problem reduces immediately to showing that

1= M) = sup, |Jn <SP
is bounded on L2 so that pointwise convergence is really a problem about the
Hilbert transform. R. Hunt extended Carleson’s result to L? (p > 1) in [54], and
his paper also gives the best presentiation of Carleson’s proof. P. Sj6lin [76]
proved the sharpest known result near L! (the Fourier series of f converges a.e.
if f log* | f| log* log*|f| e L), and Sjslin [77], Tevzadze [90], and Fefferman [30],
[31] discovered some extensions to functions of » variables. See also the aliernate
proof of Carleson’s theorem [33] (based partly on Cotlar’s lemma) whose relation-
ship with Carleson’s proof is not well understood.
Both Carleson’s convergence theorem and the Calderén-Coifman-Meyer results
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are stated purely in terms of L2, but, at least as far as we know today, purely L?
methods are not strong enough for the proofs. In fact, the known proofs of the
pointwise convergence and commutator theorems in one form or another involve
the full force of the “Calder6n-Zygmund” machinery described below, whose usual
purpose is 1o pass from L2 to L?. I am not the only analyst who suspects a strong
hidden connection between commutators and pointwise convergence. In any event,
our understanding of L2 boundedness of variable-coefficient operators is still
rudimentary.

The “Calder6n-Zygmund” techniques used to prove L? boundedness of singular
integrals contain the deepest ideas of the theory. In the next two sections, I hope to
convey more than a superficial notion of how the proofs go, even though this
necessitates a more technical discussion than is customary in a survey article.5
We begin with a seeming digression on a topic in real variables.

The maximal function. As preparation for the Lt-theory of singular integrals, we
shall discuss the following basic result of Hardy and Littlewood [44] and Wiener
[94].

THEOREM 4 (THE MAXIMAL THEOREM). Define the maximal function Mf of a locally
integrable function f on R"* by the equation

Mf(x) = sup [Q[" fo |7 )| dy.

(Here Q denotes a cube in R* with sides parallel to the coordinate axes.) Then we
have the inequalities

(A) | M7, < G710 <p < o),
(B) | {Mf> a}| < C|7]i/e

The technical-looking result (B) is the heart of the matter—it is the natural
conjecture that comes to mind upon staring at the simple example ' = 671 y;_; 5 on
the line. (In that case, Mf(x) ~ (§ + x)71.)

The maximal theorem is really a sharp form of Lebesgue’s theorem on differenti-
ability of the integral. For, one knows trivially that |Q|fq /() dy — f(x) as Q
shrinks to x, whenever f belongs to the dense subspace Cg° = L. To pass from the
dense subspace to all of L! one needs an a priori inequality, and part (B) of the
maximal theorem exactly does the job.

One set of applications of the maximal theorem concerns stronger theorems than
Lebesgue’s on differentiation of multiple integrals. In the plane RZ, for example, let
Ry, R, R, be respectively the family of all squares, the family of all rectangles with
sides parallel to the coordinate axes, and the family of all rectangles with arbitrary
direction. The standard Lebesgue theorem in R? says that | R|™! [z f(31, y2) dy1 dys
— f(x1, xp) a. e. for fe LI(R?), when R € R, shrinks 1o (x;, xz). What happens if
we allow R to belong to the larger familes R; and R,? The answer is contained in
the following list of results:

6Much has been deleted from an original version of this article.
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(16) | R [ /(y1,y2) dy1 dys — f(xy, Xp)a.e. as Re Ry shrinks to (x;, x,), provided
S € L¥(R?) withp > 1,

(17) The result (16) may be sharpened—instead of f'e L? (p > 1), it is enough to
assume that f log*|f| is integrable on R2,

(18) However, there exist L! functions f for which |R|’1 [= f(21, p2) dyy dy, does
not tend to a finite limit as R € R, shrinks to any point (x;, x,) € R2.

(19) The family R, is even worse. Even for bounded functions /it may happen
that |R|'1 {2 f1> ¥2) dyy dy, tends to f(x;, x,) almost nowhere, as R € R, shrinks
to (xl’ xZ)'

The positive results (16) and (17) cannot be established by the usual textbook
proof of Lebesgue’s theorem, because the Vitali covering lemma is false if we use R,
in place of Ry However, with the aid of the maximal theorem (16) is a triviality.
Since | R|™2 [ f(31, ¥p) dyy dys — f(x1, %) for f in the dense subspace Cf° < L?
(1 < p < o0), it is enough to prove the maximal inequality

(AY) | Mfll, = €7, (1 < p < c0) with
M +f (xls xz) = SUPRs(su :)iR=R: |R|“l j‘ R I f(yl, yZ)I dyl d)’z,

just as in the familiar case of Lebesgue’s theorem, Now set

Myf(%1, x5) = SUPgagieem |2 |71 fo | 1 x2)| A1
and

M f (%1, X5) = SUPgogeger | 2|71 fo |F(x1 y2)| dye.

The ordinary one-dimensional maximal theorem shows that M; and M, are
bounded operators on L#. On the other hand, it is trivial to show that M*f <
Miy(M,f) pointwise, so that | M*£ ||, < |My(Maf) |, < Cy| Maf |, < C2|\f] and
(A") is proved. Thus, the maximal theorem implies statement (16), the “strong
differentiability” of the integral. The refined positive result (17) again follows from
M*f < My(M,f), using a more detailed version of the maximal theorem. Limita-
tions of space prevent adequate discussion of the negative results (18) and (19),
but I want {o point out that they are intimately connected with the failure of the
conjectures

®B) |{M*f> a}| £ C|f|1/a, and

(AY) ||supgogu sy ke | B[ [& [/ y2) | dvr dia |5 S Cy|| S5
In particular (19) and (A**) are strongly related to the Kakeya needle problem.
(See Busemann and Feller [10].)

Let us now try to understand why the maximal theorem is true. To simplify the
discussion, I shall weaken the result slightly by restricting atiention from all cubes
to the special family of dyadic cubes. We start with the unit cube Qy = R, “bisect”
Q, into 2# subcubes of side %, “bisect” each of these cubes into 2” subcubes with
side %, “bisect” each of these cubes, etc., etc., and continve forever. The family
2 of all cubes so obtained is called the family of dyadic cubes. From now on, we
shall look only at dyadic cubes—in particular we change the definition of the maxi-
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mal function so that the “sup” is taken only over dyadic cubes. This restriction is
not severe, for given any cube Q = Qy we can find a dyadic cube @ of about the
same size, at about the same place; so dyadic cubes are almost as “general” as
arbitrary cubes. However, for dyadic cubes we have the very convenient observa-
tion

(20) Two dyadic cubes are always disjoint, unless one is contained in the other.

The easiest way to become convinced of the dyadic inequality (B) is to vent one’s
probabilistic intuition on the following game of chance, constructed from the set-up
for the maximal theorem. Let f = 0 be a fixed L! function on the unit cube Q.
Our fortune at time t = O is |Q0|‘1 f0.f(») dy, and we can either rest content or take
a chance. If we decide to gamble, the dealer picks a cube Q; at random from
among the 2# dyadic subcubes of Q, of side } (all possible Q,’s have equal probabil-
ity), and our fortune at time t = 1 is ]Q1|‘1 fo.f(») dy. Again we may rest content or
take a chance. If we again decide to gamble, the dealer picks a cube Q, at random
from among the 2# dyadic subcubes of @, of side % (all possible Qy’s have equal
probability), and our fortune at time ¢ = 2is | Q3| fq, /() dy. The game continues
in this way, either forever or until we decide to quit.

The most important feature of our game of chance is that it is absolutely fair
(i.e., it is a “martingale’’). More precisely, suppose we find ourselves at time ¢ = &
at the cube @, so that our fortune is | Q[ [q, /() dy. If we gamble once more, we
may win or lose money, but our average fortune at time ¢ = k& + 1 will be

S UUN N S GRS U
i 2 Tt eSOV = g1 Ja SOV &

i.e., exactly the same as our present fortune. Thus, the game is fair.

Now consider the strategy “quit while you’re ahead’. We pick in advance a large
number « > fo, () dy, and we stop playing the first time our fortune exceeds
a—if our fortune never exceeds «, we keep playing forever. In the lucky case (one
of our fortunes exceeds «), we shall have fortune at least « at the end of the game;
and even in the unlucky case we shall have at least zero, since f = 0. Therefore our
average (or expected) fortune at the end of the game is at least ¢ x Probability of
the lucky case = a x Probability{sup, |Q,,|"1 jQ‘ f(») dy > a},and a few moments’
thought shows that this is the same as a:-|{Mf > a}|. On the other hand, since the
game is fair, our average fortune at the end of the game is merely our initial fortune
fo.f() dy, no matter which clever strategy we use. Therefore, a-|{Mf > a}l =
fo.f(») dy, which is exactly the estimate (B). Part (A) of the maximal theorem
follows from part (B) by a useful “interpolation” theorem which we state only in
a basic special case. (For more general results, see Zygmund [95] and Hunt [53].)

THEOREM 5 (MARCINKIEWICZ INTERPOLATION THEOREM). Let T be a linear or
sublinear operator defined on functions on some measure space, and suppose that
Do <p < py £ . If Tisbounded on L?, and if the ‘“‘weak-type (po, po) inequality”
|{| Tf | > oz}| =C || f M/ai’“ holds, then it follows that T is bounded on L?.

To deduce the maximal theorem, we take py = 1, p; = oo.
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Lt-estimates for singular integrals. The techniques we have just discussed for the
maximal function apply also to a wide class of singular integral operators. For
simplicity, we will start with a constant-coefficient operator 7" : f — K » f on R",
where K is a distribution locally integrable away from the origin, Thus, K might be
x71 on the line, or @(x)/|x|" in Rn,

Our assumptions on K are

(21) T'is bounded on L%(R%), and

(22) [iusiy | K(x) — K(x — y)| dx £ C < oo for all ye R,

Condition (22) is always satisfied if |grad K(x)| £ C/|x|"*1, so (a) and (b) hold for
all the usual singular integral operators.

THEOREM 6 (CALDERON-ZYGMUND INEQUALITY). Let T be a convolution operator
satisfying hypotheses (21) and (22). Then
(A) T is boundedon L* (1 < p < ),

® {|7f| > o}| £ C||f]|1/e.

The proof of Theorem 6 is based on further careful study of the game of chance
used to prove the maximal theorem. See Stein [85].

Although for simplicity we stated the Calder6n-Zygmund inequality only for
convolution operators, its proof applies to virtually all the variable-coefficient
singular integral operators mentioned above. In particular, the following operators
are bounded on L# (1 < p < o0):

(A) A singular integral

T76) = ) + fe 2ECZDE=ID 150

with ¢ and @ as described above. (Actually, one can weaken considerably the as-
sumptions on £.)
(B) A “classical” pseudodifferential operator

Tf(%) = [w € fo(x, &)f (§) d¢,

where [(9/0x)2(9/0)Po(x, £)| S Cip|&|"#! for all multi-indices a, B.
(C) The commutator integrals

/@) = [p D =40 15) dy, T1() = [ AC) = 4O 4
(x — )2 (x — »)p?
on R!, with 4' € L™,

(D) The Knapp-Stein singular iniegrals on nilpotent Lie groups. (See Koranyi
and Vagi [61].)

Moreover, the Calderon-Zygmund inequality turns out to be exactly the right
tool to prove the classical results of Fourier analysis on the S-function and the
G-function, which we discussed briefly at the beginning of this paper in connection
with complex methods. (See Stein [81], [83], J. Schwartz [74], Hérmander [47],
Benedek, Calderén and Panzone [6].) Typical results are
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® [ SNy ~ 7], < p < o0).

(F) Let ¢4(&) = o(27%#¢) on R, with ¢ a fixed smooth function supported
in {§ <|€| £ 2}, chosen so that 12 .| ¢ ()2 = 1. Define #(f)(x) =
(Z2w |4 SO, where (Af@) = 4i®F ©. Then |G|, ~ |71,
(l<p< o)

G 6N, ~ |/, (@ <p < o). Recall that (in effect) G(f)(x)=
(Zi"é—wwkf (x) |2)1/2, where (B, /()= xesiei<z(©)- /().

The main idea in proving (E), (F), (G) is to regard S, ¢ and G as convolution
operators mapping ordinary scalar-valued functions to functions with values in a
Hilbert space, and then apply the Calder6n-Zygmund inequality.

Actually, the connections between the maximal function, the Hilbert transform,
and the S-function are now known to be far closer even than had been suggested
by the Calderén-Zygmund inequality and its applications (A)—(G). The main ideas
here were developed by Burkholder, Gundy and Silverstein [8], [9] and Fefferman
and Stein [38] in the context of the H? spaces. The key to the new results is the game
of chance introduced above in connection with the maximal function. We consider
a fair game of chance (e.g., matching pennies) in which the gambler is allowed to
vary the size of his bets depending on past history. (For example: Bet $1.00 the
first time. If you win, bet 27# dollars at time k (k = 2); if you lose, bet 2# dollars
at time k (k 2 2).) Then the following three events are equivalent, except on a set
with probability zero. (See Burkholder and Gundy [8].)

(a) The gambler’s fortune remainds bounded as time tends to co.

(b) The gambler’s fortune approaches a finite limit as time tends to co.

(c) The sum of the squares of the bets is finite.

The simplest special case is the old “three series” theorem, which says that a series
X, * ¢, with random + signs converges with probability one if 32, | ¢, |2 < oo and
diverges with probability one if 33, | ¢, |? = co.

By analogy, one hopes that for an arbitrary harmonic function #on the upper half-
plane (not necessarily a Poisson integral), the following conditions on a boundary
point x are equivalent outside a set of measure zero:

(a’) u is nontangentially bounded at x, i.e., sup,c ¢, |u(z)| < co.

(b") u has a nontangential limit at x, i.e., lim,._.,, ,c p(,yu(z) exists.

() Sw)(x) = (jjp(x)|Vu(z)|Z dz dz)'2 < 0.

See Privalov [73], Marcinkiewicz and Zygmund [65], and Spencer [79] for the case
of the upper half-plane, and Calder6n [11] and Stein [82] for extensions to harmonic
functions of several variables. Note that since S(#)=S(v) for conjugate harmonic
functions, the equivalence of (b’) and (c") shows that » and v have nontangential
limits at essentially the same set of boundary points. Thus, we obtain a “local”
analogue of M. Riesz’s theorem on the Hilbert transform.

So far, the analogy with gambling had done nothing but clarify the known re-
sults (a’) <> (b') <> (¢) and the maximal theorem. However, further work of Burk-
holder, Gundy and Silverstein [9] and Fefferman and Stein [38] uses probabilistic
methods in recasting the theory of H?-spaces into a “Calder6n-Zygmund” real-
variable framework. Unfortunately, I have not the space here to say anything
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about H?, and I must simply refer the interested reader to a relevant survey paper
[1].

Up to now we have seen how singular integrals act on L? (1 < p < o0) and on
L, I want to close this section with a brief discussion of L, Surprisingly, one can
write down explicitly the essential characterizing property of the Hilbert transform
of a bounded function. The basic example to keep in mind is H(sgn(x)) =
(2/) log | x|1.

THEOREM 7 (SPANNE [78], STEIN [84]). Let g € L™ and let K be a convolution kernel
satisfying the hypotheses of the Calderén-Zygmund inequality. Then K % g is a func-
tion of bounded mean oscillation.

A function f'e L] (R?) is said to be of bounded mean oscillation (BMO) if it
satisfies the condition

(23)  supg |Q| fo|[f() — fo| dx < o, with fo = |Q| [o.f () dy.

Thus on R!, L* < BMO, |x|~? ¢ BMO, log |x|~!eBMO, but sgn(x) log |x|~! ¢ BMO.
Functions of bounded mean oscillation were introduced by John and Nirenberg
[57], who proved the following result in connection with partial differential equa-
tions.

THEOREM 8. The condition (23) is equivalent to the seemingly far stronger statement

4 supg | @[ exp(A|f(x) — fo|) dx < o for some A > 0.

In particular, functions of bounded mean oscillation are (locally) exponentially
integrable,

The claim that (23) and (24) are the basic properties of K * g with g e L™ is sup-
ported by the following converse result in the case of Riesz transforms:

THEOREM 9. Every function f of bounded mean oscillation may be written in the
Jormf = go + Xy Rig;withgo, &1, , 8, € L™.

This is equivalent to the duality of H! and BMO [38]. In the one-dimensional case
of the Hilbert transform H, we can say even more,

THEOREM 10. A function f € L}, (RY) may be written in the form f = g, + Hgy
with gy € L and || g1 | < 1if and only if (24) holds with X = /2.

The proof of Theorem 10 is {ruly remarkable. One starts with the following
question, which seemingly has nothing to do with bounded mean oscillation:
Given a positive measure dy = w(x)dx on R}, is the Hilbert transform H a bounded
operator on L¥(dy)? Clearly, various partial results could be proved without much
trouble, but a complete solution seems too much to expect. However, at least for
L2, one has not merely one necessary and sufficient condition, but two.

THEOREM 11 (HELSON AND SzEGO [45)). H is bounded on LX(dy) if and only if
log w(x) may be written in the form gy + Hgy, withgo€ L* and || g1]|o < /2.
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THEOREM 12 (HUNT, MUCKENHOUPT AND WHEEDEN [55]). H is bounded on L¥(dyu)
if and only if

Ay supg (| O™ fo w(x) dx) (| @] fo w7V dx)p~1 < o0
holds.

The Helson-Szeg6 theorem is proved by a simple but ingenious application of
the Hahn-Banach theorem, while the proof of the Hunt-Muckenhoupt-Wheeden
theorem uses Calder6n-Zygmund methods, and builds on Muckenhoupt’s solution
of the corresponding problem for the maximal function [68]. (See also Coifman and
Fefferman [22].) Since the Helson-Szeg6 condition and (A,) are necessary and suf-
ficient conditions for the same thing, they must be equivalent. That is the proof of
Theorem 10.

Various applications of BMO are presented in John [56], Moser [67], Fefferman
and Stein [38], and [34).

Multiple Fourier transforms. After all the progress of Fourier analysis in the last
twenty years, we still know almost nothing about the Fourier transform in R*. We
can use the techniques of singular integrals to prove theorems like the following
(see [85)).

THEOREM 13 (LITTLEWOOD-PALEY THEOREM IN R*). Let f ~ X3 ,c. aie’ ' * be the
multiple Fourier series of a function fe L#([0, 2z]") (1 < p < ), and let {S}} 4z
be a sequence of + signs. Suppose that {S,} is constant on each parallelopiped of the
Jorm Iy x Iy x +-+ x I,, where each I; is a dyadic block (see Theorem 1). Then
If ~ X, Swase’® % also belongs to L, and | Tf |, < C, || ]|

But in many respects, R* is fundamentally different from R!, so that merely
proving R* analogues of Rl-theorems misses a great deal. For example, given fe
L#(R") with 1 < p < 2, what can we say about the size of the Fourier transform f?
The familiar Hausdorfi-Young theorem | |, < | f||, (1/p’ + 1/p = 1) is virtually
all we can say in RL.7 (There are further results, but they are in the nature of
refinements.) Already in R?%, however, we can go much further. Here is an ele-
mentary “‘restriction theorem’ to drive home the point.

THEOREM 14 [29]. For fe L¥(R?) | LYR?) (1 < p < 4/3) we have a priori
inequality

(25) 17 s> = CollF o
where S! denotes the unit circle.

It follows that | is well defined for fe L? (p < 4/3) even though in principle
the Fourier transform is defined only up to sets of measure zero.8 The correspond-

"However, recent work of Babenko and Beckner shows that the norm of the Fourier transform
as an operator from L? to L is strictly less than one and can be computed. See Stein’s lecture in
.

8Actually, the sharp estimate is || fllLvxsy S Cp||f|lan for p < 4/3. The example f* = §5 with B=
unit disc (f € L? for p > 4/3) shows that we cannot expect to define f|s: for f € L?(p > 4/3).
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ing statement for a straight line (replacing S?) is utter nonsense, The first theorem of
this kind is due to Stein (see [29]).

The proof of the restriction theorem takes only a paragraph. We have to show
that the operator T': f — f | o is bounded from L#(R?2) to L1(S1); to do so, we prove
that the adjoint T* maps L>(S") to L' (R?) for p’ > 4. This comes down to showing
that

“(f dgy’ uzv'(m) eC, uf “L"(S')»
where df denotes uniform measure on the circle, Now we write

1003y = [[((FAON2]| o
= [[((7d6) % (A ey < [|(f6)  (fO) | ey

with 1/r + 1/(p'/2) = 1 (the last step follows from Hausdorff-Young, since 1 < r
< 2for p' > 4), and the obvious pointwise inequality I(fd@) * (fdO)| = “ f “%o
(d6 x db) yields | fd0|3uqey S || f]|3~on - || (0 % d6) | ey Thus, our restriction
theorem comes down to checking that df % df € Lr(R?) for r < 2. We omit the
details, but we note that it is here that the difference between circles and straight
lines shows up in the proof. A closely related idea appears in Zygmund [97].

In some ways, the Fourier transform is more intractable in R” than in R, For
instance, for many problems on partial sums of multiple Fourier series, the natural
analogue of the Hilbert transform is an operator Ty defined on L2(R”) by (Tof)YNE)
= y5(6)f (€), where y5 is the characteristic function of the unit ball, T behaves far
worse than the usual singular integrals, for its convolution kernel looks like
e/l#l[xn+1 /2 gt infinity, compared to which Q(x)/| x| is very tame, As a “Hilbert
transform”, Ty is intimately connected to a certain maximal function, but it is not
the usual maximal function. Rather (in RZ2, say) the right maximal function is
M3f(x) = supgs, |R|™ [z|/ ()| dy, where R is a rectangle of arbitrary size, shape,
and direction. We have already noted that M, is not bounded on L? (p < o), by
virtue of the Besicovitch-Perron constructions for the Kakeya needle problem, and
consequently T, is unbounded on L? (p # 2). (See [32], [46].) Thus, a basic an-
alogue of the Hilbert transform is a “bad” operator, and so, in dealing with
multiple Fourier series, we expect trouble.

This is not to imply that nothing positive can be said about 7j,. We define the
Bochner-Riesz operators T (0 > 0) on L? by

(TofYNE) = (1 = [E[DP xS ©);

Ty is related to T just as Cesar6é summation of Fourier series on [0, 27] is related
to ordinary convergence (see Bochner [7]). By analogy between the Bochner-Riesz
operators and restriction theorems on Fourier transforms, Carleson and Sj6lin
[21] proved the following result in the two-dimensional case. (See also [35] and
Hormander [51].)

THEOREM 15. T'; (0 > 0) is bounded on L¥(R?) for 4/3 < p < 4.
The result is essentially sharp (Herz [46]).
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A. Cordoba [23] has recently shown that the Carleson-Sjolin theorem can be
related to a positive result for a maximal function closely connected to M,. In fact,
setting MV f(x) = supgs, |R|™ [& | /()| dy where R is a rectangle of arbitrary
direction with (Longer side of R)/(Shorter side of R) < N, we have:

THEOREM 16 (CORDOBA MAXIMAL THEOREM). | MNf |, £ C(log NY3||f 2.

The three basic Theorems 14, 15 and 16 suggest a program to force us to come to
grips with some genuinely n-dimensional Fourier analysis. First of all, the known
results should be extended from the two-dimensional case (where they are really
too easy) to R*. The natural conjectures are

@26) || /|| sy £ Co|lf|any if 1 S p < 2nf(n + 1),

(27) T; is bounded on LA(R") if |1/p — 1/2| < (6 + §)/n and § > 0.

(28) Let MNf(x) = supgs, | R|™! [z |f(»)| dy where R is any rectangular paral-
lelopiped of arbitrary direction, and sides d; x 8; X -+ x 0; x 0z with 1 < 0,/0;
< N. Then

| M8 |1y < Cllog NYA| f | ey
So far, the best partial result known is a clever theorem of P. Tomas [91]:

THEOREM 17. The following inequalities hold.

(29) ”f ”L‘(S"") é C”f ” LLarn/win]- (Re)s
and
e |73 s S €1 e

Jor | 1/p — 1/2] <@+ Ymn andd > n—1)/2n + 2) + e (¢f. [29] and [35)).

See Carleson and Sjolin [21] for the three-dimensional case.®

It seems that we are still far from complete solutions. Even after our conjectures
have been settled, we shall only have barely started to grasp the real situation. It
is as if we had just proved Cesaré6 summability of Fourier series on [0, 2z] but
still knew nothing about the Hilbert transform. One natural problem is to relate
the geometry of the maximal function M, to the behavior of the “Hilbert trans-
form” Ty in R».10 The only result known in this direction is Cordoba’s Theorem 16.
We still know so little that we cannot answer intelligently the question “How big
is the Fourier transform of a function in L#(R2)?” Perhaps {|f| > a} for large «
can be covered efficiently by rectangles (of no fixed direction). If true, this would
explain why f can be restricted to circles but not to straight lines, for a circle is
harder to cover by thin rectangles than a straight line. Coverings by rectangles play
a major role in the study of Ty, where the “Kakeya” set of Besicovitch exerts an
influence all out of proportion to its small area. A recent counterexample of
Carleson [20] to various conjectures on the polydisc related to Theorems 9 and 10
has a similar flavor. Perhaps in dealing with the Fourier transform in R”, we must
abandon our fixation on Lebesgue measure, and search for new quantities (defined

9E. M. Stein has modified Tomas’ argument to handle ¢ = 0 in (29) and (30).
10There is also an analogue of the S-function for T',, which we have not mentioned.
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possibly in terms of coverings by thin rectangles) to express the size or importance
of a set of points. This is easier said than done, but we have seen evidence sug-
gestling that it is forced on us by the phenomena we seek to understand. I do not
know where—if anywhere—these ideas lead.
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Analysis over Infinite-Dimensional Spaces
and Applications to Quantum Field Theory

James Glimm

Analysis is the study of functions and operators. The functions f customarily
depend on a finite-dimensional variable x, in a Euclidean space R*, or a finite-
dimensional manifold .#,. However, there are examples where it is natural, and
even necessary, to analyze functions of an infinite-dimensional variable. Thus x
belongs to a Banach space X, or to some more general space. Typically x is itself
a function defined on R” and f'is a function of a function.

To demonstrate that analysis over infinite-dimensional spaces is not an exercise
in abstraction, we show that it is required in five examples drawn from mathema-
tical physics. Before doing this, we consider separately the two simple components
of these examples: first, functions as labels of position (continuum mechanics) and
second, functions as probability densities of position (statistical and quantum
mechanics). In quantum field theory and continuum (or infinite volume) statistical
mechanics, both components occur. We are forced to consider functions of func-
tions, that is, analysis over infinite-dimensional spaces.

Continuum mechanics. A fluid, governed for example by the Navier-Stokes equa-
tion

(1) v+ (vV)v + Vp = Adv, Vv =0,
is described at fixed time ¢ = O by its velocity field v,
(1) v(x, 0) = v(x) = (v1(x), 2(x), v3(x)),

namely a function v:R3 — RS, The state of an elastic solid or vibrating string is
also given by a function. The dynamics is then specified by some linear or nonlinear
equation, for example,
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2 Gt — Pax + miP + Aog® = 0,
with time zero Cauchy data
3) @(x, 0), ¢,(x, 0) = given functions.

The same statement applies to discrete but infinite systems, such as an infinite gas
or crystal; the initial state is a function {r;, ;}32, specifying the initial positions
and velocities of the gas molecules.

Statistical and quantum mechanics. In statistical and quantum mechanics, the
positions and velocities no longer assume definite values. Rather, probability
densities are the fundamental objects. For a gas of N particles, a statistical mechan-
ics state is a function (probability density) p of the N positions r; and N velocities
v;. p satisfies

@ p(r,v) 20, [pdrdv=1.
In quantum mechanics, the state is a function

(5) f=f(r1: B rN) ELZ(RSN): ”f”L. = 1,

of the particle positions, and

© p(r) = | fn]?
is a probability density as in (4) above,

Combining the ideas in the two paragraphs above, we find that the quantum or
statical mechanics of continuum or infinite discrete systems leads to analysis over
infinite-dimensional spaces. In these problems, the analysis occurs for example in
Ly(X, dx), where X is some Banach space.

Five examples. The simplest and best known problem of this nature is Brownian
motion: the motion of a small particle suspended in a fluid, caused by random
collisions with the fluid molecules. The random nature of the collisions makes
the problem statistical, while the absence of a deterministic equation of motion, as
in (2), (3), makes the time evolution a continuum problem. The mathematical
framework for this problem is given by the Wiener integral, an integral on the
space C(R) of continuous functions (= Wiener paths = Brownian trajectories) on
the real line R. Turbulence may also be a problem of this nature. When turbulence
is treated statistically, it involves an integral over a Banach space X of velocity
vector fields v; see (1').

The quantum statistical mechanics of an infinite gas or crystal falls into the
framework we are considering, as does the quantum mechanics of a relativistic
field. The simplest relativisitic field is a solution ¢ of the Klein-Gordon equation
(2)—(3). The coupled Maxwell-Dirac equations arise in the interaction of electrons
with light (quantum electrodynamics).

The heat equation solves quantum field theory. The linear Klein-Gordon equation,
with Ag = 0 in (2), is called a free field. The substitution ¢ — it transforms this
hyperbolic equation into an elliptic equation
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™ (— 4+ mi)¢ = 0.

The substition t — it also transforms the quantum mechanical Schrédinger equa-
tion into an associated heat equation, Skipping over some details, we jump to a
probabilistic or Wiener integral solution of the heat equation (see [6] for a survey
of the central ideas). The Wiener integral we are interested in is a Gaussian measure
dW on S'(R7). Here d is the space-time dimension, ¢ € §’, and for each f'e S(R¥),
we consider the linear coordinate function

®) 8§'2¢—~<g,f> = ¢(f)

defined on S’. dW is then characterized by the formula

©) [ exp (ig(1)) dW(@) = exp (—<{f; Cf>[2),
where

(10) C = (= 4+ mp

and ¢+, ) denotes the L, inner product,

11 $LE = [fx)Clx = »)f(y) dx dy.
C is the covariance of this measure, so that ‘

(12) [ 6()dlg) dW(g) = < f; Ce).

The case d = 1, mg = 0, is the conventional Wiener integral.
For the interacting field, Ay # 0 in (2), the Feynman-Kac formula for solutions
of heat equations with potential leads us to replace dW by a measure

(13) dg = exp(— T L 46 dx) aw.

THEOREM 1 ([16] FOR d < 3;[18], [19] FOR d < 4). Assuming existence and certain
properties (“axioms’’) of the measure d¢, analytic continuation it — t back to real
time is possible and yields a quantum field theory satisfying Wightman’s axioms.

For d = 2, quantum fields were first constructed in [7], [20] using different meth-
ods. Various constructions based on the function space measure (13) are found in
[1], [2], [4], [5], [13], [14], [16]. In addition to the work of Jaffe and the author on the
problem of constructing quantum fields, Nelson, Segal, Rosen, Guerra, Simon,
Osterwalder, Schrader, Spencer and many others have made important contribu-
tions, as surveyed for example in [6], [8], [9], [12].

Structure of quantum fields I. Particles. A typical reaction time for elementary
particles is ~ 10717 sec. Thus one observes primarily the - + oo asymptotes of
any inferaction process. In the # —+ 4 oo asymptotes, the particles separate and
move independently.

In any quantum mechanical problem, the time evolution is given by a unitary
group U(f) = e #*H; H is by definition the Hamiltonian or energy operator. By
elementary spectral theory, the £ - + oo asymptotes are described by the eigen-
functions and eigenvalues of H. Thus particles provide a set of labels for the energy
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eigenfunctions and eigenvalues. This idea lies at the heart of the Haag-Ruelle
scattering theory [15], which we reformulate loosely as follows:

The joint spectrum of the energy and momentum operators is a Lorentz in-
variani semigroup contained in the interior of the dual light cone H = Py, = 0,
P} — P2 = 0 in (RN, The generators of this semigroup lie on Lorentz invariant
orbits and, excluding the trivial orbit at the origin, these orbits describe the
elementary particles and bound states of the theory.

From the point of view of the measure (13), a particle of mass m is associated
with an exponential decay rate

(14) (6 600> = Jim (M) + O(e=m=)

in the two-point correlation function. In general, the leading (slowest) decay rate is
associated with the lightest particle, and for a P(¢) interaction, as in (2), any higher
decay rates remaining after this leading decay rate is subtracted are expected to be
due to:

(a) bound states of mass m;, formed from pairs or triples of elementary particles,
and moving as a single particle as t -+ + oo,

(b) pairs, triples, --- of elementary particles, moving independently with large
space separation as t — + oo. The associated decay rate is at least 2m.

THEOREM 2 ([12], [13]). The P($), quantum field theory, for weak coupling Ao/m§ <
1, has particles of mass m. m = my + o(1) as Ag/m§ — 0. There is no mass spectrum
in the intervals (0, m) and (m, 2m — o(1)).

THEOREM 3 [12]. The (¢5 — ¢%), quantum field model for weak coupling has mass
spectrum in the bound state interval m, € 2m — o(1), 2m).

THEOREM 4 ([13], [21]). The ¢4 quantum field theory, in the single phase region, has
no even bound states.

The last two results express the idea that ¢* leads to repulsive forces while — ¢4
leads to attractive forces. A more complete analysis of the particle structure for
weak coupling is based on a study of the decay rate of the Bethe-Salpeter equation
by T. Spencer.

High temperature expansions. The proof of these weak coupling results is based
on a convergent perturbation expansion similar to the high temperature expansions
of statistical mechanics. Let L be the set of lattice line segments joining nearest
neighbor lattice points i, i’ € Z2. Let 4, be the Laplacian with Dirichlet data on all
line segments /e L. Let

15) Cp = (— 4y + m),
let dW ;, be the Gaussian measure with covariance C;, and let
(16) dgy, = exp(— § 64() dx> aw,,

Rl

as in (13). Then
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an (gL = | pN)P(») dgy. = 0,

if x and y belong to disjoint lattice squares, Thus d¢@; has an exponential decay
rate my, = co, We take d¢,, as the zeroth order or unperturbed measure in the
cluster expansion, and remove the Dirichlet data on line segments / € L as a pertur-
bation, to obtain d¢.

The main idea behind the expansion can be formulated roughly as follows.
We are not interested in removing the nonlinear coupling between distinct normal
modes of the free field (a nonconvergent expansion in powers of Ay). Rather we
group the degrees of freedom into blocks (associated with ¢(x), x in a singel Jattice
square) and then remove as a perturbation the (linear) coupling between these
distinct blocks. The success of this method rests on the fact that the coupling
between distinct lattice squares is sufficiently small,

Structure of quantum fields IL. Critical points and phase transitions. The critical
points of quantum field theory are related to the critical points of Morse theory.
We start with an interaction potential ¥(¢(x))in the exponent in (13). For V(¢) =
&4 + 02, V has a critical point at ¢ = 0, a single minimum for & > 0 and double
minima for ¢ < 0; see Figure 1.

c>0 c<0
FIGURE 1, V(£) = & + o2,

In the case of two minima, the quantum field is expected to decompose into the
direct sum of exactly two distinct (pure phase) quantum field theories; see [1], [5].
For ¢ > 1, it is known that no such decomposition is possible [13]. Heuristically,
this picture is based on the idea that most of the measure dg = exp(— (V) dW is
concentrated near minima of V. A further analysis (linearizing the equations of
motion about this minimum or, equivalently, replacing ¥ by its Taylor’s expansion
up to second order) leads to the idea that the mass (exponential decay rate) should
be identified with ¥"1/2, evaluated at the minimum. In case ¢ = (¢y, *», ¢,) is a
vector-valued field, there are » masses identified with the square roots of the
eigenvalues of the Hessian 02V/0&% References including the older literature are
given in [12], [22].

Al the transition between the one- and two-phase regions in Figure 1, there is
a critical point of ¥ where the Jacobian vanishes:

(18) Det 32V/9¢2| ,=y = 0.

We expect the following critical phenomena for some critical value ¢ = ¢, in quan-
tum field theory:
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(i) No exponential decay of correlations.
(if) No particles, at least for d = 2, 3.
(iii) Critical singularities, as ¢ — o, for example,

(19) [¢)$0)) dx ~ (6 —0)7, o | 0.

The T above is an example of what is known as a critical exponent, There are several
simple (“‘classical’’) theories (van der Waals, mean field, Landau) in which one can
calculate these exponents [22]. For example 7,500 = 1.

For a ¢* quantum field theory, the inequality mean field < quantum field has
been proved in the sense of the following theorem.

THEOREM [11]. Assume the existence of critical behavior for a ¢} quantum field.
Then

1= Tclassicnl =7, '% = VYclassical <y, 0= Dclassical = /B
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Initial Boundary Value Problems for Hyperbolic
Partial Differential Equations

Heinz-Otto Kreiss

1. Differential equations in one space dimension. The simplest hyperbolic differen-
tial equation is given by

(.1 ou/ot = cou/ox,

where ¢ is a constant, Its general solution is u(x, ) = F(x + ct), i.e., it is constant
along the “characteristic lines”” x + ¢t = const (see Figure 1). Therefore, if we

u{t,t)=q(t)
u(0,t)=g(t)
=0 UK 0)=H) % =0 UXOV=FIxYT Ty .
FIGURE 1

want to determine the solution of (1.1) in the region 0 £ x £ 1, ¢ = 0, we have
to describe initial conditions

(1.2) u(x, 0) = f(x),
for t+ = 0 and boundary conditions

(1.3) u(l,) =g ifc>0,
) u0,) =g ife<O,
© 1975, Canadian Mathematical Congress
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for x = 1, O respectively.
There is no difficulty in generalizing the above results to systems

(1.4 oufot = Adufox.

Here u(x,t) = (uV(x, t), ---, u (x, 1))’ denotes a vector function and 4 a constant
n x n matrix. Hyperbolicity implies that 4 can be transformed to real diagonal
form, i.e., there is a nonsingular transformation .S such that

(1.5) SAS-! = (0"‘ 211) ny
where
@ o 0 Gpq O ceennn 0
y 0 ag-v---- 0 <0, AU= 0 Gppp---- 0 >0
0 -0 a, 0 +revve. 0 a,
are definite diagonal matrices. We can thus introduce new variables
(1.6) v =Su
and get
(.7 ov/ot = Aov/ox.
The last equation can also be written in partitioned form
(1.8) ovijot = A'ovijox,  ovI/ot = AVov/ox,

where V! = (v, oo, ) I = (pir+D L. pd) (1.5) represents » scalar equa-
tions. Therefore we can write down its general solution
(1.9) v, ) =vP(x +at), Jj=1,2n,

which are constant along the characteristic lines x + a;# = const. The solution is
uniquely determined in the domain 0 £ x < 1, ¢ = 0, and can be computed ex-
plicitly if we specify initial conditions

(1.10) v(x, 0) = f(x), 0=x=<1,
and boundary conditions
(1'11) vII(O, t) = ROVH(O’ t) + gO(t)s vll(l’ t) = RIVH(I, t) + gl(t)'

Here Ry, R; are rectangular matrices and go, g; are given vector functions. If we
consider wave propagation, then the boundary conditions describe how the waves
are reflected at the boundary.

Nothing essentially is changed if 4 = A(x, t) and R; = R(f) are functions of
x, t. Now the characteristics are not straight lines but the solutions of the ordinary
differential equations dx/dt = a;(x, ). More general systems

(1.12) ov/ot = A(x, H)ov/ox + B(x, )y + F(x, t)
can be solved by the iteration
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(1.13) NIHIYpt = A(x, 0V ox + F

where F"1 = B(x, f)y*] + F, Furthermore, it is no restriction to assume that 4
has diagonal form., If not, we can, by a change of dependent variables, achieve the
form (1,10).

We can therefore develop a rather complete theory for initial boundary value
problems by using characteristics. This has of course been known for a long time.
The only trouble is that this theory cannot be easily generalized to problems in
more than one space dimension, For difference approximations it is already inade-
quate in one space dimension,

2. The energy method. The main tool for proving the existence of solutions in
more than one space dimension consists of “a priori estimates”, Once these esti-
mates have been established the existence and uniqueness of solutions follow by
standard functional analytic arguments. The estimates are of the following type.

Consider a system of partial differential equations

2D oufot = P(x, t, 0/0x)u
in a domain Q with initial conditions
22 u(x, 1) = f(x)
at some time ¢ = t;, and boundary condition
2.3) R(x,)u =0 on aQ.
20
FIGURE 2

The problem is called weakly well posed if

(X)) "u(xa ty) "a < K exp(a(ta—1)) ||u(x, t2) "a »

Here || |0 denotes the usual Ly-norm over Q and |- g, , the Ly-norm which also
contains all space derivatives up 1o order p. If p = 0 then we call the problem
strongly well posed.

There is a large class of problems for which the estimate (2.4) is immediate. This
is the class of problems for which P is semibounded, i.e., for every fixed ¢ and all
sufficiently smooth w which fulfill the boundary conditions we have

(2.5) (W, Pw) + (Pw, w), < 2a| w2
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Here o is some constant independent of w. (2.5) implies for all sufficiently smooth
solutions

o|lu|3 /ot = (@ufot, u)g + (u-dufdr)y = (Pu, u)g + (4, Pu)g < 2a|u|%
Therefore
|| u(x, tz) ||a < exp(a(tz—1)) ||u(x, 12) "o

For symmetric hyperbolic systems this theory has been developed by K.O.
Friedrichs [3]. As an example consider a first-order system

(2.6) dufat = Adufox, + ﬁz Bjdufox; = P(3/dx)u
£

with constant coefficients for t = 0 and x e Q. Here Q denotes the half-space
0=<x < w,— o <x; < 0o,j=2, -, m Furthermore A4 has the diagonal form
(1.5) and the B; are symmetric matrices.

"

*2

FIGURE 3
For ¢ = 0 initial values
@7 ux, 0) = fx), |/ ]o < oo,
and for x; = 0 boundary conditions
(2.8) w0, x_, ) = Ryu™(0, x_, 1), x_ = (Xp, ***, Xp),

are given.
Partial integration gives for all sufficiently smooth w € Ly(2) which fulfill the
boundary conditions

(W, PW)g + (Pw, w)g = — [ w¥dw|,— dx_
%0

1

- a!) (W*(A™ + REAR)WY|, o dx_.

Therefore the operator P is semibounded if Ry is such that A + R§AIR, = 0.
This is for example the case if | Ro| is sufficiently small. The disadvantage of the
energy method is that it is a trick. When it works it is the most simple method to
derive existence theorems. But it does not give necessary and sufficieni conditions.
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We shall now discuss another technique based on the Laplace transform which
gives necessary and sufficient conditions,

3. Laplace transform. We consider again the problem (2.6)—(2.8) and assume
now that the system is either symmetric or strictly hyperbolic, i.e., the matrices 4
and B; are symmetric or the eigenvalues of the symbol

P(iw) = i(AO)] + _ﬁzij;), Wy real, Z |wvlZ 56 05
J:

are all distinct and purely imaginary. Furthermore the matrix 4 has the form (1.5)
which is obviously no restriction.

In one space dimension the initial boundary value problem is always well posed.
This is not true in higher dimensions. Already S. Agmon [2] has observed

LeEMMA 3,1 Assume that the problem (2,6)—(2.8) has a solution of the form
G wix 1) = ¢(x) exp(st + Ko, %)), oo, %) = ﬁz w;x), w; redl,
f=
where real s > 0 and | ¢(x1) |2 = [&|¢[? dx; < oo.
Then the problem is ill posed.
Proor. If w(x, 1) is a solution then the same is true for

wi(x, 1) = exp (¢(st + i{w-, x_))) ¢(zx1)

for all real numbers 7 > 0. Thus there are solutions which grow arbitrarily fast
with time.

We shall now derive algebraic conditions such that there are solutions of the
above form, Introducing (3.1) into (2.6) gives us

LEMMA 3.2. There is a solution of type (3.1) if and only if the eigenvalue problem
(3.2) s¢ = Adg/dx, + iBw_)p, B(w-) =X Bjw;, |¢] < 0, $'(0) = Regp™(0),
has an eigenvalue with real s > 0.

(3.2) is a system of ordinary differential equations which can also be written in
the form

(3.3) dpldx; = M¢, M = A7Y(s — iB(w.)).
For M we have

Lemma 3.3. For real s > O the matrix M has no eigenvalues k with real £ = 0.
The number of eigenvalues with real £ < O is equal to r, the number of boundary
conditions.

Therefore the general solutions of (3.2) belonging to L, can be written as

(3.4) ji:l 27 6 ,%).

Introducing (3.4) into the boundary conditions gives us a system of linear equations
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C(s)A = 0, A=Ay 4.
Thus we can express our results also in the following form:

LemMMA 3.4. The problem (2.6)—(2.8) is not well posed if Deth(s)] = 0 for some
s with real s > 0.

The main result of this section is (see [7], [14], [13]):

THEOREM 3.1. Assume that Det|C(s)| # O for real s 2 0. Then the problem is
strongly well posed.

There is still the boundary case that Det| C(s)| = O for some s = i€, £ real. As R.
Hersh [5] has shown these are weakly well-posed problems. The main trouble is
that the generalization of these boundary cases to variable coefficients is very
difficult.

4. Problems with variable coefficients in general domains. Now we consider sys-
tems (2.6)—(2.8) with variable coefficients in a general domain 2 x (0 <t < T)).

1

FIGURE 4

Here we assume that the coefficients and the boundary 912 are sufficiently smooth.
Connected with this problem there is a set of half-plane problems which we get in
the following way: Let Py = (xo, %), 02 x (0 < t £ T), be a boundary point and
let % = S(x), f = t — ty with S(xg) = 0 be a smooth transformation which locally
transforms the boundary into the half-plane #; = 0. Apply this transformation to
the differential equations and the boundary conditions, freeze the coefficients at
% = f = 0 and consider the half-plane problem with constant coefficients. Then
we have

THEOREM 4.1. Assume that for all the half-plane problems the conditions of § 2
hold, i.e., that all the operators connected with the half-plane problems are semi-
bounded. Then the original problem is strongly well posed (see [3]).

THEOREM 4.2. If the system (2.6) is strictly hyperbolic and if for all the half-plane
problems with frozen coefficients the determinant condition of Theorem 3.1 is fulfilled
then the original problem is strongly well posed (see [T], [14], [13]).

ReMARKS. (1) It is not known whether the determinant condition guarantees
well-posedness for symmetric systems which are not strictly hyperbolic. This is a
rather disturbing gap in the theory,

(2) Quite a lot of progress has been made for the boundary case that Det| C(s)]
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= 0 for some s = i¢, £ real. The key is to consider not only the half-plane problem
for 9u/ot = Pu but also all perturbed problems 9u/ot = Pu + Bu where B is a
constant matrix.

(3) It is assumed that A is nonsingular. However, progress has been made also
for the singular case (see [12]).

(4) If the boundary is not smooth then new serious problems arise. See for
example [10], [11].

5. Difference approximations in one space dimension. We start with an example
which explains most of our difficulties. Consider the differential equation

5.1 oufot = Bufox
in the quarter-plane x = 0, ¢ = 0, with initial values
(5.2 u(x, 0) = f(x).

From §1 we know that no boundary conditions need to be specified for x = 0,
t 2 0. We want to solve the above problem using the leap-frog scheme. For that
reason we introduce a time step 4f > 0 and a mesh with 4x > 0 and divide the
x-axis into intervals of length 4x. Using the notation v,(t) = v(x,, 1), x, = vdx,
t = t, = pdt, we approximate (5.1), (5.2) by

(5.3) v(t + 41) = vt — 4t) + 24tDyv (1), y=12, .,
with initial values
(5.4) (0 = f(x), w(dt) = fx,) + 4if(x,)/0x.

Here Dyv, = (v,+y — v,_1)/24x denotes the usual centered difference operator.
We assume that (5,3) is stable for the Cauchy problem, ie., 0 < 4t/4x < 1.

It is obvious that the solution of (5.3), (5.4) is not yet uniquely determined.
We must give an additional equation for vy. For example

(5.5) vo = 0.

This relation is obviously not consistent. In general it will destroy the convergence.

Letf(x) = 1. Then u(x, t) = 0and v,(f) = 1 + (—1)*»,(¢), where y,(¢) is the solu-
tion of

(5.6) yv(t + Af) = yv(t - At) - ZAtDoyv(t)’ y=1,2
yv(o) = yv(At) =0,

with boundary conditions
(5.7 @ = — 1.
(5.6) and (5.7) is an approximation to the problem 9w/ot = — ow/ox, w(x, 0) = 0,
w(©, 1) = —1, ie.,

wix, ) =0 for t < x,

=—1 fort=x,

Therefore
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() ~ 1 for t < x,
~1—(—1)y fortzx.

This behaviour is typical for all nondissipative centered schemes. Therefore one
needs to be very careful when overspecifying boundary conditions. The oscillation
decays if the approximation is dissipative. However, near the boundary the error is
as bad and, for systems, it can be propagated into the interior via the ingoing char-
acteristics.

Now we replace (5.5) by an extrapolation rule

(5.8) vo(1) — 2vi(2) + vo(r) = 0,
which is the same as using for y = 1 the one-sided difference formula
(5.9 v(t + dt) = vt — 4r) + 24t/ Ax)(vo(1) — wi(2)).

The approximation is only useful if it is stable. If we choose

v0) =1 fory =0,

=0 fory>0, v(4t) = 0 for all y,

as initial values then an easy calculation shows that

|| 0] ” 4: = const(?/41), ||v|| 4= 2 |v,,|2 Adx.
This growth rate is the worst possible and one might consider the approximation

to be useful. However, if we consider (5.1) in a finite interval 0 £ x £ 1 and add
the boundary condition

(5.10) u(l,) =w(@) =0, Ndx=1,

for both the differential equation and the difference approximation, then there are
solutions which grow like

(5.11) || (1) || 4, = const(t/4r),

which is not tolerable. This behaviour can be explained as follows: At the boundary
= 0 a wave is created which grows like #/4¢. This wave is reflected at the bound-
ary x = 1 and is increased by another factor t/4¢ when it hits the boundary x = 0
again, and so on.
All these difficulties can be avoided by using, instead of (5.9), the one-sided ap-
proximation vy(¢ + 4t) = v(t) + (dt/dx)(v(t) — v1(t)) or

y(t + At) = w(t — 46) + ([t dx)vat) — 30n(t + 4t + w(t — 4p))).

One can also keep (5.8) if one replaces the leap-frog scheme by the Lax-Wendroff
approximation or any other dissipative approximation.

Let us discuss the general theory. (For details see [4], [7], [8].) We consider
general difference approximations

(5.12) Vot + 4t) = Qv/(1)

with boundary conditions
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(5.13) By =0

such that the solution is uniquely determined by the initial values v,(0) = f,.

The approximation is useful only if it is

(1) consistent, i.e,, it converges formally o the continuous problem,

(2) stable (weakly or strongly) which is the difference analog of well-posedness.

There is never any problem in deriving consistent approximations. It is the
stability which causes the problem. Corresponding to the continuous problem there
are two methods to decide whether a given method is stable: Laplace transform
and energy method.

The theory based on Laplace transform is analogous to the theory for the con-
tinuous case. The stability is determined by the properties of the eigenvalue
problem

(5.14) (z~ Q)¢ =0, Boo=0, [p|% = |¢[*4x < 0.
Corresponding to Lemma 3.2 we have, under reasonable assumptions for Q:

LeMMA 5.1. Assume that (5.14) has an eigenvalue z = zy with |zo| > 1. Then the
approximation is not stable,

This condition can also be expressed as a determinant condition Det| C(zo)| =0
for some z = zy with |zy| > 1. Then, corresponding to Theorem 3.1, we have

THEOREM 5.1, The approximation is strongly stable if Det [ C(z)[ # 0 for lz] = 1.

Now we turn to the energy method. Consider again the differential equation
(5.1), (5.2). The problem is well posed because there is an energy equality

(5.15) (u, 0ufox) + (Bu[ox, u) = — |u(0)[2.

Therefore we want to construct approximations to 3/@x which have the correspond-
ing property.
We define a discrete norm

(5.16) Uy V) gy = B*ATdx + 33 utv,dx.
v=r

Here & = (ug, *++, ,1)', ¥ = (vg, ***, ¥,—1)’ denote the first r components of u, v and
A = A¥ is a positive definite  x r matrix. In [9] we have shown that one can con-
struct accurate approximations Q for which (5.16) holds, The main trouble is that
the norm and the approximation near the boundary are very complicated. This
makes its generalisation to approximations in more than one space dimension on
general domains difficult. Furthermore, it is not known how to include dissipation
in the construction. However, it should be pointed out that this construction also
works in more than one space dimension provided the net follows the boundary.

6. Difference approximations in more than one space dimension. Nothing essentially
new needs to be added to derive the theory of difference approximations for half-
planes because Fourier transforms of the tangential variables x_ give us a set of one-
dimensional problems. The situation becomes much more complicated if we con-
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sider general domains with smooth boundaries. Observe that this is not the case
for the differential equations because we can always introduce a local coordinate
system, thus reducing the problem to a set of half-plane problems. This is not
possible for difference approximations, Once we have picked the net everything is
fixed. D. Schaeffer [15] has tried to handle this situation and has developed a beauti-
ful theory. However, its practical importance is somewhat doubtful. Let us consider
a very simple example. We want to solve the differential equation

6.1) oufot = — oufox

in the two-dimensional domains 2y — x < 0. The initial values are
6.2 u(x,y,0) = f(x,y) for2y —x=<0,t=0,

and the boundary conditions are given by

6.3 ulx,y,t) = g(x,y,t) for2y —x=0,120.
We introduce gridpoints by x; = jdx, y; = idy, dx = dy.

y

FIGURE 5

Thus, there is a gridpoint on the boundary only on every second row. Now we
approximate (6.1) by the leap-frog scheme and the boundary conditions by

wi=g =i
Vi, i + Vitl,j = 2gi+1/2,j if 2j =i+ 1.

Here v;,; = Widx, jdy, t). Therefore we get two different solutions on two dif-
ferent meshes. As long as the solution of the differential equation is smooth the
solutions of the difference equation on these different meshes fit together. However,
if for example f = 0 and g = 1 then the solution of the differential equation is a
discontinuous wave propagating into the interior. Now the solutions of the dif-
ference approximation on the different nets do not fit together,

We get oscillations in the tangential direction of the wave. There are two possible
methods for remedying the situation: (1) Add dissipation to smooth out the tan-
gential oscillations. (2) Introduce curved meshes which follow the boundary. The
second procedure is much more accurate and should be preferred if possible. A
lot of progress has been made in this direction. See for example [1].
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Sur la Théorie du Controle

J. L. Lions

1. Introduction. Soit un systéme dont /état y(s) = y(s; v) a I'instant s, lorsqu’on
applique le controle v, est un vecteur de R” donné par la solution de I’équation dif-
férentielle:

(1.1) dylds = g(y;v), s>1t, Y1) =x,xeRn,
ol g est une fonction continue Lipschitzienne donnée pour y € R” et ol v est une
fonction a valeurs dans %; = Rm.

Admettant que ’on est dans une situation ou(1.1) définit y de maniére unique,
on considére la fonction coiit J(v) donnée par:

(1.2) J) = [Ff((s; v), 5, ¥(s))ds, T donné fini ou non,
ou f est donnée; on cherche

(1.3) inf J(v), v € ensemble %,4 des contrdles admissibles,

des fonctions 3 valeurs dans %;.

Une famille classique de problémes de contrdle consiste en (1.3) avec ¢ = ¢,
x = xp fixés et en la recherche de v, (s’il existe) réalisant le minimum dans (1.3)
(le controle optimal).

Dans le cas “sans contrainte” ou %; = R, des conditions suffisantes ou néces-
saires et suffisantes, sont données par le systéme d’optimalité d’Euler, étendu au cas
avec contraintes par L. S. Pontryagin et son école (cf, Pontryagin, Boltjanskii,
Gambkrelidze et Mishenko [1]), dans le Principe du maximum (cf. aussi Hestenes [1]).

Une autre approche, en quelque sorte duale, consiste & considérer dans (1.3) x
et t comme variables et donc a introduire

(1.4) u(x, 1) = infJ(), ve Uy
et & essayer:

© 1975, Canadian Mathematical Congress
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140 1. L. LIONS

(i) de caractériser directement u,

(ii) d’en déduire, si possible, le controle optimal, s’il existe. C’est la méthode de
Hamilton-Jacobi, étendue, de fagcon généralement formelle, par Bellman [1] aux
cas stochastiques en particulier, et par Isaacs [1] au cas des jeux.

La fonction w satisfait formellement a une équation aux dérivées partielles non
linéaire hyperbolique
.5 - B ot [Bgin 2L+ S5 1,0 =0,

Asa Li=
avec la condition “initiale” (on intégre en ¢ dans le sens rétrograde):
(1.6) u(x, T) = 0.

On doitl rajouter des conditions aux limites lorsqu’on I'on introduit des con-
traintes sur I’état.
Lorsque ’on remplace (1.1) par une équation différentielle stochastique,

(1.7) dy = g(y; v)ds + o dw(s)
ol ¢ > 0, w = processus de Wiener standard dans R, la fonction cofit devient:
(1.8) J(v) = E[[T f()(s, v), s, v(s)) ds], E = espérance mathématique;

la fonction u, encore définie par (1.4), satisfait alors & I’équation non linéaire para-
bolique

(1.9) _ %—'; _ ——Au ~ inf [z g%, A

rA)}_o

avec (1.6) et d’éventuelles conditions aux limites en cas de contraintes sur I’état.

S’appuyant alors, soit sur des méthodes probabilistes, soit sur des méthodes
d’équations aux dérivées partielles et d’analyse fonctionnelle, on peut étudier—
sous des hypothéses convenables—les problémes (1.5), (1.9); nous renvoyons au
livre de W. Fleming et R. Rishel [1] et 4 1a bibliographie de cet ouvrage.

Notre objet est de donner quelques indications sur les situations suivantes:

(i) étude des cas ou le contrdle dans (1.1) n’est plus une varabile continue, mais
un temps d’arrét ou un contréle impulsionnel ;

(i) étude des cas ou I’équation d’état (1.1) ou (1.7) n’est plus une équation dif-
férentielle, mais une équation aux dérivées partielles déterministe ou stochastique.

ReEMARQUE 1.1. Ces exlensions sont motivées par de nombreuses applications,
dont nous mentionnons guelques-unes (consulier aussi la bibliographie des travaux
ci-aprés):

pour (i), problémes d’économie et de gestion, cf. Bensoussan et Lions [7];

pour (ii), problémes de contrdle de processus physiques, cf. Butkowski [1],
P.K.C.Wang [1], Boujot, Mercier et Temam [1], Kuroda [1], Yvon [1];

problémes chimiques ou biochimiques, cf. Kernevez et Thomas [1],

usage de ’énergie des marées, cf. G. Duff [1],

problémes de mécanique (optimum design), cf. Pironneau [1],
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probléme de pollution, cf. W. Hullett [1], etc.

2. Temps d’arrét et inéquations variationnelles.
2.1, Le cas stationnaire. Soit 0 un ouvert de R", de frontiére I'; /’état est donné
par I’équation de Ito:

2.1 dy = g(y)ds + adw(s), ¥0) = x,xe0,
dont la solution est notée y, (s). La fonction coiit est:
@2 J(z) = E(fee=/(y<(s) ds), a >0,

ol ¢ = variable de contrdle = temps d’arrét, 0 < ¢ < 6(x), ou 6(x) est le temps
d’atteinte (aléatoire) de 0.

Le probléme de temps d’arrét optimal consiste en la recherche de
2.3) u(x) = infJ(z), 0= = 6(x),

et de Ja fonction 7 (si elle existe) réalisant le minimum dans (2.3).
On démontre que la fonction u peut étre caractérisée par I’ensemble des inégalités
suivantes (Bensoussan et Lions [1], Fleming [1]):

—%Z—Au—_Z"Igi(x)g—"+au—f§0, u=<0,
(2.4 , Xi
<-— %Au—g,'(x)—g_—';+au—f>u=0 dans 0,

avec la condition aux limites

2.5) u=0 surl/.

2.2. Inéquations variationnelles (en abrégé 1.V.). La résolution directe du systéme
(2.4), (2.5) repose sur la technique des 1.V. (Lions et Stampacchia [1]); on suppose
pour simplifier que @ est borné (sinon, cf, Bensoussan et Lions [1]).

Soit HY(0) I'espace de Sobolev d’ordre 1 des fonctions v 3 valeurs réelles telles
que v, 9v/0xy, «+- , 0v/ox, € L¥0); pour u, v € HY(®), on pose

a(u, v) = JTZ fograd u-grad v dx
2.6)

— X fogix) g_u vdx + afeuv dx;
X
soit K 'ensemble convexe fermé non vide de H1(¢) formé des fonctions v telles que
@7 v=0 surl/, vy =0 p.p. dans@.

Alors (2.4), (2.5) peut étre formulé sous la forme de 1’ LV.: trouver u € X telle
que

(2.8) a,v—u) 2 (f,v—u) VvekK, ou(f,v) = [ofvdx.
Si l'on suppose que:!

1Hypothése non indispensable.
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1 0g: ~
2.9) a+—2—}]a—xi= 0 dans@
alors la forme a(u, v) est coercive au sens:
(2.10) a(v,v) Z ¢|| v |}ey €>0,VVEK,

et, d’aprés Lions et Stampacchia, loc. cit., (2.8) admet une solution unique.

On obtient ainsi une solution “‘faible’” de (2.4); mais on peut passer de 13 & des
solutions “fortes”: c’est le probléme de la régularité des solutions des LV., cf. H.
Brezis et Stampacchia [1], H. Brezis [1].

2.3. Cas d'évolution. L’état est maintenant donné par:

2.11) dy = g(p)ds + adw(s), ) =x,xe0,5s>1,
dont la solution est y, ,(s); la fonction cofit est donnée par:

(2.12) J(2) = E([;e77 f(p..A5), 5) ds)

et ’on cherche

(2.13) u(x, 1) = inf J(v),

¢ temps d’arrét inférieur au temps d’atteinte de 0..
On démontre (Bensoussan et Lions [1]) que u est caractérisée par I'ensemble des
inégalités

ot
2 n

u=<0, (—%—?—%—Au—[}g,-%+au—f>u=0
dans 0 x Jtg, + oof (¢ choisi quelconque), avec la condition aux limites analogue
a (2.5) et une condition “initiale” de type (cf. Bensoussan et Lions, loc.cit., pour
des énoncés précis) “u ne croit pas trop vite lorsque £ — + c0”.

Par les techniques des 1.V. d’évolution, on démontre I’existence et I'unicité de
u solution de (2.14) satisfaisant aux conditions aux limites et initiales.

2.4. REMARQUES. (1) Pour I’extension de ce qui précéde au cas des jeux, cf.
Bensoussan et Friedman [1].

(2) Danslecas “o = 07, onaboutit i des L.V. pour des opérateurs du 1< ordre et
en faisant ¢ — 0, on obtient des résultats sur les perturbations singuliéres dans les
LV. (Bensoussan et Lions [2]).

(3) Pour des résultats supplémentaires, en particulier de régularité, cf. Friedman
[1] et la bibliographie de ce travail.

TV YO Ry Y
(2.14) '

3. Surfaces libres.

3.1. Probléme de Stefan. Considérons un cas trés particulier de (2.14): n = 1,
0=4/2,g =0, a =0, et inversons le sens du temps (ce qui est losible); le
probléme devient:

ou 0%u ou 0%u

6D G- g /S0 wso G- Fr-s)=0
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avec les conditions aux limites et initiales.
Soit (formellement) x = s(f) la courbe séparant la région u < 0 de continuation
de larégion u = 0 de saturation; dans la région ¥ ol u < 0, 0n a:

3.2) oulot — 0%ulox? = f,

et sur la surface libre x = s(f), on a:

3.3) u(s(n, t) = 0,

3.4 ou(s(1), 1)/ox = 0.
Si l'on introduit alors la fonction

3.5) w = 0ulot

on voit que, dans #;

(3.6) owfot — 92w[ox% = of [0t

avec sur la surface libre x = s(f):

X)) w(s(e), 1) = 0,

(3.9) ow(s(), t)[ox = fs'3

La recherche de w solution de (3.6), (3.7), (3.8) est un cas particulier du probléme
classique de Stefan.

La démarche suivie par, en particulier, McKean [1], Grigelionis et Shiryaev [1],
van Moerbeke [1], [2] est de ramener les problémes des inégalités aux dérivées partiel-
les du type (2.14) au probléme de Stefan.

La technique des IV, rend cette transformation inutile et l’idée précédente peut
au contraire étre utilisée dans la direction inverse: Sil’on a a résoudre le probléme de
Stefan (3.6), (3.7), (3.8) (et avec une condition initiale), on introduit u par (3.5),
(3.3) et on vérifie alors que u est caractérisé par une 1.V.; cf. G. Duvaut [1] pour une
situation plus générale.

3.2. Réduction de problémes de surfaces libres a des I.V. L’idée précédente de
réduction, par changement de fonction inconnue, de problémes de surfaces libres
a des LV. a été introduite (dans une situation plus délicate) par C. Baiocchi [1], [2]
a propos de problémes d'infiltration. Par des adaptations convenables, cette méthode
a été appliquée par H. Brezis et G, Stampacchia [2], H. Brezis et G. Duvaut [1],
J. F. Bourgat et G. Duvaut [1], & des problémes d’hydrodynamique. Une question
générale est alors: '

Probléme 1. Quels sont les problémes de frontiére libre que 'on peut réduire a
des LV.?

4. Contréle impulsionnel et inéquations quasi-variationnelles,
4.1. Cas stationnaire. 1’état est donné dans R* par

2Cela utilise la “régularite” de u.
3w, = uy,; d’aprés (3.4) uy, + Uy s’ = 0 et utilisant (3.2) uy = (f — u)s' = fs' sur la courbe
x = s(t) d’ou (3.8).
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@D dy = g0)s + odwls) + LT — 09, O = x,
ou dans (4.1) les ¢ (instants d’impulsion) sont & notre disposition, ainsi que les {*
assujettis
“.2) lied < Rr,
le nombre N est également a notre disposition; le contrdle v est donc
v = {09, ;62 2. ;ON, OV, N3},

00 <2<+ <ON < T(donné fini ou non), { € %, N=N().

L’état est désigné par y,(v) = y.(s, v) et la fonction coiit est donnée par:
(4.4) JO)=E {fhe fly.(s; W) ds + kNO)},

ol fest une fonction donnée = 0 et k un nombre > 0.4
On démontre alors (Bensoussan et Lions [1], Bensoussan, Goursat et Lions [1])
que la fonction

4.5 u(x) = inf J(v),

est caractérisée par l'ensemble d’'inégalités dans R":

4.3)

— O fy_ s g 04 -
Tdu X g ax‘_+au f=0,

(4.6) 2 o

u— M@u) <0, <——2—Au—- Eg,-jil_——l-au—f)(u—M(u)):O,
o
4.7 M@u)(x) = ICEZEI u(x + Q) + k.

Dans le cas de contraintes sur 1’état, traduites par x, y,(s) € 0, 0 ouvert de R,
M(u) est défini par (4.7)avec x et x + { € 0 et I'on ajoute a (4.6)les conditions aux
limites
(4.8) u— M@) <0, g—’; <0, (u— M) %’;_ — Osur I}

ol /0y = dérivée normale dirigée vers I’extérieur de 0.
4.2. Inequations quasi-variationnelles (en abrégé (1.0.V.)). Avec la notation (2.6)
le probléme (4.6), (4.8) peut se formuler: Trouver u € H!(0) telle que,

4.9 u S M),
4.10) atu,v —u) = (f,v — u) VY ve HY0) avec v £ M(u).

C’est une 1.Q.V. elliptique, qui différe des I.V. par le fait que les contraintes sur
les fonctions v dépendent de la fonction inconnue u.
On démontre ’existence et I'unicité d’une solution de (4.10) (cf. Bensoussan et

4Cf. la conférence de A. Bensoussan [1] & ce Congrés sur Pinterprétation de ce type de probléme.
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Lions, loc.cit., L. Tartar [1], une démonstration directe de I'unicité étant due a
Th. Laetsch [1]; cf. également Joly et Mosco [1]). Nous renvoyons en particulier a
P’exposé A, Bensoussan & ce Congrés.

4.3. 1.Q.V. d’évolution. Si 'état est donné par (4.1) avec p(f) = x et si dans (4.4),
onintégre de ta T, on a:

4.11) inf J(v) = u(x, 1),
u étant alors caractérisée par une 1.Q.V. d’évolution,

Voir Bensoussan et Lions [4] ol 'on verra également comment I’on peut obtenir
un contrdle optimal & partir de la connaissance de w.

4.4. 1.0.V. et surfaces libres. La solution » de (4.6) vérifie ¥ < M(u) dans une
région de continuation séparée de la région de saturation u = M(u) par une surface
libre qui satisfait a des conditions de transmission non locales a cause du caractére
non local de M,

Pour une transformation adéquate, C. Baiocchi [3] a réduit des problémes de
surface libre de I’hydrodynamique a certaines 1.Q.V., d’oul la question générale:

Probléme 2. Quels sont les problémes de surfaces libres qui peuvent se réduire a
des 1.Q.V.?

4,5. REMARQUES. (1) On peut étudier des problémes ol le contrdle comprend une
partie impulsionnelle et une partie continue. Cf. Bensoussan et Lions [5].

(2) De nombreuses questions restent ouvertes dans ces directions. Citons:

Probléme 3. Etude de la régularité des solutions des 1.Q,V.5

Probléme 4. Quelles sont les 1.V. ou les 1.Q.V. dont la solution peut s’exprimer
par un probléme d’optimisation sur des trajectoires caractéristiques convenables?
Par exemple, est-ce possible pour certains problémes d’élasto-plasticité (cf. Du-
vaut et Lions [1])?

5. Equations d’état de dimension infinie.

5.1. REMARQUES GENERALES. L’état est de dimension infinie dans les cas princi-
paux suivants:

(i) I’équation d’état est une équation différentielle avec retard; cf. Banks et
Jacobs [1], Delfour et Mitter [1] et la bibliographie de ces travaux;

(ii) Péquation d’étal est une équation aux dérivées partielles déterministe ou
stochastique, La donnée initiale, notée 4 au lieu de x (réservé aux variables géo-
métriques), est alors un élément d’un espace H de dimension infinie; la fonction
u(h, t) définie sur H x] — oo, T] par I'analogue de (1.4) satisfait formellement a
une équation aux dérivées partielles et fonctionnelles (& )—cela, lorsque le contrdle
v est une fonction distribuée dans le domaine ou sur la frontiére ou ponctuelle. Si
le contréle est un temps d’arrét ou de nature impulsionnelle, on aboutit & I'étude
(qui est en cours) des I.V. et des 1.Q.V. en dimension infinie.

Nous allons examiner un cas trés particulier ot (&) se réduit a une équation aux
dérivées partielles.

REMARQUE. Les équations aux dérivées partielles et fonctionelles apparaissent

®Des résultats trés partiels sont donnés dans Bensoussan et Lions et Joly, Mosco et Troianniello,
4 paraitre,
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également, dans un contexte différent mais pas indépendant, dans 1’étude des
solutions statistiques des équations aux dérivées partielles; cf. Visik et Furcikov [1],
C. Foias, [1)], C. Foias et G. Prodi [1], M. Viot [1].

5.2. Le cas linéaire quadratigue. Soit Q un ouvert de R* de frontiére I"; dans Q on
se donne un opérateur elliptique du 2¢me ordre 4

Ap = ~ T b (a0 J2),

a;;e L), X a;j(CL;2a X %, a>0,xe.
On suppose que I’état est donné par

6.1

5.2) 0y[os + Ay = v dans Q = Q x]1, T[, ve L2(Q),
avec la donnée initiale
(5.3) ¥(x,t) = h(x) dans Q,he L2(Q) = H,
et les conditions aux limites
(5.4) y=0 sur 'x]t, T[.
Soit la fonction cofit donnée par
(5.5) J) = [T |¥(s)|2 ds + NJT | u(s)|? ds,

T fini donné, N >0 donné, ol | | = norme dans L2(Q), ot dans (5.5) y(s) = y(s; v)
désigne /a solution de (5.2), (5.3), (5.4). Soit alors

(5.6) u(h, t) = inf J(v), veL?(Q).
On vérifie, formellement, que
(5.7 — ou(h, )0t + (uy(h, 1), Ah) —ling [N IRIZ + (4, uy(h, 1))] = |h|2,6

avec la condition “initiale”
(5.8) uth, T) = 0.

Dans (5.7), on a posé (uy(h, 1), k) = (d/d)u,(h + €k, 1)|e. Explicitant le
inf qui apparait dans (5.7), on en déduit:

(5.9)  — @ufor)(h, ) + (us(h, 1), AR) + |uy(h, |2/AN = |h[2 ¥ he D(A).

Mais 'homogénéité de (5.9) montre que u(h, ¢) est une forme quadratique en 4;
on peut écrire

(5.10 u(h,t) = (P(t)h, h) (produit scalaire dans H), P(t)* = P(t),

et, utilisant (5.10) dans (5.9), on en déduit que P(¢) considéré comme opérateur
linéaire continu de H dans H vérifie (dans un sens convenable; cf. Lions [1]):

(5.11) — 0P[ot + PA + A*P + P-P|N = I (identité dans H)
avec la condition initiale (correspondante & (5.8)):

6Cela, pour tout 4 dans le domaine D(A4) de I’opérateur non borné A.
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(5.12) P(T) = 0.

Mais, d’aprés le théoréme des noyaux de L. Schwartz, ’opérateur P(f) s’exprime
par un noyau P(x, C, 1):

(5.13) P(Np(x) = fo P, T, 1) p(O) L,

et (5.11) correspond & I'équation aux dérivées partielles (non linéaire)
$14) = B2+ (AF + AD PG5, 6 1) + [ P & 1) PG 61) A = 3k — £)7

a quoi on ajoute les conditions aux limites (correspondant au fait que P(#) applique
H dans D(A)):

(5.15) P(x,0,) =0 sixel,{eQousixe,Lel,

et évidemment P(x, , T) = 0,

Tout cela peut étre justifié, dans des conditions plus générales. Cf. Lions [1], [2].

En résumé, dans le cas particulier présent, I’équation aux dérivées partielles et
Jonctionnelles (5.9) se réduit a I'équation aux dérivées partielles non linéaire (5.14).

5.3. REMARQUES. (1) Dans Lions, loc. cit., on a utilisé la théorie du contrdle pour
résoudre (5.14), (5.15), (5.12). Une étude directe (sans usage de la théorie du con-
trole) d’équations non linéaires & inconnus opérateurs—contenant en particulier
(5.14)—est diie & R. Temam [1}, Da Prato [1], L. Tartar [2].

Pour I’étude numérique de ces équations, cf. Nedelec [1] qui adapte les méthodes
des pas fractionnaires, Marchouk [1], Yanenko [1].

(2) Pour les cas stochastiques, cf. Bensoussan [2], Balakrishnan [1], Bismut [1],

6. Systéme d’optimalité.
6.1. Cas linéaire quadratique. Reprenons la situation du N° 5.2., avec des
contrain tes v:

6.1) v € 9,y = ensemble convexe fermé non vide de L%(Q).

Alors les considérations du N° 5.2. conduisent 3 une équation du type (5.7) ou
le inf est pris pour A € #; si %., consiste en les fonctions 3 valeurs dans %;. Mais
une étude directe du probléme est plus simple. On prend ¢ = 0 et h fixé (donné).
Le probléme

6.2 inf J(v), veWUy

admet une solution vy unique, qui est donnée par les systémes d’équations et d’inéqua-
tions aux dérivées partielles suivant :

%+Ay=1’o, ¥x,0) = h(x), y = Osur I' x]0, T,
6.3) )
_71;_+A*P=y3 p(x’ T)=0,p=OSUI'I'X]O,T[,

fo@+N)(v—v)dxdt 20 Vve,y, Vo€ U
7 0(x—¢&) est le noyau de I,



148 J. L. LIONS

Ceest le systéme d’optimalité, qui est d’usage essentiel pour ’obtention d’algori-
themes numériques. Donnons quelques indications sur I’extension (éventuelle)
du systéme d’optimalité a des situations plus compliquées.?

6.2. Controle de surfaces libres. Supposons 1’état donné par la solution de I'L.V.9

64  ab,p—N2Zfoflp—Ndx+ [pp—y)dll  VoeK,yeKk,
ol a est donné par (2.6),K = {p|p € H(Q), p = 0 sur I' = 90}, fe L2 (), eton le
contrdle v parcourt # = L3(I').

Soity = y(v) la solution de (6.4) et soit la fonction cofit

6.5 JO) = [p(¥(v) + g)2dl' + N [,v2dI,  gdonnée = 0.
Alors le probléme
(6.6) Inf J(v), ve LX),

admet une solution unique vy qui est caractérisée par le systéme suivant (cf. F.
Mignot [1]):

a0, 9~ N2 [oflp — Ndx — - [rplp - I VpeK yek,
a*(p,§) = [r (v + g)pdl’
V ¢ tel que ¢y = O sur I'ensemble Z(y) de I"'ol y s’annule, p = 0 sur Z(y), puis,

(68) Vo = — p/N

L’ensemble (6.7) est une 1.Q.V.

Notons que dans (6.4) I'application v — y(v) de L%(I") - H(Q) est Lipschitzien-
ne, donc (Aronszajn [1]) dérivable “presque partout”. Par des raisonnements
ad hoc, Mignot [1] a pu expliciter une dérivée et en déduire, dans le cas présent, le
systéme d’optimalité (6.7). Une question générale est:

Probléme 5. Comment obtenir des systémes d’optimalité dans les problémes ou
I’état est Lipschitzien, non partout différentiable, en le contrdle?10

6.3. Le controle est le domaine géométrique. Dans de nombreux problémes des
mécanique ou de physique, la variable de contrdle est un domaine géométrique.
Par exemple, I’état est donné par I'équation de Stokes!!

6.9 —yvdy = —grad.-p, divy =0,dans 0,

y donné sur le bord de @, 'ouvert Q étant a choisir (avec certaines contraintes
géométriques et par exemple un volume donné) de maniére & minimiser la trainée

6.7)

8Cf. d’autres situations dans Barbu [1], Brauner et Penel [1], Kernevez [1], Slemrod [1], Yvon
[1], etc. Pour le cas, essentiel, des contrdles frontiéres, on utilise la méthode de Lions et Magenes
[1.

8Correspondant 4 un probléme de mécanique unilatérale,

10Cette question est liée aux recherches de L. Neustadt, Halkin et Neustadt [1], Rockafellar,
Clarke.

11Cf. Pironneau, dont on ne considére ici qu’un cas particulier.
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(6.10) J@Q) = % oL ohdr, o5=-4 (g—fc, + %’3—)

Cela conduit & I’étude de la “dérivée en 0”12 de la fonction Q — y(Q). Il s’agit 1a
d’un probléme classique (Hadamard [1], P. Levy [1])!3 donnant lieu & des dévelop-
pements récents: Pironneau, loc. cit., J. Cea et son groupe [1], Murat et Simon
[1]. Pour un théoréme d’existence, par usage du théoréme des fonctions implicites,
cf. D. G. S. Schaeffer [1].

Des questions de conception optimale de matériaux élasto-plastiques conduisent
au:

Probléme 6. Comment étendre les formules de Hadamard sur la dérivée de y(Q)
en {2 aux solutions d’I.V.?

Une question liée & la précédente est:

Probléme 7. Comment dépendent les surfaces libres de “‘variations” du domaine
géométrique?

6.4. REMARQUES. (1) Par des changements de variables (possibles avec des hypo-
théses ad hoc sur la classe des ouverts (2 considérés), on peut ramener les problémes
de 6.3. 4 des problémes de contréle dans les coefficients de I'opérateur différentiel
(ou encore “le controle est 'opérateur”); pour ce type de problémes, cf. Spagnolo
[1], Murat et Tartar [1], Zolezzi [1].

(2) La nature du systéme d’optimalité peut étre quelque peu modifiée par usage de
la théorie de la dualité au sens de Rockafellar [1], Ekeland et Temam [1]. C’est,
entre autres, le cas (Mossino [1]) ol I'on a des contraintes sur I’état. Cf. aussi Lions
[4]. La théorie de la dualité permet aussi d’obtenir des solutions relaxées (ou gén-
éralisées); cf. Ekeland et Temam, loc.cit.

(3) Le systéme d’optimalité pour les problémes de temps optimal a été étudié par
Fattorini [1], [2] en vue de I’'obtention de résultats du type ‘“Bang-Bang”.

(4) Les questions de temps optimal sont, comme dans la théorie classique des
systémes gouvernés par des équations différentielles (cf. R. Conti [1] et la biblio-
graphie de ce livre), liées & la question de la structure de I’ensemble E des états &
un instant donné lorsque le contrdle v varie, question étudiée par Fattorini et Rus-
sell [1], Russell [1], Fattorini [3].

(5) Les problémes de (4) sont eux-mémes liés 4 la question des multiplicateurs de
Lagrange en dimension infinie. Dans cet ordre d’idées, notons que p dans (6.9)
peut étre considéré comme un multiplicateur de Lagrange. Peut-on généraliser ce
résultat au probléme suivant:!4 on cherche & minimiser:

(6.11) J(QD) = %— t'.ji=1 IO ( gﬁ; >2 dx — té. SD f" ¢ dX,

sur I’ensemble non linéaire des vecteurs p € H(p) x H(Q), nuls au bord et tels que

12Pour 2 dans une classe convenable. Une tentative pour travailler “sans restrictions” sur Q2
est faite dans Bensoussan et Lions [6].

18Qui introduit & ce sujet des équations aux dérivées fonctionnelles.

14Rencontré avec G. Duvaut dans un travail non publié.
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v+ 20 0Py _ Op1 B9y _
(6.12) dive + I P Tl 0 dans 0.

Ce probléme admet-il une solution y et existe-t-il un multiplicateur de Lagrange?

(6) Lécriture du systéme (ou d’un systéme) d’optimalité conduit également a
des problémes intéressants lorsque /’état est donné par une valeur propre ou une
Jfonction propre (cf. F. Mignot [2]), lorsque ’on veut contrdler ]a stabilité de phéno-
meénes pouvant devenir instables, (cf. J. Puel [1]).

(7) La simplification du systéme d’optimalité en présence de petits paramétres
conduit & de nouveaux problémes de perturbations singuliéres. (Cf. Lions [5],
Jameson et O’Malley [1]).

(8) Pour les méthodes numériques correspondantes, nous renvoyons a Yvon [1],
Lions et Yvon [1] et 4 la bibliographie de ces travaux.
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Transversal Theory

E. C. Milner

1. Introduction. Transversal theory is a branch of combinatorial mathematics
which is only just beginning to emerge as a reasonably connected and coherent
subject. Whether this is yet rich enough or mature enough to be called a ‘theory’
may be a matter for debate; indeed, it is by no means certain that this part of
mathematics may not finally be classified under some broader, more comprehen-
sive title. However, what is beyond dispute is the fact that during the last two
decades a large number of papers have been published which include some refer-
ence to the so-called marriage theorem (Theorem 2.1), which is the starting point
for transversal theory. These papers deal with surprisingly diverse problems and
their only connecting link seems to be this common reference to the marriage the-
orem. The arguments employed have generally had an ad hoc flavour although
some of these have been highly original. Transversal theory is a depository for
developing those mathematical ideas of the marriage theorem type which frequently
recur and which seem to belong to some more general framework.

Two books on the subject have been published recently by Crapo and Rota [11]
and Mirsky [44] although these were written from rather differing viewpoints.
The first part of this article will be expository and cover ground which is familiar
to most combinatorial mathematicians. In the second part I shall describe some
more recent work done on infinite transversals. The earlier bibliography, detailed
proofs and a historical commentary can be found in Mirsky’s book. Apart from the
new result in set theory mentioned in § 6, I shall not dwell upon the applications of
transversal theory to other branches of mathematics, but refer the reader interested
in this aspect to the article by Harper and Rota [31]. Instead I shall try to give
emphasis to those results which are either new or which have influenced the
development of the subject.

© 1975, Canadian Mathematical Congress
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2. Early results. The letter F will always denote the system (F; ] ie I) of subsets
of a set S having index set I. The sets F; (i € I) are the members of the system but
these are not necessarily different subsets of S. We write | F| = |I| to denote the
cardinality of F. If F = (F,-|i €I) and G = (G; ] J € J) are two systems, then we
define F = G and F + G as follows: F = G means that there is a bijection f:7 — J
such that F; = Gy, (Vi€l); F + G denoles the system H = <H5|e € K>, where
K=(x{0) U x {1})and Hoq, = F;(Viel), Hyy, = Gy (Vj€).

A transversal function of Fis an injective choice function for F, that is a function
¢: I — S such that (i) # ¢(j) (i # j)and ¢(i) € F; (i € I). The element ¢() is the
representative of F; in ¢ and {¢(7) [ i€ I) is a system of distinct representatives for F.
A transversal of F is the range T = {p(i/)|i€ I} of a transversal function and a
partial transversal is a transversal of some subsystem FK = (F,-| ieK)(Kcl),
We denote by TR(F) the set of all transversals of F and by PTR(F) the set of all
partial transversals.

A system F has the transversal property, F € 7, if and only if F has a transversal.
Many problems in combinatorial mathematics reduce to the question of whether or
not a certain system F has the transversal, or some similar type of property. Here I
mention just two such related properties which will be considered in § 5 in the
discussion of infiffite systems. A system F has property 4, F € 4, if and only if there
isaset Bsuch that B | F; # @ # F;\B(V i€ I). This property was first considered
by Miller [40] (the letter 4 standing for Bernstein). F has property 2, (the selector
property) if there is a set B such that |F; N B| = 1 (v iel). For other generaliza-
tions of these see [19]. The most primitive statement about transversals is the
axiom of choice (which we assume): If F is a system of nonempty pairwise disjoint
sets, then F e .

An obvious necessary condition for F to have a transversal is that

.1 ‘ |F(K)| 2z |K| (VK<)

where F(K) = ( );e; Fi» and the marriage theorem states that this condition is also
sufficient in the case of finite systems.

THEOREM 2.1. If] F| < No then F € 7 ifand only if (2.1) holds.

This was proved by P. Hall [27] and condition (2.1) is usually referred to as Hall’s
condition. K6nig had earlier proved an equivalent result [36], [37], [38] which he
expressed in the language of bipartite graphs. There is a natural representation for a
set system F as a bipartite graph. We can assume without loss of generality that
I'N S = @ and then F defines a bipartite graph G = (V, E) with vertexset ¥V =TI
U Sand edge set E = {{i, x} |i€ I, x € F,}. A matching in a graph G = (V,E) s a set
of pairwise disjoint edges W < E; and, for X = V, an X-matching is a matching
W such that every vertex of X is incident with some edge of W. It is easy to see that
the set system F has a transversal if and only if the corresponding bipartite graph
Gy has an Imatching. K6nig showed that if #» < {y and G is any bipartite graph,
then G has ‘a matching of size # if and only if | C| = n whenever C is a covering set
(i.e., a set of vertices incident with every edge of G). Since (I\K) U F(K)is a covering
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set of Gy (K < I), it follows from (2.1) that, if |7| < o, then Gy has a matching
of size || and hence an J-matching.

This formulation of the transversal property in terms of matchings in bipartite
graphs is frequently useful and gives proper emphasis to the dual roles played by the
index set 7 and the ground set S. The terminology also suggests why Theorem 2.1 is
sometimes called the marriage theorem. If I is a set of boys and F; is the set of i’s
girl friends (i € I'), then a transversal of F (or a matching of Gy) corresponds to a
marriage arrangement in which each boy marries one of his girl friends. While this
might be considered satisfactory for the boys (J), it is most unlikely that it would be
considered so by the girls in S left without husbands. Perhaps, therefore, we should
instead seek criteria for the existence of a more socially satisfying perfect matching,
that is a matching which is simultaneously an /-matching and an S-matching in
Gp. But it is easily seen that a necessary and sufficient condition for this is that
there should exist some I-matching (W) and some S-matching (W’) (consider the
graph with edge set W |J W'’). Therefore this reduces immediately to the one-sided
problem of deciding which system Fe 7.

For those with more ambitious appetities, there is another natural generalization
of Thereom 2.1 in which the ith boy demands a harem of size 4; [30].

TrEOREM 2.2. If |F| < o and h; is a nonnegative integer (i € I), then there are
disjoint sets X; < F; (i€ I) such that | X;| = h; if and only if |F(K)| 2 Tk hi
VKcl).

This follows immediately from Theorem 2.1 by considering an augmented system
having h; copies of F; (i€ I), This is the simplest of a number of modifications that
can be effected on a set system in order to exploit a self-strengthening characteristic
of Theorem 2.1 (see [44, Chapter 3]).

A more important early extension of Theorem 2.1 was obtained by Marshall Hall
[28] who showed that the condition (2.1) is also sufficient in the case when |F| is
arbitrary but each F; (i € I) is finite. The 2'/! — 1 conditions of (2.1) are mutually
independent for a finite system of sets, but for an infinite system of finite sets (2.1)
is equivalent to the smaller set of conditions

@.1) |FK)| 2 |[K| (YKe),

where K € I means that K is a finite subset of /. In view of this, Marshall Hall’s
theorem can be stated in the following way.

THEOREM 2.3. Let F be a system of finite sets. Then F€ J if and only if Fy€ 5
(V Fy € F).

There are almost as many published proofs of this result as there are for Theorem
2.1. Algebraists use a variant of Zorn’s lemma, topologists recognize it as a corol-
lary of Tychonoff’s theorem on the product of compact spaces, logicians employ
Godel’'s compactness theorem for the first order predicate calculus (see §5), while
combinatorialists use Rado’s selection lemma ([23], [28], [30], [32], [44]).

We do not know of any criteria analogous to Hall’s condition (2.1) for the prop-
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erties 4 or %,. Indeed we are extremely ignorant about these properties for finite
system. For example, if m(n) is the smallest number of sets of size n which do not
have property 4, then m(1) = 1, m(2) = 3, m(3) = 7 and m(4) is unknown. How-
ever, standard compactness arguments yield results for properties Z and &, similar
to Theorem 2.3.

THEOREM 2.4. If F is a system of finite sets and € € {%, %}, then F € € if and only
ifFoe¥ (Y Fy € F).

3. Abstract independence. Whitney was the first to study the abstract properties of
linear independence and in his pioneering paper [68] he established the equivalence
to different sets of axioms for this notion. The ones which most clearly reveal the
underlying motivation of vectors in a vector space are the following. A pre-inde-
pendence structure (Whitney used the term matroid) on a set S is a nonempty set
M = P(S) = {X|X < S} satisfying the conditions:

I1. A c Be # = A€ # (hereditary).

12. A,Be #,|B| = |A] + 1 <o = @beB\A)N4 U {b} € .4) (exchange).

A set X < S is independent or dependent according as X € .# or X € Z(S)\A.
Since Whitney’s paper, quite a lot of work has been done on the notion of abstract
independence and other axiom schemes have been given; in particular, the theory
was greatly extended by Tutte ([61], [62]) who exploited various analogies and ap-
plications to graph theory.

Whitney only considered the case of finite .#, but many basic results can be
extended to infinite structures if one assumes some additional finiteness type of
condition. The most common of these is

I3. A has finite character.

If .# satisfies I1—1I3 we call it an independence structure on S it is determined by
its finite members. One of the first deductions to be made from 11,2 is that if .# is
a finite pre-independence structure, then the maximal independent sets (bases) all
have the same (finite) cardinality. If .# is infinite there need not be any maximal
independent sets, and even when there are they need not have the same cardinality
[13]. However, if I3 is assumed then it is easy to see that any independent set is
contained in a basis and moreover the bases all have the same cardinality [57].

It follows from the above that if .# is a pre-independence structure on S, then
there is an associated rank function

G.0) p: 2(8)~ {0, 1,2, -, 0}
which is defined by
o(4) = sup{|X| | Xet N P(4)} (A< S).
The basic property of p, which follows easily from the definition, is that it satisfies
(3.2) o(4) < p(B) U< BcS),
(33) o(A U B) + p(4 (\ B) S p(A) + p(B) (4, B < S).

There is an intimate connection between increasing submodular functions and




TRANSVERSAL THEORY , 159

matroids ([55], [18]): If p satisfies (3.1)—(3.3), then M, = {X = S|p(X) Z | X|}
satisfies I1, I2 (although the rank function of .#,, is not necessarily p).

It is natural to ask under what conditions a set system F should have a transversal
which is independent in some independence structure on S. Rado ([56], [57]) was the
first 1o consider this problem and he obtained the following extension of Theorems
2,1 and 2.3,

THEOREM 3.1. Let F be a system of finite subsets of S and let # be an independence
structure on S with rank function p. Then # (\ TR(F) # @ if and only if p(F(K))
2 |[K|(vKeD.

This theorem admits the same kind of extensions as Theorem 2.1 and has
numerous applications (e.g., [2], [3], [65]).

We deduce immediately from Theorem 3.1 the following analogue of Marshall
Hall’s theorem (Theorem 2.3): If F is a system of finite subsets of S and A is an
independence structure on E, then the statements

3.9 A N TR(F) # @
and
(3.5) M NTREF) # @B (VF,EF)

are equivalent, Rado [57] proved that this equivalence is actually a characterization
of independence structures.

THEOREM 3.2. The nonempty set #/ = P(S) is an independence structure on E if and
only if the statements (3.4) and (3.5) are equivalent for every system F of finite subsets
of S.

As we have already hinted, (pre-) independence structures abound in combina-
torial mathematics apart from the more obvious algebraic ones, but for transversal
theory the most important example is the following observation of Edmonds and
Fulkerson [17].

THEOREM 3.3. The set of partial transversals of F, PTR(F), is a pre-independence
Structure.

This result is not difficult to prove, but it was important for the development of
the subject since it initiated a new approach for subsequent research. In general,
PTR(F) does not satisfy I3, but it does if F satisfies the local finiteness condition
|F~Y(x)| < No (¥ x € S), where F~)(x) = {i € I| x € F;} [46]. Theorem 3.3 (and the
fact that the bases of a finite matroid have equicardinality) immediately gives the
following result for finite set systems ([33], [39]).

THEOREM 3.4. If F€ J and P € PTR(F), then there is T € TR(F) such that P = T.

For infinite systems this simple argument fails and the proof [51] depends upon
an extension of the Banach mapping theorem due to Ore. There is an important
practical consequence of Theorem 3.4. To check (2.1) for a large finite system would
be both expensive and uninformative, but Theorem 3.4 shows that there is an
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efficient procedure for actually finding a maximal partial transversal of F which
does not involve backtracking [29].

We call a (pre-) independence structure .# transversal if # = PTR(F) for some
F. Not all (pre-) independence structures are transversal, but the problem of de-
ciding whether one is or not is not always easy (see [6]). However, transversal struc-
tures do arise in natural ways. For example, if G = (V, E) is a graph, then the
matching matroid of G, M = {X < V| 3 an X-matching in G}, is transversal [17].
While it is easily seen that .#; is a pre-independence structure, it is by no means
obvious that it is transversal.

The sum

= g {ufrem)

of a system (/l,-li e I') of pre-independence structures on S is also a pre-independ-
ence structure (and if |7| < o and each .#; satisfies 73 then so does ). The
rank function for .# is given by

(36) p() = min (X 000) + |AX]) U< ),

where p; is the rank function of .#;. This important formula was first stated, for
finite 7, by Nash-Williams [48] (it is also implicit in Edmonds [15]); the infinite
case is proved in [3], [55]. While this result is not difficult to establish (e.g., see [66]
for an elegant deduction of (3.6) from Theorem 3.1), it provides a useful general
technique for solving a variety of problems (e.g., [45]).

As an illustration of the use of (3.6) we give an example due to Nash-Williams
[48]. Consider the cycle matroid #¢ = {X = E|X is acyclic} on the edge set of a
graph G = (V, E). If G is finite, then the rank of a set X < Eis | V' — 1(X), where
t(X) is the number of connected components of the graph (V, X). The graph G
contains k edge-disjoint spanning trees provided that E has rank k(| V| — 1) in the
matroid sum }%, #,;, where #; = # (1 £ i =< k). Thus, by (3.6), we see that a
necessary and sufficient condition for this is that k(| V| — 1) < k(| V| - (X)) +
|E \X | (V X < E). Expressed differently, this condition states that

X)) e(P) 2 k(|P| - 1),

where P = {Vy, -+, V,} is any partition of V into disjoint, nonempty sets and e(P)
is the number of edges of G joining distinct ¥,;’s. This result had earlier been proved
by Tutte [63] and Nash-Williams [47] by more direct but very involved methods and
this use of the rank formula is a good example of the elegance and insight which is
sometimes gained through generalization. The argument just used fails for infinite
graphs, although Nash-Williams [50] has conjectured that (3.7) is sufficient for the
general case. A more general problem would be to find necessary and sufficient
conditions for the existence of pairwise disjoint bases B; of .#; (i € I'), when the .#;
are matroids on an infinite set S.

In this context it should be mentioned that Edmonds (see [15]) has suggested a
more general setting for transversal theory by defining a ‘transversal’ for a system
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of independence structures (.ﬂ,-|ie I') to be a set T which is the disjoint union of
bases B; of .#; (i € I). The original situation is regained when ./, is taken to be the
discrete matroid {X < F,| |X | < 1}on F; (ieI). Many of the basic results of transver-
sal theory extend to this more general setting provided the .#; are rank finite. For
example, a generalization of Theorem 3.4 is that any partial transversal of a rank-
finite system <-/”,‘|i € I) can be extended to a complete transversal provided one
exists. For a fuller discussion of this see Brualdi [5].

So far we have only considered the existence of transversals of a single set system,
but it is useful to consider the analogous problem when there are two or more
systems. For example, Theorems 3.1 and 3.3 together immediately give the
following extension of the marriage theorem (first proved in [25] in the context
of flows in networks).

THEOREM 3.5. The finite systems F = (Fy, -+, F,>, G ={Gy, -+, G,> have a
common transversal if and only if

|[FK) N G| 2 |K| +|L| —n (KL< {1,2,n})

A transfinite analogue for Theorem 3.5 of the Schroeder-Bernstein type is the
following theorem proved by Pym [54] and Brualdi [4].

THEOREM 3.6. The systems F = (F,-|i €l) and G = (G,-[i € I) have a common
transversal if F has a common transversal with some subsystem of G and G has a
common transversal with some subsystem of F.

It would be useful to have a more quantitative type of condition for the existence
of a common transversal of two infinite systems. More generally, when do two in-
finite matroids have a common basis? This is not known even for independence
structures (for a partial solution see [5]).

Unfortunately, there is no resull like Theorem 3.5 known which guarantees the
existence of a common iransversal for three or more systems. A more general
problem is to find conditions for three pre-independence structures to have a com-
mon independent set of a given size. A solution to these problems would have
several important consequences. For example, it would enable us to characterize
those directed graphs having a Hamiltonian path [67].

4. Systems with infinite members. The problem of extending Theorem 2.1 to
arbitrary sytems remains as the central problem of transversal theory and is a
prototype for similar questions in combinatorial set theory.

It is easily seen that Hall’s condition (2.1) is not sufficient for Fe 7 even for sys-
tems having a single infinite member, e.g., consider F = {w,{0}, {1}, :-->. Actually
Rado and Jung [58] gave an extension of Theorem 2.1 to cover this case. Call a
subsystem F | K of F critical if TR(F| K) = {F(K)}; for finite K this is equivalent
to F{ Ke 7 and |F(K)| = |K|. Suppose Fis a system of finite sets and A is an
infinite set. Then the result of [58] is that F + (4> € 7 ifand only if F€ I and

“4.1) A¢ | FK).
FIK critical
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Extensions of this have been obtained by several authors ([17], [24], [69], [12], [60])
providing necessary and sufficient conditions for Fe€ 4 in the case when G has
arbitrarily many finite sets and a finite number of infinite sets.

Recently, Damerell and I [12] settled a conjecture of Nash-Williams [49] giving
necessary and sufficient conditions for any denumerable system of sets to have a
transversal. For X < S, let I(X) = {i€ I|F; = X} and put
mo(X) = | X| = [10)| i |X] < oo,

= if ]X | = oo.
An obvious necessary condition (essentially (2.1)) for Fe 7 is that my(X) = 0
(V X < S). In fact, for a finite set X = S, my(X) measures the number of ‘spare’
elements in X which would be left over after choosing representatives for the sets
F; ¢ X. For infinite X, my(X) is simply a first approximation to this number of
‘spare’ elements in the sense that in this case there could possibly be infinitely many
elements left over after choosing representatives for the sets F; = X, Nash-Williams’
idea was to find successively better and better estimates for the number of ‘spare’
elements in the following way. If T =¢ T,,[n < w) is an increasing sequence of
subsets of X such that
4.3) TocTic-cX=T,
n<w
then put D(T) = I(X)\ Jn<o I(T,). A function f:2(S) » {0, + 1, £2, -+, £+ o0}
will be called a valuation on S. If fis a valuation on S, denote by A(f, X) the set of
all sequences T = (T,,[n < w) satisfying (4.3) and such that f(T,) = f(Ty) < ©
(n < w). For Te A(f, X) write f(T) = f(T;). Now we define a transfinite sequence
of valuations m, (@ = 0) by induction on « as follows. Suppose o > 0 and that my
has been defined for § < a. For X c § we put m,(X) = infz, my(X) if a is a
limit ordinal, and for & = 8 + 1 put
m,(X) = inf )(mﬂ(T) — |D(T)|) if A(mg, X) # @,

TEA(mﬁI X
= o if A(mg, X) = @.

Then we have the following result [12].
THEOREM 4.1. If | F| = Ny, then F€ 7 if and only if
4.4 m,(X) =0 VXS

Steffens [60] considered the following more qualitative type of condition which is
somewhat similar to (4.1) and very easy to state:

(4.5) F;¢ F(K) wheneveriel\Kand F!| Kis critical.

(4.2)

Clearly (4.5) is necessary for F € 4 and Podewsky and Steffens have recently proved
the following theorem [52]. '

THEOREM 4.2. If | F| = N, then F € 7 if and only if (4.5) holds.

Theorem 4.1 and 4.2 both fail for nondenumerable systems. A good test case is
the system F' = (al w = a < w;) which has no transversal by an elementary theo-
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rem on regressive functions, However, both (4.4) and (4.5) are satisfied for this
system.

On the other hand, both Theorems 4.1 and 4.2 can be extended to give necessary
and sufficient conditions for the existence of transversals of denumerable systems in
some independence structure .# on S. For Theorem 4.1 the only change needed is
to replace |X [ by p(X) in (4.2), where p is the rank function, The proof of [12] carries
over with only minor modifications. In order to state the appropriate generalization
of Theorem 4.2, call a subsystem F | K #-critical if # )\ TR(F} K) # @ and if B is
a maximal independent subset of F(K) whenever Be .# () TR(F| K). Then it is
easily shown [42] that, if | F| < ¥o, then .# | TR(F) # @ if and only if
“.5") F; does not depend upon F(K) whenever i € I\K and F'| K is M -critical.

5. Compactness theorems. Let &, A, ¢ denote infinite cardinals. The cofinality
cardinal of & is cf £ and the succesor of x is £*. We write F e S(x, A) if |F | = g and
|F,-| = A (Viel). Expressions like S(x, < 1), S(x, < A) have natural interpretations.
We say F has property I (u) if F'e 7 (V F' < F, |F’| < w). Let T(k, A, 1) be an
abbreviation for the assertion:

Fe S, ) & Feg (u)=> Fe 7.

Then Marshall Hall’s theorem (Theorem 2.3) asserts that T(x, < o, < ¥o) is true
for every £. It is natural to investigate if T(x, A, u) holds for other triples and W.
Gustin (see [19], [20]) in the 1950’s asked if

3.1 TNz No» N1)

is true. Erdos and Hajnal [21] noted that (5.1) holds in L. More generally, an easy
consequence of a result of Jensen [34] is the following theorem [43].

THEOREM 5.1. If k is regular and not weakly compact and if A < k, then V = L =
=T, A, < K),

The hypothesis ¥ = L is not needed to prove (5.1). For example, the system

F= <Faﬁ|m Sa<w =B <wy, where Fuﬁ =a X {0!, ﬁ} = Uv<a{(v,a)’ o, ﬂ)}:
satisfies F e S(W2 No) N T(N1) and F ¢ 7. More generally, Shelah and I proved
the following theorem [43].

THEOREM 5.2. If & is regular, then
—T(k, A, < £) = 1 T(k*, A, < £%).

Since —T(x™, &, £) holds (consider £* identical sets of size £) we deduce from this
that —T(Narm Nas < Natn) (@ =0, 1 < n < w). However, this leaves several
questions unanswered. For example, we cannot deduce from Theorem 5.2 whether
—T(x, N0, < £) holds for £ = ¥,. Theorem 5.1 shows that we cannot prove the
falsity of this for £ = u*, but (rather surprisingly) it is false for singular k. Very
recently Shelah (unpublished) has proved the following result,

THEOREM 5.3. If cf & < g and A < &, then T(, A, < K).

It is easily seen that this theorem of Shelah is best possible in the sense that A
cannot be replaced by <x. More precisely, we have thatcf x < = —T(x, <k, <k).
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To see this consider the system

F = {{a}|aer\CY + lkp £pe)|p < p) + {CD,

where y = cfk < ¢, C = {/c,,|p < u} is a closed, cofinal subset of £ and [k, £,41)
= {a|r, £ @ < £pu1}. I is easily seen that F¢ .7 whereas F'e g for every
proper subsystem F' & F.

Theorem 5.3 shows that the regularity of & is an essential hypothesis in Theorem
5.1. So also is the condition that £ not be weakly compact. We have the following
very simple theorem.

THEOREM 5.4. If £ is weakly compact then T(k, < &, < £).

This can be proved in the same manner that Henkin [32] proved Marshall Hall’s
theorem. One of the several equivalent characterizations for & to be weakly compact
is that the infinitary propositional calculus which permits the conjunction of < ¢
formulae is k-compact. Suppose Fe &P(, < £) (| 7(< k). We can assume that F =
(F,-|i < £) and that F; < . Consider the set of £ sentences

S={ \4‘ th'|i</f} U {—‘(Pxi /\ij)lx <I§,i¢j<li},

where p,; is a propositional variable (with intended meaning “x € F;”). The
hypothesis ensures that any subcollection of <x sentences of S has a model, and
hence S has a model if & is weakly compact, i.e., F € 7. In a similar way, as Jech re-
marked, one can prove a more exact analogue of Theorem 2.3 for large cardinals: If’
Ais supercompact and £ = A, then T(x, < A, < A). It should be possible to prove

.2 Tk, <&k, < k) => weakly compact,

but at present this is still open.

Theorems 5.1 and 5.2 show that one cannot, in general, decide if F € 7 by ex-
amining all small subsystems of . However, we do have the following compactness
type of result [43].

THEOREM 5.5. If Fye S(k, < No), F1 €S, £ ) and F = Fy + Fy, then
(5.3) Feg < Feg(A).

For example, this enables us to extend Theorems 4.1 and 4.3 to the case where F
contains countably many denumerable sets and an arbitrary number of finite sets.
Cudnovskii [9] has obtained the following more general theorem: If y,A =y = w
and the infinitary language L., is (u, A)-compact, then (5.3) holds if Fo€ &(k, < No)
and Fy € #(u, £ v).

I conclude this section by mentioning some related results about the properties
% and %, introduced in §2. First I stale one of Miller’s original results since there
remains an interesting unsolved problem. Miller [40] proved that if Fe &(x, = A)
and n < N, then

(YF c F)(|F'|>2=|\F|<n=Fea.
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This result is easily seen to be best possible in the sense that # cannot be replaced
by ¥No. For example, let 4 = (4; |i < w) be a system of N, disjoint denumerable
sets, let {T,|p < 2%} be all the transversals of 4 and let {C,|p < 2"} be any set
of 2% almost disjoint (i.e., |C, N C,| < |C,| for p # o) infinite subsets of w.
Then the system F = 4 + (T, C,|p < 2%} € £(2%, ¥y) and

(54 |FiNFil <o G #1)

but F'¢ 4. One of the problems stated in [19] which still remains unsolved is
whether (under the assumption that 2% > ¥;) there is Fe S(§;, o) such that
(5.4) holds and F ¢ £.

We say F has property #(u)if F' € # (¥ F' c F, |F’ [ < p). Let %(k, A, p) denote
the assertion: Fe &(k, ) & Fe #(u) => Fe #. Similarly, we define %;(y) and
%:(k, A, ). Essentially the same proof used to establish Theorem 5,4 above also
gives that Bk, < £, < k) and By(k, < £, <k) are true if x is weakly compact. Similar
to Gustin’s problem (5.1), Erd6s and Hajnal [19] asked if the statements

(55) ﬂB(NZ’ NO’ Nl):
(5.6) —B; (N2 Wo» N1)

are true. Weglorz [64] proved (5.6) assuming 2% = Nz (i.e., (5.6) is consistent)
and recently Cudnovskii [8] proved this without any additional assumption. The
same authors also proved (Weglorz assumed GCH, Cudnovskii without GCH)
the following theorem.

THEOREM 5.6. By(k, < k, < k) <> & is weakly compact.

The corresponding problems for property 4, like (5.2), remain open. In this con-
nection, I should like to mention one additional new result due to Komjath and
Hoffman [35] which gives a connection between the transversal property and
property 4.

THEOREM 5.7. If Fis a system of infinite sets, then Fe = Fe€ 4.

6. Almost disjoint transversals. In this final section I shall discuss some recent
results in set theory which relate to questions of the form: “how many almost disjoint
transversals does a set system have?” Such questions were first considered in [22]
and [41], and recently K. Prikry and J. Baumgartner used results of this kind to give
elementary proofs of a remarkable new result (Theorem 6.1) of J. Silver [59].

Let x be a singular cardinal not cofinal with w, i.e., w < A = cf £ < &, and let
C= {/c,,| p < A} be any closed cofinal set of cardinals in . In [22] Erdos, Hajnal
and I proved the following result: If u* < & (4 < £) and S is a stationary subset
of A, and if T is a set of almost disjoint transversals of the system F = (/cp]p €s),
then |T| < k. The elementary proofs given by Prikry and Baumgartner of Silver’s
theorem can be described in terms of the following extension of this result.

LemMma 6.1. If p* < £ (4 < k) and S is stationary in A, and if T is a set of almost
disjoint transversals of the system F = (x}|p € S then |T| £ x*.

After Cohn [10] proved the independence of the continuum hypothesis, it was
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natural to investigate what possible values 2%« could assume. Easton [14] proved
that if h is any ordinal valued function satisfying (i) @ < 8 = h(a) = h(B) and
(i) cf(s @) > N4, then it is consistent (with ZFC) that 2%« = ¥, .y (8, regular).
In view of this arbitrariness for the possible values of 2# for regular y, it was
therefore very surprising when Silver [59] recently announced the following theorem.

THEOREM 6.2. If w < cf & < r and A = {a < k| & cardinal and 2* = a*} is sta-
tionary in g, then 2¢ = g*,

In particular, this shows that if GCH holds below &, (i.€.,2% = a1 (@ < 1)),
then 2%« = N, 11

Silver’s original proof uses sophisticated model theory but Prikry and Baum-
gartner gave an elementary combinatorial proof based upon Lemma 6.1. To obtain
Silver’s theorem from the lemma we argue as follows. If 4 is stationary in &, then
w < £ (u < r)and 4 (| Cis stationary, ie., S = {p < 2|2% = £}} is stationary
in A Since |2(x,)| = &} for pe S, we can write P(x,) = {x¢|» < £}} (p€S).
Then, for each X < &, there is a transversal function ¢y of F = (/zﬂ p € S defined
by px(p) = v < X | £, = x{. Clearly ¢y, ¢y have almost disjoint ranges if X #
Y <  and therefore, by the lemma, | 2(x)| < *.

PrOOF OF LEMMA 6.1. We will assume that T is a set of £*+ almost disjoint trans-
versal functions and deduce a contradiction.

Note that So = {p € S|p a limit ordinal} is also stationary in . For ¢, ¢ € T put
S, ) = {p € So| (o) < p(p)}, and let G(p) = {¢ € T|S(¢), p) is stationary in A}.
G is a set mapping on T (i.e., ¢ ¢ G(p)) and

(V¢ peT) () # ¢ = ¢€G(p) or p € G(¢Y))

since S(¢h, ) U S(g, ¢) is a final section of Sy. Therefore, by a well-known theorem
on set mappings (e.g., [26]), it follows that | G(pg) | = &* for some g € T.

Since o(p) < £} (V p € Sp), there is an injective map h,:po(p) = £,. Also, if
¢ €G(py) and peS(P, o), then there is o4(p) < p such that h((p)) < Kokp)
(since {/cp|p < A} is closed and p is a limit ordinal). Now o is regressive on the
stationary set S(¢), o) and hence there are 4, = S and py < Asuch that |A¢| =2
and g4(p) < py (¥ p € Ay). There are only 22-1 < g* different pairs (4, {) with
A < A, L < 2, and hence there is G' = G(gpy) such that |G'| = &* and (4, py) =
(4,0) (¥ ¢ € G"). Since £} < ritfollows that there are ¢y, ¢, € G’ such that ¢ (p) =
¢n(p) (¥ p € 4) and this is a contradiction since | 4| = 2 and the members of T are
pairwise disjoint.

It should be mentioned that Prikry has since obtained more general results than
Lemma 6.1 and Theorem 6.2 by using refinements of the above argument. He also
proved the following interesting companion result.

THEOREM 6.3. Suppose that T is a set of almost disjoint transversals of the system
F = (F,|p < k), where |F,| < 2% (p < k) and o < cf £ £ £ < 2% If 2% is real-
valued measurable, then |T| < 2%

Obviously, the condition that cf £ > w is essential.
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Finally, I conclude by mentioning a strong result of the Silver type which was
obtained (independently) by Hajnal and Galvin by using an extension of these
ideas on almost disjoint transversals.

THEOREM 6.4, If w < cf k < k = ¥y and 2¢ < £ (¥ p < K), then 28 < Ny
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Higher Algebraic K-Theory

Daniel Quillen

One of the problems discussed in Swan’s talk on algebraic K-theory at the Nice
Congress was to find the “good” generalization of the groups Ky4 and K, 4 of Bass
to a sequence of groups K,4, n€ Z. This problem has since been solved, and
considerable progress has been made toward understanding these higher K-groups.
In this article I want to describe these developments and to discuss some of the
problems in the theory awaiting solution.

1. K, and K. Let A4 be a ring (supposed always to be associative with identity)
and let 22, be the category of finitely generated projective (left) A-modules. The
group KA is defined to be the Grothendieck group of 2,. It is the abelian group
with one generator [P] for each P in 2, and one relation [P] = [P'] + [P"] for
each short exact sequence 0 —+ P’ - P = P" — 0.

Following Bass, one defines Ky4 to be the group GL(A4)/E(A) appearing in
Whitehead’s theory of simple homotopy types. Here GL(4) = () GL,4 is the
group of invertible infinite matrices over A4 equal to the identity matrix except for
finitely many entries, and E(A) is the subgroup generated by elementary matrices
e‘,‘-'j=1+ae,-,-,i¢j.

The book of Bass on algebraic K-theory demonstrates how rich the theory of the
functors K and K; is. The problem of higher K’s consists in extending these func-
tors to a sequence of functors K, n € Z, in such a way that the known results about
Ky and K can be generalized insofar as possible. Examples due to Swan show that
the excision property does not extend, but many results do, such as the following
which shows that the functor K is determined by K. Let A[z, z~!] be the ring of
Laurent polynomials )] g,z in the indeterminate z over A4.

{ © 1975, Canadian Mathematical Congress
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THEOREM 1. There is a functorially-split exact sequence
0 - K14 - K1A[z] ® K1A[z7Y] = K[z, z71] - Kpd — 0.

2. X, for n < 0. Because of Theorem 1 it is natural to define K, for n < 0
recursively using the formula

K,A = Coker{K,A[z] ® K,A[z™1] - K, Az, z71]}.

Bass showed this definition leads to a good theory of negative K-groups, and, in
particular, that Theorem 1 continues to hold with K and K, replaced by X, and
K, forn <O0.

A simpler formula for these negative K-groups was found by Karoubi. Let CA
be the ring of matrices (a;;), 1 < i, j < oo, over A which are finite A-linear com-
binations of matrices having entries 0 and 1, and at most a single 1 in each row and
column. Karoubi defines the suspension of 4, denoted S4, to be the quotient of
CA by the ideal of matrices with finitely many nonzero entries. S4 is a discrete
analogue of the Calkin algebra of bounded operators modulo compact operators
on Hilbert space. He has proved

THEOREM 2. K_,A = K(S7A) = K (S"*1A4) for n < 0.

Moreover he has characterized the negative K-groups axiomatically as derived
functors of K in a suitable sense.

For the simplest commutative rings such as fields and Dedekind domains, the
negative K-groups are not very interesting, for Bass has proved quite generally
that K,4 = Ofor»n < 0if A4 is regular noetherian.

3. Milnor’s K. The group E(A) is generated by elementary matrices e?;, among
which hold certain obvious relations. Milnor defines the Steinberg group St(4) to
be the abstract group with generators xZ; subject to these obvious relations, and he
defines K,4 to be the kernel of the canonical epimorphism St(4) — E(A). Since
St(A4) turns out to be the universal central extension of E(4), K;4 can also be
described as the Schur multiplier of the perfect group E(4).

When Fis a field, a theorem of Matsumoto gives a presentation of K,F which
has been used by Tate and Bass to describe fairly completely the behavior of K,
for fields, especially number fields. Matsumoto’s theorem has been generalized to
other classes of rings by Dennis, Stein, van der Kallen and others, giving one a

hold on the K, of these rings.

4. K, for n = 1 as homotopy groups. To go beyond K, it seems necessary to use
homotopy theory and define K, as the nth homotopy group of a suitable space (or
something essentially equivalent such as a semisimplicial group). Definitions of this
type have been given by Swan, Gersten, Volodin, Wagoner, and myself. One of the
achievements of the past four years has been the demonstration that these def-
initions are equivalent. The definition best suited to my purposes here is based on
the following easy result of homotopy theory.

PROPOSITION. Let X be a connected CW complex with basepoint, and let N be a
normal subgroup of w1 X which is perfect, i.e., equal to its commutator subgroup.
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Then there exist a CW complex Y and a map f:X — Y such that
(i) m,(f) induces an isomorphism m X|N ~ m,Y.
(ii) For any m Y-module L and integer q the map f induces an isomorphism
H/(X, f71L) ~ H(Y, L).
Furthermore, the pair (Y, f) is determined up to homotopy equivalence by these
two properties.

Applying this result to X = BGL(4), the classifying space of GL(A4), and to
N = E(A) ¢ GL(4) = =X, we obtain a space which will be denoted BGL(A4)*.
We set K, 4 = n,BGL(A)*. It is easy to prove this agrees with the Bass K; and the
Milnor K.

The space BGL(4)* is an H-space, and, moreover, the canonical map BGL(4) —
BGL(A)" is universal among maps from BGL(A) to an H-space. Thus BGL(A4)* is
obtained by altering BGL(A) in the least possible way so as to make it an H-space.
One can think of BGL(A4)* as analogous to the infinite Grassmannian of the
topological K-theory of Atiyah and Hirzebruch.

5. Some computations. Because BGL(A4)"* is an H-space with the same homology
as BGL(4), one approach to the computation of K,4 for n = 1 would be to com-
pute the homology of BGL(4), and then try to use the known relations between
homology and homotopy for H-spaces. For example, one has that K,4 ® Q is
isomorphic to the subspace of primitive elements of H,(BGL(4), Q). Borel, com-
pleting earlier work by Garland, has computed these homology groups by means of
differential forms and Hodge theory on quotients of symmetric spaces by arith-
metic groups. He obtains the following:

THEOREM 3. Let A be the ring of integers in a number field having r, real and ry
complex places. Then the dimension of K,A ® Q is 1 for n =0,r; + r, — 1 for
n=1,andforn = 2itis0,r; + r5, 0, rif n = 0, 1, 2, 3 (mod 4), respectively.

In the case of the finite field F,, I showed by homology computations that
BGL(F,)* is homotopy equivalent to the fibre of the map ¥'¢ — 1 from BU to
itself, where ¥¢ is the map corresponding to the gth Adams operation. From
Bott’s determination of #,BU, one concludes:

TuEOREM 4. KoF, = Z and K5, F, = 0 for i 2 1. Ky;_1F, is cyclic of order q* — 1
Joriz 1.

6. The K-spectrum of a ring. Gersten and Wagoner have independently proved
the following extension of Theorem 2.

THEOREM 5. The space ) BGL(SA)* is canonically homotopy equivalent to KoA x
BGL(A)*. Consequently K, .,(SA) = K,A for all n.

It follows that the sequence of spaces K((S7A4) x BGL(S?A)* is an Q-spectrum,
whose nth homotopy group is K, 4. For 4 commutative, Loday has shown that the
tensor product operation on #, induces products in the generalized homology
theory associated to this spectrum. In particular, there are products K;4 ® K,;4 —
K, ;A in this case.
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The generalization of Theorem 1 to positive K-groups has been established by
Waldhausen and myself. Thus the exact sequence holds with K, K; replaced by
K, K, for all n.

1. K-groups of exact categories. Even if one is primarily interested in the K-theory
of projective modules, it is necessary for technical reasons to work with the K-
theory of other categories of modules. Hence one is led to define higher K-groups
for additive categories equipped with a suitable notion of exact sequence which I
call exact categories.

Let o7 be an abelian category, e.g., the category of modules over some ring. Let
 be a full subcategory of o7 containing zero, which is closed under extensions in
& in the sense that if 0 - M’ - M — M" — 0 is a short exact sequence and if M’
and M" are in ., then so is M. Call a sequence in ./ exact if it is exact in .o7. Then
 equipped with this notion of exact sequence is an example of an exact category,
and every exact category is equivalent to such an ..

To define the K-groups of .#, we introduce a new category Q() having the
same objects as .# but with morphisms defined in the following manner. By an
admissible layer in an object M of .#, we will mean a pair of subobjects My, M, of
M such that M, M,/M,, M|M, are objects in .#. A Q(#4)-morphism from M’ to
M is defined to be an isomorphism M’ ~ M,/M; where (M, M,) is an admissible
layer of M.

Assuming . is a small category, Q(.#) has a classifying space BQ(.#); it is the
geometric realization of the semisimplicial set whose p-simplices are chains M, —
My — -+ - M, of arrows in a small category equivalent to Q(4#). We put K,(.#)
= 7cn+l(BQ("”)): nz0.

It can be easily shown that this definition gives the usual Grothendieck of .#
when n = 0. Somewhat less trivial is the fact that K, (#,) coincides with K,4
forn = 0. At the moment a theory of negative K-groups for exact categories has not
been developed.

8. Localization. I shall illustrate some of the points of the higher K-theory of
exact categories by outlining the proof of the following localization exact sequence.
The overall form of the argument, incidentally, goes back to Grothendieck’s work
on Riemann-Roch.

THEOREM 6. Let A be a Dedekind domain with field of fractions F. One has an exact
Sequence

— K, F— (’-’I‘B K. (Am) - K,A - K, F —

where m runs over the nonzero maximal ideals of A.

To simplify, we suppose 4 has a single maximal ideal m # 0. Let .#, be the
category of finitely generated 4-modules, and let 7, be the full subcategory of
torsion modules.

The first step of the proof consists in showing that the inclusion of 2, in .#,
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induces isomorphisms: KA = K, (2,) ~ K,(# ,). This follows from the fact
that every M in ., has a finite resolution by objects of #,, using a general
theorem about resolution which affirms that the map BQ(2#,) —+ BQO(A ,) is a
homotopy equivalence under these circumstances.

We identify 22,4 ,,, with the full subcategory of .7, containing the modules killed
by m. The second step is to show Ky(4,,) = Ku(P4,y) is isomorphic to K.(7 ,).
This follows from the fact that every object of 7 4 has a finite filtration whose quo-
tients are in #,,,,, using a general result on dévissage.

The theorem now results from the exact sequence

~ Ky i1((Pp) = KT 4) = K,(My) ~ K (PF)

which follows from the homotopy exact sequence of a fibration, once it is proved
that BQ(7 ,) — BQ(A ,) - BO(2F) has the homotopy type of a fibration. This
point is established by applying suitably the Dold-Thom theory of quasi-fibrations
to the classifying spaces involved.

9. Problems. First, let me point out that many of the results known about Ky,
Ky, K, can be formulated for all the K,,. In this way one can generate a huge list of
interesting unsolved problems in higher algebraic K-theory.

Narrowing the field somewhat, I shall suppose 4 to be a regular noetherian com-
mutative ring, because such rings have simpler K-theory, e.g., the negative groups
are zero. The localization sequence (Theorem 6) can be generalized to a spectral
sequence relating K, 4 to the K-groups of the residue fields of the different prime
ideals of 4. Unfortunately, almost nothing is known about K, of a field for n > 2,

Suppose in addition that A is finitely generated as an algebra over Z. Bass has
posed the question of whether K, 4 is a finitely generated abelian group for all ».
I showed this to be true if the Krull dimension of 4 is < 1, but the general case is
still open. At the moment the computation of K, for rings of integers in number
fields is stuck at K3Z; one knows this group is finite, and Karoubi has shown it
has at least 48 elements, but it is not known whether there are any others.

The work of Tate on K, of global fields suggests that K,4 might be related to
the étale cohomology of Spec(4). To be more precise, one might hope to have a
spectral sequence, analogous to the Atiyah-Hirzebruch spectral sequence of
topological K-theory, starting with the étale cohomology groups

Ep1 = H¥Spec A[I71]) = 0, g odd,
= Zl(l)’ q=—2i

whose abutment would coincide with K_,_,4 ® Z, at least in degrees —p — g >
1 + d, where d is the Krull dimension of A. If 4 is the ring of integers in a
number field, and either / is odd or A4 is totlally imaginary, this spectral sequence
would degenerate, yielding cohomological formulas for the K-groups conjectured
by Lichtenbaum.

Before one could expect to derive such a spectral sequence, it would be necessary
to understand what happens for algebraically closed fields, which are points for
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the étale topology. In this case we have the following conjecture due to Lichten-
baum, which I like to think of as an analogue of Bott periodicity.

CONJECTURE. Let F be an algebraically closed field of characteristic exponent p.
Then fori = 1, Ky.Fis a divisible torsion-free abelian group, and K,;_\F is a divisible
group whose torsion subgroup is isomorphic to Q|/Z[p™1].

This conjecture is true for K; and K,, the case of K, being a theorem of Tate.
It is true if F is the algebraic closure of a finite field by passage to the limit in
Theorem 4. One can also prove that when p > 1, the group K,F is uniquely p-
divisible for j = 1, this being a general result about perfect rings. The conjecture
is equivalent to the assertion that for each prime number / # p, the cohomology
ring H¥(BGL(F), Z/1Z) is a polynomial ring with generators of degrees 2, 4, 6, etc.

10. References. The basic reference for higher algebraic K-theory is Volume I
of the Proceedings of the Conference on Algebraic K-theory held at Battelle,
Springer Lecture Notes in Mathematics, No. 341. Nearly everthing treated in this
article is covered in this book.
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Applications of Thue’s Method in Various
Branches of Number Theory

Wolfgang M. Schmidt*

1. Hermite’s [1873]! proof of the transcendency: of e is roughly as follows. Con-
struct polynomials Py(x), -+, P,(x) such that

R(x) = Py(x) + Py(x)ex+ -+ + Py(x)ed*

has a zero of high order at x = 0. Suppose each polynomial P,(x) is of degree < m.
Then each P/(x) has m + 1 coefficients at our disposal, and altogether there are
(d + 1)(m + 1) coefficients at our disposal. Now in R(x) = ¢y + ¢;x + -+, each
coefficient c; is a linear combination of the coefficients of the polynomials P,(x). If
weset N=(d+ 1)(m+ 1) — 1, then ¢y = ¢; = --+ = ¢y_; = 0 are N linear homo-
geneous equations in the coefficients of the P,(x), and since N < (d + 1)(m + 1),
we have fewer equations than unknown coefficients. Thus we can find nonzero
polynomials Py(x), -+-, P 4(x) such that R(x) has a zero of order = N.

Now Hermite did not rely on this existence argument. He actually constructed
polynomials with the desired properties. In our present setting there is a unique
function R(x) with the desired properties such that the first nonvanishing coef-
ficient is ¢y = 1. It turns out that R(1) is positive but quite small. The polynomials
P,(x) have rational coefficients, the size of whose numerators and denominators
can be estimated. Now if e were algebraic of degree d, then R(1) would be algebraic
of degree d and quite small. One could estimate the size of the conjugates of R(1),
with the result that for large m (which is still at our disposal) the norm of R(1), i.e.,
the product of R(1) and its conjugates, is quite small. But the norm of a nonzero

*The author was partially supported by NSF-GP-33026X.
IReferences are listed at the end. They are listed alphabetically by the name of the author, by the
year, and finally by a,b, - if there are several works by the same author in the same year.
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algebraic integer is at least 1 in absolute value, and R(1) is in a sense not too far
from being an algebraic integer, so that its norm should not be too small. Thus a
contradiction is obtained.

2. Thue [1909] proved the famous theorem that if o is a real algebraic irrational,
then there are only finitely many rationals p/q with

) la = (pla)| < g7,
provided that x4 > 4 d + 1 where d is the degree of a. For d > 2 this is an im-
provement over a theorem of Liouville [1844] which asserts that |a — (p/q)| =
c(a)g ™.

Before discussing Thue’s proof, let us remark that the denominators of two
distinct good approximants p/q and p’/q’ cannot be close together. For if, say,

|a = (pl9)| < g7 |a — (P'[9")| < ¢’ and if g# < ¢", then

A ‘a -2y P
qq9 q q q q
Thus ¢’ = 4} g#7,i.e., q' is rather larger than g.
Thue’s first step was to construct, for each n, polynomials P(x), Q(x), Py(x), -+,
P,_1(x) with rational coefficients, such that

@ P(x) = aQ(x) = (x — Q)"(Po(x) + Pi(x)a + -+ + Py y(x)a?™?)

identically in x. This identity means that if we write the right-hand side as Ry(x) +
Ri(x)a + -+ + R;_1(x)a?! with polynomials R{(x) with rational coefficients, then
Ry(x), -++, Ry_1(x) are identically zero. The coefficients of Ry(x), ---, R;_;(x) are
linear combinations of the coefficients of Py(x), --+, Py_1(x). If we specify that
deg Py(x) Em(j=0,1,:,d— 1), then we have d(m + 1) coefficients at our
disposal, and it may be seen that if, say, m = } dn, then we have more unknown
coefficients than linear conditions imposed on them. Thus there is a nontrivial
solution of (2).

Now if p/q is a very good approximation to «, then with x = p/q both sides of
(2) become small, so that P(p/q)/Q(p/q) = P./Q,, say (after all it depends on n),
is again a good approximation to a. One thus obtains a sequence of good approxi-
mations with denominators Q; < @ < --- which do not grow too fast. Now if
p'/q’ were another very good approximation to o with large denominator ¢’, the
construction could be rigged so that the P,/Q, differ from p’/q’. The denominator
q’ would lie between some Q,, @,+;. Thus we would have a very good approxima-
tion p'/q’ and a good approximation (either P,/Q, or P,,1/Q,+1) whose deno-
minators are close together, thus violating the principle stated above.

Thue’s argument is ineffective. We need two very good approximants p/q and
P'[q', where g is large and where g’ is much larger than ¢. Thus a single good ap-
proximation gives no contradiction, and we cannot get a bound on the size of the
denominator of a very good approximation. This noneffectiveness does not come
from the fact that we have no explicit construction of the polynomials above.

This idea of asserting the existence of certain polynomials rather than explicitly

o —
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constructing them is the essential new idea in Thue’s work. As Siegel [1970] points
out, a study of Thue’s papers reveals that Thue at first tried hard to construct the
polynomials explicitly, and he actually could do so when « is a dth root, i.e., when
o is rational.

3. The two approximants p/q and p'/qg’ which occur in Thue’s argument were
put on a more equal footing by Siegel [1921], who constructed a polynomial P(x, y)
in two variables with a zero of high order at (a, o). Now if p;/g; and py/g, were two
very good approximants, then P would also have a zero of high order at the rational
point (p1/g1, P2/gs). The idea now is to show that this cannot happen for such a
rational point. Here serious difficulties arise, and one can push the argument
through only if ¢, is large and g, is much larger than g;. In this way Siegel weakened
Thue’s condition o > }d + 1topu > 24/d.

Finally Roth [1955] improved the condition to x > 2 by using a large number of
approximants, say k approximants. He constructed a polynomial P(xy, :--, x;) in k&
variables with a zero of high order at (e, -+, @). If p1/q1, ***, pr/q, Were very good
approximants to a, then P would also have a zero of high order at (p1/q1, **+, Px/qs)-
The great difficulty now is to show that P cannot have a zero of high order at such a
rational point. Roth surmounted this difficulty in a very ingenious way by proving
a certain lemma, which is now called Roth’s lemma.

The Siegel-Roth results use Thue’s idea of constructing polynomials with
certain properties by setting them up with undetermined coefficients, and by
noting that the desired properties amount to linear conditions on the coefficients,
which are fewer than the number of available coefficients. Thus the polynomials
are not constructed explicitly. The transcendence results of Siegel [1929], Gelfond
[1934], and Schneider [1934] also make use of this principle. Auxiliary functions
are constructed which have certain zeros of high orders, and this is achieved by
setting up polynomials with undetermined coefficients. The same is true of the
transcendence results of Baker [1966], which also imply an effective but weaker
version of Thue’s theorem.

4. A few years ago (Schmidt [1970]; see also the survey paper [1971]) I generalized
Roth’s theorem to simultaneous approximation. It is becoming increasingly clear
that the central theorem on simultaneous approximation is the following

SUBSPACE THEOREM (SCHMIDT [1972]). Let Ly(x), -+, L,(x) be m linearly indepen-
dent linear forms with real or complex algebraic coefficients in vectors x = (xy, **-,
Xp). Write |x| = max(|x,[, -+, |n|). Given & > 0, there are finitely many proper
rational subspaces Sy, +++, S), of m-dimensional space, such that every solution x # 0
with rational integer components of ]Ll(x) L,,,(x)] < ||x||‘9 lies in one of these
subspaces.

To deduce Roth’s theorem, set
Ly(x1, x2) = ax; — X3, Ly(xy, X3) = X1

Now if |a — (p/g)| < ¢72¢, then x = (g, p) has ¢ < || x| < cg, whence
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| Li(x)Lo(x)| = |(ag — P)a| < g7¢ < ||| /2
if ¢ is large. All the solutions lie in finitely many proper subspaces, i.e., 1-dimen-
sional subspaces. In such a subspace p/q is fixed, and hence we get only finitely
many rationals p/q.

A similar situation pertains with respect to simultaneous approximation. Sup-
pose 1, ay, *--, a,, are real, algebraic, and linearly independent over the rationals. Set
m = n+ land x = (xg, X1, *-, X,) and Lo(x) = xg, L(x) = ayxg — x; ({ = 1, -, n).
Then if py/q, -+, p,/q is a simultaneous rational approximation to a;, -, a, with

®3) ler — (2l)| -+ |w — (PalD)| < g1,
the m-tuple x = (g, py, ***, p,) has |L0(x) L,,(x)| < ||x || ~¢/2, The solutions of this

inequality lie in some proper subspaces. If such a subspace is given by an equation
cq + cp1+ - + ¢, p, = 0 with rational coefficients ¢y, *-+, ¢,, then

cl(al - (Pl/q)) + ot c,,(oc,, - (pn/q)) =c¢+ oy + - + cua, #0

by the linear independence of 1, aj, ++, @, over the rationals. Hence there is some
|t — (p/q)| which is not very small; say |, — (p,/q)| is not very small. Then the
product |@; — (p1/9)| =+ |@ts-1 — (P»-1/9)| is small. Using induction on n, one sees
in this way that (3) has only finitely many solutions.

5. Let X be a number field, let | |,, be the valuations of K and let N, be the usual
exponents such that the product formula [T, |$ I{}’ = 1 holds for & # 0 in K. Define
the height of an n-tuple & = (&, «++, §,) in K” by

H(f) = l;l max(l, |$1 11)v', tt lEnH)v')

It can be shown that if 1, a;, -+, @, are algebraic and linearly independent over K,
then there are only finitely many & € K» with

lal - El' o Ian - &nl < H(e)_”_l_t'
Since in the rational field

H(p1(q, -+, pulq) = max(|q],|p1], -+, |Pa]) = |a]s
this is a generalization of (3). The case n = 1 is due to LeVeque [1955].

In fact, if K is of degree d, if the conjugates of an element & of Kare £, ..., £@,
if the conjugate fields of K are K@, ..., K@, then the following holds (Schmidt,
[1975]). Suppose that, for 1 £ i < d, the numbers 1, a;, **+, a;, are algebraic and
linearly independent over K ¢?, Then there are only finitely many & € K* with

t‘]jl j]i]lmin(l, |ai; — €9 < HE@ 1.

The case n = 1 was done by Mahler ([1961], [1963]). A p-adic version was given by
Schlickewei (to appear).

One can show that if & is algebraic of degree > d, then there are only finitely
many algebraic numbers & of degree d (in any field) with Io: - $| < H(&) 1,
Similarly, if P(x) is a polynomial with rational integer coefficients of degree > d,
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there are few polynomials Q(x) with rational integer coefficients of degree d such
that the resultant of P and Q is small.

6. Siegel [1929] used his results on approximation to algebraic numbers to
classify all polynomial equations F(x, y) = 0 which have infinitely many solutions
in rational integers x, y. Already Thue [1909] had observed that if F(x, y) is an
irreducible form of degree > 2 with integer coefficients, then an equation

) F(x,y)=c

has only finitely many solutions. Now if F(x, 1) has the root @, then F(x, y) is,
except for a constant factor, equal to (x — a®y) --- (x — a‘?y), i.e., the norm of
x — ay. Thus Thue’s equation is a special case of a norm form equation

Rlayxy + -+ + a,x,) = ¢,

where a;, -+, a, are linearly independent (over the rationals) elements of a number
field K, and where R denotes the norm. For a wide class of norm form equations,
there are only finitely many solutions. But there are exceptions. For example, in
N(x + 42y + 4/3z) = c with the field K = Q(,/2, 4/3), it is clear that if x + 4/2y
is a particular solution, i.e., if R(x + 4/2y) = ¢, then if we multiply x + /2y bya
unit of @(4/2 ), we obtain again a solution. Thus we obtain certain well-defined
“families of solutions”. It can be shown (Schmidt [1972]) that there are only finitely
many families of solutions. Baker’s [1968] famous work gives an effective method
to decide whether a Thue equation (4) has a solution. We have at present no such
method for norm form equations in more than two variables. But by combining
Baker’s results with the theory of families of solutions one gets an effective method
to decide if there are infinitely many solutions, provided the number of variables
is at most five.

As a special application, Fujiwara [1972] showed that if K = Q(«) is a number
field of degree d > 2n, then the norm form equation

N(xo + axy + - + amx,) =c¢

has only finitely many solutions.

Let K be a number field of degree 4. It may or it may not have an integral basis
of the type 1, , -++, a?71, i.e., a so-called power base. I ¢ has this property, then so
does if & = B (mod 1),i.e.,if @ — Bis a rational integer. Dade and Taussky [1964]
noted that such bases are connected with certain Thue equations if 4 = 3, and
hence that in view of Thue’s theorem, up to congruence modulo 1 there are only
finitely many such elements . Recently Knight (to appear) accomplished the same
for d = 4 by using the general norm form results. But Gyory [1973] had used
Baker’s method to prove this result in general.

7. Let & be the field of formal power series o = a,tk + - + ag + a_jt71 + ---
with complex coefficients. Let | | be the valuation with || = 2# if the leading coef-
ficient of « is @, # 0. Almost all the results mentioned above have an analog in {.
For example, Roth’s theorem has such an analog, proved by Uchiyama [1961]:
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If e R is algebraic over the subfield C(7) of rational functions p(t)/g(r) with
complex coefficients, then for ¢ > 0 there are only finitely many rational functions

p®)/q(7) with
la = (p(M)a(1)] < |a(®)| 2.

In & we may also study differential equations. If the formal derivatives of «
are ¢® = @, ¥, @@, ..., define the denomination of a “differential monomial”
(@ @)@ ®)er .- (a®)* to be ¢y + 2¢; + - + (k + 1)c;. The denomination of
a polynomial P in ¢ and its derivatives is the maximum of the denominations of
the monomials occurring in it. It was shown by Kolchin [1959] that if o satisfies a
differential equation P(a, a'?, «++, @¥) = 0 of denomination d with coefficients
which lie in C(¢), then

la — (p(®)/g(1)| 2 (@) |q(N)|
This generalizes Liouville’s theorem. But Osgood ([1973], to appear) made the very
interesting observation that an algebraic function o of degree d satisfies a differential
equation of a denomination much smaller than d. He thus obtained for power
series an effective improvement of Liouville’s theorem stronger than the one
obtained by Baker’s method.
Suppose « satisfies a linear differential equation

O,’("') + ﬁm_la(m—l) 4 e 4+ ﬁla(l) + ‘Boa’ =7

with coefficients 8,,_y, -+, B0, 7 Which are algebraic over C(f). Then there are
(Schmidt (to appear)) only finitely many rational functions p(#)/g(t) with

la = (p(O/a(D)| < |a(@)|24me.
This is a consequence of a power series version of the subspace theorem. For m = 0
we get Uchiyama’s result. It is likely that the exponent should really be —2—¢
for any m. The first step in this direction probably would be to show that the
analog of Roth’s theorem holds for integrals of algebraic functions.

8. We now turn to a rather different application of Thue’s method. It was a great
surprise when Stepanov ([1969], [1970], [1971], [1972a], [1972b], [1974]) succeeded
in proving in a new way special cases of Weil’s [1948] celebrated theorem on the
Riemann hypothesis for curves over finite fields. Let F(x, y) be a polynomial with
coefficients in the finite field w /th g elements which is absolutely irreducible, i.e.,
irreducible not only over /e field with g elements but also over every algebraic
extension of it. Then Weil’s theorem says that the number N of solutions of the
equation F(x, y) = 0 with x, y in the given field with g elements satisfies IN q]
< ¢q/?, where ¢ is a constant which depends only on the degree of F.

Stepanov was at the 1974 International Congress and talked about his work. He
first settled in a very simple way equations of the type y¢ = F(x), which include
elliptic equations studied by Hasse [1936a], [1936b]. He then dealt with equations
y? — y = F(x) where p is the characteristic, and finally with more general equa-
tions 4 + Gy(x)y?! + .-+ + G4(x) = 0. He imposed certain conditions on the
degrees of the polynomials G,(x), which guarantee the absolute irreducibility of the
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equation. Then Bombieri [1973] and Schmidt [1973] independently extended
Stepanov’s results to the general absolutely irreducible equation.

The method of Stepanov consists in the construction of certain polynomials P(x)
with prescribed zeros of high order. These polynomials are set up with undeter-
mined coefficients. Their having the prescribed zeros imposes linear conditions on
the coefficients. It is then shown that the number of the linear conditions is smaller
than the number of available coefficients, so that there exist the desired nonzero
polynomials. Thus this is a new application of the method which was so successfully
introduced by Thue to diophantine approximation and transcendental numbers.
In fact before his work on equations over finite fields, Stepanov worked on dio-
phantine approximation.

Stepanov’s method is simplest for equations y¢ = F(x). We may suppose that d
divides ¢ — 1. The interesting solutions are those with F(x) # 0. Now F(x) must
be a dth power, and if this is the case, we obtain d solutions y. Thus if N is the num-
ber of solutions with F(x) # 0, we have N’ = dL, where L is the number of x for
which F(x) is a nonzero dth power, i.e., for which F(x)4~1/d = 1.

Stepanov’s idea was to construct a polynomial P(x) which has a zero of order
A for each x with F(x)% /4 = 1, and which is of a degree B which is not too large.
This can be done such that B/4 < (g/d) + ¢4/ 2. The total number of zeros of P(x)
counted with their multiplicities cannot exceed its degree, so that L4 < B, whence

N' =dL £ dB/A £ q + dciqV/? = q + cyq1/2.

A lower bound is derived in a similar way.

This is not the occasion to go into the details of the construction of the poly-
nomial P(x). But I would like to point out some features which show that the present
argument is not only a Thue-type argument, but that it has other similarities with the
proof of the Thue-Siegel-Roth theorem. The polynomial P(x) is set up in the form

P(:) = FG)* 5, & Py(aFGey o~ /4,

Here the P;;(x) are polynomials of degrees < (g/d) — m with undetermined coef-
ficients. In order to get the desired zeros one has to impose linear conditions on the
coefficients of the P;,;’s. In other words, Thue’s method.

It can be shown that one can choose the polynomials P;;, not all zero, such that
P has the desired zeros. But this does not quite finish the job! Even though the
P;;’s are not all zero, conceivably P(x) could be zero! Now one can show that P(x)
is not zero. Here one either has to suppose, as Stepanov does, that d, deg F are
relatively prime, or, more generally, that the equation y? = F(x) is absolutely ir-
reducible. The showing of the nonvanishing of P(x) is one of the more difficult
parts of the proof. This situation is similar to the one of the Thue-Siegel-Roth
theorem, where first a polynomial P(xy, -++, x,) is constructed, and afterwards it is
shown that P cannot have a zero of high order at certain rational points, which is
achieved by the difficult Roth lemma.

The second similarity is perhaps more superficial, but is rather striking. To get
zeros of high orders the natural thing to do would be to study the derivatives of
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P(x). But in the characteristic p case, always P (x) = P4tV (x) = ... = 0, so that
the higher derivatives are useless. Instead of the mth derivative with Dmy’ =
m!(:)xi~m, one has to use the operator (“Hasse derivative”) E with Emxi =
(¢,)xi~m. Now in Roth’s theorem the characteristic is zero and the higher derivatives
do not vanish identically. But one needs polynomials whose coefficients are not too
large, and hence one also needs to replace mth derivatives by E™. The reasons are
different, but who knows if there is a deeper connection?

For general equations F(x, y) = 0 the argument is a little more complicated.
Bombieri was able to avoid derivatives altogether, but had to use the zeta-function
of the curve associated with the equation. Stark [1973] made a detailed study of
hyperelliptic equations and obtained estimates for the number of solutions which
sometimes go beyond those following from the Riemann hypothesis for curves
over finite fields.

Not everybody would agree if I would say that the method of Thue-Stepanov is
simpler or more elementary than Weil’s proof which uses algebraic geometry.
But the method is certainly different. It is simple and natural to mathematicians
who are familiar with Thue’s method. Thus it provides a bridge between diophantine
approximation and transcendental numbers on the one hand, and equations over
finite fields on the other hand. It is to be hoped that this new bridge will lead to new
discoveries both in diophantine approximation and in equations over finite fields.
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Eigenvalues of the Laplacian and Invariants of Manifolds

I. M. Singer

I. Introduction. Let M be a smooth oriented compact differentiable manifold and
let d denote the exterior differential acting on the algebra of smooth differential
forms. If a Riemannian metric is chosen on M, then 4 has a formal adjoint d* and
one can form the Laplacian 4, = dd* + d*d on p-forms. These are but some of the
natural elliptic operators we can associate to the Riemannian manifold M. These
operators have pure point spectrum and one can ask to what extent the spectrum of
these operators determines the geometric, topological, or differential structure of M.

The celebrated antecedent of results of this type is due to H. Weyl who showed
(for 2 a plane domain and the Dirichlet problem) that the spectrum of 4, deter-
mines the volume as follows: Let N(2) denote the number of eigenvalues < A. Then
lim;_., N(A)/A = area(Q)/2z. In his Gibbs lecture [48], after reviewing progress up
to 1950, H. Weyl stated:

1 feel that these informations about the proper oscillations of a membrane, valuable as they are,
are still very incomplete. I have certain conjectures of what a complete analysis of their asymptotic
behavior should aim at; but since for more than 35 years I have made no serious effort to prove
them, I think I had better keep them to myself.

There have been some interesting recent results on what the spectrum determines;
the purpose of this article is to review some of them.

It is difficult to study the spectrum directly; instead one studies certain functions
of the spectrum. The most useful to date come from the heat equation and the wave
equation. Accordingly, let ¢*4 denote the heat operator (our Laplacians are
positive semidefinite), the solution to the heat equation (9/0t + A)u = 0 with
ul =0 = Uy being given by e *4(uy), And let e~t4” be the wave operator cor-
responding to one factor of the wave equation

2ot + A= (3[ot + id\/2) (3)ot — idl/?) = 0.
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If 0 £ 4 £ A< ---is the spectrum of 4, we study tr(e*4) = ¥, e~ which
converges for t+ > 0 and tr(e"*4”) which can be shown to be a tempered
distribution on R!. Following Riemann, we can also form the zeta function { ,(s) =
tr(475) = X 27* which by the Mellon transform equals (1/7(s)) & rs~ltr(e~*4) dt.
For this, we must assume that there is no zero eigenvalue.

In [36], Minakshisundaram and Pleijel showed that if py(#, x, y) denotes the
kernel of the integral operator e *4, then py(7, x, x) has an asymptotic expansion
as t — 0 of the form (4zr) /2 (3 U,(x)t/), where dim(M) = n. Integration over
the manifold gives tr(e™*4) ~ (4zt)~7/2 (X c;t/). Weyl’s theorem amounts to ¢y =
vol(M) plus a Hardy-Littlewood Tauberian theorem. The Minakshisundaram-
Pleijel technique can be extended to 4, (see [9], [38] for example) and in fact to any
elliptic selfadjoint differential operator with scalar symbol. Using the Mellon trans-
form, the asymptotic expansion implies that { ,(s) is holomorphic for Real s > n/m
and has a meromorphic extension with simple poles at (n — j)/m; here m = order
of 4 which for the moment is 2. The residues at (n — j)/2, j < n, are the c;’s; { ,(s)
has no pole at s = 0 because of the pole of I'(s) and {,(0) = ¢, ,,. For a direct
treatment of 475 and the extension to pseudodifferential operators, see Seeley [43].

“How the spectrum determines M** was put most succinctly by M. Kac in his
paper [29] entitled, Can you hear the shape of a drum? For the plane domain 0,
because of 92, the asymptotic expansion of tr(e~*4) involves 71/2 and appears as
cofdrt + a/t1/2 + ay + O(11/2). Pleijel showed in [39] that a; = — L/4(27)!/2 where
L = length of 9Q. Based on polygonal approximation of 9, Kac conjectured that
a; = e(Q)/6 where ¢(Q) denotes the Euler characteristic of . He concludes his
article with:

As our study of the polygonal drum shows, the structure of the constant term is quite complex
since it combines metric and topological features. Whether these can be properly disentangled
remains to be seen.

The past few years have seen considerable disentanglement. The U,(x)’s are
metric invariants. They turn out to be polynomials in the curvature and their
covariant derivatives and are locally determined by the metric. Certain combina-
tions are manifold invariants and via index theory give characteristic numbers.
These are all local invariants, i.e., determined locally by the metric. This shows
itself, for example, in the fact that the characteristic numbers of a k-fold covering
of M are given by k times the corresponding characteristic numbers of M.

We shall first discuss the new local index theorem proved by heat equation meth-
ods. Then we shall discuss manifold invariants determined by the heat operator
that are not local invariants, but have some interesting applications. And finally
we shall turn to the wave operator and discuss what geometric information is con-
tained in the distribution tr(e=#4'").

IL. The local index theorem. (See Atiyah, Bott, and Patodi [5]). The index of an
elliptic operator A can be obtained from the asymptotic behavior of associated
Laplacians (Atiyah and Bott [2]) as follows: Note that the nonzero eigenvalues of
A*A and AA* (with multiplicities) are equal, for if 4*4u = Au, then AA*(Au) =
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AAu, and conversely. Suppose, then, f'is a continuous function such that f(4*A4) and

S(AA¥) are of trace class and f(0) = 1. Then index 4 = dim ker 4 — dim ker A4*
= dim ker A*4 — dim ker AA* = tr(f(A*A) — f(AA*)). Choose f(A) = ¢4
so that index 4 = tr(e*4"4— ¢~*44") for any #; in particular as t — 0. Let Bt =
A*A and B~ = AA* and let p*(t, x, y) be the kernels for the integral operators
e *B*. Then p*(t, x, x)~ (4xt)™/2 (3 UF(x)t/) when B* are Laplacians. Assume
nis even, so thatindex 4 = c¢jj, — ¢, Where ¢, = [, U, (x) dx.

For a general operator 4, one cannot say much about U ,(x); but for operators
coming from the geometry of M, it turns out that the U,(x)’s are determined by the
curvature. Particular geometric operators are the Euler operator E = d + d*:
Aeven o Aodd where Ageven (A0dd) are the even (odd) forms, and the signature
operator S = d + d*: At — A~, where A* are the forms which at each point of M
are the + 1 eigenvalues for ¢ with ¢ = (4/ = 1)#% V2% on p-forms. Using the
Hodge theorem and the fact that E*E, EE* S*S, and SS* are Laplacians on
appropriate subspaces of forms, it is easy to verify that index E = e(M) and
index S = sign(M), the signature of M. (There are two other basic geometric
operators when M has additional structure: If M s a complex manifold, one has
0* + 0; if M has a spin structure there is the Dirac operator D from &t— &,
where &+ are the smooth sections of vector bundles of + spinors. See [3].)

The new, improved index theorem depends on a deeper understanding of the
coefficient U} ,(x) — U;p(x). Following up Minakshisundaram and Pleijel,
McKean and Singer [32] noted that the coefficients U;(x) were contractions of
curvature tensors and their covariant derivatives. Yet the index theorem involves
characteristic classes which depend only on the curvature tensor, not covariant
derivatives. In particular, the Chern-Gauss-Bonnet theorem gives index E as an
integral of the Euler form, a special polynomial in curvature, which implies that this
polynomial equals (Uj,(x) — Uy p(x))dx + du. We asked whether dy = 0 and
whether this could be shown directly to give a new proof of Chern-Gauss-Bonnet.
Patodi [38] gave an affirmative answer by direct computation. (See his [37] for the
Riemann-Roch case 4 = 9* + 0.) Gilkey in his thesis [21] showed directly how the
cancellation of the covariant derivatives of curvature takes place for all geometric
operators so that (U},(x) — U,,(x))dx depends only on the curvature; in fact it is
a characteristic polynomial in the curvature. This can be viewed as a generalization
of Carleman’s improvement of Weyl’s theorem, i.e., Uy(x) = 1 [11].

The case 4 = S gives Hirzebruch’s signature theorem, sign M = {,,L where L
is the L-polynomial in the curvature [23]. Extending these ideas to the case with
coefficients in an arbitrary vector bundle leads to a new proof of the index the-
orem, as carried out by Atiyah, Bott, and Patodi. See their beautiful exposition
[5]. One expects these methods will be extended to give the G-index theorem for a
compact Lie group G.

We emphasize again that the invariants discussed so far are local, obtained by
integrating polynomials in the curvature over M. But because one knows the inte-
grands U },(x) — Uj(x) explicitly without an extra exact factor dy, the local index
theorem has applications to nonlocal invariants, as we show in the next section.
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Without taking differences, one may ask what the coefficients c; determine. It
depends on which Laplacians are allowed. Using the Laplacian on forms one can
tell when M has constant curvature, when it is Einstein [38], when it is Einstein
symmetric [16], when it is Kédhler and when it is complex projective space [22].
But it is still unknown whether the spectrum of 4, determines whether M is a
sphere [10].

We end this discussion by observing that the spectrum directly gives nonlocal
invariants. That is, the Hodge theorem states that the pth betti number is the mul-
tiplicity of the Oth eigenvalue of 4,, and betti numbers are not local invariants.

III. The 7 invariant. (See Atiyah, Patodi, Singer [6], [7] for details.) There are
geometric selfadjoint elliptic operators 4 which are not positive semidefinite; their
spectrum may have an infinite number of negative eigenvalues. An example is the
special geometric operator A4, on even {forms given by (— 1)¥*#*1 (xd — dx) on 2p-
forms where dim M = n = 4k — 1. To take into account the negative spectrum,
we pass from the zeta function to the analogue of the Dirichlet L-series and define

746) = % (sign A)|3|
where {4;} is the spectrum of A. It is easy to verify that

T((s-{{—l)ﬂ)_ “S, t6—D2 tr(e—t4'4) dt

for Re s > 0. This implies that 3 ,(s) is homolorphic in a half-plane and has a mero-
morphic extension to the entire s-plane with simple poles. It turns out that s = 0
is not a pole for operators on odd-dimensional manifolds and for odd order opera-
tors on even-dimensional manifolds. The other cases remain an open problem. In
fact, it would be interesting to find a direct analytic proof that s = 0 is not a pole.
We now assume » is odd, and for simplicity, 4 is of order 1.

The map 4 — 7,4(0) is not continuous on elliptic selfadjoint operators, %1, be-
cause we have ignored the 0 eigenvalue. This can contribute only an integer jump;
it turns out that the map ! — S! given by 4 — 7,(0) mod Z is smooth, and
gives a I-form on ! in the usual way: 9,(B) = (d%4+:5(0)/dr) ‘,:0. A computation
shows 7 ,(B) equals the residue at s = 0 of tr((42)~t12 B),

For the special geometric operator 4, cited above, one can check that ,,(0) is
not local by looking at lens spaces. But because 7 is given by a residue, the deriva-
tive of 9, is local and leads to some interesting applications.

We now list some reasons for studying 7,4(0). First, Atiyah and Singer in [4]
showed that HY(%1, Z) ~ Z where %! denotes the set of selfadjoint Fredholm
operators. The 1-form 7,4 is the generator of this cohomology on what is a natural
subset 41, once the order of the operators is accounted for. The generator of H!
can be interpreted (Atiyah and Lusztig, unpublished) as the function which assigns
to a family, ® — A, of selfadjoint operators parameterized by S, the net flow
of the spectrum through the origin. This flow is [7),, 0.

For Ay, 7,(0) can be viewed as defining the signature or inertial index of an

pa(s) = tr(4? —stD24) =
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infinite quadratic form: If @ € 4%, let Q(a) = — [y @ A da. The radical of the
quadratic form Q is ker d, so that Q is really defined on dA2*~1, A direct com-
putation gives Q(a) = {da, Ay'da). So the signature of Q should be the number of
positive eigenvalues of 4, minus the number of negative eigenvalues of Ay But in
fact 7)A,(S)|s=o is a convergence scheme for measuring this spectral asymmetry.
(Note that the eigenvalues on the remaining even forms, aside from d 421, occur
in opposite pairs so contribute nothing to 7,,(s).) The three-dimensional case is
enlightening. There

0 div
Ao = <grad cur]>
on A = A% @ A2, with 5,,(0) measuring the spectral asymmetry of curl.

The y-invariant 3,,(0) allows an extension of the Hirzebruch signature theorem
to compact 4k-manifolds X with smooth boundary 89X = M. First consider the
Chern-Gauss-Bonnet theorem for manifolds with boundary : e(X) — [y K = [y, 0
where X is the Euler class in terms of curvature and ¢ is a polynomial in the curva-
ture and the second fundamental form of M in X. For simplicity, we now assume
the metric on X is a product near the boundary so that ¢ = 0 and e(X) — [xK = 0.

The Hirzebruch theorem for a 4k-manifold X without boundary says sign X —
[xL = 0. What happens when X has a boundary M? Using the Novikov additivity
theorem for the signature it is easy to see that sign X — 4L depends only on the
Riemannian manifold M. We proved

1)) sign X — ){L = — 74(0).

It is in the proof of this result that the local index theorem enters in a crucial way.
Just as in the case without boundary where sign X = index S, one now sets up a
boundary value problem § whose index involves sign X. However, this boundary
value problem [25], though elliptic, is not of a classical type involving local bound-
ary conditions. One can nevertheless proceed in the usual way and compute index
S in terms of tr(e~*5*S — e~t55*), There are two contributions to this trace, one at the
boundary which is given by 7,(0) and one from the interior given by U#(x) —
Uzg(x) = L| x coming from the L-polynomial of the doubled manifold. It is im-
portant that there be no additional unidentified term dy, since [y du = [3u, which
would have given an additional unidentified contribution.

The proof works for other first-order operators besides 4. But the operator must
be geometric in order to identify the interior integration with characteristic classes
in terms of curvature. And in general the index of the boundary value problem will
not have a topological interpretation. So for example, for the Dirac operator D,
one finds that the index of the appropriate boundary value problem equals

7 _ h+ 9p(0)
an )j;A g

where 4 is the Hirzebruch A4-polynomial in terms of curvature and 4 is the dimen-
sion of harmonic spinors on M.
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This still turns out to be useful and gives a relation between the Adams e-
invariant, the p-invariant y5(0), and Chern-Simons invariants, as follows. First,
we note that we deal only with the special case of the Chern-Simons theory involv-
ing the top cohomology [13], [14]. And for simplicity, we assume M is a boundary
9X of dimension n = 8k — 1. Chern and Simons assign to each connection @ and
each invariant integral polynomial fan element a(@, ) of R/Z: Extend @ to a con-
nection @ on X which is a product connection near the boundary, and set o(0, f) =
[x f(Qs) mod Z, where Q; is the curvature of the connection. It is easy to see by
gluing that this is independent of X. If f were a rational polynomial (as in L and 4),
one gets an invariant in R/Q. Formulas (I) and (II) show that (0, L) = ,(0)
mod Q and (0, A) = 7p(0)/2 mod Q when @ is the Riemannian connection.

The Adams e-invariant e(M, f') is defined when M has a given framing f'and gives
a cyclic element of z§, ; which can be identified with an element of Q/Z [1]. Geo-
metrically, it is | A(Q 0,) where 0 is the flat connection given by the framing. The
framing also gives a Riemannian metric and comparing the Riemannian connection
0 with the flat one 0, gives

(1I1) e(M, ) = (5p(0) — h) — (a(0, A) — a(0;, A)) mod Z.

The term a(0, 4) — a(0;, A) equals an integral [ sw, for the difference is exact on
X and one uses Stokes. The 84 — 1 form w is a Chern-Simons form associated to 4.

H. Donnelly has used these ideas to show that the spectrum of 4y and D classifies
seven and eleven spheres (unpublished). He uses the Eels-Kuiper invariant [19]
which classifies these exotic spheres. This invariant is obtained by solving for the
top Pontrjagin class as it occurs in L and in 4 and taking the difference. Thus the
Eels-Kuiper invariant can be expressed in terms of 9,(0), 7,(0), and corresponding
Chern-Simons invariants. Because these spheres can be immersed in Euclidean
space so that the induced normal connection is trivial, the associated Chern-Simons
invariants turn out to be zero and the Eels-Kuiper invariant depends only on
7p(0) and 7,,0).

Some interesting differential invariants stem from the fact that 9 is local. Let 7,
be the fundamental group of M and suppose y: w; — U(m) is a unitary represen-
tation of 7y on C. Let E, denote the associated flat unitary bundle and let 4, be
the associated selfadjoint first-order operator on even forms with values in E,.
Then 7, = 9,,(0) — my,(0) is independent of the Riemannian metric because the
difference of derivatives with respect to a metric is local, and locally E, is indis-
tinguishable from the product bundle. When =, is finite, the differential invariant 7,
is the Fourier transform of the invariant g,(M) of [3] where M is the simply con-
nected covering of M on which z; acts freely as deck transformations. When =;
is infinite, it would be interesting to find a nonspectral definition of this R-valued
invariant.

For other geometric operators like the Dirac operator D, one gets similar
invariants. But now one must work mod Z because the 0 eigenvalue has no topo-
logical meaning and can vary. These R/Z invariants, 5, (0) — m»p(0), are cobord-
ism invariants which for finite 7, are the Q/Z invariants of [3]. More generally, for
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any selfadjoint elliptic operator B: C*(F) — C=(F), F a smooth vector bundle over
M, one can define B,: C*(F ® E,) » C*(F ® E,) with symbol B, = symbol B ®
I, Because 9) is local, it turns out that y5 (0) — mzp(0) mod Z depends only on
the homotopy type of the symbol of B. As a result, the character y gives a homo-
morphism KYTM) — R/Z which assigns to symbol B in K(TM) the spectral
invariant 9,(0) — myp(0) € R/Z. On the topological side, there is a natural map
ind,: KX(TM) — R/Z. The equality of these maps gives a refined index theorem
which we will not go into here,

Is ,(0) computable? If M has an orientation reversing isometry, then 7,(0) =
0. This is the case, for example, if M = S%-1, When M is given explicitly as a
boundary, formula (I) is effective. If 7, is finite, » is computable via ¢,(M) as ex-
plained above. So, for a lens space M = S*~1/G with G cyclic of order p and
generator acting on Y] C by multiplication by €’ on the jth factor,

P lo;
0) = ! n A cot i
74(0) P I§1 ,1-:[1 2

This formula can also be obtained by direct computation because the eigenvalues
and their multiplicities are known [34], [40].

For M of constant negative curvature, J. Millson [34] has obtained a formula for
7, by group representation methods, as the value at 0 of a new Selberg type zeta
function. Here M = I'\G/K with G = SO(4n — 1, 1), K = SO(@n — 1) and " a
uniformizing discrete subgroup of G. (See §V for a discussion of Selberg trace
formulas.)

Another case of interest is related to number theory. Suppose T € SI(2, Z) is
hyperbolic. Let G be the three-dimensional solvable group with multiplication

@ HE)) () + ) +r) mmcennen

Let I"be the subgroup of integer entries, and let M = G/I" be the solvmanifold with
left invariant metric which is the standard R3 metric at the identity coset. Then
74,(0) turns out to be the value at 0 of a Hecke L-series for the real quadratic
field which T defines. Explicitly, let & denote the nonzero orbits of Ton Z @ Z;
then the Hecke L-seriesis 2 )] ,q(Sign N,) | N, |”s where N, is the norm of the orbit,
i.e., of the ideal the orbit determines. This computation can be done analytically
(Atiyah-Singer, unpublished). It can also be obtained using (I) and Hirzebruch’s
work on the Hilbert modular group [24]. The connection occurs because G//"is the
boundary of a cusp in the action of SI(2, ®) on s# x s# where 0 is the ring of in-
tegers of the real quadratic extension of the rationals. It will be interesting to see
whether this formula holds for all totally real extensions.

IV. Torsion invariants [41], [42]. In the previous section we discussed the 7 in-
variant which is related to the signature and which, in a sense, is the inertial index
of an infinite quadratic form. Now we discuss an invariant associated to the Euler
characteristic and involving infinite determinants. Here, however, we have a known
combinatorial invariant, Reidemeister-Franz torsion to guide us.
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Briefly put, R-torsion 7 can be defined as follows. Let M be a finite cell complex
with fundamental group = and let y: z; = O(M), the orthogonal group. Consider
the chain complex C(y) = C(M) ® , R™ where % is the group algebra of 7.
It acts on C(M) via the linearization of the deck transformations and it acts on
R via y. The chains of C(y) have an inner product stemming from the cells of M
as an orthonormal base, so the boundary operator ¢ has an adjoint 8*, Suppose
C(y) is acyclic. Then define

log 7(M, y) = L(— 1)? p log det (9*3 + 00*) | p.chains:

0%0 + 00* is called the combinatorial Laplacian, This torsion turns out to be a
combinatorial invariant, i.e., invariant under subdivisions. It was originally used to
distinguish lens spaces of the same homotopy type which were combinatorially
different.

When M is a smooth manifold the torsion for a smooth triangulation gives a
manifold invariant. How can one obtain this analytically? Our candidate involves
the notion of log det 4, which we define as follows. Note that

d s d s —
Formally, at s = 0, this would be }J log A; = log det 4. Hence, we define

logdet4 = % C4(5) o

and we define the analytic torsion T(M, y) by
log T(M, y) = X (— 1)? plog det 45

where 4% is the Laplacian on p-forms with values in the flat bundle E,,.

Here is what we know about analytic torsion. First, it is independent of the Rie-
mannian metric on M used to define 4%, so it gives a manifold invariant. Secondly,
the differential of log T'is a local invariant. Thirdly, ¢ = T'in all known cases, i.c.,
lens spaces, where the zeta functions are computable [40]. Also T and r satisfy the
same functorial properties:

(i) multiplicative rule: If N is simply connected, then log T(M x N, 7) =
e(N)log T(M, 7); and

(ii) induced representation rule: If M is a covering of M with z;(M;) ¢ =n1(M)
and if y; is an orthogonal representation of wy(M;), then log T(M;, y1) =
log T(M, U,,) where Uy, is the representation of z;(M) induced by y;.

Whether ¢ = T remains an open question. Some progress on this problem has
been made by J. Dodziuk [15] and V. Patodi (see his report in these PROCEEDINGS).
If one puts an inner product on the cochains of a smooth triangulation of M coming
from the Whitney map of cochains into L, forms on M, then Dodziuk shows that
for appropriate subdivisions of the triangulation the eigenvalues of the combina-
torial Laplacian on O-cochains converge to the eigenvalues of 4,. And Patodi can
extend this result to p-cochains and 4,.
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One can proceed analogously for a compact complex manifold using 3 and the 9
Laplacians. One obtains an invariant independent of the metric called holomorphic
torsion which is a function of y and the complex structure. We will not describe the
details here, but wish to make several comments. First, this invariant distinguishes
different complex structures when the period mapping is not available [41], [45].
Certainly more work along these lines is in order, Secondly, this invariant has been
calculated for Riemann surfaces. For g = 1, not surprisingly, it involves elliptic
theta functions. For g > 1, it can be expressed as the value at s = 0 of an appro-
priate Selberg zeta function. Whether it can be expressed in terms of generalized
theta functions of the Siegel upper half-plane, after viewing the moduli space of M
as imbedded there via the period map, remains to be seen.

We close this section with a few remarks about the similarities of 7, for the
signature operator, 7, for the Dirac operator, analytic torsion, and holomorphic
torsion. They are associated in turn with signature, A-genus, Euler characteristic,
and arithmetic genus. They satisfy the multiplicative property relative to each of
these classical invariants, respectively. They satisfy the inducedr epresentation rule.
Their derivatives are local, but they are not. When appropriate, their values are
given by Selberg-like, or number theoretic, zeta functions. Despite these similarities,
we do not have a unified treatment of these nonlocal invariants. We have one for
each geometric elliptic complex. Are there others?

V. The wave equation. We return to N p(4), the number of eigenvalues less than
or equal to 4, for P an elliptic positive semidefinite pseudodifferential operator of
order m, acting on functions. Even when P = 4, the known Tauberian arguments
are not strong enough to get much more than Weyl-Carleman from the knowledge
of the asymptotic behavior of tr(e—*4).

But wave equation methods have given very strong results, the definitive one
that of L. Hérmander [26]. He showed, among other things, that

1B _
(A) Np(A) = ‘8“)”1’ Anlm 4 QA1 /m)
where By = [¢ € T*(M), p(x, &) < 1]. This generalizes the second-order case of

Levitan [30] and Avakumovic [8]. Hormander studied the distribution tr(e™*P)
near ¢t = O for P first order using the propagation of singularities of hyperbolic
equations, and the integral representation of e~#*P by what is now called a Fourier
integral operator. Then a simple Tauberian argument gives formula (A) above
from the behavior of tr(e~t?) = ¥ e~ = fi(f) where y is the spectral measure of
P.

We do not give an exposition of the development here. However, the case P =
42 is of geometric interest and the techniques developed by Hérmander, Egorov,
and Maslov [20], [33] have been used by Duistermaat and Guillemin [17] to show,
for example, that for a generic Riemannian metric the eigenvalues determine
the lengths of closed geodesics. Some of their results have been obtained earlier by
other methods (Colin de Verdiere [46] and Chazarain [12], but the use of Fourier
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integral operators and wave front sets can be expected to go deeper. In particular,
there appear to be connections with the Selberg trace formula that will no doubt
be vigorously pursued. We close then with a brief discussion of these matters.

For M an n-torus R"/L, L a lattice subgroup of R, the eigenfunctions of 4,
are e27= 1", |’ € I, the dual lattice. So the eigenvalues are 472||/'||2, and tr(e™*4)
= Yo el The Jacobi identity (use the Poisson summation formula)
states that this equals

% 1§, e/t
On the other hand, the closed geodesics on M lift to the line segments from 0 to /,
I € L on R, So the length spectrum, i.e., the lengths of closed geodesics, is { |7} <.
It is easy to see from the Jacobi identity that the eigenvalues of 4, determine the
length spectrum and vice versa. (Note that the Jacobi identity also shows that
tr(e~*4) = vol(M)/(4nt)?/% + an exponentially small term.) Milnor’s example
[35] showing that the spectrum does not determine the Riemannian metric is given
by two sixteen-dimensional tori with nonconjugate lattices but the same spectrum.
If one allows the spectrum of Laplacians on flat bundles, then in these examples
the geometry is determined by the spectrum.

The Selberg trace formula [44] can be viewed as a noncommutative generaliza-
tion of the Poisson summation formula to the case where M is a Riemann surface
of genus g > 1. Here M = I'\H, I' = n;(M) a uniformizing discrete subgroup
of SI(2, R) and M with constani negative curvature inherited from its simply
connected covering H = SI(2, R)/SO(2), the upper half-plane. On H, the kernel
p(t, x, y) of e7*4 is given by an explicit function p(z, cosh r(x, y)) where r is the
Poincaré distance. Averaging over the action of /" on H eventually gives

N e {vo](M)  ue M4 NS el }
tr(e d )'_' (47”)1/2 (47”) ) sinh u/2 du + éﬁl(r)kg 2s1nh‘—%l(7k) .
Here the sum # e /' means sum over conjugacy classes of primitive elements of
I'. Also, I(7) is the length of a closed geodesic determined by 7. Explicitly, if
T el < SI(2, R), then it is hyperbolic and is similar in SI(2, R) to a diagonal

matrix
e 0 .
0 er)

Then I(7) = 2p. The term 2 sinh £ /(T) = e? — e~¢ can be interpreted as follows:
On S(M), we have geodesic flow ¢,. If (x, £) € S(M) is the origin and tangent vector
of a closed geodesic 7 starting at x with tangent & and of length L, then (x, &) is a
fixed point of ¢1. So doy,: T(S(M), (x, £)) = T(S(M), (x, £)). It preserves the geode-
sic flow vector field and hence induces a transformation, the Poincaré map, P,
normal to that direction; i.e., P, is a linear transformation on a vector space of
dimension 2 in the present case and of dimension 2n — 2 if dim M = n. For sym-
metric spaces P, can be computed using the Jacobi equation: For P, there is the
map: (V(0), V'(0)) = (V(L), V'(L)) where V is any Jacobi field along 7, normal to
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g. It is easy to see that in the case above, e# — e = 2|1 — det P, |12 So we can
write

—I(T*)/4¢
tr(e=14) = vol(M)jdat:fir) + e B 1F) B Tast (= Fry T

where f(¢) is independent of /.

From the right-hand side, one can read off the length spectrum. In fact, Selberg
defines a zeta function Zy(s) = [[ses [1, (1 — e ¢H0¥M) whose nonreal zeros are
3 + (4 + H1/2 so that the length spectrum also determines the spectrum of 4.

In computing the p-invariant for hyperbolic spaces in terms of a Selberg-like
zeta function, Millson found the intermediate formula

tr(dg e~ = 22n—1izn(2,c)n+1(_zﬁ10g | s |2
fe

sin k@, -+ sin kO,,_, e—loa(ur)/4t })
' = — lo 2k
%: { g — e (s — tlana? (4mt)3/2 4 I,Uf| )
7el'= SO@n — 1, 1) has a normal form over the complexes as the diagonal
matrix with entries u2 = u2 2%, It turns out that this formula can be rewritten as

. tr(pH)k — =)k —J2
tr(Aoe14) = (= 1pGamyrot. 2y 1 CTODL = (el ol g,
Here ¢ is parallel translation around 7 on A* = # i eigenspace of Ay(7).

We come now to the Duistermaat-Guillemin results. The distribution g =
tr(e~*4") has its singular support in the length spectrum. When the metric is
generic, i.e., when det( — P,) # 0 for all closed geodesics 7, then the length
spectrum is the singular support. Moreover,

A 5 1 en/20
(B) b= ; 2zl B Tdet 1 = Pul7Z 1=1,; + /()

k>0

where # is a primitive geodesic and where f(f) is locally integrable, | f(t)I <
log|t — /5| near I7, and o7 is the Morse index of 7.

That the singular support of 7 is contained in the length spectrum is an easy
consequence of the propagation of singularities. Suppose the Schwartz kernel
distribution of U, = e~**4"is k,(x, y). We want the singular support of [k,(x,x) dx.
Since U, = I, the wave front set of ko(x, y) is the normal to the tangent bundle
of the diagonal in T*(X x X). Propagation of singularities states that the wave
front set of k(x, y)is obtained from that of k¢(x, y) by the Hamiltonian flow
of the vector field dual to the symbol of 4}/2. In this simple case, it is geodesic
flow. Now set y = x and integrate; one can easily keep track of the wave front sets
and determine the singular support of 2.

The deeper result on the nature of the singularities does not come so easily. One
must use the integral representation of U, as a Fourier integral operator with a
precise form for the phase function, as Hérmander did in analyzing the singularity
at 7 = 0. We cannot go into these matters here. But by such methods Duistermaat
and Guillemin show that, though (A) is best possible (for spheres), if one assumes
a generic metric one obtains
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(©) Np(d) = V(‘;]n?: Anim 4 O(An=1/m),

In fact, they show that one can characterize Riemannian manifolds all of whose
geodesics are closed of length L and of Morse index « by the property that the
spectrum of 4, clusters asymptotically about (2z/L)(k — a/4)? for large k. In [47],
Weinstein proves a finer clustering theorem when the symbol of 4 is equivalent
under the group of contact transformations to the symbol of the Laplacian on a
sphere. Clustering occurs for all eigenvalues not just asymptotically.

What happens when 4, is replaced by 4, on p-forms, and more generally for a
Laplacian 4 on a vector bundle E over M? These operators have scalar symbol so
that conjugation by e~#*4” leaves the algebra of pseudodifferential operators
invariant. Hence, e#*4* not only induces geodesic flow ¢, on T(M) but also linear
transformations ¢, from z*(E)(m, §) to z*(E)(p,(m, £)), covering ¢,, i.e., ¢,:7*(E)
~ ¢ *(x*(E)). For 4,, ¢, will be the map on p-forms induced by parallel translation.
For a closed geodesic 7 of length I/, = L, (m, §) will be fixed under ¢, so that
¢ :m*(E)(m, §) = n*(E)(m, £). One now can expect the factor tr(¢,) to appear in
the singular support, by analogy with fixed point formulae.

‘We note that torsion and the »-invariant for constant negative curvature spaces
are given by Selberg zeta functions determined by the length spectrum. There,
explicit formulas for tr(e™*4) and tr(4ge—'4;) are given in terms of the length
spectrum, The Duistermaat-Guillemin results show that generically 2 determines
the length spectrum via the singular support of z. Now

e EV4t

Py
tr(et4) = ple ) = pe ) = ¢ ovira )

Similarly if 4 is the spectral measure of A4, then

tr(det4) = u(xe ) = /%) — ol
= py(xe™*) = fy(xe = FI(W)-

If fiis replaced by the first term in (B), and assuming a similar formula for 4, one
obtains for constant negative curvature manifolds the results described above ex-
pressing torsion and 7 in terms of Selberg zeta functions. See [42, p. 170].

Do similar results hold for general compact spaces M of negative curvature?
There M = R*[I', and the Poincaré maps P, are hyperbolic. In analogy with the
Selberg zeta function, one can define

7z = — @E(F)y(7)e(sHrtEnt1/2)logeT)),
%(S) };[ﬁ nii nonnegl;!ive integers det(l ¢ (T)X(T)e ' )

Here y: I' = my(M) = O(M) is a representation of /. § is a primitive conjugacy
class of I'; and {z(7)} is the set of absolute values > 1 of eigenvalues of P,.Itis
perhaps not too farfetched to hazard a guess that 7 can be expressed as the value
at s = 0 of ratios of such zeta functions. Such would be the case if only the first
term in (B) were used.! We conjecture that the remainder terms cancel when

1This amounts to treating a primitive geodesic and its iteratives as the circle case {2(§)} =
(A + e*¥L)/(1 — e*it/L) with factors due to the action of A4, on forms {tr(¢*(r¢/L) — ¢ (r¢/L)))
and the normal to the closed geodesic7 {|det 1 — P¥/L|-1/%),
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taking ratios. Similarly, for torsion invariants.

In any case, the formula tr(e™*4) = fi(e¢/4/(4xf)1/2) shows that the heat
asymptotic expansion and the residues of { ,(s) are obtainable from £, i.e., by wave
equation methods. This program is being carried out by Duistermaat and Guil-
lemin.
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Inside and Outside Manifolds .

D. Sullivan

Introduction. The classification theory of manifolds has evolved quite far, One
theory fixes the homeomorphism or diffeomorphism type of a manifold in terms
of the homotopy type and certain geometric invariants related to characteristic
classes and the fundamental group (dimensions three and four excluded). In the
simply connected case there is a further discussion which produces a purely al-
gebraic invariant (the “homological configuration’) determining the isomorphism
class of the manifold and the group of automorphisms (isotopy classes) up to a
finite ambiguity.

Further developments in this external theory of manifolds seems more afid more
algebraic, On the other hand, the study of geometrical objects inside one manifold
is experiencing a resurgence which focuses attention on the classical goals and
problems of ‘““analysis situs”. One organizing center for this activity is the qualita-
tive study of dynamical systems which produces inside one manifold interesting
compact subsets, families of intertwined noncompact submanifolds, geometrically
defined measures and currents, with homological interpretations and relationships.

There are many problems concerning the structural stability, and a geometric
description of the possible phenomena. These problems for flows generalize to
higher dimensional foliations which are now known to exist abundantly.

For foliations of dimension greater than one there is a new ingredient, the
Riemannian geometry of the leaves. The asymptotic properties of this geometry
can be regarded as a topological invariant of the foliation,

Now we go into more detail. First we describe two classification theories for
manifolds and then some topological problems concerning geometrical objects
inside manifolds.

I. The two classification theorems. The invariants of manifolds we describe are

© 1975, Canadian Mathematical Congress
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202 D. SULLIVAN

interesting for all manifolds and classify completely for simply connected manifolds
or other suitably restricted cases. Also the dimension of the manifolds must be
larger than four.

The first theorem classifies the manifolds in a given homotopy type. The identi-
fication of the manifold homotopy type to a model homotopy type is part of the
structure. We can picture all of our closed n-dimensional manifolds in one homo-
topy type as embedded in a nice domain of Euclidean space R?#*2 with smooth
boundary. The domain will be isomorphic to a tubular neighborhood of each of
these submanifolds (Figure 1). Two of these submanifolds will be considered
equivalent if there is an isotopy of the domain carrying one onto another. For the
first theorem we assume 7; = e and n > 4.

FiGure 1. The manifolds in a homotopy type—pictured as a domain in Euclidean space.

THEOREM A. The closed n-dimensional manifolds in a homotopy type X can be
classified up to homeomorphism by the elements in a certain finitely generated abelian
group h(X). h(X) is isomorphic modulo odd torsion to

@ (HY¥(X, Z|2) @ H¥(X, Z)), 0<4i,4i+2<n.
The odd torsion in h(X) is the same as that in the real K-theory of X.

For more details see [S1] and [S2, Chapter 6].

We remark that the elements of #(X) can be detected geometrically by spanning
certain submanifolds or membranes across the domain representing X.

Each manifold in X is made transversal to these membranes, and numerical
invariants are directly calculated from the intersections. The brunt of the informa-
tion is carried by signatures of quadratic forms. Most of the theory for this is
described in [M-S].

A nice example of this theorem is provided by complex projective n-space
(n # 2). Here the homeomorphism types of manifolds having the same cohomo-
logy ring as CP7 are in one-to-one correspondence with
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ZROZ®ZNR® @ Z, n odd,
ZPDZDZ2® @ Z/2, n even,

where there are (n — 1) summands. For any such manifold M the invariants can
be read off from the sequence of submanifolds obtained by intersecting a homolo-
gically generating codimension 2 submanifold of M with itself.

To promote Theorem A to a classification up to diffeomorphism many more
finite obstructions come in. For this most of the tools of algebraic topology can
be utilized—K-theory, étale cohomology, localization, and specific calculations
like the work of Milgram; see also [S2, Chapter 6]. The proof of Theorem A uses
triangulations, transversality, and surgery, It depends heavily on the important
work of Kirby and Siebenmann for topological manifolds. It was first proved in
the piecewise linear context,

The next classification theorem will give one algebraic invariant which classifies
the homeomorphism (or difffomorphism) type up to a finite ambiguity. The new
point here over Theorem A is homotopy theoretical and the homotopy problem is
solved using differential forms. We will describe the “homological configuration™
of a manifold, The idea is to build up a homological picture by starting with a basis
of cycles in the extreme dimension (highest) and using intersections as much as
possible as we work our way down through the homology. It is necessary to include

Sllon
Bz

Surface of genus two

NAE
T N\\A
U

Complement of Whitehead Link X~
1

>

FiGure 2. Examples of homology configurations with levels indicated.
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chains or membranes to realize the homology relations among the pieces of the
inductive configuration. (See Figure 2).

This construction is done rigorously using differential forms—starting in the
extreme lowest dimension to build up a picture of the cohomology. One obtains a
polynomial algebra tensor an exterior algebra with a differential (over Q) which
determines the rational homotopy type.

The theory behind this is described in [S3] and [DGMS].

We can add to this Q-data

(a) the rational Pontryagin classes py, p, +-- with p; € H¥(M™", Q),

(b) a certain lattice in the above algebra reflecting the integral structure,

(c) some information on the torsion in homology, for example, the order of the
torsion subgroup.

If we refer 1o all this as the “integral homology configuration” of a manifold we
have (m; = e, n > 4)

THEOREM B. A manifold is determined up to a finite number of possibilities by its
“integral homology configuration”.

A key step in the proof of Theorem B is the introduction of the arithmetic sub-
groups of Q-algebraic groups. A second part of the theorem says that the isotopy
classes of automorphisms of the manifold are described up to a finite ambiguity
(commensurability of groups) by automorphisms of the configuration. This shows
these geometric automorphism groups are arithmetic groups [S4]. One can con-
struct manifolds which realize any Q-homological configuration and characteristic
classes subject to Poincaré duality and the Hirzebruch index theorem. Also, es-
sentially all arithmetic groups occur as the group of components of Diff M, M
simply connected.

An interesting sidelight is that the maximal normal nilpotent subgroup of all
automorphisms contains those which are the identity on the spherical homology.

This theory of algebraic topology over Q based on differential forms can be used
in more analytical questions, e.g., the topology of Kaehler manifolds, the study of
closed geodesics, and Gel'fand-Fuks cohomology. See [S3], [DGMS], [H] and [S5].

IL. Problems. Now we turn to more geometrical problems. The first question is
the qualitative study of diffeomorphisms of manifolds under repeated iteration.
One wants Lo describe as far as possible the orbit structure. Much has been done
here but much is also unknown.

To illustrate these points consider a famous example (Figure 3) of Smale first on
the solid torus and then on the 2-sphere. The solid torus is mapped into itself with
degree 2, with half of il contracting into itself.

The nonwandering set {x: for allnghds U there exists n such that /U | U # 0}
here is a structurally stable Cantor set plus one sink. The stable manifolds con-
sisting of those points asymptotic (as # — + oo0) to the Cantor set form a partial
foliation of 2-manifolds coming out of the solid torus. The unstable manifolds of
the Cantor set (n - — o0) form a dyadic solenoid running around the solid torus.
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FIGURE 3, Smale’s Axiom A of diffeomorphisms on the solid torus.

This picture is helpful for understanding Smale’s general Axiom A diffeomor-
phisms. It is also not hard to see that handle preserving diffeomorphisms like these
(always with zero-dimensional nonwandering set) form a C%dense set of all dif-
feomorphisms; see [Sm] and [SS].

Problem 1. Try to understand the deformations between the various Axiom A
structurally stable systems. See [PN].

Problem 2. Try to construct and analyze the basic pieces of the nonwandering
set having positive dimension. See [B] and [W] for the zero-dimensional and gener-
alized solenoid cases respectively.

Now Smale originally studied this example on S2% There are however many
regions of Diff S2 which are uncharied and do not contain Axiom A systems (see
[N]). To begin to solve this problem one needs new notions of structurally stable
descriptions, It is perhaps amusing to note that the counterexamples in this subject
to the C1 density of structurally stable can be described, so that their narrative
description is at least structurally stable ([Sm2] and [W2]).

Problem 3, Describe more of the regions of Diff S2 or Diff M outside the trans-
versal Axiom A systems,

Problem 4. How much of Diff M can be described by perturbing transversal
Axiom A systems to destroy carefully the transversality of stable and unstable
manifolds? See [Sm2], [W], [RW].
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In another direction, we might recall Arnold’s theorem [A] in Diff S! which
states that for almost all irrational rotations the probability that a smooth per-
turbation is C° equivalent to an irrational rotation approaches 1 as the size of the
perturbation approaches zero. This is a kind of structural stability which is of prac-
tical importance [BK] but is not included in the topological conjugacy idea.

Problem 5. Formulate a useful mixed notion of structural stability combining
continuity and probability.

For practical application, attractors—closed invariant sets with invariant neigh-
borhoods—are important (see [T]).

According to [BR] a measure one set of points in a no cycle Axiom A system goes
to attractors. Thom asks the following:

Problem 6. Is it true, for a generic set {a countable intersection of dense opens)
of Diff M, that almost all points in the manifold are asymptotic to attractors?

The questions of qualitative study are similar for flows. Here one uses especially
the closed orbits, the Poincaré maps around them, and invariant measures. All
the questions and concepts for nonsingular flows generalize to the qualitative study
of foliations on a compact manifold. This generalization is quite challenging
geometrically. Also understanding the qualitative behavior of foliations helps one
understand the more classical problems for flows.

If we assume the ambient manifold has a Riemannian metric, each leaf of the
foliation inherits a complete metric which is in a rough asymptotic sense indepen-
dent of the ambient metric. For example, certain growth properties of volume
{x e leaf: distance(x, xo) < R} are topological invariants of the foliation. It is easy
to see this growth rate is at most exponential, and if it is subexponential, interesting
homological arguments are possible [P]. One can form a limiting cycle using the
chains 1/volume times {x e leaf: distance(x, xp) = R} and arrive at a “geometric
current”, roughly speaking a locally laminar submanifold with a transversal
measure [RS].

More generally, we can ask what do leaves of foliations look like geometrically
and topologically. See Figure 4 for examples of leaves in S3.

o

Aleafin 8% of cubic growth Part of a leaf in S3, of exponential growth

(Y

SN

FIGURE 4

Problem 7. Describe the nature of the equivalence relation on leaves induced by
ambient diffeomorphisms.
Problem 8. What do 2-dimensional leaves in S8 look like?
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On Buildings and their Applications

J. Tits

The buildings considered in this talk! are some particular simplicial complexes
naturally associated to algebraic simple groups. The “real estate” terminology, due
to N. Bourbaki [8], originated in the fact that the maximal simplices of these com-
plexes are called “chambers” (in French, “‘chambre”, that is, “room”), because of
their close connection with the “Weyl chamber” in the theory of root systems.

1. A construction procedure. Let us first describe in rough terms a trivial but
fruitful procedure to build up complicated geometrical objects from simpler ones.
Take an object C, for instance a space of some kind or a simplicial complex, and a
group G. To each “component” x of C (point of the space, simplex of the complex),
attach a subgroup G, of G. Then, there exists a unique minimal object extending
C, on which G acts in such a way that no two components of G are equivalent under
G and that G, is the stability group of x in G, namely the quotient of the product
G x C by the equivalence relation (g, x) ~ (g’, x) <> x = x' and g71g' € G,. To
make this description precise, one has of course to specify in which category, say,
the product and the quotient are taken. In the sequel, C will most of the time be
just a simplex, to each face ¢ of which a subgroup G, of G is attached ; furthermore,
the relation G,y,. = G, (| Gy will always hold. Then, it is clear how G x C/ ~,
“defined” as above, is endowed with a structure of simplicial complex. Notice that,
in view of the above equality, all G, are known as soon as the groups attached to
the vertices of C are given,
mng this report, I made much use of information received form A. Borel and J, B,
Wagoner, and, most of all, from J.-P. Serre, who kindly took the trouble of reviewing for me the
main applications of the theory of buildings known to him. To these acknowledgements, I wish to
associate the Deutsche Forschungsgemeinschaft whose generous support made it possible for me
to attend the Congress.

© 1975, Canadian Mathematical Congress
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ExampLEs. (1) Let the vertices of the simplex C be numbered from 1 to n. To each

edge (if), associate an integer m;; = 2 or the symbol co. Set

G = {n, "',"nl"f = (ryrj)m =1 for m;; # o)

and attach to the face o of C the group G, = (r,-]i ¢ ). The resulting complex 4
is called a Coxeter complex (cf. [43, §2]). For instance, if Cis a one-simplex (n = 2),
4 is a closed chain of length 2my, or a doubly infinite chain according as m;, # or
= o0 ; if Cis a triangle and if the three m;;’s are 3% (resp. 333; resp. 3%), 4 is the
barycentric subdivision of an icosahedron (resp. the paving of the plane by equi-
lateral triangles; resp. the barycentric subdivision of the paving of the plane by
hexagonal honeycombs). When G is finite, 4 can be realized as a simplicial decom-
position of a Euclidean (n — 1)-sphere on which G acts as a group of isometries:
4 is then called spherical. 1t is called Euclidean if it can be realized as a simplicial
decomposition of a Euclidean space on which G operates by Euclidean isometries.
The matrices ((m,,)) giving rise to spherical and Euclidean Coxeter complexes have
been determined by H.S.M. Coxeter [17] and E. Witt [48].

(2) Let G = SLy(F) and let Gy (resp. Gy) be the subgroup of all matrices ((g;;))
with go; = ga; = 0 (resp. g3; = g3z = 0). If C is a one-simplex to the vertices of
which we attach G; and G, the resulting complex is the graph of Figure 1, which
is also obtained as follows: Its vertices are the points and lines of the projective
plane over F, and its edges join the pairs forming a flag (point + line through it).

FIGURE 1
(3) More generally, let k£ be a division ring and G = SL,(k). If we take for C an
(n — 1)-simplex to the kth vertex of which we attach the group {((g;;))€ G [g,-,- =0
fori > k = j}, we get the “flag complex” of the (n — 1)-dimensional projective
space Il over k, i.e., the complex whose vertices are the proper linear subspaces of
Iland whose simplices are the flags of II.
(4) Let k be a field with a discrete valuation whose residue field is F, o the ring of

'
i [

FIGURE 2
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integers and 7 a uniformizing. Let G = SL,(k). If we attach to the two vertices of
a one-simplex C the subgroups SLy(0) and

o z7lo
N e %)
N o 0
we obtain a “homogeneous tree’” whose vertices have order 3 (Figure 2).

(5) With k, o, & as above, let now G = SLg(k) and let C be a two-simplex, to the
vertices of which we attach the following subgroups:

o z7lo 7z~ lp p o 'l
SLi(0), G (#no o p |, GN|o o w7
w0 D D O WO D

Then the resulting complex 4 is a kind of two-dimensional analogue of the tree of
Figure 2: Every edge belongs to three two-simplices, the link of every vertex is the
graph of Figure 1 and, in the same way as the tree contains “many”” doubly infinite
chains, so does 4 contain “many” subcomplexes isomorphic to the paving of a
plane by equilateral triangles (cf. §3).

REMARKS. (a) In all examples given above, C was a simplex, but it may also be
useful to start from other geometric objects. For instance, let G be the dihedral
group of order 8, let us denote by U, its center, and by U;, Uz two other
subgroups of order 2 such that G = U, U,Us. Then, if one takes for C a hexagon to
the vertices of which one attaches the groups G, U,U,, Uy, Uz, U3U,, G, the result-
ing complex is again the graph of Figure 1. Another instructive example is the
following alternative construction of the tree of Figure 2: k, o and # being defined
as in Example (4), take for G the additive group of k, for C the “doubly infinite
chain”

and attach to the vertex i the subgroup #‘o of G (this construction has an advan-
tage over that of Example (4) in that it extends immediately to fields with non-
discrete valuations; cf. [11, §7]).

(b) In this article, we are essentially interested in buildings, but the general pro-
cedure described above can also be used to construct other interesting complexes,
for instance graphs related to some sporadic simple groups.

2. Buildings. Let G be a semisimple algebraic group defined over some field k.
(By a common abuse of language, we shall often make no distinction between an
algebraic group and the “abstract” group of its rational points over some ground
field; thus, G will also denote the group of k-rational points of the algebraic group
G.) There are two types of buildings which one associates to such pairs (G, k) and
which we want to describe:

for arbitrary k, the spherical building constructed by means of the k-parabolic
subgroups of G;

when £k is local (i.e., endowed with a complete discrete valuation, whose residue
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field we assume to be perfect, for safety) the Fuclidean building constructed by
means of the parahoric subgroups of G.

To avoid technical complications, we shall assume that G is absolutely almost
simple? (i.e., has over no field extension of k£ a proper normal subgroup of strictly
positive dimension) and, when talking about the local case, that G is simply con-
nected (this is a technical condition, satisfied for instance by the groups SL,,
Spin,,, Sp,, and their “twisted forms”).

We recall that the parabolic subgroups of G are the algebraic subgroups P such
that G/P is a complete (in fact, projective) variety (cf., e.g., [2], [5]). There is no such
simple characterization of the parahoric subgroups, a notion introduced by N.
Iwahori and H. Matsumoto [23] in the case of Chevalley groups and successively
extended by H. Hijikata [21] and by F. Bruhat and the author [10]; for a general
definition, we refer the reader to [10] and [11]. Examples of parabolic and parahoric
subgroups will be given in a moment, but we must first state a property of those
subgroups which is essential for our purpose: There is a natural number /, called
the relative rank of G, such that the following assertion holds:

(%) All minimal k-parabolic (resp. parahoric) subgroups of G are conjugate; if
B is one of them and if Py, -+, P,denote the maximal proper subgroups of G contain-
ing B, one has r =/ (resp. r = I 4 1), the 27 subgroups P; (] -+ N P; are all
distinct, they are the only proper subgroups of G containing B and they form a
complete system of representatives of the conjugacy classes of proper k-parabolic
(resp. of parahoric) subgroups of G.

Thus, if we want to describe the parabolic or the parahoric subgroups of G, it
suffices to exhibit one minimal such subgroup B. We start with some examples of
parabolic subgroups:

If G = SL,(k), one can take for B the group of all upper triangular matrices.

If k is algebraically closed, B is any Borel subgroup, that is, any maximal con-
nected (for the Zariski topology) solvable subgroup of G.

If k is perfect and if G is thought of as a group of matrices, one calls “unipotent
subgroup” of G a subgroup consisting only of matrices all of whose eigenvalues are
1, and B is then the normalizer of any maximal unipotent subgroup (for instance,
if char k = p # 0, B is the normalizer of any maximal p-subgroup of G: the
“Sylow theorem” holds for such subgroups).

We now go over to the local case and denote by B a minimal parahoric subgroup
of G. When k (and hence G) is locally compact, there is a characterization of B
(essentially due to H. Matsumoto) similar to the characterization of minimal
parabolic subgroups over perfect fields given above: B is the normalizer of any
maximal pro-p-subgroup (projective limit of finite p-groups) of G, where p is the
characteristic of the residue field. As a further example, let G = SL,(k) over any
local field k whose ring of integers we again denote by v; then, one can take for B
the group of all elements of SL,(v) whose reduction modulo the prime ideal is
upper triangular.

2In the sequel, the word ‘‘almost” will often be omitted when no confusion can arise.
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The property (*) makes the parabolic and parahoric subgroups well suited for
applying the construction described in §1; one takes a simplex of dimension
r — 1 =17 — 1 (resp. /) whose vertices are numbered from 1 to » and one attaches
to the face (i, -+, 7,) the parabolic (resp. parahoric) subgroup P; ) - () P,
of G. The resulting complex is called the spherical (resp. Euclidean, or affine)
building associated to G and k; simple examples are Examples (2) and (3) (resp. (4)
and (5)) of §1. The first virtue of the geometric object thus attached to such pairs
(G, k) is expressed by the

THEOREM. If' | = 2, the building associated to (G, k) determines “‘canonically” the
algebraic group G up to isogeny, the field k and, in the local case, the valuation of k.

(For a more precise statement in the spherical case, cf. [43, 5.8].) In view of
Example (3) of §1, that theorem can be regarded as a generalization of the “funda-
mental theorem of projective geometry”; it also includes the theorem of W, L.
Chow and J. Dieudonné [18, III, §3] on the permuiations of linear subspaces of
quadrics which preserve the adjacency (at least for division rings which are finite
dimensional over their center, but this restriction is not essential; cf. [43, §8]).

If I = 0 (“anisotropic group”) the theory of buildings is of course empty (al-
though, in the local case, buildings can also be used in the study of anisotropic
groups; cf., e.g., [10, Proposition 6]). When / = 1, the Euclidean buildings are
trees; they are quite useful (cf. for instance [22], [32], [35], [36], [37]) but do not have
enough structure to give back G and k. The above theorem also suggests the fol-
lowing comment on Examples (4) and (5) of §1: If k£ and k' are two nonisomorphic
totally ramified extensions of the field of dyadic numbers, the Euclidean buildings
of SLy(k) and SLy(k') are isomorphic whereas those of SL3(k) and SLy(k") are not,
though they look much alike “locally”.

3. Apartments. The axiomatic approach. An important property of the buildings
is that they contain “many’’ Coxeter subcomplexes. Indeed, every building 4 has
a system &7 of Coxeter subcomplexes, called the apartments of 4, such that:

(i) Every two simplices of 4 belong to an apartment.

(i) If 3, 2’ € of, there exists an isomorphism of 2 onto ' which fixes 5 ] 3’
(elementwise).

More precisely, 4 being associated to a group G (cf. §2):

(ii") If 3, ' € o, there exists an element of G which maps Y onto 2’ and fixes
xn2.

For instance, in Examples (2), (3), (4), (5) of §1, the apariments are respectively
hexagons (i.e., barycentric subdivisions of triangles), barycentric subdivisions of
(n — 1)-simplices (the “‘coordinate frames” of the projective space in question),
doubly infinite chains, and complexes isomorphic to the paving of a Euclidean
plane by equilateral triangles. The terminology “‘spherical” and “Euclidean” in-
troduced in §2 can now be motivated; the apartments of the buildings constructed
by means of parabolic (resp. parahoric) subgroups are spherical (resp. Euclidean)
Coxeter complexes.
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Properties (i) and (ii) are responsible for many useful properties of the buildings.
This suggests an axiomatic approach to the theory, in which these properties are
taken as axioms. To avoid degeneracies, it is convenient to add the condition:

(iii) Every nonmaximal simplex of 4 is a face of at least three distinct simplices
of 4.

Thus, let us call “abstract building” a simplicial complex satisfying (iii) and
having a system 7 of Coxeter subcomplexes such that (i) and (ii) hold. It can be
shown that, if we require & to be maximal with these properties, it is unique. The
question naturally arises to know how much more general this “abstract” notion
is, compared to the “concrete” one introduced in §2. If the apartments are spherical
of dimension = 2 and “irreducible” (a Coxeter complex is irreducible if it is not
the join of two nonempty Coxeter subcomplexes), or Euclidean of dimension = 3,
the answer is given by a classification theorem (for the spherical case, cf. [43])
which shows that the construction of §2 provides all such buildings if one extends
the class of groups G considered so as to include the ““classical groups” over arbi-
trary division rings and also some further “more exotic” groups. Thus, the notion
of abstract building provides an elementary, ‘“‘combinatorial”, simultaneous ap-
proach to the algebraic semisimple groups and the classical groups of relative rank
2 3. For spherical abstract buildings of dimension one, a complete classification
is out of the question but it is conjectured that a certain quite simple additional
condition, the “Moufang property” (cf. [43, p. 274], and [44]), is sufficient to
characterize among them the buildings associated to the classical groups, the
algebraic simple groups and, again, some related “exotic” groups (e.g., the Ree
groups of type 2F,) of relative rank 2. Let us add here that the study of abstract
buildings whose apartments are neither spherical nor Euclidean may be promising,
as is suggested by the work of R. Moody and K. L. Teo [29] and R. Marcuson
[27].

4. Metric. Topology. So far, we have only been interested in the “‘combinatorial®
structure of the simplicial complexes we have considered. Now, it will be necessary
to imagine the simplices “‘concretely” realized as spherical or Euclidean simplices.
If 4 is the spherical (resp. Euclidean) building associated to a group G (cf. §2), its
apartments are Euclidean spheres (resp. Euclidean spaces) endowed with a natural
metric, well defined up to a scalar multiplication. It is easily seen that the distance
functions in the various apartments can be chosen in such a way that for every
g € G and every apartment 5, g induces an isometry of 2 onto g2. Then, by pro-
perty (ii') of §2, the metrics on any two apartments agree on their intersection.
Since, by (i), any two points belong to an apartment, 4 itself is endowed with a
distance function d which can be shown to satisfy the triangular inequality. Thus, 4
is a metric space on which G acts as a group of isometries (N.B.: the metrics of
Figures 1 and 2 are not induced by the natural metric of the underlying sheet of
paper!). If 4 is spherical, its diameter is the common diameter of its apartments.
We say that two points p, g of 4 are opposite if 4 is spherical, of diameter d(p, q).

Let p, g be two nonopposite points of the building 4. In any apartment 5 con-
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taining them, which is a Euclidean space or a sphere, they can be joined by a
unique shortest geodesic, which turns out to be independent of J (cf, [11, 2.5.4] for
the Euclidean case). From this, one deduces in the usual way that:

(i) Euclidean buildings are contractible;

(ii) a spherical building minus the set of all points opposite to a given point is con-
tractible.

This last property readily implies that

(i) a spherical building has the homotopy type of a bouquet of spheres.

Furthermore, the number N of these spheres is easily determined; for instance, if
the ground field k is finite of characteristic p, N is the p-contribution to the order of
G.

The above properties are useful facts, as was first recognized by L. Solomon
[40] who observed that, since G acts on 4, it also operates on H,_(d) = ZN (I
being, as before, the relative rank of G). One thus obtains a special G-module
whose rank—in the finite case—is the order of the p-Sylow subgroups of G; as one
may expect, this is nothing else but the Steinberg module of G. A similar idea was
used by A. Borel and J.-P. Serre (unpublished, cf. however [6]) to define the “Stein-
berg module” of an algebraic simple group over a p-adic field: Here, one lets G
operate on H' (cohomology with compact support) of the Euclidean building of
G, which is shown to be isomorphic with the Cech cohomology group H'-1 of the
spherical building of G endowed with a nonstandard topology.

Further applications of the spherical buildings to the representation theory of
finite simple groups ‘‘of Lie type”” have been made by T. A. Springer (unpublished,
except for some indications in [41]) and by G. Lusztig ([25], [42]) who considers
moreover other complexes (e.g., the complex of ‘“‘affine flags away from 0” in
affine spaces) closely related to the buildings.

Properties (i) and (ii) are also used by D. Quillen in his proofs of various finite-
ness theorems in algebraic K-theory (cf. [9], [34] and other, unpublished results
concerning the function field case). For further applications of buildings or “build-
ing-type constructions” to algebraic K-theory, we refer to [1], [45], [46] [47].

5. Euclidean buildings and symmetric spaces. In many respects, the Euclidean
buildings are the ‘“‘ultrametric analogues” of the Riemannian symmetric spaces. In
other words, they play, in the study of p-adic simple groups, a role similar to that
of the symmetric spaces in the theory of simple Lie groups. We shall illustrate this
assertion by a few examples.

E. Cartan has shown that, in an irreducible, noncompact, simply connected sym-
metric space, every compact group of isometries has a fixed point (cf. [12, p. 19]).
The same is true of a compact (and even a bounded) group of isometries of a
Euclidean building [11, 3.2]. In fact, G. Prasad has observed that Cartan’s proof
itself can be carried over to Euclidean buildings: One just has to prove for the
latter a certain metric inequality [33, 5.12] which, in the case of Riemannian
spaces, characterizes the spaces with negative curvature. That the Euclidean
buildings behave like spaces with negative curvature is further illustrated by other
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inequalities (e.g., [11, 3.2.1]) and by the unicity of the geodesic joining two points
(cf. §4).

The fixed-point theorem mentioned above was used by Cartan to show the
conjugacy of all maximal compact subgroups of a real simple Lie group. Its an-
alogue for buildings enabled F. Bruhat and the author [11, §3] to show that, in a
p-adic simple group (assumed to be simply connected, as previously agreed), the
maximal compact subgroups are the maximal parahoric subgroups, and thus {form
I + 1 conjugacy classes (/ = the relative rank). The fixed-point theorem is also an
essential tool in the process of extending the theory of Iwahori and Matsumoto to
arbitrary p-adic simple groups (cf. [10, §6]): This is done by “Galois descent”,
and the compact group to which the theorem is applied is the Galois group of a
“splitting field” of the p-adic group in question.

Another domain where Euclidean buildings are used as substitutes for the sym-
metric spaces is the cohomology of discrete subgroups. Let G be a real noncompact
simple Lie group and [ a discrete subgroup which, for simplicity, we shall assume
without torsion. Then, /" operates freely on the symmetric space X of G and, since
X is contractible, Hi(I") = H/(X|I") for arbitrary coefficients. In particular, cd I
is < dim X. Furthermore, using some differential operators on X related to the
Riemannian curvature, Y. Matsushima was able to obtain more precise informa-
tion on the groups H#(I',R); his results show, for instance, that for cocompact
I'and i “sufficiently small”” Hi(I', R) depends only on G and not on I'. As J.-P. Serre
pointed out, the Euclidean building X of a p-adic simple group G can be used simi-
larly to investigate the cohomology of discrete subgroups /" of G: The most obvious
observation is that, since X is contractible (cf. §4), the above argument shows that
if I'is torsion-free, cd I' £ dim X = [ (relative rank of G); in [38] similar but more
elaborate techniques are used to estimate—among other things—the cohomological
dimension of S-arithmetic groups. (This dimension is determined in [6].) As for the
result of Matsushima mentioned above, it can be compared with a conjecture of
Serre proved by H. Garland [19] for “‘sufficiently large residue fields” (a restriction
lifted by W. Casselman later on; cf. [15], [20]): If I"is a torsion-free cocompact
discrete subgroup of a p-adic simple group, then Hi(/", R) = Ofor 0 < i < I. The
method of Garland bears striking formal similarities with that of Matsushima; the
differential operators considered by the latter are here replaced by some “local
combinatorial operators”, regarded by Garland as the “p-adic curvature” of the
building X (cf. also [3]).

Mentioning those operators naturally leads us to another formal analogy
between symmetric spaces and Euclidean buildings, namely the possibility of doing
“harmonic analysis™ on the latter as well as on the former. The simplest case is that
of a locally finite tree T (remember Figure 2). If f'is a complex-valued function on
the set of vertices of T"and if, for every vertex s, we denote by A(f)(s) the average
of the values of fin the vertices neighbouring s, it is well known that the operator
4 = A — 1is the “analogue” for T of the Laplace-Beltrami operator on aRiemann-
ian manifold. The harmonic analysis on trees has been extensively studied by
P. Cartier ([13], [14]). Instead of considering functions on vertices, i.e., 0-cochains,
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one may consider 1-cochains or, more generally, /-cochains on a locally finite
Euclidean building X of dimension /, that is, functions defined on the set of all /-
simplices. Such a function f'is called harmonic if for every simplex ¢ of dimension
! — 1, the sum of the values of f on all maximal simplices whose closure contains
o is zero, Taking for X the building of a p-adic simple group G and letting G operate
on the Hilbert space of L2 harmonic /-cochains on X, one obtains the so-called
special representation of G which contains the Steinberg module (cf. §4) tensorized
with C as a dense submodule, and which plays an important role in the theory of
unitary representations of G, This representation was introduced by H. Matsumoto
[28] and J. A. Shalika [39] (by I. M. Gelfand and M. I, Graev for GL,); its
interpretation as a representation on L2 forms is due to A. Borel who also showed
that the space of admissible vectors is the Steinberg module [4] and who con-
structed other, similar representations, using the Euclidean building [4]. (For related
questions, cf. also [26] and its bibliography.)

6. Spherical buildings and symmetric spaces. We shall again introduce this section
with a metamathematical statement, which will however be considerably vaguer
than that of §5. Let G be a real or a p-adic simple group and let X be its symmetric
space or Euclidean building. When studying various questions, one is sometimes
led to add to G or X “points at infinity”; it turns out that

the “most natural choice” for the “space at infinity” of G or X is “often’’ closely
related to the spherical building of G.

Restriction of space and competence forces me to be very brief in commenting
on that sentence. With some good will however, the reader will grant that it is
illustrated by the results enumerated below, and whose interconnections have
perhaps not yet been fully investigated.

In [6], A. Borel and J,-P. Serre compactify the Euclidean building of a p-adic
simple group G by adding to it the spherical building of G suitably retopologized
(cf. also [11, 5.1.33]). In [7], considering an algebraic semisimple group G defined
over a field k = R they enlarge the symmetric space X of the real Lie group G(R)
in a “manifold with corners” X and, if k is countable, X — X has the homotopy
type of the spherical building of G over k. Both papers are primarily aimed at the
study of arithmetic and S-arithmetic groups and, in particular, of their cohomology.

Let now G be an algebraic simple group over any field k. In [31, Chapter 2, §2],
for the purpose of studying the “stability” in G-spaces, D. Mumford interprets the
points of a certain dense subset X, of the spherical building of G over k as the
equivalence classes of “one-parameter subgroups” (one-dimensional split tori) of
G for a suitable equivalence relation. Intuitively, that relation describes a certain
“asymptotic” behavior of the one-parameter subgroups, so that X, can be regarded
as “lying at infinity” of G. A similar viewpoint is developed further in [24, IV, §2]
(and in forthcoming continuations), where G is effectively enlarged into a scheme G
by adding “at infinity” a scheme related with the spherical building of G on k
(roughly speaking, G — G has a stratification whose ‘“k-rational nerve” is the
building).

Finally, it is appropriate to mention under the same heading the work of G.D.



218 J. TITS

Mostow [30] and G. Prasad [33] on the strong rigidity of cocompact discrete
subgroups of real and p-adic simple groups, and perhaps also some aspects of the
spectacular result of G. A. Margulis on the arithmeticity of lattices, which became
known during this Congress. To conclude the article at a somewhat more “‘concrete”
level, I shall try to give in a few words an extremely oversimplified idea of Mos-
tow’s proof of the following special but significant case of his result:

Let G, G' be two absolutely simple noncompact Lie groups of relative rank = 2
and let I' = G, I" = G’ be torsion-free, cocompact discrete subgroups, then, every
isomorphism a.: I' = I'' extends to an isomorphism of G onto G'.

Let X, X' be the symmetric spaces of G and G’ and admit that the real spherical
buildings Y and Y’ of G and G’ “lie at infinity” of X and X’. Because X, X' are
topological cells, the manifolds X//"and X’/I"" are K(I', 1) and K(I", 1), so that there
exists a homotopy equivalence X/I' — X'/I"" which lifts to a mapping 8: X - X'
“‘compatible with . Because X/I" and X'/I"" are compact, 8 “does not disturb
much” the distance function in the large, from which one infers that it induces an
isomorphism §': Y — Y’ of the buildings at infinity. Finally, it follows from the
canonicity assertion of the Theorem of §2 that ' is induced by an isomorphism of
G onto G'.
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Coding of Signals with Finite Spectrum and Sound
Recording Problems

A. G. Vitushkin

We will discuss one well-known problem of information theory, the problem
which at present arises in various branches of radio engineering. We mean the
problem of coding signals with finite spectrum. By way of an example, we consider
how such problems arise, what comprises their mathematical content, and what
conclusions can be drawn from results obtained. We will present an estimate of the
length of codes for signals with finite spectrum and discuss it in connection with
the problems of sound recording.

1. Raising of the question. Of the sound recording techniques the most widely
used method is the so-called analogue method. When using this method a signal to
be retained is recorded in its natural form without any preceding transformations.
This systém of recording is remarkable for its simplicity. The system’s disadvantage
is the impossibility of defending signals from interference. All defects of recording
and reproducing devices, the inhomogeneity and aging of materials and the like
lead to distortions in reproducing,.

Another method of recording in which we are interested, the digital one, consists
of the following: The signal is transformed into a discrete code, the code of the
signal is recorded and, in order to be reproduced, it is again transformed into its
natural continuous form. As far as this system is concerned, there are many ways
of protecting signals from various sorts of noises. But in sound reproduction this
system is not used because the existing schemes of coding still remain unacceptably
complex.

Successful development of a digital recording system requires the construction of
a handy mathematical model of sound signals and the discovery of simple schemes
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of coding, The first question arising is: How long must the codes be for the signals
to be reproduced with a desirable accuracy? The qualitative estimate obtained
seems encouraging,.

2. The choice of the class of functions. The concept of signals with finite spectrum
is usually associated with the Bernstein class of entire functions. We shall denote by
B, the class of entire functions, real-valued on the real axis bounded in modulus
by the constant 1 on the whole axis, and such that their Fourier transforms vanish
outside the segment [— o, g]. We will call the functions of this class signals with
spectrum g.

By Kotelnikov’s theorem [1] the informational content of a signal with spectrum
o is proportional to g. Really, representing a function f € B, in the form

sin ¢’'(t — Kn/o")

f) = kgmf (K-ZT) o'(t — Kz/o')

(this representation is valid with any ¢’ > ¢), we see that the number of parameters
(per unit time) defining the function is proportional to o.

Shannon [2] and Kolmogorov [3] have given more concrete forms of this as-
sertion.

By the Kolmogorov-Tichomirov theorem [3] the entropy H(B,, T) of the class
B, (the norm being the maximum of a function on the segment [— 7, T'] satisfies
the following inequality:

20T 1og 4 < H,(B,, T) < 22T 1og <2

where ¢; and ¢, are absolute constants,

It should be noted that this kind of theorem, formulated in terms of the uniform
metric, has rather limited applications because in practice one has as a rule to deal
with more complex forms of measurements.

3. The complexity of apparatus. Now we define the notion of an apparatus and
the parameters characterizing its quality and complexity. An apparatus P is a pair
of transformations P; and P, possessing the following properties.

A real-valued function f{r) defined on the whole real axis is transformed by the
operator P into a function ¢ = ¢(K7, f) defined for all integers K. Here 7 is a posi-
tive number constant for all input functions f(f). The function ¢ may take only one
of two values: either 1 or 0. In other words, the operator P; puts, in correspon-
dence to the input function f(¢), the sequence of binary numbers ¢(K7, f) (K =
—0,+++, 0, +++, 00) uniformly distributed in time with the density z~! per unit time.
This sequence is called a binary code of the function f(¢).

The second operator P, transforms the sequence ¢(Kz, f) into a real-valued func-
tion f* = P(f) defined on the whole real axis and bounded in modulus by the
constant 1.

It is assumed, moreover, that there exists a positive constant / such that for any
function f(¢) and every integer K the value (K7, f) depends only on the values of
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the function f{f) at the segment [K7 — /, K7 + I] and for every ¢ the value f*(f)
depends only on the values Py(K z) at the segment t — [ < K7 <t + L

The constant / is called a delay of the apparatus and the number 4 = ¢~1is called
a code density of the apparatus. If the condition of the boundedness of the appara-
tus delay were omitted from the definition, the notion of code density would not be
strict, Really, by stretching the code sequence we can turn the code density into
any desirable number.

The parameters 4 and / characterize, in a sense, the complexity of the apparatus.

4. The quality of apparatus. To describe the quality of reproduction we shall use
three parameters: g, ¢ and d. But first of all we must say a few words about para-
meters used for the same purpose in engineering. The most essential of such para-
meters are the following. The first is ¢. It is the maximal frequency which can be
reproduced by the apparatus. The second is e. This parameter characterises relative
error of reproduction. The third is @ = 20 log;o(M/d). It is called the dynamic
range of the apparatus. Here M is the maximum of the norm of output signals and
0 is the norm of apparatus noise. The norm of a signal is defined as

|70] = max (57 § 209 ax)

where 7 is a positive constant comparable to 571,

DEerINITION. We fix positive constants g, ¢, d and r = o1, Let f(f) and £ *(r) be two
functions defined on the whole real axis. We will say that the function f*(#) is close
to f(?) if for any real 7 the following inequality is valid:

70 - 20| s ¢ _max |f)] + 5.

We will say that the parameters of an apparatus are not worse than g, ¢, § if for
every function f € B, the corresponding function f* = P(f)is close to f(¢). To put
it otherwise, the apparatus has parameters g, ¢ and ¢ if it records and reproduces
signals so precisely that for any signal with spectrum ¢ the corresponding output
signal is close to the input one.

For an apparatus with parameters g, ¢, § the number 9 = 20 log;, 071 is called
the dynamic range of the apparatus. If an apparatus has a wide dynamic range, it
means that both large and small signals can be reproduced with the same accuracy.

Thus all necessary definitions have been given and we can formulate the result.

5. Estimate of code density. For any positive numbers g, ¢ and ¢ it is possible to
construct an apparatus the parameters of which are not worse than g, ¢, d, while
the complexity of the apparatus is characterized by the following inequalities:
h £ (o/z) log (c/e) and I £ max {c[e, c/d}, where c is an absolute constant.

It should be pointed out that the right-hand side of the first inequality does not
contain the parameter 9. It means that it is possible to construct an apparatus with
any desirable dynamic range, using codes with the density which is independent
of dynamic range.

This is rather unexpected because in engineering another point of view prevails:
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A sufficiently wide dynamic range is the most difficult thing to obtain when one
constructs an apparatus with the analogue system of recording.

But we need not think that wide dynamic range can be obtained without any
difficulties at all, In the digital system, obtaining wide dynamic range requires either
long codes or complex schemes of coding.

It should be noted as well that it is impossible to construct an apparatus with
infinite dynamic range using codes of finite density.

6. Entropy of the class B,. The estimate of code density consists, as usual, in
counting the entropy of the corresponding functional class.

Let the numbers g, ¢, d and r introduced above be fixed. Let B* be a set of func-
tions defined on a segment [— T, T']. This set is called a net of the class B, on the
segment [— T, T, if for any function f'€ B, there exists a function f* € B* close to
fon the segment [— T, T),i.e., such that for any ¢ €[ — T, T'] the following inequality
is valid:

) = )] S e _max |f)] + 3.

Denote by N(T') the number of elements of the minimal net of the set B, on the
segment [— T, T]. The number H(T) = log N(T) is called an (g, §)-entropy of the
set B, on the segment [— T, T1.

THEOREM. Let 0, e £ 1, 0 £ 1 and r = 07! be positive numbers. Then for dny
sufficiently large T the entropy is

_ 20T c
H(T) = T log max{e, 0}’

where c is a positive function of o, e, 0, r which satisfies the inequality ¢; < ¢ < ¢,
where c; and c; are absolute positive constants [4).

Denote by H = H(g, ¢, §) the minimum of code density # = h(P) taken for all
apparatuses with parameters o, ¢ and 4. It can be easily shown that

.1
H= '}}—To—ﬁ Hi (T),
because for any T, on the one hand, any apparatus with parameters o, ¢ and 0
generates a net of the class B, on the segment [— T, T7 (this net is the set of all
output signals when the input ones are all functions from the class B,) and, on the
other hand, any net can be looked upon as an apparatus which puts, in correspon-
dence to every function from B,, one of the nearest elements of the net.
So the theorem just formulated implies that
=% log — €
H T log max{e, 6}’
i.e., the code density of the most economical apparatus with parameters o, ¢,  is
equal to (o/x) log (c/max{e, 6}).
7. Estimate of polynomial derivatives. Now we present a result obtained while
proving the above theorem. It seems to be interesting by itself.
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Let P(f) be a polynomial of degree K. Put M = max_;,<; | P(f)|. By the Markoy-
Bernstein theorem the derivative P'(0) at the point O satisfies the inequality |P’(0)|
< MK. It is well known that this estimate is the least upper bound. Buslayev
has found another form of estimating derivatives.

If the polynomial P(r) has real coefficients, then

K—
PO M(1+ g+ % 1)
=1 ,l‘ 1']
A is an absolute constant, ¢ is the number of the roots of the polynomial located in
the disk |7] < 1 and {r;} are the roots of the polynomial located outside the disk.

Polynomials which arise as approximations of entire functions have widely
scattered roots. For this kind of polynomial this estimate turns out to be much
more effective than the Markov-Bernstein theorem. For polynomials with complex

coefficients this estimate, generally speaking, is not valid. A counterexample is
P@) = (1 + it/K1/ 2K,

8. Some remarks. Returning to our main subject, the estimate of code density,
we would like to make some remarks.

If we put & = 0 and take e sufficiently small, then the constants 1/2X (X running
over all positive integers) are pairwise distant, i.e., none of these constants is close to
another. Hence the entropy H(T) = oo and consequently H = oo. It means that
there is no apparatus with an infinite dynamic range.

It will be recalled that the definition of the closeness of signals includes the
parameter r. We have been assuming all the time that r = ¢~1. If we put r = 0,
then the corresponding value H turns out to be equal to (¢/x) log (c¢/min{e, 0}).
The symbol ¢ is again understood as a positive function of all parameters separated
from zero and infinity. We see that in the estimate of H the symbol min{e, 8} is
substituted for max {g, 6}, i.e., in the case when r = 0, § < &, the code density H
of the most economical apparatus turns out to be equal to (g/x) log (c/0). We see
that H turns out to be essentially dependent on the parameter J.

This circumstance shows that the conclusion, that there exists an apparatus with
a wide dynamic range and relatively small code density, is correct as much as the
choice of metric is reasonable.

The notion of the closeness of signals has been defined to correspond to the sys-
tem of measurements which at present is used in engineering. The condition r = ¢~}
seems to be natural as well because errors of reproduction are usually related to the
energy of the signal per some period of time and not to the momentary value of the
signal. For sinusoidal signals, for example, the error is usually related to the energy
per one period of the oscillation. So there is hope that our choice of metric is rea-
sonable and our conclusion is correct.

Now, in conclusion, it should be noted that our article about coding has been
cenired around the sound recording problems only to make the discussion more
concrete. The estimate presented relates to arbitrary signals with finite spectrum
and therefore can be used in other applications. For example, the result may be
looked upon as the estimate of the capacity of a communication channel.
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Any radio communication channel uses signals with finite spectrum and hence
can be interpreted as an apparatus. In this case we may use the parameters g, ¢
and 0 to characterise the frequency range of the channel, nonlinear distortions of
the channel and the level of channel noise. The entropy H(T) of the corresponding
class B, characterises the information content of signals and the number H{s, ¢, §)
turns out to be equal to the channel capacity.

The fact that H does not essentially depend on the parameter § when ¢ is suffi-
ciently small with respect to ¢ means that the channel capacity does not depend in
fact on the level of channel noise as soon as the noise is sufficiently small with
respect to distortions.
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Admissible Sets and the Interaction of Model Theory,
Recursion Theory and Set Theory

K. Jon Barwise

1. Introduction. The study of definability theory is usually considered the prerog-
ative of the model theorist. This view tends to identify definability theory with
generalizations of Beth’s theorem and ignores the obvious relevance of set theoretic
and recursion theoretic ideas (constructible sets, hyperarithmetic sets and inductive
definability, to name three). It is time to abandon this restrictive outlook and search
for a unified approach to the study of the way sets get defined, one which can take
full advantage of the tools developed in all parts of mathematical logic.

I have no idea what the “ultimate” treatment of definability will contain. I do feel
certain, though, that the study of admissible sets with urelements has an important
role to play in developing a definitive theory. Here I would like to share with you
some of the reasons for this belief.

This paper will contain no proofs or historical references. For these the reader is
referred to my book Admissible Sets and Structures (to appear shortly in the
Springer-Verlag series ‘“Perspectives in Mathematical Logic’”). I would like to
mention some of the mathematicians who have made significant contributions to
the theory described below. The order has, at most, psychological significance:
Kripke, Platek, Kreisel, Moschovakis, Gandy, Ville, Aczel, Grilliot, Gordon,
Makkai and Schlipf, Some of the most fundamental ideas of the subject go back to
work of Gddel and Kleene.

2. Basic notions. Let L be a first order language with equality and a finite number
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